Science.gov

Sample records for iodide nuclear detectors

  1. Mercuric iodide (HgI2) growth for nuclear detectors

    NASA Technical Reports Server (NTRS)

    Schnepple, W.

    1982-01-01

    The purpose of this investigation is to grow more-perfect mercuric iodide crystals in a low-gravity environment by taking advantage of diffusion-controlled growth conditions and by avoiding the problem of strain dislocations produced by the crystal's weight. This crystal has considerable practical importance as a sensitive gamma-ray detector and energy spectrometer that can operate at ambient temperature, as compared to presently available detectors that must be cooled to near liquid nitrogen temperatures. However, the performance of mercuric iodide crystals only rarely approaches the expected performance, presumably because some of the free electrical charges produced within the crystal are not collected at the electrodes, but instead remain trapped or immobilized at crystal defects. An efficient high atomic number semiconductor detector capable of operating at room temperature utilizing single HgI2 crystals offers a greater potential than existing detector technology.

  2. Correlations between mercuric iodide photoluminescence spectra and nuclear detector performance

    NASA Astrophysics Data System (ADS)

    Bao, X. J.; Schlesinger, T. E.; James, R. B.; Harvey, S. J.; Cheng, A. Y.; Gerrish, V.; Ortale, C.

    1992-06-01

    Low temperature photoluminescence spectroscopy was performed on a variety of HgI 2 samples and also on graded HgI 2 nuclear detectors. Correlations were found between features in the photoluminescence spectra and a crystal's ability to produce high-quality detectors. The intensity of a broad emission band centered at 6200 Å (designated as band 3) is weaker in crystals that yield high-quality detectors. Therefore, the defects responsible for this emission band are undesirable in the fabrication of HgI 2 nuclear detectors. The measurements also revealed that stronger emission in the exciton region (designated as band 1) is associated with crystals which produce high-quality detectors, indicating that a high degree of structural perfection is important for HgI 2 detector applications. These correlations, together with earlier results from studies of processing-induced defects, lead to suggestions regarding improvement of the manufacturing yield of high-quality HgI 2 detectors.

  3. Photoluminescence investigations of defects introduced during processing of mercuric iodide nuclear detectors

    NASA Astrophysics Data System (ADS)

    James, R. B.; Bao, X. J.; Schlesinger, T. E.; Cheng, A. Y.; Ortale, C.; van den Berg, L.

    1992-11-01

    Low-temperature photoluminescence (PL) spectroscopy was performed on a variety of HgI 2 samples to determine the effects of chemical etching with Kl and HNO 3 solutions and the modifications in the PL spectra due to the presence of carbon, chromium and parylene films. These investigations reveal that the processing steps used to manufacture HgI 2 nuclear detectors can lead to the incorporation of new defects into the near-surface region of the crystals. Moreover, correlations between the photoluminescence spectra and detector performance show that some of these defects are undesirable for producing high-quality devices.

  4. Growth of mercuric iodide (HgI2) for nuclear radiation detectors

    NASA Technical Reports Server (NTRS)

    Vandenberg, L.; Schnepple, W. F.

    1988-01-01

    Mercuric iodide is a material used for the fabrication of the sensing element in solid state X-ray and gamma ray detecting instruments. The operation of the devices is determined to a large degree by the density of structural defects in the single crystalline material used in the sensing element. Since there were strong indications that the quality of the material was degraded by the effects of gravity during the growth process, a research and engineering program was initiated to grow one or more crystals of mercuric iodide in the reduced gravity environment of space. A special furnace assembly was designed which could be accommodated in a Spacelab rack, and at the same time made it possible to use the same growth procedures and controls used when growing a crystal on the ground. The space crystal, after the flight, was subjected to the same evaluation methods used for earth-grown crystals, so that comparisons could be made.

  5. Introduction to fifth international workshop on mercuric iodide nuclear radiation detectors

    SciTech Connect

    Schieber, M.

    1982-01-01

    Mercuric iodide is a wide bandgap semiconductor, with Eg approx. = 2.14 eV at room temperature. Therefore, HgI/sub 2/ is totally different from the well-studied, narrower gap, elemental semiconductors such as Si and Ge, and also different in its physical and chemical properties from the known semiconductor binary zinc-blend compounds such as GaAs or InP. The purpose of studies in the last decade was to further our understanding of HgI/sub 2/; recent progress is reported. (WHK)

  6. Energy resolution enhancement of mercuric iodide detectors

    NASA Technical Reports Server (NTRS)

    Finger, M.; Prince, T. A.; Padgett, L.; Prickett, B.; Schnepple, W.

    1984-01-01

    A pulse processing technique has been developed which improves the gamma-ray energy resolution of mercuric iodide detectors. The technique employs a fast (100 ns) and a slow (6.4 microsec) pulse height analysis to correct for signal variations due to variations in charge trapping. The capabilities of the technique for energy resolution enhancement are discussed as well as the utility of the technique for examining the trapping characteristics of individual detectors. An energy resolution of 2.6 percent FWHM at 662 keV was achieved with an acceptance efficiency of 100 percent from a mercuric iodide detector which gives 8.3 percent FWHM using standard techniques.

  7. Mercuric iodide light detector and related method

    DOEpatents

    Iwanczyk, Jan S.; Barton, Jeff B.; Dabrowski, Andrzej J.; Schnepple, Wayne F.

    1986-01-01

    Apparatus and method for detecting light involve applying a substantially uniform electrical potential difference between first and second spaced surfaces of a body of mercuric iodide, exposing the first surface to light and measuring an electrical current passed through the body in response to the light. The mercuric iodide may be substantially monocrystalline and the potential may be applied between a substantially transparent conductive layer at the first surface and a second conductive layer at the second surface. In a preferred embodiment, the detector is coupled to a scintillator for passage of light to the mercuric iodide in response to ionizing radiation incident on the scintillator.

  8. Mercuric iodide light detector and related method

    DOEpatents

    Iwanczyk, J.S.; Barton, J.B.; Dabrowski, A.J.; Schnepple, W.F.

    1986-09-23

    Apparatus and method for detecting light involve applying a substantially uniform electrical potential difference between first and second spaced surfaces of a body of mercuric iodide, exposing the first surface to light and measuring an electrical current passed through the body in response to the light. The mercuric iodide may be substantially monocrystalline and the potential may be applied between a substantially transparent conductive layer at the first surface and a second conductive layer at the second surface. In a preferred embodiment, the detector is coupled to a scintillator for passage of light to the mercuric iodide in response to ionizing radiation incident on the scintillator. 7 figs.

  9. Correlation between mercuric iodide detector performance and crystalline perfection

    NASA Astrophysics Data System (ADS)

    Schieber, M.; Ortale, C.; van den Berg, L.; Schnepple, W.; Keller, L.; Wagner, C. N. J.; Yelon, W.; Ross, F.; Georgeson, G.; Milstein, F.

    1989-11-01

    X-ray, neutron and gamma ray diffraction rocking curves; X-ray topography; microhardness; and optical microscopic measurements have been performed directly on several mercuric iodide (Hgl2) nuclear radiation detectors fabricated from single crystals grown from the vapor phase. Two types of detectors were measured: spectrometer types (grades A and B), which had resolutions of 5-10% for the 662 keV photopeak of 137Cs, or radiation counters (grades C and D), where the spectral resolution ranged from 11% to no resolution. A good correlation has been found between the detector grade and the full width at half maximum (FWHM) of both the X- and gamma ray rocking curves (i.e., the higher the detector grade (A or B), the narrower the FWHM of the diffraction peak). X-ray topography also correlated with well both the FWHM of the diffraction X-ray rocking curve and the detector grade. The uniformity of the microhardness of the HgI2 detectors was found to be proportional to the nuclear performance of the detector. The better spectrometer-grade detectors were softer and much more uniform in microhardness than the most inferior detectors. The better detectors were also found to have much smoother surfaces than the poorer detectors, as observed by optical microscopy studies.

  10. Bismuth tri-iodide radiation detector development

    NASA Astrophysics Data System (ADS)

    Gokhale, Sasmit S.

    Bismuth tri-iodide is an attractive material for room temperature radiation detection. BiI3 demonstrates a number of properties that are apt for semiconductor radiation detection, especially gamma ray spectroscopy. The high atomic number (ZBi = 83 and ZI = 53) and the relatively high density (5.78 g/cm3) cause the material to have good photon stopping power, while the large band-gap (1.67 eV ) allows it to function as a room temperature radiation detector without any cooling mechanism. This work presents the fabrication and characterization of BiI3 radiation detectors. For the purpose of this research detectors were fabricated by cutting BiI3 crystal boules, followed by mechanical and chemical surface treatments. Detectors with various electrode geometries enabling single polarity charge sensing were fabricated. The electrical characteristics and the radiation response of the detectors were measured. The radiation response measurement was performed at room temperature using a 241Am alpha particle source and a 241Am sealed gamma-ray source. The spectral resolutions of the detectors varied from 2.09% - 6.1% for 59.5 keV gamma-rays and between 26% - 40% for 5.48 MeV alpha particles. Charge carrier properties such as the electron and hole mobility and lifetime were also estimated. The electron mobility for an ultrapure BiI 3 detector was estimated to be approximately 433 cm 2/Vs while that for antimony doped BiI3 was estimated to be around 956 cm2/Vs and the mobility-lifetime product for electrons was estimated to be around 5.44 x 10-4 cm 2/V. Detector simulation was performed using the Monte Carlo simulation code MCNP5. A Matlab script which incorporates charge carrier trapping and statistical variation was written to generate a gamma-ray spectrum from the simulated energy deposition spectra. Measured and simulated spectra were compared to extract the charge carrier mobility-lifetime products, which for electrons and holes were estimated to be 5 x 10-3 cm2/V and 1.3 x

  11. Investigation of copper electrodes for mercuric iodide detector applications

    NASA Astrophysics Data System (ADS)

    Bao, X. J.; Schlesinger, T. E.; James, R. B.; Stulen, R. H.; Ortale, C.; van den Berg, L.

    1990-06-01

    Copper diffusion in mercuric iodide was studied by low-temperature photoluminescence (PL) spectroscopy and Auger electron spectroscopy. A broad radiative emission band at a wavelength of about 6720 Å in the PL spectra was found to be related to Cu incorporation in the crystal. PL spectra obtained from surface doping experiments indicate that Cu is a rapid diffuser in HgI2 bulk material. Auger electron spectroscopy performed as a function of depth from the crystal surface confirms the rapid bulk diffusion process of Cu in HgI2. Fabrication of HgI2 nuclear detectors with Cu electrodes indicates that Cu is not acceptable as an electrode material, which is consistent with the fact that it diffuses easily into the bulk crystal and introduces new radiative recombination centers.

  12. Development of mercuric iodide uncooled x ray detectors and spectrometers

    NASA Technical Reports Server (NTRS)

    Iwanczyk, Jan S.

    1990-01-01

    The results obtained in the development of miniature, lowpower, light weight mercuric iodide, HgI2, x ray spectrometers for future space missions are summarized. It was demonstrated that HgI2 detectors can be employed in a high resolution x ray spectrometer, operating in a scanning electron microscope. Also, the development of HgI2 x ray detectors to augment alpha backscattering spectrometers is discussed. These combination instruments allow for the identification of all chemical elements, with the possible exception of hydrogen, and their respective concentrations. Additionally, further investigations of questions regarding radiation damage effects in the HgI2 x ray detectors are reported.

  13. Coincidence Efficiency of Sodium Iodide Detectors for Positron Annihilation

    NASA Astrophysics Data System (ADS)

    Eckert, Thomas; Vincett, Laurel; Yuly, Mark; Padalino, Stephen; Russ, Megan; Bienstock, Mollie; Simone, Angela; Ellison, Drew; Desmitt, Holly; Sangster, Craig; Regan, Sean

    2014-10-01

    One possible diagnostic technique for characterizing inertial confinement fusion reactions uses tertiary neutron activation of 12C via the 12C(n, 2n)11C reaction. A recent experiment to measure this cross section involved counting the positron annihilation gamma rays from the 11C decay by using sodium iodide detectors in coincidence. To determine the number of 11C decays requires an accurate value for the full-peak coincidence efficiency for the detector system. A new technique has been developed to measure this coincidence efficiency by detecting the positron prior to its annihilation, and vetoing events in which decay gamma rays other than the 511 keV annihilation gamma rays could enter the detectors. Measurements and simulation results for the absolute coincidence total and full-peak efficiencies are presented. Funded in part by a grant from the DOE through the Laboratory for Laser Energetics.

  14. Rutherford backscattering and Auger spectroscopy of mercuric iodide detectors

    NASA Astrophysics Data System (ADS)

    Felter, T. E.; Stulen, R. H.; Schnepple, W. F.; Ortale, C.; van den Berg, L.

    1989-11-01

    Palladium contacts on mercuric iodide have been studied using Rutherford backscattering spectroscopy and Auger electron spectroscopy. Results on actual detector contacts show some intermixing of both mercury and iodine with the palladium. To investigate the role of processing variables as a possible cause of this effect we have fabricated model contacts at low temperatures (T ≈ 100 K) and analyzed in situ. The results demonstrated that significant interdiffusion occurs at temperatures as low as 225 K. We conclude that excessive heating during contact deposition could prove to be detrimental to device performance and that the use of cooled substrates during processing should be explored.

  15. Incorporation of defects during processing of mercuric iodide detectors

    NASA Astrophysics Data System (ADS)

    Bao, X. J.; Schlesinger, T. E.; James, R. B.; Stulen, R. H.; Ortale, C.; Cheng, A. Y.

    1990-07-01

    The effects of chemical etching in KI solution, heating, and vacuum exposures of HgI2 were individually studied by low-temperature photoluminescence (PL) spectroscopy. Each of these processing steps is important in the manufacturing of mercuric iodide detectors and may be responsible for the incorporation of carrier traps both in the near-surface region and in the bulk. The results of etching experiments showed that the near-surface region has a different defect structure than the bulk, which appears to result from iodine deficiency. Bulk heating at 100 °C also modifies the defect structure of the crystal. Vacuum exposure has an effect similar to chemical etching, but it does not cause significant degradation of the stoichiometry for recently KI-etched specimens. These studies suggest that some features in the PL spectra of HgI2 are associated with stoichiometry of the specimens.

  16. Potassium Iodide ("KI"): Instructions to Make Potassium Iodide Solution for Use During a Nuclear Emergency (Liquid Form)

    MedlinePlus

    ... make Potassium Iodide Solution for Use During a Nuclear Emergency (Liquid Form) Share Tweet Linkedin Pin it ... Preparation and Dosing Instructions for Use During a Nuclear Emergency To Make KI Solution (Liquid Form), using ...

  17. Optical detection of impurities and defects in detector-grade mercuric iodide

    NASA Astrophysics Data System (ADS)

    James, R. B.; Ottesen, D. K.; Wong, D.; Schlesinger, T. E.; Schnepple, W. F.; Ortale, C.; Van Den Berg, L.

    1989-11-01

    We report the results of two different optical techniques, Fourier transform infrared (FTIR) spectroscopy and low-temperature photoluminescence, used to study impurities and native defects in mercuric iodide crystals and nuclear detectors. Several absorption bands associated with the presence of impurities are observed in transmission infrared spectra. Our measurements indicate that significant amounts of water are likely contained in the HgI2 crystals, and that the concentration of the water can be reduced by appropriate storage of the material. The FTIR spectra also show the existence of hydrocarbons in the bulk material. Several other weak absorption bands due to contaminants are detected in the transmission measurements. Low-temperature photoluminescence studies were also conducted on fully processed nuclear detectors to elucidate the relation between the measured luminescence and the detector response. At 78 K we observe a spectral line that appears to be correlated with the detector quality. In general, the photoluminescence results suggest that detector fabrication steps cause significant modifications to the stoichiometry in the near-surface region of the HgI2 crystals.

  18. Optical detection of impurities and defects in detector-grade mercuric iodide vandenBerg, L.

    NASA Astrophysics Data System (ADS)

    James, R. B.; Ottesen, D. K.; Wong, D.; Schlesinger, T. E.; Schnepple, W. F.; Ortale, C.; Vandenberg, L.

    Fourier tranform infrared spectroscopy (FTIR) and low-temperature photoluminescence were used to study impurities and defects in mercuric iodide crystals. FTIR spectra of the transmittance and reflectance were obtained in the 400 to 4000 cm sup minus 1 range, and the results were found to vary for different samples due to the presence of impurities and stoichiometry deviations. The photoluminescence data were found to consist primarily of three distinct emission bands. The lowest energy band at about 680 nm (at 4.2 K) was shown to be related to the performance of nuclear radiation detectors fabricated from these samples. Further correlations between the spectral features obtained from FTIR and photoluminescence techniques and the detector response are also noted.

  19. Photoluminescence variations associated with the deposition of palladium electrical contacts on detector-grade mercuric iodide

    NASA Astrophysics Data System (ADS)

    Wong, D.; Bao, X. J.; Schlesinger, T. E.; James, R. B.; Cheng, A.; Ortale, C.; van den Berg, L.

    1988-10-01

    Specimens of mercuric iodide with evaporated semitransparent palladium contacts have been studied using low-temperature photoluminescence spectroscopy. Distinct differences were found between spectra taken from beneath the Pd contacts and those taken from regions on the HgI2 sample that were masked during the Pd deposition, indicating that contact fabrication can change the defect structure near the contact/substrate interface. Comparison of the spectra from spots beneath the contacts with spectra from bulk material specimens and HgI2 detectors graded in terms of their nuclear detection performance suggests that the processing steps used to deposit electrical contacts and the choice of contact material may have a significant influence on detector performance.

  20. The effect of elemental and hydrocarbon impurities on mercuric iodide gamma ray detector performance

    NASA Astrophysics Data System (ADS)

    Cross, Eilene S.; Buffleben, George; Soria, Ed; James, Ralph; Schieber, Michael; Natarajan, Raj; Gerrish, Vern

    Mercuric iodide is a room temperature semiconductor material that is used for gamma ray and x-ray radiation detection. Mercuric iodide is synthesized from mercuric chloride and potassium iodide and is then purified by a series of melts and sublimation steps and by zone refining. The mercuric iodide is grown into crystals and platelets and then fabricated into detectors. Elemental contamination may be a determining factor in the performance of these detectors. These contaminates may be present in the starting material or may be introduced during, or be unaffected by, the purification, growth or fabrication steps. Methods have been developed for the analysis of trace levels of elemental contamination. Inductively Coupled Plasma/Mass Spectroscopy (ICP/MS), Inductively Coupled Plasma/Optical Emission Spectroscopy (ICP/OES) and Gas Chromatography/Mass Spectroscopy (GC/MS) are used to determine sub ppm levels of many trace elemental impurities. Trace levels of many elemental impurities in the raw mercuric iodide are significantly reduced during the purification and zone refining processes. Though the levels of impurities are reduced, poor performing mercuric iodide detectors have contamination levels remaining or reintroduced which are higher for Ag, Al, Ca, Cu, Mg, Mn, Na, Pb and Zn than detectors with good gamma ray response. This paper will discuss the analytical methodology, the effects of purification on impurity levels, and the correlation between detector performance and impurity levels.

  1. The use of a mercuric iodide detector for X-ray fluorescence analysis in archaeometry

    NASA Astrophysics Data System (ADS)

    Cesareo, R.; Gigante, G. E.; Iwanczyk, J. S.; Dabrowski, A.

    1992-11-01

    For about two decades, energy dispersive X-ray fluorescence (EDXRF) has been employed in Rome for the analysis of works of art. A short history of the applications of EDXRF to paintings and alloys is presented. Finally, the usefulness of mercuric iodide room-temperature semiconductor detectors in this field is shown.

  2. Performance of photomultiplier tubes and sodium iodide scintillation detector systems

    NASA Technical Reports Server (NTRS)

    Meegan, C. A.

    1981-01-01

    The performance of photomultiplier tubes (PMT's) and scintillation detector systems incorporating 50.8 by 1.27 cm NaI (T l) crystals was investigated to determine the characteristics of the photomultiplier tubes and optimize the detector geometry for the Burst and Transient Source Experiment on the Gamma Ray Observatory. Background information on performance characteristics of PMT's and NaI (T l) detectors is provided, procedures for measurement of relevant parameters are specified, and results of these measurements are presented.

  3. X-ray fluorescence analysis of alloy and stainless steels using a mercuric iodide detector

    NASA Technical Reports Server (NTRS)

    Kelliher, Warren C.; Maddox, W. Gene

    1988-01-01

    A mercuric iodide detector was used for the XRF analysis of a number of NBS standard steels, applying a specially developed correction method for interelemental effects. It is shown that, using this method and a good peak-deconvolution technique, the HgI2 detector is capable of achieving resolutions and count rates needed in the XRF anlysis of multielement samples. The freedom from cryogenic cooling and from power supplies necessary for an electrically cooled device makes this detector a very good candidate for a portable instrument.

  4. Lung cancer detection using a miniature sodium iodide detector and cobalt-57 bleomycin

    SciTech Connect

    Woolfenden, J.M.; Nevin, W.S.; Barber, H.B.; Donahue, D.J.

    1984-01-01

    A small sodium iodide scintillation detector was designed for insertion through a fiberoptic bronchoscope to detect and localize sites of deposition of cobalt-57 bleomycin in lung cancer. The detector was used in 40 diagnostic studies of 34 patients; 21 of the patients had tumors. We compared the sensitivity, specificity, accuracy, and predictive value of the detector to those of plain chest x-ray films and bronchoscopy in detecting tumors. Sensitivity and specificity for the detector were 68 percent and 80 percent, respectively; for bronchoscopy, 72 percent and 100 percent; and for roentgenograms, 80 percent and 53 percent. Sensitivity for the detector and bronchoscopy combined was 92 percent. The detector succeeded in locating nonvisible submucosal and extraluminal tumors, and may contribute to early diagnosis and more accurate staging of lung cancer.

  5. Correlation between mercuric iodide detector performance and crystalline perfection

    NASA Astrophysics Data System (ADS)

    Schieber, M.; Ortale, C.; Vandenberg, L.; Schnepple, W.; Keller, L.; Wagner, C. N. J.; Yelon, W.; Ross, F.; Georgeson, G.; Milstein, F.

    An attempt has been made to establish a correlation between the results of X-ray rocking curves and X-ray reflection topographs for vapor grown HgI sub 2 single crystals. X-ray rocking curves were obtained by double crystal spectroscopy with Si as the first crystal and topographs were produced using the Berg-Barrett technique with an asymmetrically cut Si-disperser. The crystals were evaluated at different stages of detector preparation, i.e., cutting, polishing, etching, and deposition of contact. Multiple diffraction peaks could be observed as being indicative of small angle grain boundaries of up to 2 degrees. Definite nonuniformities on virgin single crystals as well as on detector crystals were observed by both methods. The crystal surface quality as assessed by these methods were used as a criterion to verify detector performance rating. No drastic improvement of surface quality on space grown crystals was indicated by these techniques. Efforts have also been devoted to determine intrinsic full width at half maximum of HgI(sub 2) crystal for the crystallographic direction studied.

  6. Use of mercuric iodide X-ray detectors with alpha backscattering spectrometers for space applications

    NASA Technical Reports Server (NTRS)

    Iwanczyk, J. S.; Wang, Y. J.; Dorri, N.; Dabrowski, A. J.; Economou, T. E.

    1991-01-01

    The authors present X-ray fluorescence (XRF) spectra of different extraterrestrial samples taken with a mercuric iodide (HgI2) spectrometer inserted into an alpha backscattering instrument identical to that used in the Soviet Phobos mission. The results obtained with the HgI2 ambient temperature detector are compared with those obtained using an Si(Li) cryogenically cooled detector. Efforts to design an optimized instrument for space application are also described. The results presented indicate that the energy resolution and sensitivity of HgI2 detectors are adequate to meet the performance needs of a number of proposed space applications, particularly those in which cooled silicon X-ray detectors are impractical or even not usable, such as for the target science programs on geoscience opportunities for lunar surface, Mars surface, and other comet and planetary missions being planned by NASA and ESA.

  7. A radiotelemetry pill for the measurement of ionising radiation using a mercuric iodide detector.

    PubMed

    Hassan, M A; Pearce, G; Edwards, J P

    1978-03-01

    A small radiation measuring pill is briefly described which utilises the principles of radiotelemetry and the properties of a room temperature semiconductor radiation detector such as mercuric iodide. By transmitting a radio signal to a remote receiver the pill could be an effective tool in localising bleeding sites along the gastrointestinal tract and also possibly in the diagnosis of gastrointestinal carcinoma. Other uses of the radiopill are suggested. The size of the pill is 27 mm x 10 mm diameter and consists of a mercuric iodide crystal, an amplifier, a frequency modulated transmitter and one battery. The radiotransmitter operates at about 106 MHz and has a range of about 10m, and the sensitivity of the pill has been found for 99Tcm, 131I and 32P. PMID:306112

  8. Benchmark Gamma Spectroscopy Measurements of Uranium Hexafluoride in Aluminmum Pipe with a Sodium Iodide Detector

    SciTech Connect

    March-Leuba, Jose A; Uckan, Taner; Gunning, John E; Brukiewa, Patrick D; Upadhyaya, Belle R; Revis, Stephen M

    2010-01-01

    ) and an enrichment monitor (EM). Development of the FM is primarily the responsibility of Oak Ridge National Laboratory, and development of the EM is primarily the responsibility of Los Alamos National Laboratory. The FM will measure {sup 235}U mass flow rate by combining information from measuring the UF{sub 6} volumetric flow rate and the {sup 235}U density. The UF{sub 6} flow rate will be measured using characteristics of the process pumps used in product and tail UF{sub 6} header process lines of many GCEPs, and the {sup 235}U density will be measured using commercially available sodium iodide (NaI) gamma ray scintillation detectors. This report describes the calibration of the portion of the FM that measures the {sup 235}U density. Research has been performed to define a methodology and collect data necessary to perform this calibration without the need for plant declarations. The {sup 235}U density detector is a commercially available system (GammaRad made by Amptek, www.amptek.com) that contains the NaI crystal, photomultiplier tube, signal conditioning electronics, and a multichannel analyzer (MCA). Measurements were made with the detector system installed near four {sup 235}U sources. Two of the sources were made of solid uranium, and the other two were in the form of UF{sub 6} gas in aluminum piping. One of the UF{sub 6} gas sources was located at ORNL and the other at LANL. The ORNL source consisted of two pipe sections (schedule 40 aluminum pipe of 4-inch and 8-inch outside diameter) with 5.36% {sup 235}U enrichment, and the LANL source was a 4-inch schedule 40 aluminum pipe with 3.3% {sup 235}U enrichment. The configurations of the detector on these test sources, as well as on long straight pipe configurations expected to exist at GCEPs, were modeled using the computer code MCNP. The results of the MCNP calculations were used to define geometric correction factors between the test source and the GCEP application. Using these geometric correction factors

  9. Potassium Iodide

    MedlinePlus

    ... radioactive iodine that may be released during a nuclear radiation emergency. Radioactive iodine can damage the thyroid gland. ... only take potassium iodide if there is a nuclear radiation emergency and public officials tell you that you ...

  10. Observation of nuclear quadrupole hyperfine structure in the infrared spectrum of hydrogen iodide using a tunable-diode laser

    NASA Technical Reports Server (NTRS)

    Strow, L. L.

    1980-01-01

    Nuclear quadrupole hyperfine structure has been observed in the 1-0 vibration-rotation band of hydrogen iodide with a tunable-diode laser. The measured splittings agree well with microwave measurements of the HI molecule. Evidence for a slight change in the iodine nuclear quadrupole coupling constant from the ground to first excited vibrational state in hydrogen iodide was found.

  11. Potassium Iodide

    MedlinePlus

    Potassium iodide is used to protect the thyroid gland from taking in radioactive iodine that may be released during a nuclear radiation emergency. Radioactive iodine can damage the thyroid gland. You ...

  12. Trapping radiodine, in the form of methyl iodide, on nuclear carbon

    SciTech Connect

    Nacapricha, D.; Taylor, C.

    1996-12-31

    Studies have been performed on potassium-iodide-impregnated charcoals of the type used in the nuclear industry for trapping radioiodine released during nuclear fission. The effects of various parameters on the trapping efficiency of methyl iodide have been investigated. A variation in particle size within a bulk charcoal caused poor precision in K value measurements because of differences in surface area, pore volume, and bed density, leading to differences in the deposition of the impregnant. Precision is improved by sieving the charcoal to a narrower size because smaller particles have a higher porosity. This finding is supported by surface area and pore measurements. Two methods of impregnation are compared by measuring K values and the deposition of potassium iodide. Charcoal impregnated by rotary evaporation exhibits both higher K values and higher potassium iodide contents than sprayed charcoal. Two designs of spraying drum are compared: a drum with helical vanes allows more efficient deposition and more uniform distribution of impregnant than a drum with axial vanes. A decrease in the K value with increasing humidity correlates with the available surface area. A similar correlation exists between water content and available pore volume. Aging of potassium-iodide-impregnated charcoal, caused by the formation of oxygen complexes on the surface, is associated with significant falls in K value. K values of charcoals also can be restored to at least their original values by heat treatment in the absence of air. 12 refs., 6 figs., 1 tab.

  13. Mercuric iodide room-temperature array detectors for gamma-ray imaging

    SciTech Connect

    Patt, B.

    1994-11-15

    Significant progress has been made recently in the development of mercuric iodide detector arrays for gamma-ray imaging, making real the possibility of constructing high-performance small, light-weight, portable gamma-ray imaging systems. New techniques have been applied in detector fabrication and then low noise electronics which have produced pixel arrays with high-energy resolution, high spatial resolution, high gamma stopping efficiency. Measurements of the energy resolution capability have been made on a 19-element protypical array. Pixel energy resolutions of 2.98% fwhm and 3.88% fwhm were obtained at 59 keV (241-Am) and 140-keV (99m-Tc), respectively. The pixel spectra for a 14-element section of the data is shown together with the composition of the overlapped individual pixel spectra. These techniques are now being applied to fabricate much larger arrays with thousands of pixels. Extension of these principles to imaging scenarios involving gamma-ray energies up to several hundred keV is also possible. This would enable imaging of the 208 keV and 375-414 keV 239-Pu and 240-Pu structures, as well as the 186 keV line of 235-U.

  14. A mercuric iodide detector system for X-ray astronomy. I - Design considerations and predictions of background and sensitivity

    NASA Technical Reports Server (NTRS)

    Ricker, G. R.; Vallerga, J. V.; Wood, D. R.

    1983-01-01

    Since the discovery of Sco X-1 initiated X-ray astronomy in 1962, this science has progressed in connection with the placement of X-ray photon detectors above the atmosphere by means of rockets, balloons, and satellites. In the last few years, studies have been conducted regarding the use of mercuric iodide (HgI2) as room temperature X-ray detector for applications in hard X-ray astronomy. These detectors combine a high quantum efficiency with good energy resolution. The sensitivity of an astronomical X-ray telescope is discussed, and a description is presented of a specific design accepted for the HDXT to be flown on Spacelab. Attention is given to predictions of the background counting rate of the detector assembly in this design, taking into account the results of a Monte Carlo simulation of the detector assembly in the radiation environment at balloon altitudes (40 km).

  15. Nuclear cargo detector

    DOEpatents

    Christo, Steven Basil

    2006-12-19

    Apparatus for the inspection of cargo containers for nuclear materials comprising one or more arrays of modules comprising grounded, closed conductive tubes filled with an ionizing gas mixture such as, but not limited to, Argon:CO.sub.2. A wire is suspended along each tube axis and electrically connected at both ends of the tube. A positive, dc high voltage is supplied to one end of the wire and an amplifier is attached to the other end through a capacitance to decouple the amplifier from the high voltage. X-rays, gamma rays or neutrons produced by nuclear material and passing through the tube ionize the gas. The electrons from the gas ionization process are accelerated toward the wire surface due to the wire's electrical potential. The acceleration of the electrons near the wire's surface is sufficient to ionize more gas and produce an amplification of electrons/ions that create a surge of current large enough to be detectable by the amplifier. Means are also provided for a warning device coupled to the amplifier.

  16. New measurement of the Fano factor of mercuric iodide. [astronomical x-ray detector charge collection efficiency

    NASA Technical Reports Server (NTRS)

    Ricker, G. R.; Vallerga, J. V.; Dabrowski, A. J.; Iwanczyk, J. S.; Entine, G.

    1982-01-01

    It is pointed out that mercuric iodide (HgI2) shows great promise as a high-resolution X-ray detector for use in X-ray astronomy. Development of mercuric iodide for astronomical work has required investigation of the temperature dependence of the HgI2 crystal parameters such as leakage current, resolution, and mobility of the charge carriers. The first studies in connection with these investigations have led to a new value of the Fano factor of 0.19 + or - 0.03. The best value previously reported was 0.27 measured at room temperature. The new upper limit of 0.19 for the HgI2 Fano factor was determined by cooling the HgI2 crystal and preamp to -20 C. It is concluded that room-temperature energy resolution of HgI2 is not limited by charge generation statistics but rather by collection efficiency.

  17. A mercuric iodide detector system for X-ray astronomy. II - Results from flight tests of a balloon borne instrument

    NASA Technical Reports Server (NTRS)

    Vallerga, J. V.; Vanderspek, R. K.; Ricker, G. R.

    1983-01-01

    To establish the expected sensitivity of a new hard X-ray telescope design, described by Ricker et al., an experiment was conducted to measure the background counting rate at balloon altitudes (40 km) of mercuric iodide, a room temperature solid state X-ray detector. The prototype detector consisted of two thin mercuric iodide (HgI2) detectors surrounded by a large bismuth germanate scintillator operated in anticoincidence. The bismuth germanate shield vetoed most of the background counting rate induced by atmospheric gamma-rays, neutrons and cosmic rays. A balloon-borne gondola containing a prototype detector assembly was designed, constructed and flown twice in the spring of 1982 from Palestine, TX. The second flight of this instrument established a differential background counting rate of 4.2 + or - 0.7 x 10 to the -5th counts/s sq cm keV over the energy range of 40-80 keV. This measurement was within 50 percent of the predicted value. The measured rate is about 5 times lower than previously achieved in shielded NaI/CsI or Ge systems operating in the same energy range.

  18. Frequently Asked Questions on Potassium Iodide (KI)

    MedlinePlus

    ... needs to take potassium iodide (KI) after a nuclear radiation release? What potassium iodide (KI) products are currently ... needs to take potassium iodide (KI) after a nuclear radiation release? The FDA guidance prioritizes groups based on ...

  19. Performance of room temperature mercuric iodide /HgI2/ detectors in the ultralow-energy X-ray region

    NASA Technical Reports Server (NTRS)

    Dabrowski, A. J.; Barton, J. B.; Huth, G. C.; Whited, R.; Ortale, C.; Economou, T. E.; Turkevich, A. L.; Iwanczyk, J. S.

    1981-01-01

    Experiments have been done to study the performance of mercuric iodide (HgI2) detectors in the ultralow-energy X-ray region. Energy resolution values of 245 eV (FWHM) for the Mg K-alpha X-ray line at 1.25 keV and 225 eV (FWHM) for the electronic noise linewidth have been obtained for an HgI2 detector with painted carbon contacts using a pulsed-light feedback preamplifier; the whole system was operated at room temperature. The resolution values in the ultralow-energy region are still limited by electronic noise of the system. In an attempt to minimize X-ray attenuation in the front contact, detectors were prepared with thin evaporated Pd contacts. These detectors show a pronounced low-energy tailing of the photopeak below a few keV, in contrast to the spectra obtained by detectors with carbon contact. An attempt has been made to explain the tailing effect starting with models wich have been proposed to describe similar effects in Ge detectors.

  20. Performance of room temperature mercuric iodide /HgI2/ detectors in the ultralow-energy X-ray region

    NASA Astrophysics Data System (ADS)

    Dabrowski, A. J.; Barton, J. B.; Huth, G. C.; Whited, R.; Ortale, C.; Economou, T. E.; Turkevich, A. L.; Iwanczyk, J. S.

    1981-02-01

    Experiments have been done to study the performance of mercuric iodide (HgI2) detectors in the ultralow-energy X-ray region. Energy resolution values of 245 eV (FWHM) for the Mg K-alpha X-ray line at 1.25 keV and 225 eV (FWHM) for the electronic noise linewidth have been obtained for an HgI2 detector with painted carbon contacts using a pulsed-light feedback preamplifier; the whole system was operated at room temperature. The resolution values in the ultralow-energy region are still limited by electronic noise of the system. In an attempt to minimize X-ray attenuation in the front contact, detectors were prepared with thin evaporated Pd contacts. These detectors show a pronounced low-energy tailing of the photopeak below a few keV, in contrast to the spectra obtained by detectors with carbon contact. An attempt has been made to explain the tailing effect starting with models wich have been proposed to describe similar effects in Ge detectors.

  1. Wide-range nuclear magnetic resonance detector

    NASA Technical Reports Server (NTRS)

    Sturman, J. C.; Jirberg, R. J.

    1972-01-01

    Compact and easy to use solid state nuclear magnetic resonance detector is designed for measuring field strength to 20 teslas in cryogenically cooled magnets. Extremely low noise and high sensitivity make detector applicable to nearly all types of analytical nuclear magnetic resonance measurements and can be used in high temperature and radiation environments.

  2. A bismuth germanate-shielded mercuric iodide X-ray detector for space applications

    NASA Technical Reports Server (NTRS)

    Vallerga, J. V.; Ricker, G. R.; Schnepple, W. S.; Ortale, C.

    1982-01-01

    The development of HgI2 for solid state X-ray detector applications over the past decade was carried out in connection with the ability of the crystal to operate as a detector at room temperature. In order to achieve the lowest background possible for HgI2 detectors in a space-like environment (balloon and/or satellite altitudes), attention was given to the design of a shielding system which actively vetoes nonaperture events such as gamma rays and charged particles that can mimic signal X-rays by partial deposition of energy in the main detector. The detector system consists of two HgI2 detectors mounted back to back and operated in anticoincidence. The two detectors are placed inside a bismuth germanate scintillating shield along with two hybrid charge-sensitive preamps. Monte Carlo simulations of detector performance are discussed.

  3. Sodium Iodide Symporter for Nuclear Molecular Imaging and Gene Therapy: From Bedside to Bench and Back

    PubMed Central

    Ahn, Byeong-Cheol

    2012-01-01

    Molecular imaging, defined as the visual representation, characterization and quantification of biological processes at the cellular and subcellular levels within intact living organisms, can be obtained by various imaging technologies, including nuclear imaging methods. Imaging of normal thyroid tissue and differentiated thyroid cancer, and treatment of thyroid cancer with radioiodine rely on the expression of the sodium iodide symporter (NIS) in these cells. NIS is an intrinsic membrane protein with 13 transmembrane domains and it takes up iodide into the cytosol from the extracellular fluid. By transferring NIS function to various cells via gene transfer, the cells can be visualized with gamma or positron emitting radioisotopes such as Tc-99m, I-123, I-131, I-124 and F-18 tetrafluoroborate, which are accumulated by NIS. They can also be treated with beta- or alpha-emitting radionuclides, such as I-131, Re-186, Re-188 and At-211, which are also accumulated by NIS. This article demonstrates the diagnostic and therapeutic applications of NIS as a radionuclide-based reporter gene for trafficking cells and a therapeutic gene for treating cancers. PMID:22539935

  4. Nuclear Electronics: Superconducting Detectors and Processing Techniques

    NASA Astrophysics Data System (ADS)

    Polushkin, Vladimir

    2004-06-01

    With the commercialisation of superconducting particles and radiation detectors set to occur in the very near future, nuclear analytical instrumentation is taking a big step forward. These new detectors have a high degree of accuracy, stability and speed and are suitable for high-density multiplex integration in nuclear research laboratories and astrophysics. Furthermore, superconducting detectors can also be successfully applied to food safety, airport security systems, medical examinations, doping tests & forensic investigations. This book is the first to address a new generation of analytical tools based on new superconductor detectors demonstrating outstanding performance unsurpassed by any other conventional devices. Presenting the latest research and development in nanometer technologies and biochemistry this book: * Discusses the development of nuclear sensing techniques. * Provides guidance on the design and use of the next generation of detectors. * Describes cryogenic detectors for nuclear measurements and spectrometry. * Covers primary detectors, front-end readout electronics and digital signal processing. * Presents applications in nanotechnology and modern biochemistry including DNA sequencing, proteinomics, microorganisms. * Features examples of two applications in X-ray electron probe nanoanalysis and time-of-flight mass spectrometry. This comprehensive treatment is the ideal reference for researchers, industrial engineers and graduate students involved in the development of high precision nuclear measurements, nuclear analytical instrumentation and advanced superconductor primary sensors. This book will also appeal to physicists, electrical and electronic engineers in the nuclear industry.

  5. Physical properties of a new flat panel detector with cesium-iodide technology

    NASA Astrophysics Data System (ADS)

    Hahn, Andreas; Penchev, Petar; Fiebich, Martin

    2016-03-01

    Flat panel detectors have become the standard technology in projection radiography. Further progress in detector technology will result in an improvement of MTF and DQE. The new detector (DX-D45C; Agfa; Mortsel/Belgium) is based on cesium-iodine crystals and has a change in the detector material and the readout electronics. The detector has a size of 30 cm x 24 cm and a pixel matrix of 2560 x 2048 with a pixel pitch of 124 μm. The system includes an automatic exposure detector, which enables the use of the detector without a connection to the x-ray generator. The physical properties of the detector were determined following IEC 62220-1-1 in a laboratory setting. The MTF showed an improvement compared to the previous version of cesium-iodine based flat-panel detectors. Thereby the DQE is also improved especially for the higher frequencies. The new detector showed an improvement in the physical properties compared to the previous versions. This enables a potential for further dose reductions in clinical imaging.

  6. Measurement of the characteristic X ray of oxygen and other ultrasoft X rays using mercuric iodide detectors

    NASA Technical Reports Server (NTRS)

    Iwanczyk, J. S.; Dabrowski, A. J.; Huth, G. C.; Economou, T. E.

    1985-01-01

    This letter reports the detection and resolution of the characteristic X-ray of oxygen at 523 eV and other ultrasoft X-rays (photons energy less than 1 keV) using radiation detectors fabricated from the compound semi-insulator mercuric iodide (HgI2). These detectors are capable of operation at room ambient but in these experiments were slightly cooled using a Peltier element to 0 C. A pulsed light feedback preamplifier with a Peltier element cooled (to -30 deg) first stage field-effect transistor was used to amplify signals from the detector. Overall system noise level was 185 eV (full width at half-maximum) limited by the temperature of the first stage field-effect transistor. With optimal cooling of this element the characteristic X-ray of carbon at 282 eV should be measurable. These results would seem to be important in measurement of biological samples in electron column instruments.

  7. Transient and steady-state dark current mechanisms in polycrystalline mercuric iodide X-ray imaging detectors

    NASA Astrophysics Data System (ADS)

    Kabir, M. Z.

    2014-02-01

    A theoretical model for describing bias-dependent time transient and steady-state dark current behaviors in polycrystalline mercuric iodide (poly-HgI2) based X-ray image detectors is developed. The model considers carrier injection from the metal electrode, bulk carrier depletion process, and bulk thermal generation current from the mid-gap states. The transient dark current is mainly determined by the initial carrier depletion process. At a very low applied field (less than 0.05 V/μm), the steady-state dark current is almost equal to the bulk thermal generation current. However, the injection current increases sharply with increasing the applied field. The steady-state dark current in poly-HgI2 detectors at normal operating field (~ 1 V/μm) is mainly controlled by the Schottky emission of electrons from the metal/HgI2 contact. The fitting of the physics-based model to the experimental results estimates the effective barrier height and interface defect states for injecting electrons from the metal to poly-HgI2 layer in various poly-HgI2 detectors.

  8. Investigation of the formation possibilities of alkyl iodides in nuclear power plants

    NASA Astrophysics Data System (ADS)

    Bartoníček, B.; Habersbergerová, A.

    The radiolytic decomposition of ion-exchange resins used in Czechoslovak nuclear power plants for the purification of the reactor coolant and chemical control of H 3BO 3 concentration in the coolant was studied with regard to the determination of sources of aliphatic hydrocarbons, which are potential precursors of alkyl iodides. On irradiation of ion-exchange resins in deaerated borate solution, C 1-C 4 hydrocarbons are formed. These hydrocarbons are produced also in the radiolysis of the emulsion of turbine oil in the same solution. The radiation stability of cation-exchange resins is higher than that of anion-exchange resins. Radiolytic and thermal reactions occuring in the gaseous mixtures containing I 2, CH 4, H 2O, and air/Ar give rise to CH 3I. CH 3I is produced also in the radiolysis of aqueous solutions containing CH 4 and I 2 or I -.

  9. SABRE: A search for dark matter and a test of the DAMA/LIBRA annual-modulation result using thallium-doped sodium-iodide scintillation detectors

    NASA Astrophysics Data System (ADS)

    Shields, Emily Kathryn

    Ample evidence has been gathered demonstrating that the majority of the mass in the universe is composed of non-luminous, non-baryonic matter. Though the evidence for dark matter is unassailable, its nature and properties remain unknown. A broad effort has been undertaken by the physics community to detect dark-matter particles through direct-detection techniques. For over a decade, the DAMA/LIBRA experiment has observed a highly significant (9.3sigma) modulation in the scintillation event rate in their highly pure NaI(Tl) detectors, which they use as the basis of a claim for the discovery of dark-matter particles. However, the dark-matter interpretation of the DAMA/LIBRA modulation remains unverified. While there have been some recent hints of dark matter in the form of a light Weakly-Interacting Massive Particle (WIMP) from the CoGeNT and CDMS-Si experiments, when assuming a WIMP dark-matter model, several other experiments, including the LUX and XENON noble-liquid experiments, the KIMS CsI(Tl) experiment, and several bubble chamber experiments, conflict with DAMA/LIBRA. However, these experiments use different dark-matter targets and cannot be compared with DAMA/LIBRA in a model-independent way. The uncertainty surrounding the dark-matter model, astrophysical model, and nuclear-physics effects makes it necessary for a new NaI(Tl) experiment to directly test the DAMA/LIBRA result. The Sodium-iodide with Active Background REjection (SABRE) experiment seeks to provide a much-needed model-independent test of the DAMA/LIBRA modulation by developing highly pure crystal detectors with very low radioactivity and deploying them in an active veto detector that can reject key backgrounds in a dark-matter measurement. This work focuses on the efforts put forward by the SABRE collaboration in developing low-background, low-threshold crystal detectors, designing and fabricating a liquid-scintillator veto detector, and simulating the predicted background spectrum for a dark

  10. Advances in the development of encapsulants for mercuric iodide X-ray detectors

    NASA Technical Reports Server (NTRS)

    Iwanczyk, J. S.; Wang, Y. J.; Schnepple, W. F.; Bradley, J. G.; Albee, A. L.

    1990-01-01

    Advances in the development of protective impermeable encapsulants with high transparency to ultra-low-energy X-rays for use on HgI2 X-ray detectors are reported. Various X-ray fluorescence spectra from coated detectors are presented. The X-ray absorption in the encapsulants has been analyzed using characteristic radiation from various elements. Results suggest that low-energy cutoffs for the detectors are not determined solely by the encapsulating coatings presently employed but are also influenced by the front electrode and surface effects, which can affect the local electric field or the surface recombination velocity. An energy resolution of 182 eV (FWHM) has been achieved for Ni L lines at 850 eV. Improved detector sensitivity to X-ray energies under 700 eV is demonstrated.

  11. Sensitivity of sodium iodide cryogenic scintillation-phonon detectors to WIMP signals

    NASA Astrophysics Data System (ADS)

    Clark, M.; Nadeau, P.; Di Stefano, P. C. F.; Lanfranchi, J.-C.; Roth, S.; von Sivers, M.; Yavin, I.

    2016-05-01

    There is great interest in performing dark matter direct detection experiments using alkali halides such as NaI to test the DAMA/LIBRA claim. Cryogenic scintillation-phonon detectors measure both scintillation light and phonons to provide event-by-event discrimination between particles interacting with nuclei and particles interacting with electrons. An alkali halide scintillation-phonon detector could test the DAMA/LIBRA claim in a model-independent way using a similar material with added background discrimination. We present simulations of such detectors to determine their possible sensitivity to both annual modulation and particle interaction signals. We find that a 5 kg detector array could test the modulation reported by DAMA/LIBRA within 2 years using a likelihood-ratio test.

  12. Mercuric iodide (HgI 2) semiconductor devices as charged particle detectors

    NASA Astrophysics Data System (ADS)

    Becchetti, F. D.; Raymond, R. S.; Ristinen, R. A.; Schnepple, W. F.; Ortale, C.

    1983-07-01

    The properties of HgI 2 semiconductor devices as charged particle detectors have been investigated. Nearly linear energy response with fwhm resolution of 5-15% is observed for 1,2H and 3,4He ions, E < 40 MeV. Fast proton damage is observed for 10 10 protons/cm 2. However, based on measurements with two HgI 2 detectors, little fast neutron damage is apparent at fluences up to 10 15 neutrons/cm 2. This suggests considerably greater resistance to radiation damage than is observed for Si and other solid state devices.

  13. Modeling Study of a Proposed Field Calibration Source Using K-40 and High-Z Targets for Sodium Iodide Detectors.

    PubMed

    Rogers, Jeremy; Marianno, Craig; Kallenbach, Gene; Trevino, Jose

    2016-06-01

    Calibration sources based on the primordial isotope potassium-40 (K) have reduced controls on the source's activity due to its terrestrial ubiquity and very low specific activity. Potassium-40's beta emissions and 1,460.8 keV gamma ray can be used to induce K-shell fluorescence x rays in high-Z metals between 60 and 80 keV. A gamma ray calibration source that uses potassium chloride salt and a high-Z metal to create a two-point calibration for a sodium iodide field gamma spectroscopy instrument is thus proposed. The calibration source was designed in collaboration with the Sandia National Laboratory using the Monte Carlo N-Particle eXtended (MCNPX) transport code. Two methods of x-ray production were explored. First, a thin high-Z layer (HZL) was interposed between the detector and the potassium chloride-urethane source matrix. Second, bismuth metal powder was homogeneously mixed with a urethane binding agent to form a potassium chloride-bismuth matrix (KBM). The bismuth-based source was selected as the development model because it is inexpensive, nontoxic, and outperforms the high-Z layer method in simulation. Based on the MCNPX studies, sealing a mixture of bismuth powder and potassium chloride into a thin plastic case could provide a light, inexpensive field calibration source. PMID:27115223

  14. A study of low-noise preamplifier systems for use with room temperature mercuric iodide /HgI2/ X-ray detectors

    NASA Technical Reports Server (NTRS)

    Iwanczyk, J. S.; Huth, G. C.; Del Duca, A.; Schnepple, W.; Dabrowski, A. J.

    1981-01-01

    An analysis of different preamplification systems for use with room temperature mercuric iodide X-ray detectors has been performed. Resistor-, drain-, and light-feedback preamplifiers have been studied. Energy resolution values of 295 eV (FWHM) for an Fe-55 source (5.9 keV) and 225 eV (FWHM) for a pulser have been obtained with both the detector and the input FET at room temperature using a pulsed-light feedback preamplifier. Improvement in energy resolution by cooling the input FET using a small Peltier element has been discussed.

  15. A study of low-noise preamplifier systems for use with room temperature mercuric iodide /HgI2/ X-ray detectors

    NASA Astrophysics Data System (ADS)

    Iwanczyk, J. S.; Huth, G. C.; del Duca, A.; Schnepple, W.; Dabrowski, A. J.

    1981-02-01

    An analysis of different preamplification systems for use with room temperature mercuric iodide X-ray detectors has been performed. Resistor-, drain-, and light-feedback preamplifiers have been studied. Energy resolution values of 295 eV (FWHM) for an Fe-55 source (5.9 keV) and 225 eV (FWHM) for a pulser have been obtained with both the detector and the input FET at room temperature using a pulsed-light feedback preamplifier. Improvement in energy resolution by cooling the input FET using a small Peltier element has been discussed.

  16. Preparation and evaluation of mercuric iodide for crystal growth

    NASA Astrophysics Data System (ADS)

    Skinner, N. L.; Ortale, C.; Schieber, M. M.; Vandenberg, L.

    Large quantities, on the order of several hundred, of consistent, high quality mercuric iodide for crystal growth have not been commercially available. The hydrocarbon, anion, and cation impurity levels varied considerably, occasionally preventing crystal growth. This occurred even though the starting materials was from the same vendor and was subjected to the same purification treatment. This paper will describe an aqueous precipitation process of mercuric iodide preparation in batches of 3 kg using Hg(NO sub 3) sub 2, or HgCl and KI. Since these salts are produced in much larger quantities than mercuric iodide, more consistent quality is available. The impurity content of these batched and single crystals are compared. Some of the single crystals grown using the in-house prepared mercuric iodide have yielded a large number of spectroscopy grade nuclear radiation detectors. The influence of the major impurities are discussed.

  17. Nuclear Track Detectors for Particle Searches

    NASA Astrophysics Data System (ADS)

    Manzoor, S.; Balestra, S.; Cozzi, M.; Errico, M.; Giacomelli, G.; Giorgini, M.; Kumar, A.; Margiotta, A.; Medinaceli, E.; Patrizii, L.; Popa, V.; Qureshi, I. E.; Togo, V.

    2007-10-01

    In this paper we report a search for intermediate mass magnetic monopoles and nuclearites using CR39 and Makrofol Nuclear Track Detectors (NTDs) of the SLIM large area experiment, 440 m 2 exposed at the high altitude laboratory of Chacaltaya (Bolivia) and about 100 m 2 at Koksil, Himalaya (Pakistan). We discuss the new chemical etching and improved analysis of the SLIM CR39 sheets. Preliminary limits are based on 316 m 2 of CR39 NTDs exposed for 3.9 y.

  18. Cadmium zinc telluride detector system for nuclear material assay

    SciTech Connect

    Lavietes, A.D.; McQuaid, J.H.; Paulus, T.J.

    1997-07-15

    Three tools were developed towards design of an ambient temperature radiometric instrument, namely the CZT Probe--a cadmium zinc telluride based gamma and x ray detector probe, the MicroNOMAD--a low power, portable multichannel analyzed, and CZTU--spectral analysis software that provides uranium enrichment analysis. The combination of these three tools with an optimal sodium iodide (NaI) detector provides the ability to search for and then analyze uranium as well as other radionuclides in the field. Several national and international organizations including the International Atomic Energy Agency, the European Communities Safeguards Directorate, US Customs, and US DOE have expressed interest and are currently evaluating these systems.

  19. Introduction of extrinsic defects into mercuric iodide during processing

    NASA Astrophysics Data System (ADS)

    Hung, C.-Y.; Bao, X. J.; Schlesinger, T. E.; James, R. B.; Cheng, A. Y.; Ortale, C.; van den Berg, L.

    1993-05-01

    Low-temperature photoluminescence spectroscopy (PL) measurements were performed on mercuric iodide (HgI2) crystals which were intentionally doped with copper or silver during KI etching. PL spectra obtained after these doping experiments show specific Cu and Ag features similar to those previously observed after deposition of Cu or Ag contacts on mercuric iodide crystals. The in-diffusion of Cu or Ag into bulk HgI2 has also been confirmed a few days after doping. This diffusion introduces new recombination centers in the material. This work suggests that the processing steps used to fabricate mercuric iodide nuclear detectors can lead to the introduction of new defects which are detrimental to detector performance.

  20. Detector Requirements to Curb Nuclear Smuggling

    SciTech Connect

    Erickson, S A

    2001-11-14

    The problem of stopping nuclear smuggling of terrorist nuclear devices is a complex one, owing to the variety of pathways by which such a device can be transported. To fashion new detection systems that improve the chances of detecting such a device, it is important to know the various requirements and conditions that would be imposed on them by both the types of devices that might be smuggled and by the requirement that it not overly interfere with the transportation of legitimate goods. Requirements vary greatly from low-volume border crossings to high-volume industrial container ports, and the design of systems for them is likely to be quite different. There is also a further need to detect these devices if they are brought into a country via illicit routes, i.e., those which do not pass through customs posts, but travel overland though open space or to a smaller, unguarded airport or seaport. This paper describes some generic uses of detectors, how they need to be integrated into customs or other law enforcement systems, and what the specifications for such detectors might be.

  1. Lanthanum Bromide Detectors for Safeguards Measurements

    SciTech Connect

    Wright, J.

    2011-05-25

    Lanthanum bromide has advantages over other popular inorganic scintillator detectors. Lanthanum bromide offers superior resolution, and good efficiency when compared to sodium iodide and lanthanum chloride. It is a good alternative to high purity germanium detectors for some safeguards applications. This paper offers an initial look at lanthanum bromide detectors. Resolution of lanthanum bromide will be compared lanthanum chloride and sodium-iodide detectors through check source measurements. Relative efficiency and angular dependence will be looked at. Nuclear material spectra, to include plutonium and highly enriched uranium, will be compared between detector types.

  2. Development of a mercuric iodide solid state spectrometer for X-ray astronomy

    NASA Technical Reports Server (NTRS)

    Vallerga, J.

    1983-01-01

    Mercuric iodide detectors, experimental development for astronomical use, X ray observations of the 1980 Cygnus X-1 High State, astronomical had X ray detectors in current use, detector development, balloon flight of large area (1500 sq cm) Phoswich detectors, had X ray telescope design, shielded mercuric iodide background measurement, Monte Carlo analysis, measurements with a shielded mercuric iodide detector are discussed.

  3. Methyl iodide

    Integrated Risk Information System (IRIS)

    Methyl iodide ; CASRN 74 - 88 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effe

  4. Methyl Iodide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methyl iodide (MeI, iodomethane, CH3I) was reported as a potential alternative to the stratospheric ozone-depleting fumigant methyl bromide (MeBr) in the mid-1990s (Sims et al., 1995; Ohr et al., 1996). It has since received significant research attention to determine its environmental fate and tran...

  5. Scintillation properties of strontium iodide doped with europium for high-energy astrophysical detectors: nonproportionality as a function of temperature and at high gamma-ray energies

    NASA Astrophysics Data System (ADS)

    Perea, Rose Schmitt; Parsons, Ann M.; Groza, Mike; Caudel, David; Nowicki, Suzanne F.; Burger, Arnold; Stassun, Keivan G.; Peterson, Todd E.

    2015-01-01

    Strontium iodide doped with europium [SrI2(Eu2+)] is a new scintillator material being developed as an alternative to lanthanum bromide doped with cerium [LaBr(Ce)] for use in high-energy astrophysical detectors. As with all scintillators, the issue of nonproportionality is important because it affects the energy resolution of the detector. We investigate how the nonproportionality of SrI2(Eu) changes as a function of temperature from 16 to 60°C by heating the SrI2(Eu) scintillator separate from the photomultiplier tube. In a separate experiment, we also investigate the nonproportionality at high energies (up to 6 MeV) of SrI2(Eu) at a testing facility located at NASA Goddard Space Flight Center. We find that the nonproportionality increases nearly monotonically as the temperature of the SrI2(Eu) scintillator is increased, although there is evidence of nonmonotonic behavior near 40°C, perhaps due to electric charge carriers trapping in the material. We also find that within the energy range of 662 keV to 6.1 MeV, the change in the nonproportionality of SrI2(Eu) is ˜1.5 to 2%.

  6. Cadmium zinc telluride charged particle nuclear detectors

    SciTech Connect

    Toney, J.E. |; James, R.B.; Antolak, A.

    1997-02-01

    This report describes the improvements in understanding of transport phenomena in cadmium zinc telluride radiation sensors achieved through studies of alpha particle response and spatially resolved photoconductivity mapping. Alpha particle response waveforms and photocurrent profiles both indicate non-uniformities in the electric field which may have detrimental effects on detector performance. Identifying and eliminating the sources of these nonuniformities will ultimately lead to improved detector performance.

  7. Purification of HgI.sub.2 for nuclear detector fabrication

    DOEpatents

    Schieber, Michael M.

    1978-01-01

    A process for purification of mercuric iodide (HgI.sub.2) to be used as a source material for the growth of detector quality crystals. The high purity HgI.sub.2 raw material is produced by a combination of three stages: synthesis of HgI.sub.2 from Hg and I.sub.2, repeated sublimation, and zone refining.

  8. iDREAM: an industrial detector for nuclear reactor monitoring

    NASA Astrophysics Data System (ADS)

    Gribov, I. V.; Gromov, M. B.; Lukjanchenko, G. A.; Novikova, G. J.; Obinyakov, B. A.; Oralbaev, A. Y.; Skorokhvatov, M. D.; Sukhotin, S. V.; Chepurnov, A. S.; Etenko, A. V.

