Science.gov

Sample records for ion chromatography-dc plasma

  1. The use of ion chromatography-dc plasma atomic emission spectrometry for the speciation of trace metals

    SciTech Connect

    Urasa, I.T.

    1991-09-20

    The original objects of this research program were: to interface d.c. plasma atomic emission spectrometer with an ion chromatograph; to characterize and optimize the combined systems for application in the speciation of metals in aqueous solutions; to use this system in the study of the solution chemistry of various metals; and to find ways in which the measurement sensitivity of the method can be enhanced, thereby allowing the detection of metal species at low ppb concentration levels. This approach has been used to study the chemistry of and speciate several elements in solution including: arsenic, chromium, iron, manganese, nickel phosphorus, platinum, selenium, and vanadium. During the course of this research, we have found that the solution chemistry of the elements studied and the speciation data obtained can vary considerably depending on the solution, and the chromatographic conditions employed. The speciation of chromium, iron, and vanadium was found to be highly influenced by the acidity of the sample. The element selective nature of the d.c. plasma detector allows these changes to be monitored, thereby providing quantitative information on the new moieties formed. New approaches are being developed including the use of chelating ligands as preconcentration agents for purposes of reducing further the detection limits of the elements of interest and to improve the overall element speciation scheme. New thrusts are being directed towards the employment of post-column derivatization method coupled with colorimetric measurements to detect and quantify metal species eluting from the chromatographic column. The influence of sample acidity on these investigations will be carefully evaluated. These new thrusts are described in the accompanying Project Renewal Proposal.

  2. The use of ion chromatography-dc plasma atomic emission spectrometry for the speciation of trace metals. Annual performance report, February 1, 1989--January 31, 1992

    SciTech Connect

    Urasa, I.T.

    1991-09-20

    The original objects of this research program were: to interface d.c. plasma atomic emission spectrometer with an ion chromatograph; to characterize and optimize the combined systems for application in the speciation of metals in aqueous solutions; to use this system in the study of the solution chemistry of various metals; and to find ways in which the measurement sensitivity of the method can be enhanced, thereby allowing the detection of metal species at low ppb concentration levels. This approach has been used to study the chemistry of and speciate several elements in solution including: arsenic, chromium, iron, manganese, nickel phosphorus, platinum, selenium, and vanadium. During the course of this research, we have found that the solution chemistry of the elements studied and the speciation data obtained can vary considerably depending on the solution, and the chromatographic conditions employed. The speciation of chromium, iron, and vanadium was found to be highly influenced by the acidity of the sample. The element selective nature of the d.c. plasma detector allows these changes to be monitored, thereby providing quantitative information on the new moieties formed. New approaches are being developed including the use of chelating ligands as preconcentration agents for purposes of reducing further the detection limits of the elements of interest and to improve the overall element speciation scheme. New thrusts are being directed towards the employment of post-column derivatization method coupled with colorimetric measurements to detect and quantify metal species eluting from the chromatographic column. The influence of sample acidity on these investigations will be carefully evaluated. These new thrusts are described in the accompanying Project Renewal Proposal.

  3. Electric propulsion using ion-ion plasmas

    NASA Astrophysics Data System (ADS)

    Aanesland, A.; Meige, A.; Chabert, P.

    2009-04-01

    Recently, we have proposed to use both positive and negative ions for thrust in an electromagnetic space propulsion system. This concept is called PEGASES for Plasma Propulsion with Electronegative GASES and has been patented by the Ecole Polytechnique in France in 2007. The basic idea is to create a stratified plasma with an electron free (ion-ion plasma) region at the periphery of a highly ionized plasma core such that both positive and negative ions can be extracted and accelerated to provide thrust. As the extracted beam is globally neutral there is no need for a downstream neutralizer. The recombination of positive and negative ions is very efficient and will result in a fast recombination downstream of the thruster and hence there is no creation of a plasma plume downstream. The first PEGASES prototype, designed in 2007, has recently been installed in a small vacuum chamber for preliminary tests in our laboratory and the first results have been presented in several conferences. This paper reviews important work that has been used in the process of designing the first PEGASES prototype.

  4. Energetic ions in ITER plasmas

    SciTech Connect

    Pinches, S. D.; Chapman, I. T.; Sharapov, S. E.; Lauber, Ph. W.; Oliver, H. J. C.; Shinohara, K.; Tani, K.

    2015-02-15

    This paper discusses the behaviour and consequences of the expected populations of energetic ions in ITER plasmas. It begins with a careful analytic and numerical consideration of the stability of Alfvén Eigenmodes in the ITER 15 MA baseline scenario. The stability threshold is determined by balancing the energetic ion drive against the dominant damping mechanisms and it is found that only in the outer half of the plasma (r/a>0.5) can the fast ions overcome the thermal ion Landau damping. This is in spite of the reduced numbers of alpha-particles and beam ions in this region but means that any Alfvén Eigenmode-induced redistribution is not expected to influence the fusion burn process. The influence of energetic ions upon the main global MHD phenomena expected in ITER's primary operating scenarios, including sawteeth, neoclassical tearing modes and Resistive Wall Modes, is also reviewed. Fast ion losses due to the non-axisymmetric fields arising from the finite number of toroidal field coils, the inclusion of ferromagnetic inserts, the presence of test blanket modules containing ferromagnetic material, and the fields created by the Edge Localised Mode (ELM) control coils in ITER are discussed. The greatest losses and associated heat loads onto the plasma facing components arise due to the use of the ELM control coils and come from neutral beam ions that are ionised in the plasma edge.

  5. Ion-Assisted Plasma Etching

    NASA Astrophysics Data System (ADS)

    Wang, C. Daniel; Abraham-Shrauner, Barbara

    1996-11-01

    We analyze plasma etching of two-dimensional, long trenches where directed ions modeled by drifted Maxwellian distribution functions and isotropic neutral molecules contribute to the etch rate. Analytic expressions for the etch rates enable the user to plot the etch profiles by using standard computer packages for nonlinear first-order ordinary differential equations for the point and its slope. First, etch profiles are shown for ion-assisted etching where the thermal etching of the neutrals is enhanced by the ions. Second, we show etch profiles of a multiple layer device where one layer is n-type silicon (arsenic doped) that etches isotropically (G.S. Oehrlein, "Reactive Ion Etching," Handbook of Plasma Processing, Technology, Ed. S.M. Rossnagel, et al., Noyes Pub., NJ, 1990) The etch rates for the other layers are in the ion flux-limited regime. The lateral etching of the n-type silicon illustrates the necessity of sidewall passivation for this structure.

  6. Irregularities in electronegative plasmas due to ion-ion coupling

    SciTech Connect

    Vitello, P.

    1999-07-01

    In partially ionized electronegative plasmas at low neutral pressure and high plasma density, coupling between positive and negative ions through space charge effects and through Coulomb scattering can lead to turbulence and irregularities in the ion density and flux. In this regime, the force on ions due to ion-ion coulomb scattering may dominate that from ion scattering with neutrals. This can lead to the formation of a, possibly turbulent, negative ion boundary layer containing the bulk of the negative ions. Commercial inductively Coupled Plasmas reactors used in the semiconductor industry typically operate at low pressure and high plasma density. Simulations are presented for a Chlorine discharge in the GEC reactor modified for Inductively Coupled operation. Results show that ion-ion coupling can induce large variations in the plasma density, and that accurate modeling of spatial plasma structure should include these effects.

  7. Ion-beam Plasma Neutralization Interaction Images

    SciTech Connect

    Igor D. Kaganovich; Edward Startsev; S. Klasky; Ronald C. Davidson

    2002-04-09

    Neutralization of the ion beam charge and current is an important scientific issue for many practical applications. The process of ion beam charge and current neutralization is complex because the excitation of nonlinear plasma waves may occur. Computer simulation images of plasma neutralization of the ion beam pulse are presented.

  8. Some properties of ion and cluster plasma

    SciTech Connect

    Gudzenko, L.I.; Derzhiev, V.I.; Yakovlenko, S.I.

    1982-11-01

    The aggregate of problems connected with the physics of ion and cluster plasma is qualitatively considered. Such a plasma can exist when a dense gas is ionized by a hard ionizer. The conditions for the formation of an ion plasma and the difference between its characteristics and those of an ordinary electron plasma are discussed; a solvated-ion model and the distribution of the clusters with respect to the number of solvated molecules are considered. The recombination rate of the positively and negatively charged clusters is roughly estimated. The parameters of a ball-lightning plasma are estimated on the basis of the cluster model.

  9. Ion acoustic shock waves in degenerate plasmas

    SciTech Connect

    Akhtar, N.; Hussain, S.

    2011-07-15

    Korteweg de Vries Burgers equation for negative ion degenerate dissipative plasma has been derived using reductive perturbation technique. The quantum hydrodynamic model is used to study the quantum ion acoustic shock waves. The effects of different parameters on quantum ion acoustic shock waves are studied. It is found that quantum parameter, electrons Fermi temperature, temperature of positive and negative ions, mass ratio of positive to negative ions, viscosity, and density ratio have significant impact on the shock wave structure in negative ion degenerate plasma.

  10. Ion acceleration in expanding ionospheric plasmas

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Schunk, R. W.

    1986-01-01

    Plasma expansion along the ambient magnetic field in regions of density gradients provides a mechanism for accelerating ions. A brief review of the basic phenomenon of plasma expansion is given. Estimates of the energies of the accelerated ions in an expanding ionospheric plasma along geomagnetic flux tubes are obtained by solving the time-dependent hydrodynamic equations. It is found that, over certain altitude ranges, each ion species can be the most energetic; the maximum energies of the different ions are found to be limited to less than about 10 eV for H(+), 5 eV for He(+), and less than about 1.5 eV for O(+).

  11. Plasma formed ion beam projection lithography system

    SciTech Connect

    Leung, Ka-Ngo; Lee, Yung-Hee Yvette; Ngo, Vinh; Zahir, Nastaran

    2002-01-01

    A plasma-formed ion-beam projection lithography (IPL) system eliminates the acceleration stage between the ion source and stencil mask of a conventional IPL system. Instead a much thicker mask is used as a beam forming or extraction electrode, positioned next to the plasma in the ion source. Thus the entire beam forming electrode or mask is illuminated uniformly with the source plasma. The extracted beam passes through an acceleration and reduction stage onto the resist coated wafer. Low energy ions, about 30 eV, pass through the mask, minimizing heating, scattering, and sputtering.

  12. Inductively generated streaming plasma ion source

    DOEpatents

    Glidden, Steven C.; Sanders, Howard D.; Greenly, John B.

    2006-07-25

    A novel pulsed, neutralized ion beam source is provided. The source uses pulsed inductive breakdown of neutral gas, and magnetic acceleration and control of the resulting plasma, to form a beam. The beam supplies ions for applications requiring excellent control of ion species, low remittance, high current density, and spatial uniformity.

  13. Plasma sheet ion energization during dipolarization events

    SciTech Connect

    Delcourt, D.C. ); Sauvaud, J.A. )

    1994-01-01

    This paper presents simulation results for acceleration processes for ions during what are referred to as dipolarization events associated with storm activity. Time variations of magnetic fields over cyclotron periods, and generation of electric fields parallel to the geomagnetic field, both contribute to ion acceleration in the plasma sheet. Calculations support the observation of earthward injection of ions during such events.

  14. Tailored ion energy distributions on plasma electrodes

    SciTech Connect

    Economou, Demetre J.

    2013-09-15

    As microelectronic device features continue to shrink approaching atomic dimensions, control of the ion energy distribution on the substrate during plasma etching and deposition becomes increasingly critical. The ion energy should be high enough to drive ion-assisted etching, but not too high to cause substrate damage or loss of selectivity. In many cases, a nearly monoenergetic ion energy distribution (IED) is desired to achieve highly selective etching. In this work, the author briefly reviews: (1) the fundamentals of development of the ion energy distribution in the sheath and (2) methods to control the IED on plasma electrodes. Such methods include the application of “tailored” voltage waveforms on an electrode in continuous wave plasmas, or the application of synchronous bias on a “boundary electrode” during a specified time window in the afterglow of pulsed plasmas.

  15. Ion composition measurement techniques for space plasmas

    NASA Technical Reports Server (NTRS)

    Gloeckler, George

    1990-01-01

    Plasmas found in space range from the solar wind with a typical temperature of 100,000-1,000,000 K, about 400 km/s bulk flow speed, and high ionization (charge states) of ions, to the hot, slowly moving plasmas in the outer magnetospheres of the giant planets, to the cold, corotating plasmas in inner magnetospheres. Space plasma instruments and techniques are reviewed, with an emphasis on hot plasma composition measurements. Starting with Faraday Cup detectors some 30 years ago, plasma instruments have evolved to the present time-of-flight systems with excellent mass resolution and three-dimensional viewing capabilities.

  16. Chaotic ion motion in magnetosonic plasma waves

    NASA Technical Reports Server (NTRS)

    Varvoglis, H.

    1984-01-01

    The motion of test ions in a magnetosonic plasma wave is considered, and the 'stochasticity threshold' of the wave's amplitude for the onset of chaotic motion is estimated. It is shown that for wave amplitudes above the stochasticity threshold, the evolution of an ion distribution can be described by a diffusion equation with a diffusion coefficient D approximately equal to 1/v. Possible applications of this process to ion acceleration in flares and ion beam thermalization are discussed.

  17. Electrostatic ion cyclotron and ion plasma waves in a symmetric pair-ion plasma cylinder.

    PubMed

    Kono, M; Vranjes, J; Batool, N

    2014-03-14

    Complicated wave behavior observed in the cylindrical pair-ion (fullerene) experiments by Oohara and co-workers are now identified to be low harmonic ion cyclotron waves combined with ion plasma oscillations inherent to kinetic theory. The electrostatic dispersion equation derived is based on an approximation for the current from the exact solutions of the characteristic cylindrical geometry form of the Vlasov plasma equation in a uniform magnetized plasma cylinder surrounded by a larger metal boundary outside a vacuum gap, which thus differs from that in unbounded plasmas. Positive and negative ions, differing only in the sign of their charge, respond to a potential in the same time scale and cooperate to reflect the enhanced kinetic orbital behaviors to the macroscopic propagation characteristics. In addition, the experimental value of the Larmor radius (comparable to the discharge radius but small enough to make the analytic approximation useful) makes higher harmonic ion cyclotron effects both observable and calculable with the appropriate approximation for the kinetic theory. PMID:24679299

  18. Ion Temperature Anisotropies in Helicon Plasmas

    NASA Astrophysics Data System (ADS)

    Balkey, Matthew M.; Boiven, Robert; Keiter, Paul; Kline, John; Scime, Earl; Spangler, Robert

    1999-11-01

    Laser induced fluorescence measurements of the ion temperature in an argon helicon plasma indicate a substantial ion temperature anisotropy (perpendicular over parallel). The perpendicular ion temperature scales linearly with the applied magnetic field strength and also depends on the RF driving frequency and amplitude. We will present measurements of the ion temperature as a function of magnetic field, RF amplitude, and RF frequency. We will also present measurements of the electromagnetic fluctuation spectrum in the source. Preliminary measurements suggest that the RF driving wave may parametrically decay into waves that can couple to the ions, thus providing a path for RF energy directly into the ions.

  19. Ion thruster charge-exchange plasma flow

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr.; Gabriel, S. B.; Kitamura, S.

    1982-01-01

    The electron bombardment ion thruster has been under development for a number of years and during this time, studies of the plasmas produced by the thrusters and their interactions with spacecraft have been evaluated, based on available data. Due to diagnostic techniques used and facility effects, there is uncertainty as to the reliability of data from these early studies. This paper presents data on the flow of the charge-exchange plasma produced just downstream of the thruster's ion optics. The 'end-effect' of a cylindrical Langmuir probe is used to determine ion density and directed ion velocity. Results are compared with data obtained from a retarding potential analyzer-Faraday cup.

  20. Ion plasma wave and its instability in interpenetrating plasmas

    SciTech Connect

    Vranjes, J.; Kono, M.

    2014-04-15

    Some essential features of the ion plasma wave in both kinetic and fluid descriptions are presented. The wave develops at wavelengths shorter than the electron Debye radius. Thermal motion of electrons at this scale is such that they overshoot the electrostatic potential perturbation caused by ion bunching, which consequently propagates as an unshielded wave, completely unaffected by electron dynamics. So in the simplest fluid description, the electrons can be taken as a fixed background. However, in the presence of magnetic field and for the electron gyro-radius shorter than the Debye radius, electrons can participate in the wave and can increase its damping rate. This is determined by the ratio of the electron gyro-radius and the Debye radius. In interpenetrating plasmas (when one plasma drifts through another), the ion plasma wave can easily become growing and this growth rate is quantitatively presented for the case of an argon plasma.

  1. Ion beams from laser-generated plasmas

    NASA Technical Reports Server (NTRS)

    Hughes, R. H.; Anderson, R. J.; Gray, L. G.; Rosenfeld, J. P.; Manka, C. K.; Carruth, M. R.

    1980-01-01

    The paper describes the space-charge-limited beams produced by the plasma blowoffs generated by 20-MW bursts of 1.06-micron radiation from an active Q-switched Nd:YAG laser. Laser power densities near 10 to the 11th/sq cm on solid targets generate thermalized plasma plumes which drift to a 15-kV gridded extraction gap where the ions are extracted, accelerated, and electrostatically focused; the spatially defined ion beams are then magnetically analyzed to determine the charge state content in the beams formed from carbon, aluminum, copper, and lead targets. This technique preserves time-of-flight (TOF) information in the plasma drift region, which permits plasma ion temperatures and mass flow velocities to be determined from the Maxwellian ion curve TOF shapes for the individual charge species.

  2. Plasma neutralization models for intense ion beam transport in plasma

    SciTech Connect

    Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.; O'Rourke, Sean; Lee, Edward P.

    2003-05-01

    Plasma neutralization of an intense ion pulse is of interest for many applications, including plasma lenses, heavy ion fusion, cosmic ray propagation, etc. An analytical electron fluid model has been developed based on the assumption of long charge bunches (l{sub b} >> r{sub b}). Theoretical predictions are compared with the results of calculations utilizing a particle-in-cell (PIC) code. The cold electron fluid results agree well with the PIC simulations for ion beam propagation through a background plasma. The analytical predictions for the degree of ion beam charge and current neutralization also agree well with the results of the numerical simulations. The model predicts very good charge neutralization (>99%) during quasi-steady-state propagation, provided the beam pulse duration {tau}{sub b} is much longer than the electron plasma period 2{pi}/{omega}{sub p}, where {omega}{sub p} = (4{pi}e{sup 2}n{sub p}/m){sup 1/2} is the electron plasma frequency, and n{sub p} is the background plasma density. In the opposite limit, the beam pulse excites large-amplitude plasma waves. The analytical formulas derived in this paper can provide an important benchmark for numerical codes, and provide scaling relations for different beam and plasma parameters.

  3. Surface modification by plasma immersion ion processing

    NASA Astrophysics Data System (ADS)

    Walter, Kevin C.; Lee, Deok H.; He, X. M.; Baker, N. P.; Nastasi, Michael; Munson, C. P.; Scarborough, W. K.; Tuszewski, M.; Wood, B. P.

    1998-09-01

    Los Alamos National Laboratory is actively researching a surface modification technique called plasma immersion ion processing (PIIP). PIIP is the latest innovation of the plasma source ion implantation (PSII) approach to surface modification. Like PSII, PIIP allows the modification of large areas and non-planar surface geometries, however PIIP is primarily a coating deposition technology rather than solely an ion implantation technology. PIIP utilizes a pulsed-bias on a target to extract ions out of plasma for ion implantation and coating deposition. Plasmas can be made by capacitive or inductive radio frequency sources or by initiating a glow discharge during each pulse of high voltage. Plasmas of hydrocarbon gases have been used to deposit adherent diamond-like carbon (DLC) coating son a variety of ferrous and non-ferrous materials. Instead of sputter depositing interlayers to improve the adhesion of DLC, PIIP uses ion implantation to create a graded interface between the metallic substrate and the DLC coating. Demonstrating the scaleability of PIIP, a 3 m2 area has been simultaneously coated with an adherent DLC coating approximately 7 micrometers thick. Plasmas of diborane and acetylene mixtures are being used to develop deposition processes for boron-carbide coatings. Through the use of organometallics and inorganic gases, other coatings are possible. The PIIP deposition conditions, composition and tribological properties of DLC and boron-carbide coatings will be highlighted.

  4. Modulational instability of ion acoustic wave with warm ions in electron-positron-ion plasmas

    SciTech Connect

    Mahmood, S.; Siddiqui, Sadiya; Jehan, Nusrat

    2011-05-15

    The nonlinear amplitude modulation of ion acoustic wave is studied in the presence of warm ions in unmagnetized electron-positron-ion plasmas. The Krylov-Bogoliubov-Mitropolsky (KBM) method is used to derive the nonlinear Schroedinger equation. The dispersive and nonlinear coefficients are obtained which depends on the ion temperature and positron density in electron-positron-ion plasmas. The modulationally stable and unstable regions are studied numerically for a wide range of wave number. It is found that both ion temperature and positron density play a significant role in the formation of bright and dark envelope solitons in electron-positron-ion plasmas.

  5. Ion response in a magnetized flowing plasma

    NASA Astrophysics Data System (ADS)

    Kählert, Hanno; Joost, Jan-Philip; Ludwig, Patrick; Bonitz, Michael

    2014-10-01

    We investigate the influence of an external magnetic field on streaming ions in a dusty plasma. The magnetic field is chosen parallel to an external electric field, which accelerates the ions and gives rise to a non-Maxwellian distribution function. The ion susceptibility is derived from a kinetic equation, where ion-neutral collisions are taken into account via a Bhatnagar-Gross-Krook collision term. The properties of the response function and the angular dependence in the anisotropic plasma are discussed. The modified ion response significantly changes the effective interaction between the dust particles. Here, we use the response function to study the influence of magnetized flowing ions on the dispersion of dust density waves and compare the screened dust potential with calculations based on a shifted Maxwellian distribution. We acknowledge financial support from the DFG via SFB-TR24, projects A7 and A9.

  6. High frequency plasma generator for ion thrusters

    NASA Technical Reports Server (NTRS)

    Goede, H.; Divergilio, W. F.; Fosnight, V. V.; Komatsu, G.

    1984-01-01

    The results of a program to experimentally develop two new types of plasma generators for 30 cm electrostatic argon ion thrusters are presented. The two plasma generating methods selected for this study were by radio frequency induction (RFI), operating at an input power frequency of 1 MHz, and by electron cyclotron heating (ECH) at an operating frequency of 5.0 GHz. Both of these generators utilize multiline cusp permanent magnet configurations for plasma confinement and beam profile optimization. The program goals were to develop a plasma generator possessing the characteristics of high electrical efficiency (low eV/ion) and simplicity of operation while maintaining the reliability and durability of the conventional hollow cathode plasma sources. The RFI plasma generator has achieved minimum discharge losses of 120 eV/ion while the ECH generator has obtained 145 eV/ion, assuming a 90% ion optical transparency of the electrostatic acceleration system. Details of experimental tests with a variety of magnet configurations are presented.

  7. Damping of Plasma Waves in Multi-species Ion Plasmas

    NASA Astrophysics Data System (ADS)

    Anderegg, Francois; Affolter, Matthew; Driscoll, C. Fred

    2015-11-01

    The damping of Langmuir waves in multi-species pure ion plasmas is measured over four decades in temperature covering regimes of Landau, bounce harmonics, and interspecies drag damping. Thermal cyclotron spectroscopy determines the plasma composition. The plasma is predominantly Mg+ resulting from a Mg electrode arc, with roughly 5-30% other ions, typically H3O+ and O2+,arising from ionization and chemical reactions with the residual background gas. The plasma temperature is controlled with laser cooling of the Mg24 ions over the range 10-4 <= T <= 1 eV. For T >= 0 .1 eV, the damping rates agree closely with Landau theory for θ-symmetric standing waves, with discrete wavenumber k1 = π /Lp . At lower temperature 10-2 <= T <= 0 . 1 eV the damping is not fully understood, but is most likely a result of Landau damping on higher kz bounce harmonics produced by the rounded plasma ends. For T <=10-2 eV, damping rates 10 <= γ <=103 s-1 are proportional to the ion-ion collisionality νii ~T - 3 / 2 , consistent with a theory prediction that includes interspecies drag. A decrease in γ is observed at T <=10-3 eV, presumably due to strong magnetization, centrifugal separation of the species, and the collisionality approaching the mode frequencyf1 ~20 kHz. Supported by DOE grant DE-SC0002451.

  8. Key issues in plasma source ion implantation

    SciTech Connect

    Rej, D.J.; Faehl, R.J.; Matossian, J.N.

    1996-09-01

    Plasma source ion implantation (PSII) is a scaleable, non-line-of-sight method for the surface modification of materials. In this paper, we consider three important issues that should be addressed before wide-scale commercialization of PSII: (1) implant conformality; (2) ion sources; and (3) secondary electron emission. To insure uniform implanted dose over complex shapes, the ion sheath thickness must be kept sufficiently small. This criterion places demands on ion sources and pulsed-power supplies. Another limitation to date is the availability of additional ion species beyond B, C, N, and 0. Possible solutions are the use of metal arc vaporization sources and plasma discharges in high-vapor-pressure organometallic precursors. Finally, secondary electron emission presents a potential efficiency and x-ray hazard issue since for many metallurgic applications, the emission coefficient can be as large as 20. Techniques to suppress secondary electron emission are discussed.

  9. Dissipative solitons in pair-ion plasmas

    SciTech Connect

    Ghosh, Samiran; Adak, Ashish Khan, Manoranjan

    2014-01-15

    The effects of ion-neutral collisions on the dynamics of the nonlinear ion acoustic wave in pair-ion plasma are investigated. The standard perturbative approach leads to a Korteweg-de Vries equation with a linear damping term for the dynamics of the finite amplitude wave. The ion-neutral collision induced dissipation is responsible for the linear damping. The analytical solution and numerical simulation reveal that the nonlinear wave propagates in the form of a weakly dissipative compressive solitons. Furthermore, the width of the soliton is proportional to the amplitude of the wave for fixed soliton velocity. Results are discussed in the context of the fullerene pair-ion plasma experiment.

  10. Electrostatic ion waves in non-Maxwellian pair-ion plasmas

    SciTech Connect

    Arshad, Kashif; Mahmood, S.

    2010-12-15

    The electrostatic ion waves are studied for non-Maxwellian or Lorentzian distributed unmagnetized pair-ion plasmas. The Vlasov equation is solved and damping rates are calculated for electrostatic waves in Lorentzian pair-ion plasmas. The damping rates of the electrostatic ion waves are studied for the equal and different ion temperatures of pair-ion species. It is found that the Landau damping rate of the ion plasma wave is increased in Lorentzian plasmas in comparison with Maxwellian pair-ion plasmas. The numerical results are also presented for illustration by taking into account the parameters reported in fullerene pair-ion plasma experiments.

  11. Observations of strong ion-ion correlations in dense plasmas

    SciTech Connect

    Ma, T. Pak, A.; Landen, O. L.; Le Pape, S.; Turnbull, D.; Döppner, T.; Fletcher, L.; Galtier, E.; Hastings, J.; Lee, H. J.; Nagler, B.; Glenzer, S. H.; Chapman, D. A.; Falcone, R. W.; Fortmann, C.; Gericke, D. O.; Gregori, G.; White, T. G.; Neumayer, P.; Vorberger, J.; and others

    2014-05-15

    Using simultaneous spectrally, angularly, and temporally resolved x-ray scattering, we measure the pronounced ion-ion correlation peak in a strongly coupled plasma. Laser-driven shock-compressed aluminum at ∼3× solid density is probed with high-energy photons at 17.9 keV created by molybdenum He-α emission in a laser-driven plasma source. The measured elastic scattering feature shows a well-pronounced correlation peak at a wave vector of k=4Å{sup −1}. The magnitude of this correlation peak cannot be described by standard plasma theories employing a linear screened Coulomb potential. Advanced models, including a strong short-range repulsion due to the inner structure of the aluminum ions are however in good agreement with the scattering data. These studies have demonstrated a new highly accurate diagnostic technique to directly measure the state of compression and the ion-ion correlations. We have since applied this new method in single-shot wave-number resolved S(k) measurements to characterize the physical properties of dense plasmas.

  12. Ion Beam Plasma Interactions in the ASTRAL Helicon Plasma Source.

    NASA Astrophysics Data System (ADS)

    Boivin, R. F.; Kesterson, A.; Kamar, O.; Lin, Y.; Munoz, J.; Wang, X.

    2008-11-01

    A 100 KeV NEC duoplasmatron is used to produce an energetic ion beam (10 KeV < E < 100 KeV). The beam is sent through plasmas produced by the ASTRAL helicon plasma source. The beam current and beam size are measured by a device combining Retarding Field Analyzer (RFA) and Faraday Cup (FC) features. ASTRAL produces bright intense He/Ne/Ar plasmas with the following parameters: ne = 1E11 -- 1E13 cm-3 and Te = 2 - 10 eV, B-field < 1.3 kGauss, rf power <= 2 kWatt. RF compensated Langmuir probes are used to measure Te and ne. Depending on the ion beam energy and the ratio of beam density over plasma density different wave instabilities will be generated within the plasmas. A real-time spectrum analyzer will be used to identify the wave instabilities and their evolution in the plasma. We will present early experimental results together with some preliminary theoretical simulation using 2D and 3D hybrid simulation codes. In these codes, ions are treated as fully kinetic particles while electrons are treated as a fluid. Both species are moving in a self-consistent electromagnetic field.

