Science.gov

Sample records for ion diffusion coefficient

  1. Ion diffusion coefficient measurements in nanochannels at various concentrations.

    PubMed

    Wang, Junrong; Zhang, Li; Xue, Jianming; Hu, Guoqing

    2014-03-01

    Diffusion is one of the most fundamental properties of ionic transport in solutions. Here, we present experimental studies and theoretical analysis on the ion diffusion in nanochannels. Based on Fick's second law, we develop a current monitoring method to measure ion diffusion coefficient of high solution concentrations in nanochannels. This method is further extended to the cases at medium and low concentrations. Through monitoring ionic current during diffusion, we obtain diffusion coefficients of potassium chloride solution at different concentrations in nanochannels. These diffusion coefficients within the confined space are close to theirs bulk values. It is also found that the apparent ion diffusion equilibrium in the present experiments is very slow at low concentration, which we attribute to the slow equilibrium of the nanochannel surface charge. Finally, we get a primary acknowledge of the equilibrium rate between the nanochannel surface charge and electrolyte solution. The results in this work have improved the understanding of nanoscale diffusion and nanochannel surface charge and may be useful in nanofluidic applications such as ion-selective transport, energy conversion, and nanopore biosensors. PMID:24803967

  2. Ion diffusion coefficient measurements in nanochannels at various concentrations

    PubMed Central

    Wang, Junrong; Zhang, Li; Xue, Jianming; Hu, Guoqing

    2014-01-01

    Diffusion is one of the most fundamental properties of ionic transport in solutions. Here, we present experimental studies and theoretical analysis on the ion diffusion in nanochannels. Based on Fick's second law, we develop a current monitoring method to measure ion diffusion coefficient of high solution concentrations in nanochannels. This method is further extended to the cases at medium and low concentrations. Through monitoring ionic current during diffusion, we obtain diffusion coefficients of potassium chloride solution at different concentrations in nanochannels. These diffusion coefficients within the confined space are close to theirs bulk values. It is also found that the apparent ion diffusion equilibrium in the present experiments is very slow at low concentration, which we attribute to the slow equilibrium of the nanochannel surface charge. Finally, we get a primary acknowledge of the equilibrium rate between the nanochannel surface charge and electrolyte solution. The results in this work have improved the understanding of nanoscale diffusion and nanochannel surface charge and may be useful in nanofluidic applications such as ion-selective transport, energy conversion, and nanopore biosensors. PMID:24803967

  3. Mutual diffusion coefficients in systems containing the nickel ion

    NASA Astrophysics Data System (ADS)

    Ribeiro, Ana C. F.; Veríssimo, Luis V. M. M.; Gomes, Joselaine C. S.; Santos, Cecilia I. A. V.; Barros, Marisa C. F.; Lobo, Victor M. M.; Sobral, Abílio J. F. N.; Esteso, Miguel A.; Leaist, Derek G.

    2013-04-01

    Mutual diffusion coefficients of nickel chloride in water have been measured at 293.15 K and 303.15 K and at concentrations between 0.020 mol dm-3 and 0.100 mol dm-3, using a conductimetric cell. The experimental mutual diffusion coefficients are discussed on the basis of the Onsager-Fuoss model. The equivalent conductances at infinitesimal concentration of the nickel ion in these solutions at those temperatures have been estimated using these results. In addition, from these data, we have estimated some transport and structural parameters, such as limiting diffusion coefficient, ionic conductance at infinitesimal concentration, hydrodynamic radii and activation energy, contributing this way to a better understanding of the structure of these systems and of their thermodynamic behavior in aqueous solution at different concentrations.

  4. Donnan dialysis with ion-exchange membranes. 3: Diffusion coefficients using ions of different valence

    SciTech Connect

    Miyoshi, Hirofumi

    1999-01-01

    Donnan dialysis with ion-exchange membranes was studied under various kinds of experimental conditions using ions of different valences. The diffusion coefficients (D{sub d}) of various kinds of ions in the ion-exchange membrane were obtained by curve fitting an equation derived from the mass balance to three kinds of Donnan dialytic experiments. It was found that the value of D{sub d}/D{sub s} using D{sub d} of monovalent ions in Donnan dialysis with a set of monovalent feed ions and bivalent driving ions was 1/175, where D{sub s} represents a diffusion coefficient in solution. D{sub s} was calculated from the Nernst-Einstein equation substituted by the ionic conductance of ions at infinite dilution in water. Using D{sub d} of bivalent ions in Donnan dialysis with the same set led to a D{sub d}/D{sub s} value of 1/438. Moreover, using D{sub d} in Donnan dialysis with the same set, the value of D{sub d}/D{sub e} was kept constant at 0.4 (D{sub e} expresses the diffusion coefficient in the membrane when the valences of the feed and driving ions are equal). On the other hand, both D{sub d}/D{sub s} and D{sub d}/D{sub e} using D{sub d} in Donnan dialysis with a set of bivalent feed ions and monovalent driving ions were not constant.

  5. Comparison of ICRF-Induced Ion Diffusion Coefficients Calculated with the DC and AORSA Codes

    SciTech Connect

    Harvey, R. W.; Petrov, Yu.; Jaeger, E. F.; Berry, L. A.; Batchelor, D. B.; Bonoli, P. T.; Wright, J. C.

    2009-11-26

    The DC (Diffusion Coefficient) code obtains RF diffusion coefficients by direct numerical integration of the Lorentz force equation for ion motion in the combined equilibrium fields and the RF full wave EM fields from the AORSA full-wave code. Suitable averaging over initial gyro- and toroidal-angle of coordinate 'kicks' after a bounce-period, gives noise-free bounce-averaged diffusion coefficients. For direct comparison with zero-banana-width coefficients from AORSA, perpendicular-drift terms in the Lorentz equation are subtracted off the integration. The DC code has been coupled to the CQL3D Fokker-Planck code. For a C-Mod minority ion ICRF heating test case, the total power absorption using the diffusion coefficients agree well, and the profiles are similarly close. This supports the DC calculation and the Kennel-Engelmann-based, no-correlations, coefficient calculation in AORSA. However, resonance correlations cause large differences in the pitch angle variations of the diffusion coefficients, and in the resulting evolution of the ion distribution functions.

  6. Diffusion coefficients of energetic water group ions near Comet Giacobini-Zinner

    NASA Technical Reports Server (NTRS)

    Tan, L. C.; Mason, G. M.; Richardson, I. G.; Ipavich, F. M.

    1993-01-01

    Data from the ultralow-energy charge analyzer and energetic particle anisotropy spectrometer sensors, acquired when the ICE spacecraft flew past Comet Giacobini-Zinner on September 11, 1985, are combined, and a single, self-consistent analysis technique is applied to derive a single-particle spectrum from about 200 to 1600 km/s. This information, together with the deduced bulk flow speed of the ions, is used to calculate a parallel diffusion coefficient in the transition region downstream of the bow wave (2.3 +/- 0.5) x 10 exp 17 sq cm/s; the corresponding scattering mean free path is (6 +/- 1) x 10 exp 4 km. The parallel diffusion coefficient is found to depend on the collision frequency of water group ions with Alfven waves, which are assumed to be propagating parallel (antiparallel) to the magnetic field.

  7. Drift tube measurements of mobilities and longitudinal diffusion coefficients of ions in gases

    SciTech Connect

    Chelf, R.D.

    1982-01-01

    The zero-field mobilities of Br/sup -/ and NH/sub 4//sup +/ in O/sub 2/ were determined as a function of gas temperature in a high pressure drift tube mass spectrometer. The mobilities and longitudinal diffusion coefficients of the ion-gas combinations Br/sup -/ in Ne and Kr, Li/sup +/ in Xe, and Tl//sup +/ in Kr and Xe were determined as a function of E/N, where E is the electric field strength and N is the gas number density in a low pressure drift tube mass spectrometer. The measured longitudinal diffusion coefficients were used for a test and comparison of the generalized Einstein relations of Viehland-Mason and Waldman-Mason theories. The measured mobilities of Br/sup -/ in Kr and Tl//sup +/ in Kr were used in an iterative-inversion scheme from which the ion-neutral interaction potentials were determined.

  8. Diffusion coefficients of energetic water group ions near Comet Giacobini-Zinner

    NASA Astrophysics Data System (ADS)

    Tan, L. C.; Mason, G. M.; Richardson, I. G.; Ipavich, F. M.

    1993-03-01

    Data from the ultralow-energy charge analyzer and energetic particle anisotropy spectrometer sensors, acquired when the ICE spacecraft flew past Comet Giacobini-Zinner on September 11, 1985, are combined, and a single, self-consistent analysis technique is applied to derive a single-particle spectrum from about 200 to 1600 km/s. This information, together with the deduced bulk flow speed of the ions, is used to calculate a parallel diffusion coefficient in the transition region downstream of the bow wave (2.3 +/- 0.5) x 10 exp 17 sq cm/s; the corresponding scattering mean free path is (6 +/- 1) x 10 exp 4 km. The parallel diffusion coefficient is found to depend on the collision frequency of water group ions with Alfven waves, which are assumed to be propagating parallel (antiparallel) to the magnetic field.

  9. Dynamic properties and third order diffusion coefficients of ions in electrostatic fields

    NASA Astrophysics Data System (ADS)

    Koutselos, Andreas D.

    1997-05-01

    Velocity correlation functions and third order diffusion coefficients of ions moving in a buffer gas under the influence of an electrostatic field are determined via molecular dynamics simulation. For the closed shell system of K+ in Ar using a universal interaction model potential, the general form of the third order correlation functions is found to be monotonically decaying in time except in the cases of <ΔvZ(0)ΔvX(t)2>, <ΔvZ(0)ΔvY(t)2>, and <ΔvZ(0)ΔvZ(t)2>, with Δv(t)=v(t) - and the field in the z direction. These functions acquire positive slope at short times showing enhancement of correlations between instantaneous vz components of the ions and their future kinetic energies or velocity measures. This feature is shown to quantify the dynamics of correlations between velocity components suggested in the past by Ong, Hogan, Lam and Viehland [Phys. Rev. A 45, 3997 (1992)] in order to explain the form of an ion velocity distribution function calculated through a Monte Carlo simulation method. In addition, within a stochastic analysis which establishes a relation between velocity correlation functions and third order diffusion coefficients, only two independent components of the diffusion tensor, Q∥ and Q⊥, are predicted. We thereby calculate the Q⊥ component, which has not been determined so far, over a wide field range. The magnitudes of the resulting third order diffusion coefficients indicate that their contribution to the ion transport in usual drift-tube measurements should be very small.

  10. Diffusion coefficients of actinide and lanthanide ions in molten Li[sub 2]BeF[sub 4

    SciTech Connect

    Moriyama, Hirotake; Moritani, Kimikazu; Ito, Yasuhiko . Dept. of Nuclear Engineering)

    1994-01-01

    In the conceptual design of molten salt breeder reactors (MSBR) developed at ORNL, molten fluoride mixtures are used as the fuel carrier and coolant. The fuel salt must be reprocessed continuously in order to meet a high breeding ratio. The main function of the reprocessing are to isolate [sup 233]Pa from the neutron flux and to remove the fission product lanthanides having high neutron absorption cross sections. The processing method involves the reductive extraction of these components from the fuel salt into liquid bismuth solutions in a two phase contacting system. Diffusion coefficients of actinide and lanthanide ions in molten Li[sub 2]BeF[sub 4] were measured in the temperature range from 813 to 1,023 K by a capillary method. The diffusion coefficients of both ions are unusually high, considering the high viscosity of the liquids. The dependence of the diffusion coefficients on temperature and ionic charge are discussed in terms of the theories of Stokes and Einstein.

  11. A least-squares error minimization approach in the determination of ferric ion diffusion coefficient of Fricke-infused dosimeter gels

    SciTech Connect

    Tseng, Y.J.; Huang, S.-C.; Chu, W.C.

    2005-04-01

    A least-squares error minimization approach was adopted to assess ferric ion diffusion coefficient of Fricke-agarose gels. Ferric ion diffusion process was modeled as a Gaussian-shaped degradation kernel operating on an initial concentration distribution. Diffusion coefficient was iteratively determined by minimizing the error function defined as the difference between the theoretically calculated and the experimentally measured dose distributions. A rapid MR image-based differential gel dosimetry technique that time resolves the evolution of the ferric ion diffusion process minimizes smearing of the dose distribution. Our results showed that for a Fricke-agarose gel contained 1 mM ammonium ferrous sulfate, 1% agarose, 1 mM sodium chloride, and 50 mM sulfuric acid, its ferric ion diffusion coefficient is (1.59{+-}0.28)x10{sup -2} cm{sup 2} h{sup -1} at room temperature. This value falls within the 1.00-2.00x10{sup -2} cm{sup 2} h{sup -1} range previously reported under varying gelling ingredients and concentrations. This method allows a quick, nondestructive evaluation of the ferric ion diffusion coefficient that can be used in conjunction with the in situ gel dosimetry experiment to provide a practical diffusion characterization of the dosimeter gel.

  12. Portable vapor diffusion coefficient meter

    DOEpatents

    Ho, Clifford K.

    2007-06-12

    An apparatus for measuring the effective vapor diffusion coefficient of a test vapor diffusing through a sample of porous media contained within a test chamber. A chemical sensor measures the time-varying concentration of vapor that has diffused a known distance through the porous media. A data processor contained within the apparatus compares the measured sensor data with analytical predictions of the response curve based on the transient diffusion equation using Fick's Law, iterating on the choice of an effective vapor diffusion coefficient until the difference between the predicted and measured curves is minimized. Optionally, a purge fluid can forced through the porous media, permitting the apparatus to also measure a gas-phase permeability. The apparatus can be made lightweight, self-powered, and portable for use in the field.

  13. Diffusion coefficients of several aqueous alkanolamine solutions

    SciTech Connect

    Snijder, E.D.; Riele, M.J.M. te; Versteeg, G.F.; Swaaij, W.P.M. van . Dept. of Chemical Engineering)

    1993-07-01

    In absorption processes of acid gases (H[sub 2]S, CO[sub 2], COS) in alkanolamine solutions, diffusion coefficients are used for the calculation of the mass transfer rate. The Taylor dispersion technique was applied for the determination of diffusion coefficients of various systems. Experiments with the system KCl in water showed that the experimental setup provides accurate data. For the alkanolamines monoethanolamine (MEA), diethanolamine (DEA), methyldiethanolamine (MDEA), and di-2-propanolamine (DIPA), correlations for the diffusion coefficient as a function of temperature at different concentrations are given. A single relation for every amine has been derived which correlates the diffusion coefficients as a function of temperature and concentration. The temperature was varied between 298 and 348 K, and the concentration between 0 and 4000-5000 mol/m[sup 3]. Furthermore, a modified Stokes-Einstein relation is presented for the prediction of the diffusion coefficients in the alkanolamines in relation to the viscosity of the solvent and the diffusion coefficient at infinite dilution. The diffusion coefficients at low concentrations are compared with some available relations for the estimation of diffusion coefficients at infinite dilution, and it appears that the agreement is fairly good.

  14. Search for selective ion diffusion through membranes

    NASA Technical Reports Server (NTRS)

    May, C. E.; Philipp, W. H.

    1983-01-01

    The diffusion rates of several ions through some membranes developed as battery separators were measured. The ions investigated were Li(+), Rb(+), Cl(-), and So4. The members were crosslinked polyvinyl alcohol, crosslinked polyacrylic acid, a copolymer of the two, crosslinked calcium polyacrylate, cellulose, and several microporous polyphenylene oxide based films. No true specificity for diffusion of any of these ions was found for any of the membranes. But the calcium polyacrylate membrane was found to exhibit ion exchange with the diffusing ions giving rise to the leaching of the calcium ion and low reproducibility. These findings contrast earlier work where the calcium polyacrylate membrane did show specificity to the diffusion of the copper ion. In general, Fick's law appeared to be obeyed. Except for the microporous membranes, the coefficients for ion diffusion through the membranes were comparable with their values in water. For the microporous membranes, the values found for the coefficients were much less, due to the tortuosity of the micropores.

  15. Molecular Diffusion Coefficients: Experimental Determination and Demonstration.

    ERIC Educational Resources Information Center

    Fate, Gwendolyn; Lynn, David G.

    1990-01-01

    Presented are laboratory methods which allow the demonstration and determination of the diffusion coefficients of compounds ranging in size from water to small proteins. Included are the procedures involving the use of a spectrometer, UV cell, triterated agar, and oxygen diffusion. Results including quantification are described. (CW)

  16. Diffuse reflection coefficient of a stratified sea.

    PubMed

    Haltrin, V I

    1999-02-20

    A differential equation of a Riccati type for the diffuse reflection coefficient of a stratified sea is proposed. For a homogeneous sea with arbitrary inherent optical properties this equation is solved analytically. For an inhomogeneous sea it is solved approximately for any arbitrary stratification. The resulting equation expresses the diffuse reflection coefficient of the sea through vertical profiles of absorption and backscattering coefficients, bottom albedo, and sea depth. The results of calculations with this equation are compared with Monte Carlo computations. It was found that the precision of this approach is in the range of 15%. PMID:18305694

  17. Diffusion and transport coefficients in synthetic opals

    SciTech Connect

    Sofo, J. O.; Mahan, G. D.

    2000-07-15

    Opals are structures composed of close-packed spheres in the size range of nano to micrometers. They are sintered to create small necks at the points of contact. We have solved the diffusion problem in such structures. The relation between the diffusion coefficient and the thermal and electrical conductivity is used to estimate the transport coefficients of opal structures as a function of the neck size and the mean free path of the carriers. The theory presented is also applicable to the diffusion problem in other periodic structures. (c) 2000 The American Physical Society.

  18. Improved Diffusion Coefficients for Stellar Plasmas

    NASA Astrophysics Data System (ADS)

    Brassard, P.; Fontaine, G.

    2014-04-01

    We are currently working on the fourth generation of our codes for building evolutionary and static models of hot subdwarf and white dwarf stars. One of the improvements of these codes consists in an update of all the microphysics involved in the computations. As part of our efforts, we have taken a look at possible improvements for the diffusion coefficients. Since the publication of the widely used diffusion coefficients of Paquette et al. (1986), the number-crunching power of computers has immensely increased, allowing more accurate computations of the triple collision integrals. We have thus produced new tables of diffusion coefficients with higher accuracy and higher resolution than before, of general use in stellar astrophysics.

  19. Correlation and prediction of gaseous diffusion coefficients.

    NASA Technical Reports Server (NTRS)

    Marrero, T. R.; Mason, E. A.

    1973-01-01

    A new correlation method for binary gaseous diffusion coefficients from very low temperatures to 10,000 K is proposed based on an extended principle of corresponding states, and having greater range and accuracy than previous correlations. There are two correlation parameters that are related to other physical quantities and that are predictable in the absence of diffusion measurements. Quantum effects and composition dependence are included, but high-pressure effects are not. The results are directly applicable to multicomponent mixtures.

  20. The electron diffusion coefficient in Jupiter's magnetosphere

    NASA Technical Reports Server (NTRS)

    Birmingham, T.; Northrop, T.; Baxter, R.; Hess, W.; Lojko, M.

    1974-01-01

    A steady-state model of Jupiter's electron radiation belt is developed. The model includes injection from the solar wind, radial diffusion, energy degradation by synchrotron radiation, and absorption at Jupiter's surface. A diffusion coefficient of the form D sub RR/R sub J squared = k times R to the m-th power is assumed, and then observed data on synchrotron radiation are used to fit the model. The free parameters determined from this fit are m = 1.95 plus or minus 0.5, k = 1.7 plus or minus 0.5 x 10 to the 9th power per sec, and the magnetic moment of injected particles equals 770 plus or minus 300 MeV/G. The value of m shows quite clearly that the diffusion is not caused by magnetic pumping by a variable solar wind or by a fluctuating convection electric field. The process might be field line exchange driven by atmospheric-ionospheric winds; our diffusion coefficient has roughly the same radial dependence but is considerably smaller in magnitude than the upper bound diffusion coefficients recently suggested for this process by Brice and McDonough (1973) and Jacques and Davis (1972).

  1. Intrinsic Diffusion Coefficient of Interstitial Copper in Silicon

    SciTech Connect

    Istratov, A.A.; Flink, C.; Hieslmair, H.; Weber, E.R.; Heiser, T.

    1998-08-01

    Transient ion drift experiments designed to obtain reliable values for the intrinsic copper diffusivity in silicon are reported. From these measurements, the diffusion barrier of Cu in Si is determined to be 0.18{plus_minus}0.01 eV . It is shown that the commonly used expression of Hall and Racette [J.thinspthinspAppl.thinspthinspPhys.thinspthinsp{bold 35}, 379 (1964)] actually gives an effective diffusion coefficient for heavily boron-doped silicon and can neither be used for other doping levels nor extrapolated to lower temperatures. A model is developed which predicts the effective diffusion coefficient as a function of temperature, doping level, and the type of dopant. {copyright} {ital 1998} {ital The American Physical Society}

  2. Micro-Fluidic Diffusion Coefficient Measurement

    SciTech Connect

    Forster, F.K.; Galambos, P.

    1998-10-06

    A new method for diffusion coefficient measurement applicable to micro-fluidics is pre- sented. The method Iltilizes an analytical model describing laminar dispersion in rect- anglllar ~llicro_channe]s. The Illethod ~vas verified throllgh measllremen~ of fllloresceill diffusivity in water and aqueolls polymer solutions of differing concentration. The diffll- sivity of flllorescein was measlmed as 0.64 x 10-gm2/s in water, 0.49 x 10-gm2/s in the 4 gm/dl dextran solution and 0.38 x 10-9n12/s in the 8 gnl/dl dextran solution.

  3. Temperature Dependence of the Particle Diffusion Coefficient in Dust Grains

    NASA Astrophysics Data System (ADS)

    Pechal, Radim; Richterova, Ivana; Pavlu, Jiri; Safrankova, Jana; Nemecek, Zdenek

    2014-05-01

    During the interaction of ions/neutrals with dust grains, some of the particles are implanted into the grain and, as a consequence, the density gradient induces their diffusion toward the grain surface. Their release can cause a transport of these particles over large distances in space. In our laboratory experiment, measurements of the diffusion coefficient of the particles implanted into the dust grain are carried out in an electrodynamic quadrupole trap. Although experimental setup does not allow an assessment of the dust grain temperature, it can be modified (e.g., by changing thermal radiation from the surrounding walls, laser irradiation, etc.). We present an upgraded laboratory set-up and the resulting temperature dependence of diffusion coefficient estimations and discuss implications for the space dust.

  4. Fractional diffusions with time-varying coefficients

    NASA Astrophysics Data System (ADS)

    Garra, Roberto; Orsingher, Enzo; Polito, Federico

    2015-09-01

    This paper is concerned with the fractionalized diffusion equations governing the law of the fractional Brownian motion BH(t). We obtain solutions of these equations which are probability laws extending that of BH(t). Our analysis is based on McBride fractional operators generalizing the hyper-Bessel operators L and converting their fractional power Lα into Erdélyi-Kober fractional integrals. We study also probabilistic properties of the random variables whose distributions satisfy space-time fractional equations involving Caputo and Riesz fractional derivatives. Some results emerging from the analysis of fractional equations with time-varying coefficients have the form of distributions of time-changed random variables.

  5. Calculation and application of combined diffusion coefficients in thermal plasmas.

    PubMed

    Murphy, Anthony B

    2014-01-01

    The combined diffusion coefficient method is widely used to treat the mixing and demixing of different plasma gases and vapours in thermal plasmas, such as welding arcs and plasma jets. It greatly simplifies the treatment of diffusion for many gas mixtures without sacrificing accuracy. Here, three subjects that are important in the implementation of the combined diffusion coefficient method are considered. First, it is shown that different expressions for the combined diffusion coefficients, arising from different definitions for the stoichiometric coefficients that assign the electrons to the two gases, are equivalent. Second, an approach is presented for calculating certain partial differential terms in the combined temperature and pressure diffusion coefficients that can cause difficulties. Finally, a method for applying the combined diffusion coefficients in computational models, which typically require diffusion to be expressed in terms of mass fraction gradients, is given. PMID:24603457

  6. Calculation and application of combined diffusion coefficients in thermal plasmas

    PubMed Central

    Murphy, Anthony B.

    2014-01-01

    The combined diffusion coefficient method is widely used to treat the mixing and demixing of different plasma gases and vapours in thermal plasmas, such as welding arcs and plasma jets. It greatly simplifies the treatment of diffusion for many gas mixtures without sacrificing accuracy. Here, three subjects that are important in the implementation of the combined diffusion coefficient method are considered. First, it is shown that different expressions for the combined diffusion coefficients, arising from different definitions for the stoichiometric coefficients that assign the electrons to the two gases, are equivalent. Second, an approach is presented for calculating certain partial differential terms in the combined temperature and pressure diffusion coefficients that can cause difficulties. Finally, a method for applying the combined diffusion coefficients in computational models, which typically require diffusion to be expressed in terms of mass fraction gradients, is given. PMID:24603457

  7. ANALYTIC FORMS OF THE PERPENDICULAR DIFFUSION COEFFICIENT IN NRMHD TURBULENCE

    SciTech Connect

    Shalchi, A.

    2015-02-01

    In the past different analytic limits for the perpendicular diffusion coefficient of energetic particles interacting with magnetic turbulence were discussed. These different limits or cases correspond to different transport modes describing how the particles are diffusing across the large-scale magnetic field. In the current paper we describe a new transport regime by considering the model of noisy reduced magnetohydrodynamic turbulence. We derive different analytic forms of the perpendicular diffusion coefficient, and while we do this, we focus on the aforementioned new transport mode. We show that for this turbulence model a small perpendicular diffusion coefficient can be obtained so that the latter diffusion coefficient is more than hundred times smaller than the parallel diffusion coefficient. This result is relevant to explain observations in the solar system where such small perpendicular diffusion coefficients have been reported.

  8. Diffusion coefficient of three-dimensional Yukawa liquids

    SciTech Connect

    Dzhumagulova, K. N.; Ramazanov, T. S.; Masheeva, R. U.

    2013-11-15

    The purpose of this work is an investigation of the diffusion coefficient of the dust component in complex plasma. The computer simulation of the Yukawa liquids was made on the basis of the Langevin equation, which takes into account the influence of buffer plasma on the dust particles dynamics. The Green–Kubo relation was used to calculate the diffusion coefficient. Calculations of the diffusion coefficient for a wide range of the system parameters were performed. Using obtained numerical data, we constructed the interpolation formula for the diffusion coefficient. We also show that the interpolation formula correctly describes experimental data obtained under microgravity conditions.

  9. Diffusion coefficient of three-dimensional Yukawa liquids

    NASA Astrophysics Data System (ADS)

    Dzhumagulova, K. N.; Ramazanov, T. S.; Masheeva, R. U.

    2013-11-01

    The purpose of this work is an investigation of the diffusion coefficient of the dust component in complex plasma. The computer simulation of the Yukawa liquids was made on the basis of the Langevin equation, which takes into account the influence of buffer plasma on the dust particles dynamics. The Green-Kubo relation was used to calculate the diffusion coefficient. Calculations of the diffusion coefficient for a wide range of the system parameters were performed. Using obtained numerical data, we constructed the interpolation formula for the diffusion coefficient. We also show that the interpolation formula correctly describes experimental data obtained under microgravity conditions.

  10. Combined diffusion coefficients for a mixture of three ionized gases

    NASA Astrophysics Data System (ADS)

    Zhang, X. N.; Murphy, A. B.; Li, H. P.; Xia, W. D.

    2014-12-01

    The combined diffusion coefficient method has been demonstrated to greatly simplify the treatment of diffusion in the modelling of thermal plasmas in gas mixtures without loss of accuracy. In this paper, an extension of this method to allow treatment of diffusion of a three-gas mixture has been achieved, provided that the gases are homonuclear and do not react with each other, and satisfy local chemical equilibrium. Formulas for the combined diffusion coefficients are presented, and combined diffusion coefficients for different mixtures of helium, argon and carbon at temperatures up to 30 000 K and at atmosphere pressure are calculated as an example.

  11. Bounce resonance diffusion coefficients for spatially confined waves

    NASA Astrophysics Data System (ADS)

    Li, Xinxin; Tao, Xin; Lu, Quanmin; Dai, Lei

    2015-11-01

    Theoretical bounce resonance diffusion coefficients from interactions between electrons and spatially confined waves are derived and validated. Roberts and Schulz bounce resonance diffusion coefficients assume waves to be present on the whole bounce trajectory of particles; therefore, they are not directly applicable to waves that have a finite spatial extent. We theoretically derive and numerically validate a new set of bounce resonance diffusion coefficients for spatially confined waves. We apply our analysis to magnetosonic waves, which are confined to equatorial regions, using a previously published magnetosonic wave model. We find that the bounce resonance diffusion coefficients are comparable to the gyroresonance diffusion coefficients. We conclude that bounce resonance diffusion with magnetosonic waves might play an important role in relativistic electron dynamics.

  12. Temperature dependence of the diffusion coefficient of nanoparticles

    NASA Astrophysics Data System (ADS)

    Rudyak, V. Ya.; Dubtsov, S. N.; Baklanov, A. M.

    2008-06-01

    The temperature dependence of the diffusion coefficient of nanoparticles in gases has been experimentally studied. It is established that this dependence significantly differs from that predicted by various correlations, in particular, by the Cunningham-Millikan-Davies correlation that is used as an instrumental basis for virtually all methods of measurement of the diffusion coefficient in aerosols.

  13. Determination of the zincate diffusion coefficient and its application to alkaline battery problems

    NASA Technical Reports Server (NTRS)

    May, C. E.; Kautz, Harold E.

    1978-01-01

    The diffusion coefficient for the zincate ion at 24 C was found to be 9.9 X 10 to the minus 7th power squared cm per sec + or - 30 percent in 45 percent potassium hydroxide and 1.4 x 10 to the minus 7 squared cm per sec + or - 25 percent in 40 percent sodium hydroxide. Comparison of these values with literature values at different potassium hydroxide concentrations show that the Stokes-Einstein equation is obeyed. The diffusion coefficient is characteristic of the zincate ion (not the cation) and independent of its concentration. Calculations with the measured value of the diffusion coefficient show that the zinc concentration in an alkaline zincate half cell becomes uniform throughout in tens of hours by diffusion alone. Diffusion equations are derived which are applicable to finite size chambers. Details and discussion of the experimental method are also given.

  14. Determination of the zincate diffusion coefficient and its application to alkaline battery problems

    NASA Technical Reports Server (NTRS)

    May, C. E.; Kautz, H. E.