    2016-02-01

    Prototype of industrial reactor antineutrino detector iDREAM is dedicated for an experiment to demonstrate the possibility of remote monitoring of PWR reactor operational modes by neutrino method in real-time in order to avoid undeclared exposure modes for nuclear fuel and unauthorized removal of isotopes. The prototype detector was started up in 2014. To test the detector elements and components of electronics distilled water has been used as a target, which enables the use of Cerenkov radiation from cosmic muons as a physical signal. Also parallel measuring of the long-term stability has been doing for samples of liquid organic scintillator doped with gadolinium and synthesized by different methods

  9. Iodide uptake by negatively charged clay interlayers?

    PubMed

    Miller, Andrew; Kruichak, Jessica; Mills, Melissa; Wang, Yifeng

    2015-09-01

    Understanding iodide interactions with clay minerals is critical to quantifying risk associated with nuclear waste disposal. Current thought assumes that iodide does not interact directly with clay minerals due to electrical repulsion between the iodide and the negatively charged clay layers. However, a growing body of work indicates a weak interaction between iodide and clays. The goal of this contribution is to report a conceptual model for iodide interaction with clays by considering clay mineral structures and emergent behaviors of chemical species in confined spaces. To approach the problem, a suite of clay minerals was used with varying degrees of isomorphic substitution, chemical composition, and mineral structure. Iodide uptake experiments were completed with each of these minerals in a range of swamping electrolyte identities (NaCl, NaBr, KCl) and concentrations. Iodide uptake behaviors form distinct trends with cation exchange capacity and mineral structure. These trends change substantially with electrolyte composition and concentration, but do not appear to be affected by solution pH. The experimental results suggest that iodide may directly interact with clays by forming ion-pairs (e.g., NaI(aq)) which may concentrate within the interlayer space as well as the thin areas surrounding the clay particle where water behavior is more structured relative to bulk water. Ion pairing and iodide concentration in these zones is probably driven by the reduced dielectric constant of water in confined space and by the relatively high polarizability of the iodide species. PMID:26057987

  10. Special Nuclear Material Detection with a Water Cherenkov based Detector

    SciTech Connect

    Sweany, M; Bernstein, A; Bowden, N; Dazeley, S; Svoboda, R

    2008-11-10

    Fission events from Special Nuclear Material (SNM), such as highly enriched uranium or plutonium, produce a number of neutrons and high energy gamma-rays. Assuming the neutron multiplicity is approximately Poissonian with an average of 2 to 3, the observation of time correlations between these particles from a cargo container would constitute a robust signature of the presence of SNM inside. However, in order to be sensitive to the multiplicity, one would require a high total efficiency. There are two approaches to maximize the total efficiency; maximizing the detector efficiency or maximizing the detector solid angle coverage. The advanced detector group at LLNL is investigating one way to maximize the detector size. We are designing and building a water Cerenkov based gamma and neutron detector for the purpose of developing an efficient and cost effective way to deploy a large solid angle car wash style detector. We report on our progress in constructing a larger detector and also present preliminary results from our prototype detector that indicates detection of neutrons.

  11. R&D for Better Nuclear Security: Radiation Detector Materials

    SciTech Connect

    Kammeraad, J E

    2009-04-02

    I am going to talk about the need for better materials for radiation detectors. I believe that government investment in this area can enable transformational technology change that could impact domestic nuclear security and also national nuclear security in some very positive and powerful ways. I'm not going to give you a lecture on how radiation detectors work, but I am going to tell you a bit about today's off-the-shelf technology and why it is not sufficient, what we need, and what security benefit you could get from improvements. I think we're at a critical point in time for some very impactful investments. In particular I'm going to focus on the use of gamma-ray radiation detectors at ports of entry. Not long before DHS was formed, Congress decreed that counter measures against the delivery of radiological and nuclear threats would be put in place at US ports of entry, under the authority of US Customs (later Customs and Border Protection in DHS). This included the screening of all cars and trucks passing through a port of entry. Existing off-the-shelf radiation detectors had to be selected for this purpose. Plans were made to make the most of the available technologies, but there are some inherent limitations of these detectors, plus the operational setting can bring out other limitations.

  12. The Angra Project: Monitoring Nuclear Reactors with Antineutrino Detectors

    NASA Astrophysics Data System (ADS)

    Anjos, J. C.; Barbosa, A. F.; Bezerra, T. J. C.; Chimenti, P.; Gonzalez, L. F. G.; Kemp, E.; de Oliveira, M. A. Leigui; Lima, H. P.; Lima, R. M.; Nunokawa, H.

    2010-03-01

    We present the status of the Angra Neutrino project, describing the development of an antineutrino detector aimed at monitoring nuclear reactor activity. The experiment will take place at the Brazilian nuclear power plant located in Angra dos Reis. The Angra II reactor, with 4 GW of thermal power, will be used as a source of antineutrinos. A water Cherenkov detector will be placed above ground in a commercial container outside the reactor containment, about 30 m from the reactor core. With a detector of one ton scale a few thousand antineutrino interactions per day are expected. We intend, in a first step, to use the measured neutrino event rate to monitor the on—off status and the thermal power delivered by the reactor. In addition to the safeguards issues the project will provide an alternative tool to have an independent measurement of the reactor power.

  13. Portable nuclear material detector and process

    DOEpatents

    Hofstetter, Kenneth J; Fulghum, Charles K; Harpring, Lawrence J; Huffman, Russell K; Varble, Donald L

    2008-04-01

    A portable, hand held, multi-sensor radiation detector is disclosed. The detection apparatus has a plurality of spaced sensor locations which are contained within a flexible housing. The detection apparatus, when suspended from an elevation, will readily assume a substantially straight, vertical orientation and may be used to monitor radiation levels from shipping containers. The flexible detection array can also assume a variety of other orientations to facilitate any unique container shapes or to conform to various physical requirements with respect to deployment of the detection array. The output of each sensor within the array is processed by at least one CPU which provides information in a usable form to a user interface. The user interface is used to provide the power requirements and operating instructions to the operational components within the detection array.

  14. Characterization of the CRESST detectors by neutron induced nuclear recoils

    NASA Astrophysics Data System (ADS)

    Coppi, C.; Ciemniak, C.; von Feilitzsch, F.; Gütlein, A.; Hagn, H.; Isaila, C.; Jochum, J.; Kimmerle, M.; Lanfranchi, J.-C.; Pfister, S.; Potzel, W.; Rau, W.; Roth, S.; Rottler, K.; Sailer, C.; Scholl, S.; Usherov, I.; Westphal, W.

    CRESST is an experiment for the direct detection of dark matter particles via nuclear recoils. The CRESST detectors, based on CaWO4 scintillating crystals, are able to discriminate γ and β background by simultaneously measuring the light and phonon signals produced by particle interactions. The discrimination of the background is possible because of the different light output (Quenching Factor, QF) for nuclear and electron recoils. In this article a measurement is shown, aimed at the determination of the QFs of the different nuclei (O, Ca, W) of the detector crystal at 40-60 mK using an 11 MeV neutron beam produced at the Maier-Leibnitz-Laboratorium in Garching (MLL).

  15. A Wide Range Neutron Detector for Space Nuclear Reactor Applications

    SciTech Connect

    Nassif, Eduardo; Sismonda, Miguel; Matatagui, Emilio; Pretorius, Stephan

    2007-01-30

    We propose here a versatile and innovative solution for monitoring and controlling a space-based nuclear reactor that is based on technology already proved in ground based reactors. A Wide Range Neutron Detector (WRND) allows for a reduction in the complexity of space based nuclear instrumentation and control systems. A ground model, predecessor of the proposed system, has been installed and is operating at the OPAL (Open Pool Advanced Light Water Research Reactor) in Australia, providing long term functional data. A space compatible Engineering Qualification Model of the WRND has been developed, manufactured and verified satisfactorily by analysis, and is currently under environmental testing.

  16. Position-Sensitive Nuclear Spectroscopy with Pixel Detectors

    SciTech Connect

    Granja, Carlos; Vykydal, Zdenek; Jakubek, Jan; Pospisil, Stanislav

    2007-10-26

    State-of-the-art hybrid semiconductor pixel detectors such as Medipix2 are suitable for energy- and position-sensitive nuclear spectroscopy. In addition to excellent energy- and spatial-resolution, these devices can operate in spectroscopic, single-quantum counting and/or on-line tracking mode. A devoted compact USB-readout interface provides functionality and ease of operation. The compact and versatile Medipix2/USB radiation camera provides visualization, vacuum and room-temperature operation as a real-time portable active nuclear emulsion.

  17. Detectors for high energy nuclear collisions: problems, progress and promise

    SciTech Connect

    Ludlam, T.W.

    1986-01-01

    Some perspective of the main issues in high energy nuclear collision physics is offered. How to identify and measure a quark-gluon plasma is considered to still be an open question. The types of detector configurations to be used in high-energy nucleus-nucleus experiments are discussed. Particular issues covered are measurements of lepton pair spectra, tracking systems and multitrack resolution, event-rate capabilities, backgrounds and other problems close to the beam, and calorimetry. 2 refs. (LEW)

  18. The Iodine Hvperfine Structure in the Microwave Spectrum of Ethyl Iodide: Nuclear Quadrupole and Spin Rotation Coupling

    NASA Astrophysics Data System (ADS)

    Lee, W. W.; Scherr, Lawrence M.; Barsh, Max K.

    1988-11-01

    Some rotational transitions of ethyl iodide, CH3CH2I, have been reinvestigated by microwave Fourier transform (MWFT) spectroscopy. The iodine hyperfine structure splittings were first ana lyzed using a direct diagonalization procedure of the complete quadrupole Hamiltonian matrix. The results of this analysis showed deviations from our measurements up to 60 kHz. A new analysis using additional spin rotation coupling matrix elements reproduces our measurements within the experi­mental error limit and decreases the standard deviation of the least squares fit from 28 kHz to only 4 kHz.

  19. Micro Pattern Gas Detectors for Nuclear Physics Experiments

    NASA Astrophysics Data System (ADS)

    Gnanvo, Kondo

    2015-10-01

    Gaseous detectors have played a pivotal role as tracking devices in the field of particle physics experiments for the last fifty years. Nowadays, advances in photolithography and micro processing techniques have enabled the transition from the old generation of multi wire gaseous chamber (MWPCs) to a new family commonly refer to as Micro Pattern Gaseous Detectors (MPGDs). MPGD technologies combine the basic gas amplification principle with micro-structure printed circuits to provide detectors with excellent spatial and time resolution, high rate capability, low material budget and high radiation tolerance. Several technical breakthroughs over the past decade have allowed the possibility for large area MPGDs, making them cost effective and high performance detector candidates for future nuclear physics (NP) and high energy physics (HEP) experiments. We give in the present talk, an overview of the state of the art of the MPGDs. We will then briefly present the CERN-based RD51 collaboration established in 2008 with the goal of further advancing technological developments and applications of MPGDs and associated electronic-readout systems. Finally we report on the rich and diverse R&D activities on MPGDs to prepare for the detector challenges of the next generation of accelerators and for the frontiers of physics research.

  20. Improved spectrometric characteristics of thallium bromide nuclear radiation detectors

    NASA Astrophysics Data System (ADS)

    Hitomi, K.; Murayama, T.; Shoji, T.; Suehiro, T.; Hiratate, Y.

    1999-06-01

    Thallium bromide (TlBr) is a compound semiconductor with a high atomic number and wide band gap. In this study, nuclear radiation detectors have been fabricated from the TlBr crystals. The TlBr crystals were grown by the horizontal travelling molten zone (TMZ) method using the materials purified by many pass zone refining. The crystals were characterized by measuring the resistivity, the mobility-lifetime ( μτ) product and the energy required to create an electron-hole pair (the ɛ value). Improved energy resolution has been obtained by the TlBr radiation detectors. At room temperature the full-width at half-maximum (FWHM) for the 59.5, 122 and 662 keV γ-ray photo peak obtained from the detectors were 3.3, 8.8 and 29.5 keV, respectively. By comparing the saturated peak position of the TlBr detector with that of the CdTe detector, the ɛ value has been estimated to be about 5.85 eV for the TlBr crystal.

  1. Neutron Detection with Mercuric Iodide

    SciTech Connect

    Bell, Z.A.

    2003-06-17

    Mercuric iodide is a high-density, high-Z semiconducting material useful for gamma ray detection. This makes it convertible to a thermal neutron detector by covering it with a boron rich material and detecting the 478 keV gamma rays resulting from the {sup 10}B(n, {alpha}){sup 7}Li* reaction. However, the 374 barn thermal capture cross section of {sup nat}Hg, makes the detector itself an attractive absorber, and this has been exploited previously. Since previous work indicates that there are no low-energy gamma rays emitted in coincidence with the 368 keV capture gamma from the dominant {sup 199}Hg(n, {gamma}){sup 200}Hg reaction, only the 368 keV capture gamma is seen with any efficiency a relatively thin (few mm) detector. In this paper we report preliminary measurements of neutrons via capture reactions in a bare mercuric iodide crystal and a crystal covered in {sup 10}B-loaded epoxy. The covered detector is an improvement over the bare detector because the presence of both the 478 and 368 keV gamma rays removes the ambiguity associated with the observation of only one of them. Pulse height spectra, obtained with and without lead and cadmium absorbers, showed the expected gamma rays and demonstrated that they were caused by neutrons.

  2. Development of Nuclear Emulsion Detector for Muon Radiography

    NASA Astrophysics Data System (ADS)

    Nishio, A.; Morishima, K.; Kuwabara, K.; Nakamura, M.

    Muon radiography is the non-destructive testing technique of large-scale constructions with cosmic ray muon. Cosmic ray muon has high penetrating power and it always comes from the whole sky. In the same way of taking a X-ray photograph, we can obtain integrated density of constructions which thickness are several tens to several hundreds. We had ever applied this technique to nuclear reactors, volcanos, and so on. Nuclear emulsion is three dimensional track detector with micrometric position accuracy. Thanks to high position resolution, Nuclear emulsion has mrad angular resolution. In addition, the features which require no power supply and can observe in a large area suitable for muon radiography. In Nagoya University, we launched emulsion manufacturing equipment at 2010. It has become possible to flexible development of our detector and succeeded to development of high sensitive nuclear emulsion film (Nagoya emulsion). An important factor is the temperature characteristic to withstand the outdoor observation as a detector to be used in the muon radiography. There is a phenomenon of a latent image fading, whichit is well known in the photographic industry, and this phenomenon is known that temperature and water are involved. So we examined temperature and humidity characteristic of latent image fading about Nagoya emulsion. As a result, we found latent image fading is strongly depends on both temperature and humidity. By dehydrating emulsion film in RH8%, over 95% (Grain Density>40) detection efficiency of muon track keeps over 3months in 25degree, for 2months in 35degree. Additionally it was showed in this test that increasing back ground noise "fog", which may have occurred by sealing emulsion film in a narrow space, is reduced by buffer space in the bag.

  3. GEM Detectors for Muon Tomography of Nuclear Contraband

    NASA Astrophysics Data System (ADS)

    Quintero, Amilkar; Gnanvo, Kondo; Grasso, Leonard; Locke, Judson; Mitra, Debasis; Hohlmann, Marcus

    2010-02-01

    The construction of a Muon Tomography station is presented. Muon Tomography (MT), based on scattering of cosmic ray muons, is an improvement to actual portal monitors at borders, since the current techniques use regular radiation detection that are not very sensitive to nuclear contraband (U, Pu), if these materials are well shielded to absorb emanating radiation. We use a low mass, high spatial resolution (˜50 μm) Gas Electron Multiplier (GEM) detectors for MT to overcome the intrinsic limitations. The prototype MT station employs 6 tracking stations based on 33cm x 33cm triple-GEM detectors with 2D readout. The detectors are arranged into tracking superlayers at the top and bottom of the probed volume. Due to the excellent spatial resolution of GEM, it is sufficient to use few cm gap between tracking stations. We present details of the production and assembly of the GEM-based tracking stations in collaboration with CERN-GDD lab and RD51 experiment as well as the design of the corresponding front-end electronics and readout system. Discussion about GEM detectors in two sides of the probed volume for a complete muon tracking, and large-area (1m x 1m) GEM-based MT station prototype to be tested under realistic conditions, are made. )

  4. Barium iodide and strontium iodide crystals andd scintillators implementing the same

    DOEpatents

    Payne, Stephen A; Cherepy, Nerine J; Hull, Giulia E; Drobshoff, Alexander D; Burger, Arnold

    2013-11-12

    In one embodiment, a material comprises a crystal comprising strontium iodide providing at least 50,000 photons per MeV. A scintillator radiation detector according to another embodiment includes a scintillator optic comprising europium-doped strontium iodide providing at least 50,000 photons per MeV. A scintillator radiation detector in yet another embodiment includes a scintillator optic comprising SrI.sub.2 and BaI.sub.2, wherein a ratio of SrI.sub.2 to BaI.sub.2 is in a range of between 0:1 A method for manufacturing a crystal suitable for use in a scintillator includes mixing strontium iodide-containing crystals with a source of Eu.sup.2+, heating the mixture above a melting point of the strontium iodide-containing crystals, and cooling the heated mixture near the seed crystal for growing a crystal. Additional materials, systems, and methods are presented.

  5. Determination of nuclear tracks parameters on sequentially etched PADC detectors

    NASA Astrophysics Data System (ADS)

    Horwacik, Tomasz; Bilski, Pawel; Koerner, Christine; Facius, Rainer; Berger, Thomas; Nowak, Tomasz; Reitz, Guenther; Olko, Pawel

    Polyallyl Diglycol Carbonate (PADC) detectors find many applications in radiation protection. One of them is the cosmic radiation dosimetry, where PADC detectors measure the linear energy transfer (LET) spectra of charged particles (from protons to heavy ions), supplementing TLD detectors in the role of passive dosemeter. Calibration exposures to ions of known LET are required to establish a relation between parameters of track observed on the detector and LET of particle creating this track. PADC TASTRAK nuclear track detectors were exposed to 12 C and 56 Fe ions of LET in H2 O between 10 and 544 keV/µm. The exposures took place at the Heavy Ion Medical Accelerator (HIMAC) in Chiba, Japan in the frame of the HIMAC research project "Space Radiation Dosimetry-Ground Based Verification of the MATROSHKA Facility" (20P-240). Detectors were etched in water solution of NaOH with three different temperatures and for various etching times to observe the appearance of etched tracks, the evolution of their parameters and the stability of the etching process. The applied etching times (and the solution's concentrations and temperatures) were: 48, 72, 96, 120 hours (6.25 N NaOH, 50 O C), 20, 40, 60, 80 hours (6.25 N NaOH, 60 O C) and 8, 12, 16, 20 hours (7N NaOH, 70 O C). The analysis of the detectors involved planimetric (2D) measurements of tracks' entrance ellipses and mechanical measurements of bulk layer thickness. Further track parameters, like angle of incidence, track length and etch rate ratio were then calculated. For certain tracks, results of planimetric measurements and calculations were also compared with results of optical track profile (3D) measurements, where not only the track's entrance ellipse but also the location of the track's tip could be directly measured. All these measurements have been performed with the 2D/3D measurement system at DLR. The collected data allow to create sets of V(LET in H2 O) calibration curves suitable for short, intermediate and

  6. Nuclear radiation-warning detector that measures impedance

    SciTech Connect

    Savignac, Noel Felix; Gomez, Leo S; Yelton, William Graham; Robinson, Alex; Limmer, Steven

    2013-06-04

    This invention is a nuclear radiation-warning detector that measures impedance of silver-silver halide on an interdigitated electrode to detect light or radiation comprised of alpha particles, beta particles, gamma rays, X rays, and/or neutrons. The detector is comprised of an interdigitated electrode covered by a layer of silver halide. After exposure to alpha particles, beta particles, X rays, gamma rays, neutron radiation, or light, the silver halide is reduced to silver in the presence of a reducing solution. The change from the high electrical resistance (impedance) of silver halide to the low resistance of silver provides the radiation warning that detected radiation levels exceed a predetermined radiation dose threshold.

  7. Electrical properties of solid iodo mercurates resulting from the reaction of HgI2 with alcaline iodides

    NASA Astrophysics Data System (ADS)

    Ponpon, J. P.; Amann, M.

    2005-01-01

    Potassium iodide solutions are currently used during the fabrication process of mercuric iodide based nuclear radiation detectors. However, KI treatment leaves the HgI2 surface covered with a residual compound (namely the potassium tri-iodo mercurate) which has a significant influence on the surface properties and stability of mercuric iodide devices and therefore on the detectors characteristics. Looking for other solutions to etch mercuric iodide, we found it interesting to investigate the electrical properties of the compounds which may form when etching HgI2 in NH4I, NaI, and RbI. For this purpose, solid iodo mercurates with the cations ammonium, sodium, and rubidium, have been prepared by reacting HgI2 with the solutions of interest. Study of the electrical properties of these samples and comparison with those of potassium tri-iodo mercurate ones, especially with respect to humidity, indicates noticeable stability differences in presence of water vapour. This could have interesting consequences on the surface cleaning of mercuric iodide.

  8. TACTIC: A new detector for Nuclear Astrophysics Experiments

    NASA Astrophysics Data System (ADS)

    Fox, S. P.; Amaudruz, P. A.; Bruskiewich, P.; Buchmann, L.; Chipps, K. A.; Hager, U.; Laird, A. M.; Martin, L.; Ruprecht, G.; Shotter, A. C.; Walden, P.

    2011-09-01

    Directly measuring nuclear astrophysics reactions presents unique challenges. Low energy reaction products and small reaction cross sections are just two of the issues that the TACTIC detector addresses. TACTIC is the "TRIUMF Annular Chamber for Tracking and Identification of Charged-particles" detector being developed by TRIUMF and the University of York, UK. TACTIC is a cylindrical, active-target TPC providing high detection efficiency; a "shielding" cathode traps the ionization created by the beam and allows for higher intensities than typical TPCs. The 480 anode signals are collected through custom preamplifiers, digital electronics and acquisition systems. Acquisition and analysis software is also undergoing extensive development. Amplification of the small signals is accomplished using a Gas Electron Multiplier (GEM). The fill gas, He-CO2, provides both particle detection and a homogeneous, variable-thickness target for studying reactions on αs, such as 8Li(α,n)11B. A preliminary study of this flagship reaction was carried out in June 2009 and the results are providing feedback into the development of the final detector and infrastructure.

  9. Nuclear physics detector technology applied to plant biology research

    SciTech Connect

    Weisenberger, Andrew G.; Kross, Brian J.; Lee, Seung Joo; McKisson, John E.; Xi, Wenze; Zorn, Carl J.; Howell, Calvin; Crowell, A.S.; Reid, C.D.; Smith, Mark

    2013-08-01

    The ability to detect the emissions of radioactive isotopes through radioactive decay (e.g. beta particles, x-rays and gamma-rays) has been used for over 80 years as a tracer method for studying natural phenomena. More recently a positron emitting radioisotope of carbon: {sup 11}C has been utilized as a {sup 11}CO{sub 2} tracer for plant ecophysiology research. Because of its ease of incorporation into the plant via photosynthesis, the {sup 11}CO{sub 2} radiotracer is a powerful tool for use in plant biology research. Positron emission tomography (PET) imaging has been used to study carbon transport in live plants using {sup 11}CO{sub 2}. Presently there are several groups developing and using new PET instrumentation for plant based studies. Thomas Jefferson National Accelerator Facility (Jefferson Lab) in collaboration with the Duke University Phytotron and the Triangle Universities Nuclear Laboratory (TUNL) is involved in PET detector development for plant imaging utilizing technologies developed for nuclear physics research. The latest developments of the use of a LYSO scintillator based PET detector system for {sup 11}CO{sub 2} tracer studies in plants will be briefly outlined.

  10. Size Effect on Nuclear Gamma-Ray Energy Spectra Acquired by Different Sized CeBr3, LaBr3:Ce, and NaI:Tl Gamma-Ray Detectors

    SciTech Connect

    Guss, Paul; Reed, Michael; Yuan, Ding; Beller, Denis; Cutler, Matthew; Contreras, Chris; Mukhopadhyay, Sanjoy; Wilde, Scott UNLV

    2014-03-01

    Gamma-ray energy spectra were acquired for different sizes of cerium tribromide (CeBr3), cerium-doped lanthanum tribromide (LaBr3:Ce), and thallium-doped sodium iodide (NaI:Tl) detectors. A comparison was conducted of the energy resolution and detection efficiency of these scintillator detectors for different sizes of detectors. The results of this study are consistent with the observation that for each size detector, LaBr3:Ce offers better resolution than either a CeBr3 or NaI:Tl detector of the same size. In addition, CeBr3 and LaBr3:Ce detectors could resolve some closely spaced peaks in the spectra of several radioisotopes that NaI:Tl could not. As the detector size increased, all three detector materials exhibited higher efficiency, albeit with slightly reduced resolution. Significantly, the very low intrinsic activity of CeBr3 is also demonstrated in this study, which, when combined with energy resolution characteristics for a range of detector sizes, could lead to an improved ability to detect special nuclear materials compared to the other detectors.

  11. Physics with gamma-beams and charged particle detectors: I) Nuclear structure II) Nuclear astrophysics

    SciTech Connect

    Gai, Moshe

    2015-02-24

    The Charged Particle Working Group (CPWG) is proposing to construct large area Silicon Strip Detector (SSD), a gas Time Projection Chamber detector read by an electronic readout system (eTPC) and a Bubble Chamber (BC) containing superheated high purity water to be used in measurements utilizing intense gamma-ray beams from the newly constructed ELI-NP facility at Magurele, Bucharest in Romania. We intend to use the SSD and eTPC detectors to address essential problems in nuclear structure physics, such as clustering and the many alpha-decay of light nuclei such as {sup 12}C and {sup 16}O. All three detectors (SSD, eTPC and BC) will be used to address central problems in nuclear astrophysics such as the astrophysical cross section factor of the {sup 12}C(α,γ) reaction and other processes central to stellar evolution. The CPWG intends to submit to the ELI-NP facility a Technical Design Report (TDR) for the proposed detectors.

  12. Physics with gamma-beams and charged particle detectors: I) Nuclear structure II) Nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Gai, Moshe

    2015-02-01

    The Charged Particle Working Group (CPWG) is proposing to construct large area Silicon Strip Detector (SSD), a gas Time Projection Chamber detector read by an electronic readout system (eTPC) and a Bubble Chamber (BC) containing superheated high purity water to be used in measurements utilizing intense gamma-ray beams from the newly constructed ELI-NP facility at Magurele, Bucharest in Romania. We intend to use the SSD and eTPC detectors to address essential problems in nuclear structure physics, such as clustering and the many alpha-decay of light nuclei such as 12C and 16O . All three detectors (SSD, eTPC and BC) will be used to address central problems in nuclear astrophysics such as the astrophysical cross section factor of the 12C (α,γ) reaction and other processes central to stellar evolution. The CPWG intends to submit to the ELI-NP facility a Technical Design Report (TDR) for the proposed detectors.

  13. Recent developments in thick mercuric iodide spectrometers

    NASA Astrophysics Data System (ADS)

    Hull, K.; Beyerle, A.; Lopez, B.; Markakis, J.; Ortale, C.; Schnepple, W.; Vandenberg, L.

    Thick (approx. 1 cm) mercuric iodide gamma-ray detectors have been produced which show spectroscopic qualities at moderate detector biases (approx. 5 kV) comparable to those of thin spectrometers. Efficiency measurements indicate that the entire volume of the detectors is active. Spectra resolutions of less than 10% have been obtained for gamma-ray energies above 1 MeV. Short charge collection times have produced the best results. Measurement of crystal charge transport properties is discussed. A small amount of bias conditioning is necessary for best performance. Operating parameters of the detectors have been investigated.

  14. Cesium iodide alloys

    DOEpatents

    Kim, H.E.; Moorhead, A.J.

    1992-12-15

    A transparent, strong CsI alloy is described having additions of monovalent iodides. Although the preferred iodide is AgI, RbI and CuI additions also contribute to an improved polycrystalline CsI alloy with outstanding multispectral infrared transmittance properties. 6 figs.

  15. Status of TACTIC: A detector for nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Laird, A. M.; Amaudruz, P.; Buchmann, L.; Fox, S. P.; Fulton, B. R.; Gigliotti, D.; Kirchner, T.; Mumby-Croft, P. D.; Openshaw, R.; Pavan, M. M.; Pearson, J.; Ruprecht, G.; Sheffer, G.; Walden, P.

    2007-04-01

    A new detector for nuclear astrophysics studies is being designed and built by TRIUMF and the University of York. The TRIUMF Annular Chamber for Tracking and Identification of Charged particles (TACTIC) is designed to detect low-energy charged particles from inverse kinematics reaction studies performed at the relevant astrophysical energies. TACTIC is a cylindrical ionisation/time-projection chamber with segmented anode strips, which allow the dE/dx of the particle to be determined along with the total energy. Information from drift times allows the particle trajectory to be reconstructed. This in turn identifies the interaction point along the beam axis and hence the centre of mass energy of the reaction. To amplify the expected weak signals, a gas electron multiplier (GEM) will be used in place of the usual Frisch grid. Full digital readout of the charge and timing of each anode strip will be achieved with flash ADC cards allowing pulse shape analysis of the signals.

  16. Iodide transport: implications for health and disease.

    PubMed

    Pesce, Liuska; Kopp, Peter

    2014-01-01

    Disorders of the thyroid gland are among the most common conditions diagnosed and managed by pediatric endocrinologists. Thyroid hormone synthesis depends on normal iodide transport and knowledge of its regulation is fundamental to understand the etiology and management of congenital and acquired thyroid conditions such as hypothyroidism and hyperthyroidism. The ability of the thyroid to concentrate iodine is also widely used as a tool for the diagnosis of thyroid diseases and in the management and follow up of the most common type of endocrine cancers: papillary and follicular thyroid cancer. More recently, the regulation of iodide transport has also been the center of attention to improve the management of poorly differentiated thyroid cancer. Iodine deficiency disorders (goiter, impaired mental development) due to insufficient nutritional intake remain a universal public health problem. Thyroid function can also be influenced by medications that contain iodide or interfere with iodide metabolism such as iodinated contrast agents, povidone, lithium and amiodarone. In addition, some environmental pollutants such as perchlorate, thiocyanate and nitrates may affect iodide transport. Furthermore, nuclear accidents increase the risk of developing thyroid cancer and the therapy used to prevent exposure to these isotopes relies on the ability of the thyroid to concentrate iodine. The array of disorders involving iodide transport affect individuals during the whole life span and, if undiagnosed or improperly managed, they can have a profound impact on growth, metabolism, cognitive development and quality of life. PMID:25009573

  17. Mercury iodide crystal growth

    NASA Technical Reports Server (NTRS)

    Cadoret, R.

    1982-01-01

    The purpose of the Mercury Iodide Crystal Growth (MICG) experiment is the growth of near-perfect single crystals of mercury Iodide (HgI2) in a microgravity environment which will decrease the convection effects on crystal growth. Evaporation and condensation are the only transformations involved in this experiment. To accomplish these objectives, a two-zone furnace will be used in which two sensors collect the temperature data (one in each zone).

  18. Influence of water and water vapour on the characteristics of KI treated HgI 2 detectors

    NASA Astrophysics Data System (ADS)

    Ponpon, J. P.; Amann, M.; Sieskind, M.

    After being cleaned using a potassium iodide solution in water followed by a water rinse, the surface of mercuric iodide is covered by a chemical complex identified as being KHgI 3·H 2O. This compound can adsorb large quantities of water and its electrical properties are strongly sensitive to water and water vapour. The consequences on the manufacturing and storing conditions (especially the relative humidity), of mercuric iodide-based devices are therefore of great concern. They are illustrated by the study of the electrical and spectrometric properties of HgI 2 nuclear radiation detectors.

  19. Continued development of room temperature semiconductor nuclear detectors

    NASA Astrophysics Data System (ADS)

    Kim, Hadong; Cirignano, Leonard; Churilov, Alexei; Ciampi, Guido; Kargar, Alireza; Higgins, William; O'Dougherty, Patrick; Kim, Suyoung; Squillante, Michael R.; Shah, Kanai

    2010-08-01

    Thallium bromide (TlBr) and related ternary compounds, TlBrI and TlBrCl, have been under development for room temperature gamma ray spectroscopy due to several promising properties. Due to recent advances in material processing, electron mobility-lifetime product of TlBr is close to Cd(Zn)Te's value which allowed us to fabricate large working detectors. We were also able to fabricate and obtain spectroscopic results from TlBr Capacitive Frisch Grid detector and orthogonal strip detectors. In this paper we report on our recent TlBr and related ternary detector results and preliminary results from Cinnabar (HgS) detectors.

  20. Mercuric Iodide Photocell Technology for Room Temperature Readout of Scintillators

    SciTech Connect

    Warnick Kernan et al.

    2007-08-31

    Mercuric iodide (HgI2) is a well known material for the direct detection of gamma rays; however, the largest volume achievable is limited by thickness of the detector, which needs to be a small fraction of the average trapping length for electrons. We are reporting here preliminary results in using HgI2 crystals to fabricate photocells used in the readout of various scintillators. The optical spectral response and efficiency of these photocells were measured and will be reported. Preliminary nuclear response from a HgI2 photocell that was optically matched to a Ce3+ :LaBr3 scintillator will also be presented and discussed. Further improvements will be sought by optimizing the transparent contact technology.

  1. A logarithmic, large-solid-angle detector telescope for nuclear fragmentation

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, K.; Komisarcik, K.; Wile, J. L.; Yennello, S. J.; Fields, D. E.; Viola, V. E.; Glagola, B. G.

    1990-12-01

    Properties of a logarithmic, large-solid-angle detector telescope for measuring the spectra of light charged particles and/or complex fragments produced in intermediate-energy nuclear reactions are described. Light-ion identification with a phoswich detector which consists of transmission photodiode ΔE and CsI(Tl) E elements is also discussed, as is the response of silicon microstrip detectors to fission fragments.

  2. Report on the 1984 LBL workshop on detectors for relativistic nuclear collisions

    SciTech Connect

    Schroeder, L.S.

    1984-11-01

    Highlights of the Workshop on Detectors for Relativistic Nuclear Collisions, held March 26-30, 1984, at the Lawrence Berkeley Laboratory are reviewed. (Complete proceedings are available as report LBL-18225.) (WHK)

  3. Mercuric iodide X-ray camera

    NASA Astrophysics Data System (ADS)

    Patt, B. E.; Delduca, A.; Dolin, R.; Ortale, C.

    A prototype X-ray camera utilizing a 1.5- by 1.5-in., 1024-element, thin mercuric iodide detector array has been tested and evaluated. The microprocessor-based camera is portable and operates at room temperature. Events can be localized within 1 to 2 mm at energies below 60 keV and within 5 to 6 mm at energies on the order of 600 keV.

  4. Mercuric iodide X-ray camera

    NASA Astrophysics Data System (ADS)

    Patt, B. E.; del Duca, A.; Dolin, R.; Ortale, C.

    1986-02-01

    A prototype X-ray camera utilizing a 1.5- by 1.5-in., 1024-element, thin mercuric iodide detector array has been tested and evaluated. The microprocessor-based camera is portable and operates at room temperature. Events can be localized within 1-2 mm at energies below 60 keV and within 5-6 mm at energies on the order of 600 keV.

  5. Development of stable nuclear radiation detectors based on n-silicon/cobalt-phthalocyanine heterojunctions

    NASA Astrophysics Data System (ADS)

    Ray, A.; Prasad, R.; Betty, C. A.; Chandrasekhar Rao, T. V.

    2016-03-01

    n-silicon/cobalt-phthalocyanine (CoPc) heterojunction based nuclear detectors have been fabricated using thermally evaporated CoPc films. Two different thicknesses of CoPc film (viz. 100 nm and 200 nm) were tried out to make detectors by depositing on chemically polished n-Si wafers. Gold film on CoPc was used as electrical contact. The detectors were characterized by measuring their current-voltage (I-V) and leakage current-time (I-t) characteristics, followed by alpha energy spectra obtained on exposure to α-particles. Variation of alpha energy resolution with applied reverse bias voltage for each of the detectors was also studied. The detectors showed very low leakage current and high breakdown voltage as compared to conventional Au/n-Si surface barrier detectors. Finally, the durability of the detectors was established by measuring their I-V characteristics and energy resolution for nearly 15 months.

  6. Nuclear Material Accountability Applications of a Continuous Energy and Direction Gamma Ray Detector

    SciTech Connect

    David Gerts; Robert Bean; Marc Paff

    2010-07-01

    The Idaho National Laboratory has recently developed a detector system based on the principle of a Wilson cloud chamber that gives the original energy and direction to a gamma ray source. This detector has the properties that the energy resolution is continuous and the direction to the source can be resolved to desired fidelity. Furthermore, the detector has low power requirements, is durable, operates in widely varying environments, and is relatively cheap to produce. This detector is expected, however, to require significant time to perform measurements. To mitigate the significant time for measurements, the detector is expected to scale to very large sizes with a linear increase in cost. For example, the proof of principle detector is approximately 30,000 cm3. This work describes the technical results that lead to these assertions. Finally, the applications of this detector are described in the context of nuclear material accountability.

  7. HgI2 near-band-gap photoluminescence structure and its relationship to nuclear detector quality

    NASA Astrophysics Data System (ADS)

    Wong, D.; Schlesinger, T. E.; James, R. B.; Ortale, C.; van den Berg, L.; Schnepple, W. F.

    1988-08-01

    The low-temperature photoluminescence spectra of several mercuric iodide detectors and off-stoichiometric bulk material have been characterized. Phonon energies have been determined with Raman spectroscopy over a range of temperatures. In earlier work some of the near-band-gap photoluminescence features were identified as phonon replicas. After careful examination of Raman and photoluminescence data, we find that one or perhaps more of these features is probably due to shallow electronic levels related to native defects. Suggestions as to the relationship between photoluminescence peaks and detector quality are made.

  8. Discrimination of nuclear and electronic recoil events using plasma effect in germanium detectors

    NASA Astrophysics Data System (ADS)

    Wei, W.-Z.; Liu, J.; Mei, D.-M.

    2016-07-01

    We report a new method of using the plasma time difference, which results from the plasma effect, between the nuclear and electronic recoil events in high-purity germanium detectors to distinguish these two types of events in the search for rare physics processes. The physics mechanism of the plasma effect is discussed in detail. A numerical model is developed to calculate the plasma time for nuclear and electronic recoils at various energies in germanium detectors. It can be shown that under certain conditions the plasma time difference is large enough to be observable. The experimental aspects in realizing such a discrimination in germanium detectors is discussed.

  9. Phase 2 Methyl Iodide Deep-Bed Adsorption Tests

    SciTech Connect

    Soelberg, Nick; Watson, Tony

    2014-09-01

    Nuclear fission produces fission products (FPs) and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methyl iodide adsorption test plan. This report summarizes the second phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during the second half of Fiscal Year (FY) 2014. Test results continue to show that methyl iodide adsorption using AgZ can achieve total iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) above 1,000, until breakthrough occurred. However, mass transfer zone depths are deeper for methyl iodide adsorption compared to diatomic iodine (I2) adsorption. Methyl iodide DFs for the Ag Aerogel test adsorption efficiencies were less than 1,000, and the methyl iodide mass transfer zone depth exceeded 8 inches. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption under various conditions specified in the methyl iodide test plan, and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  10. Study of aging of nuclear detector based on n-silicon/copper phthalocyanine heterojunction

    SciTech Connect

    Ray, A.; Gupta, S. K.

    2013-02-05

    Nuclear detectors based on n-silicon/copper-phthalocyanine (CuPc) heterojunction were fabricated using thermally evaporated CuPc thin film. These detectors exhibited stable electrical and {alpha}-particle characteristics for prolonged periods of time under ordinary laboratory conditions and also exposing to {alpha}- particles (during {alpha}- spectroscopic measurements). The electrical and alpha particle characteristics of these detectors were studied after a long gap of 3 - 5 years and the best result obtained from one detector (five year old) is reported here. Degradation in electrical and alpha particle characteristics were not found to be very significant over the period.

  11. Mechanically Cooled Large-Volume Germanium Detector Systems for Nuclear Explosion Monitoring DOENA27323-1

    SciTech Connect

    Hull, E.L.

    2006-07-28

    Compact maintenance free mechanical cooling systems are being developed to operate large volume germanium detectors for field applications. To accomplish this we are utilizing a newly available generation of Stirling-cycle mechanical coolers to operate the very largest volume germanium detectors with no maintenance. The user will be able to leave these systems unplugged on the shelf until needed. The flip of a switch will bring a system to life in ~ 1 hour for measurements. The maintenance-free operating lifetime of these detector systems will exceed 5 years. These features are necessary for remote long-duration liquid-nitrogen free deployment of large-volume germanium gamma-ray detector systems for Nuclear Explosion Monitoring. The Radionuclide Aerosol Sampler/Analyzer (RASA) will greatly benefit from the availability of such detectors by eliminating the need for liquid nitrogen at RASA sites while still allowing the very largest available germanium detectors to be reliably utilized.

  12. A parameterization of nuclear track profiles in CR-39 detector

    NASA Astrophysics Data System (ADS)

    Azooz, A. A.; Al-Nia'emi, S. H.; Al-Jubbori, M. A.

    2012-11-01

    _v1_0 TRACK_VISION Computer program TRACK_VISION for simulating optical appearance of etched tracks in CR-39 nuclear track detectors. D. Nikezic, K.N. Yu Comput. Phys. Commun. 178(2008)591

  13. Operational comparison of TLD albedo dosemeters and solid state nuclear tracks detectors in fuel fabrication facilities.

    PubMed

    Tsujimura, N; Takada, C; Yoshida, T; Momose, T

    2007-01-01

    The authors carried out an operational study that compared the use of TLD albedo dosemeters and solid state nuclear tracks detector in plutonium environments of Japan Nuclear Cycle Development Institute, Tokai Works. A selected group of workers engaged in the fabrication process of MOX (Plutonium-Uranium mixed oxide) fuel wore both TLD albedo dosemeters and solid state nuclear tracks detectors. The TL readings were generally proportional to the counted etch-pits, and thus the dose equivalent results obtained from TLD albedo dosemeter agreed with those from solid state nuclear tracks detector within a factor of 1.5. This result indicates that, in the workplaces of the MOX fuel plants, the neutron spectrum remained almost constant in terms of time and space, and the appropriate range of field-specific correction with spectrum variations was small in albedo dosimetry. PMID:17337735

  14. Detectors

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan; Allander, Krag

    2002-01-01

    The apparatus and method provide techniques through which both alpha and beta emission determinations can be made simultaneously using a simple detector structure. The technique uses a beta detector covered in an electrically conducting material, the electrically conducting material discharging ions generated by alpha emissions, and as a consequence providing a measure of those alpha emissions. The technique also offers improved mountings for alpha detectors and other forms of detectors against vibration and the consequential effects vibration has on measurement accuracy.

  15. Large area nuclear particle detectors using ET materials, phase 2

    NASA Technical Reports Server (NTRS)

    Wrigley, Charles Y.; Storti, George M.; Walter, Lee; Mathews, Scott

    1990-01-01

    This report presents work done under a Phase 2 SBIR contract for demonstrating large area detector planes utilizing Quantex electron trapping materials as a film medium for storing high-energy nuclide impingement information. The detector planes utilize energy dissipated by passage of the high-energy nuclides to produce localized populations of electrons stored in traps. Readout of the localized trapped electron populations is effected by scanning the ET plane with near-infrared, which frees the trapped electrons and results in optical emission at visible wavelengths. The effort involved both optimizing fabrication technology for the detector planes and developing a readout system capable of high spatial resolution for displaying the recorded nuclide passage tracks.

  16. Some recent developments in nuclear charged particle detectors

    SciTech Connect

    Stelzer, H.

    1980-08-01

    The latest developments of large-area, position sensitive gas-filled ionization chambers are described. Multi-wire-proportional chambers as position-sensing and parallel-plate-avalanche counters as time-sensing detectors at low pressure (5 torr) have proven to be useful and reliable instruments in heavy ion physics. Gas (proportional) scintillation counters, used mainly for x-ray spectroscopy, have recently been applied as particle detectors. Finally, a brief description of a large plastic scintillator spectrometer, the Plastic Ball, is given and some of the first test and calibration data are shown.

  17. Mechanically Cooled Large-Volume Germanium Detector Systems for Nuclear Explosion Monitoring

    SciTech Connect

    Hull, Ethan L.; Pehl, Richard H.; Lathrop, James R.; Martin, Gregory N.; Mashburn, R. B.; Miley, Harry S.; Aalseth, Craig E.; Hossbach, Todd W.; Bowyer, Ted W.

    2006-09-21

    Compact maintenance free mechanical cooling systems are being developed to operate large volume (~570 cm3, ~3 kg, 140% or larger) germanium detectors for field applications. We are using a new generation of Stirling-cycle mechanical coolers for operating the very largest volume germanium detectors with absolutely no maintenance or liquid nitrogen requirements. The user will be able to leave these systems unplugged on the shelf until needed. The flip of a switch will bring a system to life in ~1 hour for measurements. The maintenance-free operating lifetime of these detector systems will exceed five years. These features are necessary for remote long-duration liquid-nitrogen free deployment of large-volume germanium gamma-ray detector systems for Nuclear Explosion Monitoring (NEM). The Radionuclide Aerosol Sampler/Analyzer (RASA) will greatly benefit from the availability of such detectors by eliminating the need for liquid nitrogen at RASA sites while still allowing the very largest available germanium detectors to be utilized. These mechanically cooled germanium detector systems being developed here will provide the largest, most sensitive detectors possible for use with the RASA. To provide such systems, the appropriate technical fundamentals are being researched. Mechanical cooling of germanium detectors has historically been a difficult endeavor. The success or failure of mechanically cooled germanium detectors stems from three main technical issues: temperature, vacuum, and vibration. These factors affect one another. There is a particularly crucial relationship between vacuum and temperature. These factors will be experimentally studied both separately and together to insure a solid understanding of the physical limitations each factor places on a practical mechanically cooled germanium detector system for field use. Using this knowledge, a series of mechanically cooled germanium detector prototype systems are being designed and fabricated. Our collaborators

  18. Cesium iodide alloys

    SciTech Connect

    Kim, Hyoun-Ee; Moorhead, A.J.

    1991-01-01

    This invention relates to a CsI composition with improved mechanical strength and outstanding multispectral infrared transmittance, for window use. The additive is a monovalent iodide, other than CsI, added in amounts sufficient to maximize fracture strength from 16 to 40 MPa, while maintaining at least 10% transparency in the 4 to 50 micrometer wavelength range. The preferred additive is AgI, although RbI or CuI can be used. 6 figs. (DLC)

  19. Amorphous silicon/crystalline silicon heterojunctions for nuclear radiation detector applications

    SciTech Connect

    Walton, J.T.; Hong, W.S.; Luke, P.N.; Wang, N.W.; Ziemba, F.P.

    1996-10-01

    Results on characterization of electrical properties of amorphous Si films for the 3 different growth methods (RF sputtering, PECVD [plasma enhanced], LPCVD [low pressure]) are reported. Performance of these a-Si films as heterojunctions on high resistivity p-type and n- type crystalline Si is examined by measuring the noise, leakage current, and the alpha particle response of 5mm dia detector structures. It is demonstrated that heterojunction detectors formed by RF sputtered films and PECVD films are comparable in performance with conventional surface barrier detectors. Results indicate that the a-Si/c-Si heterojunctions have the potential to greatly simplify detector fabrication. Directions for future avenues of nuclear particle detector development are indicated.

  20. Evaluation of XRI-UNO CdTe detector for nuclear medical imaging

    NASA Astrophysics Data System (ADS)

    Jambi, L. K.; Lees, J. E.; Bugby, S. L.; Tipper, S.; Alqahtani, M. S.; Perkins, A. C.

    2015-06-01

    Over the last two decades advances in semiconductor detector technology have reached the point where they are sufficiently sensitive to become an alternative to scintillators for high energy gamma ray detection for application in fields such as medical imaging. This paper assessed the Cadmium-Telluride (CdTe) XRI-UNO semiconductor detector produced by X-RAY Imatek for photon energies of interest in nuclear imaging. The XRI-UNO detector was found to have an intrinsic spatial resolution of <0.5mm and a high incident count rate capability up to at least 1680cps. The system spatial resolution, uniformity and sensitivity characteristics are also reported.

  1. System for determining the type of nuclear radiation from detector output pulse shape

    DOEpatents

    Miller, W.H.; Berliner, R.R.

    1994-09-13

    A radiation detection system determines the type of nuclear radiation received in a detector by producing a correlation value representative of the statistical cross correlation between the shape of the detector signal and pulse shape data previously stored in memory and characteristic of respective types of radiation. The correlation value is indicative of the type of radiation. The energy of the radiation is determined from the detector signal and is used to produce a spectrum of radiation energies according to radiation type for indicating the nature of the material producing the radiation. 2 figs.

  2. System for determining the type of nuclear radiation from detector output pulse shape

    DOEpatents

    Miller, William H.; Berliner, Ronald R.

    1994-01-01

    A radiation detection system determines the type of nuclear radiation received in a detector by producing a correlation value representative of the statistical cross correlation between the shape of the detector signal and pulse shape data previously stored in memory and characteristic of respective types of radiation. The correlation value is indicative of the type of radiation. The energy of the radiation is determined from the detector signal and is used to produce a spectrum of radiation energies according to radiation type for indicating the nature of the material producing the radiation.

  3. SiC Semiconductor Detector Power Monitors for Space Nuclear Reactors

    NASA Astrophysics Data System (ADS)

    Reisi Fard, Mehdi; Blue, Thomas E.; Miller, Don W.

    2004-02-01

    As a part of a Department of Energy-Nuclear Engineering Research Initiative (NERI) Project, we are investigating SiC semiconductor detectors as power monitors for Generation IV power reactors. SiC detectors are well-suited as power monitors for reactors for space nuclear propulsion, due to their characteristics of small size, mass, and power consumption; mechanical ruggedness; radiation hardness; capability for high temperature operation; and potential for pulse mode operation at high count rates, which may allow for a reduction in the complexity of the reactor instrumentation and control system, as well as allow for verification of detector sensitivity, verification of channel operability, and channel self-repair. In this paper, a mathematical model of a SiC detector is presented. The model includes a description of the formation of electron-hole pairs in a SiC diode detector, using the computer code TRIM. The TRIM results are used as input to a MATLAB simulation of detector current output pulse formation, the results of which are intended for use as the input to a model of the detector channel as a whole.

  4. CDMS detector fabrication improvements and low energy nuclear recoil measurements in germanium

    NASA Astrophysics Data System (ADS)

    Jastram, Andrew Karl

    As the CDMS (Cryogenic Dark Matter Search) experiment is scaled up to tackle new dark matter parameter spaces (lower masses and cross-sections), detector production efficiency and repeatability becomes ever more important. A dedicated facility has been commissioned for SuperCDMS detector fabrication at Texas A&M University (TAMU). The fabrication process has been carefully tuned using this facility and its equipment. Production of successfully tested detectors has been demonstrated. Significant improvements in detector performance have been made using new fabrication methods, equipment, and tuning of process parameters. This work has demonstrated the capability for production of next generation CDMS SNOLAB detectors. Additionally, as the dark matter parameter space is probed further, careful calibrations of detector response to nuclear recoil interactions must be performed in order to extract useful information (in relation to dark matter particle characterizations) from experimental results. A neutron beam of tunable energy is used in conjunction with a commercial radiation detector to characterize ionization energy losses in germanium during nuclear recoil events. Data indicates agreement with values predicted by the Lindhard equation, providing a best-fit k-value of 0.146.

  5. Large area nuclear particle detectors using ET materials

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The purpose of this SBIR Phase 1 feasibility effort was to demonstrate the usefulness of Quantex electron-trapping (ET) materials for spatial detection of nuclear particles over large areas. This demonstration entailed evaluating the prompt visible scintillation as nuclear particles impinged on films of ET materials, and subsequently detecting the nuclear particle impingement information pattern stored in the ET material, by means of the visible-wavelength luminescence produced by near-infrared interrogation. Readily useful levels of scintillation and luminescence outputs are demonstrated.

  6. A new method for internal calibration of nuclear track detectors

    NASA Technical Reports Server (NTRS)

    Oda, K.; Csige, I.; Henke, R. P.; Benton, E. V.

    1992-01-01

    A new technique is proposed for an internal calibration of a two-layer detector assembly. Spatially coincident pairs of conical tracks on one surface and overetched tracks on the adjacent surface are selected for measurement. Both the etch rate ratio and the particle range can be obtained from the minor and major diameters of the elliptical track and the radii of the circular tracks for two etching steps. This technique was applied to CR-39 detectors exposed to fast neutrons and those flown on a high altitude balloon in order to evaluate the proton response. An improvement by using multi-step etching was also carried out. It was found that not only a single set of the etch rate ratio and the range but also the response curve could be estimated in an extended region by analyzing combined growth curves.

  7. Search for anomalons using plastic nuclear track detectors

    NASA Technical Reports Server (NTRS)

    Drechsel, H.; Heinrich, W.; Brechtmann, C.; Dreute, J.

    1985-01-01

    A stack of CR39 track detectors containing Ag foils was exposed to 1.7 GeV/nucleon Fe-56 beam and the anomalous mean free path effect investigated. Neither the whole set of 7517 nor a subset of 2542 interacting fragments produced probably in the Ag target show an effect. By combining the data of this and an earlier experiment we can also exclude an effect for 3219 interacting fragments produced in delta Z=1 collisions.

  8. Fabrication techniques for reverse electrode coaxial germanium nuclear radiation detectors

    SciTech Connect

    Hansen, W.L.; Haller, E.E.

    1980-11-01

    Germanium detectors with reverse polarity coaxial electrodes have been shown to exhibit improved resistance to radiation damage as compared with conventional electrode devices. However, the production of reverse electrode devices involves the development of new handling and fabrication techniques which has limited their wider application. We have developed novel techniques which lead to a device which is simple to fabricate, environmentally passivated and surface state adjusted.

  9. Polycrystalline CVD diamond pixel array detector for nuclear particles monitoring

    NASA Astrophysics Data System (ADS)

    Pacilli, M.; Allegrini, P.; Girolami, M.; Conte, G.; Spiriti, E.; Ralchenko, V. G.; Komlenok, M. S.; Khomic, A. A.; Konov, V. I.

    2013-02-01

    We report the 90Sr beta response of a polycrystalline diamond pixel detector fabricated using metal-less graphitic ohmic contacts. Laser induced graphitization was used to realize multiple squared conductive contacts with 1mm × 1mm area, 0.2 mm apart, on one detector side while on the other side, for biasing, a 9mm × 9mm large graphite contact was realized. A proximity board was used to wire bonding nine pixels at a time and evaluate the charge collection homogeneity among the 36 detector pixels. Different configurations of biasing were experimented to test the charge collection and noise performance: connecting the pixel at the ground potential of the charge amplifier led to best results and minimum noise pedestal. The expected exponential trend typical of beta particles has been observed. Reversing the bias polarity the pulse height distribution (PHD) does not changes and signal saturation of any pixel was observed around ±200V (0.4 V/μm). Reasonable pixels response uniformity has been evidenced even if smaller pitch 50÷100 μm structures need to be tested.

  10. A parameterization of nuclear track profiles in CR-39 detector

    NASA Astrophysics Data System (ADS)

    Azooz, A. A.; Al-Nia'emi, S. H.; Al-Jubbori, M. A.

    2012-11-01

    In this work, the empirical parameterization describing the alpha particles’ track depth in CR-39 detectors is extended to describe longitudinal track profiles against etching time for protons and alpha particles. MATLAB based software is developed for this purpose. The software calculates and plots the depth, diameter, range, residual range, saturation time, and etch rate versus etching time. The software predictions are compared with other experimental data and with results of calculations using the original software, TRACK_TEST, developed for alpha track calculations. The software related to this work is freely downloadable and performs calculations for protons in addition to alpha particles. Program summary Program title: CR39 Catalog identifier: AENA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENA_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Copyright (c) 2011, Aasim Azooz Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met • Redistributions of source code must retain the above copyright, this list of conditions and the following disclaimer. • Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution This software is provided by the copyright holders and contributors “as is” and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the copyright owner or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and

  11. A Study of Intrinsic Statistical Variation for Nuclear Recoils in Germanium Detector for Dark Matter Searches

    NASA Astrophysics Data System (ADS)

    Wei, Wenzhao; Wang, Lu; Mei, Dongming; Cubed Collaboration

    2015-10-01

    The intrinsic statistical variation in nuclear recoils is a critical part that cannot be ignored when calculating energy resolution of germanium detector in detecting WIMPs. Have a good theoretical understanding about the intrinsic statistical variation in nuclear recoils and develop a model for calculating this variation based on experimental data is of great importance in determining the width of nuclear recoil band, which is used to identify nuclear recoils events. Hence, we designed an experiment to study the intrinsic statistical variation in nuclear recoils with various gamma sources and AmBe neutron source. In addition, we developed a theoretical model to calculate the intrinsic statistical variation in nuclear recoils based on data from AmBe neutron source. In this work, we will present our data and theoretical calculation for nuclear recoils. This work is supported by NSF in part by the NSF PHY-0758120, DOE grant DE-FG02-10ER46709, and the State of South Dakota.

  12. International and national security applications of cryogenic detectors - mostly nuclear safeguards

    SciTech Connect

    Rabin, Michael W

    2009-01-01

    As with science, so with security - in both arenas, the extraordinary sensitivity of cryogenic sensors enables high-confidence detection and high-precision measurement even of the faintest signals. Science applications are more mature, but several national and international security applications have been identified where cryogenic detectors have high potential payoff. International safeguards and nuclear forensics are areas needing new technology and methods to boost speed, sensitivity, precision and accuracy. Successfully applied, improved nuclear materials analysis will help constrain nuclear materials diversion pathways and contribute to treaty verification. Cryogenic microcalorimeter detectors for X-ray, gamma ray, neutron, and alpha particle spectrometry are under development with these aims in mind. In each case the unsurpassed energy resolution of microcalorimeters reveals previously invi sible spectral features of nuclear materials. Preliminary results of quantitative analysis indicate substantial improvements are still possible, but significant work will be required to fully understand the ultimate performance limits.

  13. Electromagnetic and nuclear radiation detector using micromechanical sensors

    DOEpatents

    Thundat, Thomas G.; Warmack, Robert J.; Wachter, Eric A.

    2000-01-01

    Electromagnetic and nuclear radiation is detected by micromechanical sensors that can be coated with various interactive materials. As the micromechanical sensors absorb radiation, the sensors bend and/or undergo a shift in resonance characteristics. The bending and resonance changes are detected with high sensitivity by any of several detection methods including optical, capacitive, and piezoresistive methods. Wide bands of the electromagnetic spectrum can be imaged with picoJoule sensitivity, and specific absorptive coatings can be used for selective sensitivity in specific wavelength bands. Microcantilevers coated with optical cross-linking polymers are useful as integrating optical radiation dosimeters. Nuclear radiation dosimetry is possible by fabricating cantilevers from materials that are sensitive to various nuclear particles or radiation. Upon exposure to radiation, the cantilever bends due to stress and its resonance frequency shifts due to changes in elastic properties, based on cantilever shape and properties of the coating.

  14. Preliminary Results from an Investigation into Nanostructured Nuclear Radiation Detectors for Non-Proliferation Applications

    SciTech Connect

    ,

    2012-10-01

    In recent years, the concept of embedding composite scintillators consisting of nanosized inorganic crystals in an organic matrix has been actively pursued. Nanocomposite detectors have the potential to meet many of the homeland security, non-proliferation, and border and cargo-screening needs of the nation and, by virtue of their superior nuclear identification capability over plastic, at roughly the same cost as plastic, have the potential to replace all plastic detectors. Nanocomposites clearly have the potential of being a gamma ray detection material that would be sensitive yet less expensive and easier to produce on a large scale than growing large, whole crystals of similar sensitivity. These detectors would have a broad energy range and a sufficient energy resolution to perform isotopic identification. The material can also be fabricated on an industrial scale, further reducing cost. This investigation focused on designing and fabricating prototype core/shell and quantum dot (QD) detectors. Fourteen core/shell and four QD detectors, all with the basic consistency of a mixture of nanoparticles in a polymer matrix with different densities of nanoparticles, were prepared. Nanoparticles with sizes <10 nm were fabricated, embedded in a polystyrene matrix, and the resultant scintillators’ radiation detector properties were characterized. This work also attempted to extend the gamma energy response on both low- and high-energy regimes by demonstrating the ability to detect low-energy and high-energy gamma rays. Preliminary results of this investigation are consistent with a significant response of these materials to nuclear radiation.

  15. SCINTILLA: A European project for the development of scintillation detectors and new technologies for nuclear security

    NASA Astrophysics Data System (ADS)

    Alemberti, A.; Battaglieri, M.; Botta, E.; Devita, R.; Fanchini, E.; Firpo, G.

    2014-06-01

    Europe monitors transits using radiation detectors to prevent illicit trafficking of nuclear materials. The SCINTILLA project aims to develop a toolbox of innovative technologies designed to address different usage cases. This article will review the scope, approach, results of the first benchmark campaign and future plans of the SCINTILLA project.

  16. Determination of the detection threshold for Polyethylene Terephthalate (PET) Nuclear Track Detector (NTD)

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, R.; Dey, S.; Ghosh, Sanjay K.; Maulik, A.; Raha, Sibaji; Syam, D.

    2016-03-01

    In this work we investigated the detection threshold of the polymer material Polyethylene Terephthalate (PET) intended to be used as Nuclear Track Detector (NTD) in the search for rare events (e.g. strangelets) in cosmic rays. 11 MeV 12C and 2 MeV proton beams from the accelerator at the Institute of Physics (IOP), Bhubaneswar were utilized for this study. The results show that the PET detector has a much higher detection threshold (Z / β ∼ 140) compared to many other commercially available and widely used detector materials like CR-39 (Z / β ∼ 6-20) or Makrofol (Z / β ∼ 57). This makes PET a particularly suitable detector material for testing certain phenomenological models which predict the presence of strangelets as low energy, heavily ionizing particles in cosmic radiation at high mountain altitudes.

  17. Nuclear reactor pulse tracing using a CdZnTe electro-optic radiation detector

    NASA Astrophysics Data System (ADS)

    Nelson, Kyle A.; Geuther, Jeffrey A.; Neihart, James L.; Riedel, Todd A.; Rojeski, Ronald A.; Ugorowski, Philip B.; McGregor, Douglas S.

