Science.gov

Sample records for ion clusters

  1. Recombination of cluster ions

    NASA Technical Reports Server (NTRS)

    Johnsen, Rainer

    1993-01-01

    Some of our recent work on molecular band emissions from recombination of molecular dimer ions (N4(+) and CO(+) CO) is discussed. Much of the experimental work was done by Y. S. Cao; the results on N4(+) recombination have been published. A brief progress report is given on our ongoing measurements of neutral products of recombination using the flowing-afterglow Langmuir-probe technique in conjunction with laser-induced fluorescence.

  2. Hydrated Ions: From Individual Ions to Ion Pairs to Ion Clusters.

    PubMed

    Chen, Houyang; Ruckenstein, Eli

    2015-10-01

    The structure of hydrated ions plays a central role in chemical and biological sciences. In the present paper, five ions, namely, Na(+), K(+), Mg(2+), Ca(2+) and Cl(-), are examined using molecular dynamics simulations. In addition to hydrated individual ions and ion pairs identified previously, hydrated ion clusters containing 3, 4, 5, or more ions are identified in the present paper. The dependence of hydration numbers and mole fractions of individual ions, ion pairs, and larger ion clusters on the electrolyte concentration is determined. As the electrolyte concentration increases, the mole fraction of hydrated individual ions decreases, and the mole fraction of hydrated larger ion clusters increases. The results also reveal that the hydrogen bonding numbers of the H2O molecules of the first hydration shells of individual ions, ion pairs, and larger ion clusters are insensitive to the electrolyte concentration, but sensitive to the nature and conformation of ions. PMID:26358093

  3. Some properties of ion and cluster plasma

    SciTech Connect

    Gudzenko, L.I.; Derzhiev, V.I.; Yakovlenko, S.I.

    1982-11-01

    The aggregate of problems connected with the physics of ion and cluster plasma is qualitatively considered. Such a plasma can exist when a dense gas is ionized by a hard ionizer. The conditions for the formation of an ion plasma and the difference between its characteristics and those of an ordinary electron plasma are discussed; a solvated-ion model and the distribution of the clusters with respect to the number of solvated molecules are considered. The recombination rate of the positively and negatively charged clusters is roughly estimated. The parameters of a ball-lightning plasma are estimated on the basis of the cluster model.

  4. On Ion Clusters in the Interstellar Gas

    NASA Technical Reports Server (NTRS)

    Donn, Bertram

    1960-01-01

    In a recent paper V.I. Krassovsky (1958) predicts the occurrence of clusters of large numbers of atoms and molecules around ions in the interstellar gas. He then proposes a number of physicochemical processes that would be considerably enhanced by the high particle density in such clusters. In particular, he suggests that absorption by negative ions formed in the clusters would account for the interstellar extinction without any necessity for the presence of grains. Because of the important consequences that ion clusters could have, it is necessary to examine their occurrence more fully. This note re-examines the formation of ion clusters in space and shows that even ion-molecule pairs are essentially non-existent. Ion clusters have been considered by Bloom and Margenau (1952) from the same point of view as that used by Krassovsky, whose basic reference (Joffe and Semenov 1933) unfortunately is not available. A different approach has been used by Eyring, Hirschfelder, and Taylor (1936) following the methods of chemical equilibrium. Both the references cited here enable one to conclude that clustering is negligible. Therefore, the treatment of Eyring et al. is more appropriate than the method of Bloom and Margenau, which depends on the statistical equilibrium of an atmosphere in a force field.

  5. Spectrometer for cluster ion beam induced luminescence

    SciTech Connect

    Ryuto, H. Sakata, A.; Takeuchi, M.; Takaoka, G. H.; Musumeci, F.

    2015-02-15

    A spectrometer to detect the ultra-weak luminescence originated by the collision of cluster ions on the surfaces of solid materials was constructed. This spectrometer consists of 11 photomultipliers with band-pass interference filters that can detect the luminescence within the wavelength ranging from 300 to 700 nm and of a photomultiplier without filter. The calibration of the detection system was performed using the photons emitted from a strontium aluminate fluorescent tape and from a high temperature tungsten filament. Preliminary measurements show the ability of this spectrometer to detect the cluster ion beam induced luminescence.

  6. Collective effects in electronic sputtering of organic molecular ions by fast incident cluster ions

    SciTech Connect

    Salehpour, M.; Fishel, D.L.; Hunt, J.E.

    1988-07-15

    The collective sputtering effect of fast primary cluster ions on the yield of secondary molecular ions has been demonstrated for the first time. Results show that the sputtering yield of valine negative molecular ions per incident carbon atom, in a C/sup +//sub n/ incident cluster ion, increases with increasing n. The yield results are interpreted as a direct effect of the enhancement in the electronic stopping power per atom in cluster ions compared to atomic ions.

  7. Mass-spectrometric observation of ion ejection from clusters

    NASA Astrophysics Data System (ADS)

    Vostrikov, A. A.; Dubov, D. Iu.; Gileva, V. P.

    1989-08-01

    Results of mass spectrometry measurements in clustered molecular beams of water and nitrogen oxide are reported. The clusters were formed under conditions of free expansion of N2O and superheated steam through a sonic nozzle. It is found that, for a mean cluster size of less than 100, the true cluster concentration in the beam is distorted by the evaporation of molecules from ionized clusters. The evaporation intensity depends to a large degree on the ionizing electron energy. For the cluster sizes investigated (100 or less), the observed density of the microcluster ions is found to be related to ion ejection from the clusters.

  8. Interaction between water cluster ions and mica surface

    SciTech Connect

    Ryuto, Hiromichi Ohmura, Yuki; Nakagawa, Minoru; Takeuchi, Mitsuaki; Takaoka, Gikan H.

    2014-03-15

    Water cluster ion beams were irradiated on mica surfaces to investigate the interaction between molecular cluster ions and a mica surface. The contact angle of the mica surface increased with increasing dose of the water cluster ion beam, but the increase in the contact angle was smaller than that induced by an ethanol cluster ion beam. The surface roughness also increased with increasing dose of the water cluster ion beam, whereas the intensity of K 2p x-ray photoelectron spectroscopy peaks decreased with increasing dose of the water cluster ion beam. The decrease in the number of potassium atoms together with the increase in the surface roughness may be the causes of the increase in the contact angle.

  9. Historical milestones and future prospects of cluster ion beam technology

    NASA Astrophysics Data System (ADS)

    Yamada, Isao

    2014-08-01

    Development of technology for processing of surfaces by means of gas cluster ion beams began only about a quarter century ago even though fundamental research related to generation of gas clusters began much earlier. Industrial applications of cluster ion beams did not start to be explored until commercial equipment was first introduced to the ion beam community in around 2000. The technology is now evolving rapidly with industrial equipment being engineered for many diverse surface processing applications which are made possible by the unique characteristics of cluster-ion/solid-surface interactions. In this paper, important historical milestones in cluster ion beam development are described. Present activities related to a wide range of industrial applications in semiconductors, magnetic and optical devices, and bio-medical devices are reviewed. Several emerging new advances in cluster beam applications for the future are also discussed.

  10. Ion beam induced nanosized Ag metal clusters in glass

    NASA Astrophysics Data System (ADS)

    Mahnke, H.-E.; Schattat, B.; Schubert-Bischoff, P.; Novakovic, N.

    2006-04-01

    Silver metal clusters have been formed in soda lime glass by high-energy heavy-ion irradiation at ISL. The metal cluster formation was detected with X-ray absorption spectroscopy (EXAFS) in fluorescence mode, and the shape of the clusters was imaged with transmission electron microscopy. While annealing in reducing atmosphere alone, leads to the formation of metal clusters in Ag-containing glasses, where the Ag was introduced by ion-exchange, such clusters are not very uniform in size and are randomly distributed over the Ag-containing glass volume. Irradiation with 600-MeV Au ions followed by annealing, however, results in clusters more uniform in size and arranged in chains parallel to the direction of the ion beam.

  11. Formation of high-mass cluster ions from compound semiconductors using time-of-flight secondary ion mass spectrometry with cluster primary ions.

    PubMed

    Goacher, Robyn E; Luo, Hong; Gardella, Joseph A

    2008-05-01

    The detection of high-mass, nonstoichiometric, GaxAsy and InxPy secondary ion clusters using time-of-flight secondary ion mass spectrometry is reported for the first time. The GaxAsy and InxPy clusters are detected in both positive and negative ion spectra and extend to masses of at least 6000 dalton (Da). Consecutive clusters differ by the addition of one gallium (indium) atom. This leads to nonstoichiometric clusters at high mass (i.e., Ga15As3 at 1270 Da) which are metastable above a critical mass. The relative secondary ion yields of high-mass GaxAsy clusters detected using several primary ion sources (Cs+, Bi+, Bi3+, Bi32+, Bi52+, C60+, and C602+) are compared. The relative secondary ion yield of high-mass GaxAsy clusters is significantly enhanced by the use of cluster primary ions and the best relative secondary ion yield is obtained using Bi3+ primary ions. An application of the high-mass GaxAsy clusters is presented, in which these clusters are utilized to distinguish between contaminant levels of Ga and bulk GaAs structure in a depth profile of a MnAs/GaAs heterojunction. These results illustrate improved analysis of inorganic materials using cluster primary ions and break the paradigm of stoichiometric secondary cluster ion formation for SIMS of inorganic compounds. PMID:18358011

  12. Negative ions of nitroethane and its clusters

    NASA Astrophysics Data System (ADS)

    Stokes, S. T.; Bowen, K. H.; Sommerfeld, T.; Ard, S.; Mirsaleh-Kohan, N.; Steill, J. D.; Compton, R. N.

    2008-08-01

    Valence and dipole-bound negative ions of the nitroethane (NE) molecule and its clusters are studied using photoelectron spectroscopy (PES), Rydberg electron transfer (RET) techniques, and ab initio methods. Valence adiabatic electron affinities (EAas) of NE, C2H5NO2, and its clusters, (C2H5NO2)n, n=2-5, are estimated using vibrationally unresolved PES to be 0.3+/-0.2 eV (n=1), 0.9+/-0.2 eV (n=2), 1.5+/-0.2 eV (n=3), 1.9+/-0.2 eV (n=4), and 2.1+/-0.2 eV (n=5). These energies were then used to determine stepwise anion-neutral solvation energies and compared with previous literature values. Vertical detachment energies for (C2H5NO2)n- were also measured to be 0.92+/-0.10 eV (n=1), 1.63+/-0.10 eV (n=2), 2.04+/-0.10 eV (n=3), and 2.3+/-0.1 eV (n=4). RET experiments show that Rydberg electrons can be attached to NE both as dipole-bound and valence bound anion states. The results are similar to those found for nitromethane (NM), where it was argued that the diffuse dipole state act as a ``doorway state'' to the more tightly bound valence anion. Using previous models for relating the maximum in the RET dependence of the Rydberg effective principle number nmax*, the dipole-bound electron affinity is predicted to be ~25 meV. However, a close examination of the RET cross section data for NE and a re-examination of such data for NM finds a much broader dependence on n* than is seen for RET in conventional dipole bound states and, more importantly, a pronounced l dependence is found in nmax* (nmax* increases with l). Ab initio calculations agree well with the experimental results apart from the vertical electron affinity value associated with the dipole bound state which is predicted to be 8 meV. Moreover, the calculations help to visualize the dramatic difference in the distributions of the excess electron for dipole-bound and valence states, and suggest that NE clusters form only anions where the excess electron localizes on a single monomer.

  13. Ion aggregation in high salt solutions: Ion network versus ion cluster

    SciTech Connect

    Kim, Seongheun; Kim, Heejae; Choi, Jun-Ho; Cho, Minhaeng

    2014-09-28

    The critical aggregation phenomena are ubiquitous in many self-assembling systems. Ions in high salt solutions could also spontaneously form larger ion aggregates, but their effects on hydrogen-bond structures in water have long been controversial. Here, carrying out molecular dynamics (MD) simulation studies of high salt solutions and comparing the MD simulation results with infrared absorption and pump-probe spectroscopy of O–D stretch mode of HDO in highly concentrated salt solutions and {sup 13}C-NMR chemical shift of S{sup 13}CN{sup −} in KSCN solutions, we find evidence on the onset of ion aggregate and large-scale ion-ion network formation that concomitantly breaks water hydrogen-bond structure in certain salt solutions. Despite that these experimental results cannot provide direct evidence on the three-dimensional morphological structures of ion aggregates, they serve as reference data for verifying MD simulation methods. The MD results suggest that disrupted water hydrogen-bond network is intricately intertwined with ion-ion network. This further shows morphological variation of ion aggregate structures from ion cluster to ion network in high salt solutions that are interrelated to the onset of macroscopic aggregate formation and the water hydrogen-bond structure making and breaking processes induced by Hofmeister ions.

  14. Ion aggregation in high salt solutions: Ion network versus ion cluster

    NASA Astrophysics Data System (ADS)

    Kim, Seongheun; Kim, Heejae; Choi, Jun-Ho; Cho, Minhaeng

    2014-09-01

    The critical aggregation phenomena are ubiquitous in many self-assembling systems. Ions in high salt solutions could also spontaneously form larger ion aggregates, but their effects on hydrogen-bond structures in water have long been controversial. Here, carrying out molecular dynamics (MD) simulation studies of high salt solutions and comparing the MD simulation results with infrared absorption and pump-probe spectroscopy of O-D stretch mode of HDO in highly concentrated salt solutions and 13C-NMR chemical shift of S13CN- in KSCN solutions, we find evidence on the onset of ion aggregate and large-scale ion-ion network formation that concomitantly breaks water hydrogen-bond structure in certain salt solutions. Despite that these experimental results cannot provide direct evidence on the three-dimensional morphological structures of ion aggregates, they serve as reference data for verifying MD simulation methods. The MD results suggest that disrupted water hydrogen-bond network is intricately intertwined with ion-ion network. This further shows morphological variation of ion aggregate structures from ion cluster to ion network in high salt solutions that are interrelated to the onset of macroscopic aggregate formation and the water hydrogen-bond structure making and breaking processes induced by Hofmeister ions.

  15. High-Speed Nano-Processing with Cluster Ion Beams

    NASA Astrophysics Data System (ADS)

    Seki, T.; Matsuo, J.

    2006-11-01

    The gas cluster ion beam process has a high potential for material processing in nano-technology devices, such as photonic crystals, thin film transistors (TFTs) and micro-electromechanical systems (MEMS). In order to fabricate the devices, one needs to etch target materials with a high-speed, low-damage and ultra-smooth process. Extremely high rate sputtering was realized by high-energy cluster ion beam. We have been using this technique for poly-Si TFTs. There are many hillocks on poly-Si films formed by using a laser anneal technique, and they cause degradation of devices. When the laser crystallized poly-Si film was irradiated with cluster ion beam, the higher hillocks could be etched selectively and the surfaces of poly-Si films could be processed with low ion dose. High-speed nano-processing was realized by cluster ion beam.

  16. Active spacecraft potential control: An ion emitter experiment. [Cluster mission

    NASA Technical Reports Server (NTRS)

    Riedler, W.; Goldstein, R.; Hamelin, M.; Maehlum, B. N.; Troim, J.; Olsen, R. C.; Pedersen, A.; Grard, R. J. L.; Schmidt, R.; Rudenauer, F.

    1988-01-01

    The cluster spacecraft are instrumented with ion emitters for charge neutralization. The emitters produce indium ions at 6 keV. The ion current is adjusted in a feedback loop with instruments measuring the spacecraft potential. The system is based on the evaporation of indium in the apex field of a needle. The design of the active spacecraft potential control instruments, and the ion emitters is presented.

  17. Significant enhancement of negative secondary ion yields by cluster ion bombardment combined with cesium flooding.

    PubMed

    Philipp, Patrick; Angerer, Tina B; Sämfors, Sanna; Blenkinsopp, Paul; Fletcher, John S; Wirtz, Tom

    2015-10-01

    In secondary ion mass spectrometry (SIMS), the beneficial effect of cesium implantation or flooding on the enhancement of negative secondary ion yields has been investigated in detail for various semiconductor and metal samples. All results have been obtained for monatomic ion bombardment. Recent progress in SIMS is based to a large extent on the development and use of cluster primary ions. In this work we show that the enhancement of negative secondary ions induced by the combination of ion bombardment with simultaneous cesium flooding is valid not only for monatomic ion bombardment but also for cluster primary ions. Experiments carried out using C60+ and Ar4000+ bombardment on silicon show that yields of negative secondary silicon ions can be optimized in the same way as by Ga+ and Cs+ bombardment. Both for monatomic and cluster ion bombardment, the optimization does not depend on the primary ion species. Hence, it can be assumed that the silicon results are also valid for other cluster primary ions and that results obtained for monatomic ion bombardment on other semiconductor and metal samples are also valid for cluster ion bombardment. In SIMS, cluster primary ions are also largely used for the analysis of organic matter. For polycarbonate, our results show that Ar4000+ bombardment combined with cesium flooding enhances secondary ion signals by a factor of 6. This can be attributed to the removal of charging effects and/or reduced fragmentation, but no major influence on ionization processes can be observed. The use of cesium flooding for the imaging of cells was also investigated and a significant enhancement of secondary ion yields was observed. Hence, cesium flooding has also a vast potential for SIMS analyses with cluster ion bombardment. PMID:26378890

  18. Method and apparatus for the production of cluster ions

    DOEpatents

    Friedman, L.; Beuhler, R.J.

    A method and apparatus for the production of cluster ions, and preferably isotopic hydrogen cluster ions is disclosed. A gas, preferably comprising a carrier gas and a substrate gas, is cooled to about its boiling point and expanded through a supersonic nozzle into a region maintained at a low pressure. Means are provided for the generation of a plasma in the gas before or just as it enters the nozzle.

  19. Method and apparatus for the production of cluster ions

    DOEpatents

    Friedman, Lewis; Beuhler, Robert J.

    1988-01-01

    A method and apparatus for the production of cluster ions, and preferably isotopic hydrogen cluster ions is disclosed. A gas, preferably comprising a carrier gas and a substrate gas, is cooled to about its boiling point and expanded through a supersonic nozzle into a region maintained at a low pressure. Means are provided for the generation of a plasma in the gas before or just as it enters the nozzle.

  20. The dynamics of small excitable ion channel clusters

    NASA Astrophysics Data System (ADS)

    Shuai, J. W.; Jung, P.

    2006-06-01

    Through computational modeling we predict that small sodium ion channel clusters on small patches of membrane can encode electric signals most efficiently at certain magic cluster sizes. We show that this effect can be traced back to algebraic features of small integers and are universal for channels with a simple gating dynamics. We further explore physiologic conditions under which such effects can occur.

  1. Surface solvation for an ion in a water cluster.

    PubMed

    Herce, David H; Perera, Lalith; Darden, Thomas A; Sagui, Celeste

    2005-01-01

    We have used molecular dynamics simulations to study the structural, dynamical, and thermodynamical properties of ions in water clusters. Careful evaluations of the free energy, internal energy, and entropy are used to address controversial or unresolved issues, related to the underlying physical cause of surface solvation, and the basic assumptions that go with it. Our main conclusions are the following. (i) The main cause of surface solvation of a single ion in a water cluster is both water and ion polarization, coupled to the charge and size of the ion. Interestingly, the total energy of the ion increases near the cluster surface, while the total energy of water decreases. Also, our analysis clearly shows that the cause of surface solvation is not the size of the total water dipole (unless this is too small). (ii) The entropic contribution is the same order of magnitude as the energetic contribution, and therefore cannot be neglected for quantitative results. (iii) A pure energetic analysis can give a qualitative description of the ion position at room temperature. (iv) We have observed surface solvation of a large positive iodinelike ion in a polarizable water cluster, but not in a nonpolarizable water cluster. PMID:15638604

  2. Secondary ion emission from insulin film bombarded with methane and noble gas cluster ion beams

    NASA Astrophysics Data System (ADS)

    Moritani, Kousuke; Kanai, Masanori; Goto, Kosuke; Ihara, Issei; Inui, Norio; Mochiji, Kozo

    2013-11-01

    Recent advances in large cluster projectiles for secondary ion mass spectrometry (SIMS) allow the intact ions of some protein molecules to be detected without a matrix. However, detailed mechanisms of soft-sputtering and ionization of biomolecules remain unknown. Herein we investigate the secondary ion emission from insulin films under argon, krypton, and methane cluster ion bombardment. The intact insulin ion intensity significantly decreases for (CH4)1500+ ion bombardment compared with Ar1500+ ion bombardment at the same energy range of 3.3 eV/atom (or molecule), even though collisions with energetic methane clusters should generate numerous protons on the surface, which would enhance the ionization probability through proton attachment. In contrast, the intact ion intensity is almost the same for Ar2500+ and Kr2500+ cluster ion bombardment at the same energy range of 2 eV/atom. These observations suggest that detailed mechanisms for the ionization and sputtering by gas cluster ions should be investigated to enhance the intact ion intensity.

  3. Multiphoton ionization of ions, neutrals, and clusters. Progress report

    SciTech Connect

    Wessel, J.

    1991-06-28

    Scientific results are summarized from a three year research program on multiphoton ionization in aromatic molecules, clusters, and their ions. As originally proposed, the studies elucidated a new cluster ionization mechanism, characterized properties of long range intermolecular interactions, and investigated electronic transitions of aromatic cations cooled in a supersonic beam. The studies indicate that the new cluster ionization mechanism is highly efficient and dominates conventional 1 + 1 resonant ionization. In the case of the dimer of the large aromatic molecule fluorene, the results suggest that excimer formation competes with a direct ionization process. Highly selective excitonic spectra have been identified for several cluster species.

  4. Lithium Formate Ion Clusters Formation during Electrospray Ionization: Evidence of Magic Number Clusters by Mass Spectrometry and ab initio Calculations

    SciTech Connect

    Shukla, Anil K.; Bogdanov, Bogdan

    2015-02-10

    Small cationic and anionic clusters of lithium formate were generated by electrospray ionization and their fragmentations were studied by tandem mass spectrometry. Singly as well as multiply charged clusters were formed with the general formulae, (HCOOLi)nLi+, (HCOOLi)nLimm+, (HCOOLi)nHCOO- and (HCOOLi)n(HCOO)mm-. Several magic number cluster ions were observed in both the positive and negative ion modes although more predominant in the positive ion mode with (HCOOLi)3Li+ being the most abundant and stable cluster ions. Fragmentations of singly charged clusters proceed first by the loss of a dimer unit ((HCOOLi)2) followed by sequential loss of monomer units (HCOOLi). In the case of positive cluster ions, all fragmentations lead to the magic cluster (HCOOLi)3Li+ at higher collision energies which later fragments to dimer and monomer ions in lower abundance. Quantum mechanical calculations performed for smaller cluster ions showed that the trimer ion has a closed ring structure similar to the phenalenylium structure with three closed rings connected to the lithium ion. Further additions of monomer units result in similar symmetric structures for hexamer and nonamer cluster ions. Thermochemical calculations show that trimer cluster ion is relatively more stable than neighboring cluster ions, supporting the experimental observation of a magic number cluster with enhanced stability.

  5. The decay dynamics of photoexcited argon cluster ions

    NASA Astrophysics Data System (ADS)

    Smith, J. A.; Gotts, N. G.; Winkel, J. F.; Hallett, R.; Woodward, C. A.; Stace, A. J.; Whitaker, B. J.

    1992-07-01

    Following the photoexcitation of argon cluster ions, Ar+n for n in the range 4-25, kinetic energy release measurements have been undertaken on the fragments using two quite separate techniques. For Ar+4-Ar+6, fragment ion kinetic energy spectra were recorded at 532 nm in a crossed beam apparatus as a function of the angle of polarization of the laser radiation with respect to the incident ion beam. Only Ar+ from Ar+4 was observed to exhibit a polarization dependence together with a comparatively high kinetic energy release. The principal fragment ion Ar+2 was found both to emerge with a low kinetic energy release and to display no dependence on the angle of polarization of the radiation. In a second series of experiments, mass and kinetic energy resolved cluster ions were photodissociated in the entrance to a time-of-flight (TOF) device of variable length. The subsequent deflection of all ions allowed for time resolved measurements to be undertaken on the neutral photofragments. Following the absorption of a photon, all cluster ions up to Ar+25 were found to eject one/two neutral atoms with comparatively high kinetic energies. Any remaining internal energy appears to be dissipated through the loss of further neutral atoms with low kinetic energies. An analysis of the laser polarization dependence of these events, shows that those atoms identified as having high kinetic energies are ejected on a time scale which is short compared with the rotation period of a cluster (≂10 ps). These experimental observations are consistent with the results of recent molecular dynamics simulations of excited states in rare gas clusters by Landman, Jortner, and co-workers [J. Phys. Chem. 91, 4890 (1987); J. Chem. Phys. 88, 4273 (1988)]. Kinetic energy releases calculated from the TOF spectra exhibit marked fluctuations as a function of cluster size, with Ar+15 showing a minimum and Ar+19 a maximum. It is suggested that such behavior is part of a dynamic response to changes in

  6. Ion clusters in the lower stratosphere and upper troposphere

    NASA Astrophysics Data System (ADS)

    D'Auria, R.; Turco, R. P.

    2003-04-01

    Ions are continuously generated in the atmosphere under the action of galactic cosmic rays. Strong electrostatic interactions between the ions and surrounding neutral molecules lead to the formation of large ionic clusters. Recent measurements by Arnold and coworkers [ Eichkorn et al., 2002] by means of airborne ion mass spectrometry reveal the existence of positive ion cluster families reaching masses of up to 2500 amu in the upper troposphere. Ion clusters have also been detected in the stratosphere and throughout the troposphere [ e.g., Arnold et al., 1982; Eisele, 1988]. In all cases, positive ion families containing hydronium ions clustered with water and other trace gases such as acetone, acetonitrile and ammonia are detected. Negative ion cluster families are found consisting mainly of nitrate anions clustered with water and nitric acid, and sulfate anions associated with sulfuric acid and nitric acid ligands, with various degrees of hydration [e.g., Arnold et al., 1977]. Evidence also exists for very massive ions [Eichkorn et al., 2002; Hõrrak et al., 1998]. Ion clustering could play a role in aerosol formation through ion mediated nucleation [Turco and al., 1998; Yu and Turco, 2000; 2001], and could affect the microphysics of freezing in clouds. We have developed a ``hybrid'' model that characterizes the distributions of ionic clusters based on their structure and thermodynamics [D'Auria and Turco, 2001; 2002]. Here, we present results that describe the interaction of nitric acid vapor with hydronium/water clusters. We show, consistent with previous laboratory analyses [Zhang et al., 1994; Gilligan and Castleman, 2001], that the uptake of nitric acid on such clusters is a selective phenomenon, depending on the degree of cluster hydration. The clusters appear to take up nitric acid preferentially in ratios of nitric acid to water similar to those of solid nitric acid hydrates (particularly the trihydrate). It has been speculated that such stable nitric

  7. Stability of Phosphine-Ligated Gold Cluster Ions toward Dissociation: Effect of Ligand and Cluster Size

    NASA Astrophysics Data System (ADS)

    Laskin, Julia

    2015-03-01

    Precise control of the composition of phosphine-ligated gold clusters is of interest to their applications in catalysis, sensing, and drug delivery. Reduction synthesis in solution typically generates a distribution of ligated clusters containing different number of gold atoms and capping ligands. Ligand binding energy is an important factor determining the kinetics of cluster nucleation and growth in solution and hence the resulting cluster distribution. Phosphines are popular capping ligands with tunable electronic and steric properties that affect their binding to the gold core. We examined the effect of the number of gold atoms in the cluster and the properties of the phosphine ligand on the ligand binding energy to the gold core using surface-induced dissociation (SID) of mass selected cluster cations produced through electrospray ionization. SID of vibrationally excited ions is ideally suited for studying gas-phase fragmentation of complex ions such as ligated gold clusters. The energetics, dynamics, and mechanisms of cluster ion fragmentation in the absence of solvent are determined through RRKM modeling of time and kinetic energy dependent SID spectra. This approach provides quantitative information on the ligand binding energies in phosphine-ligated gold clusters important for understanding their formation in solution. Furthermore, ligand binding energies derived from SID data provide the first benchmark values for comparison with electronic structure calculations. This work was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences.

  8. Molecular imaging of biological tissue using gas cluster ions

    PubMed Central

    Tian, Hua; Wucher, Andreas; Winograd, Nicholas

    2015-01-01

    An Arn+ (n = 1–6000) gas cluster ion source has been utilized to map the chemical distribution of lipids in a mouse brain tissue section. We also show that the signal from high mass species can be further enhanced by doping a small amount of CH4 into the Ar cluster to enhance the ionization of several biologically important molecules. Coupled with secondary ion mass spectrometry instrumentation which utilizes a continuous Ar cluster ion projectile, maximum spatial resolution and maximum mass resolution can be achieved at the same time. With this arrangement, it is possible to achieve chemically resolved molecular ion images at the 4-µm resolution level. The focused Arn+/[Arx(CH4)y]+ beams (4–10 µm) have been applied to the study of untreated mouse brain tissue. A high signal level of molecular ions and salt adducts, mainly from various phosphocholine lipids, has been seen and directly used to map the chemical distribution. The signal intensity obtained using the pure Ar cluster source, the CH4-doped cluster source and C60 is also presented. PMID:26207076

  9. Dynamic Reactive Ionization with Cluster Secondary Ion Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Tian, Hua; Wucher, Andreas; Winograd, Nicholas

    2016-02-01

    Gas cluster ion beams (GCIB) have been tuned to enhance secondary ion yields by doping small gas molecules such as CH4, CO2, and O2 into an Ar cluster projectile, Arn + ( n = 1000-10,000) to form a mixed cluster. The `tailored beam' has the potential to expand the application of secondary ion mass spectrometry for two- and three-dimensional molecular specific imaging. Here, we examine the possibility of further enhancing the ionization by doping HCl into the Ar cluster. Water deposited on the target surface facilitates the dissociation of HCl. This concerted effect, occurring only at the impact site of the cluster, arises since the HCl is chemically induced to ionize to H+ and Cl- , allowing improved protonation of neutral molecular species. This hypothesis is confirmed by depth profiling through a trehalose thin film exposed to D2O vapor, resulting in ~20-fold increase in protonated molecules. The results show that it is possible to dynamically maintain optimum ionization conditions during depth profiling by proper adjustment of the water vapor pressure. H-D exchange in the trehalose molecule M was monitored upon deposition of D2O on the target surface, leading to the observation of [Mn* + H]+ or [Mn* + D]+ ions, where n = 1-8 hydrogen atoms in the trehalose molecule M have been replaced by deuterium. In general, we discuss the role of surface chemistry and dynamic reactive ionization of organic molecules in increasing the secondary ion yield.

  10. Clustering of ions at atomic dimensions in quantum plasmas

    NASA Astrophysics Data System (ADS)

    Shukla, Padma K.; Eliasson, Bengt; Eliasson

    2013-08-01

    By means of particle simulations of the equations of motion for ions interacting among themselves under the influence of newly discovered Shukla-Eliasson attractive force (SEAF) in a dense quantum plasma, we demonstrate that the SEAF can bring ions closer at atomic dimensions. We present simulation results of the dynamics of an ensemble of ions in the presence of the SEAF without and with confining external potentials and collisions between ions and degenerate electrons. Our particle simulations reveal that under the SEAF, ions attract each other, come closer, and form ionic clusters in the bath of degenerate electrons that shield ions. Furthermore, an external confining potential produces robust ion clusters that can have cigar- and ball-like shapes, which remain stable when the confining potential is removed. The stability of ion clusters is discussed. Our results may have applications to solid density plasmas (density exceeding 1023 per cm3), where the electrons will be degenerate and quantum forces due to the electron recoil effect caused by the overlapping of electron wave functions and electron tunneling through the Bohm potential, electron-exchange and electron-exchange and electron correlations associated with electron-1/2 spin effect, and the quantum statistical pressure of the degenerate electrons play a decisive role.

  11. Lithium formate ion clusters formation during electrospray ionization: Evidence of magic number clusters by mass spectrometry and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Shukla, Anil; Bogdanov, Bogdan

    2015-02-01

    Small cationic and anionic clusters of lithium formate were generated by electrospray ionization and their fragmentations were studied by tandem mass spectrometry (collision-induced dissociation with N2). Singly as well as multiply charged clusters were formed in both positive and negative ion modes with the general formulae, (HCOOLi)nLi+, (HCOOLi)nLimm+, (HCOOLi)nHCOO-, and (HCOOLi)n(HCOO)mm-. Several magic number cluster (MNC) ions were observed in both the positive and negative ion modes although more predominant in the positive ion mode with (HCOOLi)3Li+ being the most abundant and stable cluster ion. Fragmentations of singly charged positive clusters proceed first by the loss of a dimer unit ((HCOOLi)2) followed by the loss of monomer units (HCOOLi) although the former remains the dominant dissociation process. In the case of positive cluster ions, all fragmentations lead to the magic cluster (HCOOLi)3Li+ as the most abundant fragment ion at higher collision energies which then fragments further to dimer and monomer ions at lower abundances. In the negative ion mode, however, singly charged clusters dissociated via sequential loss of monomer units. Multiply charged clusters in both positive and negative ion modes dissociated mainly via Coulomb repulsion. Quantum chemical calculations performed for smaller cluster ions showed that the trimer ion has a closed ring structure similar to the phenalenylium structure with three closed rings connected to the central lithium ion. Further additions of monomer units result in similar symmetric structures for hexamer and nonamer cluster ions. Thermochemical calculations show that trimer cluster ion is relatively more stable than neighboring cluster ions, supporting the experimental observation of a magic number cluster with enhanced stability.

  12. Lithium formate ion clusters formation during electrospray ionization: Evidence of magic number clusters by mass spectrometry and ab initio calculations

    SciTech Connect

    Shukla, Anil; Bogdanov, Bogdan

    2015-02-14

    Small cationic and anionic clusters of lithium formate were generated by electrospray ionization and their fragmentations were studied by tandem mass spectrometry (collision-induced dissociation with N{sub 2}). Singly as well as multiply charged clusters were formed in both positive and negative ion modes with the general formulae, (HCOOLi){sub n}Li{sup +}, (HCOOLi){sub n}Li{sub m}{sup m+}, (HCOOLi){sub n}HCOO{sup −}, and (HCOOLi){sub n}(HCOO){sub m}{sup m−}. Several magic number cluster (MNC) ions were observed in both the positive and negative ion modes although more predominant in the positive ion mode with (HCOOLi){sub 3}Li{sup +} being the most abundant and stable cluster ion. Fragmentations of singly charged positive clusters proceed first by the loss of a dimer unit ((HCOOLi){sub 2}) followed by the loss of monomer units (HCOOLi) although the former remains the dominant dissociation process. In the case of positive cluster ions, all fragmentations lead to the magic cluster (HCOOLi){sub 3}Li{sup +} as the most abundant fragment ion at higher collision energies which then fragments further to dimer and monomer ions at lower abundances. In the negative ion mode, however, singly charged clusters dissociated via sequential loss of monomer units. Multiply charged clusters in both positive and negative ion modes dissociated mainly via Coulomb repulsion. Quantum chemical calculations performed for smaller cluster ions showed that the trimer ion has a closed ring structure similar to the phenalenylium structure with three closed rings connected to the central lithium ion. Further additions of monomer units result in similar symmetric structures for hexamer and nonamer cluster ions. Thermochemical calculations show that trimer cluster ion is relatively more stable than neighboring cluster ions, supporting the experimental observation of a magic number cluster with enhanced stability.

  13. Anisotropic negative-ion emission from cluster nanoplasmas

    NASA Astrophysics Data System (ADS)

    Rajeev, R.; Dalui, Malay; Trivikram, T. Madhu; Rishad, K. P. M.; Krishnamurthy, M.

    2015-06-01

    Recent experiments have shown that the enhanced charge transfer by Rydberg excited clusters (ECTREC) reduces the highly charged ions very efficiently to neutral atoms and negative ions with little loss of momentum. Neutral-atom emission is anisotropic with respect to the laser polarization and the anisotropy is larger than that of the ion emission from Coulomb explosion of isolated single clusters. In such a scenario, it is expected that the negative-ion emission (like neutrals) should be anisotropic and have larger propensity along the laser polarization than in the perpendicular direction. Further, it may be anticipated that negative-ion emission is more anisotropic than neutral-atom emission if ECTREC is taken in to account. We demonstrate that the negative-ion emission is anisotropic. Contrary to expectations, the negative-ion emission anisotropy is not more than that of the neutral-atom emission. We show that this can be rationalized if low-energy (about 10 eV) electron collisional detachment of the negative ions is taken into account. Electron collisional detachment depletes the negative-ion yield preferentially along the laser polarization direction and reduces the negative-ion emission anisotropy.

  14. Ion Mobility Mass Spectrometry Analysis of Isomeric Disaccharide Precursor, Product and Cluster Ions

    PubMed Central

    Li, Hongli; Bendiak, Brad; Siems, William F.; Gang, David R.; Hill, Herbert H.

    2015-01-01

    RATIONALE Carbohydrates are highly variable in structure owing to differences in their anomeric configurations, monomer stereochemistry, inter-residue linkage positions and general branching features. The separation of carbohydrate isomers poses a great challenge for current analytical techniques. METHODS The isomeric heterogeneity of disaccharide ions and monosaccharideglycolaldehyde product ions evaluated using electrospray traveling wave ion mobility mass spectrometry (Synapt G2 high definition mass spectrometer) in both positive and negative ion modes investigation. RESULTS The separation of isomeric disaccharide ions was observed but not fully achieved based on their mobility profiles. The mobilities of isomeric product ions, the monosaccharide-glycolaldehydes, derived from different disaccharide isomers were measured. Multiple mobility peaks were observed for both monosaccharide-glycolaldehyde cations and anions, indicating that there was more than one structural configuration in the gas phase as verified by NMR in solution. More importantly, the mobility patterns for isomeric monosaccharide-glycolaldehyde product ions were different, which enabled partial characterization of their respective disaccharide ions. Abundant disaccharide cluster ions were also observed. The Results showed that a majority of isomeric cluster ions had different drift times and, moreover, more than one mobility peak was detected for a number of specific cluster ions. CONCLUSIONS It is demonstrated that ion mobility mass spectrometry is an advantageous method to assess the isomeric heterogeneity of carbohydrate compounds. It is capable of differentiating different types of carbohydrate ions having identical m/z values as well as multiple structural configurations of single compounds. PMID:24591031

  15. Ion clusters and the Venus ultraviolet haze layer

    NASA Technical Reports Server (NTRS)

    Aikin, A. C.

    1971-01-01

    The daytime ionosphere of Venus is observed between 100 and 500 km altitude with a peak electron concentration of 100,000/cc at 140 km. It is suggested that at altitudes less than 130 km the ion CO2(+)-CO2 is an important ionic constituent of the Venus ionosphere. Below 100 km ion clustering processes combine with the low temperature at the mesopause to form coagulates, giving rise to the ultraviolet haze layer observed. An atmospheric model is presented.

  16. Cluster Ion Spectrometry (CIS) Data Archiving in the CAA

    NASA Astrophysics Data System (ADS)

    Dandouras, I. S.; Barthe, A.; Penou, E.; Brunato, S.; Reme, H.; Kistler, L. M.; Blagau, A.; Facsko, G.; Kronberg, E.; Laakso, H. E.

    2009-12-01

    The Cluster Active Archive (CAA) aims at preserving the four Cluster spacecraft data, so that they are usable in the long-term by the scientific community as well as by the instrument team PIs and Co-Is. This implies that the data are filed together with the descriptive and documentary elements making it possible to select and interpret them. The CIS (Cluster Ion Spectrometry) experiment is a comprehensive ionic plasma spectrometry package onboard the four Cluster spacecraft, capable of obtaining full three-dimensional ion distributions (about 0 to 40 keV/e) with a time resolution of one spacecraft spin (4 sec) and with mass-per-charge composition determination. The CIS package consists of two different instruments, a Hot Ion Analyser (HIA) and a time-of-flight ion Composition Distribution Function (CODIF) analyser. For the archival of the CIS data a multi-level approach has been adopted. The CAA archival includes processed raw data (Level 1 data), moments of the ion distribution functions (Level 2 data), and calibrated high-resolution data in a variety of physical units (Level 3 data). The latter are 3-D ion distribution functions and 2-D pitch-angle distributions. In addition, a software package has been developed to allow the CAA user to interactively calculate partial or total moments of the ion distributions. Instrument cross-calibration has been an important activity in preparing the data for archival. The CIS data archive includes also experiment documentation, graphical products for browsing through the data, and data caveats. In addition, data quality indexes are under preparation, to help the user. Given the complexity of an ion spectrometer, and the variety of its operational modes, each one being optimised for a different magnetospheric region or measurement objective, consultation of the data caveats by the end user will always be a necessary step in the data analysis.

  17. Depth resolution improvement in secondary ion mass spectrometry analysis using metal cluster complex ion bombardment

    SciTech Connect

    Tomita, M.; Kinno, T.; Koike, M.; Tanaka, H.; Takeno, S.; Fujiwara, Y.; Kondou, K.; Teranishi, Y.; Nonaka, H.; Fujimoto, T.; Kurokawa, A.; Ichimura, S.

    2006-07-31

    Secondary ion mass spectrometry analyses were carried out using a metal cluster complex ion of Ir{sub 4}(CO){sub 7}{sup +} as a primary ion beam. Depth resolution was evaluated as a function of primary ion species, energy, and incident angle. The depth resolution obtained using cluster ion bombardment was considerably better than that obtained by oxygen ion bombardment under the same experimental condition due to reduction of atomic mixing in the depth. The authors obtained a depth resolution of {approx}1 nm under 5 keV, 45 deg. condition. Depth resolution was degraded by ion-bombardment-induced surface roughness at 5 keV with higher incident angles.

  18. Polymerized ionic liquid diblock copolymers: impact of water/ion clustering on ion conductivity.

    PubMed

    Nykaza, Jacob R; Ye, Yuesheng; Nelson, Rachel L; Jackson, Aaron C; Beyer, Frederick L; Davis, Eric M; Page, Kirt; Sharick, Sharon; Winey, Karen I; Elabd, Yossef A

    2016-01-28

    Herein, we examine the synergistic impact of both ion clustering and block copolymer morphology on ion conductivity in two polymerized ionic liquid (PIL) diblock copolymers with similar chemistries but different side alkyl spacer chain lengths (ethyl versus undecyl). When saturated in liquid water, water/ion clusters were observed only in the PIL block copolymer with longer alkyl side chains (undecyl) as evidenced by both small-angle neutron scattering and intermediate-angle X-ray scattering, i.e., water/ion clusters form within the PIL microdomain under these conditions. The resulting bromide ion conductivity in the undecyl sample was higher than the ethyl sample (14.0 mS cm(-1)versus 6.1 mS cm(-1) at 50 °C in liquid water) even though both samples had the same block copolymer morphology (lamellar) and the undecyl sample had a lower ion exchange capacity (0.9 meq g(-1)versus 1.4 meq g(-1)). No water/ion clusters were observed in either sample under high humidity or dry conditions. The resulting ion conductivity in the undecyl sample with lamellar morphology was significantly higher in the liquid water saturated state compared to the high humidity state (14.0 mS cm(-1)versus 4.2 mS cm(-1)), whereas there was no difference in ion conductivity in the ethyl sample when comparing these two states. These results show that small chemical changes to ion-containing block copolymers can induce water/ion clusters within block copolymer microdomains and this can subsequently have a significant effect on ion transport. PMID:26575014

  19. Proton-bound cluster ions in ion mobility spectrometry

    NASA Technical Reports Server (NTRS)

    Ewing, R. G.; Eiceman, G. A.; Stone, J. A.

    1999-01-01

    Gaseous oxygen and nitrogen bases, both singly and as binary mixtures, have been introduced into ion mobility spectrometers to study the appearance of protonated molecules, and proton-bound dimers and trimers. At ambient temperature it was possible to simultaneously observe, following the introduction of molecule A, comparable intensities of peaks ascribable to the reactant ion (H2O)nH+, the protonated molecule AH+ and AH+ H2O, and the symmetrical proton bound dimer A2H+. Mass spectral identification confirmed the identifications and also showed that the majority of the protonated molecules were hydrated and that the proton-bound dimers were hydrated to a much lesser extent. No significant peaks ascribable to proton-bound trimers were obtained no matter how high the sample concentration. Binary mixtures containing molecules A and B, in some cases gave not only the peaks unique to the individual compounds but also peaks due to asymmetrical proton bound dimers AHB+. Such ions were always present in the spectra of mixtures of oxygen bases but were not observed for several mixtures of oxygen and nitrogen bases. The dimers, which were not observable, notable for their low hydrogen bond strengths, must have decomposed in their passage from the ion source to the detector, i.e. in a time less than approximately 5 ms. When the temperature was lowered to -20 degrees C, trimers, both homogeneous and mixed, were observed with mixtures of alcohols. The importance of hydrogen bond energy, and hence operating temperature, in determining the degree of solvation of the ions that will be observed in an ion mobility spectrometer is stressed. The possibility is discussed that a displacement reaction involving ambient water plays a role in the dissociation.

  20. Correspondence between ion-cluster and bulk thermodynamics: on the validity of the cluster pair approximation

    SciTech Connect

    Vlcek, Lukas; Chialvo, Ariel; Simonson, J Michael {Mike}

    2013-01-01

    Molecular models and experimental estimates based on the cluster pair approximation (CPA) provide inconsistent predictions of absolute single-ion hydration properties. To understand the origin of this discrepancy we used molecular simulations to study the transition between hydration of alkali metal and halide ions in small aqueous clusters and bulk water. The results demonstrate that the assumptions underlying the CPA are not generally valid as a result of a significant shift in the ion hydration free energies (~15 kJ/mol) and enthalpies (~47 kJ/mol) in the intermediate range of cluster sizes. When this effect is accounted for, the systematic differences between models and experimental predictions disappear, and the value of absolute proton hydration enthalpy based on the CPA gets in closer agreement with other estimates.

  1. The energetics and dynamics of free radicals, ions, and clusters

    SciTech Connect

    Baer, T.

    1993-04-01

    Structure and energetics of free radicals, ions, and clusters are being investigated by photoelectron photoion coincidence and analyzed using ab initio molecular orbital and statistical theory (RRKM). Molecules or free radicals are prepared in a molecular beam. Translational temperature is found from measured time of flight peakwidth; the vibrational temperature, from shift in dissociation onset. Free radicals are produced by pyrolysis in the nozzle; their subsequent cooling is demonstrated. Ion dissociation rates in the range from 10[sup 4] to 10[sup 7] s[sup [minus]1] are measured from the asymmetric TOF distribution; this method was used to measure the dissociation rates of cold and warm butene ions. 2 figs.

  2. CO2 Cluster Ion Beam, an Alternative Projectile for Secondary Ion Mass Spectrometry.

    PubMed

    Tian, Hua; Maciążek, Dawid; Postawa, Zbigniew; Garrison, Barbara J; Winograd, Nicholas

    2016-09-01

    The emergence of argon-based gas cluster ion beams for SIMS experiments opens new possibilities for molecular depth profiling and 3D chemical imaging. These beams generally leave less surface chemical damage and yield mass spectra with reduced fragmentation compared with smaller cluster projectiles. For nanoscale bioimaging applications, however, limited sensitivity due to low ionization probability and technical challenges of beam focusing remain problematic. The use of gas cluster ion beams based upon systems other than argon offer an opportunity to resolve these difficulties. Here we report on the prospects of employing CO2 as a simple alternative to argon. Ionization efficiency, chemical damage, sputter rate, and beam focus are investigated on model compounds using a series of CO2 and Ar cluster projectiles (cluster size 1000-5000) with the same mass. The results show that the two projectiles are very similar in each of these aspects. Computer simulations comparing the impact of Ar2000 and (CO2)2000 on an organic target also confirm that the CO2 molecules in the cluster projectile remain intact, acting as a single particle of m/z 44. The imaging resolution employing CO2 cluster projectiles is improved by more than a factor of two. The advantage of CO2 versus Ar is also related to the increased stability which, in addition, facilitates the operation of the gas cluster ion beams (GCIB) system at lower backing pressure. Graphical Abstract ᅟ. PMID:27324648

  3. CO2 Cluster Ion Beam, an Alternative Projectile for Secondary Ion Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Tian, Hua; Maciążek, Dawid; Postawa, Zbigniew; Garrison, Barbara J.; Winograd, Nicholas

    2016-06-01

    The emergence of argon-based gas cluster ion beams for SIMS experiments opens new possibilities for molecular depth profiling and 3D chemical imaging. These beams generally leave less surface chemical damage and yield mass spectra with reduced fragmentation compared with smaller cluster projectiles. For nanoscale bioimaging applications, however, limited sensitivity due to low ionization probability and technical challenges of beam focusing remain problematic. The use of gas cluster ion beams based upon systems other than argon offer an opportunity to resolve these difficulties. Here we report on the prospects of employing CO2 as a simple alternative to argon. Ionization efficiency, chemical damage, sputter rate, and beam focus are investigated on model compounds using a series of CO2 and Ar cluster projectiles (cluster size 1000-5000) with the same mass. The results show that the two projectiles are very similar in each of these aspects. Computer simulations comparing the impact of Ar2000 and (CO2)2000 on an organic target also confirm that the CO2 molecules in the cluster projectile remain intact, acting as a single particle of m/z 44. The imaging resolution employing CO2 cluster projectiles is improved by more than a factor of two. The advantage of CO2 versus Ar is also related to the increased stability which, in addition, facilitates the operation of the gas cluster ion beams (GCIB) system at lower backing pressure.

  4. CO2 Cluster Ion Beam, an Alternative Projectile for Secondary Ion Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Tian, Hua; Maciążek, Dawid; Postawa, Zbigniew; Garrison, Barbara J.; Winograd, Nicholas

    2016-09-01

    The emergence of argon-based gas cluster ion beams for SIMS experiments opens new possibilities for molecular depth profiling and 3D chemical imaging. These beams generally leave less surface chemical damage and yield mass spectra with reduced fragmentation compared with smaller cluster projectiles. For nanoscale bioimaging applications, however, limited sensitivity due to low ionization probability and technical challenges of beam focusing remain problematic. The use of gas cluster ion beams based upon systems other than argon offer an opportunity to resolve these difficulties. Here we report on the prospects of employing CO2 as a simple alternative to argon. Ionization efficiency, chemical damage, sputter rate, and beam focus are investigated on model compounds using a series of CO2 and Ar cluster projectiles (cluster size 1000-5000) with the same mass. The results show that the two projectiles are very similar in each of these aspects. Computer simulations comparing the impact of Ar2000 and (CO2)2000 on an organic target also confirm that the CO2 molecules in the cluster projectile remain intact, acting as a single particle of m/z 44. The imaging resolution employing CO2 cluster projectiles is improved by more than a factor of two. The advantage of CO2 versus Ar is also related to the increased stability which, in addition, facilitates the operation of the gas cluster ion beams (GCIB) system at lower backing pressure.

  5. Application of Ion Mobility-Mass Spectrometry to the Study of Ionic Clusters: Investigation of Cluster Ions with Stable Sizes and Compositions

    PubMed Central

    Ohshimo, Keijiro; Komukai, Tatsuya; Takahashi, Tohru; Norimasa, Naoya; Wu, Jenna Wen Ju; Moriyama, Ryoichi; Koyasu, Kiichirou; Misaizu, Fuminori

    2014-01-01

    Stable cluster sizes and compositions have been investigated for cations and anions of ionic bond clusters such as alkali halides and transition metal oxides by ion mobility-mass spectrometry (IM-MS). Usually structural information of ions can be obtained from collision cross sections determined in IM-MS. In addition, we have found that stable ion sizes or compositions were predominantly produced in a total ion mass spectrum, which was constructed from the IM-MS measurement. These stable species were produced as a result of collision induced dissociations of the ions in a drift cell. We have confirmed this result in the sodium fluoride cluster ions, in which cuboid magic number cluster ions were predominantly observed. Next the stable compositions, which were obtained for the oxide systems of the first row transition metals, Ti, Fe, and Co, are characteristic for each of the metal oxide cluster ions. PMID:26819887

  6. Ionization of large homogeneous and heterogeneous clusters generated in acetylene-Ar expansions: cluster ion polymerization.

    PubMed

    Kočišek, J; Lengyel, J; Fárník, M

    2013-03-28

    Pure acetylene and mixed Ar-acetylene clusters are formed in supersonic expansions of acetylene/argon mixtures and analysed using reflectron time-of-flight mass spectrometer with variable electron energy ionization source. Acetylene clusters composed of more than a hundred acetylene molecules are generated at the acetylene concentration of ≈8%, while mixed species are produced at low concentrations (≈0.7%). The electron energy dependence of the mass spectra revealed the ionization process mechanisms in clusters. The ionization above the threshold for acetylene molecule of 11.5 eV results in the main ionic fragment progression (C2H2)n(+). At the electron energies ≥21.5 eV above the CH+CH(+) dissociative ionization limit of acetylene the fragment ions nominally labelled as (C2H2)nCH(+), n ≥ 2, are observed. For n ≤ 7 these fragments correspond to covalently bound ionic structures as suggested by the observed strong dehydrogenation [(C2H2)n - k × H](+) and [(C2H2)nCH - k × H](+). The dehydrogenation is significantly reduced in the mixed clusters where evaporation of Ar instead of hydrogen can stabilize the nascent molecular ion. The C3H3(+) ion was previously assigned to originate from the benzene molecular ion; however, the low appearance energy of ≈13.7 eV indicates that a less rigid covalently bound structure of C6H6(+) ion must also be formed upon the acetylene cluster electron ionization. The appearance energy of Arn(C2H2)(+) fragments above ≈15.1 eV indicates that the argon ionization is the first step in the fragment ion production, and the appearance energy of Arn≥2(C2H2)m≥2(+) at ≈13.7 eV is discussed in terms of an exciton transfer mechanism. PMID:23556722

  7. Characteristics of acetone cluster ion beam for surface processing and modification

    NASA Astrophysics Data System (ADS)

    Ryuto, H.; Kakumoto, Y.; Takeuchi, M.; Takaoka, G. H.

    2014-02-01

    An acetone cluster ion beam was produced by the adiabatic expansion method without using helium as a support gas. The cluster source for the production of ethanol clusters was replaced with that sealed with metal gaskets. The Laval nozzle for the production of ethanol clusters was also replaced with a stainless steel conical nozzle. The cluster size distributions of the acetone cluster ion beams had mean values approximately at 2 × 103 molecules and increased with source pressure. The typical beam current density of the acetone cluster ion beam was approximately 0.5 μA/cm2.

  8. Cluster Size Dependence of Etching by Reactive Gas Cluster Ion Beams

    SciTech Connect

    Toyoda, Noriaki; Yamada, Iaso

    2008-11-03

    Mass-selected reactive gas cluster ion beams (GCIB) were formed using a permanent magnetic filter. Irradiations of CO{sub 2} GCIB on amorphous carbon films and irradiations of SF{sub 6} and SF{sub 6}/Ar mixed GCIB on Si surfaces were performed to study the cluster size dependence on etching yields by reactive GCIB. The reactive sputtering yield of carbon by CO{sub 2} GCIB was almost ten times higher than that by Ar GCIB. In the case of (CO{sub 2}){sub 20000} GCIB with energy of 20 keV (1 eV/atom), it showed the high sputtering yield of 200 atoms/ion, however, there was little crater formation on the carbon surface. It is thought that very soft etching without crater formation would take place in this condition. In the case of SF{sub 6} GCIB on Si, the etching depth of Si showed maximum value when the fraction of SF{sub 6} to Ar was around 50%. As the etching yield was higher than pure SF{sub 6} GCIB, there was a strong ion assisted etching effects in the case of Ar/SF{sub 6} mixed cluster ion irradiations.

  9. Cluster ions from keV-energy ion and atom bombardment of frozen gases

    NASA Astrophysics Data System (ADS)

    David, Donald E.; Magnera, Thomas F.; Tian, Rujiang; Stulik, Dusan; Michl, Josef

    1986-04-01

    A brief survey is given of the mass spectra obtained from frozen gases by bombardment with keV-energy ions and atoms. The internal chemical constitution of the observed secondary cluster ions, which bears no simple relation to the molecular structure of the solid, has been established by observations of collision-induced dissociation, laser-induced dissociation and metastable decay. It has been correlated with the chemical composition of the residual bombarded solid, deduced from spectroscopic observations. These results, as well as preliminary results on sputtering yields for impact of 1-4 keV rare gas ions on solid argon, are compatible with the previously proposed mechanistic model for the formation of the cluster ions based on the flow of supercritical gas from the elastic collision spike region.

  10. How unequivocally do ion chromatography experiments determine carbon cluster geometries?

    SciTech Connect

    Strout, D.L.; Book, L.D.; Millam, J.M.; Xu, C.; Scuseria, G.E.

    1994-09-01

    Ion chromatography experiments on carbon clusters have provided a powerful tool for characterizing the products of the laser ablation of graphite. Using this technique, several families of carbon clusters have been observed, and their role in a plausible fullerene formation process has been hypothesized. In this work, we have examined the experimental mobility results from a theoretical perspective. Our most interesting finding is the existence of a family of three-dimensional 2 + 4 cycloaddition products whose members match the experimental mobilities of the so-called `ring III` family over a range of cluster sizes, whereas previous studies have asserted that the `ring III` clusters are planar. In agreement with previous research, we find that the `ring I` and `ring II` families consist of monocyclic and bicycle rings, respectively. However, these families should be broadly defined so as to include ring structures with carbon branches, because short carbon branches have only a negligible effect on cluster mobility. 28 refs., 6 figs., 6 tabs.

  11. Crater annihilation on silver by cluster ion impacts

    NASA Astrophysics Data System (ADS)

    Henriksson, K. O. E.; Nordlund, K.; Keinonen, J.

    2007-02-01

    Using the MD/MC-CEM potential we have investigated the impacts of 20 keV Ag 13 cluster ions on (0 0 1) silver surfaces having one initial crater. This one was made in the zeroth ion impact. The degree of annihilation of the initial crater was investigated as a function of the lateral distance ri between the crater and the ion. The impact points were selected randomly inside a circular area with a radius of 75 Å centered on the crater. To reduce the total number of simulations, the circular area was divided into annuli. The initial and final atomic positions in the impact simulations were analyzed and the degree of annihilation of the initial crater was determined. The results indicate that for r ≲ 60 Å there is a net growth of the initial crater, and for distances r ∈ (60, 80) Å there is a small net filling of the crater.

  12. Ionization of large homogeneous and heterogeneous clusters generated in acetylene-Ar expansions: Cluster ion polymerization

    SciTech Connect

    Kocisek, J.; Lengyel, J.; Farnik, M.

    2013-03-28

    Pure acetylene and mixed Ar-acetylene clusters are formed in supersonic expansions of acetylene/argon mixtures and analysed using reflectron time-of-flight mass spectrometer with variable electron energy ionization source. Acetylene clusters composed of more than a hundred acetylene molecules are generated at the acetylene concentration of Almost-Equal-To 8%, while mixed species are produced at low concentrations ( Almost-Equal-To 0.7%). The electron energy dependence of the mass spectra revealed the ionization process mechanisms in clusters. The ionization above the threshold for acetylene molecule of 11.5 eV results in the main ionic fragment progression (C{sub 2}H{sub 2}){sub n}{sup +}. At the electron energies Greater-Than-Or-Slanted-Equal-To 21.5 eV above the CH+CH{sup +} dissociative ionization limit of acetylene the fragment ions nominally labelled as (C{sub 2}H{sub 2}){sub n}CH{sup +}, n Greater-Than-Or-Slanted-Equal-To 2, are observed. For n Less-Than-Or-Slanted-Equal-To 7 these fragments correspond to covalently bound ionic structures as suggested by the observed strong dehydrogenation [(C{sub 2}H{sub 2}){sub n}-k Multiplication-Sign H]{sup +} and [(C{sub 2}H{sub 2}){sub n}CH -k Multiplication-Sign H]{sup +}. The dehydrogenation is significantly reduced in the mixed clusters where evaporation of Ar instead of hydrogen can stabilize the nascent molecular ion. The C{sub 3}H{sub 3}{sup +} ion was previously assigned to originate from the benzene molecular ion; however, the low appearance energy of Almost-Equal-To 13.7 eV indicates that a less rigid covalently bound structure of C{sub 6}H{sub 6}{sup +} ion must also be formed upon the acetylene cluster electron ionization. The appearance energy of Ar{sub n}(C{sub 2}H{sub 2}){sup +} fragments above Almost-Equal-To 15.1 eV indicates that the argon ionization is the first step in the fragment ion production, and the appearance energy of Ar{sub n{>=}2}(C{sub 2}H{sub 2}){sub m{>=}2}{sup +} at Almost-Equal-To 13

  13. Infrared and Mass Analyzed Ion Kinetic Energy Spectroscopy of Cluster Ions

    NASA Astrophysics Data System (ADS)

    Feinberg, Thomas Neal

    A new method for obtaining mass analyzed kinetic energy spectroscopy for the study of cluster ions was tested. The experiments utilized an MS/MS instrument (Quadrupole/Electric Sector Analyzer) coupled to a cluster beam source. The ion source consisted of a molecular beam excited by high energy electron impact. Experiments were conducted using argon and argon/ethene gas mixtures in the ion source. Kinetic energy spectra of collision induced dissociation products and carbon dioxide laser photodissociation products were analyzed. The results for argon dimers showed a laser polarization effect on the measurement of the kinetic energy of the fragment argon ions in the infrared photodissociation event. When ionization occurred within the supersonic expansion zone, the polarization effects were no longer observed. Ethene gas in the ion source produced a variety of ions; some of these showed photodissociation efficiencies within the region of the monomer nu_7 vibrational mode. The spectroscopy and collision induced dissociation data are consistent with a structure consisting of a central core ion surrounded by one or more ethene molecules.

  14. Ion Density Holes observed by Cluster satellite: Electromagnetic PIC Simulation

    NASA Astrophysics Data System (ADS)

    Hong, J.; Lee, E.; Min, K. W.; Parks, G. K.

    2010-12-01

    In the upstream region of the bow shock, many transient structures have been found such as hot flow anomalies (HFAs), foreshock cavities (FCs), hot diamagnetic cavities (HDCs), and short- and large-amplitude magnetic structures. Density holes (DHs) are one of such transient phenomena with similar characteristics to those of HFAs, FCs, and HDCs: density depletion accompanied by the depression of magnetic field and "deflection of" flow velocity. While sometimes regarded as the early phase of HFA, DH has a lower magnetic shear and a smaller flow deviation than the HFA. However, the most significant difference between the two structures is the direction of motional electric field (convection electric field). The solar wind convection electric fields of DHs have an outward-component from the embedding IMF current sheets while HFAs usually have components directed inward on either or both of the edges. As the Cluster observations indicate the isolated DH structures generally accompany diffuse ion beams in the rotating magnetic fields, which can be interpreted as a current sheet or a solitary wave, we conjecture the ion-ion beam instability occurring around the current sheet to be the important factor of DHs structures and set up simulation models using a two-dimensional electromagnetic particle-in-cell (PIC) code. Here, we report the characteristics of DHs observed by Cluster and the progress of our simulation study.

  15. Electrospray Ionization Mass Spectrometry: From Cluster Ions to Toxic metal Ions in Biology

    SciTech Connect

    Lentz, Nicholas B.

    2007-01-01

    This dissertation focused on using electrospray ionization mass spectrometry to study cluster ions and toxic metal ions in biology. In Chapter 2, it was shown that primary, secondary and quarternary amines exhibit different clustering characteristics under identical instrument conditions. Carbon chain length also played a role in cluster ion formation. In Chapters 3 and 4, the effects of solvent types/ratios and various instrumental parameters on cluster ion formation were examined. It was found that instrument interface design also plays a critical role in the cluster ion distribution seen in the mass spectrum. In Chapter 5, ESI-MS was used to investigate toxic metal binding to the [Gln11]-amyloid β-protein fragment (1-16). Pb and Cd bound stronger than Zn, even in the presence of excess Zn. Hg bound weaker than Zn. There are endless options for future work on cluster ions. Any molecule that is poorly ionized in positive ion mode can potentially show an increase in ionization efficiency if an appropriate anion is used to produce a net negative charge. It is possible that drug protein or drug/DNA complexes can also be stabilized by adding counter-ions. This would preserve the solution characteristics of the complex in the gas phase. Once in the gas phase, CID could determine the drug binding location on the biomolecule. There are many research projects regarding toxic metals in biology that have yet to be investigated or even discovered. This is an area of research with an almost endless future because of the changing dynamics of biological systems. What is deemed safe today may show toxic effects in the future. Evolutionary changes in protein structures may render them more susceptible to toxic metal binding. As the understanding of toxicity evolves, so does the demand for new toxic metal research. New instrumentation designs and software make it possible to perform research that could not be done in the past. What was undetectable yesterday will

  16. Competitive internal transfers in metastable decay of cluster ions

    NASA Astrophysics Data System (ADS)

    Buonomo, E.; Gianturco, F. A.; Delgado-Barrio, G.; Miret-Artés, S.; Villarreal, P.

    1994-05-01

    In a previous study of fragmentation patterns of (Ar)+3 clusters [G. Delgado-Barrio, S. Miret-Artés, P. Villarreal, and F. A. Gianturco, Z. Phys. D 27, 354 (1993)] it was found that overall rotations control the lifetimes of the occupied metastable states of the cluster and that a spherical, effective interaction was sufficient to describe the dynamical process. In the present study, the strong anisotropy of a more realistic three-particle interaction is introduced and its effects on metastable decay are examined. By separating internal rotations from internal vibrations of the diatomic ion, it is possible to show that internal predissociation pathways are very efficient and lead to very short lifetimes. The latter can be lengthened only when overall rotational states are directly included, thus confirming the physical picture of the earlier work.

  17. An experimental investigation of the dissociative ionization process of argon cluster ions induced by electron impact

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Ma, X.; Yan, S.; Xu, S.; Zhang, S.; Zhu, X.; Li, B.; Feng, W.; Qian, D.; Zhang, R.; Guo, D.; Wen, W.; Zhang, D.; Yang, J.; Zhao, D.; Liu, H.

    2014-04-01

    Utilizing the Cold Target Recoil Ions Momentum Spectrometer (COLTRIMS), dissociative ionization of argon cluster was experimentally investigated by electron impact. The recoil ions produced both in the pure ionization process and the dissociative ionization channels are measured with collision energies from 100 and 1000 eV. The ratios of the dimer ions from pure ionization (Ar2P+) and the dimer ions from small cluster dissociation (Ar+2D) to the atomic argon ion (Ar+) in different stagnation pressures were obtained.

  18. Energy loss of ions and ion clusters in a disordered electron gas

    NASA Astrophysics Data System (ADS)

    Nersisyan, Hrachya B.; Das, Amal K.

    2004-04-01

    The various aspects of the correlated stopping power of pointlike and extended ions moving in a disordered degenerate electron gas have been analytically and numerically studied. Within the linear response theory we have made a systematic and comprehensive investigation of correlated stopping power, vicinage function, and related quantities for protons and extended ions, as well as for their clusters. The disorder, which leads to a damping of plasmons and quasiparticles in the electron gas, is taken into account through a relaxation time approximation in the linear response function. The stopping power for an arbitrary extended ion with a single bound electron is calculated in both the low- and high velocity limitsy. Our analytical results show that in a high velocity limit the main logarithmic contribution to the stopping power for an extened ion is significantly modified and for instance, in the case of He+ , Li2+ , and Be3+ ions must behave as ln ( A v5 ) , ln ( A v3.25 ) , and ln ( A v2.77 ) , respectively where v is the ion velocity. This behavior may be contrasted with the usual ln ( v2 ) dependence for a point ion projectile. It is shown that the factor A which depends on the damping can be significantly reduced by increasing the latter. In order to highlight the effects of damping we present a comparison of our analytical and numerical results, in the case of both pointlike and extended ions, obtained for a nonzero damping with those for a vanishing damping.

  19. Production of strange clusters in relativistic heavy ion collisions

    SciTech Connect

    Dover, C.B.; Baltz, A.J.; Pang, Yang; Schlagel, T.J.; Kahana, S.H.

    1993-02-01

    We address a number of issues related to the production of strangeness in high energy heavy ion collisions, including the possibility that stable states of multi-strange hyperonic or quark matter might exist, and the prospects that such objects may be created and detected in the laboratory. We make use of events generated by the cascade code ARC to estimate the rapidity distribution dN/dy of strange clusters produced in Si+Au and Au+Au collisions at AGS energies. These calculations are performed in a simple coalescence model, which yields a consistent description of the strange cluster (d, [sup 3]HE, [sup 3]H, [sup 4]He) production at these energies. If a doubly strange, weakly bound [Lambda][Lambda] dibaryon exists, we find that it is produced rather copiously in Au+Au collisions, with dN/dy [approximately]0.1 at raid-rapidity. If one adds another non-strange or strange baryon to a cluster, the production rate decreases by roughly one or two orders of magnitude, respectively. For instance, we predict that the hypernucleus [sub [Lambda][Lambda

  20. Stability and structure of cluster ions: Halide ions with CO2

    NASA Astrophysics Data System (ADS)

    Hiraoka, Kenzo; Mizuse, Susumu; Yamabe, Shinichi

    1987-09-01

    Thermodynamic data, ΔH0n-1,n and ΔS0n-1,n, for clustering reactions of halide ions with CO2 were measured with a pulsed electron-beam high-pressure mass spectrometer. The large value of -ΔH00,1 (32.3 kcal/mol) and a sudden decrease of -ΔH01,2 (7.3 kcal/mol) for reaction F-(CO2)n-1+CO2=F-(CO2)n indicate the formation of the core ion, not F-ṡCO2, but FCO-2, i.e., FCO-2 is the fluoroformate ion. The measured binding energies -ΔH0n-1,n for the clusters F-(CO2)n were reproduced satisfactorily by the ab initio MO calculations. The FCO-2 ion is attacked successively and electrostatically by five CO2 molecules to form the first solvation shell. The two oxygen atoms in the core ion FCO-2 are able to accept four CO2 molecules as ligands. The bonding of CI-, Br-, and I- to CO2 is found to be mainly electrostatic.

  1. Method of precisely modifying predetermined surface layers of a workpiece by cluster ion impact therewith

    DOEpatents

    Friedman, L.; Beuhler, R.J.; Matthew, M.W.; Ledbetter, M.

    1984-06-25

    A method of precisely modifying a selected area of a workpiece by producing a beam of charged cluster ions that is narrowly mass selected to a predetermined mean size of cluster ions within a range of 25 to 10/sup 6/ atoms per cluster ion, and accelerated in a beam to a critical velocity. The accelerated beam is used to impact a selected area of an outer surface of the workpiece at a preselected rate of impacts of cluster ions/cm/sup 2//sec in order to effect a precise modification in that selected area of the workpiece.

  2. Method of precisely modifying predetermined surface layers of a workpiece by cluster ion impact therewith

    DOEpatents

    Friedman, Lewis; Buehler, Robert J.; Matthew, Michael W.; Ledbetter, Myron

    1985-01-01

    A method of precisely modifying a selected area of a workpiece by producing a beam of charged cluster ions that is narrowly mass selected to a predetermined mean size of cluster ions within a range of 25 to 10.sup.6 atoms per cluster ion, and accelerated in a beam to a critical velocity. The accelerated beam is used to impact a selected area of an outer surface of the workpiece at a preselected rate of impacts of cluster ions/cm.sup.2 /sec. in order to effect a precise modification in that selected area of the workpiece.

  3. Nonlinear damage effect in graphene synthesis by C-cluster ion implantation

    SciTech Connect

    Zhang Rui; Zhang Zaodi; Wang Zesong; Wang Shixu; Wang Wei; Fu Dejun; Liu Jiarui

    2012-07-02

    We present few-layer graphene synthesis by negative carbon cluster ion implantation with C{sub 1}, C{sub 2}, and C{sub 4} at energies below 20 keV. The small C-clusters were produced by a source of negative ion by cesium sputtering with medium beam current. We show that the nonlinear effect in cluster-induced damage is favorable for graphene precipitation compared with monomer carbon ions. The nonlinear damage effect in cluster ion implantation shows positive impact on disorder reduction, film uniformity, and the surface smoothness in graphene synthesis.

  4. A bent electrostatic ion beam trap for simultaneous measurements of fragmentation and ionization of cluster ions.

    PubMed

    Aviv, O; Toker, Y; Errit, M; Bhushan, K G; Pedersen, H B; Rappaport, M L; Heber, O; Schwalm, D; Zajfman, D

    2008-08-01

    We describe a bent electrostatic ion beam trap in which cluster ions of several keV kinetic energy can be stored on a V-shaped trajectory by means of an electrostatic deflector placed between two electrostatic mirrors. While maintaining all the advantages of its linear counterpart [Zajfman et al., Phys. Rev. A 55, R1577 (1997); Dahan et al., Rev. Sci. Instrum. 69, 76 (1998)], such as long storage times, straight segments, and a field-free region for merged or crossed beam experiments, the bent trap allows for simultaneous measurement of charged and neutral fragments and determination of the average kinetic energy released in the fragmentation. These unique properties of the bent trap are illustrated by first results concerning the competition between delayed fragmentation and ionization of Al(n) (-) clusters after irradiation by a short laser pulse. PMID:19044339

  5. The ionization potentials of atomic ions in laser-irradiated Ar, Kr and Xe clusters

    NASA Astrophysics Data System (ADS)

    Gets, A. V.; Krainov, V. P.

    2006-04-01

    The ionization potentials of atomic ions in laser-irradiated Ar, Kr and Xe clusters are derived as functions of electron temperature. These potentials decrease significantly compared to the case of the isolated atomic ions because of the screening effect by the atomic ions and electrons inside the cluster. The results can be used for derivations of inner ionization by impact collisions of hot electrons with atomic ions and by the static Coulomb field of the ionized cluster. The broadening of atomic states by the quasistatic Holtsmark field of atomic ions is also considered.

  6. Time-of-flight secondary ion mass spectrometry with transmission of energetic primary cluster ions through foil targets

    SciTech Connect

    Hirata, K.; Saitoh, Y.; Chiba, A.; Yamada, K.; Matoba, S.; Narumi, K.