    1978-01-01

    The diffusion coefficient for the zincate ion at 24 C was found to be 9.9 x 10 to the -7th power sq cm/sec + or - 30% in 45% potassium hydroxide and 1.4 x 10 to the -7th power sq cm/sec + or - 25% in 40% sodium hydroxide. Comparison of these values with literature values at different potassium hydroxide concentrations show that the Stokes-Einstein equation is obeyed. The diffusion coefficient is characteristic of the zincate ion (not the cation) and independent of its concentration. Calculations with the measured value of the diffusion coefficient show that the zinc concentration in an alkaline zincate half-cell becomes uniform throughout in tens of hours by diffusion alone. Diffusion equations are derived which are applicable to finite-size chambers. Details and discussion of the experimental method are also given.

  15. Comparative study of methods used to estimate ionic diffusion coefficients using migration tests

    SciTech Connect

    Narsilio, G.A. Li, R. Pivonka, P. Smith, D.W.

    2007-08-15

    Ionic diffusion coefficients are estimated rapidly using electromigration tests. In this paper, electromigration tests are accurately simulated by numerically solving the Nernst-Planck (NP) equation (coupled with the electroneutrality condition (EN)) using the finite element method. Numerical simulations are validated against experimental data obtained elsewhere [E. Samson, J. Marchand, K.A. Snyder, Calculation of ionic diffusion coefficients on the basis of migration test results, Materials and Structures/Materiaux et Constructions 36 (257) (2003) 156-165., H. Friedmann, O. Amiri, A. Ait-Mokhtar, A direct method for determining chloride diffusion coefficient by using migration test, Cement and Concrete Research 34 (11) (2004) 1967-1973.]. It is shown that migration due to the non-linear electric potential completely overwhelms diffusion due to concentration gradients. The effects of different applied voltage differences and chloride source concentrations on estimations of chloride diffusion coefficients are explored. We show that the pore fluid within concrete and mortar specimens generally differs from the curing solution, lowering the apparent diffusion coefficient, primarily due to interactions of chloride ions with other ions in the pore fluid. We show that the variation of source chloride concentration strongly affects the estimation of diffusion coefficients in non-steady-state tests; however this effect vanishes under steady-state conditions. Most importantly, a comparison of diffusion coefficients obtained from sophisticated analyses (i.e., NP-EN) and a variety of commonly used simplifying methods to estimate chloride diffusion coefficients allows us to identify those methods and experimental conditions where both approaches deliver good estimates for chloride diffusion coefficients. Finally, we demonstrate why simultaneous use and monitoring of current density and fluxes are recommended for both the non-steady and steady-state migration tests.

  16. Velocity-Space Diffusion Coefficients Due to Full-Wave ICRF Fields in Toroidal Geometry

    SciTech Connect

    Harvey, R.W.; Jaeger, F.; Berry, L.A.; Batchelor, D.B.; D'Azevedo, E.; Carter, M.D.; Ershov, N.M.; Smirnov, A.P.; Bonoli, P.; Wright, J.C.; Smithe, D.N.

    2005-09-26

    Jaeger et al. have calculated bounce-averaged QL diffusion coefficients from AORSA full-wave fields, based on non-Maxwellian distributions from CQL3D Fokker-Planck code. A zero banana-width approximation is employed. Complementing this calculation, a fully numerical calculation of ion velocity diffusion coefficients using the full-wave fields in numerical tokamak equilibria has been implemented to determine the finite orbit width effects. The un-approximated Lorentz equation of motion is integrated to obtain the change in velocity after one complete poloidal transit of the tokamak. Averaging velocity changes over initial starting gyro-phase and toroidal angle gives bounce-averaged diffusion coefficients. The coefficients from the full-wave and Lorentz orbit methods are compared for an ITER DT second harmonic tritium ICRF heating case: the diffusion coefficients are similar in magnitude but reveal substantial finite orbit effects.

  17. Lithium ion diffusion through glassy carbon plate

    SciTech Connect

    Inaba, M.; Nohmi, S.; Funabiki, A.; Abe, T.; Ogumi, Z.

    1998-07-01

    The electrochemical permeation method was applied to the determination of the diffusion coefficient of Li{sup +} ion (D{sub Li{sup +}}) in a glassy carbon (GC) plate. The cell was composed of two compartments, which were separated by the GC plate. Li{sup +} ions were inserted electrochemically from one face, and extracted from the other. The flux of the permeated Li{sup +} ions was monitored as an oxidation current at the latter face. The diffusion coefficient was determined by fitting the transient current curve with a theoretical one derived from Fick's law. When the potential was stepped between two potentials in the range of 0 to 0.5 V, transient curves were well fitted with the theoretical one, which gave D{sub Li{sup +}} values on the order of 10{sup {minus}8} cm{sup {minus}2} s{sup {minus}1}. In contrast, when the potential was stepped between two potentials across 0.5 V, significant deviation was observed. The deviation indicated the presence of trap sites as well as diffusion sites for Li{sup +} ions, the former of which is the origin of the irreversible capacity of GC.

  18. Analytic expressions for ULF wave radiation belt radial diffusion coefficients

    PubMed Central

    Ozeke, Louis G; Mann, Ian R; Murphy, Kyle R; Jonathan Rae, I; Milling, David K

    2014-01-01

    We present analytic expressions for ULF wave-derived radiation belt radial diffusion coefficients, as a function of L and Kp, which can easily be incorporated into global radiation belt transport models. The diffusion coefficients are derived from statistical representations of ULF wave power, electric field power mapped from ground magnetometer data, and compressional magnetic field power from in situ measurements. We show that the overall electric and magnetic diffusion coefficients are to a good approximation both independent of energy. We present example 1-D radial diffusion results from simulations driven by CRRES-observed time-dependent energy spectra at the outer boundary, under the action of radial diffusion driven by the new ULF wave radial diffusion coefficients and with empirical chorus wave loss terms (as a function of energy, Kp and L). There is excellent agreement between the differential flux produced by the 1-D, Kp-driven, radial diffusion model and CRRES observations of differential electron flux at 0.976 MeV—even though the model does not include the effects of local internal acceleration sources. Our results highlight not only the importance of correct specification of radial diffusion coefficients for developing accurate models but also show significant promise for belt specification based on relatively simple models driven by solar wind parameters such as solar wind speed or geomagnetic indices such as Kp. Key Points Analytic expressions for the radial diffusion coefficients are presented The coefficients do not dependent on energy or wave m value The electric field diffusion coefficient dominates over the magnetic PMID:26167440

  19. Improved diffusion coefficients generated from Monte Carlo codes

    SciTech Connect

    Herman, B. R.; Forget, B.; Smith, K.; Aviles, B. N.

    2013-07-01

    Monte Carlo codes are becoming more widely used for reactor analysis. Some of these applications involve the generation of diffusion theory parameters including macroscopic cross sections and diffusion coefficients. Two approximations used to generate diffusion coefficients are assessed using the Monte Carlo code MC21. The first is the method of homogenization; whether to weight either fine-group transport cross sections or fine-group diffusion coefficients when collapsing to few-group diffusion coefficients. The second is a fundamental approximation made to the energy-dependent P1 equations to derive the energy-dependent diffusion equations. Standard Monte Carlo codes usually generate a flux-weighted transport cross section with no correction to the diffusion approximation. Results indicate that this causes noticeable tilting in reconstructed pin powers in simple test lattices with L2 norm error of 3.6%. This error is reduced significantly to 0.27% when weighting fine-group diffusion coefficients by the flux and applying a correction to the diffusion approximation. Noticeable tilting in reconstructed fluxes and pin powers was reduced when applying these corrections. (authors)

  20. Observations of Ag diffusion in ion implanted SiC

    SciTech Connect

    Gerczak, Tyler J.; Leng, Bin; Sridharan, Kumar; Jerry L. Hunter, Jr.; Giordani, Andrew J.; Allen, Todd R.

    2015-03-17

    The nature and magnitude of Ag diffusion in SiC has been a topic of interest in connection with the performance of tristructural isotropic (TRISO) coated particle fuel for high temperature gas-cooled nuclear reactors. Ion implantation diffusion couples have been revisited to continue developing a more complete understanding of Ag fission product diffusion in SiC. Ion implantation diffusion couples fabricated from single crystal 4H-SiC and polycrystalline 3C-SiC substrates and exposed to 1500–1625°C, were investigated in this study by transmission electron microscopy and secondary ion mass spectrometry (SIMS). The high dynamic range of SIMS allowed for multiple diffusion régimes to be investigated, including enhanced diffusion by implantation-induced defects and grain boundary (GB) diffusion in undamaged SiC. Lastly, estimated diffusion coefficients suggest GB diffusion in bulk SiC does not properly describe the release observed from TRISO fuel.

  1. Derivation of anisotropic diffusion coefficients in a large annular cavity

    SciTech Connect

    Eiichi Suetomi; Hiroshi Sekimoto )

    1993-06-01

    A small reactor for a spacecraft or a small liquid-metal reactor for urban siting, decentralized electrical units, or seawater desalination is designed for a large leakage of neutrons from the reactor core. In these reactors, a movable annular reflector is used for reactivity control. Therefore, a large annular cavity exists between the core and the shielding materials. In this paper, anisotropic diffusion coefficients for a large annular cavity are derived by equating the neutron currents obtained by the diffusion equation and by the transport equation. These diffusion coefficients depend only on the geometrical configuration of the cavity. A numerical comparison of diffusion calculations using these diffusion coefficients and transport calculations shows good agreement.

  2. The temperature variation of hydrogen diffusion coefficients in metal alloys

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1990-01-01

    Hydrogen diffusion coefficients were measured as a function of temperature for a few metal alloys using an electrochemical evolution technique. Results from these measurements are compared to those obtained by the time-lag method. In all cases, diffusion coefficients obtained by the electrochemical method are larger than those by the time-lag method by an order of magnitude or more. These differences are attributed mainly to hydrogen trapping.

  3. Experimental measurements of the diffusion coefficient of 212Pb.

    PubMed

    Su, Y F; Newton, G J; Cheng, Y S; Yeh, H C

    1989-03-01

    Knowledge of the diffusion coefficient of Rn progeny is necessary for assessing the radiation exposure resulting from exposure to Rn and its progeny. The diffusion coefficient for 220Rn progeny was determined in ambient air by two independent methods, measuring deposition using a cylindrical tube or screens. A sampling train consisting of a diffusion tube and a screen-type diffusion battery was used for the experimental study. A range of flow rates and relative humidities was investigated. For 35% less than or equal to RH less than or equal to 85%, results from the two systems agree with each other. The diffusion coefficient of 212Pb was 0.036 +/- 0.002 cm2 s-1 and 0.037 +/- 0.004 cm2 s-1 for the tube and screen penetration methods, respectively. In low humidity air (RH less than 30%), a linear relationship between the diffusion coefficient of 212Pb and relative humidity was observed. The observed diffusion coefficient is strongly affected by the amount of material agglomerated onto the 212Pb atom. Further studies on the effects of trace gases and organics are required to fully understand the results. PMID:2537267

  4. Experimental measurements of the diffusion coefficient of /sup 212/Pb

    SciTech Connect

    Su, Y.F.; Newton, G.J.; Cheng, Y.S.; Yeh, H.C.

    1989-03-01

    Knowledge of the diffusion coefficient of Rn progeny is necessary for assessing the radiation exposure resulting from exposure to Rn and its progeny. The diffusion coefficient for 220Rn progeny was determined in ambient air by two independent methods, measuring deposition using a cylindrical tube or screens. A sampling train consisting of a diffusion tube and a screen-type diffusion battery was used for the experimental study. A range of flow rates and relative humidities was investigated. For 35% less than or equal to RH less than or equal to 85%, results from the two systems agree with each other. The diffusion coefficient of 212Pb was 0.036 +/- 0.002 cm2 s-1 and 0.037 +/- 0.004 cm2 s-1 for the tube and screen penetration methods, respectively. In low humidity air (RH less than 30%), a linear relationship between the diffusion coefficient of 212Pb and relative humidity was observed. The observed diffusion coefficient is strongly affected by the amount of material agglomerated onto the 212Pb atom. Further studies on the effects of trace gases and organics are required to fully understand the results.

  5. Calculation of Diffusion Coefficients from Bounce Resonance with Magnetosonic Waves

    NASA Astrophysics Data System (ADS)

    Tao, X.; Li, X.; Lu, Q.; Dai, L.

    2015-12-01

    Theoretical bounce resonance diffusion coefficients for interactions between electrons and magnetosonic waves are calculated and validated using guiding-center test particle simulations. First, we compare the theoretical diffusion coefficients of Roberts and Schulz with test particle simulations and find perfect agreement. However, the theoretical diffusion coefficients of Roberts and Schulz assume waves to be present on the whole trajectories of particles; therefore, they are not directly applicable to magnetosonic waves, which are found to be confined to equatorial regions from observations. Second, we derive a new set of bounce-resonance diffusion coefficients, taking into consideration the equatorial confinement of magnetosonic waves. These new diffusion coefficients are also validated by test particle simulations. Using a previously published magnetosonic wave model, our results demonstrate that bounce-resonance diffusion mainly results in strong pitch angle scattering of energetic electrons even with a moderate wave amplitude of 50 pT. We conclude that bounce-resonance diffusion plays an important role in relativistic electron dynamics and should be incorporated into global radiation belt modeling.

  6. Empirical determination of diffusion coefficients and geospeedometry

    NASA Astrophysics Data System (ADS)

    Jaoul, Olivier; Béjina, Frédéric

    2005-02-01

    Geospeedometry allows to estimate the cooling rate (s init) of metamorphic rocks at the beginning of the cooling history using diffusion data. But the choice of a diffusion activation energy (E) and a preexponential factor (D 0) from experimental results can be difficult. We propose a method to obtain E directly from the rock itself by studying the variation of the average concentration of elements or isotopes () as a function of mineral grain size (d). An appropriate value of D 0 can then be estimated using an existing compensation rule, a linear relationship between log D 0 and E. Consequently, uncertainties on s init are markedly reduced. All parameters of this analytical model and their sensitivity on s init can be estimated from of the mineral grains under study. As a test we apply our model to a study by Edwards and Valley (1998)**** on 18O/ 16O fractionation between diopside and calcite in Adirondacks marbles, and find a cooling rate in agreement with previous works, without choosing experimental values for E and D 0.

  7. Anisotropic parallel self-diffusion coefficients near the calcite surface: A molecular dynamics study.

    PubMed

    Franco, Luís F M; Castier, Marcelo; Economou, Ioannis G

    2016-08-28

    Applying classical molecular dynamics simulations, we calculate the parallel self-diffusion coefficients of different fluids (methane, nitrogen, and carbon dioxide) confined between two {101̄4} calcite crystal planes. We have observed that the molecules close to the calcite surface diffuse differently in distinct directions. This anisotropic behavior of the self-diffusion coefficient is investigated for different temperatures and pore sizes. The ion arrangement in the calcite crystal and the strong interactions between the fluid particles and the calcite surface may explain the anisotropy in this transport property. PMID:27586936

  8. Calculation of self-diffusion coefficients in iron

    SciTech Connect

    Zhang, Baohua

    2014-01-15

    On the basis of available P-V-T equation of state of iron, the temperature and pressure dependence of self-diffusion coefficients in iron polymorphs (α, δ, γ and ε phases) have been successfully reproduced in terms of the bulk elastic and expansivity data by means of a thermodynamical model that interconnects point defects parameters with bulk properties. The calculated diffusion parameters, such as self-diffusion coefficient, activation energy and activation volume over a broad temperature range (500-2500 K) and pressure range (0-100 GPa), compare favorably well with experimental or theoretical ones when the uncertainties are considered.

  9. Diffusion coefficient and shear viscosity of rigid water models.

    PubMed

    Tazi, Sami; Boţan, Alexandru; Salanne, Mathieu; Marry, Virginie; Turq, Pierre; Rotenberg, Benjamin

    2012-07-18

    We report the diffusion coefficient and viscosity of popular rigid water models: two non-polarizable ones (SPC/E with three sites, and TIP4P/2005 with four sites) and a polarizable one (Dang-Chang, four sites). We exploit the dependence of the diffusion coefficient on the system size (Yeh and Hummer 2004 J. Phys. Chem. B 108 15873) to obtain the size-independent value. This also provides an estimate of the viscosity of all water models, which we compare to the Green-Kubo result. In all cases, a good agreement is found. The TIP4P/2005 model is in better agreement with the experimental data for both diffusion and viscosity. The SPC/E and Dang-Chang models overestimate the diffusion coefficient and underestimate the viscosity. PMID:22739097

  10. Transport coefficients of He(+) ions in helium.

    PubMed

    Viehland, Larry A; Johnsen, Rainer; Gray, Benjamin R; Wright, Timothy G

    2016-02-21

    This paper demonstrates that the transport coefficients of (4)He(+) in (4)He can be calculated over wide ranges of E/N, the ratio of the electrostatic field strength to the gas number density, with the same level of precision as can be obtained experimentally if sufficiently accurate potential energy curves are available for the X(2)Σu (+) and A(2)Σg (+) states and one takes into account resonant charge transfer. We start by computing new potential energy curves for these states and testing their accuracy by calculating spectroscopic values for the separate states. It is established that the potentials obtained by extrapolation of results from d-aug-cc-pVXZ (X = 6, 7) basis sets using the CASSCF+MRCISD approach are each in exceptionally close agreement with the best potentials available and with experiment. The potentials are then used in a new computer program to determine the semi-classical phase shifts and the transport cross sections, and from these the gaseous ion transport coefficients are determined. In addition, new experimental values are reported for the mobilities of (4)He(+) in (4)He at 298.7 K, as a function of E/N, where careful consideration is given to minimizing various sources of uncertainty. Comparison with previously measured values establishes that only one set of previous data is reliable. Finally, the experimental and theoretical ion transport coefficients are shown to be in very good to excellent agreement, once corrections are applied to account for quantum-mechanical effects. PMID:26896985

  11. Transport coefficients of He+ ions in helium

    NASA Astrophysics Data System (ADS)

    Viehland, Larry A.; Johnsen, Rainer; Gray, Benjamin R.; Wright, Timothy G.

    2016-02-01

    This paper demonstrates that the transport coefficients of 4He+ in 4He can be calculated over wide ranges of E/N, the ratio of the electrostatic field strength to the gas number density, with the same level of precision as can be obtained experimentally if sufficiently accurate potential energy curves are available for the X2Σu+ and A2Σg+ states and one takes into account resonant charge transfer. We start by computing new potential energy curves for these states and testing their accuracy by calculating spectroscopic values for the separate states. It is established that the potentials obtained by extrapolation of results from d-aug-cc-pVXZ (X = 6, 7) basis sets using the CASSCF+MRCISD approach are each in exceptionally close agreement with the best potentials available and with experiment. The potentials are then used in a new computer program to determine the semi-classical phase shifts and the transport cross sections, and from these the gaseous ion transport coefficients are determined. In addition, new experimental values are reported for the mobilities of 4He+ in 4He at 298.7 K, as a function of E/N, where careful consideration is given to minimizing various sources of uncertainty. Comparison with previously measured values establishes that only one set of previous data is reliable. Finally, the experimental and theoretical ion transport coefficients are shown to be in very good to excellent agreement, once corrections are applied to account for quantum-mechanical effects.

  12. Divergent Diffusion Coefficients in Simulations of Fluids and Lipid Membranes.

    PubMed

    Vögele, Martin; Hummer, Gerhard

    2016-08-25

    We investigate the dependence of single-particle diffusion coefficients on the size and shape of the simulation box in molecular dynamics simulations of fluids and lipid membranes. We find that the diffusion coefficients of lipids and a carbon nanotube embedded in a lipid membrane diverge with the logarithm of the box width. For a neat Lennard-Jones fluid in flat rectangular boxes, diffusion becomes anisotropic, diverging logarithmically in all three directions with increasing box width. In elongated boxes, the diffusion coefficients normal to the long axis diverge linearly with the height-to-width ratio. For both lipid membranes and neat fluids, this behavior is predicted quantitatively by hydrodynamic theory. Mean-square displacements in the neat fluid exhibit intermediate regimes of anomalous diffusion, with t ln t and t(3/2) components in flat and elongated boxes, respectively. For membranes, the large finite-size effects, and the apparent inability to determine a well-defined lipid diffusion coefficient from simulation, rationalize difficulties in comparing simulation results to each other and to those from experiments. PMID:27385207

  13. Exact curvilinear diffusion coefficients in the repton model

    NASA Astrophysics Data System (ADS)

    Buhot, A.

    2005-10-01

    The Rubinstein-Duke or repton model is one of the simplest lattice model of reptation for the diffusion of a polymer in a gel or a melt. Recently, a slightly modified model with hardcore interactions between the reptons has been introduced. The curvilinear diffusion coefficients of both models are exactly determined for all chain lengths. The case of periodic boundary conditions is also considered.

  14. Spatial Mapping of Translational Diffusion Coefficients Using Diffusion Tensor Imaging: A Mathematical Description

    PubMed Central

    SHETTY, ANIL N.; CHIANG, SHARON; MALETIC-SAVATIC, MIRJANA; KASPRIAN, GREGOR; VANNUCCI, MARINA; LEE, WESLEY

    2016-01-01

    In this article, we discuss the theoretical background for diffusion weighted imaging and diffusion tensor imaging. Molecular diffusion is a random process involving thermal Brownian motion. In biological tissues, the underlying microstructures restrict the diffusion of water molecules, making diffusion directionally dependent. Water diffusion in tissue is mathematically characterized by the diffusion tensor, the elements of which contain information about the magnitude and direction of diffusion and is a function of the coordinate system. Thus, it is possible to generate contrast in tissue based primarily on diffusion effects. Expressing diffusion in terms of the measured diffusion coefficient (eigenvalue) in any one direction can lead to errors. Nowhere is this more evident than in white matter, due to the preferential orientation of myelin fibers. The directional dependency is removed by diagonalization of the diffusion tensor, which then yields a set of three eigenvalues and eigenvectors, representing the magnitude and direction of the three orthogonal axes of the diffusion ellipsoid, respectively. For example, the eigenvalue corresponding to the eigenvector along the long axis of the fiber corresponds qualitatively to diffusion with least restriction. Determination of the principal values of the diffusion tensor and various anisotropic indices provides structural information. We review the use of diffusion measurements using the modified Stejskal–Tanner diffusion equation. The anisotropy is analyzed by decomposing the diffusion tensor based on symmetrical properties describing the geometry of diffusion tensor. We further describe diffusion tensor properties in visualizing fiber tract organization of the human brain.

  15. Diffusion coefficients of sodium fluoride in aqueous solutions at 298.15 k and 310.15 k.

    PubMed

    Ribeiro, Ana C F; Lobo, Victor M M; Sobral, Abilio J F N; Soares, Helder T F C; Esteso, Ana R J; Esteso, Miguel A

    2010-06-01

    Mutual diffusion coefficients (interdiffusion coefficients) have been measured for sodium fluoride in water at 298.15 K and 310.15 K at concentrations between 0.003 mol dm-3 and 0.05 mol dm-3. The diffusion coefficients were measured using a conductimetric cell. The experimental mutual diffusion coefficients are discussed on the basis of the Onsager-Fuoss model. The limiting molar conductivity of the fluoride ion in these solutions at 310.15 K has been estimated using these results. PMID:24061738

  16. Application of anomalous diffusion in production of negative ions

    NASA Astrophysics Data System (ADS)

    Jimbo, Kouichi

    1984-11-01

    The production of negative hydrogen ions is investigated in the reflex-type negative ion sources. When anomalous diffusion in the positive column was found by Hoh and Lehnert [Phys. Fluids 3, 600 (1960)], it was pointed out that the large particle loss produced by anomalous diffusion is compensated for by the larger particle production inside the plasma. In the present experiments anomalous diffusion was artificially encouraged by changing the radial electric field inside the reflex discharge. Apparent encouragement of negative ion current by the increase of the density fluctuation amplitude is observed. Twice as much negative ion current was obtained with the artificial encouragement as without. On the other hand, the larger extracted negative ion current was observed with a lower electron temperature, which is calculated from the anomalous diffusion coefficient derived from a simple nonlinear theory. This result is consistent with Wadehra's calculated results [Appl. Phys. Lett. 35, 917 (1979)].

  17. Application of anomalous diffusion in production of negative ions

    SciTech Connect

    Jimbo, K.

    1984-11-01

    The production of negative hydrogen ions is investigated in the reflex-type negative ion sources. When anomalous diffusion in the positive column was found by Hoh and Lehnert (Phys. Fluids 3, 600 (1960)), it was pointed out that the large particle loss produced by anomalous diffusion is compensated for by the larger particle production inside the plasma. In the present experiments anomalous diffusion was artificially encouraged by changing the radial electric field inside the reflex discharge. Apparent encouragement of negative ion current by the increase of the density fluctuation amplitude is observed. Twice as much negative ion current was obtained with the artificial encouragement as without. On the other hand, the larger extracted negative ion current was observed with a lower electron temperature, which is calculated from the anomalous diffusion coefficient derived from a simple nonlinear theory. This result is consistent with Wadehra's calculated results (Appl. Phys. Lett. 35, 917 (1979)).

  18. The diffusion of ions in unconsolidated sediments

    USGS Publications Warehouse

    Manheim, F. T.

    1970-01-01

    Diffusion in unconsolidated sediments generally proceeds at rates ranging from half to one twentieth of those applying to diffusion of ions and molecules in free solution. Diffusion rates are predictable with respect to porosity and path tortuosity in host sediments, and can be conveniently measured by determinations of electrical resistivity on bulk sediment samples. Net ion flux is further influenced by reactions of diffusing species with enclosing sediments, but such influences should not be confused with or lumped with diffusion processes. ?? 1970.

  19. Evaluation of the vertical turbulent diffusion coefficient of industrial emissions

    NASA Astrophysics Data System (ADS)

    Ryzhakova, N. K.; Pokrovskaya, E. A.; Babicheva, V. O.

    2015-07-01

    A method for determining the vertical turbulent diffusion coefficients of industrial emissions in complex terrain and with long exposure times has been considered. The method is based on the usage of the distribution of the polluting impurity measured along a certain direction from a point source. The measurements are carried out with moss-biomonitors for a CHP in Novosibirsk.

  20. Optimal estimation of diffusion coefficients from single-particle trajectories

    NASA Astrophysics Data System (ADS)

    Vestergaard, Christian L.; Blainey, Paul C.; Flyvbjerg, Henrik

    2014-02-01

    How does one optimally determine the diffusion coefficient of a diffusing particle from a single-time-lapse recorded trajectory of the particle? We answer this question with an explicit, unbiased, and practically optimal covariance-based estimator (CVE). This estimator is regression-free and is far superior to commonly used methods based on measured mean squared displacements. In experimentally relevant parameter ranges, it also outperforms the analytically intractable and computationally more demanding maximum likelihood estimator (MLE). For the case of diffusion on a flexible and fluctuating substrate, the CVE is biased by substrate motion. However, given some long time series and a substrate under some tension, an extended MLE can separate particle diffusion on the substrate from substrate motion in the laboratory frame. This provides benchmarks that allow removal of bias caused by substrate fluctuations in CVE. The resulting unbiased CVE is optimal also for short time series on a fluctuating substrate. We have applied our estimators to human 8-oxoguanine DNA glycolase proteins diffusing on flow-stretched DNA, a fluctuating substrate, and found that diffusion coefficients are severely overestimated if substrate fluctuations are not accounted for.

  1. Measurement of the local particle diffusion coefficient in a magnetized plasma

    SciTech Connect

    Meyerhofer, D.D.; Levinton, F.M.

    1987-02-01

    Local impurity particle diffusion coefficients have been measured in a low temperature plasma by the injection of test particles at the center of the plasma. The injection is accomplished by a high voltage discharge between two small graphite electrodes on a probe. The probe can be located anywhere in the plasma. The diffusion is observed spectroscopically. An analysis of the spatial and temporal evolution of the CII radiation from the carbon discharge can determine the parallel and perpendicular diffusion of the impurity ions. Results with the diagnostic have been obtained in the Proto S-1/C spheromak. The measured value of the diffusion coefficient in the afterglow plasma is in good agreement with classical predictions.

  2. The porous medium permeability and effective diffusion coefficient direct correlation

    NASA Astrophysics Data System (ADS)

    Markicevic, Bojan

    2012-11-01

    Dimensionless analysis of a momentum and mass transport in the homogeneous porous medium reveals that the permeability and effective to the molecular diffusion coefficient ratio can be expressed as a function of medium pore and throat sizes and two additional geometrical scales. These two scales, each one pertinent to the momentum and mass transport, respectively, are referred to as permeability and diffusivity characteristic scales. Based on these findings, it can be shown that the medium permeability and effective diffusivity can be correlated, and, at the same time, that one microscopic scale needs to be known in this correlation. The same is implied from the Katz-Thompson formula - which correlates the permeability, effective diffusivity, and breakthrough capillary pressure length scale. We recast the correlation developed into the Katz-Thompson formula form, showing how corresponding members are related. It turns out that the coefficient from the Katz-Thompson formula is equal to the ratio of the permeability to diffusivity characteristic length scales, and it is indeed constant for the homogeneous media. As porous media are heterogeneous materials, the analysis is extended onto such materials using heterogeneous capillary networks. The networks with the uniform, normal and log-normal pore size distribution functions are generated, where the networks are sufficiently large to obtain small variations in permeability and effective diffusivity for pore size distribution set. For such stochastically homogeneous media, the effective pore size averages are used in calculating the permeability and effective diffusivity showing the true nature of the coefficient in the Katz-Thompson formula.

  3. Transport coefficients of gaseous ions in an electric field

    NASA Technical Reports Server (NTRS)

    Whealton, J. H.; Mason, E. A.

    1974-01-01

    A general theory of ion mobility formulated by Kihara (1953) is extended to ion diffusion and to mixtures of neutral gases. The theory assumes that only binary collisions between ions and neutral particles need to be taken into account and that the velocity distribution function of the neutral particles is Maxwellian. These assumptions make it possible to use a linearized Boltzmann equation. Questions of mobility are considered along with aspects of diffusion and deviations from Fick's law of diffusion.

  4. Determination of thermal diffusion coefficient of nanofluid: Fullerene-toluene

    NASA Astrophysics Data System (ADS)

    Martin, Alain; Bou-Ali, M. Mounir

    2011-05-01

    Thermodiffusion coefficient at fullerene mass concentrations of 0.05%, 0.1%, 0.15%, and 0.2% was established for pure fullerene (C 60) diluted in toluene solutions. For this, the thermogravitational technique has been used in planar configuration with 4 extraction points. The determination of the concentration distribution along the column in steady state is determined by the method of analysis based on density measurements. In order to determine the thermal diffusion coefficient all thermophysical properties such as density, viscosity, thermal expansion coefficient and mass expansion coefficients were determined. All these studies coincide with the importance of the knowledge of the thermophysics and transport properties of the nanofluids to develop new applications and to optimize the existing ones.