    2012-07-01

    CdZnTe has previously been shown to operate as an electro-optic radiation detector by utilizing the Pockels effect to measure steady-state nuclear reactor power levels. In the present work, the detector response to reactor power excursion experiments was investigated. Peak power levels during an excursion were predicted to be between 965 MW and 1009 MW using the Fuchs-Nordheim and Fuchs-Hansen models and confirmed with experimental data from the Kansas State University TRIGA Mark II nuclear reactor. The experimental arrangement of the Pockels cell detector includes collimated laser light passing through a transparent birefringent crystal, located between crossed polarizers, and focused upon a photodiode. The birefringent crystal, CdZnTe in this case, is placed in a neutron beam emanating from a nuclear reactor beam port. After obtaining the voltage-dependent Pockels characteristic response curve with a photodiode, neutron measurements were conducted from reactor pulses with the Pockels cell set at the 1/4 and 3/4 wave bias voltages. The detector responses to nuclear reactor pulses were recorded in real-time using data logging electronics, each showing a sharp increase in photodiode current for the 1/4 wave bias, and a sharp decrease in photodiode current for the 3/4 wave bias. The polarizers were readjusted to equal angles in which the maximum light transmission occurred at 0 V bias, thereby, inverting the detector response to reactor pulses. A high sample rate oscilloscope was also used to more accurately measure the FWHM of the pulse from the electro-optic detector, 64 ms, and is compared to the experimentally obtained FWHM of 16.0 ms obtained with the 10B-lined counter.

  18. Multilayer Scintillation Detector for Nuclear Physics Monitoring of Space Weather

    NASA Astrophysics Data System (ADS)

    Batischev, A. G.; Aleksandrin, S. Yu.; Gurov, Yu. B.; Koldashov, S. V.; Lapushkin, S. V.; Mayorov, A. G.

    The physical characteristics of the multilayer scintillation spectrometer (MSS) for identification and energy measurement of cosmic electrons, positrons and nuclei are considered in this paper. This spectrometer is made on the basis of several plastic scintillator plates with various thick viewed by photomultipliers. Two upper layers are strips of orthogonal scintillators. The nuclei energy measurement range is 3 - 100 MeV/nucleon. Spectrometer is planning for space weather monitoring and investigation of solar-magnetospheric and geophysics effects on satellite. MSS time resolution is about 1 microsecond and it can measure the time profiles of fast processes in the Earth's magnetosphere. Spectrometer experimental characteristics were estimated by means of computer simulation. The ionization loss fluctuations, ion charge exchange during pass through detector and, especially, scintillation quenching effect (Bircs effect) were taken into account in calculations.

  19. Hydrogen iodide decomposition

    DOEpatents

    O'Keefe, Dennis R.; Norman, John H.

    1983-01-01

    Liquid hydrogen iodide is decomposed to form hydrogen and iodine in the presence of water using a soluble catalyst. Decomposition is carried out at a temperature between about 350.degree. K. and about 525.degree. K. and at a corresponding pressure between about 25 and about 300 atmospheres in the presence of an aqueous solution which acts as a carrier for the homogeneous catalyst. Various halides of the platinum group metals, particularly Pd, Rh and Pt, are used, particularly the chlorides and iodides which exhibit good solubility. After separation of the H.sub.2, the stream from the decomposer is countercurrently extracted with nearly dry HI to remove I.sub.2. The wet phase contains most of the catalyst and is recycled directly to the decomposition step. The catalyst in the remaining almost dry HI-I.sub.2 phase is then extracted into a wet phase which is also recycled. The catalyst-free HI-I.sub.2 phase is finally distilled to separate the HI and I.sub.2. The HI is recycled to the reactor; the I.sub.2 is returned to a reactor operating in accordance with the Bunsen equation to create more HI.

  20. Weld monitor and failure detector for nuclear reactor system

    DOEpatents

    Sutton, Jr., Harry G.

    1987-01-01

    Critical but inaccessible welds in a nuclear reactor system are monitored throughout the life of the reactor by providing small aperture means projecting completely through the reactor vessel wall and also through the weld or welds to be monitored. The aperture means is normally sealed from the atmosphere within the reactor. Any incipient failure or cracking of the weld will cause the environment contained within the reactor to pass into the aperture means and thence to the outer surface of the reactor vessel where its presence is readily detected.

  1. Mercuric Iodide Anticoincidence Shield for Gamma-Ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Hartsough, Neal; Iwanczyk, Jan

    2009-01-01

    A film-growth process was developed for polycrystalline mercuric iodide that creates cost-effective, large-area detectors for high-energy charged-particle detection. A material, called a barrier film, is introduced onto the substrate before the normal mercuric iodide film growth process. The barrier film improves the quality of the normal film grown and enhances the adhesion between the film and the substrate. The films grown using this improved technique were found to have adequate signal-to-noise properties so that individual high-energy charged -particle interactions could be distinguished from noise, and thus, could be used to provide an anticoincidence veto function as desired.

  2. Studying the Sun's Nuclear Furnace with a Neutrino Detector Spacecraft in Close Solar Orbit

    NASA Astrophysics Data System (ADS)

    Solomey, Nickolas

    2016-05-01

    A neutrino based detector in close solar orbit would have a neutrino flux 10,000x or more larger flux than on Earth and a smaller detector able to handle high rates with exception energy resolution could be used. We have studied the idea of operating such an experiment in close solar orbits that takes it off the ecliptic plane and in a solar orbit where the distance from the Sun will change distance. This neutrino detector on a space craft could do Solar Astrophysics studying the Solar nuclear furnace, basic nuclear physics and elementary particle physics; some of these ideas are new unique science that can only be preformed from a spacecraft. The harsh environment provides many challenges but if such a detector could be made to work it can be the next major step in this science study. How a small segmented detector can operate and preform in this environment to detect solar neutrinos will be elaborated upon using a combination of signal strength, fast signal timing, shielding and segmentation.

  3. Multi-Detector Analysis System for Spent Nuclear Fuel Characterization

    SciTech Connect

    Reber, Edward Lawrence; Aryaeinejad, Rahmat; Cole, Jerald Donald; Drigert, Mark William; Jewell, James Keith; Egger, Ann Elizabeth; Cordes, Gail Adele

    1999-09-01

    The Spent Nuclear Fuel (SNF) Non-Destructive Analysis (NDA) program at INEEL is developing a system to characterize SNF for fissile mass, radiation source term, and fissile isotopic content. The system is based on the integration of the Fission Assay Tomography System (FATS) and the Gamma-Neutron Analysis Technique (GNAT) developed under programs supported by the DOE Office of Non-proliferation and National Security. Both FATS and GNAT were developed as separate systems to provide information on the location of special nuclear material in weapons configuration (FATS role), and to measure isotopic ratios of fissile material to determine if the material was from a weapon (GNAT role). FATS is capable of not only determining the presence and location of fissile material but also the quantity of fissile material present to within 50%. GNAT determines the ratios of the fissile and fissionable material by coincidence methods that allow the two prompt (immediately) produced fission fragments to be identified. Therefore, from the combination of FATS and GNAT, MDAS is able to measure the fissile material, radiation source term, and fissile isotopics content.

  4. The use of nuclear physics and high energy physics detectors in medical imaging

    NASA Astrophysics Data System (ADS)

    Del Guerra, Alberto; Bisogni, Maria Giuseppina

    2013-06-01

    The development of radiation detectors in the field of nuclear and particle physics has had a terrific impact in medical imaging since this latter discipline took off in late '70 with the invention of the CT scanners. The massive use in Nuclear Physics and High Energy Physics of position sensitive gas detectors, of high Z and high density scintillators coupled to Photomultiplier (PMT) and Position Sensitive Photomultipliers (PSPMT), and of solid state detectors has triggered during the last 30 years a series of novel applications in Medical Imaging with ionizing radiation. The accelerated scientific progression in genetics and molecular biology has finally generated what it is now called Molecular Imaging. This field of research presents additional challenges not only in the technology of radiation detector, but more and more in the ASIC electronics, fast digital readout and parallel software. In this paper we will try to present how Nuclear Physics/High Energy Physics and Medical Imaging have both benefited by the cross-fertilization of research activities between the two fields and how much they will take advantage in the future.

  5. Etching of mercuric iodide in cation iodide solutions

    NASA Astrophysics Data System (ADS)

    Ponpon, J. P.; Amann, M.

    2006-07-01

    The surface properties of mercuric iodide after etching in various cation iodide solutions have been investigated in terms of dissolution rate, morphology, electrical properties and reaction with water vapour. No significant differences have been observed in the etching rates. However, dissolution of HgI 2 in NH 4I, NaI, KI or RbI leaves the surface more or less covered with a residual iodo mercurate compound whose electrical properties and stability with regard to humidity may noticeably influence the behaviour of mercuric iodide devices. The smallest effect has been observed for etching in NaI.

  6. Nuclear magnetic resonance tomography with a toroid cavity detector

    SciTech Connect

    Woelk, K.; Rathke, J.W.; Klingler, R.J.

    1995-02-01

    A new type of nuclear magnetic resonance (NMR) tomography has been developed at Argonne National Laboratory. The method uses the strong radio frequency field gradient within a cylindrical toroid cavity to provide high-resolution NMR spectral information while simultaneously resolving distances on the micron scale. The toroid cavity imaging technique differs from conventional magnetic resonance imaging (MRI) in that NMR structural information is not lost during signal processing. The new technique could find a wide range of applications in the characterization of surface layers and in the production of advanced materials. Potential areas of application include in situ monitoring of growth sites during ceramic formation processes, analysis of the oxygen annealing step for wires coated with high-temperature superconducting films, and investigation of the reaction chemistry as a function of distance within the diffusion layer for electrochemical processes.

  7. Registration of alpha particles in Makrofol-E nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Rammah, Y. S.; Abdalla, Ayman M.; Ashraf, O.; Ashry, A. H.

    2016-06-01

    Fast detection of alpha particles in the range from 1 to 5 MeV in Makrofol-E polycarbonate nuclear track detectors (PCTDs) using a new chemical etchant was investigated. 252Cf and 241Am-thin open sources were used for irradiating Makrofol-E detectors with fission fragments and alpha particles in air at normal pressure and temperature (NPT). A chain of experimental work has been carried out using new etchants to register alpha particle in short time in Makrofol-E polycarbonate detectors. The etching efficiency were exhibited a clear dependence on the amount of methanol in the etching solution and etching time. The optimized chemical condition obtained at this stage of development for 200 μm Makrofol-E detectors are (8 ml of 10 N NaOH + 2 ml CH3OH) etching solutions at 60 °C for 3 h. In this study; it is possible to observe energy detection windows for Makrofol-E detectors according to applied etching duration. Makrofol-E introduced the characteristic Bragg peak, which indicates the advantages of this detector as alpha spectrometer. Consequently, the suggested new etchant can be developed for heavy ions detection and monitoring radon levels and its daughters.

  8. Increasing the energy dynamic range of solid-state nuclear track detectors using multiple surfaces.

    PubMed

    Zylstra, A B; Rinderknecht, H G; Sinenian, N; Rosenberg, M J; Manuel, M; Séguin, F H; Casey, D T; Frenje, J A; Li, C K; Petrasso, R D

    2011-08-01

    Solid-state nuclear track detectors, such as CR-39, are widely used in physics and in many inertial confinement fusion (ICF) experiments. In the ICF experiments, the particles of interest, such as D(3)He-protons, have ranges of order of the detector thickness. In this case, the dynamic range of the detector can be extended by recording data on both the front and back sides of the detector. Higher energy particles which are undetectable on the front surface can then be measured on the back of the detector. Studies of track formation under the conditions on the front and back of the detector reveal significant differences. Distinct front and back energy calibrations of CR-39 are therefore necessary and are presented for protons. Utilizing multiple surfaces with additional calibrations can extend the range of detectable energies on a single piece of CR-39 by up to 7-8 MeV. The track formation process is explored with a Monte Carlo code, which shows that the track formation difference between front and back is due to the non-uniform ion energy deposition in matter. PMID:21895237

  9. Imaging detector development for nuclear astrophysics using pixelated CdTe

    NASA Astrophysics Data System (ADS)

    Álvarez, J. M.; Gálvez, J. L.; Hernanz, M.; Isern, J.; Llopis, M.; Lozano, M.; Pellegrini, G.; Chmeissani, M.

    2010-11-01

    The concept of focusing telescopes in the energy range of lines of astrophysical interest (i.e., of energies around 1 MeV) should allow to reach unprecedented sensitivities, essential to perform detailed studies of cosmic explosions and cosmic accelerators. Our research and development activities aim to study a detector suited for the focal plane of a γ-ray telescope mission. A CdTe/CdZnTe detector operating at room temperature, that combines high detection efficiency with good spatial and spectral resolution is being studied in recent years as a focal plane detector, with the interesting option of also operating as a Compton telescope monitor. We present the current status of the design and development of a γ-ray imaging spectrometer in the MeV range, for nuclear astrophysics, consisting of a stack of CdTe pixel detectors with increasing thicknesses. We have developed an initial prototype based on CdTe ohmic detector. The detector has 11×11 pixels, with a pixel pitch of 1 mm and a thickness of 2 mm. Each pixel is stud bonded to a fanout board and routed to an front end ASIC to measure pulse height and rise time information for each incident γ-ray photon. First measurements of a 133Ba and 241Am source are reported here.

  10. Formation of cyanogen iodide by lactoperoxidase.

    PubMed

    Schlorke, Denise; Flemmig, Jörg; Birkemeyer, Claudia; Arnhold, Jürgen

    2016-01-01

    The haem protein lactoperoxidase (LPO) is an important component of the anti-microbial immune defence in external secretions and is also applied as preservative in food, oral care and cosmetic products. Upon oxidation of SCN(-) and I(-) by the LPO-hydrogen peroxide system, oxidised species are formed with bacteriostatic and/or bactericidal activity. Here we describe the formation of the inter(pseudo)halogen cyanogen iodide (ICN) by LPO. This product is formed when both, thiocyanate and iodide, are present together in the reaction mixture. Using (13)C nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry we could identify this inter(pseudo)halogen after applying iodide in slight excess over thiocyanate. The formation of ICN is based on the reaction of oxidised iodine species with thiocyanate. Further, we could demonstrate that ICN is also formed by the related haem enzyme myeloperoxidase and, in lower amounts, in the enzyme-free system. As I(-) is not competitive for SCN(-) under physiologically relevant conditions, the formation of ICN is not expected in secretions but may be relevant for LPO-containing products. PMID:26580225

  11. 2010 IEEE Nuclear Science Symposium, Medical Imaging Conference, and Room Temperature Semiconductor Detectors Workshop

    NASA Astrophysics Data System (ADS)

    The Nuclear Science Symposium (NSS) offers an outstanding opportunity for scientists and engineers interested or actively working in the fields of nuclear science, radiation instrumentation, software and their applications, to meet and discuss with colleagues from around the world. The program emphasizes the latest developments in technology and instrumentation and their implementation in experiments for space sciences, accelerators, other radiation environments, and homeland security. The Medical Imaging Conference (MIC) is the foremost international scientific meeting on the physics, engineering and mathematical aspects of nuclear medicine based imaging. As the field develops, multi-modality approaches are becoming more and more important. The content of the MIC reflects this, with a growing emphasis on the methodologies of X-ray, optical and MR imaging as they relate to nuclear imaging techniques. In addition, specialized topics will be addressed in the Short Courses and Workshops programs. The Workshop on Room-Temperature Semiconductor Detectors (RTSD) represents the largest forum of scientists and engineers developing new semiconductor radiation detectors and imaging arrays. Room-temperature solid-state radiation detectors for X-ray, gamma-ray, and neutron radiation are finding increasing applications in such diverse fields as medicine, homeland security, astrophysics and environmental remediation. The objective of this workshop is to provide a forum for discussion of the state of the art of material development for semiconductor, scintillator, and organic materials for detection, materials characterization, device fabrication and technology, electronics and applications.

  12. Crystal Growth, Characterization and Fabrication of Cadmium Zinc Telluride-based Nuclear Detectors

    NASA Astrophysics Data System (ADS)

    Krishna, Ramesh M.

    In today's world, nuclear radiation is seeing more and more use by humanity as time goes on. Nuclear power plants are being built to supply humanity's energy needs, nuclear medical imaging is becoming more popular for diagnosing cancer and other diseases, and control of weapons-grade nuclear materials is becoming more and more important for national security. All of these needs require high-performance nuclear radiation detectors which can accurately measure the type and amount of radiation being used. However, most current radiation detection materials available commercially require extensive cooling, or simply do not function adequately for high-energy gamma-ray emitting nuclear materials such as uranium and plutonium. One of the most promising semiconductor materials being considered to create a convenient, field-deployable nuclear detector is cadmium zinc telluride (CdZnTe, or CZT). CZT is a ternary semiconductor compound which can detect high-energy gamma-rays at room temperature. It offers high resistivity (≥ 1010 O-cm), a high band gap (1.55 eV), and good electron transport properties, all of which are required for a nuclear radiation detector. However, one significant issue with CZT is that there is considerable difficulty in growing large, homogeneous, defect-free single crystals of CZT. This significantly increases the cost of producing CZT detectors, making CZT less than ideal for mass-production. Furthermore, CZT suffers from poor hole transport properties, which creates significant problems when using it as a high-energy gamma-ray detector. In this dissertation, a comprehensive investigation is undertaken using a successful growth method for CZT developed at the University of South Carolina. This method, called the solvent-growth technique, reduces the complexity required to grow detector-grade CZT single crystals. It utilizes a lower growth temperature than traditional growth methods by using Te as a solvent, while maintaining the advantages of

  13. Revealing intermittency in nuclear multifragmentation with 4[pi] detectors

    SciTech Connect

    Baldo, M.; Causa, A.; Rapisarda, A. )

    1993-11-01

    The distortion on the intermittency signal, due to detection efficiency and to the presence of preequilibrium emitted particles, is studied in a schematic model of nuclear multifragmentation. A clear and genuine intermittency signal is generated by means of a percolating system, which is assumed to be in a region around the critical one. Mixing of events is considered to simulate the experimental conditions. The efficiency is schematized by a simple function of the fragment size, and the presence of preequilibrium particles is simulated by an additional noncritical fragment source. No selection on the events is considered, and therefore all events are used to calculate the moments. It is found that, despite the absence of event selection, the intermittency signal is not too much sensitive to the distortion due to the apparatus efficiency, while the inclusion of preequilibrium particles in the moment calculation can substantially reduce the strength of the signal. Preequilibrium particles should therefore be carefully separated from the rest of the detected fragments, before the intermittency analysis on experimental charge or mass distributions is carried out.

  14. Nuclear resonance tomography with a toroid cavity detector

    DOEpatents

    Woelk, K.; Rathke, J.W.; Klingler, R.J.

    1996-11-12

    A toroid cavity detection system is described for determining the spectral properties and distance from a fixed point for a sample using Nuclear Magnetic Resonance. The detection system consists of a toroid with a central conductor oriented along the main axis of the toroidal cylinder and perpendicular to a static uniform magnetic field oriented along the main axis of the toroid. An rf signal is input to the central conductor to produce a magnetic field perpendicular to the central axis of the toroid and whose field strength varies as the inverse of the radius of the toroid. The toroid cavity detection system can be used to encapsulate a sample, or the detection system can be perforated to allow a sample to flow into the detection device or to place the samples in specified sample tubes. The central conductor can also be coated to determine the spectral property of the coating and the coating thickness. The sample is then subjected to the respective magnetic fields and the responses measured to determine the desired properties. 4 figs.

  15. Nuclear resonance tomography with a toroid cavity detector

    DOEpatents

    Woelk, Klaus; Rathke, Jerome W.; Klingler, Robert J.

    1996-01-01

    A toroid cavity detection system for determining the spectral properties and distance from a fixed point for a sample using Nuclear Magnetic Resonance. The detection system consists of a toroid with a central conductor oriented along the main axis of the toroidal cylinder and perpendicular to a static uniform magnetic field oriented along the main axis of the toroid. An rf signal is inputted to the central conductor to produce a magnetic field perpendicular to the central axis of the toroid and whose field strength varies as the inverse of the radius of the toroid. The toroid cavity detection system can be used to encapsulate a sample, or the detection system can be perforated to allow a sample to flow into the detection device or to place the samples in specified sample tubes. The central conductor can also be coated to determine the spectral property of the coating and the coating thickness. The sample is then subjected to the respective magnetic fields and the responses measured to determine the desired properties.

  16. Detection of fast neutrons from shielded nuclear materials using a semiconductor alpha detector.

    PubMed

    Pöllänen, R; Siiskonen, T

    2014-08-01

    The response of a semiconductor alpha detector to fast (>1 MeV) neutrons was investigated by using measurements and simulations. A polyethylene converter was placed in front of the detector to register recoil protons generated by elastic collisions between neutrons and hydrogen nuclei of the converter. The developed prototype equipment was tested with shielded radiation sources. The low background of the detector and insensitivity to high-energy gamma rays above 1 MeV are advantages when the detection of neutron-emitting nuclear materials is of importance. In the case of a (252)Cf neutron spectrum, the intrinsic efficiency of fast neutron detection was determined to be 2.5×10(-4), whereas three-fold greater efficiency was obtained for a (241)AmBe neutron spectrum. PMID:24792122

  17. A Novel Time of Flight Detector for the Pioneering High Energy Nuclear Interaction eXperiment

    NASA Astrophysics Data System (ADS)

    Dix, Richard; Drummond, Kirk; Powell, William; Chiu, Mickey

    2010-11-01

    Time-of Flight (TOF) detectors allow one to identify particles created in collider experiments. The Pioneering High Energy Nuclear Interaction eXperiment (PHENIX) at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory is proposing new forward timing detectors to measure the TOF with a 10 picosecond (ps) timing resolution. A prototype of the detector electronics system was tested by using Cherenkov signals from cosmic rays and translating them into digital signals. Each signal was split and delivered to two analog-to-digital-converters (ADCs). C++ and ROOT were used to write programs to compare voltage readings reported by the two ADC channels and determine the time difference between them, which was 76 ps. Using new ADCs, which run 17 times faster, the timing resolution will be 5 ps. This will allow PHENIX to probe the meson-baryon anomaly at intermediate, transverse momentum by making detailed measurements in a psuedorapidity region which has not been well measured.

  18. 21 CFR 172.375 - Potassium iodide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium iodide. 172.375 Section 172.375 Food and... Dietary and Nutritional Additives § 172.375 Potassium iodide. The food additive potassium iodide may be safely used in accordance with the following prescribed conditions: (a) Potassium iodide may be...

  19. 21 CFR 172.375 - Potassium iodide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium iodide. 172.375 Section 172.375 Food and... Dietary and Nutritional Additives § 172.375 Potassium iodide. The food additive potassium iodide may be safely used in accordance with the following prescribed conditions: (a) Potassium iodide may be...

  20. 21 CFR 172.375 - Potassium iodide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium iodide. 172.375 Section 172.375 Food and... Dietary and Nutritional Additives § 172.375 Potassium iodide. The food additive potassium iodide may be safely used in accordance with the following prescribed conditions: (a) Potassium iodide may be...

  1. 21 CFR 172.375 - Potassium iodide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium iodide. 172.375 Section 172.375 Food and....375 Potassium iodide. The food additive potassium iodide may be safely used in accordance with the following prescribed conditions: (a) Potassium iodide may be safely added to a food as a source of...

  2. 21 CFR 172.375 - Potassium iodide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium iodide. 172.375 Section 172.375 Food and... Dietary and Nutritional Additives § 172.375 Potassium iodide. The food additive potassium iodide may be safely used in accordance with the following prescribed conditions: (a) Potassium iodide may be...

  3. Excited State Electronic Properties of Sodium Iodide and Cesium Iodide

    SciTech Connect

    Campbell, Luke W.; Gao, Fei

    2013-05-01

    We compute from first principles the dielectric function, loss function, lifetime and scattering rate of quasiparticles due to electronic losses, and secondary particle spectrum due to plasmon decay in two scintillating alkali halides, sodium iodide and cesium iodide. Particular emphasis is placed on quasiparticles within several multiples of the band gap from the band edges. A theory for the decay spectra of plasmons and other electronic excitations in crystals is presented. Applications to Monte Carlo radiation transport codes are discussed.

  4. Applications of a Fast Neutron Detector System to Verification of Special Nuclear Materials

    NASA Astrophysics Data System (ADS)

    Mayo, Douglas R.; Byrd, Roger C.; Ensslin, Norbert; Krick, Merlyn S.; Mercer, David J.; Miller, Michael C.; Prettyman, Thomas H.; Russo, Phyllis A.

    1998-04-01

    An array of boron-loaded plastic optically coupled to bismuth germanate scintillators has been developed to detect neutrons for measurement of special nuclear materials. The phoswiched detection system has the advantage of a high neutron detection efficiency and short die-away time. This is achieved by mixing the moderator (plastic) and the detector (^10B) at the molecular level. Simulations indicate that the neutron capture probabilities equal or exceed those of the current thermal neutron multiplicity techniques which have the moderator (polyethylene) and detectors (^3He gas proportional tubes) macroscopically separate. Experiments have been performed to characterize the response of these detectors and validate computer simulations. The fast neutron detection system may be applied to the quantitative assay of plutonium in high (α,n) backgrounds, with emphasis on safeguards and enviromental scenarios. Additional applications of the insturment, in a non-quantative mode, has been tested for possible verification activities involving dismantlement of nuclear weapons. A description of the detector system, simulations and preliminary data will be presented.

  5. Supervised nuclear track detection of CR-39 detectors by cellular automata

    NASA Astrophysics Data System (ADS)

    Chahkandi Nejad, Hadi; Khayat, Omid; Mohammadi, Kheirollah; Tavakoli, Saeed

    2014-05-01

    In this paper, cellular automata are used to detect the nuclear tracks in the track images captured from the surface of CR-39 detectors. Parameters of the automaton as the states, neighborhood, rules and quality parameters are defined optimally for the track image data set under analysis. The presented method is a supervised computational algorithm which comprises a rule definition phase as the learning procedure. Parameter optimization is also performed to adapt the algorithm to the data set used.

  6. Nuclear Track Detector Characterization via Alpha-Spectrometry for Radioprotection Use

    NASA Astrophysics Data System (ADS)

    Morelli, D.; Immè, G.; Aranzulla, M.; Tazzer, A. L. Rosselli; Catalano, R.; Mangano, G.

    2011-12-01

    Solid Nuclear Track Detectors (SNTDs), CR-39 type, are usually adopted to monitor radon gas concentrations. In order to characterize the detectors according to track geometrical parameters, detectors were irradiated inside a vacuum chamber by alpha particles at twelve energy values, obtained by different Mylar foils in front of a 241Am source. The alpha energy values were verified using a Si detector. After the exposure to the alpha particles, the detectors were chemically etched to enlarge the tracks, which were then analyzed by means of a semiautomatic system composed of an optical microscope equipped with a CCD camera connected to a personal computer to store images. A suitable routine analyzed the track parameters: major and minor axis length and mean grey level, allowing us to differentiate tracks according to the incident alpha energy and then to individuate the discrimination factors for radon alpha tracks. The combined use of geometrical and optical parameters allows one to overcome the ambiguity in the alpha energy determination due to the non-monotonicity of each parameter versus energy. After track parameter determination, a calibration procedure was performed by means of a radon chamber. The calibration was verified through an inter-comparing survey.

  7. Nuclear Track Detector Characterization via Alpha-Spectrometry for Radioprotection Use

    SciTech Connect

    Morelli, D.; Imme, G.; Catalano, R.; Aranzulla, M.; Tazzer, A. L. Rosselli; Mangano, G.

    2011-12-13

    Solid Nuclear Track Detectors (SNTDs), CR-39 type, are usually adopted to monitor radon gas concentrations. In order to characterize the detectors according to track geometrical parameters, detectors were irradiated inside a vacuum chamber by alpha particles at twelve energy values, obtained by different Mylar foils in front of a {sup 241}Am source. The alpha energy values were verified using a Si detector. After the exposure to the alpha particles, the detectors were chemically etched to enlarge the tracks, which were then analyzed by means of a semiautomatic system composed of an optical microscope equipped with a CCD camera connected to a personal computer to store images. A suitable routine analyzed the track parameters: major and minor axis length and mean grey level, allowing us to differentiate tracks according to the incident alpha energy and then to individuate the discrimination factors for radon alpha tracks. The combined use of geometrical and optical parameters allows one to overcome the ambiguity in the alpha energy determination due to the non-monotonicity of each parameter versus energy. After track parameter determination, a calibration procedure was performed by means of a radon chamber. The calibration was verified through an inter-comparing survey.

  8. A prototype experiment for cooperative monitoring of nuclear reactors with cubic meter scale antineutrino detectors

    NASA Astrophysics Data System (ADS)

    Bernstein, A.; Allen, M.; Bowden, N.; Brennan, J.; Carr, D. J.; Estrada, J.; Hagmann, C.; Lund, J. C.; Madden, N. W.; Winant, C. D.

    2005-09-01

    Our Lawrence Livermore National Laboratory/Sandia National Laboratories collaboration has deployed a cubic-meter-scale antineutrino detector to demonstrate non-intrusive and automatic monitoring of the power levels and plutonium content of a nuclear reactor. Reactor monitoring of this kind is required for all non-nuclear weapons states under the Nuclear Nonproliferation Treaty (NPT), and is implemented by the International Atomic Energy Agency (IAEA). Since the antineutrino count rate and energy spectrum depend on the relative yields of fissioning isotopes in the reactor core, changes in isotopic composition can be observed without ever directly accessing the core. Data from a cubic meter scale antineutrino detector, coupled with the well-understood principles that govern the core's evolution in time, can be used to determine whether the reactor is being operated in an illegitimate way. Our group has deployed a detector at the San Onofre reactor site in California to demonstrate this concept. This paper describes the concept and shows preliminary results from 8 months of operation.

  9. Preparation and evaluation of mercuric iodide for crystal growth

    NASA Astrophysics Data System (ADS)

    Skinner, N. L.; Ortale, C.; Schieber, M. M.; van den Berg, L.

    1989-11-01

    Large quantities (on the order of several hundred kilograms) of consistent, high-quality mercuric iodide (HgI2) for crystal growth have not been commercially available. The hydrocarbon, anion and cation impurity levels varied considerably, occasionally preventing crystal growth. This occurred even though the starting material was from the same vendor and was subjected to the same purification treatment. This paper will describe an aqueous precipitation process of HgI2 preparation in batches of 3 kg using Hg(NO3)2, or HgCl2 and KI. Since these salts are produced in much larger quantities than HgI2, more consistent quality is available. The impurity content of these batches and single crystals grown from them have been evaluated. These results and those from several commercially available starting materials and their grown single crystals are compared. Some of the single crystals grown using the in-house prepared HgI2 have yielded a large number of spectroscopy-grade nuclear detectors. The influence of the major impurities will be discussed.

  10. Development of Scintillators in Nuclear Medicine.

    PubMed

    Khoshakhlagh, Mohammad; Islamian, Jalil Pirayesh; Abedi, Seyed Mohammad; Mahmoudian, Babak

    2015-01-01

    High-quality image is necessary for accurate diagnosis in nuclear medicine. There are many factors in creating a good image and detector is the most important one. In recent years, several detectors are studied to get a better picture. The aim of this paper is comparison of some type of these detectors such as thallium activated sodium iodide bismuth germinate cesium activated yttrium aluminum garnet (YAG: Ce) YAP: Ce "lutetium aluminum garnet activated by cerium" CRY018 "CRY019" lanthanum bromide and cadmium zinc telluride. We studied different properties of these crystals including density, energy resolution and decay times that are more important factors affecting the image quality. PMID:26420984

  11. 3D visualisation and analysis of single and coalescing tracks in Solid state Nuclear Track Detectors

    NASA Astrophysics Data System (ADS)

    Wertheim, David; Gillmore, Gavin; Brown, Louise; Petford, Nick

    2010-05-01

    Exposure to radon gas (222Rn) and associated ionising decay products can cause lung cancer in humans (1). Solid state Nuclear Track Detectors (SSNTDs) can be used to monitor radon concentrations (2). Radon particles form tracks in the detectors and these tracks can be etched in order to enable 2D surface image analysis. We have previously shown that confocal microscopy can be used for 3D visualisation of etched SSNTDs (3). The aim of the study was to further investigate track angles and patterns in SSNTDs. A 'LEXT' confocal laser scanning microscope (Olympus Corporation, Japan) was used to acquire 3D image datasets of five CR-39 plastic SSNTD's. The resultant 3D visualisations were analysed by eye and inclination angles assessed on selected tracks. From visual assessment, single isolated tracks as well as coalescing tracks were observed on the etched detectors. In addition varying track inclination angles were observed. Several different patterns of track formation were seen such as single isolated and double coalescing tracks. The observed track angles of inclination may help to assess the angle at which alpha particles hit the detector. Darby, S et al. Radon in homes and risk of lung cancer : collaborative analysis of individual data from 13 European case-control studies. British Medical Journal 2005; 330, 223-226. Phillips, P.S., Denman, A.R., Crockett, R.G.M., Gillmore, G., Groves-Kirkby, C.J., Woolridge, A., Comparative Analysis of Weekly vs. Three monthly radon measurements in dwellings. DEFRA Report No., DEFRA/RAS/03.006. (2004). Wertheim D, Gillmore G, Brown L, and Petford N. A new method of imaging particle tracks in Solid State Nuclear Track Detectors. Journal of Microscopy 2010; 237: 1-6.

  12. A study of commercially-available polyethylene terephthalate (PET) and polycarbonate as nuclear track detector materials

    NASA Astrophysics Data System (ADS)

    Espinosa, G.; Golzarri, J. I.; Vazquez-Lopez, C.; Trejo, R.; Lopez, K.; Rickards, J.

    2014-07-01

    In the study of the sensitivity of materials to be used as nuclear track detectors, it was found that commercial polyethylene terephthalate (PET) from Ciel® water bottles, commercial roof cover polycarbonate, and recycled packaging strips (recycled PET), can be used as nuclear track detectors. These three commercial materials present nuclear tracks when bombarded by 2.27 MeV nitrogen ions produced in a Pelletron particle accelerator, and by fission fragments from a 252Cf source (79.4 and 103.8 MeV), after a chemical etching with a 6.25M KOH solution, or with a 6.25M KOH solution with 20% methanol, both solutions at 60±1°C. As an example, the nitrogen ions deposit approximately 1 keV/nm in the form of ionization and excitation at the surface of PET, as calculated using the SRIM code. The fission fragments deposit up to 9 keV/nm at the surface, in both cases generating sufficient free radicals to initiate the track formation process. However, 5 MeV alpha particles, typical of radon (222Rn) emissions, deposit only 0.12 keV/nm, do not present tracks after the chemical etching process. This valuable information could be very useful for further studies of new materials in nuclear track methodology.

  13. Effects of etching time on alpha tracks in Solid state Nuclear Track Detectors

    NASA Astrophysics Data System (ADS)

    Gillmore, Gavin; Wertheim, David; Crust, Simon

    2013-04-01

    Inhalation of radon gas is thought to be the cause of about 1100 lung cancer related deaths each year in the UK (1). Radon concentrations can be monitored using Solid State Nuclear Track Detectors (SSNTDs) as the natural decay of radon results in alpha particles which form tracks in the detectors and these tracks can be etched in order to enable microscopic analysis. We have previously shown that confocal microscopy can be used for 3D visualisation of etched SSNTDs (2, 3). The aim of the study was to examine the effect of etching time on the appearance of alpha tracks in SSNTDs. Six SSNTDs were placed in a chamber with a luminous dial watch for a fixed period. The detectors were etched for between 30 minutes and 4.5 hours using 6M NaOH at a temperature of 90oC. A 'LEXT' OLS4000 confocal laser scanning microscope (Olympus Corporation, Japan) was used to acquire 2D and 3D image datasets of CR-39 plastic SSNTDs. Confocal microscope 3D images were acquired using a x50 or x100 objective lens. Data were saved as images and also spreadsheet files with height measurements. Software was written using MATLAB (The MathWorks Inc., USA) to analyse the height data. Comparing the 30 minute and 4 hour etching time detectors, we observed that there were marked differences in track area; the lower the etching time the smaller the track area. The degree to which etching may prevent visualising adjacent tracks also requires further study as it is possible that etching could result in some tracks being subsumed in other tracks. On the other hand if there is too little etching, track sizes would be reduced and hence could be more difficult to image; thus there is a balance required to obtain suitable measurement accuracy. (1) Gray A, Read S, McGale P and Darby S. Lung cancer deaths from indoor radon and the cost effectiveness and potential of policies to reduce them. BMJ 2009; 338: a3110. (2) Wertheim D, Gillmore G, Brown L, and Petford N. A new method of imaging particle tracks in

  14. Active neutron methods for nuclear safeguards applications using Helium-4 gas scintillation detectors

    NASA Astrophysics Data System (ADS)

    Lewis, Jason M.

    Active neutron methods use a neutron source to interrogate fissionable material. In this work a 4He gas scintillation fast neutron detection system is used to measure neutrons created by the interrogation. Three new applications of this method are developed: spent nuclear fuel assay, fission rate measurement, and special nuclear material detection. Three active neutron methods are included in this thesis. First a non-destructive plutonium assay technique called Multispectral Active Neutron Interrogation Analysis is developed. It is based on interrogating fuel with neutrons at several different energies. The induced fission rates at each interrogation energy are compared with results from a neutron transport model of the irradiation geometry in a system of equations to iteratively solve the inverse problem for isotopic composition. The model is shown to converge on the correct composition for a material with 3 different fissionable components, a representative neutron absorber, and any neutron transparent material such as oxygen in a variety of geometries. Next an experimental fission rate measurement technique is developed using 4He gas scintillation fast neutron detector. Several unique features of this detector allow it to detect and provide energy information on fast neutrons with excellent gamma discrimination efficiency. The detector can measure induced fission rate by energetically differentiating between interrogation neutrons and higher energy fission neutrons. The detector response to a mono-energetic deuterium-deuterium fusion neutron generator and a 252Cf source are compared to examine the difference in detected energy range. Finally we demonstrate a special nuclear material detection technique by detecting an unambiguous fission neutron signal produced in natural uranium during active neutron interrogation using a deuterium-deuterium neutron generator and a high pressure 4He gas fast neutron scintillation detector. Energy histograms resulting from this

  15. A Muon Tomography Station with GEM Detectors for Nuclear Threat Detection

    NASA Astrophysics Data System (ADS)

    Staib, Michael; Gnanvo, Kondo; Grasso, Leonard; Hohlmann, Marcus; Locke, Judson; Costa, Filippo; Martoiu, Sorin; Muller, Hans

    2011-10-01

    Muon tomography for homeland security aims at detecting well-shielded nuclear contraband in cargo and imaging it in 3D. The technique exploits multiple scattering of atmospheric cosmic ray muons, which is stronger in dense, high-Z nuclear materials, e.g. enriched uranium, than in low-Z and medium-Z shielding materials. We have constructed and operated a compact Muon Tomography Station (MTS) that tracks muons with six to ten 30 cm x 30 cm Triple Gas Electron Multiplier (GEM) detectors placed on the sides of a 27-liter cubic imaging volume. The 2D strip readouts of the GEMs achieve a spatial resolution of ˜130 μm in both dimensions and the station is operated at a muon trigger rate of ˜20 Hz. The 1,536 strips per GEM detector are read out with the first medium-size implementation of the Scalable Readout System (SRS) developed specifically for Micro-Pattern Gas Detectors by the RD51 collaboration at CERN. We discuss the performance of this MTS prototype and present experimental results on tomographic imaging of high-Z objects with and without shielding.

  16. Image processing analysis of nuclear track parameters for CR-39 detector irradiated by thermal neutron

    NASA Astrophysics Data System (ADS)

    Al-Jobouri, Hussain A.; Rajab, Mustafa Y.

    2016-03-01

    CR-39 detector which covered with boric acid (H3Bo3) pellet was irradiated by thermal neutrons from (241Am - 9Be) source with activity 12Ci and neutron flux 105 n. cm-2. s-1. The irradiation times -TD for detector were 4h, 8h, 16h and 24h. Chemical etching solution for detector was sodium hydroxide NaOH, 6.25N with 45 min etching time and 60 C˚ temperature. Images of CR-39 detector after chemical etching were taken from digital camera which connected from optical microscope. MATLAB software version 7.0 was used to image processing. The outputs of image processing of MATLAB software were analyzed and found the following relationships: (a) The irradiation time -TD has behavior linear relationships with following nuclear track parameters: i) total track number - NT ii) maximum track number - MRD (relative to track diameter - DT) at response region range 2.5 µm to 4 µm iii) maximum track number - MD (without depending on track diameter - DT). (b) The irradiation time -TD has behavior logarithmic relationship with maximum track number - MA (without depending on track area - AT). The image processing technique principally track diameter - DT can be take into account to classification of α-particle emitters, In addition to the contribution of these technique in preparation of nano- filters and nano-membrane in nanotechnology fields.

  17. Color changes in CR-39 nuclear track detector by gamma and laser irradiation

    NASA Astrophysics Data System (ADS)

    Nouh, S. A.; Said, A. F.; Atta, M. R.; El-Melleegy, W. M.; El-Meniawy, S.

    2006-07-01

    A study of the effect of gamma and laser irradiation on the color changes of polyallyl diglycol (CR-39) solid-state nuclear track detector was performed. CR-39 detector samples were classified into two main groups. The first group was irradiated with gamma doses at levels between 20 and 300 kGy, whereas the second group was exposed to infrared laser radiation with energy fluences at levels between 0.71 and 8.53 J/cm(2) . The transmission of these samples in the wavelength range 300-2500 nm, as well as any color changes, was studied. Using the transmission data, both the tristimulus and the coordinate values of the Commission Internationale de l'Eclairage (CIE) LAB were calculated. Also, the color differences between the non-irradiated samples and those irradiated with different gamma or laser doses were calculated. The results indicate that the CR-39 detector acquires color changes under gamma or laser irradiation, but it has more response to color changes by gamma irradiation. In addition, structural property studies using infrared spectroscopy were performed. The results indicate that the irradiation of a CR-39 detector with gamma or laser radiations causes the cleavage of the carbonate linkage that can be attributed to the H abstraction from the backbone of the polymer, associated with the formation of CO 2 and OH with varying intensities.

  18. Automatic neutron dosimetry system based on fluorescent nuclear track detector technology.

    PubMed

    Akselrod, M S; Fomenko, V V; Bartz, J A; Haslett, T L

    2014-10-01

    For the first time, the authors are describing an automatic fluorescent nuclear track detector (FNTD) reader for neutron dosimetry. FNTD is a luminescent integrating type of detector made of aluminium oxide crystals that does not require electronics or batteries during irradiation. Non-destructive optical readout of the detector is performed using a confocal laser scanning fluorescence imaging with near-diffraction limited resolution. The fully automatic table-top reader allows one to load up to 216 detectors on a tray, read their engraved IDs using a CCD camera and optical character recognition, scan and process simultaneously two types of images in fluorescent and reflected laser light contrast to eliminate false-positive tracks related to surface and volume crystal imperfections. The FNTD dosimetry system allows one to measure neutron doses from 0.1 mSv to 20 Sv and covers neutron energies from thermal to 20 MeV. The reader is characterised by a robust, compact optical design, fast data processing electronics and user-friendly software. PMID:24285287

  19. Investigations of protons passing through the CR-39/PM-355 type of solid state nuclear track detectors

    SciTech Connect

    Malinowska, A.; Szydłowski, A.; Jaskóła, M.; Korman, A.; Kuk, M.; Sartowska, B.; Kuehn, T.

    2013-07-15

    Solid State Nuclear Track Detectors of the CR-39/PM-355 type were irradiated with protons with energies in the range from 0.2 to 8.5 MeV. Their intensities and energies were controlled by a Si surface barrier detector located in an accelerator scattering chamber. The ranges of protons with energies of 6–7 MeV were comparable to the thickness of the PM-355 track detectors. Latent tracks in the polymeric detectors were chemically etched under standard conditions to develop the tracks. Standard optical microscope and scanning electron microscopy techniques were used for surface morphology characterization.

  20. Beam loss and backgrounds in the CDF and D0 detectors due to nuclear elastic beam-gas scattering

    SciTech Connect

    Alexandr I. Drozhdin; Valery A. Lebedev; Nikolai V. Mokhov

    2003-05-27

    Detailed simulations were performed on beam loss rates in the vicinity of the Tevatron Collider detectors due to beam-gas nuclear elastic interactions. It turns out that this component can drive the accelerator-related background rates in the CDF and D0 detectors, exceeding those due to outscattering from collimation system, inelastic beam-gas interactions and other processes [1, 2]. Results of realistic simulations with the STRUCT and MARS codes are presented for the interaction region components and the CDF and D0 detectors. It is shown that a steel mask placed upstream of the detectors can reduce the background rates by almost an order of magnitude.

  1. Study of stoichiometry in mercuric iodide by low-temperature photoluminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Bao, Xue J.; James, Ralph B.; Hung, C.-Y.; Schlesinger, Tuviah E.; Cheng, A. Y.; Ortale, Carol; van den Berg, Lodewijk

    1993-02-01

    Low temperature (4.2 K) photoluminescence spectroscopy (PL) measurements were performed on mercuric iodide (HgI(subscript 2)) crystals that were surface-doped with either iodine or mercury. Two methods of treatment were used to achieve the surface doping. The first is the direct immersion of HgI(subscript 2) samples into potassium iodide (KI) aqueous solution saturated with iodine or immersion into elemental mercury liquid. The second is the storage of HgI(subscript 2) crystals under either iodine or mercury vapor. Certain features in the PL spectra were correlated with the stoichiometry of the HgI(subscript 2/ crystals modified by the surface doping. It was also found that if HgI(subscript 2) was exposed to air, an iodine deficient surface layer would form within a one-day period due to the preferential loss of iodine. Finally, the behavior of a broad emission band in the PL spectra and its implication in the fabrication of high quality HgI(subscript 2) nuclear detector is discussed.

  2. Growth of mercuric iodide single crystals from dimethylsulfoxide

    DOEpatents

    Carlston, Richard C.

    1976-07-13

    Dimethylsulfoxide is used as a solvent for the growth of red mercuric iodide (HgI.sub.2) crystals for use in radiation detectors. The hygroscopic property of the solvent allows controlled amounts of water to enter into the solvent phase and diminish the large solubility of HgI.sub.2 so that the precipitating solid collects as well-defined euhedral crystals which grow into a volume of several cc.

  3. Study of Te Inclusions in CdMnTe Crystals for Nuclear Detector Applications

    SciTech Connect

    Babalola, O.S.; Bolotnikov, A.; Groza, M.; Hossain, A., Egarievwe, S.; James, R.; Burger, A.

    2009-05-08

    The concentration, size and spatial distribution of Te inclusions in the bulk of CdMnTe crystals mined from two batches of ingots were studied. An isolated planar layer decorated with Te inclusions was identified in CdMnTe crystals from the second ingot. The internal electric field of a CMT crystal was probed by infrared (IR) imaging employing Pockels electro-optic effect. The effect of an isolated plane of Te inclusions on the internal electric-field distribution within the CdMnTe crystal was studied. Space charge accumulation around the plane of Te inclusions was observed, which was found to be higher when the detector was reverse-biased. The effects of the plane of Te inclusions on the electric-field distribution within the CdMnTe crystal, and the quality of CdMnTe crystals for nuclear detector applications are discussed.

  4. RADIATION HARDNESS / TOLERANCE OF SI SENSORS / DETECTORS FOR NUCLEAR AND HIGH ENERGY PHYSICS EXPERIMENTS.

    SciTech Connect

    LI,Z.

    2002-09-09

    Silicon sensors, widely used in high energy and nuclear physics experiments, suffer severe radiation damage that leads to degradations in sensor performance. These degradations include significant increases in leakage current, bulk resistivity, and space charge concentration. The increase in space charge concentration is particularly damaging since it can significantly increase the sensor full depletion voltage, causing either breakdown if operated at high biases or charge collection loss if operated at lower biases than full depletion. Several strategies can be used to make Si detectors more radiation had tolerant to particle radiations. In this paper, the main radiation induced degradations in Si detectors will be reviewed. The details and specifics of the new engineering strategies: material/impurity/defect engineering (MIDE); device structure engineering (DSE); and device operational mode engineering (DOME) will be given.

  5. Fast neutrons detection in CR-39 and DAM-ADC nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Abdalla, A. M.; Ashraf, O.; Rammah, Y. S.; Ashry, A. H.; Eisa, M.; Tsuruta, T.

    2015-03-01

    Fast detection of neutrons in CR-39 and DAM-ADC nuclear track detectors were investigated using new etching conditions. The neutron irradiation is performed using a 5 mCi Am-Be source present at the National Institute of Standards (NIS) of Egypt. Using the new etching condition, irradiated CR-39 samples were etched for 4 h and DAM-ADC samples for 80 min. Suitable analyzing software has been used to analyze experimental data.The dependence of neutrons track density on the neutrons fluence is investigated. When etched under optimum conditions, the relationship between track density and fluence is determined which is found to be linear. Detection efficiency has been represented for both SSNTDs and found to be constant with fluence, which reflects the importance of using CR-39 and DAM-ADC detectors in the field of neutron dosimetry. Linear relationship between track density and effective dose is determined.

  6. A simple apparatus for quick qualitative analysis of CR39 nuclear track detectors

    SciTech Connect

    Gautier, D. C.; Kline, J. L.; Flippo, K. A.; Gaillard, S. A.; Letzring, S. A.; Hegelich, B. M.

    2008-10-15

    Quantifying the ion pits in Columbia Resin 39 (CR39) nuclear track detector from Thomson parabolas is a time consuming and tedious process using conventional microscope based techniques. A simple inventive apparatus for fast screening and qualitative analysis of CR39 detectors has been developed, enabling efficient selection of data for a more detailed analysis. The system consists simply of a green He-Ne laser and a high-resolution digital single-lens reflex camera. The laser illuminates the edge of the CR39 at grazing incidence and couples into the plastic, acting as a light pipe. Subsequently, the laser illuminates all ion tracks on the surface. A high-resolution digital camera is used to photograph the scattered light from the ion tracks, enabling one to quickly determine charge states and energies measured by the Thomson parabola.

  7. Study of Te inclusions in CdMnTe crystals for nuclear detector applications

    NASA Astrophysics Data System (ADS)

    Babalola, O. S.; Bolotnikov, A. E.; Groza, M.; Hossain, A.; Egarievwe, S.; James, R. B.; Burger, A.

    2009-07-01

    The concentration, size and spatial distribution of Te inclusions in the bulk of CdMnTe crystals mined from two batches of ingots were studied. An isolated planar layer decorated with Te inclusions was identified in CdMnTe crystals from the second ingot. The internal electric field of a CMT crystal was probed by infrared (IR) imaging employing Pockels electro-optic effect. The effect of an isolated plane of Te inclusions on the internal electric-field distribution within the CdMnTe crystal was studied. Space charge accumulation around the plane of Te inclusions was observed, which was found to be higher when the detector was reverse-biased. The effects of the plane of Te inclusions on the electric-field distribution within the CdMnTe crystal, and the quality of CdMnTe crystals for nuclear detector applications are discussed.

  8. High speed low power FEE for silicon detectors in nuclear physics applications

    NASA Astrophysics Data System (ADS)

    Gómez-Galán, J. A.; López-Ahumada, R.; Sánchez-Rodríguez, T.; Sánchez-Raya, M.; Jiménez, R.; Martel, I.

    2013-06-01

    A high speed, low power and programmable readout front-end system is presented for silicon detectors to be used in nuclear physics applications. The architecture consists of a folded cascode charge sensitive amplifier, a pole-zero cancellation circuit to eliminate undershoots and a shaper circuit with Gm-C topology. All building blocks include a regulated cascode technique based gain enhancement. Experimental results show that the whole front-end system can be programmed for peaking times of 100 ns, 200 ns and 400 ns maintaining the amplitude of the output voltage. Programmability is achieved by switching different resistors for all poles and zeros. The system has been designed in a 130 nm CMOS technology and powered from a 1.2 V supply. The output pulse has peak amplitude of 200 mV for an input energy of 5 MeV from the detector. A power consumption low noise tradeoff will be considered.

  9. Carrier traps and transport in mercuric iodide

    NASA Astrophysics Data System (ADS)

    Schlesinger, T. E.; Bao, X. J.; James, R. B.; Cheng, A. Y.; Ortale, C.; van den Berg, L.

    1992-11-01

    Thermally stimulated current spectroscopy (TSC) was performed on a variety of mercuric iodide samples and detectors to determine the nature and origin of deep traps in this material. It is shown that the trap type and concentration is a function of the metal overlayer employed as a contact material. The energy barrier height as well as the type (electron or hole) of barrier at the metal/semiconductor interface has also been determined by internal photoemission measurements. When polarization effects are not present, as is the case in most Pd contacted samples, the barrier height can be accurately determined by this technique. A value of 1.05 eV was measured for a hole barrier at the Pd/Hgl 2 interface.

  10. Ion track reconstruction in 3D using alumina-based fluorescent nuclear track detectors.

    PubMed

    Niklas, M; Bartz, J A; Akselrod, M S; Abollahi, A; Jäkel, O; Greilich, S

    2013-09-21

    Fluorescent nuclear track detectors (FNTDs) based on Al2O3: C, Mg single crystal combined with confocal microscopy provide 3D information on ion tracks with a resolution only limited by light diffraction. FNTDs are also ideal substrates to be coated with cells to engineer cell-fluorescent ion track hybrid detectors (Cell-Fit-HD). This radiobiological tool enables a novel platform linking cell responses to physical dose deposition on a sub-cellular level in proton and heavy ion therapies. To achieve spatial correlation between single ion hits in the cell coating and its biological response the ion traversals have to be reconstructed in 3D using the depth information gained by the FNTD read-out. FNTDs were coated with a confluent human lung adenocarcinoma epithelial (A549) cell layer. Carbon ion irradiation of the hybrid detector was performed perpendicular and angular to the detector surface. In situ imaging of the fluorescently labeled cell layer and the FNTD was performed in a sequential read-out. Making use of the trajectory information provided by the FNTD the accuracy of 3D track reconstruction of single particles traversing the hybrid detector was studied. The accuracy is strongly influenced by the irradiation angle and therefore by complexity of the FNTD signal. Perpendicular irradiation results in highest accuracy with error of smaller than 0.10°. The ability of FNTD technology to provide accurate 3D ion track reconstruction makes it a powerful tool for radiobiological investigations in clinical ion beams, either being used as a substrate to be coated with living tissue or being implanted in vivo. PMID:23965401

  11. Ion track reconstruction in 3D using alumina-based fluorescent nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Niklas, M.; Bartz, J. A.; Akselrod, M. S.; Abollahi, A.; Jäkel, O.; Greilich, S.

    2013-09-01

    Fluorescent nuclear track detectors (FNTDs) based on Al2O3: C, Mg single crystal combined with confocal microscopy provide 3D information on ion tracks with a resolution only limited by light diffraction. FNTDs are also ideal substrates to be coated with cells to engineer cell-fluorescent ion track hybrid detectors (Cell-Fit-HD). This radiobiological tool enables a novel platform linking cell responses to physical dose deposition on a sub-cellular level in proton and heavy ion therapies. To achieve spatial correlation between single ion hits in the cell coating and its biological response the ion traversals have to be reconstructed in 3D using the depth information gained by the FNTD read-out. FNTDs were coated with a confluent human lung adenocarcinoma epithelial (A549) cell layer. Carbon ion irradiation of the hybrid detector was performed perpendicular and angular to the detector surface. In situ imaging of the fluorescently labeled cell layer and the FNTD was performed in a sequential read-out. Making use of the trajectory information provided by the FNTD the accuracy of 3D track reconstruction of single particles traversing the hybrid detector was studied. The accuracy is strongly influenced by the irradiation angle and therefore by complexity of the FNTD signal. Perpendicular irradiation results in highest accuracy with error of smaller than 0.10°. The ability of FNTD technology to provide accurate 3D ion track reconstruction makes it a powerful tool for radiobiological investigations in clinical ion beams, either being used as a substrate to be coated with living tissue or being implanted in vivo.

  12. History of the bubble chamber and related active- and internal-target nuclear tracking detectors

    NASA Astrophysics Data System (ADS)

    Becchetti, F. D.

    2015-06-01

    Donald Glaser, 1960 Nobel laureate in Physics, recently passed away (2013), as have many of his colleagues who were involved with the early development of bubble chambers at the University of Michigan. In this paper I will review those early years and the subsequent wide-spread application of active-target (AT) bubble chambers that dominated high-energy physics (HEP) research for over thirty years. Some of the related, but more modern nuclear tracking detectors being used in HEP, neutrino astrophysics and dark-matter searches also will be discussed.

  13. Diffraction pattern by rotated conical tracks in solid state nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Stevanovic, N.; Markovic, V. M.

    2016-06-01

    The method for determination of diffraction pattern for irregular 3D objects with application on rotated conical tracks in solid state nuclear track detector (SSNTD) wasdescribed in this paper. The model can be applied for different types of the diffraction (Fresnel, Fraunhofer) and arbitrary shapes of the obstacle. By applying the developed model on conical tracks it was fond that diffraction pattern strongly depends from radius, length and rotation angle of the conical tracks. These dependences were investigated in this paper and results can be applied for determination of inner tracks structure via diffraction pattern.

  14. IODIDE DEFICIENCY, THYROID HORMONES, AND NEURODEVELOPMENT

    EPA Science Inventory

    ABSTRACT BODY: Iodide is an essential nutrient for thyroid hormone synthesis. Severe iodide insufficiency during early development is associated with cognitive deficits. Environmental contaminants can perturb the thyroid axis and this perturbation may be more acute under conditio...

  15. Testing and Calibration of Novel Detectors for Nuclear and Plasma Physics Diagnostic Applications

    NASA Astrophysics Data System (ADS)

    Ali, Zaheer; Haugh, Mike; Tellinghuisen, Jim; Glebov, Vladimir; Roberts, Sam; Stoeckl, Christian; Sangster, Craig

    2008-10-01

    Calibrated chemical vapor deposition (CVD) diamond diodes, X-ray diodes (XRDs), and PIN diodes are used in nuclear and plasma physics diagnostic experiments, such as those conducted at the National Ignition Facility at Lawrence Livermore National Laboratory (LLNL). Calibrations of these diodes are conducted at the OMEGA Laser at the Lab for Laser Energetics of the University of Rochester, as well as at the Titan Laser in the Jupiter Laser Facility at LLNL. The OMEGA Laser is a 30-kilojoule one-nanosecond system designed for inertial confinement fusion and nuclear physics research. The Titan Laser is a picosecond system designed for plasma and X-ray studies. In addition, National Security Technologies, LLC, (NSTec) has built a new hard X-ray calibration facility (the ``HEX Laboratory''), where X-ray detector systems are also calibrated. In this paper we will present our methods of absolute and relative calibration, results of calibration, and the capabilities of the HEX Laboratory.

  16. 21 CFR 582.5634 - Potassium iodide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium iodide. 582.5634 Section 582.5634 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent....

  17. 21 CFR 582.5634 - Potassium iodide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium iodide. 582.5634 Section 582.5634 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent....

  18. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium iodide. 184.1634 Section 184.1634 Food... Specific Substances Affirmed as GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium salt of hydriodic acid. It occurs naturally in sea water and in...

  19. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium iodide. 184.1634 Section 184.1634 Food... GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium... reacting hydriodic acid (HI) with potassium bicarbonate (KHCO3). (b) The ingredient meets...

  20. 21 CFR 582.5634 - Potassium iodide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium iodide. 582.5634 Section 582.5634 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent....

  1. 21 CFR 582.5634 - Potassium iodide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium iodide. 582.5634 Section 582.5634 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent....

  2. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium iodide. 184.1634 Section 184.1634 Food... Specific Substances Affirmed as GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium salt of hydriodic acid. It occurs naturally in sea water and in...

  3. 21 CFR 582.5634 - Potassium iodide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium iodide. 582.5634 Section 582.5634 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent....

  4. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium iodide. 184.1634 Section 184.1634 Food... Specific Substances Affirmed as GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium salt of hydriodic acid. It occurs naturally in sea water and in...

  5. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium iodide. 184.1634 Section 184.1634 Food... Specific Substances Affirmed as GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium salt of hydriodic acid. It occurs naturally in sea water and in...

  6. Laue optics for nuclear astrophysics: New detector requirements for focused gamma-ray beams

    NASA Astrophysics Data System (ADS)

    Barrière, N.; von Ballmoos, P.; Abrosimov, N. V.; Bastie, P.; Camus, T.; Courtois, P.; Jentschel, M.; Knödlseder, J.; Natalucci, L.; Roudil, G.; Rousselle, J.; Wunderer, C. B.; Kurlov, V. N.

    2009-10-01

    Nuclear astrophysics presents an extraordinary scientific potential for the study of the most powerful sources and the most violent events in the Universe. But in order to take full advantage of this potential, telescopes should be at least an order of magnitude more sensitive than present technologies. Today, Laue lenses have demonstrated their capability of focusing gamma-rays in the 100 keV-1 MeV domain, enabling the possibility of building a new generation of instruments for which sensitive area is decoupled from collecting area. Thus we have now the opportunity of dramatically increase the signal/background ratio and hence improve significantly the sensitivity. With a lens, the best detector is no longer the largest possible within a mission envelope. The point spread function of a Laue lens measures a few centimeters in diameter, but the field of view is limited by the detector size. Requirements for a focal plane instrument are presented in the context of the Gamma-Ray Imager mission (proposed to European Space Agency, ESA in the framework of the first Cosmic Vision AO): a 15-20 cm a side finely pixellated detector capable of Compton events reconstruction seems to be optimal, giving polarization and background rejection capabilities and 30 arcsec of angular resolution within a field of view of 5 arc min.