    2014-03-15

    We developed time-of-flight (TOF) secondary ion (SI) mass spectrometry that provides informative SI ion mass spectra without needing a sophisticated ion beam pulsing system. In the newly developed spectrometry, energetic large cluster ions with energies of the order of sub MeV or greater are used as primary ions. Because their impacts on the target surface produce high yields of SIs, the resulting SI mass spectra are informative. In addition, the start signals necessary for timing information on primary ion incidence are provided by the detection signals of particles emitted from the rear surface of foil targets upon transmission of the primary ions. This configuration allows us to obtain positive and negative TOF SI mass spectra without pulsing system, which requires precise control of the primary ions to give the spectra with good mass resolution. We also successfully applied the TOF SI mass spectrometry with energetic cluster ion impacts to the chemical structure characterization of organic thin film targets.

  7. Evaluation of surface damage on organic materials irradiated with Ar cluster ion beam

    SciTech Connect

    Yamamoto, Y.; Ichiki, K.; Ninomiya, S.; Matsuo, J.; Seki, T.; Aoki, T.

    2011-01-07

    The sputtering yields of organic materials under large cluster ion bombardment are much higher than those under conventional monomer ion bombardment. The sputtering rate of arginine remains constant with fluence for an Ar cluster ion beam, but decreases with fluence for Ar monomer. Additionally, because Ar cluster etching induces little damage, Ar cluster ion can be used to achieve molecular depth profiling of organic materials. In this study, we evaluated the damage to poly methyl methacrylate (PMMA) and arginine samples irradiated with Ar atomic and Ar cluster ion beams. Arginine samples were analyzed by secondary ion mass spectrometry (SIMS) and PMMA samples were analyzed by X-ray photoelectron spectroscopy (XPS). The chemical structure of organic materials remained unchanged after Ar cluster irradiation, but was seriously damaged. These results indicated that bombardment with Ar cluster ions induced less surface damage than bombardment with Ar atomic ion. The damage layer thickness with 5 keV Ar cluster ion bombardment was less than 1 nm.

  8. Production of strange clusters in relativistic heavy ion collisions

    SciTech Connect

    Dover, C.B.; Baltz, A.J.; Pang, Yang; Schlagel, T.J.; Kahana, S.H.

    1993-02-01

    We address a number of issues related to the production of strangeness in high energy heavy ion collisions, including the possibility that stable states of multi-strange hyperonic or quark matter might exist, and the prospects that such objects may be created and detected in the laboratory. We make use of events generated by the cascade code ARC to estimate the rapidity distribution dN/dy of strange clusters produced in Si+Au and Au+Au collisions at AGS energies. These calculations are performed in a simple coalescence model, which yields a consistent description of the strange cluster (d, {sup 3}HE, {sup 3}H, {sup 4}He) production at these energies. If a doubly strange, weakly bound {Lambda}{Lambda} dibaryon exists, we find that it is produced rather copiously in Au+Au collisions, with dN/dy {approximately}0.1 at raid-rapidity. If one adds another non-strange or strange baryon to a cluster, the production rate decreases by roughly one or two orders of magnitude, respectively. For instance, we predict that the hypernucleus {sub {Lambda}{Lambda}}{sup 6}He should have dN/dy {approximately}5 {times} 10{sup {minus}6} for Au+Au central collisions. It should be possible to measure the successive {Lambda} {yields} p{pi}{minus} weak decays of this object. We comment on the possibility that conventional multi-strange hypernuclei may serve as ``doorway states`` for the production of stable configurations of strange quark matter, if such states exist.

  9. Kinetic energy of ions after Coulomb explosion of clusters induced by an intense laser pulse

    SciTech Connect

    Islam, Md. Ranaul; Saalmann, Ulf; Rost, Jan M.

    2006-04-15

    It is shown that the kinetic-energy distribution of ions emerging from a cluster target irradiated by an intense laser pulse arises from three main effects: (1) the spatial profile of the laser beam (2) the cluster size distribution in the experiment, and (3) possible saturation effects in the cluster ionization. Our model reveals that each of these effects leaves a characteristic fingerprint in the ion kinetic-energy spectrum. Moreover, it provides a quantitative link between observable ion spectra under experimental conditions and the ideal single-cluster result of a typical calculation.

  10. New gas phase inorganic ion cluster species and their atmospheric implications

    NASA Technical Reports Server (NTRS)

    Maerk, T. D.; Peterson, K. I.; Castleman, A. W., Jr.

    1980-01-01

    Recent experimental laboratory observations, with high-pressure mass spectroscopy, have revealed the existence of previously unreported species involving water clustered to sodium dimer ions, and alkali metal hydroxides clustered to alkali metal ions. The important implications of these results concerning the existence of such species are here discussed, as well as how from a practical aspect they confirm the stability of certain cluster species proposed by Ferguson (1978) to explain masses recently detected at upper altitudes using mass spectrometric techniques.

  11. New gas phase inorganic ion cluster species and their atmospheric implications

    NASA Astrophysics Data System (ADS)

    Maerk, T. D.; Peterson, K. I.; Castleman, A. W., Jr.

    1980-06-01

    Recent experimental laboratory observations, with high-pressure mass spectroscopy, have revealed the existence of previously unreported species involving water clustered to sodium dimer ions, and alkali metal hydroxides clustered to alkali metal ions. The important implications of these results concerning the existence of such species are here discussed, as well as how from a practical aspect they confirm the stability of certain cluster species proposed by Ferguson (1978) to explain masses recently detected at upper altitudes using mass spectrometric techniques.

  12. Cluster ion beam polishing for inertial confinement fusion target capsules

    SciTech Connect

    McEachern, R., LLNL

    1998-06-09

    Targets for Inertial Confinement Fusion (ICF) typically consist of a hollow, spherical capsule filled with a mixture of hydrogen isotopes. Typically, these capsules are irradiated by short, intense pulses of either laser light (``direct drive``) or laser-generated. x-rays (``indirect drive``), causing them to implode This compresses and heats the fuel, leading to thermonuclear fusion. This process is highly sensitive to hydrodynamic (e.g., Rayleigh-Taylor) instabilities, which can be initiated by imperfections in the target. Thus, target capsules must be spherical and smooth One of the lead capsule designs for the National Ignition Facility, a 1.8 MJ laser being built at Livermore, calls for a 2-mm- diam capsule with a 150-{micro}m-thick copper-doped beryllium wall. These capsules can be fabricated by sputter depositing the metal onto a spherical plastic mandrel. This results in surfaces with measured Rq`s of 50 to 150 nm, as measured with an atomic force microscope For optimal performance the roughness should be below 10 nm rms We have begun studying the use of ion cluster beam polishing as a means of improving the surface finish of as-deposited capsules In this approach, a batch of capsules would be agitated in a bounce pan inside a vacuum chamber during exposure to the cluster beam. This would ensure a uniform beam dose around the capsule. We have performed preliminary experiments on both Be flats and on a stationary Be capsule On the capsule, the measured Rq went from 64 nm before polishing to 15 nm after This result was obtained without any effort at process optimization. Similar smoothing was observed on the planar samples

  13. Traveling Wave Ion Mobility Mass Spectrometry and Ab Initio Calculations of Phosphoric Acid Clusters

    NASA Astrophysics Data System (ADS)

    Lavanant, Hélène; Tognetti, Vincent; Afonso, Carlos

    2014-04-01

    Positive and negative ion electrospray mass spectra obtained from 50 mM phosphoric acid solutions presented a large number of phosphoric acid clusters: [(H3PO4)n + zH] z+ or [(H3PO4)n - zH] z- , with n up to 200 and z up to 4 for positively charged clusters, and n up to 270 and z up to 7 for negatively charged cluster ions. Ion mobility experiments allowed very explicit separation of the different charge states. Because of the increased pressures involved in ion mobility experiments, dissociation to smaller clusters was observed both in the trap and transfer areas. Voltages along the ion path could be optimized so as to minimize this effect, which can be directly associated with the cleavage of hydrogen bonds. Having excluded the ion mobility times that resulted from dissociated ions, each cluster ion appeared at a single drift time. These drift times showed a linear progression with the number of phosphoric atoms for cluster ions of the same charge state. Cross section calculations were carried out with MOBCAL on DFT optimized geometries with different hydrogen locations and with three types of atomic charges. DFT geometry optimizations yielded roughly spherical structures. Our results for nitrogen gas interaction cross sections showed that values were dependent on the atomic charges definition used in the MOBCAL calculation. This pinpointed the necessity to define a clear theoretical framework before any comparative interpretations can be attempted with uncharacterized compounds.

  14. Enhancing Secondary Ion Yields in Time of Flight-Secondary Ion Mass Spectrometry Using Water Cluster Primary Beams

    PubMed Central

    2013-01-01

    Low secondary ion yields from organic and biological molecules are the principal limitation on the future exploitation of time of flight-secondary ion mass spectrometry (TOF-SIMS) as a surface and materials analysis technique. On the basis of the hypothesis that increasing the density of water related fragments in the ion impact zone would enhance proton mediated reactions, a prototype water cluster ion beam has been developed using supersonic jet expansion methodologies that enable ion yields using a 10 keV (H2O)1000+ beam to be compared with those obtained using a 10 keV Ar1000+ beam. The ion yields from four standard compounds, arginine, haloperidol, DPPC, and angiotensin II, have been measured under static+ and high ion dose conditions. Ion yield enhancements relative to the argon beam on the order of 10 or more have been observed for all the compounds such that the molecular ion yield per a 1 μm pixel can be as high as 20, relative to 0.05 under an argon beam. The water beam has also been shown to partially lift the matrix effect in a 1:10 mixture of haloperidol and dipalmitoylphosphatidylcholine (DPPC) that suppresses the haloperidol signal. These results provide encouragement that further developments of the water cluster beam to higher energies and larger cluster sizes will provide the ion yield enhancements necessary for the future development of TOF-SIMS. PMID:23718847

  15. Highly Charged Ions from Laser-Cluster Interactions: Local-Field-Enhanced Impact Ionization and Frustrated Electron-Ion Recombination

    SciTech Connect

    Fennel, Thomas; Ramunno, Lora; Brabec, Thomas

    2007-12-07

    Our molecular dynamics analysis of Xe{sub 147-5083} clusters identifies two mechanisms that contribute to the yet unexplained observation of extremely highly charged ions in intense laser cluster experiments. First, electron impact ionization is enhanced by the local cluster electric field, increasing the highest charge states by up to 40%; a corresponding theoretical method is developed. Second, electron-ion recombination after the laser pulse is frustrated by acceleration electric fields typically used in ion detectors. This increases the highest charge states by up to 90%, as compared to the usual assumption of total recombination of all cluster-bound electrons. Both effects together augment the highest charge states by up to 120%, in reasonable agreement with experiments.

  16. How to reliably detect molecular clusters and nucleation mode particles with Neutral cluster and Air Ion Spectrometer (NAIS)

    NASA Astrophysics Data System (ADS)

    Manninen, Hanna E.; Mirme, Sander; Mirme, Aadu; Petäjä, Tuukka; Kulmala, Markku

    2016-08-01

    To understand the very first steps of atmospheric particle formation and growth processes, information on the size where the atmospheric nucleation and cluster activation occurs, is crucially needed. The current understanding of the concentrations and dynamics of charged and neutral clusters and particles is based on theoretical predictions and experimental observations. This paper gives a standard operation procedure (SOP) for Neutral cluster and Air Ion Spectrometer (NAIS) measurements and data processing. With the NAIS data, we have improved the scientific understanding by (1) direct detection of freshly formed atmospheric clusters and particles, (2) linking experimental observations and theoretical framework to understand the formation and growth mechanisms of aerosol particles, and (3) parameterizing formation and growth mechanisms for atmospheric models. The SOP provides tools to harmonize the world-wide measurements of small clusters and nucleation mode particles and to verify consistent results measured by the NAIS users. The work is based on discussions and interactions between the NAIS users and the NAIS manufacturer.

  17. Improvement of biological time-of-flight-secondary ion mass spectrometry imaging with a bismuth cluster ion source.

    PubMed

    Touboul, David; Kollmer, Felix; Niehuis, Ewald; Brunelle, Alain; Laprévote, Olivier

    2005-10-01

    A new liquid metal ion gun (LMIG) filled with bismuth has been fitted to a time-of-flight-secondary ion mass spectrometer (TOF-SIMS). This source provides beams of Bi(n)q+ clusters with n = 1-7 and q = 1 and 2. The appropriate clusters have much better intensities and efficiencies than the Au3+ gold clusters recently used in TOF-SIMS imaging, and allow better lateral and mass resolution. The different beams delivered by this ion source have been tested for biological imaging of rat brain sections. The results show a great improvement of the imaging capabilities in terms of accessible mass range and useful lateral resolution. Secondary ion yields Y, disappearance cross sections sigma, efficiencies E = Y/sigma , and useful lateral resolutions deltaL have been compared using the different bismuth clusters, directly onto the surface of rat brain sections and for several positive and negative secondary ions with m/z ranging from 23 up to more than 750. The efficiency and the imaging capabilities of the different primary ions are compared by taking into account the primary ion current for reasonable acquisition times. The two best primary ions are Bi3+ and Bi5(2+). The Bi3+ ion beam has a current at least five times larger than Au3+ and therefore is an excellent beam for large-area imaging. Bi5(2+) ions exhibit large secondary ions yields and a reasonable intensity making them suitable for small-area images with an excellent sensitivity and a possible useful lateral resolution <400 nm. PMID:16112869

  18. Cluster ion beam assisted fabrication of metallic nanostructures for plasmonic applications

    NASA Astrophysics Data System (ADS)

    Saleem, Iram; Tilakaratne, Buddhi P.; Li, Yang; Bao, Jiming; Wijesundera, Dharshana N.; Chu, Wei-Kan

    2016-08-01

    We report a high-throughput, single-step method for fabricating rippled plasmonic nanostructure arrays via self-assembly induced by oblique angle cluster ion beam irradiation of metal surfaces. This approach does not require lithographic or chemical processes and has the prominent advantage of possible large surface area coverage and applicability to different starting materials. The polarization dependent plasmonic property of the gold nano-ripple is due to their one dimension structure. The localized plasmon resonance frequency of synthesized nano-ripple arrays is tunable by changing nano-ripple dimensions that can be engineered by changing the cluster ion beam irradiation parameters. In this specific case presented, using 30 keV Ar-gas cluster ion beam, we fabricate gold nano-ripple arrays that show localized plasmon resonance in the visible range through near IR range, tunable by varying cluster ion irradiation fluence.

  19. Near-Threshold Photodetachment Cross Section of (SF6)(n)(-) Cluster Anions: The Ion Core Structure.

    PubMed

    Luzon, Itamar; Nagler, Maoz; Chandrasekaran, Vijayanand; Heber, Oded; Strasser, Daniel

    2016-01-21

    Photodetachment cross sections as a function of photon energy are measured for cold (SF6)n(-) cluster anions stored in an electrostatic ion beam trap. Absolute photodetachment cross sections near the adiabatic limit are reported. The strong dependence of the SF6(-) absolute photodetachment cross section on the anion equilibrium bond length leads to the conclusion that the excess charge is localized on a SF6(-) ion core that is only subtly perturbed by the neighboring cluster units. PMID:26667587

  20. Lithium borate cluster salts as novel redox shuttles for overcharge protection of lithium-ion cells.

    SciTech Connect

    Chen, Z.; Liu, J.; Jansen, A. N.; Casteel, B.; Amine, K.; GirishKumar, G.; Air Products and Chemicals, Inc.

    2010-01-01

    Redox shuttle is a promising mechanism for intrinsic overcharge protection in lithium-ion cells and batteries. Two lithium borate cluster salts are reported to function as both the main salt for a nonaqueous electrolyte and the redox shuttle for overcharge protection. Lithium borate cluster salts with a tunable redox potential are promising candidates for overcharge protection for most positive electrodes in state-of-the-art lithium-ion cells.

  1. Clustering recognition model for intermediate energy heavy ion reactions

    SciTech Connect

    Garcia-Solis, E.J.; Mignerey, A.C.

    1996-07-01

    A clustering model which allows the recognition of mass fragments from dynamical simulations has been developed. Studying the evolution of a microscopic computation based on the nuclear Boltzman equation, a suitable time is chosen to define bound clusters. At this stopping time the cluster cores for each member of the distribution are defined as a function of the overall density. Then an iterative routine is applied to estimate the coalescence of the surrounding nucleons. Once the fragment formation has been established, a statistical decay code is used to generate the final fragment distributions. Applications are shown to the reactions {sup 129}Xe + {sup nat}Cu at 50 MeV/nucleon and {sup 139}La on {sup 27}Al and {sup nat}Cu at 45 MeV/nucleon. A general improvement in cluster identification is found over approaches where a standard cluster separation algorithm has been used. {copyright} {ital 1996 The American Physical Society.}

  2. Cluster ion distributions and correlation with fragment valence in laser-induced mass spectra of oxides

    SciTech Connect

    Michiels, E.; Bijbels, R.

    1984-06-01

    Laser microprobe mass analysis (LAMMA) spectra are described for binary oxides belonging to different groups in the periodic table. The positive and negative cluster ion distributions show a strong correlation with the valence electron configuration of the metal in the oxide. The bond dissociation energy of the MO/sup +/ ion also affects the intensity distributions. 20 references, 10 figures.

  3. Cluster ion beam profiling of organics by secondary ion mass spectrometry--does sodium affect the molecular ion intensity at interfaces?

    PubMed

    Green, Felicia M; Gilmore, Ian S; Seah, Martin P

    2008-12-01

    The use of cluster ion beam sputtering for depth profiling organic materials is of growing technological importance and is a very active area of research. At the 44th IUVSTA Workshop on "Sputtering and Ion Emission by Cluster Ion Beams", recent results were presented of a cluster ion beam depth profile of a thin organic molecular layer on a silicon wafer substrate. Those data showed that the intensity of molecular secondary ions is observed to increase at the interface and this was explained in terms of the higher stopping power in the substrate and a consequently higher sputtering yield and even higher secondary ion molecular sputtering yield. An alternative hypothesis was postulated in the workshop discussion which may be paraphrased as: "under primary ion bombardment of an organic layer, mobile ions such as sodium may migrate to the interface with the inorganic substrate and this enhancement of the sodium concentration increases the ionisation probability, so increasing the molecular ion yield observed at the interface". It is important to understand if measurement artefacts occur at interfaces for quantification as these are of great technological relevance - for example, the concentration of drug in a drug delivery system. Here, we evaluate the above hypothesis using a sample that exhibits regions of high and low sodium concentration at both the organic surface and the interface with the silicon wafer substrate. There is no evidence to support the hypothesis that the probability of molecular secondary ion ionisation is related to the sodium concentration at these levels. PMID:19039819

  4. Voltage dependence of cluster size in carbon films using plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    McKenzie, D. R.; Tarrant, R. N.; Bilek, M. M. M.; Pearce, G.; Marks, N. A.; McCulloch, D. G.; Lim, S. H. N.

    2003-05-01

    Carbon films were prepared using a cathodic arc with plasma immersion ion implantation (PIII). Using Raman spectroscopy to determine cluster size, a comparison is made between cluster sizes at high voltage and a low duty cycle of pulses with the cluster sizes produced at low voltage and a higher duty cycle. We find that for ion implantation in the range 2-20 kV, the cluster size depends more on implantation energy ( E) than implantation frequency ( f), unlike stress relief, which we have previously shown [M.M.M. Bilek, et al., IEEE Trans. in Plasma Sci., Proceedings 20th ISDEIV 1-5 July 2002, Tours, France, Cat. No. 02CH37331, IEEE, Piscataway, NJ, USA, p. 95] to be dependent on the product Ef. These differences are interpreted in terms of a model in which the ion impacts create thermal spikes.

  5. Charge Retention by Gold Clusters on Surfaces Prepared Using Soft Landing of Mass Selected Ions

    SciTech Connect

    Johnson, Grant E.; Priest, Thomas A.; Laskin, Julia

    2012-01-24

    Monodisperse gold clusters have been prepared on surfaces in different charge states through soft landing of mass-selected ions. Ligand-stabilized gold clusters were prepared in methanol solution by reduction of chloro(triphenylphosphine)gold(I) with borane tert-butylamine complex in the presence of 1,3-bis(diphenylphosphino)propane. Electrospray ionization was used to introduce the clusters into the gas-phase and mass-selection was employed to isolate a single ionic cluster species (Au11L53+, L = 1,3-bis(diphenylphosphino)propane) which was delivered to surfaces at well controlled kinetic energies. Using in-situ time of flight secondary ion mass spectrometry (TOF-SIMS) it is demonstrated that the Au11L53+ cluster retains its 3+ charge state when soft landed onto the surface of a 1H,1H,2H,2H-

  6. Structure and dynamics of ion clusters in linear octupole traps: Phase diagrams, chirality, and melting mechanisms

    SciTech Connect

    Yurtsever, E.; Onal, E. D.; Calvo, F.

    2011-05-15

    The stable structures and melting dynamics of clusters of identical ions bound by linear octupole radiofrequency traps are theoretically investigated by global optimization methods and molecular dynamics simulations. By varying the cluster sizes in the range of 10-1000 ions and the extent of trap anisotropy by more than one order of magnitude, we find a broad variety of stable structures based on multiple rings at small sizes evolving into tubular geometries at large sizes. The binding energy of these clusters is well represented by two contributions arising from isotropic linear and octupolar traps. The structures generally exhibit strong size effects, and chiral arrangements spontaneously emerge in many crystals. Sufficiently large clusters form nested, coaxial tubes with different thermal stabilities. As in isotropic octupolar clusters, the inner tubes melt at temperatures that are lower than the overall melting point.

  7. Sputtered metal and silicon cluster ions: collision-induced fragmentation and neutralization

    NASA Astrophysics Data System (ADS)

    Begemann, W.; Hector, R.; Liu, Y. Y.; Tiggesbäumker, J.; Meiwes-Broer, K. H.; Lutz, H. O.

    1989-03-01

    Mass separated metal and silicon cluster ion beams M{/n +, -} are produced by sputtering and undergo fragmenting and/or neutralizing collisions at different kinetic energies (100 1800 eV) in Ar and SF6. Fragment patterns induced by rare gas collisions open a way to determine ionization potentials and electron affinities of clusters. These values are compared to known experimental and theoretical data. For negatively charged clusters the absorption in gas targets is mainly due to neutralization, the cross sections varying with cluster material, number of atoms and collision partner from 10 Å2 to about 50 Å2.

  8. Clustered DNA damages induced by high and low LET radiation, including heavy ions

    NASA Technical Reports Server (NTRS)

    Sutherland, B. M.; Bennett, P. V.; Schenk, H.; Sidorkina, O.; Laval, J.; Trunk, J.; Monteleone, D.; Sutherland, J.; Lowenstein, D. I. (Principal Investigator)

    2001-01-01

    Clustered DNA damages--here defined as two or more lesions (strand breaks, oxidized purines, oxidized pyrimidines or abasic sites) within a few helical turns--have been postulated as difficult to repair accurately, and thus highly significant biological lesions. Further, attempted repair of clusters may produce double strand breaks (DSBs). However, until recently, there was no way to measure ionizing radiation-induced clustered damages, except DSB. We recently described an approach for measuring classes of clustered damages (oxidized purine clusters, oxidized pyrimidine clusters, abasic clusters, along with DSB). We showed that ionizing radiation (gamma rays and Fe ions, 1 GeV/amu) does induce such clusters in genomic DNA in solution and in human cells. These studies also showed that each damage cluster results from one radiation hit (and its track), thus indicating that they can be induced by very low doses of radiation, i.e. two independent hits are not required for cluster induction. Further, among all complex damages, double strand breaks comprise--at most-- 20%, with the other clustered damages being at least 80%.

  9. 20 Years History of Fundamental Research on Gas Cluster Ion Beams, and Current Status of the Applications to Industry

    NASA Astrophysics Data System (ADS)

    Yamada, Isao

    2006-11-01

    This paper reviews the development of gas cluster ion beam (GCIB) technology, including the generation of cluster beams, fundamental characteristics of cluster ion to solid surface interactions, emerging industrial applications, and identification of some of the significant events which occurred as the technology has evolved into what it is today. More than 20 years have passed since the author first began to explore feasibility of processing by gas cluster ion beams at the Ion Beam Engineering Experimental Laboratory of Kyoto University. Processes employing ions of gaseous material clusters comprised of a few hundred to many thousand atoms are now being developed into a new field of ion beam technology. Cluster-surface collisions produce important non-linear effects which are being applied to shallow junction formation, to etching and smoothing of semiconductors, metals, and dielectrics, to assisted formation of thin films with nano-scale accuracy, and to other surface modification applications.

  10. A dual cryogenic ion trap spectrometer for the formation and characterization of solvated ionic clusters

    SciTech Connect

    Marsh, Brett M.; Voss, Jonathan M.; Garand, Etienne

    2015-11-28

    A new experimental approach is presented in which two separate cryogenic ion traps are used to reproducibly form weakly bound solvent clusters around electrosprayed ions and messenger-tag them for single-photon infrared photodissociation spectroscopy. This approach thus enables the vibrational characterization of ionic clusters comprised of a solvent network around large and non-volatile ions. We demonstrate the capabilities of the instrument by clustering water, methanol, and acetone around a protonated glycylglycine peptide. For water, cluster sizes with greater than twenty solvent molecules around a single ion are readily formed. We further demonstrate that similar water clusters can be formed around ions having a shielded charge center or those that do not readily form hydrogen bonds. Finally, infrared photodissociation spectra of D{sub 2}-tagged GlyGlyH{sup +} ⋅ (H{sub 2}O){sub 1−4} are presented. They display well-resolved spectral features and comparisons with calculations reveal detailed information on the solvation structures of this prototypical peptide.

  11. Matrix effects in biological SIMS using cluster ion beams of different chemical composition.

    PubMed

    Alnajeebi, Afnan M; Vickerman, John C; Lockyer, Nicholas P

    2016-06-01

    The influence of the matrix effect on secondary ion yield presents a very significant challenge in quantitative secondary ion mass spectrometry (SIMS) analysis, for example, in determining the relative concentrations of metabolites that characterize normal biological activities or disease progression. Not only the sample itself but also the choice of primary ion beam may influence the extent of ionization suppression/enhancement due to the local chemical environment. In this study, an assessment of ionization matrix effects was carried out on model systems using C60 (+), Arn (+), and (H2O)n (+) cluster ion beams. The analytes are pure and binary mixtures of amino acids arginine and histidine biological standards. Ion beams of 20 keV were compared with a range of cluster sizes n = 1000-10 000. The component secondary ion yields were assessed for matrix effects using different primary ion beams and sample composition. The presence of water in the cluster beam is associated with a reduction in the observed matrix effects, suggesting that chemically reactive ion beams may provide a route to more quantitative SIMS analysis of complex biological systems. PMID:26825287

  12. Size-Restricted Proton Transfer within Toluene-Methanol Cluster Ions

    PubMed Central

    Chiang, Chi-Tung; Shores, Kevin S.; Freindorf, Marek; Furlani, Thomas; DeLeon, Robert L.; Garvey, James F.

    2009-01-01

    To understand the interaction between toluene and methanol, the chemical reactivity of {(C6H5CH3)(CH3OH)n=1-7}+ cluster ions has been investigated via tandem quadrupole mass spectrometry and through calculations. Collision Induced Dissociation (CID) experiments show that the dissociated intracluster proton transfer reaction from the toluene cation to methanol clusters, forming protonated methanol clusters, only occurs for n=2-4. For n=5-7, CID spectra reveal that these larger clusters have to sequentially lose methanol monomers until they reach n=4 to initiate the deprotonation of the toluene cation. Metastable decay data indicate that for n=3 and n=4 (CH3OH)3H+ is the preferred fragment ion. The calculational result reveals that both the gross proton affinity of the methanol subcluster and the structure of the cluster itself play an important role in driving this proton transfer reaction. When n=3, the cooperative effect of the methanols in the subcluster provides the most important contribution to allow the intracluster proton transfer reaction to occur with little or no energy barrier. As n≥4, the methanol subcluster is able to form ring structures to stabilize the cluster structures so that direct proton transfer is not a favored process. The preferred reaction product, the (CH3OH)3H+ cluster ion, indicates that this size-restricted reaction is driven by both the proton affinity and the enhanced stability of the resulting product. PMID:18950147

  13. Depth resolution at organic interfaces sputtered by argon gas cluster ions: the effect of energy, angle and cluster size.

    PubMed

    Seah, M P; Spencer, S J; Havelund, R; Gilmore, I S; Shard, A G

    2015-10-01

    An analysis is presented of the effect of experimental parameters such as energy, angle and cluster size on the depth resolution in depth profiling organic materials using Ar gas cluster ions. The first results are presented of the incident ion angle dependence of the depth resolution, obtained at the Irganox 1010 to silicon interface, from profiles by X-ray photoelectron spectrometry (XPS). By analysis of all relevant published depth profile data, it is shown that such data, from delta layers in secondary ion mass spectrometry (SIMS), correlate with the XPS data from interfaces if it is assumed that the monolayers of the Irganox 1010 adjacent to the wafer substrate surface have an enhanced sputtering rate. SIMS data confirm this enhancement. These results show that the traditional relation for the depth resolution, FWHM = 2.1Y(1/3) or slightly better, FWHM = P(X)Y(1/3)/n(0.2), where n is the argon gas cluster size, and P(X) is a parameter for each material are valid both at the 45° incidence angle of the argon gas cluster sputtering ions used in most studies and at all angles from 0° to 80°. This implies that, for optimal depth profile resolution, 0° or >75° incidence may be significantly better than the 45° traditionally used, especially for the low energy per atom settings required for the best resolved profiles in organic materials. A detailed analysis, however, shows that the FWHM requires a constant contribution added in quadrature to the above such that there are minimal improvements at 0° or greater than 75°. A critical test at 75° confirms the presence of this constant contribution. PMID:26325511

  14. Rhodium Oxide Cluster Ions Studied by Thermal Desorption Spectrometry.

    PubMed

    Mafuné, Fumitaka; Takenouchi, Masato; Miyajima, Ken; Kudoh, Satoshi

    2016-01-28

    Gas-phase rhodium oxide clusters, RhnOm(+), were investigated by measuring the rate constants of oxidation and thermal desorption spectrometry. RhnOm(+) was suggested to be categorized into different states as m/n ≤ 1, 1 < m/n ≤ 1.5, and 1.5 < m/n in terms of energy and kinetics. For m/n ≤ 1, the O atoms readily adsorbed on the cluster with a large binding energy until RhO was formed. Under the O2-rich environment, oxidation proceeded until Rh2O3 was formed with a moderate binding energy. In addition, O2 molecules attached weakly to the cluster, and Rh2O3 formed RhnOm(+) (1.5 < m/n). The energetics and geometries of Rh6Om(+) (m = 6-12) were obtained using density functional theory calculations and were found to be consistent with the experimental results. PMID:26730616

  15. Simultaneous detection and localization of secondary ions and electrons from single large cluster impacts

    PubMed Central

    Eller, M. J.; Verkhoturov, S. V.; Fernandez-Lima, F. A.; DeBord, J. D.; Schweikert, E. A.; Della-Negra, S.

    2013-01-01

    The use of large cluster primary ions (e.g. C60, Au400) in secondary ion mass spectrometry has become prevalent in recent years due to their enhanced emission of secondary ions, in particular, molecular ions (MW ≤ 1500 Da). The co-emission of electrons with SIs was investigated per projectile impact. It has been found that SI and electrons yields increased with increasing projectile energy and size. The use of the emitted electrons from impacts of C60 for localization has been demonstrated for cholesterol deposited on a copper grid. The instrumentation, methodologies, and results from these experiments are presented. PMID:24163488

  16. Ion-induced annealing and amorphization of isolated damage clusters in Si

    SciTech Connect

    Battaglia, A. ); Priolo, F.; Rimini, E. ); Ferla, G. )

    1990-06-25

    The interaction between high-energy ion irradiation and pre-existing damage clusters dispersed in single-crystal Si is discussed. Silicon substrates were predamaged by low-dose 150 keV Au ions. Post-irradiation by 600 keV Kr{sup 2+} ions resulted in either damage annealing or damage accumulation, depending on the substrate temperature. The transition temperature between these two different regimes is 420 K. These data are discussed and compared with the ion beam induced epitaxy and amorphization of continuous surface amorphous layers.

  17. Infrared photofragmentation spectra of size-selected SF6ṡAr+n cluster ions

    NASA Astrophysics Data System (ADS)

    Winkel, J. F.; Woodward, C. A.; Jones, A. B.; Stace, A. J.

    1995-10-01

    Results are presented of a detailed experimental study of the infrared photofragmentation patterns of size-selected SF6ṡAr+n cluster ions for n in the range 3 to 70. Line-tuneable CO2 and N2O lasers have been used to excited the ν3 vibrational mode of the SF6 molecule which is followed by the loss of one and two argon atoms as the principal fragmentation routes. Which of the two processes is dominant depends quite strongly on the size of the cluster ion concerned, with very pronounced fluctuations in the relative intensities of photofragments being observed for cluster ions in the range SF6ṡAr+3 to SF6ṡAr+25. Only for SF6ṡAr+3 is the fragmentation pattern markedly different from that found for the other ions; an observation that supports an earlier conclusion regarding the relative ionisation energies of the two constituents [Stace et al. J. Phys. Chem. 97, 11363 (1993)]. A summation of fragment ion intensities as a function of laser wavelength is used to determine infrared absorption profiles and these have been recorded for individual clusters containing up to 70 argon atoms. Clusters containing fewer than 40 argon atoms appear to form single structures, with both the absorption profile shapes and selected hole-burning experiments suggesting that the number of isomers is small. The presence of isomers only appears to become significant when the clusters contain more than 40 argon atoms. The observation of site splittings for the triply degenerate ν3 vibrational mode of SF6, together with the comparatively narrow linewidths seen for clusters containing between 15 and 40 rare gas atoms, indicates the presence of ordered structures. Such a conclusion implies that the clusters are solidlike rather than liquidlike. Overall, the results demonstrate that there is a clear correlation between those criteria previously used to identify the presence of stable cluster ion structures, i.e., mass spectra and unimolecular fragmentation patterns, and the corresponding

  18. Electron and Ion Emission from Clusters exposed to Strong Laser Fields

    NASA Astrophysics Data System (ADS)

    Tiggesbämker, Josef

    2006-03-01

    When clusters interact with intense optical laser pulses energetic and highly charged atomic fragment ions e.g. are generated^1. In contrast to atoms the efficiency of the process could be enhanced by choosing a pair of optical delayed pulses instead of a single but more intense femtosecond pulse^2. In metals the stronger charging of the clusters can qualitatively be explained by a plasmon enhanced ionization process. We extended our studies and have made a compared analysis of the emission of highly charged ions and energetic electrons the interaction dynamics of intense femtosecond laser fields with nanometer-sized silver clusters. Using a pair of laser pulses with variable optical delay the time-dependent cluster response is resolved. A dramatic increase both in the atomic charge state of the ions and the maximum electron kinetic energy is observed for a certain delay of the pulses. Corresponding Vlasov calculations on a metal cluster model system indicate that enhanced cluster ionization as well as the generation of fast electrons coincide with resonant plasmon excitation.^3 *L. Köller, M. Schumacher, J. Köhn, S. Teuber, J. Tiggesbäumker, and K.-H. Meiwes-Broer, Phys. Rev. Lett. 82, 3783 (1999). *T. Döppner, Th. Fennel, Th. Diederich, J. Tiggesb äumker, and K.-H. Meiwes-Broer, Phys. Rev. Lett. 94, 013401 (2005). *Th. Fennel, G.F. Bertsch, and K.-H. Meiwes-Broer, Eur. Phys. J. D 29, 367 (2004).

  19. Gas cluster ion beam assisted NiPt germano-silicide formation on SiGe

    NASA Astrophysics Data System (ADS)

    Ozcan, Ahmet S.; Lavoie, Christian; Alptekin, Emre; Jordan-Sweet, Jean; Zhu, Frank; Leith, Allen; Pfeifer, Brian D.; LaRose, J. D.; Russell, N. M.

    2016-04-01

    We report the formation of very uniform and smooth Ni(Pt)Si on epitaxially grown SiGe using Si gas cluster ion beam treatment after metal-rich silicide formation. The gas cluster ion implantation process was optimized to infuse Si into the metal-rich silicide layer and lowered the NiSi nucleation temperature significantly according to in situ X-ray diffraction measurements. This novel method which leads to more uniform films can also be used to control silicide depth in ultra-shallow junctions, especially for high Ge containing devices, where silicidation is problematic as it leads to much rougher interfaces.

  20. Dependence of multiply charged ions on the polarization state in nanosecond laser-benzene cluster interaction

    NASA Astrophysics Data System (ADS)

    Wang, Weiguo; Zhao, Wuduo; Hua, Lei; Hou, Keyong; Li, Haiyang

    2016-05-01

    This paper investigated the dependence of multiply charged ions on the laser polarization state when benzene cluster was irradiated with 532 and 1064 nm nanosecond laser. A circle, square and flower distribution for C2+, C3+ and C4+ were observed with 532 nm laser respectively, while flower petals for C2+, C3+ and C4+ were observed at 1064 nm as the laser polarization varied. A theoretical calculation was performed to interpret the polarization state and wavelength dependence of the multiply charged ions. The simulated results agreed well with the experimental observation with considering the contribution from the cluster disintegration.

  1. Study of clusters using negative ion photodetachment spectroscopy

    SciTech Connect

    Zhao, Yuexing

    1995-12-01

    The weak van der Waals interaction between an open-shell halogen atom and a closed-shell atom or molecule has been investigated using zero electron kinetic energy (ZEKE) spectroscopy. This technique is also applied to study the low-lying electronic states in GaAs and GaAs{sup {minus}}. In addition, the spectroscopy and electron detachment dynamics of several small carbon cluster anions are studied using resonant multiphoton detachment spectroscopy.

  2. Metal etching with reactive gas cluster ion beams using pickup cell

    SciTech Connect

    Toyoda, Noriaki; Yamada, Isao

    2012-11-06

    Mixed gas cluster ion beams were formed using pickup cell for metal etching. O{sub 2} neutral clusters pick up acetic acid and formed mixed cluster beam. By using O{sub 2}-GCIB with acetic acid, enhancement of Cu etching was observed. Because of dense energy deposition by GCIB, etching of Cu proceeds by CuO formation, enhancement of chemical reaction with acetic acid and desorption of etching products. Surface roughening was not observed on poly crystalline Cu because of the small dependence of etching rate on crystal orientation. Halogen free and low-temperature metal etching with GCIB using pickup cell is possible.

  3. The detection of fast neutral fragments following the photodissociation of krypton cluster ions

    NASA Astrophysics Data System (ADS)

    Smith, J. A.; Winkel, J. F.; Jones, A. B.; Stace, A. J.; Whitaker, B. J.

    1994-05-01

    Mass and kinetic energy resolved krypton cluster ions, Kr+n, have been photodissociated in the entrance to a time-of-flight (TOF) device of variable length. The subsequent deflection of all ions allowed for time resolved measurements to be undertaken on the neutral photofragments. Following the absorption of a photon (hν=2.33 eV), all cluster ions up to Kr+25 were found to eject one or, possibly, two neutral atoms with relatively high kinetic energies. An analysis of the laser polarization dependence of this event showed that the atoms are ejected on a time scale which is short compared with the rotational period of a cluster (10-100 ps). Remaining internal energy within the cluster ions is dissipated through the further loss of neutral atoms, but with low kinetic energies. The latter process is found to be isotropic with respect to the angle of polarization of the laser radiation. Kinetic energy releases calculated from the TOF spectra exhibit a gradual decline as a function of cluster size out as far as Kr+13 and, thereafter, maintain a constant value. This pattern of behavior is significantly different from that observed previously [Smith et al., J. Chem. Phys. 97, 397 (1992)] for argon cluster ions, Ar+n. A careful analysis of the kinetic energy data for Kr+3 photodissociation reveals that, in at least one of the reaction paths, the Kr+ fragment can only be formed in the ground spin-orbit state. This observation implies that photofragmentation proceeds via a 1(1/2)g←1(1/2)u transition. The implications of this result for the analogous Ar+3 photofragmentation are discussed.

  4. Isolated and clustered DNA lesions induced by high-energy iron and carbon ions

    NASA Astrophysics Data System (ADS)

    Ide, H.; Tanaka, R.; Nakaarai, Y.; Terato, H.; Furusawa, Y.

    During space flight astronauts are exposed to various types of radiation from sun and galactic cosmic rays, the latter of which contain high-energy charged particles such as Fe and C ions. The radiation risk to astronauts toward such high-energy charged particles has been assessed by ground-based experiments. When irradiated by ionizing radiation, DNA molecules suffer from oxidation of bases and strand breaks. The distribution of these lesions along the DNA strand may differ significantly between densely ionizing high-energy Fe and C ions and sparsely ionizing radiation like 60Co gamma-rays. Among various types of DNA damage, bistranded clustered lesions comprised of multiple oxidized bases or strand breaks on opposite strands within a few helical turns are of particular interest since they are assumed to be resistant to repair or induce faulty repair, hence resulting in cell killing and mutations. In the present study, we have analyzed isolated and clustered DNA lesions generated by high-energy Fe and C ions to elucidate the nature of DNA lesions. Plasmid DNA (pDEL19) was irradiated in 10 mM Tris buffer (pH 7.5) by Fe (500 MeV/amu) and C (290 MeV/amu) ions and 60Co gamma-rays. Single-strand breaks (SSB) and double-strand breaks (DSB) were quantified by analysis of conformational changes using agarose gel electrophoresis. For quantification of isolated and bistranded clustered base lesions, irradiated plasmid was exhaustively digested prior to agarose gel analysis by Endo III and Fpg that preferentially incise DNA at oxidative pyrimidine and purine lesions, respectively. The yield (site/Gy/nucleotide) of isolated damages (SSB and bases lesions) tended to decrease with increasing LET [gamma (0.2 keV/μ m) < C (13 keV/μ m) < Fe (200 keV/μ m)]. The yield of DSB was decreased similarly, but that of clustered base lesions was virtually constant. As a result, the spectra of clustered damage changed in an LET-dependent manner: the fraction of clustered base lesions in

  5. Multiphoton ionization of ions, neutrals, and clusters. Final report

    SciTech Connect

    Wessel, J.

    1995-12-28

    A multiyear research program investigating molecular detection methods based on multiphoton spectroscopy has been completed under DOE sponsorship. A number of new laser-based spectroscopic methods were developed and applied to a variety of aromatic hydrocarbons, including monomer and cluster species. The objectives of sensitivities approaching single molecule detection combined with high selectivity were achieved. This report references the status of the field at the beginning of this work and summarizes the significant progress during the period from 1987 onward. Detailed scientific findings from the studies are presented in the published literature referenced throughout this report.

  6. Photodissociation spectroscopy and dynamics of free radicals, clusters, and ions

    SciTech Connect

    Hyeon, Choi

    1999-12-16

    The photodissociation spectroscopy and dynamics of free radicals and ions is studied to characterize the dissociative electronic states in these species. To accomplish this, a special method of radical production, based on the photodetachment of the corresponding negative ion, has been combined with the technique of fast beam photofragment translational spectroscopy. The photofragment yield as a function of photon energy is obtained, mapping out the dissociative and predissociative electronic states. Branching ratios to various product channels, the translational energy distributions of the fragments, and bond dissociation energies are then determined at selected photon energies. The detailed picture of photodissociation dynamics is provided with the aid of ab initio calculations and a statistical model to interpret the observed data. Important reaction intermediates in combustion reactions have been studied: CCO, C{sub 2}H{sub 5}O, and linear C{sub n} (n = 4--6).

  7. Conical octopole ion guide: Design, focusing, and its application to the deposition of low energetic clusters

    SciTech Connect

    Roettgen, Martin A.; Judai, Ken; Antonietti, Jean-Marie; Heiz, Ueli; Rauschenbach, Stephan; Kern, Klaus

    2006-01-15

    A design of a radio-frequency (rf) octopole ion guide with truncated conical rods arranged in a conical geometry is presented. The performance is tested in a cluster deposition apparatus used for the soft-landing of size-selected clusters on well-characterized substrates used as a model system in heterogeneous catalysis in ultrahigh vacuum. This device allows us to focus 500 pA of a mass-selected Ni{sub 20}{sup +} cluster ion beam from 9 mm down to a spot size of 2 mm in diameter. The transmittance is 70%{+-}5% at a rf voltage of 420 V{sub pp} applied over an amateur radio transceiver with an interposed homemade amplifier-transformer circuit. An increase of the cluster density by a factor of 15 has been achieved. Three ion trajectories are simulated by using SIMION6, which are relevant for this focusing device: transmitted, reflected, and absorbed. The observed effects in the simulations can be successfully explained by the adiabatic approximation. The focusing behavior of the conical octopole lens is demonstrated by experiment and simulations to be a very useful technique for increasing molecule or cluster densities on a substrate and thus reducing deposition time.

  8. The energetics and dynamics of free radicals, ions, and clusters. Progress report, April 1992--March 1993

    SciTech Connect

    Baer, T.

    1993-04-01

    Structure and energetics of free radicals, ions, and clusters are being investigated by photoelectron photoion coincidence and analyzed using ab initio molecular orbital and statistical theory (RRKM). Molecules or free radicals are prepared in a molecular beam. Translational temperature is found from measured time of flight peakwidth; the vibrational temperature, from shift in dissociation onset. Free radicals are produced by pyrolysis in the nozzle; their subsequent cooling is demonstrated. Ion dissociation rates in the range from 10{sup 4} to 10{sup 7} s{sup {minus}1} are measured from the asymmetric TOF distribution; this method was used to measure the dissociation rates of cold and warm butene ions. 2 figs.

  9. Site-Specific Fragmentation of Polystyrene Molecule Using Size-Selected Ar Gas Cluster Ion Beam

    NASA Astrophysics Data System (ADS)

    Moritani, Kousuke; Mukai, Gen; Hashinokuchi, Michihiro; Mochiji, Kozo

    2009-04-01

    The secondary ion mass spectrum (SIMS) of a polystyrene thin film was investigated using a size-selected Ar gas cluster ion beam (GCIB). The fragmentation in the SIM spectrum varied by kinetic energy per atom (Eatom); the Eatom dependence of the secondary ion intensity of the fragment species of polystyrene can be essentially classified into three types based on the relationship between Eatom and the dissociation energy of a specific bonding site in the molecule. These results indicate that adjusting Eatom of size-selected GCIB may realize site-specific bond breaking within a molecule.

  10. Summary of Industry-Academia Collaboration Projects on Cluster Ion Beam Process Technology

    NASA Astrophysics Data System (ADS)

    Yamada, Isao; Matsuo, Jiro; Toyoda, Noriaki

    2008-11-01

    Processes employing clusters of ions comprised of a few hundred to many thousand atoms are now being developed into a new field of ion beam technology. Cluster-surface collisions produce important non-linear effects which are being applied to shallow junction formation, to etching and smoothing of semiconductors, metals, and dielectrics, to assisted formation of thin films with nano-scale accuracy, and to other surface modification applications. In 2000, a four year R&D project for development of industrial technology began in Japan under funding from the New Energy and Industrial Technology Development Organization (NEDO). Subjects of the projects are in areas of equipment development, semiconductor surface processing, high accuracy surface processing and high-quality film formation. In 2002, another major cluster ion beam project which emphasized nano-technology applications has started under a contract from the Ministry of Economy and Technology for Industry (METI). This METI project involved development related to size-selected cluster ion beam equipment and processes, and development of GCIB processes for very high rate etching and for zero damage etching of magnetic materials and compound semiconductor materials. This paper describes summery of the results.

  11. High resolution ion mobility measurements of peptides, proteins, and atomic clusters

    NASA Astrophysics Data System (ADS)

    Hudgins, Robert Ransone

    1999-12-01

    A novel high resolution ion mobility apparatus has been constructed and applied to the study of atomic clusters and biological molecules in the gas phase. The resolving power of the high resolution apparatus is over an order of magnitude higher than has been achieved using conventional injected-ion drift tube techniques. A number of advantages of the experimental configuration, in addition to the higher resolution, are described. High resolution ion mobility measurements have been performed on atomic clusters of various composition. Several isomers for carbon cluster anions have been resolved for the first time. By comparison to computationally derived structures, detailed structural information can be extracted from the measurements. For small carbon cluster anions, ``tadpole'' isomers, where a short carbon chain is attached to a carbon ring, have been identified. Mobility measurements for (NaCl)nCl- clusters have revealed multiple isomers with the same fcc packing but different j x k x l dimensions. Metastable (NaCl)nCl- geometries isomerize on the timescale of the mobility measurements (hundreds of milliseconds). Rate constants and activation energies for the isomerization processes are extracted directly from the mobility measurements; the activation energies are found to be remarkably low. Indium and silicon cluster mobilities are found to be sensitive to the degree of electron spillout from the surface of the cluster, as revealed in differences in the anionic and cationic cluster mobilities. Mobility measurements of solvent-free biological molecules reveal important information about their intramolecular forces. Due to the gentle ion sampling in the high resolution ion mobility apparatus electrospray interface, high resolution mobilities of gas-phase proteins are found to be sensitive to the nature of the electrosprayed solution. Although calculations have shown that neutral polyalanine in vacuo is mostly helical, gas- phase polyalanine ions, AnH+, are found

  12. Generation of intense and cold beam of Pt-Ag bi-element cluster ions having single-composition

    NASA Astrophysics Data System (ADS)

    Yasumatsu, H.

    2011-07-01

    An intense beam of bi-element Pt-Ag cluster ions with a single atomic-composition has been gained toward development of new-functional materials of the clusters fixed on a solid surface. Mass production of the bi-element cluster ions has been achieved by operating dual magnetron-sputtering devices independently in a gas aggregation cell, and the ions having a single composition are filtered out by passing through a quadrupole mass filter. The kinetic energies of the cluster ions have been reduced by collision with cold helium in order for low-energy cluster-impact deposition of the clusters on the surface. The cooling process was examined further by means of molecular-dynamics simulation.

  13. Molecular dynamics simulation of bipartite bimetallic clusters under low-energy argon ion bombardment

    NASA Astrophysics Data System (ADS)

    Shirokorad, D. V.; Kornich, G. V.; Buga, S. G.

    2016-02-01

    The evolution of bipartite bimetallic atomic clusters within 5 ps under bombardment with monoenergetic argon ions at the initial energy ranging from 1 eV to 1.4 keV has been simulated by the classical molecular dynamics method with a target obtained from Ni‒Al and Cu‒Au clusters consisting of 78 and 390 atoms, equally divided between the corresponding monometallic parts, the simulated pairs of which have different heats of intermixing. The changes in the potential energy and temperature, the sputtering yields, and the intensity of the ion-stimulated movement of atoms at the interface of the monometallic parts of clusters of both sizes have been determined as functions of the energy of the bombardment.

  14. Evolution of nanoripples on silicon by gas cluster-ion irradiation

    SciTech Connect

    Lozano, Omar; Chen, Q. Y.; Wadekar, P. V.; Chinta, P. V.; Tilakaratne, B. P.; Wang, X. M.; Wijesundera, D.; Chu, W. K.; Seo, H. W.; Tu, L. W.; Ho, N. J.

    2013-06-15

    Si wafers of (100), (110) and (111) orientations were bombarded by gas cluster ion beam (GCIB) of 3000 Ar-atoms/cluster on average at a series of angles. Similar surface morphology ripples developed in different nanoscales. A simple scaling functional satisfactorily describe the roughness and wavelength of the ripple patterns as a function of dosage and angle of incidence. The ripples are formed orthogonal to the incident cluster-ions at large off-normal angles. An ellipsoidal pattern was created by two consecutive irradiations incident in mutually orthogonal directions with unequal exposure times between each irradiation, from 7:1 to 10:1, beyond which the original ripple imprints would be over-written. This work was inspired by use of the ripples to seed growth of controlled nanostructures without patterning by lithography or predeposition of catalysts.

  15. Enhancing ion yields in time-of-flight-secondary ion mass spectrometry: a comparative study of argon and water cluster primary beams.

    PubMed

    Sheraz née Rabbani, Sadia; Razo, Irma Berrueta; Kohn, Taylor; Lockyer, Nicholas P; Vickerman, John C

    2015-02-17

    Following from our previous Letter on this topic, this Article reports a detailed study of time-of-flight-secondary ion mass spectrometry (TOF-SIMS) positive ion spectra generated from a set of model biocompounds (arginine, trehalose, DPPC, and angiotensin II) by water cluster primary ion beams in comparison to argon cluster beams over a range of cluster sizes and energies. Sputter yield studies using argon and water beams on arginine and Irganox 1010 have confirmed that the sputter yields using water cluster beams lie on the same universal sputtering curve derived by Seah for argon cluster beams. Thus, increased ion yield using water cluster beams must arise from increased ionization. The spectra and positive ion signals observed using cluster beams in the size range from 1,000 to 10,000 and the energy range 5-20 keV are reported. It is confirmed that water cluster beams enhance proton related ionization over against argon beams to a significant degree such that enhanced detection sensitivities from 1 μm(2) in the region of 100 to 1,000 times relative to static SIMS analysis with Ar2000 cluster beams appear to be accessible. These new studies show that there is an unexpected complexity in the ionization enhancement phenomenon. Whereas optimum ion yields under argon cluster bombardment occur in the region of E/n ≥ 10 eV (where E is the beam energy and n the number of argon atoms in the cluster) and fall rapidly when E/n < 10 eV; for water cluster beams, ion yields increase significantly in this E/n regime (where n is the number of water molecules in the cluster) and peak for 20 keV beams at a cluster size of 7,000 or E/n ∼3 eV. This important result is explored further using D2O cluster beams that confirm that in this low E/n regime protonation does originate to a large extent from the water molecules. The results, encouraging in themselves, suggest that for both argon and water cluster beams, higher energy beams, e.g., 40 and 80 keV, would enable larger

  16. Femtosecond probing of sodium cluster ion Na sub n sup + fragmentation

    SciTech Connect

    Baumert, T.; Roettgermann, C.; Rothenfusser, C.; Thalweiser, R.; Weiss, V.; Gerber, G. )

    1992-09-07

    We report on the first femtosecond time-resolved experiments in cluster physics. The photofragmentation dynamics of small sodium cluster ions Na{sub {ital n}}{sup +} have been studied with pump-probe techniques. Ultrashort laser pulses of 60-fs duration are employed to photoionize the sodium clusters and to probe the photofragments. We find that the ejection of neutral dimer Na{sub 2} and, observed for the first time, neutral trimer Na{sub 3} photofragments occur on ultrashort time scales of 2.5 and 0.4 ps, respectively. This and the absence of cluster heating reveals that direct photoinduced fragmentation processes are important at short times rather than the statistical unimolecular decay.

  17. Accumulation of structural defects in silicon irradiated with PF{sub n}{sup +} cluster ions with medium energies

    SciTech Connect

    Azarov, A. Yu. Titov, A. I.

    2007-01-15

    The method of Rutherford backscattering spectrometry in combination with channeling is used to study the accumulation of structural defects in silicon at room temperature as a result of irradiation with P{sup +} and F{sup +} atomic ions and also with cluster PF{sub n}{sup +} ions (n = 1, ..., 4) with the energy of 2.1 keV/amu and with identical generation rate of primary defects. The conditions for correct comparison of the results of bombardment with atomic and cluster ions composed of atoms of various types are suggested. It is found that the characteristics of accumulation of structural defects in silicon in the case of bombardment with PF{sub n}{sup +} cluster ions differ widely from those under irradiation with both atomic ions that are involved in the cluster ion (P{sup +} and F{sup +}) and with atomic heavy ions that have atomic mass close to that of the mass of a PF{sub n}{sup +} cluster. It is shown that, with irradiation conditions being the same, cluster ions produce much more radiation defects in the surface region than do atomic ions; i.e., a molecular effect is observed. Plausible mechanisms of this phenomenon are considered.

  18. Molecular Dynamics simulation of Ru flattening by Gas Cluster Ion Beam

    NASA Astrophysics Data System (ADS)

    Matsukuma, Masaaki; Matsuzaki, Kazuyoshi; Inaba, Kenji; Miura, Ryuji; Suzuki, Ai; Hatakeyama, Nozomu; Miyamoto, Akira

    2014-10-01

    Noble metals such as platinum or ruthenium have been hardly used in the semiconductor devices in spite of their physical and electrical properties, because they were hard to process. High energy monomer ion beams which can cut hard materials may induce structural damages. A gas cluster ion beam (GCIB) consists of a few thousands of atoms or molecules and is accelerated up to several tens keV. GCIB is able to realize localized high energy deposition with low energy per components in the cluster. This means that each component in clusters cannot have enough energy to react with surface. On the other hand, the clusters with tens keV of kinetic energy may make a high reactive field at the hypocenter areas. In consequence it is expected that the GCIB irradiation should achieve the metal processing with low damage. Recently flattening of Ru thin films using GCIB is reported. We conducted molecular dynamics simulation of GCIB incident to Ru surface with the in-house interatomic potential models obtained based on the quantum chemical calculations and found that the internal degree of freedom of a cluster played important roles during the GCIB bombardment.

  19. Stable stoichiometry of gas-phase cerium oxide cluster ions and their reactions with CO.

    PubMed

    Nagata, Toshiaki; Miyajima, Ken; Mafuné, Fumitaka

    2015-03-12

    Cerium oxide cluster ions, Ce(n)O(2n+x)(+) (n = 2-9, x = -1 to +2), were prepared in the gas phase by laser ablation of a cerium oxide rod in the presence of oxygen diluted in He as the carrier gas. The stable stoichiometry of the cluster ions was investigated using a mass spectrometer in combination with a newly developed post heating device. The oxygen-rich clusters, Ce(n)O(2n+x)(+) (x = 1, 2), were found to release oxygen molecules, and Ce(n)O(2n+x)(+) (x = -1, 0) were exclusively formed by post heating treatment at 573 K. The Ce(n)O(2n-1)(+) and Ce(n)O(2n)(+) clusters were found to be thermally stable, and the oxygen-rich clusters consisted of robust Ce(n)O(2n-1)(+) and Ce(n)O(2n)(+) and weakly bound oxygen atoms. Evaluation of the reactivity of Ce(n)O(2n+x)(+) with CO molecules demonstrated that Ce(n)O(2n)(+) oxidized CO to form Ce(n)O(2n-1)(+) and CO2, and the rate constants of the reaction were in the range of 10(-12)-10(-16) cm(3) s(-1). The CO oxidation reaction was distinct for n = 5, which occurred in parallel with the CO attachment reaction. PMID:25651032

  20. Intracluster Ion Molecule Reactions Following the Generation of Mg+ Within Polar Clusters

    PubMed Central

    Alsharaeh, Edreese H.

    2011-01-01

    In this work we investigated the intracluster ion molecule reactions following the generation of Mg+ within the polar clusters (water, methanol, ether and acetonitrile), using time of flight mass spectrometry. In the case of Mg+/water and Mg+/methanol, dehydrogenation reactions are observed after the addition of five molecules. However, no dehydrogenation reactions are observed in the case of Mg+/ether or Mg+/acetonitrile clusters. This confirms the role of the H atom in (O–H) in the dehydrogenation reaction, and rules out any contribution from the H atom in the CH3 group. In addition, the magic numbers in the time of flight (TOF) mass spectra of the Mg+Xn clusters (X = H2O, CH3OH, CH3OCH3 and CH3CN) have been investigated. Finally, the role of ground electronic magnesium ion Mg+(2S1/2), and excited electronic magnesium ion Mg+(2P1/2) in the dehydrogenation reaction were investigated using Ion Mobility Mass spectrometry. The results offer direct evidence confirming the absence of the electronically excited, Mg+(2P1/2). PMID:22272121

  1. Intracluster ion molecule reactions following the generation of Mg+ within polar clusters.

    PubMed

    Alsharaeh, Edreese H

    2011-01-01

    In this work we investigated the intracluster ion molecule reactions following the generation of Mg(+) within the polar clusters (water, methanol, ether and acetonitrile), using time of flight mass spectrometry. In the case of Mg(+)/water and Mg(+)/methanol, dehydrogenation reactions are observed after the addition of five molecules. However, no dehydrogenation reactions are observed in the case of Mg(+)/ether or Mg(+)/acetonitrile clusters. This confirms the role of the H atom in (O-H) in the dehydrogenation reaction, and rules out any contribution from the H atom in the CH(3) group. In addition, the magic numbers in the time of flight (TOF) mass spectra of the Mg(+)X(n) clusters (X = H(2)O, CH(3)OH, CH(3)OCH(3) and CH(3)CN) have been investigated. Finally, the role of ground electronic magnesium ion Mg(+)((2)S(1/2)), and excited electronic magnesium ion Mg(+)((2)P(1/2)) in the dehydrogenation reaction were investigated using Ion Mobility Mass spectrometry. The results offer direct evidence confirming the absence of the electronically excited, Mg(+)((2)P(1/2)). PMID:22272121

  2. Secondary ion counting for surface-sensitive chemical analysis of organic compounds using time-of-flight secondary ion mass spectroscopy with cluster ion impact ionization

    SciTech Connect

    Hirata, K.; Saitoh, Y.; Chiba, A.; Yamada, K.; Takahashi, Y.; Narumi, K.

    2011-03-15

    We report suitable secondary ion (SI) counting for surface-sensitive chemical analysis of organic compounds using time-of-flight (TOF) SI mass spectroscopy, based on considerably higher emission yields of SIs induced by cluster ion impact ionization. A SI counting system for a TOF SI mass spectrometer was developed using a fast digital storage oscilloscope, which allows us to perform various types of analysis as all the signal pulses constituting TOF SI mass spectra can be recorded digitally in the system. Effects of the SI counting strategy on SI mass spectra were investigated for C{sub 8} and C{sub 60} cluster ion impacts on an organically contaminated silicon wafer and on polytetrafluoroethylene targets by comparing TOF SI mass spectra obtained from the same recorded signals with different SI counting procedures. Our results show that the use of a counting system, which can cope with high SI yields, is necessary for quantitative analysis of SI mass spectra obtained under high SI yield per impact conditions, including the case of cluster ion impacts on organic compounds.

  3. Probing Dynamics from Within in Negative Ions, Neutral Molecules and van der Waals Clusters

    NASA Astrophysics Data System (ADS)

    Berrah, Nora

    2006-05-01

    We have investigated with unprecedented levels of detail, processes and phenomena involving photodetachment of negative ions and photoionization of molecules and van der Waals clusters using the brightness, spectral resolution, tunability and polarization of the Advanced Light Source at Lawrence Berkeley National Laboratory. Photodetachment of negative ions exhibit structure and processes differing substantially from corresponding processes in neutral and positive ions, owing to the dominance of correlation in both the initial and final states. We will report on investigations carried out in inner-valence CN^- molecules giving rise to absolute double photodetachment cross sections as well as on fragmentation of negative ions clusters. We will also present absolute inner-shell photodetachment of atoms leading to multi-Auger decay [1] and discuss threshold laws [2] and PCI effects [3]. The measurements were conducted using collinear photon-ion spectroscopy. The evolution of inner-shell photoionization of clusters, as a function of photon energy, will be presented and compared to analogous measurements in atoms. The measurements were conducted using angle resolved two-dimensional photoelectron spectroscopy. Molecular fragmentation results using an ion imaging detector will briefly be presented. [1] R. C. Bilodeau, J. D. Bozek, G. D. Ackerman, N. D. Gibson, C. W.Walter, A. Aguilar, G. Turri, I. Dumitriu and N. Berrah, PRA 72, 050701(R), 2005. [2] R. C. Bilodeau, J. D. Bozek, N. D. Gibson, C. W. Walter, G. D. Ackerman, I. Dumitriu, and N. Berrah, Phys. Rev. Lett. 95, 083001 (2005). [3] R. C. Bilodeau, J. D. Bozek, A. Agular, G. D. Ackerman, and N. Berrah, (in press PRA brief report).

  4. Negative Ion Photoelectron Spectroscopy Reveals Thermodynamic Advantage of Organic Acids in Facilitating Formation of Bisulfate Ion Clusters: Atmospheric Implications

    SciTech Connect

    Hou, Gao-Lei; Lin, Wei; Deng, Shihu; Zhang, Jian; Zheng, Weijun; Paesani, Francesco; Wang, Xue B.

    2013-03-07

    Recent lab and field measurements have indicated critical roles of organic acids in enhancing new atmospheric aerosol formation. Such findings have stimulated theoretical studies with the aim of understanding interaction of organic acids with common aerosol nucleation precursors like bisulfate (HSO4-). In this Letter, we report a combined negative ion photoelectron spectroscopic and theoretical investigation of molecular clusters formed by HSO4- with succinic acid (SUA, HO2C(CH2)2CO2H), HSO4-(SUA)n (n = 0-2), along with HSO4-(H2O)n and HSO4-(H2SO4)n. It is found that one SUA molecule can stabilize HSO4- by ca. 39 kcal/mol, triple the corresponding value that one water molecule is capable of (ca. 13 kcal/mol). Molecular dynamics simulations and quantum chemical calculations reveal the most plausible structures of these clusters and attribute the stability of these clusters due to formation of strong hydrogen bonds. This work provides direct experimental evidence showing significant thermodynamic advantage by involving organic acid molecules to promote formation and growth in bisulfate clusters and aerosols.

  5. Drift and clustering of daughter negative ions of H2O in parent gas

    NASA Astrophysics Data System (ADS)

    de Urquijo, J.; Bekstein, A.; Ruiz-Vargas, G.; Gordillo-Vázquez, F. J.

    2013-01-01

    The mobility of daughter negative ions of H2O in parent gas has been measured with a pulsed Townsend technique over the density-reduced field strength, E/N, range 9-100 Td and a pressure range 2-16 Torr. It has been found that the mobility of the anions is dependent on the gas pressure. Using a transport theory considering the influence of the permanent dipole field of H2O, we have found that the pressure-dependent mobilities can be associated with a series of cluster ions of the type OH-(H2O)n (n = 1-3), with the mass of the cluster species increasing with the total gas pressure. Also, the mobility of H- and OH- could be estimated. Using a Townsend avalanche simulator we have been able to explain the measured ionic currents in terms of an ion-molecule reaction scheme with a single set of swarm and reaction coefficients for each value of the density-reduced field strength, E/N, at several pressures. Regarding the positive ions, the only drifting ion is H3O+, the mobility of which could be estimated. The rate constants relative to the formation of the OH-(H2O)n (n = 1-3) species were also derived from this study.

  6. Enhanced performance of anion exchange membranes via crosslinking of ion cluster regions for fuel cells

    NASA Astrophysics Data System (ADS)

    Lai, Ao Nan; Guo, Dong; Lin, Chen Xiao; Zhang, Qiu Gen; Zhu, Ai Mei; Ye, Mei Ling; Liu, Qing Lin

    2016-09-01

    Development of anion exchange membranes (AEMs) with high hydroxide conductivity, good dimensional and alkaline stabilities is still a challenge for the practical application of AEM fuel cells. In this study, we report a new strategy to prepare high-performance AEMs with crosslinked ionic regions. A series of phenolphthalein-containing poly(arylene ether sulfone)s crosslinked AEMs was synthesized by grafting ion groups selectively and densely on the phenolphthalein units to form ion clusters that are further crosslinked to generate the hydrophilic ionic regions. The crosslinking reaction not only improved the dimensional stability of the AEMs, but also increased the aggregation of the ion clusters leading to the formation of hydrophilic/hydrophobic phase-separated morphology and ion-conducting channels. As a result, enhancements in both ion conductivity and dimensional stability can be achieved. The crosslinked AEMs showed high hydroxide conductivities in the range of 52.2-143.4 mS cm-1 from 30 to 80 °C and a superb ratio of relative conductivity to relative swelling at 80 °C. Furthermore, the crosslinked AEMs also exhibited good mechanical properties, thermal and alkaline stabilities and desirable single cell performance. This work presents a promising strategy for the synthesis of high-performance AEMs for fuel cells.

  7. Structures, Hydration, and Electrical Mobilities of Bisulfate Ion-Sulfuric Acid-Ammonia/Dimethylamine Clusters: A Computational Study.

    PubMed

    Tsona, Narcisse T; Henschel, Henning; Bork, Nicolai; Loukonen, Ville; Vehkamäki, Hanna

    2015-09-17

    Despite the well-established role of small molecular clusters in the very first steps of atmospheric particle formation, their thermochemical data are still not completely available due to limitation of the experimental techniques to treat such small clusters. We have investigated the structures and the thermochemistry of stepwise hydration of clusters containing one bisulfate ion, sulfuric acid, base (ammonia or dimethylamine), and water molecules using quantum chemical methods. We found that water facilitates proton transfer from sulfuric acid or the bisulfate ion to the base or water molecules, and depending on the hydration level, the sulfate ion was formed in most of the base-containing clusters. The calculated hydration energies indicate that water binds more strongly to ammonia-containing clusters than to dimethylamine-containing and base-free clusters, which results in a wider hydrate distribution for ammonia-containing clusters. The electrical mobilities of all clusters were calculated using a particle dynamics model. The results indicate that the effect of humidity is negligible on the electrical mobilities of molecular clusters formed in the very first steps of atmospheric particle formation. The combination of the results of this study with those previously published on the hydration of neutral clusters by our group provides a comprehensive set of thermochemical data on neutral and negatively charged clusters containing sulfuric acid, ammonia, or dimethylamine. PMID:26304742

  8. Smoothing metallic glasses without introducing crystallization by gas cluster ion beam

    SciTech Connect

    Shao, Lin; Chen, Di; Myers, Michael; Wang, Jing; Tilakaratne, Buddhi; Wijesundera, Dharshana; Chu, Wei-Kan; Xie, Guoqiang; Zare, Arezoo; Lucca, Don A.

    2013-03-11

    We show that 30 keV Ar cluster ion bombardment of Ni{sub 52.5}Nb{sub 10}Zr{sub 15}Ti{sub 15}Pt{sub 7.5} metallic glass (MG) can remove surface mountain-like features and reduce the root mean square surface roughness from 12 nm to 0.7 nm. X-ray diffraction analysis reveals no crystallization after cluster ion irradiation. Molecular dynamics simulations show that, although damage cascades lead to local melting, the subsequent quenching rate is a few orders of magnitude higher than the critical cooling rate for MG formation, thus the melted zone retains its amorphous nature down to room temperature. These findings can be applied to obtain ultra-smooth MGs without introducing crystallization.

  9. Cluster Ion Spectrometry (CIS) data quality indexes as a support for analysing magnetospheric measurements

    NASA Astrophysics Data System (ADS)

    Dandouras, Iannis; Barthe, Alain; Brunato, Sylvain; Rème, Henri; Laakso, Harri

    2016-04-01

    The Cluster Science Archive (CSA) aims at preserving the complete set of the measurements collected by the four Cluster spacecraft, so that they are usable in the long-term by the world-wide scientific community as well as by the instrument teams. This implies that the instrument data, properly calibrated, are filed together with the descriptive and documentary elements making it possible to select and interpret them. The CIS (Cluster Ion Spectrometry) experiment is a comprehensive ionic plasma spectrometry package onboard the Cluster spacecraft, capable of obtaining full three-dimensional ion distributions (about 0 to 40 keV/e) with a time resolution of one spacecraft spin (4 sec) and with mass-per-charge composition determination. For the archival of the CIS data a multi-level approach has been adopted. The CSA archival includes processed raw data, moments of the ion distribution functions, and calibrated high-resolution data in a variety of physical units. The latter are 3-D ion distribution functions, 2-D pitch-angle distributions and 1-D omni-directional fluxes. The CIS data archive includes also experiment documentation, graphical products for browsing through the data, data caveats and data quality indexes. The later constitute a novel product, which has been prepared in order to help the user asses the quality of the data acquired in different magnetospheric regions and during various operational modes. It provides information on which are in each case the issues that can affect the data quality, which are the data products affected, and gives a simple quantitative measurement of the severity of these issues. The principle of the CIS data quality indexes will be described and the various issues, that can under some conditions affect the data quality and are thus taken into account in generating the data quality indexes, will be discussed.

  10. Ions colliding with clusters of fullerenes-Decay pathways and covalent bond formations

    SciTech Connect

    Seitz, F.; Zettergren, H.; Chen, T.; Gatchell, M.; Alexander, J. D.; Stockett, M. H.; Schmidt, H. T.; Cederquist, H.; Rousseau, P.; Chesnel, J. Y.; Capron, M.; Poully, J. C.; Mery, A.; Maclot, S.; Adoui, L.; Wang, Y.; Martin, F.; Rangama, J.; Domaracka, A.; Vizcaino, V. [CIMAP, UMR 6252, CEA and others

    2013-07-21

    We report experimental results for the ionization and fragmentation of weakly bound van der Waals clusters of n C{sub 60} molecules following collisions with Ar{sup 2+}, He{sup 2+}, and Xe{sup 20+} at laboratory kinetic energies of 13 keV, 22.5 keV, and 300 keV, respectively. Intact singly charged C{sub 60} monomers are the dominant reaction products in all three cases and this is accounted for by means of Monte Carlo calculations of energy transfer processes and a simple Arrhenius-type [C{sub 60}]{sub n}{sup +}{yields}C{sub 60}{sup +}+(n-1)C{sub 60} evaporation model. Excitation energies in the range of only {approx}0.7 eV per C{sub 60} molecule in a [C{sub 60}]{sub 13}{sup +} cluster are sufficient for complete evaporation and such low energies correspond to ion trajectories far outside the clusters. Still we observe singly and even doubly charged intact cluster ions which stem from even more distant collisions. For penetrating collisions the clusters become multiply charged and some of the individual molecules may be promptly fragmented in direct knock-out processes leading to efficient formations of new covalent systems. For Ar{sup 2+} and He{sup 2+} collisions, we observe very efficient C{sub 119}{sup +} and C{sub 118}{sup +} formation and molecular dynamics simulations suggest that they are covalent dumb-bell systems due to bonding between C{sub 59}{sup +} or C{sub 58}{sup +} and C{sub 60} during cluster fragmentation. In the Ar{sup 2+} case, it is possible to form even smaller C{sub 120-2m}{sup +} molecules (m= 2-7), while no molecular fusion reactions are observed for the present Xe{sup 20+} collisions.