  13. High Frequency Plasma Generators for Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Divergilio, W. F.; Goede, H.; Fosnight, V. V.

    1981-01-01

    The results of a one year program to experimentally adapt two new types of high frequency plasma generators to Argon ion thrusters and to analytically study a third high frequency source concept are presented. Conventional 30 cm two grid ion extraction was utilized or proposed for all three sources. The two plasma generating methods selected for experimental study were a radio frequency induction (RFI) source, operating at about 1 MHz, and an electron cyclotron heated (ECH) plasma source operating at about 5 GHz. Both sources utilize multi-linecusp permanent magnet configurations for plasma confinement. The plasma characteristics, plasma loading of the rf antenna, and the rf frequency dependence of source efficiency and antenna circuit efficiency are described for the RFI Multi-cusp source. In a series of tests of this source at Lewis Research Center, minimum discharge losses of 220+/-10 eV/ion were obtained with propellant utilization of .45 at a beam current of 3 amperes. Possible improvement modifications are discussed.

  14. Probe measurements in ion-beam plasma

    SciTech Connect

    Dudin, S.V.

    1994-12-31

    The particularities of the electric probe measurements in the ion-beam plasma (IBP) have been investigated. To find the electron density n{sub e} and temperature T{sub c} as well as electron energy distribution it is necessary to separate electron current from full probe current, because ion part of this current is often large enough to mask the electron part. According to collisionless probe theory, radius of ion layer in strongly non-isothermal plasma (as in their case) and consequently the ion current are determined by Child`s law. However, at presence of ion beam with high enough energy {var_epsilon}{sub b} >> e{var_phi}{sub p}, this law is broken. The author has found the dependence of Langmuir probe ion current I{sub i} on probe potential {var_phi}{sub p} at presence of IB. The constant ion density approach was used in cylindrical and spherical geometry of the probe layer. Dependence of ion current founded experimentally accords with Child`s law when the probe is placed outside the beam and linear--within the beam. Application of only the chemical Langmuir probe is insufficient for energoanalysis of IBP electrons because of ion current interference. To solve this problem combination of the techniques of cylindrical probe, large plate probe (5 x 5mm) and two-grid energoanalyzer was used. Design and parameters of the two-grid analyzer are presented. Measuring system is described for determination of electron energy distribution function in low temperature plasma by double differentiation of the electric probe volt-ampere characteristic by modulation method.

  15. Ion heating in a plasma focus

    NASA Technical Reports Server (NTRS)

    Hohl, F.; Gary, S. P.

    1974-01-01

    Ion acceleration and heating in a plasma focus were investigated by the numerical integration of the three-dimensional equations of motion. The electric and magnetic fields given were derived from experimental data. The results obtained show that during the collapse phase of focus formation, ions are efficiently heated to temperatures of several keV. During the phase of rapid current reduction, ions are accelerated to large velocities in the axial direction. The results obtained with the model are in general agreement with experimental results.

  16. Ion Acoustic Waves in Ultracold Neutral Plasmas

    SciTech Connect

    Castro, J.; McQuillen, P.; Killian, T. C.

    2010-08-06

    We photoionize laser-cooled atoms with a laser beam possessing spatially periodic intensity modulations to create ultracold neutral plasmas with controlled density perturbations. Laser-induced fluorescence imaging reveals that the density perturbations oscillate in space and time, and the dispersion relation of the oscillations matches that of ion acoustic waves, which are long-wavelength, electrostatic, density waves.

  17. Ion beam control in laser plasma interaction

    NASA Astrophysics Data System (ADS)

    Kawata, S.; Izumiyama, T.; Sato, D.; Nagashima, T.; Takano, M.; Barada, D.; Gu, Y. J.; Ma, Y. Y.; Kong, Q.; Wang, P. X.; Wang, W. M.

    2016-03-01

    By a two-stage successive acceleration in laser ion acceleration, our 2.5-dimensional particle-in-cell simulations demonstrate a remarkable increase in ion energy by a few hundreds of MeV; the maximum proton energy reaches about 250MeV. The ions are accelerated by the inductive continuous post-acceleration in a laser plasma interaction together with the target normal sheath acceleration and the breakout afterburner mechanism. An intense short-pulse laser generates a strong current by high-energy electrons accelerated, when an intense short- pulse laser illuminates a plasma target. The strong electric current creates a strong magnetic field along the high-energy electron current in the plasma. During the increase phase in the magnetic field strength, the moving longitudinal inductive electric field is induced by the Faraday law, and accelerates the forward-moving ions continously. The multi-stage acceleration provides a unique controllability in the ion energy and its quality.

  18. Plasma uniformity of microwave ion sources

    SciTech Connect

    Tokiguichi, K.; Sakudo, N.; Suzuki, K.; Kanomata, I.

    1980-09-01

    The ion saturation current uniformities of two different type plasma sources, a coaxial and a Lisitano coil type, are investigated using a moveable Langmuir probe. They both operate under off-resonance microwave discharge. H/sub 2/ or Ar is used as the discharge gas. The coaxial source provides better uniformities for ion saturation current, electron temperature, and electon density than the Lisitano coil, independent of the discharge gas species. The ion saturation current with the coaxial source is uniform within approx.15% inside a 40-mm-diam circle for a 0.17 Pa H/sub 2/ discharge. However, with the Lisitano coil, uniformity is limited to a 20-mm-diam circle. Furthermore, the Lisitano coil easily suffers from heat distortion because of difficulties in realizing a cooled system. It is also experimentally confirmed that the coaxial-type source is more appropriate for obtaining high density plasma under continuous operation.

  19. Phase-mixing of ion plasma modes in pair-ion plasmas

    SciTech Connect

    Pramanik, Sourav; Chakrabarti, Nikhil

    2015-05-15

    Nonlinear interaction between two electrostatic normal modes of a warm pair-ion plasma, viz., ion plasma mode (Langmuir mode) and ion acoustic mode has been analyzed by employing a perturbation technique. It is shown that a gradual loss of phase coherence in the excited Langmuir wave dynamics (phase-mixing) occurs in such a plasma, leading to wave-breaking at arbitrarily low wave amplitudes. Nonlinear results provide an approximate expression for the phase-mixing time which is found to increase with the increase of the ratio of acoustic frequency to Langmuir frequency. The results of our investigation are expected to be relevant to the laboratory produced paired fullerene-ion plasmas.

  20. Kinetic instability of ion acoustic mode in permeating plasmas

    SciTech Connect

    Vranjes, J.; Poedts, S.; Ehsan, Zahida

    2009-07-15

    In plasmas with electron drift (current) relative to static ions, the ion acoustic wave is subject to the kinetic instability which takes place if the directed electron speed exceeds the ion acoustic speed. The instability threshold becomes different in the case of one quasineutral electron-ion plasma propagating through another static quasineutral (target) plasma. The threshold velocity of the propagating plasma may be well below the ion acoustic speed of the static plasma. Such a currentless instability may frequently be expected in space and astrophysical plasmas.

  1. Plasma focus ion beam-scaling laws

    NASA Astrophysics Data System (ADS)

    Saw, S. H.

    2014-08-01

    Measurements on plasma focus ion beams include various advanced techniques producing a variety of data which has yet to produce benchmark numbers. Recent numerical experiments using an extended version of the Lee Code has produced reference numbers and scaling trends for number and energy fluence of deuteron beams as functions of stored energy E0. At the pinch exit the ion number fluence (ions m-2) and energy fluence (J m-2) computed as 2.4-7.8×1020 and 2.2-33×106 respectively were found to be independent of E0 from 0.4 - 486 kJ. This work was extended to the ion beams for various gases. The results show that, for a given plasma focus, the fluence, flux, ion number and ion current decrease from the lightest to the heaviest gas except for trend-breaking higher values for Ar fluence and flux. The energy fluence, energy flux, power flow and damage factors are relatively constant from H2 to N2 but increase for Ne, Ar, Kr and Xe due to radiative cooling and collapse effects. This paper reviews this work and in a concluding section attempts to put the accumulating large amounts of data into the form of a scaling law of beam energy Ebeam versus storage energy E0 taking the form for deuteron as: {Ebeam} = 18.2{E}01.23; where Ebeam is in J and E0 is in kJ. It is hoped that the establishment of such scaling laws places on a firm footing the reference quantitative ideas for plasma focus ion beams.

  2. Electron-less negative ion extraction from ion-ion plasmas

    SciTech Connect

    Rafalskyi, Dmytro; Aanesland, Ane

    2015-03-09

    This paper presents experimental results showing that continuous negative ion extraction, without co-extracted electrons, is possible from highly electronegative SF{sub 6} ion-ion plasma at low gas pressure (1 mTorr). The ratio between the negative ion and electron densities is more than 3000 in the vicinity of the two-grid extraction and acceleration system. The measurements are conducted by both magnetized and non-magnetized energy analyzers attached to the external grid. With these two analyzers, we show that the extracted negative ion flux is almost electron-free and has the same magnitude as the positive ion flux extracted and accelerated when the grids are biased oppositely. The results presented here can be used for validation of numerical and analytical models of ion extraction from ion-ion plasma.

  3. Sputtering erosion in ion and plasma thrusters

    NASA Astrophysics Data System (ADS)

    Ray, Pradosh K.

    1995-08-01

    An experimental set-up to measure low-energy (below 1 keV) sputtering of materials is described. The materials to be bombarded represent ion thruster components as well as insulators used in the stationary plasma thruster. The sputtering takes place in a 9 inch diameter spherical vacuum chamber. Ions of argon, krypton and xenon are used to bombard the target materials. The sputtered neutral atoms are detected by a secondary neutral mass spectrometer (SNMS). Samples of copper, nickel, aluminum, silver and molybdenum are being sputtered initially to calibrate the spectrometer. The base pressure of the chamber is approximately 2 x 10(exp -9) Torr. the primary ion beam is generated by an ion gun which is capable of delivering ion currents in the range of 20 to 500 nA. The ion beam can be focused to a size approximately 1 mm in diameter. The mass spectrometer is positioned 10 mm from the target and at 90 deg angle to the primary ion beam direction. The ion beam impinges on the target at 45 deg. For sputtering of insulators, charge neutralization is performed by flooding the sample with electrons generated from an electron gun. Preliminary sputtering results, methods of calculating the instrument response function of the spectrometer and the relative sensitivity factors of the sputtered elements will be discussed.

  4. Sputtering erosion in ion and plasma thrusters

    NASA Technical Reports Server (NTRS)

    Ray, Pradosh K.

    1995-01-01

    An experimental set-up to measure low-energy (below 1 keV) sputtering of materials is described. The materials to be bombarded represent ion thruster components as well as insulators used in the stationary plasma thruster. The sputtering takes place in a 9 inch diameter spherical vacuum chamber. Ions of argon, krypton and xenon are used to bombard the target materials. The sputtered neutral atoms are detected by a secondary neutral mass spectrometer (SNMS). Samples of copper, nickel, aluminum, silver and molybdenum are being sputtered initially to calibrate the spectrometer. The base pressure of the chamber is approximately 2 x 10(exp -9) Torr. the primary ion beam is generated by an ion gun which is capable of delivering ion currents in the range of 20 to 500 nA. The ion beam can be focused to a size approximately 1 mm in diameter. The mass spectrometer is positioned 10 mm from the target and at 90 deg angle to the primary ion beam direction. The ion beam impinges on the target at 45 deg. For sputtering of insulators, charge neutralization is performed by flooding the sample with electrons generated from an electron gun. Preliminary sputtering results, methods of calculating the instrument response function of the spectrometer and the relative sensitivity factors of the sputtered elements will be discussed.

  5. Carbon Multicharged Ion Generation from Laser Plasma

    NASA Astrophysics Data System (ADS)

    Balki, Oguzhan; Elsayed-Ali, Hani E.

    2014-10-01

    Multicharged ions (MCI) have potential uses in different areas such as microelectronics and medical physics. Carbon MCI therapy for cancer treatment is considered due to its localized energy delivery to hard-to-reach tumors at a minimal damage to surrounding tissues. We use a Q-switched Nd:YAG laser with 40 ns pulse width operated at 1064 nm to ablate a graphite target in ultrahigh vacuum. A time-of-flight energy analyzer followed by a Faraday cup is used to characterize the carbon MCI extracted from the laser plasma. The MCI charge state and energy distribution are obtained. With increase in the laser fluence, the ion charge states and ion energy are increased. Carbon MCI up to C+9 are observed along with carbon clusters. When an acceleration voltage is applied between the carbon target and a grounded mesh, ion extraction is observed to increase with the applied voltage. National Science Foundation.

  6. Plasma ion composition measurements for Europa

    NASA Astrophysics Data System (ADS)

    Sittler, E. C.; Cooper, J. F.; Hartle, R. E.; Paterson, W. R.; Christian, E. R.; Lipatov, A. S.; Mahaffy, P. R.; Paschalidis, N. P.; Coplan, M. A.; Cassidy, T. A.; Richardson, J. D.; Fegley, B.; Andre, N.

    2013-11-01

    Jupiter magnetospheric interactions and surface composition, both important to subsurface ocean detection for the Galilean icy moons Europa, Ganymede, and Callisto, can be measured using plasma ion mass spectrometry on either an orbiting spacecraft or one designed for multiple flybys of these moons. Detection of emergent oceanic materials at the Europa surface is more likely than at Ganymede and Callisto. A key challenge is to resolve potential intrinsic Europan materials from the space weathering patina of iogenic species implanted onto the sensible surface by magnetospheric interactions. Species-resolved measurements of pickup ion currents are also critical to extraction of oceanic induced magnetic fields from magnetospheric interaction background dominated by these currents. In general the chemical astrobiological potential of Europa should be determined through the combination of surface, ionospheric, and pickup ion composition measurements. The requisite Ion Mass Spectrometer (IMS) for these measurements would need to work in the high radiation environment of Jupiter's magnetosphere between the orbits of Europa and Ganymede, and beyond. A 3D hybrid model of the moon-magnetosphere interaction is also needed to construct a global model of the electric and magnetic fields, and the plasma environment, around Europa. Europa's ionosphere is probably usually dominated by hot pickup ions with 100-1000 eV temperatures, excursions to a "classical" cold ionosphere likely being infrequent. A field aligned ionospheric wind driven by the electron polarization electric field should arise and be measurable.

  7. Extraction and Acceleration of Ions from an Ion-Ion Plasma

    SciTech Connect

    Popelier, Lara; Aanesland, Ane; Chabert, Pascal

    2011-09-26

    Extraction and acceleration of positive and negative ions from a strong electronegative plasma and from an ion-ion plasma is investigated in the PEGASES thruster, working with SF{sub 6}. The plasma is generated in a cylindrical quartz tube terminated by metallic endplates. The electrons are confined by a static magnetic field along the axis of the cylinder. The electron mobility along the field is high and the electrons are determining the sheaths in front of the endplates. The core plasma potential can therefore be controlled by the bias applied to the endplates. An ion-ion plasma forms at the periphery as a result of electron confinement and ions can freely diffuse along the perpendicular direction or extraction axis. Langmuir probe and RFEA measurements are carried out along this axis. The measured ion energy distributions shows a single peak centered around a potential consistent with the plasma potential and the peak position could be controlled with a positive voltage applied to the endplates. When the endplates are biased negatively, the plasma potential saturates and remained close to 15 V. A beam of negatively charged particles can be observed under certain conditions when the endplates were biased negatively.

  8. Influence of Reverse Expansion of Laser Plasma on Ions Acceleration

    NASA Astrophysics Data System (ADS)

    Sysoev, Alexander A.; Gracheva, O. I.; Karpov, A. V.

    Effect of laser plasma reverse extension is described in this paper. Influence of the effect on ion acceleration in a laser ion source is researched. This effect leads to sedimentation of ions on metal target, which significantly impacts acceleration time of other ions. In this case, the ions also tend to travel major part of their path with constant velocity. This allows one to consider movement of the ions in plasma drift space, when optimizing time focusing ability of the TOF analyzer.

  9. Fundamental plasma emission involving ion sound waves

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.

    1987-01-01

    The theory for fundamental plasma emission by the three-wave processes L + or - S to T (where L, S and T denote Langmuir, ion sound and transverse waves, respectively) is developed. Kinematic constraints on the characteristics and growth lengths of waves participating in the wave processes are identified. In addition the rates, path-integrated wave temperatures, and limits on the brightness temperature of the radiation are derived.

  10. A commercial plasma source ion implantation facility

    SciTech Connect

    Scheuer, J.T.; Adler, R.A.; Horne, W.G.

    1996-10-01

    Empire Hard Chrome has recently installed commercial plasma source ion implantation (PSU) equipment built by North Star Research Corporation. Los Alamos National Laboratory has assisted in this commercialization effort via two Cooperative Research and Development Agreements to develop the plasma source for the equipment and to identify low-risk commercial PSII applications. The PSII system consists of a 1 m x 1 m cylindrical vacuum chamber with a rf plasma source. The pulse modulator is capable of delivering pulses kV and peak currents of 300 A at maximum repetition rate of 400 Hz. thyratron tube to switch a pulse forming network which is tailored to match the dynamic PSII load. In this paper we discuss the PSII system, process facility, and early commercial applications to production tooling.

  11. Negative ion extraction from hydrogen plasma bulk

    SciTech Connect

    Oudini, N.; Taccogna, F.; Minelli, P.

    2013-10-15

    A two-dimensional particle-in-cell/Monte Carlo collision model has been developed and used to study low electronegative magnetized hydrogen plasma. A configuration characterized by four electrodes is used: the left electrode is biased at V{sub l} = −100 V, the right electrode is grounded, while the upper and lower transversal electrodes are biased at an intermediate voltage V{sub ud} between 0 and −100 V. A constant and homogeneous magnetic field is applied parallel to the lateral (left/right) electrodes. It is shown that in the magnetized case, the bulk plasma potential is close to the transversal electrodes bias inducing then a reversed sheath in front of the right electrode. The potential drop within the reversed sheath is controlled by the transversal electrodes bias allowing extraction of negative ions with a significant reduction of co-extracted electron current. Furthermore, introducing plasma electrodes, between the transversal electrodes and the right electrode, biased with a voltage just above the plasma bulk potential, increases the negative ion extracted current and decreases significantly the co-extracted electron current. The physical mechanism on basis of this phenomenon has been discussed.

  12. Plasma uniformity of microwave ion sources

    NASA Astrophysics Data System (ADS)

    Tokiguichi, K.; Sakudo, N.; Suzuki, K.; Kanomata, I.

    1980-10-01

    The ion saturation current uniformities of two different type plasma sources, a coaxial and a Lisitano coil type, are investigated using a moveable Langmuir probe. They both operate under off-resonance microwave discharge; H2 or Ar is used as the discharge gas. The coaxial source provides better uniformities for ion saturation current, electron temperature, and electron density than the Lisitano coil, independent of the discharge gas species. The ion saturation current with the coaxial source is uniform within about 15% inside a 40-mm-diam circle for a 0.17 Pa H2 discharge. However, with the Lisitano coil uniformity is limited to a 20-mm-diam circle and the coil is subject to heat distortion because of difficulties in realizing a cooled system

  13. Negative ion source with hollow cathode discharge plasma

    DOEpatents

    Hershcovitch, Ady; Prelec, Krsto

    1983-01-01

    A negative ion source of the type where negative ions are formed by bombarding a low-work-function surface with positive ions and neutral particles from a plasma, wherein a highly ionized plasma is injected into an anode space containing the low-work-function surface. The plasma is formed by hollow cathode discharge and injected into the anode space along the magnetic field lines. Preferably, the negative ion source is of the magnetron type.

  14. Negative ion source with hollow cathode discharge plasma

    DOEpatents

    Hershcovitch, A.; Prelec, K.

    1980-12-12

    A negative ion source of the type where negative ions are formed by bombarding a low-work-function surface with positive ions and neutral particles from a plasma, wherein a highly ionized plasma is injected into an anode space containing the low-work-function surface is described. The plasma is formed by hollow cathode discharge and injected into the anode space along the magnetic field lines. Preferably, the negative ion source is of the magnetron type.

  15. Plasma ion sources and ion beam technology inmicrofabrications

    SciTech Connect

    Ji, Lili

    2007-01-01

    For over decades, focused ion beam (FIB) has been playing a very important role in microscale technology and research, among which, semiconductor microfabrication is one of its biggest application area. As the dimensions of IC devices are scaled down, it has shown the need for new ion beam tools and new approaches to the fabrication of small-scale devices. In the meanwhile, nanotechnology has also deeply involved in material science research and bioresearch in recent years. The conventional FIB systems which utilize liquid gallium ion sources to achieve nanometer scale resolution can no longer meet the various requirements raised from such a wide application area such as low contamination, high throughput and so on. The drive towards controlling materials properties at nanometer length scales relies on the availability of efficient tools. In this thesis, three novel ion beam tools have been developed and investigated as the alternatives for the conventional FIB systems in some particular applications. An integrated focused ion beam (FIB) and scanning electron microscope (SEM) system has been developed for direct doping or surface modification. This new instrument employs a mini-RF driven plasma source to generate focused ion beam with various ion species, a FEI two-lens electron (2LE) column for SEM imaging, and a five-axis manipulator system for sample positioning. An all-electrostatic two-lens column has been designed to focus the ion beam extracted from the source. Based on the Munro ion optics simulation, beam spot sizes as small as 100 nm can be achieved at beam energies between 5 to 35 keV if a 5 μm-diameter extraction aperture is used. Smaller beam spot sizes can be obtained with smaller apertures at sacrifice of some beam current. The FEI 2LE column, which utilizes Schottky emission, electrostatic focusing optics, and stacked-disk column construction, can provide high-resolution (as small as 20 nm) imaging capability, with fairly long working distance (25

  16. Ion-plasma gun for ion-milling machine

    DOEpatents

    Kaminsky, Manfred S.; Campana, Jr., Thomas J.

    1976-01-01

    An ion gun includes an elongated electrode with a hollow end portion closed by a perforated end plate. The end plate is positioned parallel to a perforated flat electrode of opposite electrical polarity. An insulated sleeve encompasses the elongated electrode and extends outwardly from the perforated end towards the flat electrode. The sleeve length is separated into two portions of different materials. The first is formed of a high-temperature material that extends over the hollow portion of the elongated electrode where the arc is initiated by a point source electrode. The second sleeve portion extending over the remainder of the elongated electrode is of a resilient material for enhanced seal-forming ability and retention of plasma gas. Perforations are arranged in the flat electrode in a mutually opposing triangular pattern to project a plasma beam having a generally flat current profile towards a target requiring precision milling.

  17. Plasma immersion ion implantation for reducing metal ion release

    SciTech Connect

    Diaz, C.; Garcia, J. A.; Maendl, S.; Pereiro, R.; Fernandez, B.; Rodriguez, R. J.

    2012-11-06

    Plasma immersion ion implantation of Nitrogen and Oxygen on CoCrMo alloys was carried out to improve the tribological and corrosion behaviors of these biomedical alloys. In order to optimize the implantation results we were carried experiments at different temperatures. Tribocorrosion tests in bovine serum were used to measure Co, Cr and Mo releasing by using Inductively Coupled Plasma Mass Spectrometry analysis after tests. Also, X-ray Diffraction analysis were employed in order to explain any obtained difference in wear rate and corrosion tests. Wear tests reveals important decreases in rate of more than one order of magnitude for the best treatment. Moreover decreases in metal release were found for all the implanted samples, preserving the same corrosion resistance of the unimplanted samples. Finally this paper gathers an analysis, in terms of implantation parameters and achieved properties for industrial implementation of these treatments.

  18. A relativistic solitary wave in electron-positron ion plasma

    SciTech Connect

    Berezhiani, V.I.; Mahajan, S.M. |

    1994-03-01

    The nonlinear propagation of circularly polarized electromagnetic (CPEM) waves with relativistically strong amplitude in an unmagnetized cold electron-positron ion plasma is investigated. The possibility of finding soliton solutions in such a plasma is explored. In one- and two-dimensions it is shown that the presence of a small fraction of massive ions in the plasma leads to stable localized solutions.

  19. A double-plasma source of continuous bipolar ion-ion beam

    SciTech Connect

    Dudin, S. V.; Rafalskyi, D. V.

    2013-01-21

    A double-plasma source capable of the generation of a continuous bipolar ion-ion beam is described. The quasi-neutral ion-ion flow to an extraction electrode is formed in the system containing primary inductively coupled plasma separated from a secondary plasma by an electrostatic grid-type filter. The total current of each ion species to the 250 mm diameter extraction electrode is about 80 mA; the electron current does not exceed 30% of the ion current. Method of positive/negative ion current ratio control is proposed, allowing the ion currents ratio variation in wide range.

  20. Compressive and rarefactive ion acoustic solitons in a magnetized two-ion component plasma

    NASA Astrophysics Data System (ADS)

    Ur-Rehman, Hafeez; Mahmood, S.; Aman-ur-Rehman

    2014-10-01

    The formation of compressive (hump) and rarefactive (dip) ion acoustic solitons is studied in magnetized O+- H+- e and O+- H-- e plasmas. The hydrodynamics equations are described for cold heavy (oxygen) ions, warm light (hydrogen) ions and isothermal Boltzmann distributed electrons along with Poisson equations in the presence of a magnetic field. The reductive perturbation method is used to derive the nonlinear Zakharov-Kuznetsov (ZK) equation for an ion acoustic wave in magnetized two-ion component plasma. It is found that two modes of ion acoustic waves with fast and slow speeds can propagate in the linear limit in such a plasma. It is noticed that, in the case of positively charged light hydrogen ions O+- H+- e plasmas, the slow ion acoustic wave solitons formed both potential hump as well as dip structures, while fast ion acoustic wave solitons give only hump structures. However in the case of negatively charged light hydrogen ions O+- H-- e plasmas, the slow ion acoustic wave solitons formed potential hump structures while fast ion acoustic wave solitons produce dip structures. The variations in the amplitude and width of the nonlinear slow and fast ion acoustic wave structures with density, temperature of light ions and magnetic field intensity are obtained in magnetized two-ion component plasmas. The magnetic field has its effect only on the width of the nonlinear ion acoustic wave structures in two-ion component plasmas.

  1. Magnetic plasma confinement for laser ion source.

    PubMed

    Okamura, M; Adeyemi, A; Kanesue, T; Tamura, J; Kondo, K; Dabrowski, R

    2010-02-01

    A laser ion source (LIS) can easily provide a high current beam. However, it has been difficult to obtain a longer beam pulse while keeping a high current. On occasion, longer beam pulses are required by certain applications. For example, more than 10 micros of beam pulse is required for injecting highly charged beams to a large sized synchrotron. To extend beam pulse width, a solenoid field was applied at the drift space of the LIS at Brookhaven National Laboratory. The solenoid field suppressed the diverging angle of the expanding plasma and the beam pulse was widened. Also, it was observed that the plasma state was conserved after passing through a few hundred gauss of the 480 mm length solenoid field. PMID:20192365

  2. Influence of ion streaming instabilities on transport near plasma boundaries

    NASA Astrophysics Data System (ADS)

    Baalrud, Scott D.

    2016-04-01

    Plasma boundary layers are susceptible to electrostatic instabilities driven by ion flows in presheaths and, when present, these instabilities can influence transport. In plasmas with a single species of positive ion, ion-acoustic instabilities are expected under conditions of low pressure and large electron-to-ion temperature ratio ({{T}e}/{{T}i}\\gg 1 ). In plasmas with two species of positive ions, ion-ion two-stream instabilities can also be excited. The stability phase-space is characterized using the Penrose criterion and approximate linear dispersion relations. Predictions for how these instabilities affect ion and electron transport in presheaths, including rapid thermalization due to instability-enhanced collisions and an instability-enhanced ion-ion friction force, are briefly reviewed. Recent experimental tests of these predictions are discussed along with research needs required for further validation. The calculated stability boundaries provide a guide to determine the experimental conditions at which these effects can be expected.

  3. Cold ions in the hot plasma sheet of Earth's magnetotail.

    PubMed

    Seki, Kanako; Hirahara, Masafumi; Hoshino, Masahiro; Terasawa, Toshio; Elphic, Richard C; Saito, Yoshifumi; Mukai, Toshifumi; Hayakawa, Hajime; Kojima, Hirotsugu; Matsumoto, Hiroshi

    2003-04-10

    Most visible matter in the Universe exists as plasma. How this plasma is heated, and especially how the initial non-equilibrium plasma distributions relax to thermal equilibrium (as predicted by Maxwell-Boltzman statistics), is a fundamental question in studies of astrophysical and laboratory plasmas. Astrophysical plasmas are often so tenuous that binary collisions can be ignored, and it is not clear how thermal equilibrium develops for these 'collisionless' plasmas. One example of a collisionless plasma is the Earth's plasma sheet, where thermalized hot plasma with ion temperatures of about 5 x 10(7) K has been observed. Here we report direct observations of a plasma distribution function during a solar eclipse, revealing cold ions in the Earth's plasma sheet in coexistence with thermalized hot ions. This cold component cannot be detected by plasma sensors on satellites that are positively charged in sunlight, but our observations in the Earth's shadow show that the density of the cold ions is comparable to that of hot ions. This high density is difficult to explain within existing theories, as it requires a mechanism that permits half of the source plasma to remain cold upon entry into the hot turbulent plasma sheet. PMID:12686993

  4. Origin of 'energetic' ions from laser-produced plasmas.

    NASA Technical Reports Server (NTRS)

    Ehler, W.; Linlor, W. I.