  7. Evaluation of solid state nuclear track detector stacks exposed on the international space station.

    PubMed

    Pálfalvi, J K; Akatov, Yu; Szabó, J; Sajó-Bohus, L; Eördögh, I

    2004-01-01

    The aim of the study was to investigate the contribution of secondary neutrons to the total dose inside the International Space Station (ISS). For this purpose solid-state nuclear track detector (SSNTD) stacks were used. Each stack consisted of three CR-39 sheets. The first and second sheets were separated by a Ti plate, and the second and third sheets sandwiched a Lexan polycarbonate foil. The neutron and proton responses of each sheet were studied through MC calculations and experimentally, utilising monoenergetic protons. Seven stacks were exposed in 2001 for 249 days at different locations of the Russian segment 'Zvezda'. The total storage time before and after the exposure onboard was estimated to be seven months. Another eight stacks were exposed at the CERF high-energy neutron field for calibration purposes. The CR-39 detectors were evaluated in four steps: after 2, 6, 12 and 20 h etching in 6 N NaOH at 70 degrees C (VB = 1.34 microm h(-1)). All the individual tracks were investigated and recorded using an image analyser. The stacks provided the averaged neutron ambient dose equivalent (H*) between 200 keV and 20 MeV, and the values varied from 39 to 73 microSv d(-1), depending on the location. The Lexan detectors were used to detect the dose originating from high-charge and high-energy (HZE) particles. These results will be published elsewhere. PMID:15353680

  8. An anti-neutrino detector to monitor nuclear reactor's power and fuel composition

    NASA Astrophysics Data System (ADS)

    Battaglieri, M.; DeVita, R.; Firpo, G.; Neuhold, P.; Osipenko, M.; Piombo, D.; Ricco, G.; Ripani, M.; Taiuti, M.

    2010-05-01

    In this contribution, we present the expected performance of a new detector to measure the absolute energy-integrated flux and the energy spectrum of anti-neutrinos emitted by a nuclear power plant. The number of detected anti-neutrino is a direct measure of the power while from the energy spectrum is possible to infer the evolution in time of the core isotopic composition. The proposed method should be sensitive to a sudden change in the core burn-up as caused, for instance, by a fraudulent subtraction of plutonium. The detector, a 130×100×100 cm3 cube with 1 m3 active volume, made by plastic scintillator wrapped in thin Gd foils, is segmented in 50 independent optical channels read, side by side, by a pair of 3 in. photomultipliers. Anti-neutrino interacts with hydrogen contained in the plastic scintillator via the neutron inverse β- decay ( ν¯p→e+n). The high segmentation of the detector allows to reduce the background from other reactions by detecting independent hits for the positron, the two photons emitted in the e+e- annihilation and the neutron.

  9. Thermodynamics of post-growth annealing of cadmium zinc telluride nuclear radiation detectors

    NASA Astrophysics Data System (ADS)

    Adams, Aaron Lee

    Nuclear Radiation Detectors are used for detecting, tracking, and identifying radioactive materials which emit high-energy gamma and X-rays. The use of Cadmium Zinc Telluride (CdZnTe) detectors is particularly attractive because of the detector's ability to operate at room temperature and measure the energy spectra of gamma-ray sources with a high resolution, typically less than 1% at 662 keV. While CdZnTe detectors are acceptable imperfections in the crystals limit their full market potential. One of the major imperfections are Tellurium inclusions generated during the crystal growth process by the retrograde solubility of Tellurium and Tellurium-rich melt trapped at the growth interface. Tellurium inclusions trap charge carriers generated by gamma and X-ray photons and thus reduce the portion of generated charge carriers that reach the electrodes for collection and conversion into a readable signal which is representative of the ionizing radiation's energy and intensity. One approach in resolving this problem is post-growth annealing which has the potential of removing the Tellurium inclusions and associated impurities. The goal of this project is to use experimental techniques to study the thermodynamics of Tellurium inclusion migration in post-growth annealing of CdZnTe nuclear detectors with the temperature gradient zone migration (TGZM) technique. Systematic experiments will be carried out to provide adequate thermodynamic data that will inform the engineering community of the optimum annealing parameters. Additionally, multivariable correlations that involve the Tellurium diffusion coefficient, annealing parameters, and CdZnTe properties will be analyzed. The experimental approach will involve systematic annealing experiments (in Cd vapor overpressure) on different sizes of CdZnTe crystals at varying temperature gradients ranging from 0 to 60°C/mm (used to migrate the Tellurium inclusion to one side of the crystal), and at annealing temperatures ranging

  10. RBS/ERD simulation problems: Stopping powers, nuclear reactions and detector resolution

    NASA Astrophysics Data System (ADS)

    Ziegler, J. F.

    1998-03-01

    A new program has been developed for the graphical analysis of data from Rutherford Back scattering (RBS) and Elastic Recoil Detection (ERD) material analysis experiments. The program can evaluate experiments using any incident ion, at any energy, for any planar target. It incorporates the full stopping power database of the SRIM/TRIM ion beam programs. All scattered ions and recoiling target atoms are followed out of the target and through any filtering absorbers (ERD absorber foils and foils on detector windows). Straggling is included using any of five optional straggling theories. Commonly used nuclear reaction cross-sections are automatically incorporated. By comparison with experimental data, weaknesses in the theoretical basis of RBS/ERD simulations become apparent. These will be discussed with emphasis on stopping powers, detector resolution, target setup and nuclear reaction cross-sections. The complete RBS/ERD software package can be downloaded from the web site: http://www.research.ibm.com/ionbeams. This package includes an installation manual and a full tutorial.

  11. A theoretical model for the overlapping effect in solid state nuclear track detectors

    NASA Astrophysics Data System (ADS)

    López-Coto, I.; Bolívar, J. P.

    2011-10-01

    Solid state nuclear track detectors (SSNTD) are commonly deployed in many scientific and technological fields due to their low cost and relatively easy handling. In general, SSNTD response is considered to be linear, with exposure and efficiency supposedly constant across the entire exposure range, but in reality this response varies at high exposure levels, and efficiency diminishes as exposure rises. In high exposure measurements, this phenomenon results in an underestimation of the exposure levels and the results obtained must be treated with caution. To explain this phenomenon, this work establishes a theoretical model based on the track overlapping. Furthermore, an algorithm based on the Monte Carlo method has been used to obtain numerical results and a set of around 40 SSNTD has been exposed to three different exposure levels to validate this model. It has been demonstrated that overlapping efficiency is a linear function of the real exposure. The slope depends on the surface of the tracks, the resolution of the counting system and the reference efficiency for low exposures. The initial offset can be associated to the track background that reduces the overlapped efficiency. The recorded exposure can be modeled as a quadratic function of the real exposure without initial offset. As a result, the experimental data have been fitted to second order polynomial functions and the detectors parameters have been obtained. If detector parameters such as reference efficiency and track radio are known, the model can reliably predict the overlapping effect and enable the correction of the solid state track detector measurements. These results could also be extended to other SSNTD applications.

  12. 3D imaging of particle tracks in Solid State Nuclear Track Detectors

    NASA Astrophysics Data System (ADS)

    Wertheim, D.; Gillmore, G.; Brown, L.; Petford, N.

    2009-04-01

    Inhalation of radon gas (222Rn) and associated ionizing decay products is known to cause lung cancer in human. In the U.K., it has been suggested that 3 to 5 % of total lung cancer deaths can be linked to elevated radon concentrations in the home and/or workplace. Radon monitoring in buildings is therefore routinely undertaken in areas of known risk. Indeed, some organisations such as the Radon Council in the UK and the Environmental Protection Agency in the USA, advocate a ‘to test is best' policy. Radon gas occurs naturally, emanating from the decay of 238U in rock and soils. Its concentration can be measured using CR?39 plastic detectors which conventionally are assessed by 2D image analysis of the surface; however there can be some variation in outcomes / readings even in closely spaced detectors. A number of radon measurement methods are currently in use (for examples, activated carbon and electrets) but the most widely used are CR?39 solid state nuclear track?etch detectors (SSNTDs). In this technique, heavily ionizing alpha particles leave tracks in the form of radiation damage (via interaction between alpha particles and the atoms making up the CR?39 polymer). 3D imaging of the tracks has the potential to provide information relating to angle and energy of alpha particles but this could be time consuming. Here we describe a new method for rapid high resolution 3D imaging of SSNTDs. A ‘LEXT' OLS3100 confocal laser scanning microscope was used in confocal mode to successfully obtain 3D image data on four CR?39 plastic detectors. 3D visualisation and image analysis enabled characterisation of track features. This method may provide a means of rapid and detailed 3D analysis of SSNTDs. Keywords: Radon; SSNTDs; confocal laser scanning microscope; 3D imaging; LEXT

  13. Elemental impurity analysis of mercuric iodide by ICP/MS

    SciTech Connect

    Cross, E.S.; Mroz, E.; Olivares, J.A.

    1994-06-01

    A method has been developed to analyze mercuric iodide (HgI{sub 2}) for elemental contamination using Inductively Coupled Plasma/Mass Spectroscopy (ICP/MS). This paper discusses the ICP/MS method, the effectiveness of purification schemes for removing impurities from HgI{sub 2}, as well as preliminary correlations between HgI{sub 2} detector performance and elemental contamination levels. The purified HgI{sub 2} is grown into a single crystal by physical vapor transport. The crystal are cut into slices and they are fabricated into room temperature radiation detectors and photocells. Crystals that produce good resolution gamma detector do not necessarily make good resolution photocells or x-ray detectors. Many factors other than elemental impurities may contribute to these differences in performance.

  14. Nuclear Emulsion Film Detectors for Proton Radiography:. Design and Test of the First Prototype

    NASA Astrophysics Data System (ADS)

    Braccini, S.; Ereditato, A.; Kreslo, I.; Moser, U.; Pistillo, C.; Studer, S.; Scampoli, P.

    2010-04-01

    Proton therapy is nowadays becoming a wide spread clinical practice in cancer therapy and sophisticated treatment planning systems are routinely used to exploit at best the ballistic properties of charged particles. The information on the quality of the beams and the range of the protons is a key issue for the optimization of the treatment. For this purpose, proton radiography can be used in proton therapy to obtain direct information on the range of the protons, on the average density of the tissues for treatment planning optimization and to perform imaging with negligible dose to the patient. We propose an innovative method based on nuclear emulsion film detectors for proton radiography, a technique in which images are obtained by measuring the position and the residual range of protons passing through the patient's body. Nuclear emulsion films interleaved with tissue equivalent absorbers can be fruitfully used to reconstruct proton tracks with very high precision. The first prototype of a nuclear emulsion based detector has been conceived, constructed and tested with a therapeutic proton beam at PSI. The scanning of the emulsions has been performed at LHEP in Bern, where a fully automated microscopic scanning technology has been developed for the OPERA experiment on neutrino oscillations. After track reconstruction, the first promising experimental results have been obtained by imaging a simple phantom made of PMMA with a step of 1 cm. A second phantom with five 5 × 5 mm2 section aluminum rods located at different distances and embedded in a PMMA structure has been also imaged. Further investigations are in progress to improve the resolution and to image more sophisticated phantoms.

  15. Phase 1 Methyl Iodide Deep-Bed Adsorption Tests

    SciTech Connect

    Nick Soelberg; Tony Watson

    2014-08-01

    Nuclear fission results in the production of fission products (FPs) and activation products including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent [Jubin 2012b]. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methyl iodide adsorption test plan. This report summarizes the first phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during Fiscal Year (FY) 2013 and early FY-2014. Testing has been performed to address questions posed in the test plan, and followed the testing outline in the test plan. Tests established detection limits, developed procedures for sample analysis with minimal analytical interferences, and confirmed earlier results that show that the methyl iodide reacts when in contact with the AgZ sorbent, and not significantly in the gas flow upstream of the sorbent. The reaction(s) enable separation of the iodine from the organic moiety, so that the iodine can chemisorb onto the sorbent. The organic moiety can form other compounds, some of which are organic compounds that are detected and can be tentatively identified using GC-FID and GCMS. Test results also show that other gas constituents (NOx and/or H2O) can affect the methyl iodide reactions. With NOx and H2O present in the gas stream, the majority of uncaptured iodine exiting iodine-laden sorbent beds is in the form of I2 or HI, species that

  16. Note: Application of CR-39 plastic nuclear track detectors for quality assurance of mixed oxide fuel pellets

    NASA Astrophysics Data System (ADS)

    Kodaira, S.; Kurano, M.; Hosogane, T.; Ishikawa, F.; Kageyama, T.; Sato, M.; Kayano, M.; Yasuda, N.

    2015-05-01

    A CR-39 plastic nuclear track detector was used for quality assurance of mixed oxide fuel pellets for next-generation nuclear power plants. Plutonium (Pu) spot sizes and concentrations in the pellets are significant parameters for safe use in the plants. We developed an automatic Pu detection system based on dense α-radiation tracks in the CR-39 detectors. This system would greatly improve image processing time and measurement accuracy, and will be a powerful tool for rapid pellet quality assurance screening.

  17. Note: Application of CR-39 plastic nuclear track detectors for quality assurance of mixed oxide fuel pellets

    SciTech Connect

    Kodaira, S. Kurano, M.; Hosogane, T.; Ishikawa, F.; Kageyama, T.; Sato, M.; Kayano, M.; Yasuda, N.

    2015-05-15

    A CR-39 plastic nuclear track detector was used for quality assurance of mixed oxide fuel pellets for next-generation nuclear power plants. Plutonium (Pu) spot sizes and concentrations in the pellets are significant parameters for safe use in the plants. We developed an automatic Pu detection system based on dense α-radiation tracks in the CR-39 detectors. This system would greatly improve image processing time and measurement accuracy, and will be a powerful tool for rapid pellet quality assurance screening.

  18. Collisional, radiative and total electron interaction in compound semiconductor detectors and solid state nuclear track detectors: effective atomic number and electron density.

    PubMed

    Kurudirek, Murat; Kurudirek, Sinem V

    2015-05-01

    Effective atomic numbers, Zeff and electron densities, Ne are widely used for characterization of interaction processes in radiation related studies. A variety of detectors are employed to detect different types of radiations i.e. photons and charged particles. In the present work, some compound semiconductor detectors (CSCD) and solid state nuclear track detectors (SSNTD) were investigated with respect to the partial as well as total electron interactions. Zeff and Ne of the given detectors were calculated for collisional, radiative and total electron interactions in the kinetic energy region 10keV-1GeV. Maximum values of Zeff and Ne were observed at higher kinetic energies of electrons. Significant variations in Zeff and Ne up to ≈20-25% were noticed for the detectors, GaN, ZnO, Amber and CR-39 for total electron interaction. Moreover, the obtained Zeff and Ne for electrons were compared to those obtained for photons in the entire energy region. Significant variations in Zeff were also noted not only for photons (up to ≈40% for GaN) but also between photons and electrons (up to ≈60% for CR-39) especially at lower energies. Except for the lower energies, Zeff and Ne keep more or less constant values for the given materials. The energy regions where Zeff and Ne keep constant clearly show the availability of using these parameters for characterization of the materials with respect to the radiation interaction processes. PMID:25702888

  19. Electrodeposition of Epitaxial Lead Iodide and Conversion to Textured Methylammonium Lead Iodide Perovskite.

    PubMed

    Hill, James C; Koza, Jakub A; Switzer, Jay A

    2015-12-01

    Applications for lead iodide, such as lasing, luminescence, radiation detection, and as a precursor for methylammonium lead iodide perovskite photovoltaic cells, require highly ordered crystalline thin films. Here, an electrochemical synthesis route is introduced that yields textured and epitaxial films of lead iodide at room temperature by reducing molecular iodine to iodide ions in the presence of lead ions. Lead iodide grows with a [0001] fiber texture on polycrystalline substrates such as fluorine-doped tin oxide. On single-crystal Au(100), Au(111), and Au(110) the out-of-plane orientation of lead iodide is also [0001], but the in-plane orientation is controlled by the single-crystal substrate. The epitaxial lead iodide on single-crystal gold is converted to textured methylammonium lead iodide perovskite with a preferred [110] orientation via methylammonium iodide vapor-assisted chemical transformation of the solid. PMID:26565593

  20. Front-end Design and Characterization for the ν-Angra Nuclear Reactor Monitoring Detector

    NASA Astrophysics Data System (ADS)

    Dornelas, T. I.; Araújo, F. T. H.; Cerqueira, A. S.; Costa, J. A.; Nóbrega, R. A.

    2016-07-01

    The Neutrinos Angra (ν-Angra) Experiment aims to construct an antineutrinos detection device capable of monitoring the Angra dos Reis nuclear reactor activity. Nuclear reactors are intense sources of antineutrinos, and the thermal power released in the fission process is directly related to the flow rate of these particles. The antineutrinos energy spectrum also provides valuable information on the nuclear source isotopic composition. The proposed detector will be equipped with photomultipliers tubes (PMT) which will be readout by a custom Amplifier-Shaper-Discriminator circuit designed to condition its output signals to the acquisition modules to be digitized and processed by an FPGA. The readout circuit should be sensitive to single photoelectron signals, process fast signals, with a full-width-half-amplitude of about 5 ns, have a narrow enough output pulse width to detect both particles coming out from the inverse beta decay (bar nue+p → n + e+), and its output amplitude should be linear to the number of photoelectrons generated inside the PMT, used for energy estimation. In this work, some of the main PMT characteristics are measured and a new readout circuit is proposed, described and characterized.

  1. Phase II: Field Detector Development For Undeclared/Declared Nuclear Testing For Treaty Verfiation Monitoring

    SciTech Connect

    Kriz, M.; Hunter, D.; Riley, T.

    2015-10-02

    Radioactive xenon isotopes are a critical part of the Comprehensive Nuclear Test Ban Treaty (CTBT) for the detection or confirmation of nuclear weapons tests as well as on-site treaty verification monitoring. On-site monitoring is not currently conducted because there are no commercially available small/robust field detector devices to measure the radioactive xenon isotopes. Xenon is an ideal signature to detect clandestine nuclear events since they are difficult to contain and can diffuse and migrate through soils due to their inert nature. There are four key radioxenon isotopes used in monitoring: 135Xe (9 hour half-life), 133mXe (2 day half-life), 133Xe (5 day half-life) and 131mXe (12 day half-life) that decay through beta emission and gamma emission. Savannah River National Laboratory (SRNL) is a leader in the field of gas collections and has developed highly selective molecular sieves that allow for the collection of xenon gas directly from air. Phase I assessed the development of a small, robust beta-gamma coincidence counting system, that combines collection and in situ detection methodologies. Phase II of the project began development of the custom electronics enabling 2D beta-gamma coincidence analysis in a field portable system. This will be a significant advancement for field detection/quantification of short-lived xenon isotopes that would not survive transport time for laboratory analysis.

  2. Development of Sodium Iodide

    NASA Astrophysics Data System (ADS)

    Shepherd, John Alan

    Thin film NaI(Tl) scintillators, of areas up to 130 cm^2, have been fabricated and characterized for use on soft x-ray imaging photomultiplier tubes. Relevant parameters of photon-counting imaging detectors are defined and used to predict the performance of several materials, including CsI(Na), CsI(Tl), CaF _2(Eu), Lu_2(SiO _4)O:Ce, and NaI(Tl), as thin film scintillators on fiber optic substrates. Also, x-ray imaging methodologies are compared. The NaI(Tl) films were vapor-deposited onto quartz and fiber optic substrates using a powder flash deposition technique. When compared to single crystal NaI(Tl), the films were found to have equally high light yield but lower energy resolution. Light yield optimization was studied in detail including the effects of substrate temperature, activator concentration in the evaporant, and boat temperature. Spatial resolution as well as parallax errors are discussed and measured for film thicknesses up to 61 mu m. A technique is described that can substantially increase the light collection of high index films on fiber optic disks. The light collection was improved by 20% by coating the disk with potassium silicate before the NaI(Tl) deposition. Large area films, up to 130 cm ^2, had a spatial uniformity of response within +/-1.5% for count rate and +/-3.5% for light yield, and their spatial resolution exceeded 16.6 lp mm^ {-1} when deposited onto fiber optic substrates. The 8-keV x-ray detection efficiency of our microchannel plate imaging photomultiplier tube coupled to a NaI(Tl) film scintillator is predicted to be 88%. Other uses for the films are also described.

  3. Mercuric iodine room temperature gamma-ray detectors

    NASA Technical Reports Server (NTRS)

    Patt, Bradley E.; Markakis, Jeffrey M.; Gerrish, Vernon M.; Haymes, Robert C.; Trombka, Jacob I.

    1990-01-01

    high resolution mercuric iodide room temperature gamma-ray detectors have excellent potential as an essential component of space instruments to be used for high energy astrophysics. Mercuric iodide detectors are being developed both as photodetectors used in combination with scintillation crystals to detect gamma-rays, and as direct gamma-ray detectors. These detectors are highly radiation damage resistant. The list of applications includes gamma-ray burst detection, gamma-ray line astronomy, solar flare studies, and elemental analysis.

  4. Superoxide Production by a Manganese-Oxidizing Bacterium Facilitates Iodide Oxidation

    PubMed Central

    Li, Hsiu-Ping; Daniel, Benjamin; Creeley, Danielle; Grandbois, Russell; Zhang, Saijin; Xu, Chen; Ho, Yi-Fang; Schwehr, Kathy A.; Kaplan, Daniel I.; Santschi, Peter H.; Hansel, Colleen M.

    2014-01-01

    The release of radioactive iodine (i.e., iodine-129 and iodine-131) from nuclear reprocessing facilities is a potential threat to human health. The fate and transport of iodine are determined primarily by its redox status, but processes that affect iodine oxidation states in the environment are poorly characterized. Given the difficulty in removing electrons from iodide (I−), naturally occurring iodide oxidation processes require strong oxidants, such as Mn oxides or microbial enzymes. In this study, we examine iodide oxidation by a marine bacterium, Roseobacter sp. AzwK-3b, which promotes Mn(II) oxidation by catalyzing the production of extracellular superoxide (O2−). In the absence of Mn2+, Roseobacter sp. AzwK-3b cultures oxidized ∼90% of the provided iodide (10 μM) within 6 days, whereas in the presence of Mn(II), iodide oxidation occurred only after Mn(IV) formation ceased. Iodide oxidation was not observed during incubations in spent medium or with whole cells under anaerobic conditions or following heat treatment (boiling). Furthermore, iodide oxidation was significantly inhibited in the presence of superoxide dismutase and diphenylene iodonium (a general inhibitor of NADH oxidoreductases). In contrast, the addition of exogenous NADH enhanced iodide oxidation. Taken together, the results indicate that iodide oxidation was mediated primarily by extracellular superoxide generated by Roseobacter sp. AzwK-3b and not by the Mn oxides formed by this organism. Considering that extracellular superoxide formation is a widespread phenomenon among marine and terrestrial bacteria, this could represent an important pathway for iodide oxidation in some environments. PMID:24561582

  5. Digital radiography: Present detectors and future developments

    SciTech Connect

    Perez-Mendez, V.

    1990-08-01

    Present detectors for digital radiography are of two classes: real time detectors and storage (non real time) types. Present real time detectors consist of image intensifier tubes with an internal cesium iodide layer x-ray converter. Non real time detectors involve linear sweep arrays or storage detectors such as film. Future detectors discussed here can be of both types utilizing new technologies such as hydrogenated amorphous silicon photodiode arrays coupled to thin film transistor arrays. 17 refs., 10 figs.

  6. Characterization of amorphous selenium alloy detectors for x-rays and high energy nuclear radiation detection

    NASA Astrophysics Data System (ADS)

    Mandal, Krishna C.; Mehta, Abhinav; Chaudhuri, Sandeep K.; Cui, Yunlong; Groza, Michael; Burger, Arnold

    2013-09-01

    Synthesized amorphous selenium (a-Se) alloy materials have been characterized for room temperature high-energy nuclear radiation detector and x-ray detection applications. The alloy composition has been optimized to ensure good charge transport properties and detector performance. The synthesis of a-Se (As, Cl) alloys has been carried out by thoroughly mixing zone-refined (ZR) Se (~7N) with previously synthesized a-Se(As) and a-Se(Cl) master alloys (MS). The synthesized alloys have been characterized by x-ray diffraction (XRD), glow discharge mass spectroscopy (GDMS), differential scanning calorimetry (DSC), x-ray photoelectron spectroscopy (XPS), and current-voltage (I-V) characteristics measurements. Raman spectroscopy demonstrated that the a-Se(As) master alloy samples were in metastable monoclinic Se8 states, in which seven vibrational modes are located at 40(41), 59(60), 77, 110, 133, 227(228) and 251(252) cm-1. However, a-Se(Cl) master alloy samples are in stable form of trigonal structure of Se8 ring, in which two modes at 142 and 234 cm-1 were found. Both Raman and energy dispersive spectroscopy (EDS) exhibited that a small amount of tellurium (Te) existed in a-Se (As, Cl) master alloy samples. DSC measurements showed that a-Se (Cl) MS and a-Se (As) MS samples have one melting point, located at ~219.6°C, whereas a-Se-As (0.52%)-Cl and Se- As(10.2%)-Cl(60 ppm) both possess two melting points, located at 221 and 220.3°C respectively. The a-Se alloy plate detectors have been fabricated and tested and the results showed high dark resistivity (1012 - 1013 Ω-cm) with good charge transport properties and cost-effective large-area scalability.

  7. The response of CR-39 nuclear track detector to 1-9 MeV protons

    DOE PAGESBeta

    Sinenian, N.; Rosenberg, M. J.; Manuel, M.; McDuffee, S. C.; Casey, D. T.; Zylstra, A. B.; Rinderknecht, H. G.; Johnson, M. Gatu; Seguin, F. H.; Frenje, J. A.; et al

    2011-10-28

    The response of CR-39 nuclear track detector (TasTrak®) to protons in the energy range of 0.92-9.28 MeV has been studied. Previous studies of the CR-39 response to protons have been extended by examining the piece-to-piece variability in addition to the effects of etch time and etchant temperature; it is shown that the shape of the CR-39 response curve to protons can vary from piece-to-piece. The effects due to the age of CR-39 have also been studied using 5.5 MeV alpha particles over a 5-year period. Track diameters were found to degrade with the age of the CR-39 itself rather thanmore » the age of the tracks, consistent with previous studies utilizing different CR-39 over shorter time periods.« less

  8. A USB-2 based portable data acquisition system for detector development and nuclear research

    NASA Astrophysics Data System (ADS)

    Jiang, Hao; Ojaruega, M.; Becchetti, F. D.; Griffin, H. C.; Torres-Isea, R. O.

    2011-10-01

    A highly portable high-speed CAMAC data acquisition system has been developed using Kmax software (Sparrow, Inc.) for Macintosh laptop and tower computers. It uses a USB-2 interface to the CAMAC crate controller with custom-written software drivers. Kmax permits 2D parameter gating and specific algorithms have been developed to facilitate the rapid evaluation of various multi-element nuclear detectors for energy and time-of-flight measurements. This includes tests using neutrons from 252Cf and a 2.5 MeV neutron generator as well as standard gamma calibration sources such as 60Co and 137Cs. In addition, the system has been used to measure gamma-gamma coincidences over extended time periods using radioactive sources (e.g., Ra-228, Pa-233, Np-237, and Am-243).

  9. The response of CR-39 nuclear track detector to 1-9 MeV protons

    SciTech Connect

    Sinenian, N.; Rosenberg, M. J.; Manuel, M.; McDuffee, S. C.; Casey, D. T.; Zylstra, A. B.; Rinderknecht, H. G.; Johnson, M. Gatu; Seguin, F. H.; Frenje, J. A.; Li, C. K.; Petrasso, R. D.

    2011-10-28

    The response of CR-39 nuclear track detector (TasTrak®) to protons in the energy range of 0.92-9.28 MeV has been studied. Previous studies of the CR-39 response to protons have been extended by examining the piece-to-piece variability in addition to the effects of etch time and etchant temperature; it is shown that the shape of the CR-39 response curve to protons can vary from piece-to-piece. The effects due to the age of CR-39 have also been studied using 5.5 MeV alpha particles over a 5-year period. Track diameters were found to degrade with the age of the CR-39 itself rather than the age of the tracks, consistent with previous studies utilizing different CR-39 over shorter time periods.

  10. Neutron angular distribution in a plasma focus obtained using nuclear track detectors.

    PubMed

    Castillo-Mejía, F; Herrera, J J E; Rangel, J; Golzarri, J I; Espinosa, G

    2002-01-01

    The dense plasma focus (DPF) is a coaxial plasma gun in which a high-density, high-temperature plasma is obtained in a focused column for a few nanoseconds. When the filling gas is deuterium, neutrons can be obtained from fusion reactions. These are partially due to a beam of deuterons which are accelerated against the background hot plasma by large electric fields originating from plasma instabilities. Due to a beam-target effect, the angular distribution of the neutron emission is anisotropic, peaked in the forward direction along the axis of the gun. The purpose of this work is to illustrate the use of CR-39 nuclear track detectors as a diagnostic tool in the determination of the time-integrated neutron angular distribution. For the case studied in this work, neutron emission is found to have a 70% contribution from isotropic radiation and a 30% contribution from anisotropic radiation. PMID:12382811

  11. Copper Nano- and Micro Wires Electrodeposited in Etched Cellulose Nitrate and Makrofol KG Nuclear Track Detector

    NASA Astrophysics Data System (ADS)

    Jooybari, B. Shakeri; Afarideh, H.; Lamehi-Racti, M.; Moghimi, R.; Ghergherehchi, M.

    Cellulose Nitrate and Makrofol KG nuclear track detector foils of 96 μm and 20 μm thicknesses were irradiated with 238U ions (kinetic energy 17.7 MeV/u, fluence 105 ion/cm2) and 208Pd (kinetic energy 14.0MeV/u, fluence 105 ion/cm2), respectively. By etching of damage trail caused by the ion, templates containing conical pore were prepared. By electrochemical deposition of copper in homemade design electrolytic cell, conical wires were obtained. The electric current recorded during electrodeposition reflects the geometry of the pore. The lengths of wires were 96 μm and 20 μm, corresponding to the thickness of membranes. X-Ray Diffraction analysis indicated that texture and orientation of Cu wire were polycrystalline.

  12. Mercuric iodide medical imagers for low-exposure radiography and fluoroscopy

    NASA Astrophysics Data System (ADS)

    Zentai, George; Partain, Larry; Pavlyuchkova, Raisa; Proano, Cesar; Breen, Barry N.; Taieb, A.; Dagan, Ofer; Schieber, Michael; Gilboa, Haim; Thomas, Jerry

    2004-05-01

    Photoconductive polycrystalline mercuric iodide deposited on flat panel thin film transistor (TFT) arrays is being developed for direct digital X-ray detectors that can perform both radiographic and fluoroscopic medical imaging. The mercuric iodide is either vacuum deposited by Physical Vapor Deposition (PVD) or coated onto the array by a wet Particle-In-Binder (PIB) process. The PVD deposition technology has been scaled up to the 20 cm x 25 cm size required in common medical imaging applications. A TFT array with a pixel pitch of 127 microns is used for these imagers. Arrays of 10 cm x 10 cm size have been used to evaluate performance of mercuric iodide imagers. Radiographic and fluoroscopic images of diagnostic quality at up to 15 pulses per second were demonstrated. As we previously reported, the resolution is limited to the TFT array Nyquist frequency of ~3.9 lp/mm (127 micron pixel pitch). Detective Quantum Efficiency (DQE) has been measured as a function of spatial frequency for these imagers. The DQE is lower than the theoretically calculated value due to some additional noise sources of the electronics and the array. We will retest the DQE after eliminating these noise sources. Reliability and stress testing was also began for polycrystalline mercuric iodide PVD and PIB detectors. These are simplified detectors based upon a stripe electrode or circular electrode structure. The detectors were stressed under various voltage bias, temperature and time conditions. The effects of the stress tests on the detector dark current and sensitivity were determined.

  13. Prototype of a Muon Tomography Station with GEM detectors for Detection of Shielded Nuclear Contraband

    NASA Astrophysics Data System (ADS)

    Staib, Michael; Bhopatkar, Vallary; Bittner, William; Hohlmann, Marcus; Locke, Judson; Twigger, Jessie; Gnanvo, Kondo

    2012-03-01

    Muon tomography for homeland security aims at detecting well-shielded nuclear contraband in cargo and imaging it in 3D. The technique exploits multiple scattering of atmospheric cosmic ray muons, which is stronger in dense, high-Z materials, e.g. enriched uranium, than in low-Z and medium-Z shielding materials. We have constructed and are operating a compact Muon Tomography Station (MTS) that tracks muons with eight 30 cm x 30 cm Triple Gas Electron Multiplier (GEM) detectors placed on the sides of a cubic-foot imaging volume. A point-of-closest-approach algorithm applied to reconstructed incident and exiting tracks is used to create a tomographic reconstruction of the material within the active volume. We discuss the performance of this MTS prototype including characterization and commissioning of the GEM detectors and the data acquisition systems. We also present experimental tomographic images of small high-Z objects including depleted uranium with and without shielding and discuss the performance of material discrimination using this method.

  14. Photoluminescence detection of alpha particle using DAM-ADC nuclear detector

    NASA Astrophysics Data System (ADS)

    Abdalla, Ayman M.; Harraz, Farid A.; Ali, Atif M.; Al-Sayari, S. A.; Al-Hajry, A.

    2016-09-01

    The photoluminescence (PL) and UV-vis spectral analysis of DAM-ADC (diallyl maleate: DAM, polyallyl diglycol carbonate: ADC) nuclear detector are demonstrated for the first time. The DAM-ADC surfaces were exposed to thin 241Am disk source that emits alpha particles with activity 333 kBq. It is found that the track density of the irradiated samples remarkably influences the PL characteristics of the DAM-ADC detector. The spectral peak heights and the integrated intensities under the peaks exhibit linear correlations with correlation coefficient R2=0.9636 and 0.9806, respectively for different alpha particle fluences ranging from 8.16-40.82×107 particles/cm2. Additionally, a correlation coefficient R2=0.9734 was achieved for the UV-vis spectral analysis. The linear fitting functions, along with the corresponding fitting parameters were evaluated in each case. Both the PL and the UV-vis data of the irradiated DAM-ADC samples showed considerable spectral differences, and hence they would be used to offer sensitive approaches for alpha particle detection.

  15. A Novel Nuclear Recoil Calibration in the LUX Detector Using a D-D Neutron Generator

    NASA Astrophysics Data System (ADS)

    Verbus, James; LUX Collaboration

    2015-04-01

    The LUX dark matter search experiment is a 350 kg two-phase liquid/gas xenon time projection chamber located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. I will describe a novel calibration of nuclear recoils (NR) in liquid xenon (LXe) performed in-situ in the LUX detector using mono-energetic 2.45 MeV neutrons produced by a D-D neutron generator. This technique was used to measure the NR charge yield in LXe (Qy) to < 1 keV recoil energy with an absolute determination of the deposited energy. The LUX Qy result is a factor of × 5 lower in energy compared to any other previous measurement in the field, and provides a significant improvement in calibration uncertainties. We also present a measurement of the NR light yield in LXe (Leff) to recoil energies as low as ~ 2 keV using the LUX D-D data. The Leff result is also lower in energy with smaller uncertainties than has been previously achieved. These absolute, ultra-low energy calibrations of the NR signal yields in LXe are a clear confirmation of the detector response used for the first LUX WIMP search analysis. Strategies for extending this calibration technique to even lower energies and smaller uncertainties will be discussed.

  16. Characterisation of radiation field for irradiation of biological samples at nuclear reactor-comparison of twin detector and recombination methods.

    PubMed

    Golnik, N; Gryziński, M A; Kowalska, M; Meronka, K; Tulik, P

    2014-10-01

    Central Laboratory for Radiological Protection is involved in achieving scientific project on biological dosimetry. The project includes irradiation of blood samples in radiation fields of nuclear reactor. A simple facility for irradiation of biological samples has been prepared at horizontal channel of the nuclear reactor MARIA in NCBJ in Poland. The radiation field, composed mainly of gamma radiation and thermal neutrons, has been characterised in terms of tissue kerma using twin-detector technique and recombination chambers. PMID:24366246

  17. Improved fabrication of HgI/sub 2/ nuclear radiation detectors by machine-cleaving

    SciTech Connect

    Levi, A.; Burger, A.; Schieber, M.; Vandenberg, L.; Yellon, W.B.; Alkire, R.W.

    1982-01-01

    The perfection of machine-cleaved sections from HgI/sub 2/ bulk crystals was examined. The perfection of the machine-cleaved sections as established by gamma diffraction rocking curves was found to be much better than the perfection of hand-cleaved sections or as grown thin platelets, reaching a perfection similar to that of the wire-sawn sections of HgI/sub 2/. A correlation between the perfection and the thickness of the machine-cleaved section was also found, i.e., the thicker the cleaved-section the more perfect it is. The reproducibility of the fabrication was significantly improved by using machine cleaving in the process of fabrication. Large single crystals of HgI/sub 2/ weighing 20 to 200 g, can be grown from the vapor phase using the TOM Technique. In order to fabricate nuclear radiation detectors from these single crystals, thin sections of about 0.4 to 0.8 mm thickness have to be prepared. Up till now, the state-of-the-art of fabricating HgI/sub 2/ nuclear radiation detectors involved two methods to get thin sections from the large single crystals: (1) hand-cleaving using a razor-blade and (2) solution wire sawing. The chemical wire sawing method involves a loss of about 50% of the crystal volume and is usually followed by a chemical polishing process which involves a significant loss of volume of the original volume. This procedure is complicated and wasteful. The traditional fabrication method, i.e., hand-cleaving followed by rapid nonselective chemical etching, is simpler and less wasteful.

  18. Measurement of thermal and optical properties of CR-39 solid-state nuclear detector by photothermal deflection

    NASA Astrophysics Data System (ADS)

    Mohammed, K. I.; Azawe, M. I.

    2013-08-01

    The thermal and optical properties of the nuclear detector CR-39 were studied in light of the demand for CR-39 and its novel physical properties, as well as its technological implications in many fields. Thermal diffusivity is the most important parameter when this detector is exposed to nuclear radiation and when consequent heat transfer processes influence the photothermal deflection spectroscopy. Thermal-induced effects on the surface of the CR-39 detector were studied using transient heat diffusion simulations. The resulting thermal deformation due to alpha particle irradiation of CR-39 will be presented. Irradiation of CR-39 by α-particles was found to lower the refractive index change with temperature. The temperature distribution was studied numerically by solving the heat diffusion equation to illustrate the effects of α-particle exposure on the CR-39. The thermal diffusivity of exposed CR-39 is the primary subject of this article.

  19. Detection of special nuclear material by observation of delayed neutrons with a novel fast neutron composite detector

    NASA Astrophysics Data System (ADS)

    Mayer, Michael; Nattress, Jason; Barhoumi Meddeb, Amira; Foster, Albert; Trivelpiece, Cory; Rose, Paul; Erickson, Anna; Ounaies, Zoubeida; Jovanovic, Igor

    2015-10-01

    Detection of shielded special nuclear material is crucial to countering nuclear terrorism and proliferation, but its detection is challenging. By observing the emission of delayed neutrons, which is a unique signature of nuclear fission, the presence of nuclear material can be inferred. We report on the observation of delayed neutrons from natural uranium by using monoenergetic photons and neutrons to induce fission. An interrogating beam of 4.4 MeV and 15.1 MeV gamma-rays and neutrons was produced using the 11B(d,n-γ)12C reaction and used to probe different targets. Neutron detectors with complementary Cherenkov detectors then discriminate material undergoing fission. A Li-doped glass-polymer composite neutron detector was used, which displays excellent n/ γ discrimination even at low energies, to observe delayed neutrons from uranium fission. Delayed neutrons have relatively low energies (~0.5 MeV) compared to prompt neutrons, which makes them difficult to detect using recoil-based detectors. Neutrons were counted and timed after the beam was turned off to observe the characteristic decaying time profile of delayed neutrons. The expected decay of neutron emission rate is in agreement with the common parametrization into six delayed neutron groups.

  20. Development of Si-APD Timing Detectors for Nuclear Resonant Scattering using High-energy Synchrotron X-rays

    SciTech Connect

    Kishimoto, Shunji; Zhang Xiaowei

    2007-01-19

    A timing detector with silicon avalanche photodiodes (Si-APDs) has been developed for nuclear resonant scattering using synchrotron x-rays. The detector had four pairs of a germanium plate 0.1mm thick and a Si-APD (3 mm in dia., a depletion layer of 30-{mu}m thickness). Using synchrotron x-rays of 67.4 keV, the efficiency increased to 1.5% for the incident beam, while the efficiency was 0.76 % without the germanium converters. A measurement of SR-PAC on Ni-61 was executed by using the detector. Some other types of timing detectors are planned for x-rays of E>20 keV.

  1. FY-2015 Methyl Iodide Deep-Bed Adsorption Test Report

    SciTech Connect

    Soelberg, Nicholas Ray; Watson, Tony Leroy

    2015-09-30

    Nuclear fission produces fission and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Deep-bed methyl iodide adsorption testing has continued in Fiscal Year 2015 according to a multi-laboratory methyl iodide adsorption test plan. Updates to the deep-bed test system have also been performed to enable the inclusion of evaporated HNO3 and increased NO2 concentrations in future tests. This report summarizes the result of those activities. Test results showed that iodine adsorption from gaseous methyl iodide using reduced silver zeolite (AgZ) resulted in initial iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) under 1,000 for the conditions of the long-duration test performed this year (45 ppm CH3I, 1,000 ppm each NO and NO2, very low H2O levels [3 ppm] in balance air). The mass transfer zone depth exceeded the cumulative 5-inch depth of 4 bed segments, which is deeper than the 2-4 inch depth estimated for the mass transfer zone for adsorbing I2 using AgZ in prior deep-bed tests. The maximum iodine adsorption capacity for the AgZ under the conditions of this test was 6.2% (6.2 g adsorbed I per 100 g sorbent). The maximum Ag utilization was 51%. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  2. Optical transmission measurements on monocrystalline and polycrystalline cesium iodide

    NASA Technical Reports Server (NTRS)

    Viehmann, W.; Arens, J. F.; Simon, M.

    1973-01-01

    A summary is presented of optical measurements performed on a variety of cesium iodide samples to characterize quantitatively the optical quality of the materials, and to define and measure parameters which determine its suitability as a detector material for high energy cosmic ray experiments on HEAO-A. The general case of light transmission through a long rectangular slab under multiple internal reflections is discussed along with transmission and scattering as a function of wavelength at normal incidence. Scattering parameters are tabulated for encapsulated single crystal CsI and polyscin.

  3. A study of intrinsic statistical variation for low-energy nuclear recoils in liquid xenon detector for dark matter searches

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Wei, Wenzhao; Mei, Dongming; Cubed Collaboration

    2015-10-01

    Noble liquid xenon experiments, such as XENON100, LUX, XENON 1-Ton, and LZ are large dark matter experiments directly searches for weakly interacting massive particles (WIMPs). One of the most important features is to discriminate nuclear recoils from electronic recoils. Detector response is generally calibrated with different radioactive sources including 83mKr, tritiated methane, 241AmBe, 252Cf, and DD-neutrons. The electronic recoil and nuclear recoil bands have been determined by these calibrations. However, the width of nuclear recoil band needs to be fully understood. We derive a theoretical model to understand the correlation of the width of nuclear recoil band and intrinsic statistical variation. In addition, we conduct experiments to validate the theoretical model. In this paper, we present the study of intrinsic statistical variation contributing to the width of nuclear recoil band. DE-FG02-10ER46709 and the state of South Dakota.

  4. Iodide interactions with clay minerals: Batch and diffusion studies

    NASA Astrophysics Data System (ADS)

    Miller, A. W.; Kruichak, J.; Mills, M.; Wang, Y.

    2012-12-01

    Clay minerals are likely candidates to aid in nuclear waste isolation due to their low permeability, favorable swelling properties, and high cation sorption capacities. Iodine-129 is often the major driver of exposure risk from nuclear waste repositories at timescales >10,000 years. Therefore, understanding the geochemical cycling of iodine in clays is critical in developing defensible quantitative descriptions of nuclear waste disposal. Anions are not typically considered to interact with most clays as it is assumed that the fixed negative charge of clays actively repels the dissoloved anion. This is corroborated by many batch studies, but diffusion experiments in compacted clays have shown iodide retardation relative to chloride. The reasons for this are unknown; however, several possible hypotheses include: redox transformation controls on sorption behavior, complex surface charge environments due to overlapping charge domains, and sorption to ancillary minerals or weathering products. Seven different clay minerals have been examined using several techniques to chracterize the surface charge environment and iodide uptake. The use of a series of clays shifts the independent variable away from water chemistry characteristics (pH, contaminant concentration), and toward structural characterisitics of clay minerals including isomorphous substitution and clay texture. Iodide uptake batch experiments were completed with the clay minerals in a range of swamping electrolytes. The results give evidence for a novel uptake mechanism involving ion pair formation and iodide concentration within nano-confined environments. These results were further tested using diffusional columns where nano-confined regimes make up a larger proportion of the total porosity. These columns were compacted to different hydrostatic pressures and saturated with different ionic compositions. Porosity distributions were characterized with a fluoride tracer. Iodide diffusion characteristics were

  5. Germanium detectors for nuclear spectroscopy: Current research and development activity at LNL

    NASA Astrophysics Data System (ADS)

    Napoli, D. R.; Maggioni, G.; Carturan, S.; Eberth, J.; Gelain, M.; Grimaldi, M. G.; Tatí, S.; Riccetto, S.; Mea, G. Della

    2016-07-01

    High-purity Germanium (HPGe) detectors have reached an unprecedented level of sophistication and are still the best solution for high-resolution gamma spectroscopy. In the present work, we will show the results of the characterization of new surface treatments for the production of these detectors, studied in the framework of our multidisciplinary research program in HPGe detector technologies.

  6. Investigation of Wavelet-Based Enhancements to Nuclear Quadrupole Resonance Explosives Detectors

    SciTech Connect

    Kercel, Stephen W.; Dress, William B.; Hibbs, Andrew D.; Barrall, Geoffrey A.

    1998-06-01

    Nuclear Quadrupole Resonance (NQR) is effective for the detection and identification of certain types of explosives such as RDX, PETN and TNT. In explosive detection, the NQR response of certain 14N nuclei present in the crystalline material is probed. The 14N nuclei possess a nuclear quadrupole moment which in the presence of an electric field gradient produces an energy level splitting which may be excited by radio-frequency magnetic fields. Pulsing on the sample with a radio signal of the appropriate frequency produces a transient NQR response which may then be detected. Since the resonant frequency is dependent upon both the quadrupole moment of the 14N nucleus and the nature of the local electric field gradients, it is very compound specific. Under DARPA sponsorship, the authors are using multiresolution methods to investigate the enhancement of operation of NQR explosives detectors used for land mine detection. For this application, NQR processing time must be reduced to less than one second. False alarm responses due to acoustic and piezoelectric ringing must be suppressed. Also, as TNT is the most prevalent explosive found in land mines, NQR detection of TNT must be made practical despite unfavorable relaxation tunes. All three issues require improvement in signal-to-noise ratio, and all would benefit from improved feature extraction. This paper reports some of the insights provided by multiresolution methods that can be used to obtain these improvements. It includes results of multiresolution analysis of experimentally observed NQR signatures for RDX responses and various false alarm signatures in the absence of explosive compounds.

  7. SPECT detectors: the Anger Camera and beyond.

    PubMed

    Peterson, Todd E; Furenlid, Lars R

    2011-09-01

    The development of radiation detectors capable of delivering spatial information about gamma-ray interactions was one of the key enabling technologies for nuclear medicine imaging and, eventually, single-photon emission computed tomography (SPECT). The continuous sodium iodide scintillator crystal coupled to an array of photomultiplier tubes, almost universally referred to as the Anger Camera after its inventor, has long been the dominant SPECT detector system. Nevertheless, many alternative materials and configurations have been investigated over the years. Technological advances as well as the emerging importance of specialized applications, such as cardiac and preclinical imaging, have spurred innovation such that alternatives to the Anger Camera are now part of commercial imaging systems. Increased computing power has made it practical to apply advanced signal processing and estimation schemes to make better use of the information contained in the detector signals. In this review we discuss the key performance properties of SPECT detectors and survey developments in both scintillator and semiconductor detectors and their readouts with an eye toward some of the practical issues at least in part responsible for the continuing prevalence of the Anger Camera in the clinic. PMID:21828904

  8. SPECT detectors: the Anger Camera and beyond

    NASA Astrophysics Data System (ADS)

    Peterson, Todd E.; Furenlid, Lars R.

    2011-09-01

    The development of radiation detectors capable of delivering spatial information about gamma-ray interactions was one of the key enabling technologies for nuclear medicine imaging and, eventually, single-photon emission computed tomography (SPECT). The continuous sodium iodide scintillator crystal coupled to an array of photomultiplier tubes, almost universally referred to as the Anger Camera after its inventor, has long been the dominant SPECT detector system. Nevertheless, many alternative materials and configurations have been investigated over the years. Technological advances as well as the emerging importance of specialized applications, such as cardiac and preclinical imaging, have spurred innovation such that alternatives to the Anger Camera are now part of commercial imaging systems. Increased computing power has made it practical to apply advanced signal processing and estimation schemes to make better use of the information contained in the detector signals. In this review we discuss the key performance properties of SPECT detectors and survey developments in both scintillator and semiconductor detectors and their readouts with an eye toward some of the practical issues at least in part responsible for the continuing prevalence of the Anger Camera in the clinic.

  9. Intermediate Energies for Nuclear Astrophysics and the Development of a Position Sensitive Microstrip Detector System

    SciTech Connect

    Sobotka, Lee G.; Blackmon, J.; Bertulani, C.

    2015-12-30

    The chemical elements are made at astrophysical sites through a sequence of nuclear reactions often involving unstable nuclei. The overarching aim of this project is to construct a system that allows for the inverse process of nucleosynthesis (i.e. breakup of heavier nuclei into lighter ones) to be studied in high efficiency. The specific problem to be overcome with this grant is inadequate dynamic range and (triggering) threshold to detect the products of the breakup which include both heavy ions (with large energy and large deposited energy in a detector system) and protons (with little energy and deposited energy.) Early on in the grant we provided both TAMU and RIKEN (the site of the eventual experiments) with working systems based on the existing technology. This technology could be used with either an external preamplifier that was to be designed and fabricated by our RIKEN collaborators or upgraded by replacing the existing chip with one we designed. The RIKEN external preamplifier project never can to completion but our revised chip was designed, fabricated, used in a test experiment and performs as required.

  10. Nuclear Recoil Calibrations in the LUX Detector Using Direct and Backscattered D-D Neutrons

    NASA Astrophysics Data System (ADS)

    Rhyne, Casey; LUX Collaboration

    2016-03-01

    The LUX dark matter search experiment is a 350 kg two-phase liquid/gas xenon time projection chamber located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. I will discuss the latest calibration of the nuclear recoil (NR) response in liquid xenon (LXe), performed in-situ in the LUX detector using mono-energetic 2.45 MeV neutrons produced via the Adelphi Technologies, Inc. DD108 D-D neutron generator. The calibration measured the NR charge yield in LXe (Qy) to 0.7 keVnr recoil energy with an absolute determination of deposited energy and the NR light yield in LXe (Ly) to recoil energies of 1.1 keVnr, both of which improve upon all previous measurements. I will then focus in depth on the extension of this calibration using a new technique for generating a beam of sub-300 keV quasi-mono-energetic neutrons via the backscatter of 2.45 MeV neutrons off a deuterium-based reflector. Current simulations work optimizing the technique, its advantages, and its impact on future research will be discussed, including the extension of the NR Qy calibration down to 0.14 keVnr, an independent NR Ly calibration, and an a priori estimate of the expected 8B solar neutrino-nucleus coherent scattering signal in the upcoming LUX-ZEPLIN experiment.

  11. Development of an automated multisample scanning system for nuclear track etched detectors

    NASA Astrophysics Data System (ADS)

    Tawara, H.; Eda, K.; Takahashi, K.; Doke, T.; Hasebe, N.; Kodaira, S.; Ota, S.; Kurano, M.; Yasuda, N.

    2008-08-01

    We have developed an automated scanning system for handling a large number of nuclear track etched detectors (NTEDs). The system consists of a magazine station for sample storage, a robotic sample loader, a high-speed wide-area digital imaging microscope device (modified HSP-1000) and PitFit software for analyzing etch pits. We investigated the performance of the system using CR-39 plastic NTED samples exposed to high-energy heavy ions and fast neutrons. When applying the system to fast neutron dosimetry, the typical scanning speed was about 100 samples/day with a scan area of 4 cm 2/sample. The neutron doses obtained from a fully automatic measurement agreed closely with those from a semi-automatic measurement. These results indicate the feasibility of fully automatic scanning of CR-39 personal neutron dosimeters. The system is also expected to be applicable to future large-scale experiments using CR-39 plastic and BP-1 glass NTEDs for observing ultraheavy galactic cosmic rays with high mass resolution.

  12. Fabrication and characterization of cubic SrI2(Eu) scintillators for use in array detectors

    NASA Astrophysics Data System (ADS)

    Shimazoe, K.; Koyama, A.; Takahashi, H.; Sakuragi, S.; Yamasaki, Y.

    2016-02-01

    Strontium iodide (SrI2(Eu)) is a promising spectroscopic detector for use in both nuclear security and medical imaging owing to its excellent energy resolution and low internal background radiation. A cubic form is preferable when coupling with a silicon-based photosensor in order to build an array detector for use in applications such as Compton cameras. Here, cubic SrI2(Eu) crystals with 10 mm sides were fabricated and evaluated. The cubic SrI2(Eu) samples coupled to an avalanche photodiode exhibited an energy resolution of approximately 3.6% at 662 keV when using a shaping time of 3 μs. An increase in light output and an improvement of energy resolution were also observed at lower temperatures. The excellent energy resolution of these devices indicates that these crystals are promising potential detectors for use in Compton cameras and other imaging detectors.

  13. Predissociation dynamics of lithium iodide

    SciTech Connect

    Schmidt, H.; Vangerow, J. von; Stienkemeier, F.; Mudrich, M.; Bogomolov, A. S.; Baklanov, A. V.; Reich, D. M.; Skomorowski, W.; Koch, C. P.

    2015-01-28

    The predissociation dynamics of lithium iodide (LiI) in the first excited A-state is investigated for molecules in the gas phase and embedded in helium nanodroplets, using femtosecond pump-probe photoionization spectroscopy. In the gas phase, the transient Li{sup +} and LiI{sup +} ion signals feature damped oscillations due to the excitation and decay of a vibrational wave packet. Based on high-level ab initio calculations of the electronic structure of LiI and simulations of the wave packet dynamics, the exponential signal decay is found to result from predissociation predominantly at the lowest avoided X-A potential curve crossing, for which we infer a coupling constant V{sub XA} = 650(20) cm{sup −1}. The lack of a pump-probe delay dependence for the case of LiI embedded in helium nanodroplets indicates fast droplet-induced relaxation of the vibrational excitation.

  14. Error reduction in gamma-spectrometric measurements of nuclear materials enrichment

    NASA Astrophysics Data System (ADS)

    Zaplatkina, D.; Semenov, A.; Tarasova, E.; Zakusilov, V.; Kuznetsov, M.

    2016-06-01

    The paper provides the analysis of the uncertainty in determining the uranium samples enrichment using non-destructive methods to ensure the functioning of the nuclear materials accounting and control system. The measurements were performed by a scintillation detector based on a sodium iodide crystal and the semiconductor germanium detector. Samples containing uranium oxide of different masses were used for the measurements. Statistical analysis of the results showed that the maximum enrichment error in a scintillation detector measurement can reach 82%. The bias correction, calculated from the data obtained by the semiconductor detector, reduces the error in the determination of uranium enrichment by 47.2% in average. Thus, the use of bias correction, calculated by the statistical methods, allows the use of scintillation detectors to account and control nuclear materials.

  15. Lithium iodide cardiac pacemakers: initial clinical experience.

    PubMed Central

    Burr, L. H.

    1976-01-01

    A new long-life cardiac pacemaker pulse generator powered by a lithium iodide fuel cell was introduced in Canada in 1973. The compact, hermetically sealed unit is easily implanted and reliable, has excellent patient acceptance and has an anticipated battery life of almost 14 years. Among 105 patients who received a lithium iodide pacemaker, complications occurred in 18. The lithium iodide pacemaker represents a significant advance in pacemaker generator technology and is recommended for long-term cardiac pacing; the manufacturer guarantees the pulse generator for 6 years. Images FIG. 1 PMID:974965

  16. Iodide Protects Heart Tissue from Reperfusion Injury

    PubMed Central

    Iwata, Akiko; Morrison, Michael L.; Roth, Mark B.

    2014-01-01

    Iodine is an elemental nutrient that is essential for mammals. Here we provide evidence for an acute therapeutic role for iodine in ischemia reperfusion injury. Infusion of the reduced form, iodide, but not the oxidized form iodate, reduces heart damage by as much as 75% when delivered intravenously following temporary loss of blood flow but prior to reperfusion of the heart in a mouse model of acute myocardial infarction. Normal thyroid function may be required because loss of thyroid activity abrogates the iodide benefit. Given the high degree of protection and the high degree of safety, iodide should be explored further as a therapy for reperfusion injury. PMID:25379708

  17. 21 CFR 520.763b - Dithiazanine iodide powder.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Dithiazanine iodide powder. 520.763b Section 520... iodide powder. (a) Chemical name. 3-Ethyl-2- -benzothiazoliumiodide. (b) Specifications. Dithiazanine iodide powder contains 200 milligrams of dithiazanine iodide per level standard tablespoon. (c)...

  18. 21 CFR 520.763b - Dithiazanine iodide powder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Dithiazanine iodide powder. 520.763b Section 520... iodide powder. (a) Chemical name. 3-Ethyl-2- -benzothiazoliumiodide. (b) Specifications. Dithiazanine iodide powder contains 200 milligrams of dithiazanine iodide per level standard tablespoon. (c)...

  19. Determination of Nuclear Charge Distributions of Fission Fragments from ^{235}U (n_th, f) with Calorimetric Low Temperature Detectors

    NASA Astrophysics Data System (ADS)

    Grabitz, P.; Andrianov, V.; Bishop, S.; Blanc, A.; Dubey, S.; Echler, A.; Egelhof, P.; Faust, H.; Gönnenwein, F.; Gomez-Guzman, J. M.; Köster, U.; Kraft-Bermuth, S.; Mutterer, M.; Scholz, P.; Stolte, S.

    2016-08-01

    Calorimetric low temperature detectors (CLTD's) for heavy-ion detection have been combined with the LOHENGRIN recoil separator at the ILL Grenoble for the determination of nuclear charge distributions of fission fragments produced by thermal neutron-induced fission of ^{235}U. The LOHENGRIN spectrometer separates fission fragments according to their mass-to-ionic-charge ratio and their kinetic energy, but has no selectivity with respect to nuclear charges Z. For the separation of the nuclear charges, one can exploit the nuclear charge-dependent energy loss of the fragments passing through an energy degrader foil (absorber method). This separation requires detector systems with high energy resolution and negligible pulse height defect, as well as degrader foils which are optimized with respect to thickness, homogeneity, and energy loss straggling. In the present, contribution results of test measurements at the Maier Leibnitz tandem accelerator facility in Munich with ^{109}Ag and ^{127}I beams with the aim to determine the most suitable degrader material, as well as measurements at the Institut Laue-Langevin will be presented. These include a systematic study of the quality of Z-separation of fission fragments in the mass range 82le A le 132 and a systematic measurement of ^{92}Rb fission yields, as well as investigations of fission yields toward the symmetry region.

  20. Determination of Nuclear Charge Distributions of Fission Fragments from ^{235} U (n_th , f) with Calorimetric Low Temperature Detectors

    NASA Astrophysics Data System (ADS)

    Grabitz, P.; Andrianov, V.; Bishop, S.; Blanc, A.; Dubey, S.; Echler, A.; Egelhof, P.; Faust, H.; Gönnenwein, F.; Gomez-Guzman, J. M.; Köster, U.; Kraft-Bermuth, S.; Mutterer, M.; Scholz, P.; Stolte, S.

    2016-03-01

    Calorimetric low temperature detectors (CLTD's) for heavy-ion detection have been combined with the LOHENGRIN recoil separator at the ILL Grenoble for the determination of nuclear charge distributions of fission fragments produced by thermal neutron-induced fission of ^{235} U. The LOHENGRIN spectrometer separates fission fragments according to their mass-to-ionic-charge ratio and their kinetic energy, but has no selectivity with respect to nuclear charges Z. For the separation of the nuclear charges, one can exploit the nuclear charge-dependent energy loss of the fragments passing through an energy degrader foil (absorber method). This separation requires detector systems with high energy resolution and negligible pulse height defect, as well as degrader foils which are optimized with respect to thickness, homogeneity, and energy loss straggling. In the present, contribution results of test measurements at the Maier Leibnitz tandem accelerator facility in Munich with ^{109} Ag and ^{127} I beams with the aim to determine the most suitable degrader material, as well as measurements at the Institut Laue-Langevin will be presented. These include a systematic study of the quality of Z-separation of fission fragments in the mass range 82≤ A ≤ 132 and a systematic measurement of ^{92} Rb fission yields, as well as investigations of fission yields toward the symmetry region.

  1. Characterization of strontium iodide scintillators with silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Mitchell, Lee J.; Phlips, Bernard

    2016-06-01

    This work characterizes a commercially available europium-doped strontium iodide detector recently developed by Radiation Monitoring Devices (RMD). The detector has been chosen for a space-based mission scheduled to launch in early 2017. The primary goal of this work was to characterize the detector's response over the expected operational range of -10 °C to 30 °C as well as the expected operational voltage range of +26.5-+28.5 V and identify background interferences that may develop due to neutron activation produced by cosmic-ray interactions. The 8 mm×8 mm×20 mm detectors use KETEK silicon photomultipliers (SiPM), with an active area of 6 mmx6 mm (KETEK PM6660). Our results show substantial integral nonlinearity due to the SiPM ranging from 0% to 25% at room temperature over the energy range of 80-2614 keV. The nonlinearity, a function of temperature and overvoltage, leads to an underestimate of the full width at half max (FWHM), which is 2.6% uncorrected at 662 keV and 3.8% corrected at 662 keV. The temperature dependence of the detector results in a noise threshold that increases substantially above 30 °C due to the SiPM dark rate. In an effort to simulate the harsh environment of space, neutron activation of the detector was also explored. Gamma-ray lines at 127 keV and 164 keV were observed in the detector along with Kα x-rays associated with europium. Beta decay from europium- and iodine-activation products were also observed within the detector.