  5. Determination of diffusion coefficient in disordered organic semiconductors

    NASA Astrophysics Data System (ADS)

    Rani, Varsha; Sharma, Akanksha; Ghosh, Subhasis

    2016-05-01

    Charge carrier transport in organic semiconductors is dominated by positional and energetic disorder in Gaussian density of states (GDOS) and is characterized by hopping through localized states. Due to the immobilization of charge carriers in these localized states, significant non-uniform carrier distribution exists, resulting diffusive transport. A simple, nevertheless powerful technique to determine diffusion coefficient D in disordered organic semiconductors has been presented. Diffusion coefficients of charge carriers in two technologically important organic molecular semiconductors, Pentacene and copper phthalocyanine (CuPc) have been measured from current-voltage (J-V) characteristics of Al/Pentacene/Au and Al/CuPc/Au based Schottky diodes. Ideality factor g and carrier mobility μ have been calculated from the exponential and space charge limited region respectively of J-V characteristics. Classical Einstein relation is not valid in organic semiconductors due to energetic disorders in DOS. Using generalized Einstein relation, diffusion coefficients have been obtained to be 1.31×10-6 and 1.73×10-7 cm2/s for Pentacene and CuPc respectively.

  6. Calcium diffusion coefficient in rod photoreceptor outer segments.

    PubMed Central

    Nakatani, Kei; Chen, Chunhe; Koutalos, Yiannis

    2002-01-01

    Calcium (Ca(2+)) modulates several of the enzymatic pathways that mediate phototransduction in the outer segments of vertebrate rod photoreceptors. Ca(2+) enters the rod outer segment through cationic channels kept open by cyclic GMP (cGMP) and is pumped out by a Na(+)/Ca(2+),K(+) exchanger. Light initiates a biochemical cascade, which leads to closure of the cGMP-gated channels, and a concomitant decline in the concentration of Ca(2+). This decline mediates the recovery from stimulation by light and underlies the adaptation of the cell to background light. The speed with which the decline in the Ca(2+) concentration propagates through the rod outer segment depends on the Ca(2+) diffusion coefficient. We have used the fluorescent Ca(2+) indicator fluo-3 and confocal microscopy to measure the profile of the Ca(2+) concentration after stimulation of the rod photoreceptor by light. From these measurements, we have obtained a value of 15 +/- 1 microm(2)s(-1) for the radial Ca(2+) diffusion coefficient. This value is consistent with the effect of a low-affinity, immobile buffer reported to be present in the rod outer segment (L.Lagnado, L. Cervetto, and P.A. McNaughton, 1992, J. Physiol. 455:111-142) and with a buffering capacity of approximately 20 for rods in darkness(S. Nikonov, N. Engheta, and E.N. Pugh, Jr., 1998, J. Gen. Physiol. 111:7-37). This value suggests that diffusion provides a significant delay for the radial propagation of the decline in the concentration of Ca(2+). Also, because of baffling by the disks, the longitudinal Ca(2+) diffusion coefficient will be in the order of 2 microm(2)s(-1), which is much smaller than the longitudinal cGMP diffusion coefficient (30-60 microm(2)s(-1); ). Therefore, the longitudinal decline of Ca(2+) lags behind the longitudinal spread of excitation by cGMP. PMID:11806915

  7. Diffusion coefficients from signal fluctuations: influence of molecular shape and rotational diffusion.

    PubMed

    Hahne, Susanne; Maass, Philipp

    2014-03-27

    Analysis of signal fluctuations of a locally fixed probe, caused by molecules diffusing under the probe, can be used to determine diffusion coefficients. Theoretical treatments so far have been limited to point-like particles or to molecules with circle-like shapes. Here we extend these treatments to molecules with rectangle-like shapes, for which also rotational diffusion needs to be taken into account. Focusing on the distribution of peak widths in the signal, we show how translational as well as rotational diffusion coefficients can be determined. We address also the question, how the distribution of interpeak time intervals and autocorrelation function can be employed for determining diffusion coefficients. Our approach is validated against kinetic Monte Carlo simulations. PMID:24640969

  8. Vertical eddy diffusion coefficient from the LANDSAT imagery

    NASA Technical Reports Server (NTRS)

    Viswanadham, Y. (Principal Investigator); Torsani, J. A.

    1982-01-01

    Analysis of five stable cases of the smoke plumes that originated in eastern Cabo Frio (22 deg 59'S; 42 deg 02'W), Brazil using LANDSAT imagery is presented for different months and years. From these images the lateral standard deviation (sigma sub y) and the lateral eddy diffusion coefficient (K sub y) are obtained from the formula based on Taylor's theory of diffusion by continuous moment. The rate of kinetic energy dissipation (e) is evaluated from the diffusion parameters sigma sub y and K sub y. Then, the vertical diffusion coefficient (K sub z) is estimated using Weinstock's formulation. These results agree well with the previous experimental values obtained over water surfaces by various workers. Values of e and K sub z show the weaker mixing processes in the marine stable boundary layer. The data sample is apparently to small to include representative active turbulent regions because such regions are so intermittent in time and in space. These results form a data base for use in the development and validation of mesoscale atmospheric diffusion models.

  9. Diffusion of solvents in coals: 2. Measurement of diffusion coefficients of pyridine in Cayirhan lignite

    SciTech Connect

    Meryem Seferinolu; Yuda Yurum

    2006-05-15

    The aim of this study is to measure the diffusion coefficients of pyridine in Turkish Cayirhan lignite (C: 57.1 wt%, dmmf) at temperatures about 20-27{sup o}C and determine the type of transport mechanism of diffusion. The raw coal sample was demineralized with HCl and HF by standard methods, and the raw and demineralized coal samples were extracted with pyridine. To investigate the diffusion of pyridine vapor in coal samples, the mass of pyridine uptake per mass of coal sample (M{sub t}/M{sub {infinity}}) was calculated as a function of time. The diffusion coefficients were measured from the slope of graphs of M{sub t}/M{sub {infinity}} versus t{sup 1/2}. The diffusion coefficient of pyridine in the raw coal increased from 10.0 x 10{sup -15} to 11.9 x 10{sup -15} m{sup 2}/s when the temperature was elevated from 21.1 to 26.9{sup o}C, respectively. The diffusion coefficients of pyridine raw coal and of those treated with HCl and HF were 11.9 x 10{sup -15}, 4.3 x 10{sup -15}, and 4.8 x 10{sup -15} m{sup 2}/s at 26.9{sup o}C, respectively. The studies in the present work on pyridine vapor diffusion in raw coals have generally indicated that the diffusion obeyed the Fickian diffusion mechanism the temperatures 20.0-27.0{sup o}C. Generally, the diffusion exponent values increased when the temperature elevated from 20.0 to 27.0{sup o}C, but this rise placed the diffusion of pyridine between the Fickian diffusion and Case II diffusion mechanisms. 29 refs., 6 figs., 4 tabs.

  10. Apparent diffusion coefficient map of a case of extramedullary plasmacytoma

    PubMed Central

    Ramachandran, Amrutha; Inyang, Alero F; Subhawong, Ty K

    2016-01-01

    Plasmacytomas are rare tumors, which arise from the monoclonal proliferation of malignant plasma cells. They may affect either the bony skeleton or rarely the soft tissues, the latter being referred to as extramedullary or extraosseous. We report a case of an extramedullary plasmacytoma that presented as a soft tissue mass involving the muscles of the left leg, in a patient who was previously treated for multiple myeloma. We describe the MR Imaging characteristics of the tumor and highlight the usefulness of diffusion-weighted imaging with apparent diffusion coefficient mapping. PMID:27200157

  11. An asixymmetric diffusion experiment for the determination of diffusion and sorption coefficients of rock samples

    SciTech Connect

    Takeda, M.; Hiratsuka, T.; Ito, K.; Finsterle, S.

    2011-02-01

    Diffusion anisotropy is a critical property in predicting migration of substances in sedimentary formations with very low permeability. The diffusion anisotropy of sedimentary rocks has been evaluated mainly from laboratory diffusion experiments, in which the directional diffusivities are separately estimated by through-diffusion experiments using different rock samples, or concurrently by in-diffusion experiments in which only the tracer profile in a rock block is measured. To estimate the diffusion anisotropy from a single rock sample, this study proposes an axisymmetric diffusion test, in which tracer diffuses between a cylindrical rock sample and a surrounding solution reservoir. The tracer diffusion between the sample and reservoir can be monitored from the reservoir tracer concentrations, and the tracer profile could also be obtained after dismantling the sample. Semi-analytical solutions are derived for tracer concentrations in both the reservoir and sample, accounting for an anisotropic diffusion tensor of rank two as well as the dilution effects from sampling and replacement of reservoir solution. The transient and steady-state analyses were examined experimentally and numerically for different experimental configurations, but without the need for tracer profiling. These experimental configurations are tested for in- and out-diffusion experiments using Koetoi and Wakkanai mudstones and Shirahama sandstone, and are scrutinized by a numerical approach to identify favorable conditions for parameter estimation. The analysis reveals the difficulty in estimating diffusion anisotropy; test configurations are proposed for enhanced identifiability of diffusion anisotropy. Moreover, it is demonstrated that the axisymmetric diffusion test is efficient in obtaining the sorption parameter from both steady-state and transient data, and in determining the effective diffusion coefficient if isotropic diffusion is assumed. Moreover, measuring reservoir concentrations in an

  12. An axisymmetric diffusion experiment for the determination of diffusion and sorption coefficients of rock samples.

    PubMed

    Takeda, M; Hiratsuka, T; Ito, K; Finsterle, S

    2011-04-25

    Diffusion anisotropy is a critical property in predicting migration of substances in sedimentary formations with very low permeability. The diffusion anisotropy of sedimentary rocks has been evaluated mainly from laboratory diffusion experiments, in which the directional diffusivities are separately estimated by through-diffusion experiments using different rock samples, or concurrently by in-diffusion experiments in which only the tracer profile in a rock block is measured. To estimate the diffusion anisotropy from a single rock sample, this study proposes an axisymmetric diffusion test, in which tracer diffuses between a cylindrical rock sample and a surrounding solution reservoir. The tracer diffusion between the sample and reservoir can be monitored from the reservoir tracer concentrations, and the tracer profile could also be obtained after dismantling the sample. Semi-analytical solutions are derived for tracer concentrations in both the reservoir and sample, accounting for an anisotropic diffusion tensor of rank two as well as the dilution effects from sampling and replacement of reservoir solution. The transient and steady-state analyses were examined experimentally and numerically for different experimental configurations, but without the need for tracer profiling. These experimental configurations are tested for in- and out-diffusion experiments using Koetoi and Wakkanai mudstones and Shirahama sandstone, and are scrutinized by a numerical approach to identify favorable conditions for parameter estimation. The analysis reveals the difficulty in estimating diffusion anisotropy; test configurations are proposed for enhanced identifiability of diffusion anisotropy. Moreover, it is demonstrated that the axisymmetric diffusion test is efficient in obtaining the sorption parameter from both steady-state and transient data, and in determining the effective diffusion coefficient if isotropic diffusion is assumed. Moreover, measuring reservoir concentrations in an

  13. Response of radiation belt simulations to different radial diffusion coefficients

    NASA Astrophysics Data System (ADS)

    Drozdov, A.; Shprits, Y.; Subbotin, D.; Kellerman, A. C.

    2013-12-01

    Resonant interactions between Ultra Low Frequency (ULF) waves and relativistic electrons may violate the third adiabatic invariant of motion, which produces radial diffusion in the electron radiation belts. This process plays an important role in the formation and structure of the outer electron radiation belt and is important for electron acceleration and losses in that region. Two parameterizations of the resonant wave-particle interaction of electrons with ULF waves in the magnetosphere by Brautigam and Albert [2000] and Ozeke et al. [2012] are evaluated using the Versatile Electron Radiation Belt (VERB) diffusion code to estimate their relative effect on the radiation belt simulation. The period of investigation includes quiet time and storm time geomagnetic activity and is compared to data based on satellite observations. Our calculations take into account wave-particle interactions represented by radial diffusion transport, local acceleration, losses due to pitch-angle diffusion, and mixed diffusion. We show that the results of the 3D diffusion simulations depend on the assumed parametrization of waves. The differences between the simulations and potential missing physical mechanisms are discussed. References Brautigam, D. H., and J. M. Albert (2000), Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm, J. Geophys. Res., 105(A1), 291-309, doi:10.1029/1999JA900344 Ozeke, L. G., I. R. Mann, K. R. Murphy, I. J. Rae, D. K. Milling, S. R. Elkington, A. A. Chan, and H. J. Singer (2012), ULF wave derived radiation belt radial diffusion coefficients, J. Geophys. Res., 117, A04222, doi:10.1029/2011JA017463.

  14. Molecular dynamics simulation of imidazolium-based ionic liquids. I. Dynamics and diffusion coefficient.

    PubMed

    Kowsari, M H; Alavi, Saman; Ashrafizaadeh, Mahmud; Najafi, Bijan

    2008-12-14

    Molecular dynamics simulations are used to study the dynamics and transport properties of 12 room-temperature ionic liquids of the 1-alkyl-3-methylimidazolium [amim](+) (alkyl = methyl, ethyl, propyl, and butyl) family with PF(6)(-), NO(3)(-), and Cl(-) counterions. The explicit atom transferable force field of Canongia Lopes et al. [J. Phys. Chem. B 108, 2038 (2004)] is used in the simulations. In this first part, the dynamics of the ionic liquids are characterized by studying the mean-square displacement (MSD) and the velocity autocorrelation function (VACF) for the centers of mass of the ions at 400 K. Trajectory averaging was employed to evaluate the diffusion coefficients at two temperatures from the linear slope of MSD(t) functions in the range of 150-300 ps and from the integration of the VACF(t) functions at 400 K. Detailed comparisons are made between the diffusion results from the MSD and VACF methods. The diffusion coefficients from the integration of the VACFs are closer to experimental values than the diffusion coefficients calculated from the slope of MSDs. Both methods can show good agreement with experiment in predicting relative trends in the diffusion coefficients and determining the role of the cation and anion structures on the dynamical behavior of this family of ionic liquids. The MSD and self-diffusion of relatively heavier imidazolium cations are larger than those of the lighter anions from the Einstein results, except for the case of [bmim][Cl]. The cationic transference number generally decreases with temperature, in good agreement with experiments. For the same anion, the cationic transference numbers decrease with increasing length of the alkyl chain, and for the same cation, the trends in the cationic transference numbers are [NO(3)](-) < [Cl](-) < [PF(6)](-). The trends in the diffusion coefficient in the series of cations with identical anions are [emim](+) > [pmim](+) > [bmim](+) and those for anions with identical cations are [NO(3

  15. Determination of Diffusion Coefficients in Cement-Based Materials: An Inverse Problem for the Nernst-Planck and Poisson Models

    NASA Astrophysics Data System (ADS)

    Szyszkiewicz-Warzecha, Krzysztof; Jasielec, Jerzy J.; Fausek, Janusz; Filipek, Robert

    2016-06-01

    Transport properties of ions have significant impact on the possibility of rebars corrosion thus the knowledge of a diffusion coefficient is important for reinforced concrete durability. Numerous tests for the determination of diffusion coefficients have been proposed but analysis of some of these tests show that they are too simplistic or even not valid. Hence, more rigorous models to calculate the coefficients should be employed. Here we propose the Nernst-Planck and Poisson equations, which take into account the concentration and electric potential field. Based on this model a special inverse method is presented for determination of a chloride diffusion coefficient. It requires the measurement of concentration profiles or flux on the boundary and solution of the NPP model to define the goal function. Finding the global minimum is equivalent to the determination of diffusion coefficients. Typical examples of the application of the presented method are given.

  16. Diffusion coefficients of Fokker-Planck equation for rotating dust grains in a fusion plasma

    SciTech Connect

    Bakhtiyari-Ramezani, M. Alinejad, N.; Mahmoodi, J.

    2015-11-15

    In the fusion devices, ions, H atoms, and H{sub 2} molecules collide with dust grains and exert stochastic torques which lead to small variations in angular momentum of the grain. By considering adsorption of the colliding particles, thermal desorption of H atoms and normal H{sub 2} molecules, and desorption of the recombined H{sub 2} molecules from the surface of an oblate spheroidal grain, we obtain diffusion coefficients of the Fokker-Planck equation for the distribution function of fluctuating angular momentum. Torque coefficients corresponding to the recombination mechanism show that the nonspherical dust grains may rotate with a suprathermal angular velocity.

  17. Diffusion coefficients of Fokker-Planck equation for rotating dust grains in a fusion plasma

    NASA Astrophysics Data System (ADS)

    Bakhtiyari-Ramezani, M.; Mahmoodi, J.; Alinejad, N.

    2015-11-01

    In the fusion devices, ions, H atoms, and H2 molecules collide with dust grains and exert stochastic torques which lead to small variations in angular momentum of the grain. By considering adsorption of the colliding particles, thermal desorption of H atoms and normal H2 molecules, and desorption of the recombined H2 molecules from the surface of an oblate spheroidal grain, we obtain diffusion coefficients of the Fokker-Planck equation for the distribution function of fluctuating angular momentum. Torque coefficients corresponding to the recombination mechanism show that the nonspherical dust grains may rotate with a suprathermal angular velocity.

  18. Effect of concentration dependence of the diffusion coefficient on homogenization kinetics in multiphase binary alloy systems

    NASA Technical Reports Server (NTRS)

    Tenney, D. R.; Unnam, J.

    1978-01-01

    Diffusion calculations were performed to establish the conditions under which concentration dependence of the diffusion coefficient was important in single, two, and three phase binary alloy systems. Finite-difference solutions were obtained for each type of system using diffusion coefficient variations typical of those observed in real alloy systems. Solutions were also obtained using average diffusion coefficients determined by taking a logarithmic average of each diffusion coefficient variation considered. The constant diffusion coefficient solutions were used as reference in assessing diffusion coefficient variation effects. Calculations were performed for planar, cylindrical, and spherical geometries in order to compare the effect of diffusion coefficient variations with the effect of interface geometries. In most of the cases considered, the diffusion coefficient of the major-alloy phase was the key parameter that controlled the kinetics of interdiffusion.

  19. Electrochemical evidences and consequences of significant differences in ions diffusion rate in polyacrylate-based ion-selective membranes.

    PubMed

    Woźnica, Emilia; Mieczkowski, Józef; Michalska, Agata

    2011-11-21

    The origin and effect of surface accumulation of primary ions within the ion-selective poly(n-butyl acrylate)-based membrane, obtained by thermal polymerization, is discussed. Using a new method, based on the relation between the shape of a potentiometric plot and preconditioning time, the diffusion of copper ions in the membrane was found to be slow (the diffusion coefficient estimated to be close to 10(-11) cm(2) s(-1)), especially when compared to ion-exchanger counter ions--sodium cations diffusion (a diffusion coefficient above 10(-9) cm(2) s(-1)). The higher mobility of sodium ions than those of the copper-ionophore complex results in exposed ion-exchanger role leading to undesirably exposed sensitivity to sodium or potassium ions. PMID:21957488

  20. Comparison of radon diffusion coefficients measured by transient-diffusion and steady-state laboratory methods

    SciTech Connect

    Kalwarf, D.R.; Nielson, K.K.; Rich, D.C.; Rogers, V.C.

    1982-11-01

    A method was developed and used to determine radon diffusion coefficients in compacted soils by transient-diffusion measurements. A relative standard deviation of 12% was observed in repeated measurements with a dry soil by the transient-diffusion method, and a 40% uncertainty was determined for moistures exceeding 50% of saturation. Excellent agreement was also obtained between values of the diffusion coefficient for radon in air, as measured by the transient-diffusion method, and those in the published literature. Good agreement was also obtained with diffusion coefficients measured by a steady-state method on the same soils. The agreement was best at low moistures, averaging less than ten percent difference, but differences of up to a factor of two were observed at high moistures. The comparison of the transient-diffusion and steady-state methods at low moistures provides an excellent verification of the theoretical validity and technical accuracy of these approaches, which are based on completely independent experimental conditions, measurement methods and mathematical interpretations.

  1. Observations of Ag diffusion in ion implanted SiC

    DOE PAGESBeta

    Gerczak, Tyler J.; Leng, Bin; Sridharan, Kumar; Jerry L. Hunter, Jr.; Giordani, Andrew J.; Allen, Todd R.

    2015-03-17

    The nature and magnitude of Ag diffusion in SiC has been a topic of interest in connection with the performance of tristructural isotropic (TRISO) coated particle fuel for high temperature gas-cooled nuclear reactors. Ion implantation diffusion couples have been revisited to continue developing a more complete understanding of Ag fission product diffusion in SiC. Ion implantation diffusion couples fabricated from single crystal 4H-SiC and polycrystalline 3C-SiC substrates and exposed to 1500–1625°C, were investigated in this study by transmission electron microscopy and secondary ion mass spectrometry (SIMS). The high dynamic range of SIMS allowed for multiple diffusion régimes to be investigated,more » including enhanced diffusion by implantation-induced defects and grain boundary (GB) diffusion in undamaged SiC. Lastly, estimated diffusion coefficients suggest GB diffusion in bulk SiC does not properly describe the release observed from TRISO fuel.« less

  2. Radon diffusion coefficients in soils of varying moisture content

    NASA Astrophysics Data System (ADS)

    Papachristodoulou, C.; Ioannides, K.; Pavlides, S.

    2009-04-01

    Radon is a naturally occurring radioactive gas that is generated in the Earth's crust and is free to migrate through soil and be released to the atmosphere. Due to its unique properties, soil gas radon has been established as a powerful tracer used for a variety of purposes, such as exploring uranium ores, locating geothermal resources and hydrocarbon deposits, mapping geological faults, predicting seismic activity or volcanic eruptions and testing atmospheric transport models. Much attention has also been given to the radiological health hazard posed by increased radon concentrations in the living and working environment. In order to exploit radon profiles for geophysical purposes and also to predict its entry indoors, it is necessary to study its transport through soils. Among other factors, the importance of soil moisture in such studies has been largely highlighted and it is widely accepted that any measurement of radon transport parameters should be accompanied by a measurement of the soil moisture content. In principle, validation of transport models in the field is encountered by a large number of uncontrollable and varying parameters; laboratory methods are therefore preferred, allowing for experiments to be conducted under well-specified and uniform conditions. In this work, a laboratory technique has been applied for studying the effect of soil moisture content on radon diffusion. A vertical diffusion chamber was employed, in which radon was produced from a 226Ra source, was allowed to diffuse through a soil column and was finally monitored using a silicon surface barrier detector. By solving the steady-state radon diffusion equation, diffusion coefficients (D) were determined for soil samples of varying moisture content (m), from null (m=0) to saturation (m=1). For dry soil, a D value of 4.1×10-7 m2s-1 was determined, which increased moderately by a factor of ~3 for soil with low moisture content, i.e. up to m ~0.2. At higher water fractions, a decrease

  3. Optimal diffusion coefficient estimation in single-particle tracking

    PubMed Central

    Michalet, Xavier; Berglund, Andrew J.

    2016-01-01

    Single-particle tracking is increasingly used to extract quantitative parameters on single molecules and their environment, while advances in spatial and temporal resolution of tracking techniques inspire new questions and avenues of investigation. Correspondingly, sophisticated analytical methods are constantly developed to obtain more refined information from measured trajectories. Here we point out some fundamental limitations of these approaches due to the finite length of trajectories, the presence of localization error, and motion blur, focusing on the simplest motion regime of free diffusion in an isotropic medium (Brownian motion). We show that two recently proposed algorithms approach the theoretical limit of diffusion coefficient uncertainty. We discuss the practical performance of the algorithms as well as some important implications of these results for single-particle tracking. PMID:23005136

  4. Estimation of glucose diffusion coefficient in scleral tissue

    NASA Astrophysics Data System (ADS)

    Bashkatov, Alexey N.; Genina, Elina A.; Sinichkin, Yurii P.; Lakodina, Nina A.; Kochubey, Vyacheslav I.; Tuchin, Valery V.

    2000-04-01

    Results of experimental and theoretical study of the optical properties of the eye sclera controlled by administration of osmotically active chemical, such as glucose, are presented. Glucose administration induces the diffusion of matter and as a result the equalization of the refractive indices of collagen fibrils and base material, and corresponding changes of transmittance spectra of scleral tissue. Transmittance spectra of the human scleral samples impregnated by glucose were measured. The significant increase of transmittance under action of osmotic liquid was observed. The diffusion coefficient of glucose within scleral tissue was estimated; the average value is 3.45 X 10-6 +/- 4.59 X 10-7 cm2/sec. The results are general and can be used to describe many other fibrous tissues impregnated by osmotically active chemical agents.

  5. Diffusion Coefficient in an Electrophoretic Asymmetrically Tilting Ratchet

    NASA Astrophysics Data System (ADS)

    Pasciak, P.; Kulakowski, K.; Gudowska-Nowak, E.

    2005-05-01

    We use the cellular-automaton Duke--Rubinstein model to simulate gel electrophoresis of DNA in periodically changing electric field. The field is dichotomic and its time average is zero. We observe non-vanishing current of molecules, what is known as the ratchet effect. We calculate the drift velocity and the diffusion coefficient for large field amplitude, where nonlinear effects can be observed. The results indicate that tuning the amplitude and frequency of the applied field for a given range of the molecule length can improve the resolving power of the separation of DNA.

  6. Tracer diffusion coefficients in a sheared inelastic Maxwell gas

    NASA Astrophysics Data System (ADS)

    Garzó, Vicente; Trizac, Emmanuel

    2016-07-01

    We study the transport properties of an impurity in a sheared granular gas, in the framework of the Boltzmann equation for inelastic Maxwell models. We investigate here the impact of a nonequilibrium phase transition found in such systems, where the tracer species carries a finite fraction of the total kinetic energy (ordered phase). To this end, the diffusion coefficients are first obtained for a granular binary mixture in spatially inhomogeneous states close to the simple shear flow. In this situation, the set of coupled Boltzmann equations are solved by means of a Chapman–Enskog-like expansion around the (local) shear flow distributions for each species, thereby retaining all the hydrodynamic orders in the shear rate a. Due to the anisotropy induced by the shear flow, three tensorial quantities D ij , D p,ij , and D T,ij are required to describe the mass transport process instead of the conventional scalar coefficients. These tensors are given in terms of the solutions of a set of coupled algebraic equations, which can be exactly solved as functions of the shear rate a, the coefficients of restitution {αsr} and the parameters of the mixture (masses and composition). Once the forms of D ij , D p,ij , and D T,ij are obtained for arbitrary mole fraction {{x}1}={{n}1}/≤ft({{n}1}+{{n}2}\\right) (where n r is the number density of species r), the tracer limit ({{x}1}\\to 0 ) is carefully considered for the above three diffusion tensors. Explicit forms for these coefficients are derived showing that their shear rate dependence is significantly affected by the order-disorder transition.

  7. On the behavior of Kazhikov-Smagulov mass diffusion model for vanishing diffusion and viscosity coefficients

    NASA Astrophysics Data System (ADS)

    Araruna, F. D.; Braz e Silva, P.; Carvalho, R. R.; Rojas-Medar, M. A.

    2015-06-01

    We consider the motion of a viscous incompressible fluid consisting of two components with a diffusion effect obeying Fick's law in ℝ3. We prove that there exists a small time interval where the fluid variables converge uniformly as the viscosity and the diffusion coefficient tend to zero. In the limit, we find a non-homogeneous, non-viscous, incompressible fluid governed by an Euler-like system.

  8. Secondary Ion Mass Spectrometry for Mg Tracer Diffusion: Issues and Solutions

    SciTech Connect

    Tuggle, Jay; Giordani, Andrew; Kulkarni, Nagraj S; Warmack, Robert J Bruce; Coffey, Kevin; Sohn, Yong Ho; HunterJr., Jerry

    2014-01-01

    A Secondary Ion Mass Spectrometry (SIMS) method has been developed to measure stable Mg isotope tracer diffusion. This SIMS method was then used to calculate Mg self- diffusivities and the data was verified against historical data measured using radio tracers. The SIMS method has been validated as a reliable alternative to the radio-tracer technique for the measurement of Mg self-diffusion coefficients and can be used as a routine method for determining diffusion coefficients.

  9. Li + ion diffusion in nanoscale alumina coatings

    NASA Astrophysics Data System (ADS)

    Johannes, Michelle; Bernstein, Noam

    Nanoscale coatings of alumina are used to stabilize surfaces for a variety of technologies. Diffusion of ions through these coatings is of primary importance: in some cases, diffusion is unwanted (e.g. corrosion) and in others (e.g. electrode materials), it is necessary. In this work DFT and AIMD calculations are used to investigate Li+ ion diffusion through a nano-layer of alumina, examining the phase (alpha, gamma, and amorphous), ion concentration, and electron count dependence. We look at the role of the surface itself in promoting diffusion. One of our main findings is that as the number of ions or charge increases, the diffusivity rises. We show how our data can explain electrochemical data from coated LiCoO2 cathodes and may point toward better and more efficient coatings for stabilizing electrodes.

  10. M558 radioactive tracer diffusion. [diffusion coefficients of Zn-65 in liquid zinc under weightlessness conditions

    NASA Technical Reports Server (NTRS)

    Ukanwa, A. O.

    1974-01-01

    This experiment was performed in Skylab 3 with two objectives in mind. First, the experimental self-diffusion coefficients for liquid zinc were to be determined in a convection-free environment. Secondly the reduction in convective mixing in earth gravity by going into the zero-gravity environment of space was to be estimated. The experiment was designed to utilize high temperatures and linear thermal gradients provided by the M518 Multipurpose Electric Furnace, and the radioactivity of zinc-65 of 245-day half-life to investigate self-diffusion in liquid zinc. The distribution of zinc-65 tracer, after melting, maintaining at soak temperature for 1 hour of soak time and then resolidifying, was obtained by sample sectioning. The concentration of activity of each section (microcurie-gram) was plotted against positions along the sample axial and radial position. Experimental data and theoretical results from solution of Fick's law of diffusion in one dimensional were compared. Samples tested on earth showed very rapid diffusion. Diffusion coefficient in unit gravity was 50 times the zero-gravity diffusion coefficient of Skylab.

  11. Diffusion in multilayer media: Transient behavior of the lateral diffusion coefficient

    NASA Astrophysics Data System (ADS)

    Berezhkovskii, Alexander M.; Weiss, George H.

    2006-04-01

    A general formalism for treating lateral diffusion in a multilayer medium is developed. The formalism is based on the relation between the lateral diffusion and the distribution of the cumulative residence time, which the diffusing particle spends in different layers. We exploit this fact to derive general expressions which give the global and local time-dependent diffusion coefficients in terms of the average cumulative times spent by the particle in different layers and the probabilities of finding the particle in different layers, respectively. These expressions are used to generalize two recently obtained results: (a) A solution for the short-time behavior of the lateral diffusion coefficient in two layers separated by a permeable membrane obtained by a perturbation theory is extended to the entire range of time. (b) A solution for the time-dependent diffusion coefficient of a ligand, which repeatedly dissociates and rebinds to sites on a planar surface, obtained under the assumption that the medium above the surface is infinite, is generalized to allow for the medium layer of finite thickness. For the latter problem we derive an expression for the Fourier-Laplace transform of the propagator in terms of the double Laplace transform of the probability density of the cumulative residence time spent by the ligand in the medium layer.