    1973-01-01

    A fast-ion current peak, measured with an ion collector placed in the path of an expanding laser-produced plasma, was identified as carbon, nitrogen, and oxygen contaminants which originated from a tungsten target surface.

  5. Ion acoustic shocks in magneto rotating Lorentzian plasmas

    NASA Astrophysics Data System (ADS)

    Hussain, S.; Akhtar, N.; Hasnain, H.

    2014-12-01

    Ion acoustic shock structures in magnetized homogeneous dissipative Lorentzian plasma under the effects of Coriolis force are investigated. The dissipation in the plasma system is introduced via dynamic viscosity of inertial ions. The electrons are following the kappa distribution function. Korteweg-de Vries Burger (KdVB) equation is derived by using reductive perturbation technique. It is shown that spectral index, magnetic field, kinematic viscosity of ions, rotational frequency, and effective frequency have significant impact on the propagation characteristic of ion acoustic shocks in such plasma system. The numerical solution of KdVB equation is also discussed and transition from oscillatory profile to monotonic shock for different plasma parameters is investigated.

  6. Ion acoustic shocks in magneto rotating Lorentzian plasmas

    SciTech Connect

    Hussain, S.; Akhtar, N.; Hasnain, H.

    2014-12-15

    Ion acoustic shock structures in magnetized homogeneous dissipative Lorentzian plasma under the effects of Coriolis force are investigated. The dissipation in the plasma system is introduced via dynamic viscosity of inertial ions. The electrons are following the kappa distribution function. Korteweg-de Vries Burger (KdVB) equation is derived by using reductive perturbation technique. It is shown that spectral index, magnetic field, kinematic viscosity of ions, rotational frequency, and effective frequency have significant impact on the propagation characteristic of ion acoustic shocks in such plasma system. The numerical solution of KdVB equation is also discussed and transition from oscillatory profile to monotonic shock for different plasma parameters is investigated.

  7. Landau damping of ion acoustic wave in Lorentzian multi-ion plasmas

    SciTech Connect

    Arshad, Kashif; Mahmood, S.; Mirza, Arshad M.

    2011-09-15

    The Landau damping rates of ion acoustic wave are studied by using Vlasov-Poisson model for unmagnetized Lorentzian or kappa distributed plasma containing electrons, positively and negatively charged ions. It is found that the damping rate of ion acoustic wave is increased with the decrease of kappa (i.e., the spectral index of Lorentzian distribution) value. The damping rates of the electrostatic wave in multi-ion component plasmas are discussed in detail which depends on electron to ion temperature ratio and ions masses and density ratios. The numerical results are also shown by choosing some typical experimental parameters of multi-ion plasmas.

  8. Shunting arc plasma source for pure carbon ion beama)

    NASA Astrophysics Data System (ADS)

    Koguchi, H.; Sakakita, H.; Kiyama, S.; Shimada, T.; Sato, Y.; Hirano, Y.

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA/mm2 at the peak of the pulse.

  9. Shunting arc plasma source for pure carbon ion beam.

    PubMed

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA∕mm(2) at the peak of the pulse. PMID:22380206

  10. Ion optical effects in a low pressure rf plasma

    SciTech Connect

    Oechsner, Hans; Paulus, Hubert

    2013-11-15

    Ion optical effects in low pressure gas discharges are introduced as a novel input into low pressure plasma technology. They are based on appropriate geometrical plasma confinements which enable a control of the shape of internal density and potential distributions and, hence, the ion motion in the plasma bulk. Such effects are exemplified for an electron cyclotron wave resonance plasma in Ar at 1–5 × 10{sup −3} millibars. The geometry of the plasma chamber is modified by a conical and a cylindrical insert. Computer simulations display spherical plasma density contours to be formed around the conical confinement. This effects an increase of the ratio of the ion currents into the conical and the cylindrical inserts which depends on the fourth power of the plasma electron temperature. A quantitative understanding of this behavior is presented. As another essential result, the shape of the internal plasma contours is found to be independent of the pressure controlled plasma parameters.

  11. Radiative transitions of excited ions moving slowly in plasmas

    SciTech Connect

    Hu, Hongwei Chen, Wencong; Li, Peng; Zhao, Yongtao; Zhou, Xianming; Li, Zhen; Li, Fuli; Dong, Chenzhong

    2014-12-15

    The electric dipole transitions of excited ions moving slowly in plasmas are studied. The results show that some transitions forbidden for excited ions at rest become allowed for moving excited ions. The transition rates change with varying speed of the ions. Forbidden transitions are strongly influenced by the speed, non-forbidden transitions are weakly influenced.

  12. Nondiffusive transport regimes for suprathermal ions in turbulent plasmas.

    PubMed

    Bovet, A; Fasoli, A; Ricci, P; Furno, I; Gustafson, K

    2015-04-01

    The understanding of the transport of suprathermal ions in the presence of turbulence is important for fusion plasmas in the burning regime that will characterize reactors, and for space plasmas to understand the physics of particle acceleration. Here, three-dimensional measurements of a suprathermal ion beam in the toroidal plasma device TORPEX are presented. These measurements demonstrate, in a turbulent plasma, the existence of subdiffusive and superdiffusive transport of suprathermal ions, depending on their energy. This result stems from the unprecedented combination of uniquely resolved measurements and first-principles numerical simulations that reveal the mechanisms responsible for the nondiffusive transport. The transport regime is determined by the interaction of the suprathermal ion orbits with the turbulent plasma dynamics, and is strongly affected by the ratio of the suprathermal ion energy to the background plasma temperature. PMID:25974432

  13. Solitary waves in asymmetric electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Lu, Ding; Li, Zi-Liang; Xie, Bai-Song

    2015-10-01

    > By solving the coupled equations of the electromagnetic field and electrostatic potential, we investigate solitary waves in an asymmetric electron-positron plasma and/or electron-positron-ion plasmas with delicate features. It is found that the solutions of the coupled equations can capture multipeak structures of solitary waves in the case of cold plasma, which are left out by using the long-wavelength approximation. By considering the effect of ion motion with respect to non-relativistic and ultra-relativistic temperature plasmas, we find that the ions' mobility can lead to larger-amplitude solitary waves; especially, this becomes more obvious for a high-temperature plasma. The effects of asymmetric temperature between electrons and positrons and the ion fraction on the solitary waves are also studied and presented. It is shown that the amplitudes of solitary waves decrease with positron temperature in asymmetric temperature electron-positron plasmas and decrease also with ion concentration.

  14. Singular waves in a magnetized pair-ion plasma

    SciTech Connect

    Samanta, Sukanta; Misra, Amar P.

    2009-07-15

    The existence of singular waves along the boundary of a magnetized pair-ion plasma is proved for both plasma-metal and plasma-vacuum interfaces. Such waves are shown to propagate at the points of intersection of the complex-zone boundary and the surface wave dispersion curve in a weakly magnetized plasma. The results could be relevant for negative ion plasmas in the laboratory and space as well as for the modeling of a plasma sustained by a traveling surface wave.

  15. Measurement of the ion drag force in a collisionless plasma with strong ion-grain coupling

    SciTech Connect

    Nosenko, V.; Fisher, R.; Merlino, R.; Khrapak, S.; Morfill, G.; Avinash, K.

    2007-10-15

    The ion drag force acting on dust grains was measured experimentally in a low-pressure Ar plasma in the regime of strong ion-grain coupling. Argon ions were drifting in the axial ambipolar electric field naturally present in a hot-filament dc discharge plasma. Following the method of Hirt et al. [Phys. Plasmas 11, 5690 (2004)], hollow glass microspheres were dropped into the plasma and allowed to fall due to gravity. The ion drag force was derived from the particle trajectory deflection from the vertical direction. The result is in reasonable agreement with a theoretical model that takes strong ion-grain coupling into account.

  16. Ion acoustic shock wave in collisional equal mass plasma

    SciTech Connect

    Adak, Ashish; Ghosh, Samiran; Chakrabarti, Nikhil

    2015-10-15

    The effect of ion-ion collision on the dynamics of nonlinear ion acoustic wave in an unmagnetized pair-ion plasma has been investigated. The two-fluid model has been used to describe the dynamics of both positive and negative ions with equal masses. It is well known that in the dynamics of the weakly nonlinear wave, the viscosity mediates wave dissipation in presence of weak nonlinearity and dispersion. This dissipation is responsible for the shock structures in pair-ion plasma. Here, it has been shown that the ion-ion collision in presence of collective phenomena mediated by the plasma current is the source of dissipation that causes the Burgers' term which is responsible for the shock structures in equal mass pair-ion plasma. The dynamics of the weakly nonlinear wave is governed by the Korteweg-de Vries Burgers equation. The analytical and numerical investigations revealed that the ion acoustic wave exhibits both oscillatory and monotonic shock structures depending on the frequency of ion-ion collision parameter. The results have been discussed in the context of the fullerene pair-ion plasma experiments.

  17. Ion acoustic shock wave in collisional equal mass plasma

    NASA Astrophysics Data System (ADS)

    Adak, Ashish; Ghosh, Samiran; Chakrabarti, Nikhil

    2015-10-01

    The effect of ion-ion collision on the dynamics of nonlinear ion acoustic wave in an unmagnetized pair-ion plasma has been investigated. The two-fluid model has been used to describe the dynamics of both positive and negative ions with equal masses. It is well known that in the dynamics of the weakly nonlinear wave, the viscosity mediates wave dissipation in presence of weak nonlinearity and dispersion. This dissipation is responsible for the shock structures in pair-ion plasma. Here, it has been shown that the ion-ion collision in presence of collective phenomena mediated by the plasma current is the source of dissipation that causes the Burgers' term which is responsible for the shock structures in equal mass pair-ion plasma. The dynamics of the weakly nonlinear wave is governed by the Korteweg-de Vries Burgers equation. The analytical and numerical investigations revealed that the ion acoustic wave exhibits both oscillatory and monotonic shock structures depending on the frequency of ion-ion collision parameter. The results have been discussed in the context of the fullerene pair-ion plasma experiments.

  18. Expansion of a multi-ion plasma into a vacuum

    NASA Technical Reports Server (NTRS)

    Singh, N.; Schunk, R. W.

    1983-01-01

    A numerical investigation of the expansion of a plasma with two ion species into a vacuum is presented. A set of Vlasov equations describe the ion behavior and the electrostatic potential is modelled by the Poisson equation. Electrons are assumed to follow Boltzmann's law. A plasma with H(+) and O(+) ions is considered, with the ions forming various combinations. Hydrodynamic calculations are performed for ions and electrons at equal temperatures, and for the presence of hot electrons. Self-similarity is shown to be valid where charge neutrality is dominant. An absence of significant quantities of ion-acoustic oscillations were observed.

  19. Properties of ion-particle interaction and the ion drag force in complex (dusty) plasmas

    SciTech Connect

    Khrapak, Sergey A.

    2009-11-10

    In this paper a concise overview of recent results concerning the properties of ion-particle interaction and the ion drag force in complex (dusty) plasmas is presented. Two main theoretical approaches to calculate the ion drag force--binary collision and linear plasma response formalisms are discussed. When possible, theoretical results are compared with the results from experiments and numerical simulations.

  20. Hydrodynamic description of an unmagnetized plasma with multiple ion species. II. Two and three ion species plasmas

    NASA Astrophysics Data System (ADS)

    Simakov, Andrei N.; Molvig, Kim

    2016-03-01

    Paper I [A. N. Simakov and K. Molvig, Phys. Plasmas 23, 032115 (2016)] obtained a fluid description for an unmagnetized collisional plasma with multiple ion species. To evaluate collisional plasma transport fluxes, required for such a description, two linear systems of equations need to be solved to obtain corresponding transport coefficients. In general, this should be done numerically. Herein, the general formalism is used to obtain analytical expressions for such fluxes for several specific cases of interest: a deuterium-tritium plasma; a plasma containing two ion species with strongly disparate masses, which agrees with previously obtained results; and a three ion species plasma made of deuterium, tritium, and gold. These results can be used for understanding the behavior of the aforementioned plasmas, or for verifying a code implementation of the general multi-ion formalism.

  1. Compact mass spectrometer for plasma discharge ion analysis

    DOEpatents

    Tuszewski, M.G.

    1997-07-22

    A mass spectrometer and methods are disclosed for mass spectrometry which are useful in characterizing a plasma. This mass spectrometer for determining type and quantity of ions present in a plasma is simple, compact, and inexpensive. It accomplishes mass analysis in a single step, rather than the usual two-step process comprised of ion extraction followed by mass filtering. Ions are captured by a measuring element placed in a plasma and accelerated by a known applied voltage. Captured ions are bent into near-circular orbits by a magnetic field such that they strike a collector, producing an electric current. Ion orbits vary with applied voltage and proton mass ratio of the ions, so that ion species may be identified. Current flow provides an indication of quantity of ions striking the collector. 7 figs.

  2. Compact mass spectrometer for plasma discharge ion analysis

    DOEpatents

    Tuszewski, Michel G.

    1997-01-01

    A mass spectrometer and methods for mass spectrometry which are useful in characterizing a plasma. This mass spectrometer for determining type and quantity of ions present in a plasma is simple, compact, and inexpensive. It accomplishes mass analysis in a single step, rather than the usual two-step process comprised of ion extraction followed by mass filtering. Ions are captured by a measuring element placed in a plasma and accelerated by a known applied voltage. Captured ions are bent into near-circular orbits by a magnetic field such that they strike a collector, producing an electric current. Ion orbits vary with applied voltage and proton mass ratio of the ions, so that ion species may be identified. Current flow provides an indication of quantity of ions striking the collector.

  3. Electron transport in a collisional plasma with multiple ion species

    SciTech Connect

    Simakov, Andrei N. Molvig, Kim

    2014-02-15

    A generalization of the Braginskii electron fluid description [S. I. Braginskii, Sov. Phys. JETP 6, 358 (1958)] to the case of an unmagnetized collisional plasma with multiple ion species is presented. A description of the plasma ions with disparate masses is also discussed.

  4. Ion flux and ion distribution function measurements in synchronously pulsed inductively coupled plasmas

    SciTech Connect

    Brihoum, Melisa; Cunge, Gilles; Darnon, Maxime; Joubert, Olivier; Gahan, David; Braithwaite, Nicholas St. J.

    2013-03-15

    Changes in the ion flux and the time-averaged ion distribution functions are reported for pulsed, inductively coupled RF plasmas (ICPs) operated over a range of duty cycles. For helium and argon plasmas, the ion flux increases rapidly after the start of the RF pulse and after about 50 {mu}s reaches the same steady state value as that in continuous ICPs. Therefore, when the plasma is pulsed at 1 kHz, the ion flux during the pulse has a value that is almost independent of the duty cycle. By contrast, in molecular electronegative chlorine/chlorosilane plasmas, the ion flux during the pulse reaches a steady state value that depends strongly on the duty cycle. This is because both the plasma chemistry and the electronegativity depend on the duty cycle. As a result, the ion flux is 15 times smaller in a pulsed 10% duty cycle plasma than in the continuous wave (CW) plasma. The consequence is that for a given synchronous RF biasing of a wafer-chuck, the ion energy is much higher in the pulsed plasma than it is in the CW plasma of chlorine/chlorosilane. Under these conditions, the wafer is bombarded by a low flux of very energetic ions, very much as it would in a low density, capacitively coupled plasma. Therefore, one can extend the operating range of ICPs through synchronous pulsing of the inductive excitation and capacitive chuck-bias, offering new means by which to control plasma etching.

  5. Signal Propagation in Collisional Plasma with Negative Ions

    SciTech Connect

    I. Kaganovich; S.V. Berezhnoi; C.B. Shin

    2000-12-18

    The transport of charged species in collisional currentless plasmas is traditionally thought of as a diffusion-like process. In this paper, it is demonstrated that, in contrast to two-component plasma, containing electrons and positive ions, the transport of additional ions in multi-species plasmas is not governed by diffusion, rather described by nonlinear convection. As a particular example, plasmas with the presence of negative ions have been studied. The velocity of a small perturbation of negative ions was found analytically and validated by numerical simulation. As a result of nonlinear convection, initially smooth ion density profiles break and form strongly inhomogeneous shock-like fronts. These fronts are different from collisionless shocks and shocks in fully ionized plasma. The structure of the fronts has been found analytically and numerically.

  6. Ion beam driven ion-acoustic waves in a plasma cylinder with negative ions

    SciTech Connect

    Sharma, Suresh C.; Gahlot, Ajay

    2008-07-15

    An ion beam propagating through a magnetized plasma cylinder containing K{sup +} positive ions, electrons, and SF{sub 6}{sup -} negative ions drives electrostatic ion-acoustic (IA) waves to instability via Cerenkov interaction. Two electrostatic IA wave modes in presence of K{sup +} and SF{sub 6}{sup -} ions are studied. The phase velocity of the sound wave in presence of positive and negative ions increase with the relative density of negative ions. The unstable wave frequencies and the growth rate of both the modes in presence of positive and negative ions increase with the relative density of negative ions. The growth rate of both the unstable modes in presence of SF{sub 6}{sup -} and K{sup +} ions scales as the one-third power of the beam density. Numerical calculations of the phase velocity, growth rate, and mode frequencies have been carried out for the parameters of the experiment of Song et al. [Phys. Fluids B 3, 284 (1991)].

  7. Oblique Propagation of Ion Acoustic Solitons in Magnetized Superthermal Plasmas

    NASA Astrophysics Data System (ADS)

    Devanandhan, S.; Sreeraj, T.; Singh, S.; Lakhina, G. S.

    2015-12-01

    Small amplitude ion-acoustic solitons are studied in a magnetized plasma consisting of protons, doubly charged helium ions and superthermal electrons. The Korteweg-de-Vries-Zakharov-Kuznetsov (KdV-ZK) is derived to examine the properties of ion acoustic solitary structures observed in space plasmas. Our model is applicable for weakly magnetized plasmas. The results will be applied to the satellite observations in the solar wind at 1 AU where magnetized ion acoustic waves with superthermal electrons can exist. The effects of superthermality, temperature and densities on these solitary structures will be discussed.

  8. Ion extraction from positively biased laser-ablation plasma

    NASA Astrophysics Data System (ADS)

    Isono, Fumika; Nakajima, Mitsuo; Hasegawa, Jun; Horioka, Kazuhiko

    2016-07-01

    Ions were extracted through a grounded grid from a positively biased laser-ablation plasma and the behaviors were investigated. Since the plasma was positively biased against the grounded wall, we could extract the ions without insulated gap. We confirmed formation of a virtual anode when we increased the distance between the grid and the ion collector. Results also indicated that when the ion flux from the ablation plasma exceeded a critical value, the current was strongly suppressed to the space charge limited level due to the formation of virtual anode.

  9. Plasma immersion ion implantation for silicon processing

    NASA Astrophysics Data System (ADS)

    Yankov, Rossen A.; Mändl, Stephan

    2001-04-01

    Plasma Immersion Ion Implantation (PIII) is a technology which is currently widely investigated as an alternative to conventional beam line implantation for ultrashallow doping beyond the 0.15 m technology. However, there are several other application areas in modern semiconductor processing. In this paper a detailed discussion of the PIII process for semiconductors and of actual as well as future applications is given. Besides the well known advantages of PIII - fast process, implantation of the whole surface, low cost of ownership - several peculiarities - like spread of the implantation energy due to finite rise time or collisions, no mass separation, high secondary electron emission - must be mentioned. However, they can be overcome by adjusting the system and the process parameters. Considering the applications, ultrashallow junction formation by PIII is an established industrial process, whereas SIMOX and Smart-Cut by oxygen and hydrogen implantation are current topics between research and introduction into industry. Further applications of PIII, of which some already are research topics and some are only investigated by conventional ion implantation, include seeding for metal deposition, gettering of metal impurities, etch stop layers and helium implantation for localized lifetime control.

  10. Mitigation of Ion Motion in future Plasma Wakefield Accelerators

    NASA Astrophysics Data System (ADS)

    Gholizadeh, Reza; Katsouleas, Tom; Muggli, Patric; Mori, Warren

    2007-11-01

    Simulation and analysis of the ion motion in a plasma wakefield accelerator is presented for the parameters required for a future ILC afterburner. We Show that although ion motion leads to substantial emittance growth for extreme parameters of future colliders in the sub-micron transverse beam Size regime, several factors that can mitigate the effect are explored. These include synchrotron radiation damping, plasma density gradients and hot plasmas.

  11. Solitons in a relativistic plasma with negative ions--

    SciTech Connect

    Das, G.C. ); Karmakar, B. ); Ibohanbi Singh, KH. )

    1990-02-01

    The interaction of the nonlinearity and the dispersiveness causing the solitary waves are studied in a relativistic plasma with negative ions through the derivation of a nonlinear partial differential equation known as the Korteweg-Devries (K-DV) equation. The negative ions play a salient feature on the existence and behavior of the solitons and could be of interest in laboratory plasmas. First, the observations are made in a nonisothermal plasma, and later the reduction to the nonisothermality of the plasma shows entirely different characteristics as compared to the solitons in the isothermal plasmas. A comparison with the various solutions has been emphasized.

  12. Kinetic study of ion-acoustic plasma vortices

    SciTech Connect

    Khan, S. A.; Aman-ur-Rehman; Mendonca, J. T.

    2014-09-15

    The kinetic theory of electron plasma waves with finite orbital angular momentum has recently been introduced by Mendonca. This model shows possibility of new kind of plasma waves and instabilities. We have extended the theory to ion-acoustic plasma vortices carrying orbital angular momentum. The dispersion equation is derived under paraxial approximation which exhibits a kind of linear vortices and their Landau damping. The numerical solutions are obtained and compared with analytical results which are in good agreement. The physical interpretation of the ion-acoustic plasma vortices and their Landau resonance conditions are given for typical case of Maxwellian plasmas.

  13. Measurements of the negative ion density in reactive gas plasmas

    NASA Astrophysics Data System (ADS)

    Shindo, Masako; Ueda, Yoko; Kawai, Yoshinobu; Ishii, Nobuo

    1999-11-01

    The reactive gas plasmas, such as C_4F_8, SiH4 and SF6 gas plasmas, have been widely used in plasma etching or CVD. The radicals and ions species in these plasmas have been reported in a lot of study. However, the negative ion density has not been measured quantitatively, since the conventional Langmuir probe cannot be used due to film depositions on its surface. In this study, the negative ion density in the reactive gas plasmas was measured with a heated Langmuir probe and an 8-mm microwave interferometer as a function of gas flow rate and radial position. Furthermore, the following equation was suggested to estimate the negative ion density only from the probe measurements: fracI_+(X )I_+(Ar) = [ fracI_-(X)I_-(Ar) + fracN_-(X )N_+(Ar)√fracT_e(X)T_e(Ar) ] √fracM_+(Ar)M_+(X), where N- denotes negative ion density and the other characteristics represent the conventional ones. The positive ion mass M+ should be assumed properly. It was confirmed that this equation provides the negative ion density both in the magnetized plasmas, such as ECR plasmas, and non-magnetized plasmas.

  14. Transverse ion heating in multicomponent plasmas. [in ionosphere

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, M.; Okuda, H.; Kim, S. Y.

    1987-01-01

    A new mechanism is proposed for plasma modes which can occur only in a multicomponent plasma and not in pure electron-ion plasma. The addition of ions creates a new instability near the ion-ion hybrid mode whose frequency is adequate for the wave to interact with oxygen ions. To study heating of ions (such as ionospheric oxygen ions) in presence of auroral electrons, several numerical simulations were carried out using a one-dimensional electrostatic code in a magnetic field. It was found that in the presence of electrons drifting along auroral field lines into the ionosphere, the ion-ion hybrid mode can be driven unstable when the electron drift speed is too small to excite the lower hybrid instability. Since the ion-ion mode has a smaller frequency than that of the lower hybrid waves, it can couple to the heavy ions, resulting in a substantial heating of heavy ions; on the other hand, because of their frequencies, the lower hybrid waves can accelerate only light ion species.

  15. The Measurement of Ion Drift Velocities in Presheath in Single and Two Ion Species Plasmas

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Ko, Eunsuk; Severn, Greg; Hershkowitz, Noah

    2002-10-01

    The presheath is a region of weak electric field that accelerates ions to satisfy the generalized Bohm criterion. The measurements were performed in multi-dipole plasmas with pure Ar and He-Ar. To measure ion drift velocities in the presheath, a technique by launching ion acoustic wave was developed [1]. The concentration of ion species in two ion species plasma was determined by measuring ion acoustic wave phase velocity and electron temperature in the bulk region [2]. The dispersion relation in the presheath for single ion species was verified by experiments with pure Ar plasma. Based on the dispersion relation in the presheath for multi-ion species plasma and phase velocity measurements in He-Ar plasma ( P_Ar ˜ 0.1mTorr, P_He ˜ 2.8mTorr, ne ˜ 1E9cm-3, Te < 2eV ), the relationship between Ar and He ion drift velocities was determined. Using Ar ion drift velocities from LIF data, the He ion drift velocities were determined from that relationship. * Work supported by US DOE grant DE-FG02-97ER54437 [1] A. M. Hala, "Presheaths in two ion species plasma", Ph.D. Thesis (2000). [2] A. M. Hala and N. Hershkowitz, Rev. Sci. Instrum. 72, 2279 (2001).

  16. Relativistic electromagnetic waves in an electron-ion plasma

    NASA Technical Reports Server (NTRS)

    Chian, Abraham C.-L.; Kennel, Charles F.

    1987-01-01

    High power laser beams can drive plasma particles to relativistic energies. An accurate description of strong waves requires the inclusion of ion dynamics in the analysis. The equations governing the propagation of relativistic electromagnetic waves in a cold electron-ion plasma can be reduced to two equations expressing conservation of energy-momentum of the system. The two conservation constants are functions of the plasma stream velocity, the wave velocity, the wave amplitude, and the electron-ion mass ratio. The dynamic parameter, expressing electron-ion momentum conversation in the laboratory frame, can be regarded as an adjustable quantity, a suitable choice of which will yield self-consistent solutions when other plasma parameters were specified. Circularly polarized electromagnetic waves and electrostatic plasma waves are used as illustrations.

  17. Ion temperature evolution in an ultracold neutral plasma

    SciTech Connect

    McQuillen, P. Strickler, T.; Langin, T.; Killian, T. C.

    2015-03-15

    We study the long-time evolution of the ion temperature in an expanding ultracold neutral plasma using spatially resolved, laser-induced-fluorescence spectroscopy. Adiabatic cooling reduces the ion temperature by an order of magnitude during the plasma expansion, to temperatures as low as 0.2 K. Cooling is limited by heat exchange between ions and the much hotter electrons. We also present evidence for an additional heating mechanism and discuss possible sources. Data are described by a model of the plasma evolution, including the effects of ion-electron heat exchange. We show that for appropriate initial conditions, the degree of Coulomb coupling of ions in the plasma increases during expansion.

  18. Electrostatic solitary waves in dusty pair-ion plasmas

    SciTech Connect

    Misra, A. P.; Adhikary, N. C.

    2013-10-15

    The propagation of electrostatic waves in an unmagnetized collisionless pair-ion plasma with immobile positively charged dusts is studied for both large- and small-amplitude perturbations. Using a two-fluid model for pair-ions, it is shown that there appear two linear ion modes, namely the “fast” and “slow” waves in dusty pair-ion plasmas. The properties of these wave modes are studied with different mass (m) and temperature (T) ratios of negative to positive ions, as well as the effects of immobile charged dusts (δ). For large-amplitude waves, the pseudopotential approach is performed, whereas the standard reductive perturbation technique is used to study the small-amplitude Korteweg-de Vries (KdV) solitons. The profiles of the pseudopotential, the large amplitude solitons as well as the dynamical evolution of KdV solitons, are numerically studied with the system parameters as above. It is found that the pair-ion plasmas with positively charged dusts support the propagation of solitary waves (SWs) with only the negative potential. The results may be useful for the excitation of SWs in laboratory dusty pair-ion plasmas, electron-free industrial plasmas as well as for observation in space plasmas where electron density is negligibly small compared to that of negative ions.

  19. A study of single and binary ion plasma expansion into laboratory-generated plasma wakes

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth Herbert, Jr.

    1988-01-01

    Plasma expansion into the wake of a large rectangular plate immersed in a collisionless, supersonic plasma was investigated in laboratory experiments. The experimental conditions address both single ion and binary ion plasma flows for the case of a body whose size is large in comparison with the Debye length, when the potential difference between the body and the plasma is relatively small. A new plasma source was developed to generate equi-velocity, binary ion plasma flows, which allows access to new parameter space that have previously been unavailable for laboratory studies. Specifically, the new parameters are the ionic mass ratio and the ionic component density ratio. In a series of experiments, a krypton-neon plasma is employed where the ambient density ratio of neon to krypton is varied more than an order of magnitude. The expansion in both the single ion and binary ion plasma cases is limited to early times, i.e., a few ion plasma periods, by the combination of plasma density, plasma drift speed, and vacuum chamber size, which prevented detailed comparison with self-similar theory.

  20. Ion wake effects on the Coulomb ion drag in complex dusty plasmas

    SciTech Connect

    Ki, Dae-Han; Jung, Young-Dae

    2010-09-06

    The ion wake effects on the Coulomb drag force are investigated in complex dusty plasmas. It is shown that the ion wake effects significantly enhance the Coulomb ion drag force. It is also found that the ion wake effects on the Coulomb drag force increase with an increase in the Debye length. In addition, the ion wake effects on the momentum transfer cross section and Coulomb drag force are found to be increased with increasing thermal Mach number, i.e., decreasing plasma temperature. It is also found that the Coulomb ion drag force would be stronger for smaller dust grains.