  2. Material properties and room-temperature nuclear detector response of wide bandgap semiconductors

    NASA Astrophysics Data System (ADS)

    Schieber, M.; Lund, J. C.; Olsen, R. W.; McGregor, D. S.; Van Scyoc, J. M.; James, R. B.; Soria, E.; Bauser, E.

    1996-02-01

    Several semiconductor materials for room-temperature X-ray and gamma-ray detectors, including HgI 2, Cd 1- xZn xTe (CZT), GaAs, and Pbl 2 have been studied at Sandia National Laboratories, California. A comparison of the spectral response of these detectors will be given and related to material properties, such as charge carrier drift length, crystal purity, structural perfection, and material stoichiometry, as well as to the crystal growth techniques and device fabrication processes published elsewhere. Room-temperature detector spectral responses for each of these materials are presented, for photon energies in the range of 5.9 to 662 keV. CZT and HgI 2 detectors demonstrate excellent energy resolution over the entire energy range, while PbI 2 detectors exhibit reasonable response only up to about 30 keV. Some of the semi-insulating GaAs detectors fabricated from vertical gradient freeze materials show good spectral resolution for lower energies up to ˜60 keV, whereas other SI-GaAs detectors studied at Sandia function only as counters. Finally, some predictions on the future materials development of these wide bandgap semiconductors for room-temperature radiation detector applications will be discussed.

  3. Resonant nuclear scattering of synchrotron radiation: Detector development and specular scattering from a thin layer of {sup 57}Fe

    SciTech Connect

    Baron, A.Q.R.

    1995-04-01

    This thesis explores resonant nudear scattering of synchrotron radiation. An introductory chapter describes some useful concepts, such as speedup and coherent enhancement, in the context of some basic physical principles. Methods of producing highly monochromatic synchrotron beams usmg either electronic or nuclear scattering are also discussed. The body of the thesis concentrates on detector development and specular scattering from iynthetic layered materials. A detector employing n-dcrochannel plate electron multipliers is shown to have good ({approximately}50%) effidency for detecting 14.4 key x-rays incident at small ({approximately}0.5 degree) grazing angles onto Au or CsI photocathodes. However, being complicated to use, it was replaced with a large area (>=lan2) avalanche photodiode (APD) detector. The APD`s are simpler to use and have comparable (30--70%) efficiencies at 14.4 key, subnanosecond time resolution, large dynan-dc range (usable at rates up to {approximately}10{sup 8} photons/second) and low (<{approximately}0.01 cts/sec) background rates. Maxwell`s equations are used to derive the specular x-ray reflectivity of layered materials with resonant transitions and complex polarization dependencies. The effects of interfadal roughness are treated with some care, and the distorted wave Born approximation (DWBA) used to describe electronic scattering is generalized to the nuclear case. The implications of the theory are discussed in the context of grazing incidence measurements with emphasis on the kinematic and dynamical aspects of the scattering.

  4. Monte Carlo Simulations of Ultra-High Energy Resolution Gamma Detectors for Nuclear Safeguards

    SciTech Connect

    Robles, A; Drury, O B; Friedrich, S

    2009-08-19

    Ultra-high energy resolution superconducting gamma-ray detectors can improve the accuracy of non-destructive analysis for unknown radioactive materials. These detectors offer an order of magnitude improvement in resolution over conventional high purity germanium detectors. The increase in resolution reduces errors from line overlap and allows for the identification of weaker gamma-rays by increasing the magnitude of the peaks above the background. In order to optimize the detector geometry and to understand the spectral response function Geant4, a Monte Carlo simulation package coded in C++, was used to model the detectors. Using a 1 mm{sup 3} Sn absorber and a monochromatic gamma source, different absorber geometries were tested. The simulation was expanded to include the Cu block behind the absorber and four layers of shielding required for detector operation at 0.1 K. The energy spectrum was modeled for an Am-241 and a Cs-137 source, including scattering events in the shielding, and the results were compared to experimental data. For both sources the main spectral features such as the photopeak, the Compton continuum, the escape x-rays and the backscatter peak were identified. Finally, the low energy response of a Pu-239 source was modeled to assess the feasibility of Pu-239 detection in spent fuel. This modeling of superconducting detectors can serve as a guide to optimize the configuration in future spectrometer designs.

  5. A perchlorate sensitive iodide transporter in frogs

    PubMed Central

    Carr, Deborah L.; Carr, James A.; Willis, Ray E.; Pressley, Thomas A.

    2008-01-01

    Nucleotide sequence comparisons have identified a gene product in the genome database of African clawed frogs (Xenopus laevis) as a probable member of the solute carrier family of membrane transporters. To confirm its identity as a putative iodide transporter, we examined the function of this sequence after heterologous expression in mammalian cells. A green monkey kidney cell line transfected with the Xenopus nucleotide sequence had significantly greater 125I uptake than sham-transfected control cells. The uptake in carrier-transfected cells was significantly inhibited in the presence of perchlorate, a competitive inhibitor of mammalian Na+/iodide symporter. Tissue distributions of the sequence were also consistent with a role in iodide uptake. The mRNA encoding the carrier was found to be expressed in the thyroid gland, stomach, and kidney of tadpoles from X. laevis, as well as the bullfrog Rana catesbeiana. The ovaries of adult X. laevis also were found to express the carrier. Phylogenetic analysis suggested that the putative X. laevis iodide transporter is orthologous to vertebrate Na+-dependent iodide symporters. We conclude that the amphibian sequence encodes a protein that is indeed a functional Na+/iodide symporter in Xenopus laevis, as well as Rana catesbeiana. PMID:18275962

  6. A 4 π charged-particle detector array for light-ion-induced nuclear fragmentation studies

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, K.; Alexander, A.; Bracken, D. S.; Brzychczyk, J.; Dorsett, J.; Ensman, R.; Renshaw Foxford, E.; Hamilton, T.; Komisarcik, K.; McDonald, K. N.; Morley, K. B.; Poehlman, J.; Powell, C.; Viola, V. E.; Yoder, N. R.; Ottarson, J.; Madden, N.

    1994-12-01

    Operating characteristics of the Indiana Silicon Sphere 4 π detector array are outlined. The detector geometry is spherical, with 90 telescopes in the forward hemisphere and 72 at backward angles, covering a total solid angle of 74% of 4π. Each telescope consists of a simple gas-ion chamber, operated with C3F8 gas, followed by a 0.5 mm thick ion-implanted silicon detector and a 28 mm CsI(Tl) crystal, readout by a photodiode. Custom-built bias supplies and NIM preamp/shaper modules were used in conjunction with commercial CFD, TDC and ADC CAMAC units.

  7. Databank of proton tracks in polyallyldiglycol carbonate (PADC) solid-state nuclear track detector for neutron energy spectrometry

    NASA Astrophysics Data System (ADS)

    Nikezic, D.; Milenkovic, B.; Yu, K. N.

    2015-12-01

    A computer program for studying etched proton tracks in the polyallyldiglycol carbonate (PADC) solid-state nuclear track detector was prepared. The program provided visualization of track appearance as seen under the optical microscope in the transmission mode. Measurable track parameters were also determined and displayed and written in a data file. Three-dimensional representation of tracks was also enabled. Application of this software in neutron dosimetry for energy up to 11 MeV was demonstrated through the creation of a databank with a large number of tracks, which would be used to compare real-life tracks obtained in the PADC detector upon neutron irradiation. One problem was identified, viz., very similar tracks were obtained from protons with very different energies and incident angles, and strategies to solve this were proposed.

  8. Recovery of anhydrous hydrogen iodide

    DOEpatents

    O'Keefe, Dennis R.; McCorkle, Jr., Kenneth H.; de Graaf, Johannes D.

    1982-01-01

    Relatively dry hydrogen iodide can be recovered from a mixture of HI, I.sub.2 and H.sub.2 O. After the composition of the mixture is adjusted so that the amounts of H.sub.2 O and I.sub.2 do not exceed certain maximum limits, subjection of the mixture to superatmospheric pressure in an amount equal to about the vapor pressure of HI at the temperature in question causes distinct liquid phases to appear. One of the liquid phases contains HI and not more than about 1 weight percent water. Often the adjustment in the composition will include the step of vaporization, and the distinct layers appear following the increase in pressure of the vapor mixture. Adjustment in the composition may also include the addition of an extraction agent, such as H.sub.3 PO.sub.4, and even though the adjusted composition mixture contains a significant amount of such an agent, the creation of the distinct liquid phases is not adversely affected.

  9. Power monitoring in space nuclear reactors using silicon carbide radiation detectors

    NASA Technical Reports Server (NTRS)

    Ruddy, Frank H.; Patel, Jagdish U.; Williams, John G.

    2005-01-01

    Space reactor power monitors based on silicon carbide (SiC) semiconductor neutron detectors are proposed. Detection of fast leakage neutrons using SiC detectors in ex-core locations could be used to determine reactor power: Neutron fluxes, gamma-ray dose rates and ambient temperatures have been calculated as a function of distance from the reactor core, and the feasibility of power monitoring with SiC detectors has been evaluated at several ex-core locations. Arrays of SiC diodes can be configured to provide the required count rates to monitor reactor power from startup to full power Due to their resistance to temperature and the effects of neutron and gamma-ray exposure, SiC detectors can be expected to provide power monitoring information for the fill mission of a space reactor.

  10. Instability of characteristics of SiC detectors subjected to extreme fluence of nuclear particles

    SciTech Connect

    Ivanov, A. M. Strokan, N. B.; Bogdanova, E. V.; Lebedev, A. A.

    2007-01-15

    The operation of detectors irradiated with 8-MeV protons at a fluence of 3 x 10{sup 14} cm{sup -2} has been studied. The detectors were based on modern CVD-grown n-4H-SiC films with a concentration of uncompensated donors equal to {approx}2 x 10{sup 14} cm{sup -3} and a thickness of 55 {mu}m. The high concentration of primary radiation defects ({approx}2 x 10{sup 17} cm{sup -3}) determined the deep compensation of the films. The basic characteristics of the detectors-pulse amplitude and resolution-exhibited temporal instability. This effect is due to prolonged capture of nonequilibrium carriers by radiation centers and the resulting appearance of a polarization voltage in the bulk of the detector. The kinetics of attainment of steady values by the quantities specified above was analyzed.

  11. Defects in CdMnTe crystals for nuclear detector applications

    NASA Astrophysics Data System (ADS)

    Yuanyuan, Du; Wanqi, Jie; Yadong, Xu; Xin, Zheng; Tao, Wang; Hui, Yu

    2013-04-01

    A laser scanning confocal microscope (LSCM) and a field-emission scanning electron microscope (FE-SEM) were used to study the defects in CdMnTe crystals, such as twin boundaries, Te inclusions, and dislocations. Twin boundaries were usually decorated with Te inclusions, which could induce dislocations. The optical, electrical properties and detector performance of CdMnTe crystals with twins and free of twins were compared. The results showed that the wafers with a high density of twins usually had lower average IR transmittance and poorer crystalline quality. Besides, the energy spectra indicated that twin boundaries in a CdMnTe detector had a negative effect on detector performance; the values of both the energy resolution and (μτ)e were nearly half of those for a single crystal detector.

  12. Active Inspection of Nuclear Materials Using {sup 4}He Scintillation Detectors

    SciTech Connect

    Davatz, G.; Howard, A.; Chandra, R.; Gendotti, U.

    2011-12-13

    The detection of fissionable materials by neutron and high-energy photon active interrogation methods is explored using {sup 4}He scintillation detectors to search for prompt and delayed neutron signature. The low electron density of {sup 4}He in addition to its pulse shape discrimination capability allows strong rejection of gamma radiation. For the detection of the prompt neutron signatures, this capability is important as the signal produced by induced fission is accompanied by intense gamma radiation. The nanosecond time resolution of {sup 4}He scintillation detectors can be used for time-of-flight measurements aimed at determining the energy of the emitted neutrons. For delayed neutron detection, the insensitivity to the low energy neutrons present from non-signal reactions is inherent. Unlike detectors requiring a moderator, this technology can easily be collimated to reduce sensitivity to neutrons from outside the field of interest. The performance of the detectors for these applications is studied using GEANT4 computer modeling, based on measured detector parameters. A comparison is made with technologies typically used for these applications, i.e. heavily shielded organic scintillators for prompt neutron detection and Cd-lined {sup 3}He neutron detectors for the detection of delayed neutrons.

  13. National Array of Neutron Detectors (NAND): A versatile tool for nuclear reaction studies

    NASA Astrophysics Data System (ADS)

    Golda, K. S.; Jhingan, A.; Sugathan, P.; Singh, Hardev; Singh, R. P.; Behera, B. R.; Mandal, S.; Kothari, A.; Gupta, Arti; Zacharias, J.; Archunan, M.; Barua, P.; Venkataramanan, S.; Bhowmik, R. K.; Govil, I. M.; Datta, S. K.; Chatterjee, M. B.

    2014-11-01

    The first phase of the National Array of Neutron Detectors (NAND) consisting of 26 neutron detectors has been commissioned at the Inter University Accelerator Centre (IUAC), New Delhi. The motivation behind setting up of such a detector system is the need for more accurate and efficient study of reaction mechanisms in the projectile energy range of 5-8 MeV/n using heavy ion beams from a 15 UD Pelletron and an upgraded LINAC booster facility at IUAC. The above detector array can be used for inclusive as well as exclusive measurements of reaction products of which at least one product is a neutron. While inclusive measurements can be made using only the neutron detectors along with the time of flight technique and a pulsed beam, exclusive measurements can be performed by detecting neutrons in coincidence with charged particles and/or fission fragments detected with ancillary detectors. The array can also be used for neutron tagged gamma-ray spectroscopy in (HI, xn) reactions by detecting gamma-rays in coincidence with the neutrons in a compact geometrical configuration. The various features and the performance of the different aspects of the array are described in the present paper.

  14. Threshold self-powered gamma detector for use as a monitor of power in a nuclear reactor

    DOEpatents

    LeVert, Francis E.; Cox, Samson A.

    1978-01-01

    A self-powered gamma monitor for placement near the core of a nuclear reactor comprises a lead prism surrounded by a coaxial thin nickel sheet, the combination forming a collector. A coaxial polyethylene electron barrier encloses the collector and is separated from the nickel sheet by a vacuum region. The electron barrier is enclosed by a coaxial stainless steel emitter which, in turn, is enclosed within a lead casing. When the detector is placed in a flux of gamma rays, a measure of the current flow in an external circuit between emitter and collector provides a measure of the power level of the reactor.

  15. Study of semitransparent palladium contacts on mercuric iodide by photoluminescence spectroscopy and thermally stimulated current measurements

    NASA Astrophysics Data System (ADS)

    Bao, X. J.; Schlesinger, T. E.; James, R. B.; Gentry, G. L.; Cheng, A. Y.; Ortale, C.

    1991-04-01

    Semitransparent palladium contacts on mercuric iodide were studied by low temperature photoluminescence spectroscopy and thermally stimulated conductivity. These contacts were deposited either by thermal evaporation or by plasma sputtering. Changes due to palladium deposition were found in the photoluminescence spectra and were attributed to modifications in the stoichiometry within the palladium/mercuric iodide interfacial region. Thermally stimulated conductivity measurements revealed two dominant traps with activation energies of 0.010 and 0.54 eV. The importance of these traps in the application of nuclear detection is discussed.

  16. Formation of methyl iodide on a natural manganese oxide.

    PubMed

    Allard, Sébastien; Gallard, Hervé; Fontaine, Claude; Croué, Jean-Philippe

    2010-08-01

    This paper demonstrates that manganese oxides can initiate the formation of methyl iodide, a volatile compound that participates to the input of iodine into the atmosphere. The formation of methyl iodide was investigated using a natural manganese oxide in batch experiments for different conditions and concentrations of iodide, natural organic matter (NOM) and manganese oxide. Methyl iodide was formed at concentrations iodide concentrations ranging from 0.8 to 38.0 mg L(-1). The production of methyl iodide increased with increasing initial concentrations of iodide ion and Mn sand and when pH decreased from 7 to 5. The hydrophilic NOM isolate exhibited the lowest yield of methyl iodide whereas hydrophobic NOM isolates such as Suwannee River HPOA fraction produced the highest concentration of methyl iodide. The formation of methyl iodide could take place through the oxidation of NOM on manganese dioxide in the presence of iodide. However, the implication of elemental iodine cannot be excluded at acidic pH. Manganese oxides can then participate with ferric oxides to the formation of methyl iodide in soils and sediments. The formation of methyl iodide is unlikely in technical systems such as drinking water treatment i.e. for ppt levels of iodide and low contact times with manganese oxides. PMID:20580399

  17. Strontium Iodide Instrument Development for Gamma Spectroscopy and Radioisotope Identification

    SciTech Connect

    Beck, P; Cherepy, Nerine; Payne, Stephen A.; Swanberg, E.; Nelson, K.; Thelin, P; Fisher, S E; Hunter, Steve; Wihl, B; Shah, Kanai; Hawrami, Rastgo; Burger, Arnold; Boatner, Lynn A; Momayezi, M; Stevens, K; Randles, M H; Solodovnikov, D

    2014-01-01

    Development of the Europium-doped Strontium Iodide scintillator, SrI2(Eu), has progressed significantly in recent years. SrI2(Eu) has excellent material properties for gamma ray spectroscopy: high light yield (>80,000 ph/MeV), excellent light yield proportionality, and high effective atomic number (Z=49) for high photoelectric cross-section. High quality 1.5 and 2 diameter boules are now available due to rapid advances in SrI2(Eu) crystal growth. In these large SrI2(Eu) crystals, optical self-absorption by Eu2+ degrades the energy resolution as measured by analog electronics, but we mitigate this effect through on-the-fly correction of the scintillation pulses by digital readout electronics. Using this digital correction technique we have demonstrated energy resolution of 2.9% FWHM at 662 keV for a 4 in3 SrI2(Eu) crystal, over 2.6 inches long. Based on this digital readout technology, we have developed a detector prototype with greatly improved radioisotope identification capability compared to Sodium Iodide, NaI(Tl). The higher resolution of SrI2(Eu) yields a factor of 2 to 5 improvement in radioisotope identification (RIID) error rate compared to NaI(Tl).

  18. Strontium iodide instrument development for gamma spectroscopy and radioisotope identification

    NASA Astrophysics Data System (ADS)

    Beck, P. R.; Cherepy, N. J.; Payne, S. A.; Swanberg, E. L.; Nelson, K. E.; Thelin, P. A.; Fisher, S. E.; Hunter, S.; Wihl, B. M.; Shah, K. S.; Hawrami, R.; Burger, A.; Boatner, L. A.; Momayezi, M.; Stevens, K. T.; Randles, M. H.; Solodovnikov, D.

    2014-09-01

    Development of the Europium-doped Strontium Iodide scintillator, SrI2(Eu2+), has progressed significantly in recent years. SrI2(Eu2+) has excellent material properties for gamma ray spectroscopy: high light yield (<80,000 ph/MeV), excellent light yield proportionality, and high effective atomic number (Z = 49) for high photoelectric cross-section. High quality 1.5" and 2" diameter boules are now available due to rapid advances in SrI2(Eu) crystal growth. In these large SrI2(Eu) crystals, optical self-absorption by Eu2+ degrades the energy resolution as measured by analog electronics, but we mitigate this effect through on-the-fly correction of the scintillation pulses by digital readout electronics. Using this digital correction technique we have demonstrated energy resolution of 2.9% FWHM at 662 keV for a 4 in3 SrI2(Eu) crystal, over 2.6 inches long. Based on this digital readout technology, we have developed a detector prototype with greatly improved radioisotope identification capability compared to Sodium Iodide, NaI(Tl). The higher resolution of SrI2(Eu) yields a factor of 2 to 5 improvement in radioisotope identification (RIID) error rate compared to NaI(Tl).

  19. Study of a new design of p-N semiconductor detector array for nuclear medicine imaging by monte carlo simulation codes.

    PubMed

    Hajizadeh-Safar, M; Ghorbani, M; Khoshkharam, S; Ashrafi, Z

    2014-07-01

    Gamma camera is an important apparatus in nuclear medicine imaging. Its detection part is consists of a scintillation detector with a heavy collimator. Substitution of semiconductor detectors instead of scintillator in these cameras has been effectively studied. In this study, it is aimed to introduce a new design of P-N semiconductor detector array for nuclear medicine imaging. A P-N semiconductor detector composed of N-SnO2 :F, and P-NiO:Li, has been introduced through simulating with MCNPX monte carlo codes. Its sensitivity with different factors such as thickness, dimension, and direction of emission photons were investigated. It is then used to configure a new design of an array in one-dimension and study its spatial resolution for nuclear medicine imaging. One-dimension array with 39 detectors was simulated to measure a predefined linear distribution of Tc(99_m) activity and its spatial resolution. The activity distribution was calculated from detector responses through mathematical linear optimization using LINPROG code on MATLAB software. Three different configurations of one-dimension detector array, horizontal, vertical one sided, and vertical double-sided were simulated. In all of these configurations, the energy windows of the photopeak were ± 1%. The results show that the detector response increases with an increase of dimension and thickness of the detector with the highest sensitivity for emission photons 15-30° above the surface. Horizontal configuration array of detectors is not suitable for imaging of line activity sources. The measured activity distribution with vertical configuration array, double-side detectors, has no similarity with emission sources and hence is not suitable for imaging purposes. Measured activity distribution using vertical configuration array, single side detectors has a good similarity with sources. Therefore, it could be introduced as a suitable configuration for nuclear medicine imaging. It has been shown that using

  20. Study of a New Design of P-N Semiconductor Detector Array for Nuclear Medicine Imaging by Monte Carlo Simulation Codes

    PubMed Central

    Hajizadeh-Safar, M.; Ghorbani, M.; Khoshkharam, S.; Ashrafi, Z.

    2014-01-01

    Gamma camera is an important apparatus in nuclear medicine imaging. Its detection part is consists of a scintillation detector with a heavy collimator. Substitution of semiconductor detectors instead of scintillator in these cameras has been effectively studied. In this study, it is aimed to introduce a new design of P-N semiconductor detector array for nuclear medicine imaging. A P-N semiconductor detector composed of N-SnO2 :F, and P-NiO:Li, has been introduced through simulating with MCNPX monte carlo codes. Its sensitivity with different factors such as thickness, dimension, and direction of emission photons were investigated. It is then used to configure a new design of an array in one-dimension and study its spatial resolution for nuclear medicine imaging. One-dimension array with 39 detectors was simulated to measure a predefined linear distribution of Tc99_m activity and its spatial resolution. The activity distribution was calculated from detector responses through mathematical linear optimization using LINPROG code on MATLAB software. Three different configurations of one-dimension detector array, horizontal, vertical one sided, and vertical double-sided were simulated. In all of these configurations, the energy windows of the photopeak were ± 1%. The results show that the detector response increases with an increase of dimension and thickness of the detector with the highest sensitivity for emission photons 15-30° above the surface. Horizontal configuration array of detectors is not suitable for imaging of line activity sources. The measured activity distribution with vertical configuration array, double-side detectors, has no similarity with emission sources and hence is not suitable for imaging purposes. Measured activity distribution using vertical configuration array, single side detectors has a good similarity with sources. Therefore, it could be introduced as a suitable configuration for nuclear medicine imaging. It has been shown that using

  1. Development of Scintillators in Nuclear Medicine

    PubMed Central

    Khoshakhlagh, Mohammad; Islamian, Jalil Pirayesh; Abedi, Seyed Mohammad; Mahmoudian, Babak

    2015-01-01

    High-quality image is necessary for accurate diagnosis in nuclear medicine. There are many factors in creating a good image and detector is the most important one. In recent years, several detectors are studied to get a better picture. The aim of this paper is comparison of some type of these detectors such as thallium activated sodium iodide bismuth germinate cesium activated yttrium aluminum garnet (YAG: Ce) YAP: Ce “lutetium aluminum garnet activated by cerium” CRY018 “CRY019” lanthanum bromide and cadmium zinc telluride. We studied different properties of these crystals including density, energy resolution and decay times that are more important factors affecting the image quality. PMID:26420984

  2. Fundamental studies of methyl iodide adsorption in DABCO impregnated activated carbons.

    PubMed

    Herdes, Carmelo; Prosenjak, Claudia; Román, Silvia; Müller, Erich A

    2013-06-11

    Methyl iodide capture from a water vapor stream using 1,4-diazabicyclo[2.2.2]octane (DABCO)-impregnated activated carbons is, for the first time, fundamentally described here on the atomic level by means of both molecular dynamics and grand canonical Monte Carlo simulations. A molecular dynamics annealing strategy was adopted to mimic the DABCO experimental impregnation procedure in a selected slitlike carbon pore. Predictions, restricted to the micropore region, are made about the adsorption isotherms of methyl iodide, water, and nitrogen on both impregnated and bare activated carbon models. Experimental and simulated nitrogen adsorption isotherms are compared for the validation of the impregnation strategy. Selectivity analyses of the preferential adsorption toward methyl iodide over water are also reported. These simulated adsorption isotherms sum up to previous experimental studies to provide an enhanced picture for this adsorption system of widespread use at nuclear plant HVAC facilities for the capture of radioactive iodine compounds. PMID:23679202

  3. Effect of extreme radiation fluences on parameters of SiC nuclear particle detectors

    SciTech Connect

    Ivanov, A. M. Lebedev, A. A.; Strokan, N. B.

    2006-10-15

    Detectors based on modern CVD-grown films were irradiated with 8 MeV protons at a fluence of 3 x 10{sup 14} cm{sup -2}. The concentration of primary radiation defects was {approx}10{sup 17} cm{sup -3}, which is three orders of magnitude higher than the concentration of the initially present uncompensated donors. The resulting deep compensation of SiC enabled measurements of detector parameters in two modes: under reverse and forward bias. The basic parameters of the detectors degraded by no more than a factor of 1.7, compared with the fluence of 1 x 10{sup 14} cm{sup -2}. However, there appeared a polarization voltage, which indicates that a space charge is accumulated by radiation defects.

  4. Calibration of solid state nuclear track detectors at high energy ion beams for cosmic radiation measurements: HAMLET results

    NASA Astrophysics Data System (ADS)

    Szabó, J.; Pálfalvi, J. K.

    2012-12-01

    The MATROSHKA experiments and the related HAMLET project funded by the European Commission aimed to study the dose burden of the crew working on the International Space Station (ISS). During these experiments a human phantom equipped with several thousands of radiation detectors was exposed to cosmic rays inside and outside the ISS. Besides the measurements realized in Earth orbit, the HAMLET project included also a ground-based program of calibration and intercomparison of the different detectors applied by the participating groups using high-energy ion beams. The Space Dosimetry Group of the Centre for Energy Research (formerly Atomic Energy Research Institute) participated in these experiments with passive solid state nuclear track detectors (SSNTDs). The paper presents the results of the calibration experiments performed in the years 2008-2011 at the Heavy Ion Medical Accelerator (HIMAC) of the National Institute of Radiological Sciences (NIRS), Chiba, Japan. The data obtained serve as update and improvement for the previous calibration curves which are necessary for the evaluation of the SSNTDs exposed in unknown space radiation fields.

  5. AIDA: A 16-channel amplifier ASIC to read out the advanced implantation detector array for experiments in nuclear decay spectroscopy

    SciTech Connect

    Braga, D.; Coleman-Smith, P. J.; Davinson, T.; Lazarus, I. H.; Page, R. D.; Thomas, S.

    2011-07-01

    We have designed a read-out ASIC for nuclear decay spectroscopy as part of the AIDA project - the Advanced Implantation Detector Array. AIDA will be installed in experiments at the Facility for Antiproton and Ion Research in GSI, Darmstadt. The AIDA ASIC will measure the signals when unstable nuclei are implanted into the detector, followed by the much smaller signals when the nuclei subsequently decay. Implant energies can be as high as 20 GeV; decay products need to be measured down to 25 keV within just a few microseconds of the initial implants. The ASIC uses two amplifiers per detector channel, one covering the 20 GeV dynamic range, the other selectable over a 20 MeV or 1 GeV range. The amplifiers are linked together by bypass transistors which are normally switched off. The arrival of a large signal causes saturation of the low-energy amplifier and a fluctuation of the input voltage, which activates the link to the high-energy amplifier. The bypass transistors switch on and the input charge is integrated by the high-energy amplifier. The signal is shaped and stored by a peak-hold, then read out on a multiplexed output. Control logic resets the amplifiers and bypass circuit, allowing the low-energy amplifier to measure the subsequent decay signal. We present simulations and test results, demonstrating the AIDA ASIC operation over a wide range of input signals. (authors)

  6. On the Absorber Thickness of Microcalorimetric Detectors in Experiments at Nuclear Storage Rings

    NASA Astrophysics Data System (ADS)

    Andrianov, V. A.; Kraft-Bermuth, S.; Scholz, P.

    2016-01-01

    Low-temperature calorimetric detectors are now successfully used in experiments on Lamb-Shift measurements at experimental storage rings. Strong Doppler broadening of the detected X-ray lines is a prominent feature of these experiments. Accordingly, an optimization procedure for the absorber thickness is proposed that considers the self-width of the X-ray detector line, the Doppler broadening, and the absorption efficiency, taking into account the possibility of the escape of secondary radiation. The optimum thickness for Sn-absorbers in this type of experiments is determined as 0.17 mm.

  7. Monitoring the thermal power of nuclear reactors with a prototype cubic meter antineutrino detector

    NASA Astrophysics Data System (ADS)

    Bernstein, A.; Bowden, N. S.; Misner, A.; Palmer, T.

    2008-04-01

    In this paper, we estimate how quickly and how precisely a reactor's operational status and thermal power can be monitored over hour to month time scales, using the antineutrino rate as measured by a cubic meter scale detector. Our results are obtained from a detector we have deployed and operated at 25m standoff from a reactor core. This prototype can detect a prompt reactor shutdown within 5h and monitor relative thermal power to within 7days. Monitoring of short-term power changes in this way may be useful in the context of International Atomic Energy Agency's reactor safeguards regime or other cooperative monitoring regimes.

  8. Instructions for calibrating gamma detectors using the Canberra-Nuclear Data Genie Gamma Spectroscopy System

    SciTech Connect

    Brunk, J.L.

    1995-09-01

    A straight forward protocol provides a way to guide the calibration of a gamma detector for a particular geometry and material. Several programs have used the Low Level Gamma Counting Facility of the Health and Ecological Assessment Division of the Lawrence Livermore National Laboratory to count a variety of large environmental samples contained in several unique geometries. The equipment and calibration requirements needed to analyze these types of samples are explained. This document describes the calibration protocol that has been developed and describes how it is used to calibrate the detectors.

  9. On the Absorber Thickness of Microcalorimetric Detectors in Experiments at Nuclear Storage Rings

    NASA Astrophysics Data System (ADS)

    Andrianov, V. A.; Kraft-Bermuth, S.; Scholz, P.

    2016-07-01

    Low-temperature calorimetric detectors are now successfully used in experiments on Lamb-Shift measurements at experimental storage rings. Strong Doppler broadening of the detected X-ray lines is a prominent feature of these experiments. Accordingly, an optimization procedure for the absorber thickness is proposed that considers the self-width of the X-ray detector line, the Doppler broadening, and the absorption efficiency, taking into account the possibility of the escape of secondary radiation. The optimum thickness for Sn-absorbers in this type of experiments is determined as 0.17 mm.

  10. Nanostructured LaF{sub 3}:Ce Quantum Dot Nuclear Radiation Detector

    SciTech Connect

    Guss, P., Guise, R., Reed, M., Mukhopadhyay, S., Yuan, D.

    2010-11-01

    Many radioactive isotopes have low energy X-rays and high energy gamma rays of interest for detection. The goal of the work presented was to demonstrate the possibility of measuring both low-energy X-rays and relatively high-energy gamma rays simultaneously using the nano-structured lanthanum bromide, lanthanum fluoride, or cerium bromide. The key accomplishments of the project was the building and acquisition of the LaF3:Ce nanocomposite detectors. Nanocomposite detectors are sensitive to {gamma}’s as well as n’s and X-rays.

  11. Mossbauer spectrometer radiation detector

    NASA Technical Reports Server (NTRS)

    Singh, J. J. (Inventor)

    1973-01-01

    A Mossbauer spectrometer with high efficiencies in both transmission and backscattering techniques is described. The device contains a sodium iodide crystal for detecting radiation caused by the Mossbauer effect, and two photomultipliers to collect the radiation detected by the crystal. When used in the transmission technique, the sample or scatterer is placed between the incident radiation source and the detector. When used in a backscattering technique, the detector is placed between the incident radiation source and the sample of scatterer such that the incident radiation will pass through a hole in the crystal and strike the sample. Diagrams of the instrument are provided.

  12. Instrument Development and Gamma Spectroscopy with Strontium Iodide

    SciTech Connect

    Cherepy, Nerine; Payne, Stephen A.; Sturm, Benjamin; Drury, Owen; O’Neal, S P; Thelin, P; Shah, Kanai; Hawrami, Rastgo; Momayezi, M; Hurst, B.; Wiggen, B.; Bhattacharya, P.; Burger, Arnold; Boatner, Lynn A; Ramey, Joanne Oxendine

    2012-01-01

    Development of the Europium-doped Strontium Iodide scintillator, SrI2(Eu), involves advances in crystal growth, optics and readout methodology for prototype detectors. We have demonstrated energy resolution of 3% at 662 keV for a 26 cm3 SrI2(Eu) crystal, which is comparable to the performance obtained with Cerium-doped Lanthanum Bromide of equivalent size. Compared to standard analog readout, use of a digital readout method allows improved energy resolution to be obtained with large-volume SrI2(Eu) crystals. Comparative gamma spectra acquired with LaBr3(Ce) and NaI(Tl) quantitatively depict the value of the high resolution and low intrinsic radioactivity of SrI2(Eu) in discriminating closely spaced gamma lines for radioisotope identification applications.

  13. Gamma spectrometric characterization of short cooling time nuclear spent fuels using hemispheric CdZnTe detectors

    NASA Astrophysics Data System (ADS)

    Lebrun, A.; Bignan, G.; Szabo, J. L.; Arenas-Carrasco, J.; Arlt, R.; Dubreuil, A.; Esmailpur Kazerouni, K.

    2000-07-01

    After years of cooling, nuclear spent fuel gamma emissions are mainly due to caesium isotopes which are emitters at 605, 662 and 796-801 keV. Extensive work has been done on such fuels using various CdTe or CdZnTe probes. When fuels have to be measured after short cooling time (during NPP outage) the spectrum is much more complex due to the important contributions of niobium and zirconium in the 700 keV range. For the first time in a nuclear power plant, four spent fuels of the Kozloduy VVER reactor no 4 were measured during outage, 37 days after shutdown of the reactor. In such conditions, good resolution is of particular interest, so a 20 mm 3 hemispheric crystal was used with a resolution better than 7 keV at 662 keV. This paper presents the experimental device and analyzes the results which show that CdZnTe commercially available detectors enabled us to perform a semi-quantitative determination of the burn-up after a short cooling time. In addition, it is discussed how a burn-up evolution code (CESAR) coupled to a gamma transport code (MCNP) allows us to predict and interpret the experimental data from CdZnTe detectors. Particularly, bremsstrahlung contribution to the gamma spectra is suggested and modeled. Calculation results indicate a good agreement between this hypothesis and the present measurements.

  14. Nanocomposite scintillator, detector, and method

    DOEpatents

    Cooke, D. Wayne; McKigney, Edward A.; Muenchausen, Ross E.; Bennett, Bryan L.

    2009-04-28

    A compact includes a mixture of a solid binder and at least one nanopowder phosphor chosen from yttrium oxide, yttrium tantalate, barium fluoride, cesium fluoride, bismuth germanate, zinc gallate, calcium magnesium pyrosilicate, calcium molybdate, calcium chlorovanadate, barium titanium pyrophosphate, a metal tungstate, a cerium doped nanophosphor, a bismuth doped nanophosphor, a lead doped nanophosphor, a thallium doped sodium iodide, a doped cesium iodide, a rare earth doped pyrosilicate, or a lanthanide halide. The compact can be used in a radiation detector for detecting ionizing radiation.

  15. Monolithic circuits for barium fluoride detectors used in nuclear physics experiments. CRADA final report

    SciTech Connect

    Varner, R.L.; Blankenship, J.L.; Beene, J.R.; Todd, R.A.

    1998-02-01

    Custom monolithic electronic circuits have been developed recently for large detector applications in high energy physics where subsystems require tens of thousands of channels of signal processing and data acquisition. In the design and construction of these enormous detectors, it has been found that monolithic circuits offer significant advantages over discrete implementations through increased performance, flexible packaging, lower power and reduced cost per channel. Much of the integrated circuit design for the high energy physics community is directly applicable to intermediate energy heavy-ion and electron physics. This STTR project conducted in collaboration with researchers at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory, sought to develop a new integrated circuit chip set for barium fluoride (BaF{sub 2}) detector arrays based upon existing CMOS monolithic circuit designs created for the high energy physics experiments. The work under the STTR Phase 1 demonstrated through the design, simulation, and testing of several prototype chips the feasibility of using custom CMOS integrated circuits for processing signals from BaF{sub 2} detectors. Function blocks including charge-sensitive amplifiers, comparators, one shots, time-to-amplitude converters, analog memory circuits and buffer amplifiers were implemented during Phase 1 effort. Experimental results from bench testing and laboratory testing with sources were documented.

  16. Externally-Modulated Electro-Optically Coupled Detector Architecture for Nuclear Physics Instrumentation

    SciTech Connect

    Xi, Wenze; McKisson, John E.; Weisenberger, Andrew G.; Zhang, Shukui; Zorn, Carl J.

    2014-06-01

    A new laser-based externally-modulated electro-optically coupled detector (EOCD) architecture is being developed to enable high-density readout for radiation detectors with accurate analog radiation pulse shape and timing preservation. Unlike digital conversion before electro-optical modulation, the EOCD implements complete analog optical signal modulation and multiplexing in its detector front-end. The result is a compact, high performance detector readout that can be both radiation tolerant and immune to magnetic fields. In this work, the feasibility of EOCD was explored by constructing a two-wavelength laser-based externally-modulated EOCD, and testing analog pulse shape preservation and wavelength-division multiplexing (WDM) crosstalk. Comparisons were first made between the corresponding initial pulses and the electro-optically coupled analog pulses. This confirmed an excellent analog pulse preservation over $ sim {hbox {29}}% $ of the modulator’s switching voltage range. Optical spectrum analysis revealed less than $-{hbox {14}}~hbox{dB}$ crosstalk with 1.2 nm WDM wavelength bandgap, and provided insight on experimental conditions that could lead to increased inter-wavelength crosstalk. Further discussions and previous research on the radiation tolerance and magnetic field immunity of the candidate materials were also given, and quantitative device testing is proposed in the future.

  17. Proceedings of the symposium on RHIC detector R&D

    SciTech Connect

    Makdisi, Y.; Stevens, A.J.

    1991-12-31

    This report contains papers on the following topics: Development of Analog Memories for RHIC Detector Front-end Electronic Systems; Monolithic Circuit Development for RHIC at Oak Ridge National Laboratory; Highly Integrated Electronics for the STAR TPC; Monolithic Readout Circuits for RHIC; New Methods for Trigger Electronics Development; Neurocomputing methods for Pattern Recognition in Nuclear Physics; The Development of a Silicon Multiplicity Detector System; The Vertex Detector for the Lepton/Photon Collaboration; Simulations of Silicon Vertex Tracker for STAR Experiment at RHIC; Calorimeter/Absorber Optimization for a RHIC Dimuon Experiment (RD-10 Project); Applications of the LAHET simulation Code to Relativistic Heavy Ion Detectors; Highly Segmented, High Resolution Time-of-Flight System; Research and Development on a Sub 100 Picosecond Time-of-Flight System Based on Silicon Avalance Diodes; Behavior of TPC`s in a High Particle Flux Environment; Generic R&D on Undoped Cesium Iodide and Lead Fluoride; and A Transition Radiation Detector for RHIC Featuring Accurate Tracking and dE/dx Particle Identification. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  18. Study of the effect of the stress on CdTe nuclear detectors

    SciTech Connect

    Ayoub, M.; Radley, I.; Mullins, J. T.; Hage-Ali, M.

    2013-09-14

    CdTe detectors are commonly used for X and γ ray applications. The performance of these detectors is strongly affected by different types of mechanical stress; such as that caused by differential expansion between the semiconductor and its intimate metallic contacts and that caused by applied pressure during the bonding process. The aim of this work was to study the effects of stress on the performance of CdTe detectors. A difference in expansion coefficients induces transverse stress under the metallic contact, while contact pressure induces longitudinal stress. These stresses have been simulated by applying known static pressures. For the longitudinal case, the pressure was applied directly to the metallic contact; while in the transverse case, it was applied to the side. We have studied the effect of longitudinal and transverse stresses on the electrical characteristics including leakage current measurements and γ-ray detection performance. We have also investigated induced defects, their nature, activation energies, cross sections, and concentrations under the applied stress by using photo-induced current transient spectroscopy and thermoelectric effect spectroscopy techniques. The operational stress limit is also given.

  19. Simplest Formula of Copper Iodide: A Stoichiometry Experiment.

    ERIC Educational Resources Information Center

    MacDonald, D. J.

    1983-01-01

    Describes an experiment presented to students as a problem in determining the stoichiometry of "copper iodide" to decide whether it is cuprous iodide or cupric iodide. The experiment illustrates stoichiometry principles, providing experiences with laboratory techniques and numerical computation. Detailed outline (written for student use) is…

  20. 21 CFR 184.1265 - Cuprous iodide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Cuprous iodide. 184.1265 Section 184.1265 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS §...

  1. 21 CFR 184.1265 - Cuprous iodide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the following specific limitations: Category of food Maximum treatment level in food Functional use... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Cuprous iodide. 184.1265 Section 184.1265 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR...

  2. Developments in mercuric iodide gamma ray imaging

    NASA Astrophysics Data System (ADS)

    Patt, B. E.; Beyerle, A. G.; Dolin, R. C.; Ortale, C.

    A mercuric iodide gamma-ray imaging array and camera system previously described has been characterized for spatial and energy resolution. Based on this data a new camera is being developed to more fully exploit the potential of the array. Characterization results and design criterion for the new camera will be presented.

  3. Developments in mercuric iodide gamma ray imaging

    NASA Astrophysics Data System (ADS)

    Patt, B. E.; Beyerle, A. G.; Dolin, R. C.; Ortale, C.

    1989-11-01

    A mercuric iodide (HgI2) gamma ray imaging array and camera system previously described have been characterized for spatial and energy resolution. Based on these data a new camera is being developed to more fully exploit the potential of the array. Characterization results and design criteria for the new camera will be presented.

  4. Methyl Iodide Fumigation of Bacillus anthracis Spores.

    PubMed

    Sutton, Mark; Kane, Staci R; Wollard, Jessica R

    2015-09-01

    Fumigation techniques such as chlorine dioxide, vaporous hydrogen peroxide, and paraformaldehyde previously used to decontaminate items, rooms, and buildings following contamination with Bacillus anthracis spores are often incompatible with materials (e.g., porous surfaces, organics, and metals), causing damage or residue. Alternative fumigation with methyl bromide is subject to U.S. and international restrictions due to its ozone-depleting properties. Methyl iodide, however, does not pose a risk to the ozone layer and has previously been demonstrated as a fumigant for fungi, insects, and nematodes. Until now, methyl iodide has not been evaluated against Bacillus anthracis. Sterne strain Bacillus anthracis spores were subjected to methyl iodide fumigation at room temperature and at 550C. Efficacy was measured on a log-scale with a 6-log reduction in CFUs being considered successful compared to the U.S. Environmental Protection Agency biocide standard. Such efficacies were obtained after just one hour at 55 °C and after 12 hours at room temperature. No detrimental effects were observed on glassware, PTFE O-rings, or stainless steel. This is the first reported efficacy of methyl iodide in the reduction of Bacillus anthracis spore contamination at ambient and elevated temperatures. PMID:26502561

  5. Scintillator handbook with emphasis on cesium iodide

    NASA Technical Reports Server (NTRS)

    Tidd, J. L.; Dabbs, J. R.; Levine, N.

    1973-01-01

    This report provides a background of reasonable depth and reference material on scintillators in general. Particular attention is paid to the cesium iodide scintillators as used in the High Energy Astronomy Observatory (HEAO) experiments. It is intended especially for use by persons such as laboratory test personnel who need to obtain a working knowledge of these materials and their characteristics in a short time.

  6. Iodide effects in transition metal catalyzed reactions.

    PubMed

    Maitlis, Peter M; Haynes, Anthony; James, Brian R; Catellani, Marta; Chiusoli, Gian Paolo

    2004-11-01

    The unique properties of I(-) allow it to be involved in several different ways in reactions catalyzed by the late transition metals: in the oxidative addition, the migration, and the coupling/reductive elimination steps, as well as in substrate activation. Most steps are accelerated by I(-)(for example through an increased nucleophilicity of the metal center), but some are retarded, because a coordination site is blocked. The "soft" iodide ligand binds more strongly to soft metals (low oxidation state, electron rich, and polarizable) such as the later and heavier transition metals, than do the other halides, or N- and O-centered ligands. Hence in a catalytic cycle that includes the metal in a formally low oxidation state there will be less tendency for the metal to precipitate (and be removed from the cycle) in the presence of I(-) than most other ligands. Iodide is a good nucleophile and is also easily and reversibly oxidized to I(2). In addition, I(-) can play key roles in purely organic reactions that occur as part of a catalytic cycle. Thus to understand the function of iodide requires careful analysis, since two or sometimes more effects occur in different steps of one single cycle. Each of these topics is illustrated with examples of the influence of iodide from homogeneous catalytic reactions in the literature: methanol carbonylation to acetic acid and related reactions; CO hydrogenation; imine hydrogenation; and C-C and C-N coupling reactions. General features are summarised in the Conclusions. PMID:15510253

  7. Nuclear resonant scattering measurements on {sup 57}Fe by multichannel scaling with a 64-pixel silicon avalanche photodiode linear-array detector

    SciTech Connect

    Kishimoto, S. Haruki, R.; Mitsui, T.; Yoda, Y.; Taniguchi, T.; Shimazaki, S.; Ikeno, M.; Saito, M.; Tanaka, M.

    2014-11-15

    We developed a silicon avalanche photodiode (Si-APD) linear-array detector for use in nuclear resonant scattering experiments using synchrotron X-rays. The Si-APD linear array consists of 64 pixels (pixel size: 100 × 200 μm{sup 2}) with a pixel pitch of 150 μm and depletion depth of 10 μm. An ultrafast frontend circuit allows the X-ray detector to obtain a high output rate of >10{sup 7} cps per pixel. High-performance integrated circuits achieve multichannel scaling over 1024 continuous time bins with a 1 ns resolution for each pixel without dead time. The multichannel scaling method enabled us to record a time spectrum of the 14.4 keV nuclear radiation at each pixel with a time resolution of 1.4 ns (FWHM). This method was successfully applied to nuclear forward scattering and nuclear small-angle scattering on {sup 57}Fe.

  8. Application of Solid State Nuclear Track Detectors in TEXTOR Experiment for Measurements of Fusion-Reaction Protons

    SciTech Connect

    Szydlowski, A.; Malinowska, A.; Jaskola, M.; Korman, A.; Sadowski, M. J.; Wassenhove, G. van; Galkowski, A.

    2008-03-19

    The paper reports on measurements of the space distribution of fusion protons of energy equal to about 3-MeV, originating from the D(d, p)T reactions. The measurements were carried out on the TEXTOR facility by means of a small ion pinhole camera, which was equipped with a solid-state nuclear track detector of the PM-355 type. The results obtained in two series of successive discharges are compared. The first series was performed with an additional heating of TEXTOR plasmas with NBI of fast deuterons, whereas in the second series plasma was heated by ICRF and NBI of hydrogen neutrals. Computer simulations of different trajectories of charged particles have been performed with the Gourdon code and the detection efficiency has been calculated for various orientations of the measuring assembly.

  9. Search of neutrino magnetic moments with a high-purity germanium detector at the Kuo-Sheng nuclear power station

    SciTech Connect

    Wong, H. T.; Li, H. B.; Lee, F. S.; Wu, S. C.; Chen, C. P.; Chou, M. H.; Jon, G. C.; Lai, W. P.; Lee, S. C.; Lin, F. K.; Lin, S. K.; Lin, S. T.; Chang, H. M.; Liao, H. Y.; Singh, V.; Chang, C. Y.; Deniz, M.; Fang, J. M.; Su, R. F.; Hu, C. H.

    2007-01-01

    A search of neutrino magnetic moments was carried out at the Kuo-Sheng nuclear power station at a distance of 28 m from the 2.9 GW reactor core. With a high purity germanium detector of mass 1.06 kg surrounded by scintillating NaI(Tl) and CsI(Tl) crystals as anti-Compton detectors, a detection threshold of 5 keV and a background level of 1 kg{sup -1} keV{sup -1} day{sup -1} near threshold were achieved. Details of the reactor neutrino source, experimental hardware, background understanding, and analysis methods are presented. Based on 570.7 and 127.8 days of Reactor ON and OFF data, respectively, at an average Reactor ON electron antineutrino flux of 6.4x10{sup 12} cm{sup -2} s{sup -1}, the limit on the neutrino magnetic moments of {mu}{sub {nu}{sub e}}<7.4x10{sup -11}{mu}{sub B} at 90% confidence level was derived. Indirect bounds on the {nu}{sub e} radiative decay lifetimes were inferred.

  10. Search of neutrino magnetic moments with a high-purity germanium detector at the Kuo-Sheng nuclear power station

    NASA Astrophysics Data System (ADS)

    Wong, H. T.; Li, H. B.; Lin, S. T.; Lee, F. S.; Singh, V.; Wu, S. C.; Chang, C. Y.; Chang, H. M.; Chen, C. P.; Chou, M. H.; Deniz, M.; Fang, J. M.; Hu, C. H.; Huang, H. X.; Jon, G. C.; Kuo, W. S.; Lai, W. P.; Lee, S. C.; Li, J.; Liao, H. Y.; Lin, F. K.; Lin, S. K.; Lu, J. Q.; Sheng, H. Y.; Su, R. F.; Tong, W. S.; Xin, B.; Yeh, T. R.; Yue, Q.; Zhou, Z. Y.; Zhuang, B. A.

    2007-01-01

    A search of neutrino magnetic moments was carried out at the Kuo-Sheng nuclear power station at a distance of 28 m from the 2.9 GW reactor core. With a high purity germanium detector of mass 1.06 kg surrounded by scintillating NaI(Tl) and CsI(Tl) crystals as anti-Compton detectors, a detection threshold of 5 keV and a background level of 1kg-1keV-1day-1 near threshold were achieved. Details of the reactor neutrino source, experimental hardware, background understanding, and analysis methods are presented. Based on 570.7 and 127.8 days of Reactor ON and OFF data, respectively, at an average Reactor ON electron antineutrino flux of 6.4×1012cm-2s-1, the limit on the neutrino magnetic moments of μν¯e<7.4×10-11μB at 90% confidence level was derived. Indirect bounds on the ν¯e radiative decay lifetimes were inferred.

  11. Computer program TRACK_VISION for simulating optical appearance of etched tracks in CR-39 nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Nikezic, D.; Yu, K. N.

    2008-04-01

    A computer program called TRACK_VISION for determining the optical appearances of tracks in nuclear track materials resulted from light-ion irradiation and subsequent chemical etching was described. A previously published software, TRACK_TEST, was the starting point for the present software TRACK_VISION, which contained TRACK_TEST as its subset. The programming steps were outlined. Descriptions of the program were given, including the built-in V functions for the commonly employed nuclear track material commercially known as CR-39 (polyallyldiglycol carbonate) irradiated by alpha particles. Program summaryProgram title: TRACK_VISION Catalogue identifier: AEAF_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 4084 No. of bytes in distributed program, including test data, etc.: 71 117 Distribution format: tar.gz Programming language: Fortran 90 Computer: Pentium PC Operating system: Windows 95+ RAM: 256 MB Classification: 17.5, 18 External routines: The entire code must be linked with the MSFLIB library. MSFLib is a collection of C and C++ modules which provides a general framework for processing IBM's AFP datastream. MSFLIB is specific to Visual Fortran (Digital, Compaq or Intel flavors). Nature of problem: Nuclear track detectors are commonly used for radon measurements through studying the tracks generated by the incident alpha particles. Optical microscopes are often used for this purpose but the process is relatively tedious and time consuming. Several automatic and semi-automatic systems have been developed in order to facilitate determination of track densities. In all these automatic systems, the optical appearance of the tracks is important. However, not much has been done so far to obtaining the

  12. Xenon Gamma Detector Project Support

    SciTech Connect

    Vanier,P.E.; Forman, L.

    2008-04-01

    This project provided funding of $48,500 for part of one year to support the development of compressed xenon spectrometers at BNL. This report describes upgrades that were made to the existing detector system electronics during that period, as well as subsequent testing with check sources and Special Nuclear Materials. Previous testing of the equipment extended only up to the energy of 1.3 MeV, and did not include a spectrum of Pu-239. The new electronics allowed one-button activation of the high voltage ramp that was previously controlled by manual adjustments. Mechanical relays of the charging circuit were replaced by a tera-ohm resistor chain and an optical switch. The preamplifier and shaping amplifier were replaced by more modern custom designs. We found that the xenon purity had not been degraded since the chamber was filled 10 years earlier. The resulting spectra showed significantly better resolution than sodium iodide spectra, and could be analyzed quite effectively by methods using peak area templates.

  13. Flux measurements in a nuclear research reactor by using an aluminum nitride detector

    NASA Astrophysics Data System (ADS)

    Moon, B. S.; Yoo, D. S.; Hwang, I. K.; Chung, C. E.; Holcomb, D. E.

    2007-08-01

    A small polycrystalline aluminium nitride detector with a thickness of 381 μm was used to measure a 200,000 Ci Co 60 source and to measure the flux in a research reactor where the neutron flux is about 10 14/cm 2 s, which is nearly the same order as in the commercial power plant. If the applied voltage is greater than or equal to 2000 V and if the measurements are done in a short period of time so that the heat energy does not build up in the aluminium nitride, then the measured electric current is linearly proportional to the input flux. It is assumed of course that the energy spectrum of the input flux remains constant. This linearity relation is illustrated by the results of a measurement in which the reactor power has been controlled so that the flux becomes a step function.

  14. The growth and crystallography of bismuth tri-iodide crystals grown by vapor transport

    SciTech Connect

    Nason, D.; Keller, L.

    1995-10-01

    A single crystal of bismuth tri-iodide (BiI{sub 3}) of dimensions 1.2 {times} 1.2 {times} 0.4 cm{sup 3} has been grown by physical vapor transport. The lattice parameters of the hexagonal crystal and its polycrystaleme powder precursor were measured by x-ray diffraction (XRD) and were in agreement, indicating that the vapor phase growth and sublimation purification processing at temperatures below 330{degree}C did not significantly affect the stoichiometry. X-ray rocking measurements of the single crystal showed low angle boundaries of the order of 0.05{degree}. In tests as gamma radiation detectors, neither melt grown nor vapor grown crystals were satisfactory, but the vapor grown crystals were promising. Several observations suggest that better performance may be achievable with purer bismuth tri-iodide.

  15. Gaseous Detectors

    NASA Astrophysics Data System (ADS)

    Titov, Maxim

    Since long time, the compelling scientific goals of future high-energy physics experiments were a driving factor in the development of advanced detector technologies. A true innovation in detector instrumentation concepts came in 1968, with the development of a fully parallel readout for a large array of sensing elements - the Multi-Wire Proportional Chamber (MWPC), which earned Georges Charpak a Nobel prize in physics in 1992. Since that time radiation detection and imaging with fast gaseous detectors, capable of economically covering large detection volumes with low mass budget, have been playing an important role in many fields of physics. Advances in photolithography and microprocessing techniques in the chip industry during the past decade triggered a major transition in the field of gas detectors from wire structures to Micro-Pattern Gas Detector (MPGD) concepts, revolutionizing cell-size limitations for many gas detector applications. The high radiation resistance and excellent spatial and time resolution make them an invaluable tool to confront future detector challenges at the next generation of colliders. The design of the new micro-pattern devices appears suitable for industrial production. Novel structures where MPGDs are directly coupled to the CMOS pixel readout represent an exciting field allowing timing and charge measurements as well as precise spatial information in 3D. Originally developed for the high-energy physics, MPGD applications have expanded to nuclear physics, photon detection, astroparticle and neutrino physics, neutron detection, and medical imaging.

  16. Transport properties of iodide in a sandy aquifer: Hydrogeological modelling and field tracer tests

    NASA Astrophysics Data System (ADS)

    Razafindratsima, Stephen; Péron, Olivier; Piscitelli, Anne; Gégout, Claire; Schneider, Vincent; Barbecot, Florent; Giffaut, Eric; Robinet, Jean-Charles; Le Cointe, Pierre; Montavon, Gilles

    2015-01-01

    The release of radioactive iodine into geological media from nuclear waste disposal is an issue that has to be considered since iodine is a biophilic element. 129I is, with 99Tc, one of the two long-lived radionuclides that have the highest mobility in radioactive waste disposal. Within this context, iodide retardation is still a matter of debate. A low value of the retardation factor is generally accepted in soils without organic matter, but the possibility for sorption cannot be completely ruled out. Since isotopic exchange with naturally occurring iodine is one of the main potential sorption mechanisms, site-specific retention parameters are needed. In the present paper, we study iodide transport in a sandy aquifer. A hydrogeological model was built to fit deuterium, bromide and iodide breakthrough data from in situ tracer test experiments. Within the precision range of the fitting, iodide is excluded from 2.5% of the effective porosity by anionic exclusion and presents a field retention factor (Kd) lower than 0.025 L/kg.

  17. Characterization of scintillator materials for fast-ion loss detectors in nuclear fusion reactors

    NASA Astrophysics Data System (ADS)

    Jiménez-Ramos, M. C.; García López, J.; García-Muñoz, M.; Rodríguez-Ramos, M.; Carmona Gázquez, M.; Zurro, B.

    2014-08-01

    In fusion plasma reactors, fast ion generated by heating systems and fusion born particles must be well confined. The presence of magnetohydrodynamic (MHD) instabilities can lead to a significant loss of these ions, which may reduce drastically the heating efficiency and may cause damage to plasma facing components in the vacuum vessel. In order to understand the physics underlying the fast ion loss mechanism, scintillator based detectors have been installed in several fusion devices. In this work we present the absolute photon yield and its degradation with ion fluence in terms of the number of photons emitted per incident ion of several scintillators thin coatings: SrGa2S4:Eu2+ (TG-Green), Y3Al5O12:Ce3+ (P46) and Y2O3:Eu3+ (P56) when irradiated with light ions of different masses (deuterium ions, protons and α-particles) at energies between approximately 575 keV and 3 MeV. The photon yield will be discussed in terms of the energy deposited by the particles into the scintillator. For that, the actual composition and thickness of the thin layers were determined by Rutherford Backscattering Spectrometry (RBS). A collimator with 1 mm of diameter, which defines the beam size for the experiments, placed at the entrance of the chamber. An electrically isolated sample holder biased to +300 V to collect the secondary electrons, connected to a digital current integrator (model 439 by Ortec) to measure the incident beam current. A home made device has been used to store the real-time evolution of the beam current in a computer file allowing the correction of the IL yields due to the current fluctuations. The target holder is a rectangle of 150 × 112 mm2 and can be tilted. The X and Y movements are controlled through stepping motors, which permits a fine control of the beam spot positioning as well as the study of several samples without venting the chamber. A silica optical fiber of 1 mm diameter fixed to the vacuum chamber, which collects the light from the scintillators

  18. Mechanical Properties Of Large Sodium Iodide Crystals

    NASA Technical Reports Server (NTRS)

    Lee, Henry M.

    1988-01-01

    Report presents data on mechanical properties of large crystals of thallium-doped sodium iodide. Five specimens in shape of circular flat plates subjected to mechanical tests. Presents test results for each specimen as plots of differential pressure versus center displacement and differential pressure versus stress at center. Also tabulates raw data. Test program also developed procedure for screening candidate crystals for gamma-ray sensor. Procedure eliminates potentially weak crystals before installed and ensures material yielding kept to minimum.

  19. Vacuum photodiode detectors for broadband vacuum ultraviolet detection in the Saha Institute of Nuclear Physics Tokamak

    NASA Astrophysics Data System (ADS)

    Rao, C. V. S.; Shankara Joisa, Y.; Hansalia, C. J.; Hui, Amit K.; Paul, Ratan; Ranjan, Prabhat

    1997-02-01

    We report on the application of the vacuum photodiode to detect vacuum ultraviolet (VUV) radiation emitted from the Saha Institute of Nuclear Physics (SINP) Tokamak. It is simple to fabricate and provides broadband spectral response in the VUV and ultrasoft x ray (10 eV-1 keV). In our design, a stainless steel photocathode is used, which has a response identical to tungsten in the wavelength range 100-1200 Å. Its surface is passivated, to minimize contamination and monolayer deposition, by electropolishing it. Some representative experimental results illustrating the range of applicability are presented with special emphasis on its performance in disruptive shots.