  11. Mass spectrometry of refractory black carbon particles from six sources: carbon-cluster and oxygenated ions

    NASA Astrophysics Data System (ADS)

    Corbin, J. C.; Sierau, B.; Gysel, M.; Laborde, M.; Keller, A.; Kim, J.; Petzold, A.; Onasch, T. B.; Lohmann, U.; Mensah, A. A.

    2013-10-01

    We discuss the major mass spectral features of different types of refractory carbonaceous particles, ionized after laser vapourization with an Aerodyne High-Resolution Soot-Particle Aerosol Mass Spectrometer (SP-AMS). The SP-AMS was operated with a switchable 1064 nm laser and a 600 °C thermal vapourizer, yielding respective measurements of the refractory and non-refractory particle components. Six samples were investigated, all of which were composed primarily of refractory material: fuel-rich and fuel-lean propane/air diffusion-flame combustion particles; graphite-spark-generated particles; a commercial Fullerene-enriched Soot; Regal Black, a commercial carbon black; and nascent aircraft-turbine combustion particles. All samples exhibited a spectrum of carbon-cluster ions Cxn+ in their refractory mass spectrum. Smaller clusters (x<6) were found to dominate the Cxn+ distribution. For Fullerene Soot, fuel-rich-flame particles and spark-generated particles, significant Cxn+ clusters at x≫6 were present, with significant contributions from multiply-charged ions (n>1). In all six cases, the ions C1+ and C3+ contributed over 60% to the total C1ions C1+/C3+ could be used to predict whether significant Cxn+ signals with x>5 were present. When such signals were present, C1+/C3+ was close to 1. When absent, C1+/C3+ was <0.8. This ratio may therefore serve as a proxy to distinguish between the two types of spectra in atmospheric SP-AMS measurements. Significant refractory oxygenated ions such as CO+ and CO2+ were also observed for all samples. We discuss these signals in detail for Regal Black, and describe their formation via decomposition of oxygenated moieties incorporated into the refractory carbon structure. These species may be of importance in atmospheric processes such as water uptake, aging and heterogeneous chemistry.

  12. Structure Determination of Noble Metal Clusters by Trapped Ion Electron Diffraction

    NASA Astrophysics Data System (ADS)

    Schooss, Detlef

    2006-03-01

    The structures of noble metal cluster ions have been studied by the recently developed technique of trapped ion electron diffraction (TIED)^1. In brief, cluster ions are generated by a magnetron sputter source and injected into a cooled (95 K) quadrupole ion trap. After mass selection and thermalization, the trapped ions are irradiated with a 40 keV electron beam. The resulting diffraction pattern is integrated with a CCD detector. The assignment of the structural motif is done via a comparison of the experimental and simulated scattering function, calculated from density functional theory structure calculations. The structures of mass selected silver cluster cations Ag19^+, Ag38^+, Ag55^+, Ag59^+, Ag75^+ and Ag79^+ have been investigated^2. The resulting experimental data are best described by structures based on the icosahedral motif, while closed packed structures could be ruled out. Additionally, we present a comparison of the structures of Cu20^+/-, Ag20^+/- and Au20^+/-. Our findings show unambiguously that the structure of Au20^- is predominantly given by a tetrahedron in agreement with the results of L.S. Wang et al.^3 In contrast, structures of Ag20^- and Cu20^- based on the icosahedral motif agree best with the experimental data. Small structural differences between the charge states are observed. The possibilities and limitations of the TIED method are discussed. (1) M. Maier-Borst, D. B. Cameron, M. Rokni, and J. H. Parks, Physical Review A 59 (5), R3162 (1999); S. Krückeberg, D. Schooss, M. Maier-Borst, and J. H. Parks, Physical Review Letters 85 (21), 4494 (2000). (2) D. Schooss, M.N. Blom, B. v. Issendorff, J. H. Parks, and M.M. Kappes, Nano Letters 5 (10), 1972 (2005). (3) J. Li, X. Li, H. J. Zhai, and L. S. Wang, Science 299, 864 (2003)

  13. Specific modification of polysulfone with cluster bombardment with assistance of Ar ion irradiation

    NASA Astrophysics Data System (ADS)

    Xu, Guochun; Hibino, Y.; Awazu, K.; Tanihara, M.; Imanishi, Y.

    2000-02-01

    Objective: To develop a rapid method for the modification of polysulfone with ammonium sulfamate with the assistance of Ar ion irradiation with a multi-source cluster deposition apparatus. These surfaces mimicking the structure of heparin, a bioactive molecule, have a high anti-thrombosis property. Experimental Design: Polysulfone film, setting on a turning holder, was irradiated by Ar ions during bombardment with ammonium sulfamate clusters. The Ar ion source serves for the activation of a polymer surface and a cluster ion source supplies ammonium sulfamate molecules to react with the activated surface. After thorough washing with de-ionized sterile water, the modified surfaces were evaluated in terms of the contact angle of water, elemental composition, and binding state on electron spectroscopy for chemical analysis and platelet adhesion with platelet rich plasma. Results: The modification of polysulfone decreased the contact angle of water on surfaces from 82.6 ° down to 34.5 °. Ammonium, amine, sulfate, and thiophene combinations were formed on the modified surfaces. The adhesion numbers of the platelet were decreased to one tenth compared to the original surface. The same process was also applied to other polymers such as polyethylene, polypropylene, and polystyrene and similar outcomes were also observed. Conclusion: The primary studies showed successful modification of polysulfone with ammonium sulfamate with the assistance of Ar ion irradiation. Since the same concept can also be applied to other materials with various substrates, combined with the features of no solvent and no topographic changes, this method might be developed into a promising way for modification of polymeric materials.

  14. Interaction of plasma-generated water cluster ions with chemically-modified Si surfaces investigated by infrared absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hirano-Iwata, Ayumi; Matsumura, Ryosuke; Ma, Teng; Kimura, Yasuo; Niwano, Michio; Nishikawa, Kazuo

    2016-03-01

    We have investigated the interaction of water cluster ions generated by discharge plasma, with chemically modified Si surfaces using infrared absorption spectroscopy in the multiple internal reflection geometry. We observe that water cluster ions readily adsorb on SiO2-covered Si surfaces to form water droplets. We demonstrate that positively- and negatively-charged cluster ions adsorb on the SiO2-covered Si surface in different manners, indicating ionic interaction of the water droplets with the negatively-charged SiO2 surface. Water droplets formed on the protein-coated surface rupture the amide bond of the proteins, suggesting the function of protein decomposition of water cluster ions.

  15. Distributions of deposited energy and ionization clusters around ion tracks studied with Geant4 toolkit

    NASA Astrophysics Data System (ADS)

    Burigo, Lucas; Pshenichnov, Igor; Mishustin, Igor; Hilgers, Gerhard; Bleicher, Marcus

    2016-05-01

    The Geant4-based Monte Carlo model for Heavy-Ion Therapy (MCHIT) was extended to study the patterns of energy deposition at sub-micrometer distance from individual ion tracks. Dose distributions for low-energy 1H, 4He, 12C and 16O ions measured in several experiments are well described by the model in a broad range of radial distances, from 0.5 to 3000 nm. Despite the fact that such distributions are characterized by long tails, a dominant fraction of deposited energy (∼80%) is confined within a radius of about 10 nm. The probability distributions of clustered ionization events in nanoscale volumes of water traversed by 1H, 2H, 4He, 6Li, 7Li, and 12C ions are also calculated. A good agreement of calculated ionization cluster-size distributions with the corresponding experimental data suggests that the extended MCHIT can be used to characterize stochastic processes of energy deposition to sensitive cellular structures.

  16. Optimum laser intensity for the production of energetic deuterium ions from laser-cluster interaction

    NASA Astrophysics Data System (ADS)

    Bang, W.; Dyer, G.; Quevedo, H. J.; Bernstein, A. C.; Gaul, E.; Rougk, J.; Aymond, F.; Donovan, M. E.; Ditmire, T.

    2013-09-01

    We measured, using Petawatt-level pulses, the average ion energy and neutron yield in high-intensity laser interactions with molecular clusters as a function of laser intensity. The interaction volume over which fusion occurred (1-10 mm3) was larger than previous investigations, owing to the high laser power. Possible effects of prepulses were examined by implementing a pair of plasma mirrors. Our results show an optimum laser intensity for the production of energetic deuterium ions both with and without the use of the plasma mirrors. We measured deuterium plasmas with 14 keV average ion energies, which produced 7.2 × 106 and 1.6 × 107 neutrons in a single shot with and without plasma mirrors, respectively. The measured neutron yields qualitatively matched the expected yields calculated using a cylindrical plasma model.

  17. Optimum laser intensity for the production of energetic deuterium ions from laser-cluster interaction

    SciTech Connect

    Bang, W.; Dyer, G.; Quevedo, H. J.; Bernstein, A. C.; Gaul, E.; Rougk, J.; Aymond, F.; Donovan, M. E.; Ditmire, T.

    2013-09-15

    We measured, using Petawatt-level pulses, the average ion energy and neutron yield in high-intensity laser interactions with molecular clusters as a function of laser intensity. The interaction volume over which fusion occurred (1–10 mm{sup 3}) was larger than previous investigations, owing to the high laser power. Possible effects of prepulses were examined by implementing a pair of plasma mirrors. Our results show an optimum laser intensity for the production of energetic deuterium ions both with and without the use of the plasma mirrors. We measured deuterium plasmas with 14 keV average ion energies, which produced 7.2 × 10{sup 6} and 1.6 × 10{sup 7} neutrons in a single shot with and without plasma mirrors, respectively. The measured neutron yields qualitatively matched the expected yields calculated using a cylindrical plasma model.

  18. Possible isomers in ligand protected Ag11 cluster ions identified by ion mobility mass spectrometry and fragmented by surface induced dissociation.

    PubMed

    Baksi, Ananya; Harvey, Sophie R; Natarajan, Ganapati; Wysocki, Vicki H; Pradeep, Thalappil

    2016-03-01

    This communication reports the identification of gas phase isomers in monolayer-protected silver clusters. Two different isomers of Ag11(SG)7(-) (SG-gulathione thiolate) with different drift times have been detected using combined electrospray ionization (ESI) and ion mobility (IM) mass spectrometry (MS). Surface induced dissociation (SID) of the 3(-) charge state of such clusters shows charge stripping to give the 1(-) charged ion with some sodium attachment, in addition to fragmentation. SID and collision induced dissociation (CID) for Ag11(SG)7(-) suggest different pathways being accessed with each method. SID was introduced for the first time for the study of monolayer-protected clusters. PMID:26864967

  19. Structure and Spectroscopy of Hydrated Sodium Ions at Different Temperatures and the Cluster Stability Rules.

    PubMed

    Fifen, Jean Jules; Agmon, Noam

    2016-04-12

    The sodium cation plays an important role in several physiological processes. Understanding its solvation may help understanding ion selectivity in sodium channels that are pivotal for nerve impulses. This paper presents a thorough investigation of over 75 isomers of gas-phase Na(+)(H2O)(n=1-8) clusters, whose optimized structures, energies, and (harmonic) vibrational frequencies were computed quantum mechanically at the full MP2/6-31++G(d,p) level of theory. From these data, we have calculated the temperature effects on the cluster thermodynamic functions, and thus the equilibrium Boltzmann distribution for each n. For a selected number of isomers, we have corrected the calculations for basis set superposition error (BSSE) to obtain accurate clustering energies, in excellent agreement with experiment. The computed clusters are overwhelmingly 4-coordinated, as opposed to bulk liquid water, where sodium cations are believed to be mostly 5- or 6-coordinated. To explain this, we suggest the "cluster stability rules", a set of coordination-number-dependent hydrogen-bond (HB) strengths that can be obtained using a single BSSE correction. Assuming additivity and transferability, these reproduce the relative stability of most of our computed isomers. These rules enable us to elucidate the trends in HB strengths, outlining the major determinants of cluster stability. For n = 4 and 5, we have also performed anharmonic vibrational calculations (VPT2) to compare with available photodissociation infrared spectra of these gas-phase clusters. The comparison suggests that the experiments actually monitor a mixture of predominantly 3-coordinated isomers, which is quite remote from the computed Boltzmann distribution, particularly at low temperatures. Surprisingly, for these experiments, water evaporation pathways can rationalize the non-equilibrium isomer distribution. The equilibrium isomer distribution is, in turn, rationalized by the entropy of internal rotations of "dangling

  20. Graphitic clusters in hydrogenated amorphous carbon induced by keV-ion irradiation

    SciTech Connect

    Compagnini, G.; Foti, G.; Reitano, R. ); Mondio, G. )

    1990-12-10

    Energy gap and hydrogen concentration have been measured in hydrogenated amorphous carbon ({ital a}-C:H) after bombardment with 100 keV He{sup +} and 300 keV Ar{sup +} ion beams, up to ion fluences 3{times}10{sup 16} ions/cm{sup 2}. {ital a}-C:H films have been obtained by ion irradiation at low ion fluences of polystyrene layers and with a subsequent low-temperature annealing (400 {degree}C, 10 min). Experimental values for the energy gap (2.5--0.5 eV) and hydrogen concentration (7.4{times}10{sup 22}--1.8{times}10{sup 22} H atoms/cm{sup 3}) have been interpreted in terms of a graphitic cluster structure with a different size (3--20 A). We were able to determine experimentally the value of the bond integral {vert bar}{beta}{vert bar} and we found it in good agreement with the calculated one for graphite.

  1. Electron-ion collision rates in noble gas clusters irradiated by femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Dey, R.; Roy, A. C.

    2012-05-01

    We report a theoretical analysis of electron-ion collision rates in xenon gas clusters irradiated by femtosecond laser pulses. The present analysis is based on the eikonal approximation (EA), the first Born approximation (FBA) and the classical (CL) methods. The calculations are performed using the plasma-screened Rogers potential introduced by Moll et al. [J. Phys. B. 43, 135103 (2010)] as well as the Debye potential for a wide range of experimental parameters. We find that the magnitudes of electron-ion collision frequency obtained in the EA do not fall as rapidly with the kinetic energy of electrons as in the FBA and CL methods for higher charge states of xenon ion (Xe8+ and Xe14+). Furthermore, EA shows that the effect of the inner structure of ion is most dominant for the lowest charge state of xenon ion (Xe1+). In the case of the present effective potential, FBA overestimates the CL results for all three different charge states of xenon, whereas for the Debye potential, both the FBA and CL methods predict collision frequencies which are nearly close to each other.

  2. Argon cluster ion source evaluation on lipid standards and rat brain tissue samples.

    PubMed

    Bich, Claudia; Havelund, Rasmus; Moellers, Rudolf; Touboul, David; Kollmer, Felix; Niehuis, Ewald; Gilmore, Ian S; Brunelle, Alain

    2013-08-20

    Argon cluster ion sources for sputtering and secondary ion mass spectrometry use projectiles consisting of several hundreds of atoms, accelerated to 10-20 keV, and deposit their kinetic energy within the top few nanometers of the surface. For organic materials, the sputtering yield is high removing material to similar depth. Consequently, the exposed new surface is relatively damage free. It has thus been demonstrated on model samples that it is now really possible to perform dual beam depth profiling experiments in organic materials with this new kind of ion source. Here, this possibility has been tested directly on tissue samples, 14 μm thick rat brain sections, allowing primary ion doses much larger than the so-called static secondary ion mass spectrometry (SIMS) limit and demonstrating the possibility to enhance the sensitivity of time-of-flight (TOF)-SIMS biological imaging. However, the depth analyses have also shown some variations of the chemical composition as a function of depth, particularly for cholesterol, as well as some possible matrix effects due to the presence or absence of this compound. PMID:23875833

  3. Disorder and cluster formation during ion irradiation of Au nanoparticles in SiO2

    NASA Astrophysics Data System (ADS)

    Kluth, P.; Johannessen, B.; Foran, G. J.; Cookson, D. J.; Kluth, S. M.; Ridgway, M. C.

    2006-07-01

    Au nanoparticles (NPs) have been formed by ion beam synthesis in 600nm thin SiO2 . Subsequently the NPs were irradiated with 2.3MeV Sn ions at liquid nitrogen temperature. Samples were analyzed using extended x-ray absorption fine structure (EXAFS) spectroscopy and small angle x-ray scattering (SAXS) as a function of Sn irradiation dose. Transmission electron microscopy shows that the NPs largely retain their spherical shape upon irradiation. However, we observe a reduction in average NP size and a concomitant significant narrowing of the size distribution with increasing irradiation dose as consistent with inverse Ostwald ripening. At lower irradiation doses, significant structural disorder is apparent with an effective bond length expansion as consistent with amorphous material. At higher irradiation doses, EXAFS measurements indicate dissolution of a significant fraction of Au from the NPs into the SiO2 matrix (as monomers) and the formation of small Au clusters (dimers, trimers, etc.). We estimate the volume fraction of such monomers/clusters. Ion irradiation thus yields disordering then dissolution of Au NPs.

  4. ToF-SIMS cluster ion imaging of hippocampal CA1 pyramidal rat neurons

    NASA Astrophysics Data System (ADS)

    Francis, J. T.; Nie, H.-Y.; Taylor, A. R.; Walzak, M. J.; Chang, W. H.; MacFabe, D. F.; Lau, W. M.

    2008-12-01

    Recent studies have demonstrated the power of time-of-flight secondary ion mass spectrometry (ToF-SIMS) cluster ion imaging to characterize biological structures, such as that of the rat central nervous system. A large number of the studies to date have been carried out on the "structural scale" imaging several mm 2 using mounted thin sections. In this work, we present our ToF-SIMS cluster ion imaging results on hippocampal rat brain neurons, at the cellular and sub-cellular levels. As a part of an ongoing investigation to examine gut linked metabolic factors in autism spectrum disorders using a novel rat model, we have observed a possible variation in hippocampal Cornu ammonis 1 (CA1) pyramidal neuron geometry in thin, paraformaldehyde fixed brain sections. However, the fixation process alters the tissue matrix such that much biochemical information appears to be lost. In an effort to preserve as much as possible this original information, we have established a protocol using unfixed thin brain sections, along with low dose, 500 eV Cs + pre-sputtering that allows imaging down to the sub-cellular scale with minimal sample preparation.

  5. Equilibrium properties of transition-metal ion-argon clusters via simulated annealing

    NASA Technical Reports Server (NTRS)

    Asher, Robert L.; Micha, David A.; Brucat, Philip J.

    1992-01-01

    The geometrical structures of M(+) (Ar)n ions, with n = 1-14, have been studied by the minimization of a many-body potential surface with a simulated annealing procedure. The minimization method is justified for finite systems through the use of an information theory approach. It is carried out for eight potential-energy surfaces constructed with two- and three-body terms parametrized from experimental data and ab initio results. The potentials should be representative of clusters of argon atoms with first-row transition-metal monocations of varying size. The calculated geometries for M(+) = Co(+) and V(+) possess radial shells with small (ca. 4-8) first-shell coordination number. The inclusion of an ion-induced-dipole-ion-induced-dipole interaction between argon atoms raises the energy and generally lowers the symmetry of the cluster by promoting incomplete shell closure. Rotational constants as well as electric dipole and quadrupole moments are quoted for the Co(+) (Ar)n and V(+) (Ar)n predicted structures.

  6. Determination of the sputtering yield of cholesterol using Arn(+) and C60(+(+)) cluster ions.

    PubMed

    Rakowska, P D; Seah, M P; Vorng, J-L; Havelund, R; Gilmore, I S

    2016-08-01

    The sputtering yield of cholesterol films on silicon wafers is measured using Arn(+) and C60(+(+)) ions in popular energy (E) and cluster size (n) ranges. It is shown that the C60(+(+)) ions form a surface layer that stabilizes the film so that a well-behaved profile is obtained. On the other hand, the Arn(+) gas clusters leave the material very clean but, at room temperature, the layer readily restructures into molecular bilayers, so that, although a useful measure may be made of the sputtering yield, the profiles become much more complex. This restructuring does not occur at room temperature normally but results from the actions of the beams in the sputtering process for profiling in secondary ion mass spectrometry. Better profiles may be made by reducing the sample temperature to -100 °C. This is likely to be necessary for many lower molecular weight materials (below 1000 Da) to avoid the movement of molecules. Measurements for cholesterol films on 37 nm of amiodarone on silicon are even better behaved and show the same sputtering yields at room temperature as those films directly on silicon at -100 °C. The yields for both C60(+(+)) and Arn(+) fit the Universal Equation to a standard deviation of 11%. PMID:27299934

  7. Shell Structure, Melting and Dynamics of Ion Clusters Confined in an Octupolar Trap

    SciTech Connect

    Calvo, F.; Yurtsever, E.

    2009-12-03

    The stable structures of clusters of identical ions trapped in an isotropic octupolar trap are investigated using global optimization methods. These clusters form well defined shells of ions that are approximately solutions of the Thomson problem. In particular, magic numbers are found to correlate with highly symmetric configurations. Using Monte Carlo simulations, finite temperature properties are also investigated. Melting proceeds from the core, and takes place through a very progressive loss of the shell structure. The hollow shape is eventually lost at very high temperatures, where the ions essentially feel the confinement but not the Coulomb repulsion. The vibrational density of states shows marked differences with the harmonic case, but also with bulk Wigner crystals. The variations of the maximal Lyapunov exponent obtained from additional molecular dynamics trajectories reveals that the dynamics becomes increasingly chaotic as the temperature increases. With the decreasing influence of the Coulomb interaction, a more regular behavior is found at very high temperatures but, contrary to the quadrupolar case, still highly chaotic.

  8. Inertial confinement fusion using hohlraum radiation generated by heavy-ion clusters

    NASA Astrophysics Data System (ADS)

    Tahir, N. A.; Lutz, K.-J.; Geb, O.; Maruhn, J. A.; Deutsch, C.; Hoffmann, D. H. H.

    1997-03-01

    This paper discusses the feasibility of employing heavy-ion cluster beams to generate thermal radiation that can be used to drive inertial fusion capsules. The low charge-to-mass ratio of a cluster may allow the driver beam to be focused to a very small spot size with a radius of the order of 100 μm, while the low energy per nucleon (of the order of 10 keV) may lead to a very short range of the driver particles in the converter material. This would result in high specific power deposition that may lead to a very high conversion efficiency. The problem of cluster stopping in cold matter, as well as in hot dense plasmas has been thoroughly investigated. The conversion efficiency of cluster ions using a low-density gold converter has also been calculated over a wide range of parameters including converter density, converter geometry, and specific power deposition. These calculations have been carried out using a one-dimensional hydrodynamic computer code that includes a multigroup radiation transport scheme [Ramis et al., Comput. Phys. Commun. 49, 475 (1988)]. The problem of symmetrization of this radiation field in a hohlraum with solid gold walls has also been thoroughly investigated using a three-dimensional view factor code. The characteristics of the radiation field obtained by this study are used as input to capsule implosion calculations that are done with a three-temperature radiation-hydrodynamic computer code MEDUSA-KAT [Tahir et al., J. Appl. Phys. 60, 898 (1986)]. A reactor-size capsule which contains 5 mg deuterium-tritium (DT) fuel is used in these calculations. The problem of using a fuel mixture with a substantially reduced tritium content has also been discussed.

  9. Size-dependent stability toward dissociation and ligand binding energies of phosphine-ligated gold cluster ions

    SciTech Connect

    Johnson, Grant E.; Priest, Thomas A.; Laskin, Julia

    2014-01-01

    The stability of sub-nanometer size gold clusters ligated with organic molecules is of paramount importance to the scalable synthesis of monodisperse size-selected metal clusters with highly tunable chemical and physical properties. For the first time, a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS) equipped with surface induced dissociation (SID) has been employed to investigate the time and collision energy resolved fragmentation behavior of cationic doubly charged gold clusters containing 7-9 gold atoms and 6-7 triphenylphosphine (TPP) ligands prepared by reduction synthesis in solution. The TPP ligated gold clusters are demonstrated to fragment through three primary dissociation pathways: (1) Loss of a neutral TPP ligand from the precursor gold cluster, (2) asymmetric fission and (3) symmetric fission and charge separation of the gold core resulting in formation of complementary pairs of singly charged fragment ions. Threshold energies and activation entropies of these fragmentation pathways have been determined employing Rice-Ramsperger-Kassel-Marcus (RRKM) modeling of the experimental SID data. It is demonstrated that the doubly charged cluster ion containing eight gold atoms and six TPP ligands, (8,6)2+, exhibits exceptional stability compared to the other cationic gold clusters examined in this study due to its large ligand binding energy of 1.76 eV. Our findings demonstrate the dramatic effect of the size and extent of ligation on the gas-phase stability and preferred fragmentation pathways of small TPP-ligated gold clusters.

  10. Cluster ion emission from LiF induced by MeV Nq+ projectiles and 252Cf fission fragments

    NASA Astrophysics Data System (ADS)

    Hijazi, H.; Farenzena, L. S.; Rothard, H.; Boduch, Ph.; Grande, P. L.; da Silveira, E. F.

    2011-08-01

    Ion cluster desorption yields from LiF were measured at PUC-Rio with ≈0.1 MeV/u N q+ ( q = 2,4,5,6) ion beams by means of a time-of-fight (TOF) mass spectrometer. A 252Cf source mounted in the irradiation chamber allows immediate comparison of cluster emissions induced by ≈65 MeV fission fragments (FF). Emission of (LiF) n Li+ clusters are observed for both the N beams and the 252Cf fission fragments. The observed cluster size n varies from 1 to 6 for N q+ projectiles and from 1 to ≈40 for the 252Cf-FF. The size dependence of the Y( n) distributions suggests two cluster formation regimes: (i) recombination process in the outgoing gas phase after impact and (ii) emission of pre-formed clusters from the periphery of the impact site. The corresponding distribution of ejected negative cluster ions (LiF) n F- closely resembles that of the positive secondary (LiF) n Li+ ions. The desorption yields of positive ions scale as Y( n) ˜ q 5. A calculation with the CASP code shows that this corresponds to a cubic scaling ˜S{/e 3} with the electronic stopping power S e , as predicted by collective shock wave models for sputtering and models involving multiple excitons (Frenkel pair sputtering). We discuss possible interpretations of the functional dependence of the evolution of the cluster emission yield Y( n) with cluster size n, fitted by a number of statistical distributions.

  11. Trapping of hydrogen atoms inside small beryllium clusters and their ions

    NASA Astrophysics Data System (ADS)

    Naumkin, F. Y.; Wales, D. J.

    2016-08-01

    Structure, stability and electronic properties are evaluated computationally for small Ben (n = 5-9) cluster cages accommodating atomic H inside and forming core-shell species. These parameters are predicted to vary significantly upon insertion of H, for ionic derivatives, and with the system size. In particular, the energy barrier for H-atom exit from the cage changes significantly for ions compared to the neutral counterparts. The corresponding effects predicted for cage assemblies suggest the possibility of efficient charge-control of hydrogen release. This, together with a high capacity for storing hydrogen in extended such assemblies might indicate a possible way towards feasible hydrogen-storage solutions.

  12. Properties of clusters in the gas phase. V - Complexes of neutral molecules onto negative ions

    NASA Technical Reports Server (NTRS)

    Keesee, R. G.; Lee, N.; Castleman, A. W., Jr.

    1980-01-01

    Ion-molecules association reactions of the form A(-)(B)n-1 + B = A(-)(B)n were studied over a range of temperatures in the gas phase using high pressure mass spectrometry. Enthalpy and entropy changes were determined for the stepwise clustering reactions of (1) sulfur dioxide onto Cl(-), I(-), and NO2(-) with n ranging from one to three or four, and onto SO2(-) and SO3(-) with n equal to one; and (2) carbon dioxide onto Cl(-), I(-), NO2(-), CO3(-), and SO3(-) with n equal to one. From these data and earlier hydration results, the order of the magnitude of the enthalpy changes on the association of the first neutral for a series of negative ions was found to parallel the gas-phase basicity of those anions.

  13. Mass spectrometry of refractory black carbon particles from six sources: carbon-cluster and oxygenated ions

    NASA Astrophysics Data System (ADS)

    Corbin, J. C.; Sierau, B.; Gysel, M.; Laborde, M.; Keller, A.; Kim, J.; Petzold, A.; Onasch, T. B.; Lohmann, U.; Mensah, A. A.

    2014-03-01

    We discuss the major mass spectral features of different types of refractory carbonaceous particles, ionized after laser vaporization with an Aerodyne high-resolution soot-particle aerosol mass spectrometer (SP-AMS). The SP-AMS was operated with a switchable 1064 nm laser and a 600 °C thermal vaporizer, yielding respective measurements of the refractory and non-refractory particle components. Six samples were investigated, all of which were composed primarily of refractory material: fuel-rich and fuel-lean propane/air diffusion-flame combustion particles; graphite-spark-generated particles; a commercial fullerene-enriched soot; Regal Black, a commercial carbon black; and nascent aircraft-turbine combustion particles. All samples exhibited a spectrum of carbon-cluster ions Cxn+ in their refractory mass spectrum. Smaller clusters (x < 6) were found to dominate the Cxn+ distribution. For fullerene soot, fuel-rich-flame particles and spark-generated particles, significant Cxn+ clusters at x ≫ 6 were present, with significant contributions from multiply charged ions (n > 1). In all six cases, the ions C1+ and C3+ contributed over 60% to the total C1ions C1+ / C3+ could be used to predict whether significant Cxn+ signals with x > 5 were present. When such signals were present, C1+ / C3+ was close to 1. When absent, C1+ / C3+ was < 0.8. This ratio may therefore serve as a proxy to distinguish between the two types of spectra in atmospheric SP-AMS measurements. Significant refractory oxygenated ions such as CO+ and CO2+ were also observed for all samples. We discuss these signals in detail for Regal Black, and describe their formation via decomposition of oxygenated moieties incorporated into the refractory carbon structure. These species may be of importance in atmospheric processes such as water uptake and heterogeneous chemistry. If atmospherically stable, these oxidized species may be useful for distinguishing

  14. Depth profiling of 4-acetamindophenol-doped poly(lactic acid) films using cluster secondary ion mass spectrometry.

    PubMed

    Mahoney, Christine M; Roberson, Sonya V; Gillen, Greg

    2004-06-01

    The feasibility of using cluster secondary ion mass spectrometry for depth profiling of drug delivery systems is explored. The behavior of various biodegradable polymer films under dynamic SF(5)(+) primary ion bombardment was investigated, including several films doped with model drugs. The SF(5)(+) depth profiles obtained from these biodegradable polymer films showed very little degradation in secondary ion signal as a function of increasing primary ion dose, and it was discovered that the characteristic ion signals for the polymers remained constant for ion doses up to approximately 5 x 10(15) ions/cm(2). These results suggest that the polyester structure of the biodegradable polymers studied here allows for a greater ability to depth profile due to ease of main chain scission. Attempts were also made to depth profile through a series of poly(lactic acid) (PLA) films containing varying concentrations of the drug 4-acetamidophenol. The depth profiles obtained from these films show very little decrease in both the 4-acetamidophenol molecular ion and PLA fragment ion signals as a function of increasing SF(5)(+) primary ion dose. Similar results were obtained with theophylline-doped PLA films. These results show that, in some drug delivery devices, it is possible to monitor the distribution of a drug as a function of depth by using cluster primary ion beams. PMID:15167802

  15. Wavelength dependent high-energy ion emission from intense mid-IR laser-cluster interaction

    NASA Astrophysics Data System (ADS)

    Park, Hyunwook; Wang, Zhou; Agostini, Pierre; Dimauro, Louis

    2015-05-01

    We present the first measurements on the wavelength dependence from the near-infrared to mid-infrared of inert gas clusters interacting with an intense, ultrafast pulse. In the experiments, ion energy distributions have been recorded with various wavelength (0.8-2.2 μm), while all other conditions are fixed. It is found that the wavelength plays a significant role in electron-plasma heating and thus energetic ion production. The maximum energy of the detected ion, Emax , decreases with increasing wavelength, reaches a minimum, then increases. We attribute this result to two different electron-heating mechanisms depending on the wavelength- volume (Inverse Bremsstrahlung: IB) and surface (Brunel) heating. In the short wavelength regime (0.8-1.5 μm), IB heating dominates the production of multiply charged ions, since the electrons are resonantly heated near plasma frequency. As the wavelength is increased, IB heating is progressively suppressed, resulting in a smaller value of Emax . Brunel heating, on the other hand, increases due to a quadratic increase of the electrons ponderomotive energy, and becomes dominant in the long wavelength regime (1.7-2.2 μm). The lowest Emax values would thus occur at the wavelength where the dominant heating mechanism switches from volume to surface. Air Force Office of Scientific Res.

  16. Ferromagnetic cluster glass state induced by non-magnetic ions in a paramagnetic host

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takafumi D.; Okazaki, Ryuji; Taniguchi, Hiroki; Terasaki, Ichiro

    A paramagnetic metal CaRuO3 has been known to show unique impurity effects, where a magnetic ordering is induced by a partial substitution of transition metal ions for Ru. Since this phenomenon occurs regardless of the magnetism of the substituted ions, it must reflect a magnetic instability of this ruthenate. Understanding such physical properties is one of intriguing issues in condensed matter physics. In this talk, we report an unconventional magnetic state induced by substituting non-magnetic Sc3+ ions. We find that the static magnetic susceptibilities of all Sc-substituted samples show ferromagnetic-like features below 40 K, while the Curie-Weiss temperature dramatically changes with increasing x. This inconsistency is a sign of non-uniform magnetic system. We propose a phenomenological model and show that the static magnetic properties can be described as a volume average of a paramagnetic component originated from Ru4+ ions and a ferromagnetic one driven by Sc substitution [T. D. Yamamoto et al., JPSJ 84, 014708 (2015).]. Furthermore our dynamic magnetic measurements reveal a ferromagnetic cluster glass state embedded in the paramagnetic and metallic host of CaRuO3.

  17. Systematic Temperature Effects in the Argon Cluster Ion Sputter Depth Profiling of Organic Materials Using Secondary Ion Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Seah, Martin P.; Havelund, Rasmus; Gilmore, Ian S.

    2016-08-01

    A study is presented of the effects of sample temperature on the sputter depth profiling of two organic materials, NPB ( N,N'-Di(1-naphthyl)- N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine) and Irganox 1010, using a 5 keV Ar2000 + cluster ion beam and analysis by secondary ion mass spectrometry. It is shown that at low temperatures, the yields increase slowly with temperature in accordance with the Universal Sputtering Yield equation where the energy term is now modified by Trouton's rule. This occurs up to a transition temperature, T T, which is, in turn, approximately 0.8 T M, where T M is the sample melting temperature in Kelvin. For NPB and Irganox 1010, these transition temperatures are close to 15 °C and 0 °C, respectively. Above this temperature, the rate of increase of the sputtering yield rises by an order of magnitude. During sputtering, the depth resolution also changes with temperature with a very small change occurring below T T. At higher temperatures, the depth resolution improves but then rapidly degrades, possibly as a result first of local crater surface diffusion and then of bulk inter-diffusion. The secondary ion spectra also change with temperature with the intensities of the molecular entities increasing least. This agrees with a model in which the molecular entities arise near the crater rim. It is recommended that for consistent results, measurements for organic materials are always made at temperatures significantly below T T or 0.8 T M, and this is generally below room temperature.

  18. Systematic Temperature Effects in the Argon Cluster Ion Sputter Depth Profiling of Organic Materials Using Secondary Ion Mass Spectrometry.

    PubMed

    Seah, Martin P; Havelund, Rasmus; Gilmore, Ian S

    2016-08-01

    A study is presented of the effects of sample temperature on the sputter depth profiling of two organic materials, NPB (N,N'-Di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine) and Irganox 1010, using a 5 keV Ar2000 (+) cluster ion beam and analysis by secondary ion mass spectrometry. It is shown that at low temperatures, the yields increase slowly with temperature in accordance with the Universal Sputtering Yield equation where the energy term is now modified by Trouton's rule. This occurs up to a transition temperature, T T, which is, in turn, approximately 0.8T M, where T M is the sample melting temperature in Kelvin. For NPB and Irganox 1010, these transition temperatures are close to 15 °C and 0 °C, respectively. Above this temperature, the rate of increase of the sputtering yield rises by an order of magnitude. During sputtering, the depth resolution also changes with temperature with a very small change occurring below T T. At higher temperatures, the depth resolution improves but then rapidly degrades, possibly as a result first of local crater surface diffusion and then of bulk inter-diffusion. The secondary ion spectra also change with temperature with the intensities of the molecular entities increasing least. This agrees with a model in which the molecular entities arise near the crater rim. It is recommended that for consistent results, measurements for organic materials are always made at temperatures significantly below T T or 0.8 T M, and this is generally below room temperature. Graphical Abstract ᅟ. PMID:27106601

  19. Systematic Temperature Effects in the Argon Cluster Ion Sputter Depth Profiling of Organic Materials Using Secondary Ion Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Seah, Martin P.; Havelund, Rasmus; Gilmore, Ian S.

    2016-04-01

    A study is presented of the effects of sample temperature on the sputter depth profiling of two organic materials, NPB (N,N'-Di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine) and Irganox 1010, using a 5 keV Ar2000 + cluster ion beam and analysis by secondary ion mass spectrometry. It is shown that at low temperatures, the yields increase slowly with temperature in accordance with the Universal Sputtering Yield equation where the energy term is now modified by Trouton's rule. This occurs up to a transition temperature, T T, which is, in turn, approximately 0.8T M, where T M is the sample melting temperature in Kelvin. For NPB and Irganox 1010, these transition temperatures are close to 15 °C and 0 °C, respectively. Above this temperature, the rate of increase of the sputtering yield rises by an order of magnitude. During sputtering, the depth resolution also changes with temperature with a very small change occurring below T T. At higher temperatures, the depth resolution improves but then rapidly degrades, possibly as a result first of local crater surface diffusion and then of bulk inter-diffusion. The secondary ion spectra also change with temperature with the intensities of the molecular entities increasing least. This agrees with a model in which the molecular entities arise near the crater rim. It is recommended that for consistent results, measurements for organic materials are always made at temperatures significantly below T T or 0.8 T M, and this is generally below room temperature.

  20. Analysis of heterogeneous water vapor uptake by metal iodide cluster ions via differential mobility analysis-mass spectrometry

    SciTech Connect

    Oberreit, Derek; Rawat, Vivek K.; Larriba-Andaluz, Carlos; Ouyang, Hui; McMurry, Peter H.; Hogan, Christopher J.

    2015-09-14

    The sorption of vapor molecules onto pre-existing nanometer sized clusters is of importance in understanding particle formation and growth in gas phase environments and devising gas phase separation schemes. Here, we apply a differential mobility analyzer-mass spectrometer based approach to observe directly the sorption of vapor molecules onto iodide cluster ions of the form (MI){sub x}M{sup +} (x = 1-13, M = Na, K, Rb, or Cs) in air at 300 K and with water saturation ratios in the 0.01-0.64 range. The extent of vapor sorption is quantified in measurements by the shift in collision cross section (CCS) for each ion. We find that CCS measurements are sensitive enough to detect the transient binding of several vapor molecules to clusters, which shift CCSs by only several percent. At the same time, for the highest saturation ratios examined, we observed CCS shifts of up to 45%. For x < 4, cesium, rubidium, and potassium iodide cluster ions are found to uptake water to a similar extent, while sodium iodide clusters uptake less water. For x ≥ 4, sodium iodide cluster ions uptake proportionally more water vapor than rubidium and potassium iodide cluster ions, while cesium iodide ions exhibit less uptake. Measured CCS shifts are compared to predictions based upon a Kelvin-Thomson-Raoult (KTR) model as well as a Langmuir adsorption model. We find that the Langmuir adsorption model can be fit well to measurements. Meanwhile, KTR predictions deviate from measurements, which suggests that the earliest stages of vapor uptake by nanometer scale species are not well described by the KTR model.

  1. Analysis of heterogeneous water vapor uptake by metal iodide cluster ions via differential mobility analysis-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Oberreit, Derek; Rawat, Vivek K.; Larriba-Andaluz, Carlos; Ouyang, Hui; McMurry, Peter H.; Hogan, Christopher J.

    2015-09-01

    The sorption of vapor molecules onto pre-existing nanometer sized clusters is of importance in understanding particle formation and growth in gas phase environments and devising gas phase separation schemes. Here, we apply a differential mobility analyzer-mass spectrometer based approach to observe directly the sorption of vapor molecules onto iodide cluster ions of the form (MI)xM+ (x = 1-13, M = Na, K, Rb, or Cs) in air at 300 K and with water saturation ratios in the 0.01-0.64 range. The extent of vapor sorption is quantified in measurements by the shift in collision cross section (CCS) for each ion. We find that CCS measurements are sensitive enough to detect the transient binding of several vapor molecules to clusters, which shift CCSs by only several percent. At the same time, for the highest saturation ratios examined, we observed CCS shifts of up to 45%. For x < 4, cesium, rubidium, and potassium iodide cluster ions are found to uptake water to a similar extent, while sodium iodide clusters uptake less water. For x ≥ 4, sodium iodide cluster ions uptake proportionally more water vapor than rubidium and potassium iodide cluster ions, while cesium iodide ions exhibit less uptake. Measured CCS shifts are compared to predictions based upon a Kelvin-Thomson-Raoult (KTR) model as well as a Langmuir adsorption model. We find that the Langmuir adsorption model can be fit well to measurements. Meanwhile, KTR predictions deviate from measurements, which suggests that the earliest stages of vapor uptake by nanometer scale species are not well described by the KTR model.

  2. Analysis of heterogeneous water vapor uptake by metal iodide cluster ions via differential mobility analysis-mass spectrometry.

    PubMed

    Oberreit, Derek; Rawat, Vivek K; Larriba-Andaluz, Carlos; Ouyang, Hui; McMurry, Peter H; Hogan, Christopher J

    2015-09-14

    The sorption of vapor molecules onto pre-existing nanometer sized clusters is of importance in understanding particle formation and growth in gas phase environments and devising gas phase separation schemes. Here, we apply a differential mobility analyzer-mass spectrometer based approach to observe directly the sorption of vapor molecules onto iodide cluster ions of the form (MI)xM(+) (x = 1-13, M = Na, K, Rb, or Cs) in air at 300 K and with water saturation ratios in the 0.01-0.64 range. The extent of vapor sorption is quantified in measurements by the shift in collision cross section (CCS) for each ion. We find that CCS measurements are sensitive enough to detect the transient binding of several vapor molecules to clusters, which shift CCSs by only several percent. At the same time, for the highest saturation ratios examined, we observed CCS shifts of up to 45%. For x < 4, cesium, rubidium, and potassium iodide cluster ions are found to uptake water to a similar extent, while sodium iodide clusters uptake less water. For x ≥ 4, sodium iodide cluster ions uptake proportionally more water vapor than rubidium and potassium iodide cluster ions, while cesium iodide ions exhibit less uptake. Measured CCS shifts are compared to predictions based upon a Kelvin-Thomson-Raoult (KTR) model as well as a Langmuir adsorption model. We find that the Langmuir adsorption model can be fit well to measurements. Meanwhile, KTR predictions deviate from measurements, which suggests that the earliest stages of vapor uptake by nanometer scale species are not well described by the KTR model. PMID:26374028

  3. Spectroscopic Evidence for Clusters of Like-Charged Ions in Ionic Liquids Stabilized by Cooperative Hydrogen Bonding.

    PubMed

    Knorr, Anne; Stange, Peter; Fumino, Koichi; Weinhold, Frank; Ludwig, Ralf

    2016-02-01

    Direct spectroscopic evidence for hydrogen-bonded clusters of like-charged ions is reported for ionic liquids. The measured infrared O-H vibrational bands of the hydroxyethyl groups in the cations can be assigned to the dispersion-corrected DFT calculated frequencies of linear and cyclic clusters. Compensating the like-charge Coulomb repulsion, these cationic clusters can range up to cyclic tetramers resembling molecular clusters of water and alcohols. These ionic clusters are mainly present at low temperature and show strong cooperative effects in hydrogen bonding. DFT-D3 calculations of the pure multiply charged clusters suggest that the attractive hydrogen bonds can compete with repulsive Coulomb forces. PMID:26670942

  4. Cluster observations of the dusk flank magnetopause near the sash: Ion dynamics and flow-through reconnection

    NASA Astrophysics Data System (ADS)

    Maynard, Nelson C.; Farrugia, Charles J.; Burke, William J.; Ober, Daniel M.; Mozer, Forrest S.; Rème, Henri; Dunlop, Malcolm; Siebert, Keith D.

    2012-10-01

    Compared to the dayside, dynamics on the flanks of the magnetopause are poorly understood. To help bridge this knowledge gap we analyzed Cluster plasma and field measurements acquired during a 90-min period on 20 November 2003 when Cluster crossed the magnetopause four times in the vicinity of the sash. MHD simulations provide a context for Cluster observations. Crossings were between the magnetosheath and an S-shaped plasma sheet, rather than to the open-field lobes of the magnetotail. Cluster encountered two regions of MHD-breaking differences between perpendicular ion velocities and E × B convection. Ion adiabatic expansion parameter (δi) calculations show that ion gyrotropy was not broken during an episode of strong Alfvén wave activity in the magnetosheath. However, gyrotropy was broken (δi > 1) during the fourth magnetopause crossing. In the magnetosheath, ion guiding-center motion was maintained but inertial effects associated with temporally varying electric fields are probable sources of velocity differences. Regarding the magnetopause crossing, the generalized Ohm's law limits possible sources for breaking ion gyrotropy to inertial forces and/or electron pressure gradients associated with a nearby reconnection event. We suggest that Cluster witnessed effects of a temporally varying and spatially limited, flow-through reconnection event between open mantle field lines from the two polar caps adding new closed flux to the LLBL at the sash. Future modeling of flank dynamics must consider inertial forces as significant drivers at the magnetopause and in the adjacent magnetosheath.

  5. Study of Flux Ratio of C60 to Ar Cluster Ion for Hard DLC Film deposition

    SciTech Connect

    Miyauchi, K.; Toyoda, N.; Kanda, K.; Matsui, S.; Kitagawa, T.; Yamada, I.

    2003-08-26

    To study the influence of the flux ratio of C60 molecule to Ar cluster ion on (diamond like carbon) DLC film characteristics, DLC films deposited under various flux ratios were characterized with Raman spectrometry and Near Edge X-ray Absorption Fine Structure (NEXAFS). From results of these measurements, hard DLC films were deposited when the flux ratio of C60 to Ar cluster ion was between 0.7 and 4. Furthermore the DLC film with constant sp2 content was obtained in the range of the ratio from 0.7 to 4, which contents are lower values than that of conventional films such as RF plasma. DLC films deposited under the ratio from 1 to 4 had hardness from 40 to 45GPa. It was shown that DLC films with stable properties of low sp2 content and high hardness were formed even when the fluxes were varied from 1 to 4 during deposition. It was indicated that this process was useful in the view of industrial application.

  6. Si clusters/defective graphene composites as Li-ion batteries anode materials: A density functional study

    NASA Astrophysics Data System (ADS)

    Li, Meng; Liu, Yue-Jie; Zhao, Jing-xiang; Wang, Xiao-guang

    2015-08-01

    Recently, the Si/graphene hybrid composites have attracted considerable attention due to their potential application for Li-ion batteries. How to effectively anchor Si clusters to graphene substrates to ensure their stability is an important factor to determine their performance for Li-ion batteries. In the present work, we have performed comprehensive density functional theory (DFT) calculations to investigate the geometric structures, stability, and electronic properties of the deposited Si clusters on defective graphenes as well as their potential applications for Li-ion batteries. The results indicate that the interfacial bonding between these Si clusters with the pristine graphene is quietly weak with a small adsorption energy (<-0.21 eV). Due to the presence of vacancy site, the binding strength of Si clusters on defective graphene is much stronger than that of pristine one, accompanying with a certain amount of charge transfer from Si clusters to graphene substrates. Moreover, the ability of Si/graphene hybrids for Li uptake is studied by calculating the adsorption of Li atoms. We find that both graphenes and Si clusters in the Si/graphene composites preserve their Li uptake ability, indicating that graphenes not only server as buffer materials for accommodating the expansion of Si cluster, but also provide additional intercalation sites for Li.

  7. Cluster secondary ion mass spectrometry and the temperature dependence of molecular depth profiles.

    PubMed

    Mao, Dan; Wucher, Andreas; Brenes, Daniel A; Lu, Caiyan; Winograd, Nicholas

    2012-05-01

    The quality of molecular depth profiles created by erosion of organic materials by cluster ion beams exhibits a strong dependence upon temperature. To elucidate the fundamental nature of this dependence, we employ the Irganox 3114/1010 organic delta-layer reference material as a model system. This delta-layer system is interrogated using a 40 keV C(60)(+) primary ion beam. Parameters associated with the depth profile such as depth resolution, uniformity of sputtering yield, and topography are evaluated between 90 and 300 K using a unique wedge-crater beveling strategy that allows these parameters to be determined as a function of erosion depth from atomic force microscope (AFM) measurements. The results show that the erosion rate calibration performed using the known Δ-layer depth in connection with the fluence needed to reach the peak of the corresponding secondary ion mass spectrometry (SIMS) signal response is misleading. Moreover, we show that the degradation of depth resolution is linked to a decrease of the average erosion rate and the buildup of surface topography in a thermally activated manner. This underlying process starts to influence the depth profile above a threshold temperature between 210 and 250 K for the system studied here. Below that threshold, the process is inhibited and steady-state conditions are reached with constant erosion rate, depth resolution, and molecular secondary ion signals from both the matrix and the Δ-layers. In particular, the results indicate that further reduction of the temperature below 90 K does not lead to further improvement of the depth profile. Above the threshold, the process becomes stronger at higher temperature, leading to an immediate decrease of the molecular secondary ion signals. This signal decay is most pronounced for the highest m/z ions but is less for the smaller m/z ions, indicating a shift toward small fragments by accumulation of chemical damage. The erosion rate decay and surface roughness buildup

  8. ELECTROMAGNETIC THERMAL INSTABILITY WITH MOMENTUM AND ENERGY EXCHANGE BETWEEN ELECTRONS AND IONS IN GALAXY CLUSTERS

    SciTech Connect

    Nekrasov, Anatoly K. E-mail: anekrasov@ifz.ru

    2011-10-01

    Thermal instability in an electron-ion magnetized plasma, which is relevant in the intragalactic medium of galaxy clusters, solar corona, and other two-component plasma objects, is investigated. We apply the multicomponent plasma approach where the dynamics of all species are considered separately through electric field perturbations. General expressions for the dynamical variables obtained in this paper can be applied over a wide range of astrophysical and laboratory plasmas also containing neutrals and dust grains. We assume that background temperatures of electrons and ions are different and include the energy exchange in thermal equations for electrons and ions along with the collisional momentum exchange in equations of motion. We take into account the dependence of collision frequency on density and temperature perturbations. The cooling-heating functions are taken for both electrons and ions. A condensation mode of thermal instability has been studied in the fast sound speed limit. We derive a new dispersion relation including different electron and ion cooling-heating functions and other effects mentioned above and find its simple solutions for growth rates in limiting cases. We show that the perturbations have an electromagnetic nature and demonstrate the crucial role of the electric field perturbation along the background magnetic field in the fast sound speed limit. We find that at the conditions under consideration, condensation must occur along the magnetic field while the transverse scale sizes can be both larger and smaller than the longitudinal ones. The results obtained can be useful for interpretating observations of dense cold regions in astrophysical objects.

  9. Isolated crater formation by gas cluster ion impact and their use as templates for carbon nanotube growth

    NASA Astrophysics Data System (ADS)

    Toyoda, Noriaki; Kimura, Asahi; Yamada, Isao

    2016-03-01

    Crater-like defects formations with gas cluster ion beams (GCIB) were used as templates for carbon nanotube (CNT) growth. Upon a gas cluster ion impact, dense energy is deposited on a target surface while energy/atom of gas cluster ion is low, which creates crater-like defects. Si and SiO2 were irradiated with Ar-GCIB, subsequently CNTs were grown with an alcohol catalytic CVD using Co and ethanol as catalyst and precursor, respectively. From SEM, AFM and Raman spectroscopy, it was shown that growth of CNT with small diameter was observed on SiO2 with Ar-GCIB irradiation. On Si targets, formation of craters with bottom oxide prevented Co diffusion during CNT growth, as a result, CNT growth was observed only on Si irradiated with high-energy Ar-GCIB. These results showed that isolated defects created by GCIB can be used as templates for nanotube growth.

  10. Study of small carbon and semiconductor clusters using negative ion threshold photodetachment spectroscopy

    SciTech Connect

    Arnold, C.C.

    1994-08-01

    The bonding and electronics of several small carbon and semiconductor clusters containing less than ten atoms are probed using negative ion threshold photodetachment (zero electron kinetic energy, or ZEKE) spectroscopy. ZEKE spectroscopy is a particularly advantageous technique for small cluster study, as it combines mass selection with good spectroscopic resolution. The ground and low-lying electronic states of small clusters in general can be accessed by detaching an electron from the ground anion state. The clusters studied using this technique and described in this work are C{sub 6}{sup {minus}}/C{sub 6}, Si{sub n}{sup {minus}}/Si{sub n} (n = 2, 3, 4), Ge{sub 2}{sup {minus}}/Ge{sub 2}, In{sub 2}P{sup {minus}}/In{sub 2}P,InP{sub 2}{sup {minus}}/InP{sup 2}, and Ga{sub 2}As{sup {minus}}. The total photodetachment cross sections of several other small carbon clusters and the ZEKE spectrum of the I{sup {minus}}{center_dot}CH{sub 3}I S{sub N}2 reaction complex are also presented to illustrate the versatility of the experimental apparatus. Clusters with so few atoms do not exhibit bulk properties. However, each specie exhibits bonding properties that relate to the type of bonding found in the bulk. C{sub 6}, as has been predicted, exhibits a linear cumulenic structure, where double bonds connect all six carbon atoms. This double bonding reflects how important {pi} bonding is in certain phases of pure carbon (graphite and fullerenes). The symmetric stretch frequencies observed in the C{sub 6}{sup {minus}} spectra, however, are in poor agreement with the calculated values. Also observed as sharp structure in total photodetachment cross section scans was an excited anion state bound by only {approximately}40 cm{sup {minus}1} relative to the detachment continuum. This excited anion state appears to be a valence bound state, possible because of the high electron affinity of C{sub 6}, and the open shell of the anion.

  11. Peptide Fragmentation and Surface Structural Analysis by Means of ToF-SIMS Using Large Cluster Ion Sources.

    PubMed

    Yokoyama, Yuta; Aoyagi, Satoka; Fujii, Makiko; Matsuo, Jiro; Fletcher, John S; Lockyer, Nicholas P; Vickerman, John C; Passarelli, Melissa K; Havelund, Rasmus; Seah, Martin P

    2016-04-01

    Peptide or protein structural analysis is crucial for the evaluation of biochips and biodevices, therefore an analytical technique with the ability to detect and identify protein and peptide species directly from surfaces with high lateral resolution is required. In this report, the efficacy of ToF-SIMS to analyze and identify proteins directly from surfaces is evaluated. Although the physics governing the SIMS bombardment process precludes the ability for researchers to detect intact protein or larger peptides of greater than a few thousand mass unit directly, it is possible to obtain information on the partial structures of peptides or proteins using low energy per atom argon cluster ion beams. Large cluster ion beams, such as Ar clusters and C60 ion beams, produce spectra similar to those generated by tandem MS. The SIMS bombardment process also produces peptide fragment ions not detected by conventional MS/MS techniques. In order to clarify appropriate measurement conditions for peptide structural analysis, peptide fragmentation dependency on the energy of a primary ion beam and ToF-SIMS specific fragment ions are evaluated. It was found that the energy range approximately 6 ≤ E/n ≤ 10 eV/atom is most effective for peptide analysis based on peptide fragments and [M + H] ions. We also observed the cleaving of side chain moieties at extremely low-energy E/n ≤ 4 eV/atom. PMID:26916620

  12. Calculation of composition distribution of ultrafine ion-H2O-H2SO4 clusters using a modified binary ion nucleation theory

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Smith, A. S.; Chan, L. Y.; Yue, G. K.

    1982-01-01

    Thomson's ion nucleation theory was modified to include the effects of curvature dependence of the microscopic surface tension of field dependent, nonlinear, dielectric properties of the liquid; and of sulfuric acid hydrate formation in binary mixtures of water and sulfuric acid vapors. The modified theory leads to a broadening of the ion cluster spectrum, and shifts it towards larger numbers of H2O and H2SO4 molecules. Whether there is more shifting towards larger numbers of H2O or H2SO4 molecules depends on the relative humidity and relative acidity of the mixture. Usually, a broadening of the spectrum is accompanied by a lowering of the mean cluster intensity. For fixed values of relative humidity and relative acidity, a similar broadening pattern is observed when the temperature is lowered. These features of the modified theory illustrate that a trace of sulfuric acid can facilitate the formation of ultrafine, stable, prenucleation ion clusters as well as the growth of the prenucleation ion clusters towards the critical saddle point conditions, even with low values of relative humidity and relative acidity.

  13. Gas-phase reaction of CeVO5(+) cluster ions with C2H4: the reactivity of cluster bonded peroxides.

    PubMed

    Ma, Jia-Bi; Meng, Jing-Heng; He, Sheng-Gui

    2015-02-21

    Cerium-vanadium oxide cluster cations CeVO5(+) were generated by laser ablation, mass-selected using a quadrupole mass filter, thermalized through collisions with helium atoms, and then reacted with ethene molecules in a linear ion trap reactor. The cluster reactions have been characterized by time-of-flight mass spectrometry and density functional theory calculations. The CeVO5(+) cluster has a closed-shell electronic structure and contains a peroxide (O2(2-)) unit. The cluster bonded O2(2-) species is reactive enough to oxidize a C2H4 molecule to generate C2H4O2 that can be an acetic acid molecule. Atomic oxygen radicals (O(-)˙), superoxide radicals (O2(-)˙), and peroxides are the three common reactive oxygen species. The reactivity of cluster bonded O(-)˙ and O2(-)˙ radicals has been widely studied while the O2(2-) species were generally thought to be much less reactive or inert toward small molecules under thermal collision conditions. This work is among the first to report the reactivity of the peroxide unit on transition metal oxide clusters with hydrocarbon molecules, to the best of our knowledge. PMID:25573178

  14. Soft Landing of Mass-Selected Gold Clusters: Influence of Ion and Ligand on Charge Retention and Reactivity

    SciTech Connect

    Johnson, Grant E.; Laskin, Julia

    2015-02-01

    Herein, we employ a combination of reduction synthesis in solution, soft landing of mass-selected precursor and product ions, and in situ time-of-flight secondary ion mass spectrometry (TOF-SIMS) to examine the influence of ion and the length of diphosphine ligands on the charge retention and reactivity of ligated gold clusters deposited onto self-assembled monolayer surfaces (SAMs). Product ions (Au10L42+, (10,4)2+, L = 1,3-bis(diphenyl-phosphino)propane, DPPP) were prepared through in-source collision induced dissociation (CID) and precursor ions [(8,4)2+, L = 1,6-bis(diphenylphosphino)hexane, DPPH] were synthesized in solution for comparison to (11,5)3+ precursor ions ligated with DPPP investigated previously (ACS Nano 2012, 6, 573 and J. Phys. Chem. C. 2012, 116, 24977). Similar to (11,5)3+ precursor ions, the (10,4)2+ product ions are shown to retain charge on 1H,1H,2H,2H-perfluorodecanethiol monolayers (FSAMs). Additional abundant peaks at higher m/z indicative of reactivity are observed in the TOF-SIMS spectrum of (10,4)2+ product ions that are not seen for (11,5)3+ precursor ions. The abundance of (10,4)2+ on 16-mercaptohexadecanoic acid (COOH-SAMs) is demonstrated to be lower than on FSAMs, consistent with partial reduction of charge. The (10,4)2+ product ion on 1-dodecanethiol (HSAMs) exhibits peaks similar to those seen on the COOH-SAM. On the HSAM, higher m/z peaks indicative of reactivity are observed similar to those on the FSAM. The (8,4)2+ DPPH precursor ions are shown to retain charge on FSAMs similar to (11,5)3+ precursor ions prepared with DPPP. An additional peak corresponding to attachment of one gold atom to (8,4)2+ is observed at higher m/z for DPPH-ligated clusters. On the COOH-SAM, (8,4)2+ is less abundant than on the FSAM consistent with partial neutralization. The results indicate that although retention of charge by product ions generated by CID is similar to precursor ions their reactivity during analysis with SIMS is different

  15. Cluster Ion Beam Induced Nano Metallic Rippled Structures for Localized Surface Plasmon Resonance (LSPR) Based Sensors

    NASA Astrophysics Data System (ADS)

    Saleem, Iram; Tilakaratne, Buddhi; He, Yanzhi; Nzumbe, Epie; Wijesundera, Dharshana; Chen, Quark; Chu, Wei-Kan

    2015-03-01

    Localized surface plasmon resonance (LSPR) based bio sensors have a high sensitivity and exploit a label free real time analytical detection mechanism. We have produced plasmonic nano-structured substrates by cluster ion beam irradiation of thin gold films and have studied their effectiveness as potential plasmonic sensors. By adsorbing a mono-layer of thiolated organic compounds on the surface of these substrates we identified the shift in the LSPR peaks triggered by the change of dielectric function in the neighborhood of the structures. These plasmonic nano-metallic structures can be utilized to observe the change of LSPR resonance frequency due to adsorption, re-adsorption and reactions taking place on the surface that can potentially be mapped to reaction mechanics

  16. Gas Cluster Ion Beam Etching under Acetic Acid Vapor for Etch-Resistant Material

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Akira; Hinoura, Ryo; Toyoda, Noriaki; Hara, Ken-ichi; Yamada, Isao

    2013-05-01

    Gas cluster ion beam (GCIB) etching of etch-resistant materials under acetic acid vapor was studied for development of new manufacturing process of future nonvolatile memory. Etching depths of various etch-resistant materials (Pt, Ru, Ta, CoFe) with acetic acid vapor during O2-GCIB irradiations were 1.8-10.7 times higher than those without acetic acid. Also, etching depths of Ru, Ta, CoFe by Ar-GCIB with acetic acid vapor were 2.2-16.1 times higher than those without acetic acid. Even after etching of Pt, smoothing of Pt was realized using O2-GCIB under acetic acid. From XPS and angular distribution of sputtered Pt, it was shown that PtOx layer was formed on Pt after O2-GCIB irradiation. PtOx reacted with acetic acid by GCIB bombardments; as a result, increase of etching depth was observed.

  17. Compositions and Structures of Vanadium Oxide Cluster Ions VmOn(±) (m = 2-20) Investigated by Ion Mobility Mass Spectrometry.

    PubMed

    Wu, Jenna W J; Moriyama, Ryoichi; Tahara, Hiroshi; Ohshimo, Keijiro; Misaizu, Fuminori

    2016-06-01

    Stable compositions and geometrical structures of vanadium oxide cluster ions, VmOn(±), were investigated by ion mobility mass spectrometry (IM-MS). The most stable compositions of vanadium oxide cluster cations were (V2O4)(V2O5)(m-2)/2(+) and (VO2)(V2O5)(m-1)/2(+), depending on the clusters with even and odd numbers of vanadium atoms. Compositions one-oxygen richer than the cations, such as (V2O5)m/2(-) and (VO3)(V2O5)(m-1)/2(-), were predominantly observed for cluster anions. Assignments of these stable cluster ion compositions, which were determined as a result of collision-induced dissociations in IM-MS, can partly be explained with consideration of spin density distribution. By comparing the experimental collision cross sections (CCSs) obtained from ion mobility measurement with CCSs of the theoretically calculated structures, we confirmed the patterned growth of geometrical structures partially discussed in previous theoretical and spectroscopic studies. We showed that even sized (V2O5)m/2(±) where m = 6-12 had right polygonal prism structures except for the anionic V12O30(-), and for the clusters of odd numbers of vanadium m, cations and anions can either have bridged or pyramid structures. Both of the odd sized structures proposed were derivatives from the even sized right polygonal prism structures. The exception, V12O30(-), which had a CCS almost equal to that of the neighboring smaller V11O28(-), should have a structure of higher density than the right hexagonal prism, in which it was proposed to be a captured pyramid structure, derived from V11O28(-). PMID:27172006

  18. Changes in cluster magnetism and suppression of local superconductivity in amorphous FeCrB alloy irradiated by Ar+ ions

    NASA Astrophysics Data System (ADS)

    Okunev, V. D.; Samoilenko, Z. A.; Szymczak, H.; Szewczyk, A.; Szymczak, R.; Lewandowski, S. J.; Aleshkevych, P.; Malinowski, A.; Gierłowski, P.; Więckowski, J.; Wolny-Marszałek, M.; Jeżabek, M.; Varyukhin, V. N.; Antoshina, I. A.

    2016-02-01

    We show that cluster magnetism in ferromagnetic amorphous Fe67Cr18B15 alloy is related to the presence of large, D=150-250 Å, α-(Fe Cr) clusters responsible for basic changes in cluster magnetism, small, D=30-100 Å, α-(Fe, Cr) and Fe3B clusters and subcluster atomic α-(Fe, Cr, B) groupings, D=10-20 Å, in disordered intercluster medium. For initial sample and irradiated one (Φ=1.5×1018 ions/cm2) superconductivity exists in the cluster shells of metallic α-(Fe, Cr) phase where ferromagnetism of iron is counterbalanced by antiferromagnetism of chromium. At Φ=3×1018 ions/cm2, the internal stresses intensify and the process of iron and chromium phase separation, favorable for mesoscopic superconductivity, changes for inverse one promoting more homogeneous distribution of iron and chromium in the clusters as well as gigantic (twice as much) increase in density of the samples. As a result, in the cluster shells ferromagnetism is restored leading to the increase in magnetization of the sample and suppression of local superconductivity. For initial samples, the temperature dependence of resistivity ρ(T)~T2 is determined by the electron scattering on quantum defects. In strongly inhomogeneous samples, after irradiation by fluence Φ=1.5×1018 ions/cm2, the transition to a dependence ρ(T)~T1/2 is caused by the effects of weak localization. In more homogeneous samples, at Φ=3×1018 ions/cm2, a return to the dependence ρ(T)~T2 is observed.

  19. Direct imaging of rare-earth ion clusters in Yb:CaF2

    NASA Astrophysics Data System (ADS)

    Lacroix, B.; Genevois, C.; Doualan, J. L.; Brasse, G.; Braud, A.; Ruterana, P.; Camy, P.; Talbot, E.; Moncorgé, R.; Margerie, J.

    2014-09-01

    The existence and the identification of only one or several coparticipating luminescent Yb3+ centers in the heavily doped Yb :CaF2 laser crystals which are considered in the development of several high intensity laser chains have been examined first by using two complementary and original experimental approaches, i.e., registration of low temperature site-selective laser excitation spectra related to near-infrared and visible cooperative emission processes, on the one hand, and direct imaging at the atomic scale of isolated ions and clusters using a high-resolution scanning transmission electron microscope in the high angle annular dark-field mode, on the other hand, and then correlating the data with simple crystal field calculations. As a consequence, and although all the experimental details could not be accounted for quantitatively, a good overall correlation was found between the experimental and the theoretical data. The results show that at the investigated dopant concentrations, Yb:CaF2 should be considered as a multisite system whose luminescent and lasing properties are dominated by a series of Yb3+ clusters ranging from dimers to tetramers. Hexameric luminescent centers may be dominant at really high dopant concentrations (likely above 20 at. %), as was originally proposed, but certainly not at the intermediate dopant concentrations which are considered for the laser application, i.e., between about 0.5 and 10 at. %.

  20. Structural Characterizations of Palladium Clusters Prepared by Polyol Reduction of [PdCl 4 ] (2-) Ions.

    PubMed

    Schiavo, Loredana; Aversa, Lucrezia; Tatti, Roberta; Verucchi, Roberto; Carotenuto, Gianfranco

    2016-01-01

    Palladium nanoparticles are of great interest in many industrial fields, ranging from catalysis and hydrogen technology to microelectronics, thanks to their unique physical and chemical properties. In this work, palladium clusters have been prepared by reduction of [PdCl4](2-) ions with ethylene glycol, in the presence of poly(N-vinyl-2-pyrrolidone) (PVP) as stabilizer. The stabilizer performs the important role of nucleating agent for the Pd atoms with a fast phase separation, since palladium atoms coordinated to the polymer side-groups are forced at short distances during nucleation. Quasispherical palladium clusters with a diameter of ca. 2.6 nm were obtained by reaction in air at 90°C for 2 hours. An extensive materials characterization by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and other characterizations (TGA, SEM, EDS-SEM, and UV-Vis) has been performed in order to evaluate the structure and oxidation state of nanopalladium. PMID:27073712

  1. X-Ray Spectroscopic Analysis of Boron-Nitride Clusters Deposited by Ion-Plating Method

    NASA Astrophysics Data System (ADS)

    Kohzuki, H.; Motoyama, M.; Kaneyoshi, T.; Kowada, Y.; Kawai, J.; Adachi, H.

    Cubic boron-nitride (c-BN) films were deposited on a silicon substrate by varying the deposition time, using a reactive ion-plating method. In order to investigate the growth mechanism of c-BN films, these c-BN films were characterized by x-ray emission spectra of boron (B K x-ray emission spectra), infrared absorption spectra, selected area diffraction patterns, and TEM microstructures. It was found that the BN film with sp2 bonding formed initially on the substrate and subsequently c-BN film formed. The c-BN film was composed of fine crystallites with a size of about 10 nm and with random orientation. In the case of the B K x-ray emission spectrum from the BN film with sp2 bonding, the intensity of the satellite peak at the short-wavelength side was extremely stronger than that of sp2-bonded BN-like turbostratic or hexagonal BN. As a result of calculation of the B K x-ray emission spectrum of BN using the discrete variational Hartree-Fock-Slater (DV-Xα) method, it was found that the satellite peak intensity increased with formation of the fine BN cluster having two-coordinated boron (which has a dangling bond) and with decreasing size of the cluster. Therefore, it is considered that the BN film with sp2 bonding was composed of the very fine BN cluster having two-coordinated borons, and became the precursor of c-BN film at the interface between the substrate and c-BN film.

  2. Ion Clusters in Nucleation Experiments in the CERN Cloud Chamber: Sulfuric Acid + Ammonia + Dimethyl Amine + Oxidized Organics

    NASA Astrophysics Data System (ADS)

    Worsnop, D. R.; Schobesberger, S.; Bianchi, F.; Ehrhart, S.; Junninen, H.; Kulmala, M. T.

    2012-12-01

    Nucleation from gaseous precursors is an important source of aerosol particles in the atmosphere. The CLOUD experiment at CERN provides exceptionally clean and well-defined experimental conditions for studies of atmospheric nucleation and initial growth, in a 26 m3 stainless-steel chamber. In addition, the influence of cosmic rays on nucleation and nanoparticle growth can be simulated by exposing the chamber to a pion beam produced by the CERN Proton Synchrotron. A key to understanding the mechanism by which nucleation proceeds in the CLOUD chamber is the use of state-of-the-art instrumentation, including the Atmospheric Pressure interface Time-Of-Flight (APi-TOF) mass spectrometer. The APi-TOF is developed by Tofwerk AG, and Aerodyne Research, Inc., and typically obtains resolutions between 4000 and 6000 Th/Th and mass accuracies < 10 ppm. Sampling occurs directly from atmospheric pressure through a critical orifice. Ions are then focused and guided to the time-of-flight mass spectrometer, while passing through differentially pumped chambers. No ionization of the sampled aerosol is performed; only ions charged in the chamber are detected in the current configuration. For all studied chemical systems, the APi-TOF detected ion clusters that could directly be linked to nucleation. The composition of these ion clusters could be determined based on their exact masses and isotopic patterns. Aided by the chamber's cleanliness and the possibility of enhancing ion concentrations by using CERN's pion beam, a remarkably large fraction of the ion spectra could be identified, even for more complex chemical systems studied. For the ammonia-sulfuric acid-water system, for instance, growing clusters containing ammonia (NH3) and sulfuric acid (H2SO4) were observed up to 3300 Th. Adding dimethyl amine and/or pinanediol into the CLOUD chamber, altered the chemical compositions of the observed ion clusters accordingly. Cluster growth then included mixtures of sulfuric acid and

  3. Study of compressible coherent structures, close to ion scales, in solar wind turbulence using Cluster data

    NASA Astrophysics Data System (ADS)

    Perrone, Denise; Alexandrova, Olga; Mangeney, André; Maksimovic, Milan; Rocoto, Virgile; Pantellini, Filippo; Zaslavsky, Arnaud; Issautier, Karine

    2015-04-01

    The interplanetary medium, a weakly collisional and fully turbulent medium, can be considered the best natural laboratory to study the dynamical behavior of turbulent plasmas. A fundamental question in solar wind plasma physics is whether, space plasma turbulence can be considered as a mixture of quasi-linear waves or if the turbulence is strong with formation of coherent structures responsible for the dissipation. Here we present an automatic method to identify compressible coherent structures using Morlet wavelet decomposition of magnetic signal from Cluster spacecraft and reconstruction of magnetic fluctuations in a selected scale range (0.033-0.2 Hz). Different kind of coherent structures have been detected: from soliton-like compressible structures to current sheet- or vortex-like alfvenic structures. A multi-satellite analysis, in order to characterize 3D geometry and propagation in plasma rest frame, reveals that these structures propagate quasi-perpendicular to the mean magnetic field, with finite velocity. Moreover, the spatial scales of coherent structures have been estimated: for the selected frequency range, the distribution of spatial scales is picked around ~30 ion Larmor radius or ion inertial length (~1200 km). Our observations in the solar wind can provide constraints on theoretical modeling of small-scale turbulence and dissipation in collisionless magnetized plasmas.

  4. Improvement of the gas cluster ion beam-(GCIB)-based molecular secondary ion mass spectroscopy (SIMS) depth profile with O2(+) cosputtering.