  12. Diffusion transport coefficients for granular binary mixtures at low density: Thermal diffusion segregation

    NASA Astrophysics Data System (ADS)

    Garzó, Vicente; Murray, J. Aaron; Vega Reyes, Francisco

    2013-04-01

    The mass flux of a low-density granular binary mixture obtained previously by solving the Boltzmann equation by means of the Chapman-Enskog method is considered further. As in the elastic case, the associated transport coefficients D, Dp, and D' are given in terms of the solutions of a set of coupled linear integral equations which are approximately solved by considering the first and second Sonine approximations. The diffusion coefficients are explicitly obtained as functions of the coefficients of restitution and the parameters of the mixture (masses, diameters, and concentration) and their expressions hold for an arbitrary number of dimensions. In order to check the accuracy of the second Sonine correction for highly inelastic collisions, the Boltzmann equation is also numerically solved by means of the direct simulation Monte Carlo (DSMC) method to determine the mutual diffusion coefficient D in some special situations (self-diffusion problem and tracer limit). The comparison with DSMC results reveals that the second Sonine approximation to D improves the predictions made from the first Sonine approximation. We also study the granular segregation driven by a uni-directional thermal gradient. The segregation criterion is obtained from the so-called thermal diffusion factor Λ, which measures the amount of segregation parallel to the temperature gradient. The factor Λ is determined here by considering the second-order Sonine forms of the diffusion coefficients and its dependence on the coefficients of restitution is widely analyzed across the parameter space of the system. The results obtained in this paper extend previous works carried out in the tracer limit (vanishing mole fraction of one of the species) by some of the authors of the present paper.

  13. Comparison Actin- and Glass-Supported Phospholipid Bilayer Diffusion Coefficients

    PubMed Central

    Sterling, Sarah M.; Dawes, Ryan; Allgeyer, Edward S.; Ashworth, Sharon L.; Neivandt, David J.

    2015-01-01

    The formation of biomimetic lipid membranes has the potential to provide insights into cellular lipid membrane dynamics. The construction of such membranes necessitates not only the utilization of appropriate lipids, but also physiologically relevant substrate/support materials. The substrate materials employed have been shown to have demonstrable effects on the behavior of the overlying lipid membrane, and thus must be studied before use as a model cushion support. To our knowledge, we report the formation and investigation of a novel actin protein-supported lipid membrane. Specifically, inner leaflet lateral mobility of globular actin-supported DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) bilayers, deposited via the Langmuir-Blodgett/Langmuir Schaefer methodology, was investigated by z-scan fluorescence correlation spectroscopy across a temperature range of 20–44°C. The actin substrate was found to decrease the diffusion coefficient when compared to an identical membrane supported on glass. The depression of the diffusion coefficient occurred across all measured temperatures. These results indicated that the actin substrate exerted a direct effect on the fluidity of the lipid membrane and highlighted the fact that the choice of substrate/support is critical in studies of model lipid membranes. PMID:25902434

  14. A New Relationship Among Self- and Impurity Diffusion Coefficients in Binary Solution Phases

    NASA Astrophysics Data System (ADS)

    Xin, Jinghua; Du, Yong; Shang, Shunli; Cui, Senlin; Wang, Jianchuan; Huang, Baiyun; Liu, Zikui

    2016-05-01

    A new relationship among self- and impurity diffusion coefficients has been proposed for binary solution phases and verified via 30 solid solutions. In terms of this model, one impurity diffusion coefficient in a binary phase can be predicted once the other three diffusion coefficients are available. The application of the present model is exemplified in the Al-Mg system.

  15. A New Relationship Among Self- and Impurity Diffusion Coefficients in Binary Solution Phases

    NASA Astrophysics Data System (ADS)

    Xin, Jinghua; Du, Yong; Shang, Shunli; Cui, Senlin; Wang, Jianchuan; Huang, Baiyun; Liu, Zikui

    2016-07-01

    A new relationship among self- and impurity diffusion coefficients has been proposed for binary solution phases and verified via 30 solid solutions. In terms of this model, one impurity diffusion coefficient in a binary phase can be predicted once the other three diffusion coefficients are available. The application of the present model is exemplified in the Al-Mg system.

  16. Calculation of combined diffusion coefficients in SF{sub 6}-Cu mixtures

    SciTech Connect

    Zhong, Linlin; Wang, Xiaohua Rong, Mingzhe Wu, Yi; Murphy, Anthony B.

    2014-10-15

    Diffusion coefficients play an important role in the description of the transport of metal vapours in gas mixtures. This paper is devoted to the calculation of four combined diffusion coefficients, namely, the combined ordinary diffusion coefficient, combined electric field diffusion coefficient, combined temperature diffusion coefficient, and combined pressure diffusion coefficient in SF{sub 6}-Cu mixtures at temperatures up to 30 000 K. These four coefficients describe diffusion due to composition gradients, applied electric fields, temperature gradients, and pressure gradients, respectively. The influence of copper fluoride and sulfide species on the diffusion coefficients is shown to be negligible. The effect of copper proportion and gas pressures on these diffusion coefficients is investigated. It is shown that increasing the proportion of copper generally increases the magnitude of the four diffusion coefficients, except for copper mole fractions of 90% or more. It is further found that increasing the pressure reduces the magnitude of the coefficients, except for the combined temperature diffusion coefficient, and shifts the maximum of all four coefficients towards higher temperatures. The results presented in this paper can be applied to the simulation of high-voltage circuit breaker arcs.

  17. Nonperturbative estimate of the heavy quark momentum diffusion coefficient

    NASA Astrophysics Data System (ADS)

    Francis, A.; Kaczmarek, O.; Laine, M.; Neuhaus, T.; Ohno, H.

    2015-12-01

    We estimate the momentum diffusion coefficient of a heavy quark within a pure SU(3) plasma at a temperature of about 1.5 Tc . Large-scale Monte Carlo simulations on a series of lattices extending up to 1923×48 permit us to carry out a continuum extrapolation of the so-called color-electric imaginary-time correlator. The extrapolated correlator is analyzed with the help of theoretically motivated models for the corresponding spectral function. Evidence for a nonzero transport coefficient is found and, incorporating systematic uncertainties reflecting model assumptions, we obtain κ =(1.8 - 3.4 )T3 . This implies that the "drag coefficient," characterizing the time scale at which heavy quarks adjust to hydrodynamic flow, is ηD-1=(1.8 - 3.4 )(Tc/T )2(M /1.5 GeV ) fm /c , where M is the heavy quark kinetic mass. The results apply to bottom and, with somewhat larger systematic uncertainties, to charm quarks.

  18. Continuum Absorption Coefficient of Atoms and Ions

    NASA Technical Reports Server (NTRS)

    Armaly, B. F.

    1979-01-01

    The rate of heat transfer to the heat shield of a Jupiter probe has been estimated to be one order of magnitude higher than any previously experienced in an outer space exploration program. More than one-third of this heat load is due to an emission of continuum radiation from atoms and ions. The existing computer code for calculating the continuum contribution to the total load utilizes a modified version of Biberman's approximate method. The continuum radiation absorption cross sections of a C - H - O - N ablation system were examined in detail. The present computer code was evaluated and updated by being compared with available exact and approximate calculations and correlations of experimental data. A detailed calculation procedure, which can be applied to other atomic species, is presented. The approximate correlations can be made to agree with the available exact and experimental data.

  19. Measurement of diffusion coefficient of propylene glycol in skin tissue

    NASA Astrophysics Data System (ADS)

    Genin, Vadim D.; Bashkatov, Alexey N.; Genina, Elina A.; Tuchin, Valery V.

    2015-03-01

    Optical clearing of the rat skin under the action of propylene glycol was studied ex vivo. It was found that collimated transmittance of skin samples increased, whereas weight and thickness of the samples decreased during propylene glycol penetration in skin tissue. A mechanism of the optical clearing under the action of propylene glycol is discussed. Diffusion coefficient of propylene glycol in skin tissue ex vivo has been estimated as (1.35±0.95)×10-7 cm2/s with the taking into account of kinetics of both weight and thickness of skin samples. The presented results can be useful for enhancement of many methods of laser therapy and optical diagnostics of skin diseases and localization of subcutaneous neoplasms.

  20. Diffusion coefficient of hydrogen in a cast gamma titanium aluminide

    SciTech Connect

    Sundaram, P.A.; Wessel, E.; Ennis, P.J.; Quadakkers, W.J.; Singheiser, L.

    1999-06-04

    Gamma titanium aluminides have the potential for high temperature applications because of their high specific strength and specific modulus. Their oxidation resistance is good, especially at intermediate temperatures and with suitable alloying additions, good oxidation resistance can be obtained up to 800 C. One critical area of application is in combustion engines in aero-space vehicles such as hypersonic airplanes and high speed civil transport airplanes. This entails the use of hydrogen as a fuel component and hence the effect of hydrogen on the mechanical properties of gamma titanium aluminides is of significant scientific and technological utility. The purpose of this short investigation is to use an electrochemical method under galvanostatic conditions to determine the diffusion coefficient of hydrogen in a cast gamma titanium aluminide, a typical technical alloy with potential application in gas turbines under creep conditions. This result will be then compared with that obtained by microhardness profiling of electrolytically hydrogen precharged material.

  1. Diffusion kinetics of the ion exchange of benzocaine on sulfocationites

    NASA Astrophysics Data System (ADS)

    Al'tshuler, O. G.; Shkurenko, G. Yu.; Gorlov, A. A.; Al'tshuler, G. N.

    2016-06-01

    The theory of the ion exchange kinetics on strong acid cationites with the participation of weak electrolytes is discussed. The kinetics of desorption of benzocaine in the protonated and molecular forms from strong acid cationites, sulfonated polycalixarene, and KU-23 30/100 sulfocationite, is studied experimentally. It is shown that the flow of protonated benzocaine from cationite upon desorption proceeding by the ion-exchange mechanism is more intense than upon desorption of nonionized benzocaine molecules. It is established that the diffusion coefficient of benzocaine cations is (1.21 ± 0.23) × 10-12 m2/s in KU-23 30/100 sulfocation and (0.65 ± 0.06) × 10-13 m2/s in sulfonated polycalixarene, while the diffusion coefficient of benzocaine molecules is (0.65 ± 0.15) × 10-14 m2/s in sulfonated polycalixarene.

  2. Measurement of the diffusion coefficient of sulfur hexafluoride in water

    SciTech Connect

    King. D.B.; Saltzman, E.S.

    1995-04-15

    Sulfur hexafluoride has been widely used in field studies and laboratory experiments to develop a relationship between gas transfer and wind speed. The interpretation of the data from such studies requires the diffusion coefficient of SF{sub 6} (D{sub SF6}), which has not previously been measured. In this study, D{sub SF6} has been determined in pure water and in 35%NaCl over a temperature range of 5-25{degrees}C. The measurements were made using a continuous-flow diffusion cell where SF{sub 6} flows beneath an agar gel membrane while helium flows above the gel. The experimental data for pure water yielded the following equation: D{sub SF6}=0.029 exp ({minus}19.3/RT, where R is the gas constant and T is temperature in kelvins). Measurements of D{sub SF6} in 35% NaCl were not significantly different from the pure water values. On the basis of this data, the authors estimate the Schmidt numbers for seawater over the temperature range 5-25{degrees}C to be Sc=3016.1{minus}172.00t+4.4996t{sup 2}{minus}0.047965t{sup 3}, where t is temperature in degrees Celsius. 31 refs., 3 figs., 2 tabs.

  3. Universal function for the diffusion coefficient of DNA fragment

    NASA Astrophysics Data System (ADS)

    Mercier, Jean-Francois

    2005-03-01

    The separation of DNA fragments by (gel or capillary) electrophoresis has been studied extensively. To characterize the separation achieved by such systems, one needs to understand the impact (and their dependency upon the experimental quantities) of two physical parameters: the electrophoresis mobility μ and the diffusion coefficient D. Three different regimes have been shown to exist for both μ and D: the Ogston regime, the reptation regime and the reptation-with orientation regime (note that separation is only possible for the first two regimes). Both μ and D are well described by theory for all three regimes. Unfortunatly this results in disjointed scaling regimes and no theory-based general equations can apply to all regimes. Recently, an empirical formula has been proposed that adequately fit the mobility μ of dsDNA fragments across all three regimes and is compatible with accepted theories. In this work we propose a similar formula for the diffusion coefficent D. With those two formulas, one could optimize any separation system quite easily for a wide range of DNA molecular sizes.

  4. Computing quasi-linear diffusion coefficients using the delta-f particle-in-cell method

    SciTech Connect

    Austin, T. M.; Smithe, D. N.; Ranjbar, V.

    2009-11-26

    Linear wave codes AORSA and TORIC couple to the bounce-averaged nonlinear Fokker-Planck code CQL3D through quasi-linear diffusion coefficients. Both linear wave codes rely on the quasi-local approximation that includes only first-order parallel and perpendicular gradient variations of cyclotron frequency and ignores field line curvature along with temperature and density gradient effects. The delta-f particle-in-cell (DFPIC) method has been successfully used for simulating ion-cyclotron fast wave behavior. This method also permits particle behavior such as multiple pass resonance, banana orbits, and superadiabaticity. We present new work on generating quasi-linear diffusion coefficients using the DFPIC method that will permit the electromagnetic particle-in-cell (EMPIC) code, VORPAL, to couple to CQL3D and to compare to AORSA and TORIC. A new multiple weight delta-f approach will be presented that converts velocity derivatives to action derivatives and yields a full tensor quasi-linear diffusion coefficient.

  5. Experimental Excitation Rate Coefficients for Ne VIII Ions

    NASA Astrophysics Data System (ADS)

    Chang, C. C.; Greve, P.; Kolk, K.-H.; Kunze, H.-J.

    1984-02-01

    From the line emission of a pure neon plasma produced in a theta pinch discharge rate coefficients for the excitation of the n = 3 and 4 levels in Ne VIII ions are derived and compared with theoretical calculations and previous measurements. The general agreement between theory and all measurements is rather satisfactory for the excitation to the n = 3 levels, the measured rate coefficients to the 4p and 4d levels, however, being consistently too low.

  6. Estimation of membrane diffusion coefficients and equilibration times for low-density polyethylene passive diffusion samplers.

    PubMed

    Divine, Craig E; McCray, John E

    2004-03-15

    Passive diffusion (PD) samplers offer several potential technical and cost-related advantages, particularly for measuring dissolved gases and volatile organic compounds (VOCs) in groundwater at contaminated sites. Sampler equilibration is a diffusion-type process; therefore, equilibration time is dependent on sampler dimensions, membrane thickness, and the temperature-dependent membrane diffusion coefficient (Dm) for the analyte of interest. Diffusion coefficients for low-density polyethylene membranes were measured for He, Ne, H2, O2, and N2 in laboratory experiments and ranged from 1.1 to 1.9 x 10(-7) cm2 sec(-1) (21 degrees C). Additionally, Dm values for several commonly occurring VOCs were estimated from empirical experimental data previously presented by others (Vroblesky, D. A.; Campbell, T. R. Adv. Environ. Res. 2001, 5(1), 1.), and estimated values ranged from 1.7 to 4.4 x 10(-7) cm2 sec(-1) (21 degrees C). On the basis of these Dm ranges, PD sampler equilibration time is predicted for various sampler dimensions, including dimensions consistent with simple constructed samplers used in this study and commercially available samplers. Additionally, a numerical model is presented that can be used to evaluate PD sampler concentration "lag time" for conditions in which in situ concentrations are temporally variable. The model adequately predicted lag time for laboratory experiments and is used to show that data obtained from appropriately designed PD samplers represent near-instantaneous measurement of in situ concentrations for most field conditions. PMID:15074699

  7. Measurement of 18O tracer diffusion coefficients in thin yttria stabilized zirconia films

    PubMed Central

    Gerstl, M.; Frömling, T.; Schintlmeister, A.; Hutter, H.; Fleig, J.

    2011-01-01

    In this paper we present a method to measure oxygen tracer diffusion coefficients in thin ion conducting films without being limited by slow oxygen incorporation kinetics. The method is based on a two step process. In the first step a substantial amount of 18O tracer is locally incorporated for example into an yttria stabilized zirconia (YSZ) layer at low temperatures with the aid of an electric current, thus overcoming slow thermal oxygen exchange while still limiting lateral diffusion to a minimum. In the second step controlled diffusion takes place at elevated temperatures in ultra high vacuum (UHV) to impede loss of tracer due to oxygen exchange at the film surface. In this second step the surface of the thin film may additionally be modified compared to the oxygen incorporation step. This allows to easily investigate effects of interfaces on ion transport. The achieved in-plane concentration profiles are then measured by secondary ion mass spectrometry (SIMS). Comparison with electrical measurements on YSZ thin films proves the applicability of the method.

  8. Experimental Method Development for Estimating Solid-phase Diffusion Coefficients and Material/Air Partition Coefficients of SVOCs

    EPA Science Inventory

    The solid-phase diffusion coefficient (Dm) and material-air partition coefficient (Kma) are key parameters for characterizing the sources and transport of semivolatile organic compounds (SVOCs) in the indoor environment. In this work, a new experimental method was developed to es...

  9. Inner zone electron radial diffusion coefficients - An update with Van Allen Probes MagEIS data

    NASA Astrophysics Data System (ADS)

    O'Brien, Paul; Fennell, Joseph; Guild, Timothy; Mazur, Joseph; Claudepierre, Seth; Clemmons, James; Turner, Drew; Blake, Bernard; Roeder, James

    2016-07-01

    Using MagEIS data from NASA's recent Van Allen Probes mission, we estimate the quiet-time radial diffusion coefficients for electrons in the inner radiation belt and slot, for energies up to ~700 keV. We provide observational evidence that energy diffusion is negligible. The main dynamic processes, then, are radial diffusion and elastic pitch angle scattering. We use a coordinate system in which these two modes of diffusion are separable. Then we integrate over pitch angle to obtain a field line content whose dynamics consist of radial diffusion and loss to the atmosphere. We estimate the loss timescale from periods of exponential decay in the time series. We then estimate the radial diffusion coefficient from the temporal and radial variation of the field line content. We show that our diffusion coefficients agree well with previously determined values. Our coefficients are consistent with diffusion by electrostatic impulses, whereas outer zone radial diffusion is thought to be dominated by electromagnetic fluctuations.

  10. The diagnostic value of biexponential apparent diffusion coefficients in myopathy.

    PubMed

    Ran, Jun; Liu, Yao; Sun, Dong; Morelli, John; Zhang, Ping; Wu, Gang; Sheng, Yuda; Xie, Ruyi; Zhang, Xiaoli; Li, Xiaoming

    2016-07-01

    To investigate the performance of a biexponential signal decay model using DWI in myopathies and to differentiate Polymyositis (PM)/Dermatomyositis (DM), Glycogen Storage Diseases (GSDs) and Muscular Dystrophies (MDs) utilizing diffusion-weighted imaging. 11 healthy volunteers (control group) and 46 patients with myopathy were enrolled in the retrospective study. 27 of 46 patients had PM/DM, 7 patients GSDs and 12 patients MDs. After conventional MR sequences, diffusion weighted imaging with a b-factor ranging from 0 to 1200 s/mm(2) was performed on both thighs. The intra-muscular signal-to-noise ratios (SNRs) on multiple-b DWI images were measured for 7 different muscles and compared among the different groups. The median T2 signal intensity and biexponential apparent diffusion coefficients (ADC), including standard ADC, fast ADC, and slow ADC values, were compared among the different groups. The intra-muscular SNRs were statistically significantly different depending on the b value, and also found among the 4 groups (p < 0.05). The median T2 signal intensity of the normal muscles in control group was statistically significantly lower than that of edematous muscles in the PM/DM, GSDs and MDs groups (p = 0.000), while there were no statistically significant differences among the PM/DM, GSDs, and MDs groups (p > 0.05). The median standard ADC value of the edematous muscles in GSDs was statistically significantly lower than that of normal muscles in the control group (p = 0.000) and the median ADC value of the edematous muscles in PM/DM patients was statistically significantly greater than that of the GSDs (p = 0.000) and MDs groups (p = 0.005). The median slow ADC value of the edematous muscles in MDs patients and PM/DM patients was statistically significantly greater than that of GSDs patients (p < 0.05). Intra-muscular SNR decay curves and biexponential ADC parameters are useful in distinguishing among PM/DM, GSDs, and MDs. PMID:27142711

  11. High silicon self-diffusion coefficient in dry forsterite

    NASA Astrophysics Data System (ADS)

    Katsura, T.; Fei, H.; Hegoda, C.; Yamazaki, D.; Wiedenbeck, M.; Yurimoto, H.; Shcheka, S.

    2012-12-01

    Plastic deformation of mantle minerals is believed to be controlled by self-diffusion of the slowest species, which is silicon in silicate minerals. Olivine is the main constituent of upper mantle. Therefore, silicon self-diffusion coefficient (DSi) in olivine provides the basic information of upper mantle rheology. Dohmen et al. [1] and Jaoul et al. [2] measured the DSi at ambient pressure under dry conditions in natural olivine and iron-free forsterite, respectively. However, their results were ~2-3 orders of magnitude lower than that estimated from deformation experiments [3]. In this study, we revisited DSi in forsterite and resolved this discrepancy [4]. Forsterite single crystals were polished in colloidal silica solution, deposited with 300-500 nm of 29Si enriched Mg2SiO4 films, covered by 100 nm of ZrO2 films, and annealed at 1600-1800 K from ambient pressure up to 13 GPa using an ambient pressure furnace and multi-anvil apparatus. The surface roughness after diffusion were reduced to <50 nm by polishing again in colloidal silica solution. Diffusion profiles were obtained by SIMS. Water contents in the samples were <1 μg/g by FT-IR [4]. logDSi were determined to be -19.7±0.4 and -18.1±0.3 log[m2/s] under ambient pressure at 1600 and 1800 K, respectively. These values were 2.4 orders of magnitude higher than that determined by Jaoul et al. [2] in forsterite, as well as that reprted by Dohmen et al. [1] in natural olivine. Their low DSi could be obtained due to the bad contact of the coated films with the substrate. Our results well explain the high dislocation climb rates in deformation experiments [4]. We also determined a small negative pressure dependence of DSi with an activation volume of 1.7±0.4 cm3/mol, and an activation energy of ~410 kJ/mol. Calibratied to the same temperature, the nearly linear relationship of DSi against pressure in dry forsterite in this study, iron and water bearing wadsleyite and ringwoodite by Shimojuku et al. [5

  12. On the Origin of Quantum Diffusion Coefficient and Quantum Potential

    NASA Astrophysics Data System (ADS)

    Gupta, Aseem

    2016-03-01

    Synchronizability of space and time experiences between different inhabitants of a spacetime is abstracted as a fundamental premise of Classical physics. Absence thereof i.e. desynchronization between space and time experiences of a system under study and the observer is then studied for a single dimension single particle system. Desynchronization fundamentally makes probability concepts enter physics ab-initio and not as secondary tools to deal with situations wherein incomplete information in situation following perfectly deterministic dynamics demands its introduction. Desynchronization model based on Poisson distribution of events vis-à-vis an observer, leads to expectation of particle's motion as a Brownian motion deriving Nelson's quantum diffusion coefficient naturally, without needing to postulate it. This model also incorporates physical effects akin to those of Bohm's Quantum Potential, again without needing any sub-quantum medium. Schrodinger's equation is shown to be derivable incorporating desynchronization only of space while Quantum Field Theory is shown to model desynchronization of time as well. Fundamental suggestion of the study is that it is desynchronization that is at the root of quantum phenomena rather than sub-micro scales of spacetime. Absence of possibility of synchronization between system's space and time and those of observer is studied. Mathematical modeling of desynchronized evolution explains some intriguing aspects of Quantum Mechanical theory.

  13. A model for the diffuse attenuation coefficient of downwelling irradiance

    NASA Astrophysics Data System (ADS)

    Lee, Zhong-Ping; Du, Ke-Ping; Arnone, Robert

    2005-02-01

    The diffuse attenuation coefficient for downwelling irradiance (Kd) is an important parameter for ocean studies. For the vast ocean the only feasible means to get fine-scale measurements of Kd is by ocean color remote sensing. At present, values of Kd from remote sensing are estimated using empirical algorithms. Such an approach is insufficient to provide an understanding regarding the variation of Kd and contains large uncertainties in the derived values. In this study a semianalytical model for Kd is developed based on the radiative transfer equation, with values of the model parameters derived from Hydrolight simulations using the averaged particle phase function. The model is further tested with data simulated using significantly different particle phase functions, and the modeled Kd are found matching Hydrolight Kd very well (˜2% average error and ˜12% maximum error). Such a model provides an improved interpretation about the variation of Kd and a basis to more accurately determine Kd (especially using data from remote sensing).

  14. Sodium ion diffusion in Al2O3: a distinct perspective compared with lithium ion diffusion.

    PubMed

    Jung, Sung Chul; Kim, Hyung-Jin; Choi, Jang Wook; Han, Young-Kyu

    2014-11-12

    Surface coating of active materials has been one of the most effective strategies to mitigate undesirable side reactions and thereby improve the overall battery performance. In this direction, aluminum oxide (Al2O3) is one of the most widely adopted coating materials due to its easy synthesis and low material cost. Nevertheless, the effect of Al2O3 coating on carrier ion diffusion has been investigated mainly for Li ion batteries, and the corresponding understanding for emerging Na ion batteries is currently missing. Using ab initio molecular dynamics calculations, herein, we first find that, unlike lithiation, sodiation of Al2O3 is thermodynamically unfavorable. Nonetheless, there can still exist a threshold in the Na ion content in Al2O3 before further diffusion into the adjacent active material, delivering a new insight that both thermodynamics and kinetics should be taken into account to describe ionic diffusion in any material media. Furthermore, Na ion diffusivity in NaxAl2O3 turns out to be much higher than Li ion diffusivity in LixAl2O3, a result opposite to the conventional stereotype based on the atomic radius consideration. While hopping between the O-rich trapping sites via an Na-O bond breaking/making process is identified as the main Na ion diffusion mechanism, the weaker Na-O bond strength than the Li-O counterpart turns out to be the origin of the superior diffusivity of Na ions. PMID:25286155

  15. Computation of the hindrance factor for the diffusion for nanoconfined ions: molecular dynamics simulations versus continuum-based models

    NASA Astrophysics Data System (ADS)

    Zhu, Haochen; Ghoufi, Aziz; Szymczyk, Anthony; Balannec, Béatrice; Morineau, Denis

    2012-06-01

    We report the self-diffusion coefficients and hindrance factor for the diffusion of ions into cylindrical hydrophilic silica nanopores (hydrated silica) determined from molecular dynamics (MD) simulations. We make a comparison with the hindered diffusion coefficients used in continuum-based models of nanofiltration (NF). Hindrance factors for diffusion estimated from the macroscopic hydrodynamic theory were found to be in fair quantitative agreement with MD simulations for a protonated pore, but they strongly overestimate diffusion inside a deprotonated pore.

  16. Coordinate-dependent diffusion coefficients: Decay rate in open quantum systems

    SciTech Connect

    Sargsyan, V. V.; Palchikov, Yu. V.; Antonenko, N. V.; Kanokov, Z.; Adamian, G. G.

    2007-06-15

    Based on a master equation for the reduced density matrix of an open quantum collective system, the influence of coordinate-dependent microscopical diffusion coefficients on the decay rate from a metastable state is treated. For various frictions and temperatures larger than a crossover temperature, the quasistationary decay rates obtained with the coordinate-dependent microscopical set of diffusion coefficients are compared with those obtained with the coordinate-independent microscopical set of diffusion coefficients and coordinate-independent and -dependent phenomenological sets of diffusion coefficients. Neglecting the coordinate dependence of diffusion coefficients, one can strongly overestimate or underestimate the decay rate at low temperature. The coordinate-dependent phenomenological diffusion coefficient in momentum are shown to be suitable for applications.

  17. Some comments on multicomponent diffusion: negative main term diffusion coefficients, second law constraints, solvent choices, and reference frame transformations

    SciTech Connect

    Miller, D.G.; Vitagliano, V.; Sartorio, R.

    1986-04-10

    Some interesting aspects of multicomponent diffusion in liquids are discussed. These include the existence of a negative main term diffusion coefficient; the utility of taking different components as the solvent; the change-of-solvent transformation for Fick's law coefficients and Onsager coefficients; the validity of the Onsager reciprocal relations on changing solvents; and the calculation of partial molar volumes from diffusion data. Previous work is surveyed on the irreversible thermodynamic basis for macroscopic diffusion; the importance of reference frames and transformations among them; and second law conditions on the volume-fixed diffusion coefficient matrix. Certain diffusion descriptions in other reference frames do not preserve these second law conditions. 78 references, 5 tables.

  18. Spin Diffusion Coefficient of A1-PHASE of Superfluid 3He at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Afzali, R.; Pashaee, F.

    The spin diffusion coefficient tensor of the A1-phase of superfluid 3He at low temperatures and melting pressure is calculated using the Boltzmann equation approach and Pfitzner procedure. Then considering Bogoliubov-normal interaction, we show that the total spin diffusion is proportional to 1/T2, the spin diffusion coefficient of superfluid component D\\uparrowxzxz is proportional to T-2, and the spin diffusion coefficient of super-fluid component D\\uparrowxxxx (=D\\uarrowxyxy) is independent of temperature. Furthermore, it is seen that superfluid components play an important role in spin diffusion of the A1-phase.

  19. SIMPLE ANALYTICAL FORMS OF THE PERPENDICULAR DIFFUSION COEFFICIENT FOR TWO-COMPONENT TURBULENCE. I. MAGNETOSTATIC TURBULENCE

    SciTech Connect

    Shalchi, A.

    2013-09-01

    We explore perpendicular diffusion based on the unified nonlinear transport theory. We derive simple analytical forms for the perpendicular mean free path and investigate the influence of different model spectra. We show that for cases where the field line random walk is normal diffusive, the perpendicular diffusion coefficient consists of only two transport regimes. Details of the spectral shape are less important, especially those of the inertial range. Only the macroscopic properties of the turbulence spectrum control the perpendicular diffusion coefficient. Simple formulae for the perpendicular diffusion coefficient are derived which can easily be implemented in solar modulation or shock acceleration codes.

  20. Measurement of diffusion coefficients important in modeling the absorption rate of carbon dioxide into aqueous N-methyldiethanolamine

    SciTech Connect

    Rowley, R.L.; Adams, M.E.; Marshall, T.L.; Oscarson, J.L.; Wilding, W.V.; Anderson, D.J.