  20. Composition and properties of thallium mercury iodide

    NASA Astrophysics Data System (ADS)

    Kennedy, John H.; Schaupp, Christopher; Yang, Yuan; Zhang, Zhengming; Novinson, Thomas; Hoffard, Theresa

    1990-10-01

    Conflicting reports exist in the literature concerning the composition of thallium mercury iodide. Solid state synthesis with HgI 2 and TlI has been reported to give Tl 4HgI 6 while synthesis from solution has been reported to give Tl 2HgI 4. In this report we show that the "orange compound" precipitating from solution is actually a 1:1 mole ratio mixture of Tl 4HgI 6 and HgI 2. Pure Tl 4HgI 6, which is yellow, can be produced by heating the mixture at 100°C for several days to volatilize HgI 2 or more simply, by adding Tl(I) to a solution containing 2:1 KI:K 2HgI 4 to provide the additional iodide ions needed for Tl 4HgI 6. Tl 4HgI 6, unlike Ag 2HgI 4 and Cu 2HgI 4, has no sharp thermochromic changes and has no measurable ionic conductivity. This provides another example of the significant role the metal ion plans in determining structure and properties of metal mercury iodide compounds.

  1. Formulation and optimization of potassium iodide tablets

    PubMed Central

    Al-Achi, Antoine; Patel, Binit

    2014-01-01

    The use of potassium iodide (KI) as a protective agent against accidental radioactive exposure is well established. In this study, we aimed to prepare a KI tablet formulation using a direct compression method. We utilized Design of Experiment (DoE)/mixture design to define the best formulation with predetermined physical qualities as to its dissolution, hardness, assay, disintegration, and angle of repose. Based on the results from the DoE, the formulation had the following components (%w/w): Avicel 48.70%, silicon dioxide 0.27%, stearic acid (1.00%), magnesium stearate 2.45%, and dicalcium phosphate 18.69%, in addition to potassium iodide 28.89% (130 mg/tablet). This formulation was scaled-up using two tablet presses, a single-punch press and a rotary mini tablet press. The final scaled-up formulation was subjected to a variety of quality control tests, including photo-stability testing. The results indicate that potassium iodide tablets prepared by a rotary mini tablet press had good pharmaceutical characteristics and a shelf-life of 25 days when stored at room temperature protected from light. PMID:25685048

  2. Formulation and optimization of potassium iodide tablets.

    PubMed

    Al-Achi, Antoine; Patel, Binit

    2015-01-01

    The use of potassium iodide (KI) as a protective agent against accidental radioactive exposure is well established. In this study, we aimed to prepare a KI tablet formulation using a direct compression method. We utilized Design of Experiment (DoE)/mixture design to define the best formulation with predetermined physical qualities as to its dissolution, hardness, assay, disintegration, and angle of repose. Based on the results from the DoE, the formulation had the following components (%w/w): Avicel 48.70%, silicon dioxide 0.27%, stearic acid (1.00%), magnesium stearate 2.45%, and dicalcium phosphate 18.69%, in addition to potassium iodide 28.89% (130 mg/tablet). This formulation was scaled-up using two tablet presses, a single-punch press and a rotary mini tablet press. The final scaled-up formulation was subjected to a variety of quality control tests, including photo-stability testing. The results indicate that potassium iodide tablets prepared by a rotary mini tablet press had good pharmaceutical characteristics and a shelf-life of 25 days when stored at room temperature protected from light. PMID:25685048

  3. Characterization of scintillator materials for fast-ion loss detectors in nuclear fusion reactors

    NASA Astrophysics Data System (ADS)

    Jiménez-Ramos, M. C.; García López, J.; García-Muñoz, M.; Rodríguez-Ramos, M.; Carmona Gázquez, M.; Zurro, B.

    2014-08-01

    In fusion plasma reactors, fast ion generated by heating systems and fusion born particles must be well confined. The presence of magnetohydrodynamic (MHD) instabilities can lead to a significant loss of these ions, which may reduce drastically the heating efficiency and may cause damage to plasma facing components in the vacuum vessel. In order to understand the physics underlying the fast ion loss mechanism, scintillator based detectors have been installed in several fusion devices. In this work we present the absolute photon yield and its degradation with ion fluence in terms of the number of photons emitted per incident ion of several scintillators thin coatings: SrGa2S4:Eu2+ (TG-Green), Y3Al5O12:Ce3+ (P46) and Y2O3:Eu3+ (P56) when irradiated with light ions of different masses (deuterium ions, protons and α-particles) at energies between approximately 575 keV and 3 MeV. The photon yield will be discussed in terms of the energy deposited by the particles into the scintillator. For that, the actual composition and thickness of the thin layers were determined by Rutherford Backscattering Spectrometry (RBS). A collimator with 1 mm of diameter, which defines the beam size for the experiments, placed at the entrance of the chamber. An electrically isolated sample holder biased to +300 V to collect the secondary electrons, connected to a digital current integrator (model 439 by Ortec) to measure the incident beam current. A home made device has been used to store the real-time evolution of the beam current in a computer file allowing the correction of the IL yields due to the current fluctuations. The target holder is a rectangle of 150 × 112 mm2 and can be tilted. The X and Y movements are controlled through stepping motors, which permits a fine control of the beam spot positioning as well as the study of several samples without venting the chamber. A silica optical fiber of 1 mm diameter fixed to the vacuum chamber, which collects the light from the scintillators

  4. Comparison of two position sensitive gamma-ray detectors based on continuous YAP and pixellated NaI(TI) for nuclear medical imaging applications

    NASA Astrophysics Data System (ADS)

    Zhu, Jie; Ma, Hong-Guang; Ma, Wen-Yan; Zeng, Hui; Wang, Zhao-Min; Xu, Zi-Zhong

    2008-11-01

    Dedicated position sensitive gamma-ray detectors based on position sensitive photomultiplier tubes (PSPMTs) coupled to scintillation crystals, have been used for the construction of compact gamma-ray imaging systems, suitable for nuclear medical imaging applications such as small animal imaging and single organ imaging and scintimammography. In this work, the performance of two gamma-ray detectors: a continuous YAP scintillation crystal coupled to a Hamamastu R2486 PSPMT and a pixellated NaI(TI) scintillation array crystal coupled to the same PSPMT, is compared. The results show that the gamma-ray detector based on a pixellated NaI(TI) scintillation array crystal is a promising candidate for nuclear medical imaging applications, since their performance in terms of position linearity, spatial resolution and effective field of view (FOV) is superior than that of the gamma-ray detector based on a continuous YAP scintillation crystal. However, a better photodetector (Hamamatau H8500 Flat Panel PMT, for example) coupled to the continuous crystal is also likely a good selection for nuclear medicine imaging applications. Supported by National Nature Science Foundation of China (10275063)

  5. 10 CFR 35.394 - Training for the oral administration of sodium iodide I-131 requiring a written directive in...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Training for the oral administration of sodium iodide I-131 requiring a written directive in quantities greater than 1.22 gigabecquerels (33 millicuries). 35.394 Section 35.394 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Unsealed Byproduct Material-Written Directive Required...

  6. 10 CFR 35.392 - Training for the oral administration of sodium iodide I-131 requiring a written directive in...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Training for the oral administration of sodium iodide I-131 requiring a written directive in quantities less than or equal to 1.22 gigabecquerels (33 millicuries). 35.392 Section 35.392 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Unsealed Byproduct Material-Written...

  7. 10 CFR 35.392 - Training for the oral administration of sodium iodide I-131 requiring a written directive in...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Training for the oral administration of sodium iodide I-131 requiring a written directive in quantities less than or equal to 1.22 gigabecquerels (33 millicuries). 35.392 Section 35.392 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Unsealed Byproduct Material-Written...

  8. 10 CFR 35.392 - Training for the oral administration of sodium iodide I-131 requiring a written directive in...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Training for the oral administration of sodium iodide I-131 requiring a written directive in quantities less than or equal to 1.22 gigabecquerels (33 millicuries). 35.392 Section 35.392 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Unsealed Byproduct Material-Written...

  9. 10 CFR 35.394 - Training for the oral administration of sodium iodide I-131 requiring a written directive in...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Training for the oral administration of sodium iodide I-131 requiring a written directive in quantities greater than 1.22 gigabecquerels (33 millicuries). 35.394 Section 35.394 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Unsealed Byproduct Material-Written Directive Required...

  10. 10 CFR 35.392 - Training for the oral administration of sodium iodide I-131 requiring a written directive in...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Training for the oral administration of sodium iodide I-131 requiring a written directive in quantities less than or equal to 1.22 gigabecquerels (33 millicuries). 35.392 Section 35.392 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Unsealed Byproduct Material-Written...

  11. 10 CFR 35.392 - Training for the oral administration of sodium iodide I-131 requiring a written directive in...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Training for the oral administration of sodium iodide I-131 requiring a written directive in quantities less than or equal to 1.22 gigabecquerels (33 millicuries). 35.392 Section 35.392 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Unsealed Byproduct Material-Written...

  12. 10 CFR 35.394 - Training for the oral administration of sodium iodide I-131 requiring a written directive in...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Training for the oral administration of sodium iodide I-131 requiring a written directive in quantities greater than 1.22 gigabecquerels (33 millicuries). 35.394 Section 35.394 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Unsealed Byproduct Material-Written Directive Required...

  13. 10 CFR 35.394 - Training for the oral administration of sodium iodide I-131 requiring a written directive in...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Training for the oral administration of sodium iodide I-131 requiring a written directive in quantities greater than 1.22 gigabecquerels (33 millicuries). 35.394 Section 35.394 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Unsealed Byproduct Material-Written Directive Required...

  14. 10 CFR 35.394 - Training for the oral administration of sodium iodide I-131 requiring a written directive in...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Training for the oral administration of sodium iodide I-131 requiring a written directive in quantities greater than 1.22 gigabecquerels (33 millicuries). 35.394 Section 35.394 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Unsealed Byproduct Material-Written Directive Required...

  15. Study of Anomalous Nuclear Projectile Fragments in CR-39 Etched Track Detectors

    NASA Astrophysics Data System (ADS)

    Tincknell, Mark Leslie

    This report describes three years of experimental investigation into the phenomenon of anomalously short mean free paths (mfp's) of relativistic nuclear projectile fragments (Anomalous Projectile Fragments, or "Anomalons"). The experimental data were obtained through manual microscopic measurements of etched nuclear tracks in CR-39 plastic. There are five chapters in this report. The first introduces the subject, and extensively reviews and evaluates the experimental history of the effect. The second chapter describes the background physics and methods used. The third chapter examines in detail the statistical techniques used by almost all modern anomalon experiments. Many useful expressions are given and several mfp estimators are compared. The conventional methods are shown to have acceptably small biases. The fourth chapter discusses several experiments performed and analyzed in 1982-1983, mostly with an Ar beam exposure. These experiments found the mfp's of several primary nuclei, established that fragment nuclei are integrally charged, and confirmed the anomalon effect in a medium other than nuclear emulsion. The secondary mfp's were found to be depressed by (TURN)15% in the first 2 cm after the primary interactions, at the (TURN)95-99% confidence level (C.L.). The parameterized abundance of anomalons was (TURN)3.6%, with an anomalous mfp of (TURN)1 cm. The fifth chapter presents the results from experiments conducted in 1983-1984 with an Fe beam. A larger and more sophisticated repeat experiment obtained a weak and oddly-behaved anomalon effect, and was marginally consistent with a null result. The secondary mfp's in the 0.6 (LESSTHEQ) x (LESSTHEQ) 1.1 cm interval beyond the primary interactions were (TURN)2.5(sigma) low; all other points, including 0.1 (LESSTHEQ) x (LESSTHEQ) 0.6cm, were consistent with normal. The total mfp depression in the first cm was (TURN)10%, significant at the (TURN)90 -95% C.L. The tertiary mfp's were consistent with the secondaries

  16. Ultrafast Extreme Ultraviolet Spectroscopy of Lead Iodide and Methylammonium Lead Iodide

    NASA Astrophysics Data System (ADS)

    Verkamp, Max; Lin, Ming-Fu; Ryland, Elizabeth; Vura-Weis, Josh

    Methylammonium lead iodide (perovskite) is a leading candidate for use in next-generation solar cell devices. However, the photophysics of perovskite responsible for its strong photovoltaic qualities are not fully understood. Ultrafast extreme ultraviolet (XUV) spectroscopy was used to investigate relaxation dynamics in perovskite and its precursor, lead iodide, with carrier-specific signals arising from transitions from a common inner-shell level (I 4d) to the valence and conduction bands. Ultrashort (30 fs) pulses of XUV radiation in a broad spectrum (40-70 eV) were obtained using high-harmonic generation in a tabletop instrument. Transient absorption measurements with visible pump (3.1 eV) and XUV probe directly observed the relaxation of charge carriers after above band excitation for both perovskite and lead iodide in the femtosecond and picosecond time ranges.

  17. Modifications induced by gamma irradiation to Makrofol polymer nuclear track detector

    PubMed Central

    Tayel, A.; Zaki, M.F.; El Basaty, A.B.; Hegazy, Tarek M.

    2014-01-01

    The aim of the present study was extended from obtaining information about the interaction of gamma rays with Makrofol DE 7-2 track detector to introduce the basis that can be used in concerning simple sensor for gamma irradiation and bio-engineering applications. Makrofol polymer samples were irradiated with 1.25 MeV 60Co gamma radiations at doses ranging from 20 to 1000 kG y. The modifications of irradiated samples so induced were analyzed using UV–vis spectrometry, photoluminescence spectroscopy, and the measurements of Vickers’ hardness. Moreover, the change in wettability of irradiated Makrofol was investigated by the contact angle determination of the distilled water. UV–vis spectroscopy shows a noticeable decrease in the energy band gap due to gamma irradiation. This decrease could be attributed to the appearance of a shift to UV spectra toward higher wavelength region after irradiation. Photoluminescence spectra reveal a remarkable change in the integrated photoluminescence intensity with increasing gamma doses, which may be resulted from some matrix disorder through the creation of some defected states in the irradiated polymer. The hardness was found to increase from 4.78 MPa for the unirradiated sample to 23.67 MPa for the highest gamma dose. The contact angle investigations show that the wettability of the modified samples increases with increasing the gamma doses. The result obtained from present investigation furnishes evidence that the gamma irradiations are a successful technique to modify the Makrofol DE 7-2 polymer properties to use it in suitable applications. PMID:25750755

  18. Search for rare nuclear decays with HPGe detectors at the STELLA facility of the LNGS

    SciTech Connect

    Belli, P.; Di Marco, A.; Bernabei, R.; D'Angelo, S.; Cappella, F.; D'Angelo, A.; Incicchitti, A.; Cerulli, R.; Di Vacri, M. L.; Laubenstein, M.; Nisi, S.; Danevich, F. A.; Kobychev, V. V.; Poda, D. V.; Tretyak, V. I.; Kovtun, G. P.; Kovtun, N. G.; Shcherban, A. P.; Solopikhin, D. A.; Polischuk, O. G.; and others

    2013-12-30

    Results on the search for rare nuclear decays with the ultra low background facility STELLA at the LNGS using gamma ray spectrometry are presented. In particular, the best T{sub 1/2} limits were obtained for double beta processes in {sup 96}Ru and {sup 104}Ru. Several isotopes, which potentially decay through different 2β channels, including also possible resonant double electron captures, were investigated for the first time ({sup 156}Dy, {sup 158}Dy, {sup 184}Os, {sup 192}Os, {sup 190}Pt, {sup 198}Pt). Search for resonant absorption of solar {sup 7}Li axions in a LiF crystal gave the best limit for the mass of {sup 7}Li axions (< 8.6 keV). Rare alpha decay of {sup 190}Pt to the first excited level of {sup 186}Os(E{sub exc} = 137.2keV) was observed for the first time.

  19. Proton-induced radioactivity in NaI (Tl) scintillation detectors

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.

    1977-01-01

    Radioactivity induced by protons in sodium iodide scintillation crystals were calculated and directly measured. These data are useful in determining trapped radiation and cosmic-ray induced, background-counting rates in spaceborne detectors.

  20. Copper-Catalyzed Carboxylation of Aryl Iodides with Carbon Dioxide.

    PubMed

    Tran-Vu, Hung; Daugulis, Olafs

    2013-10-01

    A method for carboxylation of aryl iodides with carbon dioxide has been developed. The reaction employs low loadings of copper iodide/TMEDA or DMEDA catalyst, 1 atm of CO2, DMSO or DMA solvent, and proceeds at 25-70 °C. Good functional group tolerance is observed, with ester, bromide, chloride, fluoride, ether, hydroxy, amino, and ketone functionalities tolerated. Additionally, hindered aryl iodides such as iodomesitylene can also be carboxylated. PMID:24288654

  1. Iodide transport and its regulation in the thyroid gland

    SciTech Connect

    Price, D.J.

    1987-01-01

    This study was undertaken to examine the autoregulatory mechanism of iodide induced suppression of subsequently determined iodide transport activity in the thyroid gland. Two model systems were developed to identify the putative, transport-related, iodine-containing, inhibitory factor responsible for autoregulation. The first system was a maternal and fetal rabbit thyroid tissue slice preparation in which iodide pretreatment inhibited the maternal /sup 125/I-T/M ratio by 30% and had no significant effect on fetal iodide transport. In the second system, the role of protein synthesis in the autoregulatory phenomenon was studied. Cat thyroid slices pretreated with0.1 mM cycloheximide for 60 min prior to preexposure to excess iodide demonstrated a significant reduction in the degree of iodide included autoregulation. In both of these systems iodide induced suppression of cAMP accumulation remained intact. These findings suggest (1) fetal rabbit thyroid lacks the autoregulatory mechanism of iodide transport and (2) protein synthesis is involved in the mechanism of thyroid autoregulation of iodide transport.

  2. A novel approach for long-term determination of indoor 222Rn progeny equilibrium factor using nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Amgarou, K.; Font, Ll.; Baixeras, C.

    2003-06-01

    A detailed study of the measurement principles of airborne 222Rn decay products by means of nuclear track detectors (NTDs), taking into account the range of variation of the parameters influencing their concentration indoors, has shown that it is not possible for the existing methods to obtain the associated long-term equilibrium factor with an appropriate accuracy. For this reason, we have established a novel approach based on the new concept of reduced equilibrium factor, which can be obtained from the only measurement of airborne 222Rn and its α-emitter daughter ( 218Po and 214Po) concentrations using a passive, integrating and multi-component system of NTDs. We have found that the equilibrium factor has a linear dependence on the reduced equilibrium factor regardless the values taken for the rates of ventilation, of aerosol attachment and of surface deposition. By using well-controlled exposures in a reference laboratory, we have shown that the equilibrium factor values determined with our system agree with those obtained by active monitors. Finally, as a pilot test, several dosimeters were exposed in an inhabited Swedish single-family house. The results of this exposure suggest the usefulness of this method to perform routine surveys in private homes and in workplaces in order to estimate the annual effective dose received by the general public and the workers due to the presence of 222Rn daughters.

  3. Co-visualization of DNA damage and ion traversals in live mammalian cells using a fluorescent nuclear track detector.

    PubMed

    Kodaira, Satoshi; Konishi, Teruaki; Kobayashi, Alisa; Maeda, Takeshi; Ahmad, Tengku Ahbrizal Farizal Tengku; Yang, Gen; Akselrod, Mark S; Furusawa, Yoshiya; Uchihori, Yukio

    2015-03-01

    The geometric locations of ion traversals in mammalian cells constitute important information in the study of heavy ion-induced biological effect. Single ion traversal through a cellular nucleus produces complex and massive DNA damage at a nanometer level, leading to cell inactivation, mutations and transformation. We present a novel approach that uses a fluorescent nuclear track detector (FNTD) for the simultaneous detection of the geometrical images of ion traversals and DNA damage in single cells using confocal microscopy. HT1080 or HT1080-53BP1-GFP cells were cultured on the surface of a FNTD and exposed to 5.1-MeV/n neon ions. The positions of the ion traversals were obtained as fluorescent images of a FNTD. Localized DNA damage in cells was identified as fluorescent spots of γ-H2AX or 53BP1-GFP. These track images and images of damaged DNA were obtained in a short time using a confocal laser scanning microscope. The geometrical distribution of DNA damage indicated by fluorescent γ-H2AX spots in fixed cells or fluorescent 53BP1-GFP spots in living cells was found to correlate well with the distribution of the ion traversals. This method will be useful for evaluating the number of ion hits on individual cells, not only for micro-beam but also for random-beam experiments. PMID:25324538

  4. Regular radon activity concentration and effective dose measurements inside the great pyramid with passive nuclear track detectors.

    PubMed

    Hafez, A F; Bishara, A A; Kotb, M A; Hussein, A S

    2003-08-01

    Radon activity concentrations and equilibrium factors inside the great pyramid of "Cheops" were measured with passive nuclear track detectors. The variation of these concentrations in location was investigated. Seasonal variation of radon activity concentrations with winter maximum and summer minimum were observed inside the pyramid. The 1-y average radon activity concentration ranged from a minimum of 20 to a maximum of 170 Bq m(-3). Results show that the yearly average equilibrium factor between radon and its progeny was assessed as 0.16 and 0.36 inside the pyramid and near entrance, respectively. Moreover, the estimated annual effective dose was 0.05 mSv to tour guides and varied from 0.19 to 0.36 mSv for the pyramid guards; for visitors the average effective dose was 0.15 microSv per visit. These are lower than the 3-10 mSv y(-1) dose limit recommend by ICRP 65. PMID:12938968

  5. Hybrid detectors improved time-lapse confocal microscopy of PML and 53BP1 nuclear body colocalization in DNA lesions.

    PubMed

    Foltánková, Veronika; Matula, Pavel; Sorokin, Dmitry; Kozubek, Stanislav; Bártová, Eva

    2013-04-01

    We used hybrid detectors (HyDs) to monitor the trajectories and interactions of promyelocytic leukemia (GFP-PML) nuclear bodies (NBs) and mCherry-53BP1-positive DNA lesions. 53BP1 protein accumulates in NBs that occur spontaneously in the genome or in γ-irradiation-induced foci. When we induced local DNA damage by ultraviolet irradiation, we also observed accumulation of 53BP1 proteins into discrete bodies, instead of the expected dispersed pattern. In comparison with photomultiplier tubes, which are used for standard analysis by confocal laser scanning microscopy, HyDs significantly eliminated photobleaching of GFP and mCherry fluorochromes during image acquisition. The low laser intensities used for HyD-based confocal analysis enabled us to observe NBs for the longer time periods, necessary for studies of the trajectories and interactions of PML and 53BP1 NBs. To further characterize protein interactions, we used resonance scanning and a novel bioinformatics approach to register and analyze the movements of individual PML and 53BP1 NBs. The combination of improved HyD-based confocal microscopy with a tailored bioinformatics approach enabled us to reveal damage-specific properties of PML and 53BP1 NBs. PMID:23410959

  6. Practical application of HgI2 detectors to a space-flight scanning electron microscope

    NASA Technical Reports Server (NTRS)

    Bradley, J. G.; Conley, J. M.; Albee, A. L.; Iwanczyk, J. S.; Dabrowski, A. J.

    1989-01-01

    Mercuric iodide X-ray detectors have been undergoing tests in a prototype scanning electron microscope system being developed for unmanned space flight. The detector program addresses the issues of geometric configuration in the SEM, compact packaging that includes separate thermoelectric coolers for the detector and FET, X-ray transparent hermetic encapsulation and electrical contacts, and a clean vacuum environment.

  7. Antimicrobial characteristic of insoluble alkylpyridinium iodide.

    PubMed Central

    Nakagawa, Y; Yamano, Y; Tawaratani, T; Kourai, H; Horie, T; Shibasaki, I

    1982-01-01

    Insoluble and soluble alkylpyridinium iodides (C8 to C18) were synthesized. The insoluble agents were quaternized 4-vinylpyridine-divinylbenzene copolymers. The insoluble agent [C12(50)] that contained 50% divinylbenzene and had a C12 alkyl chain was selected as the most suitable insoluble agent. C12(50) showed poor durability of the antibacterial activity, but C12(50), which had lost the activity, was refreshed by washing with ethanol. This washing became ineffective after a few cycles of antibacterial treatment and refreshment. Such C12(50) recovered the activity upon 1.0 N NaOH treatment. The antibacterial activity of C12(50) depended on its surface area. It showed high antimicrobial activity against gram-positive bacteria and also showed activity against gram-negative bacteria and yeasts. But the activities of C12(50) and laurylpyridinium iodide solution were different against some microbes. The antibacterial activities of the agents were investigated against Escherichia coli and Micrococcus luteus under various conditions. The activity of C12(50) was higher at a higher temperature or at a lower cell concentration. The activity of C12(50) decreased on addition of NaCl, glucose, or bovine albumin to the cell suspension or in 0.01 M sodium-potassium phosphate buffer. C12(50) showed less activity when cells were mixed with dead cells or the supernatant of dead cells killed in an autoclave. The mode of action of the laurylpyridinium iodide solution against E. coli and M. luteus was similar to that of C12(50) except for the influence of E. coli cell concentration. PMID:6808918

  8. Taming the Reactivity of Glycosyl Iodides To Achieve Stereoselective Glycosidation.

    PubMed

    Gervay-Hague, Jacquelyn

    2016-01-19

    Although glycosyl iodides have been known for more than 100 years, it was not until the 21st century that their full potential began to be harnessed for complex glycoconjugate synthesis. Mechanistic studies in the late 1990s probed glycosyl iodide formation by NMR spectroscopy and revealed important reactivity features embedded in protecting-group stereoelectronics. Differentially protected sugars having an anomeric acetate were reacted with trimethylsilyl iodide (TMSI) to generate the glycosyl iodides. In the absence of C-2 participation, generation of the glycosyl iodide proceeded by inversion of the starting anomeric acetate stereochemistry. Once formed, the glycosyl iodide readily underwent in situ anomerization, and in the presence of excess iodide, equilibrium concentrations of α- and β-iodides were established. Reactivity profiles depended upon the identity of the sugar and the protecting groups adorning it. Consistent with the modern idea of disarmed versus armed sugars, ester protecting groups diminished the reactivity of glycosyl iodides and ether protecting groups enhanced the reactivity. Thus, acetylated sugars were slower to form the iodide and anomerize than their benzylated analogues, and these disarmed glycosyl iodides could be isolated and purified, whereas armed ether-protected iodides could only be generated and reacted in situ. All other things being equal, the β-iodide was orders of magnitude more reactive than the thermodynamically more stable α-iodide, consistent with the idea of in situ anomerization introduced by Lemieux in the mid-20th century. Glycosyl iodides are far more reactive than the corresponding bromides, and with the increased reactivity comes increased stereocontrol, particularly when forming α-linked linear and branched oligosaccharides. Reactions with per-O-silylated glycosyl iodides are especially useful for the synthesis of α-linked glycoconjugates. Silyl ether protecting groups make the glycosyl iodide so reactive

  9. Production of Molecular Iodine and Tri-iodide in the Frozen Solution of Iodide: Implication for Polar Atmosphere.

    PubMed

    Kim, Kitae; Yabushita, Akihiro; Okumura, Masanori; Saiz-Lopez, Alfonso; Cuevas, Carlos A; Blaszczak-Boxe, Christopher S; Min, Dae Wi; Yoon, Ho-Il; Choi, Wonyong

    2016-02-01

    The chemistry of reactive halogens in the polar atmosphere plays important roles in ozone and mercury depletion events, oxidizing capacity, and dimethylsulfide oxidation to form cloud-condensation nuclei. Among halogen species, the sources and emission mechanisms of inorganic iodine compounds in the polar boundary layer remain unknown. Here, we demonstrate that the production of tri-iodide (I3(-)) via iodide oxidation, which is negligible in aqueous solution, is significantly accelerated in frozen solution, both in the presence and the absence of solar irradiation. Field experiments carried out in the Antarctic region (King George Island, 62°13'S, 58°47'W) also showed that the generation of tri-iodide via solar photo-oxidation was enhanced when iodide was added to various ice media. The emission of gaseous I2 from the irradiated frozen solution of iodide to the gas phase was detected by using cavity ring-down spectroscopy, which was observed both in the frozen state at 253 K and after thawing the ice at 298 K. The accelerated (photo-)oxidation of iodide and the subsequent formation of tri-iodide and I2 in ice appear to be related with the freeze concentration of iodide and dissolved O2 trapped in the ice crystal grain boundaries. We propose that an accelerated abiotic transformation of iodide to gaseous I2 in ice media provides a previously unrecognized formation pathway of active iodine species in the polar atmosphere. PMID:26745029

  10. Uptake of iodide by a mixture of metallic copper and cupric compounds

    SciTech Connect

    Lefevre, G.; Alnot, M.; Ehrhardt, J.J.; Bessiere, J.

    1999-05-15

    Environmental contaminants harmful to the health of present and future generations involve nuclear fission products as iodine radioisotopes. {sup 129}I is potentially one of the more mobile products because of its long half-life and its tendency to go into solution as an anion that is not retarded with silicate minerals. Ability of copper/cupric compound mixtures to remove iodide from solution was investigated to predict sorption of radioactive iodine in the environment and to assess their use in a nuclear reprocessing method. Thermodynamic calculations were performed to study the stability of such mixtures in solution and to obtain equilibrium constants of Cu(0)/Cu(II)/I{sup {minus}} and Cu(0)/Cu(II)/Cl{sup {minus}} systems. Both calculations and experimental results showed that a Cu(0)/Cu{sub 3}(OH){sub 2}(CO{sub 3}){sub 2} (azurite) mixture selectively uptakes iodide ions (initial concentrations: 10{sup {minus}2} and 10{sup {minus}1} M) in the presence of 10{sup {minus}1} M chloride ions. Reaction of iodide with copper powder and azurite crystal or copper plate and azurite powder have also been investigated, leading to precipitation of CuI onto massive copper phase. The different solids were separately analyzed by XPS and MEB-EDX, giving some insight in the uptake mechanism. It is proposed that soluble copper released by the cupric compound is reduced at the surface of metallic copper, leading to a preferential precipitation of CuI on copper surface.

  11. Large-area mercuric iodide photodectors

    NASA Astrophysics Data System (ADS)

    Markakis, J.; Ortale, C.; Schnepple, W.; Iwanczyk, J.; Dabrowski, A.

    1983-07-01

    The limits of the active area of mercuric iodide photodetectors imposed by the size of available crystals, electronic noise, and the uniformity of charge carrier collection are discussed. Theoretical calculations of the photodetector electronic noise are compared with the experimental results. Different entrance contacts were studied including semitransparent palladium films and conductive liquids. HgI2 photodetectors with active area up to 4 sq cm are matched with NaI(Tl) and CsI(Tl) scintillation crystals and are evaluated as gamma radiation spectrometers.

  12. Mechanochromic luminescence of copper iodide clusters.

    PubMed

    Benito, Quentin; Maurin, Isabelle; Cheisson, Thibaut; Nocton, Gregory; Fargues, Alexandre; Garcia, Alain; Martineau, Charlotte; Gacoin, Thierry; Boilot, Jean-Pierre; Perruchas, Sandrine

    2015-04-01

    Luminescent mechanochromic materials are particularly appealing for the development of stimuli-responsive materials. Establishing the mechanism responsible for the mechanochromism is always an issue owing to the difficulty in characterizing the ground phase. Herein, the study of real crystalline polymorphs of a mechanochromic and thermochromic luminescent copper iodide cluster permits us to clearly establish the mechanism involved. The local disruption of the crystal packing induces changes in the cluster geometry and in particular the modification of the cuprophilic interactions, which consequently modify the emissive states. This study constitutes a step further toward the understanding of the mechanism involved in the mechanochromic luminescent properties of multimetallic coordination complexes. PMID:25755012

  13. The addition of iodine to tetramethylammonium iodide

    USGS Publications Warehouse

    Foote, H.W.; Fleischer, M.

    1953-01-01

    The system tetramethylammonium iodide-iodine-toluene has been studied by the solubility method at 6 and at 25??. The compounds (CH3)4NI3, (CH3)4NI5 and (CH3)4NI11 were found to be stable phases at both temperatures. In addition, the compound (CH3)4NI10 was found at 6?? and the compound (CH3)4NI9 at 25??. The dissociation pressures of the compounds at these temperatures were calculated from the solubility data.

  14. Europium-doped barium bromide iodide

    SciTech Connect

    Gundiah, Gautam; Hanrahan, Stephen M.; Hollander, Fredrick J.; Bourret-Courchesne, Edith D.

    2009-10-21

    Single crystals of Ba0.96Eu0.04BrI (barium europium bromide iodide) were grown by the Bridgman technique. The title compound adopts the ordered PbCl2 structure [Braekken (1932). Z. Kristallogr. 83, 222-282]. All atoms occupy the fourfold special positions (4c, site symmetry m) of the space group Pnma with a statistical distribution of Ba and Eu. They lie on the mirror planes, perpendicular to the b axis at y = +-0.25. Each cation is coordinated by nine anions in a tricapped trigonal prismatic arrangement.

  15. Gamma-Ray Background Variability in Mobile Detectors

    NASA Astrophysics Data System (ADS)

    Aucott, Timothy John

    Gamma-ray background radiation significantly reduces detection sensitivity when searching for radioactive sources in the field, such as in wide-area searches for homeland security applications. Mobile detector systems in particular must contend with a variable background that is not necessarily known or even measurable a priori. This work will present measurements of the spatial and temporal variability of the background, with the goal of merging gamma-ray detection, spectroscopy, and imaging with contextual information--a "nuclear street view" of the ubiquitous background radiation. The gamma-ray background originates from a variety of sources, both natural and anthropogenic. The dominant sources in the field are the primordial isotopes potassium-40, uranium-238, and thorium-232, as well as their decay daughters. In addition to the natural background, many artificially-created isotopes are used for industrial or medical purposes, and contamination from fission products can be found in many environments. Regardless of origin, these backgrounds will reduce detection sensitivity by adding both statistical as well as systematic uncertainty. In particular, large detector arrays will be limited by the systematic uncertainty in the background and will suffer from a high rate of false alarms. The goal of this work is to provide a comprehensive characterization of the gamma-ray background and its variability in order to improve detection sensitivity and evaluate the performance of mobile detectors in the field. Large quantities of data are measured in order to study their performance at very low false alarm rates. Two different approaches, spectroscopy and imaging, are compared in a controlled study in the presence of this measured background. Furthermore, there is additional information that can be gained by correlating the gamma-ray data with contextual data streams (such as cameras and global positioning systems) in order to reduce the variability in the background

  16. Chloride, bromide and iodide scintillators with europium doping

    DOEpatents

    Zhuravleva, Mariya; Yang, Kan

    2014-08-26

    A halide scintillator material is disclosed where the halide may comprise chloride, bromide or iodide. The material is single-crystalline and has a composition of the general formula ABX.sub.3 where A is an alkali, B is an alkali earth and X is a halide which general composition was investigated. In particular, crystals of the formula ACa.sub.1-yEu.sub.yI.sub.3 where A=K, Rb and Cs were formed as well as crystals of the formula CsA.sub.1-yEu.sub.yX.sub.3 (where A=Ca, Sr, Ba, or a combination thereof and X=Cl, Br or I or a combination thereof) with divalent Europium doping where 0.ltoreq.y.ltoreq.1, and more particularly Eu doping has been studied at one to ten mol %. The disclosed scintillator materials are suitable for making scintillation detectors used in applications such as medical imaging and homeland security.

  17. 21 CFR 520.763 - Dithiazanine iodide oral dosage forms.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Dithiazanine iodide oral dosage forms. 520.763 Section 520.763 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Dithiazanine iodide oral dosage forms....

  18. WE-D-BRF-01: FEATURED PRESENTATION - Investigating Particle Track Structures Using Fluorescent Nuclear Track Detectors and Monte Carlo Simulations

    SciTech Connect

    Dowdell, S; Paganetti, H; Schuemann, J; Greilich, S; Zimmerman, F; Evans, C

    2014-06-15

    Purpose: To report on the efforts funded by the AAPM seed funding grant to develop the basis for fluorescent nuclear track detector (FNTD) based radiobiological experiments in combination with dedicated Monte Carlo simulations (MCS) on the nanometer scale. Methods: Two confocal microscopes were utilized in this study. Two FNTD samples were used to find the optimal microscope settings, one FNTD irradiated with 11.1 MeV/u Gold ions and one irradiated with 428.77 MeV/u Carbon ions. The first sample provided a brightly luminescent central track while the latter is used to test the capabilities to observe secondary electrons. MCS were performed using TOPAS beta9 version, layered on top of Geant4.9.6p02. Two sets of simulations were performed, one with the Geant4-DNA physics list and approximating the FNTDs by water, a second set using the Penelope physics list in a water-approximated FNTD and a aluminum-oxide FNTD. Results: Within the first half of the funding period, we have successfully established readout capabilities of FNTDs at our institute. Due to technical limitations, our microscope setup is significantly different from the approach implemented at the DKFZ, Germany. However, we can clearly reconstruct Carbon tracks in 3D with electron track resolution of 200 nm. A second microscope with superior readout capabilities will be tested in the second half of the funding period, we expect an improvement in signal to background ratio with the same the resolution.We have successfully simulated tracks in FNTDs. The more accurate Geant4-DNA track simulations can be used to reconstruct the track energy from the size and brightness of the observed tracks. Conclusion: We have achieved the goals set in the seed funding proposal: the setup of FNTD readout and simulation capabilities. We will work on improving the readout resolution to validate our MCS track structures down to the nanometer scales.

  19. Iodide sensing via electrochemical etching of ultrathin gold films

    NASA Astrophysics Data System (ADS)

    Dielacher, Bernd; Tiefenauer, Raphael F.; Junesch, Juliane; Vörös, János

    2015-01-01

    Iodide is an essential element for humans and animals and insufficient intake is still a major problem. Affordable and accurate methods are required to quantify iodide concentrations in biological and environmental fluids. A simple and low cost sensing device is presented which is based on iodide induced electrochemical etching of ultrathin gold films. The sensitivity of resistance measurements to film thickness changes is increased by using films with a thickness smaller than the electron mean free path. The underlying mechanism is demonstrated by simultaneous cyclic voltammetry experiments and resistance change measurements in a buffer solution. Iodide sensing is conducted in buffer solutions as well as in lake water with limits of detection in the range of 1 μM (127 μg L-1) and 2 μM (254 μg L-1), respectively. In addition, nanoholes embedded in the thin films are tested for suitability of optical iodide sensing based on localized surface plasmon resonance.

  20. Precision measurement of sub-nanosecond lifetimes of excited nuclear states using fast-timing coincidences with LaBr3(Ce) detectors

    NASA Astrophysics Data System (ADS)

    Regan, P. H.

    2015-11-01

    Precision measurements of electromagnetic (EM) transition rates enable tests of models of internal nuclear structure. Measurements of transition rates can be used to infer the spin and parity differences between the initial and final discrete nuclear excited states via which the EM transition takes place. This short conference paper reports on developments of detection systems for the identification of discrete energy gamma-ray decays using arrays of halide-scintillation detectors acting in coincidence mode, which can be used to determine electromagnetic transition rates between excited nuclear states in the sub-nanosecond temporal regime. Ongoing development of a new multi-detector LaBr3(Ce) array for studies of exotic nuclei produced at the upcoming Facility for Anti-Proton and Ion Research (FAIR) as part of the NUSTAR-DESPEC project are presented, together with initial results from pre-NUSTAR implementations of this array for nuclear structure studies of neutron-rich fission fragment radionuclides at ILL-Grenoble, France and RIBF at RIKEN, Japan.

  1. A Novel Approach for the Simultaneous Determination of Iodide, Iodate and Organo-Iodide for 127 I and 129 I in Environmental Samples Using Gas Chromatography-Mass Spectrometry

    SciTech Connect

    Zhang, S.; Schwehr, K. A.; Ho, Y. -F.; Xu, C.; Roberts, K. A.; Kaplan, D. I.; Brinkmeyer, R.; Yeager, C. M.; Santschi, P. H.

    2010-11-11

    In aquatic environments, iodine mainly exists as iodide, iodate, and organic iodine. The high mobility of iodine in aquatic systems has led to 129I contamination problems at sites where nuclear fuel has been reprocessed, such as the F-area of Savannah River Site. In order to assess the distribution of 129I and stable 127I in environmental systems, a sensitive and rapid method was developed which enables determination of isotopic ratios of speciated iodine. Iodide concentrations were quantified using gas chromatography-mass spectrometry (GC-MS) after derivatization to 4-iodo-N,N-dimethylaniline. Iodate concentrations were quantified by measuring the difference of iodide concentrations in the solution before and after reduction by Na2S2O5. Total iodine, including inorganic and organic iodine, was determined after conversion to iodate by combustion at 900 °C. Organo-iodine was calculated as the difference between the total iodine and total inorganic iodine (iodide and iodate). The detection limits of iodide-127 and iodate-127 were 0.34 nM and 1.11 nM, respectively, whereas the detection limits for both iodide-129 and iodate-129 was 0.08 nM (i.e., 2pCi 129I/L). This method was successfully applied to water samples from the contaminated Savannah River Site, South Carolina, and more pristine Galveston Bay, Texas.

  2. Particle and nuclear physics parameters—how do they affect the tracks of double beta events in a germanium detector, and their separation from gamma events

    NASA Astrophysics Data System (ADS)

    Klapdor-Kleingrothaus, H. V.; Krivosheina, I. V.; Titkova, I. V.

    2006-01-01

    The sizes of tracks of events of neutrinoless double beta decay in a germanium detector depend on particle physics and nuclear physics parameters such as neutrino mass, right-handed current parameters, etc., and nuclear matrix elements. The knowledge of this dependence is of importance, since the key to probe the existence of 0 νββ decay beyond observation of a signal at the Q value of the process, Qββ, is the discrimination of ββ events from background γ events (or other events), in almost any double beta decay experiment (see [H.V. Klapdor-Kleingrothaus, I.V. Krivosheina, A. Dietz, et al., Phys. Lett. B 586 (2004) 198; H.V. Klapdor-Kleingrothaus, A. Dietz, I.V. Krivosheina, et al., Nucl. Instrum. Methods A 522 (2004) 371]). In this Letter for the first time Monte Carlo simulations of neutrino-accompanied (2 νββ) and neutrinoless double beta decay (0 νββ) events, and of various kinds of background processes such as multiple and other γ interactions are reported for a Ge detector. The time history of the evolution of the individual events is followed and a systematic study has been performed of the sizes of the events (volumes in the detector inside which the energy of the event is released which determine the observed signals). Effects of the angular correlations of the two electrons in ββ decay, which again depend on the above nuclear and (for 0 νββ decay) particle physics parameters, are taken into account and have been calculated for this purpose for 76Ge for the first time on basis of the experimental half-life and of realistic nuclear matrix elements. A brief outlook is given on the potential of future experiments with respect to determination of the particle physics parameters , < λ >, < η >.

  3. Equations of state for crystalline zirconium iodide: The role of dispersion

    NASA Astrophysics Data System (ADS)

    Rossi, Matthew L.; Taylor, Christopher D.

    2013-02-01

    We present the first-principle equations of state of several zirconium iodides, ZrI2, ZrI3, and ZrI4, computed using density functional theory methods that apply various methods for introducing the dispersion correction. Iodides formed due to reaction of molecular or atomic iodine with zirconium and zircaloys are of particular interest due to their application to the cladding material used in the fabrication of nuclear fuel rods. Stress corrosion cracking (SCC), associated with fission product chemistry with the clad material, is a major concern in the life cycle of nuclear fuels, as many of the observed rod failures have occurred due to pellet-cladding chemical interactions (PCCI) [A. Atrens, G. Dannhäuser, G. Bäro, Stress-corrosion-cracking of zircaloy-4 cladding tubes, Journal of Nuclear Materials 126 (1984) 91-102; P. Rudling, R. Adamson, B. Cox, F. Garzarolli, A. Strasser, High burn-up fuel issues, Nuclear Engineering and Technology 40 (2008) 1-8]. A proper understanding of the physical properties of the corrosion products is, therefore, required for the development of a comprehensive SCC model. In this particular work, we emphasize that, while existing modeling techniques include methods to compute crystal structures and associated properties, it is important to capture intermolecular forces not traditionally included, such as van der Waals (dispersion) correction. Furthermore, crystal structures with stoichiometries favoring a high I:Zr ratio are found to be particularly sensitive, such that traditional density functional theory approaches that do not incorporate dispersion incorrectly predict significantly larger volumes of the lattice. This latter point is related to the diffuse nature of the iodide electron cloud.

  4. Theoretical investigation of the dependence of double beta decay tracks in a Ge detector on particle and nuclear physics parameters and separation from gamma ray events

    SciTech Connect

    Klapdor-Kleingrothaus, H.V.; Krivosheina, I.V.; Titkova, I.V.

    2006-01-01

    The sizes of tracks of events of neutrinoless double-beta decay in a Germanium detector depend on particle physics and nuclear physics parameters such as neutrino mass, right-handed current parameters, etc., and nuclear matrix elements. In this paper for the first time Monte Carlo simulations of neutrino-accompanied (2{nu}{beta}{beta}) and neutrinoless double-beta decay (0{nu}{beta}{beta}) events, and of various kinds of background processes such as multiple and other {gamma} interactions are reported for a Ge detector. The time history of the evolution of the individual events is followed and the sizes of the events (partial volumes in the detector inside which the energy of the event is released) are investigated. Effects of the angular correlations of the two electrons in {beta}{beta} decay, which again depend on the above nuclear and (for 0{nu}{beta}{beta} decay) on particle physics parameters, are taken into account and have been calculated for this purpose for the first time on basis of the experimental half-life of {sup 76}Ge and of realistic nuclear matrix elements. The sizes determine, together with the location of the events in the detector, the pulse shapes to be observed. It is shown for {beta}{beta} decay of {sup 76}Ge, that {beta}{beta} events should be selectable with high efficiency by rejecting large size (high multiplicity) {gamma} events. Double-escape peaks of similar energy of {gamma} lines show concerning their sizes similar behavior as 0{nu}{beta}{beta} events, and in that sense can be of some use for corresponding 'calibration' of pulse shapes of the detector. The possibility to distinguish {beta}{beta} events from {gamma} events is found to be essentially independent of the particle physics parameters of the 0{nu}{beta}{beta} process. A brief outlook is given on the potential of future experiments with respect to determination of the particle physics parameters ,<{lambda}>,<{eta}>.

  5. Growth of single crystals of mercuric iodide (HgI/sub 2/) in spacelab III

    SciTech Connect

    Van Den Berg, L.; Schnepple, W.F.

    1981-01-01

    Continued development of a system designed to grow crystals by physical vapor transport in the environment of Spacelab III will be described, with special emphasis on simulation of expected space conditions, adjustment of crystal growth parameters, and on board observation and control of the experiment by crew members and ground personnel. A critical factor in the use of mercuric iodide for semiconductor detectors of x-rays and gamma-rays is the crystalline quality of the material. The twofold purpose of the Spacelab III experiment is therefore to grow single crystals with superior electronic properties as an indirect result of the greatly reduced gravity field during the growth, and to obtain data which will lead to improved understanding of the vapor transport mechanism. The experiments planned to evaluate the space crystals, including gamma-ray diffractometry and measurements of stoichiometry, lattice dimensions, mechanical strength, luminescense, and detector performance are discussed.

  6. Iodide Sorption to Clays and the Relationship to Surface Charge and Clay Texture - 12356

    SciTech Connect

    Miller, Andrew; Kruichiak, Jessica; Tellez, Hernesto; Wang, Yifeng

    2012-07-01

    Iodine is assumed to behave conservatively in clay barriers around nuclear waste repositories and in natural sediments. Batch experiments tend to show little to no sorption, while in column experiments iodine is often retarded relative to tritiated water. Current surface complexation theory cannot account for negatively charged ion sorption to a negatively charged clay particle. Surface protonation and iodide sorption to clay minerals were examined using surface titrations and batch sorption experiments with a suite of clay minerals. Surface titrations were completed spanning a range of both pH values and ionic strengths. For reference, similar titrations were performed on pure forms of an Al-O powder. The titration curves were deconvoluted to attain the pKa distribution for each material at each ionic strength. The pKa distribution for the Al-O shows two distinct peaks at 4.8 and 7.5, which are invariant with ionic strength. The pKa distribution of clays was highly variable between the different minerals and as a function of ionic strength. Iodide sorption experiments were completed at high solid:solution ratios to exacerbate sorption properties. Palygorskite and kaolinite had the highest amount of iodide sorption and montmorillonite had the least. (authors)

  7. Laboratory and Field Testing of Commercially Available Detectors for the Identification of Chemicals of Interest in the Nuclear Fuel Cycle for the Detection of Undeclared Activities

    SciTech Connect

    Carla Miller; Mary Adamic; Stacey Barker; Barry Siskind; Joe Brady; Warren Stern; Heidi Smartt; Mike McDaniel; Mike Stern; Rollin Lakis

    2014-07-01

    Traditionally, IAEA inspectors have focused on the detection of nuclear indicators as part of infield inspection activities. The ability to rapidly detect and identify chemical as well as nuclear signatures can increase the ability of IAEA inspectors to detect undeclared activities at a site. Identification of chemical indicators have been limited to use in the analysis of environmental samples. Although IAEA analytical laboratories are highly effective, environmental sample processing does not allow for immediate or real-time results to an IAEA inspector at a facility. During a complementary access inspection, under the Additional Protocol, the use of fieldable technologies that can quickly provide accurate information on chemicals that may be indicative of undeclared activities can increase the ability of IAEA to effectively and efficiently complete their mission. The Complementary Access Working Group (CAWG) is a multi-laboratory team with members from Brookhaven National Laboratory, Idaho National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratory. The team identified chemicals at each stage of the nuclear fuel cycle that may provide IAEA inspectors with indications that proliferation activities may be occurring. The group eliminated all indicators related to equipment, technology and training, developing a list of by-products/effluents, non-nuclear materials, nuclear materials, and other observables. These proliferation indicators were prioritized based on detectability from a conduct of operations (CONOPS) perspective of a CA inspection (for example, whether an inspector actually can access the S&O or whether it is in process with no physical access), and the IAEA’s interest in the detection technology in conjunction with radiation detectors. The list was consolidated to general categories (nuclear materials from a chemical detection technique, inorganic chemicals, organic chemicals, halogens, and miscellaneous materials). The team

  8. Potassium iodide as a thyroid blocker--Three Mile Island to today.

    PubMed

    Halperin, J A

    1989-05-01

    The Three Mile Island (TMI) nuclear emergency in the U.S. in March 1979 marked the first occasion when use of potassium iodide (KI) was considered for thyroid blocking of the population in the vicinity of a potentially serious release of fission products from a nuclear power reactor. In face of a demand that could not be satisfied by commercial supplies of low-dose KI drug products from the U.S. pharmaceutical industry, the Food and Drug Administration directed the manufacture and stockpiling of sufficient quantities of saturated solution of potassium iodide (SSKI) to provide protection for one million people in the event of a large-scale release of radioiodines. Although the drug was not used, the experience of producing, stockpiling, and making ready for use a large quantity of the drug resulted in significant public policy, regulatory, and logistical issues. A number of these issues have been resolved through scientific debate and consensus, development of official guidance regarding the proper role of KI in nuclear emergencies, and the approval of New Drug Applications for KI products specifically intended for thyroid blocking in nuclear emergencies. Other issues regarding broad-scale implementation of the guidelines remain today. This paper traces the history of the development and implementation of the use of KI from pre-TMI to the present. PMID:2471366

  9. Flavonoid Rutin Increases Thyroid Iodide Uptake in Rats

    PubMed Central

    Lima Gonçalves, Carlos Frederico; de Souza dos Santos, Maria Carolina; Ginabreda, Maria Gloria; Soares Fortunato, Rodrigo; Pires de Carvalho, Denise; Freitas Ferreira, Andrea Claudia

    2013-01-01

    Thyroid iodide uptake through the sodium-iodide symporter (NIS) is not only an essential step for thyroid hormones biosynthesis, but also fundamental for the diagnosis and treatment of different thyroid diseases. However, part of patients with thyroid cancer is refractory to radioiodine therapy, due to reduced ability to uptake iodide, which greatly reduces the chances of survival. Therefore, compounds able to increase thyroid iodide uptake are of great interest. It has been shown that some flavonoids are able to increase iodide uptake and NIS expression in vitro, however, data in vivo are lacking. Flavonoids are polyhydroxyphenolic compounds, found in vegetables present in human diet, and have been shown not only to modulate NIS, but also thyroperoxidase (TPO), the key enzyme in thyroid hormones biosynthesis, besides having antiproliferative effect in thyroid cancer cell lines. Therefore, we aimed to evaluate the effect of some flavonoids on thyroid iodide uptake in Wistar rats in vivo. Among the flavonoids tested, rutin was the only one able to increase thyroid iodide uptake, so we decided to evaluate the effect of this flavonoid on some aspects of thyroid hormones synthesis and metabolism. Rutin led to a slight reduction of serum T4 and T3 without changes in serum thyrotropin (TSH), and significantly increased hypothalamic, pituitary and brown adipose tissue type 2 deiodinase and decreased liver type 1 deiodinase activities. Moreover, rutin treatment increased thyroid iodide uptake probably due to the increment of NIS expression, which might be secondary to increased response to TSH, since TSH receptor expression was increased. Thus, rutin might be useful as an adjuvant in radioiodine therapy, since this flavonoid increased thyroid iodide uptake without greatly affecting thyroid function. PMID:24023911

  10. Correlation of individual cosmic ray nuclei with the observation of light flashes by Apollo astronauts. [nuclear emulsion detector design and operation

    NASA Technical Reports Server (NTRS)

    Pinsky, L. S.; Osborne, W. Z.; Bailey, J. V.

    1975-01-01

    A nuclear emulsion detector known as the Apollo Light Flash Moving Emulsion Detector (ALFMED) was designed: (1) to record tracks of primary cosmic rays; (2) to provide time-of-passage information via a relative plate translation technique; (3) to provide particle trajectory information; and (4) to fit into a masklike device that could be located about the head and eyes of an astronaut. An ALFMED device was worn by an astronaut observing light flashes for 60 minutes on each of the last two Apollo missions. During the Apollo 17 experiment seventeen separate flashes were reported by the observer. With one-third of the total plate area completely analyzed, two definite correlations have been found between Z greater than 8 cosmic ray nuclei traversing an eye and the reports of visual sensations.

  11. Charge, energy and LET spectra of high LET primary and secondary particles in CR-39 plastic nuclear track detectors of the P0006 experiment

    NASA Technical Reports Server (NTRS)

    Csige, I.; Frigo, L. A.; Benton, E. V.; Oda, K.

    1995-01-01

    We have measured the charge, energy and linear energy transfer (LET) spectra of about 800 high LET (LET(sub infinity) H2O greater than 50 keV/micron) particles in CR-39 plastic nuclear track detectors in the P0006 experiment of LDEF. Primary particles with residual range at the reference surface greater than about 2 microns and secondary particles produced in the detector material with total range greater than about 4 microns were measured. We have used a multi-etch technique and an internal calibration to identify and measure the energy of the particles at the reference surface. The LET spectrum was obtained from the charge and energy distribution of the particles.

  12. Detectors for Particle Radiation

    NASA Astrophysics Data System (ADS)

    Kleinknecht, Konrad

    1999-01-01

    This textbook provides a clear, concise and comprehensive review of the physical principles behind the devices used to detect charged particles and gamma rays, and the construction and performance of these many different types of detectors. Detectors for high-energy particles and radiation are used in many areas of science, especially particle physics and nuclear physics experiments, nuclear medicine, cosmic ray measurements, space sciences and geological exploration. This second edition includes all the latest developments in detector technology, including several new chapters covering micro-strip gas chambers, silicion strip detectors and CCDs, scintillating fibers, shower detectors using noble liquid gases, and compensating calorimeters for hadronic showers. This well-illustrated textbook contains examples from the many areas in science in which these detectors are used. It provides both a coursebook for students in physics, and a useful introduction for researchers in other fields.

  13. The Effect on Sodium/Iodide Symporter and Pendrin in Thyroid Colloid Retention Developed by Excess Iodide Intake.

    PubMed

    Chen, Xiao-Yi; Lin, Chu-Hui; Yang, Li-Hua; Li, Wang-Gen; Zhang, Jin-Wei; Zheng, Wen-Wei; Wang, Xiang; Qian, Jiang; Huang, Jia-Luan; Lei, Yi-Xiong

    2016-07-01

    It is well known that excess iodide can lead to thyroid colloid retention, a classic characteristic of iodide-induced goiter. However, the mechanism has not been fully unrevealed. Iodide plays an important role in thyroid function at multiple steps of thyroid colloid synthesis and transport among which sodium/iodide symporter (NIS) and pendrin are essential. In our study, we fed female BALB/c mice with different concentrations of high-iodine water including group A (control group, 0 μg/L), group B (1500 μg/L), group C (3000 μg/L), group D (6000 μg/L), and group E (12,000 μg/L). After 7 months of feeding, we found that excess iodide could lead to different degrees of thyroid colloid retention. Besides, NIS and pendrin expression were downregulated in the highest dose group. The thyroid iodide intake function detected by urine iodine assay and thyroidal (125)I experiments showed that the urine level of iodine increased, while the iodine intake rate decreased when the concentration of iodide used in feeding water increased (all p < 0.05 vs. control group). In addition, transmission electron microscopy (TEM) indicated a reduction in the number of intracellular mitochondria of thyroid cells. Based on these findings, we concluded that the occurrence of thyroid colloid retention exacerbated by excess iodide was associated with the suppression of NIS and pendrin expression, providing an additional insight of the potential mechanism of action of excess iodide on thyroid gland. PMID:26660892

  14. Technical Basis for the Use of Alarming Personal Criticality Detectors to Augment Permanent Nuclear Incident Monitor (NIM) Systems in Areas Not Normally Occupied

    SciTech Connect

    Yates, K.R.

    2003-05-26

    The technical basis for the use of alarming personal criticality detectors (APCDs) to augment permanent Nuclear Incident Monitor (NIM) Systems in areas not normally occupied is evaluated. All applicable DOE O 420.1A and ANSI/ANS-8.3-1997 criticality alarm system requirements and recommendations are evaluated for applicability to APCDs. Based on this evaluation, design criteria and administrative requirements are presented for APCDs. Siemens EPD/Mk-2 and EPD-N devices are shown to meet the design criteria. A definition of not normally occupied is also presented.

  15. Cesium iodide crystals fused to vacuum tube faceplates

    NASA Technical Reports Server (NTRS)

    Fleck, H. G.

    1964-01-01

    A cesium iodide crystal is fused to the lithium fluoride faceplate of a photon scintillator image tube. The conventional silver chloride solder is then used to attach the faceplate to the metal support.

  16. Laboratory measurements of parameters affecting wet deposition of methyl iodide

    SciTech Connect

    Maeck, W.J.; Honkus, R.J.; Keller, J.H.; Voilleque, P.G.

    1984-09-01

    The transfer of gaseous methyl iodide (CH/sub 3/I) to raindrops and the initial retention by vegetation of CH/sub 3/I in raindrops have been studied in a laboratory experimental program. The measured air-to-drop transfer parameters and initial retention factors both affect the wet deposition of methyl iodide onto vegetation. No large effects on the air-to-drop transfer due to methyl iodide concentration, temperature, acidity, or rain type were observed. Differences between laboratory measurements and theoretical values of the mass transfer coefficient were found. Pasture grass, lettuce, and alfalfa were used to study the initial retention of methyl iodide by vegetation. Only a small fraction of the incident CH/sub 3/I in raindrops was held by any of the three vegetation types.

  17. Dialkylmethyl-2-(N,N-diisobutyl)acetamidoammonium iodide as a ruthenium selective ligand from nitric acid medium.

    PubMed

    Sharma, Shikha; Ghosh, Sunil K; Sharma, Joti N

    2015-09-15

    A new class of quaternary ammonium iodide based ligands with 2-(N,N-diisobutyl)acetamide as an alkyl appendage have been designed, synthesized and tested for their ability to extract ruthenium selectively from nitric acid medium. The 2-(N,N-diisobutyl)acetamido ammonium iodide with two propyl and a methyl substituents showed best results for the recovery of ruthenium. The optimized concentration of the solvent was found to be 0.2M in 30% isodecyl alcohol/n-dodecane. The stoichiometry of the complex was ascertained by slope analysis method and was found to be 1:1 with respect to ligand L(+)I(-) and Ru(NO)(NO3)3. Ruthenium formed an adduct of structure LRu(NO)(NO3)3 I in the extraction medium. Iodide ion played an important role in the formation of the stable and extractable complex of ruthenium. No extraction was observed when iodide was replaced by nitrate anion in the ligand. The ligand also showed good selectivity for ruthenium in the presence of other metal ions commonly found in nitric acid solutions of nuclear waste. PMID:25863580

  18. X-ray imaging performance of structured cesium iodide scintillators.

    PubMed

    Zhao, Wei; Ristic, Goran; Rowlands, J A

    2004-09-01

    Columnar structured cesium iodide (CsI) scintillators doped with Thallium (Tl) have been used extensively for indirect x-ray imaging detectors. The purpose of this paper is to develop a methodology for systematic investigation of the inherent imaging performance of CsI as a function of thickness and design type. The results will facilitate the optimization of CsI layer design for different x-ray imaging applications, and allow validation of physical models developed for the light channeling process in columnar CsI layers. CsI samples of different types and thicknesses were obtained from the same manufacturer. They were optimized either for light output (HL) or image resolution (HR), and the thickness ranged between 150 and 600 microns. During experimental measurements, the CsI samples were placed in direct contact with a high resolution CMOS optical sensor with a pixel pitch of 48 microns. The modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) of the detector with different CsI configurations were measured experimentally. The aperture function of the CMOS sensor was determined separately in order to estimate the MTF of CsI alone. We also measured the pulse height distribution of the light output from both the HL and HR CsI at different x-ray energies, from which the x-ray quantum efficiency, Swank factor and x-ray conversion gain were determined. Our results showed that the MTF at 5 cycles/mm for the HR type was 50% higher than for the HL. However, the HR layer produces approximately 36% less light output. The Swank factor below K-edge was 0.91 and 0.93 for the HR and HL types, respectively, thus their DQE(0) were essentially identical. The presampling MTF decreased as a function of thickness L. The universal MTF, i.e., MTF plotted as a function of the product of spatial frequency f and CsI thickness L, increased as a function of L. This indicates that the light channeling process in CsI improved the MTF of

  19. Structural diversity in hybrid organic-inorganic lead iodide materials.

    PubMed

    Weber, Oliver J; Marshall, Kayleigh L; Dyson, Lewis M; Weller, Mark T

    2015-12-01

    The structural chemistry of hybrid organic-inorganic lead iodide materials has become of increasing significance for energy applications since the discovery and development of perovskite solar cells based on methylammonium lead iodide. Seven new hybrid lead iodide compounds have been synthesized and structurally characterized using single-crystal X-ray diffraction. The lead iodide units in materials templated with bipyridyl, 1,2-bis(4-pyridyl)ethane, 1,2-di(4-pyridyl)ethylene and imidazole adopt one-dimensional chain structures, while crystallization from solutions containing piperazinium cations generates a salt containing isolated [PbI6](4-) octahedral anions. Templating with 4-chlorobenzylammonium lead iodide adopts the well known two-dimensional layered perovskite structure with vertex shared sheets of composition [PbI4](2-) separated by double layers of organic cations. The relationships between the various structures determined, their compositions, stability and hydrogen bonding between the protonated amine and the iodide ions of the PbI6 octahedra are described. PMID:26634723

  20. Fast scintillation timing detector using proportional-mode avalanche photodiode for nuclear resonant scattering experiments in high-energy synchrotron X-ray region

    NASA Astrophysics Data System (ADS)

    Inoue, Keisuke; Kishimoto, Shunji

    2016-01-01

    To obtain both a high count rate of >107 s-1 and a detection efficiency sufficient for high-energy X-rays of >30 keV, we propose a scintillation timing detector using a proportional-mode silicon avalanche photodiode (Si-APD) for synchrotron radiation nuclear resonant scattering. We here present results obtained with a prototype detector using a lead-loaded plastic scintillator (EJ-256) mounted on a proportional-mode Si-APD (active area size: 3 mm in diameter). The detector was operated at ‒35 °C for a better signal-to-noise ratio. Using synchrotron X-rays of 67.41 keV, which is the same energy as the first excited level of 61Ni, we successfully measured pulse-height and time spectra of the scintillation light. A good time resolution of 0.50±0.06 ns (full width at half-maximum) was obtained for 67.41 keV X-rays with a scintillator 3 mm in diameter and 2 mm thick.