    PubMed

    Chu, Yi-Hsuan; Liao, Hua-Yang; Lin, Kang-Yi; Chang, Hsun-Yun; Kao, Wei-Lun; Kuo, Ding-Yuan; You, Yun-Wen; Chu, Kuo-Jui; Wu, Chen-Yi; Shyue, Jing-Jong

    2016-04-21

    Over the last decade, cluster ion beams have displayed their capability to analyze organic materials and biological specimens. Compared with atomic ion beams, cluster ion beams non-linearly enhance the sputter yield, suppress damage accumulation and generate high mass fragments during sputtering. These properties allow successful Secondary Ion Mass Spectroscopy (SIMS) analysis of soft materials beyond the static limit. Because the intensity of high mass molecular ions is intrinsically low, enhancing the intensity of these secondary ions while preserving the sample in its original state is the key to highly sensitive molecular depth profiles. In this work, bulk poly(ethylene terephthalate) (PET) was used as a model material and analyzed using Time-of-Flight SIMS (ToF-SIMS) with a pulsed Bi3(2+) primary ion. The optimized hardware of a 10 kV Ar2500(+) Gas Cluster Ion Beam (GCIB) with a low kinetic energy (200-500 V) oxygen ion (O2(+)) as a cosputter beam was employed for generating depth profiles and for examining the effect of beam parameters. The results were then quantitatively analyzed using an established erosion model. It was found that the ion intensity of the PET monomer ([M + H](+)) and its large molecular fragment ([M - C2H4O + H](+)) steadily declined during single GCIB sputtering, with distortion of the distribution information. However, under an optimized GCIB-O2(+) cosputter, the secondary ion intensity quickly reached a steady state and retained >95% intensity with respect to the pristine surface, although the damage cross-section was larger than that of single GCIB sputtering. This improvement was due to the oxidation of molecules and the formation of -OH groups that serve as proton donors to particles emitted from the surface. As a result, the ionization yield was enhanced and damage to the chemical structure was masked. Although O2(+) is known to alter the chemical structure and cause damage accumulation, the concurrently used GCIB could

  5. Ion mobility spectrometry-mass spectrometry examination of the structures, stabilities, and extents of hydration of dimethylamine-sulfuric acid clusters.

    PubMed

    Thomas, Jikku M; He, Siqin; Larriba-Andaluz, Carlos; DePalma, Joseph W; Johnston, Murray V; Hogan, Christopher J

    2016-08-17

    We applied an atmospheric pressure differential mobility analyzer (DMA) coupled to a time-of-flight mass spectrometer to examine the stability, mass-mobility relationship, and extent of hydration of dimethylamine-sulfuric acid cluster ions, which are of relevance to nucleation in ambient air. Cluster ions were generated by electrospray ionization and were of the form: [H((CH3)2NH)x(H2SO4)y](+) and [(HSO4)((CH3)2NH)x(H2SO4)y](-), where 4 ≤ x ≤ 8, and 5 ≤ y ≤ 12. Under dry conditions, we find that positively charged cluster ions dissociated via loss of both multiple dimethylamine and sulfuric acid molecules after mobility analysis but prior to mass analysis, and few parent ions were detected in the mass spectrometer. Dissociation also occurred for negative ions, but to a lesser extent than for positive ions for the same mass spectrometer inlet conditions. Under humidified conditions (relative humidities up to 30% in the DMA), positively charged cluster ion dissociation in the mass spectrometer inlet was mitigated and occurred primarily by H2SO4 loss from ions containing excess acid molecules. DMA measurements were used to infer collision cross sections (CCSs) for all identifiable cluster ions. Stokes-Millikan equation and diffuse/inelastic gas molecule scattering predicted CCSs overestimate measured CCSs by more than 15%, while elastic-specular collision model predictions are in good agreement with measurements. Finally, cluster ion hydration was examined by monitoring changes in CCSs with increasing relative humidity. All examined cluster ions showed a modest amount of water molecule adsorption, with percentage increases in CCS smaller than 10%. The extent of hydration correlates directly with cluster ion acidity for positive ions. PMID:27485283

  6. Time-of-flight secondary ion mass spectrometry studies of cluster ion analysis for semiconductors and diffusion of manganese in gallium arsenide at low temperatures

    NASA Astrophysics Data System (ADS)

    Goacher, Robyn Elizabeth

    Secondary Ion Mass Spectrometry (SIMS) is an established method for the quantitative analysis of dopants in semiconductors. The quasi-parallel mass acquisition of Time-of-Flight SIMS, along with the development of polyatomic primary ions, have rapidly increased the use of SIMS for analysis of organic and biological specimens. However, the advantages and disadvantages of using cluster primary ions for quantitative analysis of inorganic materials are not clear. The research described in this dissertation investigates the consequences of using polyatomic primary ions for the analysis of inorganic compounds in ToF-SIMS. Furthermore, the diffusion of Mn in GaAs, which is important in Spintronic material applications such as spin injection, is also studied by quantitative ToF-SIMS depth profiling. In the first portion of this work, it was discovered that primary ion bombardment of pre-sputtered compound semiconductors GaAs and InP for the purpose of spectral analysis resulted in the formation of cluster secondary ions, as well as atomic secondary ions (Chapter 2). In particular, bombardment using a cluster primary ion such as Bi3q + or C60q+ resulted in higher yields of high-mass cluster secondary ions. These cluster secondary ions did not have bulk stoichiometry, "non-stoichiometric", in contrast to the paradigm of stoichiometric cluster ions generated from salts. This is attributed to the covalent bonding of the compound semiconductors, as well as to preferential sputtering. The utility of high-mass cluster secondary ions in depth profiling is also discussed. Relative sensitivity factors (RSFs) calculated for ion-implanted Fe and Mn samples in GaAs also exhibit differences based on whether monatomic or polyatomic primary ions are utilized (Chapter 3). These RSFs are important for the quantitative conversion of intensity to concentration. When Bi 32+ primary ions are used for analysis instead of Bi + primary ions, there is a significantly higher proportion of Mn and Fe

  7. Nonadiabatic molecular dynamics simulations of the photofragmentation and geminate recombination dynamics in size-selected I2- . Arn cluster ions

    NASA Astrophysics Data System (ADS)

    Batista, V. S.; Coker, D. F.

    1997-05-01

    We investigate the photodissociation, geminate recombination and relaxation dynamics in size-selected I2-ṡArn cluster ions using a coupled quantum-classical molecular dynamics method and a model Hamiltonian gained from diatomics-in-ionic systems. We calculate photofragmentation yields of various charged product clusters of the dissociated I-ṡArf or recombined I2-ṡArf' forms as a function of precursor cluster size and find almost quantitative agreement with experimental results. The trends in photofragmentation are explained in terms of various participating electronically nonadiabatic channels coupled with vibrational relaxation on these different surfaces. We also explore the role of long range electrostatic interactions and underlying precursor cluster geometry on the photofragmentation dynamics.

  8. The mathematical principles and design of the NAIS - a spectrometer for the measurement of cluster ion and nanometer aerosol size distributions

    NASA Astrophysics Data System (ADS)

    Mirme, S.; Mirme, A.

    2013-04-01

    The paper describes the Neutral cluster and Air Ion Spectrometer (NAIS) - a multichannel aerosol instrument capable of measuring the distribution of ions (charged particles and cluster ions) of both polarities in the electric mobility range from 3.2 to 0.0013 cm2 V-1 s-1 and the distribution of aerosol particles in the size range from 2.0 to 40 nm. We introduce the principles of design, data processing and spectrum deconvolution of the instrument.

  9. Ion channel clustering at the axon initial segment and node of Ranvier evolved sequentially in early chordates.

    PubMed

    Hill, Alexis S; Nishino, Atsuo; Nakajo, Koichi; Zhang, Giuxin; Fineman, Jaime R; Selzer, Michael E; Okamura, Yasushi; Cooper, Edward C

    2008-12-01

    In many mammalian neurons, dense clusters of ion channels at the axonal initial segment and nodes of Ranvier underlie action potential generation and rapid conduction. Axonal clustering of mammalian voltage-gated sodium and KCNQ (Kv7) potassium channels is based on linkage to the actin-spectrin cytoskeleton, which is mediated by the adaptor protein ankyrin-G. We identified key steps in the evolution of this axonal channel clustering. The anchor motif for sodium channel clustering evolved early in the chordate lineage before the divergence of the wormlike cephalochordate, amphioxus. Axons of the lamprey, a very primitive vertebrate, exhibited some invertebrate features (lack of myelin, use of giant diameter to hasten conduction), but possessed narrow initial segments bearing sodium channel clusters like in more recently evolved vertebrates. The KCNQ potassium channel anchor motif evolved after the divergence of lampreys from other vertebrates, in a common ancestor of shark and humans. Thus, clustering of voltage-gated sodium channels was a pivotal early innovation of the chordates. Sodium channel clusters at the axon initial segment serving the generation of action potentials evolved long before the node of Ranvier. KCNQ channels acquired anchors allowing their integration into pre-existing sodium channel complexes at about the same time that ancient vertebrates acquired myelin, saltatory conduction, and hinged jaws. The early chordate refinements in action potential mechanisms we have elucidated appear essential to the complex neural signaling, active behavior, and evolutionary success of vertebrates. PMID:19112491

  10. Electromagnetic Ion Cyclotron Waves near the Plasmapause: A CLUSTER Case Study

    NASA Astrophysics Data System (ADS)

    Fraser, B. J.; Liu, Y.; Menk, F. W.

    2011-12-01

    Electromagnetic ion cyclotron (EMIC) waves in the Pc1 ultra-low frequency wave band (0.2-5Hz) observed in the plasmasphere and magnetosphere are generated by micro-scale instabilities associated with keV energetic protons of ring current origin. This case study presents a typical EMIC wave event with frequency 1.8-3.5 Hz observed by the four Cluster spacecraft when passing through perigee (L ~ 4:2) and moving northward on 2 November 2001 around 08 MLT. The event occurred around the magnetic equatorial plane within magnetic latitude range ±18 degrees with a short duration of 50 minutes. The associated cold electron density data show the wave power was confined within the narrow shell of the plasmapause where the electron density gradient decreased from 30-80 cm-3 to 20 cm-3. The radial scale size of the wave region is estimated at ~ 0:77 Re. The wave polarization was dominantly left-handed around the equatorial region and inner side of source region, but appeared right-handed close to the outer edge of the plasmapause and at higher latitudes. The Poynting flux and minimum variance analysis indicate that the wave energy was mainly transported towards high latitudes though oblique propagation was seen around the equatorial region. Enhanced H+, He+ and O+ particle energy fluxes were seen during the wave event over energy range ~25eV-40keV. Unfortunately the lower energy cold plasma composition data were not available. These observations suggest the waves originated around the equatorial region in the high density outer plasmasphere-plasmapause which overlaps the ring current; ideal conditions for wave generation by the ion cyclotron instability.

  11. Novel ion specificity of a carboxylate cluster Mg(II) binding site: strong charge selectivity and weak size selectivity.

    PubMed

    Needham, J V; Chen, T Y; Falke, J J

    1993-04-01

    Carboxylate cluster Mg(II) binding sites consist of a cluster of side-chain carboxylates, typically 3-4 in number, partially buried in a shallow cleft on the surface of a Mg(II) binding protein. Such clusters are often found in the active sites of enzymes catalyzing phosphochemistry. An example is the phospho-signaling protein CheY of the Escherichia coli chemotaxis pathway, which binds Mg(II) via a cluster of three carboxylates at its phosphorylation site. The present study quantitates both the ion charge and size specificity of the CheY site by measuring the dissociation constants of metal ions from groups Ia, IIa, IIIa, and the lanthanides; these spherical cations provide a range of substrates with incrementally varying charge and radius. The site binds divalent and trivalent cations, but it effectively excludes monovalent cations, including the physiological ions Na(I) and K(I). This charge specificity is in contrast to the site's remarkable lack of size specificity: divalent and trivalent cations exhibit affinities which are essentially independent of radius. It is revealing to compare the ion specificity of the Mg(II) site with the previously characterized specificity of the EF-hand class of Ca(II) sites commonly found in Ca(II) signaling proteins. The Mg(II) and Ca(II) sites exhibit similar charge selectivity, but the Ca(II) site is highly size-selective, preferring divalent and trivalent ions with radii similar to that of Ca(II).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8461299

  12. Three-Dimensional Image of Cleavage Bodies in Nuclei Is Configured Using Gas Cluster Ion Beam with Time-of-Flight Secondary Ion Mass Spectrometry.

    PubMed

    Masaki, Noritaka; Ishizaki, Itsuko; Hayasaka, Takahiro; Fisher, Gregory L; Sanada, Noriaki; Yokota, Hideo; Setou, Mitsutoshi

    2015-01-01

    Structural variations of DNA in nuclei are deeply related with development, aging, and diseases through transcriptional regulation. In order to bare cross sections of samples maintaining sub-micron structures, an Ar2500(+)-gas cluster ion beam (GCIB) sputter was recently engineered. By introducing GCIB sputter to time-of-flight secondary ion mass spectrometry (TOF-SIMS), we analyzed the 3D configuration and chemical composition of subnuclear structures of pyramidal cells in the CA2 region in mouse brain hippocampus. Depth profiles of chemicals were analyzed as 3D distributions by combining topographic analyses. Signals corresponding to anions such as CN(-) and PO3(-) were distributed characteristically in the shape of cell organelles. CN(-) signals overlapped DAPI fluorescence signals corresponding to nuclei. The clusters shown by PO3(-) and those of adenine ions were colocalized inside nuclei revealed by the 3D reconstruction. Taking into account their size and their number in each nucleus, those clusters could be in the cleavage bodies, which are a kind of intranuclear structure. PMID:25961407

  13. Three-Dimensional Image of Cleavage Bodies in Nuclei Is Configured Using Gas Cluster Ion Beam with Time-of-Flight Secondary Ion Mass Spectrometry

    PubMed Central

    Masaki, Noritaka; Ishizaki, Itsuko; Hayasaka, Takahiro; Fisher, Gregory L.; Sanada, Noriaki; Yokota, Hideo; Setou, Mitsutoshi

    2015-01-01

    Structural variations of DNA in nuclei are deeply related with development, aging, and diseases through transcriptional regulation. In order to bare cross sections of samples maintaining sub-micron structures, an Ar2500+-gas cluster ion beam (GCIB) sputter was recently engineered. By introducing GCIB sputter to time-of-flight secondary ion mass spectrometry (TOF-SIMS), we analyzed the 3D configuration and chemical composition of subnuclear structures of pyramidal cells in the CA2 region in mouse brain hippocampus. Depth profiles of chemicals were analyzed as 3D distributions by combining topographic analyses. Signals corresponding to anions such as CN− and PO3− were distributed characteristically in the shape of cell organelles. CN− signals overlapped DAPI fluorescence signals corresponding to nuclei. The clusters shown by PO3− and those of adenine ions were colocalized inside nuclei revealed by the 3D reconstruction. Taking into account their size and their number in each nucleus, those clusters could be in the cleavage bodies, which are a kind of intranuclear structure. PMID:25961407

  14. Lipid imaging by gold cluster time-of-flight secondary ion mass spectrometry: application to Duchenne muscular dystrophy.

    PubMed

    Touboul, David; Brunelle, Alain; Halgand, Frédéric; De La Porte, Sabine; Laprévote, Olivier

    2005-07-01

    Imaging with time-of-flight secondary ion mass spectrometry (TOF-SIMS) has expanded very rapidly with the development of gold cluster ion sources (Au(3+)). It is now possible to acquire ion density maps (ion images) on a tissue section without any treatment and with a lateral resolution of few micrometers. In this article, we have taken advantage of this technique to study the degeneration/regeneration process in muscles of a Duchenne muscular dystrophy model mouse. Specific distribution of different lipid classes (fatty acids, triglycerides, phospholipids, tocopherol, coenzyme Q9, and cholesterol) allows us to distinguish three different regions on a mouse leg section: one is destroyed, another is degenerating (oxidative stress and deregulation of the phosphoinositol cycle), and the last one is stable. TOF-SIMS imaging shows the ability to localize directly on a tissue section a great number of lipid compounds that reflect the state of the cellular metabolism. PMID:15834124

  15. Polymerization of ionized acetylene clusters into covalent bonded ions: evidence for the formation of benzene radical cation.

    PubMed

    Momoh, Paul O; Abrash, Samuel A; Mabrouki, Ridha; El-Shall, M Samy

    2006-09-27

    Since the discovery of acetylene and benzene in protoplanetary nebulae under powerful ultraviolet ionizing radiation, efforts have been made to investigate the polymerization of ionized acetylene. Here we report the efficient formation of benzene ions within gas-phase ionized acetylene clusters (C2H2)n+ with n = 3-60. The results from experiments, which use mass-selected ion mobility techniques, indicate that the (C2H2)3+ ion has unusual stability similar to that of the benzene cation; its primary fragment ions are similar to those reported from the benzene cation, and it has a collision cross section of 47.4 A2 in helium at 300 K, similar to the value of 47.9 A2 reported for the benzene cation. In other words, (C2H2)3+ structurally looks like benzene, it has stability similar to that of benzene, it fragments such as benzene, therefore, it must be benzene! PMID:16984178

  16. Smart darting diffusion Monte Carlo: Applications to lithium ion-Stockmayer clusters

    NASA Astrophysics Data System (ADS)

    Christensen, H. M.; Jake, L. C.; Curotto, E.

    2016-05-01

    In a recent investigation [K. Roberts et al., J. Chem. Phys. 136, 074104 (2012)], we have shown that, for a sufficiently complex potential, the Diffusion Monte Carlo (DMC) random walk can become quasiergodic, and we have introduced smart darting-like moves to improve the sampling. In this article, we systematically characterize the bias that smart darting moves introduce in the estimate of the ground state energy of a bosonic system. We then test a simple approach to eliminate completely such bias from the results. The approach is applied for the determination of the ground state of lithium ion-n-dipoles clusters in the n = 8-20 range. For these, the smart darting diffusion Monte Carlo simulations find the same ground state energy and mixed-distribution as the traditional approach for n < 14. In larger systems we find that while the ground state energies agree quantitatively with or without smart darting moves, the mixed-distributions can be significantly different. Some evidence is offered to conclude that introducing smart darting-like moves in traditional DMC simulations may produce a more reliable ground state mixed-distribution.

  17. Super-Resolution Scanning Patch-Clamp Reveals Clustering of Functional Ion Channels in the Adult Ventricular Myocyte

    PubMed Central

    Bhargava, Anamika; Lin, Xianming; Novak, Pavel; Mehta, Kinneri; Korchev, Yuri

    2013-01-01

    Rationale Compartmentation of ion channels on the cardiomyocyte surface is important for electrical propagation and electromechanical coupling. The specialized T-tubule and costameric structures facilitate spatial coupling of various ion channels and receptors. Existing methods like immunofluorescence and patch-clamp techniques are limited in their ability to localize functional ion channels. As such, a correlation between channel protein location and channel function remains incomplete. Objective To validate a method that permits to routinely image the topography of a live cardiomyocyte, and then study clustering of functional ion channels from a specific microdomain. Methods and Results We used scanning ion conductance microscopy and conventional cell-attached patch-clamp with a software modification that allows controlled increase of pipette tip diameter. The sharp nanopipette used for topography scan was modified into a larger patch pipette which can be positioned with nanoscale precision to a specific site of interest (crest, groove or T-tubules of cardiomyocytes), and sealed to the membrane for cell-attached recording of ion channels. Using this method, we significantly increased the probability of detecting activity of L-type calcium channels in the T-tubules of ventricular cardiomyocytes. We also demonstrated that active sodium channels do not distribute homogenously on the sarcolemma but rather, they segregate into clusters of various densities -most crowded in the crest region- that are surrounded by areas virtually free of functional sodium channels. Conclusions Our new method substantially increases the throughput of recording location-specific functional ion channels on the cardiomyocyte sarcolemma, thus allowing characterization of ion channels in relation to the microdomain in which they reside. PMID:23438901

  18. Formation of aluminum films on silicon by ion beam deposition: A comparison with ionized cluster beam deposition

    SciTech Connect

    Zuhr, R.A.; Haynes, T.E.; Galloway, M.D. ); Tanaka, S.; Yamada, A.; Yamada, I. . Ion Beam Engineering Lab.)

    1990-01-01

    The direct ion beam deposition (IBD) technique has been used to study the formation of oriented aluminum films on single crystal silicon substrates. In the IBD process, thin film growth is accomplished by decelerating a magnetically-analyzed ion beam to low energies (10--200 eV) for direct deposition onto the substrate under UHV conditions. The energy of the incident ions can be selected to provide the desired growth conditions, and the mass analysis ensures good beam purity. The aluminum on silicon system is one which has been studied extensively by ionized cluster beam (ICB) deposition. In this work, we have studied the formation of such films by IBD with emphasis on the effects of ion energy, substrate temperature, and surface cleanliness. Oriented films have been grown on Si(111) at temperatures from 40{degree} to 300{degree}C and with ion energies from 30 to 120 eV per ion. Completed films were analyzed by ion scattering, x-ray diffraction, scanning electron microscopy, and optical microscopy. Results achieved for thin films grown by IBD are compared with results for similar films grown by ICB deposition. 15 refs., 3 figs.

  19. The effect of acid-base clustering and ions on the growth of atmospheric nano-particles

    NASA Astrophysics Data System (ADS)

    Lehtipalo, Katrianne; Rondo, Linda; Kontkanen, Jenni; Schobesberger, Siegfried; Jokinen, Tuija; Sarnela, Nina; Kürten, Andreas; Ehrhart, Sebastian; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Sipilä, Mikko; Yli-Juuti, Taina; Duplissy, Jonathan; Adamov, Alexey; Ahlm, Lars; Almeida, João; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; Dommen, Josef; Downard, Andrew J.; Dunne, Eimear M.; Flagan, Richard C.; Guida, Roberto; Hakala, Jani; Hansel, Armin; Jud, Werner; Kangasluoma, Juha; Kerminen, Veli-Matti; Keskinen, Helmi; Kim, Jaeseok; Kirkby, Jasper; Kupc, Agnieszka; Kupiainen-Määttä, Oona; Laaksonen, Ari; Lawler, Michael J.; Leiminger, Markus; Mathot, Serge; Olenius, Tinja; Ortega, Ismael K.; Onnela, Antti; Petäjä, Tuukka; Praplan, Arnaud; Rissanen, Matti P.; Ruuskanen, Taina; Santos, Filipe D.; Schallhart, Simon; Schnitzhofer, Ralf; Simon, Mario; Smith, James N.; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Tomé, António; Vaattovaara, Petri; Vehkamäki, Hanna; Vrtala, Aron E.; Wagner, Paul E.; Williamson, Christina; Wimmer, Daniela; Winkler, Paul M.; Virtanen, Annele; Donahue, Neil M.; Carslaw, Kenneth S.; Baltensperger, Urs; Riipinen, Ilona; Curtius, Joachim; Worsnop, Douglas R.; Kulmala, Markku

    2016-05-01

    The growth of freshly formed aerosol particles can be the bottleneck in their survival to cloud condensation nuclei. It is therefore crucial to understand how particles grow in the atmosphere. Insufficient experimental data has impeded a profound understanding of nano-particle growth under atmospheric conditions. Here we study nano-particle growth in the CLOUD (Cosmics Leaving OUtdoors Droplets) chamber, starting from the formation of molecular clusters. We present measured growth rates at sub-3 nm sizes with different atmospherically relevant concentrations of sulphuric acid, water, ammonia and dimethylamine. We find that atmospheric ions and small acid-base clusters, which are not generally accounted for in the measurement of sulphuric acid vapour, can participate in the growth process, leading to enhanced growth rates. The availability of compounds capable of stabilizing sulphuric acid clusters governs the magnitude of these effects and thus the exact growth mechanism. We bring these observations into a coherent framework and discuss their significance in the atmosphere.

  20. Absolute single-ion solvation free energy scale in methanol determined by the lithium cluster-continuum approach.

    PubMed

    Pliego, Josefredo R; Miguel, Elizabeth L M

    2013-05-01

    Absolute solvation free energy of the lithium cation in methanol was calculated by the cluster-continuum quasichemical theory of solvation. Clusters with up to five methanol molecules were investigated using X3LYP, MP2, and MP4 methods with DZVP, 6-311+G(2df,2p), TZVPP+diff, and QZVPP+diff basis sets and including the cluster solvation through the PCM and SMD continuum models. Our calculations have determined a value of -118.1 kcal mol(-1) for the solvation free energy of the lithium, in close agreement with a value of -116.6 kcal mol(-1) consistent with the TATB assumption. Using data of solvation and transfer free energy of a pair of ions, electrode potentials and pKa, we have obtained the solvation free energy of 25 ions in methanol. Our analysis leads to a value of -253.6 kcal mol(-1) for the solvation free energy of the proton, which can be compared with the value of -263.5 kcal mol(-1) obtained by Kelly et al. using the cluster pair approximation. Considering that this difference is due to the methanol surface potential, we have estimated that it corresponds to -0.429 V. PMID:23570440

  1. Reduce the matrix effect in biological tissue imaging using dynamic reactive ionization and gas cluster ion beams.

    PubMed

    Tian, Hua; Wucher, Andreas; Winograd, Nicholas

    2016-06-01

    In the context of a secondary ion mass spectrometry (SIMS) experiment, dynamic reactive ionization (DRI) involves introducing a reactive dopant, HCl, into an Ar gas cluster primary ion beam along with a source of water to enable dissociation of HCl to free protons. This concerted effect, precisely occurring at the impact site of the cluster beam, enhances the protonation of molecular species. Here, the authors apply this methodology to study the hippocampus and cerebellum region of a frozen-hydrated mouse brain section. To determine the degree of enhancement associated with DRI conditions, sequential tissue slices were arranged in a mirrored configuration so that comparable regions of the tissue could be explored. The results show that the protonated lipid species are increased by ∼10-fold, but that the normally prevalent salt adducts are virtually unaffected. This observation is discussed as a novel approach to minimizing SIMS matrix effects in complex materials. Moreover, the chemical images of protonated lipid ions exhibit clearer features in the cerebellum region as compared to images acquired with the pure Ar cluster beam. PMID:26856333

  2. Reactivity Control of Rhodium Cluster Ions by Alloying with Tantalum Atoms.

    PubMed

    Mafuné, Fumitaka; Tawaraya, Yuki; Kudoh, Satoshi

    2016-02-18

    Gas phase, bielement rhodium and tantalum clusters, RhnTam(+) (n + m = 6), were prepared by the double laser ablation of Rh and Ta rods in He carrier gas. The clusters were introduced into a reaction gas cell filled with nitric oxide (NO) diluted with He and were subjected to collisions with NO and He at room temperature. The product species were observed by mass spectrometry, demonstrating that the NO molecules were sequentially adsorbed on the RhnTam(+) clusters to form RhnTam(+)NxOx (x = 1, 2, 3, ...) species. In addition, oxide clusters, RhnTam(+)O2, were also observed, suggesting that the NO molecules were dissociatively adsorbed on the cluster, the N atoms migrated on the surface to form N2, and the N2 molecules were released from RhnTam(+)N2O2. The reactivity, leading to oxide formation, was composition dependent: oxide clusters were dominantly formed for the bielement clusters containing both Rh and Ta atoms, whereas such clusters were hardly formed for the single-element Rhn(+) and Tam(+) clusters. DFT calculations indicated that the Ta atoms induce dissociation of NO on the clusters by lowering the dissociation energy, whereas the Rh atoms enable release of N2 by lowering the binding energy of the N atoms on the clusters. PMID:26799470

  3. Stable compositions and geometrical structures of titanium oxide cluster cations and anions studied by ion mobility mass spectrometry.

    PubMed

    Ohshimo, Keijiro; Norimasa, Naoya; Moriyama, Ryoichi; Misaizu, Fuminori

    2016-05-21

    Geometrical structures of titanium oxide cluster cations and anions have been investigated by ion mobility mass spectrometry and quantum chemical calculations based on density functional theory. Stable cluster compositions with respect to collision induced dissociation were also determined by changing ion injection energy to an ion drift cell for mobility measurements. The TinO2n-1 (+) cations and TinO2n (-) anions were predominantly observed at high injection energies, in addition to TinO2n (+) for cations and TinO2n+1 (-) for anions. Collision cross sections of TinO2n (+) and TinO2n+1 (-) for n = 1-7, determined by ion mobility mass spectrometry, were compared with those obtained theoretically as orientation-averaged cross sections for the optimized structures by quantum chemical calculations. All of the geometrical structures thus assigned have three-dimensional structures, which are in marked contrast with other oxides of late transition metals. One-oxygen atom dissociation processes from TinO2n (+) and TinO2n+1 (-) by collisions were also explained by analysis of spin density distributions. PMID:27208947

  4. Stable compositions and geometrical structures of titanium oxide cluster cations and anions studied by ion mobility mass spectrometry

    NASA Astrophysics Data System (ADS)

    Ohshimo, Keijiro; Norimasa, Naoya; Moriyama, Ryoichi; Misaizu, Fuminori

    2016-05-01

    Geometrical structures of titanium oxide cluster cations and anions have been investigated by ion mobility mass spectrometry and quantum chemical calculations based on density functional theory. Stable cluster compositions with respect to collision induced dissociation were also determined by changing ion injection energy to an ion drift cell for mobility measurements. The TinO2n-1+ cations and TinO2n- anions were predominantly observed at high injection energies, in addition to TinO2n+ for cations and TinO2n+1- for anions. Collision cross sections of TinO2n+ and TinO2n+1- for n = 1-7, determined by ion mobility mass spectrometry, were compared with those obtained theoretically as orientation-averaged cross sections for the optimized structures by quantum chemical calculations. All of the geometrical structures thus assigned have three-dimensional structures, which are in marked contrast with other oxides of late transition metals. One-oxygen atom dissociation processes from TinO2n+ and TinO2n+1- by collisions were also explained by analysis of spin density distributions.

  5. Vibrational and unimolecular dissociation of mixed solvent cluster ions: Na +((CH 3) 2CO) n(CH 3OH) m

    NASA Astrophysics Data System (ADS)

    Weinheimer, Corey J.; Lisy, James M.

    1998-12-01

    The competitive solvation of the sodium ion by acetone and methanol has been investigated by vibrational spectroscopy of the C-O and O-H stretching modes of methanol and by unimolecular dissociation of mass-selected cluster ions using a tandem mass spectrometer. The onset of hydrogen bonding was detected by substantial shifts in the C-O (+12 to +16 cm -1) and O-H (-200 cm -1) stretches, as well as by significant increases in the intensity and width of the O-H bands. These onsets were observed when a total of five molecules were present about the ion. The unimolecular dissociation rates of metastable ion clusters of composition Na +((CH 3) 2CO) 1-9 and Na +((CH 3) 2CO) 1-8(CH 3OH) 1 were also measured using the same experimental apparatus. A significant increase in rate was observed when seven or more acetone molecules were present, suggesting a solvent shell size of six.

  6. Magnetic properties of Fe{sub 7}Co{sub 3} films with gas cluster ion beam irradiations

    SciTech Connect

    Toyoda, Noriaki; Fujimoto, Akihiro; Yamada, Isao

    2013-05-07

    Gas cluster ion beam (GCIB) irradiation was performed on Fe{sub 7}Co{sub 3} films to examine the magnetic properties. After Ar ion beam etching, the coercive force (H{sub c}) increased from the initial value; this may have been caused by irradiation damage from high-energy Ar ions. H{sub c} decreased after Ar-GCIB irradiation (acceleration voltage (V{sub a}): 20 kV, ion fluence (F): 1 Multiplication-Sign 10{sup 15} ions/cm{sup 2}). Since GCIB is an equivalent low-energy (several eV/atom) ion beam, it shows a damage-recovery effect. When the ionization electron voltage (V{sub e}) was reduced from 200 to 60 V, H{sub c} was observed to further decrease. Since the fraction of multiply charged Ar-GCIB decreased with decreasing V{sub e}, severe damage of Fe{sub 7}Co{sub 3} films can be minimized by employing low V{sub e}.

  7. Improved mass resolution and mass accuracy in TOF-SIMS spectra and images using argon gas cluster ion beams.

    PubMed

    Shon, Hyun Kyong; Yoon, Sohee; Moon, Jeong Hee; Lee, Tae Geol

    2016-06-01

    The popularity of argon gas cluster ion beams (Ar-GCIB) as primary ion beams in time-of-flight secondary ion mass spectrometry (TOF-SIMS) has increased because the molecular ions of large organic- and biomolecules can be detected with less damage to the sample surfaces. However, Ar-GCIB is limited by poor mass resolution as well as poor mass accuracy. The inferior quality of the mass resolution in a TOF-SIMS spectrum obtained by using Ar-GCIB compared to the one obtained by a bismuth liquid metal cluster ion beam and others makes it difficult to identify unknown peaks because of the mass interference from the neighboring peaks. However, in this study, the authors demonstrate improved mass resolution in TOF-SIMS using Ar-GCIB through the delayed extraction of secondary ions, a method typically used in TOF mass spectrometry to increase mass resolution. As for poor mass accuracy, although mass calibration using internal peaks with low mass such as hydrogen and carbon is a common approach in TOF-SIMS, it is unsuited to the present study because of the disappearance of the low-mass peaks in the delayed extraction mode. To resolve this issue, external mass calibration, another regularly used method in TOF-MS, was adapted to enhance mass accuracy in the spectrum and image generated by TOF-SIMS using Ar-GCIB in the delayed extraction mode. By producing spectra analyses of a peptide mixture and bovine serum albumin protein digested with trypsin, along with image analyses of rat brain samples, the authors demonstrate for the first time the enhancement of mass resolution and mass accuracy for the purpose of analyzing large biomolecules in TOF-SIMS using Ar-GCIB through the use of delayed extraction and external mass calibration. PMID:26861497

  8. Examining the Critical Roles of Protons in Facilitating Oxidation of Chloride Ions by Permanganates: A Cluster Model Study

    SciTech Connect

    Zhang, Jian; Sun, Zhenrong; Wang, Xue B.

    2015-06-18

    The oxidation power of permanganates (MnO4–) is known to be strongly dependent on pH values, and is greatly enhanced in acidic solutions, in which, for example, MnO4– can even oxidize Cl– ions to produce Cl2 molecules. Although such dependence has been ascribed due to the different reduced states of Mn affordable in different pH media, a molecular level understanding and characterization of initial redox pair complexes available in different pH solutions is very limited. Herein, we report a comparative study of [MnO4]– and [MnO4•Sol]– (Sol = H2O, KCl, and HCl) anion clusters by negative ion photoelectron spectroscopy (NIPES) and theoretical computations to probe chemical bonding and electronic structures of [MnO4•Sol]– clusters, aimed to obtain a microscopic understanding of how MnO4– interacts with surrounding molecules. Our study shows that H2O behaves as a solvent molecule, KCl is a spectator bound by pure electrostatic interactions, both of which do not influence the MnO4– identity in their respective clusters. In contrast, in [MnO4•HCl]–, the proton is found to interact with both MnO4– and Cl– with appreciable covalent characters, and the frontier MOs of the cluster are comprised of contributions from both MnO4– and Cl– moieties. Therefore the proton serves as a chemical bridge, bringing two negatively charged redox species together to form an intimate redox pair. By adding more H+ to MnO4–, the oxygen atom can be taken away in the form of a water molecule, leaving MnO4– as an electron deficient MnO3+ species, which can subsequently oxidize Cl– ions.

  9. Coverage Dependent Charge Reduction of Cationic Gold Clusters on Surfaces Prepared Using Soft Landing of Mass-selected Ions

    SciTech Connect

    Johnson, Grant E.; Priest, Thomas A.; Laskin, Julia

    2012-11-29

    The ionic charge state of monodisperse cationic gold clusters on surfaces may be controlled by selecting the coverage of mass-selected ions soft landed onto a substrate. Polydisperse diphosphine-capped gold clusters were synthesized in solution by reduction of chloro(triphenylphosphine)gold(I) with borane tert-butylamine in the presence of 1,3-bis(diphenylphosphino)propane. The polydisperse gold clusters were introduced into the gas phase by electrospray ionization and mass selection was employed to select a multiply charged cationic cluster species (Au11L53+, m/z = 1409, L = 1,3-bis(diphenylphosphino)propane) which was delivered to the surfaces of four different self-assembled monolayers on gold (SAMs) at coverages of 1011 and 1012 clusters/mm2. Employing the spatial profiling capabilities of in-situ time-of-flight secondary ion mass spectrometry (TOF-SIMS) it is shown that, in addition to the chemical functionality of the monolayer (as demonstrated previously: ACS Nano, 2012, 6, 573) the coverage of cationic gold clusters on the surface may be used to control the distribution of ionic charge states of the soft-landed multiply charged clusters. In the case of a 1H,1H,2H,2H-perfluorodecanethiol SAM (FSAM) almost complete retention of charge by the deposited Au11L53+ clusters was observed at a lower coverage of 1011 clusters/mm2. In contrast, at a higher coverage of 1012 clusters/mm2, pronounced reduction of charge to Au11L52+ and Au11L5+ was observed on the FSAM. When soft landed onto 16- and 11-mercaptohexadecanoic acid surfaces on gold (16,11-COOH-SAMs), the mass-selected Au11L53+ clusters exhibited partial reduction of charge to Au11L52+ at lower coverage and additional reduction of charge to both Au11L52+ and Au11L5+ at higher coverage. The reduction of charge was found to be more pronounced on the surface of the shorter (thinner) C11 than the longer (thicker) C16-COOH-SAM. On the surface of the 1-dodecanethiol (HSAM) monolayer, the most abundant charge state

  10. Sampling Depths, Depth Shifts, and Depth Resolutions for Bi(n)(+) Ion Analysis in Argon Gas Cluster Depth Profiles.

    PubMed

    Havelund, R; Seah, M P; Gilmore, I S

    2016-03-10

    Gas cluster sputter depth profiling is increasingly used for the spatially resolved chemical analysis and imaging of organic materials. Here, a study is reported of the sampling depth in secondary ion mass spectrometry depth profiling. It is shown that effects of the sampling depth leads to apparent shifts in depth profiles of Irganox 3114 delta layers in Irganox 1010 sputtered, in the dual beam mode, using 5 keV Ar₂₀₀₀⁺ ions and analyzed with Bi(q+), Bi₃(q+) and Bi₅(q+) ions (q = 1 or 2) with energies between 13 and 50 keV. The profiles show sharp delta layers, broadened from their intrinsic 1 nm thickness to full widths at half-maxima (fwhm's) of 8-12 nm. For different secondary ions, the centroids of the measured delta layers are shifted deeper or shallower by up to 3 nm from the position measured for the large, 564.36 Da (C₃₃H₄₆N₃O₅⁻) characteristic ion for Irganox 3114 used to define a reference position. The shifts are linear with the Bi(n)(q+) beam energy and are greatest for Bi₃(q+), slightly less for Bi₅(q+) with its wider or less deep craters, and significantly less for Bi(q+) where the sputtering yield is very low and the primary ion penetrates more deeply. The shifts increase the fwhm’s of the delta layers in a manner consistent with a linearly falling generation and escape depth distribution function (GEDDF) for the emitted secondary ions, relevant for a paraboloid shaped crater. The total depth of this GEDDF is 3.7 times the delta layer shifts. The greatest effect is for the peaks with the greatest shifts, i.e. Bi₃(q+) at the highest energy, and for the smaller fragments. It is recommended that low energies be used for the analysis beam and that carefully selected, large, secondary ion fragments are used for measuring depth distributions, or that the analysis be made in the single beam mode using the sputtering Ar cluster ions also for analysis. PMID:26883085

  11. Poly L-lysine (PLL)-mediated porous hematite clusters as anode materials for improved Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Kim, Kun-Woo; Lee, Sang-Wha

    2015-09-01

    Porous hematite clusters were prepared as anode materials for improved Li-ion batteries. First, poly-L-lysine (PLL)-linked Fe3O4 was facilely prepared via cross-linking between the positive amine groups of PLL and carboxylate-bound Fe3O4. The subsequent calcination transformed the PLL-linked Fe3O4 into porous hematite clusters (Fe2O3@PLL) consisting of spherical α-Fe2O3 particles. Compared with standard Fe2O3, Fe3O4@PLL exhibited improved electrochemical performance as anode materials. The discharge capacity of Fe2O3@PLL was retained at 814.7 mAh g-1 after 30 cycles, which is equivalent to 80.4% of the second discharge capacity, whereas standard Fe2O3 exhibited a retention capacity of 352.3 mAh g-1. The improved electrochemical performance of Fe2O3@PLL was mainly attributed to the porous hematite clusters with mesoporosity (20-40 nm), which was beneficial for facilitating ion transport, suggesting a useful guideline for the design of porous architectures with higher retention capacity. [Figure not available: see fulltext.

  12. Cluster-continuum quasichemical theory calculation of the lithium ion solvation in water, acetonitrile and dimethyl sulfoxide: an absolute single-ion solvation free energy scale.

    PubMed

    Carvalho, Nathalia F; Pliego, Josefredo R

    2015-10-28

    Absolute single-ion solvation free energy is a very useful property for understanding solution phase chemistry. The real solvation free energy of an ion depends on its interaction with the solvent molecules and on the net potential inside the solute cavity. The tetraphenyl arsonium-tetraphenyl borate (TATB) assumption as well as the cluster-continuum quasichemical theory (CC-QCT) approach for Li(+) solvation allows access to a solvation scale excluding the net potential. We have determined this free energy scale investigating the solvation of the lithium ion in water (H2O), acetonitrile (CH3CN) and dimethyl sulfoxide (DMSO) solvents via the CC-QCT approach. Our calculations at the MP2 and MP4 levels with basis sets up to the QZVPP+diff quality, and including solvation of the clusters and solvent molecules by the dielectric continuum SMD method, predict the solvation free energy of Li(+) as -116.1, -120.6 and -123.6 kcal mol(-1) in H2O, CH3CN and DMSO solvents, respectively (1 mol L(-1) standard state). These values are compatible with the solvation free energy of the proton of -253.4, -253.2 and -261.1 kcal mol(-1) in H2O, CH3CN and DMSO solvents, respectively. Deviations from the experimental TATB scale are only 1.3 kcal mol(-1) in H2O and 1.8 kcal mol(-1) in DMSO solvents. However, in the case of CH3CN, the deviation reaches a value of 9.2 kcal mol(-1). The present study suggests that the experimental TATB scale is inconsistent for CH3CN. A total of 125 values of the solvation free energy of ions in these three solvents were obtained. These new data should be useful for the development of theoretical solvation models. PMID:26395146

  13. IR photodissociation spectroscopy of (OCS){sub n}{sup +} and (OCS){sub n}{sup −} cluster ions: Similarity and dissimilarity in the structure of CO{sub 2}, OCS, and CS{sub 2} cluster ions

    SciTech Connect

    Inokuchi, Yoshiya Ebata, Takayuki

    2015-06-07

    Infrared photodissociation (IRPD) spectra of (OCS){sub n}{sup +} and (OCS){sub n}{sup −} (n = 2–6) cluster ions are measured in the 1000–2300 cm{sup −1} region; these clusters show strong CO stretching vibrations in this region. For (OCS){sub 2}{sup +} and (OCS){sub 2}{sup −}, we utilize the messenger technique by attaching an Ar atom to measure their IR spectra. The IRPD spectrum of (OCS){sub 2}{sup +}Ar shows two bands at 2095 and 2120 cm{sup −1}. On the basis of quantum chemical calculations, these bands are assigned to a C{sub 2} isomer of (OCS){sub 2}{sup +}, in which an intermolecular semi-covalent bond is formed between the sulfur ends of the two OCS components by the charge resonance interaction, and the positive charge is delocalized over the dimer. The (OCS){sub n}{sup +} (n = 3–6) cluster ions show a few bands assignable to “solvent” OCS molecules in the 2000–2080 cm{sup −1} region, in addition to the bands due to the (OCS){sub 2}{sup +} ion core at ∼2090 and ∼2120 cm{sup −1}, suggesting that the dimer ion core is kept in (OCS){sub 3–6}{sup +}. For the (OCS){sub n}{sup −} cluster anions, the IRPD spectra indicate the coexistence of a few isomers with an OCS{sup −} or (OCS){sub 2}{sup −} anion core over the cluster range of n = 2–6. The (OCS){sub 2}{sup −}Ar anion displays two strong bands at 1674 and 1994 cm{sup −1}. These bands can be assigned to a C{sub s} isomer with an OCS{sup −} anion core. For the n = 2–4 anions, this OCS{sup −} anion core form is dominant. In addition to the bands of the OCS{sup −} core isomer, we found another band at ∼1740 cm{sup −1}, which can be assigned to isomers having an (OCS){sub 2}{sup −} ion core; this dimer core has C{sub 2} symmetry and {sup 2}A electronic state. The IRPD spectra of the n = 3–6 anions show two IR bands at ∼1660 and ∼2020 cm{sup −1}. The intensity of the latter component relative to that of the former one becomes stronger and stronger with

  14. Cusp signatures of ion entry and acceleration at the magnetospheric boundary: Large-scale modeling of Cluster observations

    NASA Astrophysics Data System (ADS)

    Berchem, J.; Richard, R.; Escoubet, C. P.; Pitout, F.

    2012-04-01

    Multi-point observations by the Cluster spacecraft have revealed the complexity of ion entry and acceleration at the magnetopause. In particular, successive measurements made by the spacecraft during periods of predominantly southward interplanetary magnetic field (IMF) often show the occurrence of large-scale structures in the energy-latitude dispersions of ions in the cusps. To determine the origins of these structures we have carried out large-scale simulations of the entry of ions at the magnetospheric boundary for southward IMF. Our study is based on using the time-dependent electric and magnetic fields predicted by three-dimensional global MHD simulations to compute the trajectories of large samples of solar wind ions launched upstream of the bow shock. Particle information collected in the simulations is then used to reproduce ion dispersions along spacecraft trajectories and determine the origins of the structures. We discuss the results of the study in the context of injection sources and reconnection processes at the dayside magnetopause. In particular, we investigate whether structures form during periods of quasi-steady reconnection.

  15. On the composition of ammonia-sulfuric-acid ion clusters during aerosol particle formation

    NASA Astrophysics Data System (ADS)

    Schobesberger, S.; Franchin, A.; Bianchi, F.; Rondo, L.; Duplissy, J.; Kürten, A.; Ortega, I. K.; Metzger, A.; Schnitzhofer, R.; Almeida, J.; Amorim, A.; Dommen, J.; Dunne, E. M.; Ehn, M.; Gagné, S.; Ickes, L.; Junninen, H.; Hansel, A.; Kerminen, V.-M.; Kirkby, J.; Kupc, A.; Laaksonen, A.; Lehtipalo, K.; Mathot, S.; Onnela, A.; Petäjä, T.; Riccobono, F.; Santos, F. D.; Sipilä, M.; Tomé, A.; Tsagkogeorgas, G.; Viisanen, Y.; Wagner, P. E.; Wimmer, D.; Curtius, J.; Donahue, N. M.; Baltensperger, U.; Kulmala, M.; Worsnop, D. R.

    2015-01-01

    The formation of particles from precursor vapors is an important source of atmospheric aerosol. Research at the Cosmics Leaving OUtdoor Droplets (CLOUD) facility at CERN tries to elucidate which vapors are responsible for this new-particle formation, and how in detail it proceeds. Initial measurement campaigns at the CLOUD stainless-steel aerosol chamber focused on investigating particle formation from ammonia (NH3) and sulfuric acid (H2SO4). Experiments were conducted in the presence of water, ozone and sulfur dioxide. Contaminant trace gases were suppressed at the technological limit. For this study, we mapped out the compositions of small NH3-H2SO4 clusters over a wide range of atmospherically relevant environmental conditions. We covered [NH3] in the range from < 2 to 1400 pptv, [H2SO4] from 3.3 × 106 to 1.4 × 109 cm-3 (0.1 to 56 pptv), and a temperature range from -25 to +20 °C. Negatively and positively charged clusters were directly measured by an atmospheric pressure interface time-of-flight (APi-TOF) mass spectrometer, as they initially formed from gas-phase NH3 and H2SO4, and then grew to larger clusters containing more than 50 molecules of NH3 and H2SO4, corresponding to mobility-equivalent diameters greater than 2 nm. Water molecules evaporate from these clusters during sampling and are not observed. We found that the composition of the NH3-H2SO4 clusters is primarily determined by the ratio of gas-phase concentrations [NH3] / [H2SO4], as well as by temperature. Pure binary H2O-H2SO4 clusters (observed as clusters of only H2SO4) only form at [NH3] / [H2SO4] < 0.1 to 1. For larger values of [NH3] / [H2SO4], the composition of NH3-H2SO4 clusters was characterized by the number of NH3 molecules m added for each added H2SO4 molecule n (Δm/Δ n), where n is in the range 4-18 (negatively charged clusters) or 1-17 (positively charged clusters). For negatively charged clusters, Δ m/Δn saturated between 1 and 1.4 for [NH3] / [H2SO4] > 10. Positively

  16. Coulomb frustration of the multiphoton ionization of metallic clusters under intense EUV FEL evidenced by ion spectrometry

    NASA Astrophysics Data System (ADS)

    Mazza, T.; Devetta, M.; Milani, P.; Motomura, K.; Liu, X.-J.; Fukuzawa, H.; Yamada, A.; Okunishi, M.; Nagaya, K.; Iwayama, H.; Sugishima, A.; Mizoguchi, Y.; Saito, N.; Coreno, M.; Fennel, Th; Nagasono, M.; Tono, K.; Togashi, T.; Kimura, H.; Senba, Y.; Ohashi, H.; Yabashi, M.; Ishikawa, T.; Yao, M.; Ueda, K.; Piseri, P.

    2015-12-01

    Free electron laser light sources delivering high intensity pulses of short wavelength radiation are opening novel possibilities for the investigation of matter at the nanoscale and for the discovery and understanding of new physical processes occurring at the exotic transient states they make accessible. Strong ionization of atomic constituents of a nano-sized sample is a representative example of such processes and the understanding of ionization dynamics is crucial for a realistic description of the experiments. We report here on multiple ionization experiments on free clusters of titanium, a high cohesive energy metal. The time of flight ion spectra reveal a saturation of the cluster ionization at ∼1016 photons per pulse per cm2. Our results also show a clear lack of any explosion process, opposite to what is observed for a rare-gas cluster under similar conditions. A simple and generalized multi-step ionization model including Coulomb frustration of the photoemission process effectively reproduces with a good agreement the main features of the experimental observation and points to an interpretation of the data involving a substantial energy deposition into the cluster through electronic system heating upon scattering events within photoemission.

  17. Monodisperse Au11 Clusters Prepared by Soft Landing of Mass Selected Ions

    SciTech Connect

    Johnson, Grant E.; Wang, Chong M.; Priest, Thomas A.; Laskin, Julia

    2011-11-01

    Preparation of clean monodisperse samples of clusters and nanoparticles for characterization using cutting-edge analytical techniques is essential to understanding their size-dependent properties. Herein, we report a general method for the preparation of high surface coverage samples of monodisperse clusters containing an exact number of atoms. Polydisperse solutions of diphosphine-capped gold clusters were produced by reduction synthesis. Electrospray ionization was used to introduce the clusters into the gas phase where they were filtered by mass-tocharge ratio allowing clusters of a selected size to be deposited onto carbon coated copper grids at well controlled kinetic energies. Scanning transmission electron microscopy (STEM) analysis of the soft landed clusters confirms their monodispersity and high coverage on the substrate. The soft landing approach may be extended to other materials compatible with an array of available ionization techniques and, therefore, has widespread utility as a means for controlled preparation of monodisperse samples of nanoparticles and clusters for analysis by transmission electron microscopy (TEM)

  18. Novel Electrocatalysts Prepared by Soft Landing of Mass-Selected Cluster Ions

    NASA Astrophysics Data System (ADS)

    Johnson, Grant; Moser, Trevor; Browning, Nigel; Engelhard, Mark; Laskin, Julia

    2015-03-01

    Metal clusters, which possess size and composition dependent properties, are promising materials for use as catalysts to promote electrochemical reactions in fuel cells. A physical synthesis technique, magnetron sputtering combined with gas-aggregation, has been employed to produce anionic metal clusters in the gas-phase across a range of sizes, shapes, and compositions for mass-selection and deposition onto glassy carbon electrodes. Sputtering of multiple targets in the same region of gas aggregation is demonstrated to produce uncapped binary and ternary alloy clusters with defined composition and morphology that are not accessible through synthesis in solution. Introduction of reactive gases including alcohols, alkanes, and amines into the sputtering region is shown to result in the formation of complex cluster morphologies containing carbon, nitrogen, and oxygen. A suite of cutting-edge characterization techniques is utilized to demonstrate how the size, shape, elemental composition, and surface density of clusters may be tuned through variations in source parameters such as the sputtering power, gas flow rates, and aggregation distance. The catalytic activity of the soft landed clusters towards the oxygen reduction reaction, a critical process occurring in hydrogen fuel cells, is measured using cyclic voltammetry. Alloy clusters containing reduced quantities of precious metals are shown to exhibit promising catalytic activity.

  19. The mathematical principles and design of the NAIS - a spectrometer for the measurement of cluster ion and nanometer aerosol size distributions

    NASA Astrophysics Data System (ADS)

    Mirme, S.; Mirme, A.

    2011-12-01

    The paper describes the Nanometer aerosol and Air Ion Spectrometer (NAIS) - a multi-channel aerosol instrument capable of measuring the distribution of ions (charged particles and cluster ions) of both polarities in the electric mobility range from 3.2 to 0.0013 cm2 V-1 s-1 and the distribution of aerosol particles in the size range from 2.0 to 40 nm. We introduce the principles of design, data processing and spectrum deconvolution of the instrument.

  20. Electron-ion plasma dynamics in the presence of highly charged dust-clusters

    SciTech Connect

    Djebli, Mourad Benkhelifa, El-Amine

    2015-05-15

    Electron-ion plasma expansion is studied in the presence of positively (negatively) highly charged uniformly distributed dust particles, considered as impurities. For that purpose, a multi-fluid model is used, where the charged impurities characteristics are included in Poisson's equation. We found that ion acceleration is enhanced by the presence of positively charged dust. The latter leads to spiky structures in the ion front which have a higher amplitude as the charge increases. The charged impurities have a significant effect when the combination of their charge and density is greater than a critical value which depends on ion to electron temperature ratio.

  1. A preparation approach of exploring cluster ion implantation: from ultra-thin carbon film to graphene

    PubMed Central

    2014-01-01

    Based on the extensive application of 2 × 1.7MV Tandetron accelerator, a low-energy cluster chamber has been built to explore for synthesizing graphene. Raman spectrum and atomic force microscopy (AFM) show that an amorphous carbon film in nanometer was deposited on the silicon by C4 cluster implantation. And we replaced the substrate with Ni/SiO2/Si and measured the thickness of Ni film by Rutherford backscattering spectrometry (RBS). Combined with suitable anneal conditions, these samples implanted by various small carbon clusters were made to grow graphene. Results from Raman spectrum reveal that few-layer graphene were obtained and discuss whether IG/I2D can contribute to explain the relationship between the number of graphene layers and cluster implantation dosage. PMID:24910570

  2. Graphene synthesis on SiC: Reduced graphitization temperature by C-cluster and Ar-ion implantation

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Li, H.; Zhang, Z. D.; Wang, Z. S.; Zhou, S. Y.; Wang, Z.; Li, T. C.; Liu, J. R.; Fu, D. J.

    2015-08-01

    Thermal decomposition of SiC is a promising method for high quality production of wafer-scale graphene layers, when the high decomposition temperature of SiC is substantially reduced. The high decomposition temperature of SiC around 1400 °C is a technical obstacle. In this work, we report on graphene synthesis on 6H-SiC with reduced graphitization temperature via ion implantation. When energetic Ar, C1 and C6-cluster ions implanted into 6H-SiC substrates, some of the Si-C bonds have been broken due to the electronic and nuclear collisions. Owing to the radiation damage induced bond breaking and the implanted C atoms as an additional C source the graphitization temperature was reduced by up to 200 °C.

  3. Observation of triply charged metal ion clusters by electrospray and laser spray

    PubMed

    Kojima; Kudaka; Sato; Asakawa; Akiyama; Kawashima; Hiraoka

    1999-01-01

    Studies of the gas phase ion chemistry of triply charged metal ions, M(3+) = Sc(3+), Y(3+), La(3+), Ce(3+), and Yb(3+), were made by electrospray and laser spray. Triply charged ion ligand complexes, M(3+)(ligand)(n) were produced in the gas phase by electrospray and laser spray for the following ligands; glucose; sucrose; raffinose; cyclodextrin; ginsenoside Rb(1); dimethyl sulfoxide (DMSO) and hexamethylphosphoramide (HMPA). The ion evaporation mechanism must be invoked to explain the transfer of more surface active ions (e.g., NH(4)(+)(H(2)O)(n)) in solution to the gas phase, while the transfer of low surface active ions (e.g., La(3+)(sucrose)(n)) may be explained by the charged residue model. In general, the laser spray gives stronger ion signals than electrospray for aqueous and water/methanol solutions. The laser spray is found to be more suitable for the observation of ions with larger solvation energies (e.g., Sc(3+)(DMSO)(n)). These results may be due to the enrichment of the sample concentration by the selective vaporization of the volatile solvent on the tip of the stainless steel capillary and also to the finer droplet formation caused by the laser irradiation. Copyright 1999 John Wiley & Sons, Ltd. PMID:10523765

  4. The effect of acid–base clustering and ions on the growth of atmospheric nano-particles

    DOE PAGESBeta

    Lehtipalo, Katrianne; Rondo, Linda; Kontkanen, Jenni; Schobesberger, Siegfried; Jokinen, Tuija; Sarnela, Nina; Kürten, Andreas; Ehrhart, Sebastian; Franchin, Alessandro; Nieminen, Tuomo; et al

    2016-05-20

    The growth of freshly formed aerosol particles can be the bottleneck in their survival to cloud condensation nuclei. It is therefore crucial to understand how particles grow in the atmosphere. Insufficient experimental data has impeded a profound understanding of nano-particle growth under atmospheric conditions. Here we study nano-particle growth in the CLOUD (Cosmics Leaving OUtdoors Droplets) chamber, starting from the formation of molecular clusters. We present measured growth rates at sub-3 nm sizes with different atmospherically relevant concentrations of sulphuric acid, water, ammonia and dimethylamine. We find that atmospheric ions and small acid-base clusters, which are not generally accounted formore » in the measurement of sulphuric acid vapour, can participate in the growth process, leading to enhanced growth rates. The availability of compounds capable of stabilizing sulphuric acid clusters governs the magnitude of these effects and thus the exact growth mechanism. Furthermore, we bring these observations into a coherent framework and discuss their significance in the atmosphere.« less

  5. The effect of acid–base clustering and ions on the growth of atmospheric nano-particles

    PubMed Central

    Lehtipalo, Katrianne; Rondo, Linda; Kontkanen, Jenni; Schobesberger, Siegfried; Jokinen, Tuija; Sarnela, Nina; Kürten, Andreas; Ehrhart, Sebastian; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Sipilä, Mikko; Yli-Juuti, Taina; Duplissy, Jonathan; Adamov, Alexey; Ahlm, Lars; Almeida, João; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; Dommen, Josef; Downard, Andrew J.; Dunne, Eimear M.; Flagan, Richard C.; Guida, Roberto; Hakala, Jani; Hansel, Armin; Jud, Werner; Kangasluoma, Juha; Kerminen, Veli-Matti; Keskinen, Helmi; Kim, Jaeseok; Kirkby, Jasper; Kupc, Agnieszka; Kupiainen-Määttä, Oona; Laaksonen, Ari; Lawler, Michael J.; Leiminger, Markus; Mathot, Serge; Olenius, Tinja; Ortega, Ismael K.; Onnela, Antti; Petäjä, Tuukka; Praplan, Arnaud; Rissanen, Matti P.; Ruuskanen, Taina; Santos, Filipe D.; Schallhart, Simon; Schnitzhofer, Ralf; Simon, Mario; Smith, James N.; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Tomé, António; Vaattovaara, Petri; Vehkamäki, Hanna; Vrtala, Aron E.; Wagner, Paul E.; Williamson, Christina; Wimmer, Daniela; Winkler, Paul M.; Virtanen, Annele; Donahue, Neil M.; Carslaw, Kenneth S.; Baltensperger, Urs; Riipinen, Ilona; Curtius, Joachim; Worsnop, Douglas R.; Kulmala, Markku

    2016-01-01

    The growth of freshly formed aerosol particles can be the bottleneck in their survival to cloud condensation nuclei. It is therefore crucial to understand how particles grow in the atmosphere. Insufficient experimental data has impeded a profound understanding of nano-particle growth under atmospheric conditions. Here we study nano-particle growth in the CLOUD (Cosmics Leaving OUtdoors Droplets) chamber, starting from the formation of molecular clusters. We present measured growth rates at sub-3 nm sizes with different atmospherically relevant concentrations of sulphuric acid, water, ammonia and dimethylamine. We find that atmospheric ions and small acid-base clusters, which are not generally accounted for in the measurement of sulphuric acid vapour, can participate in the growth process, leading to enhanced growth rates. The availability of compounds capable of stabilizing sulphuric acid clusters governs the magnitude of these effects and thus the exact growth mechanism. We bring these observations into a coherent framework and discuss their significance in the atmosphere. PMID:27197574

  6. The effect of acid-base clustering and ions on the growth of atmospheric nano-particles.

    PubMed

    Lehtipalo, Katrianne; Rondo, Linda; Kontkanen, Jenni; Schobesberger, Siegfried; Jokinen, Tuija; Sarnela, Nina; Kürten, Andreas; Ehrhart, Sebastian; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Sipilä, Mikko; Yli-Juuti, Taina; Duplissy, Jonathan; Adamov, Alexey; Ahlm, Lars; Almeida, João; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; Dommen, Josef; Downard, Andrew J; Dunne, Eimear M; Flagan, Richard C; Guida, Roberto; Hakala, Jani; Hansel, Armin; Jud, Werner; Kangasluoma, Juha; Kerminen, Veli-Matti; Keskinen, Helmi; Kim, Jaeseok; Kirkby, Jasper; Kupc, Agnieszka; Kupiainen-Määttä, Oona; Laaksonen, Ari; Lawler, Michael J; Leiminger, Markus; Mathot, Serge; Olenius, Tinja; Ortega, Ismael K; Onnela, Antti; Petäjä, Tuukka; Praplan, Arnaud; Rissanen, Matti P; Ruuskanen, Taina; Santos, Filipe D; Schallhart, Simon; Schnitzhofer, Ralf; Simon, Mario; Smith, James N; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Tomé, António; Vaattovaara, Petri; Vehkamäki, Hanna; Vrtala, Aron E; Wagner, Paul E; Williamson, Christina; Wimmer, Daniela; Winkler, Paul M; Virtanen, Annele; Donahue, Neil M; Carslaw, Kenneth S; Baltensperger, Urs; Riipinen, Ilona; Curtius, Joachim; Worsnop, Douglas R; Kulmala, Markku

    2016-01-01

    The growth of freshly formed aerosol particles can be the bottleneck in their survival to cloud condensation nuclei. It is therefore crucial to understand how particles grow in the atmosphere. Insufficient experimental data has impeded a profound understanding of nano-particle growth under atmospheric conditions. Here we study nano-particle growth in the CLOUD (Cosmics Leaving OUtdoors Droplets) chamber, starting from the formation of molecular clusters. We present measured growth rates at sub-3 nm sizes with different atmospherically relevant concentrations of sulphuric acid, water, ammonia and dimethylamine. We find that atmospheric ions and small acid-base clusters, which are not generally accounted for in the measurement of sulphuric acid vapour, can participate in the growth process, leading to enhanced growth rates. The availability of compounds capable of stabilizing sulphuric acid clusters governs the magnitude of these effects and thus the exact growth mechanism. We bring these observations into a coherent framework and discuss their significance in the atmosphere. PMID:27197574

  7. Spatial-temporal characteristics of ion acceleration sites in the Current Sheet of the Earth's magnetotail. Multipoint Cluster observations.

    NASA Astrophysics Data System (ADS)

    Grigorenko, E. E.; Sauvaud, J. A.; Zelenyi, L. M.

    The processes of non-adiabatic ion acceleration occurring in the vicinity of magnetic X-line produce highly accelerated up to 2500km s field-aligned ion beams beamlets with transient appearance streaming earthward in the PSBL of magnetotail Previous studies of these phenomena based on the data from one-spacecraft missions supported a view on beamlets as of temporal transients since the typical time of beamlet observation at a given spacecraft was 1-2min Now multipoint Cluster observations brought new understanding of these phenomena as having a rather spatial than temporal structure Comparison of data from different Cluster spacecraft allows to evaluate the duration of beamlets to be at least 5-15 min and confirms their well-defined localization along Y Z directions i e across the lobe magnetic field Earlier results reporting shorter duration of beamlet observations could be understood by the invoking of an additional effect revealed by Cluster earthward propagation of kink-like perturbations along the beamlet filaments Phase velocity of these perturbations is of the order of the local Alfven velocity V 600-1000km s and related fast flappings of localized beamlet structures in Y-Z direction significantly decreases the time of their observation at a given spacecraft Such Alfvenic-type disturbances may be caused by classical fire-hose instability which develops at the moment of beamlet ejection from the CS to the lobe region of the distant magnetotail where the lobe magnetic field is not too large and the conditions for a such pressure anisotropy

  8. Cluster ion control by simultaneous irradiations of femtosecond laser and nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Kamada, H.; Hiratani, Y.; Toyoda, K.

    2002-09-01

    Generation of multiply charged ions and molecular ions have been investigated using simultaneous irradiation of high intensity and ultrashort pulse of Ti:sapphire laser and fourth harmonics of Q-switched nanosecond pulse of Nd:YAG laser on carbon targets [Morimoto et al., in: Proceedings of the 13th International Conference on High-Power Particles Beams (BEAMS2000),Vol. PB-89, Nagaoka, 2000, p. 359; Toyoda et al., in: Proceedings of the 8th International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference (GCL-HPL2000), Vol. P1.60, 2000, p. 101]. The ion current waveforms have been analyzed by means of time-of-flight (tof) mass measurement. Simultaneous irradiation of high intensity and ultrashort pulse of Ti:sapphire laser and fourth harmonics of Q-switched nanosecond pulse of Nd:YAG laser on carbon targets was found to generate molecular ions of carbon.

  9. Glutathione Depletion and Carbon Ion Radiation Potentiate Clustered DNA Lesions, Cell Death and Prevent Chromosomal Changes in Cancer Cells Progeny

    PubMed Central

    Hanot, Maïté; Boivin, Anthony; Malésys, Céline; Beuve, Michaël; Colliaux, Anthony; Foray, Nicolas; Douki, Thierry; Ardail, Dominique; Rodriguez-Lafrasse, Claire

    2012-01-01

    Poor local control and tumor escape are of major concern in head-and-neck cancers treated by conventional radiotherapy or hadrontherapy. Reduced glutathione (GSH) is suspected of playing an important role in mechanisms leading to radioresistance, and its depletion should enable oxidative stress insult, thereby modifying the nature of DNA lesions and the subsequent chromosomal changes that potentially lead to tumor escape. This study aimed to highlight the impact of a GSH-depletion strategy (dimethylfumarate, and l-buthionine sulfoximine association) combined with carbon ion or X-ray irradiation on types of DNA lesions (sparse or clustered) and the subsequent transmission of chromosomal changes to the progeny in a radioresistant cell line (SQ20B) expressing a high endogenous GSH content. Results are compared with those of a radiosensitive cell line (SCC61) displaying a low endogenous GSH level. DNA damage measurements (γH2AX/comet assay) demonstrated that a transient GSH depletion in resistant SQ20B cells potentiated the effects of irradiation by initially increasing sparse DNA breaks and oxidative lesions after X-ray irradiation, while carbon ion irradiation enhanced the complexity of clustered oxidative damage. Moreover, residual DNA double-strand breaks were measured whatever the radiation qualities. The nature of the initial DNA lesions and amount of residual DNA damage were similar to those observed in sensitive SCC61 cells after both types of irradiation. Misrepaired or unrepaired lesions may lead to chromosomal changes, estimated in cell progeny by the cytome assay. Both types of irradiation induced aberrations in nondepleted resistant SQ20B and sensitive SCC61 cells. The GSH-depletion strategy prevented the transmission of aberrations (complex rearrangements and chromosome break or loss) in radioresistant SQ20B only when associated with carbon ion irradiation. A GSH-depleting strategy combined with hadrontherapy may thus have considerable advantage in the

  10. Dual beam organic depth profiling using large argon cluster ion beams

    PubMed Central

    Holzweber, M; Shard, AG; Jungnickel, H; Luch, A; Unger, WES

    2014-01-01

    Argon cluster sputtering of an organic multilayer reference material consisting of two organic components, 4,4′-bis[N-(1-naphthyl-1-)-N-phenyl- amino]-biphenyl (NPB) and aluminium tris-(8-hydroxyquinolate) (Alq3), materials commonly used in organic light-emitting diodes industry, was carried out using time-of-flight SIMS in dual beam mode. The sample used in this study consists of a ∽400-nm-thick NPB matrix with 3-nm marker layers of Alq3 at depth of ∽50, 100, 200 and 300 nm. Argon cluster sputtering provides a constant sputter yield throughout the depth profiles, and the sputter yield volumes and depth resolution are presented for Ar-cluster sizes of 630, 820, 1000, 1250 and 1660 atoms at a kinetic energy of 2.5 keV. The effect of cluster size in this material and over this range is shown to be negligible. © 2014 The Authors. Surface and Interface Analysis published by John Wiley & Sons Ltd. PMID:25892830

  11. Structure of aldehyde cluster ions in the gas phase, according to data from ion mobility spectrometry and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Lantsuzskaya (Krisilova), E. V.; Krisilov, A. V.; Levina, A. M.

    2015-09-01

    Ion-mobility spectra of a set of aliphatic linear aldehydes with the number of carbon atoms from 3 to 7 are obtained. Values of the mobility corresponding to two most intense peaks, considered to be those of a monomer and dimer, are determined according the spectra. Based on mobility, collision cross sections are calculated using the Mason-Schamp equation. The linear increase in the collision cross sections upon an increase in molecular weight is determined. According to the experimental results, the contribution to the cross section that has no dependence on molecular weight diminishes with the formation of dimers. It is established using quantum chemical calculations that this is associated with a reduction in the dipole moment upon the formation of dimers.

  12. Structural analysis of the outermost hair surface using TOF-SIMS with gas cluster ion beam sputtering.

    PubMed

    Lshikawa, Kazutaka; Okamoto, Masayuki; Aoyagi, Satoka

    2016-06-01

    A hair cuticle, which consists of flat overlapping scales that surround the hair fiber, protects inner tissues against external stimuli. The outermost surface of the cuticle is covered with a thin membrane containing proteins and lipids called the epicuticle. In a previous study, the authors conducted a depth profile analysis of a hair cuticle's amino acid composition to characterize its multilayer structure. Time-of-flight secondary ion mass spectrometry with a bismuth primary ion source was used in combination with the C60 sputtering technique for the analysis. It was confirmed that the lipids and cysteine-rich layer exist on the outermost cuticle surface, which is considered to be the epicuticle, though the detailed structure of the epicuticle has not been clarified. In this study, depth profile analysis of the cuticle surface was conducted using the argon gas cluster ion beam (Ar-GCIB) sputtering technique, in order to characterize the structure of the epicuticle. The shallow depth profile of the cuticle surface was investigated using an Ar-GCIB impact energy of 5 keV. Compared to the other amino acid peaks rich in the epicuticle, the decay of 18-methyleicosanic acid (18-MEA) thiolate peak was the fastest. This result suggests that the outermost surface of the hair is rich in 18-MEA. In conclusion, our results indicate that the outermost surfaces of cuticles have a multilayer (lipid and protein layers), which is consistent with the previously proposed structure. PMID:26822506

  13. Frequency sweep rates of rising tone electromagnetic ion cyclotron waves: Comparison between nonlinear theory and Cluster observation

    SciTech Connect

    He, Zhaoguo; Zong, Qiugang Wang, Yongfu; Liu, Siqing; Lin, Ruilin; Shi, Liqin

    2014-12-15

    Resonant pitch angle scattering by electromagnetic ion cyclotron (EMIC) waves has been suggested to account for the rapid loss of ring current ions and radiation belt electrons. For the rising tone EMIC wave (classified as triggered EMIC emission), its frequency sweep rate strongly affects the efficiency of pitch-angle scattering. Based on the Cluster observations, we analyze three typical cases of rising tone EMIC waves. Two cases locate at the nightside (22.3 and 22.6 magnetic local time (MLT)) equatorial region and one case locates at the duskside (18MLT) higher magnetic latitude (λ = –9.3°) region. For the three cases, the time-dependent wave amplitude, cold electron density, and cold ion density ratio are derived from satellite data; while the ambient magnetic field, thermal proton perpendicular temperature, and the wave spectral can be directly provided by observation. These parameters are input into the nonlinear wave growth model to simulate the time-frequency evolutions of the rising tones. The simulated results show good agreements with the observations of the rising tones, providing further support for the previous finding that the rising tone EMIC wave is excited through the nonlinear wave growth process.

  14. Experimental studies of the formation of cluster ions formed by corona discharge in an atmosphere containing SO2, NH3, and H2O

    NASA Astrophysics Data System (ADS)

    Pedersen, J. O.; Hvelplund, P.; Støchkel, K.; Enghoff, M. B.; Kurten, T.