    1997-03-01

    Natural gas processors use amine treating processes to remove the acid gases H{sub 2}S and CO{sub 2} from gas streams. Absorption rates of gaseous CO{sub 2} into aqueous N-methyldiethanolamine (MDEA) solutions were measured in a quiescent, inverted-tube diffusiometer by monitoring the rate of pressure drop. The absorption rate was found to be insensitive to the diffusion coefficient of CO{sub 2} in solution but very sensitive to the diffusion rate of bicarbonate and protonated MDEA ions. Evidence also suggested that chemical reaction equilibrium is rapid relative to diffusion. A numerical model was developed on the basis of these observations. The model was used to regress diffusion coefficients of bicarbonate and protonated amine, which must be equivalent by electroneutrality arguments, from measured absorption rates. Complete modeling of the absorption process also required data for the diffusion coefficient of MDEA in water. These were measured using a Taylor dispersion apparatus. CO{sub 2} absorption rates and diffusion coefficients of bicarbonate and protonated MDEA were obtained at 298.2 K and 318.2 K in solutions containing 20, 35, and 50 mass % MDEA in water.

  1. Controlling chloride ions diffusion in concrete

    PubMed Central

    Zeng, Lunwu; Song, Runxia

    2013-01-01

    The corrosion of steel in concrete is mainly due to the chemical reaction between the chloride ions and iron ions. Indeed, this is a serious threaten for reinforced concrete structure, especially for the reinforced concrete structure in the sea. So it is urgent and important to protect concrete against chloride ions corrosion. In this work, we report multilayer concrete can cloak chloride ions. We formulated five kinds of concrete A, B, C, D and E, which are made of different proportion of cement, sand and glue, and fabricated six-layer (ABACAD) cylinder diffusion cloak and background media E. The simulation results show that the six-layer mass diffusion cloak can protect concrete against chloride ions penetration, while the experiment results show that the concentration gradients are parallel and equal outside the outer circle in the diffusion flux lines, the iso-concentration lines are parallel outside the outer circle, and the concentration gradients in the inner circle are smaller than those outside the outer circle. PMID:24285220

  2. Simulating the Gas Diffusion Coefficient in Macropore Network Images: Influences of Soil Pore Morphology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of the diffusion coefficient is necessary for modeling gas transport in soils and other porous media. This study was conducted to determine the relationship between the diffusion coefficient and pore structure parameters, such as the fractal dimension of pores (Dmp), the shortest path leng...

  3. Data set for diffusion coefficients of alloying elements in dilute Mg alloys from first-principles

    PubMed Central

    Zhou, Bi-Cheng; Shang, Shun-Li; Wang, Yi; Liu, Zi-Kui

    2015-01-01

    Diffusion coefficients of alloying elements in Mg are critical for the development of new Mg alloys for lightweight applications. Here we present the data set of the temperature-dependent dilute tracer diffusion coefficients for 47 substitutional alloying elements in hexagonal closed packed (hcp) Mg calculated from first-principles calculations based on density functional theory (DFT) by combining transition state theory and an 8-frequency model. Benchmark for the DFT calculations and systematic comparison with experimental diffusion data are also presented. The data set refers to “Diffusion coefficients of alloying elements in dilute Mg alloys: A comprehensive first-principles study” by Zhou et al. [1]. PMID:26702419

  4. Temperature effects on diffusion coefficient for 6-gingerol and 6-shogaol in subcritical water extraction

    NASA Astrophysics Data System (ADS)

    Ilia Anisa, Nor; Azian, Noor; Sharizan, Mohd; Iwai, Yoshio

    2014-04-01

    6-gingerol and 6-shogaol are the main constituents as anti-inflammatory or bioactive compounds from zingiber officinale Roscoe. These bioactive compounds have been proven for inflammatory disease, antioxidatives and anticancer. The effect of temperature on diffusion coefficient for 6-gingerol and 6-shogaol were studied in subcritical water extraction. The diffusion coefficient was determined by Fick's second law. By neglecting external mass transfer and solid particle in spherical form, a linear portion of Ln (1-(Ct/Co)) versus time was plotted in determining the diffusion coefficient. 6-gingerol obtained the higher yield at 130°C with diffusion coefficient of 8.582x10-11 m2/s whilst for 6-shogaol, the higher yield and diffusion coefficient at 170°C and 19.417 × 10-11 m2/s.

  5. Single-image diffusion coefficient measurements of proteins in free solution.

    PubMed

    Zareh, Shannon Kian; DeSantis, Michael C; Kessler, Jonathan M; Li, Je-Luen; Wang, Y M

    2012-04-01

    Diffusion coefficient measurements are important for many biological and material investigations, such as studies of particle dynamics and kinetics, and size determinations. Among current measurement methods, single particle tracking (SPT) offers the unique ability to simultaneously obtain location and diffusion information about a molecule while using only femtomoles of sample. However, the temporal resolution of SPT is limited to seconds for single-color-labeled samples. By directly imaging three-dimensional diffusing fluorescent proteins and studying the widths of their intensity profiles, we were able to determine the proteins' diffusion coefficients using single protein images of submillisecond exposure times. This simple method improves the temporal resolution of diffusion coefficient measurements to submilliseconds, and can be readily applied to a range of particle sizes in SPT investigations and applications in which diffusion coefficient measurements are needed, such as reaction kinetics and particle size determinations. PMID:22500769

  6. A simple method for the determination of ionic diffusion coefficients in flooded soils

    NASA Astrophysics Data System (ADS)

    Gardner, P. J.; Flynn, N.; Maltby, E.

    2001-02-01

    Soil cores from river marginal wetlands from the Torridge and Severn catchments in the UK were collected to study rates of soil denitrification at different sites and at two stations (levee and backplain depression) at the river margin. Half the cores were sterilized prior to flooding to destroy the denitrifying bacteria. After flooding and equilibration, monitoring the concentration of amended nitrate in the supernatant of the sterile cores over a period of 7 days provided a simple procedure for the estimation of the diffusion coefficient of the nitrate ion in the flooded soils. An expression was developed that permitted this diffusion coefficient to be extracted from the slope of a plot of supernatant concentration versus (time)1/2. The values obtained, at 15 °C, varied from 2·4 to 6·8 × 10-10m2s-1. Sterile cores are usually treated as controls in denitrification experiments; this work develops a procedure whereby they may yield useful soil process information.

  7. Low coefficient of thermal expansion polyimides containing metal ion additives

    NASA Technical Reports Server (NTRS)

    Stoakley, D. M.; St. Clair, A. K.

    1992-01-01

    Polyimides have become widely used as high performance polymers as a result of their excellent thermal stability and toughness. However, lowering their coefficient of thermal expansion (CTE) would increase their usefulness for aerospace and electronic applications where dimensional stability is a requirement. The incorporation of metal ion-containing additives into polyimides, resulting in significantly lowered CTE's, has been studied. Various metal ion additives have been added to both polyamic acid resins and soluble polyimide solutions in the concentration range of 4-23 weight percent. The incorporation of these metal ions has resulted in reductions in the CTE's of the control polyimides of 12 percent to over 100 percent depending on the choice of additive and its concentration.

  8. Low coefficient of thermal expansion polyimides containing metal ion additives

    SciTech Connect

    Stoakley, D.M.; St.Clair, A.K. )

    1992-07-01

    Polyimides have become widely used as high performance polymers as a result of their excellent thermal stability and toughness. However, lowering their coefficient of thermal expansion (CTE) would increase their usefulness for aerospace and electronic applications where dimensional stability is a requirement. The CTE's of conventional polyimides range from 30 to 60 ppm/C. Approaches that have been reported to lower their CTE's include linearizing the polymer molecular structure and orienting the polyimide film. This current study involves the incorporation of metal ion-containing additives into polyimides and has resulted in significantly lowered CTE's. Various metal ion additives have been added to both polyamic acid resins and soluble polyimide solutions in the concentration range of 4-23 weight percent. The incorporation of these metal ions has resulted in reductions in the CTE's of the control polyimides of 12% to over 100% depending on the choice of additive and its concentration.

  9. NMR measurements of solvent self-diffusion coefficients in polymer solutions

    NASA Astrophysics Data System (ADS)

    Blum, Frank D.; Pickup, Stephen; Waggoner, R. Allen

    1989-11-01

    The transport of solvents and other small molecules in polymer solutions is important in many areas such as reaction rates, drying of coatings, plasticizer loss, curing of resins, elimination of residual monomer, and controlled drug release. Some of the work done in our laboratory on the diffusion of small molecules in polymer solutions and dispersions is reviewed. The diffusion data was used to test the Vrentas and Duda's free-volume theory for self-diffusion coefficients; test the independence of the normalized solvent self-diffusion for several polymer-solvent systems; and predict the solvent loss curves for drying of coatings based on solvent self-diffusion coefficients.

  10. Diffusion coefficients of water in biobased hydrogel polymer matrices by nuclear magnetic resonance imaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The diffusion coefficient of water in biobased hydrogels were measured utilizing a simple NMR method. This method tracks the migration of deuterium oxide through imaging data that is fit to a diffusion equation. The results show that a 5 wt% soybean oil based hydrogel gives aqueous diffusion of 1.37...

  11. Mass transfer in SCW extraction molecular diffusion and mass transfer coefficients of ketones and alkenes in sub- and supercritical water

    SciTech Connect

    Goemans, M.G.E.; Gloyna, E.F.

    1996-10-01

    The potential of sub- and supercritical water as extraction solvents has been demonstrated for the (reactive) extraction of coals, used car tires, organic species from residual aqueous solutions, and class selective extraction of organic pollutants with different polarities from solids. In addition, the potential of extraction of coal with supercritical aqueous solutions has been studied. However, physical transport in water at elevated temperature and pressures- and their impact on heterogenous reactions and (reactive) extraction -are not adequately understood. This situation is largely due to the limited data that is available for diffusion in high temperature, high pressure water mixture. Only the molecular diffusion of Iodine ions and hydroquinone in near-critical subcritical water and the self diffusion of coefficient of compressed supercritical water have been reported. In this paper, we present molecular diffusion coefficients of benzophenone, acetone, naphthalene, and anthracene in water at infinite dilution. Pressures ranged from 250 to 500 bar at temperatures ranging from 50{degrees}C to 500{degrees}C resulting in water densities ranging from 1000 to 150 kg/m{sup 3}. Diffusion coefficients were determined by the Taylor-Aris dispersion technique. The effects of increased diffusion on the mass transfer coefficients for emulsions and packed beds were quantified. Molecular division coefficients were 10 to 20 times faster in supercritical water than in water at ambient conditions. Experimental results were correlated with hydrodynamic and kinetic theory. This study and results to be published elsewhere show that diffusion-limited conditions are much more likely to be encountered in supercritical water than is commonly acknowledged.

  12. Diffusion-weighted MRI derived apparent diffusion coefficient identifies prognostically distinct subgroups of pediatric diffuse intrinsic pontine glioma.

    PubMed

    Lober, Robert M; Cho, Yoon-Jae; Tang, Yujie; Barnes, Patrick D; Edwards, Michael S; Vogel, Hannes; Fisher, Paul G; Monje, Michelle; Yeom, Kristen W

    2014-03-01

    While pediatric diffuse intrinsic pontine gliomas (DIPG) remain fatal, recent data have shown subgroups with distinct molecular biology and clinical behavior. We hypothesized that diffusion-weighted MRI can be used as a prognostic marker to stratify DIPG subsets with distinct clinical behavior. Apparent diffusion coefficient (ADC) values derived from diffusion-weighted MRI were computed in 20 consecutive children with treatment-naïve DIPG tumors. The median ADC for the cohort was used to stratify the tumors into low and high ADC groups. Survival, gender, therapy, and potential steroid effects were compared between the ADC groups. Median age at diagnosis was 6.6 (range 2.3-13.2) years, with median follow-up seven (range 1-36) months. There were 14 boys and six girls. Seventeen patients received radiotherapy, five received chemotherapy, and six underwent cerebrospinal fluid diversion. The median ADC of 1,295 × 10(-6) mm(2)/s for the cohort partitioned tumors into low or high diffusion groups, which had distinct median survivals of 3 and 13 months, respectively (log-rank p < 0.001). Low ADC tumors were found only in boys, whereas high ADC tumors were found in both boys and girls. Available tissue specimens in three low ADC tumors demonstrated high-grade histology, whereas one high ADC tumor demonstrated low-grade histology with a histone H3.1 K27M mutation and high-grade metastatic lesion at autopsy. ADC derived from diffusion-weighted MRI may identify prognostically distinct subgroups of pediatric DIPG. PMID:24522717

  13. Impurity Diffusion Coefficients of Al and Zn in Mg Determined from Solid-to-Solid Diffusion Couples

    SciTech Connect

    Kammerer, Catherine; Kulkarni, Nagraj S; Warmack, Robert J Bruce; Perry, Kelly A; Belova, Irina; Murch, Prof. Graeme; Sohn, Yong Ho

    2013-08-01

    Increasing use and development of lightweight Mgalloys have led to the desire for more fundamental research in and understanding of Mg-based systems. As property enhancing components, Al and Zn are two of the most important and common alloying elements for Mg-alloys. We have investigated the concentration dependent interdiffusion of Al and Zn in Mg using diffusion couples of pure polycrystalline Mg mated to Mg solid solutions containing either <9 at.% Al or <3 at.% Zn. Concentration profiles were determined by electron micro-probe microanalysis of the diffusion zone. The interdiffusion coefficients were determined by the classical Boltzmann-Matano method within the Mg solid solution. As the concentration of Al or Zn approaches the dilute ends, we employ an analytical approach based on the Hall method to estimate the impurity diffusion coefficients. Results of Al and Zn impurity diffusion in Mg are reported and compared to published impurity diffusion coefficients typically determined by thin film techniques.

  14. Lithium ion diffusion in Li β-alumina single crystals measured by pulsed field gradient NMR spectroscopy

    SciTech Connect

    Chowdhury, Mohammed Tareque Takekawa, Reiji; Iwai, Yoshiki; Kuwata, Naoaki; Kawamura, Junichi

    2014-03-28

    The lithium ion diffusion coefficient of a 93% Li β-alumina single crystal was measured for the first time using pulsed field gradient (PFG) NMR spectroscopy with two different crystal orientations. The diffusion coefficient was found to be 1.2 × 10{sup −11} m{sup 2}/s in the direction perpendicular to the c axis at room temperature. The Li ion diffusion coefficient along the c axis direction was found to be very small (6.4 × 10{sup −13} m{sup 2}/s at 333 K), which suggests that the macroscopic diffusion of the Li ion in the β-alumina crystal is mainly two-dimensional. The diffusion coefficient for the same sample was also estimated using NMR line narrowing data and impedance measurements. The impedance data show reasonable agreement with PFG-NMR data, while the line narrowing measurements provided a lower value for the diffusion coefficient. Line narrowing measurements also provided a relatively low value for the activation energy and pre-exponential factor. The temperature dependent diffusion coefficient was obtained in the temperature range 297–333 K by PFG-NMR, from which the activation energy for diffusion of the Li ion was estimated. The activation energy obtained by PFG-NMR was smaller than that obtained by impedance measurements, which suggests that thermally activated defect formation energy exists for 93% Li β-alumina single crystals. The diffusion time dependence of the diffusion coefficient was observed for the Li ion in the 93% Li β-alumina single crystal by means of PFG-NMR experiments. Motion of Li ion in fractal dimension might be a possible explanation for the observed diffusion time dependence of the diffusion coefficient in the 93% Li β–alumina system.

  15. Diffusion-weighted imaging with apparent diffusion coefficient mapping and spectroscopy in prostate cancer.

    PubMed

    Jacobs, Michael A; Ouwerkerk, Ronald; Petrowski, Kyle; Macura, Katarzyna J

    2008-12-01

    Prostate cancer is a major health problem, and the exploration of noninvasive imaging methods that have the potential to improve specificity while maintaining high sensitivity is still critically needed. Tissue changes induced by tumor growth can be visualized by magnetic resonance imaging (MRI) methods. Current MRI methods include conventional T2-weighted imaging, diffusion-weighted imaging (DWI) with apparent diffusion coefficient (ADC) mapping and magnetic resonance spectroscopy (MRS). Techniques such as DWI/ADC provide functional information about the behavior of water molecules in tissue; MRS can provide biochemical information about the presence or absence of certain metabolites, such as choline, creatine, and citrate. Finally, vascular parameters can be investigated using dynamic contrast-enhanced MRI. Moreover, with whole-body MRI and DWI, metastatic disease can be evaluated in 1 session and may provide a way to monitor treatment. Therefore, when combining these various methods, a multiparametric data set can be built to assist in the detection, localization, assessment of prostate cancer aggressiveness, and tumor staging. Such a comprehensive approach offers more power to evaluate prostate disease than any single measure alone. In this article, we focus on the role of DWI/ADC and MRS in the detection and characterization using both in vivo and ex vivo imaging of prostate pathology. PMID:19512848

  16. Nonlinearity Effects of Lateral Density Diffusion Coefficient on Gain-Guided VCSEL Performance

    NASA Technical Reports Server (NTRS)

    Li, Jian-Zhong; Cheung, Samson H.; Ning, C. Z.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Electron and hole diffusions in the plane of semiconductor quantum wells play an important part in the static and dynamic operations of semiconductor lasers. In this paper, we apply a hydrodynamic model developed from the semiconductor Bloch equations to numerically study the effects of nonlinearity in the diffusion coefficient on single mode operation and direct modulation of a gain-guided InGaAs/GaAs multiple quantum well laser, operating not too far from threshold. We found that a small diffusion coefficient is advantageous for lowering the threshold current and increasing the modulation bandwidth. Most importantly, the effects of nonlinearity in the coefficient can be approximately reproduced by replacing the coefficient with an effective constant diffusion coefficient, which corresponds roughly to the half height density of the density distribution.

  17. A liquid state least-squares procedure for obtaining solid state multicomponent diffusion coefficients from diffusion couples

    SciTech Connect

    Miller, D.G.

    1998-11-02

    A procedure is developed for analyzing combined concentration profiles from multicomponent solid-state diffusion data obtained with free-diffusion boundary conditions. This procedure is exactly analogous to the analysis of liquid-state diffusion data obtained from free-diffusion refractive-index profiles (e.g. from Rayleigh interferometry). All data from all couples are least-squared together to characterize the diffusion coefficient matrix. Different profile weightings provide interesting alternatives, as well as diagnostics. Symmetric averagings are shown to eliminate or reduce effects of concentration dependence.

  18. Measurement of effective air diffusion coefficients for trichloroethene in undisturbed soil cores

    NASA Astrophysics Data System (ADS)

    Bartelt-Hunt, Shannon L.; Smith, James A.

    2002-06-01

    In this study, we measure effective diffusion coefficients for trichloroethene in undisturbed soil samples taken from Picatinny Arsenal, New Jersey. The measured effective diffusion coefficients ranged from 0.0053 to 0.0609 cm 2/s over a range of air-filled porosity of 0.23-0.49. The experimental data were compared to several previously published relations that predict diffusion coefficients as a function of air-filled porosity and porosity. A multiple linear regression analysis was developed to determine if a modification of the exponents in Millington's [Science 130 (1959) 100] relation would better fit the experimental data. The literature relations appeared to generally underpredict the effective diffusion coefficient for the soil cores studied in this work. Inclusion of a particle-size distribution parameter, d10, did not significantly improve the fit of the linear regression equation. The effective diffusion coefficient and porosity data were used to recalculate estimates of diffusive flux through the subsurface made in a previous study performed at the field site. It was determined that the method of calculation used in the previous study resulted in an underprediction of diffusive flux from the subsurface. We conclude that although Millington's [Science 130 (1959) 100] relation works well to predict effective diffusion coefficients in homogeneous soils with relatively uniform particle-size distributions, it may be inaccurate for many natural soils with heterogeneous structure and/or non-uniform particle-size distributions.

  19. An analytical estimate of the coefficient for radial charged particle diffusion in Jupiter's magnetosphere using plasma radial distribution

    NASA Astrophysics Data System (ADS)

    Gubar, Yu. I.

    2015-11-01

    A radial profile of the plasma mass distribution in Jupiter's magnetosphere in the region beyond Io's orbit up to ˜15 Jupiter radii R J constructed according to the results of measurements on the Voyager 1 and Galileo spacecraft is used to determine the radial dependence and radial diffusion coefficient D LL . The initial profile is approximated by a function decreasing as L -5 ± 1. For this radial mass distribution, radial ion diffusion outside of Io's orbit caused by centrifugal forces is possible. An estimate of (1.2-6.7)10-11 L 6 ± 1 for D LL was obtained.

  20. Multispacecraft observations of diffuse ions upstream of Earth's bow shock

    NASA Astrophysics Data System (ADS)

    Kis, A.; Scholer, M.; Klecker, B.; Moebius, E.; Lucek, E.; Reme, H.

    We present observations of upstream ions at times of large separation distance between the Cluster spacecraft (~5000 km). On 18 February, 2003, during particulary quiet interplanetary conditions, the Cluster spacecraft were moving inbound through the foreshock region, where for more than 12 hours they simultaneously observed a continuous presence of a diffuse ion population. Using the HIA and CODIF sensors of the CIS plasma instrument onboard SC-1 and -3, we were able to directly measure the upstream ion density gradients in the energy range 10-32 keV in several energy bands. During this time period, the spacecraft distance from the bow shock parallel to the local magnetic field varies considerably (between 0 and 15 Re). The distance to the bow shock has been determined by using upstream magnetic field and plasma parameters and a bow shock model. We find up to 10 Re from the bow shock an exponential decrease of the upstream ion density, with an e-folding distance increasing from 3.1 to 5.6 Re at energies from 10 keV to 32 keV, respectively. From the e-folding distance the parallel diffusion coefficient and its energy dependence can be determined. At distances more than 10 Re the gradient is close to zero.

  1. Scale dependence of the effective matrix diffusion coefficient:Evidence and preliminary interpretation

    SciTech Connect

    Liu, Hui-Hai; Zhang, Yingqi; Molz, Fred J.

    2006-04-30

    The exchange of solute mass (through molecular diffusion) between fluid in fractures and fluid in the rock matrix is called matrix diffusion. Owing to the orders-of-magnitude slower flow velocity in the matrix compared to fractures, matrix diffusion can significantly retard solute transport in fractured rock, and therefore is an important process for a variety of problems, including remediation of subsurface contamination and geological disposal of nuclear waste. The effective matrix diffusion coefficient (molecular diffusion coefficient in free water multiplied by matrix tortuosity) is an important parameter for describing matrix diffusion, and in many cases largely determines overall solute transport behavior. While matrix diffusion coefficient values measured from small rock samples in the laboratory are generally used for modeling field-scale solute transport in fractured rock (Boving and Grathwohl, 2001), several research groups recently have independently found that effective matrix diffusion coefficients much larger than laboratory measurements are needed to match field-scale tracer-test data (Neretnieks, 2002; Becker and Shapiro, 2000; Shapiro, 2001; Liu et al., 2003, 2004a). In addition to the observed enhancement, Liu et al. (2004b), based on a relatively small number of field-test results, reported that the effective matrix diffusion coefficient might be scale dependent, and, like permeability and dispersivity, it seems to increases with test scale. This scale-dependence has important implications for large-scale solute transport in fractured rock. Although a number of mechanisms have been proposed to explain the enhancement of the effective matrix diffusion coefficient, the potential scale dependence and its mechanisms are not fully investigated at this stage. The major objective of this study is to again demonstrate (based on more data published in the literature than those used in Liu et al. [2004b]) the potential scale dependence of the effective

  2. Scale Dependence of Effective Matrix Diffusion Coefficient Evidence and Preliminary Interpertation

    SciTech Connect

    H.H. Liu; Y. Zhang

    2006-06-20

    The exchange of solute mass (through molecular diffusion) between fluid in fractures and fluid in the rock matrix is called matrix diffusion. Owing to the orders-of-magnitude slower flow velocity in the matrix compared to fractures, matrix diffusion can significantly retard solute transport in fractured rock, and therefore is an important process for a variety of problems, including remediation of subsurface contamination and geological disposal of nuclear waste. The effective matrix diffusion coefficient (molecular diffusion coefficient in free water multiplied by matrix tortuosity) is an important parameter for describing matrix diffusion, and in many cases largely determines overall solute transport behavior. While matrix diffusion coefficient values measured from small rock samples in the laboratory are generally used for modeling field-scale solute transport in fractured rock (Boving and Grathwohl, 2001), several research groups recently have independently found that effective matrix diffusion coefficients much larger than laboratory measurements are needed to match field-scale tracer-test data (Neretnieks, 2002; Becker and Shapiro, 2000; Shapiro, 2001; Liu et al., 2003,2004a). In addition to the observed enhancement, Liu et al. (2004b), based on a relatively small number of field-test results, reported that the effective matrix diffusion coefficient might be scale dependent, and, like permeability and dispersivity, it seems to increases with test scale. This scale-dependence has important implications for large-scale solute transport in fractured rock. Although a number of mechanisms have been proposed to explain the enhancement of the effective matrix diffusion coefficient, the potential scale dependence and its mechanisms are not fully investigated at this stage. The major objective of this study is to again demonstrate (based on more data published in the literature than those used in Liu et al. [2004b]) the potential scale dependence of the effective

  3. Banded structures in electron pitch angle diffusion coefficients from resonant wave-particle interactions

    NASA Astrophysics Data System (ADS)

    Tripathi, A. K.; Singhal, R. P.; Khazanov, G. V.; Avanov, L. A.

    2016-04-01

    Electron pitch angle (Dαα) and momentum (Dpp) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L = 4.6 and 6.8 for electron energies ≤10 keV. Landau (n = 0) resonance and cyclotron harmonic resonances n = ±1, ±2, … ±5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (α) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusion coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n = +1 and n = +2. A major contribution to momentum diffusion coefficients appears from n = +2. However, the banded structures in Dαα and Dpp coefficients appear only in the profile of diffusion coefficients for n = +2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The Dpp diffusion coefficient for ECH waves is one to two orders smaller than Dαα coefficients. For chorus waves, Dpp coefficients are about an order of magnitude smaller than Dαα coefficients for the case n ≠ 0. In case of Landau resonance, the values of Dpp coefficient are generally larger than the values of Dαα coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89° and harmonic resonances n = +1, +2, and +3, whereas for whistler mode waves, the frequencies have been calculated for angle 10° and Landau

  4. Effective diffusion coefficient of a Brownian particle in a periodically expanded conical tube

    PubMed Central

    Antipov, Anatoly E.; Barzykin, Alexander V.; Berezhkovskii, Alexander M.; Makhnovskii, Yurii A.; Zitserman, Vladimir Yu.; Aldoshin, Sergei M.

    2016-01-01

    Diffusion in a tube of periodically varying diameter occurs slower than that in a cylindrical tube because diffusing particles get trapped in wells of the periodic entropy potential which is due to variation of the tube cross-section area. To quantify the slowdown one has to establish a relation between the effective diffusion coefficient of the particle and the tube geometry, which is a very complicated problem. Here we show how to overcome the difficulties in the case of a periodically expanded conical tube, where we find an approximate solution for the effective diffusion coefficient as a function of the parameters determining the tube geometry. PMID:24329385

  5. Determination of the diffusion coefficient between corn syrup and distilled water using a digital camera

    NASA Astrophysics Data System (ADS)

    Ray, E.; Bunton, P.; Pojman, J. A.

    2007-10-01

    A simple technique for determining the diffusion coefficient between two miscible liquids is presented based on observing concentration-dependent ultraviolet-excited fluorescence using a digital camera. The ultraviolet-excited visible fluorescence of corn syrup is proportional to the concentration of the syrup. The variation of fluorescence with distance from the transition zone between the fluids is fit by the Fick's law solution to the diffusion equation. By monitoring the concentration at successive times, the diffusion coefficient can be determined in otherwise transparent materials. The technique is quantitative and makes measurement of diffusion accessible in the advanced undergraduate physics laboratory.

  6. Molecular modeling of diffusion coefficient and ionic conductivity of CO2 in aqueous ionic solutions.

    PubMed

    Garcia-Ratés, Miquel; de Hemptinne, Jean-Charles; Bonet Avalos, Josep; Nieto-Draghi, Carlos

    2012-03-01

    Mass diffusion coefficients of CO(2)/brine mixtures under thermodynamic conditions of deep saline aquifers have been investigated by molecular simulation. The objective of this work is to provide estimates of the diffusion coefficient of CO(2) in salty water to compensate the lack of experimental data on this property. We analyzed the influence of temperature, CO(2) concentration,and salinity on the diffusion coefficient, the rotational diffusion, as well as the electrical conductivity. We observe an increase of the mass diffusion coefficient with the temperature, but no clear dependence is identified with the salinity or with the CO(2) mole fraction, if the system is overall dilute. In this case, we notice an important dispersion on the values of the diffusion coefficient which impairs any conclusive statement about the effect of the gas concentration on the mobility of CO(2) molecules. Rotational relaxation times for water and CO(2) increase by decreasing temperature or increasing the salt concentration. We propose a correlation for the self-diffusion coefficient of CO(2) in terms of the rotational relaxation time which can ultimately be used to estimate the mutual diffusion coefficient of CO(2) in brine. The electrical conductivity of the CO(2)-brine mixtures was also calculated under different thermodynamic conditions. Electrical conductivity tends to increase with the temperature and salt concentration. However, we do not observe any influence of this property with the CO(2) concentration at the studied regimes. Our results give a first evaluation of the variation of the CO(2)-brine mass diffusion coefficient, rotational relaxation times, and electrical conductivity under the thermodynamic conditions typically encountered in deep saline aquifers. PMID:22292779

  7. Quantitative mapping of the per‐axon diffusion coefficients in brain white matter

    PubMed Central

    Kruggel, Frithjof; Alexander, Daniel C.