  1. Magnetosonic shock wave in collisional pair-ion plasma

    NASA Astrophysics Data System (ADS)

    Adak, Ashish; Sikdar, Arnab; Ghosh, Samiran; Khan, Manoranjan

    2016-06-01

    Nonlinear propagation of magnetosonic shock wave has been studied in collisional magnetized pair-ion plasma. The masses of both ions are same but the temperatures are slightly different. Two fluid model has been taken to describe the model. Two different modes of the magnetosonic wave have been obtained. The dynamics of the nonlinear magnetosonic wave is governed by the Korteweg-de Vries Burgers' equation. It has been shown that the ion-ion collision is the source of dissipation that causes the Burgers' term which is responsible for the shock structures in equal mass pair-ion plasma. The numerical investigations reveal that the magnetosonic wave exhibits both oscillatory and monotonic shock structures depending on the strength of the dissipation. The nonlinear wave exhibited the oscillatory shock wave for strong magnetic field (weak dissipation) and monotonic shock wave for weak magnetic field (strong dissipation). The results have been discussed in the context of the fullerene pair-ion plasma experiments.

  2. Numerical simulation of plasma processes driven by transverse ion heating

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Chan, C. B.

    1993-01-01

    The plasma processes driven by transverse ion heating in a diverging flux tube are investigated with numerical simulation. The heating is found to drive a host of plasma processes, in addition to the well-known phenomenon of ion conics. The downward electric field near the reverse shock generates a doublestreaming situation consisting of two upflowing ion populations with different average flow velocities. The electric field in the reverse shock region is modulated by the ion-ion instability driven by the multistreaming ions. The oscillating fields in this region have the possibility of heating electrons. These results from the simulations are compared with results from a previous study based on a hydrodynamical model. Effects of spatial resolutions provided by simulations on the evolution of the plasma are discussed.

  3. Electron Acoustic Waves in Pure Ion Plasmas

    NASA Astrophysics Data System (ADS)

    Anderegg, F.; Affolter, M.; Driscoll, C. F.; O'Neil, T. M.; Valentini, F.

    2012-10-01

    Electron Acoustic Waves (EAWs) are the low-frequency branch of near-linear Langmuir (plasma) waves: the frequency is such that the complex dielectric function (Dr, Di) has Dr= 0; and ``flattening'' of f(v) near the wave phase velocity vph gives Di=0 and eliminates Landau damping. Here, we observe standing axisymmetric EAWs in a pure ion column.footnotetextF. Anderegg, et al., Phys. Rev. Lett. 102, 095001 (2009). At low excitation amplitudes, the EAWs have vph˜1.4 v, in close agreement with near-linear theory. At moderate excitation strengths, EAW waves are observed over a range of frequencies, with 1.3 v < vph< 2.1 v. Here, the final wave frequency may differ from the excitation frequency since the excitation modifies f (v); and recent theory analyzes frequency shifts from ``corners'' of a plateau at vph.footnotetextF. Valentini et al., arXiv:1206.3500v1. Large amplitude EAWs have strong phase-locked harmonic content, and experiments will be compared to same-geometry simulations, and to simulations of KEENfootnotetextB. Afeyan et al., Proc. Inertial Fusion Sci. and Applications 2003, A.N.S. Monterey (2004), p. 213. waves in HEDLP geometries.

  4. Hydrodynamic description of an unmagnetized plasma with multiple ion species. II. Two and three ion species plasmas

    DOE PAGESBeta

    Simakov, Andrei Nikolaevich; Molvig, Kim

    2016-03-17

    Paper I [A. N. Simakov and K. Molvig, Phys. Plasmas23, 032115 (2016)] obtained a fluid description for an unmagnetized collisional plasma with multiple ion species. To evaluate collisional plasmatransport fluxes, required for such a description, two linear systems of equations need to be solved to obtain corresponding transport coefficients. In general, this should be done numerically. Herein, the general formalism is used to obtain analytical expressions for such fluxes for several specific cases of interest: a deuterium-tritium plasma; a plasma containing two ion species with strongly disparate masses, which agrees with previously obtained results; and a three ion species plasmamore » made of deuterium, tritium, and gold. We find that these results can be used for understanding the behavior of the aforementioned plasmas, or for verifying a code implementation of the general multi-ion formalism.« less

  5. Plasma & reactive ion etching to prepare ohmic contacts

    SciTech Connect

    Gessert, Timothy A.

    2002-01-01

    A method of making a low-resistance electrical contact between a metal and a layer of p-type CdTe surface by plasma etching and reactive ion etching comprising: a) placing a CdS/CdTe layer into a chamber and evacuating said chamber; b) backfilling the chamber with Argon or a reactive gas to a pressure sufficient for plasma ignition; and c) generating plasma ignition by energizing a cathode which is connected to a power supply to enable the plasma to interact argon ions alone or in the presence of a radio-frequency DC self-bias voltage with the p-CdTe surface.

  6. The importance of ions in low pressure PECVD plasmas

    NASA Astrophysics Data System (ADS)

    Michelmore, Andrew; Whittle, Jason; Short, Robert

    2015-02-01

    Plasma enhanced chemical vapour deposition (PECVD) can be used to fabricate surfaces with a wide range of physical and chemical properties and are used in a variety of applications. Despite this, the mechanisms by which PECVD films grow are not well understood. Moreover, the species which contribute to film growth can be considered quite differently depending on the process. Particularly for functionalized plasma polymer films, the growth mechanisms are considered with respect to the chemistry of the depositing species, ignoring the physics of plasmas. Here we analyse the role ions play in the deposition of three common classes of depositing plasmas, and how these closely related fields treat ions very differently.

  7. Anomalous thermalization of fast ions in magnetized plasma

    SciTech Connect

    Chen, K.R.

    1993-11-01

    A novel anomalous process causing the perpendicular energy of fast ions to be thermalized and lost on average to bulk ion heating, instead of classical slowing down and bulk electron heating, is investigated with PIC simulations. More than half of the fast ions are slowed down to the thermal ion level, although some are heated to twice their birth energy. The fast ion density perturbation is large. This process is excited by a new two-gyro-stream instability and may continually occur in a burning plasma. The implications for fusion ignition and fast ion confinement are assessed.

  8. Multi-ion Double Layers in a Magnetized Plasma

    NASA Astrophysics Data System (ADS)

    Shahmansouri, M.; Alinejad, H.; Tribeche, M.

    2015-11-01

    A theoretical investigation is carried out to study the existence, formation and basic properties of ion acoustic (IA) double layers (DLs) in a magnetized bi-ion plasma consisting of warm/cold ions and Boltzmann distributed electrons. Based on the reductive perturbation technique, an extended Korteweg de-Vries (KdV) equation is derived. The propagation of two possible modes (fast and slow), and their evolution are investigated. The effects of obliqueness, magnitude of the magnetic field, ion concentration, polarity of ions, and ion temperature on the IA DL profile are analyzed, and then the ranges of parameters for which the IA DLs exist are investigated in details.

  9. Ion dynamics in an E × B Hall plasma accelerator

    NASA Astrophysics Data System (ADS)

    Young, Christopher V.; Lucca Fabris, Andrea; Cappelli, Mark A.

    2015-01-01

    We show the time evolution of the ion velocity distribution function in a Hall plasma accelerator during a 20 kHz natural, quasi-periodic plasma oscillation. We apply a time-synchronized laser induced fluorescence technique at different locations along the channel midline, obtaining time- and spatially resolved ion velocity measurements. Strong velocity and density fluctuations and multiple ion populations are observed throughout the so-called "breathing mode" ionization instability, opening an experimental window into the detailed ion dynamics and physical processes at the heart of such devices.

  10. The Thermal Ion Dynamics Experiment and Plasma Source Instrument

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Chappell, C. R.; Chandler, M. O.; Fields, S. A.; Pollock, C. J.; Reasoner, D. L.; Young, D. T.; Burch, J. L.; Eaker, N.; Waite, J. H., Jr.; McComas, D. J.; Nordholdt, J. E.; Thomsen, M. F.; Berthelier, J. J.; Robson, R.

    1995-01-01

    The Thermal Ion Dynamics Experiment (TIDE) and the Plasma Source Instrument (PSI) have been developed in response to the requirements of the ISTP Program for three-dimensional (3D) plasma composition measurements capable of tracking the circulation of low-energy (0-500 eV) plasma through the polar magnetosphere. This plasma is composed of penetrating magnetosheath and escaping ionospheric components. It is in part lost to the downstream solar wind and in part recirculated within the magnetosphere, participating in the formation of the diamagnetic hot plasma sheet and ring current plasma populations. Significant obstacles which have previously made this task impossible include the low density and energy of the outflowing ionospheric plasma plume and the positive spacecraft floating potentials which exclude the lowest-energy plasma from detection on ordinary spacecraft. Based on a unique combination of focusing electrostatic ion optics and time of flight detection and mass analysis, TIDE provides the sensitivity (seven apertures of about 1 cm squared effective area each) and angular resolution (6 x 18 degrees) required for this purpose. PSI produces a low energy plasma locally at the POLAR spacecraft that provides the ion current required to balance the photoelectron current, along with a low temperature electron population, regulating the spacecraft potential slightly positive relative to the space plasma. TIDE/PSI will: (a) measure the density and flow fields of the solar and terrestrial plasmas within the high polar cap and magnetospheric lobes; (b) quantify the extent to which ionospheric and solar ions are recirculated within the distant magnetotail neutral sheet or lost to the distant tail and solar wind; (c) investigate the mass-dependent degree energization of these plasmas by measuring their thermodynamic properties; (d) investigate the relative roles of ionosphere and solar wind as sources of plasma to the plasma sheet and ring current.

  11. Double-layer ion acceleration triggered by ion magnetization in expanding radiofrequency plasma sources

    SciTech Connect

    Takahashi, Kazunori; Charles, Christine; Boswell, Rod W.; Fujiwara, Tamiya

    2010-10-04

    Ion energy distribution functions downstream of the source exit in magnetically expanding low-pressure plasmas are experimentally investigated for four source tube diameters ranging from about 5 to 15 cm. The magnetic-field threshold corresponding to a transition from a simple expanding plasma to a double layer-containing plasma is observed to increase with a decrease in the source tube diameter. The results demonstrate that for the four geometries, the double layer and the accelerated ion beam form when the ion Larmour radius in the source becomes smaller than the source tube radius, i.e., when the ions become magnetized in the source tube.

  12. Metal plasma immersion ion implantation and deposition: A review

    SciTech Connect

    Anders, A.

    1996-09-01

    Metal Plasma Immersion Ion Implantation and Deposition (MePIIID) is a hybrid process combining cathodic arc deposition and plasma immersion ion implantation. The properties of metal plasma produced by vacuum arcs are reviewed and the consequences for MePIIID are discussed. Different version of MePIIID are described and compared with traditional methods of surface modification such as ion beam assisted deposition (IBAD). MePIIID is a very versatile approach because of the wide range of ion species and energies used. In one extreme case, films are deposited with ions in the energy range 20--50 eV, and at the other extreme, ions can be implanted with high energy (100 keV or more) without film deposition. Novel features of the technique include the use of improved macroparticle filters; the implementation of several plasma sources for multi-element surface modification; tuning of ion energy during implantation and deposition to tailor the substrate-film intermixed layer and structure of the growing film; simultaneous pulsing of the plasma potential (positive) and substrate bias (negative) with a modified Marx generator; and the use of high ion charge states.

  13. Energetics of Multiple-Ion Species Hohlraum Plasmas

    SciTech Connect

    Neumayer, P; Berger, R; Callahan, D; Divol, L; Froula, D; London, R; MacGowan, B J; Meezan, N; Michel, P; Ross, J S; Sorce, C; Widmann, K; Suter, L; Glenzer, S H

    2007-11-05

    A study of the laser-plasma interaction processes in multiple-ion species plasmas has been performed in plasmas that are created to emulate the plasma conditions in indirect drive inertial confinement fusion targets. Gas-filled hohlraums with densities of xe22/cc are heated to Te=3keV and backscattered laser light is measured by a suite of absolutely calibrated backscatter diagnostics. Ion Landau damping is increased by adding hydrogen to the CO2/CF4 gas fill. We find that the backscatter from stimulated Brillouin scattering is reduced is monotonically reduced with increasing damping, demonstrating that Landau damping is the controlling damping mechanism in ICF relevant high-electron temperature plasmas. The reduction in backscatter is accompanied by a comparable increase in both transmission of a probe beam and an increased hohlraum radiation temperature, showing that multiple-ion species plasmas improve the overall hohlraum energetics/performance. Comparison of the experimental data to linear gain calculations as well as detailed full-scale 3D laser-plasma interaction simulations show quantitative agreement. Our findings confirm the importance of Landau damping in controlling backscatter from high-electron temperature hohlraum plasmas and have lead to the inclusion of multi-ion species plasmas in the hohlraum point design for upcoming ignition campaigns at the National Ignition Facility.

  14. Method and apparatus for plasma source ion implantation

    DOEpatents

    Conrad, J.R.

    1988-08-16

    Ion implantation into surfaces of three-dimensional targets is achieved by forming an ionized plasma about the target within an enclosing chamber and applying a pulse of high voltage between the target and the conductive walls of the chamber. Ions from the plasma are driven into the target object surfaces from all sides simultaneously without the need for manipulation of the target object. Repetitive pulses of high voltage, typically 20 kilovolts or higher, causes the ions to be driven deeply into the target. The plasma may be formed of a neutral gas introduced into the evacuated chamber and ionized therein with ionizing radiation so that a constant source of plasma is provided which surrounds the target object during the implantation process. Significant increases in the surface hardness and wear characteristics of various materials are obtained with ion implantation in this manner. 7 figs.

  15. Method and apparatus for plasma source ion implantation

    DOEpatents

    Conrad, John R.

    1988-01-01

    Ion implantation into surfaces of three-dimensional targets is achieved by forming an ionized plasma about the target within an enclosing chamber and applying a pulse of high voltage between the target and the conductive walls of the chamber. Ions from the plasma are driven into the target object surfaces from all sides simultaneously without the need for manipulation of the target object. Repetitive pulses of high voltage, typically 20 kilovolts or higher, causes the ions to be driven deeply into the target. The plasma may be formed of a neutral gas introduced into the evacuated chamber and ionized therein with ionizing radiation so that a constant source of plasma is provided which surrounds the target object during the implantation process. Significant increases in the surface hardness and wear characteristics of various materials are obtained with ion implantation in this manner.

  16. Ion cyclotron heating experiments in magnetosphere plasma device RT-1

    SciTech Connect

    Nishiura, M. Yoshida, Z.; Yano, Y.; Kawazura, Y.; Saitoh, H.; Yamasaki, M.; Mushiake, T.; Kashyap, A.; Takahashi, N.; Nakatsuka, M.; Fukuyama, A.

    2015-12-10

    The ion cyclotron range of frequencies (ICRF) heating with 3 MHz and ∼10 kW is being prepared in RT-1. The operation regime for electron cyclotron resonance (ECR) heating is surveyed as the target plasmas. ECRH with 8.2 GHz and ∼50 kW produces the plasmas with high energy electrons in the range of a few ten keV, but the ions still remain cold at a few ten eV. Ion heating is expected to access high ion beta state and to change the aspect of plasma confinement theoretically. The ICRF heating is applied to the target plasma as an auxiliary heating. The preliminary result of ICRF heating is reported.

  17. Conditioning of ion sources for mass spectrometry of plasmas

    SciTech Connect

    Dylla, H.F.; Blanchard, W.R.

    1983-02-01

    Mass spectrometry is a useful diagnostic technique for monitoring plasma species and plasma-surface interactions. In order to maximize the sensitivity of measurements of hydrogen-fueled fusion plasmas or hydrogen-based discharge cleaning and etching plasmas, the ion sources of mass spectrometers are operated at or near the high pressure limit of 10/sup -4/ Torr (10/sup -2/ Pa). Such high ambient pressures of hydrogen give rise to high background levels of residual gases such as H/sub 2/O, CO, and CH/sub 4/, due to surface reactions on the ion source electrodes. For a commonly used ion source configuration, the residual gas production is a linear function of the ambient H/sub 2/ pressure. Hydrogen conditioning can reduce the absolute residual gas levels. Steady-state residual gas production is observed in a conditioned ion source, which is related to a balance of diffusion and sorption on the electrode surfaces.

  18. Ion- and dust-acoustic instabilities in dusty plasmas

    NASA Technical Reports Server (NTRS)

    Rosenberg, M.

    1993-01-01

    Dust ion-acoustic and dust-acoustic instabilities in dusty plasmas are investigated using a standard Vlasov approach. Possible applications of these instabilities to various cosmic environments, including protostellar clouds and planetary rings, are briefly discussed.

  19. Compressional Alfvén and ion-ion hybrid waves in tokamak plasmas with two ion species

    NASA Astrophysics Data System (ADS)

    Oliver, H. J. C.; Sharapov, S. E.; Akers, R.; Klimek, I.; Cecconello, M.

    2014-12-01

    Compressional Alfvén and ion-ion hybrid waves excited by energetic beam ions are studied in plasmas with two ion species. In our experiment, a hydrogen-deuterium (H-D) plasma is used to produce instabilities similar to those likely to be present in the burning deuterium-tritium plasmas of future tokamaks. Modes are suppressed in the deuterium cyclotron frequency range with increasing hydrogen gas puffing. In plasmas with H/D concentrations of 2.57 or higher, short-lived modes with small and predominantly negative toroidal mode numbers are observed at frequencies ω/ωβD0 ≈ 2.25, where ωβD0 = ωβD(R0) is the on-axis deuterium cyclotron frequency. These are the highest mode frequencies yet detected in the ion cyclotron range in a spherical tokamak. Modeling of the transparency regions and plasma resonances using the cold plasma dispersion relation explains the observed features. Mode conversion at ion-ion hybrid resonances and subsequent kinetic damping is believed to be responsible for mode suppression. The high frequency modes are present due to excitation by wave-particle resonances within the transparency region for high hydrogen concentrations. The absence of other wave-particle resonances explains significant features of our experiment. This technique has possible applications in plasma heating, current drive and real-time diagnosis of relative ion concentration in the plasma core.

  20. Nonlinear Plasma Waves Excitation by Intense Ion Beams in Background Plasma

    SciTech Connect

    Igor D. Kaganovich; Edward A. Startsev; Ronald C. Davidson

    2004-04-15

    Plasma neutralization of an intense ion pulse is of interest for many applications, including plasma lenses, heavy ion fusion, cosmic ray propagation, etc. An analytical electron fluid model has been developed to describe the plasma response to a propagating ion beam. The model predicts very good charge neutralization during quasi-steady-state propagation, provided the beam pulse duration {tau}{sub b} is much longer than the electron plasma period 2{pi}/{omega}{sub p}, where {omega}{sub p} = (4{pi}e{sup 2}n{sub p}/m){sup 1/2} is the electron plasma frequency and n{sub p} is the background plasma density. In the opposite limit, the beam pulse excites large-amplitude plasma waves. If the beam density is larger than the background plasma density, the plasma waves break. Theoretical predictions are compared with the results of calculations utilizing a particle-in-cell (PIC) code. The cold electron fluid results agree well with the PIC simulations for ion beam propagation through a background plasma. The reduced fluid description derived in this paper can provide an important benchmark for numerical codes and yield scaling relations for different beam and plasma parameters. The visualization of numerical simulation data shows complex collective phenomena during beam entry and exit from the plasma.

  1. Dressed soliton in quantum dusty pair-ion plasma

    SciTech Connect

    Chatterjee, Prasanta; Muniandy, S. V.; Wong, C. S.; Roy, Kaushik

    2009-11-15

    Nonlinear propagation of a quantum ion-acoustic dressed soliton is studied in a dusty pair-ion plasma. The Korteweg-de Vries (KdV) equation is derived using reductive perturbation technique. A higher order inhomogeneous differential equation is obtained for the higher order correction. The expression for a dressed soliton is calculated using a renormalization method. The expressions for higher order correction are determined using a series solution technique developed by Chatterjee et al. [Phys. Plasmas 16, 072102 (2009)].

  2. Turbulent cascade in a two-ion plasma

    SciTech Connect

    Qiu, Xin; Liu, San-Qiu; Yu, Ming-Yang

    2014-11-15

    It is shown that small but finite-amplitude drift wave turbulence in a two-ion-species plasma can be modeled by a Hasegawa-Mima equation. The mode cascade process and resulting turbulent spectrum are investigated. The spectrum is found to be similar to that of a two-component plasma, but the space and time scales of the turbulent cascade process can be quite different since they are rescaled by the presence of the second ion species.

  3. A preliminary model of ion beam neutralization. [in thruster plasmas

    NASA Technical Reports Server (NTRS)

    Parks, D. E.; Katz, I.

    1979-01-01

    A theoretical model of neutralized thruster ion beam plasmas has been developed. The basic premise is that the beam forms an electrostatic trap for the neutralizing electrons. A Maxwellian spectrum of electron energies is maintained by collisions between trapped electrons and by collective randomization of velocities of electrons injected from the neutralizer into the surrounding plasma. The theory contains the observed barometric law relationship between electron density and electron temperatures and ion beam spreading in good agreement with measured results.

  4. Time resolved diagnostics of ions in colliding carbon plasmas

    SciTech Connect

    Singh, Ravi Pratap; Gupta, Shyam L.; Thareja, Raj K.

    2014-11-14

    We report a comparative study of the dynamic behaviour of ions at different pressures in laser ablated colliding and single plasma plumes using 2D imaging, optical emission spectroscopy (OES) and a retarding field analyser (RFA). 2D imaging shows the splitting of plasma plumes due to different velocities of various plasma species. OES shows enhancement in abundance of ionic species with their presence for a longer time in colliding plume. C{sub 2} molecular formation is seen at later time in colliding plume compared to single plume and is attributed to dominating collisional processes in the colliding region of the plumes. The time of flight distribution of ions traced by the RFA shows the variation with change in fluence as well as ambient pressure for both colliding and single plume. Time of flight analysis of ions also shows the appearance of a fast peak in ion signal due to acceleration of ions at larger fluence.

  5. Negative hydrogen ion yields at plasma grid surface in a negative hydrogen ion source

    SciTech Connect

    Wada, M.; Kenmotsu, T.; Sasao, M.

    2015-04-08

    Negative hydrogen (H{sup −}) ion yield from the plasma grid due to incident hydrogen ions and neutrals has been evaluated with the surface collision cascade model, ACAT (Atomic Collision in Amorphous Target) coupled to a negative surface ionization models. Dependence of negative ion fractions upon the velocity component normal to the surface largely affect the calculation results of the final energy and angular distributions of the H{sup −} ions. The influence is particularly large for H{sup −} ions desorbed from the surface due to less than several eV hydrogen particle implact. The present calculation predicts that H{sup −} ion yield can be maximized by setting the incident angle of hydrogen ions and neutrals to be 65 degree. The Cs thickness on the plasma grid should also affect the yields and mean energies of surface produced H{sup −} ions by back scattering and ion induced desorption processes.

  6. Intense ion beam neutralization using underdense background plasma

    SciTech Connect

    Berdanier, William; Roy, Prabir K.; Kaganovich, Igor

    2015-01-15

    Producing an overdense background plasma for neutralization purposes with a density that is high compared to the beam density is not always experimentally possible. We show that even an underdense background plasma with a small relative density can achieve high neutralization of intense ion beam pulses. Using particle-in-cell simulations, we show that if the total plasma electron charge is not sufficient to neutralize the beam charge, electron emitters are necessary for effective neutralization but are not needed if the plasma volume is so large that the total available charge in the electrons exceeds that of the ion beam. Several regimes of possible underdense/tenuous neutralization plasma densities are investigated with and without electron emitters or dense plasma at periphery regions, including the case of electron emitters without plasma, which does not effectively neutralize the beam. Over 95% neutralization is achieved for even very underdense background plasma with plasma density 1/15th the beam density. We compare results of particle-in-cell simulations with an analytic model of neutralization and find close agreement with the particle-in-cell simulations. Further, we show experimental data from the National Drift Compression experiment-II group that verifies the result that underdense plasma can neutralize intense heavy ion beams effectively.

  7. Computer Simulation of Plasma Immersion Ion Implantation and Deposition

    NASA Astrophysics Data System (ADS)

    Miyagawa, Yoshiko; Tanaka, Masaaki; Nakadate, Hiroshi; Nakao, Setsuo; Miyagawa, Soji

    By using a newly developed simulation program "PEGASUS", plasma behavior was analyzed for the plasma immersion ion implantation and deposition (PIII&D). For plasma analysis of low pressure gas which is used in PIII&D, the software uses a particle in cell (PIC) method for the analysis of electric and magnetic fields and the motion of charged particles. A Monte Carlo collision method is used for collisions of ions, electrons and neutrals in the plasma, and the dynamic-SASAMAL code is used for the ion-solid surface interactions. Spatial distributions of potential, electron density and ion density together with the ion flux distribution on the target surface were calculated for the case where a negative pulse voltage was applied to a trench shaped target immersed in a high density Ar plasma (1010 cm-3). The time evolution of sheath length obtained by the simulations for a flat plane part of the surface agreed with the analytical result obtained by the Child-Langmuir method. In a bipolar pulse PIII&D system, a positive and a negative pulse voltages are applied alternately to a workpiece without any other external plasma source. Simulation has been conducted for a target immersed in a very low density Ar plasma (107 cm-3) to compare the plasma generated by a negative and a positive pulse voltage applied to the target. When a negative pulse voltage is applied to the target, only a weak plasma is generated. In contrast to it, when a positive pulse voltage is applied, a two-order or more high density plasma is generated under the same condition. The plasma behavior around a trench shaped target is also presented.

  8. Plasma heating and hot ion sustaining in mirror based hybrids

    SciTech Connect

    Moiseenko, V. E.; Agren, O.

    2012-06-19

    Possibilities of plasma heating and sloshing ion sustaining in mirror based hybrids are briefly reviewed. Sloshing ions, i.e. energetic ions with a velocity distribution concentrated to a certain pitch-angle, play an important role in plasma confinement and generation of fusion neutrons in mirror machines. Neutral beam injection (NBI) is first discussed as a method to generate sloshing ions. Numerical results of NBI modeling for a stellarator-mirror hybrid are analyzed. The sloshing ions could alternatively be sustained by RF heating. Fast wave heating schemes, i.e. magnetic beach, minority and second harmonic heating, are addressed and their similarities and differences are described. Characteristic features of wave propagation in mirror hybrid devices including both fundamental harmonic minority and second harmonic heating are examined. Minority heating is efficient for a wide range of minority concentration and plasma densities; it allows one to place the antenna aside from the hot ion location. A simple-design strap antenna suitable for this has good performance. However, this scenario is appropriate only for light minority ions. The second harmonic heating can be applied for the heavy ion component. Arrangements are similar for minority and second harmonic heating. The efficiency of second harmonic heating is influenced by a weaker wave damping than for minority heating. Numerical calculations show that in a hybrid reactor scaled mirror machine the deuterium sloshing ions could be heated within the minority heating scheme, while the tritium ions could be sustained by second harmonic heating.

  9. Dense Metal Plasma in a Solenoid for Ion Beam Neutralization

    SciTech Connect

    Anders, Andre; Kauffeldt, Marina; Oks, Efim M.; Roy, Prabir K.

    2010-10-30

    Space-charge neutralization is required to compress and focus a pulsed, high-current ion beam on a target for warm dense matter physics or heavy ion fusion experiments. We described approaches to produce dense plasma in and near the final focusing solenoid through which the ion beam travels, thereby providing an opportunity for the beam to acquire the necessary space-charge compensating electrons. Among the options are plasma injection from pulsed vacuum arc sources located outside the solenoid, and using a high current (> 4 kA) pulsed vacuum arc plasma from a ring cathode near the edge of the solenoid. The plasma distribution is characterized by photographic means, by an array of movable Langmuir probes, by a small single probe, and by evaluating Stark broadening of the Balmer H beta spectral line. In the main approach described here, the plasma is produced at several cathode spots distributed azimuthally on the ring cathode. It is shown that the plasma is essentially hollow, as determined by the structure of the magnetic field, though the plasma density exceeds 1014 cm-3 in practically all zones of the solenoid volume if the ring electrode is placed a few centimeters off the center of the solenoid. The plasma is non-uniform and fluctuating, however, since its density exceeds the ion beam density it is believed that this approach could provide a practical solution to the space charge neutralization challenge.

  10. Ion-wave stabilization of an inductively coupled plasma

    SciTech Connect

    Camparo, J.C.; Mackay, R.

    2006-04-24

    Stabilization of the rf power driving an inductively coupled plasma (ICP) has implications for fields ranging from atomic clocks to analytical chemistry to illumination technology. Here, we demonstrate a technique in which the plasma itself acts as a probe of radio wave power, and provides a correction signal for active rf-power control. Our technique takes advantage of the resonant nature of forced ion waves in the plasma, and their observation in the ICP's optical emission.

  11. Electron–ion relaxation time in moderately degenerate plasma

    SciTech Connect

    Vronskii, M. A. Koryakina, Yu. V.

    2015-09-15

    A formula is derived for the electron–ion relaxation time in a partially degenerate plasma with electron-ion interaction via a central field. The resulting expression in the form of an integral of the transport cross section generalizes the well-known Landau and Brysk approximations.

  12. Ion Temperature Control of the Io Plasma Torus

    NASA Technical Reports Server (NTRS)

    Delamere, P. A.; Schneider, N. M.; Steffl, A. J.; Robbins, S. J.