    2013-12-01

    We report on studies of ion induced nucleation in a corona discharge taking place in an atmosphere containing SO2, NH3, and H2O at standard temperature and pressure. Positive ions such as H3O+(H2O)n, NH4+(H2O)n, and H+(H2SO4)(H2O)n and negative ions such as HSO5-(H2O)n, SO4-(H2O)n, HSO4-(H2O)n and NO3-(H2O)n have been recorded. Large values of n (> 100) were observed and the experiment indicates the existence of even larger water clusters. In contrast, only clusters with a maximum of 2 sulfuric acid molecules were observed. Fragmentation studies also revealed that the negative ion HSO5-, which has been observed in many studies, in our experiments is contaminated by O2-(HNO3)(H2O) ions, and this may also have been the case in other experiments. Finally an ion with m/z = 232 (where m is the cluster mass in amu and z the charge state), capable of attaching H2O-molecules was observed and studied by fragmentation. Positive ion m/z (mass/charge) spectrum

  15. Ion-ion interactions in β-NaGdF4:Yb(3+),Er(3+) nanocrystals--the effect of ion concentration and their clustering.

    PubMed

    Noculak, A; Podhorodecki, A; Pawlik, G; Banski, M; Misiewicz, J

    2015-08-28

    In this work we report co-thermolysis as a suitable method for nanomaterial synthesis which allows the creation of hexagonal upconverting nanocrystals, NaGdF4:Yb(3+),Er(3+), in a wide range of sizes (20-120 nm). Only a very high Yb(3+) concentration (above 70%) results in pure cubic-phase nanocrystals with irregular shape. Additionally, we showed that the impact of Yb(3+), Er(3+) and Gd(3+) ions on the size and optical properties of nanocrystals is significant. We found that the main changes in optical properties do not depend on the nanocrystal size mostly, but are determined by the ion-ion interactions which include both Er(3+)-Er(3+) and Er(3+)-Yb(3+) cross relaxation. PMID:26219227

  16. Ion-ion interactions in β-NaGdF4:Yb3+,Er3+ nanocrystals - the effect of ion concentration and their clustering

    NASA Astrophysics Data System (ADS)

    Noculak, A.; Podhorodecki, A.; Pawlik, G.; Banski, M.; Misiewicz, J.

    2015-08-01

    In this work we report co-thermolysis as a suitable method for nanomaterial synthesis which allows the creation of hexagonal upconverting nanocrystals, NaGdF4:Yb3+,Er3+, in a wide range of sizes (20-120 nm). Only a very high Yb3+ concentration (above 70%) results in pure cubic-phase nanocrystals with irregular shape. Additionally, we showed that the impact of Yb3+, Er3+ and Gd3+ ions on the size and optical properties of nanocrystals is significant. We found that the main changes in optical properties do not depend on the nanocrystal size mostly, but are determined by the ion-ion interactions which include both Er3+-Er3+ and Er3+-Yb3+ cross relaxation.In this work we report co-thermolysis as a suitable method for nanomaterial synthesis which allows the creation of hexagonal upconverting nanocrystals, NaGdF4:Yb3+,Er3+, in a wide range of sizes (20-120 nm). Only a very high Yb3+ concentration (above 70%) results in pure cubic-phase nanocrystals with irregular shape. Additionally, we showed that the impact of Yb3+, Er3+ and Gd3+ ions on the size and optical properties of nanocrystals is significant. We found that the main changes in optical properties do not depend on the nanocrystal size mostly, but are determined by the ion-ion interactions which include both Er3+-Er3+ and Er3+-Yb3+ cross relaxation. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03385c

  17. Study of cluster anions generated by laser ablation of titanium oxides: a high resolution approach based on Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Barthen, Nicolas; Millon, Eric; Aubriet, Frédéric

    2011-03-01

    Laser ablation of titanium oxides at 355 nm and ion-molecule reactions between [(TiO(2))(x)](-•) cluster anions and H(2)O or O(2) were investigated by Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) with an external ion source. The detected anions correspond to [(TiO(2))(x)(H(2)O)(y)OH](-) and [(TiO(2))(x)(H(2)O)(y)O(2)](-•) oxy-hydroxide species with x=1 to 25 and y=1, 2, or 3 and were formed by a two step process: (1) laser ablation, which leads to the formation of [(TiO(2))(x)](-•) cluster anions as was previously reported, and (2) ion-molecule reactions during ion storage. Reactions of some [(TiO(2))(x)](-•) cluster anions with water and dioxygen conducted in the FTICR cell confirm this assessment. Tandem mass spectrometry experiments were also performed in sustained off-resonance irradiation collision-induced dissociation (SORI-CID) mode. Three fragmentation pathways were observed: (1) elimination of water molecules, (2) O(2) loss for radical anions, and (3) fission of the cluster. Density functional theory (DFT) calculations were performed to explain the experimental data. PMID:21472569

  18. Cluster-assisted generation of multi-charged ions in nanosecond laser ionization of pulsed hydrogen sulfide beam at 1064 and 532 nm

    NASA Astrophysics Data System (ADS)

    Niu, Dong-Mei; Li, Hai-Yang; Luo, Xiao-Lin; Liang, Feng; Cheng, Shuang; Li, An-Lin

    2006-07-01

    The multi-charged sulfur ions of Sq+ (q<= 6) have been generated when hydrogen sulfide cluster beams are irradiated by a nanosecond laser of 1064 and 532 nm with an intensity of 1010~ 1012W.cm-2. S6+ is the dominant multi-charged species at 1064 nm, while S4+, S3+ and S2+ ions are the main multi-charged species at 532 nm. A three-step model (i.e., multiphoton ionization triggering, inverse bremsstrahlung heating, electron collision ionizing) is proposed to explain the generation of these multi-charged ions at the laser intensity stated above. The high ionization level of the clusters and the increasing charge state of the ion products with increasing laser wavelength are supposed mainly due to the rate-limiting step, i.e., electron heating by absorption energy from the laser field via inverse bremsstrahlung, which is proportional to λ2, λ being the laser wavelength.

  19. Fission and cluster decay of the {sup 76}Sr nucleus in the ground state and formed in heavy-ion reactions

    SciTech Connect

    Gupta, Raj K.; Sharma, Manoj K.; Singh, Sarbjit; Nouicer, Rachid; Beck, Christian

    1997-12-01

    Calculations for fission and cluster decay of {sup 76}Sr are presented for this nucleus to be in its ground state or formed as an excited compound system in heavy-ion reactions. The predicted mass distribution, for the dynamical collective mass transfer process assumed for fission of {sup 76}Sr, is clearly asymmetric, favoring {alpha} nuclei. Cluster decay is studied within a preformed cluster model, both for ground-state to ground-state decays and from excited compound system to the ground state(s) or excited states(s) of the fragments. {copyright} {ital 1997} {ital The American Physical Society}

  20. Change in magnetic and structural properties of FeRh thin films by gold cluster ion beam irradiation with the energy of 1.67 MeV/atom

    NASA Astrophysics Data System (ADS)

    Koide, T.; Saitoh, Y.; Sakamaki, M.; Amemiya, K.; Iwase, A.; Matsui, T.

    2014-05-01

    The effect of energetic cluster ion beam irradiation on magnetic and structural properties of FeRh thin films have been investigated. The cluster ions used in the present studies consist of a few gold atoms with the energy of 1.67 MeV/gold atom. Saturation magnetization of the sample irradiated with Au3 cluster ion beam (280 emu/cc) is larger than that for the irradiated sample with Au1 ion beam (240 emu/cc) for the same irradiation ion fluence. These results can also be confirmed by the X-ray magnetic circular dichroism (XMCD) measurement; the XMCD signal for Au3 cluster ion irradiation is larger than that for Au1 ion irradiation. Since the ion beam irradiation induced magnetization of FeRh is significantly correlated with the amount of the lattice defects in the samples, cluster ion beam irradiation can be considered to effectively introduce the lattice defects in B2-type FeRh rather than the single ion beam. Consequently, cluster ion irradiation is better than single ion irradiation for the viewpoint of saturation magnetization, even if the same irradiation energy is deposited in the samples.

  1. Sputtering Yields for Mixtures of Organic Materials Using Argon Gas Cluster Ions.

    PubMed

    Seah, M P; Havelund, R; Shard, A G; Gilmore, I S

    2015-10-22

    The sputtering yield volumes of binary mixtures of Irganox 1010 with either Irganox 1098 or Fmoc-pentafluoro-L-phenylalanine (FMOC) have been measured for 5 keV Ar2000(+) ions incident at 45° to the surface normal. The sputtering yields are determined from the doses to sputter through various compositions of 100 nm thick, intimately mixed, layers. Because of matrix effects, the profiles for secondary ions are distorted, and profile shifts in depth of 15 nm are observed leading to errors above 20% in the deduced sputtering yield. Secondary ions are selected to avoid this. The sputtering yield volumes for the mixtures are shown to be lower than those deduced from a linear interpolation from the pure materials. This is shown to be consistent with a simple model involving the changing energy absorbed for the sputtering of intimate mixtures. Evidence to support this comes from the secondary ion data for pairs of the different molecules. Both binary mixtures behave similarly, but matrix effects are stronger for the Irganox 1010/FMOC system. PMID:26421437

  2. Characterization of drug-eluting stent (DES) materials with cluster secondary ion mass spectrometry (SIMS)

    NASA Astrophysics Data System (ADS)

    Mahoney, Christine M.; Patwardhan, Dinesh V.; Ken McDermott, M.

    2006-07-01

    Secondary ion mass spectrometry (SIMS) employing an SF 5+ polyatomic primary ion source was utilized to analyze several materials commonly used in drug-eluting stents (DES). Poly(ethylene- co-vinyl acetate) (PEVA), poly(lactic- co-glycolic acid) (PLGA) and various poly(urethanes) were successfully depth profiled using SF 5+ bombardment. The resultant molecular depth profiles obtained from these polymeric films showed very little degradation in molecular signal as a function of increasing SF 5+ primary ion dose when experiments were performed at low temperatures (signal was maintained for doses up to ˜5 × 10 15 ions/cm 2). Temperature was determined to be an important parameter in both the success of the depth profiles and the mass spectral analysis of the polymers. In addition to the pristine polymer films, paclitaxel (drug released in Taxus™ stent) containing PLGA films were also characterized, where it was confirmed that both drug and polymer signals could be monitored as a function of depth at lower paclitaxel concentrations (10 wt%).

  3. On the dynamics of the reaction of positive hydrogen cluster ions (H5+ to H23+) with para and normal hydrogen at 10 K

    NASA Astrophysics Data System (ADS)

    Paul, W.; Lücke, B.; Schlemmer, S.; Gerlich, D.

    1995-11-01

    The dynamics of clustering and fragmentation reactions Hi+ + 2H2 [right harpoon over left] Hi+2+ + H2, for odd i, was studied at a nominal temperature of 10 K in a 22-pole radio-frequency ion trap in normal hydrogen and para-enriched hydrogen. Ternary association rate coefficients, k3, and binary fragmentation rate coefficients, kf, were extracted from the measured temporal evolution of the hydrogen cluster ion intensity, I(Hi+), for i = 3,...,23. Pure para hydrogen enhances the rate coefficients for association and fragmentation. For i > 9 this general trend is explained by a difference in the capture cross-sections, kc, for the two hydrogen nuclear spin modifications. Significant differences in k3 which remain for small clusters (i < 9) are due to the availability of the J = 1 rotational energy of the ortho modification when merging into the cluster. This surprising result is discussed in the framework of simple dynamical and energetic considerations. Possible structures of the cluster can be classified and estimates for the bond energy of the outermost H2 in the cluster as a function of cluster size are derived.

  4. The University of Bern Ion Model: Modeling the Mixed H+(H2O)m(CH_3CN)_n Clusters in the Stratosphere

    NASA Astrophysics Data System (ADS)

    Kopp, E.; Kazil, J.; Arijs, E.; Livesey, N.

    2001-12-01

    Methyl cyanide (CH3CN) replaces water molecules in proton hydrates H+(H2O)n at high rates in the stratosphere. Our global 2D ion model uses the latest stratospheric UARS MLS CH3CN data together with neutral input from the NCAR SOCRATES model and computes mixed ion cluster H+(H2O)n(CH_3CN) densities. The results are compared with in situ measurements from different sources.

  5. Role of isolated and clustered DNA damage and the post-irradiating repair process in the effects of heavy ion beam irradiation.

    PubMed

    Tokuyama, Yuka; Furusawa, Yoshiya; Ide, Hiroshi; Yasui, Akira; Terato, Hiroaki

    2015-05-01

    Clustered DNA damage is a specific type of DNA damage induced by ionizing radiation. Any type of ionizing radiation traverses the target DNA molecule as a beam, inducing damage along its track. Our previous study showed that clustered DNA damage yields decreased with increased linear energy transfer (LET), leading us to investigate the importance of clustered DNA damage in the biological effects of heavy ion beam radiation. In this study, we analyzed the yield of clustered base damage (comprising multiple base lesions) in cultured cells irradiated with various heavy ion beams, and investigated isolated base damage and the repair process in post-irradiation cultured cells. Chinese hamster ovary (CHO) cells were irradiated by carbon, silicon, argon and iron ion beams with LETs of 13, 55, 90 and 200 keV µm(-1), respectively. Agarose gel electrophoresis of the cells with enzymatic treatments indicated that clustered base damage yields decreased as the LET increased. The aldehyde reactive probe procedure showed that isolated base damage yields in the irradiated cells followed the same pattern. To analyze the cellular base damage process, clustered DNA damage repair was investigated using DNA repair mutant cells. DNA double-strand breaks accumulated in CHO mutant cells lacking Xrcc1 after irradiation, and the cell viability decreased. On the other hand, mouse embryonic fibroblast (Mef) cells lacking both Nth1 and Ogg1 became more resistant than the wild type Mef. Thus, clustered base damage seems to be involved in the expression of heavy ion beam biological effects via the repair process. PMID:25717060

  6. The Role of Large Amplitude Upstream Low-frequency Waves in the Generation of Superthermal Ions at a Quasi-parallel Collisionless Shock: Cluster Observations

    NASA Astrophysics Data System (ADS)

    Wu, Mingyu; Hao, Yufei; Lu, Quanming; Huang, Can; Guo, Fan; Wang, Shui

    2015-07-01

    The superthermal ions at a quasi-parallel collisionless shock are considered to be generated during the reformation of the shock. Recently, hybrid simulations of a quasi-parallel shock have shown that during the reformation of a quasi-parallel shock the large-amplitude upstream low-frequency waves can trap the reflected ions at the shock front when they try to move upstream, and then these reflected ions can be accelerated several times to become superthermal ions. In this paper, with the Cluster observations of a quasi-parallel shock event, the relevance between the large-amplitude upstream low-frequency waves and the superthermal ions (about several keV) have been studied. The observations clearly show that the differential energy flux of superthermal ions in the upstream region is modulated by the upstream low-frequency waves, and the maxima of the differential energy flux are usually located between the peaks of these waves (including the shock front and the peak of the upstream wave just in front of the shock front). These superthermal ions are considered to originate from the reflected ions at the shock front, and the modulation is caused due to the trapping of the reflected ions between the upstream waves or the upstream waves and the shock front when these reflected ions try to travel upstream. It verifies the results from hybrid simulations, where the upstream waves play an important role in the generation of superthermal ions in a quasi-parallel shock.

  7. Gas cluster ion beam surface treatments for reducing field emission and breakdown of electrodes and SRF cavities.

    SciTech Connect

    Swenson, D. R.; Wu, A. T.; Degenkolb, E.; Insepov, Z.; Mathematics and Computer Science; Epion Corp.; Jefferson National Lab.

    2007-01-01

    Sub-micron-scale surface roughness and contamination cause field emission that can lead to high-voltage breakdown of electrodes, and these are limiting factors in the development of high gradient RF technology. We are studying various Gas Cluster Ion Beam (GCIB) treatments to smooth, clean, etch and/or chemically alter electrode surfaces to allow higher fields and accelerating gradients, and to reduce the time and cost of conditioning high-voltage electrodes. For this paper, we have processed Nb, stainless steel and Ti electrode materials using beams of Ar, O{sub 2}, or NF{sub 3} + O{sub 2} clusters with accelerating potentials up to 35 kV. Using a scanning field emission microscope (SFEM), we have repeatedly seen a dramatic reduction in the number of field emission sites on Nb coupons treated with GCIB. Smoothing effects on stainless steel and Ti substrates, evaluated using SEM and AFM imaging, show that 200-nm-wide polishing scratch marks are greatly attenuated. A 150-mm diameter GCIB-treated stainless steel electrode has shown virtually no DC field emission current at gradients over 20 MV/m.

  8. Development of gas cluster ion beam surface treatments for reducing field emission and breakdown in RF cavities

    SciTech Connect

    Swenson, D R; Degenkolb, E; Wu, A T; Insepov, Z

    2006-11-01

    Sub-micron-scale surface roughness and contamination cause field emission that can lead to high voltage breakdown of electrodes, and these are limiting factors in the development of high gradient RF technology. We are studying various Gas Cluster Ion Beam (GCIB) treatments to smooth, clean, etch and/or chemically alter electrode surfaces to allow higher fields and accelerating gradients, and to reduce the time and cost of conditioning high voltage electrodes. For this paper, we have processed Nb, Stainless Steel, and Ti electrode materials using beams of Ar, O2, or NF3 +O2 clusters with accelerating potentials up to 35 kV. Using a Scanning Field Emission Microscope (SFEM), we have repeatedly seen a dramatic reduction in the number of field emission sites on Nb coupons treated with GCIB. Smoothing effects on Stainless steel and Ti substrates have been evaluated using AFM imaging and show that 200-nm wide polishing scratch marks are greatly attenuated. A 150-mm diameter GCIB treated stainless steel electrode has now shown virtually no DC field emission current at gradients over 20 MV/m.

  9. Iterative mass spectrometry and X-ray crystallography to study ion-trapping and rearrangements by a flexible cluster.

    PubMed

    Zhang, Kun; Kurmoo, Mohamedally; Wei, Lian-Qiang; Zeng, Ming-Hua

    2013-01-01

    An important aspect of chemical reactions involves understanding the intermediate steps from reactants to products. The iterative use of mass spectrometry and X-Ray crystallography is demonstrated to be a powerful combination in this respect. We have applied them in identifying molecular clusters in solution followed by their solid-state structural characterizations. We used a key ligand, 2-[(2-hydroxy-3-methoxy-benzylidene)-amino]-ethanesulfonate (L), which serves as chelating/bridging units to stabilize the precursor [Li₄Ni₆(OH)₂(L)₆(CH₃CN)₆](ClO₄)₂·4CH₃CN. The results of subsequent reactions witness a cascade of processes involving fragmentation, inner bridging ligand substitution (OH⁻ to OCH₃⁻), changing modes of binding (chelate to monodentate) of the key ligand, ion-trapping and exchange (Li⁺, Na⁺ and Ca²⁺) and their site preferences, coordinating and non-coordinating solvents (CH₃CN to CH₃OH, H₂O and EtOH) replacement. The flexibility of the Ni₃OL₃ species in solution permits the formation of six derivatives. The complimentary techniques open a broader prospect for cluster design and applications. PMID:24343303

  10. Iterative Mass Spectrometry and X-Ray Crystallography to Study Ion-Trapping and Rearrangements by a Flexible Cluster

    PubMed Central

    Zhang, Kun; Kurmoo, Mohamedally; Wei, Lian-Qiang; Zeng, Ming-Hua

    2013-01-01

    An important aspect of chemical reactions involves understanding the intermediate steps from reactants to products. The iterative use of mass spectrometry and X-Ray crystallography is demonstrated to be a powerful combination in this respect. We have applied them in identifying molecular clusters in solution followed by their solid-state structural characterizations. We used a key ligand, 2-[(2-hydroxy-3-methoxy-benzylidene)-amino]-ethanesulfonate (L), which serves as chelating/bridging units to stabilize the precursor [Li4Ni6(OH)2(L)6(CH3CN)6](ClO4)2·4CH3CN. The results of subsequent reactions witness a cascade of processes involving fragmentation, inner bridging ligand substitution (OH− to OCH3−), changing modes of binding (chelate to monodentate) of the key ligand, ion-trapping and exchange (Li+, Na+ and Ca2+) and their site preferences, coordinating and non-coordinating solvents (CH3CN to CH3OH, H2O and EtOH) replacement. The flexibility of the Ni3OL3 species in solution permits the formation of six derivatives. The complimentary techniques open a broader prospect for cluster design and applications. PMID:24343303

  11. Structural Characterizations of Palladium Clusters Prepared by Polyol Reduction of [PdCl4]2− Ions

    PubMed Central

    Schiavo, Loredana; Aversa, Lucrezia; Tatti, Roberta; Verucchi, Roberto; Carotenuto, Gianfranco

    2016-01-01

    Palladium nanoparticles are of great interest in many industrial fields, ranging from catalysis and hydrogen technology to microelectronics, thanks to their unique physical and chemical properties. In this work, palladium clusters have been prepared by reduction of [PdCl4]2− ions with ethylene glycol, in the presence of poly(N-vinyl-2-pyrrolidone) (PVP) as stabilizer. The stabilizer performs the important role of nucleating agent for the Pd atoms with a fast phase separation, since palladium atoms coordinated to the polymer side-groups are forced at short distances during nucleation. Quasispherical palladium clusters with a diameter of ca. 2.6 nm were obtained by reaction in air at 90°C for 2 hours. An extensive materials characterization by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and other characterizations (TGA, SEM, EDS-SEM, and UV-Vis) has been performed in order to evaluate the structure and oxidation state of nanopalladium. PMID:27073712

  12. Development of Gas Cluster Ion Beam Surface Treatments for Reducing Field Emission and Breakdown in RF cavities

    SciTech Connect

    Swenson, D. R.; Degenkolb, E.; Wu, A. T.; Insepov, Z.

    2006-11-27

    Sub-micron-scale surface roughness and contamination cause field emission that can lead to high voltage breakdown of electrodes, and these are limiting factors in the development of high gradient RF technology. We are studying various Gas Cluster Ion Beam (GCIB) treatments to smooth, clean, etch and/or chemically alter electrode surfaces to allow higher fields and accelerating gradients, and to reduce the time and cost of conditioning high voltage electrodes. For this paper, we have processed Nb, Stainless Steel, and Ti electrode materials using beams of Ar, O2, or NF3 +O2 clusters with accelerating potentials up to 35 kV. Using a Scanning Field Emission Microscope (SFEM), we have repeatedly seen a dramatic reduction in the number of field emission sites on Nb coupons treated with GCIB. Smoothing effects on Stainless steel and Ti substrates have been evaluated using AFM imaging and show that 200-nm wide polishing scratch marks are greatly attenuated. A 150-mm diameter GCIB treated stainless steel electrode has now shown virtually no DC field emission current at gradients over 20 MV/m.

  13. Formation of fragments in heavy-ion collisions using a modified clusterization method

    SciTech Connect

    Goyal, Supriya; Puri, Rajeev K.

    2011-04-15

    We study the formation and stability of the fragments by extending the minimum spanning tree method (MST) for clusterization. In this extension, each fragment is subjected to a binding-energy check calculated using the modified Bethe-Weizsaecker formula. Earlier, a constant binding-energy cut of 4 MeV/nucleon was imposed. Our results for {sup 197}Au+{sup 197}Au collisions are compared with ALADiN data and also with the calculations based on the simulated annealing technique. We shall show that the present modified version improves the agreement compared to the MST method.

  14. Voltage clustering in redox-active ligand complexes: mitigating electronic communication through choice of metal ion.

    PubMed

    Zarkesh, Ryan A; Ichimura, Andrew S; Monson, Todd C; Tomson, Neil C; Anstey, Mitchell R

    2016-06-14

    The redox-active bis(imino)acenapthene (BIAN) ligand was used to synthesize homoleptic aluminum, chromium, and gallium complexes of the general formula (BIAN)3M. The resulting compounds were characterized using X-ray crystallography, NMR, EPR, magnetic susceptibility and cyclic voltammetry measurements and modeled using both DFT and ab initio wavefunction calculations to compare the orbital contributions of main group elements and transition metals in ligand-based redox events. Complexes of this type have the potential to improve the energy density and electrolyte stability of grid-scale energy storage technologies, such as redox flow batteries, through thermodynamically-clustered redox events. PMID:26998892

  15. Voltage clustering in redox-active ligand complexes: mitigating electronic communication through choice of metal ion

    DOE PAGESBeta

    Zarkesh, Ryan A.; Ichimura, Andrew S.; Monson, Todd C.; Tomson, Neil C.; Anstey, Mitchell R.

    2016-02-01

    We used the redox-active bis(imino)acenapthene (BIAN) ligand to synthesize homoleptic aluminum, chromium, and gallium complexes of the general formula (BIAN)3M. The resulting compounds were characterized using X-ray crystallography, NMR, EPR, magnetic susceptibility and cyclic voltammetry measurements and modeled using both DFT and ab initio wavefunction calculations to compare the orbital contributions of main group elements and transition metals in ligand-based redox events. Ultimately, complexes of this type have the potential to improve the energy density and electrolyte stability of grid-scale energy storage technologies, such as redox flow batteries, through thermodynamically-clustered redox events.

  16. Single-ion hydration thermodynamics from clusters to bulk solutions: Recent insights from molecular modeling

    DOE PAGESBeta

    Vlcek, Lukas; Chialvo, Ariel A.

    2016-01-03

    The importance of single-ion hydration thermodynamic properties for understanding the driving forces of aqueous electrolyte processes, along with the impossibility of their direct experimental measurement, have prompted a large number of experimental, theoretical, and computational studies aimed at separating the cation and anion contributions. Here we provide an overview of historical approaches based on extrathermodynamic assumptions and more recent computational studies of single-ion hydration in order to evaluate the approximations involved in these methods, quantify their accuracy, reliability, and limitations in the light of the latest developments. Finally, we also offer new insights into the factors that influence the accuracymore » of ion–water interaction models and our views on possible ways to fill this substantial knowledge gap in aqueous physical chemistry.« less

  17. Negative ion clusters in oxygen: collision cross sections and transport coefficients

    NASA Astrophysics Data System (ADS)

    de Urquijo, J.; Bekstein, A.; Ducasse, O.; Ruíz-Vargas, G.; Yousfi, M.; Benhenni, M.

    2009-12-01

    Using a pulsed Townsend experiment, we have observed the formation of two negative ion species in oxygen over the pressure range 100-600 torr, and the density-normalised electric field strength, E/N, from 2 to 14 Td. The peculiar shape of these transients has led us to propose a scheme of three-body ion-molecule reactions leading to the formation of O4 - and O6 -, which is substantiated by a curve fitting procedure. The resulting mobility data of these two ionic species have been used to calculate their respective momentum transfer collision cross sections, together with the dissociation cross sections that are needed to extend the range of calculation of mobility and diffusion (transverse and longitudinal) to 1000 Td. These calculations were based on an optimised Monte Carlo algorithm, using collision cross sections obtained from a JWKB approximation (Jeffreys-Wentzel-Kramers-Brillouin) or taken from literature.

  18. Au-Ag nanoalloy molecule-like clusters for enhanced quantum efficiency emission of Er³⁺ ions in silica.

    PubMed

    Cesca, Tiziana; Kalinic, Boris; Michieli, Niccolò; Maurizio, Chiara; Trapananti, Angela; Scian, Carlo; Battaglin, Giancarlo; Mazzoldi, Paolo; Mattei, Giovanni

    2015-11-14

    The occurrence of a very efficient non-resonant energy transfer process forming ultrasmall Au-Ag nanoalloy clusters and Er(3+) ions is investigated in silica. The enhancement of the room temperature Er(3+) emission efficiency by an order of magnitude is achieved by coupling rare-earth ions to molecule-like (Au(x)Ag(1-x))N alloy nanoclusters with N = 10-15 atoms and x = 0.6 obtained by optimized sequential ion implantation on Er-implanted silica. For comparison, AuN nanoclusters obtained by the same approach and with the same size and numerical density showed an enhancement by only a factor of 2 with respect to pure Er emission, demonstrating the beneficial effect of using nanoalloyed clusters. The temperature evolution of the energy transfer process is investigated by photoluminescence and exhibits a maximum efficiency at about 600 °C, where the clusters reach the optimal size and the silica matrix completely recovers the implantation damage. The nanoalloy cluster composition and size have been studied by EXAFS analysis, which indicated a stronger Ag-O interaction with respect to the Au-O one and a preferential location of the Ag atoms at the nanoalloy cluster surface. PMID:25921085

  19. Friction measurements of nanometer-thick lubricant films using ultra-smooth sliding pins treated with gas cluster ion beam

    NASA Astrophysics Data System (ADS)

    Lu, Renguo; Zhang, Hedong; Mitsuya, Yasunaga; Fukuzawa, Kenji; Itoh, Shintaro

    2013-09-01

    Friction properties of nanometer-thick lubricant films confined between two ultra-smooth solid surfaces are crucial to the practical performance of technologically advanced mechanical devices such as micro-electro-mechanical systems and hard disk drives. In this work, we applied argon gas cluster ion beam (Ar-GCIB) treatments to obtain ultra-smooth sliding pins for pin-on-disk tests of nanometer-thick perfluoropolyether (PFPE) lubricant films coated on magnetic disk surfaces. The GCIB treatments effectively smoothed the pin surfaces, and increases in the Ar dose decreased surface roughness. An ultra-smooth surface with a maximum peak height (Rp) less the monolayer lubricant film thickness was achieved when the Ar dose was increased to 8 × 1016 ions/cm2. We observed that both surface roughness and film thickness affected the friction coefficients of the PFPE films. To quantitatively describe the interplay of surface roughness and film thickness, we introduced two roughness characteristics: the ratio of film thickness to the surface’s root-mean-square roughness (h/σ), and a surface-pattern parameter (γ), defined as the ratio of correlation lengths in two orthogonal directions. We infer that a fixed γ and higher h/σlead to lower friction coefficients, while a fixed h/σand higher γ induce higher friction coefficients.

  20. Rare-gas clusters in intense VUV, XUV and soft x-ray pulses: signatures of the transition from nanoplasma-driven cluster expansion to Coulomb explosion in ion and electron spectra

    NASA Astrophysics Data System (ADS)

    Arbeiter, Mathias; Fennel, Thomas

    2011-05-01

    We investigate the wavelength-dependent ionization, heating, and expansion dynamics of medium-sized rare-gas clusters (Ar923) under intense femtosecond short-wavelength free-electron laser pulses by quasi-classical molecular dynamics simulations. A comparison of the interaction dynamics for pulses with planckω=20, 38 and 90 eV photon energy at fixed total excitation energy indicates a smooth transition from plasma-driven cluster expansion, where predominantly surface ions are expelled by hydrodynamic forces, to quasi-electrostatic behavior with almost pure Coulomb explosion. Corresponding signatures in the time-dependent cluster dynamics, as well as in the final ion and electron spectra, corroborate that this transition is linked to a crossover in the electron emission processes. The resulting signatures in the electron spectra are shown to be even more reliable for identifying the cluster expansion mechanisms than ion energy spectra. It is shown that the prevailing ionization mechanism and the dominant expansion process can be roughly estimated by a simple frustration parameter.

  1. Shock fronts, electron-ion equilibration and intracluster medium transport processes in the merging cluster Abell 2146

    NASA Astrophysics Data System (ADS)

    Russell, H. R.; McNamara, B. R.; Sanders, J. S.; Fabian, A. C.; Nulsen, P. E. J.; Canning, R. E. A.; Baum, S. A.; Donahue, M.; Edge, A. C.; King, L. J.; O'Dea, C. P.

    2012-06-01

    We present a new 400-ks Chandra X-ray observation of the merging galaxy cluster Abell 2146. This deep observation reveals detailed structure associated with the major merger event including the Mach number M= 2.3 ± 0.2 bow shock ahead of the dense, ram pressure stripped subcluster core and the first known example of an upstream shock in the intracluster medium (ICM) (M= 1.6 ± 0.1). By measuring the electron temperature profile behind each shock front, we determine the time-scale for the electron population to thermally equilibrate with the shock-heated ions. We find that the temperature profile behind the bow shock is consistent with the time-scale for Coulomb collisional equilibration and the post-shock temperature is lower than expected for instant shock heating of the electrons. Although like the Bullet cluster the electron temperatures behind the upstream shock front are hotter than expected, favouring the instant heating model, the uncertainty on the temperature values is greater here and there is significant substructure complicating the interpretation. We also measured the width of each shock front and the contact discontinuity on the leading edge of the subcluster core to investigate the suppression of transport processes in the ICM. The upstream shock is ˜440 kpc in length but appears remarkably narrow over this distance with a best-fitting width of only 6+5-3 kpc compared with the mean free path of 23 ± 5 kpc. The leading edge of the subcluster core is also narrow with an upper limit on the width of only 2 kpc separating the cool, multiphase gas at 0.5-2 keV from the shock-heated surrounding ICM at ˜6 keV. The strong suppression of diffusion and conduction across this edge suggests a magnetic draping layer may have formed around the subcluster core. The deep Chandra observation has also revealed a cool, dense plume of material extending ˜170 kpc perpendicular to the merger axis, which is likely to be the disrupted remnant of the primary cluster core

  2. ToF-SIMS and laser-SNMS analysis of Madin-Darby canine kidney II cells with silver nanoparticles using an argon cluster ion beam.

    PubMed

    Nees, Ricarda; Pelster, Andreas; Körsgen, Martin; Jungnickel, Harald; Luch, Andreas; Galla, Hans-Joachim; Arlinghaus, Heinrich F

    2016-06-01

    The use of nanoparticles is one of the fastest expanding fields in industrial as well as in medical applications, owing to their remarkable characteristics. Silver nanoparticles (AgNPs) are among the most-commercialized nanoparticles because of their antibacterial effects. Laser postionization secondary neutral mass spectrometry (laser-SNMS) and time-of-flight secondary ion mass spectrometry in combination with argon cluster ion sputtering was used for the first time to investigate the effects of AgNPs on Madin-Darby canine kidney (MDCK) II cells. Depth profiles and high-resolution three dimensional (3D) images of nanoparticles and organic compounds from cells were obtained using an Ar cluster ion beam for sputtering and Bi3 (+) primary ions for the analysis. The 3D distribution of AgNPs and other organic compounds in MDCK II cells could be readily detected with very high efficiency, sensitivity, and submicron lateral resolution. The argon cluster ion beam is well suited for the sputtering of biological samples. It enables a high sample removal rate along with low molecular degradation. The outer membrane, the cytoplasm, and the nuclei of the cells could be clearly visualized using the signals PO(+) and C3H8N(+) or CN(+) and C3H8N(+). The laser-SNMS images showed unambiguously that AgNPs are incorporated by MDCK II cells and often form silver aggregates with a diameter of a few micrometers, mainly close to the outside of the cell nuclei. PMID:26671480

  3. Fluorohydrogenate Cluster Ions in the Gas Phase: Electrospray Ionization Mass Spectrometry of the [1-Ethyl-3-methylimidazolium+][F(HF)2.3–] Ionic Liquid

    SciTech Connect

    Gary S. Groenewold; James E. Delmore; Michael T. Benson; Tetsuya Tsuda; Rika Hagiwara

    2013-12-01

    Electrospray ionization of the fluorohydrogenate ionic liquid [1-ethyl-3-methylimidazolium][F(HF)2.3] ionic liquid was conducted to understand the nature of the anionic species as they exist in the gas phase. Abundant fluorohydrogenate clusters were produced; however, the dominant anion in the clusters was [FHF-], and not the fluoride-bound HF dimers or trimers that are seen in solution. Density functional theory (DFT) calculations suggest that HF molecules are bound to the clusters by about 30 kcal/mol. The DFT-calculated structures of the [FHF-]-bearing clusters show that the favored interactions of the anions are with the methynic and acetylenic hydrogen atoms on the imidazolium cation, forming planar structures similar to those observed in the solid state. A second series of abundant negative ions was also formed that contained [SiF5-] together with the imidazolium cation and the fluorohydrogenate anions that originate from reaction of the spray solution with silicate surfaces.

  4. A Comparative High-Resolution Electron Microscope Study of Ag Clusters Produced by a Sputter-Gas Aggregation and Ion Cluster Beam Technique

    NASA Astrophysics Data System (ADS)

    Hohl, Georg-Friedrich; Hihara, Takehiko; Sakurai, Masaki; Oishi, Takashi; Wakoh, Kimio; Sumiyama, Kenji; Suzuki, Kenji

    1994-03-01

    Ag clusters were formed by a sputter-gas-aggregation process [H. Haberland et al..: J. Vac. Sci. Technol. A 10 (1992) 3266] and the ionized cluster beam (ICB) [T. Takagi: Ionized-Cluster Beam Deposition and Epitaxy (Noyes, Park Ridge, 1988)] technique. The Ag clusters deposited on collodion-coated microgrids were investigated by high-resolution transmission electron microscopy. The diameter of those clusters, d, ranges from 1 nm up to about 10 nm for specimens produced by the sputter-gas aggregation technique, depending on the sputter condition and the deposition time. Comparable times of the ICB deposition lead to a broader distribution up to d≈20 nm, suggesting the formation of islands with extremely flat shapes. High percentages of crystalline particles obtained by both techniques are either single crystals or multiple twins with clear lattice images.

  5. Stabilities and structures in cluster ions of five-membered heterocyclic compounds containing O, N, and S atoms

    SciTech Connect

    Hiraoka, K.; Takimoto, H.; Yamabe, S.

    1987-11-25

    Clustering and hydration reactions of protonated and radical cations of heterocyclic compounds, e.g., furan, tetrahydrofuran, pyrrole, pyrrolidine, thiophene, and tetrahydrothiophene, have been studied using a pulsed electron beam mass spectrometer. The bond energies of proton-held dimer cations for furan, pyrrole, and thiophene are much smaller than those for tetrahydrofuran, pyrrolidine, and tetrahydrothiophene, respectively. This result suggests that not the heteroatoms but the ..cap alpha.. carbon atoms are protonated for furan, pyrrole, and thiophene. The hydrogen-bond site for the protonated furan and thiophene is calculated to be the unprotonated ..cap alpha.. hydrogen (C-H/sub ..cap alpha../ adjacent to the heteroatom) which is the most acidic one. On the other hand, the N-H hydrogen is the best hydrogen-bond site for the protonated pyrrole. It was found that the radical-cations dimers have greater bond energies than the proton-held dimer cations for furan and thiophene. This suggests that the bonds of the former have more covalent nature. Some unique reactions of C/sub 4/H/sub 4/O/sup .+/ and C/sub 4/H/sub 5/O/sup +/ with a furan molecule were observed. With an increase of temperature, the ions with m/z which are the same as those for (C/sub 4/H/sub 4/O)/sub 2//sup .+/ and H/sup +/(C/sub 4/H/sub 4/O)/sub 2/ are found to be formed at the expense of C/sup 4/H/sub 4/O/sup .+/ and C/sub 4/H/sub 5/O/sup +/ ions, respectively. It is suggested that the reactions observed are Diels-Alder type condensation reactions.

  6. Melatonin Protects Human Cells from Clustered DNA Damages, Killing and Acquisition of Soft Agar Growth Induced by X-rays or 970 MeV/n Fe ions

    SciTech Connect

    Das, B.; Sutherland, B.; Bennett, P. V.; Cutter, N. C.; Sutherland, J. C.

    2011-06-01

    We tested the ability of melatonin (N-acetyl-5 methoxytryptamine), a highly effective radical scavenger and human hormone, to protect DNA in solution and in human cells against induction of complex DNA clusters and biological damage induced by low or high linear energy transfer radiation (100 kVp X-rays, 970 MeV/nucleon Fe ions). Plasmid DNA in solution was treated with increasing concentrations of melatonin (0.0-3.5 mM) and were irradiated with X-rays. Human cells (28SC monocytes) were also irradiated with X-rays and Fe ions with and without 2 mM melatonin. Agarose plugs containing genomic DNA were subjected to Contour Clamped Homogeneous Electrophoretic Field (CHEF) followed by imaging and clustered DNA damages were measured by using Number Average length analysis. Transformation experiments on human primary fibroblast cells using soft agar colony assay were carried out which were irradiated with Fe ions with or without 2 mM melatonin. In plasmid DNA in solution, melatonin reduced the induction of single- and double-strand breaks. Pretreatment of human 28SC cells for 24 h before irradiation with 2 mM melatonin reduced the level of X-ray induced double-strand breaks by {approx}50%, of abasic clustered damages about 40%, and of Fe ion-induced double-strand breaks (41% reduction) and abasic clusters (34% reduction). It decreased transformation to soft agar growth of human primary cells by a factor of 10, but reduced killing by Fe ions only by 20-40%. Melatonin's effective reduction of radiation-induced critical DNA damages, cell killing, and striking decrease of transformation suggest that it is an excellent candidate as a countermeasure against radiation exposure, including radiation exposure to astronaut crews in space travel.

  7. A statistical study of magnetospheric ion composition along the geomagnetic field using the Cluster spacecraft for L values between 5.9 and 9.5

    NASA Astrophysics Data System (ADS)

    Sandhu, J. K.; Yeoman, T. K.; Fear, R. C.; Dandouras, I.

    2016-03-01

    Using ion density data obtained by the CODIF (ion Composition and Distribution Function analyser) instrument on board the Cluster spacecraft, for the interval spanning 2001-2005, an empirical model describing the average ion mass distribution along closed geomagnetic field lines is determined. The empirical model describes the region spanning 5.9≤L < 9.5, with dependences on L shell and magnetic local time included, and represents ions in the energy range of 0.025 to 40 keV/charge. The data reduction process involves the identification and rejection of CODIF data contaminated by penetrating energetic radiation belt particles, found to frequently occur for L < 5.9. Furthermore, a comparison of data with observations of the cold plasma population in the region provides evidence that the CODIF data set is representative of the full plasma population. The variations in average ion mass along the field lines were modeled using a power law form, which maximizes toward the magnetic equatorial plane, with observed power law index values ranging between approximately -2.0 and 0.0. The resulting model illustrates some key features of the average ion mass spatial distribution, such as an average ion mass enhancement at low L in the evening sector, indicating the transport of high-latitude heavy ion outflows to the closed inner magnetosphere.

  8. Explicitly correlated coupled cluster calculations for the benzenium ion (C6H7(+)) and its complexes with Ne and Ar.

    PubMed

    Botschwina, Peter; Oswald, Rainer

    2011-11-24

    Explicitly correlated coupled cluster theory at the CCSD(T)-F12x (x = a, b) level (Adler, T. B.; Knizia, G.; Werner, H.-J. J. Chem. Phys. 2007, 127, 221106) has been employed in a study of the benzenium ion (C6H7(+)) and its complexes with a neon or an argon atom. The ground-state rotational constants of C6H7(+) are predicted to be A0 = 5445 MHz, B0 = 5313 MHz, and C0 = 2731 MHz. Anharmonic vibrational wavenumbers of this cation were obtained by combination of harmonic CCSD(T*)-F12a values with anharmonic contributions calculated by double-hybrid density functional theory at the B2PLYP-D level. For the complexes of C6H7(+) with Ne or Ar, the lowest energy minimum is of π-bonded structure. The corresponding dissociation energies D0 are estimated to be 160 and 550 cm(-1), respectively. There is no indication of H-bonds to the aromatic or aliphatic hydrogen atoms. Instead, three nonequivalent local energy minima were found for nuclear configurations where the rare-gas atom lies in the ring-plane and approximatly points to the center of one of the six CC bonds. PMID:21981720

  9. Clustering of Color sources and the Equation of State in Heavy Ion Collisions at RHIC and LHC Energies

    NASA Astrophysics Data System (ADS)

    Scharenberg, R. P.

    2012-11-01

    The initial temperature Ti, energy density ɛi, and formation time τi of the initial state of the QGP formed in the heavy ion collisions at RHIC and LHC energies are determined using the data driven Color String Percolation Model (CSPM). Multiparticle production by interacting strings stretched between projectile and target form a spanning cluster at the percolation threshold. The relativistic kinetic theory relation for η/s is evaluated as a function of T and the mean free path (λmfp) using data and CSPM. η/s(Ti, λmfp) describes the transition from a strongly interacting QGP at T/Tc ~ 1 to a weakly coupled QGP at T/Tc >= 6. We find that the reciprocal of η/s is equal to the trace anomaly Δ = ɛ - 3P/T4 which also describes the transition. We couple this initial state of the QGP to a ID Bjorken expansion to determine the sound velocity c2s of the QGP for 0.85 <= T/Tc <= 3. The bulk thermodynamic quantities and the equation of state are in excellent agreement with LQCD results.

  10. Observational Study of Ion Diffusion Region tailward of the Cusp: Polar and Cluster Observations in 1998-2008

    NASA Astrophysics Data System (ADS)

    Muzamil, F. M.; Farrugia, C. J.; Torbert, R. B.; Argall, M. R.; Wang, S.

    2015-12-01

    Asymmetries in plasma density and the presence of a guide field significantly alter the structure of the ion diffusion region (IDR) in symmetric, collisionless reconnection. These features have been shown by numerical simulations under moderate density asymmetries (~10), and theoretical analyses. However, very few studies have addressed these issues with in-situ observations. We have compiled a collection of Cluster and Polar crossings of the high-latitude magnetopause poleward of the cusp under northward interplanetary magnetic field in the years 1998-2008 when signatures of reconnection inside the IDR are observed. They encompass a wide range of density asymmetries (~10 to 1000), magnetic field asymmetries (~0.2 to 0.9), and guide fields (~10 to ~60 %). In this dedicated observational study, we target the following topics: (1) The alteration of the structure of the IDR -- i.e., its width, the non-colocation of stagnation and X-lines, jet outflow speed, and biasing of the reconnection outflow jet toward the magnetosphere -- as a function of increasing density asymmetry, and (2) the diamagnetic drift of the X-line. Further, focusing on IDR crossings during plasma flow reversals and/or near-simultaneous crossings on either side of the X-line by two spacecraft under steady ambient conditions, we report on the contrast in the Hall fields and the plasma behavior on the sunward versus the tailward sides of the X-line in its dependence on the strength of the guide field.

  11. Investigation of defect clusters in ion-irradiated Ni and NiCo using diffuse X-ray scattering and electron microscopy

    DOE PAGESBeta

    Olsen, Raina J.; Jin, Ke; Lu, Chenyang; Beland, Laurent K.; Wang, Lumin M.; Bei, Hongbin; Specht, Eliot D.; Larson, Bennett C.

    2016-01-01

    The nature of defect clusters in Ni and Nimore » $$_{50}$$Co$$_{50}$$ (NiCo) irradiated at room temperature with 2–16 MeV Ni ions is studied using asymptotic diffuse X-ray scattering and transmission electron microscopy (TEM). Analysis of the scattering data provides separate size distributions for vacancy and interstitial type defect clusters, showing that both types of defect clusters have a smaller size and higher density in NiCo than in Ni. Diffuse scattering results show good quantitative agreement with TEM results for cluster sizes greater than 4 nm diameter, but find that the majority of vacancy clusters are under 2 nm in NiCo, which, if not detected, would lead to the conclusion that defect density was actually lower in the alloy. Interstitial dislocation loops and stacking fault tetrahedra are identified by TEM. Lastly comparison of diffuse scattering lineshapes to those calculated for dislocation loops and SFTs indicates that most of the vacancy clusters are SFTs.« less

  12. Investigation of defect clusters in ion-irradiated Ni and NiCo using diffuse X-ray scattering and electron microscopy

    SciTech Connect

    Olsen, Raina J.; Jin, Ke; Lu, Chenyang; Beland, Laurent K.; Wang, Lumin M.; Bei, Hongbin; Specht, Eliot D.; Larson, Bennett C.

    2016-01-01

    The nature of defect clusters in Ni and Ni$_{50}$Co$_{50}$ (NiCo) irradiated at room temperature with 2–16 MeV Ni ions is studied using asymptotic diffuse X-ray scattering and transmission electron microscopy (TEM). Analysis of the scattering data provides separate size distributions for vacancy and interstitial type defect clusters, showing that both types of defect clusters have a smaller size and higher density in NiCo than in Ni. Diffuse scattering results show good quantitative agreement with TEM results for cluster sizes greater than 4 nm diameter, but find that the majority of vacancy clusters are under 2 nm in NiCo, which, if not detected, would lead to the conclusion that defect density was actually lower in the alloy. Interstitial dislocation loops and stacking fault tetrahedra are identified by TEM. Lastly comparison of diffuse scattering lineshapes to those calculated for dislocation loops and SFTs indicates that most of the vacancy clusters are SFTs.

  13. An investigation of long and short range ion motions within the cluster morphology of electrolyte-containing perfluoro-sulfonate ionomer membranes

    SciTech Connect

    Su, S.

    1992-01-01

    An equivalent circuit model was postulated for PFSI (perfluoro-sulfanate-ionomer) polymers. It successfully models three different dielectric relaxation mechanisms taking place within long and short sidechain PFSI's in an alternating electric field. The three dielectric processes are long-range ion inter-cluster hopping in the low frequency region, short-range intra-cluster polarization occurred in frequencies at about 10[sup 3] to 10[sup 6] Hz, and Debye-like orientation of water molecules taking place at very high frequencies. When membranes are annealed in the proximity of the glass transition temperature of ionic clusters, the packing of sulfonate groups becomes more efficient. This is by the fact that the symmetrical parameter of the distribution of relaxation time of the Cole-Cole equation increases with annealing time. The cluster activities of the long and short sidechain polymers act differently in different electrolyte solutions. The sidechains of the long sidechain polymer act like a spring, it contracts while the material was equilibrated in low concentration solutions and it expands as equilibrated in concentrated solutions. The cluster dimension of the long sidechain material does not vary too much. The cluster dimension of short sidechain polymers can vary significantly on different electrolyte solutions.

  14. Absolute solvation free energy of Li{sup +} and Na{sup +} ions in dimethyl sulfoxide solution: A theoretical ab initio and cluster-continuum model study

    SciTech Connect

    Westphal, Eduard; Pliego, Josefredo R. Jr.

    2005-08-15

    The solvation of the lithium and sodium ions in dimethyl sulfoxide solution was theoretically investigated using ab initio calculations coupled with the hybrid cluster-continuum model, a quasichemical theory of solvation. We have investigated clusters of ions with up to five dimethyl sulfoxide (DMSO) molecules, and the bulk solvent was described by a dielectric continuum model. Our results show that the lithium and sodium ions have four and five DMSO molecules into the first coordination shell, and the calculated solvation free energies are -135.5 and -108.6 kcal mol{sup -1}, respectively. These data suggest a solvation free energy value of -273.2 kcal mol{sup -1} for the proton in dimethyl sulfoxide solution, a value that is more negative than the present uncertain experimental value. This and previous studies on the solvation of ions in water solution indicate that the tetraphenylarsonium tetraphenylborate assumption is flawed and the absolute value of the free energy of transfer of ions from water to DMSO solution is higher than the present experimental values.

  15. Ion induced dipole clusters H(n)- (3 ≤ n-odd ≤ 13): density functional theory calculations of structure and energy.

    PubMed

    Huang, Lulu; Matta, Chérif F; Massa, Lou

    2011-11-17

    We investigate anew the possible equilibrium geometries of ion induced dipole clusters of hydrogen molecular ions, of molecular formula H(n)(-) (3 ≤ n-odd ≤ 13). Our previous publications [Sapse, A. M.; et al. Nature 1979, 278, 332; Rayez, J. C.; et al., J. Chem. Phys. 1981, 75, 5393] indicated these molecules would have a shallow minimum and adopt symmetrical geometries that accord with the valence shell electron pair repulsion (VSEPR) rules for geometries defined by electron pairs surrounding a central point of attraction. These earlier calculations were all based upon Hartree-Fock (HF) calculations with a fairly small basis of atomic functions, except for the H3(-) ion for which configuration interaction (CI) calculations were carried out. A related paper [Hirao, K.; et al., Chem. Phys. 1983, 80, 237] carried out similar calculations on the same clusters, finding geometries similar to our earlier calculations. However, although that paper argued that the stabilization energy of negative ion clusters H(n)(-) is small, vibration frequencies for the whole set of clusters was not reported, and so a definitive assertion of a true equilibrium was not present. In this paper we recalculate the energetics of the ion induced dipole clusters using density function theory (DFT) B3LYP method calculations in a basis of functions (6-311++G(d,p)). By calculating the vibration frequencies of the VSEPR geometries, we prove that in general they are not true minima because not all the resulting frequencies correspond to real values. By searching the energy surface of the B3LYP calculations, we find the true minimum geometries, which are surprising configurations and are perhaps counterintuitive. We calculate the total energy and binding energy of the new geometries. We also calculate the bond paths associated with the quantum theory of atoms in molecules (QTAIM). The B3LYP/6-311++G(d,p) results, for each molecule, deliver bond paths that radiate between each polarized H2

  16. Ion-Stockmayer clusters: Minima, classical thermodynamics, and variational ground state estimates of Li+(CH3NO2)n (n = 1-20)

    NASA Astrophysics Data System (ADS)

    Curotto, E.

    2015-12-01

    Structural optimizations, classical NVT ensemble, and variational Monte Carlo simulations of ion Stockmayer clusters parameterized to approximate the Li+(CH3NO2)n (n = 1-20) systems are performed. The Metropolis algorithm enhanced by the parallel tempering strategy is used to measure internal energies and heat capacities, and a parallel version of the genetic algorithm is employed to obtain the most important minima. The first solvation sheath is octahedral and this feature remains the dominant theme in the structure of clusters with n ≥ 6. The first "magic number" is identified using the adiabatic solvent dissociation energy, and it marks the completion of the second solvation layer for the lithium ion-nitromethane clusters. It corresponds to the n = 18 system, a solvated ion with the first sheath having octahedral symmetry, weakly bound to an eight-membered and a four-membered ring crowning a vertex of the octahedron. Variational Monte Carlo estimates of the adiabatic solvent dissociation energy reveal that quantum effects further enhance the stability of the n = 18 system relative to its neighbors.

  17. Observations of different core water cluster ions Y-(H2O)n (Y = O2, HOx, NOx, COx) and magic number in atmospheric pressure negative corona discharge mass spectrometry.

    PubMed

    Sekimoto, Kanako; Takayama, Mitsuo

    2011-01-01

    Reliable mass spectrometry data from large water clusters Y(-)(H(2)O)(n) with various negative core ions Y(-) such as O(2)(-), HO(-), HO(2)(-), NO(2)(-), NO(3)(-), NO(3)(-)(HNO(3))(2), CO(3)(-) and HCO(4)(-) have been obtained using atmospheric pressure negative corona discharge mass spectrometry. All the core Y(-) ions observed were ionic species that play a central role in tropospheric ion chemistry. These mass spectra exhibited discontinuities in ion peak intensity at certain size clusters Y(-)(H(2)O)(m) indicating specific thermochemical stability. Thus, Y(-)(H(2)O)(m) may correspond to the magic number or first hydrated shell in the cluster series Y(-)(H(2)O)(n). The high intensity discontinuity at HO(-)(H(2)O)(3) observed was the first mass spectrometric evidence for the specific stability of HO(-)(H(2)O)(3) as the first hydrated shell which Eigen postulated in 1964. The negative ion water clusters Y(-)(H(2)O)(n) observed in the mass spectra are most likely to be formed via core ion formation in the ambient discharge area (760 torr) and the growth of water clusters by adiabatic expansion in the vacuum region of the mass spectrometers (≈1 torr). The detailed mechanism of the formation of the different core water cluster ions Y(-)(H(2)O)(n) is described. PMID:21184434

  18. Rapid flame synthesis of internal Mo6+ doped TiO2 nanocrystals in situ decorated with highly dispersed MoO3 clusters for lithium ion storage

    NASA Astrophysics Data System (ADS)

    Li, Yunfeng; Hu, Yanjie; Shen, Jianhua; Jiang, Haibo; Min, Guoquan; Qiu, Shengjie; Song, Zhitang; Sun, Zhuo; Li, Chunzhong

    2015-11-01

    The rational design of nanoheterostructured materials has attracted much attention because of its importance for developing highly efficient LIBs. Herein, we have demonstrated that internal Mo6+ doped TiO2 nanocrystals in situ decorated with highly dispersed MoO3 clusters have been realized by a facile and rapid flame spray pyrolysis route for electrochemical energy storage. In such intriguing nanostructures, internal Mo6+ doping can improve the conductivity of electrode materials and facilitate rapid Li+ intercalation and ion transport and the heteroassembly of highly dispersed ultrafine MoO3 clusters with excellent electrochemical activity endows the TiO2 with extra Li+ ion storage ability as well as incorporates Mo6+. Thus, the as-prepared nanohybrid electrodes exhibit a high specific capacity and superior rate capability due to the maximum synergetic effect of TiO2, Mo6+ and ultrafine MoO3 clusters. Moreover, the aerosol flame process with a unique temperature gradient opens a new strategy to design novel hybrid materials by the simultaneous doping and heteroassembly engineering for next-generation LIBs.The rational design of nanoheterostructured materials has attracted much attention because of its importance for developing highly efficient LIBs. Herein, we have demonstrated that internal Mo6+ doped TiO2 nanocrystals in situ decorated with highly dispersed MoO3 clusters have been realized by a facile and rapid flame spray pyrolysis route for electrochemical energy storage. In such intriguing nanostructures, internal Mo6+ doping can improve the conductivity of electrode materials and facilitate rapid Li+ intercalation and ion transport and the heteroassembly of highly dispersed ultrafine MoO3 clusters with excellent electrochemical activity endows the TiO2 with extra Li+ ion storage ability as well as incorporates Mo6+. Thus, the as-prepared nanohybrid electrodes exhibit a high specific capacity and superior rate capability due to the maximum synergetic effect

  19. Derivation of heavy (10-210 AMU) ion composition and flow parameters for the Giotto PICCA instrument. [Positive Ion Cluster Composition Analyzer (PICCA)

    NASA Technical Reports Server (NTRS)

    Mitchell, D. L.; Lin, R. P.; Anderson, K. A.; Carlson, C. W.; Curtis, D. W.; Korth, A.; Richter, A. K.; Reme, H.; Sauvaud, J. A.; Duston, C.

    1986-01-01

    The Giotto heavy ion analyzer RPA2-PICCA was designed to identify the composition and distribution of heavy thermal positive ions in the coma of comet Halley. The instrument is an electrostatic analyzer which takes advantage of the large relative flyby velocity and the fact that the ions in the inner coma should be cold and predominantly singly charged. A method of deconvolving E/Q measurements to yield ion mass composition, temperature, and flow velocity is presented. The measurements are used to investigate the dynamic behavior of the ions and variations in mass composition as a function of cometary distance.

  20. Accurate argon cluster-ion sputter yields: Measured yields and effect of the sputter threshold in practical depth-profiling by x-ray photoelectron spectroscopy and secondary ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Cumpson, Peter J.; Portoles, Jose F.; Barlow, Anders J.; Sano, Naoko

    2013-09-01

    Argon Gas Cluster-Ion Beam sources are likely to become widely used on x-ray photoelectron spectroscopy and secondary ion mass spectrometry instruments in the next few years. At typical energies used for sputter depth profiling the average argon atom in the cluster has a kinetic energy comparable with the sputter threshold, meaning that for the first time in practical surface analysis a quantitative model of sputter yields near threshold is needed. We develop a simple equation based on a very simple model. Though greatly simplified it is likely to have realistic limiting behaviour and can be made useful for estimating sputter yields by fitting its three parameters to experimental data. We measure argon cluster-ion sputter yield using a quartz crystal microbalance close to the sputter threshold, for silicon dioxide, poly(methyl methacrylate), and polystyrene and (along with data for gold from the existing literature) perform least-squares fits of our new sputter yield equation to this data. The equation performs well, with smaller residuals than for earlier empirical models, but more importantly it is very easy to use in the design and quantification of sputter depth-profiling experiments.

  1. Accurate argon cluster-ion sputter yields: Measured yields and effect of the sputter threshold in practical depth-profiling by x-ray photoelectron spectroscopy and secondary ion mass spectrometry

    SciTech Connect

    Cumpson, Peter J.; Portoles, Jose F.; Barlow, Anders J.; Sano, Naoko

    2013-09-28

    Argon Gas Cluster-Ion Beam sources are likely to become widely used on x-ray photoelectron spectroscopy and secondary ion mass spectrometry instruments in the next few years. At typical energies used for sputter depth profiling the average argon atom in the cluster has a kinetic energy comparable with the sputter threshold, meaning that for the first time in practical surface analysis a quantitative model of sputter yields near threshold is needed. We develop a simple equation based on a very simple model. Though greatly simplified it is likely to have realistic limiting behaviour and can be made useful for estimating sputter yields by fitting its three parameters to experimental data. We measure argon cluster-ion sputter yield using a quartz crystal microbalance close to the sputter threshold, for silicon dioxide, poly(methyl methacrylate), and polystyrene and (along with data for gold from the existing literature) perform least-squares fits of our new sputter yield equation to this data. The equation performs well, with smaller residuals than for earlier empirical models, but more importantly it is very easy to use in the design and quantification of sputter depth-profiling experiments.

  2. Studies on the Application of High Voltage Discharge Ionization and Ablation in Supersonic-Jets for the Generation of Intense Cluster Ion Beams.

    NASA Astrophysics Data System (ADS)

    Brock, Ansgar

    Glow discharge and pulsed capacitor discharge ionization in supersonic expansions were investigated for the production of intense beams of molecular cluster ions from seeded and ablated compounds. A low cost high voltage high current pulser based on a triggered spark gap switch is described as a mean for ionization and ablation. Besides, details of the molecular beam apparatus and modified pulsed valve are given. Cluster cations rm (Ar)_ {n}^+, rm (CO_2) _{n}^{+}, rm (C_6H_6)_{n}^+ and rm (H_2O)_{n }^+ were produced by pulsed capacitor discharge ionization in the expansion region of a seeded free-jet. The observed cluster mass spectra (CMS) for Ar, rm C_6H_6 and H _2O show the characteristic features (magic numbers) of electron beam and photo ionized clusters under molecular flow conditions. Indications for the presence of magic numbers in the CMS of {(CO _2)_{n}^+} cluster ions at n = 20, 26, 30 and 34 similar to those found for rare gas clusters have been found. Cationic metal ligand complexes Cu(Toluene) _{rm n}^+, Cu(Acetone) _{rm n}^+, Cu(Methanol)_{rm n}^+ , Cu(Ethylether)_{rm n }^+, Cu(Water)_{ rm n}^+, Al(Water)_ {rm n}^+ were synthesized by ablation of the metal from metallic discharge electrodes in a discharge gas mixture of helium seeded with the ligand of choice. The CMS of the expanded plasmas show little background ion signal besides the metal-ligand species. Charge exchange processes in the expansion guarantee high ionization yields of the desired species and account for low backgrounds. Changes in the successive binding energy of Cu(Water)_ {rm n}^+ clusters n = 1-4 are clearly observed in the CMS as step formation. A similar pattern found in the Cu(Acetone)_{ rm n}^+ CMS suggests the same trend in the successive binding energy as known for water. Ablation from a Cr(acac)_3 in a copper matrix was employed for the synthesis of Cr(Acetone) _{rm n}^+ and Cr(Benzene)^+ complexes demonstrating the ability to use nonconducting compounds as a metal source

  3. Guided ion-beam studies of the reactions of Co{sub n}{sup +} (n=2-20) with O{sub 2}: Cobalt cluster-oxide and -dioxide bond energies

    SciTech Connect

    Liu Fuyi; Li Fengxia; Armentrout, P.B.

    2005-08-08

    The kinetic-energy dependence for the reactions of Co{sub n}{sup +} (n=2-20) with O{sub 2} is measured as a function of kinetic energy over a range of 0 to 10 eV in a guided ion-beam tandem mass spectrometer. A variety of Co{sub m}{sup +}, Co{sub m}O{sup +}, and Co{sub m}O{sub 2}{sup +} (m{<=}n) product ions is observed, with the dioxide cluster ions dominating the products for all larger clusters. Reaction efficiencies of Co{sub n}{sup +} cations with O{sub 2} are near unity for all but the dimer. Bond dissociation energies for both cobalt cluster oxides and dioxides are derived from threshold analysis of the energy dependence of the endothermic reactions using several different methods. These values show little dependence on cluster size for clusters larger than three atoms. The trends in this thermochemistry and the stabilities of oxygenated cobalt clusters are discussed. The bond energies of Co{sub n}{sup +}-O for larger clusters are found to be very close to the value for desorption of atomic oxygen from bulk-phase cobalt. Rate constants for O{sub 2} chemisorption on the cationic clusters are compared with results from previous work on cationic, anionic, and neutral cobalt clusters.

  4. Rapid flame synthesis of internal Mo(6+) doped TiO2 nanocrystals in situ decorated with highly dispersed MoO3 clusters for lithium ion storage.

    PubMed

    Li, Yunfeng; Hu, Yanjie; Shen, Jianhua; Jiang, Haibo; Min, Guoquan; Qiu, Shengjie; Song, Zhitang; Sun, Zhuo; Li, Chunzhong

    2015-11-28

    The rational design of nanoheterostructured materials has attracted much attention because of its importance for developing highly efficient LIBs. Herein, we have demonstrated that internal Mo(6+) doped TiO2 nanocrystals in situ decorated with highly dispersed MoO3 clusters have been realized by a facile and rapid flame spray pyrolysis route for electrochemical energy storage. In such intriguing nanostructures, internal Mo(6+) doping can improve the conductivity of electrode materials and facilitate rapid Li(+) intercalation and ion transport and the heteroassembly of highly dispersed ultrafine MoO3 clusters with excellent electrochemical activity endows the TiO2 with extra Li(+) ion storage ability as well as incorporates Mo(6+). Thus, the as-prepared nanohybrid electrodes exhibit a high specific capacity and superior rate capability due to the maximum synergetic effect of TiO2, Mo(6+) and ultrafine MoO3 clusters. Moreover, the aerosol flame process with a unique temperature gradient opens a new strategy to design novel hybrid materials by the simultaneous doping and heteroassembly engineering for next-generation LIBs. PMID:26490363

  5. Classification of biodiesel and fuel blends using gas chromatography - differential mobility spectrometry with cluster analysis and isolation of C18:3 me by dual ion filtering.

    PubMed

    Pasupuleti, Dedeepya; Eiceman, Gary A; Pierce, Karisa M

    2016-08-01

    Fatty acid alkyl esters (FAAEs) were determined at 10-100mg/L in biodiesel and blends with petrodiesel without sample pre-treatment using gas chromatography with a tandem differential mobility detector. Selectivity was provided through chromatographic separations and atmospheric pressure chemical ionization reactions in the detector with mobility characterization of gas ions. Limits of detection were ~0.5ng with an average of 2.98% RSD for peak area precision, ≤1.3% RSD for retention time precision, and ≤9.2% RSD for compensation voltage precision. Biodiesel blends were classified using principal component analysis (PCA) and hierarchical cluster analysis (HCA). Unsupervised cluster analysis captured 52.72% of variance in a single PC while supervised analysis captured 71.64% of variance using Fisher ratio feature selection. Test set predictions showed successful clustering according to source or feedstock when regressed onto the training set model. Detection of the regulated substance methyl linolenate (C18:3 me) was achieved in 6-10s with a 1m long capillary column using dual ion filtering in the tandem differential mobility detector. PMID:27216685

  6. Imaging with Mass Spectrometry: A SIMS and VUV-Photoionization Study of Ion-Sputtered Atoms and Clusters from GaAs and Au

    SciTech Connect

    Takahashi, Lynelle; Zhou, Jia; Wilson, Kevin R.; Leone, Stephen R.; Ahmed, Musahid

    2008-12-05

    A new mass spectrometry surface imaging method is presented in which ion-sputtered neutrals are postionized by wavelength-tunable vacuum ultraviolet (VUV) light from a synchrotron source. Mass spectra and signal counts of the photoionized neutrals from GaAs (100) and Au are compared to those of the secondary ions. While clusters larger than dimers are more efficiently detected as secondary ions, certain species, such as As2, Au and Au2, are more efficiently detected through the neutral channel. Continuously tuning the photon wavelength allows photoionization efficiency (PIE) curves to be obtained for sputtered Asm (m=1,2) and Aun (n=1-4). From the observed ionization thresholds, sputtered neutral As and Au show no clear evidence of electronic excitation, while neutral clusters have photoionization onsets shifted to lower energies by ~;;0.3 eV. These shifts are attributed to unresolved vibrational and rotational excitations. High-spatial resolution chemical imaging with synchrotron VUV postionization is demonstrated at two different photon energies using a copper TEM grid embedded in indium. The resulting images are used to illustrate the use of tunable VUV light for verifying mass peak assignments by exploiting the unique wavelength-dependent PIE of each sputtered neutral species. This capability is valuable for identifying compounds when imaging chemically complex systems with mass spectrometry-based techniques.

  7. Low energy (0-4 eV) electron impact to N{sub 2}O clusters: Dissociative electron attachment, ion-molecule reactions, and vibrational Feshbach resonances

    SciTech Connect

    Vizcaino, Violaine; Denifl, Stephan; Maerk, Tilmann D.; Scheier, Paul; Illenberger, Eugen

    2010-10-21

    Electron attachment to clusters of N{sub 2}O in the energy range of 0-4 eV yields the ionic complexes [(N{sub 2}O){sub n}O]{sup -}, [(N{sub 2}O){sub n}NO]{sup -}, and (N{sub 2}O){sub n}{sup -} . The shape of the ion yields of the three homologous series differs substantially reflecting the different formation mechanisms. While the generation of [(N{sub 2}O){sub n}O]{sup -} can be assigned to dissociative electron attachment (DEA) of an individual N{sub 2}O molecule in the target cluster, the formation of [(N{sub 2}O){sub n}NO]{sup -} is interpreted via a sequence of ion molecule reactions involving the formation of O{sup -} via DEA in the first step. The nondecomposed complexes (N{sub 2}O){sub n}{sup -} are preferentially formed at very low energies (below 0.5 eV) as a result of intramolecular stabilization of a diffuse molecular anion at low energy. The ion yields of [(N{sub 2}O){sub n}O]{sup -} and (N{sub 2}O){sub n}{sup -} versus electron energy show sharp peaks at the threshold region, which can be assigned to vibrational Feshbach resonances mediated by the diffuse anion state as already observed in an ultrahigh resolution electron attachment study of N{sub 2}O clusters [E. Leber, S. Barsotti, J. Boemmels, J. M. Weber, I. I. Fabrikant, M.-W. Ruf, and H. Hotop, Chem. Phys. Lett. 325, 345 (2000)].

  8. Trapping of Li(+) Ions by [ThFn](4-n) Clusters Leading to Oscillating Maxwell-Stefan Diffusivity in the Molten Salt LiF-ThF4.

    PubMed

    Chakraborty, Brahmananda; Kidwai, Sharif; Ramaniah, Lavanya M

    2016-08-18

    A molten salt mixture of lithium fluoride and thorium fluoride (LiF-ThF4) serves as a fuel as well as a coolant in the most sophisticated molten salt reactor (MSR). Here, we report for the first time dynamic correlations, Onsager coefficients, Maxwell-Stefan (MS) diffusivities, and the concentration dependence of density and enthalpy of the molten salt mixture LiF-ThF4 at 1200 K in the composition range of 2-45% ThF4 and also at eutectic composition in the temperature range of 1123-1600 K using Green-Kubo formalism and equilibrium molecular dynamics simulations. We have observed an interesting oscillating pattern for the MS diffusivity for the cation-cation pair, in which ĐLi-Th oscillates between positive and negative values with the amplitude of the oscillation reducing as the system becomes rich in ThF4. Through the velocity autocorrelation function, vibrational density of states, radial distribution function analysis, and structural snapshots, we establish an interplay between the local structure and multicomponent dynamics and predict that formation of negatively charged [ThFn](4-n) clusters at a higher ThF4 mole % makes positively charged Li(+) ions oscillate between different clusters, with their range of motion reducing as the number of [ThFn](4-n) clusters increases, and finally Li(+) ions almost get trapped at a higher ThF4% when the electrostatic force on Li(+) exerted by various surrounding clusters gets balanced. Although reports on variations of density and enthalpy with temperature exist in the literature, for the first time we report variations of the density and enthalpy of LiF-ThF4 with the concentration of ThF4 (mole %) and fit them with the square root function of ThF4 concentration, which will be very useful for experimentalists to obtain data over a range of concentrations from fitting the formula for design purposes. The formation of [ThFn](4-n) clusters and the reduction in the diffusivity of the ions at a higher ThF4% may limit the

  9. Three novel Cu6S6 cluster-based coordination compounds: synthesis, framework modulation and the sensing of small molecules and Fe(3+) ions.

    PubMed

    Song, Jiang-Feng; Li, Si-Zhe; Zhou, Rui-Sha; Shao, Jia; Qiu, Xiao-Min; Jia, Ying-Ying; Wang, Jun; Zhang, Xiao

    2016-08-01

    Three novel Cu6S6 cluster-based coordination compounds formulated as [Cu(mpymt)3]2 (1), {(CuBr4)[Cu(mpymt)6]}n (2), and {(CuI6)[Cu(mpymt)6]}n (3) (Hmpymt = 4-methylpyrimidine-2-thione), have been synthesized under solvothermal conditions and characterized by elemental analysis, infrared (IR) spectroscopy, thermal gravimetric analysis, powder X-ray diffraction and single-crystal X-ray diffraction. Structural analysis reveals that compound 1 shows a distorted octahedral core of six copper atoms (Cu6S6) constructed from four α and two β type N[double bond, length as m-dash]C-SH parts from six mpymt(-) anions. Compound 2 displays an interesting 3D framework constructed from Cu6S6 and Cu4Br4 Cu(i) clusters simultaneously, interestingly, six mpymt(-) with α type N[double bond, length as m-dash]C-SH parts are involved in the formation of Cu6S6. Compound 3 displays an infinite 1D framework constructed from Cu6S6 and Cu6I6 Cu(i) clusters, notably, four α and two β type N[double bond, length as m-dash]C-SH parts are involved in the formation of the Cu6S6 cluster, however, only mpymt(-) ligands containing α type N[double bond, length as m-dash]C-SH parts form the bridged Cu6I6 cluster. The experimental results reveal that halogen ions finely modulate the structural features of compounds 1-3. The fluorescent properties of compounds 1-3 in the solid state and in various solvent emulsions were investigated in detail, the results of which indicate that compounds 1-3 are all highly sensitive naked eye colorimetric sensors for NB, 2-NT and Fe(3+) (NB = nitrobenzene and 2-NT = 2-nitrotoluene). PMID:27377475

  10. Stabilization of transient negative ions by vibrational energy transfer: A cluster and thin film study on SF6 and C6F6

    NASA Astrophysics Data System (ADS)

    Weik, F.; Sanche, L.; Ingólfsson, O.; Illenberger, E.