    2015-01-01

    Purpose This article presents a simple method for estimating the effective diffusion coefficients parallel and perpendicular to the axons unconfounded by the intravoxel fiber orientation distribution. We also call these parameters the per‐axon or microscopic diffusion coefficients. Theory and Methods Diffusion MR imaging is used to probe the underlying tissue material. The key observation is that for a fixed b‐value the spherical mean of the diffusion signal over the gradient directions does not depend on the axon orientation distribution. By exploiting this invariance property, we propose a simple, fast, and robust estimator of the per‐axon diffusion coefficients, which we refer to as the spherical mean technique. Results We demonstrate quantitative maps of the axon‐scale diffusion process, which has factored out the effects due to fiber dispersion and crossing, in human brain white matter. These microscopic diffusion coefficients are estimated in vivo using a widely available off‐the‐shelf pulse sequence featuring multiple b‐shells and high‐angular gradient resolution. Conclusion The estimation of the per‐axon diffusion coefficients is essential for the accurate recovery of the fiber orientation distribution. In addition, the spherical mean technique enables us to discriminate microscopic tissue features from fiber dispersion, which potentially improves the sensitivity and/or specificity to various neurological conditions. Magn Reson Med, 2015. Magn Reson Med 75:1752–1763, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. PMID:25974332

  8. Diffusion Coefficients of Water and Leachables in Methacrylate-based Crosslinked Polymers using Absorption Experiments

    PubMed Central

    Parthasarathy, Ranganathan; Misra, Anil; Park, Jonggu; Ye, Qiang; Spencer, Paulette

    2012-01-01

    The diffusion of water into dentin adhesive polymers and leaching of unpolymerized monomer from the adhesive are linked to their mechanical softening and hydrolytic degradation. Therefore, diffusion coefficient data are critical for the mechanical design of these polymeric adhesives. In this study, diffusion coefficients of water and leachables were obtained for sixteen methacrylate-based crosslinked polymers using absorption experiments. The experimental mass change data was interpreted using numerical solution of the two-dimensional diffusion equations. The calculated diffusion coefficients varied from 1.05 × 10−8 cm2/sec (co-monomer TMTMA) to 3.15 × 10−8 cm2/sec (co-monomer T4EGDMA). Correlation of the diffusion coefficients with crosslink density and hydrophilicity showed an inverse trend (R2 = 0.41). The correlation of diffusion coefficient with crosslink density and hydrophilicity are closer for molecules differing by simple repeat units (R2 = 0.95). These differences in the trends reveal mechanisms of interaction of the diffusing water with the polymer structure. PMID:22430592

  9. NITRIC ACID-AIR DIFFUSION COEFFICIENT: EXPERIMENTAL DETERMINATION

    EPA Science Inventory

    Trace gaseous HNO3 in air is removed in a laminar flow nylon tube. The HNO3 deposition pattern was obtained by sectioning the tube, extracting with an aqueous solution, and measuring the concentration by ion chromatography. Mass transport analysis of the deposition pattern demons...

  10. Measurement of molecular diffusion coefficients in supercritical carbon dioxide using a coated capillary column

    SciTech Connect

    Lai, C.C.; Tan, C.S. . Dept. of Chemical Engineering)

    1995-02-01

    Molecular diffusion coefficients of ethyl acetate, toluene, phenol, and caffeine in supercritical carbon dioxide were measured by a chromatographic peak broadening technique in a coated capillary column at temperatures of 308, 318, and 328 K and pressures up to 145 bar. A linear adsorption in the polymer layer coated on the inner wall of the capillary column was observed. The experimentally determined diffusion coefficients showed substantial agreement with those reported in the literature. The diffusion coefficients were in the order of 10[sup [minus]4] cm[sup 2]/s and decreased with increasing carbon dioxide density. Based on the molecular diffusion coefficient data reported here and those published elsewhere, an empirically modified Wilke-Chang equation was proposed which was found to be more quantitative than some existing equations such as the Stokes-Einstein and Wilke-Chang equations.

  11. New thermal diffusion coefficient measurements for hydrocarbon binary mixtures: viscosity and composition dependency.

    PubMed

    Leahy-Dios, Alana; Zhuo, Lin; Firoozabadi, Abbas

    2008-05-22

    New thermal diffusion coefficients of binary mixtures are measured for n-decane-n-alkanes and 1-methylnaphthalene-n-alkanes with 25 and 75 wt % at 25 degrees C and 1 atm using the thermogravitational column technique. The alkanes range from n-pentane to n-eicosane. The new results confirm the recently observed nonmonotonic behavior of thermal diffusion coefficients with molecular weight for binary mixtures of n-decane- n-alkanes at the compositions studied. In this work, the mobility and disparity effects on thermal diffusion coefficients are quantified for binary mixtures. We also show for the binary mixtures studied that the thermal diffusion coefficients and mixture viscosity, both nonequilibrium properties, are closely related. PMID:18438988

  12. On the determinatino of high-pressure mass-diffusion coefficients for binary mixtures

    NASA Technical Reports Server (NTRS)

    Bellan, J.; Harstad, K.

    2003-01-01

    A model for high-pressure binary diffusion coefficient calculation is proposed based on considerations originating from recasting both the low pressure kinetic theory and the Stokes-Einstein infinite dilution expressions into forms consistent with corresponding states theory.

  13. Numerical results using the conforming VEM for the convection-diffusion-reaction equation with variable coefficients.

    SciTech Connect

    Manzini, Gianmarco; Cangiani, Andrea; Sutton, Oliver

    2014-10-02

    This document presents the results of a set of preliminary numerical experiments using several possible conforming virtual element approximations of the convection-reaction-diffusion equation with variable coefficients.

  14. Diffusion coefficients of articular cartilage for different CT and MRI contrast agents.

    PubMed

    Kulmala, K A M; Korhonen, R K; Julkunen, P; Jurvelin, J S; Quinn, T M; Kröger, H; Töyräs, J

    2010-10-01

    In contrast enhanced magnetic resonance imaging (MRI) and computed tomography (CT), the equilibrium distribution of anionic contrast agent is expected to reflect the fixed charged density (FCD) of articular cartilage. Diffusion is mainly responsible for the transport of contrast agents into cartilage. In osteoarthritis, cartilage composition changes at early stages of disease, and solute diffusion is most likely affected. Thus, investigation of contrast agent diffusion could enable new methods for imaging of cartilage composition. The aim of this study was to determine the diffusion coefficient of four contrast agents (ioxaglate, gadopentetate, iodide, gadodiamide) in bovine articular cartilage. The contrast agents were different in molecular size and charge. In peripheral quantitative CT experiments, penetration of contrast agent into the tissue was allowed either through the articular surface or through deep cartilage. To determine diffusion coefficients, a finite element model based on Fick's law was fitted to experimental data. Diffusion through articular surface was faster than through deep cartilage with every contrast agent. Iodide, being of atomic size, diffused into the cartilage significantly faster (q<0.05) than the other three contrast agents, for either transport direction. The diffusion coefficients of all clinical contrast agents (ioxaglate, gadopentetate and gadodiamide) were relatively low (142.8-253.7 μm(2)/s). In clinical diagnostics, such slow diffusion may not reach equilibrium and this jeopardizes the determination of FCD by standard methods. However, differences between diffusion through articular surface and deep cartilage, that are characterized by different tissue composition, suggest that diffusion coefficients may correlate with cartilage composition. Present method could therefore enable image-based assessment of cartilage composition by determination of diffusion coefficients within cartilage tissue. PMID:20594900

  15. On quantum mechanical transport coefficients in nonequilibrium nuclear processes with application to heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Hamdouni, Yamen

    2010-12-01

    The elements of the quantum mechanical Markovian diffusion matrix leading to a Gibbs equilibrium state for a set of N coupled quantum harmonic oscillators are derived within Lindblad's axiomatic approach. Consequences of the fundamental constraints on the quantum friction coefficients are discussed. We derive the equations of motion for the expectation values and variances, and we solve them analytically. We apply our results to the description of the charge and mass asymmetry coordinates in heavy-ion collisions, and we investigate the effect of dissipation on tunneling in sub-barrier processes.

  16. Simultaneous Characterization of Lateral Lipid and Prothrombin Diffusion Coefficients by Z-Scan Fluorescence Correlation Spectroscopy

    PubMed Central

    Štefl, Martin; Kułakowska, Anna; Hof, Martin

    2009-01-01

    Abstract A new (to our knowledge) robust approach for the determination of lateral diffusion coefficients of weakly bound proteins is applied for the phosphatidylserine specific membrane interaction of bovine prothrombin. It is shown that z-scan fluorescence correlation spectroscopy in combination with pulsed interleaved dual excitation allows simultaneous monitoring of the lateral diffusion of labeled protein and phospholipids. Moreover, from the dependencies of the particle numbers on the axial sample positions at different protein concentrations phosphatidylserine-dependent equilibrium dissociation constants are derived confirming literature values. Increasing the amount of membrane-bound prothrombin retards the lateral protein and lipid diffusion, indicating coupling of both processes. The lateral diffusion coefficients of labeled lipids are considerably larger than the simultaneously determined lateral diffusion coefficients of prothrombin, which contradicts findings reported for the isolated N-terminus of prothrombin. PMID:19651025

  17. Imaging cell size and permeability in biological tissue using the diffusion-time dependence of the apparent diffusion coefficient

    NASA Astrophysics Data System (ADS)

    Dietrich, Olaf; Hubert, Alexander; Heiland, Sabine

    2014-06-01

    The purpose of this study was to analyze and evaluate a model of restricted water diffusion between equidistant permeable membranes for cell-size and permeability measurements in biological tissue. Based on the known probability distribution of diffusion distances after the diffusion time τ in a system of permeable membranes characterized by three parameters (membrane permeability P, membrane distance L, and free diffusivity D0), an equivalent dimensionless model was derived with a probability distribution characterized by only a single (dimensionless) tissue parameter \\tilde{P}. Evaluating this proposed model function, the dimensionless diffusion coefficient \\tilde{D}_{eff}(\\tilde{\\tau };\\,\\tilde{P}) was numerically calculated for 60 values of the dimensionless diffusion time \\tilde{\\tau } and 35 values of \\tilde{P}. Diffusion coefficients were measured in a carrot by diffusion-weighted magnetic resonance imaging (MRI) at 18 diffusion times between 9.9 and 1022.7 ms and fitted to the simulation results \\tilde{D}_{eff}(\\tilde{\\tau };\\,\\tilde{P}) to determine L, P, and D0. The measured diffusivities followed the simulated dependence of \\tilde{D}_{eff}(\\tilde{\\tau };\\tilde{P}). Determined cell sizes varied from 21 to 76 μm, permeabilities from 0.007 to 0.039 μm-1, and the free diffusivities from 1354 to 1713 μm2 s-1. In conclusion, the proposed dimensionless tissue model can be used to determine tissue parameters (D0, L, P) based on diffusion MRI with multiple diffusion times. Measurements in a carrot showed a good agreement of the cell diameter, L, determined by diffusion MRI and by light microscopy.

  18. FITTING OF THE DATA FOR DIFFUSION COEFFICIENTS IN UNSATURATED POROUS MEDIA

    SciTech Connect

    B. Bullard

    1999-05-01

    The purpose of this calculation is to evaluate diffusion coefficients in unsaturated porous media for use in the TSPA-VA analyses. Using experimental data, regression techniques were used to curve fit the diffusion coefficient in unsaturated porous media as a function of volumetric water content. This calculation substantiates the model fit used in Total System Performance Assessment-1995 An Evaluation of the Potential Yucca Mountain Repository (TSPA-1995), Section 6.5.4.

  19. Note on coefficient matrices from stochastic Galerkin methods for random diffusion equations

    SciTech Connect

    Zhou Tao; Tang Tao

    2010-11-01

    In a recent work by Xiu and Shen [D. Xiu, J. Shen, Efficient stochastic Galerkin methods for random diffusion equations, J. Comput. Phys. 228 (2009) 266-281], the Galerkin methods are used to solve stochastic diffusion equations in random media, where some properties for the coefficient matrix of the resulting system are provided. They also posed an open question on the properties of the coefficient matrix. In this work, we will provide some results related to the open question.

  20. The ion polytropic coefficient in a collisionless sheath containing hot ions

    NASA Astrophysics Data System (ADS)

    Lin, Binbin; Xiang, Nong; Ou, Jing

    2016-08-01

    The fluid approach has been widely used to study plasma sheath dynamics. For a sheath containing hot ions whose temperature is greater than the electron's, how to truncate the fluid hierarchy chain equations while retaining to the fullest extent of the kinetic effects is always a difficult problem. In this paper, a one-dimensional, collisionless sheath containing hot ions is studied via particle-in-cell simulations. By analyzing the ion energy equation and taking the kinetic effects into account, we have shown that the ion polytropic coefficient in the vicinity of the sheath edge is approximately constant so that the state equation with the modified polytropic coefficient can be used to close the hierarchy chain of the ion fluid equations. The value of the polytropic coefficient strongly depends on the hot ion temperature and its concentration in the plasma. The semi-analytical model is given to interpret the simulation results. As an application, the kinetic effects on the ion saturation current density in the probe theory are discussed.

  1. Response of radiation belt simulations to different radial diffusion coefficients models

    NASA Astrophysics Data System (ADS)

    Drozdov, Alexander; Baker, Daniel N.; Shprits, Yuri; Kellerman, Adam

    2016-07-01

    Two parameterizations of the resonant wave-particle interactions of electrons with ultra-low frequency waves in the magnetosphere by Brautigam and Albert [2000] and Ozeke et al. [2014] are evaluated using the Versatile Electron Radiation Belt (VERB) diffusion code to estimate the effect of changing a diffusion coefficient on the radiation belt simulation. The period of investigation includes geomagnetically quiet and active time. The simulations take into account wave-particle interactions represented by radial diffusion transport, local acceleration, losses due to pitch-angle diffusion, and mixed diffusion.

  2. Determination of the Tracer Diffusion Coefficient of Soft Polystyrene Nanoparticles using Neutron Reflectivity

    NASA Astrophysics Data System (ADS)

    Imel, Adam; Miller, Brad; Holley, Wade; Baskaran, Durairaj; Mays, Jimmy; Dadmun, Mark

    2015-03-01

    The diffusion properties of nanoparticles in polymer nanocomposites are largely unknown and depend intimately on the dispersion of the nanoparticles. We examine the diffusion of soft, organic nanoparticles, which disperse in a polymer matrix due to the interpenetration of polymer chains and particles and the reduction in the depletion of entropy in the system. The impact of the presence of soft nanoparticles on the diffusion coefficient of polystyrene chains has recently been determined with neutron reflectivity. This was completed by monitoring the interdiffusion of deuterated and protonated polystyrene nanocomposite bilayers with and without the soft nanoparticles dispersed throughout both layers and extracting the diffusion coefficient from the one-dimensional solution to Fick's second law of diffusion. In this work, we extend this method to bilayer systems with only the soft nanoparticles as one of the layers and a linear deuterated polystyrene as an adjacent layer. The development of this method allows us to determine the tracer diffusion coefficient of the soft polystyrene nanoparticles for the first time by analyzing the mutual diffusion coefficient from Fick's second law and the fast and slow modes theories for diffusion.

  3. First principles calculations of alloying element diffusion coefficients in Ni using the five-frequency model

    NASA Astrophysics Data System (ADS)

    Wu, Qiong; Li, Shu-Suo; Ma, Yue; Gong, Sheng-Kai

    2012-10-01

    The diffusion coefficients of several alloying elements (Al, Mo, Co, Ta, Ru, W, Cr, Re) in Ni are directly calculated using the five-frequency model and the first principles density functional theory. The correlation factors provided by the five-frequency model are explicitly calculated. The calculated diffusion coefficients show their excellent agreement with the available experimental data. Both the diffusion pre-factor (D0) and the activation energy (Q) of impurity diffusion are obtained. The diffusion coefficients above 700 K are sorted in the following order: DAl > DCr > DCo > DTa > DMo > DRu > DW > DRe. It is found that there is a positive correlation between the atomic radius of the solute and the jump energy of Ni that results in the rotation of the solute-vacancy pair (E1). The value of E2-E1 (E2 is the solute diffusion energy) and the correlation factor each also show a positive correlation. The larger atoms in the same series have lower diffusion activation energies and faster diffusion coefficients.

  4. An alternative model for estimating liquid diffusion coefficients requiring no viscosity data

    NASA Technical Reports Server (NTRS)

    Morales, Wilfredo

    1993-01-01

    An equation, based on the free volume of a liquid solvent, was derived via dimensional analysis, to predict binary diffusion coefficients. The equation assumed that interaction between the solute and liquid solvent molecules followed a Lennard-Jones potential. The equation was compared to other diffusivity equations and was found to give good results over the temperature range examined.

  5. Temperature-Dependent Diffusion Coefficients from ab initio Computations: Hydrogen in Nickel

    SciTech Connect

    E Wimmer; W Wolf; J Sticht; P Saxe; C Geller; R Najafabadi; G Young

    2006-03-16

    The temperature-dependent mass diffusion coefficient is computed using transition state theory. Ab initio supercell phonon calculations of the entire system provide the attempt frequency, the activation enthalpy, and the activation entropy as a function of temperature. Effects due to thermal lattice expansion are included and found to be significant. Numerical results for the case of hydrogen in nickel demonstrate a strong temperature dependence of the migration enthalpy and entropy. Trapping in local minima along the diffusion path has a pronounced effect especially at low temperatures. The computed diffusion coefficients with and without trapping bracket the available experimental values over the entire temperature range between 0 and 1400 K.

  6. Calculation of the coefficient and dynamics of water diffusion in graphite joints

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Liu, Wen-Bin

    2006-06-01

    The coefficient and dynamics of water diffusion in adhesive-graphite joints were calculated insitu with energy dispersive X-ray (EDX) analysis, a method that is significantly simpler than elemental analysis. Water diffusion coefficient and dynamics of adhesive-graphite joints treated by different surface treatment menthods were also investigated. Calculation results indicated that the water diffusion rate in adhesive-graphite joints treated by sandpaper was higher than that treated by chemical oxidation or by silane couple agent. Also the durability of graphite joints treated by coupling agent is superior to that treated by chemical oxidation or sandpaper burnishing.

  7. Implications of observed PBDE diffusion coefficients in low density polyethylene and silicone rubber.

    PubMed

    Narváez Valderrama, Jhon F; Baek, Kine; Molina, Francisco J; Allan, Ian J

    2016-01-01

    A film-stacking technique was used to estimate diffusion coefficients of polybrominated diphenyl ethers (PBDEs) in low density polyethylene (LDPE) and silicone rubber. Substantially higher PBDE diffusion coefficients were observed for silicone rubber (AlteSil™) than for LDPE. A much steeper decrease in LDPE diffusion coefficients was found with increasing PBDE molecular weight than that for silicone rubber. From a passive sampling point-of-view, this means that for equivalent polymer-water partition coefficients for these two materials, the mass transfer resistance for these substances in the LDPE will be significantly higher than that for silicone rubber. Boundary layer control of the uptake process for silicone rubber can be expected for PBDEs. With a microplastic perspective, the low diffusion coefficients of PBDEs and in particular of decabromo diphenyl ether (BDE 209) in LDPE imply that the polymer diffusion coefficients for these plastic additives used as flame retardants need to be taken into account when considering the risk posed by microplastic particle ingestion by marine organisms. PMID:26678428

  8. Determination of diffusion coefficients of biocides on their passage through organic resin-based renders.

    PubMed

    Styszko, Katarzyna; Kupiec, Krzysztof

    2016-10-01

    In this study the diffusion coefficients of isoproturon, diuron and cybutryn in acrylate and silicone resin-based renders were determined. The diffusion coefficients were determined using measuring concentrations of biocides in the liquid phase after being in contact with renders for specific time intervals. The mathematical solution of the transient diffusion equation for an infinite plate contacted on one side with a limited volume of water was used to calculate the diffusion coefficient. The diffusion coefficients through the acrylate render were 8.10·10(-9) m(2) s(-1) for isoproturon, 1.96·10(-9) m(2) s(-1) for diuron and 1.53·10(-9) m(2) s(-1) for cybutryn. The results for the silicone render were lower by one order of magnitude. The compounds with a high diffusion coefficient for one polymer had likewise high values for the other polymer. PMID:27391050

  9. Entropy-scaling laws for diffusion coefficients in liquid metals under high pressures

    SciTech Connect

    Cao, Qi-Long Shao, Ju-Xiang; Wang, Fan-Hou; Wang, Pan-Pan

    2015-04-07

    Molecular dynamic simulations on the liquid copper and tungsten are used to investigate the empirical entropy-scaling laws D{sup *}=A exp(BS{sub ex}), proposed independently by Rosenfeld and Dzugutov for diffusion coefficient, under high pressure conditions. We show that the scaling laws hold rather well for them under high pressure conditions. Furthermore, both the original diffusion coefficients and the reduced diffusion coefficients exhibit an Arrhenius relationship D{sub M}=D{sub M}{sup 0} exp(−E{sub M}/K{sub B}T), (M=un,R,D) and the activation energy E{sub M} increases with increasing pressure, the diffusion pre-exponential factors (D{sub R}{sup 0} and D{sub D}{sup 0}) are nearly independent of the pressure and element. The pair correlation entropy, S{sub 2}, depends linearly on the reciprocal temperature S{sub 2}=−E{sub S}/T, and the activation energy, E{sub S}, increases with increasing pressure. In particular, the ratios of the activation energies (E{sub un}, E{sub R}, and E{sub D}) obtained from diffusion coefficients to the activation energy, E{sub S}, obtained from the entropy keep constants in the whole pressure range. Therefore, the entropy-scaling laws for the diffusion coefficients and the Arrhenius law are linked via the temperature dependence of entropy.

  10. Bounce averaged diffusion coefficients in a physics based magnetic field geometry from RAM-SCB

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Yu, Yiqun; Delzanno, Gian Luca; Jordanova, Vania K.

    2014-10-01

    In this work we explore wave-particle interaction in the radiation belt. By applying quasilinear theory, we obtain the particle diffusion coefficients in both pitch angle and energy for different configurations of the Earth's magnetic field. We consider the Earth's magnetic dipole field as a reference, and compare the results against non-dipole field configurations corresponding to quiet and stormy conditions. The latter are obtained with RAM-SCB, a code that models the Earth's ring current and provide a realistic modeling of the Earth's magnetic field. The bounce averaged electron pitch angle diffusion coefficients are calculated for each magnetic field configuration. The equatorial pitch angle, wave frequency and spectral distribution of whistler waves are shown to affect the bounce averaged diffusion coefficients. In addition, wave-particle resonance is significantly influenced by the magnetic field configuration: in storm conditions, diffusion is strongly reduced for some equatorial pitch angles.

  11. Evaluation of Hamaker coefficients using Diffusion Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Maezono, Ryo; Hongo, Kenta

    We evaluated the Hamaker's constant for Cyclohexasilane to investigate its wettability, which is used as an ink of 'liquid silicon' in 'printed electronics'. Taking three representative geometries of the dimer coalescence (parallel, lined, and T-shaped), we evaluated these binding curves using diffusion Monte Carlo method. The parallel geometry gave the most long-ranged exponent, ~ 1 /r6 , in its asymptotic behavior. Evaluated binding lengths are fairly consistent with the experimental density of the molecule. The fitting of the asymptotic curve gave an estimation of Hamaker's constant being around 100 [zJ]. We also performed a CCSD(T) evaluation and got almost similar result. To check its justification, we applied the same scheme to Benzene and compared the estimation with those by other established methods, Lifshitz theory and SAPT (Symmetry-adopted perturbation theory). The result by the fitting scheme turned to be twice larger than those by Lifshitz and SAPT, both of which coincide with each other. It is hence implied that the present evaluation for Cyclohexasilane would be overestimated.

  12. Experimental method development for estimating solid-phase diffusion coefficients and material/air partition coefficients of SVOCs

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyu; Guo, Zhishi; Roache, Nancy F.

    2014-06-01

    The solid-phase diffusion coefficient (Dm) and material/air partition coefficient (Kma) are key parameters for characterizing the sources and transport of semivolatile organic compounds (SVOCs) in the indoor environment. In this work, a new experimental method was developed to estimate parameters Dm and Kma. The SVOCs chosen for study were polychlorinated biphenyl (PCB) congeners, including PCB-52, PCB-66, PCB-101, PCB-110, and PCB-118. The test materials included polypropylene, high density polyethylene, low density polyethylene, polytetrafluoroethylene, polyether ether ketone, glass, stainless steel and concrete. Two 53-L environmental chambers were connected in series, with the relatively stable SVOCs source in the source chamber and the test materials, made as small “buttons”, in the test chamber. Prior to loading the test chamber with the test materials, the test chamber had been dosed with SVOCs for 12 days to “coat” the chamber walls. During the tests, the material buttons were removed from the test chamber at different exposure times to determine the amount of SVOC absorbed by the buttons. SVOC concentrations at the inlet and outlet of the test chamber were also monitored. The data were used to estimate the partition and diffusion coefficients by fitting a sink model to the experimental data. The parameters obtained were employed to predict the accumulation of SVOCs in the sink materials using an existing mass transfer model. The model prediction agreed reasonably well with the experimental data.

  13. Effects of molecular weight on the diffusion coefficient of aquatic dissolved organic matter and humic substances.

    PubMed

    Balch, J; Guéguen, C

    2015-01-01

    In situ measurements of labile metal species using diffusive gradients in thin films (DGT) passive samplers are based on the diffusion rates of individual species. Although most studies have dealt with chemically isolated humic substances, the diffusion of dissolved organic matter (DOM) across the hydrogel is not well understood. In this study, the diffusion coefficient (D) and molecular weight (MW) of 11 aquatic DOM and 4 humic substances (HS) were determined. Natural, unaltered aquatic DOM was capable of diffusing across the diffusive gel membrane with D values ranging from 2.48×10(-6) to 5.31×10(-6) cm(2) s(-1). Humic substances had diffusion coefficient values ranging from 3.48×10(-6) to 6.05×10(-6) cm(2) s(-1), congruent with previous studies. Molecular weight of aquatic DOM and HS samples (∼500-1750 Da) measured using asymmetrical flow field-flow fractionation (AF4) strongly influenced D, with larger molecular weight DOM having lower D values. No noticeable changes in DOM size properties were observed during the diffusion process, suggesting that DOM remains intact following diffusion across the diffusive gel. The influence of molecular weight on DOM mobility will assist in further understanding and development of the DGT technique and the uptake and mobility of contaminants associated with DOM in aquatic environments. PMID:25112575

  14. Quaternary diffusion coefficients in a protein-polymer-salt-water system determined by rayleigh interferometry.

    PubMed

    Annunziata, Onofrio; Vergara, Alessandro; Paduano, Luigi; Sartorio, Roberto; Miller, Donald G; Albright, John G

    2009-10-01

    We have experimentally investigated multicomponent diffusion in a protein-polymer-salt-water quaternary system. Specifically, we have measured the nine multicomponent diffusion coefficients, D(ij), for the lysozyme-poly(ethylene glycol)-NaCl-water system at pH 4.5 and 25 degrees C using precision Rayleigh interferometry. Lysozyme is a model protein for protein-crystallization and enzymology studies. We find that the protein diffusion coefficient, D(11), decreases as polymer concentration increases at a given salt concentration. This behavior can be quantitatively related to the corresponding increase in fluid viscosity only at low polymer concentration. However, at high polymer concentration (250 g/L), protein diffusion is enhanced compared to the corresponding viscosity prediction. We also find that a protein concentration gradient induces salt diffusion from high to low protein concentration. This effect increases in the presence of poly(ethylene glycol). Finally, we have evaluated systematic errors associated with measurements of protein diffusion coefficients by dynamic light scattering. This work overall helps characterize protein diffusion in crowded environments and may provide guidance for further theoretical developments in the field of protein crystallization and protein diffusion in such crowded systems, such as the cytoplasm of living cells. PMID:19746957

  15. Unified Electron-Ion Recombination Rate Coefficients of Silicon and Sulfur Ions

    NASA Astrophysics Data System (ADS)

    Nahar, Sultana N.; Pradhan, Anil K.

    1995-07-01

    Total recombination rate coefficients for the astrophysically important Si and S ions, Si I, Si II, Si IX, S II, and S III, are obtained employing a new unified treatment developed for electron-ion recombination. The treatment incorporates both the radiative and the dielectronic recombination processes in the close coupling approximation from atomic collision theory, and the calculations are carried out using the R-matrix method as developed for the Opacity Project. All recombined states from the ground state to n = ∞ are considered. The states are divided into two groups, a low-n and a high-n group. Detailed partial photoionization cross sections into the ground state of the recombining ion, including autoionizing resonances due to coupling to excited states of the ion, are calculated for all bound states in the low-n group, and the Milne relation is used to calculate the corresponding contribution to the recombination rate coefficient. For the high-n group, collision strengths for dielectronic recombination, both detailed and resonance averaged, are obtained using the precise theory of Bell & Seaton. Total recombination rate coefficients are computed over a wide range of temperatures for practical purposes. A discussion of the atomic effects that determine the accuracy of the recombination rates is presented, in particular as a function of the increase in the eigenfunction expansion for the recombining ion, studied for e + Si X → Si IX. Comparison is made with earlier works.

  16. Diffusion and Coulomb separation of ions in dense matter.

    PubMed

    Beznogov, M V; Yakovlev, D G

    2013-10-18

    We analyze diffusion equations in strongly coupled Coulomb mixtures of ions in dense stellar matter. Strong coupling of ions in the presence of gravitational forces and electric fields (induced by plasma polarization in the presence of gravity) produces a specific diffusion current which can separate ions with the same A/Z (mass to charge number) ratios but different Z. This Coulomb separation of ions can be important for the evolution of white dwarfs and neutron stars. PMID:24182248

  17. Diffusion and Coulomb Separation of Ions in Dense Matter

    NASA Astrophysics Data System (ADS)

    Beznogov, M. V.; Yakovlev, D. G.

    2013-10-01

    We analyze diffusion equations in strongly coupled Coulomb mixtures of ions in dense stellar matter. Strong coupling of ions in the presence of gravitational forces and electric fields (induced by plasma polarization in the presence of gravity) produces a specific diffusion current which can separate ions with the same A/Z (mass to charge number) ratios but different Z. This Coulomb separation of ions can be important for the evolution of white dwarfs and neutron stars.