    2005-01-01

    We report on observational and theoretical studies of ion temperature in the Io plasma torus. Ion temperature is a critical factor for two reasons. First, ions are a major supplier of energy to the torus electrons which power the intense EUV emissions. Second, ion temperature determines the vertical extent of plasma along field lines. Higher temperatures spread plasma out, lowers the density and slows reaction rates. The combined effects can play a controlling role in torus energetics and chemistry. An unexpected tool for the study of ion temperature is the longitudinal structure in the plasma torus which often manifests itself as periodic brightness variations. Opposite sides of the torus (especially magnetic longitudes 20 and 200 degrees) have been observed on numerous occasions to have dramatically different brightness, density, composition, ionization state, electron temperature and ion temperature. These asymmetries must ultimately be driven by different energy flows on the opposite sides, presenting an opportunity to observe key torus processes operating under different conditions. The most comprehensive dataset for the study of longitudinal variations was obtained by the Cassini UVIS instrument during its Jupiter flyby. Steffl (Ph.D. thesis, 2005) identified longitudinal variations in all the quantities listed above wit the exception of ion temperature. We extend his work by undertaking the first search for such variation in the UVIS dataset. We also report on a 'square centimeter' model of the torus which extend the traditional 'cubic centimeter' models by including the controlling effects of ion temperature more completely.

  13. The positive ion temperature effect in magnetized electronegative plasma sheath with two species of positive ions

    SciTech Connect

    Shaw, A. K.; Kar, S.; Goswami, K. S.

    2012-10-15

    The properties of a magnetized multi-component (two species of positive ions, negative ions and electrons) plasma sheath with finite positive ion temperature are studied. By using three fluid hydrodynamic model and some dimensionless variables, the ion (both lighter and heavier positive ions, and negative ions) densities, the ion (only for positive ions) velocities, and electric potential inside the sheath are investigated. In addition, the absence and presence of magnetic field and the orientation of magnetic field are considered. It is noticed that, with increase of positive ion temperature, the lighter positive ion density peaks increase only at the sheath edge and shift towards the sheath edge for both absence and presence of magnetic field. For heavier positive ions, in the absence of magnetic field, the density peaks increase at the sheath edge. But in the presence of magnetic field, the density fluctuations increase at the sheath edge. For both the cases, the density peaks shift towards the sheath edge.

  14. Gallium ion extraction from a plasma sputter-type ion source.

    PubMed

    Vasquez, M; Imakita, S; Kasuya, T; Maeno, S; Wada, M

    2010-02-01

    A broad mixed ion beam containing positive ions of gallium (Ga) was produced with a plasma sputter-type ion source. Liquid Ga was suspended on a tungsten reservoir to be sputtered and postionized in argon (Ar) plasma excited by a radio frequency (rf) power at 13.56 MHz. Optical emission spectra from the plasma near the Ga sputtering target had indicated that the release of Ga into plasma increased with increasing negative bias to the sputtering target. The ratio of Ga(+) current to Ar(+) current was measured to be about 1% with a quadrupole mass analyzer at 100 V extraction voltage for incident rf power as low as 30 W. Ions in the plasma were extracted through a pair of multiaperture electrodes. The homogeneity of Ga flux was examined by making a Ga deposition pattern on a glass substrate located behind the extractor electrodes. PMID:20192457

  15. Gallium ion extraction from a plasma sputter-type ion source

    SciTech Connect

    Vasquez, M. Jr.; Imakita, S.; Kasuya, T.; Wada, M.; Maeno, S.

    2010-02-15

    A broad mixed ion beam containing positive ions of gallium (Ga) was produced with a plasma sputter-type ion source. Liquid Ga was suspended on a tungsten reservoir to be sputtered and postionized in argon (Ar) plasma excited by a radio frequency (rf) power at 13.56 MHz. Optical emission spectra from the plasma near the Ga sputtering target had indicated that the release of Ga into plasma increased with increasing negative bias to the sputtering target. The ratio of Ga{sup +} current to Ar{sup +} current was measured to be about 1% with a quadrupole mass analyzer at 100 V extraction voltage for incident rf power as low as 30 W. Ions in the plasma were extracted through a pair of multiaperture electrodes. The homogeneity of Ga flux was examined by making a Ga deposition pattern on a glass substrate located behind the extractor electrodes.

  16. Subcutoff microwave driven plasma ion sources for multielemental focused ion beam systems.

    PubMed

    Mathew, Jose V; Chowdhury, Abhishek; Bhattacharjee, Sudeep

    2008-06-01

    A compact microwave driven plasma ion source for focused ion beam applications has been developed. Several gas species have been experimented including argon, krypton, and hydrogen. The plasma, confined by a minimum B multicusp magnetic field, has good radial and axial uniformity. The octupole multicusp configuration shows a superior performance in terms of plasma density (~1.3 x 10(11) cm(-3)) and electron temperature (7-15 eV) at a power density of 5-10 Wcm(2). Ion current densities ranging from a few hundreds to over 1000 mA/cm(2) have been obtained with different plasma electrode apertures. The ion source will be combined with electrostatic Einzel lenses and should be capable of producing multielemental focused ion beams for nanostructuring and implantations. The initial simulation results for the focused beams have been presented. PMID:18601405

  17. Plasma Ion Sources for Atmospheric Pressure Ionization Mass Spectrometry.

    NASA Astrophysics Data System (ADS)

    Zhao, Jian-Guo

    1994-01-01

    Atmospheric pressure ionization (API) sources using direct-current (DC) and radio-frequency (RF) plasma have been developed in this thesis work. These ion sources can provide stable discharge currents of ~ 1 mA, 2-3 orders of magnitude larger than that of the corona discharge, a widely used API source. The plasmas can be generated and maintained in 1 atm of various buffer gases by applying -500 to -1000 V (DC plasma) or 1-15 W with a frequency of 165 kHz (RF plasma) on the needle electrode. These ion sources have been used with liquid injection to detect various organic compounds of pharmaceutical, biotechnological and environmental interest. Key features of these ion sources include soft ionization with the protonated molecule as the largest peak, and superb sensitivity with detection limits in the low picogram or femtomole range and a linear dynamic range over ~4 orders of magnitude. The RF plasma has advantages over the DC plasma in its ability to operate in various buffer gases and to produce a more stable plasma. Factors influencing the performance of the ion sources have been studied, including RF power level, liquid flow rate, chamber temperature, solvent composition, and voltage affecting the collision induced dissociation (CID). Ionization of hydrocarbons by the RF plasma API source was also studied. Soft ionization is generally produced. To obtain high sensitivity, the ion source must be very dry and the needle-to-orifice distance must be small. Nitric oxide was used to enhance the sensitivity. The RF plasma source was then used for the analysis of hydrocarbons in auto emissions. Comparisons between the corona discharge and the RF plasma have been made in terms of discharge current, ion residence time, and the ion source model. The RF plasma source provides larger linear dynamic range and higher sensitivity than the corona discharge, due to its much larger discharge current. The RF plasma was also observed to provide longer ion residence times and was not

  18. Positive ion polymerization in hydrogen diluted silane plasmas

    SciTech Connect

    Nunomura, S.; Kondo, M.

    2008-12-08

    Mass spectra of positive ions (cations) and neutrals have been measured in hydrogen diluted silane plasmas at gas pressures of 0.1-10 Torr. The mass spectrum of ions changes with the pressure, while that of neutrals maintains a similar shape. The dominant ion species varies from a hydrogen ion group at < or approx. 0.5 Torr to a monosilicon hydride ion group at {approx_equal}0.5-1 Torr and polysilicon hydride ion groups at > or approx. 1 Torr, which is determined from ionization channels and consecutive ion-molecule reactions. The ion bombardment is suppressed with the pressure, from several tens of eV at < or approx. 1 Torr to a few eV at > or approx. 7 Torr.

  19. Excitation of lower hybrid waves by a gyrating ion beam in a negative ion plasma

    SciTech Connect

    Sharma, Jyotsna; Jain, V. K.; Sharma, Suresh C.; Gahlot, Ajay

    2013-03-15

    A gyrating ion beam propagating through a magnetized plasma cylinder containing K{sup +} positive ions, electrons, and SF{sub 6}{sup -} negative ions drives electrostatic lower hybrid waves to instability via Cyclotron interaction. Numerical calculations of the unstable mode frequencies and growth rates of both the unstable positive ion and negative ion modes have been carried out for the existing negative ion plasma parameters. It is found that the unstable mode frequencies of both the modes increase, with the relative density of negative ions. In addition, the growth rates of both the unstable modes also increases with relative density of negative ions. Moreover, the growth rates of both the unstable modes scale as the one-third power of the beam density. The frequencies of both the unstable modes also increase with the magnetic fields. The real part of the unstable wave frequency increases as almost the square root of the beam energy.

  20. Ion motion in the wake driven by long particle bunches in plasmas

    SciTech Connect

    Vieira, J.; Silva, L. O.; Mori, W. B.

    2014-05-15

    We explore the role of the background plasma ion motion in self-modulated plasma wakefield accelerators. We employ Dawson's plasma sheet model to derive expressions for the transverse plasma electric field and ponderomotive force in the narrow bunch limit. We use these results to determine the on-set of the ion dynamics and demonstrate that the ion motion could occur in self-modulated plasma wakefield accelerators. Simulations show the motion of the plasma ions can lead to the early suppression of the self-modulation instability and of the accelerating fields. The background plasma ion motion can nevertheless be fully mitigated by using plasmas with heavier plasmas.

  1. Compressive and rarefactive dust ion-acoustic solitary waves with degenerate electron-positron-ion plasma

    NASA Astrophysics Data System (ADS)

    Mukta, K. N.; Zobaer, M. S.; Roy, N.; Mamun, A. A.

    2015-06-01

    The nonlinear propagation of dust ion-acoustic (DIA) waves in a unmagnetized collisionless degenerate dense plasma (containing degenerate electron and positron, and classical ion fluids) has been theoretically investigated. The K-dV equation has been derived by employing the reductive perturbation method and by taking into account the effect of different plasma parameters in plasma fluid. The stationary solitary wave solution of K-dV equation is obtained, and numerically analyzed to identify the basic properties of DIA solitary structures. It has been shown that depending on plasma parametric values, the degenerate plasma under consideration supports compressive or rarefactive solitary structures. It has been also found that the effect of pressures on electrons, ions, and positrons significantly modify the basic features of solitary waves that are found to exist in such a plasma system. The relevance of our results in astrophysical objects such as white dwarfs and neutron stars, which are of scientific interest, is discussed briefly.

  2. Modeling and simulation of ion-filtered inductively coupled plasma using argon plasma

    NASA Astrophysics Data System (ADS)

    Wu, Chao; Wang, Jian; Zhang, Weiwang; Luo, Yi

    2015-03-01

    An ion-filtered inductively coupled plasma (IF-ICP) is proposed to reduce ion bombardment and provide high metastable species density for chemical vapor deposition. Argon plasma, which has simple reaction mechanism, is simulated to show the effects of ion filter. Compared to typical ICP, the maximum density of ions of IF-ICP is lower while that of metastable species is higher. The filter can absorb ions effectively and relatively small amount of metastable species, with the absorption coefficient proportional to its surface area. A proper gap between filter and substrate can achieve more metastable species and less ions on the substrate. The pressure and RF power need to be optimized based on the tradeoff between deposition rate and ion damage. The density of ions on the substrate can be reduced by two orders of magnitude while that of metastable species are maintained in the order of 1017 m-3 under the optimized conditions.

  3. On a simulation of ion confinement in ECRIS plasmas

    NASA Astrophysics Data System (ADS)

    Mironov, V.; Stiebing, K. E.

    2002-02-01

    A particle-in-cell code has been developed for modeling the charged particle three-dimensional dynamics in the magnetic field of an electron cyclotron resonance ion source (ECRIS). The code incorporates the leap-frog particle pusher and Takizuka-Abé's method for simulating the small-angle Coulomb collisions between the ions. Ionization dynamics and electron-ion heating are also included. The code has been used to estimate ion confinement times in the ECRIS plasma due to ion-ion collisions. Good agreement has been obtained with results from the gas-dynamic trapping model. The charge state distributions (CSD) of extracted argon ions were obtained under different boundary conditions, and good agreement is achieved with experimentally observed CSD. It was shown that the geometry of atom fluxes inside the source chamber plays an important role in determining the electron cyclotron resonance plasma parameters. Generally, ion temperatures were obtained to be around 0.5 eV, and ion confinement times are in a range 0.2-1 ms for the typical parameters of ECRIS plasma.

  4. Plasma Instabilities in Heavy Ion Collisions

    SciTech Connect

    Attems, M.; Rebhan, A.; Strickland, M.

    2011-05-23

    Non-Abelian plasma instabilities play a crucial role in the nonequilibrium dynamics of a weakly coupled quark-gluon plasma. The Chromo-Weibel instabilities have been proposed as a possible mechanism for the fast apparent thermalization of the quark-gluon plasma and have been extensively studied in stationary anisotropic plasmas using the so-called hard-loop approximation. The generalization to the hard-expanding-loop (HEL) formalism allows the (numerical) calculation of the time evolution of gluonic mean fields in the more realistic dynamical case of anisotropic expansion.

  5. Experimental test of instability enhanced collisional friction for determining ion loss in two ion species plasmas

    SciTech Connect

    Hershkowitz, N.; Yip, C.-S.; Severn, G. D.

    2011-05-15

    Recent experiments have shown that ions in weakly collisional plasmas containing two ion species of comparable densities approximately reach a common velocity at the sheath edge equal to the bulk plasma ion sound velocity. A recent theory [S. D. Baalrud, C. C. Hegna, and J. D. Callen, Phys. Rev. Lett. 103, 205002 (2009)] suggests that this is a consequence of collisional friction between the two ion species enhanced by the two stream instability. The theory finds that the difference in velocities at the sheath edge depends on the relative concentrations of the two ions. The difference in velocities is small, with both species approaching to the bulk sound velocity, when the concentrations are comparable, and is large, with each species reaching its own Bohm velocity, when the relative concentration differences are large. To test these findings, drift velocities of Ar and Xe ions were measured with laser-induced fluorescence in Ar-Xe and He-Xe plasmas and combined with ion acoustic wave and plasma potential data. In addition, electron temperature was varied by a Maxwell demon [K. R. MacKenzie et al., App. Phys. Lett. 18, 529 (1971)]. The predictions were found to be in excellent agreement with the experimental data. The generalized Bohm criterion in two ion species plasmas is also verified in a wider variety of relative ion concentrations.

  6. Predicting ion charge state distributions of vacuum arc plasmas

    SciTech Connect

    Anders, A.; Schulke, T.

    1996-04-01

    Multiply charged ions are present in vacuum arc plasmas. The ions are produced at cathode spots, and their charge state distributions (CSDs) depend on the cathode material but only little on the arc current or other parameters as long as the current is relatively low and the anode is not actively involved in the plasma production. There are experimental data of ion CSDs available in the literature for 50 different cathode materials. The CSDs can be calculated based on the assumption that thermodynamic equilibrium is valid in the vicinity of the cathode spot, and the equilibrium CSDs `freeze` at a certain distance from the cathode spot (transition to a non-equilibrium plasma). Plasma temperatures and densities at the `freezing points` have been calculated, and, based on the existence of characteristic groups of elements in the Periodic Table, predictions of CSDs can be made for metallic elements which have not yet been used as cathode materials.

  7. Cylindrical and spherical ion acoustic waves in a plasma with nonthermal electrons and warm ions

    SciTech Connect

    Sahu, Biswajit; Roychoudhury, Rajkumar

    2005-05-15

    Using the reductive perturbation technique, nonlinear cylindrical and spherical Korteweg-de Vries (KdV) and modified KdV equations are derived for ion acoustic waves in an unmagnetized plasma consisting of warm adiabatic ions and nonthermal electrons. The effects of nonthermally distributed electrons on cylindrical and spherical ion acoustic waves are investigated. It is found that the nonthermality has a very significant effect on the nature of ion acoustic waves.

  8. Plasma spectroscopy of metal ions for hyper-electron cyclotron resonance ion source.

    PubMed

    Muto, Hideshi; Ohshiro, Yukimitsu; Yamaka, Shoichi; Watanabe, Shin-ichi; Oyaizu, Michihiro; Kubono, Shigeru; Yamaguchi, Hidetoshi; Kase, Masayuki; Hattori, Toshiyuki; Shimoura, Susumu

    2014-02-01

    In this research, the optical line spectra of metal ions from ECR plasma were observed using a grating monochromator with a photomultiplier. The light intensity of line spectrum from the ECR plasma had a strong correlation with ion beam intensity measured by a magnetic mass analyzer. This correlation is a significant information for the beam tuning process, because it allows to conduct the extraction of the desired metal ion species from the ECR plasma. Separation of ion species of the same charge to mass ratio with an electromagnetic mass analyzer is known to be an exceptionally complex process, but this research provides a new approach for its simplification. In this paper the grating monochromator method for metal ion beam tuning such as (40)Ca(12+), (56)Fe(15+), and (85)Rb(20+) of hyper-ECR ion source as an injector for RIKEN Azimuthal Varying Field cyclotron is described. PMID:24593484

  9. Spherical ion acoustic waves in pair ion plasmas with nonthermal electrons

    NASA Astrophysics Data System (ADS)

    Selim, M. M.

    2016-04-01

    Propagation of nonplanar ion acoustic waves in a plasma composed of negative and positive ions and nonthermally distributed electrons is investigated using reductive perturbation theory. The spherical Kadomtsev-Petviashvili (SKP) equation which describes the dynamics of the nonlinear spherical ion acoustic waves is derived. It is found that compressive and rarefactive ion-acoustic solitary wave characteristics significantly depend on the density and mass ratios of the positive to negative ions, the nonthermal electron parameter, and the geometry factor. The possible regions for the existence of spherical ion acoustic waves are defined precisely for typical parameters of (H+, O2 -) and (H+, H-) plasmas in the D and F-regions of the Earth's ionosphere, as well as for laboratory plasma (Ar+, F-).

  10. Plasma particle simulation of electrostatic ion thrusters

    NASA Technical Reports Server (NTRS)

    Peng, Xiaohang; Keefer, Dennis; Ruyten, Wilhelmus

    1990-01-01

    Charge exchange collisons between beam ions and neutral propellant gas can result in erosion of the accelerator grid surfaces of an ion engine. A particle in cell (PIC) is developed along with a Monte Carlo method to simulate the ion dynamics and charge exchange processes in the grid region of an ion thruster. The simulation is two-dimensional axisymmetric and uses three velocity components (2d3v) to investigate the influence of charge exchange collisions on the ion sputtering of the accelerator grid surfaces. An example calculation has been performed for an ion thruster operated on xenon propellant. The simulation shows that the greatest sputtering occurs on the downstream surface of the grid, but some sputtering can also occur on the upstream surface as well as on the interior of the grid aperture.

  11. Alternative modeling methods for plasma-based Rf ion sources.

    PubMed

    Veitzer, Seth A; Kundrapu, Madhusudhan; Stoltz, Peter H; Beckwith, Kristian R C

    2016-02-01

    Rf-driven ion sources for accelerators and many industrial applications benefit from detailed numerical modeling and simulation of plasma characteristics. For instance, modeling of the Spallation Neutron Source (SNS) internal antenna H(-) source has indicated that a large plasma velocity is induced near bends in the antenna where structural failures are often observed. This could lead to improved designs and ion source performance based on simulation and modeling. However, there are significant separations of time and spatial scales inherent to Rf-driven plasma ion sources, which makes it difficult to model ion sources with explicit, kinetic Particle-In-Cell (PIC) simulation codes. In particular, if both electron and ion motions are to be explicitly modeled, then the simulation time step must be very small, and total simulation times must be large enough to capture the evolution of the plasma ions, as well as extending over many Rf periods. Additional physics processes such as plasma chemistry and surface effects such as secondary electron emission increase the computational requirements in such a way that even fully parallel explicit PIC models cannot be used. One alternative method is to develop fluid-based codes coupled with electromagnetics in order to model ion sources. Time-domain fluid models can simulate plasma evolution, plasma chemistry, and surface physics models with reasonable computational resources by not explicitly resolving electron motions, which thereby leads to an increase in the time step. This is achieved by solving fluid motions coupled with electromagnetics using reduced-physics models, such as single-temperature magnetohydrodynamics (MHD), extended, gas dynamic, and Hall MHD, and two-fluid MHD models. We show recent results on modeling the internal antenna H(-) ion source for the SNS at Oak Ridge National Laboratory using the fluid plasma modeling code USim. We compare demonstrate plasma temperature equilibration in two-temperature MHD

  12. Alternative modeling methods for plasma-based Rf ion sources

    NASA Astrophysics Data System (ADS)

    Veitzer, Seth A.; Kundrapu, Madhusudhan; Stoltz, Peter H.; Beckwith, Kristian R. C.

    2016-02-01

    Rf-driven ion sources for accelerators and many industrial applications benefit from detailed numerical modeling and simulation of plasma characteristics. For instance, modeling of the Spallation Neutron Source (SNS) internal antenna H- source has indicated that a large plasma velocity is induced near bends in the antenna where structural failures are often observed. This could lead to improved designs and ion source performance based on simulation and modeling. However, there are significant separations of time and spatial scales inherent to Rf-driven plasma ion sources, which makes it difficult to model ion sources with explicit, kinetic Particle-In-Cell (PIC) simulation codes. In particular, if both electron and ion motions are to be explicitly modeled, then the simulation time step must be very small, and total simulation times must be large enough to capture the evolution of the plasma ions, as well as extending over many Rf periods. Additional physics processes such as plasma chemistry and surface effects such as secondary electron emission increase the computational requirements in such a way that even fully parallel explicit PIC models cannot be used. One alternative method is to develop fluid-based codes coupled with electromagnetics in order to model ion sources. Time-domain fluid models can simulate plasma evolution, plasma chemistry, and surface physics models with reasonable computational resources by not explicitly resolving electron motions, which thereby leads to an increase in the time step. This is achieved by solving fluid motions coupled with electromagnetics using reduced-physics models, such as single-temperature magnetohydrodynamics (MHD), extended, gas dynamic, and Hall MHD, and two-fluid MHD models. We show recent results on modeling the internal antenna H- ion source for the SNS at Oak Ridge National Laboratory using the fluid plasma modeling code USim. We compare demonstrate plasma temperature equilibration in two-temperature MHD models

  13. Ion thermal effects on slow mode solitary waves in plasmas with two adiabatic ion species

    SciTech Connect

    Nsengiyumva, F. Hellberg, M. A. Mace, R. L.

    2015-09-15

    Using both the Sagdeev and Korteweg-de Vries (KdV) methods, ion thermal effects on slow mode ion acoustic solitons and double layers are investigated in a plasma with two adiabatic positive ion species. It is found that reducing the gap between the two ion thermal speeds by increasing the relative temperature of the cool ions increases the typical soliton/double layer speeds for all values of the ion-ion density ratio and reduces the range in the density ratio that supports double layers. The effect of increasing the relative cool ion temperature on the soliton/double layer amplitudes depends on the relative densities. For lower values of the ion density ratio, an increase in cool ion temperature leads to a significant decrease in soliton/double layer amplitude, so one may find that solitons of all permissible speeds lie within the range of KdV theory.

  14. Preliminary scaling laws for plasma current, ion kinetic temperature, and plasma number density in the NASA Lewis Bumpy Torus plasma

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1976-01-01

    Parametric variation of independent variables which may affect the characteristics of the NASA Lewis Bumpy Torus plasma have identified those which have a significant effect on the plasma current, ion kinetic temperature, and plasma number density, and those which do not. Empirical power-law correlations of the plasma current, and the ion kinetic temperature and number density were obtained as functions of the potential applied to the midplane electrode rings, the background neutral gas pressure, and the magnetic field strength. Additional parameters studied include the type of gas, the polarity of the midplane electrode rings (and hence the direction of the radial electric field), the mode of plasma operation, and the method of measuring the plasma number density. No significant departures from the scaling laws appear to occur at the highest ion kinetic temperatures or number densities obtained to date.

  15. Preliminary scaling laws for plasma current, ion kinetic temperature, and plasma number density in the NASA Lewis bumpy torus plasma

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1976-01-01

    Parametric variation of independent variables which may affect the characteristics of bumpy torus plasma have identified those which have a significant effect on the plasma current, ion kinetic temperature, and plasma number density, and those which do not. Empirical power law correlations of the plasma current, and the ion kinetic temperature and number density were obtained as functions of potential applied to the midplane electrode rings, the background neutral gas pressure, and the magnetic field strength. Additional parameters studied included the type of gas, the polarity of the midplane electrode rings, the mode of plasma operation, and the method of measuring the plasma number density. No significant departures from the scaling laws appear to occur at the highest ion kinetic temperatures or number densities obtained to date.

  16. Hydrogen Plasmas for Negative Ion Production

    SciTech Connect

    Pagano, D.; Gorse, C.; Capitelli, M.

    2005-05-16

    We have improved a zero-dimensional model, built to simulate the operating conditions in the excitation ('driver') region of a multicusp ion source optimized for negative ion production of great interest in thermonuclear applications. The new approach to couple heavy particle and electron kinetics is discussed.

  17. Experiments on Negative Ion Plasmas in a Q-Machine

    NASA Astrophysics Data System (ADS)

    An, Tao

    Three experiments on negative ion plasmas in the University of Iowa Q-machine IQ-2 are described in this thesis. In the Lower-Hybrid wave experiment, the low-frequency (ion-ion mode) waves are excited, waves propagate at a right angle to the magnetic field. The wave frequencies increase as the negative ion concentration increases, in agreement with the dispersion relation obtained from fluid theory. In the Kelvin-Helmholtz instability experiment, the negative ions have a generally destabilizing effect on the instability driven by a relative drift between ions in adjacent layers. However, for large negative ion concentrations, enhanced radial diffusion associated with the Kelvin-Helmholtz oscillations tends to have a stabilizing effect due to a "mixing" of ion flows in adjacent layer. In the diffusion experiment, the K^ {+} ions experience a displacement across the magnetic filed on the order of their gyroradius upon collision with a negative ion, leading to an enhancement in the rate of cross-field diffusion over that expected in the ordinary K^{+}/electron plasma.

  18. Ion impact distribution over plasma exposed nanocone arrays

    NASA Astrophysics Data System (ADS)

    Mehrabian, S.; Xu, S.; Qaemi, A. A.; Shokri, B.; Ostrikov, K.

    2013-03-01

    The effect of an ordered array of nanocones on a conducting substrate immersed in the plasma on the transport of the plasma ions is investigated. The real conical shape of the cones is rigorously incorporated into the model. The movement of 105 CH3+ ions in the plasma sheath modified by the nanocone array is simulated. The ions are driven by the electric fields produced by the sheath and the nanostructures. The surface charge density and the total charge on the nanotips with different aspect ratios are computed. The ion transport simulation provides important characteristics of the displacement and velocity of the ions. The relative ion distribution along the lateral surfaces of the carbon nanotips is computed as well. It is shown that a rigorous account of the realistic nanostructure shape leads to very different distribution of the ion fluxes on the nanostructured surfaces compared to the previously reported works. The ion flux distribution is a critical factor in the nucleation process on the substrate and determines the nanostructure growth patterns.

  19. Fast ion generation and bulk plasma heating with three-ion ICRF scenarios

    SciTech Connect

    Kazakov, Ye. O. Van Eester, D.; Ongena, J.; Lerche, E.; Messiaen, A.

    2015-12-10

    Launching electromagnetic waves in the ion cyclotron range of frequencies (ICRF) is an efficient method of plasma heating, actively employed in most of fusion machines. ICRF has a number of important supplementary applications, including the generation of high-energy ions. In this paper, we discuss a new set of three-ion ICRF scenarios and the prospect of their use as a dedicated tool for fast ion generation in tokamaks and stellarators. A distinct feature of these scenarios is a strong absorption efficiency possible at very low concentrations of resonant minority ions (∼ 1% or even below). Such concentration levels are typical for impurities contaminating fusion plasmas. An alternative ICRF scenario for maximizing the efficiency of bulk D-T ion heating is suggested for JET and ITER tokamaks, which is based on three-ion ICRF heating of intrinsic Beryllium impurities.

  20. Improved ion implant fluence uniformity in hydrogen enhanced glow discharge plasma immersion ion implantation into silicon.

    PubMed

    Luo, J; Li, L H; Liu, H T; Yu, K M; Xu, Y; Zuo, X J; Zhu, P Z; Ma, Y F; Fu, Ricky K Y; Chu, Paul K

    2014-06-01

    Enhanced glow discharge plasma immersion ion implantation does not require an external plasma source but ion focusing affects the lateral ion fluence uniformity, thereby hampering its use in high-fluence hydrogen ion implantation for thin film transfer and fabrication of silicon-on-insulator. Insertion of a metal ring between the sample stage and glass chamber improves the ion uniformity and reduces the ion fluence non-uniformity as the cathode voltage is raised. Two-dimensional multiple-grid particle-in-cell simulation confirms that the variation of electric field inside the chamber leads to mitigation of the ion focusing phenomenon and the results are corroborated experimentally by hydrogen forward scattering. PMID:24985818

  1. Improved ion implant fluence uniformity in hydrogen enhanced glow discharge plasma immersion ion implantation into silicon

    NASA Astrophysics Data System (ADS)

    Luo, J.; Li, L. H.; Liu, H. T.; Yu, K. M.; Xu, Y.; Zuo, X. J.; Zhu, P. Z.; Ma, Y. F.; Fu, Ricky K. Y.; Chu, Paul K.