    2000-05-01

    Resonant low energy electron attachment to SF6 and C6F6 in argon clusters and on a multilayer krypton film is presented. The energy dependence of the absolute attachment cross sections for the condensed molecules is determined in the range 0-8 eV by measuring charge localization on the film. We find a cross section maximum of (3.0±0.8)×10-15 cm2 at 60 meV for SF6- formation, which is close to the gas phase value. For C6F6, we obtain a maximum value (4.8±1.2)×10-15 cm2 at 75 meV. In contrast to isolated gas phase molecules, where both ions are only observed in a very narrow energy range around 0 eV, SF6- resulting from electron attachment to clusters is observed up to 1.5 eV. The same is true for the condensed submonolayers, where charge localization is observed up to 1.5 eV for SF6. The extension of stable SF6- formation to much higher energies in condensed media is attributed to the transfer of intramolecular vibrational energy from SF6- to phonon vibrational modes of the Ar cluster or the Kr multilayer film. C6F6- formation is also observed up to 1.7 eV from clusters, but on the film, charge localization is only detected up to 0.7 eV. This difference is explained by the orientation of the C6F6 molecules on the rare gas film, which diminishes vibrational energy transfer to the phonon bath of the Kr lattice. Similar results are also obtained for the dimeric configurations of these molecules seeded into Ar clusters.

  11. Thermochemistry of the activation of N2 on iron cluster cations: Guided ion beam studies of the reactions of Fen+ (n=1-19) with N2

    NASA Astrophysics Data System (ADS)

    Tan, Lin; Liu, Fuyi; Armentrout, P. B.

    2006-02-01

    The kinetic energy dependences of the reactions of Fen+ (n=1-19) with N2 are studied in a guided ion beam tandem mass spectrometer over the energy range of 0-15eV. In addition to collision-induced dissociation forming Fem+ ions, which dominate the product spectra, a variety of FemN2+ and FemN+ product ions, where m ⩽n, is observed. All processes are observed to exhibit thresholds. Fem+-N and Fem+-2N bond energies as a function of cluster size are derived from the threshold analysis of the kinetic energy dependences of the endothermic reactions. The trends in this thermochemistry are compared to the isoelectronic D0(Fen+-CH), and to bulk phase values. A fairly uniform barrier of 0.48±0.03eV at 0K is observed for formation of the FenN2+ product ions (n =12, 15-19) and can be related to the rate-limiting step in the Haber process for catalytic ammonia production.

  12. Ion distribution in quaternary-ammonium-functionalized aromatic polymers: effects on the ionic clustering and conductivity of anion-exchange membranes.

    PubMed

    Weiber, E Annika; Jannasch, Patric

    2014-09-01

    A series of copoly(arylene ether sulfone)s that have precisely two, three, or four quaternary ammonium (QA) groups clustered directly on single phenylene rings along the backbone are studied as anion-exchange membranes. The copolymers are synthesized by condensation polymerizations that involve either di-, tri-, or tetramethylhydroquinone followed by virtually complete benzylic bromination using N-bromosuccinimide and quaternization with trimethylamine. This synthetic strategy allows excellent control and systematic variation of the local density and distribution of QA groups along the backbone. Small-angle X-ray scattering of these copolymers shows extensive ionic clustering, promoted by an increasing density of QA on the single phenylene rings. At an ion-exchange capacity (IEC) of 2.1 meq g(-1), the water uptake decreases with the increasing local density of QA groups. Moreover, at moderate IECs at 20 °C, the Br(-) conductivity of the densely functionalized copolymers is higher than a corresponding randomly functionalized polymer, despite the significantly higher water uptake of the latter. Thus, the location of multiple cations on single aromatic rings in the polymers facilitates the formation of a distinct percolating hydrophilic phase domain with a high ionic concentration to promote efficient anion transport, despite probable limitations by reduced ion dissociation. These findings imply a viable strategy to improve the performance of alkaline membrane fuel cells. PMID:25044778

  13. Dynamic off-centering of Cr3+ ions and short-range magneto-electric clusters in CdCr2S4

    SciTech Connect

    Oliveira, Goncalo; Pereira, Andre; Lopes, Armandina; Amaral, Joao; Moreira Dos Santos, Antonio F; Ren, Yang; Mendonca, Tania; Sousa, C T; Amaral, Vitor; Correa, Joao; Araujo, Joao Pedro

    2012-01-01

    The cubic spinel CdCr2S4 gained recently a vivid interest, given the relevance of relaxor-like dielectric behavior in its paramagnetic phase. By a singular combination of local probe techniques, namely, pair distribution function and perturbed angular correlation, we firmly establish that the Cr ion plays the central key role on this exotic phenomenon, namely, through a dynamic off-centering displacement of its coordination sphere. We further show that this off-centering of the magnetic Cr ion gives rise to a peculiar entanglement between the polar and magnetic degrees of freedom, stabilizing, in the paramagnetic phase, short-range magnetic clusters, clearly seen in ultralow-field susceptibility measurements. Moreover, the Landau theory is here used to demonstrate that a linear coupling between the magnetic and polar order parameters is sufficient to justify the appearance of magnetic cluster in the paramagnetic phase of this compound. These results open insights on the hotly debated magnetic and polar interaction, setting a step forward in the reinterpretation of the coupling of different physical degrees of freedom.

  14. Confined SnO2 quantum-dot clusters in graphene sheets as high-performance anodes for lithium-ion batteries.

    PubMed

    Zhu, Chengling; Zhu, Shenmin; Zhang, Kai; Hui, Zeyu; Pan, Hui; Chen, Zhixin; Li, Yao; Zhang, Di; Wang, Da-Wei

    2016-01-01

    Construction of metal oxide nanoparticles as anodes is of special interest for next-generation lithium-ion batteries. The main challenge lies in their rapid capacity fading caused by the structural degradation and instability of solid-electrolyte interphase (SEI) layer during charge/discharge process. Herein, we address these problems by constructing a novel-structured SnO2-based anode. The novel structure consists of mesoporous clusters of SnO2 quantum dots (SnO2 QDs), which are wrapped with reduced graphene oxide (RGO) sheets. The mesopores inside the clusters provide enough room for the expansion and contraction of SnO2 QDs during charge/discharge process while the integral structure of the clusters can be maintained. The wrapping RGO sheets act as electrolyte barrier and conductive reinforcement. When used as an anode, the resultant composite (MQDC-SnO2/RGO) shows an extremely high reversible capacity of 924 mAh g(-1) after 200 cycles at 100 mA g(-1), superior capacity retention (96%), and outstanding rate performance (505 mAh g(-1) after 1000 cycles at 1000 mA g(-1)). Importantly, the materials can be easily scaled up under mild conditions. Our findings pave a new way for the development of metal oxide towards enhanced lithium storage performance. PMID:27181691

  15. Confined SnO2 quantum-dot clusters in graphene sheets as high-performance anodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhu, Chengling; Zhu, Shenmin; Zhang, Kai; Hui, Zeyu; Pan, Hui; Chen, Zhixin; Li, Yao; Zhang, Di; Wang, Da-Wei

    2016-05-01

    Construction of metal oxide nanoparticles as anodes is of special interest for next-generation lithium-ion batteries. The main challenge lies in their rapid capacity fading caused by the structural degradation and instability of solid-electrolyte interphase (SEI) layer during charge/discharge process. Herein, we address these problems by constructing a novel-structured SnO2-based anode. The novel structure consists of mesoporous clusters of SnO2 quantum dots (SnO2 QDs), which are wrapped with reduced graphene oxide (RGO) sheets. The mesopores inside the clusters provide enough room for the expansion and contraction of SnO2 QDs during charge/discharge process while the integral structure of the clusters can be maintained. The wrapping RGO sheets act as electrolyte barrier and conductive reinforcement. When used as an anode, the resultant composite (MQDC-SnO2/RGO) shows an extremely high reversible capacity of 924 mAh g‑1 after 200 cycles at 100 mA g‑1, superior capacity retention (96%), and outstanding rate performance (505 mAh g‑1 after 1000 cycles at 1000 mA g‑1). Importantly, the materials can be easily scaled up under mild conditions. Our findings pave a new way for the development of metal oxide towards enhanced lithium storage performance.

  16. Confined SnO2 quantum-dot clusters in graphene sheets as high-performance anodes for lithium-ion batteries

    PubMed Central

    Zhu, Chengling; Zhu, Shenmin; Zhang, Kai; Hui, Zeyu; Pan, Hui; Chen, Zhixin; Li, Yao; Zhang, Di; Wang, Da-Wei

    2016-01-01

    Construction of metal oxide nanoparticles as anodes is of special interest for next-generation lithium-ion batteries. The main challenge lies in their rapid capacity fading caused by the structural degradation and instability of solid-electrolyte interphase (SEI) layer during charge/discharge process. Herein, we address these problems by constructing a novel-structured SnO2-based anode. The novel structure consists of mesoporous clusters of SnO2 quantum dots (SnO2 QDs), which are wrapped with reduced graphene oxide (RGO) sheets. The mesopores inside the clusters provide enough room for the expansion and contraction of SnO2 QDs during charge/discharge process while the integral structure of the clusters can be maintained. The wrapping RGO sheets act as electrolyte barrier and conductive reinforcement. When used as an anode, the resultant composite (MQDC-SnO2/RGO) shows an extremely high reversible capacity of 924 mAh g−1 after 200 cycles at 100 mA g−1, superior capacity retention (96%), and outstanding rate performance (505 mAh g−1 after 1000 cycles at 1000 mA g−1). Importantly, the materials can be easily scaled up under mild conditions. Our findings pave a new way for the development of metal oxide towards enhanced lithium storage performance. PMID:27181691

  17. Metal Ion Sources for Ion Beam Implantation

    SciTech Connect

    Zhao, W. J.; Zhao, Z. Q.; Ren, X. T.

    2008-11-03

    In this paper a theme touched upon the progress of metal ion sources devoted to metal ion beam implantation (MIBI) will be reviewed. A special emphasis will be given to some kinds of ion sources such as ECR, MEVVA and Cluster ion sources. A novel dual hollow cathode metal ion source named DUHOCAMIS will be introduced and discussed.

  18. Laser initiated reactions in N{sub 2}O clusters studied by time-sliced ion velocity imaging technique

    SciTech Connect

    Honma, Kenji

    2013-07-28

    Laser initiated reactions in N{sub 2}O clusters were studied by a time-sliced velocity imaging technique. The N{sub 2}O clusters, (N{sub 2}O){sub n}, generated by supersonic expansion were irradiated by an ultraviolet laser around 204 nm to convert reactant pairs, O({sup 1}D{sub 2})-(N{sub 2}O){sub n−1}. The NO molecules formed from these reactant pairs were ionized by the same laser pulse and their velocity distribution was determined by the time-sliced velocity imaging technique. At low nozzle pressure, lower than 1.5 atm, the speed distribution in the frame moving with the clusters consists of two components. These components were ascribed to the products appeared in the backward and forward directions in the center-of-mass frame, respectively. The former consists of the vibrational ground state and the latter consists of highly vibrational excited states. At higher nozzle pressure, a single broad speed distribution became dominant for the product NO. The pressure and laser power dependences suggested that this component is attributed to the product formed in the clusters larger than dimer, (N{sub 2}O){sub n} (n ≥ 3)

  19. Ab initio study of the hydroxide ion-water clusters: An accurate determination of the thermodynamic properties for the processes nH2O+OH-→HO-(H2O)n (n=1-4)

    NASA Astrophysics Data System (ADS)

    Pliego, Josefredo R.; Riveros, José M.

    2000-03-01

    Clusters of hydroxide ion, HO-(H2O)n=1-4, have been studied by high level ab initio calculations in order to better understand the first coordination shell of OH- ions. Geometry optimizations were performed at Hartree-Fock, density functional theory and second order Møller-Plesset perturbation theory levels using the 6-31+G(d,p) basis set. Single point energy calculations were carried out on the optimized geometries using the more extended 6-311+G(2df,2p) basis set and a higher level of electron correlation, namely fourth-order Møller-Plesset perturbation theory. For the n=1-3 clusters, only structures with the hydroxide ion hydrogen bonded to all waters molecules were considered. For the n=4 cluster, three minima were found; the most stable species has all four waters directly bound to the hydroxide ion, while the other two clusters have only three waters in the first coordination shell. In addition, the transition state connecting the cluster containing four waters in the first coordination shell to the species having three waters in the coordination shell was characterized. The barrier for this rearrangement is very low (1.82 kcal/mol), and we predict this process to occur on the picosecond time scale. The thermodynamic properties (enthalpy, entropy and Gibbs free energy) for the formation of the clusters have been calculated for all the species (including the fully deuterated clusters). Comparison of our calculations with experimental data reveals good agreement in the free energy. Nevertheless, our ab initio results suggest that for the n>1 clusters, both -ΔH0 and -ΔS0 are larger than those reported from experiment and new experiments may be necessary to obtain accurate experimental values.

  20. Magnetic properties of nano-clusters lanthanum chromite powders doped with samarium and strontium ions synthesized via a novel combustion method

    SciTech Connect

    Rashad, M.M.; El-Sheikh, S.M.

    2011-03-15

    Graphical abstract: Nanocrystalline Sm{sup 3+} and Sr{sup 2+} doped LaCrO{sub 3} powders have been synthesized through a novel gel combustion synthesis using triethanol amine (TEA). The saturation magnetization of the LaCrO{sub 3} increased with an increase Sm{sup 3+} ion and it decreased with an increase in the Sr{sup 3+} ion to 0.3 at temperature 1000 {sup o}C for 2 h due to the formation of a monodispersed uniform octahedral structure as shown in the Fig. Research highlights: {yields} Single-phase orthorhombic lanthanum chromite LaCrO{sub 3} nanoclusters have been successfully synthesized through a novel gel combustion synthesis using triethanol amine (TEA). {yields} Sr{sup 2+} ions doped LaCrO{sub 3} increased the unit cell volume and the crystallite size whereas Sm{sup 3+} ions doped LaCrO{sub 3} decreased the unit cell volume and the crystallite size. {yields} The saturation magnetization of the LaCrO{sub 3} powders increased continuously with an increase in the Sm concentration and it decreased with an increase in the Sr ion up to 0.3 at annealing temperature of 1000 {sup o}C for 2 h. -- Abstract: A novel approach to synthesize a single-phase orthorhombic perovskite lanthanum chromite LaCrO{sub 3} clusters doped with Sm{sup 3+} and Sr{sup 2+} ions via gel combustion route was reported. The producing materials were synthesized using metal nitrates as oxidizers and triethanol amine (TEA), N-butyl amine (NBA) or ethylene diamine (EDA) as a fuel. The effect of the annealing temperature, type of organic fuel and the variation of the samarium and/or strontium substitution and its impact on crystal structure, crystallite size, microstructure and magnetic properties of the LaCrO{sub 3} powders formed was systematically studied. The results revealed that a well crystalline single phase of pure LaCrO{sub 3} can be achieved at annealing temperature from 800 to 1000 {sup o}C for 2 h. Moreover, each organic carrier materials exhibited a different degree of effectiveness

  1. Mechanisms of formation of nonlinear optical light guide structures in metal cluster composites produced by ion beam implantation

    SciTech Connect

    Sarkisov, S.S.; Williams, E.K.; Curley, M.; Smith, C.C.; Ila, D.; Venkateswarlu, P.; Poker, D.B.; Hensley, D.K.

    1997-11-01

    Ion implantation has been shown to produce a high density of metal colloids in glasses and crystalline materials. The high-precipitate volume fraction and small size of metal nanoclusters formed leads to values for the third-order susceptibility much greater than those for metal doped solids. This has stimulated interest in use of ion implantation to make nonlinear optical materials. On the other side, LiNbO{sub 3} has proved to be a good material for optical waveguides produced by MeV ion implantation. Light confinement in these waveguides is produced by refractive index step difference between the implanted region and the bulk material. Implantation of LiNbO{sub 3} with MeV metal ions can therefore result into nonlinear optical waveguide structures with great potential in a variety of device applications. The authors describe linear and nonlinear optical properties of a waveguide structure in LiNbO{sub 3}-based composite material produced by silver ion implantation in connection with mechanisms of its formation.

  2. Absolute cross sections for the dissociation of hydrogen cluster ions in high-energy collisions with helium atoms

    SciTech Connect

    Eden, S.; Tabet, J.; Samraoui, K.; Louc, S.; Farizon, B.; Farizon, M.; Ouaskit, S.; Maerk, T. D.

    2006-02-15

    Absolute dissociation cross sections are reported for H{sub n}{sup +} clusters of varied mass (n=3,5,...,35) following collisions with He atoms at 60 keV/amu. Initial results have been published previously for a smaller range of cluster sizes [Ouaskit et al., Phys. Rev. A 49, 1484 (1994)]. The present extended study includes further experimental results, reducing the statistical errors associated with the absolute cross sections. The previously suggested quasilinear dependence of the H{sub n}{sup +} dissociation cross sections upon n is developed with reference to expected series of geometrical shells of H{sub 2} molecules surrounding a H{sub 3}{sup +} core. Recent calculations identify n=9 as corresponding to the first closed H{sub 2} shell [e.g., Stich et al., J. Chem. Phys. 107, 9482 (1997)]. Recurrence of the distinct characteristics observed in the dissociation-cross-section dependence upon cluster size around n=9 provides the basis for the presently proposed subsequent closed shells at n=15, 21, 27, and 33, in agreement with the calculations of Nagashima et al. [J. Phys. Chem. 96, 4294 (1992)].

  3. Auger electron nanoscale mapping and x-ray photoelectron spectroscopy combined with gas cluster ion beam sputtering to study an organic bulk heterojunction

    SciTech Connect

    Heon Kim, Seong; Heo, Sung; Ihn, Soo-Ghang; Yun, Sungyoung; Hwan Park, Jong; Chung, Yeonji; Lee, Eunha; Park, Gyeongsu; Yun, Dong-Jin

    2014-06-16

    The lateral and vertical distributions of organic p/n bulk heterojunctions for an organic solar cell device are, respectively, investigated using nanometer-scale Auger electron mapping and using X-ray photoelectron spectroscopy (XPS) with Ar gas cluster ion beam (GCIB) sputtering. The concentration of sulfur, present only in the p-type material, is traced to verify the distribution of p-type (donor) and n-type (acceptor) materials in the blended structure. In the vertical direction, a considerable change in atomic sulfur concentration is observed using XPS depth profiling with Ar GCIB sputtering. In addition, Auger electron mapping of sulfur reveals the lateral 2-dimensional distribution of p- and n-type materials. The combination of Auger electron mapping with Ar GCIB sputtering should thereby allow the construction of 3-dimensional distributions of p- and n-type materials in organic photovoltaic cells.

  4. Smoothing of YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} films by ion cluster beam bombardment

    SciTech Connect

    Chu, W.K.; Li, Y.P.; Liu, J.R.; Wu, J.Z.; Tidrow, S.C.; Toyoda, N.; Matsuo, J.; Yamada, I.

    1998-01-01

    Smoothing high-temperature superconductor (HTS) surfaces, especially HTS thin-film surfaces, is crucial for HTS thin-film device processing. In this letter, we describe a method to planarize the surface of a YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} HTS film down to a smoothness with a standard deviation of 1 nm or better. The method includes first smoothing the HTS surface by ion cluster beam bombardment, followed by annealing in oxygen ambient to regrow the damaged surface layer. Additional YBCO layers can be grown epitaxially on the treated surface, even without removing the top surface layer, which contained some residual damage after annealing. This method can be integrated into HTS circuit fabrication as a key step of planarization. {copyright} {ital 1998 American Institute of Physics.}

  5. Luminescent quantum clusters of gold in bulk by albumin-induced core etching of nanoparticles: metal ion sensing, metal-enhanced luminescence, and biolabeling.

    PubMed

    Habeeb Muhammed, Madathumpady Abubaker; Verma, Pramod Kumar; Pal, Samir Kumar; Retnakumari, Archana; Koyakutty, Manzoor; Nair, Shantikumar; Pradeep, Thalappil

    2010-09-01

    The synthesis of a luminescent quantum cluster (QC) of gold with a quantum yield of approximately 4 % is reported. It was synthesized in gram quantities by the core etching of mercaptosuccinic acid protected gold nanoparticles by bovine serum albumin (BSA), abbreviated as Au(QC)@BSA. The cluster was characterized and a core of Au(38) was assigned tentatively from mass spectrometric analysis. Luminescence of the QC is exploited as a "turn-off" sensor for Cu(2+) ions and a "turn-on" sensor for glutathione detection. Metal-enhanced luminescence (MEL) of this QC in the presence of silver nanoparticles is demonstrated and a ninefold maximum enhancement is seen. This is the first report of the observation of MEL from QCs. Folic acid conjugated Au(QC)@BSA was found to be internalized to a significant extent by oral carcinoma KB cells through folic acid mediated endocytosis. The inherent luminescence of the internalized Au(QC)@BSA was used in cell imaging. PMID:20623564

  6. Water Nanodroplets as a Reaction Medium: FT-ICR Studies of the Stability, Structure and Reactivity of Hydrated Ions and Ionic Water Clusters

    NASA Astrophysics Data System (ADS)

    Bondybey, Vladimir E.

    2001-03-01

    With the help of a versatile ion source coupling laser vaporization with supersonic expansion, ionic clusters of the type X^±(H_2O)n are easily generated, and if desired, they can be mass selected in a Fourier Transform Ion Cyclotron (FT-ICR) mass spectrometer. The central ion, X^± can be for instance H^+ or OH^-, a free electron, or an ionized metal such as Na^+, Ag^+, Mg^+, or Al^+. Such "nanodroplets" solvated with up to 200 molecules of water or other ligands slowly fragment in the collision-free environment of the FT-ICR trap. They lose in a controlled way the solvent molecules, one by one on a millisecond timescale. The products of reactions which occur in the nanodroplet as a result of the loss of the stabilizing ligand can in the high-resolution mass spectrometer be unambiguously identified. In this way, a variety of solution processes such as ionic dissolution, fragmentation, neutralization, precipitation, reduction-oxidation reactions, or acid-base catalyzed reactions can be investigated in molecular, microscopic detail. Small droplets and particles are important for a variety of atmospheric processes and reactions occurring both in the troposphere and the stratosphere. This suggests the possibility of preparing such nano-droplets of suitable composition, and using them as a model system for investigating a large variety of reactions important for atmospheric chemistry. In the present talk, we will describe our apparatus and external source, and discuss a variety of results obtained recently with it in our laboratory. The aldol condensation of acetaldehyde as an example of an acid-base catalyzed reaction and the precipitation of AgCl show that a number of well-known reactions in solution have their counterpart on a single molecule level in the cluster. The competition between electron detachment and water loss of hydrated electrons e^-(H_2O)_n, n=13-36, provides interesting and unexpected insights into the coupling dynamics of the electron to its water

  7. Preparation of C 60 single crystalline thin film by ionized cluster beam deposition and ion implantation into single crystalline C 60 thin film

    NASA Astrophysics Data System (ADS)

    Isoda, Satoru; Kawakubo, Hiroaki; Nishikawa, Satoshi; Wada, Osamu

    1996-05-01

    We have succeeded in preparing single crystalline C 60 thin film of a lateral extension in the order of several millimeters on mica by ionized cluster beam (ICB) deposition. During the growth process, planar dendrite-like single crystalline islands were observed by an atomic force microscope (AFM). It was concluded from reflection high-energy electron diffraction (RHEED) and transmission electron diffraction (TED) analyses that these islands grow hetero-epitaxially on mica. As the deposition process continues, the single crystalline islands coalesce and finally form a giant single crystal without grain boundaries between the former islands. This layered dendrite-like crystal growth is considered to be due to the ICB process, namely, ionizing molecules and accelerating them. Furthermore, the effect of ion (P +, B +, Ar +) implantation into C 60 thin films on the molecular structure and the conductivity has been studied under various implantation conditions. It was found from the analyses of FT-IR and Raman spectroscopies that the soccer-ball-like structure of C 60 changes into a diamond-like carbon (DLC) structure with an implantation energy higher than 40 keV, whereas the structure undergoes virtually no change with 10 keV implantation. As for conductivity changes under the lower implantation energy condition, the minimum dose of P + ions required to increase the conductivity from the non-doped value (10 12 cm -2) is 10 times lower than in the case of Ar + implantation. The conductivity change for the P + implantation could be explained satisfactorily not only by the effect of chemically-modified C 60 but also by the effect of a charge-transfer state between C 60 and implanted ions. It was concluded from these results that the conductivity of the C 60 film can be controlled over a wide range based on the carrier generation mechanism, which depends on the implantation conditions.

  8. Supersonic Bare Metal Cluster Beams. Technical Progress Report, March 16, 1984 - April 1, 1985

    DOE R&D Accomplishments Database

    Smalley, R. E.

    1985-01-01

    There have been four major areas of concentration for the study of bare metal cluster beams: neutral cluster, chemical reactivity, cold cluster ion source development (both positive and negative), bare cluster ion ICR (ion cyclotron resonance) development, and photofragmentation studies of bare metal cluster ions.

  9. Ion-Stockmayer clusters: Minima, classical thermodynamics, and variational ground state estimates of Li{sup +}(CH{sub 3}NO{sub 2}){sub n} (n = 1–20)

    SciTech Connect

    Curotto, E.

    2015-12-07

    Structural optimizations, classical NVT ensemble, and variational Monte Carlo simulations of ion Stockmayer clusters parameterized to approximate the Li{sup +}(CH{sub 3}NO{sub 2}){sub n} (n = 1–20) systems are performed. The Metropolis algorithm enhanced by the parallel tempering strategy is used to measure internal energies and heat capacities, and a parallel version of the genetic algorithm is employed to obtain the most important minima. The first solvation sheath is octahedral and this feature remains the dominant theme in the structure of clusters with n ≥ 6. The first “magic number” is identified using the adiabatic solvent dissociation energy, and it marks the completion of the second solvation layer for the lithium ion-nitromethane clusters. It corresponds to the n = 18 system, a solvated ion with the first sheath having octahedral symmetry, weakly bound to an eight-membered and a four-membered ring crowning a vertex of the octahedron. Variational Monte Carlo estimates of the adiabatic solvent dissociation energy reveal that quantum effects further enhance the stability of the n = 18 system relative to its neighbors.

  10. Ionization of Water Clusters is Mediated by Exciton Energy Transfer from Argon Clusters

    SciTech Connect

    Golan, Amir; Ahmed, Musahid

    2012-01-25

    The exciton energy deposited in an argon cluster, (Arn ,< n=20>) using VUV radiation is transferred to softly ionize doped water clusters, ((H2O)n, n=1-9) leading to the formation of non-fragmented clusters. Following the initial excitation, electronic energy is channeled to ionize the doped water cluster while evaporating the Ar shell, allowing identification of fragmented and complete water cluster ions. Examination of the photoionization efficiency curve shows that cluster evaporation from excitons located above 12.6 eV are not enough to cool the energized water cluster ion, and leads to their dissociation to (H2O)n-2H+ (protonated) clusters.

  11. Energy Transfer in Rare Earth Ion Clusters and Fluorescence from Rare Earth Doped LANTHANUM(1.85)STRONTIUM(0.15)COPPER -OXYGEN(4) Superconductors.

    NASA Astrophysics Data System (ADS)

    Tissue, Brian Max

    1988-12-01

    Laser spectroscopy of rare earth ions in solids was used to study mechanisms of non-resonant energy transfer within rare earth clusters, and to detect insulating, impurity phases in rare earth doped La_{1.85 }Sr_{0.15}CuO _4 superconductors. The mechanisms of phonon-assisted, non-resonant energy transfer were studied in well-defined dimer sites in Er^{3+ }:SrF_2 and Pr ^{3+}:CaF_2. Application of a magnetic field to Er^{3+} :SrF_2 greatly increased the energy transfer rate. The magnetic field dependence in Er^{3+}:SrF _2 indicates that the mechanism of non-resonant energy transfer is a two-phonon, resonant process (Orbach process). Application of a magnetic field to Pr ^{3+}:CaF_2 had no effect on the energy transfer rate because no significant Zeeman splittings occurred. The temperature dependence of the energy transfer rate in Pr^{3+ }:CaF_2 showed the mechanism to be a one-phonon-assisted process at low temperatures and predominantly an Orbach process above 10 K. In the second part of this thesis, laser spectroscopy of a Eu ^{3+} probe ion is developed to detect impurity phases in La_{1.85 }Sr_{0.15}CuO _4 superconductors. Two impurity phases were found in polycrystalline La_ {1.85}Sr_{0.15} CuO_4: unreacted La _2O_3 starting material, and a La-silicate phase, which formed from contamination during sintering. The spectroscopic technique was found to be more than 100 times more sensitive than powder x -ray diffraction to detect minor impurity phases. In preparing the superconductors, several studies were made on the effect of Pr^{3+}, Eu ^{3+}, Bi^{3+ }, and fluorine dopants on the superconducting properties of La_{1.85}Sr _{0.15}CuO_4 and La_2Cuo_4 . Pr^{3+}, Eu ^{3+}, Bi^ {3+}, and F_2 doping all decreased the superconductivity in La_ {1.85}Sr^{0.15} CuO_4. Treating semi-conducting La_2CuO_4 in F_2 gas converted it to a superconductor with an onset T_{rm c} of 30-35 K.

  12. Infrared spectroscopy of ionic clusters

    SciTech Connect

    Price, J.M. . Dept. of Chemistry Lawrence Berkeley Lab., CA )

    1990-11-01

    This thesis describes new experiments wherein the infrared vibrational predissociation spectra of a number of mass-selected ionic cluster systems have been obtained and analyzed in the 2600 to 4000 cm{sup {minus}1} region. The species studied include: the hydrated hydronium ions, H{sub 3}O{sup +} (H{sub 2}O){sub 3 {minus}10}, ammoniated ammonium ions, NH{sub 4}{sup +}(NH{sub 3}){sub 1 {minus}10} and cluster ions involving both water and ammonia around an ammonium ion core, (mixed clusters) NH{sub 4}{sup +}(NH{sub 3}){sub n}(H{sub 2}O){sub m} (n+m=4). In each case, the spectra reveal well resolved structures that can be assigned to transitions arising from the vibrational motions of both the ion core of the clusters and the surrounding neutral solvent molecules. 154 refs., 19 figs., 8 tabs.

  13. Study of the nucleation and growth of antibiotic labeled Au NPs and blue luminescent Au8 quantum clusters for Hg2+ ion sensing, cellular imaging and antibacterial applications

    NASA Astrophysics Data System (ADS)

    Khandelwal, Puneet; Singh, Dheeraj K.; Sadhu, Subha; Poddar, Pankaj

    2015-11-01

    Herein, we report a detailed experimental study supported by DFT calculations to understand the mechanism behind the synthesis of cefradine (CFD - an antibiotic) labeled gold nanoparticles (Au NPs) by employing CFD as both a mild reducing and capping agent. The analysis of the effect of growth conditions reveals that a higher concentration of HAuCl4 results in the formation of an increasing fraction of anisotropic structures, higher temperature leads to the formation of quasi-spherical particles instead of anisotropic ones, and larger pH leads to the formation of much smaller particles. The cyclic voltammetry (CV) results show that when the pH of the reaction medium increases from 4 to 6, the reduction potential of CFD increases which leads to the synthesis of nanoparticles (in a pH 4 reaction) to quantum clusters (in a pH 6 reaction). The MALDI-TOF mass spectrometry results of supernatant of the pH 6 reaction indicate the formation of [Au8(CFD)2S6] QCs which show fluorescence at ca. 432 nm with a Stokes shift of ca. 95 nm. The blue luminescence from Au8 QCs was applied for sensing of Hg2+ ions on the basis of an aggregation-induced fluorescence quenching mechanism and offers good selectivity and a high sensitivity with a limit of detection ca. 2 nM which is lower than the detection requirement of 10 nM by the U.S. EPA and 30 nM by WHO for drinking water. We have also applied the sensing probe to detect Hg2+ ions in bacterial samples. Further, we have investigated the antibacterial property of as-synthesized Au NPs using MIC, growth curve and cell survival assay. The results show that Au NPs could reduce the cell survival very efficiently rather than the cell growth in comparison to the antibiotic itself. The scanning electron microscopy study shows the degradation and blebbing of the bacterial cell wall upon exposure with Au NPs which was further supported by fluorescence microscopy results. These Au NPs did not show reactive oxygen species generation. We believe

  14. Cluster beam analysis via photoionization

    SciTech Connect

    Grover, J.R. ); Herron, W.J.; Coolbaugh, M.T.; Peifer, W.R.; Garvey, J.F. )

    1991-08-22

    A photoionization method for quantitatively analyzing the neutral products of free jet expansions is described. The basic principle is to measure the yield of an ion characterization of each component cluster at a photon energy just below that at which production of the same ion from larger clusters can be detected. Since there is then no problem with fragmentation, the beam density of each neutral cluster can be measured in the presence of larger clusters. Although these measurements must be done in the test ions' onset regions where their yields are often quite small, the technique is made highly practicable by the large intensities of widely tunable vacuum-ultraviolet synchrotron light now available at electron storage rings. As an example, the method is applied to the analysis of cluster beams collimated from the free jet expansion of a 200:1 ammonia-chlorobenzene mixture.

  15. CLUSTER CHEMISTRY

    SciTech Connect

    Muetterties, Earl L.

    1980-05-01

    Metal cluster chemistry is one of the most rapidly developing areas of inorganic and organometallic chemistry. Prior to 1960 only a few metal clusters were well characterized. However, shortly after the early development of boron cluster chemistry, the field of metal cluster chemistry began to grow at a very rapid rate and a structural and a qualitative theoretical understanding of clusters came quickly. Analyzed here is the chemistry and the general significance of clusters with particular emphasis on the cluster research within my group. The importance of coordinately unsaturated, very reactive metal clusters is the major subject of discussion.

  16. Guided ion beam studies of the reactions of Co{sub n}{sup +} (n=1-18) with N{sub 2}: Cobalt cluster mononitride and dinitride bond energies

    SciTech Connect

    Liu Fuyi; Li Ming; Tan Lin; Armentrout, P. B.

    2008-05-21

    The reactions of Co{sub n}{sup +} (n=1-18) with N{sub 2} are measured as a function of kinetic energy over a range of 0-15 eV in a guided ion beam tandem mass spectrometer. A variety of Co{sub m}{sup +}, Co{sub m}N{sup +}, and Co{sub m}N{sub 2}{sup +} (m{<=}n) product ions are observed, all in endothermic processes, with collision-induced dissociation dominating the products for all clusters. Bond dissociation energies for both cobalt cluster nitrides and dinitrides are derived from threshold analysis of the energy dependence of the endothermic reactions using several different approaches. These values show only a mild dependence on cluster size over the range studied, although the Co{sub 13}{sup +}-N bond energy is relatively weak. The bond energies of Co{sub n}{sup +}-N for larger clusters suggest that a reasonable value for the desorption energy of atomic nitrogen from bulk phase cobalt is 6.3{+-}0.2 eV, which is somewhat lower than the only available value in the literature, an estimate based on the enthalpy of formation of bulk cobalt nitride. The trends in the cobalt nitride thermochemistry are also compared to previously determined metal-metal bond energies, D{sub 0}(Co{sub n}{sup +}-Co), and to D{sub 0}(Fe{sub n}{sup +}-N). Implications for catalytic ammonia production using cobalt versus iron are discussed.

  17. Nonadditivity of convoy- and secondary-electron yields in the forward-electron emission from thin carbon foils under irradiation of fast carbon-cluster ions

    NASA Astrophysics Data System (ADS)

    Tomita, S.; Yoda, S.; Uchiyama, R.; Ishii, S.; Sasa, K.; Kaneko, T.; Kudo, H.

    2006-06-01

    We have measured energy spectra of secondary electrons produced by fast-carbon-cluster Cn+ (n=1-4) bombardment of thin carbon foils (3.2, 7.3, 11.9, and 20.3μg/cm2 ). For clusters of identical velocity, the convoy-electron yield is enhanced with increasing cluster size n , while the yield of secondary electrons is reduced. The yield of convoy electrons normalized to the number of injected atoms increases proportionally with cluster size n . This proportionality suggests that there is only a weak vicinage effect on the number of primary electrons scattered by the projectile. The vicinage effect observed in low-energy secondary electrons must therefore arise from either transport or transmission through the surface.

  18. Thermochemistry of the activation of N{sub 2} on iron cluster cations: Guided ion beam studies of the reactions of Fe{sub n}{sup +} (n=1-19) with N{sub 2}

    SciTech Connect

    Tan Lin; Liu Fuyi; Armentrout, P.B.

    2006-02-28

    The kinetic energy dependences of the reactions of Fe{sub n}{sup +} (n=1-19) with N{sub 2} are studied in a guided ion beam tandem mass spectrometer over the energy range of 0-15 eV. In addition to collision-induced dissociation forming Fe{sub m}{sup +} ions, which dominate the product spectra, a variety of Fe{sub m}N{sub 2}{sup +} and Fe{sub m}N{sup +} product ions, where m{<=}n, is observed. All processes are observed to exhibit thresholds. Fe{sub m}{sup +}-N and Fe{sub m}{sup +}-2N bond energies as a function of cluster size are derived from the threshold analysis of the kinetic energy dependences of the endothermic reactions. The trends in this thermochemistry are compared to the isoelectronic D{sub 0}(Fe{sub n}{sup +}-CH), and to bulk phase values. A fairly uniform barrier of 0.48{+-}0.03 eV at 0 K is observed for formation of the Fe{sub n}N{sub 2}{sup +} product ions (n=12, 15-19) and can be related to the rate-limiting step in the Haber process for catalytic ammonia production.

  19. N-O versus N-N bond activation in reaction of N2O with carbon cluster ions: Experimental and ab initio studies of the effects of geometric and electronic structure

    NASA Astrophysics Data System (ADS)

    Resat, Marianne Sowa; Smolanoff, Jason N.; Goldman, Ilyse B.; Anderson, Scott L.

    1994-06-01

    We report a combined experimental and theoretical study of the reaction of small carbon cluster cations with N2O aimed at understanding the reaction mechanism and how it is affected by the electronic and geometric structure of the C+n reactants. Cross sections for reaction of C+n (n=3-12) with N2O were measured over a collision energy range from 0.1-10 eV, using a guided ion beam tandem mass spectrometer. Ab initio calculations were used to examine the structure and energetics of reactant and product species. Small clusters, which are linear, react with no activation barrier, resulting in either oxide or nitride formation. The branching between oxide and nitride channels shows a strong even-odd alternation, with even clusters preferentially forming nitrides. This appears to be correlated with an even/odd alternation in the ionization potential of the CnN. The larger, monocyclic C+n have activation barriers for reaction, and a completely different product distribution. Secondary reactions of the primary oxide and nitride products were studied at high N2O pressures. Products containing two O or two N atoms are not observed, but it is possible to add one of each. Possible reaction mechanisms are discussed and supported by thermochemistry derived from spin restricted ab initio calculations.

  20. Automated analysis of organic particles using cluster SIMS

    NASA Astrophysics Data System (ADS)

    Gillen, Greg; Zeissler, Cindy; Mahoney, Christine; Lindstrom, Abigail; Fletcher, Robert; Chi, Peter; Verkouteren, Jennifer; Bright, David; Lareau, Richard T.; Boldman, Mike

    2004-06-01

    Cluster primary ion bombardment combined with secondary ion imaging is used on an ion microscope secondary ion mass spectrometer for the spatially resolved analysis of organic particles on various surfaces. Compared to the use of monoatomic primary ion beam bombardment, the use of a cluster primary ion beam (SF 5+ or C 8-) provides significant improvement in molecular ion yields and a reduction in beam-induced degradation of the analyte molecules. These characteristics of cluster bombardment, along with automated sample stage control and custom image analysis software are utilized to rapidly characterize the spatial distribution of trace explosive particles, narcotics and inkjet-printed microarrays on a variety of surfaces.

  1. CuFe2O4 magnetic nanocrystal clusters as a matrix for the analysis of small molecules by negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Lin, Zian; Zheng, Jiangnan; Bian, Wei; Cai, Zongwei

    2015-08-01

    CuFe2O4 magnetic nanocrystal clusters (CuFe2O4 MNCs) were proposed as a new matrix for small molecule analysis by negative ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the first time. We demonstrated its advantages over conventional organic matrices in the detection of small molecules such as amino acids, peptides, nucleobases, fatty acids, and steroid hormones. A systematic comparison of CuFe2O4 MNCs with different ionization modes revealed that MS spectra obtained for the CuFe2O4 MNC matrix in the negative ion mode was only featured by deprotonated ion peaks with a free matrix background, which was different from the complicated alkali metal adducts produced in the positive ion mode. The developed method was found relatively tolerant to salt contamination and exhibited good reproducibility. A detection limit down to the subpicomolar level was achieved when testosterone was analyzed. In addition, by comparison of the MS spectra obtained from bare Fe3O4 and MFe2O4 MNC (M = Co, Ni, Cu, Zn) matrices, two main factors of MFe2O4 MNC matrices were revealed to play a vital role in assisting the negative ion desorption/ionization (D/I) process: doping transition metals into ferrite nanocrystals favoring laser absorption and energy transfer and a good match between the UV absorption of MFe2O4 MNCs and the excitation of nitrogen laser source facilitating LDI efficiency. This work creates a new branch of application for MFe2O4 MNCs and provides an alternative solution for small molecule analysis. PMID:26086699

  2. Clusters in storage rings

    SciTech Connect

    Hvelplund, P.; Andersen, J. U.; Hansen, K.

    1999-01-15

    Anions of fullerenes and small metal clusters have been stored in the storage rings ASTRID and ELISA. Decays on a millisecond time scale are due to electron emission from metastable excited states. For the fullerenes the decay curves have been interpreted in terms of thermionic emission quenched by radiative cooling. The stored clusters were heated by a Nd:YAG laser resulting in increased emission rates. With an OPO laser this effect was used to study the wavelength dependence of the absorption of light in hot C{sub 60}{sup -} ion molecules.

  3. Meaningful Clusters

    SciTech Connect

    Sanfilippo, Antonio P.; Calapristi, Augustin J.; Crow, Vernon L.; Hetzler, Elizabeth G.; Turner, Alan E.

    2004-05-26

    We present an approach to the disambiguation of cluster labels that capitalizes on the notion of semantic similarity to assign WordNet senses to cluster labels. The approach provides interesting insights on how document clustering can provide the basis for developing a novel approach to word sense disambiguation.

  4. Anomalous elongation of c-axis of GaN on Al2O3 grown by MBE using NH3-cluster ions

    NASA Astrophysics Data System (ADS)

    Ichinohe, Yoshihiro; Imai, Kazuaki; Suzuki, Kazuhiko; Saito, Hiroshi

    2016-02-01

    GaN thin films were grown on Al2O3 (0001) by MBE using NH3-clusters either ionized with the energy of 4-7 eV/molecule (ionized Cluster Beam, i-CB) or un-ionized with the energy of about 0.1 eV/molecule (neutral Cluster Beam, n-CB) at growth temperatures ranging from 390 to 960 °C. The c-axis is extremely elongated but the a-axis is shrunken at the initial growth stage (up to the film thickness of about 10 nm) in GaN grown by the mixture of n- and i-CB under N-rich condition. The films thicker than 30 nm have the relaxed a- and c-axis lengths close to the unstrained values and obey the Poisson relation. GaN grown by i-CB under Ga-rich condition have the relaxed lattice constants obeying the Poisson relation for the film as thin as 6 nm. In GaN grown by the cluster beam (CB) which is not ionized intentionally, both a- and c-axis lengths are almost independent of the film thickness, having nearly the same values as those of the unstrained samples. These characteristics can be ascribed to the nature of interface between the nitrided Al2O3 substrate and epilayer. It is concluded that the films grown by i-CB bond firmly to underlay AlN than the films by n-CB and CB.

  5. Bicontinuous Structure of Li₃V₂(PO₄)₃ Clustered via Carbon Nanofiber as High-Performance Cathode Material of Li-Ion Batteries.

    PubMed

    Chen, Lin; Yan, Bo; Xu, Jing; Wang, Chunguang; Chao, Yimin; Jiang, Xuefan; Yang, Gang

    2015-07-01

    In this work, the composite structure of Li3V2(PO4)3 (LVP) nanoparticles with carbon nanofibers (CNF) is designed. The size and location of LVP particles, and the degree of graphitization and diameter of carbon nanofibers, are optimized by electrospinning and heat treatment. The bicontinuous morphologies of LVP/CNF are dependent on the carbonization of PVP and simultaneous growing of LVP, with the fibers shrunk and the LVP crystals grown toward the outside. LVP nanocystals clustered via carbon nanofibers guarantee improving the diffusion ability of Li(+), and the carbon fiber simultaneously guarantees the effective electron conductivity. Compared with the simple carbon-coated LVP and pure LVP, the particle-clustered structure guarantees high rate capability and long-life cycling stability of NF-LVP as cathode for LIBs. At 20 C rate in the range 3.0-4.3 V, NF-LVP delivers the initial capacity of 122.6 mAh g(-1) close to the theoretical value of 133 mAh g(-1), and maintains 97% of the initial capacity at the 1000th cycle. The bead-like structure of cathode material clustered via carbon nanofibers via electrospinning will be further applied to high-performance LIBs. PMID:26053376

  6. Reactions and properties of clusters

    NASA Astrophysics Data System (ADS)

    Castleman, A. W., Jr.

    1992-09-01

    The elucidation from a molecular point of view of the differences and similarities in the properties and reactivity of matter in the gaseous compared to the condensed state is a subject of considerable current interest. One of the promising approaches to this problem is to utilize mass spectrometry in conjunction with laser spectroscopy and fast-flow reaction devices to investigate the changing properties, structure and reactivity of clusters as a function of the degree of solvation under well-controlled conditions. In this regard, an investigation of molecular cluster ions has provided considerable new insight into the basic mechanisms of ion reactions within a cluster, and this paper reviews some of the recent advances in cluster production, the origin of magic numbers and relationship to cluster ion stabilities, and solvation effects on reactions. There have been some notable advances in the production of large cluster ions under thermal reaction conditions, enabling a systematic study of the influence of solvation on reactions to be carried out. These and other new studies of magic numbers have traced their origin to the thermochemical stability of cluster ions. There are several classes of reaction where solvation has a notable influence on reactivity. A particularly interesting example comes from recent studies of the reactions of the hydroxyl anion with CO2 and SO2, studied as a function of the degree of hydration of OH-. Both reactions are highly exothermic, yet the differences in reactivity are dramatic. In the case of SO2, the reaction occurs at near the collision rate. By contrast, CO2 reactivity plummets dramatically for clusters having more than four water molecules. The slow rate is in accord with observations in the liquid phase.

  7. High-nuclearity magnetic clusters: Magnetic interactions in clusters encapsulated by molecular metal oxides

    NASA Astrophysics Data System (ADS)

    Borras-Almenar, Juan José; Coronado, Eugenio; Galan-Mascaros, Jose Ramón; Gómez-García, Carlos J.

    1995-02-01

    The ability of the molecular metal oxides derived from the Keggin anion [PW 12O 40] 3- to accommodate magnetic ions at specific sites, giving rise to polymetallic clusters with increasing spin nuclearities is discussed. Examples of magnetic clusters with three, four and nine metal ions exhibiting ferromagnetic exchange couplings or a coexistence of ferro- and antiferromagnetic couplings are reported.

  8. Direct analytical method of contact position effects on the energy-level alignments at organic semiconductor/electrode interfaces using photoemission spectroscopy combined with Ar gas cluster ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Yun, Dong-Jin; Chung, JaeGwan; Kim, Seong Heon; Kim, Yongsu; Park, SungHoon; Seol, Minsu; Heo, Sung

    2015-11-01

    Poly(3, 4-ethylenedioxythiophene) (PEDOT) polymerized with poly(4-styrenesulfonate) (PSS) is one of the most widely used conducting organic electrodes owing to its outstanding optical/electrical properties and high work function. Because its work function depends significantly on the molecular arrangements between PEDOT and PSS molecules on the surface, the contact position of PEDOT:PSS films on organic semiconductors (OSCs) must also be an essential consideration. However, existing analysis methods based on in situ deposition/analysis are limited in their ability to accurately investigate the electronic structures of the buried interface regions under the solution-processed electrode or OSC layer in organic devices. Therefore, to overcome such limitations, we propose a top-down method based on photoemission spectroscopy analysis combined with Ar gas cluster ion beam (GCIB) sputtering. Through this method, both energy-level alignments and molecular distributions at various OSC/electrode interfaces can be successfully characterized without reference to any deposition process.

  9. FAST TRACK COMMUNICATION: Inhomogeneous charge redistribution in Xe clusters exposed to an intense extreme ultraviolet free electron laser

    NASA Astrophysics Data System (ADS)

    Iwayama, H.; Sugishima, A.; Nagaya, K.; Yao, M.; Fukuzawa, H.; Motomura, K.; Liu, X.-J.; Yamada, A.; Wang, C.; Ueda, K.; Saito, N.; Nagasono, M.; Tono, K.; Yabashi, M.; Ishikawa, T.; Ohashi, H.; Kimura, H.; Togashi, T.

    2010-08-01

    The emission of highly charged ions from Xe clusters exposed to intense extreme ultraviolet laser pulses (λ ~ 52 nm) from the free electron laser in Japan was investigated using ion momentum spectroscopy. With increasing average cluster size, we observed multiply charged ions Xez + up to z = 3. From kinetic energy distributions, we found that multiply charged ions were generated near the cluster surface. Our results suggest that charges are inhomogeneously redistributed in the cluster to lower the total energy stored in the clusters.

  10. Hot-electron influence on L-shell spectra of multicharged Kr ions generated in clusters irradiated by femtosecond laser pulses.

    PubMed

    Hansen, S B; Shlyaptseva, A S; Faenov, A Y; Skobelev, I Y; Magunov, A I; Pikuz, T A; Blasco, F; Dorchies, F; Stenz, C; Salin, F; Auguste, T; Dobosz, S; Monot, P; D' Oliveira, P; Hulin, S; Safronova, U I; Fournier, K B

    2002-10-01

    Strong L-shell x-ray emission has been obtained from Kr clusters formed in gas jets and irradiated by 60-500-fs laser pulses. Spectral lines from the F-, Ne- Na-, and Mg-like charge states of Kr have been identified from highly resolved x-ray spectra. Spectral line intensities are used in conjunction with a detailed time-dependent collisional-radiative model to diagnose the electron distribution functions of plasmas formed in various gas jet nozzles with various laser pulse durations. It is shown that L-shell spectra formed by relatively long nanosecond-laser pulses can be well described by a steady-state model without hot electrons when opacity effects are included. In contrast, adequate modeling of L-shell spectra from highly transient and inhomogeneous femtosecond-laser plasmas requires including the influence of hot electrons. It is shown that femtosecond-laser interaction with gas jets from conical nozzles produces plasmas with higher ionization balances than plasmas formed by gas jets from Laval nozzles, in agreement with previous work for femtosecond laser interaction with Ar clusters. PMID:12443335

  11. Direct comparative study on the energy level alignments in unoccupied/occupied states of organic semiconductor/electrode interface by constructing in-situ photoemission spectroscopy and Ar gas cluster ion beam sputtering integrated analysis system

    SciTech Connect

    Yun, Dong-Jin Chung, JaeGwan; Kim, Yongsu; Park, Sung-Hoon; Kim, Seong-Heon; Heo, Sung

    2014-10-21

    Through the installation of electron gun and photon detector, an in-situ photoemission and damage-free sputtering integrated analysis system is completely constructed. Therefore, this system enables to accurately characterize the energy level alignments including unoccupied/occupied molecular orbital (LUMO/HOMO) levels at interface region of organic semiconductor/electrode according to depth position. Based on Ultraviolet Photoemission Spectroscopy (UPS), Inverse Photoemission Spectroscopy (IPES), and reflective electron energy loss spectroscopy, the occupied/unoccupied state of in-situ deposited Tris[4-(carbazol-9-yl)phenyl]amine (TCTA) organic semiconductors on Au (E{sub LUMO}: 2.51 eV and E{sub HOMO}: 1.35 eV) and Ti (E{sub LUMO}: 2.19 eV and E{sub HOMO}: 1.69 eV) electrodes are investigated, and the variation of energy level alignments according to work function of electrode (Au: 4.81 eV and Ti: 4.19 eV) is clearly verified. Subsequently, under the same analysis condition, the unoccupied/occupied states at bulk region of TCTA/Au structures are characterized using different Ar gas cluster ion beam (Ar GCIB) and Ar ion sputtering processes, respectively. While the Ar ion sputtering process critically distorts both occupied and unoccupied states in UPS/IPES spectra, the Ar GCIB sputtering process does not give rise to damage on them. Therefore, we clearly confirm that the in-situ photoemission spectroscopy in combination with Ar GCIB sputtering allows of investigating accurate energy level alignments at bulk/interface region as well as surface region of organic semiconductor/electrode structure.

  12. Proceedings of the ninth symposium on ion sources and ion-assisted technology

    SciTech Connect

    Not Available

    1985-01-01

    This book presents papers on Ion Sources and ion-assisted technology. Topics covered include: microwave ion sources; analysis on vaporized metal cluster formation by Classical Nucleation Theory; a plasma filament ion source; and an expansion cup and grid electrode system for the extraction of a wide ion beam.

  13. Ion sources for ion implantation technology (invited)

    SciTech Connect

    Sakai, Shigeki Hamamoto, Nariaki; Inouchi, Yutaka; Umisedo, Sei; Miyamoto, Naoki

    2014-02-15

    Ion sources for ion implantation are introduced. The technique is applied not only to large scale integration (LSI) devices but also to flat panel display. For LSI fabrication, ion source scheduled maintenance cycle is most important. For CMOS image sensor devices, metal contamination at implanted wafer is most important. On the other hand, to fabricate miniaturized devices, cluster ion implantation has been proposed to make shallow PN junction. While for power devices such as silicon carbide, aluminum ion is required. For doping processes of LCD fabrication, a large ion source is required. The extraction area is about 150 cm × 10 cm, and the beam uniformity is important as well as the total target beam current.

  14. Atmospheric Measurements of Neutral Nucleating Clusters (Invited)

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Eisele, F. L.; Smith, J. N.; Chen, M.; Jiang, J.; Kuang, C.; McMurry, P. H.

    2010-12-01

    Nanoparticles produced by nucleation can subsequently grow to cloud condensation nuclei (CCN) within one or two days and hence affect cloud formation, precipitation, and atmospheric radiation budgets. As an intermediate stage between molecules and nanoparticles, neutral molecular clusters are believed to play an important role in processes that lead to boundary layer nucleation. Therefore, knowledge of chemical composition, concentrations, thermodynamic properties, and evolution of neutral molecular clusters is essential to better elucidate the nucleation mechanism and to reduce the uncertainty in nucleation rates used in global climate models. Here we present laboratory and field measurements from a recently developed chemical ionization mass spectrometer (the Cluster-CIMS) designed to measure atmospheric neutral clusters (Zhao et al., 2010). The sensitivity of the Cluster-CIMS was significantly improved by using a unique conical octopole device in the first vacuum stage for transmitting and focusing ions, which was further confirmed by ion trajectory simulations using SIMION. The ion cluster formation in the atmospheric-pressure inlet was controlled by two processes: neutral ionization and ion-induced clustering (IIC), which can be differentiated from the time independency of the intensity ratio between the cluster and monomer ions. Two methods were employed to separate neutral clusters from the ion-induced clustering. The concentrations and distribution of the neutral nucleating clusters containing up to 4 H2SO4 are estimated from the above methods at three measurement sites in the US (NCAR foothill laboratory, Manitou Forest Observatory, and Atlanta). Typically, the molecular cluster concentrations are well correlated with the concentrations of nanoparticles measured simultaneously during the nucleation event periods. The Cluster-CIMS was employed to measure clusters containing both sulfuric acid and amines in summer 2010 at NCAR foothill laboratory

  15. Quintuplet Cluster

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Penetrating 25,000 light-years of obscuring dust and myriad stars, NASA's Hubble Space Telescope has provided the clearest view yet of one of the largest young clusters of stars inside our Milky Way galaxy, located less than 100 light-years from the very center of the Galaxy. Having the equivalent mass greater than 10,000 stars like our sun, the monster cluster is ten times larger than typical young star clusters scattered throughout our Milky Way. It is destined to be ripped apart in just a few million years by gravitational tidal forces in the galaxy's core. But in its brief lifetime it shines more brightly than any other star cluster in the Galaxy. Quintuplet Cluster is 4 million years old. It has stars on the verge of blowing up as supernovae. It is the home of the brightest star seen in the galaxy, called the Pistol star. This image was taken in infrared light by Hubble's NICMOS camera in September 1997. The false colors correspond to infrared wavelengths. The galactic center stars are white, the red stars are enshrouded in dust or behind dust, and the blue stars are foreground stars between us and the Milky Way's center. The cluster is hidden from direct view behind black dust clouds in the constellation Sagittarius. If the cluster could be seen from earth it would appear to the naked eye as a 3rd magnitude star, 1/6th of a full moon's diameter apart.

  16. New Cs sputter ion source with polyatomic ion beams for secondary ion mass spectrometry applications

    SciTech Connect

    Belykh, S. F.; Palitsin, V. V.; Veryovkin, I. V.; Kovarsky, A. P.; Chang, R. J. H.; Adriaens, A.; Dowsett, M. G.; Adams, F.

    2007-08-15

    A simple design for a cesium sputter ion source compatible with vacuum and ion-optical systems as well as with electronics of the commercially available Cameca IMS-4f instrument is reported. This ion source has been tested with the cluster primary ions of Si{sub n}{sup -} and Cu{sub n}{sup -}. Our experiments with surface characterization and depth profiling conducted to date demonstrate improvements of the analytical capabilities of the secondary ion mass spectrometry instrument due to the nonadditive enhancement of secondary ion emission and shorter ion ranges of polyatomic projectiles compared to atomic ones with the same impact energy.

  17. Observations on nocturnal growth of atmospheric clusters

    NASA Astrophysics Data System (ADS)

    Junninen, Heikki; Hulkkonen, Mira; Riipinen, Ilona; Nieminen, Tuomo; Hirsikko, Anne; Suni, Tanja; Boy, Michael; Lee, Shan-Hu; Vana, Marko; Tammet, Hannes; Kerminen, Veli-Matti; Kulmala, Markku

    2008-07-01

    In this paper, we summarize recent observations of nighttime nucleation events observed during 4 yr, from 2003 to 2006, at the SMEAR II station in Hyytiälä, southern Finland. Formation of new atmospheric aerosol particles has been frequently observed all around the world in daytime, but similar observations in nighttime are rare. The recently developed ion spectrometers enabled us to measure charged aerosol particles and ion clusters to diameters <1 nm and are efficient tools for evaluating cluster dynamics during nighttime. We observed clear growth of cluster ions during approximately 60 nights per yr. The newly formed intermediate ions usually persisted for several hours with typical concentrations of 100-200 cm-3. The evolution of nighttime growth events is different compared with daytime events. The mechanism behind nighttime events is still unclear, but the behaviour can be described by the hypothesis of activation of clusters.

  18. Label-free colorimetric detection of mercury via Hg2+ ions-accelerated structural transformation of nanoscale metal-oxo clusters

    NASA Astrophysics Data System (ADS)

    Chen, Kun; She, Shan; Zhang, Jiangwei; Bayaguud, Aruuhan; Wei, Yongge

    2015-11-01

    Mercury and its compounds are known to be extremely toxic but widely distributed in environment. Although many works have been reported to efficiently detect mercury, development of simple and convenient sensors is still longed for quick analyzing mercury in water. In this work, a nanoscale metal-oxo cluster, (n-Bu4N)2[Mo5NaO13(OCH3)4(NO)], (MLPOM), organically-derivatized from monolacunary Lindqvist-type polyoxomolybdate, is found to specifically react with Hg2+ in methanol/water via structural transformation. The MLPOM methanol solution displays a color change from purple to brown within seconds after being mixed with an aqueous solution containing Hg2+. By comparing the structure of polyoxomolybdate before and after reaction, the color change is revealed to be the essentially structural transformation of MLPOM accelerated by Hg2+. Based on this discovery, MLPOM could be utilized as a colorimetric sensor to sense the existence of Hg2+, and a simple and label-free method is developed to selectively detect aqueous Hg2+. Furthermore, the colorimetric sensor has been applied to indicating mercury contamination in industrial sewage.

  19. Label-free colorimetric detection of mercury via Hg2+ ions-accelerated structural transformation of nanoscale metal-oxo clusters

    PubMed Central

    Chen, Kun; She, Shan; Zhang, Jiangwei; Bayaguud, Aruuhan; Wei, Yongge

    2015-01-01

    Mercury and its compounds are known to be extremely toxic but widely distributed in environment. Although many works have been reported to efficiently detect mercury, development of simple and convenient sensors is still longed for quick analyzing mercury in water. In this work, a nanoscale metal-oxo cluster, (n-Bu4N)2[Mo5NaO13(OCH3)4(NO)], (MLPOM), organically-derivatized from monolacunary Lindqvist-type polyoxomolybdate, is found to specifically react with Hg2+ in methanol/water via structural transformation. The MLPOM methanol solution displays a color change from purple to brown within seconds after being mixed with an aqueous solution containing Hg2+. By comparing the structure of polyoxomolybdate before and after reaction, the color change is revealed to be the essentially structural transformation of MLPOM accelerated by Hg2+. Based on this discovery, MLPOM could be utilized as a colorimetric sensor to sense the existence of Hg2+, and a simple and label-free method is developed to selectively detect aqueous Hg2+. Furthermore, the colorimetric sensor has been applied to indicating mercury contamination in industrial sewage. PMID:26559602

  20. Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Miller, Christopher J. Miller

    2012-03-01

    There are many examples of clustering in astronomy. Stars in our own galaxy are often seen as being gravitationally bound into tight globular or open clusters. The Solar System's Trojan asteroids cluster at the gravitational Langrangian in front of Jupiter’s orbit. On the largest of scales, we find gravitationally bound clusters of galaxies, the Virgo cluster (in the constellation of Virgo at a distance of ˜50 million light years) being a prime nearby example. The Virgo cluster subtends an angle of nearly 8◦ on the sky and is known to contain over a thousand member galaxies. Galaxy clusters play an important role in our understanding of theUniverse. Clusters exist at peaks in the three-dimensional large-scale matter density field. Their sky (2D) locations are easy to detect in astronomical imaging data and their mean galaxy redshifts (redshift is related to the third spatial dimension: distance) are often better (spectroscopically) and cheaper (photometrically) when compared with the entire galaxy population in large sky surveys. Photometric redshift (z) [Photometric techniques use the broad band filter magnitudes of a galaxy to estimate the redshift. Spectroscopic techniques use the galaxy spectra and emission/absorption line features to measure the redshift] determinations of galaxies within clusters are accurate to better than delta_z = 0.05 [7] and when studied as a cluster population, the central galaxies form a line in color-magnitude space (called the the E/S0 ridgeline and visible in Figure 16.3) that contains galaxies with similar stellar populations [15]. The shape of this E/S0 ridgeline enables astronomers to measure the cluster redshift to within delta_z = 0.01 [23]. The most accurate cluster redshift determinations come from spectroscopy of the member galaxies, where only a fraction of the members need to be spectroscopically observed [25,42] to get an accurate redshift to the whole system. If light traces mass in the Universe, then the locations

  1. (Electronic structure and reactivities of transition metal clusters)

    SciTech Connect

    Not Available

    1992-01-01

    The following are reported: theoretical calculations (configuration interaction, relativistic effective core potentials, polyatomics, CASSCF); proposed theoretical studies (clusters of Cu, Ag, Au, Ni, Pt, Pd, Rh, Ir, Os, Ru; transition metal cluster ions; transition metal carbide clusters; bimetallic mixed transition metal clusters); reactivity studies on transition metal clusters (reactivity with H{sub 2}, C{sub 2}H{sub 4}, hydrocarbons; NO and CO chemisorption on surfaces). Computer facilities and codes to be used, are described. 192 refs, 13 figs.

  2. Preparation and structural characterization of the Ih and the D5h isomers of the endohedral fullerenes Tm3N@C80: icosahedral C80 cage encapsulation of a trimetallic nitride magnetic cluster with three uncoupled Tm3+ ions.

    PubMed

    Zuo, Tianming; Olmstead, Marilyn M; Beavers, Christine M; Balch, Alan L; Wang, Guangbin; Yee, Gordon T; Shu, Chunying; Xu, Liaosa; Elliott, Bevan; Echegoyen, Luis; Duchamp, James C; Dorn, Harry C

    2008-06-16

    We report an efficient method for the preparation and purification of the Ih and the D5h isomers of Tm3N@C80. Following preparation in a Kratschmer-Huffman electric-arc generator, the Tm3N@C80 isomers were obtained by a chemical separation process followed by a one-stage isomer selective chromatographic high-performance liquid chromatography (HPLC) separation (pyrenyl, 5PYE column). The HPLC chromatographic retention behavior on a pentabromobenzyl (5PBB) column suggests a charge transfer of approximately 6 electrons; [M3N] 6+@C80(6-) and the chromatographic retention mechanisms of the Ih and the D5h isomers of Tm3N@C80 on both 5PBB and 5PYE columns are discussed. Single-crystal X-ray diffraction data demonstrate that the Tm3N cluster has a planar structure but represents a tight fit for trapping the Tm3N cluster inside the I h - and the D 5h -C 80 cages. Specifically, the Tm atoms punch out the cage carbon atoms adjacent to them. The "punched out" effect can be demonstrated by cage radii and pyramidal angles at cage carbon atoms near the Tm atoms. The magnetic susceptibility (chiT) for Tm3N@ Ih -C80 was found to exhibit Curie-Weiss behavior with C = 23.4 emu.K/mol, which is consistent with the calculated value for three uncoupled Tm3+ ions by considering the spin and orbital contributions with no quenching of the orbital angular momentum ( L = 5, S = 1, and J = 6; Ccalcd = 23.3 emu.K/mol). The electrochemical measurements demonstrate that both the Ih and the D5h isomers of Tm3N@C80 have a large electrochemical gap. PMID:18447327

  3. Cluster production within antisymmetrized molecular dynamics

    NASA Astrophysics Data System (ADS)

    Ono, Akira

    2016-06-01

    Clusters are quite important at various situations in heavy-ion collisions. Antisymmetrized molecular dynamics was improved to take into account the correlations to form light clusters, such as deuterons and α particles, and light nuclei composed of several clusters. The momentum fluctuations of emitted particles are also taken into account by a simple method. Formation of fragments and light clusters in a wide range of heavy-ion collisions was well described with a single set of model parameters. Fragmentation in a proton induced reaction was also well reproduced by introducing cluster correlations. Calculated results demonstrate strong impacts of clusters in various observables including those usually regarded as probes of the density dependence of symmetry energy.

  4. Occupational Clusters.

    ERIC Educational Resources Information Center

    Pottawattamie County School System, Council Bluffs, IA.

    The 15 occupational clusters (transportation, fine arts and humanities, communications and media, personal service occupations, construction, hospitality and recreation, health occupations, marine science occupations, consumer and homemaking-related occupations, agribusiness and natural resources, environment, public service, business and office…

  5. Data Clustering

    NASA Astrophysics Data System (ADS)

    Wagstaff, Kiri L.

    2012-03-01

    On obtaining a new data set, the researcher is immediately faced with the challenge of obtaining a high-level understanding from the observations. What does a typical item look like? What are the dominant trends? How many distinct groups are included in the data set, and how is each one characterized? Which observable values are common, and which rarely occur? Which items stand out as anomalies or outliers from the rest of the data? This challenge is exacerbated by the steady growth in data set size [11] as new instruments push into new frontiers of parameter space, via improvements in temporal, spatial, and spectral resolution, or by the desire to "fuse" observations from different modalities and instruments into a larger-picture understanding of the same underlying phenomenon. Data clustering algorithms provide a variety of solutions for this task. They can generate summaries, locate outliers, compress data, identify dense or sparse regions of feature space, and build data models. It is useful to note up front that "clusters" in this context refer to groups of items within some descriptive feature space, not (necessarily) to "galaxy clusters" which are dense regions in physical space. The goal of this chapter is to survey a variety of data clustering methods, with an eye toward their applicability to astronomical data analysis. In addition to improving the individual researcher’s understanding of a given data set, clustering has led directly to scientific advances, such as the discovery of new subclasses of stars [14] and gamma-ray bursts (GRBs) [38]. All clustering algorithms seek to identify groups within a data set that reflect some observed, quantifiable structure. Clustering is traditionally an unsupervised approach to data analysis, in the sense that it operates without any direct guidance about which items should be assigned to which clusters. There has been a recent trend in the clustering literature toward supporting semisupervised or constrained

  6. Cluster generator

    DOEpatents

    Donchev, Todor I.; Petrov, Ivan G.

    2011-05-31

    Described herein is an apparatus and a method for producing atom clusters based on a gas discharge within a hollow cathode. The hollow cathode includes one or more walls. The one or more walls define a sputtering chamber within the hollow cathode and include a material to be sputtered. A hollow anode is positioned at an end of the sputtering chamber, and atom clusters are formed when a gas discharge is generated between the hollow anode and the hollow cathode.

  7. Vanadogermanate cluster anions.

    PubMed

    Whitfield, T; Wang, X; Jacobson, A J

    2003-06-16

    Three novel vanadogermanate cluster anions have been synthesized by hydrothermal reactions. The cluster anions are derived from the (V(18)O(42)) Keggin cluster shell by substitution of V=O(2+) "caps" by Ge(2)O(OH)(2)(4+) species. In Cs(8)[Ge(4)V(16)O(42)(OH)(4)].4.7H(2)O, 1, (monoclinic, space group C2/c (No. 15), Z = 8, a = 44.513(2) A, b = 12.7632(7) A, c = 22.923(1) A, beta = 101.376(1) degrees ) and (pipH(2))(4)(pipH)(4)[Ge(8)V(14)O(50).(H(2)O)] (pip = C(4)N(2)H(10)), 2 (tetragonal, space group P4(2)/nnm (No. 134), Z = 2, a = 14.9950(7) A, c = 18.408(1) A), two and four VO(2+) caps are replaced, respectively, and each cluster anion encapsulates a water molecule. In K(5)H(8)Ge(8)V(12)SO(52).10H(2)O, 3, (tetragonal, space group I4/m (No. 87), Z = 2, a = 15.573(1) A, c = 10.963(1) A), four VO(2+) caps are replaced by Ge(2)O(OH)(2)(4+) species, and an additional two are omitted. The cluster ion in 3 contains a sulfate anion disordered over two positions. The cluster anions are analogous to the vanadoarsenate anions [V(18)(-)(n)()As(2)(n)()O(42)(X)](m)(-) (X = SO(3), SO(4), Cl; n = 3, 4) previously reported. PMID:12793808

  8. Clusterization in Ternary Fission

    NASA Astrophysics Data System (ADS)

    Kamanin, D. V.; Pyatkov, Y. V.

    This lecture notes are devoted to the new kind of ternary decay of low excited heavy nuclei called by us "collinear cluster tri-partition" (CCT) due to the features of the effect observed, namely, decay partners fly away almost collinearly and at least one of them has magic nucleon composition. At the early stage of our work the process of "true ternary fission" (fission of the nucleus into three fragments of comparable masses) was considered to be undiscovered for low excited heavy nuclei. Another possible prototype—three body cluster radioactivity—was also unknown. The most close to the CCT phenomenon, at least cinematically, stands so called "polar emission", but only very light ions (up to isotopes of Be) were observed so far.

  9. The vibrational predissociation spectra of the H5O2+•RGn(RG=Ar,Ne) clusters: Correlation of the solvent perturbations in the free OH and shared proton transitions of the Zundel ion

    NASA Astrophysics Data System (ADS)

    Hammer, Nathan I.; Diken, Eric G.; Roscioli, Joseph R.; Johnson, Mark A.; Myshakin, Evgeniy M.; Jordan, Kenneth D.; McCoy, Anne B.; Huang, Xinchuan; Bowman, Joel M.; Carter, Stuart

    2005-06-01

    Predissociation spectra of the H5O2+•RGn(RG=Ar,Ne) cluster ions are reported in energy regions corresponding to both the OH stretching (3350-3850cm-1) and shared proton (850-1950cm-1) vibrations. The two free OH stretching bands displayed by the Ne complex are quite close to the band origins identified earlier in bare H5O2+ [L. I. Yeh, M. Okumura, J. D. Myers, J. M. Price, and Y. T. Lee, J. Chem. Phys. 91, 7319 (1989)], indicating that the symmetrical H5O2+ "Zundel" ion remains largely intact in H5O2+•Ne. The low-energy spectrum of the Ne complex is simpler than that observed previously for H5O2+•Ar, and is dominated by two sharp transitions at 928 and 1047cm-1, with a weaker feature at 1763cm-1. The H5O2+•Arn,n=1-5 spectra generally exhibit complex band structures reflecting solvent-induced symmetry breaking of the Zundel core ion. The extent of solvent perturbation is evaluated with electronic structure calculations, which predict that the rare gas atoms should attach to the spectator OH groups of H5O2+ rather than to the shared proton. In the asymmetric complexes, the shared proton resides closer to the more heavily solvated water molecule, leading to redshifts in the rare gas atom-solvated OH stretches and to blueshifts in the shared proton vibrations. The experimental spectra are compared with recent full-dimensional vibrational calculations (diffusion Monte Carlo and multimode/vibrational configuration interaction) on H5O2+. These results are consistent with assignment of the strong low-energy bands in the H5O2+•Ne spectrum to the vibration of the shared proton mostly along the O-O axis, with the 1763cm-1 band traced primarily to the out-of-phase, intramolecular bending vibrations of the two water molecules.

  10. Low resolution X-ray structure of γ-glutamyltranspeptidase from Bacillus licheniformis: opened active site cleft and a cluster of acid residues potentially involved in the recognition of a metal ion.

    PubMed

    Lin, Long-Liu; Chen, Yi-Yu; Chi, Meng-Chun; Merlino, Antonello

    2014-09-01

    γ-Glutamyltranspeptidases (γ-GTs) cleave the γ-glutamyl amide bond of glutathione and transfer the released γ-glutamyl group to water (hydrolysis) or acceptor amino acids (transpeptidation). These ubiquitous enzymes play a key role in the biosynthesis and degradation of glutathione, and in xenobiotic detoxification. Here we report the 3Å resolution crystal structure of Bacillus licheniformis γ-GT (BlGT) and that of its complex with l-Glu. X-ray structures confirm that BlGT belongs to the N-terminal nucleophilic hydrolase superfamily and reveal that the protein possesses an opened active site cleft similar to that reported for the homologous enzyme from Bacillus subtilis, but different from those observed for human γ-GT and for γ-GTs from other microorganisms. Data suggest that the binding of l-Glu induces a reordering of the C-terminal tail of BlGT large subunit and allow the identification of a cluster of acid residues that are potentially involved in the recognition of a metal ion. The role of these residues on the conformational stability of BlGT has been studied by characterizing the autoprocessing, enzymatic activity, chemical and thermal denaturation of four new Ala single mutants. The results show that replacement of Asp568 with an Ala affects both the autoprocessing and structural stability of the protein. PMID:24780583

  11. Laser induced neutron production by explosion of the deuterium clusters

    NASA Astrophysics Data System (ADS)

    Holkundkar, Amol R.; Mishra, Gaurav; Gupta, N. K.