  18. Sublimation kinetics and diffusion coefficients of TNT, PETN, and RDX in air by thermogravimetry.

    PubMed

    Hikal, Walid M; Weeks, Brandon L

    2014-07-01

    The diffusion coefficients of explosives are crucial in their trace detection and lifetime estimation. We report on the experimental values of diffusion coefficients of three of the most important explosives in both military and industry: TNT, PETN, and RDX. Thermogravimetric analysis (TGA) was used to determine the sublimation rates of TNT, PETN, and RDX powders in the form of cylindrical billets. The TGA was calibrated using ferrocene as a standard material of well-characterized sublimation rates and vapor pressures to determine the vapor pressures of TNT, PETN, and RDX. The determined sublimation rates and vapor pressures were used to indirectly determine the diffusion coefficients of TNT, PETN, and RDX for the first time. A linear log-log dependence of the diffusion coefficients on temperature is observed for the three materials. The diffusion coefficients of TNT, PETN, and RDX at 273 K were determined to be 5.76×10(-6)m(2)/sec, 4.94×10(-6)m(2)/s, and 5.89×10(-6)m(2)/s, respectively. Values are in excellent agreement with the theoretical values in literature. PMID:24840410

  19. Estimation of diffusion coefficients from voltammetric signals by support vector and gaussian process regression

    PubMed Central

    2014-01-01

    Background Support vector regression (SVR) and Gaussian process regression (GPR) were used for the analysis of electroanalytical experimental data to estimate diffusion coefficients. Results For simulated cyclic voltammograms based on the EC, Eqr, and EqrC mechanisms these regression algorithms in combination with nonlinear kernel/covariance functions yielded diffusion coefficients with higher accuracy as compared to the standard approach of calculating diffusion coefficients relying on the Nicholson-Shain equation. The level of accuracy achieved by SVR and GPR is virtually independent of the rate constants governing the respective reaction steps. Further, the reduction of high-dimensional voltammetric signals by manual selection of typical voltammetric peak features decreased the performance of both regression algorithms compared to a reduction by downsampling or principal component analysis. After training on simulated data sets, diffusion coefficients were estimated by the regression algorithms for experimental data comprising voltammetric signals for three organometallic complexes. Conclusions Estimated diffusion coefficients closely matched the values determined by the parameter fitting method, but reduced the required computational time considerably for one of the reaction mechanisms. The automated processing of voltammograms according to the regression algorithms yields better results than the conventional analysis of peak-related data. PMID:24987463

  20. A first-principles methodology for diffusion coefficients in metals and dilute alloys

    NASA Astrophysics Data System (ADS)

    Mantina, Manjeera

    This work is a study exploring the extent of suitability of static first-principles calculations for studying diffusion in metallic systems. Specifically, vacancy-mediated volume diffusion in pure elements and alloys with dilute concentration of impurities is studied. A novel procedure is discovered for predicting diffusion coefficients that overcomes the shortcomings of the well-known transition state theory, by Vineyard. The procedure that evolves from Eyring's reaction rate theory yields accurate diffusivity results that include anharmonic effects within the quasi-harmonic approximation. Alongside, the procedure is straightforward in its application within the conventional harmonic approximation, from the results of static first-principles calculations. To prove the extensibility of the procedure, diffusivities have been computed for a variety of systems. Over a wide temperature range, the calculated self-diffusion and impurity diffusion coefficients using local density approximation (LDA) of density functional theory (DFT) are seen to be in excellent match with experimental data. Self-diffusion coefficients have been calculated for: (i) fcc Al, Cu, Ni and Ag (ii) bcc W and Mo (v) hcp Mg, Ti and Zn. Impurity diffusion coefficients have been computed for: (i) Mg, Si, Cu, Li, Ag, Mo and 3d transition elements in fcc Al (ii) Mo, Ta in bcc W and Nb, Ta and W in bcc Mo (iii) Sn and Cd in hcp Mg and Al in hcp Ti. It is also an observation from this work, that LDA does not require surface correction for yielding energetics of vacancy-containing system in good comparison with experiments, unlike generalized gradient approximation (GGA). It is known that first-principles' energy minimization procedures based on electronic interactions are suited for metallic systems wherein the valence electrons are freely moving. In this thesis, research has been extended to study suitability of first-principles calculations within LDA/GGA including the localization parameter U, for Al

  1. An improved strip FRAP method for estimating diffusion coefficients: correcting for the degree of photobleaching.

    PubMed

    Yang, J; Köhler, K; Davis, D M; Burroughs, N J

    2010-06-01

    Fluorescence recovery after photobleaching is a widely established method for the estimation of diffusion coefficients, strip bleaching with an associated recovery curve analysis being one of the simplest techniques. However, its implementation requires near 100% bleaching in the region of interest with negligible fluorescence loss outside, both constraints being hard to achieve concomitantly for fast diffusing molecules. We demonstrate that when these requirements are not met there is an error in the estimation of the diffusion coefficient D, either an under- or overestimation depending on which assumption is violated the most. We propose a simple modification to the recovery curve analysis incorporating the concept of the relative bleached mass m giving a revised recovery time parametrization tau=m(2)w(2)/4piD for a strip of width w. This modified model removes the requirement of 100% bleaching in the region of interest and allows for limited diffusion of the fluorophore during bleaching. We validate our method by estimating the (volume) diffusion coefficient of FITC-labelled IgG in 60% glycerol solution, D= 4.09 +/- 0.21 microm(2) s(-1), and the (surface) diffusion coefficient of a green-fluorescent protein-tagged class I MHC protein expressed at the surface of a human B cell line, D= 0.32 +/- 0.03 microm(2) s(-1) for a population of cells. PMID:20579262

  2. Time of Flight Electrochemistry: Diffusion Coefficient Measurements Using Interdigitated Array (IDA) Electrodes

    SciTech Connect

    Liu, Fei; Kolesov, Grigory; Parkinson, Bruce A.

    2014-09-26

    A simple and straightforward method for measuring diffusion coefficients using interdigitated array (IDA) electrodes is reported. The method does not require that the exact electrode area be known but depends only the size of the gap between the IDA electrode pairs. Electroactive molecules produced at the generator electrode of the IDA by a voltage step or scan can diffuse to the collector electrode and the time delay before the current for the reverse electrochemical reaction is detected at the collector is used to calculate the diffusion coefficient. The measurement of the diffusion rate of Ru(NH3)6+2 in aqueous solution has been used as an example measuring diffusion coefficients using this method. Additionally, a digital simulation of the electrochemical response of the IDA electrodes was used to simulate the entire current/voltage/time behavior of the system and verify the experimentally measured diffusion coefficients. This work was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the Department of Energy, Office of Science, Office of Basic Energy Sciences.

  3. THEORETICAL EXPLANATION OF THE COSMIC-RAY PERPENDICULAR DIFFUSION COEFFICIENT IN THE NEARBY STARBURST GALAXY NGC 253

    SciTech Connect

    Buffie, K.; Shalchi, A.; Heesen, V. E-mail: v.heesen@soton.ac.uk

    2013-02-10

    Diffusion coefficients are usually used to describe the propagation of cosmic rays through the universe. Whereas such transport parameters can be obtained from experiments in the solar system, it is difficult to determine diffusion coefficients in the Milky Way or in external galaxies. Recently, a value for the perpendicular diffusion coefficient in the nearby starburst galaxy NGC 253 has been proposed. In the present paper, we reproduce this value theoretically by using an advanced analytical theory for perpendicular diffusion.

  4. Measurement of CO2 diffusivity in synthetic and saline aquifer solutions at reservoir conditions: the role of ion interactions

    NASA Astrophysics Data System (ADS)

    Jafari Raad, Seyed Mostafa; Azin, Reza; Osfouri, Shahriar

    2015-11-01

    Storage and disposal of CO2 as the main component of greenhouse gases in saline aquifers require careful measurement of diffusivity for predicting rate of transfer and cumulative amount of trapped gas. Little information is available on diffusion of CO2 in highly concentrated saline aquifers at reservoir conditions. In this study, diffusivity of CO2 was measured into different solutions, including saline aquifer taken from oil field, distilled water and synthetic solutions prepared from four most common ions, Mg2+, Ca2+, K+, Na+. The roles of salvation effect and hydration phenomenon were studied on diffusivity of dissolved CO2. Synthetic solutions were prepared at concentration ranges of 83-200 g/l. Experimental measurements were reported at temperature and pressure ranges of 30-40 °C and 5,880-6,265 kPa, respectively. Results show that both type and concentration of ion affect CO2 diffusivity. Diffusion coefficient was found dependent on effective radius of hydrated ions. Also, CO2 diffusivity increase by increasing strength of bonds between ion and neighbor water molecules. Also, presence of ions in water solution creates hydration competition between solution metal ions and aqua ions from diffusive gas. The Mg2+ cation, which has strongest hydration competition among other ions, has an increasing effect on gas diffusivity into saline aquifer. However, increasing ion concentration in solution decreases diffusivity of CO2 due to growth in fraction of contact ion pairs. Results of this study provide unique measures of CO2 diffusion coefficient in saline aquifer at high pressure and temperature conditions and conceptual information about effect of each common saline formation ion on gas diffusivity.

  5. Assessment of diffusion coefficient from mucoadhesive barrier devices using artificial neural networks.

    PubMed

    Lee, Yugyung; Khemka, Alok; Yoo, Jin-Wook; Lee, Chi H

    2008-03-01

    This study is aimed to elucidate the physicodynamic phenomena governing diffusion coefficient (D) of the loaded drugs in a female controlled drug delivery system (FcDDS) and to find the most influencing variable on the diffusivity using artificial neural networks (ANN). The release profiles of sodium dodecyl sulphate (SDS), a topical microbicide used as a model drug, from FcDDS were obtained using in vitro apparatus, the Simulant Vaginal System (SVS), under various conditions. The effects of formulation and intrinsic/extrinsic variables on the diffusivity of SDS were assessed using artificial neural networks (ANN). The release profiles of SDS from FcDDS revealed a non-linear relationship between the diffusivity and formulation/physiological variables. Intrinsic variables (vaginal fluid pH, vaginal fluid secretion rate) have a more prominent role in defining the diffusion coefficient of SDS from FcDDS than formulation variables (formulation loading weight and loaded doses in the formulation) or extrinsic variables (inserting position). Among 5 variables, pH of vagina fluids is the most influencing factor in defining the diffusion coefficient (maximum value of 0.95+/-0.04) of SDS from FcDDS. The external exposure conditions clearly outweighed the effects of the formulation variables on the diffusion coefficient of SDS. A model-based approach can be used to assess the diffusion coefficient of loaded drugs in FcDDS under the given conditions, leading to a parameter-specific prevention strategy against sexually transmitted diseases (STD) with a high degree of confidence. PMID:17981411

  6. Li+ ions diffusion into sol-gel V2O5 thin films: electrochromic properties

    NASA Astrophysics Data System (ADS)

    Benmoussa, M.; Outzourhit, A.; Bennouna, A.; Ihlal, A.

    2009-10-01

    V{2}O{5} thin films were prepared by the sol-gel spin coating process. The Li+ ions insertion effect on optical and electrochromic properties of those films was studied. The diffusion coefficient was calculated using both cyclic voltammograms and chronoamperometric curves. The amount x of Li+ ions in LixV{2}O{5} was also calculated. Finally, the electrochromic performance evolution characteristics such as the reversibility, coloration efficiency, coloration memory stability and response time were studied.

  7. Crack diffusion coefficient - A candidate fracture toughness parameter for short fiber composites

    NASA Technical Reports Server (NTRS)

    Mull, M. A.; Chudnovsky, A.; Moet, A.

    1987-01-01

    In brittle matrix composites, crack propagation occurs along random trajectories reflecting the heterogeneous nature of the strength field. Considering the crack trajectory as a diffusive process, the 'crack diffusion coefficient' is introduced. From fatigue crack propagation experiments on a set of identical SEN polyester composite specimens, the variance of the crack tip position along the loading axis is found to be a linear function of the effective 'time'. The latter is taken as the effective crack length. The coefficient of proportionality between variance of the crack trajectory and the effective crack length defines the crack diffusion coefficient D which is found in the present study to be 0.165 mm. This parameter reflects the ability of the composite to deviate the crack from the energetically most efficient path and thus links fracture toughness to the microstructure.

  8. Noncontact technique for determining the thermal diffusivity coefficient on acoustically levitated liquid drops

    NASA Astrophysics Data System (ADS)

    Ohsaka, K.; Rednikov, A.; Sadhal, S. S.

    2003-02-01

    We present a technique that can be used to determine the thermal diffusivity coefficient of undercooled liquids, which exist at temperatures below their freezing points. The technique involves levitation of a small amount of liquid in a flattened drop shape using an acoustic levitator and heating it with a laser beam. The heated drop is then subjected to natural cooling by heat loss from the surface. Due to acoustic streaming, the heat loss mainly occurs through the equator section of the drop. The measured cooling rate in combination with a radial heat conduction model allows us to calculate the thermal diffusivity coefficient of the drop. We demonstrate the feasibility of the technique using glycerin drops as a model liquid. The technique is well suited if the thermal diffusivity coefficient of the liquid in the normal state (i.e., above the freezing point) is known or can be measured by conventional techniques.

  9. Studies on molten glass sealing in diffusion coefficient measurements using shear cell technique

    NASA Astrophysics Data System (ADS)

    Yu, Jianding; Natsuisaka, Makoto; Kato, Hirokazu; Matsumoto, Satoshi; Kinoshita, Kyoichi; Itami, Toshio; Yoda, Shinichi

    2000-05-01

    To develop a shear cell technique for measuring the diffusion coefficient of molten materials with high vapor pressure, molten silica glass was used to seal the vapor leak from the clearance between the cell and the rotating rod. An apparatus was designed to investigate the sealing ability of several molten silica glasses. Using Corning 0211, 7059, and 7740 silica glasses, Ar could be sealed under 150 kPa in the 1100-1500 K temperature range. The corresponding viscosities of the molten silica glasses in the sealing temperature range were 105.3-103.8 Pa s. Based on the results of Ar sealing experiments, the configuration of molten glass sealing was used to seal the As vapor leak in InxGa1-xAs diffusion coefficient measurement experiments. The As vapor leak was successfully sealed and excellent diffusion coefficient measurement data were obtained using the shear cell technique during microgravity experiments carried out on sounding rocket.

  10. Excess entropy scaling for the diffusion coefficient in expanded liquid metals.

    PubMed

    Bretonnet, J L

    2004-06-15

    Molecular-dynamics simulation is used to compute the pair correlation function and the velocity autocorrelation function of Cs and Rb along the liquid-vapor coexistence curve, from which the excess entropy S(ex) and the diffusion coefficient D are deduced. The numerical results of both physical properties are correlated and a scaling law between the excess entropy and the reduced diffusion coefficient D(*)(=D/D(0)) is investigated for different expressions of the reduction parameter D(0). The choice of thermodynamic states along the liquid--vapor coexistence curve gives us the possibility to extend the investigation of the relation between the reduced diffusion coefficient and the excess entropy over a wide area and to test the adequacy of the scaling law confidently. PMID:15268140

  11. Measurement of effective gas diffusion coefficients of catalyst layers of PEM fuel cells with a Loschmidt diffusion cell

    NASA Astrophysics Data System (ADS)

    Shen, Jun; Zhou, Jianqin; Astrath, Nelson G. C.; Navessin, Titichai; Liu, Zhong-Sheng (Simon); Lei, Chao; Rohling, Jurandir H.; Bessarabov, Dmitri; Knights, Shanna; Ye, Siyu

    In this work, using an in-house made Loschmidt diffusion cell, we measure the effective coefficient of dry gas (O 2-N 2) diffusion in cathode catalyst layers of PEM fuel cells at 25 °C and 1 atmosphere. The thicknesses of the catalyst layers under investigation are from 6 to 29 μm. Each catalyst layer is deposited on an Al 2O 3 membrane substrate by an automated spray coater. Diffusion signal processing procedure is developed to deduce the effective diffusion coefficient, which is found to be (1.47 ± 0.05) × 10 -7 m 2 s -1 for the catalyst layers. Porosity and pore size distribution of the catalyst layers are also measured using Hg porosimetry. The diffusion resistance of the interface between the catalyst layer and the substrate is found to be negligible. The experimental results show that the O 2-N 2 diffusion in the catalyst layers is dominated by the Knudsen effect.

  12. Influence of crystal orientation and ion bombardment on the nitrogen diffusivity in single-crystalline austenitic stainless steel

    SciTech Connect

    Martinavicius, A.; Abrasonis, G.; Moeller, W.

    2011-10-01

    The nitrogen diffusivity in single-crystalline AISI 316L austenitic stainless steel (ASS) during ion nitriding has been investigated at different crystal orientations ((001), (110), (111)) under variations of ion flux (0.3-0.7 mA cm{sup -2}), ion energy (0.5-1.2 keV), and temperature (370-430 deg. C). The nitrogen depth profiles obtained from nuclear reaction analysis are in excellent agreement with fits using the model of diffusion under the influence of traps, from which diffusion coefficients were extracted. At fixed ion energy and flux, the diffusivity varies by a factor up to 2.5 at different crystal orientations. At (100) orientation, it increases linearly with increasing ion flux or energy. The findings are discussed on the basis of atomistic mechanisms of interstitial diffusion, potential lattice distortions, local decomposition, and ion-induced lattice vibrational excitations.

  13. Influence of crystal orientation and ion bombardment on the nitrogen diffusivity in single-crystalline austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Martinavičius, A.; Abrasonis, G.; Möller, W.

    2011-10-01

    The nitrogen diffusivity in single-crystalline AISI 316L austenitic stainless steel (ASS) during ion nitriding has been investigated at different crystal orientations ((001), (110), (111)) under variations of ion flux (0.3-0.7 mA cm-2), ion energy (0.5-1.2 keV), and temperature (370-430 °C). The nitrogen depth profiles obtained from nuclear reaction analysis are in excellent agreement with fits using the model of diffusion under the influence of traps, from which diffusion coefficients were extracted. At fixed ion energy and flux, the diffusivity varies by a factor up to 2.5 at different crystal orientations. At (100) orientation, it increases linearly with increasing ion flux or energy. The findings are discussed on the basis of atomistic mechanisms of interstitial diffusion, potential lattice distortions, local decomposition, and ion-induced lattice vibrational excitations.

  14. Field-Scale Effective Matrix Diffusion Coefficient for FracturedRock: Results From Literature Survey

    SciTech Connect

    Zhou, Quanlin; Liu, Hui Hai; Molz, Fred J.; Zhang, Yingqi; Bodvarsson, Gudmundur S.

    2005-03-28

    Matrix diffusion is an important mechanism for solutetransport in fractured rock. We recently conducted a literature survey onthe effective matrix diffusion coefficient, Dem, a key parameter fordescribing matrix diffusion processes at the field scale. Forty fieldtracer tests at 15 fractured geologic sites were surveyed and selectedfor study, based on data availability and quality. Field-scale Dem valueswere calculated, either directly using data reported in the literature orby reanalyzing the corresponding field tracer tests. Surveyed dataindicate that the effective-matrix-diffusion-coefficient factor FD(defined as the ratio of Dem to the lab-scale matrix diffusioncoefficient [Dem]of the same tracer) is generally larger than one,indicating that the effective matrix diffusion coefficient in the fieldis comparatively larger than the matrix diffusion coefficient at therock-core scale. This larger value could be attributed to the manymass-transfer processes at different scales in naturally heterogeneous,fractured rock systems. Furthermore, we observed a moderate trend towardsystematic increase in the emDFmDDF value with observation scale,indicating that the effective matrix diffusion coefficient is likely tobe statistically scale dependent. The FD value ranges from 1 to 10,000for observation scales from 5 to 2,000 m. At a given scale, the FD valuevaries by two orders of magnitude, reflecting the influence of differingdegrees of fractured rock heterogeneity at different sites. In addition,the surveyed data indicate that field-scale longitudinal dispersivitygenerally increases with observation scale, which is consistent withprevious studies. The scale-dependent field-scale matrix diffusioncoefficient (and dispersivity) may have significant implications forassessing long-term, large-scale radionuclide and contaminant transportevents in fractured rock, both for nuclear waste disposal and contaminantremediation.

  15. Simultaneous measurement of thermal diffusivity and optical absorption coefficient using photothermal radiometry. II Multilayered solids

    NASA Astrophysics Data System (ADS)

    Salazar, Agustín; Fuente, Raquel; Apiñaniz, Estibaliz; Mendioroz, Arantza; Celorrio, R.

    2011-08-01

    The aim of this work is to analyze the ability of modulated photothermal radiometry to retrieve the thermal diffusivity and the optical absorption coefficient of layered materials simultaneously. First, we extend the thermal quadrupole method to calculate the surface temperature of semitransparent multilayered materials. Then, this matrix method is used to evaluate the influence of heat losses by convection and radiation, the influence of the use of thin paint layers on the accuracy of thermal diffusivity measurements, and the effect of lateral heat diffusion due to the use of Gaussian laser beams. Finally, we apply the quadrupole method to retrieve (a) the thermal contact resistance in glass stacks and (b) the thermal diffusivity and optical absorption coefficient depth profiles in heterogeneous materials with continuously varying physical properties, as is the case of functionally graded materials and partially cured dental resins.

  16. Determining molecule diffusion coefficients on surfaces from a locally fixed probe: Analysis of signal fluctuations

    NASA Astrophysics Data System (ADS)

    Hahne, Susanne; Ikonomov, Julian; Sokolowski, Moritz; Maass, Philipp

    2013-02-01

    Methods of determining surface diffusion coefficients of molecules from signal fluctuations of a locally fixed probe are revisited and refined. Particular emphasis is put on the influence of the molecule's extent. In addition to the formerly introduced autocorrelation method and residence time method, we develop a further method based on the distribution of intervals between successive peaks in the signal. The theoretical findings are applied to scanning tunneling microscopy measurements of copper phthalocyanine (CuPc) molecules on the Ag(100) surface. We discuss advantages and disadvantages of each method and suggest a combination to obtain accurate results for diffusion coefficients.

  17. ICP-MS measurement of diffusion coefficients of Cs in NBG-18 graphite

    NASA Astrophysics Data System (ADS)

    Carter, L. M.; Brockman, J. D.; Robertson, J. D.; Loyalka, S. K.

    2015-11-01

    Graphite is used in the HGTR/VHTR as moderator and it also functions as a barrier to fission product release. Therefore, an elucidation of transport of fission products in reactor-grade graphite is required. We have measured diffusion coefficients of Cs in graphite NBG-18 using the release method, wherein we infused spheres of NBG-18 with Cs and measured the release rates in the temperature range of 1090-1395 K. We have obtained: These seem to be the first reported values of Cs diffusion coefficients in NBG-18. The values are lower than those reported for other graphites in the literature.

  18. Estimation of water diffusion coefficient into polycarbonate at different temperatures using numerical simulation

    NASA Astrophysics Data System (ADS)

    Nasirabadi, P. Shojaee; Jabbari, M.; Hattel, J. H.

    2016-06-01

    Nowadays, many electronic systems are exposed to harsh conditions of relative humidity and temperature. Mass transport properties of electronic packaging materials are needed in order to investigate the influence of moisture and temperature on reliability of electronic devices. Polycarbonate (PC) is widely used in the electronics industry. Thus, in this work the water diffusion coefficient into PC is investigated. Furthermore, numerical methods used for estimation of the diffusion coefficient and their assumptions are discussed. 1D and 3D numerical solutions are compared and based on this, it is shown how the estimated value can be different depending on the choice of dimensionality in the model.

  19. Determination of diffusion coefficients in polypyrrole thin films using a current pulse relaxation method

    NASA Technical Reports Server (NTRS)

    Penner, Reginald M.; Vandyke, Leon S.; Martin, Charles R.

    1987-01-01

    The current pulse E sub oc relaxation method and its application to the determination of diffusion coefficients in electrochemically synthesized polypyrrole thin films is described. Diffusion coefficients for such films in Et4NBF4 and MeCN are determined for a series of submicron film thicknesses. Measurement of the double-layer capacitance, C sub dl, and the resistance, R sub u, of polypyrrole thin films as a function of potential obtained with the galvanostatic pulse method is reported. Measurements of the electrolyte concentration in reduced polypyrrole films are also presented to aid in the interpretation of the data.

  20. A New Method for the Calculation of Diffusion Coefficients with Monte Carlo

    NASA Astrophysics Data System (ADS)

    Dorval, Eric

    2014-06-01

    This paper presents a new Monte Carlo-based method for the calculation of diffusion coefficients. One distinctive feature of this method is that it does not resort to the computation of transport cross sections directly, although their functional form is retained. Instead, a special type of tally derived from a deterministic estimate of Fick's Law is used for tallying the total cross section, which is then combined with a set of other standard Monte Carlo tallies. Some properties of this method are presented by means of numerical examples for a multi-group 1-D implementation. Calculated diffusion coefficients are in general good agreement with values obtained by other methods.

  1. Determining diffusion coefficients of ionic liquids by means of field cycling nuclear magnetic resonance relaxometry.

    PubMed

    Kruk, D; Meier, R; Rachocki, A; Korpała, A; Singh, R K; Rössler, E A

    2014-06-28

    Field Cycling Nuclear Magnetic Resonance (FC NMR) relaxation studies are reported for three ionic liquids: 1-ethyl-3- methylimidazolium thiocyanate (EMIM-SCN, 220-258 K), 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM-BF4, 243-318 K), and 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6, 258-323 K). The dispersion of (1)H spin-lattice relaxation rate R1(ω) is measured in the frequency range of 10 kHz-20 MHz, and the studies are complemented by (19)F spin-lattice relaxation measurements on BMIM-PF6 in the corresponding frequency range. From the (1)H relaxation results self-diffusion coefficients for the cation in EMIM-SCN, BMIM-BF4, and BMIM-PF6 are determined. This is done by performing an analysis considering all relevant intra- and intermolecular relaxation contributions to the (1)H spin-lattice relaxation as well as by benefiting from the universal low-frequency dispersion law characteristic of Fickian diffusion which yields, at low frequencies, a linear dependence of R1 on square root of frequency. From the (19)F relaxation both anion and cation diffusion coefficients are determined for BMIM-PF6. The diffusion coefficients obtained from FC NMR relaxometry are in good agreement with results reported from pulsed- field-gradient NMR. This shows that NMR relaxometry can be considered as an alternative route of determining diffusion coefficients of both cations and anions in ionic liquids. PMID:24985656

  2. Determining diffusion coefficients of ionic liquids by means of field cycling nuclear magnetic resonance relaxometry

    NASA Astrophysics Data System (ADS)

    Kruk, D.; Meier, R.; Rachocki, A.; Korpała, A.; Singh, R. K.; Rössler, E. A.

    2014-06-01

    Field Cycling Nuclear Magnetic Resonance (FC NMR) relaxation studies are reported for three ionic liquids: 1-ethyl-3- methylimidazolium thiocyanate (EMIM-SCN, 220-258 K), 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM-BF4, 243-318 K), and 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6, 258-323 K). The dispersion of 1H spin-lattice relaxation rate R1(ω) is measured in the frequency range of 10 kHz-20 MHz, and the studies are complemented by 19F spin-lattice relaxation measurements on BMIM-PF6 in the corresponding frequency range. From the 1H relaxation results self-diffusion coefficients for the cation in EMIM-SCN, BMIM-BF4, and BMIM-PF6 are determined. This is done by performing an analysis considering all relevant intra- and intermolecular relaxation contributions to the 1H spin-lattice relaxation as well as by benefiting from the universal low-frequency dispersion law characteristic of Fickian diffusion which yields, at low frequencies, a linear dependence of R1 on square root of frequency. From the 19F relaxation both anion and cation diffusion coefficients are determined for BMIM-PF6. The diffusion coefficients obtained from FC NMR relaxometry are in good agreement with results reported from pulsed- field-gradient NMR. This shows that NMR relaxometry can be considered as an alternative route of determining diffusion coefficients of both cations and anions in ionic liquids.

  3. Prediction of Diffusion Coefficients in Porous Media using Tortuosity Factors Based on Interfacial Areas

    SciTech Connect

    Saripalli, Kanaka P.; Serne, R. Jeffrey; Meyer, Philip D.; McGrail, B. Peter

    2002-08-01

    Determination of aqueous phase diffusion coefficients of solutes through porous media is essential for understanding and modeling contaminant transport. Prediction of diffusion coefficients in both saturated and unsaturated zones requires knowledge of tortuosity and constrictivity factors. No methods are available for the direct measurement of these factors, which are empirical in their definition. In this paper, a new definition for the tortuosity factor is proposed, as the real to ideal interfacial area ratio. We define the tortuosity factor for saturated porous media (ts) as the ratio S/So (specific surface of real porous medium to that of an idealized capillary bundle). For unsaturated media, tortuosity factor (ta) is defined as aaw/aaw,o (ratio of the specific air-water interfacial area of real and the corresponding idealized porous medium). This tortuosity factor is suitably measured using sorptive tracers (e.g., nitrogen adsorption method) for saturated media and interfacial tracers for unsaturated media. A model based on this new definition of tortuosity factors, termed the Interfacial Area Ratio (IAR) model, is presented for the prediction of diffusion coefficients as a function of the degree of water saturation. Diffusion coefficients and diffusive resistances measured in a number of saturated and unsaturated granular porous media, for solutes in dilute aqueous solutions, agree well with the predictions of the IAR model. A comparison of permeability of saturated sands estimated based on ts and the same based on the Kozeny-Carman equation confirm the usefulness of the ts parameter as a measure of tortuosity.

  4. FIELD-SCALE EFFECTIVE MATRIX DIFFUSION COEFFICIENT FOR FRACTURED ROCK:RESULTS FROM LITERATURE SURVEY

    SciTech Connect

    Q. Zhou; Hui-Hai Liu; F.J. Molz; Y. Zhang; G.S. Bodvarsson

    2005-04-08

    Matrix diffusion is an important mechanism for solute transport in fractured rock. We recently conducted a literature survey on the effective matrix diffusion coefficient, D{sub m}{sup e}, a key parameter for describing matrix diffusion processes at the field scale. Forty field tracer tests at 15 fractured geologic sites were surveyed and selected for the study, based on data availability and quality. Field-scale D{sub m}{sup e} values were calculated, either directly using data reported in the literature or by reanalyzing the corresponding field tracer tests. Surveyed data indicate that the effective-matrix-diffusion-coefficient factor F{sub D} (defined as the ratio of D{sub m}{sup e} to the lab-scale matrix diffusion coefficient [D{sub m}] of the same tracer) is generally larger than one, indicating that the effective matrix diffusion coefficient in the field is comparatively larger than the matrix diffusion coefficient at the rock-core scale. This larger value can be attributed to the many mass-transfer processes at different scales in naturally heterogeneous, fractured rock systems. Furthermore, we observed a moderate trend toward systematic increase in the F{sub D} value with observation scale, indicating that the effective matrix diffusion coefficient is likely to be statistically scale dependent. The F{sub D} value ranges from 1 to 10,000 for observation scales from 5 to 2,000 m. At a given scale, the F{sub D} value varies by two orders of magnitude, reflecting the influence of differing degrees of fractured rock heterogeneity at different sites. In addition, the surveyed data indicate that field-scale longitudinal dispersivity generally increases with observation scale, which is consistent with previous studies. The scale-dependent field-scale matrix diffusion coefficient (and dispersivity) may have significant implications for assessing long-term, large-scale radionuclide and contaminant transport events in fractured rock, both for nuclear waste disposal

  5. Non-Fermi liquid behavior of the drag and diffusion coefficients in QED plasma

    SciTech Connect

    Sarkar, Sreemoyee; Dutt-Mazumder, Abhee K.

    2011-11-01

    We calculate the drag and diffusion coefficients in low temperature QED plasma and go beyond the leading order approximation. The non-Fermi-liquid behavior of these coefficients are clearly revealed. We observe that the subleading contributions due to the exchange of soft transverse photon in both cases are larger than the leading order terms coming from the longitudinal sector. The results are presented in closed form at zero and low temperature.