  1. Characterization of solid state nuclear track detectors of the polyallyl-diglycol-carbonate (CR-39/PM-355) type for light charged particle spectroscopy

    SciTech Connect

    Malinowska, A. Jaskóła, M.; Korman, A.; Kuk, M.; Szydłowski, A.

    2014-12-15

    This paper presents a method which uses the characteristics of the etch pits induced in a polyallyl-diglycol-carbonate (PADC) detector of the CR-39/PM-355 type to estimate particle energy. This method is based on the data provided by a semiautomatic system that selects tracks according to two parameters, crater diameters, and mean gray level values. In this paper we used the results of the calibration measurements that were obtained in our laboratory in the period 2000–2014. Combining the information on the two parameters it is possible to determine unambiguously the incident projectile energy values. The paper presents the results of an attempt to estimate the energy resolution of the method when analyzing the tracks produced in the CR-39/PM-355 detector by energetic ions such as alpha particles, protons, and deuterons. We discuss the energy resolution of the measurement of light charged particle energy which is based on the parameters (crater diameter and mean gray level value) of tracks induced in solid state nuclear track detectors of the PADC type.

  2. Posttranscriptional regulation of sodium-iodide symporter mRNA expression in the rat thyroid gland by acute iodide administration.

    PubMed

    Serrano-Nascimento, Caroline; Calil-Silveira, Jamile; Nunes, Maria Tereza

    2010-04-01

    Iodide is an important regulator of thyroid activity. Its excess elicits the Wolff-Chaikoff effect, characterized by an acute suppression of thyroid hormone synthesis, which has been ascribed to serum TSH reduction or TGF-beta increase and production of iodolipids in the thyroid. These alterations take hours/days to occur, contrasting with the promptness of Wolff-Chaikoff effect. We investigated whether acute iodide administration could trigger events that precede those changes, such as reduction of sodium-iodide symporter (NIS) mRNA abundance and adenylation, and if perchlorate treatment could counteract them. Rats subjected or not to methylmercaptoimidazole treatment (0.03%) received NaI (2,000 microg/0.5 ml saline) or saline intraperitoneally and were killed 30 min up to 24 h later. Another set of animals was treated with iodide and perchlorate, in equimolar doses. NIS mRNA content was evaluated by Northern blotting and real-time PCR, and NIS mRNA poly(A) tail length by rapid amplification of cDNA ends-poly(A) test (RACE-PAT). We observed that NIS mRNA abundance and poly(A) tail length were significantly reduced in all periods of iodide treatment. Perchlorate reversed these effects, indicating that iodide was the agent that triggered the modifications observed. Since the poly(A) tail length of mRNAs is directly associated with their stability and translation efficiency, we can assume that the rapid decay of NIS mRNA abundance observed was due to a reduction of its stability, a condition in which its translation could be impaired. Our data show for the first time that iodide regulates NIS mRNA expression at posttranscriptional level, providing a new mechanism by which iodide exerts its autoregulatory effect on thyroid. PMID:20107044

  3. Engineering and design properties of thallium-doped sodium iodide and selected properties of sodium-doped cesium iodide

    NASA Technical Reports Server (NTRS)

    Forrest, K.; Haehner, C.; Heslin, T.; Magida, M.; Uber, J.; Freiman, S.; Hicho, G.; Polvani, R.

    1984-01-01

    Mechanical and thermal properties, not available in the literature but necessary to structural design, using thallium doped sodium iodide and sodium doped cesium iodide were determined to be coefficient of linear thermal expansion, thermal conductivity, thermal shock resistance, heat capacity, elastic constants, ultimate strengths, creep, hardness, susceptibility to subcritical crack growth, and ingot variation of strength. These properties were measured for single and polycrystalline materials at room temperature.

  4. Neutrino Detectors

    NASA Astrophysics Data System (ADS)

    von Feilitzsch, Franz; Lanfranchi, Jean-Côme; Wurm, Michael

    The neutrino was postulated by Wolfgang Pauli in the early 1930s, but could only be detected for the first time in the 1950s. Ever since scientists all around the world have worked on the detection and understanding of this particle which so scarcely interacts with matter. Depending on the origin and nature of the neutrino, various types of experiments have been developed and operated. In this entry, we will review neutrino detectors in terms of neutrino energy and associated detection technique as well as the scientific outcome of some selected examples. After a brief historical introduction, the detection of low-energy neutrinos originating from nuclear reactors or from the Earth is used to illustrate the principles and difficulties which are encountered in detecting neutrinos. In the context of solar neutrino spectroscopy, where the neutrino is used as a probe for astrophysics, three different types of neutrino detectors are presented - water Čerenkov, radiochemical, and liquid-scintillator detectors. Moving to higher neutrino energies, we discuss neutrinos produced by astrophysical sources and from accelerators. The entry concludes with an overview of a selection of future neutrino experiments and their scientific goals.

  5. Iodide iontophoresis as a treatment for dry eye syndrome

    PubMed Central

    Horwath-Winter, J; Schmut, O; Haller-Schober, E-M; Gruber, A; Rieger, G

    2005-01-01

    Background/aims: Among the causes related to the development or perpetuation and aggravation of dry eye disease, oxidative reactions may have a role in the pathogenesis of this disorder. Antioxidants, such as iodide, have shown a strong effect in preventing the oxidative damage to constituents of the anterior part of the eye. In this clinical trial the effectiveness of iodide iontophoresis and iodide application without current in moderate to severe dry eye patients was compared. Methods: 16 patients were treated with iodide iontophoresis and 12 patients with iodide application without current for 10 days. Subjective improvement, frequency of artificial tear application, tear function parameters (break up time, Schirmer test without local anaesthesia), vital staining (fluorescein and rose bengal staining) as well as impression cytology of the bulbar conjunctiva were evaluated before treatment, 1 week, 1 month, and 3 months after treatment. Results: A reduction in subjective symptoms, frequency of artificial tear substitute application, and an improvement in certain tear film and ocular surface factors could be observed in both groups. A stronger positive influence was seen after application of iodide with current (iontophoresis), as observed in a distinct improvement in break up time, fluorescein and rose bengal staining, and in a longer duration of this effect compared with the non-current group. No significant change in Schirmer test results and impression cytology were observed in both groups. Conclusions: Iodide iontophoresis has been demonstrated to be a safe and well tolerated method of improving subjective and objective dry eye factors in patients with ocular surface disease. PMID:15615744

  6. Purification and Crystal Growth of Lead Iodide by Physical Vapor Transport Method

    NASA Technical Reports Server (NTRS)

    Wright, G. W.; Cole, M.; Chen, Y.-F.; Chen, K.-T.; Chen, H.; Chattopadhyay, K.; Burger, A.

    1998-01-01

    Lead iodide (PbI2) is a layered compound semiconductor being developed as room temperature x- and gamma-ray detector. Compared to the more studied material, mercuric iodide, PbI2 has a higher melting temperature and no phase transition until liquid phase which are indications of better mechanical properties. In this study, the source material was purified by the zone-refining process, and the purest section was extracted from center of the the zone-refined ingot to be grown by physical vapor transport (PVT) method. The zone-refined material and as-grown crystals were characterized by optical microscopy and differential scanning calorimetry (DSC) to reveal the surface morphology, purity and stoichiometry. The results shows that both materials are near-stoichiometric composition, with the purity of the as-grown crystals higher than zone-refined materials. The resistivity of the as-grown crystal (10" Omega-cm) was derived from current-voltage (I-V) measurement, and is 10 times higher than the zone-refined materials. Detail results will be presented and discussed.

  7. Deployment of a three-dimensional array of Micro-Pocket Fission Detector triads (MPFD3) for real-time, in-core neutron flux measurements in the Kansas State University TRIGA Mark-II Nuclear Reactor

    NASA Astrophysics Data System (ADS)

    Ohmes, Martin Francis

    A Micro-Pocket Fission Detector (MPFD) is a miniaturized type of fission chamber developed for use inside a nuclear reactor. Their unique design allows them to be located between or even inside fuel pins while being built from materials which give them an operational lifetime comparable to or exceeding the life of the fuel. While other types of neutron detectors have been made for use inside a nuclear reactor, the MPFD is the first neutron detector which can survive sustained use inside a nuclear reactor while providing a real-time measurement of the neutron flux. This dissertation covers the deployment of MPFDs as a large three-dimensional array inside the Kansas State University TRIGA Mark-II Nuclear Reactor for real-time neutron flux measurements. This entails advancements in the design, construction, and packaging of the Micro-Pocket Fission Detector Triads with incorporated Thermocouple, or MPFD3-T. Specialized electronics and software also had to be designed and built in order to make a functional system capable of collecting real-time data from up to 60 MPFD3-Ts, or 180 individual MPFDs and 60 thermocouples. Design of the electronics required the development of detailed simulations and analysis for determining the theoretical response of the detectors and determination of their size. The results of this research shows that MPFDs can operate for extended times inside a nuclear reactor and can be utilized toward the use as distributed neutron detector arrays for advanced reactor control systems and power mapping. These functions are critical for continued gains in efficiency of nuclear power reactors while also improving safety through relatively inexpensive redundancy.

  8. Origin of a signal detected with the LSD detector after the accident at the chernobyl nuclear power plant

    SciTech Connect

    Agafonova, N. Yu. Malgin, A. S.; Fulgione, W.

    2013-08-15

    A rare signal was detected at 23:53 Moscow time on April 27, 1986 with the LSD low-background scintillation detector located under Mont Blanc at a distance of 1820 km from Chernobyl. To reveal the origin of this signal, we discuss the results obtained with other instruments operating within a similar program, as well as analyze the characteristics of the pulses of the signal and facts referring to the explosion of the Chernobyl reactor. A hypothesis based on detection with the LSD of gamma-quanta from {beta} decays of {sup 135}I nuclei ejected into atmosphere by the reactor explosion and carried in the underground detector camera with air of positive ventilation is considered. The explosion origin of the LSD signal indicates a new technogenic source of the background in the search for neutrino bursts from cores of collapsing stars.

  9. Origin of a signal detected with the LSD detector after the accident at the chernobyl nuclear power plant

    NASA Astrophysics Data System (ADS)

    Agafonova, N. Yu.; Malgin, A. S.; Fulgione, W.

    2013-08-01

    A rare signal was detected at 23:53 Moscow time on April 27, 1986 with the LSD low-background scintillation detector located under Mont Blanc at a distance of 1820 km from Chernobyl. To reveal the origin of this signal, we discuss the results obtained with other instruments operating within a similar program, as well as analyze the characteristics of the pulses of the signal and facts referring to the explosion of the Chernobyl reactor. A hypothesis based on detection with the LSD of gamma-quanta from β decays of 135I nuclei ejected into atmosphere by the reactor explosion and carried in the underground detector camera with air of positive ventilation is considered. The explosion origin of the LSD signal indicates a new technogenic source of the background in the search for neutrino bursts from cores of collapsing stars.

  10. Chemical analysis of metal impurity distribution of zone-refined mercuric iodide by ICP-AES and DSC

    NASA Astrophysics Data System (ADS)

    Chen, K.-T.; Salary, L.; Burger, A.; Soria, E.; Antolak, A.; James, R. B.

    A mercuric iodide single crystal is being developed for X-ray and gamma-ray detector applications where high-purity starting material is required. Zone-refining processing has been proven to be an effective step in the purification of large amounts of mercuric iodide for crystal growth. In this study we used the Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) to identify and determine the distribution of impurity concentrations along the ampoule after zone-refining mercuric iodide. The results show that for Ag, Cu, Fe, Mg, Ca, Zn, Cr and Al, the zone-refining process does sweep the impurities to the last-to-freeze zone, due to an effective distribution coefficient, keff < 1. For Na, Ni, Cd, Mn and Pb the concentration gradient seems to be fairly independent of the position along the ingot. Differential Scanning Calorimetry was also employed to investigate the deviation from stoichiometry caused by the zone-refining process, and the results indicated that the first-to-freeze section is Hg-rich, and the middle section tends to become slightly Hg-rich, while the last-to-freeze section becomes I-rich.

  11. High-Performance Doped Strontium Iodide Crystal Growth Using a Modified Bridgman Method

    NASA Astrophysics Data System (ADS)

    Rowe, Emmanuel

    The importance of gamma-ray spectroscopy---the science of determining the distribution of energy in a gamma field---can rarely be overstated. High performance scintillators for gamma-ray spectroscopy in Nuclear Nonproliferation applications and homeland security require excellent energy resolution to distinguish neighboring element and isotope lines while minimizing the time and exposure to do so. Semiconductor detectors operate by converting incident photons directly into electrical pulses, but often have problems of high costs due to constituent segregation and surface states as is the case for Cadmium Zinc Telluride. The ideal scintillator material for gamma spectrometer will therefore requires high light yield, excellent proportionality between light yield and gamma photon energy, and material uniformity. A scintillator should possess the following properties; it should convert the kinetic energy of the generated charged particles (typically K-shell electrons) into detectable visible light. This conversion should be linear-the light yield should be proportional to deposited energy over as wide a range as possible. For good light collection, the medium should be transparent to the wavelength of its own emission. The decay time of the induced luminescence should be short so that fast signal pulses can be generated. The medium should be of good optical quality and subject to manufacture in sizes large enough to be of interest as a practical detector. Its index of refraction should be near that of glass (~1.5) to permit efficient coupling of scintillation light to a photomultiplier tube or other photo-sensor. In the past decade, inorganic scintillator research has focused less on improving the characteristics of known scintillators, but rather on the search for new hosts capable of fast response and high energy resolution. Extensive searches have been made for hosts doped with lanthanide activators utilizing the allowed 5d-4f transition. These 5d-4f transitions are

  12. Cesium-iodide-based nanocrystal for the detection of ionizing radiation

    NASA Astrophysics Data System (ADS)

    Farzaneh, Azadeh; Abdi, Mohammad Reza; Saraee, Khadijeh Rezaee Ebrahim; Mostajaboddavati, Mojtaba; Quaranta, A.

    2016-05-01

    We report on the synthesis of cesium-iodide nanoparticles using sol-gel technique. The structural properties of CsI nanoparticles were characterized by X-ray diffraction and optical properties were followed by optical absorption and UV-vis fluorescence. Intense photoluminescence is also observed, with some spectral tuning possible with ripening time getting a range of emission photon wavelength approximately from 366 to 350 nm. The size effect on CsI luminescence leads to an increase in scintillation light yield, a redshift of the emission bands of the on_center and off_center self_trapped excitons (STEs) and an increase in the contribution of the off_center STEs to the net intrinsic emission yield. The energy transfer from the matrix to CsI nanoparticles is a key characteristic for scintillation detectors. So the scintillation spectra and decay curve to alpha particles of sample were monitored.

  13. Study on growth of large area mercuric iodide polycrystalline film and its x-ray imaging

    NASA Astrophysics Data System (ADS)

    Xu, Gang; Guo, Yanfei; Xi, Zengzhe; Gu, Zhi; Zhang, Lan; Yu, Wentao; Ma, Xuming; Li, Bo

    2014-11-01

    Tetragonal mercuric iodide, as a group of wide band gap semiconductors, has been widely investigation during most of the last half-century, applied on room-temperature X-ray and gamma-ray spectrometers. Up to the present, Mercuric iodide (HgI2) is still thought to be one of the most outstanding vitality semiconductor materials because of its wide band gap, for which the device was required to be high resistivity, high atomic number, adequate mechanical strength, long carrier lifetimes and high mobility-lifetime produces. Now, HgI2 polycrystalline films are being developed as a new detector technology for digital x-ray imaging. In this research, HgI2 polycrystalline films with different surface areas of 1 and 36 cm2 were grown by vapor sublimation method within a self-design growth furnace. XRD, SEM and J-V analysis were used to characterize the properties of these as-grown films. The results of XRD show that the ratio of (001) / (hkl) on all as-grown films is amount to be 90% for the area of 1 cm2 films. Grain size of 1 cm2 films was measured to be 120-150 μm. Their electrical resistivity were also determined to be about 1011 Ω·cm operated at the bias voltage of ~100 V by I-V characteristic measurement. Utilizing the polycrystalline film with the area of 36 cm2 deposited on TFT, we then prepared the direct image detector after capsulation for non-corrosive steel screw imaging. The results indicated that profile of screw was distinctly exhibited in digital x-ray imaging systems.

  14. Modified purification of mercuric iodide for crystal growth

    NASA Astrophysics Data System (ADS)

    Skinner, N. L.; Ortale, C.; Schieber, M. M.; Vandenberg, L.

    The standard procedure used in our laboratory to purify commercially available mercuric iodide consists of a sequence of steps: (1) repeated sublimation under continous evacuation, followed by (2) melting and recrystallization, and (3) a sublimation process in a closed tube. This paper describes a modification of the standard purification sequence by adding recrystallization of the mercuric iodide in hydrochloric acid. Leaching cation impurities out of mercuric iodide powder with hydrochloric acid has been practiced before by Zaletin, (V.M. Zaletin, I.H. Nozhiua, I.N. Fomin, V.T. Shystov, and N.V. Protasov, Atomic Energy 48, 169 (1980)). Our objective for the hydrochloric acid treatment was to remove nitrates and hydrocarbons which were interfering with the vapor transport during crystal growth. Results of the procedure are presented in terms of total carbon and selected ion content of the treated and untreated material.

  15. The BaBar cesium iodide electromagnetic calorimeter

    SciTech Connect

    Wuest, C.R.

    1994-12-01

    The BABAR Cesium Iodide Electromagnetic Calorimeter is currently in the technical design stage. The calorimeter consists of approximately 10,000 individual thallium-doped cesium iodide crystals arranged in a near-hermetic barrel and endcap structure. Taking previous cesium iodide calorimeters as a benchmark, we hope to build a system with roughly two times better energy resolution. This will be achieved by a combination of high quality crystal growing, precision mechanical processing of crystals and support structure, highly efficient light collection and low noise readout electronics. The calorimeter described here represents the current state of the design and we are undertaking an active period of optimization before this design is finalized. We discuss here the physics motivation, the current design and options for optimization.

  16. Thyroid effects of iodine and iodide in potable water

    NASA Technical Reports Server (NTRS)

    Bull, Richard J.; Thrall, Karla D.; Sherer, Todd T.

    1991-01-01

    Experiments are reviewed which examine the comparative toxicological effects of iodide (I) and iodine (I2) when used to disinfect drinking water. References are made to a subchronic study in rats, a comparison of the distribution of radiolabeled I and I2, and a demonstration of thyroxine formation in the gastrointestinal tract. The results of the study of the rats are examined in detail; the findings show that I and I2 have opposite effects on the concentrations of thyroid hormones in blood. Iodide slightly decreases circulating thyroxine, while I2 significantly increases the thyroxine concentrations, decreases triiodothyronine levels, and does not change the weight of the thyroid gland. The related effects of I2 ingestion are set forth in detail and are shown to be unique to I2 contamination. Iodine can counteract the effects of iodide and should therefore be used as a disinfectant in drinking water.

  17. Standard free energy of formation of iron iodide

    NASA Technical Reports Server (NTRS)

    Khandkar, A.; Tare, V. B.; Wagner, J. B., Jr.

    1983-01-01

    An experiment is reported where silver iodide is used to determine the standard free energy of formation of iron iodide. By using silver iodide as a solid electrolyte, a galvanic cell, Ag/AgI/Fe-FeI2, is formulated. The standard free energy of formation of AgI is known, and hence it is possible to estimate the standard free energy of formation of FeI2 by measuring the open-circuit emf of the above cell as a function of temperature. The free standard energy of formation of FeI2 determined by this method is -38784 + 24.165T cal/mol. It is estimated that the maximum error associated with this method is plus or minus 2500 cal/mol.

  18. A novel peculiar mutation in the sodium/iodide symporter gene in spanish siblings with iodide transport defect.

    PubMed

    Kosugi, Shinji; Okamoto, Hiroomi; Tamada, Aiko; Sanchez-Franco, F

    2002-08-01

    Previously, we reported two Spanish siblings with congenital hypothyroidism due to total failure of iodide transport. These were the only cases reported to date who received long-term iodide treatment over 10 yr. We examined the sodium/iodide symporter (NIS) gene of these patients. A large deletion was observed by long and accurate PCR using primers derived from introns 2 and 7 of the NIS gene. PCR-direct sequencing revealed a deletion of 6192 bases spanning from exon 3 to intron 7 and an inverted insertion of a 431-base fragment spanning from exon 5 to intron 5 of the NIS gene. The patients were homozygous for the mutation, and their mother was heterozygous. In the mutant, deletion of exons 3-7 was suggested by analysis using programs to predict exon/intron organization, resulting in an in-frame 182-amino acid deletion from Met(142) in the fourth transmembrane domain to Gln(323) in the fourth exoplasmic loop. The mutant showed no iodide uptake activity when transfected into COS-7 cells, confirming that the mutation was the direct cause of the iodide transport defect in these patients. Further, the mutant NIS protein was synthesized, but not properly expressed, on the cell surface, but was mostly accumulated in the cytoplasm, suggesting impaired targeting to the plasma membrane. PMID:12161518

  19. Detector frontier: Theoretical expectations and dreams

    SciTech Connect

    Nazarewicz, W.

    1992-12-31

    The new large detector systems are certain to shed new light on many aspects of nuclear structure. Some of these areas for future studies are discussed. In this contribution the author concentrates on several aspects of nuclear spectroscopy, that will be accessible by modern detector systems (e.g., {gamma}-ray crystal balls or new-generation particle detectors).

  20. A performance test of a new high-surface-quality and high-sensitivity CR-39 plastic nuclear track detector - TechnoTrak

    NASA Astrophysics Data System (ADS)

    Kodaira, S.; Morishige, K.; Kawashima, H.; Kitamura, H.; Kurano, M.; Hasebe, N.; Koguchi, Y.; Shinozaki, W.; Ogura, K.

    2016-09-01

    We have studied the performance of a newly-commercialized CR-39 plastic nuclear track detector (PNTD), "TechnoTrak", in energetic heavy ion measurements. The advantages of TechnoTrak are derived from its use of a purified CR-39 monomer to improve surface quality combined with an antioxidant to improve sensitivity to low-linear-energy-transfer (LET) particles. We irradiated these detectors with various heavy ions (from protons to krypton) with various energies (30-500 MeV/u) at the heavy ion accelerator facilities in the National Institute of Radiological Sciences (NIRS). The surface roughness after chemical etching was improved to be 59% of that of the conventional high-sensitivity CR-39 detector (HARZLAS/TD-1). The detectable dynamic range of LET was found to be 3.5-600 keV/μm. The LET and charge resolutions for three ions tested ranged from 5.1% to 1.5% and 0.14 to 0.22 c.u. (charge unit), respectively, in the LET range of 17-230 keV/μm, which represents an improvement over conventional products (HARZLAS/TD-1 and BARYOTRAK). A correction factor for the angular dependence was determined for correcting the LET spectrum in an isotropic radiation field. We have demonstrated the potential of TechnoTrak, with its two key features of high surface quality and high sensitivity to low-LET particles, to improve automatic analysis protocols in radiation dosimetry and various other radiological applications.

  1. Theoretical feasibility study on neutron spectrometry with the polyallyldiglycol carbonate (PADC) solid-state nuclear track detector

    NASA Astrophysics Data System (ADS)

    Nikezic, D.; Yu, K. N.

    2015-01-01

    Neutron spectrometry with the polyallyldiglycol carbonate (PADC) film detector was analyzed in detail. The computer codes TRACK_TEST and TRACK_VISION, which were originally developed for studies on alpha-particle tracks, were modified to compute parameters of etched proton tracks developed in the PADC film detector and to simulate their appearance under an optical microscope in the transmission mode. It was shown that protons with same energy and recoil angle could produce different etched tracks with various size and shape, depending on the point of their creation. As such, it was necessary to employ multiple etching, and to measure the removed layer thickness and to record the track appearance after each etching step. A new variable, namely, the effective removed layer heff, was introduced as the difference between the total removed layer and the depth where the proton was created in the detector. A program modified from the TRACK_VISION code was used to plot the appearance of a number of representative etched proton tracks. For proton energies larger than 2 MeV, the V function for protons in PADC was found to be almost constant, so the simple formulas for major and minor axes of proton track openings could be used to determine the proton energy, recoiled angle as well as the energy of the neutron which caused the proton recoil. For lower proton energies, a databank of various proton tracks showing the track opening appearances and the track profiles should be created for comparison to facilitate the determination of the proton energy.

  2. Field Deployable Gamma Radiation Detectors for DHS Use

    SciTech Connect

    Sanjoy Mukhopadhyay

    2007-08-31

    Recently, the U.S. Department of Homeland Security (DHS) has integrated all nuclear detection research, development, testing, evaluation, acquisition, and operational support into a single office: the Domestic Nuclear Detection Office (DNDO). The DNDO has specific requirements set for all commercial and government off-the-shelf radiation detection equipment and data acquisition systems. This article would investigate several recent developments in field deployable gamma radiation detectors that are attempting to meet the DNDO specifications. Commercially available, transportable, handheld radio isotope identification devices (RIID) are inadequate for DHS’s requirements in terms of sensitivity, resolution, response time and reach back capability. The leading commercial vendor manufacturing handheld gamma spectrometer in the United States is Thermo Electron Corporation. Thermo Electron’s identiFINDER™, which primarily uses sodium iodide crystals (3.18-cm x 2.54-cm cylinders) as gamma detector, has a Full-Width-at-Half-Maximum energy resolution of 7 percent at 662 keV. Thermo Electron has just recently come up with a reach-back capability patented as RadReachBack™ that enables emergency personnel to obtain real-time technical analysis of radiation samples they find in the field. The current project has the goal to build a prototype handheld gamma spectrometer, equipped with a digital camera and an embedded cell phone to be used as an RIID with higher sensitivity (comparable to that of a 7.62-cm x 7.62-cm sodium iodide crystal at low gamma energy ranging from 30 keV to 3,000 keV), better resolution (< 3.0 percent at 662 keV), faster response time (able to detect the presence of gamma-emitting radio isotopes within 5 seconds of approach), which will make it useful as a field deployable tool. The handheld equipment continuously monitors the ambient gamma radiation and, if it comes across any radiation anomalies with higher than normal gamma gross counts, it sets

  3. Charge-carrier mobilities in Cd(0.8)Zn(0.2)Te single crystals used as nuclear radiation detectors

    NASA Technical Reports Server (NTRS)

    Burshtein, Z.; Jayatirtha, H. N.; Burger, A.; Butler, J. F.; Apotovsky, B.; Doty, F. P.

    1993-01-01

    Charge-carrier mobilities were measured for the first time in Cd(0.8)Zn(0.2)Te single crystals using time-of-flight measurements of charge carriers produced by short (10 ns) light pulses from a frequency-doubled Nd:YAG laser (532 nm). The electron mobility displayed a T exp -1.1 dependence on the absolute temperature T in the range 200-320 K, with a room-temperature mobility of 1350 sq cm/V s. The hole mobility displayed a T exp -2.0 dependence in the same temperature range, with a room-temperature mobility of 120 sq cm/V s. Cd(0.8)Zn(0.2)Te appears to be a very favorable material for a room-temperature electronic nuclear radiation detector.

  4. Hard modeling methods for the curve resolution of data from liquid chromatography with a diode array detector and on-flow liquid chromatography with nuclear magnetic resonance spectroscopy.

    PubMed

    Wasim, Mohammad; Brereton, Richard G

    2006-01-01

    Hard modeling methods have been performed on data from high-performance liquid chromatography with a diode array detector (LC-DAD) and on-flow liquid chromatography with 1H nuclear magnetic spectroscopy (LC-NMR). Four methods have been used to optimize parameters to model concentration profiles, three of which belong to classical optimization methods (the simplex method of Nelder-Mead, sequential quadratic programming approach, and Levenberg-Marquardt method), and the fourth is the application of genetic algorithms using real-value encoding. Only classical methods worked well for LC-DAD data, while all of the methods produced good results when LC-NMR data were divided into small spectral windows of peak clusters and parameters were optimized over each window. PMID:16711734

  5. Two CdZnTe Detector-Equipped Gamma-ray Spectrometers for Attribute Measurements on Irradiated Nuclear Fuel

    SciTech Connect

    Hartwell, John Kelvin; Winston, Philip Lon; Marts, Donna Jeanne; Moore-McAteer, Lisa Dawn; Taylor, Steven Cheney

    2003-04-01

    Some United States Department of Energy-owned spent fuel elements from foreign research reactors (FRRs) are presently being shipped from the reactor location to the US for storage at the Idaho National Engineering and Environmental Laboratory (INEEL). Two cadmium zinc telluride detector-based gamma-ray spectrometers have been developed to confirm the irradiation status of these fuels. One spectrometer is configured to operate underwater in the spent fuel pool of the shipping location, while the other is configured to interrogate elements on receipt in the dry transfer cell at the INEEL’s Interim Fuel Storage Facility (IFSF). Both units have been operationally tested at the INEEL.

  6. Low-Mass WIMP Sensitivity and Statistical Discrimination of Electron and Nuclear Recoils by Varying Luke-Neganov Phonon Gain in Semiconductor Detectors

    NASA Astrophysics Data System (ADS)

    Pyle, M.; Bauer, D. A.; Cabrera, B.; Hall, J.; Schnee, R. W.; Basu Thakur, R.; Yellin, S.

    2012-06-01

    Amplifying the phonon signal in a semiconductor dark matter detector can be accomplished by operating at high voltage bias and converting the electrostatic potential energy into Luke-Neganov phonons. This amplification method has been validated at up to | E|=40 V/cm without producing leakage in CDMS II Ge detectors, allowing sensitivity to a benchmark WIMP with mass M χ =8 GeV/c2 and σ=1.8×10-42 cm2 (with significant sensitivity for M χ >2 GeV/c2) assuming flat electronic recoil backgrounds near threshold. Furthermore, for the first time we show that differences in Luke-Neganov gain for nuclear and electronic recoils can be used to discriminate statistically between low-energy background and a hypothetical WIMP signal by operating at two distinct voltage biases. Specifically, 99% of events have p-value <10-8 for a simulated 20 kg-day experiment with a benchmark WIMP signal with M χ =8 GeV/c2 and σ=3.3×10-41 cm2.

  7. γ-Selective Allylation of (E)-Alkenylzinc Iodides Prepared by Reductive Coupling of Arylacetylenes with Alkyl Iodides.

    PubMed

    Zhurkin, Fedor E; Hu, Xile

    2016-07-01

    The first examples of Cu-catalyzed γ-selective allylic alkenylation using organozinc reagents are reported. (E)-Alkenylzinc iodides were prepared by Fe-catalyzed reductive coupling of terminal arylalkynes with alkyl iodides. In the presence of a copper catalyst, these reagents reacted with allylic bromides derived from Morita-Baylis-Hillman alcohols to give 1,4-dienes in high yields. The reactions are highly γ-selective (generally γ/α > 49:1) and tolerate a wide range of functional groups such as ester, cyano, keto, and nitro. PMID:27285459

  8. 40 CFR 415.510 - Applicability; description of the potassium iodide production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... potassium iodide production subcategory. 415.510 Section 415.510 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Iodide Production Subcategory § 415.510 Applicability; description of the potassium iodide production subcategory. The provisions of this subpart are applicable to...

  9. 40 CFR 415.510 - Applicability; description of the potassium iodide production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... potassium iodide production subcategory. 415.510 Section 415.510 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Iodide Production Subcategory § 415.510 Applicability; description of the potassium iodide production subcategory. The provisions of this subpart are applicable to...

  10. 40 CFR 415.510 - Applicability; description of the potassium iodide production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... potassium iodide production subcategory. 415.510 Section 415.510 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Iodide Production Subcategory § 415.510 Applicability; description of the potassium iodide production subcategory. The provisions of this subpart are applicable to...

  11. 40 CFR 415.510 - Applicability; description of the potassium iodide production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... potassium iodide production subcategory. 415.510 Section 415.510 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Iodide Production Subcategory § 415.510 Applicability; description of the potassium iodide production subcategory. The provisions of this subpart are applicable to...

  12. 40 CFR 415.510 - Applicability; description of the potassium iodide production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... potassium iodide production subcategory. 415.510 Section 415.510 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Iodide Production Subcategory § 415.510 Applicability; description of the potassium iodide production subcategory. The provisions of this subpart are applicable to...

  13. Selective capture of iodide from solutions by microrosette-like δ-Bi₂O₃.

    PubMed

    Liu, Long; Liu, Wei; Zhao, Xiaoliang; Chen, Daimei; Cai, Rongsheng; Yang, Weiyou; Komarneni, Sridhar; Yang, Dongjiang

    2014-09-24

    Radioactive iodine isotopes that are produced in nuclear power plants and used in medical research institutes could be a serious threat to the health of many people if accidentally released to the environment because the thyroid gland can absorb and concentrate them from a liquid. For this reason, uptake of iodide anions was investigated on microrosette-like δ-Bi2O3 (MR-δ-Bi2O3). The MR-δ-Bi2O3 adsorbent showed a very high uptake capacity of 1.44 mmol g(-1) by forming insoluble Bi4I2O5 phase. The MR-δ-Bi2O3 also displayed fast uptake kinetics and could be easily separated from a liquid after use because of its novel morphology. In addition, the adsorbent showed excellent selectivity for I(-) anions in the presence of large concentrations of competitive anions such as Cl(-) and CO3(2-), and could work in a wide pH range of 4-11. This study led to a new and highly efficient Bi-based adsorbent for iodide capture from solutions. PMID:25170974

  14. Measurements of photo-neutrons from a medical linear accelerator using CR-39 plastic nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Monson, Jonathan Michael

    Photo-neutrons are produced when x-ray energies exceed 7 MeV. Photo-neutron production varies depending on x-ray beam energy. CR-39 PNTDs were used in this study to measure the neutron absorbed dose and dose equivalent produced by a Varian Clinac 23EX for x-ray beams of 6 and 18 MVp and with a Varian Trilogy using an x-ray beam of 10 MVp. Neutron absorbed dose and dose equivalent were measured at 100 cm SSD at 0, 20, and 40 cm off-axis from the primary beam in air. Using a polyethylene phantom the neutron absorbed dose and dose equivalent were measured at 100 cm SSD from the top of the phantom at 0, 5, and 10 cm from the surface, in the beam central axis and off-axis distances of 20 and 40 cm at a depth of 10 cm. The neutron absorbed dose and dose equivalent from medical linear accelerators have been measured from the LET spectrum of recoiled tracks produced in the CR-39 PNTDs for high energy neutrons (1-20 MeV) and the neutron dose equivalent for low energy (< 1 MeV) neutrons were measured using TRNDs. In this study, the experimentally measured absorbed dose and dose equivalent from photo-neutrons produced in a common medical linear accelerator operating at energies 10 and 18 MVp range from 0.2 microGy n/Gyx and 2 microSv n/Gyx to 495 microGy n/Gyx and 5500 microSv n/Gyx respectively. The neutron absorbed dose for the 6 MVp x-ray beam was measured to be 0 microGyn/Gyx. Low energy neutrons accounted for less than 1% of the neutron dose equivalent. Those detectors exposed inside of the phantom measured a higher contribution from high LET (> 100 keV/microm) particles than those detectors exposed in air.

  15. Degradation of Methyl Iodide in Soil: Effects of Environmental Factors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methyl iodide (MeI) is a promising alternative to the phased-out fumigant methyl bromide, and its environmental fate following soil fumigation is of great concern. Experiments were conducted to investigate the effect of various environmental factors on the degradation rate of MeI in soil. The chem...

  16. Physical property measurements of doped cesium iodide crystals

    NASA Technical Reports Server (NTRS)

    Synder, R. S.; Clotfelter, W. N.

    1974-01-01

    Mechanical and thermal property values are reported for crystalline cesium iodide doped with sodium and thallium. Young's modulus, bulk modulus, shear modulus, and Poisson's ratio were obtained from ultrasonic measurements. Young's modulus and the samples' elastic and plastic behavior were also measured under tension and compression. Thermal expansion and thermal conductivity were the temperature dependent measurements that were made.

  17. DEGRADATION OF METHYL IODIDE IN SOIL: EFFECTS OF ENVIRONMENTAL FACTORS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methyl iodide (MeI) is a promising alternative to the phased-out fumigant methyl bromide; however, there are concerns about its environmental fate following soil fumigation. Laboratory experiments were conducted to investigate the effect of various environmental factors on the degradation rate of ...

  18. Low energy x-ray spectra measured with a mercuric iodide energy dispersive spectrometer in a scanning electron microscope

    SciTech Connect

    Iwanczyk, J.S.; Dabrowski, A.J.; Huth, G.C.; Bradley, J.G.; Conley, J.M.; Albee, A.L.

    1985-01-01

    A mercuric iodide energy dispersive x-ray spectrometer, with Peltier cooling provided for the detector and input field effect transistor, has been developed and tested in a scanning electron microscope. X-ray spectra were obtained with the 15 keV electron beam. An energy resolution of 225 eV (FWHM) for Mn-K/sub ..cap alpha../ at 5.9 keV and 195 eV (FWHM) for Mg-K line at 1.25 keV has been measured. Overall system noise level was 175 eV (FWHM). The detector system characterization with a carbon target demonstrated good energy sensitivity at low energies and lack of significant spectral artifacts at higher energies. 16 refs., 5 figs.

  19. Low energy X-ray spectra measured with a mercuric iodide energy dispersive spectrometer in a scanning electron microscope

    NASA Technical Reports Server (NTRS)

    Iwanczyk, J. S.; Dabrowski, A. J.; Huth, G. C.; Bradley, J. G.; Conley, J. M.

    1986-01-01

    A mercuric iodide energy dispersive X-ray spectrometer, with Peltier cooling provided for the detector and input field effect transistor, has been developed and tested in a scanning electron microscope. X-ray spectra were obtained with the 15 keV electron beam. An energy resolution of 225 eV (FWHM) for Mn-K(alpha) at 5.9 keV and 195 eV (FWHM) for the Mg-K line at 1.25 keV has been measured. Overall system noise level was 175 eV (FWHM). The detector system characterization with a carbon target demonstrated good energy sensitivity at low energies and lack of significant spectral artifacts at higher energies.

  20. Direct vapor/solid synthesis of mercuric iodide using compounds of mercury and iodine

    DOEpatents

    Skinner, Nathan L.

    1990-01-01

    A process is disclosed for producing high purity mercuric iodide by passing a gaseous source of a mercuric compound through a particulate bed of a low vapor pressure iodide compound which is maintained at an elevated temperature which is the lower of either: (a) just below the melting or volatilization temperature of the iodide compound (which ever is lower); or (b) just below the volatilization point of the other reaction product formed during the reaction; to cause the mercuric compound to react with the iodide compound to form mercuric iodide which then passes as a vapor out of the bed into a cooler condensation region.

  1. Synthesis of (/sup 75/Se)trimethylselenonium iodide from (/sup 75/Se)selenocystine

    SciTech Connect

    Foster, S.J.; Ganther, H.E.

    1984-02-15

    The synthesis of (/sup 75/Se)trimethylselenonium iodide from (/sup 75/)selenocystine is described. The starting compound is reduced to (/sup 75/Se)selenocysteine with borohydride and reacted with methyl iodide to form (/sup 75/Se)Se-methyl-selenocysteine, then treated with methyl iodide in formic acid solution to form Se-dimethyl-selenocysteine selenonium iodide. Over a period of days, the selenonium intermediate undergoes spontaneous elimination to form alanine and dimethyl selenide, which reacts with methyl iodide to give the trimethylselenonium product in over 90% yield. 15 references.

  2. Study of ions and neutrons from a dense plasma focus instrument by means of nuclear tracks detectors

    NASA Astrophysics Data System (ADS)

    Castillo, F.; Golzarri, J. I.; Herrera, J. J. E.; Martınez, H.; Rangel, J.; Espinosa, G.

    2014-07-01

    A most interesting feature of dense plasma foci is the acceleration of charge particle at energy in the range of MeV per nucleon. Using deuterium gas, this devices produce fusion D-D reactions, generating fast neutron pulses (˜ 2.5 MeV). This work describes the studies of this phenomenon in a low energy device (˜ 5 kJ) with a 3 cm diameter and 10 cm long, copper inner electrode. The outer electrode is 10 cm in diameter. The device is operated with four 1.863 μF capacitor in parallel at 38 kV. Neutrons and accelerated particles are analyzed with PADC material detectors (CR-39 Lantrack®) for 2.75 Torr of pressure. A detailed study is made of track diameters when the plastic is chemically etched with, 6N KOH at 60°C (±1) for 18 h. Accelerated deuterons in the range of 1 to 10 MeV are observed.

  3. A high count rate position decoding and energy measuring method for nuclear cameras using Anger logic detectors

    SciTech Connect

    Wong, W.H.; Li, H.; Uribe, J.

    1998-06-01

    A new method for processing signals from Anger position-sensitive detectors used in gamma cameras and PET is proposed for very high count-rate imaging where multiple-event pileups are the norm. This method is designed to sort out and recover every impinging event from multiple-event pileups while maximizing the collection of scintillation signal for every event to achieve optimal accuracy in the measurement of energy and position. For every detected event, this method cancels the remnant signals from previous events, and excludes the pileup of signals from following events. The remnant subtraction is exact even for multiple pileup events. A prototype circuit for energy recovery demonstrated that the maximum count rates can be increased by more than 10 times comparing to the pulse-shaping method, and the energy resolution is as good as pulse shaping (or fixed integration) at low count rates. At 2 {times} 10{sup 6} events/sec on NaI(Tl), the true counts acquired with this method is 3.3 times more than the delay-line clipping method (256 ns clipping) due to events recovered from pileups. Pulse-height spectra up to 3.5 {times} 10{sup 6} events/sec have been studied. Monte Carlo simulation studies have been performed for image-quality comparisons between different processing methods.

  4. A novel mutation in the sodium/iodide symporter gene in the largest family with iodide transport defect.

    PubMed

    Kosugi, S; Bhayana, S; Dean, H J

    1999-09-01

    We previously reported nine children with an autosomally recessive form of congenital hypothyroidism due to an iodide transport defect in a large Hutterite family with extensive consanguinity living in central Canada. Since the original report, we have diagnosed congenital hypothyroidism by newborn TSH screening in 9 additional children from the family. We performed direct sequencing of the PCR products of each NIS (sodium/iodide symporter) gene exon with flanking introns amplified from genomic DNA extracted from peripheral blood cells of the patients. We identified a novel NIS gene mutation, G395R (Gly395-->Arg; GGA-->AGA), in 10 patients examined in the present study. All of the parents tested were heterozygous for the mutation, suggesting that the patients were homozygous. The mutation was located in the 10th transmembrane helix. Expression experiments by transfection of the mutant NIS complimentary DNA into COS-7 cells showed no perchlorate-sensitive iodide uptake, confirming that the mutation is the direct cause of the iodide transport defect in these patients. A patient who showed an intermediate saliva/serum technetium ratio (14.0; normal, > or = 20) and was considered to have a partial or less severe defect in the previous report (IX-24) did not have a NIS gene mutation. It is now possible to use gene diagnostics of this unique NIS mutation to identify patients with congenital hypothyroidism due to an iodide transport defect in this family and to determine the carrier state of potential parents for genetic counseling and arranging rapid and early diagnosis of their infants. PMID:10487695

  5. TRIPLICATE SODIUM IODIDE GAMMA RAY MONITORS FOR THE SMALL COLUMN ION EXCHANGE PROGRAM

    SciTech Connect

    Couture, A.

    2011-09-20

    This technical report contains recommendations from the Analytical Development (AD) organization of the Savannah River National Laboratory (SRNL) for a system of triplicate Sodium Iodide (NaI) detectors to be used to monitor Cesium-137 ({sup 137}Cs) content of the Decontaminated Salt Solution (DSS) output of the Small Column Ion Exchange (SCIX) process. These detectors need to be gain stabilized with respect to temperature shifts since they will be installed on top of Tank 41 at the Savannah River Site (SRS). This will be accomplished using NaI crystals doped with the alpha-emitting isotope, Americium-241({sup 241}Am). Two energy regions of the detector output will be monitored using single-channel analyzers (SCAs), the {sup 137}Cs full-energy {gamma}-ray peak and the {sup 241}Am alpha peak. The count rate in the gamma peak region will be proportional to the {sup 137}Cs content in the DSS output. The constant rate of alpha decay in the NaI crystal will be monitored and used as feedback to adjust the high voltage supply to the detector in response to temperature variation. An analysis of theoretical {sup 137}Cs breakthrough curves was used to estimate the gamma activity expected in the DSS output during a single iteration of the process. Count rates arising from the DSS and background sources were predicted using Microshield modeling software. The current plan for shielding the detectors within an enclosure with four-inch thick steel walls should allow the detectors to operate with the sensitivity required to perform these measurements. Calibration, testing, and maintenance requirements for the detector system are outlined as well. The purpose of SCIX is to remove and concentrate high-level radioisotopes from SRS salt waste resulting in two waste streams. The concentrated high-level waste containing {sup 137}Cs will be sent to the Defense Waste Processing Facility (DWPF) for vitrification and the low-level DSS will be sent to the Saltstone Production Facility (SPF

  6. A new experimental procedure for determination of photoelectric efficiency of a NaI(Tl) detector used for nuclear medicine liquid waste monitoring with traceability to a reference standard radionuclide calibrator.

    PubMed

    Ceccatelli, A; Campanella, F; Ciofetta, G; Marracino, F M; Cannatà, V

    2010-02-01

    To determine photopeak efficiency for (99m)Tc of the NaI(Tl) detector used for liquid waste monitoring at the Nuclear Medicine Unit of IRCCS Paediatric Hospital Bambino Gesù in Rome, a specific experimental procedure, with traceability to primary standards, was developed. Working with the Italian National Institute for Occupational Prevention and Safety, two different calibration source geometries were employed and the detector response dependence on geometry was investigated. The large percentage difference (almost 40%) between the two efficiency values obtained showed that geometrical effects cannot be neglected. PMID:19914080

  7. Note: Real time optical sensing of alpha-radiation emitting radioactive aerosols based on solid state nuclear track detector.

    PubMed

    Kulkarni, A; Ha, S; Joshirao, P; Manchanda, V; Bak, M S; Kim, T

    2015-06-01

    A sensitive radioactive aerosols sensor has been designed and developed. Its design guidance is based on the need for a low operational cost and reliable measurements to provide daily aerosol monitoring. The exposure of diethylene-glycol bis (allylcarbonate) to radiation causes modification of its physico-chemical properties like surface roughness and reflectance. In the present study, optical sensor based on the reflectance measurement has been developed with an aim to monitor real time presence of alpha radioactive aerosols emitted from thorium nitrate hydrate. The results shows that the fabricated sensor can detect 0.0157 kBq to 0.1572 kBq of radio activity by radioactive aerosols generated from (Th(NO3)4 ⋅ 5H2O) at 0.1 ml/min flow rate. The proposed instrument will be helpful to monitor radioactive aerosols in/around a nuclear facility, building construction sites, mines, and granite polishing factories. PMID:26133876

  8. Note: Real time optical sensing of alpha-radiation emitting radioactive aerosols based on solid state nuclear track detector

    SciTech Connect

    Kulkarni, A.; Bak, M. S. E-mail: moonsoo@skku.edu; Ha, S.; Joshirao, P.; Manchanda, V.; Kim, T. E-mail: moonsoo@skku.edu

    2015-06-15

    A sensitive radioactive aerosols sensor has been designed and developed. Its design guidance is based on the need for a low operational cost and reliable measurements to provide daily aerosol monitoring. The exposure of diethylene-glycol bis (allylcarbonate) to radiation causes modification of its physico-chemical properties like surface roughness and reflectance. In the present study, optical sensor based on the reflectance measurement has been developed with an aim to monitor real time presence of alpha radioactive aerosols emitted from thorium nitrate hydrate. The results shows that the fabricated sensor can detect 0.0157 kBq to 0.1572 kBq of radio activity by radioactive aerosols generated from (Th(NO{sub 3}){sub 4} ⋅ 5H{sub 2}O) at 0.1 ml/min flow rate. The proposed instrument will be helpful to monitor radioactive aerosols in/around a nuclear facility, building construction sites, mines, and granite polishing factories.

  9. FUV quantum efficiency degradation of cesium iodide photocathodes caused by exposure to thermal atomic oxygen

    NASA Astrophysics Data System (ADS)

    McPhate, Jason; Anne, Joshi; Bacinski, John; Banks, Bruce; Cates, Carey; Christensen, Paul; Cruden, Brett; Dunham, Larry; Graham, Eric; Hughes, David; Kimble, Randy; Lupie, Olivia; Niedner, Malcolm; Osterman, Steven; Penton, Steven; Proffitt, Charles; Pugel, Diane; Siegmund, Oswald; Wheeler, Thomas

    2011-09-01

    The color dependence of the measured decline of the on-orbit sensitivity of the FUV channel of the HST Cosmic Origins Spectrograph (HST-COS) indicated the principal loss mechanism to be degradation of the cesium iodide (CsI) photocathode of the open-faced FUV detector. A possible cause of this degradation is contamination by atomic oxygen (AO), prompting an investigation of the interaction of AO with CsI. To address this question, opaque CsI photocathodes were deposited on stainless steel substrates employing the same deposition techniques and parameters used for the photocathodes of the HST-COS FUV detector. The as-deposited FUV quantum efficiency of these photocathodes was measured in the 117-174 nm range. Several of the photocathodes were exposed to varying levels of thermalized, atomic oxygen (AO) fluence (produced via an RF plasma). The post AO exposure QE's were measured and the degradation of sensitivity versus wavelength and AO fluence are presented.

  10. Particle Detectors

    NASA Astrophysics Data System (ADS)

    Grupen, Claus; Shwartz, Boris

    2011-09-01

    Preface to the first edition; Preface to the second edition; Introduction; 1. Interactions of particles and radiation with matter; 2. Characteristic properties of detectors; 3. Units of radiation measurements and radiation sources; 4. Accelerators; 5. Main physical phenomena used for particle detection and basic counter types; 6. Historical track detectors; 7. Track detectors; 8. Calorimetry; 9. Particle identification; 10. Neutrino detectors; 11. Momentum measurement and muon detection; 12. Ageing and radiation effects; 13. Example of a general-purpose detector: Belle; 14. Electronics; 15. Data analysis; 16. Applications of particle detectors outside particle physics; 17. Glossary; 18. Solutions; 19. Resumé; Appendixes; Index.

  11. Freezing efficiency of Silver Iodide, ATD and Kaolinite in the contact freezing mode

    NASA Astrophysics Data System (ADS)

    Nagare, Baban; Marcolli, Claudia; Stetzer, Olaf; Lohmann, Ulrike

    2014-05-01

    The importance of heterogeneous ice nucleation via contact freezing is one of the open questions in the atmospheric science community. In our laboratory, we built the Collision Nucleation CHamber (CLINCH) (Ladino et al. 2011) in which falling cloud droplets can collide with aerosol particles. In this study, contact freezing experiments are conducted to investigate the ice nucleation ability of silver iodide (AgI), kaolinite and Arizona Test Dust (ATD). Silver iodide has been known for its ice nucleation ability since 1940s (Vonnegut 1947) while kaolinite is a clay mineral and known to be a moderate ice nucleus. ATD is a commercial dust sample used by many groups to compare different setups. In CLINCH, size selected aerosol particles collide with water droplets of 80 µm diameter. With the extension in chamber length it is possible to vary the interaction time of ice nuclei and the droplets. Our experiments are performed between -10 to -36 ºC for various concentrations of ice nuclei and different interaction times. The frozen fraction of the droplets is determined using the custom-made depolarization detector IODE (Nicolet et al., 2010). Depolarization of linearly polarized incident laser light is used to determine the ratio of frozen droplets to all droplets. Frozen fractions of the three particle types with different residence times from CLINCH will be presented in this study. The number of collisions between a single droplet and several aerosol particles can be calculated by accounting for the theoretical collision efficiency at the experimental conditions in order to obtain the freezing efficiency (frozen fraction/number of collisions). Nucleation efficiency is compared with other contact freezing studies and with immersion freezing

  12. Constraining the sensitivity of iodide adduct chemical ionization mass spectrometry to multifunctional organic molecules using the collision limit and thermodynamic stability of iodide ion adducts

    DOE PAGESBeta

    Lopez-Hilfiker, Felipe D.; Iyer, Siddarth; Mohr, Claudia; Lee, Ben H.; D'Ambro, Emma L.; Kurten, Theo; Thornton, Joel A.

    2016-04-06

    The sensitivity of a chemical ionization mass spectrometer (ions formed per number density of analytes) is fundamentally limited by the collision frequency between reagent ions and analytes, known as the collision limit, the ion–molecule reaction time, and the transmission efficiency of product ions to the detector. We use the response of a time-of-flight chemical ionization mass spectrometer (ToF-CIMS) to N2O5, known to react with iodide at the collision limit, to constrain the combined effects of ion–molecule reaction time, which is strongly influenced by mixing and ion losses in the ion–molecule reaction drift tube. A mass spectrometric voltage scanning procedure elucidatesmore » the relative binding energies of the ion adducts, which influence the transmission efficiency of molecular ions through the electric fields within the vacuum chamber. Together, this information provides a critical constraint on the sensitivity of a ToF-CIMS towards a wide suite of routinely detected multifunctional organic molecules for which no calibration standards exist. Lastly, we describe the scanning procedure and collision limit determination, and we show results from the application of these constraints to the measurement of organic aerosol composition at two different field locations.« less

  13. Constraining the sensitivity of iodide adduct chemical ionization mass spectrometry to multifunctional organic molecules using the collision limit and thermodynamic stability of iodide ion adducts

    DOE PAGESBeta

    Lopez-Hilfiker, Felipe D.; Iyer, Siddarth; Mohr, Claudia; Lee, Ben H.; D'Ambro, Emma L.; Kurtén, Theo; Thornton, Joel A.

    2016-04-06

    The sensitivity of a chemical ionization mass spectrometer (ions formed per number density of analytes) is fundamentally limited by the collision frequency between reagent ions and analytes, known as the collision limit, the ion–molecule reaction time, and the transmission efficiency of product ions to the detector. We use the response of a time-of-flight chemical ionization mass spectrometer (ToF-CIMS) to N2O5, known to react with iodide at the collision limit, to constrain the combined effects of ion–molecule reaction time, which is strongly influenced by mixing and ion losses in the ion–molecule reaction drift tube. A mass spectrometric voltage scanning procedure elucidatesmore » the relative binding energies of the ion adducts, which influence the transmission efficiency of molecular ions through the electric fields within the vacuum chamber. Together, this information provides a critical constraint on the sensitivity of a ToF-CIMS towards a wide suite of routinely detected multifunctional organic molecules for which no calibration standards exist. We describe the scanning procedure and collision limit determination, and we show results from the application of these constraints to the measurement of organic aerosol composition at two different field locations.« less

  14. Constraining the sensitivity of iodide adduct chemical ionization mass spectrometry to multifunctional organic molecules using the collision limit and thermodynamic stability of iodide ion adducts

    NASA Astrophysics Data System (ADS)

    Lopez-Hilfiker, Felipe D.; Iyer, Siddarth; Mohr, Claudia; Lee, Ben H.; D'Ambro, Emma L.; Kurtén, Theo; Thornton, Joel A.

    2016-04-01

    The sensitivity of a chemical ionization mass spectrometer (ions formed per number density of analytes) is fundamentally limited by the collision frequency between reagent ions and analytes, known as the collision limit, the ion-molecule reaction time, and the transmission efficiency of product ions to the detector. We use the response of a time-of-flight chemical ionization mass spectrometer (ToF-CIMS) to N2O5, known to react with iodide at the collision limit, to constrain the combined effects of ion-molecule reaction time, which is strongly influenced by mixing and ion losses in the ion-molecule reaction drift tube. A mass spectrometric voltage scanning procedure elucidates the relative binding energies of the ion adducts, which influence the transmission efficiency of molecular ions through the electric fields within the vacuum chamber. Together, this information provides a critical constraint on the sensitivity of a ToF-CIMS towards a wide suite of routinely detected multifunctional organic molecules for which no calibration standards exist. We describe the scanning procedure and collision limit determination, and we show results from the application of these constraints to the measurement of organic aerosol composition at two different field locations.

  15. RADIATION DETECTOR

    DOEpatents

    Wilson, H.N.; Glass, F.M.

    1960-05-10

    A radiation detector of the type is described wherein a condenser is directly connected to the electrodes for the purpose of performing the dual function of a guard ring and to provide capacitance coupling for resetting the detector system.

  16. Effect of electron and proton irradiation on characteristics of SiC surface-barrier detectors of nuclear radiation

    SciTech Connect

    Ivanov, A. M. Strokan, N. B.; Kozlovskii, V. V.; Lebedev, A. A.

    2008-03-15

    Structures with a Schottky barrier based on CVD-grown 4H-SiC films were irradiated with 8 MeV protons and 900 keV electrons. The maximum fluences were 10{sup 14} and 3 x 10{sup 16} cm{sup -2}, respectively. It was found that, in the case of electrons, the primarily introduced radiation defects are closely spaced Frenkel pairs. Changes in the electrical characteristics of the structures were compared. Capacitance methods and nuclear spectrometry were employed. The latter technique was used to determine the charge collection efficiency under pulsed ionization with {alpha}-particles. It was determined that, under proton irradiation, the charge collection efficiency steadily decreases as the fluence increases. For electrons, the efficiency remains unchanged in the fluence range (1-3) x 10{sup 16} cm{sup -2}. However, a fluence of 3 x 10{sup 16} cm{sup -2} leads to a pronounced increase in the non-uniformity of charge transport conditions throughout the sample volume.

  17. Effect of electron and proton irradiation on characteristics of SiC surface-barrier detectors of nuclear radiation

    SciTech Connect

    Ivanov, A. M. Strokan, N. B.; Kozlovskii, V. V.; Lebedev, A. A.

    2008-03-15

    Structures with a Schottky barrier based on CVD-grown 4H-SiC films were irradiated with 8 MeV protons and 900 keV electrons. The maximum fluences were 10{sup 14} and 3 Multiplication-Sign 10{sup 16} cm{sup -2}, respectively. It was found that, in the case of electrons, the primarily introduced radiation defects are closely spaced Frenkel pairs. Changes in the electrical characteristics of the structures were compared. Capacitance methods and nuclear spectrometry were employed. The latter technique was used to determine the charge collection efficiency under pulsed ionization with {alpha}-particles. It was determined that, under proton irradiation, the charge collection efficiency steadily decreases as the fluence increases. For electrons, the efficiency remains unchanged in the fluence range (1-3) Multiplication-Sign 10{sup 16} cm{sup -2}. However, a fluence of 3 Multiplication-Sign 10{sup 16} cm{sup -2} leads to a pronounced increase in the non-uniformity of charge transport conditions throughout the sample volume.