    2014-01-01

    The high energy deuterium ions serve as compact source of neutrons when fused with either deuterium or tritium atoms. In view of this, the explosion of the deuterium clusters under the influence of the laser pulse with intensity ranging from 1015 to 1019 W/cm2 is being studied along with the effect of the cluster radius and inter-cluster distance. The objective of this article is to study the efficiency of the deuterium cluster as a compact source of neutrons under various laser and cluster parameters. It is being observed that the cluster density (number of clusters per unit volume) is quite important to gain high neutron yield.

  12. Biological Cluster Mass Spectrometry

    PubMed Central

    Winograd, Nicholas; Garrison, Barbara J.

    2010-01-01

    This article reviews the new physics and new applications of secondary ion mass spectrometry using cluster ion probes. These probes, particularly C60, exhibit enhanced molecular desorption with improved sensitivity owing to the unique nature of the energy-deposition process. In addition, these projectiles are capable of eroding molecular solids while retaining the molecular specificity of mass spectrometry. When the beams are microfocused to a spot on the sample, bioimaging experiments in two and three dimensions are feasible. We describe emerging theoretical models that allow the energy-deposition process to be understood on an atomic and molecular basis. Moreover, experiments on model systems are described that allow protocols for imaging on biological materials to be implemented. Finally, we present recent applications of imaging to biological tissue and single cells to illustrate the future directions of this methodology. PMID:20055679

  13. Properties of small Ar sub N-1 K/+/ ionic clusters

    NASA Technical Reports Server (NTRS)

    Etters, R. D.; Danilowicz, R.; Dugan, J.

    1977-01-01

    A self-consistent formalism is developed that, based upon a many-body potential, dynamically determines the thermodynamic properties of ionic clusters without an a priori designation of the equilibrium structures. Aggregates consisting of a single closed shell K(+) ion and N-1 isoelectronic argon atoms were studied. The clusters form crystallites at low temperatures, and melting transitions and spontaneous dissociations are indicated. The results confirm experimental evidence that shows that ionic clusters become less stable with increasing N. The crystallite structures formed by four different clusters are isosceles triangle, skewed form, octahedron with ion in the middle, and icosahedron with the ion in the middle.

  14. Cluster Active Archive: Overview

    NASA Astrophysics Data System (ADS)

    Laakso, H.; Perry, C.; McCaffrey, S.; Herment, D.; Allen, A. J.; Harvey, C. C.; Escoubet, C. P.; Gruenberger, C.; Taylor, M. G. G. T.; Turner, R.

    The four-satellite Cluster mission investigates the small-scale structures and physical processes related to interaction between the solar wind and the magnetospheric plasma. The Cluster Active Archive (CAA) (URL: http://caa.estec.esa.int) will contain the entire set of Cluster high-resolution data and other allied products in a standard format and with a complete set of metadata in machine readable format. The total amount of the data files in compressed format is expected to exceed 50 TB. The data archive is publicly accessible and suitable for science use and publication by the world-wide scientific community. The CAA aims to provide user-friendly services for searching and accessing these data and ancillary products. The CAA became operational in February 2006 and as of Summer 2008 has data from most of the Cluster instruments for at least the first 5 years of operations (2001-2005). The coverage and range of products are being continually improved with more than 200 datasets available from each spacecraft, including high-resolution magnetic and electric DC fields and wave spectra; full three-dimensional electron and ion distribution functions from a few eV to hundreds of keV; and various ancillary and browse products to help with spacecraft and event location. The CAA is continuing to extend and improve the online capabilities of the system and the quality of the existing data. It will add new data files for years 2006-2009 and is preparing for the long-term archive with complete coverage after the completion of the Cluster mission.

  15. Measuring Complementary Electronic Structure Properties of both Deposited and Gas Phase Clusters using STM, UPS, and PES: Size-Selected Clusters on Surfaces

    SciTech Connect

    Bowen, Kit H.

    2014-03-05

    In this project, we studied size-selected cluster interactions with surfaces, with other clusters on surfaces, and with external stimuli. These studies focused on mobility as a function of cluster size, surface morphologies as a function of composition and coverage, ion-induced modification and reactivity of clusters as a function of composition, the structural evolution of cluster cuboids culminating in the characterization of theoretically-predicted “baby crystal” clusters, and unusual fractal pattern formation due to deposition.

  16. Laser ablation synthesis of lanthanide oxide clusters: Mechanisms and chemistry

    SciTech Connect

    Gibson, J.K.

    1995-07-15

    Excimer laser ablation into vacuum of hydrated lanthanide oxalates has produced new lanthanide (Ln) oxide cluster ions which were identified by time-of-flight mass spectrometry. In addition to binary oxide clusters (Ln{sub {ital m}}O{sup +}{sub {ital n}}), mixed lanthanide oxide clusters [Ln{sub {ital m}1}Ln{sub {ital m}2}{sup {prime}}O{sup +}{sub {ital n}} with ({ital m}1+{ital m}2){le}9] were discerned for the following Ln-Ln{prime}: La-Tb, La-Ho, La-Lu, and Ho-Lu. The observed cluster ion stoichiometries, abundance distributions, and hydration systematics provide insights into cluster formation mechanisms and chemistries. Time-variable ion sampling revealed cluster enhancement in the tail of the ablation plume. The body of experimental results support cluster formation by aggregation of small ablated species. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  17. SVM clustering

    PubMed Central

    Winters-Hilt, Stephen; Merat, Sam

    2007-01-01

    Background Support Vector Machines (SVMs) provide a powerful method for classification (supervised learning). Use of SVMs for clustering (unsupervised learning) is now being considered in a number of different ways. Results An SVM-based clustering algorithm is introduced that clusters data with no a priori knowledge of input classes. The algorithm initializes by first running a binary SVM classifier against a data set with each vector in the set randomly labelled, this is repeated until an initial convergence occurs. Once this initialization step is complete, the SVM confidence parameters for classification on each of the training instances can be accessed. The lowest confidence data (e.g., the worst of the mislabelled data) then has its' labels switched to the other class label. The SVM is then re-run on the data set (with partly re-labelled data) and is guaranteed to converge in this situation since it converged previously, and now it has fewer data points to carry with mislabelling penalties. This approach appears to limit exposure to the local minima traps that can occur with other approaches. Thus, the algorithm then improves on its weakly convergent result by SVM re-training after each re-labeling on the worst of the misclassified vectors – i.e., those feature vectors with confidence factor values beyond some threshold. The repetition of the above process improves the accuracy, here a measure of separability, until there are no misclassifications. Variations on this type of clustering approach are shown. Conclusion Non-parametric SVM-based clustering methods may allow for much improved performance over parametric approaches, particularly if they can be designed to inherit the strengths of their supervised SVM counterparts. PMID:18047717

  18. Photoionization of argon clusters

    SciTech Connect

    Dehmer, Patricia M.; Pratt, Stephen T.

    1982-01-01

    Argon clusters were produced in a free supersonic molecular beam expansion of pure argon at room temperature and the photoionization efficiency curves of the trimer through hexamer were measured in the wavelength regions from threshold to 700 Â. A study of the Ar⁺3 photoionization efficiency curve as a function of nozzle stagnation pressure shows that fragmentation of heavier clusters can dominate the spectrum, even near threshold, and even when the nozzle conditions are such that the Ar⁺4 intensity is only a small fraction of the Ar⁺3 intensity. The Ar⁺3 photoionization efficiency curve, obtained using nozzle stagnation conditions such that no heavier ions were detected, exhibits several broad peaks near threshold which show similarities to bands of the dimer. At high nozzle stagnation pressures, the photoionization efficiency curves for Ar⁺3 to Ar⁺6 are nearly identical due to the effects of fragmentation. These spectra exhibit two very broad features which are similar to features observed in the solid. The threshold regions for all the positive ions show extremely gradual onsets, making it difficult to determine the appearance potentials accurately. The appearance potentials for Ar⁺2 and Ar⁺3 are 855.0±1.5 and 865.0±1.5 Â, respectively, yielding a value of 0.18±0.05 eV for the dissociation energy of Ar⁺3. The appearance potentials for the heavier clusters Ar⁺4 through Ar⁺6 are all approximately 870±2 Â.

  19. A novel approach for the characterization of a bilayer of phenyl-c71-butyric-acid-methyl ester and pentacene using ultraviolet photoemission spectroscopy and argon gas cluster ion beam sputtering process

    SciTech Connect

    Yun, Dong-Jin; Chung, JaeGwan; Jung, Changhoon; Chung, Yeonji; Kim, SeongHeon; Lee, Seunghyup; Kim, Ki-Hong; Han, Hyouksoo; Park, Gyeong-Su; Park, SungHoon

    2013-09-07

    The material arrangement and energy level alignment of an organic bilayer comprising of phenyl-c71-butyric-acid-methyl ester (PCBM-71) and pentacene were studied using ultraviolet photoelectron spectroscopy (UPS) and the argon gas cluster ion beam (GCIB) sputtering process. Although there is a small difference in the full width at half maximum of the carbon C 1s core level peaks and differences in the oxygen O 1s core levels of an X-ray photoemission spectroscopy spectra, these differences are insufficient to clearly distinguish between PCBM-71 and pentacene layers and to classify the interface and bulk regions. On the other hand, the valence band structures in the UPS spectra contain completely distinct configurations for the PCBM-71 and pentacene layers, even when they have similar atomic compositions. According to the valence band structures of the PCBM-71/pentacene/electrodes, the highest unoccupied molecular orbital (HOMO) region of pentacene is at least 0.8 eV closer to the Fermi level than that of PCBM-71 and it does not overlap with any of the chemical states in the valence band structure of PCBM-71. Therefore, by just following the variations in the area of the HOMO region of pentacene, the interface/bulk regions of the PCBM/pentacene layers were distinctly categorized. Besides, the variation of valence band structures as a function of the Ar GCIB sputtering time fully corroborated with the surface morphologies observed in the atomic force microscope images. In summary, we believe that the novel approach, which involves UPS analysis in conjunction with Ar GCIB sputtering, can be one of the best methods to characterize the material distribution and energy level alignments of stacks of organic layers.

  20. Ionization of cluster atoms in a strong laser field

    SciTech Connect

    Smirnov, M.B.; Krainov, V.P.

    2004-04-01

    Inner and outer multiple ionization of clusters by a superintense ultrashort laser pulse is studied. The barrier-suppression mechanism governs inner field ionization in this case, while impact ionization can be neglected. Outer ionization produces a static Coulomb field inside the ionized cluster. This field increases the charge multiplicity of the atomic ions produced inside the cluster approximately by a factor of 1.5. Various models are suggested for the charge distribution inside the cluster.

  1. Clustering Aspects in Nuclear Structure and Collisions

    NASA Astrophysics Data System (ADS)

    Horiuchi, H.

    Four topics on nuclear clustering are discussed. The first subject is about the cluster formation in dilute matter which we think is now observed in heavy ion collisions at hundreds MeV/nucleon. The second subject is about our new proposal of the existense of alpha condensed states in light nuclei. Two other subjects are both about the clustering in neutron-rich nuclei. One is the cluster structures in neutron-rich Be and B isotopes. In these isotopes, the clustering prevails as fundamental characters of nuclear structure. The other is the report of our recent study about the possible relation of the clustering with the breaking of the neutron magic number N=20 in 32Mg and 30Ne.

  2. Laser-cluster interaction for nuclear fusion

    NASA Astrophysics Data System (ADS)

    Kishimoto, Y.; Masaki, T.; Tajima, T.

    2002-04-01

    The key physical processes of laser-cluster interaction essential to understand and opimize the cluster fusion are investigated by using numerical simulation. By properly choosing the cluster size, spatial packing fraction, and laser field amplitude, cluster ions are efficiently accelerated in a controlled manner to high energy in such a way for the fusion cross-section to be maximized. The production of fusion neutrons is expected to be enhanced by taking into account the spatial propagation of explosion front toward the surrounding fuel cluster region. It is also found that the average ion energy can exceed the Coulomb energy stored originally in the cluster by obtaining the laser energy through ambi-polar electrostatic field around the vacuum-medium interface. Such high energy ion generation may enhance the neutron yield by introducing the solid fuel collar that surrounds the cluster medium. Although the area of neutron irradiation is tiny, the resultant neutron intensity with this method may rival that of the conventional much larger system of neutron sources. .

  3. Proceeding of the 18th Intl. Workshop on Inelastic Ion-Surface Collisions (IISC-18)

    SciTech Connect

    Reinhold, Carlos O; Krstic, Predrag S; Meyer, Fred W

    2011-01-01

    The main topics of this proceedings were: (1) Energy loss of particles at surfaces; (2) Scattering of atoms, ions, molecules and clusters; (3) Charge exchange between particles and surfaces; (4) Ion induced desorption, electronic and kinetic sputtering; (5) Defect formation, surface modification and nanostructuring; (6) Electron, photon and secondary ion emission due to particle impact on surfaces; (7) Sputtering, fragmentation, cluster and ion formation in SIMS and SNMS; (8) Cluster/molecular and highly charged ion beams; and (9) Laser induced desorption.

  4. Asymmetric explosion of clusters in intense laser fields

    SciTech Connect

    Kundu, M.

    2012-08-15

    We examine asymmetric expansion of argon clusters illuminated by 800 nm laser pulses of duration Almost-Equal-To 23fs, using three-dimensional particle-in-cell (PIC) simulation. For this short pulse duration, laser energy absorption by cluster electrons is dominated by the nonlinear resonance (NLR) absorption process [Phys. Rev. Lett. 96, 123401 (2006)]. In this work, we concentrate, particularly, on the ionic outcome in the NLR regime and show that higher charge states of argon ions are produced along the laser polarization than in the transverse directions leading to the anisotropy (asymmetry) in the ion energy distribution. This anisotropy already established during the short pulse duration (or in the early duration of a long pulse) may contribute to the anisotropic ion emission reported in cluster experiments with pulse duration longer than 100 fs. Our PIC results are compared with a charged-sphere model showing that cluster explosion is mainly due to Coulomb repulsion between the cluster ions.

  5. Thermal Responsive Ion Selectivity of Uranyl Peroxide Nanocages: An Inorganic Mimic of K(+) Ion Channels.

    PubMed

    Gao, Yunyi; Szymanowski, Jennifer E S; Sun, Xinyu; Burns, Peter C; Liu, Tianbo

    2016-06-01

    An actinyl peroxide cage cluster, Li48+m K12 (OH)m [UO2 (O2 )(OH)]60 (H2 O)n (m≈20 and n≈310; U60 ), discriminates precisely between Na(+) and K(+) ions when heated to certain temperatures, a most essential feature for K(+) selective filters. The U60 clusters demonstrate several other features in common with K(+) ion channels, including passive transport of K(+) ions, a high flux rate, and the dehydration of U60 and K(+) ions. These qualities make U60 (a pure inorganic cluster) a promising ion channel mimic in an aqueous environment. Laser light scattering (LLS) and isothermal titration calorimetry (ITC) studies revealed that the tailorable ion selectivity of U60 clusters is a result of the thermal responsiveness of the U60 hydration shells. PMID:27105921

  6. Rayleigh scattering of a Gaussian laser beam from expanding clusters

    SciTech Connect

    Kumar, Manoj; Tripathi, V. K.

    2009-12-15

    Rayleigh scattering of an intense laser with Gaussian temporal and radial profiles from clustered gases is examined. The laser quickly converts the clusters into plasma balls with electron cloud of each ball executing large excursions about the ion sphere. The laser also heats the electrons. As the clusters expand under hydrodynamic pressure, plasma frequency of the cluster electrons omega{sub pe} decreases. The temporal rate of decrease in omega{sub pe} is maximum on laser axis and falls off with r. As the electron density of a cluster approaches plasma resonance, omega{sub pe}=omegasq root(3) (where omega is the frequency of the laser) the oscillatory electron cloud of the cluster produces resonantly enhanced Rayleigh scattering. This resonant enhancement first occurs in clusters on laser axis and afterward in farther clusters. The diffraction divergence of the laser limits the length of the cluster plasma, hence the Rayleigh scattering.

  7. Clusters in strong laser fields: Comparison between carbon, platinum, and lead clusters

    NASA Astrophysics Data System (ADS)

    Schumacher, M.; Teuber, S.; Köller, L.; Köhn, J.; Tiggesbäumker, J.; Meiwes-Broer, K. H.

    Carbon and metal clusters are excited by strong femtosecond laser pulses with up to 1016 W/cm2, yielding ionized clusters and highly charged atomic ions. For small carbon clusters and fullerenes the abundance of charged species correlates with the laser power, while for metal clusters the ionization efficiency is additionally strongly affected by the chosen laser pulse width which may result in an enhanced up-charging of the metal particle. In the case of platinum atomic charge states up to z=20 are detected at a pulse duration of about 600 fs. This observation is in accordance with a model based on a multi-plasmon excitation process.

  8. CARTILAGE CELL CLUSTERS

    PubMed Central

    Lotz, Martin K.; Otsuki, Shuhei; Grogan, Shawn P.; Sah, Robert; Terkeltaub, Robert; D’Lima, Darryl

    2010-01-01

    The formation of new cell clusters is a histological hallmark of arthritic cartilage but the biology of clusters and their role in disease are poorly understood. This is the first comprehensive review of clinical and experimental conditions associated with cluster formation. Genes and proteins that are expressed in cluster cells, the cellular origin of the clusters, mechanisms that lead to cluster formation and the role of cluster cells in pathogenesis are discussed. PMID:20506158

  9. Ion composition in a noctilucent cloud

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.; Witt, G.

    1976-01-01

    Ion composition at mesospheric altitudes was measured and compared between high and mid-latitude sites under summer daytime conditions. Rocket-borne measurements were made with pumped quadrupole ion mass spectrometers. The mid-latitude data were obtained at Wallops Island, Virginia on June 30, 1973, at 1510 LMT. Large quantities of hydronium cluster ions were observed through 109+, with maximum concentrations at 55+ and 73+. Also, cluster ions of nitric oxide were observed through 84+. The high latitude launch occurred at Kiruna, Sweden on August 2, 1973, at 0700 LMT following visual sighting of a noctilucent cloud on the prior evening. The data near mesopause shows cluster ions, but also a preponderance of heavy ions between 90 and 145 AMU, with groupings 18 AMU apart but unrelated to the more typical cluster ions. One possible set of consistent identifications leads to iron and iron oxide hydrates. These results may suggest the presence of metallic particulates and ions which form hydrated clusters ions.

  10. Surface processing with ionized cluster beams: computer simulation

    NASA Astrophysics Data System (ADS)

    Insepov, Z.; Yamada, I.

    1999-06-01

    Molecular Dynamics (MD) and Monte Carlo (MC) models of energetic gas cluster irradiation of a solid surface have been developed to investigate the phenomena of crater formation, sputtering, surface treatment, and the material hardness evaluation by irradiation with cluster ions. Theoretical estimation of crater dimensions formed with Ar gas cluster ion irradiation of different substrates, based on hydrodynamics and MD simulation, are presented. The atomic scale shock waves arising from cluster impact were obtained by calculating the pressure, temperature and mass-velocity of the target atoms. The crater depth is given as a unique 1/3 dependence on the cluster energy and on the cold material Brinell hardness number (BHN). A new "true material hardness" scale which can be very useful for example for thin film coatings deposited on a soft substrate, is defined. This finding could be used as a new technique for measuring of a material hardness. Evolution of surface morphology under cluster ion irradiation was described by the surface relaxation equation which contains a term of crater formation at cluster impact. The formation of ripples on a surface irradiated with oblique cluster ion beams was predicted. MD and MC models of Decaborane ion (B 10H 14) implantation into Si and the following rapid thermal annealing (RTA) have been developed.

  11. Bursts of intermediate ions in atmospheric air

    NASA Astrophysics Data System (ADS)

    Hõrrak, U.; Salm, J.; Tammet, H.

    1998-06-01

    The mobility spectrum of air ions has been measured at Tahkuse Observatory in Estonia for several years. The average concentration of intermediate ions with mobilities of 0.05-0.5 cm2 V-1 s-1 in atmospheric air is about 50 cm-3. On the level of this low background, high concentration bursts of intermediate air ions occur occasionally. A burst can be followed by subsequent evolution of intermediate ions into larger ones. To explain the bursts of intermediate air ions, two hypotheses can be advanced: (1)A burst of neutral particles occurs due to homogeneous nucleation, and the particles are charged by the attachment of cluster ions. (2) The cluster ions grow by ion-induced nucleation in proper environmental conditions.

  12. Ionic polymer cluster energetics: Computational analysis of pendant chain stiffness and charge imbalance

    NASA Astrophysics Data System (ADS)

    Weiland, Lisa Mauck; Leo, Donald J.

    2005-06-01

    In recent years there has been considerable study of the potential mechanisms underlying the electromechanical response of ionic-polymer-metal composites. The most recent models have been based on the response of the ion-containing clusters that are formed when the material is synthesized. Most of these efforts have employed assumptions of uniform ion distribution within spherical cluster shapes. This work investigates the impact of dispensing with these assumptions in order to better understand the parameters that impact cluster shape, size, and ion transport potential. A computational micromechanics model applying Monte Carlo methodology is employed to predict the equilibrium state of a single cluster of a solvated ionomeric polymer. For a constant solvated state, the model tracks the position of individual ions within a given cluster in response to ion-ion interaction, mechanical stiffness of the pendant chain, cluster surface energy, and external electric-field loading. Results suggest that cluster surface effects play a significant role in the equilibrium cluster state, including ion distribution; pendant chain stiffness also plays a role in ion distribution but to a lesser extent. Moreover, ion pairing is rarely complete even in cation-rich clusters; this in turn supports the supposition of the formation of anode and cathode boundary layers.

  13. Ion source

    DOEpatents

    Leung, Ka-Ngo; Ehlers, Kenneth W.

    1984-01-01

    A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species.

  14. Multiphoton ionization of large water clusters

    SciTech Connect

    Apicella, B.; Li, X.; Passaro, M.; Spinelli, N.; Wang, X.

    2014-05-28

    Water clusters are multimers of water molecules held together by hydrogen bonds. In the present work, multiphoton ionization in the UV range coupled with time of flight mass spectrometry has been applied to water clusters with up to 160 molecules in order to obtain information on the electronic states of clusters of different sizes up to dimensions that can approximate the bulk phase. The dependence of ion intensities of water clusters and their metastable fragments produced by laser ionization at 355 nm on laser power density indicates a (3+1)-photon resonance-enhanced multiphoton ionization process. It also explains the large increase of ionization efficiency at 355 nm compared to that at 266 nm. Indeed, it was found, by applying both nanosecond and picosecond laser ionization with the two different UV wavelengths, that no water cluster sequences after n = 9 could be observed at 266 nm, whereas water clusters up to m/z 2000 Th in reflectron mode and m/z 3000 Th in linear mode were detected at 355 nm. The agreement between our findings on clusters of water, especially true in the range with n > 10, and reported data for liquid water supports the hypothesis that clusters above a critical dimension can approximate the liquid phase. It should thus be possible to study clusters just above 10 water molecules, for getting information on the bulk phase structure.

  15. The rate of formation of clusters on the surface of the comet's nucleus

    NASA Astrophysics Data System (ADS)

    Shoyokubov, Shoayub

    2016-07-01

    The paper describes the positive and negative clusters ions formation rate on the surface of comet nucleus under the influence of corpuscular solar wind particles taking into account the experimentally calculated coefficients of secondary ion emission.

  16. Cerium Oxyhydroxide Clusters: Formation, Structure and Reactivity

    SciTech Connect

    Aubriet, F.; Gaumet, Jean-Jacques; De Jong, Wibe A.; Groenewold, G. S.; Gianotto, Anita K.; McIIwain, Michael E.; Van Stipdonk, Michael J.; Leavitt, Christopher M.

    2009-05-11

    Cerium oxyhydroxide cluster anions were produced by irradiating ceric oxide particles using 355 nm laser pulses that were synchronized with pulses of nitrogen gas admitted to the irradiation chamber. The gas pulse stabilized the nascent clusters that are largely anhydrous [CexOy] ions and neutrals. These initially-formed species react with water, principally forming closed-shell (c-s) oxohydroxy species that are described by the general formula [CexOy(OH)z]-. In general, the extent of hydroxylation varies from a value of 3 OH per Ce atom when x = 1 to a value slightly greater than 1 for x > 8. The Ce3 and Ce6 species deviate significantly from this trend: the x = 3 cluster accommodates more hydroxyl moieties compared to neighboring congeners at x = 2 and x = 4. Conversely, the x = 6 cluster is significantly less hydroxylated. Density functional theory (DFT) modeling of the cluster structures show that the hydrated clusters are hydrolyzed, and contain one-to-multiple hydroxide moieties, but not datively bound water. DFT also predicts an energetic preference for formation of highly symmetric structures as the size of the clusters increases. The calculated structures indicate that the ability of the Ce3 oxyhydroxide to accommodate more extensive hydroxylation is due to a more open, hexagonal structure in which the Ce atoms can participate in multiple hydrolysis reactions. Conversely the Ce6 oxyhydroxide has an octahedral structure that is not conducive to hydrolysis. In addition to the c-s clusters, open-shell (o-s) oxyhydroxides and superoxides are also formed, and they become more prominent as the size of the clusters increases, suggesting that the larger ceria clusters have an increased ability to stabilize a non-bonding electron. The overall intensity of the clusters tends to monotonically decrease as the cluster size increases, however this trend is interrupted at Ce13, which is significantly more stable compared to neighboring congeners, suggesting formation of

  17. Cerium Oxyhydroxide Clusters: Formation, Structure and Reactivity

    SciTech Connect

    Frederic Aubriet; Jean-Jacques Gaumet; Wibe A de Jong; Groenewold, Gary S; Gianotto, Anita K; McIlwain, Michael E; Michael J. Van Stipdonk; Christopher M. Leavitt

    2009-06-01

    Cerium oxyhydroxide cluster anions were produced by irradiating ceric oxide particles using 355 nm laser pulses that were synchronized with pulses of nitrogen gas admitted to the irradiation chamber. The gas pulse stabilized the nascent clusters that are largely anhydrous [CexOy] ions and neutrals. These initially-formed species react with water, principally forming closed-shell (c-s) oxohydroxy species that are described by the general formula [CexOy(OH)z]-. In general, the extent of hydroxylation varies from a value of 3 OH per Ce atom when x = 1 to a value slightly greater than 1 for x > 8. The Ce3 and Ce6 species deviate significantly from this trend: the x = 3 cluster accommodates more hydroxyl moieties compared to neighboring congeners at x = 2 and x = 4. Conversely, the x = 6 cluster is significantly less hydroxylated. Density functional theory (DFT) modeling of the cluster structures show that the hydrated clusters are hydrolyzed, and contain one-to-multiple hydroxide moieties, but not datively bound water. DFT also predicts an energetic preference for formation of highly symmetric structures as the size of the clusters increases. The calculated structures indicate that the ability of the Ce3 oxyhydroxide to accommodate more extensive hydroxylation is due to a more open, hexagonal structure in which the Ce atoms can participate in multiple hydrolysis reactions. Conversely the Ce6 oxyhydroxide has an octahedral structure that is not conducive to hydrolysis. In addition to the c-s clusters, open-shell (o-s) oxyhydroxides and superoxides are also formed, and they become more prominent as the size of the clusters increases, suggesting that the larger ceria clusters have an increased ability to stabilize a non-bonding electron. The overall intensity of the clusters tends to monotonically decrease as the cluster size increases, however this trend is interrupted at Ce13, which is significantly more stable compared to neighboring congeners, suggesting formation of

  18. A new Cs sputter ion source with polyatomic ion beams for SIMS applications.

    SciTech Connect

    Belykh, S. F.; Palitsin, V. V.; Veryovkin, I. V.; Kovarsky, A. P.; Chang, R. J. H.; Adriaens, A.; Dowsett, M. G.; Adams, F.; Materials Science Division; Univ. Warwick; Ioffe Phys.-Tech. Inst.; Ghent Univ.; Univ. Antwerp

    2007-08-02

    A simple design for a cesium sputter ion source compatible with vacuum and ion-optical systems as well as with electronics of the commercially available Cameca IMS-4f instrument is reported. This ion source has been tested with the cluster primary ions of Si{sub n}{sup -} and Cu{sub n}{sup -}. Our experiments with surface characterization and depth profiling conducted to date demonstrate improvements of the analytical capabilities of the secondary ion mass spectrometry instrument due to the nonadditive enhancement of secondary ion emission and shorter ion ranges of polyatomic projectiles compared to atomic ones with the same impact energy.

  19. Surface Modification of Polymer Substrates by Oxygen Ion Irradiation

    SciTech Connect

    Takaoka, G. H.; Ryuto, H.; Araki, R.; Yakushiji, T.

    2008-11-03

    Oxygen cluster ions and/or monomer ions were used for the sputtering and the surface modification of polymers such as polycarbonate (PC) and polyethylene terephthalate (PET). For the case of oxygen cluster ion irradiation, the sputtered depth increased with increase of the acceleration voltage, and the sputtering yield was much larger than that by the monomer ion irradiation. The sputtered particles represented the polymer structure, which indicated that the bond scission by the cluster ion irradiation resulted in an ejection of monomer molecule through the intermolecular collision. On the other hand, for the oxygen monomer ion irradiation, the implanted depth increased with increase of the acceleration voltage, and the bond scission occurred at the deep region through the binary collision with the high energetic ions. Therefore, the sputtering yield for the polymer surfaces decreased, and the sputtering effect became very small. Furthermore, the simultaneous use of oxygen cluster and monomer ions was more effective for oxidation of the PET surfaces rather than the monomer ion irradiation or the cluster ion irradiation. As a result, the contact angle measurement showed that the wettability of the PET surfaces irradiated by the simultaneous use of oxygen cluster and monomer ions was much enhanced.

  20. On the Surface Mapping using Individual Cluster Impacts

    PubMed Central

    Fernandez-Lima, F.A.; Eller, M.J.; DeBord, J.D.; Verkhoturov, S.V.; Della-Negra, S.; Schweikert, E.A.

    2011-01-01

    This paper describes the advantages of using single impacts of large cluster projectiles (e.g. C60 and Au400) for surface mapping and characterization. The analysis of co-emitted time-resolved photon spectra, electron distributions and characteristic secondary ions shows that they can be used as surface fingerprints for target composition, morphology and structure. Photon, electron and secondary ion emission increases with the projectile cluster size and energy. The observed, high abundant secondary ion emission makes cluster projectiles good candidates for surface mapping of atomic and fragment ions (e.g., yield >1 per nominal mass) and molecular ions (e.g., few tens of percent in the 500 < m/z < 1500 range). PMID:22393269

  1. Foodservice Occupations Cluster Guide.

    ERIC Educational Resources Information Center

    Oregon State Dept. of Education, Salem.

    Intended to assist vocational teachers in developing and implementing a cluster program in food service occupations, this guide contains sections on cluster organization and implementation and instructional emphasis areas. The cluster organization and implementation section covers goal-based planning and includes a proposed cluster curriculum, a…

  2. Cluster-impact fusion

    SciTech Connect

    Echenique, P.M.; Manson, J.R.; Ritchie, R.H. )

    1990-03-19

    We present a model for the cluster-impact-fusion experiments of Buehler, Friedlander, and Friedman, Calculated fusion rates as a function of bombarding energy for constant cluster size agree well with experiment. The dependence of the fusion rate on cluster size at fixed bombarding energy is explained qualitatively. The role of correlated, coherent collisions in enhanced energy loss by clusters is emphasized.

  3. Air ions and aerosol science

    NASA Astrophysics Data System (ADS)

    Tammet, Hannes

    1996-03-01

    Collaboration between Gas Discharge and Plasma Physics, Atmospheric Electricity, and Aerosol Science is a factor of success in the research of air ions. The concept of air ion as of any carrier of electrical current through the air is inherent to Atmospheric Electricity under which a considerable statistical information about the air ion mobility spectrum is collected. A new model of air ion size-mobility correlation has been developed proceeding from Aerosol Science and joining the methods of neighboring research fields. The predicted temperature variation of the mobility disagrees with the commonly used Langevin rule for the reduction of air ion mobilities to the standard conditions. Concurrent errors are too big to be neglected in applications. The critical diameter distinguishing cluster ions and charged aerosol particles has been estimated to be 1.4-1.8 nm.

  4. Ion dip spectroscopy of cold molecules and ions. Progress report and renewal proposal

    SciTech Connect

    Wessel, J.

    1987-08-13

    A research program is underway with the objective of developing techniques of high resolution multiphoton spectroscopy for selective, ultrasensitive molecular detection. Methods under study include various forms of ion dip spectroscopy and new methods of ion fragmentation spectroscopy. The studies are providing a new understanding of the fundamental spectroscopy and photophysics of large molecular ions. Dimer and cluster ions of polynuclear aromatics and related species are also being investigated, with potential detection applications.

  5. Isomers and Energy Landscapes of Perchlorate-Water Clusters and a Comparison to Pure Water and Sulfate-Water Clusters.

    PubMed

    Hey, John C; Smeeton, Lewis C; Oakley, Mark T; Johnston, Roy L

    2016-06-16

    Hydrated ions are crucially important in a wide array of environments, from biology to the atmosphere, and the presence and concentration of ions in a system can drastically alter its behavior. One way in which ions can affect systems is in their interactions with proteins. The Hofmeister series ranks ions by their ability to salt-out proteins, with kosmotropes, such as sulfate, increasing their stability and chaotropes, such as perchlorate, decreasing their stability. We study hydrated perchlorate clusters as they are strongly chaotropic and thus exhibit different properties than sulfate. In this study we simulate small hydrated perchlorate clusters using a basin-hopping geometry optimization search with empirical potentials. We compare topological features of these clusters to data from both computational and experimental studies of hydrated sulfate ions and draw some conclusions about ion effects in the Hofmeister series. We observe a patterning conferred to the water molecules within the cluster by the presence of the perchlorate ion and compare the magnitude of this effect to that observed in previous studies involving sulfate. We also investigate the influence of the overall ionic charge on the low-energy structures adopted by these clusters. PMID:27223243

  6. Massive cluster impact ionization of saccharides

    SciTech Connect

    Dookeran, N.N.; Todd, P.J.

    1995-12-31

    The authors studied the utility of ionizing saccharides by massive cluster impact (MCI), a form of secondary ionization wherein the primary ions are high molecular weight clusters. For a number of compounds and classes, MCI yields copious secondary ions without prior derivitization or the need to find a suitable matrix. In fact, MCI can be used for in situ ionization of some analytes directly from biologic tissue. For the simple sugars and disaccharides that were studied, the authors found that persistent ( e.g. > 2 h) positive and negative secondary ion emission could almost always be detected from pure samples. The authors characterized the secondary anions from a variety of saccharides by tandem mass spectrometry (MS/MS), and found the behavior of the MS/MS spectra to be consistent, sensible, diagnostic and invariant with the dose suffered by the sample.

  7. The Most Interesting Cluster in the Universe

    NASA Astrophysics Data System (ADS)

    Markevitch, Maxim

    2003-09-01

    The galaxy cluster 1E0657-56 is a treasure trove of information on just about every problem in cluster physics. It is the only cluster known to have a shock front with M substantially greater than 1. The proposed 500 ks observation, combined with the existing 90 ks, will allow us to determine whether electrons are heated adiabatically or dissipatively in a shock and whether the electron-ion equilibration is efficient. We will search for an electron temperature precursor to the shock to estimate thermal conductivity. We also will determine the importance of gas turbulence and study the destruction of a cooling flow remnant by ram pressure. Combined with data from other wavelengths, this observation can also shed light on the nature of dark matter and the origin of cluster radio halos.

  8. Uranium pyrophosphate / methylenediphosphonate polyoxometalate cage clusters

    SciTech Connect

    Ling, Jie; Qiu, Jie; Sigmon, Ginger E.; Ward, Matt; Szymanowski, Jennifer E.S.; Burns, Peter C

    2010-09-29

    Despite potential applications in advanced nuclear energy systems, nanoscale control of uranium materials is in its infancy. In its hexavalent state, U occurs as (UO{sub 2}){sup 2+} uranyl ions that are coordinated by various ligands to give square, pentagonal, or hexagonal bipyramids. Creation and design of nanostructured uranyl materials requires interruption of the tendency of uranyl bipyramids to share equatorial edges to form infinite sheets that occur in extended structures. Where a bidentate peroxide group bridges uranyl bipyramids, the configuration is inherently bent, fostering formation of cage clusters. Here the bent configurations of four- and five-membered rings of uranyl peroxide hexagonal bipyramids are bridged by pyrophosphate or methylenediphosphonate, creating eight chemically complex cage clusters with specific topologies. Chemical complexity in such clusters provides opportunities for the tuning of cage sizes, pore sizes, and properties such as aqueous solubility. Several of these are topological derivatives of simpler clusters that contain only uranyl bipyramids, whereas others exhibit new topologies.

  9. Laser induced neutron production by explosion of the deuterium clusters

    SciTech Connect

    Holkundkar, Amol R.; Mishra, Gaurav Gupta, N. K.

    2014-01-15

    The high energy deuterium ions serve as compact source of neutrons when fused with either deuterium or tritium atoms. In view of this, the explosion of the deuterium clusters under the influence of the laser pulse with intensity ranging from 10{sup 15} to 10{sup 19} W/cm{sup 2} is being studied along with the effect of the cluster radius and inter-cluster distance. The objective of this article is to study the efficiency of the deuterium cluster as a compact source of neutrons under various laser and cluster parameters. It is being observed that the cluster density (number of clusters per unit volume) is quite important to gain high neutron yield.

  10. Survey on granularity clustering.

    PubMed

    Ding, Shifei; Du, Mingjing; Zhu, Hong

    2015-12-01

    With the rapid development of uncertain artificial intelligent and the arrival of big data era, conventional clustering analysis and granular computing fail to satisfy the requirements of intelligent information processing in this new case. There is the essential relationship between granular computing and clustering analysis, so some researchers try to combine granular computing with clustering analysis. In the idea of granularity, the researchers expand the researches in clustering analysis and look for the best clustering results with the help of the basic theories and methods of granular computing. Granularity clustering method which is proposed and studied has attracted more and more attention. This paper firstly summarizes the background of granularity clustering and the intrinsic connection between granular computing and clustering analysis, and then mainly reviews the research status and various methods of granularity clustering. Finally, we analyze existing problem and propose further research. PMID:26557926

  11. Comparing simulated and experimental molecular cluster distributions.

    PubMed

    Olenius, Tinja; Schobesberger, Siegfried; Kupiainen-Määttä, Oona; Franchin, Alessandro; Junninen, Heikki; Ortega, Ismael K; Kurtén, Theo; Loukonen, Ville; Worsnop, Douglas R; Kulmala, Markku; Vehkamäki, Hanna

    2013-01-01

    Formation of secondary atmospheric aerosol particles starts with gas phase molecules forming small molecular clusters. High-resolution mass spectrometry enables the detection and chemical characterization of electrically charged clusters from the molecular scale upward, whereas the experimental detection of electrically neutral clusters, especially as a chemical composition measurement, down to 1 nm in diameter and beyond still remains challenging. In this work we simulated a set of both electrically neutral and charged small molecular clusters, consisting of sulfuric acid and ammonia molecules, with a dynamic collision and evaporation model. Collision frequencies between the clusters were calculated according to classical kinetics, and evaporation rates were derived from first principles quantum chemical calculations with no fitting parameters. We found a good agreement between the modeled steady-state concentrations of negative cluster ions and experimental results measured with the state-of-the-art Atmospheric Pressure interface Time-Of-Flight mass spectrometer (APi-TOF) in the CLOUD chamber experiments at CERN. The model can be used to interpret experimental results and give information on neutral clusters that cannot be directly measured. PMID:24600997

  12. Cluster Morphology Analysis

    PubMed Central

    Jacquez, Geoffrey M.

    2009-01-01

    Most disease clustering methods assume specific shapes and do not evaluate statistical power using the applicable geography, at-risk population, and covariates. Cluster Morphology Analysis (CMA) conducts power analyses of alternative techniques assuming clusters of different relative risks and shapes. Results are ranked by statistical power and false positives, under the rationale that surveillance should (1) find true clusters while (2) avoiding false clusters. CMA then synthesizes results of the most powerful methods. CMA was evaluated in simulation studies and applied to pancreatic cancer mortality in Michigan, and finds clusters of flexible shape while routinely evaluating statistical power. PMID:20234799

  13. Molecular sputter depth profiling using carbon cluster beams

    PubMed Central

    Winograd, Nicholas

    2010-01-01

    Sputter depth profiling of organic films while maintaining the molecular integrity of the sample has long been deemed impossible because of the accumulation of ion bombardment-induced chemical damage. Only recently, it was found that this problem can be greatly reduced if cluster ion beams are used for sputter erosion. For organic samples, carbon cluster ions appear to be particularly well suited for such a task. Analysis of available data reveals that a projectile appears to be more effective as the number of carbon atoms in the cluster is increased, leaving fullerene ions as the most promising candidates to date. Using a commercially available, highly focused C60q+ cluster ion beam, we demonstrate the versatility of the technique for depth profiling various organic films deposited on a silicon substrate and elucidate the dependence of the results on properties such as projectile ion impact energy and angle, and sample temperature. Moreover, examples are shown where the technique is applied to organic multilayer structures in order to investigate the depth resolution across film-film interfaces. These model experiments allow collection of valuable information on how cluster impact molecular depth profiling works and how to understand and optimize the depth resolution achieved using this technique. PMID:19649771

  14. High mass carbon clusters from aromatic hydrocarbons observed by laser mass spectrometry

    SciTech Connect

    Lineman, D.N.; Somayajula, K.V.; Sharkey, A.G.; Hercules, D.M. )

    1989-06-29

    Laser time-of-flight mass spectra of polycyclic aromatic hydrocarbons showing positive ions, even-numbered carbon clusters to C{sub 584}{sup +} are reported. Negative ion spectra show clusters through C{sub 200}{sup {minus}}. Four different clustering regions are observed, depending upon laser focus conditions. Laser irradiance plays a key role. Greatly enhanced abundance of C{sub 60}{sup +} reported by others using graphite and other sources of carbon is not observed.

  15. Universal Cluster Deposition System

    NASA Astrophysics Data System (ADS)

    Qiang, You; Sun, Zhiguang; Sellmyer, David J.

    2001-03-01

    We have developed a universal cluster deposition system (UCDS), which combines a new kind of sputtering-gas-aggregation (SGA) cluster beam source with two atom beams from magnetron sputtering. A highly intense, very stable beam of nanoclusters (like Co, Fe, Ni, Si, CoSm or CoPt) are produced. A quadrupole and/or a new high transmission infinite range mass selector have been designed for the cluster beam. The size distribution (Δd/d) is between 0.05+/-0.10, measured in situ by TOF. A range of mean cluster size is 2 to 10 nm. Usually the deposition rate is about 5 deg/s. The cluster concentration in the film is adjusted through the ratio of cluster and atomic beam deposition rates, as measured in situ with a rotatable quartz microbalance. The UCDS can be used to prepare coated clusters. After exiting from the cluster source, the clusters can be coated first with an atomic or molecular species in an evaporation chamber, and deposited alone or co-deposited with another material. This system is used to deposit simultaneously or alternately mesoscopic thin films or multilayers, and offers the possibility to control independently the incident cluster size and concentration, and thereby the interaction between clusters and cluster-matrix material which is of interest for fundamental research and industry applications. Magnetic properties of Co cluster-assembled materials will be discussed. * Research supported by NSF, DARPA through ARO, and CMRA

  16. CLARIS G2: Development of Carbon Cluster Implantation

    SciTech Connect

    Nakashima, Y.; Hamamoto, N.; Umisedo, S.; Koga, Y.; Une, H.; Asai, H.; Maehara, N.; Hashino, Y.; Kawamura, Y.; Hashimoto, M.; Nagayama, T.; Tanjyo, M.; Onoda, H.; Horsky, T. N.; Hahto, S. K.; Sekar, K.

    2011-01-07

    Nissin's boron and carbon cluster ion implanter CLARIS G2 has been developed for the mass production of next generation CMOS devices. Development of boron cluster implant technique was presented at last IIT conference in 2008 [1]. In this paper, development of carbon cluster (C{sub 16}H{sub x}{sup +} and C{sub 7}H{sub x}{sup +}) implant technique is described. Carbon cluster implantation has been well productized in terms of throughput, beam quality and lifetime.

  17. Reaction paths leading from O2/+/ to water clusters under cold mesospheric conditions

    NASA Astrophysics Data System (ADS)

    McCrumb, J. L.

    1982-06-01

    Reference is made to reported D-region positive ion measurements (Arnold and Krankowsky, 1974) in which a number of new cluster ions of minor abundance were apparent. It is noted that these ions, which were attributed to clusters with N2, O2, and CO2 ligands, were observable owing to enhanced O2(+) production and the low temperatures during the flight. Consideration is given here to these in situ ion data in view of recent laboratory ion-molecule reaction experiments that shed light on the mechanism leading from O2(+) to water clusters in air mixtures. Possible intermediates are discussed in terms of ion stability and the existence of effective reaction paths under the given atmospheric conditions. The intermediates proposed here are then fitted into a coherent reaction mechanism resulting in significant new pathways for the formation of protonated water clusters. A semiquantitative measure of the importance of each of the pathways is then calculated using signal flow graph theory.

  18. EINSTEIN Cluster Alignments Revisited

    NASA Astrophysics Data System (ADS)

    Chambers, S. W.; Melott, A. L.; Miller, C. J.

    2000-12-01

    We have examined whether the major axes of rich galaxy clusters tend to point (in projection) toward their nearest neighboring cluster. We used the data of Ulmer, McMillan and Kowalski, who used x-ray morphology to define position angles. Our cluster samples, with well measured redshifts and updated positions, were taken from the MX Northern Abell Cluster Survey. The usual Kolmogorov-Smirnov test shows no significant alignment signal for nonrandom angles for all separations less than 100 Mpc/h. Refining the null hypothesis, however, with the Wilcoxon rank-sum test, reveals a high confidence signal for alignment. This confidence is highest when we restrict our sample to small nearest neighbor separations. We conclude that we have identified a more powerful tool for testing cluster-cluster alignments. Moreover, there is a strong signal in the data for alignment, consistent with a picture of hierarchical cluster formation in which matter falls into clusters along large scale filamentary structures.

  19. Matlab Cluster Ensemble Toolbox

    SciTech Connect

    Sapio, Vincent De; Kegelmeyer, Philip

    2009-04-27

    This is a Matlab toolbox for investigating the application of cluster ensembles to data classification, with the objective of improving the accuracy and/or speed of clustering. The toolbox divides the cluster ensemble problem into four areas, providing functionality for each. These include, (1) synthetic data generation, (2) clustering to generate individual data partitions and similarity matrices, (3) consensus function generation and final clustering to generate ensemble data partitioning, and (4) implementation of accuracy metrics. With regard to data generation, Gaussian data of arbitrary dimension can be generated. The kcenters algorithm can then be used to generate individual data partitions by either, (a) subsampling the data and clustering each subsample, or by (b) randomly initializing the algorithm and generating a clustering for each initialization. In either case an overall similarity matrix can be computed using a consensus function operating on the individual similarity matrices. A final clustering can be performed and performance metrics are provided for evaluation purposes.

  20. [Pathophysiology of cluster headache].

    PubMed

    Donnet, Anne

    2015-11-01

    The aetiology of cluster headache is partially unknown. Three areas are involved in the pathogenesis of cluster headache: the trigeminal nociceptive pathways, the autonomic system and the hypothalamus. The cluster headache attack involves activation of the trigeminal autonomic reflex. A dysfunction located in posterior hypothalamic gray matter is probably pivotal in the process. There is a probable association between smoke exposure, a possible genetic predisposition and the development of cluster headache. PMID:26470883

  1. Hybrid Lanthanide-Actinide Peroxide Cage Clusters.

    PubMed

    Sigmon, Ginger E; Szymanowski, Jennifer E S; Carter, Korey P; Cahill, Christopher L; Burns, Peter C

    2016-03-21

    A cage cluster consisting of 31 uranyl and 9 Sm(3+) polyhedra self-assembles in an alkaline aqueous peroxide solution and crystallizes (U31Sm9). Trimers of Sm(3+) polyhedra are templated by μ3-η(2):η(2):η(2)-peroxide groups and link to oxo atoms of uranyl ions. Three such trimers link into a ring through uranyl hexagonal bipyramids, and these are attached through six polyhedra to a unit consisting of 21 uranyl hexagonal bipyramids to complete the cage. Luminescence spectra collected with an excitation wavelength of 420 nm reveal fine structure, which is not observed for a cluster containing only uranyl polyhedra. PMID:26923457

  2. CLUSTERING OF RARE EVENTS

    EPA Science Inventory

    The clustering of cases of a rare disease is considered. The number of events observed for each unit is assumed to have a Poisson distribution, the mean of which depends upon the population size and the cluster membership of that unit. Here a cluster consists of those units that ...

  3. Lanthanide, thorium, and uranium oxide clusters formed by DLV/FTICR

    SciTech Connect

    Pires de Matos, A.; Marcalo, J.; Leal, J.P.

    1995-12-31

    In this work the formation of clusters of all the lanthanides (except promethium), thorium and uranium by direct laser vaporization (DLV) of surface oxidized metallic targets in a vacuum of about 2 x 10{sup -8} Torr. The cluster ions were obtained using a Nd:YAG laser pulse (ca. 30 mJ at the fundamental 1064 nm wavelength) and the ions were stored in the trap of an Extrel (Waters) FTMS 2001-DT Fourier transform ion cyclotron resonance (FTICR) spectrometer.

  4. Development of C{sub 60} plasma ion source for time-of-flight secondary ion mass spectrometry applications

    SciTech Connect

    Ji Qing; Chen Ye; Ji Lili; Hahto, Sami; Leung, Ka-Ngo; Lee, Tae Geol; Moon, Dae Won

    2008-02-15

    Initial data from a multicusp ion source developed for buckminsterfullerene (C{sub 60}) cluster ion production are reported in this article. A C{sub 60}{sup +} beam current of 425 nA and a C{sub 60}{sup -} beam current of 200 nA are obtainable in continuous mode. Compared to prior work using electron impact ionization, the multicusp ion source provides at least two orders of magnitude increase in the extractable C{sub 60}{sup +} beam current. Mass spectra for both positive and negative bismuth cluster ions generated by the multicusp ion source are also included.

  5. Ionized cluster beam technology for material science

    NASA Astrophysics Data System (ADS)

    Takagi, Toshinori

    1997-06-01

    The most suitable kinetic energy range of ionized materials in film formation and epitaxial growth is from a few eV to a few hundreds eV, especially, less than about 100eV, when ions are used as a host. The main roles of ions in film formation are the effects due to their kinetic energy and the electronic charge effects which involve the effect to active film formation and the effect acceleration of chemical reactions. Therefore, it is important to develope the technology to transport large volume of a flux of ionized particles with an extremely low incident energy without any troubles due to the space charge effects and charge up problems on the surface. This is the exact motivation for us to have been developing the Ionized Cluster Beam (ICB) technology since 1972. By ICB technology materials (actually wide varieties of materials such as metal, semiconductor, magnetic material, insulator, organic material, etc.) are vaporized and ejected through a small hole nozzle into a high vacuum, where the vaporized material condenses into clusters with loosely coupled atoms with the sizes about from 100 to a few 1000 atoms (mainly 100-2000 atoms) by supercondensation phenomena due to the adiabatic expansion in this evaporation process through a small hole nozzle. In the ICB technology an atom in each cluster is ionized by irradiated by electron shower, and the ionized clusters are accelerated by electric field onto a substrate. The ionized clusters with neutral clusters impinged onto a substrate are spreaded separately into atoms migrating over the substrate, so that the surface migration energy of the impinged atoms, that is, surface diffusion energy are controlled by an incident energy of a cluster. In this report the theoretical and also experimental results of ICB technology are summarized.

  6. Studies of the mechanism of the cluster formation in a thermally sampling atmospheric pressure ionization mass spectrometer

    SciTech Connect

    Albrecht, Sascha Stroh, Fred; Klopotowski, Sebastian Derpmann, Valerie Klee, Sonja Brockmann, Klaus J. Benter, Thorsten

    2014-01-15

    In this study a thermally sampling atmospheric pressure ionization mass spectrometer is described and characterized. The ion transfer stage offers the capability to sample cluster ions at thermal equilibrium and during this transfer fundamental processes possibly affecting the cluster distribution are also readily identified. Additionally, the transfer stage combines optional collision-induced dissociation (CID) analysis of the cluster composition with thermal equilibrium sampling of clusters. The performance of the setup is demonstrated with regard to the proton-bound water cluster system. The benefit of the studied processes is that they can help to improve future transfer stages and to understand cluster ion reactions in ion mobility tubes and high-pressure ion sources. In addition, the instrument allows for the identification of fragmentation and protonation reactions caused by CID.

  7. Studies of the mechanism of the cluster formation in a thermally sampling atmospheric pressure ionization mass spectrometer.

    PubMed

    Albrecht, Sascha; Klopotowski, Sebastian; Derpmann, Valerie; Klee, Sonja; Brockmann, Klaus J; Stroh, Fred; Benter, Thorsten

    2014-01-01

    In this study a thermally sampling atmospheric pressure ionization mass spectrometer is described and characterized. The ion transfer stage offers the capability to sample cluster ions at thermal equilibrium and during this transfer fundamental processes possibly affecting the cluster distribution are also readily identified. Additionally, the transfer stage combines optional collision-induced dissociation (CID) analysis of the cluster composition with thermal equilibrium sampling of clusters. The performance of the setup is demonstrated with regard to the proton-bound water cluster system. The benefit of the studied processes is that they can help to improve future transfer stages and to understand cluster ion reactions in ion mobility tubes and high-pressure ion sources. In addition, the instrument allows for the identification of fragmentation and protonation reactions caused by CID. PMID:24517784

  8. Ion Beam Modification of Materials

    SciTech Connect

    Averback, B; de la Rubia, T D; Felter, T E; Hamza, A V; Rehn, L E

    2005-10-10

    This volume contains the proceedings of the 14th International Conference on Ion Beam Modification of Materials, IBMM 2004, and is published by Elsevier-Science Publishers as a special issue of Nuclear Instruments and Methods B. The conference series is the major international forum to present and discuss recent research results and future directions in the field of ion beam modification, synthesis and characterization of materials. The first conference in the series was held in Budapest, Hungary, 1978, and subsequent conferences were held every two years at locations around the Globe, most recently in Japan, Brazil, and the Netherlands. The series brings together physicists, materials scientists, and ion beam specialists from all over the world. The official conference language is English. IBMM 2004 was held on September 5-10, 2004. The focus was on materials science involving both basic ion-solid interaction processes and property changes occurring either during or subsequent to ion bombardment and ion beam processing in relation to materials and device applications. Areas of research included Nanostructures, Multiscale Modeling, Patterning of Surfaces, Focused Ion Beams, Defects in Semiconductors, Insulators and Metals, Cluster Beams, Radiation Effects in Materials, Photonic Devices, Ion Implantation, Ion Beams in Biology and Medicine including New Materials, Imaging, and Treatment.

  9. A new clustering strategy

    NASA Astrophysics Data System (ADS)

    Feng, Jian-xin; Tang, Jia-fu; Wang, Guang-xing

    2007-04-01

    On the basis of the analysis of clustering algorithm that had been proposed for MANET, a novel clustering strategy was proposed in this paper. With the trust defined by statistical hypothesis in probability theory and the cluster head selected by node trust and node mobility, this strategy can realize the function of the malicious nodes detection which was neglected by other clustering algorithms and overcome the deficiency of being incapable of implementing the relative mobility metric of corresponding nodes in the MOBIC algorithm caused by the fact that the receiving power of two consecutive HELLO packet cannot be measured. It's an effective solution to cluster MANET securely.

  10. A pure inorganic 1D chain based on {Mo8O28} clusters and Mn(II) ions: [Mn(H2O)2Mo8O28 ] n 6 n -

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaofen; Yan, Yonghong; Wu, Lizhou; Yu, Chengxin; Dong, Xinbo; Hu, Huaiming; Xue, Ganglin

    2016-01-01

    A new pure inorganic polymer, (NH4)6n[Mn(H2O)2Mo8O28)]n(H2O)2n(1), has been synthesized and characterized by elemental analyses, IR spectrum, UV-vis absorption spectra, TG-DSC and electrochemical studies. In 1, [Mo8O28]8- anions act as tetradentate ligands and are alternately linked by Mn(H2O)2 2 + ions into a one-dimensional chain structure. It is interesting that 1 represents the first example of pure inorganic-inorganic hybrid based on octamolybdate and transition metal ions. Moreover, it was indicated that 1 had definite catalytic activities on the probe reaction of benzyl alcohol oxidation to benzaldehyde with H2O2.

  11. Unconventional methods for clustering

    NASA Astrophysics Data System (ADS)

    Kotyrba, Martin

    2016-06-01

    Cluster analysis or clustering is a task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense or another) to each other than to those in other groups (clusters). It is the main task of exploratory data mining and a common technique for statistical data analysis used in many fields, including machine learning, pattern recognition, image analysis, information retrieval, and bioinformatics. The topic of this paper is one of the modern methods of clustering namely SOM (Self Organising Map). The paper describes the theory needed to understand the principle of clustering and descriptions of algorithm used with clustering in our experiments.

  12. Electronic Structure and Geometries of Small Compound Metal Clusters

    SciTech Connect

    1999-04-14

    During the tenure of the DOE grant DE-FG05-87EI145316 we have concentrated on equilibrium geometries, stability, and the electronic structure of transition metal-carbon clusters (met-cars), clusters designed to mimic the chemistry of atoms, and reactivity of homo-nuclear metal clusters and ions with various reactant molecules. It is difficult to describe all the research the authors have accomplished as they have published 38 papers. In this report, they outline briefly the salient features of their work on the following topics: (1) Designer Clusters: Building Blocks for a New Class of Solids; (2) Atomic Structure, Stability, and Electronic Properties of Metallo-Carbohedrenes; (3) Reactivity of Metal Clusters with H{sub 2} and NO; and (4) Anomalous Spectroscopy of Li{sub 4} Clusters.

  13. Laser-driven nonlinear cluster dynamics

    SciTech Connect

    Fennel, Th.; Meiwes-Broer, K.-H.; Tiggesbaeumker, J.; Reinhard, P.-G.; Dinh, P. M.; Suraud, E.

    2010-04-15

    Laser excitation of nanometer-sized atomic and molecular clusters offers various opportunities to explore and control ultrafast many-particle dynamics. Whereas weak laser fields allow the analysis of photoionization, excited-state relaxation, and structural modifications on these finite quantum systems, large-amplitude collective electron motion and Coulomb explosion can be induced with intense laser pulses. This review provides an overview of key phenomena arising from laser-cluster interactions with focus on nonlinear optical excitations and discusses the underlying processes according to the current understanding. A general survey covers basic cluster properties and excitation mechanisms relevant for laser-driven cluster dynamics. Then, after an excursion in theoretical and experimental methods, results for single-photon and multiphoton excitations are reviewed with emphasis on signatures from time- and angular-resolved photoemission. A key issue of this review is the broad spectrum of phenomena arising from clusters exposed to strong fields, where the interaction with the laser pulse creates short-lived and dense nanoplasmas. The implications for technical developments such as the controlled generation of ion, electron, and radiation pulses will be addressed along with corresponding examples. Finally, future prospects of laser-cluster research as well as experimental and theoretical challenges are discussed.

  14. Ion loss processes in the stratosphere

    NASA Technical Reports Server (NTRS)

    Prasad, B. S. N.; Chandramma, S.

    1985-01-01

    Small ions consisting of aggregates of a few molecules determine th stratospheric electrical parameters such as conductivity, mobility, etc. The small ion density is controlled by the ionizing mechanisms for the production of ions and electrons and the loss processes for these charged particles. Ion production in stratosphere is chiefly due to galactic cosmic rays, and the loss processes due to recombination and attachment. Free electrons do not exist at stratospheric heights. The primary positive ion O2+ and the electrons are converted into complex clusters of positive and negative ions. The equilibrium ion density is governed by the equation of continuity for the production and loss of these ions. In the generalized equation of continuity, the gain or loss of ions due to transport is neglected. When aerosols or particulates are not present in the atmosphere, ions are loss due to ion-ion recombination. In the presence of aerosols, small ions can also be lost by attachment to the aerosols, and thus aerosols are likely to cause perturbations in the stratosphere electrification. A simplified model approach is adopted to study the effect of aerosols on the equilibrium ion density. The results of the analysis for the equatorial station Thumba (8.5 deg N) are presented.

  15. Theoretical Study of Electron Scattering By Small Clusters and Adsorbates

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Sheehy, J. A.

    1994-01-01

    Current interest in clusters stems from their role as novel materials as well as a possible extension of cluster results to bulk systems. Experimental investigations on clusters have been carried out using laser spectroscopy, microwave spectroscopy, heavy-particle collisions, as well as electron collisions with earlier experimental work on electron attachment and ionization having been reviewed previously. Recently, Mark and coworkers studied the decay channels of cluster ions following electron impact ionization. Rauth et al. reported the formation of the superhalogen ion SF7(-) and other nonstoichiometric cluster ions in their study of electron attachment to SF6 clusters. Kresin et al. measured the absolute electron-impact depletion cross section of metal clusters Na8, Na(20), and Na(40). They found that the inelastic scattering cross section increased with cluster size and was considerably greater than the hard sphere collision cross sections. They hypothesized that electron attachment and collision-induced fragmentation were the dominant physical processes responsible for this effect. For the two smaller clusters, they also found a sharp increase in the cross section near threshold. Most theoretical studies of clusters have been devoted to their electronic structures, vibrational relaxation, and predissociation while investigations of electron scattering from clusters has been lacking. In view of this, we recently undertook an ab initio study of electron scattering from small Be clusters and BeCO. Beryllium was chosen because it is readily amenable to ab t'nitio calculations. Moreover, the electronic structure of Be clusters has been studied extensively, showing that the Be-Be bond is relatively weak in comparison with a normal chemical bond. Our investigation focuses on how the cross sections change with cluster size and geometry. The range of energy studied, 0.05 - 5.0 eV, is chosen because of the ubiquitous resonance in the low-energy scattering of Be. Hence

  16. Modeling Clustered Data with Very Few Clusters.

    PubMed

    McNeish, Daniel; Stapleton, Laura M

    2016-01-01

    Small-sample inference with clustered data has received increased attention recently in the methodological literature, with several simulation studies being presented on the small-sample behavior of many methods. However, nearly all previous studies focus on a single class of methods (e.g., only multilevel models, only corrections to sandwich estimators), and the differential performance of various methods that can be implemented to accommodate clustered data with very few clusters is largely unknown, potentially due to the rigid disciplinary preferences. Furthermore, a majority of these studies focus on scenarios with 15 or more clusters and feature unrealistically simple data-generation models with very few predictors. This article, motivated by an applied educational psychology cluster randomized trial, presents a simulation study that simultaneously addresses the extreme small sample and differential performance (estimation bias, Type I error rates, and relative power) of 12 methods to account for clustered data with a model that features a more realistic number of predictors. The motivating data are then modeled with each method, and results are compared. Results show that generalized estimating equations perform poorly; the choice of Bayesian prior distributions affects performance; and fixed effect models perform quite well. Limitations and implications for applications are also discussed. PMID:27269278

  17. Transport of Light Ions in Matter

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Cucinotta, F. A.; Tai, H.; Shinn, J. L.; Chun, S. Y.; Tripathi, R. K.; Sihver, L.

    1998-01-01

    A recent set of light ion experiments are analyzed using the Green's function method of solving the Boltzmann equation for ions of high charge and energy (the GRNTRN transport code) and the NUCFRG2 fragmentation database generator code. Although the NUCFRG2 code reasonably represents the fragmentation of heavy ions, the effects of light ion fragmentation requires a more detailed nuclear model including shell structure and short range correlations appearing as tightly bound clusters in the light ion nucleus. The most recent NTJCFRG2 code is augmented with a quasielastic alpha knockout model and semiempirical adjustments (up to 30 percent in charge removal) in the fragmentation process allowing reasonable agreement with the experiments to be obtained. A final resolution of the appropriate cross sections must await the full development of a coupled channel reaction model in which shell structure and clustering can be accurately evaluated.

  18. The structure of small metal clusters

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.; Pettersson, L. G. M.

    1986-01-01

    One metal atom surrounded by its 12 nearest neighbors is considered for both D(3d) (face-centered cubic-like) and D(3h) (hexagonal close-packed-like) geometries. For Al and Be, the neutral cluster and the positive and negative ions are considered for idealized (all bonds equal) and distorted geometries. The D(3d) geometry is found to be the lowest for Be13, while the D(3h) geometry is lower for Al13. This is the reverse of what is expected based upon the bulk metal structures, Be(hcp) and Al(fcc). Al13 is found to have only small distortions, while Be13 shows large distortions for both the D(3d) and D(3h) geometries. The ions have geometries which are similar to those found for the neutral systems. Both all-electron and effective core potential calculations were carried out on the X13 clusters; the agreement is very good.

  19. Fragmentation pathways of tungsten hexacarbonyl clusters upon electron ionization.

    PubMed

    Neustetter, M; Jabbour Al Maalouf, E; Limão-Vieira, P; Denifl, S

    2016-08-01

    Electron ionization of neat tungsten hexacarbonyl (W(CO)6) clusters has been investigated in a crossed electron-molecular beam experiment coupled with a mass spectrometer system. The molecule is used for nanofabrication processes through electron beam induced deposition and ion beam induced deposition techniques. Positive ion mass spectra of W(CO)6 clusters formed by electron ionization at 70 eV contain the ion series of the type W(CO)n (+) (0 ≤ n ≤ 6) and W2(CO)n (+) (0 ≤ n ≤ 12). In addition, a series of peaks are observed and have been assigned to WC(CO)n (+) (0 ≤ n ≤ 3) and W2C(CO)n (+) (0 ≤ n ≤ 10). A distinct change of relative fragment ion intensity can be observed for clusters compared to the single molecule. The characteristic fragmentation pattern obtained in the mass spectra can be explained by a sequential decay of the ionized organometallic, which is also supported by the study of the clusters when embedded in helium nanodroplets. In addition, appearance energies for the dissociative ionization channels for singly charged ions have been estimated from experimental ion efficiency curves. PMID:27497555

  20. Fragmentation pathways of tungsten hexacarbonyl clusters upon electron ionization

    NASA Astrophysics Data System (ADS)

    Neustetter, M.; Jabbour Al Maalouf, E.; Limão-Vieira, P.; Denifl, S.

    2016-08-01

    Electron ionization of neat tungsten hexacarbonyl (W(CO)6) clusters has been investigated in a crossed electron-molecular beam experiment coupled with a mass spectrometer system. The molecule is used for nanofabrication processes through electron beam induced deposition and ion beam induced deposition techniques. Positive ion mass spectra of W(CO)6 clusters formed by electron ionization at 70 eV contain the ion series of the type W(CO)n+ (0 ≤ n ≤ 6) and W2(CO)n+ (0 ≤ n ≤ 12). In addition, a series of peaks are observed and have been assigned to WC(CO)n+ (0 ≤ n ≤ 3) and W2C(CO)n+ (0 ≤ n ≤ 10). A distinct change of relative fragment ion intensity can be observed for clusters compared to the single molecule. The characteristic fragmentation pattern obtained in the mass spectra can be explained by a sequential decay of the ionized organometallic, which is also supported by the study of the clusters when embedded in helium nanodroplets. In addition, appearance energies for the dissociative ionization channels for singly charged ions have been estimated from experimental ion efficiency curves.

  1. [Clustering of simple obesity].

    PubMed

    Yoshida, K; Matsuda, H; Kurita, M; Umetada, Y

    1988-05-01

    An attempt was made to classify persons with simple obesity from the viewpoint of health education. Subjects of the study were 1,278 male workers in a financing company who underwent health examination. At the time of health examinations, questionnaire survey concerning their life styles was carried out on all the subjects. The obese group consisted of 127 subjects whose obesity indices were over 15% and the control group consisted of 342 subjects whose obesity indices ranged from -5 to 5%. Subjects in the obese group were classified into four clusters based on cluster analysis using five life-style parameters; that is, frequency of taking breakfast, frequency of taking staple food, drinking habits, smoking habits, and frequency of exercise. The first cluster (N = 10) included inactive persons, the second cluster (N = 46) non smokers, the third cluster (N = 39) smokers and heavy drinkers, and the fourth cluster (N = 32) smokers and non-drinkers. Comparison of the four clusters of obese persons with the control group revealed the following findings: 1) All the four clusters had significantly high frequencies of abnormal values of triglyceride (TG) and fasting blood sugar (FBS). 2) The first cluster had significantly high frequencies of abnormal values of glutamic oxalacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT). 3) The second cluster had significantly high frequencies of abnormal values of systolic and diastolic blood pressure, total cholesterol, TG, FBS, uric acid, GOT, GPT and gamma glutamyl transferase (GGT).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3172544

  2. Photoionisation of ions with synchrotron radiation: from ions in space to atoms in cages

    NASA Astrophysics Data System (ADS)

    Schippers, Stefan; Kilcoyne, A. L. David; Phaneuf, Ronald A.; Müller, Alfred

    2016-04-01

    The photon-ion merged-beams technique for the photoionisation of mass/charge selected ionised atoms, molecules and clusters by x-rays from synchrotron radiation sources is introduced. Examples for photoionisation of atomic ions are discussed by going from outer shell ionisation of simple few electron systems to inner shell ionisation of complex many electron ions. Fundamental ionisation mechanisms are elucidated and the importance of the results for applications in astrophysics and plasma physics is pointed out. Finally, the unique capabilities of the photon-ion merged-beams technique for the study of photoabsorption by nanoparticles are demonstrated by the example of endohedral fullerene ions.

  3. Cooling dynamics of carbon cluster anions

    NASA Astrophysics Data System (ADS)

    Shiromaru, H.; Furukawa, T.; Ito, G.; Kono, N.; Tanuma, H.; Matsumoto, J.; Goto, M.; Majima, T.; Sundén, A. E. K.; Najafian, K.; Pettersson, M. S.; Dynefors, B.; Hansen, K.; Azuma, T.

    2015-09-01

    A series of ion storage experiments on small carbon cluster anions was conducted to understand size-dependent cooling processes. The laser-induced delayed electron detachment time profile show clear even/odd alternation due to the presence of the electronic cooling. The time evolution of the internal energy distribution was simulated for Cn- (n=4 to 7) with a common procedure taking vibrational and electronic cooling into account.

  4. Cluster Observations of the Auroral Acceleration Region

    NASA Astrophysics Data System (ADS)

    Sadeghi, S.; Marklund, G.; Karlsson, R.; Lindqvist, P.; Li, B.; Nilsson, H.; Marghitu, O.; Fazakerley, A. N.; Lucek, E. A.

    2011-12-01

    We present results from Cluster satellite multi-point event studies from the auroral acceleration region (AAR). Electric potential structures associated with inverted-V aurora are investigated using electric field, magnetic field, ion and electron data from the Cluster spacecraft, crossing the auroral acceleration region (AAR) at different altitudes above the auroral oval. The spatial and temporal development of the acceleration structures is studied, given the magnetic conjunction opportunity and the short time-difference between the Cluster spacecraft crossings. The configuration allowed for estimating the characteristic times of development for the structures and estimating the parallel electric field and potential drop. For one of the negative potential structures, a growth time of 40 s and stability for more than one minute was observed and an average parallel electric field was estimated (~ 0.56 mV/m, between 1.13 and 1.3 RE of altitude).

  5. Energy loss of fast clusters through matter

    SciTech Connect

    Ben-Hamu, D.; Baer, A.; Feldman, H.; Levin, J.; Heber, O.; Amitay, Z.; Vager, Z.; Zajfman, D.

    1997-12-01

    Energy loss in the MeV range of simple clusters impinging on thin carbon targets has been measured using a time-of-flight method. Stopping-power ratios defined as the ratio of the stopping power of the cluster to the sum of the stopping powers of the constituent atoms moving at the same velocity were investigated. Stopping- power ratios close to unity were observed for O{sub 2} and B{sub 3} clusters, while deenhancement effect is observed in the stopping-power ratios of C{sub 3} and C{sub 4}. The experimental results are compared both with an existing theoretical model, which takes into account the spatial correlation of the fragments, and with a simple united-atom model, which also includes the charge state evolution of the fragment ions inside the target. {copyright} {ital 1997} {ital The American Physical Society}

  6. Structural evolution of small ruthenium cluster anions

    SciTech Connect

    Waldt, Eugen; Hehn, Anna-Sophia; Ahlrichs, Reinhart; Kappes, Manfred M.; Schooss, Detlef

    2015-01-14

    The structures of ruthenium cluster anions have been investigated using a combination of trapped ion electron diffraction and density functional theory computations in the size range from eight to twenty atoms. In this size range, three different structural motifs are found: Ru{sub 8}{sup −}–Ru{sub 12}{sup −} have simple cubic structures, Ru{sub 13}{sup −}–Ru{sub 16}{sup −} form double layered hexagonal structures, and larger clusters form close packed motifs. For Ru{sub 17}{sup −}, we find hexagonal close packed stacking, whereas octahedral structures occur for Ru{sub 18}{sup −}–Ru{sub 20}{sup −}. Our calculations also predict simple cubic structures for the smaller clusters Ru{sub 4}{sup −}–Ru{sub 7}{sup −}, which were not accessible to electron diffraction measurements.

  7. Ion aggregation in high salt solutions. V. Graph entropy analyses of ion aggregate structure and water hydrogen bonding network.