    2014-06-01

    Enhanced glow discharge plasma immersion ion implantation does not require an external plasma source but ion focusing affects the lateral ion fluence uniformity, thereby hampering its use in high-fluence hydrogen ion implantation for thin film transfer and fabrication of silicon-on-insulator. Insertion of a metal ring between the sample stage and glass chamber improves the ion uniformity and reduces the ion fluence non-uniformity as the cathode voltage is raised. Two-dimensional multiple-grid particle-in-cell simulation confirms that the variation of electric field inside the chamber leads to mitigation of the ion focusing phenomenon and the results are corroborated experimentally by hydrogen forward scattering.

  2. Fast ion generation and bulk plasma heating with three-ion ICRF scenarios

    NASA Astrophysics Data System (ADS)

    Kazakov, Ye. O.; Van Eester, D.; Dumont, R.; Ongena, J.; Lerche, E.; Messiaen, A.

    2015-12-01

    Launching electromagnetic waves in the ion cyclotron range of frequencies (ICRF) is an efficient method of plasma heating, actively employed in most of fusion machines. ICRF has a number of important supplementary applications, including the generation of high-energy ions. In this paper, we discuss a new set of three-ion ICRF scenarios and the prospect of their use as a dedicated tool for fast ion generation in tokamaks and stellarators. A distinct feature of these scenarios is a strong absorption efficiency possible at very low concentrations of resonant minority ions (˜ 1% or even below). Such concentration levels are typical for impurities contaminating fusion plasmas. An alternative ICRF scenario for maximizing the efficiency of bulk D-T ion heating is suggested for JET and ITER tokamaks, which is based on three-ion ICRF heating of intrinsic Beryllium impurities.

  3. Improved ion implant fluence uniformity in hydrogen enhanced glow discharge plasma immersion ion implantation into silicon

    SciTech Connect

    Luo, J.; Li, L. H. E-mail: paul.chu@cityu.edu.hk; Liu, H. T.; Xu, Y.; Zuo, X. J.; Zhu, P. Z.; Ma, Y. F.; Yu, K. M.; Fu, Ricky K. Y.; Chu, Paul K. E-mail: paul.chu@cityu.edu.hk

    2014-06-15

    Enhanced glow discharge plasma immersion ion implantation does not require an external plasma source but ion focusing affects the lateral ion fluence uniformity, thereby hampering its use in high-fluence hydrogen ion implantation for thin film transfer and fabrication of silicon-on-insulator. Insertion of a metal ring between the sample stage and glass chamber improves the ion uniformity and reduces the ion fluence non-uniformity as the cathode voltage is raised. Two-dimensional multiple-grid particle-in-cell simulation confirms that the variation of electric field inside the chamber leads to mitigation of the ion focusing phenomenon and the results are corroborated experimentally by hydrogen forward scattering.

  4. Molecular Dynamics Simulations of Ion Equilibration in Ultracold Neutral Plasmas

    NASA Astrophysics Data System (ADS)

    Maksimovic, Nikola; Langin, Thomas; Strickler, Trevor; Killian, Thomas

    2015-11-01

    Understanding transport and equilibration in strongly coupled plasmas is important for modeling plasmas found in extreme environments like inertial confinement fusion plasmas and interiors of gas-giant planets. We use molecular dynamics simulations of Yukawa one component plasmas under periodic boundary conditions to study the evolution of strongly coupled ultracold neutral plasmas (UNPs) at early times. Simulations provide access to observable quantities in strongly coupled plasmas, namely correlation functions. Experimentally, the average velocity of an ion subset with a skewed velocity profile has been used to measure velocity autocorrelation functions and provide access to diffusion coefficients and other transport processes in UNPs. Using the simulation, we verify the experimental measurements of average velocities of ion subsets in UNPs and confirm their agreement with the velocity autocorrelation function. Finally, we examine the collective mode behavior of the ions during their equilibration phase by calculating the longitudinal current correlation function at various times during equilibration. This allows us to study the collective mode coupling behavior of the equilibration of ions in UNPs and its dependence on screening parameter.

  5. Plasma and Ion Assistance in Physical Vapor Deposition: AHistorical Perspective

    SciTech Connect

    Anders, Andre

    2007-02-28

    Deposition of films using plasma or plasma-assist can betraced back surprisingly far, namely to the 18th century for arcs and tothe 19th century for sputtering. However, only since the 1960s thecoatings community considered other processes than evaporation for largescale commercial use. Ion Plating was perhaps the first importantprocess, introducing vapor ionization and substrate bias to generate abeam of ions arriving on the surface of the growing film. Ratherindependently, cathodic arc deposition was established as an energeticcondensation process, first in the former Soviet Union in the 1970s, andin the 1980s in the Western Hemisphere. About a dozen various ion-basedcoating technologies evolved in the last decades, all characterized byspecific plasma or ion generation processes. Gridded and gridless ionsources were taken from space propulsion and applied to thin filmdeposition. Modeling and simulation have helped to make plasma and ionseffects to be reasonably well understood. Yet--due to the complex, oftennon-linear and non-equilibrium nature of plasma and surfaceinteractions--there is still a place for the experience plasma"sourcerer."

  6. Energetics of multiple-ion species hohlraum plasmas

    SciTech Connect

    Neumayer, P.; Berger, R. L.; Callahan, D.; Divol, L.; Froula, D. H.; London, R. A.; MacGowan, B. J.; Meezan, N. B.; Michel, P. A.; Ross, J. S.; Sorce, C.; Widmann, K.; Suter, L. J.; Glenzer, S. H.

    2008-05-15

    A study of the laser-plasma interaction processes has been performed in multiple-ion species hohlraum plasmas at conditions similar to those expected in indirect drive inertial confinement fusion targets. Gas-filled hohlraums with electron densities of 5.5x10{sup 20} and 9x10{sup 20} cm{sup -3} are heated by 14.3 kJ of laser energy (wavelength 351 nm) to electron temperatures of 3 keV and backscattered laser light is measured. Landau damping of the ion acoustic waves is increased by adding hydrogen to a CO{sub 2} or CF{sub 4} gas. Stimulated Brillouin backscattering of a 351 nm probe beam is found to decrease monotonically with increasing Landau damping, accompanied by a comparable increase in the transmission. More efficient energy coupling into the hohlraum by suppression of backscatter from the heater beams results in an increased hohlraum radiation temperature, showing that multiple-ion species plasmas improve the overall hohlraum energetics. The reduction in backscatter is reproduced by linear gain calculations as well as detailed full-scale three-dimensional laser-plasma interaction simulations, demonstrating that Landau damping is the controlling damping mechanism in inertial confinement fusion relevant high-electron temperature plasmas. These findings have led to the inclusion of multiple-ion species plasmas in the hohlraum point design for upcoming ignition campaigns at the National Ignition Facility.

  7. Confinement of pure ion plasma in a cylindrical current sheet

    NASA Astrophysics Data System (ADS)

    Paul, Stephen F.; Chao, Edward H.; Davidson, Ronald C.; Phillips, Cynthia K.

    1999-12-01

    A novel method for containing a pure ion plasma at thermonuclear densities and temperatures has been modeled. The method combines the confinement principles of a Penning-Malmberg trap and a pulsed theta-pinch. A conventional Penning trap can confine a uniform-density plasma of about 5×1011cm-3 with a 30-Tesla magnetic field. However, if the axial field is ramped, a much higher local ion density can be obtained. Starting with a 107cm-3 trapped deuterium plasma at the Brillouin limit (B=0.6 Tesla), the field is ramped to 30 Tesla. Because the plasma is comprised of particles of only one sign of charge, transport losses are very low, i.e., the conductivity is high. As a result, the ramped field does not penetrate the plasma and a diamagnetic surface current is generated, with the ions being accelerated to relativistic velocities. To counteract the inward j×B forces from this induced current, additional ions are injected into the plasma along the axis to increase the density (and mutual electrostatic repulsion) of the target plasma. In the absence of the higher magnetic field in the center, the ions drift outward until a balance is established between the outward driving forces (centrifugal, electrostatic, pressure gradient) and the inward j×B force. An equilibrium calculation using a relativistic, 1-D, cold-fluid model shows that a plasma can be trapped in a hollow, 49-cm diameter, 0.2-cm thick cylinder with a density exceeding 4×1014cm-3.

  8. Ion energy distribution near a plasma meniscus for multielement focused ion beams

    SciTech Connect

    Mathew, Jose V.; Bhattacharjee, Sudeep

    2009-05-01

    The axial ion energy spread near a plasma meniscus for multielement focused ion beams is investigated experimentally in atomic and molecular gaseous plasmas of krypton, argon, and hydrogen by tailoring the magnetic field in the region. In the case of magnetic end plugging, the ion energy spread reduces by approx50% near the meniscus as compared to the bulk plasma, thereby facilitating beam focusing. A quadrupole filter can be used to control the mean energy of the ions. Comparison with standard Maxwellian and Druyvesteyn distributions with the same mean energy indicates that the ion energy distribution in the meniscus is deficient in the population of low and high energy tail ions, resulting in a Gaussian-like profile with a spread of approx4 and approx5 eV for krypton and argon ions, respectively. By carefully tuning the wave power, plasma collisionality, and the magnetic field in the meniscus, the spread can be made lower than that of liquid metal ion sources, for extracting focused ion beams of other elements with adequate current density, for research and applications in nanosystems

  9. Planar and nonplanar ion acoustic shock waves in relativistic degenerate astrophysical electron-positron-ion plasmas

    SciTech Connect

    Ata-ur-Rahman,; Qamar, A.; Ali, S.; Mirza, Arshad M.

    2013-04-15

    We have studied the propagation of ion acoustic shock waves involving planar and non-planar geometries in an unmagnetized plasma, whose constituents are non-degenerate ultra-cold ions, relativistically degenerate electrons, and positrons. By using the reductive perturbation technique, Korteweg-deVries Burger and modified Korteweg-deVries Burger equations are derived. It is shown that only compressive shock waves can propagate in such a plasma system. The effects of geometry, the ion kinematic viscosity, and the positron concentration are examined on the ion acoustic shock potential and electric field profiles. It is found that the properties of ion acoustic shock waves in a non-planar geometry significantly differ from those in planar geometry. The present study has relevance to the dense plasmas, produced in laboratory (e.g., super-intense laser-dense matter experiments) and in dense astrophysical objects.

  10. Propagation of ion acoustic shock waves in negative ion plasmas with nonextensive electrons

    SciTech Connect

    Hussain, S.; Akhtar, N.; Mahmood, S.

    2013-09-15

    Nonlinear ion acoustic shocks (monotonic as well as oscillatory) waves in negative ion plasmas are investigated. The inertialess electron species are assumed to be nonthermal and follow Tsallis distribution. The dissipation in the plasma is considered via kinematic viscosities of both positive and negative ion species. The Korteweg-de Vries Burgers (KdVB) equation is derived using small amplitude reductive perturbation technique and its analytical solution is presented. The effects of variation of density and temperature of negative ions and nonthermal parameter q of electrons on the strength of the shock structures are plotted for illustration. The numerical solutions of KdVB equation using Runge Kutta method are obtained, and transition from oscillatory to monotonic shock structures is also discussed in detail for negative ions nonthermal plasmas.

  11. Ion-Acoustic Shock Waves in Nonextensive Multi-Ion Plasmas

    NASA Astrophysics Data System (ADS)

    Jannat, N.; Ferdousi, M.; Mamun, A. A.

    2015-10-01

    The nonlinear propagation of ion-acoustic (IA) shock waves (SHWs) in a nonextensive multi-ion plasma system (consisting of inertial positive light ions as well as negative heavy ions, noninertial nonextensive electrons and positrons) has been studied. The reductive perturbation technique has been employed to derive the Burgers equation. The basic properties (polarity, amplitude, width, etc.) of the IA SHWs are found to be significantly modified by the effects of nonextensivity of electrons and positrons, ion kinematic viscosity, temperature ratio of electrons and positrons, etc. It has been observed that SHWs with positive and negative potential are formed depending on the plasma parameters. The findings of our results obtained from this theoretical investigation may be useful in understanding the characteristics of IA SHWs both in laboratory and space plasmas.

  12. Existence domains of slow and fast ion-acoustic solitons in two-ion space plasmas

    SciTech Connect

    Maharaj, S. K.; Bharuthram, R.; Singh, S. V. Lakhina, G. S.

    2015-03-15

    A study of large amplitude ion-acoustic solitons is conducted for a model composed of cool and hot ions and cool and hot electrons. Using the Sagdeev pseudo-potential formalism, the scope of earlier studies is extended to consider why upper Mach number limitations arise for slow and fast ion-acoustic solitons. Treating all plasma constituents as adiabatic fluids, slow ion-acoustic solitons are limited in the order of increasing cool ion concentrations by the number densities of the cool, and then the hot ions becoming complex valued, followed by positive and then negative potential double layer regions. Only positive potentials are found for fast ion-acoustic solitons which are limited only by the hot ion number density having to remain real valued. The effect of neglecting as opposed to including inertial effects of the hot electrons is found to induce only minor quantitative changes in the existence regions of slow and fast ion-acoustic solitons.

  13. Ferroelectric Plasma Source for Heavy Ion Beam ChargeNeutralization

    SciTech Connect

    Efthimion, Philip C.; Gilson, Erik P.; Grisham, Larry; Davidson,Ronald C.; Yu, Simon; Waldron, William; Logan, B. Grant

    2005-10-01

    Plasmas are employed as a source of unbound electrons for charge neutralizing heavy ion beams to allow them to focus to a small spot size. Calculations suggest that plasma at a density of 1-100 times the ion beam density and at a length {approx} 0.1-1 m would be suitable. To produce one-meter plasma, large-volume plasma sources based upon ferroelectric ceramics are being developed. These sources have the advantage of being able to increase the length of the plasma and operate at low neutral pressures. The source utilizes the ferroelectric ceramic BaTiO{sub 3} to form metal plasma. The drift tube inner surface of the Neutralized Drift Compression Experiment (NDCX) will be covered with ceramic, and high voltage ({approx} 1-5 kV) applied between the drift tube and the front surface of the ceramic by placing a wire grid on the front surface. A prototype ferroelectric source 20 cm long has produced plasma densities of 5 x 10{sup 11} cm{sup -3}. The source was integrated into the previous Neutralized Transport Experiment (NTX), and successfully charge neutralized the K{sup +} ion beam. Presently, the one-meter source is being fabricated. The source is being characterized and will be integrated into NDCX for charge neutralization experiments.

  14. Sources and Transport of Plasma Sheet Ions During Magnetospheric Substorms

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, M.; El-Alaoui, M.; Peroomian, V.; Raeder, J.; Walker, R. J.; Frank, L. A.; Paterson, W. R.

    1998-01-01

    This study investigates the sources and transport of ions observed in the near-Earth plasma sheet during the growth and expansion phases of a magnetospheric substorm that took place on November 24, 1996. The sources and acceleration mechanisms of ions observed at Geotail were determined by calculating the trajectories of thousands of ions backward in time. We found that during the growth phase of the substorm, most of the ions reaching Geotail had origins in the low latitude boundary layer (LLBL) and were already in the magnetosphere when the growth phase began. Late in the growth phase and in the expansion phase more plasma mantle ions reached the Geotail location. Indeed, during the expansion phase more than 90% of the ions were from the mantle. The ions were accelerated enroute to the spacecraft; however, most of the energy gained was achieved by non-adiabatic acceleration during the ions' crossing of the equatorial current sheet just prior to the detection of the ions.

  15. Transition of ion-acoustic perturbations in multicomponent plasma with negative ions

    SciTech Connect

    Sharma, Sumita Kumari; Devi, Kavita; Adhikary, Nirab Chandra; Bailung, Heremba

    2008-08-15

    Evolution of ion-acoustic compressive (positive) and rarefactive (negative) perturbations in a multicomponent plasma with negative ions has been investigated in a double plasma device. Transition of compressive solitons in electron-positive ion plasma, into a dispersing train of oscillations in a multicomponent plasma, when the negative ion concentration r exceeds a critical value r{sub c}, has been observed. On the other hand, an initial rarefactive perturbation initially evolves into a dispersing train of oscillations in electron-positive ion plasma and transforms into rarefactive solitons in a multicomponent plasma when the negative ion concentration is higher than the critical value. The Mach velocity and width of the compressive and rarefactive solitons are measured. The compressive solitons in the range 0r{sub c} have different characteristics than the Korteweg-de Vries (KdV) solitons at r=0 and modified KdV solitons at r=r{sub c}. A nonlinear differential equation having two terms to account for the lower and higher order nonlinearity has been used to explain the observed results.

  16. The Physics of Ion Decoupling in Magnetized Plasma Explosions

    SciTech Connect

    Hewett, D; Larson, D; Brecht, S

    2011-02-08

    When a finite pulse of plasma expands into a magnetized background plasma, MHD predicts the pulse expel background plasma and its B-field - i.e. cause a magnetic 'bubble'. The expanding plasma is confined within the bubble, later to escape down the B-field lines. MHD suggests that the debris energy goes to expelling the B-field from the bubble volume and kinetic energy of the displaced background. For HANEs, this is far from the complete story. For many realistic HANE regimes, the long mean-free-path for collisions necessitates a Kinetic Ion Simulation Model (KISM). The most obvious effect is that the debris plasma can decouple and slip through the background plasma. The implications are: (1) the magnetic bubble is not as large as expected and (2) the debris is no longer confined within the magnetic bubble.

  17. Ion orbits in plasma etching of semiconductors

    SciTech Connect

    Madziwa-Nussinov, Tsitsi G.; Arnush, Donald; Chen, Francis F.

    2008-01-15

    Fabrication of high-speed semiconductor circuits depends on etching submicron trenches and holes with straight walls, guided by sheath accelerated ions, which strike the substrate at a normal angle. Electrons accumulate at the nonconductive entrance of each trench, charging it negatively and preventing the penetration of electrons to the bottom of the trench. This 'electron shading' effect causes an ion charge at the bottom, which is well known to cause damage to thin oxide layers. In addition, the deflection of ions by electric fields in the trench can cause deformation of the trench shape. To study this effect, the ion orbits are computed self-consistently with their charging of the trench walls. It is found that (a) the orbits depend only on the electric fields at the entrance and are sensitive to changes in the shape of the photoresist layer there; (b) there is an 'ion shading' effect that protects part of the wall; and (c) the number of ions striking the wall is too small to cause any deformation thereof.

  18. Determining the Bohm criterion in plasmas with two ion species

    SciTech Connect

    Baalrud, S. D.; Hegna, C. C.

    2011-02-15

    A model that uniquely determines the flow speed of each ion species at the sheath edge of two ion species plasmas is developed. In this analysis, ion-ion two-stream instabilities can play an important role because they significantly enhance the friction between ion species. Two-stream instabilities arise when the difference in flow speeds between the ion species exceeds a critical value: V{sub 1}-V{sub 2}{identical_to}{Delta}V{>=}{Delta}V{sub c}. The resultant instability-enhanced friction rapidly becomes so strong that {Delta}V cannot significantly exceed {Delta}V{sub c}. Using the condition provided by {Delta}V={Delta}V{sub c} and the generalized Bohm criterion, the speed of each ion species is uniquely determined as it leaves a quasineutral plasma and enters a sheath. Previous work [S. D. Baalrud et al., Phys. Rev. Lett. 103, 205002 (2009)] considered the cold ion limit (T{sub i}{yields}0), in which case {Delta}V{sub c}{yields}0 and each ion species obtains a common ''system'' sound speed at the sheath edge. Finite ion temperatures are accounted for in this work. The result is that {Delta}V{sub c} depends on the density and thermal speed of each ion species; {Delta}V{sub c} has a minimum when the density ratio of the two ion species is near one, and becomes larger as the density ratio deviates from unity. As {Delta}V{sub c} increases, the speed of each ion species approaches its individual sound speed at the sheath edge.

  19. Ion-acoustic cnoidal waves in plasmas with warm ions and kappa distributed electrons and positrons

    SciTech Connect

    Kaladze, T.; Mahmood, S.

    2014-03-15

    Electrostatic ion-acoustic periodic (cnoidal) waves and solitons in unmagnetized electron-positron-ion (EPI) plasmas with warm ions and kappa distributed electrons and positrons are investigated. Using the reductive perturbation method, the Korteweg-de Vries (KdV) equation is derived with appropriate boundary conditions for periodic waves. The corresponding analytical and various numerical solutions are presented with Sagdeev potential approach. Differences between the results caused by the kappa and Maxwell distributions are emphasized. It is revealed that only hump (compressive) structures of the cnoidal waves and solitons are formed. It is shown that amplitudes of the cnoidal waves and solitons are reduced in an EPI plasma case in comparison with the ordinary electron-ion plasmas. The effects caused by the temperature variations of the warm ions are also discussed. It is obtained that the amplitude of the cnoidal waves and solitons decreases for a kappa distributed (nonthermal) electrons and positrons plasma case in comparison with the Maxwellian distributed (thermal) electrons and positrons EPI plasmas. The existence of kappa distributed particles leads to decreasing of ion-acoustic frequency up to thermal ions frequency.

  20. Theoretical investigations of plasma processes in the ion bombardment thruster

    NASA Technical Reports Server (NTRS)

    Wilhelm, H. E.

    1975-01-01

    A physical model for a thruster discharge was developed, consisting of a spatially diverging plasma sustained electrically between a small ring cathode and a larger ring anode in a cylindrical chamber with an axial magnetic field. The associated boundary-value problem for the coupled partial differential equations with mixed boundary conditions, which describe the electric potential and the plasma velocity fields, was solved in closed form. By means of quantum-mechanical perturbation theory, a formula for the number S(E) of atoms sputtered on the average by an ion of energy E was derived from first principles. The boundary-value problem describing the diffusion of the sputtered atoms through the surrounding rarefied electron-ion plasma to the system surfaces of ion propulsion systems was formulated and treated analytically. It is shown that outer boundary-value problems of this type lead to a complex integral equation, which requires numerical resolution.

  1. Plasma shape control by pulsed solenoid on laser ion source

    DOE PAGESBeta

    Sekine, M.; Ikeda, S.; Romanelli, M.; Kumaki, M.; Fuwa, Y.; Kanesue, T.; Hayashizaki, N.; Lambiase, R.; Okamura, M.

    2015-05-28

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. It was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled bymore » the pulsed magnetic field. Thus, this approach may also be useful to reduce beam emittance of a LIS.« less

  2. Plasma shape control by pulsed solenoid on laser ion source

    NASA Astrophysics Data System (ADS)

    Sekine, M.; Ikeda, S.; Romanelli, M.; Kumaki, M.; Fuwa, Y.; Kanesue, T.; Hayashizaki, N.; Lambiase, R.; Okamura, M.

    2015-09-01

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS.

  3. Energy levels of a heavy ion moving in dense plasmas

    SciTech Connect

    Hu, Hongwei; Chen, Wencong; Zhao, Yongtao; Li, Fuli; Dong, Chenzhong

    2013-12-15

    In this paper, the potential of a slowly moving test particle moving in collisional dense plasmas is studied. It is composed of the Debye-shielding potential, wake potential, and collision term. The Ritz variational-perturbational method is developed for calculating relativistic binding energy levels of a heavy ion moving in dense plasmas. Binding energy levels of a heavy ion moving in plasmas are calculated. The results show that both non-relativistic energy levels and relativistic energy levels become more negative as the temperature becomes high. They also become more negative as the number density decreasing. Relativistic correction is important for calculating binding energy levels. Both relativistic energy levels and non-relativistic energy levels vary minutely as the speed of heavy ion varies.

  4. Plasma shape control by pulsed solenoid on laser ion source

    SciTech Connect

    Sekine, M.; Ikeda, S.; Romanelli, M.; Kumaki, M.; Fuwa, Y.; Kanesue, T.; Hayashizaki, N.; Lambiase, R.; Okamura, M.

    2015-05-28

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. It was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. Thus, this approach may also be useful to reduce beam emittance of a LIS.

  5. Study of ion-irradiated tungsten in deuterium plasma

    NASA Astrophysics Data System (ADS)

    Khripunov, B. I.; Gureev, V. M.; Koidan, V. S.; Kornienko, S. N.; Latushkin, S. T.; Petrov, V. B.; Ryazanov, A. I.; Semenov, E. V.; Stolyarova, V. G.; Danelyan, L. S.; Kulikauskas, V. S.; Zatekin, V. V.; Unezhev, V. N.

    2013-07-01

    Experimental study aimed at investigation of neutron induced damage influence on fusion reactor plasma facing materials is reported. Displacement damage was produced in tungsten by high-energy helium and carbon ions at 3-10 MeV. The reached level of displacement damage ranged from several dpa to 600 dpa. The properties of the irradiated tungsten were studied in steady-state deuterium plasma on the LENTA linear divertor simulator. Plasma exposures were made at 250 eV of ion energy to fluence 1021-1022 ion/сm2. Erosion dynamics of the damaged layer and deuterium retention were observed. Surface microstructure modifications and important damage of the 5 μm layer shown. Deuterium retention in helium-damaged tungsten (ERD) showed its complex behavior (increase or decrease) depending on implanted helium quantity and the structure of the surface layer.

  6. Plasma convection and ion beam generation in the plasma sheet boundary layer

    NASA Technical Reports Server (NTRS)

    Moghaddam-Taaheri, E.; Goertz, C. K.; Smith, R. A.

    1991-01-01

    Because of the dawn-dusk electric field E(dd), plasma in the magnetotail convects from the lobe toward the central plasma sheet (CPS). In the absence of space or velocity diffusion due to plasma turbulence, convection would yield a steady state distribution function f = V exp (-2/3) g(v exp 2 V exp 2/3), where V is the flux tube volume. Starting with such a distribution function and a plasma beta which varies from beta greater than 1 in the CPS to beta much smaller than 1 in the lobe, the evolution of the ion distribution function was studied considering the combined effects of ion diffusion by kinetic Alfven waves (KAW) in the ULF frequency range (1-10 mHz) and convection due to E(dd) x B drift in the plasma sheet boundary layer (PSBL) and outer central plasma sheet (OCPS). The results show that, during the early stages after launching the KAWs, a beamlike ion distribution forms in the PSBL and at the same time the plasma density and temperature decrease in the OCPS. Following this stage, ions in the beams convect toward the CPS resulting in an increase of the plasma temperature in the OCPS.

  7. Head-on collision of dust-ion-acoustic soliton in quantum pair-ion plasma

    SciTech Connect

    Chatterjee, Prasanta; Ghorui, Malay kr.; Wong, C. S.

    2011-10-15

    In this paper, we study the head-on collision between two dust ion acoustic solitons in quantum pair-ion plasma. Using the extended Poincare-Lighthill-Kuo method, we obtain the Korteweg-de Vries equation, the phase shifts, and the trajectories after the head-on collision of the two dust ion acoustic solitons. It is observed that the phase shifts are significantly affected by the values of the quantum parameter H, the ratio of the multiples of the charge state and density of positive ions to that of the negative ions {beta} and the concentration of the negatively charged dust particles {delta}.

  8. Ion acoustic shock waves in plasmas with warm ions and kappa distributed electrons and positrons

    SciTech Connect

    Hussain, S.; Mahmood, S.; Hafeez Ur-Rehman

    2013-06-15

    The monotonic and oscillatory ion acoustic shock waves are investigated in electron-positron-ion plasmas (e-p-i) with warm ions (adiabatically heated) and nonthermal kappa distributed electrons and positrons. The dissipation effects are included in the model due to kinematic viscosity of the ions. Using reductive perturbation technique, the Kadomtsev-Petviashvili-Burgers (KPB) equation is derived containing dispersion, dissipation, and diffraction effects (due to perturbation in the transverse direction) in e-p-i plasmas. The analytical solution of KPB equation is obtained by employing tangent hyperbolic (Tanh) method. The analytical condition for the propagation of oscillatory and monotonic shock structures are also discussed in detail. The numerical results of two dimensional monotonic shock structures are obtained for graphical representation. The dependence of shock structures on positron equilibrium density, ion temperature, nonthermal spectral index kappa, and the kinematic viscosity of ions are also discussed.

  9. Ion kinetic instabilities and turbulence of a parallel shearing flow of a plasma with hot ions

    NASA Astrophysics Data System (ADS)

    Mykhaylenko, Volodymyr St.; Mykhaylenko, Volodymyr; Lee, Hae June

    2015-11-01

    The results of the analytical and numerical investigations of the shear flow driven ion kinetic instabilities, excited due to the inverse ion Landau damping in the parallel shearing flow of plasmas with comparable ion and electron temperatures, that is the case relevant to a tokamak and space plasma, are presented. The levels of turbulence and the turbulent heating rates of ions and ion turbulent viscosity, resulted from the development of the electrostatic ion-temperature gradient and electromagnetic drift-Alfven turbulence, are determined and their consequences are discussed. This work was funded by National R&D Program through the National Research Foundation of Korea.Grants NRF-2014M1A7A1A03029878, NRF-2013R1A1A2005758.

  10. Ion acceleration in multi-species cathodic plasma jet

    NASA Astrophysics Data System (ADS)

    Krasov, V. I.; Paperny, V. L.

    2016-05-01

    A general expression for ion-ion coupling in a multi-species plasma jet was obtained. The expression is valid for any value of the inter-species velocity. This expression has enabled us to review a hydrodynamic problem of expanding the cathodic plasma microjet with two ion species within the respective charge states Z1 = +1 and Z2 = +2 into a vacuum. We were able to illustrate that in scenario when the initial (i.e., acquired during a process of emission from cathode's surface) difference for ion's species velocity exceeds a threshold value, the difference remains noticeable (roughly about 10% of the average jet's velocity) at a distance of a few centimeters from the emission center. At this point, it can be measured experimentally.