  18. Multiple detectors "Influence Method".

    PubMed

    Rios, I J; Mayer, R E

    2016-05-01

    The "Influence Method" is conceived for the absolute determination of a nuclear particle flux in the absence of known detector efficiency and without the need to register coincidences of any kind. This method exploits the influence of the presence of one detector in the count rate of another detector, when they are placed one behind the other and define statistical estimators for the absolute number of incident particles and for the efficiency (Rios and Mayer, 2015a). Its detailed mathematical description was recently published (Rios and Mayer, 2015b) and its practical implementation in the measurement of a moderated neutron flux arising from an isotopic neutron source was exemplified in (Rios and Mayer, 2016). With the objective of further reducing the measurement uncertainties, in this article we extend the method for the case of multiple detectors placed one behind the other. The new estimators for the number of particles and the detection efficiency are herein derived. PMID:26943904

  19. Sensitivity of the CUORE detector to 14.4 keV solar axions emitted by the M1 nuclear transition of 57Fe

    NASA Astrophysics Data System (ADS)

    Li, Dawei; Creswick, Richard J.; Avignone, Frank T., III; Wang, Yuanxu

    2016-02-01

    In this paper we present a calculation of the sensitivity of the CUORE detector to the monoenergetic 14.4 keV solar axions emitted by the M1 nuclear transition of 57Fe in the Sun and detected by inverse coherent Bragg-Primakoff conversion in single-crystal TeO2 bolometers. The expected counting rate is calculated using density functional theory for the electron charge density of TeO2 and realistic background and energy resolution of CUORE. Monte Carlo simulations for 5y × 741 kg=3705 kg y of exposure are analyzed using time correlation of individual events with the theoretical time-dependent counting rate. We find an expected model-independent limit on the product of the axion-photon coupling and the axion-nucleon coupling gaγγgaNeff < 1.105 × 10-16 /GeV for axion masses less than 500 eV with 95% confidence level.

  20. Survey of [sup 222]Rn concentrations in the air of a tunnel located in Nagano City using the solid-state nuclear track detector method

    SciTech Connect

    Muramatsu, H.; Hasegawa, N.; Misawa, C.; Minami, M.; Tanaka, E.; Asami, K.; Kuroda, C.; Kawakami, A. . Dept. of Chemistry)

    1999-07-01

    The survey of [sup 222]Rn concentration in the air of tunnels constructed during World War II has been performed using a solid-state nuclear track detector technique. For the practical application of this technique t the determination of [sup 222]Rn concentrations in air, some basic properties were experimentally examined on the cellulose nitrate film, Kodak LR 115 type II. The calibration coefficient of the cellulose nitrate film used is determined from a correlation between the [sup 222]Rn concentration in air and the observed number of perforated etched tracks for widespread radon concentrations. The slope of the linear relationship observed yields a calibration coefficient of (0.00209 [+-] 0.00018) tracks cm[sup [minus]2] (Bq m[sup [minus]3] h)[sup [minus]1]. From the survey of [sup 222]Rn concentration in the air of tunnels, the concentration of several thousand Bq m[sup [minus]3] was observed at the inner most area of the tunnel, and the seasonal variation was clearly observed. The exponential distribution of radon concentration as a function of distance from the openings of the tunnel suggests that the radon concentration in the tunnel is basically governed by diffusion and mixing of radon gas with air.

  1. Soil gas radon-thoron monitoring in Dharamsala area of north-west Himalayas, India using solid state nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Kumar, Gulshan; Kumar, Arvind; Walia, Vivek; Kumar, Jitender; Gupta, Vikash; Yang, Tsanyao Frank; Singh, Surinder; Bajwa, Bikramjit Singh

    2013-10-01

    The study described here is based on the measurements of soil gas radon-thoron concentrations performed at Dharamsala region of north-west (NW) Himalayas, India. The study area is tectonically and environmentally significant and shows the features of ductile shear zone due to the presence of distinct thrust planes. Solid state nuclear track detectors (LR-115 films) have been used for the soil gas radon-thoron monitoring. Twenty five radon-thoron discriminators with LR-115 films were installed in the borehole of about 50 cm in the study areas. The recorded radon concentration varies from 1593 to 13570 Bq/m3 with an average value of 5292 Bq/m3. The recorded thoron concentration varies from 223 to 2920 Bq/m3 with an average value of 901 Bq/m3. The anomalous value of radon-thoron has been observed near to the faults like main boundary thrust (MBT and MBT2) as well as neotectonic lineaments in the region.

  2. Purification and deposition of silicon by an iodide disproportionation reaction

    DOEpatents

    Wang, Tihu; Ciszek, Theodore F.

    2002-01-01

    Method and apparatus for producing purified bulk silicon from highly impure metallurgical-grade silicon source material at atmospheric pressure. Method involves: (1) initially reacting iodine and metallurgical-grade silicon to create silicon tetraiodide and impurity iodide byproducts in a cold-wall reactor chamber; (2) isolating silicon tetraiodide from the impurity iodide byproducts and purifying it by distillation in a distillation chamber; and (3) transferring the purified silicon tetraiodide back to the cold-wall reactor chamber, reacting it with additional iodine and metallurgical-grade silicon to produce silicon diiodide and depositing the silicon diiodide onto a substrate within the cold-wall reactor chamber. The two chambers are at atmospheric pressure and the system is open to allow the introduction of additional source material and to remove and replace finished substrates.

  3. Iodide and albumin kinetics in normal canine wrists and knees

    SciTech Connect

    Simkin, P.A.; Benedict, R.S. )

    1990-01-01

    The clearance rates of free iodide and of radioiodinated serum albumin were measured in the knee and wrist joints of 9 normal adult dogs. Iodide clearance from the knee was 3 times greater than that from the wrist. In contrast, radioiodinated serum albumin clearance from the knee was only slightly greater than that from the wrist. Interpreted as respective indices of effective synovial plasma flow and lymphatic drainage, these values indicate that the filtration fraction is normally greater in microvessels of the wrist than in those of the knee. These findings complement the results of companion studies of Starling forces that indicate a higher pressure microvascular bed in the wrist than in the knee.

  4. New solid electrolytes: substituted organic ammonium silver iodides

    SciTech Connect

    Ferraro, J.R.; Walling, P.L.; Sherren, A.T.

    1980-01-01

    Several new solid electrolytes were synthesized from the reaction of substituted organic ammonium hydroiodides (pyridinium and quinolinium type) and varying quantities of silver iodide. The inductive effects of nucleophilic and electrophilic substitution on the pyridinium or quinolinium ring, as well as substituent position on the ionic conductivity, were determined. Pressure and thermal studies were undertaken to determine if new nonambient conductive phases existed. 39 references, 4 figures, 2 tables.

  5. Note: Heterogeneous ice nucleation on silver-iodide-like surfaces

    NASA Astrophysics Data System (ADS)

    Fraux, Guillaume; Doye, Jonathan P. K.

    2014-12-01

    We attempt to simulate the heterogeneous nucleation of ice at model silver-iodide surfaces and find relatively facile ice nucleation and growth at the Ag+ terminated basal face, but never see nucleation at the I- terminated basal face or the prism and normal faces. Water molecules strongly adsorb onto the Ag+ terminated face to give a well-ordered hexagonal ice-like bilayer that then acts as a template for further ice growth.

  6. Infrared attenuation of thallium bromo-iodide fibers

    NASA Technical Reports Server (NTRS)

    Magilavy, B.; Goebel, J.

    1986-01-01

    Analysis of attenuation measurements in the near infrared of an unclad fiber of Thallium Bromo-Iodide (Th(Br,I)), a polycrystalline thallium halide, is presented. A general overview is given of the properties of fiber optics. Two groups of attenuation measurements, for the region 1.2 to 3.4 and for 3 to 11 microns, respectively, are presented, analyzed, and compared with those of two other groups of researchers.

  7. Mitigating iodomethane emissions and iodide residues in fumigated soils.

    PubMed

    Xuan, Richeng; Ashworth, Daniel J; Wu, Laosheng; Yates, Scott R

    2013-11-19

    Although long-regarded as an excellent soil fumigant for killing plant pests, methyl bromide (MeBr) was phased out in 2005 in the USA, because it can deplete the stratospheric ozone layer. Iodomethane (MeI) has been identified as an effective alternative to MeBr and is used in a number of countries for preplant pest control. However, MeI is highly volatile and potentially carcinogenic to humans if inhaled. In addition, iodide anions, a breakdown product of MeI, can build up in fumigated soils and potentially cause plant toxicity and contaminate groundwater via leaching. In order to overcome the above two obstacles in MeI application, a method is proposed to place reactive bags containing ammonium hydroxide solution (NH4OH) on the soil surface underneath an impermeable plastic film covering the fumigated area. Our research showed that using this approach, over 99% of the applied MeI was quantitatively transferred to iodide. Of all the resulting iodide, only 2.7% remained in the fumigated soil, and 97.3% was contained in the reactive bag that can be easily removed after fumigation. PMID:24151978

  8. Charge transport properties of p-CdTe/n-CdTe/n{sup +}-Si diode-type nuclear radiation detectors based on metalorganic vapor-phase epitaxy-grown epilayers

    SciTech Connect

    Niraula, M.; Yasuda, K.; Wajima, Y.; Yamashita, H.; Tsukamoto, Y.; Suzuki, Y.; Matsumoto, M.; Takai, N.; Tsukamoto, Y.; Agata, Y.

    2013-10-28

    Charge transport properties of p-CdTe/n-CdTe/n{sup +}-Si diode-type nuclear radiation detectors, fabricated by growing p-and n-type CdTe epilayers on (211) n{sup +}-Si substrates using metalorganic vapor-phase epitaxy (MOVPE), were studied by analyzing current-voltage characteristics measured at various temperatures. The diode fabricated shows good rectification properties, however, both forward and reverse biased currents deviate from their ideal behavior. The forward current exhibits typical feature of multi-step tunneling at lower biases; however, becomes space charge limited type when the bias is increased. On the other hand, the reverse current exhibits thermally activated tunneling-type current. It was found that trapping centers at the p-CdTe/n-CdTe junction, which were formed due to the growth induced defects, determine the currents of this diode, and hence limit the performance of the nuclear radiation detectors developed.

  9. Determination of high mitochondrial membrane potential in spermatozoa loaded with the mitochondrial probe 5,5',6,6'tetrachloro-1,1',3,3'-tetraethylbenzimidazolyl-carbocyanine iodide (JC-1) using flow cytometry.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A flow cytometric method was developed to identify viable, energized sperm cells with high mitochondrial inner transmembrane potential (''m), > 80-100 mV using the mitochondrial probe 5, 5', 6, 6'-tetrachloro-1, 1', 3, 3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1) and the impermeant nuclear ...

  10. A thalium-doped sodium iodide well counter for radioactive tracer applications with naturally-abundant 40K

    NASA Astrophysics Data System (ADS)

    Parker, Andrew J.; Boxall, Colin; Joyce, Malcolm J.; Schotanus, Paul

    2013-09-01

    The use of a thallium-doped sodium-iodide well-type scintillation detector for the assay of the low-activity radioisotope 40K, in open-source potassium chloride aqueous solutions, is described. The hazards, safety concerns and radiowaste generation associated with using open-source radioactive isotopes can present significant difficulties, the use of hot cells and escalated costs in radioanalytical laboratory research. A solution to this is the use of low-hazard alternatives that mimic the migration and dispersion characteristics of notable fission products (in this case 137Cs). The use of NaI(Tl) as a detection medium for naturally-abundant levels of 40K in a range of media is widespread, but the use of 40K as a radioactive tracer has not been reported. The use of such low-activity sources is often complicated by the ability to detect them efficiently. In this paper a scintillator detector designed to detect the naturally-abundant 40K present in potassium chloride in tracer applications is described. Examples of the use of potassium chloride as a tracer are given in the context of ion exchange and electrochemical migration studies, and comparisons in performance are drawn from literature with hyper pure germanium semiconductor detectors, which are more commonly utilised detectors in high-resolution counting applications.

  11. Electrodeposition as an alternate method for preparation of environmental samples for iodide by AMS

    SciTech Connect

    Adamic, M. L.; Lister, T. E.; Dufek, E. J.; Jenson, D. D.; Olson, J. E.; Vockenhuber, C.; Watrous, M. G.

    2015-03-25

    This paper presents an evaluation of an alternate method for preparing environmental samples for 129I analysis by accelerator mass spectrometry (AMS) at Idaho National Laboratory. The optimal sample preparation method is characterized by ease of preparation, capability of processing very small quantities of iodide, and ease of loading into a cathode. Electrodeposition of iodide on a silver wire was evaluated using these criteria. This study indicates that the electrochemically-formed silver iodide deposits produce ion currents similar to those from precipitated silver iodide for the same sample mass. Furthermore, precipitated silver iodide samples are usually mixed with niobium or silver powder prior to loading in a cathode. Using electrodeposition, the silver is already mixed with the sample and can simply be picked up with tweezers, placed in the sample die, and pressed into a cathode. The major advantage of this method is that the silver wire/electrodeposited silver iodide is much easier to load into a cathode.

  12. Electrodeposition as an alternate method for preparation of environmental samples for iodide by AMS

    NASA Astrophysics Data System (ADS)

    Adamic, M. L.; Lister, T. E.; Dufek, E. J.; Jenson, D. D.; Olson, J. E.; Vockenhuber, C.; Watrous, M. G.

    2015-10-01

    This paper presents an evaluation of an alternate method for preparing environmental samples for 129I analysis by accelerator mass spectrometry (AMS) at Idaho National Laboratory. The optimal sample preparation method is characterized by ease of preparation, capability of processing very small quantities of iodide, and ease of loading into a cathode. Electrodeposition of iodide on a silver wire was evaluated using these criteria. This study indicates that the electrochemically-formed silver iodide deposits produce ion currents similar to those from precipitated silver iodide for the same sample mass. Precipitated silver iodide samples are usually mixed with niobium or silver powder prior to loading in a cathode. Using electrodeposition, the silver is already mixed with the sample and can simply be picked up with tweezers, placed in the sample die, and pressed into a cathode. The major advantage of this method is that the silver wire/electrodeposited silver iodide is much easier to load into a cathode.

  13. New simultaneous catalytic determination of thiocyanate and iodide by flow injection analysis

    SciTech Connect

    Tanaka, A.; Miyazaki, M.; Deguchi, T.

    1985-01-01

    Flow injection analysis (FIA) with a double injection technique was applied to catalytic determination of thiocyanate and iodide in the redox reaction between cerium(IV) and arsenic(III). Selective inactivation of the catalytic activity of thiocyanate was investigated. Amounts of only iodide and amounts of both thiocyanate and iodide were simultaneously determined by the FIA. Detection limits of the method were 0.2 ppM SCN/sup -/ and 0.1 ppM I/sup -/.

  14. Real-Time Remediation Utilizing The Backpack Sodium Iodide System And The U.S. EPA Triad Approach

    SciTech Connect

    John R. Giles; Michael V. Carpenter; Lyle G. Roybal; C. P. Oertel; J. J. Jacobson; D. L. Eaton; G. L. Schwendiman

    2006-03-01

    Real-time characterization during remediation activities is being accomplished at the Idaho National Laboratory (INL) with the use of the backpack sodium iodide system (BaSIS). The BaSIS is comprised of a 3-in. by 5-in. sodium iodide (NaI) detector, differential corrected global positioning system (GPS), and portable computer, integrated into a lightweight backpack deployment platform. The system is operated with specialized software that allows the operator and/or remediation field manager to view data as they are collected. Upon completion of planned excavation stages, the area is surveyed for residual radiological contamination. After data collection is complete, data is available to the remediation field manager as a contour map showing the area(s) that require further excavation. The use of real-time measurement systems, rapid turn-around time of data, and dynamic work strategy support the U.S. Environmental Protection Agency’s (EPA) Triad approach. Decisions are made in real-time as to the need for further remediation. This paper describes the BaSIS system calibration, testing and use, and outlines negotiations with the appropriate CERCLA regulatory agencies (U.S. Environmental Protection Agency, Idaho Department of Environmental Quality, and U.S. Department of Energy Idaho Operations Office) to allow the use of real-time instrumentation during the remediation process, and for confirmation surveys. By using the BaSIS in such a manner, the INL seeks to demonstrate compliance with remediation objectives.

  15. SYNCHROTRON RADIATION, FREE ELECTRON LASER, APPLICATION OF NUCLEAR TECHNOLOGY, ETC. Employing a Cerenkov detector for the thickness measurement of X-rays in a scattering background

    NASA Astrophysics Data System (ADS)

    Li, Shu-Wei; Kang, Ke-Jun; Wang, Yi; Li, Jin; Li, Yuan-Jing; Zhang, Qing-Jun

    2010-12-01

    The variation in environmental scattering background is a major source of systematic errors in X-ray inspection and measurement systems. As the energy of these photons consisting of environmental scattering background is much lower generally, the Cerenkov detectors having the detection threshold are likely insensitive to them and able to exclude their influence. A thickness measurement experiment is designed to verify the idea by employing a Cerenkov detector and an ionizing chamber for comparison. Furthermore, it is also found that the application of the Cerenkov detectors is helpful to exclude another systematic error from the variation of low energy components in the spectrum incident on the detector volume.

  16. Resource Letter PD-1 on Particle Detectors

    ERIC Educational Resources Information Center

    Trower, W. Peter

    1970-01-01

    Intended to guide college physicists to literature on nuclear and sub-nuclear particle detectors. The paper contains a discussion of (1) interactions of particles with matter and (2) individual particle detectors, each section being followed by an annotated bibliography of selected reference materials. Rankings are given to the articles on the…

  17. A study of the effect of gamma and laser irradiation on the thermal, optical and structural properties of CR-39 nuclear track detector

    NASA Astrophysics Data System (ADS)

    Nouh, S. A.; Atta, M. R.; El-Melleegy, W. M.

    2004-08-01

    A comparative study of the effect of gamma and laser irradiation on the thermal, optical and structural properties of the CR-39 diglycol carbonate solid state nuclear track detector has been carried out. Samples from CR-39 polymer were classified into two main groups: the first group was irradiated by gamma rays with doses at levels between 20 and 300 kGy, whereas the second group was exposed to infrared laser radiation with energy fluences at levels between 0.71 and 8.53 J/cm(2). Non-isothermal studies were carried out using thermogravimetry, differential thermogravimetry and differential thermal analysis to obtain activation energy of decomposition and transition temperatures for the non-irradiated and all irradiated CR-39 samples. In addition, optical and structural property studies were performed on non-irradiated and irradiated CR-39 samples using refractive index and X-ray diffraction measurements. Variation in the onset temperature of decomposition T-o, activation energy of decomposition E-a, melting temperature T-m, refractive index n and the mass fraction of the amorphous phase after gamma and laser irradiation were studied. It was found that many changes in the thermal, optical and structural properties of the CR-39 polymer could be produced by gamma irradiation via degradation and cross-linking mechanisms. Also, the gamma dose has an advantage of increasing the correlation between thermal stability of the CR-39 polymer and bond formation created by the ionizing effect of gamma radiation. On the other hand, higher laser-energy fluences in the range 4.27-8.53 J/cm(2) decrease the melting temperature of the CR-39 polymer and this is most suitable for applications requiring molding of the polymer at lower temperatures.

  18. CALIFA Barrel prototype detector characterisation

    NASA Astrophysics Data System (ADS)

    Pietras, B.; Gascón, M.; Álvarez-Pol, H.; Bendel, M.; Bloch, T.; Casarejos, E.; Cortina-Gil, D.; Durán, I.; Fiori, E.; Gernhäuser, R.; González, D.; Kröll, T.; Le Bleis, T.; Montes, N.; Nácher, E.; Robles, M.; Perea, A.; Vilán, J. A.; Winkel, M.

    2013-11-01

    Well established in the field of scintillator detection, Caesium Iodide remains at the forefront of scintillators for use in modern calorimeters. Recent developments in photosensor technology have lead to the production of Large Area Avalanche Photo Diodes (LAAPDs), a huge advancement on traditional photosensors in terms of high internal gain, dynamic range, magnetic field insensitivity, high quantum efficiency and fast recovery time. The R3B physics programme has a number of requirements for its calorimeter, one of the most challenging being the dual functionality as both a calorimeter and a spectrometer. This involves the simultaneous detection of ∼300 MeV protons and gamma rays ranging from 0.1 to 20 MeV. This scintillator - photosensor coupling provides an excellent solution in this capacity, in part due to the near perfect match of the LAAPD quantum efficiency peak to the light output wavelength of CsI(Tl). Modern detector development is guided by use of Monte Carlo simulations to predict detector performance, nonetheless it is essential to benchmark these simulations against real data taken with prototype detector arrays. Here follows an account of the performance of two such prototypes representing different polar regions of the Barrel section of the forthcoming CALIFA calorimeter. Measurements were taken for gamma-ray energies up to 15.1 MeV (Maier-Leibnitz Laboratory, Garching, Germany) and for direct irradiation with a 180 MeV proton beam (The Svedberg Laboratoriet, Uppsala, Sweden). Results are discussed in light of complementary GEANT4 simulations.

  19. Smoke Detector

    NASA Technical Reports Server (NTRS)

    1979-01-01

    In the photo, Fire Chief Jay Stout of Safety Harbor, Florida, is explaining to young Richard Davis the workings of the Honeywell smoke and fire detector which probably saved Richard's life and that of his teen-age brother. Alerted by the detector's warning, the pair were able to escape their burning home. The detector in the Davis home was one of 1,500 installed in Safety Harbor residences in a cooperative program conducted by the city and Honeywell Inc.

  20. Advances in the growth of alkaline-earth halide single crystals for scintillator detectors

    SciTech Connect

    Boatner, Lynn A; Ramey, Joanne Oxendine; Kolopus, James A; Neal, John S; Cherepy, Nerine; Payne, Stephen A.; Beck, P; Burger, Arnold; Rowe, E; Bhattacharya, P.

    2014-01-01

    Alkaline-earth scintillators such as strontium iodide and other alkaline-earth halides activated with divalent europium represent some of the most efficient and highest energy resolution scintillators for use as gamma-ray detectors in a wide range of applications. These applications include the areas of nuclear nonproliferation, homeland security, the detection of undeclared nuclear material, nuclear physics and materials science, medical diagnostics, space physics, high energy physics, and radiation monitoring systems for first responders, police, and fire/rescue personnel. Recent advances in the growth of large single crystals of these scintillator materials hold the promise of higher crystal yields and significantly lower detector production costs. In the present work, we describe new processing protocols that, when combined with our molten salt filtration methods, have led to advances in achieving a significant reduction of cracking effects during the growth of single crystals of SrI2:Eu2+. In particular, we have found that extended pumping on the molten crystal-growth charge under vacuum for time periods extending up to 48 hours is generally beneficial in compensating for variations in the alkaline-earth halide purity and stoichiometry of the materials as initially supplied by commercial sources. These melt-pumping and processing techniques are now being applied to the purification of CaI2:Eu2+ and some mixed-anion europium-doped alkaline-earth halides prior to single-crystal growth by means of the vertical Bridgman technique. The results of initial studies of the effects of aliovalent doping of SrI2:Eu2+ on the scintillation characteristics of this material are also described.

  1. Advances in the growth of alkaline-Earth halide single crystals for scintillator detectors

    NASA Astrophysics Data System (ADS)

    Boatner, L. A.; Ramey, J. O.; Kolopus, J. A.; Neal, J. S.; Cherepy, N. J.; Beck, P. R.; Payne, S. A.; Burger, A.; Rowe, E.; Bhattacharya, P.

    2014-09-01

    Alkaline-earth scintillators such as strontium iodide and other alkaline-earth halides activated with divalent europium represent some of the most efficient and highest energy resolution scintillators for use as gamma-ray detectors in a wide range of applications. These applications include the areas of nuclear nonproliferation, homeland security, the detection of undeclared nuclear material, nuclear physics and materials science, medical diagnostics, space physics, high energy physics, and radiation monitoring systems for first responders, police, and fire/rescue personnel. Recent advances in the growth of large single crystals of these scintillator materials hold the promise of higher crystal yields and significantly lower detector production costs. In the present work, we describe new processing protocols that, when combined with our molten salt filtration methods, have led to advances in achieving a significant reduction of cracking effects during the growth of single crystals of SrI2:Eu2+. In particular, we have found that extended pumping on the molten crystalgrowth charge under vacuum for time periods extending up to 48 hours is generally beneficial in compensating for variations in the alkaline-earth halide purity and stoichiometry of the materials as initially supplied by commercial sources. These melt-pumping and processing techniques are now being applied to the purification of CaI2:Eu2+ and some mixed-anion europium-doped alkaline-earth halides prior to single-crystal growth by means of the vertical Bridgman technique. The results of initial studies of the effects of aliovalent doping of SrI2:Eu2+ on the scintillation characteristics of this material are also described.

  2. Analysis of Cadmium Based Neutron Detector Configurations

    NASA Astrophysics Data System (ADS)

    James, Brian; Rees, Lawrence; Czirr, J. Bart

    2012-10-01

    Due to national security concerns pertaining to the smuggling of special nuclear materials and a small supply of He-3 for use in neutron detectors, there is currently a need for a new kind of neutron detector. Using Monte Carlo techniques I have studied the neutron capture efficiency of an array of cadmium wedge detectors in the presence of a californium source. By using varying numbers of wedges and comparing their capture ratios we will be better able to design future detectors.

  3. IUPAC-NIST Solubility Data Series. 94. Rare Earth Metal Iodides and Bromides in Water and Aqueous Systems. Part 1. Iodides

    NASA Astrophysics Data System (ADS)

    Mioduski, Tomasz; Gumiński, Cezary; Zeng, Dewen

    2012-03-01

    This work presents solubility data for rare earth metal iodides in water and in aqueous ternary systems. Compilations of all available experimental data are introduced for each rare earth metal iodide with a corresponding critical evaluation. Every such evaluation contains a tabulated collection of all solubility results in water, a selection of suggested solubility data and a brief discussion of the multicomponent systems. Because the ternary systems were almost never studied more than once, no critical evaluations of such data were possible. Only simple iodides (no complexes) are treated as the input substances in this work. The literature has been covered through the middle of 2011.

  4. Use of InSpector{sup TM} 1 1000 Instrument with LaBr{sub 3} for Nuclear Criticality Safety (NCS) Applications at the Westinghouse Hematite Decommissioning Project (HDP) - 13132

    SciTech Connect

    Pritchard, Megan; Guido, Joe

    2013-07-01

    The Westinghouse Hematite Decommissioning Project (HDP) is a former nuclear fuel cycle facility that is currently undergoing decommissioning. One aspect of the decommissioning scope is remediation of buried nuclear waste in unlined burial pits. The current Nuclear Criticality Safety program relies on application of criticality controls based on radiological setpoints from a 2 x 2 Sodium Iodide (NaI) detector. Because of the nature of the material buried (Low Enriched Uranium (LEU), depleted uranium, thorium, and radium) and the stringent threshold for application of criticality controls based on waste management (0.1 g {sup 235}U/L), a better method for {sup 235}U identification and quantification has been developed. This paper outlines the early stages of a quick, in-field nuclear material assay and {sup 235}U mass estimation process currently being deployed at HDP. Nuclear material initially classified such that NCS controls are necessary can be demonstrated not to require such controls and dispositioned as desired by project operations. Using Monte Carlo techniques and a high resolution Lanthanum Bromide (LaBr) detector with portable Multi-Channel Analyzer (MCA), a bounding {sup 235}U mass is assigned to basic geometries of nuclear material as it is excavated. The deployment of these methods and techniques has saved large amounts of time and money in the nuclear material remediation process. (authors)

  5. Carbon aging mechanisms and effects on retention of organic iodides

    SciTech Connect

    Hyder, M.L.

    1985-01-01

    The activated carbon used to treat the off-gas from the Savannah River Plant prodution reactor building was studied to determine the chemical changes occurring in this carbon during its service life. The carbon is a coconut-shell charcoal impregnated with 1% triethylenediamine (TEDA) and 2% KI. It was known that during its 30-month service life the carbon becomes more acidic and less effective for retaining iodine in organic form. The study showed that the most important change occurring in the carbon is the reaction of KI to give other chemical forms of iodine. The reacted iodine is unavailable for exchange with alkyl iodides. The results suggest that the carbon reacts with KI to form organic compounds, but small amounts of oxidized iodine may also be presnt. There is also evidence that some iodide is lost from the carbon altogether. The TEDA impregnant is lost from the carbon very quickly, and has no importance after a few months. The specific reactions by which the impregnant is lost have not been identified. However, mathematical analysis shows that the carbon performance data are consistent with the reaction of iodide impregnant with impurities in the air flowing through the carbon bed. Additional mathematical analysis, based on electron microscopic observation of the carbon particles, indicates that the external surfaces of the carbon are mainly responsible for their effectiveness in retaining iodine. Consequently, the condition of the impregnants on a relatively small fraction of the carbon surface can have a large effect on its performance. 4 refs., 14 figs., 2 tabs.

  6. Mechanical testing of large thallium doped sodium iodide single crystals

    NASA Technical Reports Server (NTRS)

    Lee, H. M.

    1985-01-01

    The findings of mechanical tests performed on five thallium-doped sodium iodide NaI(Tl) crystals are presented. These crystals are all in the shape of circular flat plates, 20.0 in. in diameter an d0.5 in. thick. The test setup, testing procedure, and the test data are presented. Large crystals exhibit a high degree of material plasticity, as well as a much higher strength than previously anticipated, on the order of 500 psi. Also revealed from the testing is the fact that crystal with a large number of grain boundaries developed less plasticity, and therefore less permanent deformation, than those with fewer grain boundaries.

  7. Copper Mediated Difluoromethylation of Aryl and Vinyl Iodides

    PubMed Central

    Fier, Patrick S.

    2012-01-01

    Selectively fluorinated molecules are important as materials, pharmaceuticals, and agrochemicals, but their synthesis by simple, mild, laboratory methods is challenging. We report a straightforward method for the cross-coupling of a difluoromethyl group with readily available reagents to form difluoromethylarenes. The reaction of electron-neutral, electron-rich, and sterically hindered aryl and vinyl iodides with the combination of CuI, CsF and TMSCF2H leads to the formation of difluoromethylarenes in high yield with good functional group compatibility. This transformation is surprising, in part, because of the prior observation of the instability of CuCF2H. PMID:22397683

  8. Au25(SG)18 as a fluorescent iodide sensor

    NASA Astrophysics Data System (ADS)

    Wang, Man; Wu, Zhikun; Yang, Jiao; Wang, Guozhong; Wang, Hongzhi; Cai, Weiping

    2012-06-01

    The recently emerging gold nanoclusters (GNC) are of major importance for both basic science studies and practical applications. Based on its surface-induced fluorescence properties, we investigated the potential use of Au25(SG)18 (GSH: glutathione) as a fluorescent iodide sensor. The current detection limit of 400 nM, which can possibly be further enhanced by optimizing the conditions, and excellent selectivity among 12 types of anion (F-, Cl-, Br-, I-, NO3-, ClO4-, HCO3-, IO3-, SO42-, SO32-, CH3COO- and C6H5O73-) make Au25(SG)18 a good candidate for iodide sensing. Furthermore, our work has revealed the particular sensing mechanism, which was found to be affinity-induced ratiometric and enhanced fluorescence (abbreviated to AIREF), which has rarely been reported previously and may provide an alternative strategy for devising nanoparticle-based sensors.The recently emerging gold nanoclusters (GNC) are of major importance for both basic science studies and practical applications. Based on its surface-induced fluorescence properties, we investigated the potential use of Au25(SG)18 (GSH: glutathione) as a fluorescent iodide sensor. The current detection limit of 400 nM, which can possibly be further enhanced by optimizing the conditions, and excellent selectivity among 12 types of anion (F-, Cl-, Br-, I-, NO3-, ClO4-, HCO3-, IO3-, SO42-, SO32-, CH3COO- and C6H5O73-) make Au25(SG)18 a good candidate for iodide sensing. Furthermore, our work has revealed the particular sensing mechanism, which was found to be affinity-induced ratiometric and enhanced fluorescence (abbreviated to AIREF), which has rarely been reported previously and may provide an alternative strategy for devising nanoparticle-based sensors. Electronic supplementary information (ESI) available: fluorescence spectra of Au25(SG)18 (1.6 μM in H2O) with successive titration of I- and the time-dependent fluorescence of Au25(SG)18. See DOI: 10.1039/c2nr30169e.

  9. Low-temperature photoluminescence studies of mercuric-iodide photodetectors

    NASA Astrophysics Data System (ADS)

    James, R. B.; Bao, X. J.; Schlesinger, T. E.; Markakis, J. M.; Cheng, A. Y.; Ortale, C.

    1989-09-01

    Mercuric-iodide (HgI2 ) photodetectors with sputtered indium-tin-oxide (ITO) entrance electrodes were studied using low-temperature photoluminescence spectroscopy. The photoluminescence spectrum obtained on each photodetector was found to differ for points beneath the ITO contact and points adjacent to it, indicating that the contact fabrication process introduces new carrier traps and radiative recombination centers within the ITO-HgI2 interfacial region. In particular, a new broad band was observed in the spectra taken from points beneath the ITO electrode. Photocurrent-versus-position measurements showed that the intensity of this broad band was enhanced in regions having relatively poor photoresponse.

  10. Mechanochromic and thermochromic luminescence of a copper iodide cluster.

    PubMed

    Perruchas, Sandrine; Le Goff, Xavier F; Maron, Sébastien; Maurin, Isabelle; Guillen, François; Garcia, Alain; Gacoin, Thierry; Boilot, Jean-Pierre

    2010-08-18

    The mechanochromic and thermochromic luminescence properties of a molecular copper(I) iodide cluster formulated [Cu(4)I(4)(PPh(2)(CH(2)CH=CH(2)))(4)] are reported. Upon mechanical grinding in a mortar, its solid-state emission properties are drastically modified as well as its thermochromic behavior. This reversible phenomenon has been attributed to distortions in the crystal packing leading to modifications of the intermolecular interactions and thus of the [Cu(4)I(4)] cluster core geometry. Notably, modification of the Cu-Cu interactions seems to be involved in this phenomenon directly affecting the emissive properties of the cluster. PMID:20698644

  11. Polarized spectral complexes of optical functions of monovalent mercury iodide

    NASA Astrophysics Data System (ADS)

    Sobolev, V. V.; Sobolev, V. Val.; Anisimov, D. V.

    2015-12-01

    Spectral complexes of optical functions of monovalent mercury iodide Hg2I2 were determined for E ⊥ c and E || c polarizations in the range from 2 to 5.5 eV at 4.2 K. The permittivity and characteristic electron energy loss spectra were expanded in simple components with the determination of their main parameters, including the energy of the maximum and the oscillator strength. The calculations were performed based on known reflectance spectra. Computer programs based on Kramers-Kronig relations and the improved parameter-free method of Argand diagrams were used.

  12. Measuring Cell Death by Propidium Iodide Uptake and Flow Cytometry.

    PubMed

    Crowley, Lisa C; Scott, Adrian P; Marfell, Brooke J; Boughaba, Jeanne A; Chojnowski, Grace; Waterhouse, Nigel J

    2016-01-01

    Propidium iodide (PI) is a small fluorescent molecule that binds to DNA but cannot passively traverse into cells that possess an intact plasma membrane. PI uptake versus exclusion can be used to discriminate dead cells, in which plasma membranes become permeable regardless of the mechanism of death, from live cells with intact membranes. PI is excited by wavelengths between 400 and 600 nm and emits light between 600 and 700 nm, and is therefore compatible with lasers and photodetectors commonly available in flow cytometers. This protocol for PI staining can be used to quantitate cell death in most modern research facilities and universities. PMID:27371595

  13. Temperature dependent energy levels of methylammonium lead iodide perovskite

    SciTech Connect

    Foley, Benjamin J.; Marlowe, Daniel L.; Choi, Joshua J. E-mail: mgupta@virginia.edu; Sun, Keye; Gupta, Mool C. E-mail: mgupta@virginia.edu; Saidi, Wissam A.; Scudiero, Louis E-mail: mgupta@virginia.edu

    2015-06-15

    Temperature dependent energy levels of methylammonium lead iodide are investigated using a combination of ultraviolet photoemission spectroscopy and optical spectroscopy. Our results show that the valence band maximum and conduction band minimum shift down in energy by 110 meV and 77 meV as temperature increases from 28 °C to 85 °C. Density functional theory calculations using slab structures show that the decreased orbital splitting due to thermal expansion is a major contribution to the experimentally observed shift in energy levels. Our results have implications for solar cell performance under operating conditions with continued sunlight exposure and increased temperature.

  14. Amorphous silicon pixel layers with cesium iodide converters for medical radiography

    SciTech Connect

    Jing, T.; Cho, G.; Goodman, C.A.

    1993-11-01

    We describe the properties of evaporated layers of Cesium Iodide (Thallium activated) deposited on substrates that enable easy coupling to amorphous silicon pixel arrays. The CsI(Tl) layers range in thickness from 65 to 220{mu}m. We used the two-boat evaporator system to deposit CsI(Tl) layers. This system ensures the formation of the scintillator film with homogenous thallium concentration which is essential for optimizing the scintillation light emission efficiency. The Tl concentration was kept to 0.1--0.2 mole percent for the highest light output. Temperature annealing can affect the microstructure as well as light output of the CsI(Tl) film. 200--300C temperature annealing can increase the light output by a factor of two. The amorphous silicon pixel arrays are p-i-n diodes approximately l{mu}m thick with transparent electrodes to enable them to detect the scintillation light produced by X-rays incident on the CsI(Tl). Digital radiography requires a good spatial resolution. This is accomplished by making the detector pixel size less then 50{mu}m. The light emission from the CsI(Tl) is collimated by techniques involving the deposition process on pattered substrates. We have measured MTF of greater than 12 line pairs per mm at the 10% level.

  15. Relationship of dietary iodide and drinking water disinfectants to thyroid function in experimental animals

    SciTech Connect

    Revis, N.W.; McCauley, P.; Holdsworth, G.

    1986-11-01

    The importance of dietary iodide on the reported hypothyroid effect of drinking water disinfectants on thyroid function was investigated. Previous studies have also showed differences in the relative sensitivity of pigeons and rabbits to chlorinated water. Pigeons and rabbits were exposed for 3 months to diets containing high (950 ppb) or low (300 ppb) levels of iodide and to drinking water containing two levels of chlorine. Results showed that the high-iodide diet prevented the hypothyroid effect observed in pigeons given the low-iodide diet and chlorinated drinking water. Similar trends were observed in rabbits exposed to the same treatment; however, significant hypothyroid effects were not observed in this animal model. The factor associated with the observed effect of dietary iodide on the chlorine-induced change in thyroid function is unknown, as is the relative sensitivity of rabbits and pigeons to the effect of chlorine. Several factors may explain the importance of dietary iodide and the relative sensitivity of these species. For example, the iodine formed by the known reaction of chlorine with iodide could result in a decrease in the plasma level of iodide because of the relative absorption rates of iodide and iodine in the intestinal tract, and the various types and concentrations of chloroorganics (metabolites) formed in the diet following the exposure of various dietary constituents to chlorine could affect the thyroid function. The former factor was investigated in the present studies. Results do not confirm a consistent, significant reduction in the plasma level of iodide in rabbits and pigeons exposed to chlorinated water and the low-iodide diet. The latter factor is being investigated.

  16. Fire Detector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    An early warning fire detection sensor developed for NASA's Space Shuttle Orbiter is being evaluated as a possible hazard prevention system for mining operations. The incipient Fire Detector represents an advancement over commercially available smoke detectors in that it senses and signals the presence of a fire condition before the appearance of flame and smoke, offering an extra margin of safety.

  17. Optical Detectors

    NASA Astrophysics Data System (ADS)

    Tabbert, Bernd; Goushcha, Alexander

    Optical detectors are applied in all fields of human activities from basic research to commercial applications in communication, automotive, medical imaging, homeland security, and other fields. The processes of light interaction with matter described in other chapters of this handbook form the basis for understanding the optical detectors physics and device properties.

  18. Metal Detectors.

    ERIC Educational Resources Information Center

    Harrington-Lueker, Donna

    1992-01-01

    Schools that count on metal detectors to stem the flow of weapons into the schools create a false sense of security. Recommendations include investing in personnel rather than hardware, cultivating the confidence of law-abiding students, and enforcing discipline. Metal detectors can be quite effective at afterschool events. (MLF)

  19. FEASIBILITY STUDY FOR POTASSIUM IODIDE (KI) DISTRIBUTION IN NEW YORK CITY.

    SciTech Connect

    MOSS, STEVEN

    2005-04-29

    The New York City Department of Health and Mental Hygiene (DOHMH), Bureau of Environmental Science and Engineering, Office of Radiological Health (ORH) [as the primary local technical consultant in the event of a radiological or nuclear incident within the boundaries of New York City] requested the assistance of Brookhaven National Laboratory (BNL) with the development of a Feasibility Study for Potassium Iodide (KI) distribution in the unlikely event of a significant release of radioactive iodine in or near New York City. Brookhaven National Laboratory had previously provided support for New York City with the development of the radiological/nuclear portions of its All Hazards Emergency Response Plans. The work is funded by Medical and Health Research Association (MHRA) of New York City, Inc., under a work grant by the Federal Centers for Disease Control (CDC) for Public Health Preparedness and Response for Bioterrorism. This report is part of the result of that effort. The conclusions of this report are that: (1) There is no credible radiological scenario that would prompt the need for large segments of the general population of New York City to take KI as a result of a projected plume exposure to radioiodine reaching even the lowest threshold of 5 rem to the thyroid; and (2) KI should be stockpiled in amounts and locations sufficient for use by first responders/emergency responders in response to any localized release of radioiodine.

  20. Report on Advanced Detector Development

    SciTech Connect

    James K. Jewell

    2012-09-01

    Neutron, gamma and charged particle detection improvements are key to supporting many of the foreseen measurements and systems envisioned in the R&D programs and the future fuel cycle requirements, such as basic nuclear physics and data, modeling and simulation, reactor instrumentation, criticality safety, materials management and safeguards. This task will focus on the developmental needs of the FCR&D experimental programs, such as elastic/inelastic scattering, total cross sections and fission neutron spectra measurements, and will leverage a number of existing neutron detector development efforts and programs, such as those at LANL, PNNL, INL, and IAC as well as those at many universities, some of whom are funded under NE grants and contracts. Novel materials and fabrication processes combined with state-of-the-art electronics and computing provide new opportunities for revolutionary detector systems that will be able to meet the high precision needs of the program. This work will be closely coordinated with the Nuclear Data Crosscut. The Advanced Detector Development effort is a broadly-focused activity that supports the development of improved nuclear data measurements and improved detection of nuclear reactions and reactor conditions. This work supports the design and construction of large-scale, multiple component detectors to provide nuclear reaction data of unprecedented quality and precision. Examples include the Time Projection Chamber (TPC) and the DANCE detector at LANL. This work also supports the fabrication and end-user application of novel scintillator materials detection and monitoring.

  1. Iodide-catalyzed ozonation of terpenes on aqueous surfaces

    NASA Astrophysics Data System (ADS)

    Enami, S.; Hayase, S.; Kawasaki, M.; Hoffmann, M. R.; Colussi, A. J.

    2011-12-01

    Biogenic terpenes are the dominant global source of volatile organic compounds (VOC) and secondary organic aerosols (SOA). Their atmospheric chemistry has therefore major direct and indirect impacts on global climate change. At the same time, it has become apparent that organic and inorganic iodine species of marine origin are ubiquitous in the troposphere. They are found over the open ocean (even in the absence of biogenic sources), the Antarctic coast, in rain, aerosols, ice, and snow, and participate in HOx/NOx cycles in the troposphere. Here we report that iodide catalyzes the ozonation of alpha-pinene on aqueous surfaces. Nebulizer-assisted online electrospray mass spectrometry of alpha-pinene solutions briefly exposed to gaseous ozone reveals that alpha-pinene, which is unreactive during 10 microsecond contact times, is converted into acids (e.g., pinonic acid) and previously unreported iodine-containing species in the presence of millimolar iodide. These newly found products were characterized by MS/MS in conjunction with isotope and kinetic studies, and may account for unidentified organoiodine species observed in recent field measurements.

  2. Polymorphic copper iodide clusters: insights into the mechanochromic luminescence properties.

    PubMed

    Benito, Quentin; Le Goff, Xavier F; Maron, Sébastien; Fargues, Alexandre; Garcia, Alain; Martineau, Charlotte; Taulelle, Francis; Kahlal, Samia; Gacoin, Thierry; Boilot, Jean-Pierre; Perruchas, Sandrine

    2014-08-13

    An in-depth study of mechanochromic and thermochromic luminescent copper iodide clusters exhibiting structural polymorphism is reported and gives new insights into the origin of the mechanochromic luminescence properties. The two different crystalline polymorphs exhibit distinct luminescence properties with one being green emissive and the other one being yellow emissive. Upon mechanical grinding, only one of the polymorphs exhibits great modification of its emission from green to yellow. Interestingly, the photophysical properties of the resulting partially amorphous crushed compound are closed to those of the other yellow polymorph. Comparative structural and optical analyses of the different phases including a solution of clusters permit us to establish a correlation between the Cu-Cu bond distances and the luminescence properties. In addition, the local structure of the [Cu4I4P4] cluster cores has been probed by (31)P and (65)Cu solid-state NMR analysis, which readily indicates that the grinding process modifies the phosphorus and copper atoms environments. The mechanochromic phenomenon is thus explained by the disruption of the crystal packing within intermolecular interactions inducing shortening of the Cu-Cu bond distances in the [Cu4I4] cluster core and eventually modification of the emissive state. These results definitely establish the role of cuprophilic interactions in the mechanochromism of copper iodide clusters. More generally, this study constitutes a step further into the understanding of the mechanism involved in the mechanochromic luminescent properties of metal-based compounds. PMID:25076411

  3. A Facile Method for the Synthesis of Binary Tungsten Iodides.

    PubMed

    Ströbele, Markus; Castro, Cristina; Fink, Reinhold F; Meyer, H-Jürgen

    2016-04-01

    The preparation of tungsten iodides in large quantities is a challenge because these compounds are not accessible using an easy synthesis method. A new, remarkably efficient route is based on a halide exchange reaction between WCl6 and SiI4 . The reaction proceeds at moderate temperatures in a closed glass vessel. The new compounds W3 I12 (W3 I8 ⋅2 I2 ) and W3 I9 (W3 I8 ⋅1/2  I2 ) containing the novel [W3 I8 ] cluster are formed at 120 and 150 °C, and remain stable in air. W3 I12 is an excellent starting material for the synthesis of other metal-rich tungsten iodides. At increasing temperature these trinuclear clusters undergo self-reduction until an octahedral tungsten cluster is formed in W6 I12 . The synthesis, structure, and an analysis of the bonding of compounds containing this new trinuclear tungsten cluster are presented. PMID:26947934

  4. Efficient Use and Recycling of the Micronutrient Iodide in Mammals

    PubMed Central

    Rokita, Steven E.; Adler, Jennifer M.; McTamney, Patrick M.; Watson, James A.

    2010-01-01

    Daily ingestion of iodide alone is not adequate to sustain production of the thyroid hormones, tri- and tetraiodothyronine. Proper maintenance of iodide in vivo also requires its active transport into the thyroid and its salvage from mono- and diiodotyrosine that are formed in excess during hormone biosynthesis. The enzyme iodotyrosine deiodinase responsible for this salvage is unusual in its ability to catalyze a reductive dehalogenation reaction dependent on a flavin cofactor, FMN. Initial characterization of this enzyme was limited by its membrane association, difficult purification and poor stability. The deiodinase became amenable to detailed analysis only after identification and heterologous expression of its gene. Site-directed mutagenesis recently demonstrated that cysteine residues are not necessary for enzymatic activity in contrast to precedence set by other reductive dehalogenases. Truncation of the N-terminal membrane anchor of the deiodinase has provided a soluble and stable source of enzyme sufficient for crystallographic studies. The structure of an enzyme•substrate co-crystal has become invaluable for understanding the origins of substrate selectivity and the mutations causing thyroid disease in humans. PMID:20167242

  5. Ionic transport in hybrid lead iodide perovskite solar cells

    PubMed Central

    Eames, Christopher; Frost, Jarvist M.; Barnes, Piers R. F.; O'Regan, Brian C.; Walsh, Aron; Islam, M. Saiful

    2015-01-01

    Solar cells based on organic–inorganic halide perovskites have recently shown rapidly rising power conversion efficiencies, but exhibit unusual behaviour such as current–voltage hysteresis and a low-frequency giant dielectric response. Ionic transport has been suggested to be an important factor contributing to these effects; however, the chemical origin of this transport and the mobile species are unclear. Here, the activation energies for ionic migration in methylammonium lead iodide (CH3NH3PbI3) are derived from first principles, and are compared with kinetic data extracted from the current–voltage response of a perovskite-based solar cell. We identify the microscopic transport mechanisms, and find facile vacancy-assisted migration of iodide ions with an activation energy of 0.6 eV, in good agreement with the kinetic measurements. The results of this combined computational and experimental study suggest that hybrid halide perovskites are mixed ionic–electronic conductors, a finding that has major implications for solar cell device architectures. PMID:26105623

  6. Crystal growth and scintillation properties of strontium iodide scintillators

    SciTech Connect

    van Loef, Edgar; Wilson, Cody; Cherepy, Nerine; Payne, Steven; Choong, Woon-Seng; Moses, William W.; Shah, Kanai

    2009-06-01

    Single crystals of SrI{sub 2}:Eu and SrI{sub 2}:Ce/Na were grown from anhydrous iodides by the vertical Bridgman technique in evacuated silica ampoules. Growth rates were of the order of 5-30 mm/day. Radioluminescence spectra of SrI{sub 2}:Eu and SrI{sub 2}:Ce/Na exhibit a broad band due to Eu{sup 2+} and Ce{sup 3+} emission, respectively. The maximum in the luminescence spectrum of SrI{sub 2}:Eu is found at 435 nm. The spectrum of SrI{sub 2}:Ce/Na exhibits a doublet peaking at 404 and 435 nm attributed to Ce{sup 3+} emission, while additional impurity - or defected - related emission is present at approximately 525 nm. The strontium iodide scintillators show very high light yields of up to 120,000 photons/MeV, have energy resolutions down to 3% at 662 keV (Full Width Half Maximum) and exhibit excellent light yield proportionality with a standard deviation of less than 5% between 6 and 460 keV.

  7. 9-O-Ethyl­berberrubinium iodide monohydrate

    PubMed Central

    Grundt, Peter; Pernat, Jennifer; Krivogorsky, Bogdana; Halverson, Melanie A.; Berry, Steven M.

    2010-01-01

    In the title compound (systematic name: 9-eth­oxy-10-meth­oxy-5,6-dihydro-1,3-dioxolo[4,5-g]isoquinolino­[3,2-a]isoquin­olin-7-ium iodide monohydrate), 2C21H20NO4 +·2I−·H2O, two independent mol­ecules pack in the unit cell, where interactions between the molecules are stabilized by weak inter­molecular π–π stacking inter­actions [centroid–centroid distances in the range 3.571 (4) to 3.815 (4)Å]. Inter­molecular C—H⋯O inter­actions are also observed. The iodide anions are disordered with occupancy ratios of 0.94 (1):0.06 (1) and 0.91 (1):0.09 (1). The cationic molecule is planar in structure with a small torsion resulting from the dihydropyridine ring. PMID:21587567

  8. Oxygen-hydrogen fuel cell with an iodine-iodide cathode - A concept

    NASA Technical Reports Server (NTRS)

    Javet, P.

    1970-01-01

    Fuel cell uses a porous cathode through which is fed a solution of iodine in aqueous iodide solution, the anode is a hydrogen electrode. No activation polarization appears on the cathode because of the high exchange-current density of the iodine-iodide electrode.

  9. Dose-Response Analysis of Developmental Iodide Deficiency: Reductions in Thyroid Hormones and Impaired Hippocampal Synaptic Transmission

    EPA Science Inventory

    Iodide is an essential nutrient for thyroid hormone synthesis and severe iodide deficiency (ID) during early development is associated with neurological impairments. Several environmental contaminants can perturb the thyroid axis and this perturbation may be more acute under cond...

  10. Imaging of high- Z material for nuclear contraband detection with a minimal prototype of a muon tomography station based on GEM detectors

    NASA Astrophysics Data System (ADS)

    Gnanvo, Kondo; Grasso, Leonard V.; Hohlmann, Marcus; Locke, Judson B.; Quintero, Amilkar; Mitra, Debasis

    2011-10-01

    Muon Tomography based on the measurement of multiple scattering of atmospheric cosmic ray muons in matter is a promising technique for detecting heavily shielded high- Z radioactive materials (U, Pu) in cargo or vehicles. The technique uses the deflection of cosmic ray muons in matter to perform tomographic imaging of high- Z material inside a probed volume. A Muon Tomography Station (MTS) requires position-sensitive detectors with high spatial resolution for optimal tracking of incoming and outgoing cosmic ray muons. Micro Pattern Gaseous Detector (MPGD) technologies such as Gas Electron Multiplier (GEM) detectors are excellent candidates for this application. We have built and operated a minimal MTS prototype based on 30 cm×30 cm GEM detectors for probing targets with various Z values inside the MTS volume. We report the first successful detection and imaging of medium- Z and high- Z targets of small volumes (˜0.03 L) using GEM-based Muon Tomography.

  11. Copper iodide staining and determination of proteins adsorbed to microtiter plates.

    PubMed

    Root, D D; Reisler, E

    1990-04-01

    Copper iodide staining and determination of proteins adsorbed to polystyrene microtiter plates are described. The minimum amount of copper iodide-stained protein detected in densitometric measurements is approximately 20 pg/mm2. Enzyme immunoassay readers may also be used for the determination of copper iodide-stained proteins, but are less sensitive than densitometers. The densitometric readings of copper iodide-stained proteins vary linearly with the amount of protein present as verified by enzymatic and radioactive probes. Staining is complete in 2-3 min and may be removed by a 30-min treatment with EDTA without loss of adsorbed protein or immunoreactivity. The exact amount of protein adsorbed to microtiter plate wells can be measured by using protein bound and stained on nitrocellulose as a calibration curve. Copper iodide staining is a rapid, convenient, and inexpensive alternative to radioactive measurements of similar parameters. PMID:1694063

  12. A comparison between the gastric and salivary concentration of iodide, pertechnetate, and bromide in man

    PubMed Central

    Harden, R. McG.; Alexander, W. D.; Shimmins, J.; Chisholm, D.

    1969-01-01

    The concentration of iodide (I−) and pertechnetate (TcO4−) and bromide (Br−) has been measured simultaneously in gastric juice and parotid saliva. The combined gastric and salivary clearance for iodide and pertechnetate is more than twice the clearance of these ions by the thyroid gland. The concentration of the ions was in the order I−>TcO4−>Br− in both gastric juice and saliva. Differences exist between the secretion of iodide, pertechnetate, and bromide. Bromide, in contrast to iodide and pertechnetate, was found to be more concentrated in gastric juice than in saliva. The ratio of the iodide to pertechnetate clearance was greater in gastric juice than in saliva. PMID:5358585

  13. Solvent-free synthesis of alkylbenzimidazolium iodides and their applications in dye-sensitized solar cells

    SciTech Connect

    Xia, Mei; Shi, Chengwu; Sun, Renjie; Liu, Zhaokun; Cai, Molang

    2010-10-15

    In this paper, the synthesis of 1-hexyl-3-methylbenzimidazolium iodide (HMBI) and 1-hexyl-3-propylbenzimidazolium iodide (HPBI) was developed by quaternization reaction of 1-hexylbenzimidazole and alkyl iodide under solvent-free condition using Teflon-lined, stainless autoclaves. Their thermal properties were measured on the thermo gravimetric analysis and differential scanning calorimeter. The influence of HMBI, HPBI and 1-methyl-3-propylimidazolium iodide (MPII) on redox behavior of I{sub 3}{sup -} and I{sup -} was investigated by cyclic voltammetry and electrochemical impedance spectroscopy. It was found that the resulting HMBI and HPBI had high purity and the reaction time was shortened to 3 h. The thermal stability of HMBI and HPBI was better than that of alkylimidazolium iodides, and HMBI and HPBI were prone to exhibit the supercooling phenomena. The DSCs with HMBI, HPBI and MPII gave photoelectric conversion efficiency of 5.49%, 5.34% and 5.54%, respectively. (author)

  14. Electrochemical quantification of iodide ions in synthetic urine using silver nanoparticles: a proof-of-concept.

    PubMed

    Toh, Her Shuang; Tschulik, Kristina; Batchelor-McAuley, Christopher; Compton, Richard G

    2014-08-21

    Typical urinary iodide concentrations range from 0.3 μM to 6.0 μM. The conventional analytical method is based on the Sandell-Kolthoff reaction. It involves the toxic reagent, arsenic acid, and a waiting time of 30 minutes for the iodide ions to reduce the cerium(iv) ions. In the presented work, an alternative fast electrochemical method based on a silver nanoparticle modified electrode is proposed. Cyclic voltammetry was performed with a freshly modified electrode in presence of iodide ions and the voltammetric peaks corresponding to the oxidation of silver to silver iodide and the reverse reaction were recorded. The peak height of the reduction signal of silver iodide was used to plot a calibration line for the iodide ions. Two calibration plots for the iodide ions were obtained, one in 0.1 M sodium nitrate (a chloride-ion free environment to circumvent any interference from the other halides) and another in synthetic urine (which contains 0.2 M KCl). In both of the calibration plots, linear relationships were found between the reduction peak height and the iodide ion concentration of 0.3 μM to 6.0 μM. A slope of 1.46 × 10(-2) A M(-1) and a R(2) value of 0.999 were obtained for the iodide detection in sodium nitrate. For the synthetic urine experiments, a slope of 3.58 × 10(-3) A M(-1) and a R(2) value of 0.942 were measured. A robust iodide sensor with the potential to be developed into a point-of-care system has been validated. PMID:24921222

  15. Synthesis, growth, structural, thermal, optical properties of new metal-organic crystals: Methyltriphenylphosphonium iodide thiourea and methyltriphenylphosphonium iodide chloroform hemisolvate

    NASA Astrophysics Data System (ADS)

    Shivachev, Boris L.; Kossev, Krassimir; Dimowa, Louiza T.; Yankov, Georgi; Petrov, Todor; Nikolova, Rositsa P.; Petrova, Nadia

    2013-08-01

    Crystals of methyltriphenylphosphonium iodide thiourea (1) and methyltriphenylphosphonium iodide chloroform hemisolvate (2) were obtained for the first time. Fourier transform infrared (FTIR) spectral studies have been performed to identify the functional groups. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) were used to study their thermal properties. The optical transmittance window and the lower cutoff wavelength have been identified by UV-vis studies. Crystals of the title compounds suitable for single crystal X-ray analyses were successfully grown by slow evaporation and diffraction data were collected to elucidate the molecular structure and interactions. The proton donors (phosphonium) and proton acceptor (iodine) in the structure of 1 provide infrastructure to introduce charge asymmetry while in 2 chloroform molecule is not involved in the charge transfer. An optical quality crystal of 1 (5×4×2 mm3) was obtained by macroseeding. The crystal has developed facets with major ones (001) and (00¯1). A crystal of 1 was tested with 1060 nm laser radiation and showed second harmonic generation (SHG).

  16. Horizontal Ampoule Growth and Characterization of Mercuric Iodide at Controlled Gas Pressures for X-Ray and Gamma Ray Spectrometers

    SciTech Connect

    McGregor, Douglas S.; Ariesanti, Elsa; Corcoran, Bridget

    2004-04-30

    The project developed a new method for producing high quality mercuric iodide crystals of x-ray and gamma spectrometers. Included are characterization of mercuric iodide crystal properties as a function of growth environment and fabrication and demonstration of room-temperature-operated high-resolution mercuric iodide spectrometers.

  17. Project Overview: Inhibition of the Sodium-Iodide Symporter by Perchlorate: Evaluation of Lifestage Sensitivity Using PBPK Modeling

    EPA Science Inventory

    Perchlorate (ClO4-) competitively inhibits uptake of iodide by the sodium-iodide symporter (NIS) in laboratory animals and humans. NIS is found in many tissues, but is primarily responsible for sequestering iodide into the thyroid, enabling biosynthesis of thyroid hormones. The N...

  18. The MINERνA detector

    SciTech Connect

    Fiorentini, G. A.

    2015-05-15

    MINERνA (Main INjector Experiment for ν-A) is a dedicated neutrino-nucleus scattering experiment at Fermilab. It uses a fine-grained fully active detector to make precision measurements of neutrino and antineutrino interactions on a variety of different nuclear targets (plastic scintillator, C, Fe, Pb, He and H2O) for energies up to few GeV. An overview of the experiment and a description of the detector are presented.

  19. MS Detectors

    SciTech Connect

    Koppenaal, David W.; Barinaga, Charles J.; Denton, M Bonner B.; Sperline, Roger P.; Hieftje, Gary M.; Schilling, G. D.; Andrade, Francisco J.; Barnes IV., James H.

    2005-11-01

    Good eyesight is often taken for granted, a situation that everyone appreciates once vision begins to fade with age. New eyeglasses or contact lenses are traditional ways to improve vision, but recent new technology, i.e. LASIK laser eye surgery, provides a new and exciting means for marked vision restoration and improvement. In mass spectrometry, detectors are the 'eyes' of the MS instrument. These 'eyes' have also been taken for granted. New detectors and new technologies are likewise needed to correct, improve, and extend ion detection and hence, our 'chemical vision'. The purpose of this report is to review and assess current MS detector technology and to provide a glimpse towards future detector technologies. It is hoped that the report will also serve to motivate interest, prompt ideas, and inspire new visions for ion detection research.

  20. [Flat Panel Detector Philips introduced and its system direction].

    PubMed

    Yamada, Shinichi

    2002-01-01

    We introduced digital X-ray diagnostic systems with Flat panel detector both in general X-ray systems and in Angiography systems. Our introduced Flat Panel Detector has the latest technology and has Cesium Iodide (CsI) that absorbs X-ray energy and generates visible light. Detected light signals make digital X-ray images. CsI is the most important material because its absorption rate of X-ray influences the strength of output digital signal. The purpose in this paper is checking that is latest Flat Panel Detector pulls out enough capability CsI has. Especially the thickness of CsI relates to X-ray absorption. X-ray absorption rate depended on the thickness of CsI was calculated by using simulated X-ray model and the future direction of Flat Panel Detector system was discussed. PMID:12766268