    PubMed

    Choi, Jun-Ho; Cho, Minhaeng

    2016-05-28

    Dissolved ions in water tend to form polydisperse ion aggregates such as ion pairs, relatively compact ion clusters, and even spatially extended ion networks with increasing salt concentration. Combining molecular dynamics simulation and graph theoretical analysis methods, we recently studied morphological structures of ion aggregates with distinctively different characteristics. They can be distinguished from each other by calculating various spectral graph theoretical properties such as eigenvalues and eigenvectors of adjacency matrices of ion aggregates and water hydrogen-bonding networks, minimum path lengths, clustering coefficients, and degree distributions. Here, we focus on percolation and graph entropic properties of ion aggregates and water hydrogen-bonding networks in high salt solutions. Ion network-forming K(+) and SCN(-) ions at high concentrations show a percolating behavior in their aqueous solutions, but ion cluster-forming ions in NaCl solutions do not show such a transition from isolated ion aggregates to percolating ion-water mixture morphology. Despite that the ion aggregate structures are strikingly different for either cluster- or network-forming ions in high salt solutions, it is interesting that the water structures remain insensitive to the electrostatic properties, such as charge densities and polydentate properties, of dissolved ions, and morphological structures of water H-bonding networks appear to be highly robust regardless of the nature and concentration of salt. We anticipate that the present graph entropy analysis results would be of use in understanding a variety of anomalous behaviors of interfacial water around biomolecules as well as electric conductivities of high electrolyte solutions. PMID:27250298

  8. Ion aggregation in high salt solutions. V. Graph entropy analyses of ion aggregate structure and water hydrogen bonding network

    NASA Astrophysics Data System (ADS)

    Choi, Jun-Ho; Cho, Minhaeng

    2016-05-01

    Dissolved ions in water tend to form polydisperse ion aggregates such as ion pairs, relatively compact ion clusters, and even spatially extended ion networks with increasing salt concentration. Combining molecular dynamics simulation and graph theoretical analysis methods, we recently studied morphological structures of ion aggregates with distinctively different characteristics. They can be distinguished from each other by calculating various spectral graph theoretical properties such as eigenvalues and eigenvectors of adjacency matrices of ion aggregates and water hydrogen-bonding networks, minimum path lengths, clustering coefficients, and degree distributions. Here, we focus on percolation and graph entropic properties of ion aggregates and water hydrogen-bonding networks in high salt solutions. Ion network-forming K+ and SCN- ions at high concentrations show a percolating behavior in their aqueous solutions, but ion cluster-forming ions in NaCl solutions do not show such a transition from isolated ion aggregates to percolating ion-water mixture morphology. Despite that the ion aggregate structures are strikingly different for either cluster- or network-forming ions in high salt solutions, it is interesting that the water structures remain insensitive to the electrostatic properties, such as charge densities and polydentate properties, of dissolved ions, and morphological structures of water H-bonding networks appear to be highly robust regardless of the nature and concentration of salt. We anticipate that the present graph entropy analysis results would be of use in understanding a variety of anomalous behaviors of interfacial water around biomolecules as well as electric conductivities of high electrolyte solutions.

  9. Comparison of laser ablation and sputter desorption of clusters from Au7Cu5Al4

    NASA Astrophysics Data System (ADS)

    King, B. V.; Moore, J. F.; Cui, Y.; Veryovkin, I. V.; Tripa, C. E.

    2014-12-01

    Ionized and neutral clusters were desorbed from spangold, a polycrystalline ternary alloy with composition Au7Cu5Al4, using both a femtosecond laser beam and an energetic ion beam and the resulting time of flight mass spectra compared. Neutral clusters containing up to 7 atoms were ejected by the 15 keV Ar+ beam whereas only smaller positively and negatively charged clusters were observed from the laser ablated spangold surface. Laser ionization mass spectrometry (LIMS) positive ion spectra were dominated by Al containing cluster ions whereas Au containing ions dominated the negative LIMS spectrum. An odd-even variation in LIMS cluster yield was observed, consistent with previous results and due to fragmentation of photoionized clusters. The laser sputtered neutral mass spectrometry (laser SNMS) spectrum showed that larger desorbed clusters were gold rich. The cluster signals also followed a power law dependence with cluster size with the exponent value of 6-7.6 for sputtered mixed clusters being greater than that found from sputtering of pure elements, similar to the result found previously in the Cu-Au system.

  10. Biological calcium phosphates and Posner's cluster

    NASA Astrophysics Data System (ADS)

    Yin, Xilin; Stott, Malcolm J.

    2003-02-01

    A calcium phosphate amorphous to x-ray diffraction (ACP) exists in bone mineral in addition to the main bone apatite component, such as hydroxyapatite (HA). Experimental studies found that ACP has definite local atomic order and contains microcrystallites about 9.5 Å in extent rather than a random network structure. Experimental evidence indicates that Posner's cluster (PC), Ca9(PO4)6, could be the basic component of ACP. In addition, it is present in various simulated body fluids and could be the growth unit of HA. In the transformation from ACP to HA, ACP need only dissociate into the clusters rather than undergo complete ionic solvation. Although PC could bridge the biologically important gap between ACP and HA, the form it is likely to take in body fluids is not known. In this study, we have performed ab initio density functional calculations to investigate the structure and stability of PC alone in vacuum and in the presence of H+, OH-, Na+, and Cl- ions mimicing the interaction with water and other constituents of body fluids. We find that the cluster with C1 symmetry is the most stable isomer in vacuum. The interaction of PC with sodium ions and especially with protons leads to a great increase in its stability and surprisingly, the cluster with six protons and six OH- recovers the C3 symmetry and similar atomic arrangement it has as a structural unit in HA crystal. This may be a key factor in the transformation from ACP to HA crystal.

  11. Industrial ion source technology

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1978-01-01

    An analytical model was developed to describe the development of a coned surface texture with ion bombardment and simultaneous deposition of an impurity. A mathematical model of sputter deposition rate from a beveled target was developed in conjuction with the texturing models to provide an important input to that model. The establishment of a general procedure that will allow the treatment of manay different sputtering configurations is outlined. Calculation of cross sections for energetic binary collisions was extened to Ar, Kr.. and Xe with total cross sections for viscosity and diffusion calculated for the interaction energy range from leV to 1000eV. Physical sputtering and reactive ion etching experiments provided experimental data on the operating limits of a broad beam ion source using CF4 as a working gas to produce reactive species in a sputtering beam. Magnetic clustering effects are observed when Al is seeded with Fe and sputtered with Ar(?) ions. Silicon was textured at a micron scale by using a substrate temperature of 600 C.

  12. Electron: Cluster interactions

    SciTech Connect

    Scheidemann, A.A.; Kresin, V.V.; Knight, W.D.

    1994-02-01

    Beam depletion spectroscopy has been used to measure absolute total inelastic electron-sodium cluster collision cross sections in the energy range from E {approximately} 0.1 to E {approximately} 6 eV. The investigation focused on the closed shell clusters Na{sub 8}, Na{sub 20}, Na{sub 40}. The measured cross sections show an increase for the lowest collision energies where electron attachment is the primary scattering channel. The electron attachment cross section can be understood in terms of Langevin scattering, connecting this measurement with the polarizability of the cluster. For energies above the dissociation energy the measured electron-cluster cross section is energy independent, thus defining an electron-cluster interaction range. This interaction range increases with the cluster size.

  13. Information-based clustering

    PubMed Central

    Slonim, Noam; Atwal, Gurinder Singh; Tkačik, Gašper; Bialek, William

    2005-01-01

    In an age of increasingly large data sets, investigators in many different disciplines have turned to clustering as a tool for data analysis and exploration. Existing clustering methods, however, typically depend on several nontrivial assumptions about the structure of data. Here, we reformulate the clustering problem from an information theoretic perspective that avoids many of these assumptions. In particular, our formulation obviates the need for defining a cluster “prototype,” does not require an a priori similarity metric, is invariant to changes in the representation of the data, and naturally captures nonlinear relations. We apply this approach to different domains and find that it consistently produces clusters that are more coherent than those extracted by existing algorithms. Finally, our approach provides a way of clustering based on collective notions of similarity rather than the traditional pairwise measures. PMID:16352721

  14. Linked supramolecular building blocks for enhanced cluster formation

    DOE PAGESBeta

    McLellan, Ross; Palacios, Maria A.; Beavers, Christine M.; Teat, Simon J.; Piligkos, Stergios; Brechin, Euan K.; Dalgarno, Scott J.

    2015-01-09

    Methylene-bridged calix[4]arenes have emerged as extremely versatile ligand supports in the formation of new polymetallic clusters possessing fascinating magnetic properties. Metal ion binding rules established for this building block allow one to partially rationalise the complex assembly process. The ability to covalently link calix[4]arenes at the methylene bridge provides significantly improved control over the introduction of different metal centres to resulting cluster motifs. Clusters assembled from bis-calix[4]arenes and transition metal ions or 3d-4f combinations display characteristic features of the analogous calix[4]arene supported clusters, thereby demonstrating an enhanced and rational approach towards the targeted synthesis of complex and challenging structures.

  15. Linked supramolecular building blocks for enhanced cluster formation

    SciTech Connect

    McLellan, Ross; Palacios, Maria A.; Beavers, Christine M.; Teat, Simon J.; Piligkos, Stergios; Brechin, Euan K.; Dalgarno, Scott J.

    2015-01-09

    Methylene-bridged calix[4]arenes have emerged as extremely versatile ligand supports in the formation of new polymetallic clusters possessing fascinating magnetic properties. Metal ion binding rules established for this building block allow one to partially rationalise the complex assembly process. The ability to covalently link calix[4]arenes at the methylene bridge provides significantly improved control over the introduction of different metal centres to resulting cluster motifs. Clusters assembled from bis-calix[4]arenes and transition metal ions or 3d-4f combinations display characteristic features of the analogous calix[4]arene supported clusters, thereby demonstrating an enhanced and rational approach towards the targeted synthesis of complex and challenging structures.

  16. Linked Supramolecular Building Blocks for Enhanced Cluster Formation

    PubMed Central

    McLellan, Ross; Palacios, Maria A; Beavers, Christine M; Teat, Simon J; Piligkos, Stergios; Brechin, Euan K; Dalgarno, Scott J

    2015-01-01

    Methylene-bridged calix[4]arenes have emerged as extremely versatile ligand supports in the formation of new polymetallic clusters possessing fascinating magnetic properties. Metal ion binding rules established for this building block allow one to partially rationalise the complex assembly process. The ability to covalently link calix[4]arenes at the methylene bridge provides significantly improved control over the introduction of different metal centres to resulting cluster motifs. Clusters assembled from bis-calix[4]arenes and transition metal ions or 3d-4f combinations display characteristic features of the analogous calix[4]arene supported clusters, thereby demonstrating an enhanced and rational approach towards the targeted synthesis of complex and challenging structures. PMID:25641542

  17. Ion colliders

    SciTech Connect

    Fischer, W.

    2011-12-01

    Ion colliders are research tools for high-energy nuclear physics, and are used to test the theory of Quantum Chromo Dynamics (QCD). The collisions of fully stripped high-energy ions create matter of a temperature and density that existed only microseconds after the Big Bang. Ion colliders can reach higher densities and temperatures than fixed target experiments although at a much lower luminosity. The first ion collider was the CERN Intersecting Storage Ring (ISR), which collided light ions [77Asb1, 81Bou1]. The BNL Relativistic Heavy Ion Collider (RHIC) is in operation since 2000 and has collided a number of species at numerous energies. The CERN Large Hadron Collider (LHC) started the heavy ion program in 2010. Table 1 shows all previous and the currently planned running modes for ISR, RHIC, and LHC. All three machines also collide protons, which are spin-polarized in RHIC. Ion colliders differ from proton or antiproton colliders in a number of ways: the preparation of the ions in the source and the pre-injector chain is limited by other effects than for protons; frequent changes in the collision energy and particle species, including asymmetric species, are typical; and the interaction of ions with each other and accelerator components is different from protons, which has implications for collision products, collimation, the beam dump, and intercepting instrumentation devices such a profile monitors. In the preparation for the collider use the charge state Z of the ions is successively increased to minimize the effects of space charge, intrabeam scattering (IBS), charge change effects (electron capture and stripping), and ion-impact desorption after beam loss. Low charge states reduce space charge, intrabeam scattering, and electron capture effects. High charge states reduce electron stripping, and make bending and acceleration more effective. Electron stripping at higher energies is generally more efficient. Table 2 shows the charge states and energies in the

  18. ION SOURCE

    DOEpatents

    Martina, E.F.

    1958-04-22

    An improved ion source particularly adapted to provide an intense beam of ions with minimum neutral molecule egress from the source is described. The ion source structure includes means for establishing an oscillating electron discharge, including an apertured cathode at one end of the discharge. The egress of ions from the source is in a pencil like beam. This desirable form of withdrawal of the ions from the plasma created by the discharge is achieved by shaping the field at the aperture of the cathode. A tubular insulator is extended into the plasma from the aperture and in cooperation with the electric fields at the cathode end of the discharge focuses the ions from the source,

  19. Mini-clusters

    NASA Technical Reports Server (NTRS)

    Chinellato, J. A.; Dobrigkeit, C.; Bellandifilho, J.; Lattes, C. M. G.; Menon, M. J.; Navia, C. E.; Pamilaju, A.; Sawayanagi, K.; Shibuya, E. H.; Turtelli, A., Jr.

    1985-01-01

    Experimental results of mini-clusters observed in Chacaltaya emulsion chamber no.19 are summarized. The study was made on 54 single core shower upper and 91 shower clusters of E(gamma) 10 TeV from 30 families which are visible energy greater than 80 TeV and penetrate through both upper and lower detectors of the two-story chamber. The association of hadrons in mini-cluster is made clear from their penetrative nature and microscopic observation of shower continuation in lower chamber. Small P sub t (gamma) of hadrons in mini-clusters remained in puzzle.

  20. Management of cluster headache.

    PubMed

    Tfelt-Hansen, Peer C; Jensen, Rigmor H

    2012-07-01

    The prevalence of cluster headache is 0.1% and cluster headache is often not diagnosed or misdiagnosed as migraine or sinusitis. In cluster headache there is often a considerable diagnostic delay - an average of 7 years in a population-based survey. Cluster headache is characterized by very severe or severe orbital or periorbital pain with a duration of 15-180 minutes. The cluster headache attacks are accompanied by characteristic associated unilateral symptoms such as tearing, nasal congestion and/or rhinorrhoea, eyelid oedema, miosis and/or ptosis. In addition, there is a sense of restlessness and agitation. Patients may have up to eight attacks per day. Episodic cluster headache (ECH) occurs in clusters of weeks to months duration, whereas chronic cluster headache (CCH) attacks occur for more than 1 year without remissions. Management of cluster headache is divided into acute attack treatment and prophylactic treatment. In ECH and CCH the attacks can be treated with oxygen (12 L/min) or subcutaneous sumatriptan 6 mg. For both oxygen and sumatriptan there are two randomized, placebo-controlled trials demonstrating efficacy. In both ECH and CCH, verapamil is the prophylactic drug of choice. Verapamil 360 mg/day was found to be superior to placebo in one clinical trial. In clinical practice, daily doses of 480-720 mg are mostly used. Thus, the dose of verapamil used in cluster headache treatment may be double the dose used in cardiology, and with the higher doses the PR interval should be checked with an ECG. At the start of a cluster, transitional preventive treatment such as corticosteroids or greater occipital nerve blockade can be given. In CCH and in long-standing clusters of ECH, lithium, methysergide, topiramate, valproic acid and ergotamine tartrate can be used as add-on prophylactic treatment. In drug-resistant CCH, neuromodulation with either occipital nerve stimulation or deep brain stimulation of the hypothalamus is an alternative treatment strategy

  1. The youngest globular clusters

    NASA Astrophysics Data System (ADS)

    Beck, Sara

    2015-11-01

    It is likely that all stars are born in clusters, but most clusters are not bound and disperse. None of the many protoclusters in our Galaxy are likely to develop into long-lived bound clusters. The super star clusters (SSCs) seen in starburst galaxies are more massive and compact and have better chances of survival. The birth and early development of SSCs takes place deep in molecular clouds, and during this crucial stage the embedded clusters are invisible to optical or UV observations but are studied via the radio-infrared supernebulae (RISN) they excite. We review observations of embedded clusters and identify RISN within 10 Mpc whose exciting clusters have ≈ 106 M⊙ or more in volumes of a few pc3 and which are likely to not only survive as bound clusters, but to evolve into objects as massive and compact as Galactic globulars. These clusters are distinguished by very high star formation efficiency η, at least a factor of 10 higher than the few percent seen in the Galaxy, probably due to the violent disturbances their host galaxies have undergone. We review recent observations of the kinematics of the ionized gas in RISN showing outflows through low-density channels in the ambient molecular cloud; this may protect the cloud from feedback by the embedded H II region.

  2. Reduced oscillator strength in the lithium atom, clusters, and the bulk

    NASA Astrophysics Data System (ADS)

    Ellert, Christoph; Schmidt, Martin; Schmitt, Christina; Haberland, Hellmut; Guet, Claude

    1999-03-01

    Absolute photoabsorption cross sections have been measured for small lithium cluster ions in the optical range and a significantly smaller oscillator strength than for sodium has been found. This reduction is reproduced in jellium type calculations only if nonlocal effects in the electron-ion interaction are included. It is shown that this reduction is an atomic property which persists throughout the cluster region and into the bulk regime, where it manifests itself as an increased effective electronic mass. The optical spectra of the closed shell clusters are in good agreement with calculations based on the nonlocal jellium model. The smallest cluster, Li+4, is well described by a quantum chemical calculation.

  3. Clustering versus non-clustering phase synchronizations.

    PubMed

    Liu, Shuai; Zhan, Meng

    2014-03-01

    Clustering phase synchronization (CPS) is a common scenario to the global phase synchronization of coupled dynamical systems. In this work, a novel scenario, the non-clustering phase synchronization (NPS), is reported. It is found that coupled systems do not transit to the global synchronization until a certain sufficiently large coupling is attained, and there is no clustering prior to the global synchronization. To reveal the relationship between CPS and NPS, we further analyze the noise effect on coupled phase oscillators and find that the coupled oscillator system can change from CPS to NPS with the increase of noise intensity or system disorder. These findings are expected to shed light on the mechanism of various intriguing self-organized behaviors in coupled systems. PMID:24697366

  4. Clustering versus non-clustering phase synchronizations

    SciTech Connect

    Liu, Shuai; Zhan, Meng

    2014-03-15

    Clustering phase synchronization (CPS) is a common scenario to the global phase synchronization of coupled dynamical systems. In this work, a novel scenario, the non-clustering phase synchronization (NPS), is reported. It is found that coupled systems do not transit to the global synchronization until a certain sufficiently large coupling is attained, and there is no clustering prior to the global synchronization. To reveal the relationship between CPS and NPS, we further analyze the noise effect on coupled phase oscillators and find that the coupled oscillator system can change from CPS to NPS with the increase of noise intensity or system disorder. These findings are expected to shed light on the mechanism of various intriguing self-organized behaviors in coupled systems.

  5. Cluster Features of Normal-, Super- and Hyperdeformed nuclei

    SciTech Connect

    Adamian, G.G.; Antonenko, N.V.; Kuklin, S.N.

    2005-11-21

    It is shown that an important mode of nuclear excitations in different processes like as cluster radioactivity, parity splitting in normal deformed bands, decay out phenomenon of the yrast superdeformed states in the heavy nuclei and formation of super- and hyper-deformed states in induced fission and heavy ion reactions is related to the motion in charge (mass) asymmetry coordinate. With the suggested cluster model one can try to unify all phenomena mentioned above.

  6. Population of Strongly Deformed Nuclear States Within the Cluster Approach

    NASA Astrophysics Data System (ADS)

    Zubov, A. S.; Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V.

    2015-11-01

    Using the cluster interpretation and statistical approach we describe the population and properties of yrast superdeformed band in 152Dy. Relative intensities of E2 transitions in superdeformed band and excitation functions are calculated for different beam energies and evaporation channels. A quite good agreement of our results with the experimental data confirms the validity of cluster interpretation of strongly deformed nuclear states and supports our predictions concerning the possible formation of hyperdeformed states in the entrance channel of heavy-ion reactions.

  7. A nonparametric clustering technique which estimates the number of clusters

    NASA Technical Reports Server (NTRS)

    Ramey, D. B.

    1983-01-01

    In applications of cluster analysis, one usually needs to determine the number of clusters, K, and the assignment of observations to each cluster. A clustering technique based on recursive application of a multivariate test of bimodality which automatically estimates both K and the cluster assignments is presented.

  8. Reactive accelerated cluster erosion (RACE) by ionized cluster beams

    NASA Astrophysics Data System (ADS)

    Gspann, Jürgen

    1996-05-01

    Beams of ionized clusters accelerated up to about 120 keV kinetic energy per cluster are used for cluster impact lithography. Chemical reactions of clusters of CO 2, or of SF 6, respectively, are found to assist the physical erosion by hypervelocity cluster impacts in yielding volatile products. Natural diamond, silicon and Pyrex glass have been microstructured showing very smooth eroded surfaces.

  9. Beyond Clusters: Supramolecular Networks Self-Assembled from Nanosized Silver Clusters and Inorganic Anions.

    PubMed

    Wang, Zhi; Li, Xiao-Yu; Liu, Li-Wei; Yu, Si-Qi; Feng, Zhen-Yu; Tung, Chen-Ho; Sun, Di

    2016-05-10

    Assembly of small clusters into rigid bodies with precise shape and symmetry has been witnessed by the significant advances in cluster-based metal-organic frameworks (MOFs), however, nanosized silver cluster based MOFs remain largely unexplored. Herein, two anion-templated silver clusters, CO3 @Ag20 and SO4 @Ag22 , were ingeniously incorporated into a 2D sql lattice (1, [CO3 @Ag20 (iPrS)10 (NO3 )8 (DMF)2 ]n ) and an unprecedented 3D two-fold interpenetrated dia network (2, [SO4 @Ag22 (iPrS)12 (NO3 )6 ⋅2 NO3 ]n ), respectively, under mild solvothermal conditions. Their atomically precise structures were confirmed by single-crystal X-ray diffraction analysis and further consolidated by IR spectroscopy, thermogravimetric analysis (TGA), and elemental analysis. Each drum-like CO3 @Ag20 cluster is extended by twelve NO3 (-) ions to form the 2D sql lattice of 1, whereas each ball-shaped SO4 @Ag22 cluster with a twisted truncated tetrahedral geometry is pillared by four [Ag6 (NO3 )3 ] triangular prisms to form the 3D interpenetrated dia network of 2. Notably, 2 is the first interpenetrated 3D MOF constructed from silver clusters. These results demonstrate the dual role of the anions, which not only internally act as anion templates to induce the formation of silver thiolate clusters but also externally extend the cluster units into the rigid networks. The photoluminescent and electrochemical properties of 2 are discussed in detail. PMID:27006096

  10. Understanding ligand effects in gold clusters using mass spectrometry.

    PubMed

    Johnson, Grant E; Laskin, Julia

    2016-06-21

    This review summarizes recent research on the influence of phosphine ligands on the size, stability, and reactivity of gold clusters synthesized in solution. Sub-nanometer clusters exhibit size- and composition-dependent properties that are unique from those of larger nanoparticles. The highly tunable properties of clusters and their high surface-to-volume ratio make them promising candidates for a variety of technological applications. However, because "each-atom-counts" toward defining cluster properties it is critically important to develop robust synthesis methods to efficiently prepare clusters of predetermined size. For decades phosphines have been known to direct the size-selected synthesis of gold clusters. Despite the preparation of numerous species it is still not understood how different functional groups at phosphine centers affect the size and properties of gold clusters. Using electrospray ionization mass spectrometry (ESI-MS) it is possible to characterize the effect of ligand substitution on the distribution of clusters formed in solution at defined reaction conditions. In addition, ligand exchange reactions on preformed clusters may be monitored using ESI-MS. Collision induced dissociation (CID) may also be employed to obtain qualitative insight into the fragmentation of mixed ligand clusters and the relative binding energies of differently substituted phosphines. Quantitative ligand binding energies and cluster stability may be determined employing surface induced dissociation (SID) in a custom-built Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS). Rice-Ramsperger-Kassel-Marcus (RRKM) based modeling of the SID data allows dissociation energies and entropy values to be extracted. The charge reduction and reactivity of atomically precise gold clusters, including partially ligated species generated in the gas-phase by in source CID, on well-defined surfaces may be explored using ion soft landing (SL) in a custom

  11. The LLNL Cluster Tool

    SciTech Connect

    Hunter, S L

    2007-03-27

    {lg_bullet} The Cluster Tool -is a set of linked vacuum chambers -can deposit multiple layers of metal and metal oxides {lg_bullet} Each layer can be deposited without breaking vacuum {lg_bullet} Shadow masks can give each layer a different pattern {lg_bullet} The Cluster Tool will be operational in April

  12. Cluster Interest Inventory.

    ERIC Educational Resources Information Center

    Herzog, Douglas

    The Cluster Interest Inventory is designed to familiarize students with representative occupations in 13 career clusters: (1) agribusiness and natural resources, (2) business marketing, and office occupations, (3) communications and media, (4) consumer and homemaker, (5) fine arts and humanities, (6) health, (7) manufacturing and processing, (8)…

  13. Coma cluster of galaxies

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Atlas Image mosaic, covering 34' x 34' on the sky, of the Coma cluster, aka Abell 1656. This is a particularly rich cluster of individual galaxies (over 1000 members), most prominently the two giant ellipticals, NGC 4874 (right) and NGC 4889 (left). The remaining members are mostly smaller ellipticals, but spiral galaxies are also evident in the 2MASS image. The cluster is seen toward the constellation Coma Berenices, but is actually at a distance of about 100 Mpc (330 million light years, or a redshift of 0.023) from us. At this distance, the cluster is in what is known as the 'Hubble flow,' or the overall expansion of the Universe. As such, astronomers can measure the Hubble Constant, or the universal expansion rate, based on the distance to this cluster. Large, rich clusters, such as Coma, allow astronomers to measure the 'missing mass,' i.e., the matter in the cluster that we cannot see, since it gravitationally influences the motions of the member galaxies within the cluster. The near-infrared maps the overall luminous mass content of the member galaxies, since the light at these wavelengths is dominated by the more numerous older stellar populations. Galaxies, as seen by 2MASS, look fairly smooth and homogeneous, as can be seen from the Hubble 'tuning fork' diagram of near-infrared galaxy morphology. Image mosaic by S. Van Dyk (IPAC).

  14. Probability and Cancer Clusters

    ERIC Educational Resources Information Center

    Hamilton-Keene, Rachael; Lenard, Christoper T.; Mills, Terry M.

    2009-01-01

    Recently there have been several news items about possible cancer clusters in the Australian media. The term "cancer cluster" is used when an unusually large number of people in one geographic area, often a workplace, are diagnosed with cancer in a short space of time. In this paper the authors explore this important health issue using probability…

  15. Illinois' Career Cluster Model

    ERIC Educational Resources Information Center

    Jankowski, Natasha A.; Kirby, Catherine L.; Bragg, Debra D.; Taylor, Jason L.; Oertle, Kathleen M.

    2009-01-01

    This booklet provides information to multiple stakeholders on the implementation of career clusters in Illinois. The booklet is an extension of the previous edition titled "An Introduction to Illinois CTE Programs of Study" (2008), and provides a resource for partners to understand Illinois' Career Cluster Model as its own adaptation of the…

  16. Matlab Cluster Ensemble Toolbox

    Energy Science and Technology Software Center (ESTSC)

    2009-04-27

    This is a Matlab toolbox for investigating the application of cluster ensembles to data classification, with the objective of improving the accuracy and/or speed of clustering. The toolbox divides the cluster ensemble problem into four areas, providing functionality for each. These include, (1) synthetic data generation, (2) clustering to generate individual data partitions and similarity matrices, (3) consensus function generation and final clustering to generate ensemble data partitioning, and (4) implementation of accuracy metrics. Withmore » regard to data generation, Gaussian data of arbitrary dimension can be generated. The kcenters algorithm can then be used to generate individual data partitions by either, (a) subsampling the data and clustering each subsample, or by (b) randomly initializing the algorithm and generating a clustering for each initialization. In either case an overall similarity matrix can be computed using a consensus function operating on the individual similarity matrices. A final clustering can be performed and performance metrics are provided for evaluation purposes.« less

  17. Mixed-Initiative Clustering

    ERIC Educational Resources Information Center

    Huang, Yifen

    2010-01-01

    Mixed-initiative clustering is a task where a user and a machine work collaboratively to analyze a large set of documents. We hypothesize that a user and a machine can both learn better clustering models through enriched communication and interactive learning from each other. The first contribution or this thesis is providing a framework of…

  18. Young Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    Portegies Zwart, Simon F.; McMillan, Stephen L. W.; Gieles, Mark

    2010-09-01

    Young massive clusters (YMCs) are dense aggregates of young stars that form the fundamental building blocks of galaxies. Several examples exist in the Milky Way Galaxy and the Local Group, but they are particularly abundant in starburst and interacting galaxies. The few YMCs that are close enough to resolve are of prime interest for studying the stellar mass function and the ecological interplay between stellar evolution and stellar dynamics. The distant unresolved clusters may be effectively used to study the star-cluster mass function, and they provide excellent constraints on the formation mechanisms of young cluster populations. YMCs are expected to be the nurseries for many unusual objects, including a wide range of exotic stars and binaries. So far only a few such objects have been found in YMCs, although their older cousins, the globular clusters, are unusually rich in stellar exotica. In this review, we focus on star clusters younger than ˜100 Myr, more than a few current crossing times old, and more massive than ˜104M⊙; the size of the cluster and its environment are considered less relevant as distinguishing parameters. We describe the global properties of the currently known young massive star clusters in the Local Group and beyond, and discuss the state of the art in observations and dynamical modeling of these systems. In order to make this review readable by observers, theorists, and computational astrophysicists, we also review the cross-disciplinary terminology.

  19. Blue emitting undecaplatinum clusters

    NASA Astrophysics Data System (ADS)

    Chakraborty, Indranath; Bhuin, Radha Gobinda; Bhat, Shridevi; Pradeep, T.

    2014-07-01

    A blue luminescent 11-atom platinum cluster showing step-like optical features and the absence of plasmon absorption was synthesized. The cluster was purified using high performance liquid chromatography (HPLC). Electrospray ionization (ESI) and matrix assisted laser desorption ionization (MALDI) mass spectrometry (MS) suggest a composition, Pt11(BBS)8, which was confirmed by a range of other experimental tools. The cluster is highly stable and compatible with many organic solvents.A blue luminescent 11-atom platinum cluster showing step-like optical features and the absence of plasmon absorption was synthesized. The cluster was purified using high performance liquid chromatography (HPLC). Electrospray ionization (ESI) and matrix assisted laser desorption ionization (MALDI) mass spectrometry (MS) suggest a composition, Pt11(BBS)8, which was confirmed by a range of other experimental tools. The cluster is highly stable and compatible with many organic solvents. Electronic supplementary information (ESI) available: Details of experimental procedures, instrumentation, chromatogram of the crude cluster; SEM/EDAX, DLS, PXRD, TEM, FT-IR, and XPS of the isolated Pt11 cluster; UV/Vis, MALDI MS and SEM/EDAX of isolated 2 and 3; and 195Pt NMR of the K2PtCl6 standard. See DOI: 10.1039/c4nr02778g

  20. Brightest Cluster Galaxy Identification

    NASA Astrophysics Data System (ADS)

    Leisman, Luke; Haarsma, D. B.; Sebald, D. A.; ACCEPT Team

    2011-01-01

    Brightest cluster galaxies (BCGs) play an important role in several fields of astronomical research. The literature includes many different methods and criteria for identifying the BCG in the cluster, such as choosing the brightest galaxy, the galaxy nearest the X-ray peak, or the galaxy with the most extended profile. Here we examine a sample of 75 clusters from the Archive of Chandra Cluster Entropy Profile Tables (ACCEPT) and the Sloan Digital Sky Survey (SDSS), measuring masked magnitudes and profiles for BCG candidates in each cluster. We first identified galaxies by hand; in 15% of clusters at least one team member selected a different galaxy than the others.We also applied 6 other identification methods to the ACCEPT sample; in 30% of clusters at least one of these methods selected a different galaxy than the other methods. We then developed an algorithm that weighs brightness, profile, and proximity to the X-ray peak and centroid. This algorithm incorporates the advantages of by-hand identification (weighing multiple properties) and automated selection (repeatable and consistent). The BCG population chosen by the algorithm is more uniform in its properties than populations selected by other methods, particularly in the relation between absolute magnitude (a proxy for galaxy mass) and average gas temperature (a proxy for cluster mass). This work supported by a Barry M. Goldwater Scholarship and a Sid Jansma Summer Research Fellowship.

  1. Marketing Occupations. Cluster Guide.

    ERIC Educational Resources Information Center

    Oregon State Dept. of Education, Salem.

    This cluster guide, which is designed to show teachers what specific knowledge and skills qualify high school students for entry-level employment (or postsecondary training) in marketing occupations, is organized into three sections: (1) cluster organization and implementation, (2) instructional emphasis areas, and (3) assessment. The first…

  2. Muster: Massively Scalable Clustering

    Energy Science and Technology Software Center (ESTSC)

    2010-05-20

    Muster is a framework for scalable cluster analysis. It includes implementations of classic K-Medoids partitioning algorithms, as well as infrastructure for making these algorithms run scalably on very large systems. In particular, Muster contains algorithms such as CAPEK (described in reference 1) that are capable of clustering highly distributed data sets in-place on a hundred thousand or more processes.

  3. Ion Chromatography.

    ERIC Educational Resources Information Center

    Mulik, James D.; Sawicki, Eugene

    1979-01-01

    Accurate for the analysis of ions in solution, this form of analysis enables the analyst to directly assay many compounds that previously were difficult or impossible to analyze. The method is a combination of the methodologies of ion exchange, liquid chromatography, and conductimetric determination with eluant suppression. (Author/RE)

  4. Cosmology with galaxy clusters

    NASA Astrophysics Data System (ADS)

    Sartoris, Barbara

    2015-08-01

    Clusters of galaxies are powerful probes to constrain parameters that describe the cosmological models and to distinguish among different models. Since, the evolution of the cluster mass function and large-scale clustering contain the informations about the linear growth rate of perturbations and the expansion history of the Universe, clusters have played an important role in establishing the current cosmological paradigm. It is crucial to know how to determine the cluster mass from observational quantities when using clusters as cosmological tools. For this, numerical simulations are helpful to define and study robust cluster mass proxies that have minimal and well understood scatter across the mass and redshift ranges of interest. Additionally, the bias in cluster mass determination can be constrained via observations of the strong and weak lensing effect, X-ray emission, the Sunyaev- Zel’dovic effect, and the dynamics of galaxies.A major advantage of X-ray surveys is that the observable-mass relation is tight. Moreover, clusters can be easily identified in X-ray as continuous, extended sources. As of today, interesting cosmological constraints have been obtained from relatively small cluster samples (~102), X-ray selected by the ROSAT satellite over a wide redshift range (0clusters, the ROSAT All-Sky Survey.The next generation of X-ray telescopes will enhance the statistics of detected clusters and enlarge their redshift coverage. In particular, eROSITA will produce a catalog of >105 clusters with photometric redshifts from multi-band optical surveys (e.g. PanSTARRS, DES, and LSST). This will vastly improve upon current cosmological constraints, especially by the synergy with other cluster surveys that

  5. Cool Cluster Correctly Correlated

    SciTech Connect

    Sergey Aleksandrovich Varganov

    2005-12-17

    Atomic clusters are unique objects, which occupy an intermediate position between atoms and condensed matter systems. For a long time it was thought that physical and chemical properties of atomic dusters monotonically change with increasing size of the cluster from a single atom to a condensed matter system. However, recently it has become clear that many properties of atomic clusters can change drastically with the size of the clusters. Because physical and chemical properties of clusters can be adjusted simply by changing the cluster's size, different applications of atomic clusters were proposed. One example is the catalytic activity of clusters of specific sizes in different chemical reactions. Another example is a potential application of atomic clusters in microelectronics, where their band gaps can be adjusted by simply changing cluster sizes. In recent years significant advances in experimental techniques allow one to synthesize and study atomic clusters of specified sizes. However, the interpretation of the results is often difficult. The theoretical methods are frequently used to help in interpretation of complex experimental data. Most of the theoretical approaches have been based on empirical or semiempirical methods. These methods allow one to study large and small dusters using the same approximations. However, since empirical and semiempirical methods rely on simple models with many parameters, it is often difficult to estimate the quantitative and even qualitative accuracy of the results. On the other hand, because of significant advances in quantum chemical methods and computer capabilities, it is now possible to do high quality ab-initio calculations not only on systems of few atoms but on clusters of practical interest as well. In addition to accurate results for specific clusters, such methods can be used for benchmarking of different empirical and semiempirical approaches. The atomic clusters studied in this work contain from a few atoms to

  6. Hybridization schemes for clusters

    NASA Astrophysics Data System (ADS)

    Wales, David J.

    The concept of an optimum hybridization scheme for cluster compounds is developed with particular reference to electron counting. The prediction of electron counts for clusters and the interpretation of the bonding is shown to depend critically upon the presumed hybridization pattern of the cluster vertex atoms. This fact has not been properly appreciated in previous work, particularly in applications of Stone's tensor surface harmonic (TSH) theory, but is found to be a useful tool when dealt with directly. A quantitative definition is suggested for the optimum cluster hybridization pattern based directly upon the ease of interpretation of the molecular orbitals, and results are given for a range of species. The relationship of this scheme to the detailed cluster geometry is described using Löwdin's partitioned perturbation theory, and the success and range of application of TSH theory are discussed.

  7. Ionic recoil energies in the Coulomb explosion of metal clusters

    NASA Astrophysics Data System (ADS)

    Teuber, S.; Döppner, T.; Fennel, T.; Tiggesbäumker, J.; Meiwes-Broer, K. H.

    The photoionization of metal clusters in intense femtosecond laser fields has been studied. In contrast to an experiment on atoms, the interaction in this case leads to a very efficient and high charging of the particle where tens of electrons per atom are ejected from the cluster. The recoil energy distribution of the atomic fragment ions was measured which in the case of lead clusters exceeds 180 keV. Enhanced charging efficiency which we observed earlier for specific pulse conditions is not reflected in the recoil energy spectra. Both the average and the maximum energies decrease with increasing laser pulse width. This is in good agreement with molecular dynamics calculations.

  8. Observations of Auroral Broadband Emissions by CLUSTER

    NASA Astrophysics Data System (ADS)

    Wahlund, J.-E.; et al.

    2003-04-01

    We present the results of a study based on several events of auroral broadband ULF/ELF emissions observed by the CLUSTER multi-spacecraft at distances around 4-5 RE. These emissions, observed below the ion plasma frequency, have similar dispersion characteristics as the broadband emissions observed at lower altitudes (800-4000 km) by e.g. rockets (e.g. AMICIST) and satellites (e.g. FREJA and FAST). As successive passages of the four CLUSTER satellites through nearly the same regions show, the intensity of the emissions depend on the thermal properties of the plasma and gradients thereof. The total Poynting flux is downward and is comparable to energy fluxes observed at lower altitudes. We therefore believe that the broadband emissions observed by CLUSTER in the auroral region are consistent with dispersed linear polarised Alfvén waves (DAW) transporting energy downward to the ionosphere guided by the magnetic field lines. These waves are therefore an important aspect for the energy transport for the auroral processes leading to particle acceleration when dissipating part or all their energy along the propagation path by wave-particle coupling, causing ion heating, suprathermal electron bursts and higher frequency ion-mode waves and possibly also electric potential structures. Intermittent auroral arc features have been observed embedded in a larger region of broadband emissions. The multi-spacecraft measurements by CLUSTER here show the temporal development of sharp density gradients and intensified broadband waves together with the formation of electric potential structures and particle acceleration within the larger scale density cavity.

  9. Composite ion exchange materials

    SciTech Connect

    Amarasinghe, S.; Zook, L.; Leddy, J.

    1994-12-31

    Composite ion exchange materials can be formed by sorbing ion exchange polymers on inert, high surface area substrates. In general, the flux of ions and molecules through these composites, as measured electrochemically, increases as the ratio of the surface area of the substrate increases relative to the volume of the ion exchanger. This suggests that fields and gradients established at the interface between the ion exchanger and substrate are important in determining the transport characteristics of the composites. Here, the authors will focus on composites formed with a cation exchange polymer, Nafion, and two different types of microbeads: polystyrene microspheres and polystyrene coated magnetic microbeads. For the polystyrene microbeads, scanning electron micrographs suggest the beads cluster in a self-similar manner, independent of the bead diameter. Flux of Ru(NH3)63+ through the composites was studied as a function of bead fraction, bead radii, and fixed surface area with mixed bead sizes. Flux was well modeled by surface diffusion along a fractal interface. Magnetic composites were formed with columns of magnetic microbeads normal to the electrode surface. Flux of Ru(NH3)63+ through these composites increased exponentially with bead fraction. For electrolyses, the difference in the molar magnetic susceptibility of the products and reactants, Dcm, tends to be non-zero. For seven redox reactions, the ratio of the flux through the magnetic composites to the flux through a Nafion film increases monotonically with {vert_bar}Dcm{vert_bar}, with enhancements as large as thirty-fold. For reversible species, the electrolysis potential through the magnetic composites is 35 mV positive of that for the Nafion films.

  10. The computer simulation of energetic cluster-solid interactions

    NASA Astrophysics Data System (ADS)

    Webb, Roger P.

    There is a growing interest in the application of accelerated clusters and molecular species as both implantation and analysis tools. Large clusters have been in use for the deposition of films and the soft landing of biomaterials for a number of years now. More recently, the use of fullerene as a sputtering ion in SIMS has lead to a revitalisation of academic interest in the technique-as witnessed by the recent SIMS XV conference-and a host of new potential applications in the identification of molecular species and molecular imaging. The use of even larger clusters employed with electro-spraying techniques has also been developed as a new analysis technique (DESI) created. The application of giant gas clusters combining a component of `active' ingredient in a large inert cluster is making a large impact in the semiconductor world to provide a new method (`infusion doping') for shallow junction formation in silicon and for providing a tool for surface smoothing. It is clear that there are an increasing number of applications of energetic clusters in the materials world. In this paper, computer simulation techniques are employed to investigate why clusters are of such interest. In particular the role of cluster impacts on molecular desorption will be investigated and the effects of variable energy deposition for large gas clusters in infusion doping will be highlighted.

  11. Platinum-ruthenium bimetallic clusters on graphite: a comparison of vapor deposition and electroless deposition methods.

    PubMed

    Galhenage, Randima P; Xie, Kangmin; Diao, Weijian; Tengco, John Meynard M; Seuser, Grant S; Monnier, John R; Chen, Donna A

    2015-11-14

    Bimetallic Pt-Ru clusters have been grown on highly ordered pyrolytic graphite (HOPG) surfaces by vapor deposition and by electroless deposition. These studies help to bridge the material gap between well-characterized vapor deposited clusters and electrolessly deposited clusters, which are better suited for industrial catalyst preparation. In the vapor deposition experiments, bimetallic clusters were formed by the sequential deposition of Pt on Ru or Ru on Pt. Seed clusters of the first metal were grown on HOPG surfaces that were sputtered with Ar(+) to introduce defects, which act as nucleation sites for Pt or Ru. On the unmodified HOPG surface, both Pt and Ru clusters preferentially nucleated at the step edges, whereas on the sputtered surface, clusters with relatively uniform sizes and spatial distributions were formed. Low energy ion scattering experiments showed that the surface compositions of the bimetallic clusters are Pt-rich, regardless of the order of deposition, indicating that the interdiffusion of metals within the clusters is facile at room temperature. Bimetallic clusters on sputtered HOPG were prepared by the electroless deposition of Pt on Ru seed clusters from a Pt(+2) solution using dimethylamine borane as the reducing agent at pH 11 and 40 °C. After exposure to the electroless deposition bath, Pt was selectively deposited on Ru, as demonstrated by the detection of Pt on the surface by XPS, and the increase in the average cluster height without an increase in the number of clusters, indicating that Pt atoms are incorporated into the Ru seed clusters. Electroless deposition of Ru on Pt seed clusters was also achieved, but it should be noted that this deposition method is extremely sensitive to the presence of other metal ions in solution that have a higher reduction potential than the metal ion targeted for deposition. PMID:26018140

  12. Theory of Nanocluster Size Distributions from Ion Beam Synthesis

    SciTech Connect

    Yuan, C.W.; Yi, D.O.; Sharp, I.D.; Shin, S.J.; Liao, C.Y.; Guzman, J.; Ager III, J.W.; Haller, E.E.; Chrzan, D.C.

    2008-06-13

    Ion beam synthesis of nanoclusters is studied via both kinetic Monte Carlo simulations and the self-consistent mean-field solution to a set of coupled rate equations. Both approaches predict the existence of a steady state shape for the cluster size distribution that depends only on a characteristic length determined by the ratio of the effective diffusion coefficient to the ion flux. The average cluster size in the steady state regime is determined by the implanted species/matrix interface energy.

  13. Correlation between cation conduction and ionic morphology in a PEO-based single ion conductor

    NASA Astrophysics Data System (ADS)

    Lin, Kan-Ju; Maranas, Janna

    2011-03-01

    We use molecular dynamics simulation to study ion transport and backbone mobility of a PEO-based single ion conductor. Ion mobility depends on the chemical structure and the local environment of the ions, which consequently impact ionic conductivity. We characterize the aggregation state of the ions, and assess the role of ion complexes in ionomer dynamics. In addition to solvated cations and pairs, higher order ion clusters are found. Most of the ion clusters are in string-like structure and cross-link two or more different ionomer chains through ionic binding. Ionic crosslinks decrease mobility at the ionic co-monomer; hence the mobility of the adjacent PEO segment is influenced. Na ions show slow mobility when they are inside large clusters. The hopping timescale for Na varies from 20 ns to 200. A correlation is found between Na mobility and the number of hops from one coordination site to another. Besides ether oxygens, Na ions in the ionomer also use the anion and the edge of the cluster as hopping sites. The string-like structure of clusters provide less stable sites at the two ends thus ions are more mobile in those regions. We observed Grotthus like mechanism in our ionomer, in which the positive charge migrates within the string-like cluster without the cations actually moving.

  14. Document clustering methods, document cluster label disambiguation methods, document clustering apparatuses, and articles of manufacture

    DOEpatents

    Sanfilippo, Antonio; Calapristi, Augustin J.; Crow, Vernon L.; Hetzler, Elizabeth G.; Turner, Alan E.

    2009-12-22

    Document clustering methods, document cluster label disambiguation methods, document clustering apparatuses, and articles of manufacture are described. In one aspect, a document clustering method includes providing a document set comprising a plurality of documents, providing a cluster comprising a subset of the documents of the document set, using a plurality of terms of the documents, providing a cluster label indicative of subject matter content of the documents of the cluster, wherein the cluster label comprises a plurality of word senses, and selecting one of the word senses of the cluster label.

  15. Ion aggregation in high salt solutions. IV. Graph-theoretical analyses of ion aggregate structure and water hydrogen bonding network.

    PubMed

    Choi, Jun-Ho; Cho, Minhaeng

    2015-09-14

    Ions in high salt solutions form a variety of ion aggregates, from ion pairs to clusters and networks. Their influences on water hydrogen bonding (H-bonding) network structures have long been of great interest. Recently, we have shown that the morphological structures of ion aggregates can be analyzed by using a spectral graph analysis theory, where each ion cluster or ion network is represented by a properly defined graph with edges and vertices. Here, to further examine the network properties of ion aggregates and water H-bonding networks in high salt solutions, we consider a few representative graph-theoretical descriptors: clustering coefficient, minimum path length, global efficiency, and degree distribution of ion aggregates. From the molecular dynamics trajectories, these graph theoretical properties of ion aggregates and water structures in NaCl and kosmotropic solutions are calculated and shown to be strongly dependent on the two types of ion aggregate structures, i.e., ion cluster and ion network. Ion clusters in high NaCl solutions exhibit typical behaviors of scale free network. The corresponding graph theoretical properties of ion networks in high KSCN solutions are notably different from those of NaCl ion clusters and furthermore they are very similar to those of water hydrogen-bonding network. The present graph-theoretical analysis results indicate that the high solubility limits of KSCN and other ion-network-forming salts might originate from their ability to form a large scale morphological network that can be intertwined with co-existing water H-bonding network. Furthermore, it is shown that the graph-theoretical properties of water H-bonding network structures do not strongly depend on the nature of dissolved ions nor on the morphological structures of ion aggregates, indicating that water's H-bonding interaction and network-forming capability are highly robust. We anticipate that the present graph-theoretical analysis results of high salt

  16. Ion aggregation in high salt solutions. IV. Graph-theoretical analyses of ion aggregate structure and water hydrogen bonding network

    NASA Astrophysics Data System (ADS)

    Choi, Jun-Ho; Cho, Minhaeng

    2015-09-01

    Ions in high salt solutions form a variety of ion aggregates, from ion pairs to clusters and networks. Their influences on water hydrogen bonding (H-bonding) network structures have long been of great interest. Recently, we have shown that the morphological structures of ion aggregates can be analyzed by using a spectral graph analysis theory, where each ion cluster or ion network is represented by a properly defined graph with edges and vertices. Here, to further examine the network properties of ion aggregates and water H-bonding networks in high salt solutions, we consider a few representative graph-theoretical descriptors: clustering coefficient, minimum path length, global efficiency, and degree distribution of ion aggregates. From the molecular dynamics trajectories, these graph theoretical properties of ion aggregates and water structures in NaCl and kosmotropic solutions are calculated and shown to be strongly dependent on the two types of ion aggregate structures, i.e., ion cluster and ion network. Ion clusters in high NaCl solutions exhibit typical behaviors of scale free network. The corresponding graph theoretical properties of ion networks in high KSCN solutions are notably different from those of NaCl ion clusters and furthermore they are very similar to those of water hydrogen-bonding network. The present graph-theoretical analysis results indicate that the high solubility limits of KSCN and other ion-network-forming salts might originate from their ability to form a large scale morphological network that can be intertwined with co-existing water H-bonding network. Furthermore, it is shown that the graph-theoretical properties of water H-bonding network structures do not strongly depend on the nature of dissolved ions nor on the morphological structures of ion aggregates, indicating that water's H-bonding interaction and network-forming capability are highly robust. We anticipate that the present graph-theoretical analysis results of high salt

  17. Caesium sputter ion source compatible with commercial SIMS instruments.

    SciTech Connect

    Belykh, S. F.; Palitsin, V. V.; Veryovkin, I. V.; Kovarsky, A. P.; Chang, R. J. H.; Adriaens, A.; Dowsett, M. G.; Adams, F.; Materials Science Division; Univ. Warwick; Ioffe Physical-Technical Inst.; Ghent Univ.; Univ. Antwerp

    2006-01-01

    A simple design for a caesium sputter cluster ion source compatible with commercially available secondary ion mass spectrometers is reported. This source has been tested with the Cameca IMS 4f instrument using the cluster Si{sub n}{sup -} and Cu{sub n}{sup -} ions, and will shortly be retrofitted to the floating low energy ion gun (FLIG) of the type used on the Cameca 4500/4550 quadruple instruments. Our experiments with surface characterization and depth profiling conducted to date demonstrate improvements of analytical capabilities of the SIMS instrument due to the non-additive enhancement of secondary ion emission and shorter ion ranges of polyatomic projectiles compared to atomic ions with the same impact energy.

  18. Ion acceleration by hot electrons in microclusters

    SciTech Connect

    Breizman, Boris N.; Arefiev, Alexey V.

    2007-07-15

    A self-consistent analytical description is presented for collisionless expansion of a fully ionized cluster with a two-component electron distribution. The problem is solved for an initial 'water-bag' distribution of hot electrons with no angular momentum, which reflects the mechanism of electron heating. This distribution evolves in time due to adiabatic cooling of hot electrons. The solution involves a cold core of the cluster, a thin double layer at the cluster edge, and a quasineutral flow with a rarefaction wave. The presented analysis predicts a substantial number of accelerated ions with energies greater than the cutoff energy of the initial distribution of the hot electrons.

  19. Doubly charged CO2 clusters formed by ionization of doped helium nanodroplets☆

    PubMed Central

    Daxner, Matthias; Denifl, Stephan; Scheier, Paul; Echt, Olof

    2014-01-01

    Helium nanodroplets are doped with carbon dioxide and ionized by electrons. Doubly charged cluster ions are, for the first time, identified based on their characteristic patterns of isotopologues. Thanks to the high mass resolution, large dynamic range, and a novel method to eliminate contributions from singly charged ions from the mass spectra, we are able to observe doubly charged cluster ions that are smaller than the ones reported in the past. The likely mechanism by which doubly charged ions are formed in doped helium droplets is discussed. PMID:25844051

  20. Recent Insights Into the Prenucleation Cluster Pathway

    NASA Astrophysics Data System (ADS)

    Gebauer, D.; Kellermeier, M.; Berg, J. K.

    2012-12-01

    Stable calcium carbonate pre-nucleation clusters (PNCs) form in aqueous solution prior to nucleation of CaCO3 (1). Computer simulations suggest that the thermodynamic stability of PNCs is based upon strong hydration in combination with a distinct entropic contribution (2). In this way, PNCs can compete enthalpically with ion pairs and entropically with amorpous calcium carbonate (ACC). The clue is a high degree of structural disorder in highly dynamic, liquid- and chain-like polymeric structures of calcium carbonate ion pairs (2). Nucleation of solid calcium carbonate from these polymeric species proceeds via PNC aggregation rather than via ion-by-ion additions to un-/metastable nuclei (3). Owing to these basic characteristics, the pre-nucleation cluster pathway has been referred to as "non-classical nucleation" (4). Non-classical nucleation leads to distinct short-range structural features in ACC, and depending on pH they relate to the crystalline long-range order of calcite or vaterite (5). This suggests that calcium carbonate exhibits polyamorphism, and that distinct polyamorphs may play a central role during polymorph selection. In this contribution, we outline the scenario described above, and focus on recent insights into the pre-nucleation cluster pathway. 1. D. Gebauer, A. Völkel & H. Cölfen, Science 322, 1819-1822 (2008). 2. R. Demichelis, P. Raiteri, J.D. Gale, D. Quigley, D. Gebauer, Nat. Commun. 2, 590 (2011). 3. M. Kellermeier et al., Adv. Funct. Mater., DOI: 10.1002/adfm.201200953 (2012). 4. D. Gebauer, H. Cölfen, Nano Today 6, 564-584 (2011). 5. D. Gebauer et al., Angew. Chem. Int. Ed. 49, 8889-8891 (2010).

  1. C60 Secondary Ion Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    SciTech Connect

    Smith, Donald F.; Robinson, Errol W.; Tolmachev, Aleksey V.; Heeren, Ronald M.; Pasa-Tolic, Ljiljana

    2011-12-15

    Secondary ion mass spectrometry (SIMS) has seen increased application for high spatial chemical imaging of complex biological surfaces. The advent and commercial availability of cluster and polyatomic primary ion sources (e.g. Au and Bi cluster and buckminsterfullerene (C60)) provide improved secondary ion yield and decreased fragmentation of surface species, thus accessibility to intact molecular ions. Despite developments in primary ion sources, development of mass spectrometers to fully exploit their advantages has been limited. Tandem mass spectrometry for identification of secondary ions is highly desirable, but implementation has proven to be difficult. Similarly, high mass resolution and high mass measurement accuracy would greatly improve the chemical specificity of SIMS. Here we combine, for the first time, the advantages of a C60 primary ion source with the ultra-high mass resolving power and high mass measurement accuracy of Fourier transform ion cyclotron resonance mass spectrometry. Mass resolving power in excess of 100,000 (m/Δm50%) is demonstrated, with mass measurement accuracies below 3 parts-per-million. Imaging of mouse brain tissue at 40 μm pixel size is shown. Tandem mass spectrometry of ions from biological tissue is demonstrated and molecular formulae can be assigned to fragment ions.

  2. Structure and Chemistry of Atomic Clusters from Supersonic Beams.

    NASA Astrophysics Data System (ADS)

    Yang, Shi-He.

    A tandem time-of-flight (TOF) apparatus was designed to study the structure and chemistry of cold transition metal cluster ions from supersonic beams. By means of a photodissociation laser fluence dependence technique, binding energies of Nb_{rm x }^{+} (x = 2 - 20), Co_{rm x}^{+ } (x = 4 - 20) and etc. were found to generally increase with cluster size. The desorption energies of Nb_{rm x}N _2^{+} (x = 2 - 17) and Nb_{rm x} CO^{+} (x = 2 - 10) also increase with cluster size with some oscillations similar to the size dependent reactivities of these clusters. Photodetachment studies revealed that electron affinities of copper clusters increase with cluster size with a sharp even/odd alternation. Unlike other noble metals, Ag_{rm x}^ {-} clusters display two competing processes: photodissociation and photodetachment. Relative reactivities of cluster ions of Nb, Co, Ag, and etc. have been measured using a fast flow cluster reactor, displaying a similar function of cluster size to that of the neutrals. In addition, preliminary photoelectron experiments have been performed on Cu_{ rm x}^{-} and Nb _{rm x}^{-}. A magnetic Time-of-flight ultraviolet photoelectron spectrometer (MTOFUPS) has been developed to study electronic structures of cold metal and semiconductor cluster anions prepared in supersonic beams. Application of this spectrometer to carbon clusters with a F_2 laser (7.9 eV) allowed their electron affinities and UPS patterns to be measured,demonstrating a remarkable structural evolution of these clusters: Chains (C_2^{ -}-C_9^{-} ) - Rings (C_{10}^ {-}-C_{29}^ {-}) - Cages (C_{38 }^{-}-C_{84 }^{-}). In particular, the UPS of C_{60}^{-} is in excellent agreement with the CNDO/S calculation, providing a striking spectral evidence for the highly symmetric icosahedral soccer ball structure--Buckminsterfullerene. For comparison, the UPS of Si_ {rm x}^{-} and Ge_{rm x}^{ -} are presented. Unlike carbon clusters which prefer structures of low dimensionality, these

  3. Enhanced Ionization of Embedded Clusters by Electron-Transfer-Mediated Decay in Helium Nanodroplets.

    PubMed

    LaForge, A C; Stumpf, V; Gokhberg, K; von Vangerow, J; Stienkemeier, F; Kryzhevoi, N V; O'Keeffe, P; Ciavardini, A; Krishnan, S R; Coreno, M; Prince, K C; Richter, R; Moshammer, R; Pfeifer, T; Cederbaum, L S; Mudrich, M

    2016-05-20

    We report the observation of electron-transfer-mediated decay (ETMD) involving magnesium (Mg) clusters embedded in helium (He) nanodroplets. ETMD is initiated by the ionization of He followed by removal of two electrons from the Mg clusters of which one is transferred to the He ion while the other electron is emitted into the continuum. The process is shown to be the dominant ionization mechanism for embedded clusters for photon energies above the ionization potential of He. For Mg clusters larger than five atoms we observe stable doubly ionized clusters. Thus, ETMD provides an efficient pathway to the formation of doubly ionized cold species in doped nanodroplets. PMID:27258866

  4. Enhanced Ionization of Embedded Clusters by Electron-Transfer-Mediated Decay in Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    LaForge, A. C.; Stumpf, V.; Gokhberg, K.; von Vangerow, J.; Stienkemeier, F.; Kryzhevoi, N. V.; O'Keeffe, P.; Ciavardini, A.; Krishnan, S. R.; Coreno, M.; Prince, K. C.; Richter, R.; Moshammer, R.; Pfeifer, T.; Cederbaum, L. S.; Mudrich, M.

    2016-05-01

    We report the observation of electron-transfer-mediated decay (ETMD) involving magnesium (Mg) clusters embedded in helium (He) nanodroplets. ETMD is initiated by the ionization of He followed by removal of two electrons from the Mg clusters of which one is transferred to the He ion while the other electron is emitted into the continuum. The process is shown to be the dominant ionization mechanism for embedded clusters for photon energies above the ionization potential of He. For Mg clusters larger than five atoms we observe stable doubly ionized clusters. Thus, ETMD provides an efficient pathway to the formation of doubly ionized cold species in doped nanodroplets.

  5. Radiolytic formation of Ag clusters in aqueous polyvinyl alcohol solution and hydrogel matrix

    NASA Astrophysics Data System (ADS)

    Kumar, Manmohan; Varshney, Lalit; Francis, Sanju

    2005-05-01

    Ag+ ions, in aqueous polyvinyl alcohol (PVA) solution and in PVA hydrogel matrix have been gamma radiolytically reduced to produce Ag clusters. UV-visible absorption spectral characteristics of Ag clusters obtained under different gamma dose, Ag+ concentration, PVA concentration and crosslinking density of the gel used have been studied. The effect of Ag+ ions on the radiation crosslinking of the PVA chains, have also been investigated by viscosity measurements. The radiation-induced Ag+ ion reduction was followed by crosslinking of the PVA chains. PVA was found to be a very efficient stabilizer to prevent aggregation of Ag clusters. The clusters produced in the hydrogel matrix were expected to be smaller than the pore size (∼2-20 nm) of the gels used in the study. These Ag clusters were unable to reduce methyl viologen (MV2+) chloride and were stable in air.

  6. THEMATICS analysis for functional ion channels

    NASA Astrophysics Data System (ADS)

    Shehadi, Ihsan A.

    Ion channels, as a group of integral membrane proteins, span the cell membrane forming ion-conducting pores that allow ions to traverse the hydrophobic lipid environment rapidly and selectively. The structure of the Streptomyces lividians (KcsA) and Mycobacterium tuberculosis ion channel (Mscl) potassium ion channel have provided the impetus and has helped further the understanding of the structural and functional studies of these channels. The KcsA adapts the voltage-gated mechanism for opening and closing of the channel. While Mcsl represents the mechanosensitive model of the channels. However, the mechanism of the opening and closing of these channels are not fully understood. Electrostatic methods (THEMATICS) are used to locate the site where closing and opening of the channels are controlled. Two clusters of amino acid residues are identified in each of the previously mentioned active models where net charges play an important role in controlling the mechanism of the opening and closure of the ion channels.0

  7. ION SWITCH

    DOEpatents

    Cook, B.

    1959-02-10

    An ion switch capable of transferring large magnitudes of power is described. An ion switch constructed in accordance with the invention includes a pair of spaced control electrodes disposed in a highly evacuated region for connection in a conventional circuit to control the passing of power therethrough. A controllable ionic conduction path is provided directiy between the control electrodes by a source unit to close the ion switch. Conventional power supply means are provided to trigger the source unit and control the magnitude, durations and pulse repetition rate of the aforementioned ionic conduction path.

  8. Atomically precise (catalytic) particles synthesized by a novel cluster deposition instrument

    SciTech Connect

    Yin, C.; Tyo, E.; Kuchta, K.; Issendorff, B. von; Vajda, S.

    2014-05-07

    We report a new high vacuum instrument which is dedicated to the preparation of well-defined clusters supported on model and technologically relevant supports for catalytic and materials investigations. The instrument is based on deposition of size selected metallic cluster ions that are produced by a high flux magnetron cluster source. The throughput of the apparatus is maximized by collecting and focusing ions utilizing a conical octupole ion guide and a linear ion guide. The size selection is achieved by a quadrupole mass filter. The new design of the sample holder provides for the preparation of multiple samples on supports of various sizes and shapes in one session. After cluster deposition onto the support of interest, samples will be taken out of the chamber for a variety of testing and characterization.

  9. Statistical properties of convex clustering

    PubMed Central

    Tan, Kean Ming; Witten, Daniela

    2016-01-01

    In this manuscript, we study the statistical properties of convex clustering. We establish that convex clustering is closely related to single linkage hierarchical clustering and k-means clustering. In addition, we derive the range of the tuning parameter for convex clustering that yields a non-trivial solution. We also provide an unbiased estimator of the degrees of freedom, and provide a finite sample bound for the prediction error for convex clustering. We compare convex clustering to some traditional clustering methods in simulation studies.

  10. Partially supervised speaker clustering.

    PubMed

    Tang, Hao; Chu, Stephen Mingyu; Hasegawa-Johnson, Mark; Huang, Thomas S

    2012-05-01

    Content-based multimedia indexing, retrieval, and processing as well as multimedia databases demand the structuring of the media content (image, audio, video, text, etc.), one significant goal being to associate the identity of the content to the individual segments of the signals. In this paper, we specifically address the problem of speaker clustering, the task of assigning every speech utterance in an audio stream to its speaker. We offer a complete treatment to the idea of partially supervised speaker clustering, which refers to the use of our prior knowledge of speakers in general to assist the unsupervised speaker clustering process. By means of an independent training data set, we encode the prior knowledge at the various stages of the speaker clustering pipeline via 1) learning a speaker-discriminative acoustic feature transformation, 2) learning a universal speaker prior model, and 3) learning a discriminative speaker subspace, or equivalently, a speaker-discriminative distance metric. We study the directional scattering property of the Gaussian mixture model (GMM) mean supervector representation of utterances in the high-dimensional space, and advocate exploiting this property by using the cosine distance metric instead of the euclidean distance metric for speaker clustering in the GMM mean supervector space. We propose to perform discriminant analysis based on the cosine distance metric, which leads to a novel distance metric learning algorithm—linear spherical discriminant analysis (LSDA). We show that the proposed LSDA formulation can be systematically solved within the elegant graph embedding general dimensionality reduction framework. Our speaker clustering experiments on the GALE database clearly indicate that 1) our speaker clustering methods based on the GMM mean supervector representation and vector-based distance metrics outperform traditional speaker clustering methods based on the “bag of acoustic features” representation and statistical

  11. Dwarfs in Coma Cluster

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Click on image for larger poster version

    This false-color mosaic of the central region of the Coma cluster combines infrared and visible-light images to reveal thousands of faint objects (green). Follow-up observations showed that many of these objects, which appear here as faint green smudges, are dwarf galaxies belonging to the cluster. Two large elliptical galaxies, NGC 4889 and NGC 4874, dominate the cluster's center. The mosaic combines visible-light data from the Sloan Digital Sky Survey (color coded blue) with long- and short-wavelength infrared views (red and green, respectively) from NASA's Spitzer Space Telescope.

  12. H-cluster stars

    NASA Astrophysics Data System (ADS)

    Lai, X. Y.; Gao, C. Y.; Xu, R. X.

    2013-06-01

    The study of dense matter at ultrahigh density has a very long history, which is meaningful for us to understand not only cosmic events in extreme circumstances but also fundamental laws of physics. It is well known that the state of cold matter at supranuclear density depends on the non-perturbative nature of quantum chromodynamics (QCD) and is essential for modelling pulsars. A so-called H-cluster matter is proposed in this paper as the nature of dense matter in reality. In compact stars at only a few nuclear densities but low temperature, quarks could be interacting strongly with each other there. That might render quarks grouped in clusters, although the hypothetical quark clusters in cold dense matter have not been confirmed due to the lack of both theoretical and experimental evidence. Motivated by recent lattice QCD simulations of the H-dibaryons (with structure uuddss), we therefore consider here a possible kind of quark clusters, H-clusters, that could emerge inside compact stars during their initial cooling as the dominant components inside (the degree of freedom could then be H-clusters there). Taking into account the in-medium stiffening effect, we find that at baryon densities of compact stars H-cluster matter could be more stable than nuclear matter. We also find that for the H-cluster matter with lattice structure, the equation of state could be so stiff that it would seem to be `superluminal' in the most dense region. However, the real sound speed for H-cluster matter is in fact difficult to calculate, so at this stage we do not put constraints on our model from the usual requirement of causality. We study the stars composed of H-clusters, i.e. H-cluster stars, and derive the dependence of their maximum mass on the in-medium stiffening effect, showing that the maximum mass could be well above 2 M⊙ as observed and that the resultant mass-radius relation fits the measurement of the rapid burster under reasonable parameters. Besides a general

  13. Extending Beowulf Clusters

    USGS Publications Warehouse

    Steinwand, Daniel R.; Maddox, Brian; Beckmann, Tim; Hamer, George

    2003-01-01

    Beowulf clusters can provide a cost-effective way to compute numerical models and process large amounts of remote sensing image data. Usually a Beowulf cluster is designed to accomplish a specific set of processing goals, and processing is very efficient when the problem remains inside the constraints of the original design. There are cases, however, when one might wish to compute a problem that is beyond the capacity of the local Beowulf system. In these cases, spreading the problem to multiple clusters or to other machines on the network may provide a cost-effective solution.

  14. Organic positive ions in aircraft gas-turbine engine exhaust

    NASA Astrophysics Data System (ADS)

    Sorokin, Andrey; Arnold, Frank

    Volatile organic compounds (VOCs) represent a significant fraction of atmospheric aerosol. However the role of organic species emitted by aircraft (as a consequence of the incomplete combustion of fuel in the engine) in nucleation of new volatile particles still remains rather speculative and requires a much more detailed analysis of the underlying mechanisms. Measurements in aircraft exhaust plumes have shown the presence of both different non-methane VOCs (e.g. PartEmis project) and numerous organic cluster ions (MPIK-Heidelberg). However the link between detected organic gas-phase species and measured mass spectrum of cluster ions is uncertain. Unfortunately, up to now there are no models describing the thermodynamics of the formation of primary organic cluster ions in the exhaust of aircraft engines. The aim of this work is to present first results of such a model development. The model includes the block of thermodynamic data based on proton affinities and gas basicities of organic molecules and the block of non-equilibrium kinetics of the cluster ions evolution in the exhaust. The model predicts important features of the measured spectrum of positive ions in the exhaust behind aircraft. It is shown that positive ions emitted by aircraft engines into the atmosphere mostly consist of protonated and hydrated organic cluster ions. The developed model may be explored also in aerosol investigations of the background atmosphere as well as in the analysis of the emission of fine aerosol particles by automobiles.

  15. Combining cluster number counts and galaxy clustering

    NASA Astrophysics Data System (ADS)

    Lacasa, Fabien; Rosenfeld, Rogerio

    2016-08-01

    The abundance of clusters and the clustering of galaxies are two of the important cosmological probes for current and future large scale surveys of galaxies, such as the Dark Energy Survey. In order to combine them one has to account for the fact that they are not independent quantities, since they probe the same density field. It is important to develop a good understanding of their correlation in order to extract parameter constraints. We present a detailed modelling of the joint covariance matrix between cluster number counts and the galaxy angular power spectrum. We employ the framework of the halo model complemented by a Halo Occupation Distribution model (HOD). We demonstrate the importance of accounting for non-Gaussianity to produce accurate covariance predictions. Indeed, we show that the non-Gaussian covariance becomes dominant at small scales, low redshifts or high cluster masses. We discuss in particular the case of the super-sample covariance (SSC), including the effects of galaxy shot-noise, halo second order bias and non-local bias. We demonstrate that the SSC obeys mathematical inequalities and positivity. Using the joint covariance matrix and a Fisher matrix methodology, we examine the prospects of combining these two probes to constrain cosmological and HOD parameters. We find that the combination indeed results in noticeably better constraints, with improvements of order 20% on cosmological parameters compared to the best single probe, and even greater improvement on HOD parameters, with reduction of error bars by a factor 1.4-4.8. This happens in particular because the cross-covariance introduces a synergy between the probes on small scales. We conclude that accounting for non-Gaussian effects is required for the joint analysis of these observables in galaxy surveys.

  16. Ion focusing

    SciTech Connect

    Cooks, Robert Graham; Baird, Zane; Peng, Wen-Ping

    2015-11-10

    The invention generally relates to apparatuses for focusing ions at or above ambient pressure and methods of use thereof. In certain embodiments, the invention provides an apparatus for focusing ions that includes an electrode having a cavity, at least one inlet within the electrode configured to operatively couple with an ionization source, such that discharge generated by the ionization source is injected into the cavity of the electrode, and an outlet. The cavity in the electrode is shaped such that upon application of voltage to the electrode, ions within the cavity are focused and directed to the outlet, which is positioned such that a proximal end of the outlet receives the focused ions and a distal end of the outlet is open to ambient pressure.

  17. ION SOURCE

    DOEpatents

    Leland, W.T.

    1960-01-01

    The ion source described essentially eliminater the problem of deposits of nonconducting materials forming on parts of the ion source by certain corrosive gases. This problem is met by removing both filament and trap from the ion chamber, spacing them apart and outside the chamber end walls, placing a focusing cylinder about the filament tip to form a thin collimated electron stream, aligning the cylinder, slits in the walls, and trap so that the electron stream does not bombard any part in the source, and heating the trap, which is bombarded by electrons, to a temperature hotter than that in the ion chamber, so that the tendency to build up a deposit caused by electron bombardment is offset by the extra heating supplied only to the trap.

  18. ION SOURCE

    DOEpatents

    Blue, C.W.; Luce, J.S.

    1960-07-19

    An ion source is described and comprises an arc discharge parallel to the direction of and inside of a magnetic field. an accelerating electrode surrounding substantially all of the discharge except for ion exit apertures, and means for establishing an electric field between that electrode and the arc discharge. the electric field being oriented at an acute angle to the magnetic field. Ions are drawn through the exit apertures in the accelrating electrcde in a direction substantially divergent to the direction of the magnetic field and so will travel in a spiral orbit along the magnetic field such that the ions will not strike the source at any point in their orbit within the magnetic field.

  19. Cluster TOF-SIMS imaging as a tool for micrometric histology of lipids in tissue.

    PubMed

    Bich, Claudia; Touboul, David; Brunelle, Alain

    2014-01-01

    Recent developments in instrumentation, ion beams or analyzers, for cluster time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging are described here. The methods which are employed to increase the sensitivity or to perform three-dimensional analyses in the organic materials are also illustrated. This review shows the improvements made for lipid imaging by cluster TOF-SIMS in various types of material and applications, and gives reasons for the expansion of its utilization. PMID:24265115

  20. Mantis BT Cluster Support

    Energy Science and Technology Software Center (ESTSC)

    2009-06-05

    The software is a modidication to the Mantis BT V1.5 open source application provided by the mantis BT group to support cluster web servers. It also provides various cosmetic modifications used a LLNL.