  11. Prediction of plasma properties in mercury ion thrusters

    NASA Technical Reports Server (NTRS)

    Longhurst, G. R.

    1978-01-01

    A simplified theoretical model was developed which obtains to first order the plasma properties in the discharge chamber of a mercury ion thruster from basic thruster design and controllable operating parameters. The basic operation and design of ion thrusters is discussed, and the important processes which influence the plasma properties are described in terms of the design and control parameters. The conservation for mass, charge and energy were applied to the ion production region, which was defined as the region of the discharge chamber having as its outer boundary the surface of revolution of the innermost field line to intersect the anode. Mass conservation and the equations describing the various processes involved with mass addition and removal from the ion production region are satisfied by a Maxwellian electron density spatial distribution in that region.

  12. Dressed ion-acoustic solitons in magnetized dusty plasmas

    SciTech Connect

    El-Labany, S. K.; El-Shamy, E. F.; El-Warraki, S. A.

    2009-01-15

    In the present research paper, the characteristics of ion acoustic solitary waves are investigated in hot magnetized dusty plasmas consisting of negatively charged dust grains, positively charged ion fluid, and isothermal electrons. Applying a reductive perturbation theory, a nonlinear Korteweg-de Vries (KdV) equation for the first-order perturbed potential and a linear inhomogeneous KdV-type equation for the second-order perturbed potentials are derived. Stationary solutions of these coupled equations are obtained using a renormalization method. The effects of the external oblique magnetic field, hot ion fluid, and higher-order nonlinearity on the nature of the ion acoustic solitary waves are discussed. The results complement and provide new insights into previously published results on this problem [R. S. Tiwari and M. K. Mishra, Phys. Plasmas 13, 062112 (2006)].

  13. Ion drag on dust grains in electronegative plasmas

    SciTech Connect

    Denysenko, I.; Yu, M.Y.; Stenflo, L.; Azarenkov, N.A.

    2005-04-15

    The electric and the positive- and negative-ion drag forces on a dust grain in an electronegative complex plasma are investigated. It is shown that the number of locations where the drag forces balance the electric force is considerably larger than that in an electropositive plasma. The balance occurs in the so-called oscillation regime where the electric field oscillates in space. The effect of the negative-ion drag force on the dust grain can be substantial in a certain parameter range.

  14. MHD Induced Neutral Beam Ion Loss from NSTX Plasmas

    SciTech Connect

    D.S. Darrow, E.D. Fredrickson, N.N. Gorelenkov, A.L. Roquemore, and K. Shinohara

    2007-12-13

    Bursts of ~60 kHz activity on Mirnov coils occur frequently in NSTX plasmas and these are accompanied by bursts of neutral beam ion loss over a range in pitch angles. These losses have been measured with a scintillator type loss probe imaged with a high speed (>10,000 frames/s) video camera, giving the evolution of the energy and pitch angle distributions of the lost neutral beam ions over the course of the events. The instability occurs below the TAE frequency in NSTX (~100 kHz) in high beta plasmas and may be a beta driven Alfvén acoustic (BAAE) mode.

  15. Charge-exchange plasma generated by an ion thruster

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1977-01-01

    The charge exchange plasma generated by an ion thruster was investigated experimentally using both 5 cm and 15 cm thrusters. Results are shown for wide ranges of radial distance from the thruster and angle from the beam direction. Considerations of test environment, as well as distance from the thruster, indicate that a valid simulation of a thruster on a spacecraft was obtained. A calculation procedure and a sample calculation of charge exchange plasma density and saturation electron current density are included.

  16. Ion Acoustic Waves, A High School Plasma Experiment

    NASA Astrophysics Data System (ADS)

    Buck, R.; Wise, J.; Gibson, N.; Buck, M.; Gekelman, W.; Wetzel, E.; Wetzel, C.; Moynihan, C.

    2001-10-01

    Over the last three the Los Angeles Physics Teachers Alliance Group (LAPTAG) has built a plasma device and designed experiments for high school students to learn about plasma properties and behavior. One of the first experiments performed by small student groups (two to three students at a time) is to create ion acoustic wave tonebursts in an Argon plasma, measure the wavelength and frequency of the wave and thereby calculate the velocity of the wave. A grid antenna immersed in the plasma, which is pulsed by a function generator, creates the waves. Measurements are made using a Langmuir probe and read out on a digital oscilloscope. From this information students calculate values such as the temperature of the plasma, the plasma density and percent ionization of the plasma. In order to do these experiments students must understand what plasma is, how plasma can be created using a helicon source, how to use an oscilloscope and many other aspects of the plasma chamber involved in the experiment. Other experiments are currently being done on the device and still others are being designed. For more information visit the LAPTAG website (http://coke.physics.ucla.edu/laptag).

  17. Mercury ion thruster research, 1977. [plasma acceleration

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1977-01-01

    The measured ion beam divergence characteristics of two and three-grid, multiaperture accelerator systems are presented. The effects of perveance, geometry, net-to-total accelerating voltage, discharge voltage and propellant are examined. The applicability of a model describing doubly-charged ion densities in mercury thrusters is demonstrated for an 8-cm diameter thruster. The results of detailed Langmuir probing of the interior of an operating cathode are given and used to determine the ionization fraction as a function of position upstream of the cathode orifice. A mathematical model of discharge chamber electron diffusion and collection processes is presented along with scaling laws useful in estimating performance of large diameter and/or high specific impluse thrusters. A model describing the production of ionized molecular nitrogen in ion thrusters is included.

  18. Clustering of ions at atomic dimensions in quantum plasmas

    NASA Astrophysics Data System (ADS)

    Shukla, Padma K.; Eliasson, Bengt; Eliasson

    2013-08-01

    By means of particle simulations of the equations of motion for ions interacting among themselves under the influence of newly discovered Shukla-Eliasson attractive force (SEAF) in a dense quantum plasma, we demonstrate that the SEAF can bring ions closer at atomic dimensions. We present simulation results of the dynamics of an ensemble of ions in the presence of the SEAF without and with confining external potentials and collisions between ions and degenerate electrons. Our particle simulations reveal that under the SEAF, ions attract each other, come closer, and form ionic clusters in the bath of degenerate electrons that shield ions. Furthermore, an external confining potential produces robust ion clusters that can have cigar- and ball-like shapes, which remain stable when the confining potential is removed. The stability of ion clusters is discussed. Our results may have applications to solid density plasmas (density exceeding 1023 per cm3), where the electrons will be degenerate and quantum forces due to the electron recoil effect caused by the overlapping of electron wave functions and electron tunneling through the Bohm potential, electron-exchange and electron-exchange and electron correlations associated with electron-1/2 spin effect, and the quantum statistical pressure of the degenerate electrons play a decisive role.

  19. Heavy ion plasma confinement in an RF quadrupole trap

    NASA Technical Reports Server (NTRS)

    Schermann, J.; Major, F. G.

    1971-01-01

    The confinement of an electron free plasma in a pure quadrupole RF electric trap was considered. The ultimate goal was to produce a large density of mercury ions, in order to realize a trapped ion frequency standard using the hyperfine resonance of 199 Hg(+) at 40.7 GHz. An attempt was made to obtain an iodine plasma consisting of equal numbers of positive and negative ions of atomic iodine, the positive iodine ions, being susceptible to charge-exchange with mercury atoms, will produce the desired mercury ions. The experiment showed that the photoproduction of ions pairs in iodine using the necessary UV radiation occurs with a small cross-section, making it difficult to demonstrate the feasibility of space charge neutralization in a quadrupole trap. For this reason it was considered expedient to choose thallium iodide, which has a more favorable absorption spectrum (in the region of 2000 to 2100 A). The results indicate that, although the ionic recombination is a serious limiting factor, a considerable improvement can be obtained in practice for the density of trapped ions, with a considerable advantage in lifetimes for spectroscopic purposes. The ion pair formation by photoionization is briefly reviewed.

  20. Electrostatic and magnetic transport of energetic ions in turbulent plasmas

    SciTech Connect

    Hauff, T.; Pueschel, M. J.; Jenko, F.; Dannert, T.

    2009-02-20

    Analytical and numerical work is used in tandem to address the problem of turbulent transport of energetic ions in magnetized plasmas. It is shown that orbit averaging is not valid under rather generic conditions, and that perpendicular decorrelation effects lead to a slow 1/E decay of the electrostatic particle diffusivity of beam ions, while the respective magnetic quantity is even independent of the particle energy E.

  1. Direct plasma injection scheme with various ion beams

    SciTech Connect

    Okamura, M.

    2010-09-15

    The laser ion source is one of the most powerful heavy ion sources. However, it is difficult to obtain good stability and to control its intense current. To overcome these difficulties, we proposed a new beam injection scheme called 'direct plasma injection scheme'. Following this it was established to provide various species with desired charge state as an intense accelerated beam. Carbon, aluminum and iron beams have been tested.

  2. Kinetic theory of electromagnetic ion waves in relativistic plasmas

    SciTech Connect

    Marklund, Mattias; Shukla, Padma K.

    2006-09-15

    A kinetic theory for electromagnetic ion waves in a cold relativistic plasma is derived. The kinetic equation for the broadband electromagnetic ion waves is coupled to the slow density response via an acoustic equation driven by a ponderomotive force-like term linear in the electromagnetic field amplitude. The modulational instability growth rate is derived for an arbitrary spectrum of waves. The monochromatic and random phase cases are studied.

  3. Shear-flow-driven ion cyclotron and ion sound-drift instabilities of cylindrical inhomogeneous plasma

    SciTech Connect

    Mikhailenko, V. S.; Chibisov, D. V.

    2007-08-15

    The effects of the shear flow along the magnetic field on the development of the ion cyclotron, ion sound, and drift instabilities in the radially inhomogeneous cylindrical plasma are studied on the ground of a kinetic approach. It is shown that flow shear not only modifies the frequencies and growth rates of known current driven electrostatic ion cyclotron, ion sound, and drift instabilities, but is the source of the development of specific shear-flow-driven ion cyclotron, ion sound, and drift instabilities. These instabilities are excited at the levels of current along the ambient magnetic field which is below the critical value for the development of the modified by flow shear current driven ion cyclotron, ion sound, and drift instabilities.

  4. New longitudinal mode and compression of pair ions in plasma

    NASA Astrophysics Data System (ADS)

    Ehsan, Zahida; Tsintsadze, N. L.; Shah, H. A.; Trines, R. M. G. M.; Imran, Muhammad

    2016-06-01

    Positive and negative ions forming the so-called pair plasma differing in sign of their charge but asymmetric in mass and temperature support a new acoustic-like mode. The condition for the excitation of ion sound wave through electron beam induced Cherenkov instability is also investigated. This beam can generate a perturbation in the pair ion plasmas in the presence of electrons when there is number density, temperature, and mass difference in the two species of ions. Basic emphasis is on the focusing of ion sound waves, and we show how, in the area of localization of wave energy, the density of pair particles increases while electrons are pushed away from that region. Further, this localization of wave is dependent on the shape of the pulse. Considering the example of pancake and bullet shaped pulses, we find that only the former leads to compression of pair ions in the supersonic regime of the focusing region. Here, possible existence of regions where pure pair particles can exist may also be speculated which is not only useful from academic point of view but also to mimic the situation of plasma (electron positron asymmetric and symmetric) observed in astrophysical environment.

  5. Ion acoustic solitons/double layers in two-ion plasma revisited

    SciTech Connect

    Lakhina, G. S. Singh, S. V. Kakad, A. P.

    2014-06-15

    Ion acoustic solitons and double layers are studied in a collisionless plasma consisting of cold heavier ion species, a warm lighter ion species, and hot electrons having Boltzmann distributions by Sagdeev pseudo-potential technique. In contrast to the previous results, no double layers and super-solitons are found when both the heavy and lighter ion species are treated as cold. Only the positive potential solitons are found in this case. When the thermal effects of the lighter ion species are included, in addition to the usual ion-acoustic solitons occurring at M > 1 (where the Mach number, M, is defined as the ratio of the speed of the solitary wave and the ion-acoustic speed considering temperature of hot electrons and mass of the heavier ion species), slow ion-acoustic solitons/double layers are found to occur at low Mach number (M < 1). The slow ion-acoustic mode is actually a new ion-ion hybrid acoustic mode which disappears when the normalized number density of lighter ion species tends to 1 (i.e., no heavier species). An interesting property of the new slow ion-acoustic mode is that at low number density of the lighter ion species, only negative potential solitons/double layers are found whereas for increasing densities there is a transition first to positive solitons/double layers, and then only positive solitons. The model can be easily applicable to the dusty plasmas having positively charged dust grains by replacing the heavier ion species by the dust mass and doing a simple normalization to take account of the dust charge.

  6. Ion-Acoustic Shock Waves in Nonextensive Electron-Positron-Ion Plasma

    NASA Astrophysics Data System (ADS)

    Ferdousi, M.; S., Yasmin; Ashraf, S.; A. Mamun, A.

    2015-01-01

    A rigorous theoretical investigation is made of ion-acoustic shock structures in an unmagnetized three-component plasma whose constituents are nonextensive electrons, nonextensive positrons, and inertial ions. The Burgers equation is derived by employing the reductive perturbation method. The effects of electron and positron nonextensivity and ion kinematic viscosity on the properties of these ion-acoustic shock waves are briefly discussed. It is found that shock waves with positive and negative potentials are obtained to depend on the plasma parameters. The entailment of our results may be useful to understand some astrophysical and cosmological scenarios including stellar polytropes, hadronic matter and quark-gluon plasma, protoneutron stars, dark-matter halos, etc., where effects of nonextensivity can play significant roles.

  7. Ion-acoustic shocks in quantum electron-positron-ion plasmas

    SciTech Connect

    Roy, K.; Misra, A. P.; Chatterjee, P.

    2008-03-15

    Nonlinear propagation of quantum ion-acoustic waves (QIAWs) in a dense quantum plasma whose constituents are electrons, positrons, and positive ions is investigated using a quantum hydrodynamic model. The standard reductive perturbation technique is used to derive the Korteweg-de Vries-Burger (KdVB) equation for QIAWs. It is shown by numerical simulation that the KdVB equation has either oscillatory or monotonic shock wave solutions depending on the system parameters H proportional to quantum diffraction, {mu}{sub i} the effect of ion kinematic viscosity, and {mu} the equilibrium electron to ion density ratio. The results may have relevance in dense astrophysical plasmas (such as neutron stars) as well as in intense laser solid density plasma experiments where the particle density is about 10{sup 25}-10{sup 28} m{sup -3}.

  8. Ion-acoustic solitary waves in ultra-relativistic degenerate pair-ion plasmas

    SciTech Connect

    Rasheed, A.; Tsintsadze, N. L.; Murtaza, G.

    2011-11-15

    The arbitrary and the small amplitude ion-acoustic solitary waves (IASWs) have been studied. The former is studied by using the Sagdeev pseudo-potential approach in a plasma consisting of the degenerate ultrarelativistic electrons, positrons, and the non-relativistic classical ions. It is seen that only compressive solitary waves can propagate through such plasmas. The numerical calculations show that the region of existence of the ion-acoustic solitary waves depends upon the positron (ion) number density and the plasma thermal temperature. This study is appropriate for applications in inertial confinement fusion laboratory research as well as the study of astrophysical dense objects such as white dwarf and dense neutron stars.

  9. Ion heating in a dusty plasma due to the dust/ion acoustic instability

    SciTech Connect

    Winske, D.; Gary, S.P.; Jones, M.E.

    1995-08-01

    The drift of plasma ions relative to charged grains in a dusty plasma can give rise to a dust/ion acoustic instability. The authors investigate the linear properties of the instability by numerically solving an appropriate linear dispersion equation and examine the nonlinear behavior through one-dimensional electrostatic particle simulations, in which the plasma and dust ions are treated as discrete particles and the electrons are modeled as a Boltzmann fluid. The instability is slightly weaker when the dust particles have a range of sizes, and corresponding range of charges and masses. It is argued that due to dust particles that comprise planetary rings, this process can contribute to ion heating and diffusion observed in the linear magnetosphere of Saturn. 14 refs., 4 figs.

  10. Ion Streaming Instabilities in Pair Ion Plasma and Localized Structure with Non-Thermal Electrons

    NASA Astrophysics Data System (ADS)

    Nasir Khattak, M.; Mushtaq, A.; Qamar, A.

    2015-12-01

    Pair ion plasma with a fraction of non-thermal electrons is considered. We investigate the effects of the streaming motion of ions on linear and nonlinear properties of unmagnetized, collisionless plasma by using the fluid model. A dispersion relation is derived, and the growth rate of streaming instabilities with effect of streaming motion of ions and non-thermal electrons is calculated. A qausi-potential approach is adopted to study the characteristics of ion acoustic solitons. An energy integral equation involving Sagdeev potential is derived during this process. The presence of the streaming term in the energy integral equation affects the structure of the solitary waves significantly along with non-thermal electrons. Possible application of the work to the space and laboratory plasmas are highlighted.

  11. Ion acoustic solitary waves in plasmas with nonextensive electrons, Boltzmann positrons and relativistic thermal ions

    NASA Astrophysics Data System (ADS)

    Hafez, M. G.; Talukder, M. R.

    2015-09-01

    This work investigates the theoretical and numerical studies on nonlinear propagation of ion acoustic solitary waves (IASWs) in an unmagnetized plasma consisting of nonextensive electrons, Boltzmann positrons and relativistic thermal ions. The Korteweg-de Vries (KdV) equation is derived by using the well known reductive perturbation method. This equation admits the soliton like solitary wave solution. The effects of phase velocity, amplitude of soliton, width of soliton and electrostatic nonlinear propagation of weakly relativistic ion-acoustic solitary waves have been discussed with graphical representation found in the variation of the plasma parameters. The obtained results can be helpful in understanding the features of small but finite amplitude localized relativistic ion-acoustic waves for an unmagnetized three component plasma system in astrophysical compact objects.

  12. Dust-ion-acoustic shock waves in nonextensive dusty multi-ion plasmas

    NASA Astrophysics Data System (ADS)

    Ema, S. A.; Ferdousi, M.; Sultana, S.; Mamun, A. A.

    2015-03-01

    A theoretical and numerical analysis of dust-ion-acoustic (DIA) shock waves has been carried out in an unmagnetized dusty multi-ion plasma containing nonextensive electrons, inertial negatively charged heavy ions, positively charged Maxwellian light ions, and negatively charged stationary dusts. The normal mode analysis is used to examine the linear properties of DIA waves (DIAWs). The reductive perturbation technique is employed in order to derive the nonlinear time evolution Burgers type equation (which describes the shock waves properties). The basic features ( viz. polarity, amplitude, width, etc.) of the DIA shock waves are investigated. It is found that the basic features of DIA shock waves are significantly modified depending on the intrinsic parameters ( viz. electron nonextensivity, heavy ions kinematic viscosity, heavy-to-light ion number density ratio, electron-to-light ion temperature ratio, etc.) of the considered plasma system. Both polarities (positive and negative potential) are also found to exist in the plasma under consideration in this paper. The findings of this investigation may be used in understanding the wave propagation in laboratory and space plasmas.

  13. Radial Ion Transport in a Limited Axisymmetric Ecr Plasma.

    NASA Astrophysics Data System (ADS)

    Gibson, Gerald Warren, Jr.

    1995-01-01

    An experimental study of the radial transport of ions in the presence of a limiter for an axisymmetric plasma sustained by the resonant absorption of 2.45 GHz whistler waves is presented. In steady state, approximately 30% of the particles ionized in the core plasma flow radially into the scrape-off layer. The magnitude of radial ion flux is observed to be bounded from below by the radial electron transport rate and from above by the classical collisional ion transport rate of the cold edge ions. The system proves to be susceptible to a Kelvin-Helmholtz instability. The transport experiments were performed at a set input power of 300 W and over the neutral pressure range of 1-3 mTorr in Argon gas. The bulk ions possess a typical temperature of 1eV and do not obey a diffusion equation in the core plasma. Strong radial electric fields are observed and appear to provide the principal means by which radial ion diffusion is controlled. The presence of strongly sheared electric fields in this system excites a hydrodynamic instability of the Kelvin-Helmholtz type. The most frequently observed mode is driven by a region of depressed potential at the plasma edge. A theory for instability in the presence of a localized inverted Gaussian radial potential is presented and compared with experimental measurements. The convection of edge plasma into the core under influence of this mode leads to an increased edge temperature and, hence, enhanced axial losses from the scrape-off layer, thereby modifying the radial profile of the scrape-off layer. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).

  14. Light ion mass spectrometer for space-plasma investigations

    NASA Technical Reports Server (NTRS)

    Reasoner, D. L.; Chappell, C. R.; Fields, S. A.; Lewter, W. J.

    1982-01-01

    Direct satellite measurements and ground-based techniques have given a comprehensive view of the density distribution of the cold plasma population in the earth's magnetosphere. There were, however, no direct measurements of the low-energy plasma mass composition, temperature, density, pitch-angle distribution, or plasma flow velocity. A description is presented of the evolution and development of an instrument, the Light Ion Mass Spectrometer (LIMS), designed to make these low-energy plasma measurements. The instrument was developed for flight on the spacecraft SCA-THA, a satellite to study satellite charging at high altitudes. This satellite, whose primary mission was to study spacecraft-plasma interactions and electrostatic charging, was launched into a near-geosynchronous orbit. The design requirements regarding the instrument are discussed, and attention is given to the calibration procedures, the flight configuration, and some examples of flight data.

  15. Glow plasma trigger for electron cyclotron resonance ion sources

    SciTech Connect

    Vodopianov, A. V.; Golubev, S. V.; Izotov, I. V.; Nikolaev, A. G.; Oks, E. M.; Savkin, K. P.; Yushkov, G. Yu.

    2010-02-15

    Electron cyclotron resonance ion sources (ECRISs) are particularly useful for nuclear, atomic, and high energy physics, as unique high current generators of multicharged ion beams. Plasmas of gas discharges in an open magnetic trap heated by pulsed (100 {mu}s and longer) high power (100 kW and higher) high-frequency (greater than 37.5 GHz) microwaves of gyrotrons is promising in the field of research in the development of electron cyclotron resonance sources for high charge state ion beams. Reaching high ion charge states requires a decrease in gas pressure in the magnetic trap, but this method leads to increases in time, in which the microwave discharge develops. The gas breakdown and microwave discharge duration becomes greater than or equal to the microwave pulse duration when the pressure is decreased. This makes reaching the critical plasma density initiate an electron cyclotron resonance (ECR) discharge during pulse of microwave gyrotron radiation with gas pressure lower than a certain threshold. In order to reduce losses of microwave power, it is necessary to shorten the time of development of the ECR discharge. For fast triggering of ECR discharge under low pressure in an ECRIS, we initially propose to fill the magnetic trap with the plasmas of auxiliary pulsed discharges in crossed ExB fields. The glow plasma trigger of ECR based on a Penning or magnetron discharge has made it possible not only to fill the trap with plasma with density of 10{sup 12} cm{sup -3}, required for a rapid increase in plasma density and finally for ECR discharge ignition, but also to initially heat the plasma electrons to T{sub e}{approx_equal}20 eV.

  16. Glow plasma trigger for electron cyclotron resonance ion sources.

    PubMed

    Vodopianov, A V; Golubev, S V; Izotov, I V; Nikolaev, A G; Oks, E M; Savkin, K P; Yushkov, G Yu

    2010-02-01

    Electron cyclotron resonance ion sources (ECRISs) are particularly useful for nuclear, atomic, and high energy physics, as unique high current generators of multicharged ion beams. Plasmas of gas discharges in an open magnetic trap heated by pulsed (100 micros and longer) high power (100 kW and higher) high-frequency (greater than 37.5 GHz) microwaves of gyrotrons is promising in the field of research in the development of electron cyclotron resonance sources for high charge state ion beams. Reaching high ion charge states requires a decrease in gas pressure in the magnetic trap, but this method leads to increases in time, in which the microwave discharge develops. The gas breakdown and microwave discharge duration becomes greater than or equal to the microwave pulse duration when the pressure is decreased. This makes reaching the critical plasma density initiate an electron cyclotron resonance (ECR) discharge during pulse of microwave gyrotron radiation with gas pressure lower than a certain threshold. In order to reduce losses of microwave power, it is necessary to shorten the time of development of the ECR discharge. For fast triggering of ECR discharge under low pressure in an ECRIS, we initially propose to fill the magnetic trap with the plasmas of auxiliary pulsed discharges in crossed ExB fields. The glow plasma trigger of ECR based on a Penning or magnetron discharge has made it possible not only to fill the trap with plasma with density of 10(12) cm(-3), required for a rapid increase in plasma density and finally for ECR discharge ignition, but also to initially heat the plasma electrons to T(e) approximately = 20 eV. PMID:20192326

  17. Ion deposition by inductively coupled plasma mass spectrometry

    SciTech Connect

    Hu, K.; Houk, R.S.

    1996-03-01

    An atmospheric pressure inductively coupled plasma (ICP) is used with a quadrupole mass spectrometer (MS) for ion deposition. The deposited element is introduced as a nebulized aqueous solution. Modifications to the ICP-MS device allow generation and deposition of a mass-resolved beam of {sup 165}Ho{sup +} at 5{times}10{sup 12} ions s{sup {minus}1}. The ICP is a universal, multielement ion source that can potentially be used for applications such as deposition of mixtures of widely varying stoichiometry or of alternating layers of different elements. {copyright} {ital 1996 American Vacuum Society}

  18. Evolution of an expanding dusty plasma with negative ions

    SciTech Connect

    Kechouri, B.; Djebli, M.

    2006-11-15

    The dusty plasma radial expansion is studied in the case of a spherical as well as cylindrical configuration. The effect of negative ions is introduced through the dust charge fluctuation equation. Electrons, positive, and negative ions are modelled by the Boltzmann distribution function and the dust grains by fluid equations. Using the self-similar theory, the nonlinear set of differential equations is solved numerically. It is found that the dust charge presents a critical value which depends on the negative ion species type. It is also found that the dust expansion ends earlier and the lighter particle densities profiles depend on the dust initial charge.

  19. Ion drag force on an absorbing grain in highly collisional plasma in the presence of plasma production and loss processes

    SciTech Connect

    Chaudhuri, Manis; Khrapak, Sergei A.; Morfill, Gregor E.

    2008-09-07

    The ion drag force acting on a small absorbing spherical grain has been calculated analytically in highly collisional plasma with slowly drifting ions taking into account plasma production and loss mechanisms in the vicinity of the grain. It is shown that both the magnitude and direction of the ion drag force are strongly influenced by the plasma production and loss mechanisms. The parameter regimes for the 'positive' and 'negative' ion drag forces acting on an absorbing grain have been identified.

  20. Plasma diagnostics in a PVD triode ion plating installation

    NASA Astrophysics Data System (ADS)

    Wouters, Stan Lambert Maria

    1998-12-01

    In this thesis, two diagnostics tools are combined to relate the plasma process parameters in the triode ion plating system (BAI 640) to the film microstructure of wear resistant coatings. As diagnostics tools, the energy-resolved mass analyzer of Balzers (PPM 421) and self-constructed Langmuir probes are used. The PPM 421 detects ion fluxes from the whole plasma volume, with its highest sensitivity along the axis of the ion optics while the probe measures electron and ion fluxes in the proximity of the probe. It is important to know which ions and which neutrals, with how much energy or speed, impinge on the surface of the substrates. An ion mass scan and a neutral mass scan, performed by the PPM 421 inserted next to the substrate table, can give information on the most important species, while the energy scan gives information on the energy distribution of these species. These so called energy spectra of neutrals and ions are a convolution of different energy distributions. This indicates that there are potential hills in the plasma were the ions can accelerate. The fast neutrals mostly originate from a charge exchange collision with the ions. The Langmuir probe can help to locate the potential hills in the plasma. Moreover, a simple current-voltage measurement, performed by this type of collecting probe, can give the value of the plasma parameters with some reasonable accuracy. In combination with the results of the film microstructure, performed by X-ray diffraction, the process parameters of a deposition can be optimized to obtain films with controlled adhesion properties, friction protection and microhardness. The configuration of the triode ion plating installation is given in its different modes used in this thesis, e.g. heating, etching and ion plating/evaporation mode. Finally, film properties, such as the macroscopic residual stress, the stress free lattice parameter, the preferred orientation, the Vickers microhardness and film thickness is discussed

  1. Ion-acoustic solitary waves in a fully relativistic ion-electron-positron plasma

    NASA Astrophysics Data System (ADS)

    Tribeche, Mouloud; Boukhalfa, Soufiane

    2011-04-01

    A fully and coherent relativistic fluid model derived from the covariant formulation of relativistic fluid equations is used to study ion-acoustic solitary waves in a fully relativistic ion-electron-positron plasma. This approach has the characteristic to be consistent with the relativistic principle and consequently leads to a more general set of equations valid for fully relativistic plasmas with arbitrary Lorentz relativistic factor. Our results may be relevant to cosmic relativistic double- layers and relativistic plasma structures involving energetic plasma flows that may occur in space plasmas. Furthermore, they may complement and provide new insights into recently published results (G. Lu et al. in Astrophys. Space Sci., doi: 10.1007/s10509-010-0363-5, 2010).

  2. Linear analysis of ion cyclotron interaction in a multicomponent plasma

    NASA Technical Reports Server (NTRS)

    Gendrin, R.; Ashour-Abdalla, M.; Omura, Y.; Quest, K.

    1984-01-01

    The mechanism by which hot anisotropic protons generate electromagnetic ion cyclotron waves in a plasma containing cold H(+) and He(+) ions is quantitatively studied. Linear growth rates (both temporal and spatial) are computed for different plasma parameters: concentration, temperature,and anisotropy of cold He(+) ions and of hot protons. It is shown that: (1) for parameters typical of the geostationary altitude the maximum growth rates are not drastically changed when a small proportion (about 1 to 20 percent) of cold He(+) ions is present; (2) because of the important cyclotron absorption by thermal He(+) ions in the vicinity of the He(+) gyrofrequency, waves which could resonate with the bulk of the He(+) distribution cannot be generated. Therefore quasi-linear effects, in a homogeneous medium at least, cannot be responsible for the heating of He(+) ions which is often observed in conjunction with ion cyclotron waves. The variation of growth rate versus wave number is also studied for its importance in selecting suitable parameters in numerical simulation experiments.

  3. Solar wind heavy ions from flare-heated coronal plasma

    NASA Technical Reports Server (NTRS)

    Bame, S. J.; Asbridge, J. R.; Feldman, W. C.; Fenimore, E. E.; Gosling, J. T.

    1979-01-01

    Information concerning the coronal expansion is carried by solar-wind heavy ions. Distinctly different energy-per-charge ion spectra are found in two classes of solar wind having the low kinetic temperatures necessary for E/q resolution of the ion species. Heavy-ion spectra which can be resolved are most frequently observed in the low-speed interstream (IS) plasma found between high speed streams; the streams are thought to originate from coronal holes. Although the sources of the IS plasma are uncertain, the heavy-ion spectra found there contain identifiable peaks of O, Si, and Fe ions. Such spectra indicate that the IS ionization state of O is established in coronal gas at a temperature of approximately 1.6 million K, while that of Fe is frozen in farther out at about 1.5 million K. On occasion anomalous spectra are found outside IS flows in solar wind with abnormally depressed local kinetic temperatures. The anomalous spectra contain Fe(16+) ions, not usually found in IS flows, and the derived coronal freezing-in temperatures are significantly higher. The coronal sources of some of these ionizationally hot flows are identified as solar flares.

  4. Metallic ions in cometary comae and plasma tails

    NASA Astrophysics Data System (ADS)

    Ip, W.-H.; Axford, W. I.

    1986-06-01

    A surprising result of the International Cometary Explorer (ICE) observations of the comet Giacobini-Zinner was the detection of ions of mass 23-24 AMU with a relatively high abundance. According to the experiments, these ions may be either Na(+) or C2(+), if not both. It is suggested here that the detected ions may indeed be in part Na(+) and/or Mg(+), and that these and other metallic ions, especially Si(+) and Fe(+), may be an important component of the cometary ionosphere and central plasma tail. The reasons are similar in principle to those which account for the prevalence of such ions in sporadic E layers in the terrestrial ionosphere, notably the comparatively short timescales for ionization of their neutral parent atoms and the large difference between the rates of dissociative and radiative recombination.

  5. Storage of ions from laser-produced plasmas

    NASA Technical Reports Server (NTRS)

    Knight, R. D.

    1981-01-01

    A method of storing large numbers of metal ions created in laser-produced plasmas is presented. The outer electrode of the electrostatic ion trap is designed to give a harmonic axial potential. The ions trapped by the technique included Be(+), C(+), Al(+), Fe(+), and Pb(+). The initial number of ions stored (2 x 10 to the 8th) appeared to be the trap maximum since increasing the laser power beyond 2-3 MW did not change the ion number. An initial rapid decay in the 30-50 msec range was generally followed by a long tail at the 10% level with times greater than 100 msec. The technique should be valuable for refractory elements which cannot be easily vaporized for electron impact ionization.

  6. Cylindrical and Spherical Ion-Acoustic Shock Waves in a Relativistic Degenerate Multi-Ion Plasma

    NASA Astrophysics Data System (ADS)

    Hossen, M. R.; Nahar, L.; Mamun, A. A.

    2014-12-01

    A rigorous theoretical investigation has been made to study the existence and basic features of the ion-acoustic (IA) shock structures in an unmagnetized, collisionless multi-ion plasma system (containing degenerate electron fluids, inertial positively as well as negatively charged ions, and arbitrarily charged static heavy ions). This investigation is valid for both non-relativistic and ultra-relativistic limits. The reductive perturbation technique has been employed to derive the modified Burgers equation. The solution of this equation has been numerically examined to study the basic properties of shock structures. The basic features (speed, amplitude, width, etc.) of these electrostatic shock structures have been briefly discussed. The basic properties of the IA shock waves are found to be significantly modified by the effects of arbitrarily charged static heavy ions and the plasma particle number densities. The implications of our results in space and interstellar compact objects like white dwarfs, neutron stars, black holes, and so on have been briefly discussed.

  7. Neutral dynamics and ion energy transport in MST plasma

    NASA Astrophysics Data System (ADS)

    Xing, Zichuan; Nornberg, Mark; den Hartog, Daniel; Kumar, Santosh; Anderson, Jay

    2015-11-01

    Neutral dynamics can have a significant effect on ion energy transport through charge exchange collisions. Whereas previously charge exchange was considered a direct loss mechanism in MST plasmas, new analysis indicates that significant thermal charge exchange neutrals are reionized. Further, the temperatures of the neutral species in the core of the plasma are suspected to be much higher than room temperature, which has a large effect on ion energy losses due to charge exchange. The DEGAS2 Monte Carlo simulation code is applied to the MST reversed field pinch experiment to estimate the density and temperature profile of the neutral species. The result is then used to further examine the effect of the neutral species on ion energy transport in improved confinement plasmas. This enables the development of a model that accounts for collisional equilibration between species, classical convective and conductive energy transport, and energy loss due to charge exchange collisions. The goal is to quantify classical, stochastic, and anomalous ion heating and transport in RFP plasmas. Work supported by the US DOE. DEGAS2 is provided by PPPL and STRAHL is provided by Ralph Dux of the Max-Planck-Institut fur Plasmaphysik.

  8. Characteristics of ion acoustic solitary waves in a negative ion plasma with superthermal electrons

    SciTech Connect

    Rouhani, M. R.; Ebne Abbasi, Z.

    2012-11-15

    The behavior of ion acoustic solitons in a plasma including positive and negative ions and kappa distributed electrons is studied, using both small amplitude and arbitrary amplitude approaches. The existence regions of compressive and rarefactive solitons will depend on negative to positive ion density ratio ({nu}) and kappa parameter as well as positive to negative ion mass ratio (Q). The numerical analysis of Sagdeev potential shows that for a chosen plasma with fixed Q, the existence regime of compressive solitons is decreased (increased) by increasing density ratio (kappa parameter), while for rarefactive solitons these conditions are quite opposite. Additionally, the possibility of propagation of both compressive and rarefactive subsonic solitons is investigated. It is found that by increasing negative ions, the existence domains of subsonic solitons are decreased, so that in excess of negative ions subsonic solitons will not propagate even at the presence of superthermal electrons. Indeed, there is a critical negative ion density ratio for all values of kappa, above that only supersonic solitons are observed. Furthermore, in addition to the previous results based on Cairns-distributed electrons [R. A. Cairns et al., Geophys. Res. Lett. 22, 2709 (1995)], which predicted that both compressive and rarefactive solitons can coexist simultaneously, we have also found the regions of {nu} and {kappa} in which either positive or negative potentials are permitted (i.e., not together). This research will be helpful in understanding the properties of space and laboratory plasmas containing negative ions with energetic electrons.

  9. Low energy ion distribution measurements in Madison Symmetric Torus plasmas

    SciTech Connect

    Titus, J. B. Mezonlin, E. D.; Johnson, J. A.

    2014-06-15

    Charge-exchange neutrals contain information about the contents of a plasma and can be detected as they escape confinement. The Florida A and M University compact neutral particle analyzer (CNPA), used to measure the contents of neutral particle flux, has been reconfigured, calibrated, and installed on the Madison Symmetric Torus (MST) for high temperature deuterium plasmas. The energy range of the CNPA has been extended to cover 0.34–5.2 keV through an upgrade of the 25 detection channels. The CNPA has been used on all types of MST plasmas at a rate of 20 kHz throughout the entire discharge (∼70 ms). Plasma parameter scans show that the ion distribution is most dependent on the plasma current. Magnetic reconnection events throughout these scans produce stronger poloidal electric fields, stronger global magnetic modes, and larger changes in magnetic energy all of which heavily influence the non-Maxwellian part of the ion distribution (the fast ion tail)

  10. Study of the negative ion extraction mechanism from a double-ion plasma in negative ion sources

    NASA Astrophysics Data System (ADS)

    Goto, I.; Miyamoto, K.; Nishioka, S.; Hatayama, A.

    2015-04-01

    We have developed a 2D3V-PIC model of the extraction region, aiming to clarify the basic extraction mechanism of H- ions from the double-ion plasma in H- negative ion sources. The result shows the same tendency of the H- ion density nH- as that observed in the experiments, i.e.,nH- in the upstream region away from the plasma meniscus (H- emitting surface) has been reduced by applying the extraction voltage. At the same time, relatively slow temporal oscillation of the electric potential compared with the electron plasma frequency has been observed in the extraction region. Results of the systematic study using a 1D3V-PIC model with the uniform magnetic field confirm the result that the electrostatic oscillation is identified to be lower hybrid wave. The effect of this oscillation on the H- transport will be studied in the future.

  11. The LICPA accelerator of dense plasma and ion beams

    NASA Astrophysics Data System (ADS)

    Badziak, J.; Jabloński, S.; Pisarczyk, T.; Chodukowski, T.; Parys, P.; Raczka, P.; Rosiński, M.; Krousky, E.; Ullschmied, J.; Liska, R.; Kucharik, M.; Torrisi, L.

    2014-04-01

    Laser-induced cavity pressure acceleration (LICPA) is a novel scheme of acceleration of dense matter having a potential to accelerate plasma projectiles with the energetic efficiency much higher than the achieved so far with other methods. In this scheme, a projectile placed in a cavity is irradiated by a laser beam introduced into the cavity through a hole and accelerated along a guiding channel by the thermal pressure created in the cavity by the laser-produced plasma or by the photon pressure of the ultraintense laser radiation trapped in the cavity. This paper summarizes briefly the main results of our recent LICPA studies, in particular, experimental investigations of ion beam generation and heavy macroparticle acceleration in the hydrodynamic LICPA regime (at moderate laser intensities ~ 1015W/cm2) and numerical, particle-in-cell (PIC) studies of production of ultraintense ion beams and fast macroparticles using the photon pressure LICPA regime (at high laser intensities > 1020 W/cm2). It is shown that in both LICPA regimes the macroparticles and ion beams can be accelerated much more efficiently than in other laser-based acceleration scheme commonly used and the accelerated plasma/ion bunches can have a wide variety of parameters. It creates a prospect for a broad range of applications of the LICPA accelerator, in particular in such domains as high energy density physics, ICF research (ion fast ignition, impact ignition) or nuclear physics.

  12. Acoustic nonlinear periodic waves in pair-ion plasmas

    NASA Astrophysics Data System (ADS)

    Mahmood, Shahzad; Kaladze, Tamaz; Ur-Rehman, Hafeez

    2013-09-01

    Electrostatic acoustic nonlinear periodic (cnoidal) waves and solitons are investigated in unmagnetized pair-ion plasmas consisting of same mass and oppositely charged ion species with different temperatures. Using reductive perturbation method and appropriate boundary conditions, the Korteweg-de Vries (KdV) equation is derived. The analytical solutions of both cnoidal wave and soliton solutions are discussed in detail. The phase plane plots of cnoidal and soliton structures are shown. It is found that both compressive and rarefactive cnoidal wave and soliton structures are formed depending on the temperature ratio of positive and negative ions in pair-ion plasmas. In the special case, it is revealed that the amplitude of soliton may become larger than it is allowed by the nonlinear stationary wave theory which is equal to the quantum tunneling by particle through a potential barrier effect. The serious flaws in the earlier published results by Yadav et al., [PRE 52, 3045 (1995)] and Chawla and Misra [Phys. Plasmas 17, 102315 (2010)] of studying ion acoustic nonlinear periodic waves are also pointed out.

  13. Magnetoacoustic solitons in dense astrophysical electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Hussain, S.; Mahmood, S.; Mushtaq, A.

    2013-08-01

    Nonlinear magnetoacoustic waves in dense electron-positron-ion plasmas are investigated by using three fluid quantum magnetohydrodynamic model. The quantum mechanical effects of electrons and positrons are taken into account due to their Fermionic nature (to obey Fermi statistics) and quantum diffraction effects (Bohm diffusion term) in the model. The reductive perturbation method is employed to derive the Korteweg-de Vries (KdV) equation for low amplitude magnetoacoustic soliton in dense electron-positron-ion plasmas. It is found that positron concentration has significant impact on the phase velocity of magnetoacoustic wave and on the formation of single pulse nonlinear structure. The numerical results are also illustrated by taking into account the plasma parameters of the outside layers of white dwarfs and neutron stars/pulsars.

  14. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy,and Related Fields

    SciTech Connect

    Grisham, L. R.; Kwan, J. W.

    2008-08-01

    Some years ago it was suggested that halogen negative ions could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons - can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion - ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.

  15. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields

    SciTech Connect

    Grisham, L.R.; Kwan, J.W.

    2008-08-01

    Some years ago it was suggested that halogen negative ions [1]could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons -- can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion-ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.

  16. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields

    SciTech Connect

    L. Grisham and J.W. Kwan

    2008-08-12

    Some years ago it was suggested that halogen negative ions [1] could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons -- can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion-ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.

  17. Development of ECR plasmas for radioactive ion beams

    SciTech Connect

    Geller, R.; Bouly, J. L.; Bruandet, J. F.; Chauvin, N.; Curdy, J. C.; Lamy, T.; Nifenecker, H.; Sole, P.; Sortais, P.; Vieux-Rochaz, J. L.

    1999-04-26

    ECR plasmas are utilized for : 1) Charge breeding of 1+ RIB into N+ RIB in continuous regime with an efficiency for one given charge of 10% for noble gases and about 5% for solid elements. 2) Charge breeding with beam bunching (bunch duration 20 ms, 5 Hz) was obtained for Rb{sup 15+} ions with an efficiency of 2.2%. These results are very reproducible and need only about 200 W of RF power. The number of ions contained in one bunch exceeds 1000 times those achieved with EBIS systems. The ECR trap is better suited for pulsed post acceleration. 3) Ion accumulation in the ECR plasma trap may become a method for realizing a radioactive target.

  18. Neoclassical electron and ion transport in toroidally rotating plasmas

    SciTech Connect

    Sugama, H.; Horton, W.

    1997-06-01

    Neoclassical transport processes of electrons and ions are investigated in detail for toroidally rotating axisymmetric plasmas with large flow velocities on the order of the ion thermal speed. The Onsager relations for the flow-dependent neoclassical transport coefficients are derived from the symmetry properties of the drift kinetic equation with the self-adjoint collision operator. The complete neoclassical transport matrix with the Onsager symmetry is obtained for the rotating plasma consisting of electrons and single-species ions in the Pfirsch{endash}Schl{umlt u}ter and banana regimes. It is found that the inward banana fluxes of particles and toroidal momentum are driven by the parallel electric field, which are phenomena coupled through the Onsager symmetric off-diagonal coefficients to the parallel currents caused by the radial thermodynamic forces conjugate to the inward fluxes, respectively. {copyright} {ital 1997 American Institute of Physics.}

  19. Electromagnetic ion cyclotron waves in the plasma depletion layer

    NASA Technical Reports Server (NTRS)

    Denton, Richard E.; Hudson, Mary K.; Fuselier, Stephen A.; Anderson, Brian J.

    1993-01-01

    Results of a study of the theoretical properties of electromagnetic ion cyclotron (EMIC) waves which occur in the plasma depletion layer are presented. The analysis assumes a homogeneous plasma with the characteristics which were measured by the AMPTE/CCE satellite at 1450-1501 UT on October 5, 1984. Waves were observed in the Pc 1 frequency range below the hydrogen gyrofrequency, and these waves are identified as EMIC waves. The higher-frequency instability is driven by the temperature anisotropy of the H(+) ions, while the lower-frequency instability is driven by the temperature anisotropy of the He(2+) ions. It is argued that the higher-frequency waves will have k roughly parallel to B(0) and will be left-hand polarized, while the lower frequency wave band will have k oblique to B(0) and will be linearly polarized, in agreement with observations.

  20. Acoustic solitons in inhomogeneous pair-ion plasmas

    SciTech Connect

    Shah, Asif; Mahmood, S.; Haque, Q.

    2010-12-15

    The acoustic solitons are investigated in inhomogeneous unmagnetized pair ion plasmas. The Korteweg-de Vries (KdV) like equation with an additional term due to density gradients is deduced by employing reductive perturbation technique. It is noticed that pair-ion plasma system is conducive for the propagation of compressive as well as rarefactive solitons. The increase in the temperature ratio causes the amplitude of the rarefactive soliton to decrease. However, the amplitude of the compressive solitons is found to be increased as the temperature ratio of ions is enhanced. The amplitude of both compressive and rarefactive solitons is found to be increased as the density gradient parameter is increased. The equlibrium density profile is assumed to be exponential. The numerical results are shown for illustration.

  1. Plasma simulation in a hybrid ion electric propulsion system

    NASA Astrophysics Data System (ADS)

    Jugroot, Manish; Christou, Alex

    2015-04-01

    An exciting possibility for the next generation of satellite technology is the microsatellite. These satellites, ranging from 10-500 kg, can offer advantages in cost, reduced risk, and increased functionality for a variety of missions. For station keeping and control of these satellites, a suitable compact and high efficiency thruster is required. Electrostatic propulsion provides a promising solution for microsatellite thrust due to their high specific impulse. The rare gas propellant is ionized into plasma and generates a beam of high speed ions by electrostatic processes. A concept explored in this work is a hybrid combination of dc ion engines and hall thrusters to overcome space-charge and lifetime limitations of current ion thruster technologies. A multiphysics space and time-dependent formulation was used to investigate and understand the underlying physical phenomena. Several regions and time scales of the plasma have been observed and will be discussed.

  2. Efficient cesiation in RF driven surface plasma negative ion source

    NASA Astrophysics Data System (ADS)

    Belchenko, Yu.; Ivanov, A.; Konstantinov, S.; Sanin, A.; Sotnikov, O.

    2016-02-01

    Experiments on hydrogen negative ions production in the large radio-frequency negative ion source with cesium seed are described. The system of directed cesium deposition to the plasma grid periphery was used. The small cesium seed (˜0.5 G) provides an enhanced H- production during a 2 month long experimental cycle. The gradual increase of negative ion yield during the long-term source runs was observed after cesium addition to the source. The degraded H- production was recorded after air filling to the source or after the cesium washing away from the driver and plasma chamber walls. The following source conditioning by beam shots produces the gradual recovery of H- yield to the high value. The effect of H- yield recovery after cesium coverage passivation by air fill was studied. The concept of cesium coverage replenishment and of H- yield recovery due to sputtering of cesium from the deteriorated layers is discussed.

  3. Efficient cesiation in RF driven surface plasma negative ion source.

    PubMed

    Belchenko, Yu; Ivanov, A; Konstantinov, S; Sanin, A; Sotnikov, O

    2016-02-01

    Experiments on hydrogen negative ions production in the large radio-frequency negative ion source with cesium seed are described. The system of directed cesium deposition to the plasma grid periphery was used. The small cesium seed (∼0.5 G) provides an enhanced H(-) production during a 2 month long experimental cycle. The gradual increase of negative ion yield during the long-term source runs was observed after cesium addition to the source. The degraded H(-) production was recorded after air filling to the source or after the cesium washing away from the driver and plasma chamber walls. The following source conditioning by beam shots produces the gradual recovery of H(-) yield to the high value. The effect of H(-) yield recovery after cesium coverage passivation by air fill was studied. The concept of cesium coverage replenishment and of H(-) yield recovery due to sputtering of cesium from the deteriorated layers is discussed. PMID:26932015

  4. Plasma and Ion Sources in Large Area Coatings: A Review

    SciTech Connect

    Anders, Andre

    2005-02-28

    Efficient deposition of high-quality coatings often requires controlled application of excited or ionized particles. These particles are either condensing (film-forming) or assisting by providing energy and momentum to the film growth process, resulting in densification, sputtering/etching, modification of stress, roughness, texture, etc. In this review, the technical means are surveyed enabling large area application of ions and plasmas, with ion energies ranging from a few eV to a few keV. Both semiconductortype large area (single wafer or batch processing with {approx} 1000 cm{sup 2}) and in-line web and glass-coating-type large area (> 10{sup 7} m{sup 2} annually) are considered. Characteristics and differences between plasma and ion sources are explained. The latter include gridded and gridless sources. Many examples are given, including sources based on DC, RF, and microwave discharges, some with special geometries like hollow cathodes and E x B configurations.

  5. Negative hydrogen ion production in a helicon plasma source

    SciTech Connect

    Santoso, J. Corr, C. S.; Manoharan, R.; O'Byrne, S.

    2015-09-15

    In order to develop very high energy (>1 MeV) neutral beam injection systems for applications, such as plasma heating in fusion devices, it is necessary first to develop high throughput negative ion sources. For the ITER reference source, this will be realised using caesiated inductively coupled plasma devices, containing either hydrogen or deuterium discharges, operated with high rf input powers (up to 90 kW per driver). It has been suggested that due to their high power coupling efficiency, helicon devices may be able to reduce power requirements and potentially obviate the need for caesiation due to the high plasma densities achievable. Here, we present measurements of negative ion densities in a hydrogen discharge produced by a helicon device, with externally applied DC magnetic fields ranging from 0 to 8.5 mT at 5 and 10 mTorr fill pressures. These measurements were taken in the magnetised plasma interaction experiment at the Australian National University and were performed using the probe-based laser photodetachment technique, modified for the use in the afterglow of the plasma discharge. A peak in the electron density is observed at ∼3 mT and is correlated with changes in the rf power transfer efficiency. With increasing magnetic field, an increase in the negative ion fraction from 0.04 to 0.10 and negative ion densities from 8 × 10{sup 14 }m{sup −3} to 7 × 10{sup 15 }m{sup −3} is observed. It is also shown that the negative ion densities can be increased by a factor of 8 with the application of an external DC magnetic field.

  6. Ion Chemistry in Atmospheric and Astrophysical Plasmas

    NASA Technical Reports Server (NTRS)

    Dalgarno, A.; Fox, J. L.

    1994-01-01

    There are many differences and also remarkable similarities between the ion chemistry and physics of planetary ionospheres and the ion chemistry and physics of astronomical environments beyond the solar system. In the early Universe, an expanded cooling gas of hydrogen and helium was embedded in the cosmic background radiation field and ionized by it. As the Universe cooled by adiabatic expansion, recombination occurred and molecular formation was driven by catalytic reactions involving the relict electrons and protons. Similar chemical processes are effective in the ionized zones of gaseous and planetary nebulae and in stellar winds where the ionization is due to radiation from the central stars, in the envelopes of supernovae where the ionization is initiated by the deposition of gamma-rays, in dissociative shocks where the ionization arises from electron impacts in a hot gas and in quasar broad-line region clouds where the quasar is responsible for the ionization. At high altitudes in the atmospheres of the Jovian planets, the main constituents are hydrogen and helium and the ion chemistry and physics is determined by the same processes, the source of the ionization being solar ultraviolet radiation and cosmic rays. After the collapse of the first distinct astronomical entities to emerge from the uniform flow, heavy elements were created by nuclear burning in the cores of the collapsed objects and distributed throughout the Universe by winds and explosions. The chemistry and physics became more complicated. Over 90 distinct molecular species have been identified in interstellar clouds where they are ionized globally by cosmic ray impacts and locally by radiation and shocks associated with star formation and evolution. Complex molecules have also been found in circumstellar shells of evolved stars. At intermediate and low altitudes in the Jovian atmospheres, the ion chemistry is complicated by the increasing abundance of heavy elements such as carbon, and an

  7. Stable plasma flow to absorbing boundary in a magnetized two ion species plasma

    NASA Astrophysics Data System (ADS)

    Sharma, Devendra; Kaw, Predhimen

    2011-10-01

    Study has been carried out to analyze the effect of magnetic field on the behavior of plasma flow to a perfectly absorbing plasma boundary in a magnetized two ion-species plasma. Recent experiments and theoretical studies [D. Lee, L. Oksuz and N. Hershkovitz, Phys. Rev. Lett. 99, 155004 (2007), C. S. Yip, N. Hershkowitz and G. Severn, Phys. Rev. Lett. 104, 225003 (2010)] have indicated that in unmagnetized cases, the two ion velocities approach a common ion sound speed of the system near the sheath-presheath boundary and satisfy the generalized form of Bohm-Criterion. This behavior is influenced further by the presence of a magnetic field in the cases where the presheath mechanisms scale with the ion-Larmour radius. Our analysis indicates additional regions in the parameter-space of magnetized plasma where the boundary flow is unstable. The effect appears as a consequence of modification of the usual ion-acoustic dispersion relation resulting from the partial magnetization of the ion species.

  8. Collector and source sheaths of a finite ion temperature plasma

    SciTech Connect

    Schwager, L.A.; Birdsall, C.K.

    1988-04-13

    The region between a Maxwellian plasma source and an absorbing surface is modeled with an electrostatic particle simulation and with a kinetic plasma-sheath model. In the kinetic model, Poisson's equation and Vlasov equations govern the velocity distribution of the ions and electrons. Our numerical and theoretical results for collector potential and plasma transport agree with the bounded model of Emmert et al., but differ somewhat from those using traditional Bohm sheath analysis. The plasma source injects equal fluxes of half-Maxwellian ions and electrons with specified mass and temperature ratios and is assumed to have a zero electric field. Representing the potential change within a distributed full-Maxwellian source region, the source potential drop depends primarily on temperature ratio and evolves a few Debye lengths from the source to neutralize the injected plasma. The plasma flows to an electrically floating collector where the more familiar electron-repelling collector sheath appears. Profiles of potential, density, drift velocity, temperature, kinetic energy flux, and heat flux are shown from simulation; all compare very well with theory. 24 refs., 7 figs., 1 tab.

  9. Fast-Ion Physics in Burning Toroidal Plasmas

    NASA Astrophysics Data System (ADS)

    Heidbrink, W. W.

    2001-10-01

    What are the key scientific issues for energetic-particle physics in magnetically confined plasma? Which of these issues can be effectively addressed in a burning tokamak experiment? Single-particle effects are well understood and provide a firm basis for extrapolation to a burning plasma. Effects in this category include the production of alpha particles, their deceleration due to classical Coulomb scattering, particle losses in the static magnetic field structure, and turbulent transport caused by fluctuations of the background plasma. In contrast, collective effects involving fast ions are more poorly understood and extrapolations are unreliable. Collective modes of concern include toroidicity-induced and ellipticity-induced Alfvén eigenmodes (TAE and EAE), kinetic ballooning modes, and internal kink modes. When weakly damped by the background plasma, the stability of these modes can be altered by the alpha-particle population. In some projections to burning experiments, a ``sea'' of TAEs are unstable. The nonlinear saturation and consequent fast-ion transport of many, closely-spaced, modes is expected to differ from existing experiments, where fewer modes are typically excited. In high-temperature burning plasmas (T ~20 keV), the alpha-particle pressure is comparable to the background plasma pressure. In this ``energetic-particle mode'' regime, the MHD normal modes are modified and frequency chirping and other complicated phenomena are observed. Another issue is the possibility of exploiting instabilities such as compressional Alfvén eigenmodes to transfer energy from alpha particles to thermal ions without heating electrons. >From the standpoint of energetic-particle physics, the ideal burning plasma experiment is well diagnosed and can vary the alpha pressure to span both stable and unstable operating regimes.

  10. Collector and source sheaths of a finite ion temperature plasma

    SciTech Connect

    Schwager, L.A.; Birdsall, C.K. )

    1990-05-01

    The region between a Maxwellian plasma source and an absorbing surface is described theoretically with a static, kinetic plasma--sheath model and modeled numerically with a dynamic, electrostatic particle simulation. In the kinetic theory, Poisson's equation and Vlasov equations govern the non-Maxwellian velocity distribution of the ions and electrons. The results in this paper for collector potential and plasma transport agree with the bounded model of Emmert {ital et} {ital al}. (Phys. Fluids {bold 23}, 803 (1980)). However, this approach differs from those using traditional Bohm sheath analysis by {plus minus}0.25 (in units of electron temperature) for potential drop through the collector sheath of a hydrogen plasma. In both the theory and simulation, the plasma source injects equal fluxes of ions and electrons with half-Maxwellian velocities and various mass and temperature ratios and is assumed to have a zero electric field. The potential change within a spatially distributed, full Maxwellian source region is represented with the source sheath potential drop that depends primarily on temperature ratio. This source sheath evolves over a few Debye lengths from the source to neutralize the injected plasma. The plasma flows to an electrically floating collector where the more familiar electron-repelling collector sheath appears. The collector potential {psi}{sub {ital C}} and source sheath potential drop {psi}{sub {ital P}} (in units of electron temperature) are evaluated as a function of mass and temperature ratio. The velocity moments of density, drift velocity, temperature, kinetic energy flux, and heat flux are also derived as a function of {psi}{sub {ital C}} and {psi}{sub {ital P}}. Comparisons with electrostatic particle simulations are shown for the ion/electron mass ratios of 40 and 100 and temperature ratios of 0.1, 1, and 10.