  6. Ion Implantation in ZnO: Defect Interaction and Impurity Diffusion

    NASA Astrophysics Data System (ADS)

    Yaqoob, Faisal

    In the first part of this research we studied the entropy changes in diffusion prefactor and its effects on diffusion mechanisms and activation energies. We demonstrate a method based on ion implantation and Rutherford backscattering spectroscopy combined with ion channeling (RBS/C) to experimentally determine the diffusion properties of substitutional and interstitial diffusing atoms. The activation energies for each diffusing species are found to be in good agreement with those calculated in previous theoretical studies. The exponential prefactors of the measured diffusion coefficients vary by ten orders of magnitude among substitutional and interstitial diffusing species, allowing us to assign a specific diffusion mechanism to each type of diffusant according to both its diffusion energetics and entropic changes. In addition, the diffusion activation energies and the diffusivity prefactor for the four diffusing species studied are found to follow the Meyer--Neldel relationship with a characteristic excitation energy of ~ 92 meV in ZnO. In another important problem related to the p-doping difficulty in ZnO materials, we studied the effects of ion-implanted hydrogen ions on defect formation and impurity redistribution in ZnO crystals implanted with silver ions. Following Ag ion implantation, the damage level in the ZnO lattice was higher in the sample without H ion implantation than the sample with the H. We found that the damage created to oxygen lattice by the Ag atoms during implantation was higher than the damaged caused to the zinc lattice. Moreover, the Zn lattice recovered faster than the O lattice during thermal annealing. The Ag atoms have higher substitutional fraction in samples without H and increases with annealing temperature. In H implanted samples Ag and H is passivated in defect-related cluster, resulting lower activation of Ag. The diffusion process is affected by H implantation, making it difficult to diffuse to substitutional sites. We discuss

  7. Correlation between the self-diffusion coefficient of lithium and the equation of state

    NASA Astrophysics Data System (ADS)

    Eftaxias, K.; Grammatikakis, J.; Varotsos, P.

    1985-10-01

    Anderson and Swenson [Phys. Rev. B 31, 668 (1985)] have recently presented new isothermal elastic data for lithium for temperatures up to 350 K. It is shown that these data are closely connected to the temperature variation of the self-diffusion coefficient D. Although the latter varies by six orders of magnitude (in the temperature region 195-350 K), however, the elastic data can successfully reproduce the self-diffusion curve without the use of any adjustable parameter.

  8. Pc 5 Spectral Density at ULTIMA stataions and its Radial Diffusion Coefficients for REE

    NASA Astrophysics Data System (ADS)

    Fujimoto, A.; Tokunaga, T.; Abe, S.; Uozumi, T.; Yoshikawa, A.; Mann, I. R.; Chi, P. J.; Engebretson, M. J.; Yumoto, K.

    2009-12-01

    Pc 5 magnetic pulsations with frequencies between 1.67 and 6.67 mHz, are believed to contribute to the Relativistic Electron Enhancement (REE) in the outer radiation belt during magnetic storms. Ground-based observations suggested that high-speed solar wind and large-amplitude Pc 5 waves with a long duration during the storm recovery phase are closely associated with the production of relativistic electrons [Baker et al., 1998; Rostoker et al., 1998; Mathie and Mann, 2000; O’Brien et al., 2001, 2003]. On the other hand, many relativistic electron acceleration mechanisms have been proposed theoretically. They are separated roughly into two themes: in situ acceleration at L lower than 6.6 by wave particle interactions (as internal source acceleration mechanisms) [Liu et al., 1999; Summers et al., 1999; Summers and Ma, 2000] and acceleration by radial diffusion to transport and accelerate a source population of electrons from the outer to the inner magnetosphere (as external source acceleration mechanisms) [Elkington et al., 1999, 2003; Hudson et al., 2000; Kim et al., 2001]. One possible external source acceleration mechanism is the resonant interaction with ULF toroidal and poloidal waves. In order to verify which of the two mechanisms is more effective for the REE, we have to examine the time variation of electron phase space density. Electron phase space density is not directly measured, but we can estimate radial diffusion coefficients using observational electric and magnetic data. The goal of this paper is to get more reliable radial diffusion coefficient from ground-based observational magnetic field and to show reasonability of it for radial diffusion model. We use the global magnetometer data obtained from ULTIMA (Ultra Large Terrestrial International Magnetic Array, see http://www.serc.kyushu-u.ac.jp/ultima/ultima.html) stations, to precisely define the radial diffusion timescales. The ULTIMA includes McMAC, CARISAM, 210MM and MAGDAS/CPMN magnetometer

  9. Modeling the role of diffusion coefficients on Turing instability in a reaction-diffusion prey-predator system.

    PubMed

    Mukhopadhyay, B; Bhattacharyya, R

    2006-02-01

    The paper is concerned with the effect of variable dispersal rates on Turing instability of a non-Lotka-Volterra reaction-diffusion system. In ecological applications, the dispersal rates of different species tends to oscillate in time. This oscillation is modeled by temporal variation in the diffusion coefficient with large as well as small periodicity. The case of large periodicity is analyzed using the theory of Floquet multipliers and that of the small periodicity by using Hill's equation. The effect of such variation on the resulting Turing space is studied. A comparative analysis of the Turing spaces with constant diffusivity and variable diffusivities is performed. Numerical simulations are carried out to support analytical findings. PMID:16794932

  10. The Influence of Spatial Variations of Diffusion Length on Charge Collected by Diffusion from Ion Tracks

    NASA Technical Reports Server (NTRS)

    Edmonds, L. D.

    1996-01-01

    Charge collected by diffusion from ion tracks in a semiconductor substrate may be influenced by the substrate diffusion length, which is related to recombination losses. A theoretical analysis shows that, excluding some extreme cases, charge collection is insensitive to spatial variations in the diffusion length funciton, so it is possible to define an effective diffusion length having the property that collected charge can be approximated by assuming a uniform diffusion length equal to this effective value.

  11. Effect of surface modification, microstructure, and trapping on hydrogen diffusion coefficients in high strength alloys

    NASA Astrophysics Data System (ADS)

    Jebaraj Johnley Muthuraj, Josiah

    Cathodic protection is widely used for corrosion prevention. However, this process generates hydrogen at the protected metal surface, and diffusion of hydrogen through the metal may cause hydrogen embrittlement or hydrogen induced stress corrosion cracking. Thus the choice of a metal for use as fasteners depends upon its hydrogen uptake, permeation, diffusivity and trapping. The diffusivity of hydrogen through four high strength alloys (AISI 4340, alloy 718, alloy 686, and alloy 59) was analyzed by an electrochemical method developed by Devanathan and Stachurski. The effect of plasma nitriding and microstructure on hydrogen permeation through AISI 4340 was studied on six different specimens: as-received (AR) AISI 4340, nitrided samples with and without compound layer, samples quenched and tempered (Q&T) at 320° and 520°C, and nitrided samples Q&T 520°C. Studies on various nitrided specimens demonstrate that both the gamma'-Fe 4N rich compound surface layer and the deeper N diffusion layer that forms during plasma nitriding reduce the effective hydrogen diffusion coefficient, although the gamma'-Fe4N rich compound layer has a larger effect. Multiple permeation transients yield evidence for the presence of only reversible trap sites in as-received, Q&T 320 and 520 AISI 4340 specimens, and the presence of both reversible and irreversible trap sites in nitrided specimens. Moreover, the changes in microstructure during the quenching and tempering process result in a significant decrease in the diffusion coefficient of hydrogen compared to as-received specimens. In addition, density functional theory-based molecular dynamics simulations yield hydrogen diffusion coefficients through gamma'- Fe4N one order of magnitude lower than through α-Fe, which supports the experimental measurements of hydrogen permeation. The effect of microstructure and trapping was also studied in cold rolled, solutionized, and precipitation hardened Inconel 718 foils. The effective hydrogen

  12. Electro-diffusion in a plasma with two ion species

    SciTech Connect

    Kagan, Grigory; Tang Xianzhu

    2012-08-15

    Electric field is a thermodynamic force that can drive collisional inter-ion-species transport in a multicomponent plasma. In an inertial confinement fusion capsule, such transport causes fuel ion separation even with a target initially prepared to have equal number densities for the two fuel ion species. Unlike the baro-diffusion driven by ion pressure gradient and the thermo-diffusion driven by ion and electron temperature gradients, electro-diffusion has a critical dependence on the charge-to-mass ratio of the ion species. Specifically, it is shown here that electro-diffusion vanishes if the ion species have the same charge-to-mass ratio. An explicit expression for the electro-diffusion ratio is obtained and used to investigate the relative importance of electro- and baro-diffusion mechanisms. In particular, it is found that electro-diffusion reinforces baro-diffusion in the deuterium and tritium mix, but tends to cancel it in the deuterium and helium-3 mix.

  13. 'Bottleneck' calculation of ion-electron recombination coefficients for lithium-like ions

    NASA Technical Reports Server (NTRS)

    Kastner, S. O.

    1980-01-01

    The ion-electron recombination coefficients for the lithium-like ions C IV, O VI, Ne VIII, Si XII and Ar XVI are computed by the bottleneck method of Byron et al. (1962). In this method, the minimum rate of transitions down the ladder of energy level is taken as the limiting recombination rate, and the particular energy level corresponding to the minimum transition rate is found. The partial collisional radiative recombination coefficient is obtained in terms of the equilibrium population, the rate of collisional de-excitation, the mean radiative transition probability from the bottleneck level and the total transition probability from a level above the bottleneck level to all levels below it. The full collisional-radiative recombination is then obtained by the addition of the values of the radiative recombination coefficient and the three-body recombination coefficient to the ground level. Results of the calculation are shown to be in good agreement with those of Drawin and Emard (1975) for the case of hydrogen. It is also noted that the process of dielectronic recombination, which is not accounted for here, may be significant at lower densities.

  14. Measurement and modeling of CO2 diffusion coefficient in Saline Aquifer at reservoir conditions

    NASA Astrophysics Data System (ADS)

    Azin, Reza; Mahmoudy, Mohamad; Raad, Seyed; Osfouri, Shahriar

    2013-12-01

    Storage of CO2 in deep saline aquifers is a promising techniques to mitigate global warming and reduce greenhouse gases (GHG). Correct measurement of diffusivity is essential for predicting rate of transfer and cumulative amount of trapped gas. Little information is available on diffusion of GHG in saline aquifers. In this study, diffusivity of CO2 into a saline aquifer taken from oil field was measured and modeled. Equilibrium concentration of CO2 at gas-liquid interface was determined using Henry's law. Experimental measurements were reported at temperature and pressure ranges of 32-50°C and 5900-6900 kPa, respectively. Results show that diffusivity of CO2 varies between 3.52-5.98×10-9 m2/s for 5900 kPa and 5.33-6.16×10-9 m2/s for 6900 kPa initial pressure. Also, it was found that both pressure and temperature have a positive impact on the measures of diffusion coefficient. Liquid swelling due to gas dissolution and variations in gas compressibility factor as a result of pressure decay was found negligible. Measured diffusivities were used model the physical model and develop concentration profile of dissolved gas in the liquid phase. Results of this study provide unique measures of CO2 diffusion coefficient in saline aquifer at high pressure and temperature conditions, which can be applied in full-field studies of carbon capture and sequestration projects.

  15. Diffusion Coefficients from Molecular Dynamics Simulations in Binary and Ternary Mixtures

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Schnell, Sondre K.; Simon, Jean-Marc; Krüger, Peter; Bedeaux, Dick; Kjelstrup, Signe; Bardow, André; Vlugt, Thijs J. H.

    2013-07-01

    Multicomponent diffusion in liquids is ubiquitous in (bio)chemical processes. It has gained considerable and increasing interest as it is often the rate limiting step in a process. In this paper, we review methods for calculating diffusion coefficients from molecular simulation and predictive engineering models. The main achievements of our research during the past years can be summarized as follows: (1) we introduced a consistent method for computing Fick diffusion coefficients using equilibrium molecular dynamics simulations; (2) we developed a multicomponent Darken equation for the description of the concentration dependence of Maxwell-Stefan diffusivities. In the case of infinite dilution, the multicomponent Darken equation provides an expression for [InlineEquation not available: see fulltext.] which can be used to parametrize the generalized Vignes equation; and (3) a predictive model for self-diffusivities was proposed for the parametrization of the multicomponent Darken equation. This equation accurately describes the concentration dependence of self-diffusivities in weakly associating systems. With these methods, a sound framework for the prediction of mutual diffusion in liquids is achieved.

  16. Bounce averaged diffusion coefficients in a physics based magnetic field geometry from RAM-SCB

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Yu, Y.; Delzanno, G. L.; Jordanova, V.

    2014-12-01

    Local acceleration via whistler wave and particle interaction plays an important role in particle dynamics in the radiation belt. In this work we explore wave-particle interaction in different magnetic field configurations related to the 17 March, 2013 storm. We consider the Earth's magnetic dipole field as a reference, and compare the results against non-dipole field configurations corresponding to quiet and stormy conditions. The latter are obtained with RAM-SCB, a code that models the Earth's ring current and provides a realistic modeling of the Earth's magnetic field. By applying quasi-linear theory, the bounce-averaged electron pitch angle, energy and mixed term diffusion coefficients are calculated for each magnetic field configuration. It is shown that the magnetic field can have a significant influence on the diffusion coefficients via the wave-particle resonance condition. In addition, the equatorial pitch angle, wave frequency and spectral distribution of whistler waves also affect the bounce-averaged diffusion coefficients in particle energy range from KeV to MeV. Part of the ongoing work will focus on the phase space density evolution based on the Fokker-Planck equation with the bounce-averaged diffusion coefficients previously calculated.

  17. Measurements of Diffusion Coefficients in Particles Using Fluorescence Recovery after Photobleaching (FRAP)

    NASA Astrophysics Data System (ADS)

    Chenyakin, Y.; Kamal, S.; Bertram, A. K.

    2014-12-01

    Secondary organic aerosol (SOA) particles are formed in the atmosphere via gas-to-particle conversion of low and semi volatile organic compounds. They are abundant in the atmosphere and can directly contribute to climate change by scattering solar radiation or indirectly by acting as cloud condensation nuclei or ice nuclei. There is also a health concern associated with SOA particles because they can make up a large fraction of suspended submicron particulate mass. In addition, a reduction in visibility in both polluted and rural areas can be due to SOA particles. Knowledge of diffusion coefficients of organic species within SOA particles is needed to predict the atmospheric behaviour and environmental impacts of these particles. Here we introduce a new method to determine diffusion coefficients of organic probes in particles made up of organic species as a function of relative humidity (RH). Our method involves using fluorescence recovery after photobleaching (FRAP) to measure the diffusion coefficients of organic fluorescent dyes in organic particles with dimensions of approximately 25 μm. We validated this method by measuring diffusion coefficients of organic dyes of varied size in sucrose-water solutions as a function of RH and comparing these results with data from the literature. In the future this method will be applied to SOA particles.

  18. Extending the Diffuse Layer Model of Surface Acidity Behavior: III. Estimating Bound Site Activity Coefficients

    EPA Science Inventory

    Although detailed thermodynamic analyses of the 2-pK diffuse layer surface complexation model generally specify bound site activity coefficients for the purpose of accounting for those non-ideal excess free energies contributing to bound site electrochemical potentials, in applic...

  19. Determination of molecular diffusion coefficient in n-alkane binary mixtures: empirical correlations.

    PubMed

    De Mezquia, D Alonso; Bou-Ali, M Mounir; Larrañaga, M; Madariaga, J A; Santamaría, C

    2012-03-01

    In this work we have measured the molecular diffusion coefficient of the n-alkane binary series nC(i)-nC(6), nC(i)-nC(10), and nC(i)-nC(12) at 298 K and 1 atm and a mass fraction of 0.5 by using the so-called sliding symmetric tubes technique. The results show that the diffusion coefficient at this concentration is proportional to the inverse viscosity of the mixture. In addition, we have also measured the diffusion coefficient of the systems nC(12)-nC(6), nC(12)-nC(7), and nC(12)-nC(8) as a function of concentration. From the data obtained, it is shown that the diffusion coefficient of the n-alkane binary mixtures at any concentration can be calculated from the molecular weight of the components and the dynamic viscosity of the corresponding mixture at 50% mass fraction. PMID:22263833

  20. Concentration-dependent changes in apparent diffusion coefficients as indicator for colloidal stability of protein solutions.

    PubMed

    Bauer, Katharina Christin; Göbel, Mathias; Schwab, Marie-Luise; Schermeyer, Marie-Therese; Hubbuch, Jürgen

    2016-09-10

    The colloidal stability of a protein solution during downstream processing, formulation, and storage is a key issue for the biopharmaceutical production process. Thus, knowledge about colloidal solution characteristics, such as the tendency to form aggregates or high viscosity, at various processing conditions is of interest. This work correlates changes in the apparent diffusion coefficient as a parameter of protein interactions with observed protein aggregation and dynamic viscosity of the respective protein samples. For this purpose, the diffusion coefficient, the protein phase behavior, and the dynamic viscosity in various systems containing the model proteins α-lactalbumin, lysozyme, and glucose oxidase were studied. Each of these experiments revealed a wide range of variations in protein interactions depending on protein type, protein concentration, pH, and the NaCl concentration. All these variations showed to be mirrored by changes in the apparent diffusion coefficient in the respective samples. Whereas stable samples with relatively low viscosity showed an almost linear dependence, the deviation from the concentration-dependent linearity indicated both an increase in the sample viscosity and probability of protein aggregation. This deviation of the apparent diffusion coefficient from concentration-dependent linearity was independent of protein type and solution properties for this study. Thus, this single parameter shows the potential to act as a prognostic tool for colloidal stability of protein solutions. PMID:27421911

  1. Importance of diffuse metal ion binding to RNA.

    PubMed

    Tan, Zhi-Jie; Chen, Shi-Jie

    2011-01-01

    RNAs are highly charged polyanionic molecules. RNA structure and function are strongly correlated with the ionic condition of the solution. The primary focus of this article is on the role of diffusive ions in RNA folding. Due to the long-range nature of electrostatic interactions, the diffuse ions can contribute significantly to RNA structural stability and folding kinetics. We present an overview of the experimental findings as well as the theoretical developments on the diffuse ion effects in RNA folding. This review places heavy emphasis on the effect of magnesium ions. Magnesium ions play a highly efficient role in stabilizing RNA tertiary structures and promoting tertiary structural folding. The highly efficient role goes beyond the mean-field effect such as the ionic strength. In addition to the effects of specific ion binding and ion dehydration, ion-ion correlation for the diffuse ions can contribute to the efficient role of the multivalent ions such as the magnesium ions in RNA folding. PMID:22010269

  2. Density, Viscosity, and Diffusion Coefficients in Hypoeutectic Al-Si Liquid Alloys: An Assessment of Available Data

    NASA Astrophysics Data System (ADS)

    Poirier, David R.

    2014-08-01

    This article is a review of empirical and calculated data on density, viscosity, and diffusion coefficients in hypereutectic Al-Si liquid alloys. Many regressions of the data were effected in order to consolidate the data as functions, which can be used to calculate each property as a function of temperature and concentration of Si. The chemical diffusion coefficient in the alloys was derived based on the Sutherland model, which relates the diffusion coefficient to viscosity.

  3. Diffusion coefficient of krypton atoms in helium gas at low and moderate temperatures

    NASA Astrophysics Data System (ADS)

    Bouazza, M. T.; Bouledroua, M.

    In the present work, using the Chapman-Enskog method for dilute gases, the diffusion coefficients of ground krypton atoms in a very weakly ionized helium buffer gas are revisited. The calculations are carried out quantum mechanically in the range of low and moderate temperatures. The 1 Σ+ potential-energy curve via which Kr approaches He is constructed from the most recent ab initio energy points. The reliable data points used in the construction are smoothly connected to adequate long- and short-range forms. The calculations of the classical second virial coefficients and the Boyle temperature of the helium-krypton mixture are also discussed. These coefficients and their variations in terms of temperature are analysed by adopting the constructed HeKr potential and the Lennard-Jones form that fits it. The diffusion and elastic cross sections are also explored and the resonance features they exhibit are closely examined. The variation law of the diffusion coefficients with temperature is determined for typical values of density and pressure. The coefficients show excellent agreement with the available experimental data; the discrepancies do not exceed 5%.

  4. Accurate determination of the diffusion coefficient of proteins by Fourier analysis with whole column imaging detection.

    PubMed

    Zarabadi, Atefeh S; Pawliszyn, Janusz

    2015-02-17

    Analysis in the frequency domain is considered a powerful tool to elicit precise information from spectroscopic signals. In this study, the Fourier transformation technique is employed to determine the diffusion coefficient (D) of a number of proteins in the frequency domain. Analytical approaches are investigated for determination of D from both experimental and data treatment viewpoints. The diffusion process is modeled to calculate diffusion coefficients based on the Fourier transformation solution to Fick's law equation, and its results are compared to time domain results. The simulations characterize optimum spatial and temporal conditions and demonstrate the noise tolerance of the method. The proposed model is validated by its application for the electropherograms from the diffusion path of a set of proteins. Real-time dynamic scanning is conducted to monitor dispersion by employing whole column imaging detection technology in combination with capillary isoelectric focusing (CIEF) and the imaging plug flow (iPF) experiment. These experimental techniques provide different peak shapes, which are utilized to demonstrate the Fourier transformation ability in extracting diffusion coefficients out of irregular shape signals. Experimental results confirmed that the Fourier transformation procedure substantially enhanced the accuracy of the determined values compared to those obtained in the time domain. PMID:25607375

  5. Atomistic Simulations of Ion Diffusion in Clay Barriers: Diffusive Path Energy Barriers

    NASA Astrophysics Data System (ADS)

    Newton, A. G.; Kozaki, T.

    2010-12-01

    Ion diffusion in clay-rich media is an important transport process relevant to models of contaminant fate and transport in groundwater and risk assessments for the geologic disposal of high-level radioactive waste (HLW). Smectite clay minerals are used as a buffer material in the geologic disposal of HLW due to their low permeability. Ion diffusion experiments with water-saturated, compacted clays have revealed a non-linear trend in which the diffusive energy barrier in clay media at dry densities near 1.0 Mg m-3 exhibited a smaller energy barrier to diffusion than in liquid water (Kozaki, et al. 2005). Although it is likely that the decreased energy barrier is related to preferential diffusion along smectite basal surfaces, experimental methods cannot unambiguously isolate this diffusion pathway. Atomistic simulations were designed to isolate this diffusive pathway and to test if the decreased energy barrier is related to preferential diffusion along the smectite basal surface. In addition, the simulations provide an atomic-scale perspective of this diffusion pathway as a function of temperature. In the present study, we report the energy barrier to diffusion for sodium ions (Na+) at the smectite basal surface. The energy barrier to diffusion at the Na-montmorillonite basal surface was determined by investigating the temperature dependence of ion diffusion through a series of long (9.0 ns) molecular dynamics (MD) simulations in the canonical ensemble (NVT). We show that the energy barrier to diffusion at the clay basal surface is less than the energy barrier to diffusion in free water and demonstrate that this methodology can provide results that are consistent with laboratory diffusion experiments and nanoscale insights into the interpretation of macroscale experimental investigations of ion diffusion in smectite-rich media. Kozaki, T., A. Fujishima, et al. (2005). Engineering Geology, 81(3): 246-254.

  6. Simultaneous Measurement of Tracer and Interdiffusion Coefficients: An Isotopic Phenomenological Diffusion Formalism for the Binary Alloy

    SciTech Connect

    Belova, Irina; Kulkarni, Nagraj S; Sohn, Yong Ho; Murch, Prof. Graeme

    2013-01-01

    In this paper, a new development of the classic Onsager phenomenological formalism is derived using relations based on linear response theory. The development concerns the correct description of the fluxes of the atomic isotopes. The resulting expressions in the laboratory frame are surprisingly simple and consist of terms coming from the standard interdiffusion expressions and from Fick s first law where the tracer diffusion coefficient is involved thus providing a better understanding of the relationship between the two approaches - Fick s first law and the Onsager phenomenological formalism. From an experimental application perspective, the new development is applied to the binary alloy case. The formalism provides the means to obtain the interdiffusion coefficient and tracer diffusion coefficients simultaneously from analysis of the interdiffusion concentration profiles in a single experiment.

  7. On The Anomalous Fast Ion Energy Diffusion in Toroidal Plasmas Due to Cavity Modes

    SciTech Connect

    N.N. Gorelenkov, N.J. Fisch and E. Fredrickson

    2010-03-09

    An enormous wave-particle diffusion coefficient along paths suitable for alpha channeling had been deduced in mode converted ion Bernstein wave experiments on Tokamak Fusion Test Reactor (TFTR) the only plausible explanation advanced for such a large diffusion coefficient was the excitation of internal cavity modes which induce particle diffusion along identical diffusion paths, but at much higher rates. Although such a mode was conjectured, it was never observed. However, recent detailed observations of high frequency compressional Alfven eigenmodes (CAEs) on the National Spherical torus Experiment (NSTX) indirectly support the existence of the related conjectured modes on TFTR. The eigenmodes responsible for the high frequency magnetic activity can be identified as CAEs through the polarization of the observed magnetic field oscillations in NSTX and through a comparison with the theoretically derived freuency dispersion relation. Here, we show how these recent observations of high frequency CAEs lend support to this explanation of the long-standing puzzle of anomalous fast ion energy diffusion on TFTR. The support of the conjecure that these internal modes could have caused the remarkable ion energy diffusion on TFTR carries significant and favorable implications for the possibilities in achieving the alpha channeling effect with small injected power in a tokamak reactor.

  8. Kinks in experimental diffusion profiles of a dissolving semi-crystalline polymer explained by a concentration-dependent diffusion coefficient.

    PubMed

    Hermes, Helen E; Sitta, Christoph E; Schillinger, Burkhard; Löwen, Hartmut; Egelhaaf, Stefan U

    2015-06-28

    The dissolution of polyethylene oxide (PEO) tablets in water has been followed in situ by neutron radiography. When in contact with water, the crystalline phase of semi-crystalline PEO melts once a certain water content is attained. Polymer concentration profiles obtained from the neutron transmission images exhibited a pronounced kink which corresponds to a sharp front in the images and which is related to the melting transition. Sharp diffusion fronts and phase transitions are often linked to non-Fickian behaviour. However, by considering the time evolution of the complete concentration profiles in detail it is shown that the dissolution process can be explained using Fickian diffusion equations with a concentration-dependent diffusion coefficient. PMID:26018995

  9. Estimating diffusion coefficients in low-permeability porous media using a macropore column

    SciTech Connect

    Young, D.F.; Ball, W.P.

    1998-09-01

    Diffusion coefficients in an aquitard material were measured by conducting miscible solute transport experiments through a specially constructed macropore column. Stainless steel HPLC columns were prepared in a manner that created an annular region of repacked aquitard material and a central core of medium-grained quartz sand. The column transport approach minimizes volatilization and sorption losses that can be problematic when measuring hydrophobic organic chemical diffusion with diffusion-cell methods or column-sectioning techniques. In the transport experiments, solutes (triated water, 1,2,4-trichlorobenzene, and tetrachloroethene) were transported through the central core by convection and hydrodynamic dispersion and through the low-permeability annulus by radial diffusion. All transport parameters were independently measured except for the effective diffusion coefficient in the aquitard material, which was obtained by model fitting. Batch-determined retardation factors agreed very closely with moment-derived retardation factors determined from the column experiments, and no evidence of pore exclusion was found. A model with retarded diffusion was found to apply, and the effective tortuosity factor of the aquitard material was estimated at an average value of 5.1.

  10. An elemental mercury diffusion coefficient for natural waters determined by molecular dynamics simulation.

    PubMed

    Kuss, Joachim; Holzmann, Jörg; Ludwig, Ralf

    2009-05-01

    Mercury is a priority pollutant as its mobility between the hydrosphere and the atmosphere threatens the biosphere globally. The air-water gas transfer of elemental mercury (Hg0) is controlled by its diffusion through the water-side boundary layer and thus by its diffusion coefficient, D(Hg), the value of which, however, has not been established. Here, the diffusion of Hg0 in water was modeled by molecular dynamics (MD) simulation and the diffusion coefficient subsequently determined. Therefore the movement of either Hg(0) or xenon and 1000 model water molecules (TIP4P-Ew) were traced for time spans of 50 ns. The modeled D(Xe) of the monatomic noble gas agreed well with measured data; thus, MD simulation was assumed to be a reliable approach to determine D(Hg) for monatomic Hg(0) as well. Accordingly, Hg(0) diffusion was then simulated for freshwater and seawater, and the data were well-described by the equation of Eyring. The activation energies for the diffusion of Hg0 in freshwater was 17.0 kJ mol(-1) and in seawater 17.8 kJ mol(-1). The newly determined D(Hg) is clearly lower than the one previously used for an oceanic mercury budget. Thus, its incorporation into the model should lead to lower estimates of global ocean mercury emissions. PMID:19534132

  11. Radiative transition probabilities and recombination coefficients of the ion C IV.

    NASA Technical Reports Server (NTRS)

    Leibowitz, E. M.

    1972-01-01

    Bound-bound and bound-free radiative transition probabilities, as well as radiative recombination coefficients of the ion C IV, are computed with a semi-empirical polarization potential method. The nonhydrogenic probabilities and coefficients are given for all bound states of the ion up to the principal quantum number n = 7.

  12. Lithium tracer-diffusion in an alkali-basaltic melt — An ion-microprobe determination

    NASA Astrophysics Data System (ADS)

    Lowry, R. K.; Reed, S. J. B.; Nolan, J.; Henderson, P.; Long, J. V. P.

    1981-03-01

    An ion-microprobe-based technique has been used to measure lithium tracer-diffusion coefficients ( D Li) in an alkali-basaltic melt at 1300, 1350 and 1400°C. The results can be expressed in the form: D Li=7.5 ×10 -2exp(-27,600/RT)cm 2S -1 The results show significantly faster diffusion rates than those previously recorded for other monovalent, divalent and trivalent cations in a tholeiitic melt. Consequently, diffusive transport of ions acting over a given time in a basaltic melt can produce a wider range of transport distance values than hitherto supposed. Hence, it is concluded that great care should be exercised when applying diffusion data to petrological problems.

  13. Determination of binary diffusion coefficients of various gas species used in respiratory physiology.

    PubMed

    Worth, H; Nüsse, W; Piiper, J

    1978-01-01

    In order to provide data required for quantitative analysis of gas diffusion in lung airways, diffusion of He, CO, O2, CO2 and SF6 in various gases used in respiratory physiology was studied in vitro at 37 degrees C and 25 degrees C. The gases were allowed to mix by diffusion in a closed cylindrical tube (length 2 m, internal diameter 1 cm), one half of which was initially filled with 1% test gas in a second gas and the other half of which was filled with the second gas only. Kinetics of diffusional equilibration was determined by withdrawal of spot samples analyzed by gas chromatography. The binary (mutual) diffusion coefficients (D) computed there from were in most cases in good agreement with values calculated on the basis of the Chapman-Enskog theory. PMID:625611

  14. Spectrophotometric Method for Differentiation of Human Skin Melanoma. I. Optical Diffuse Reflection Coefficient

    NASA Astrophysics Data System (ADS)

    Petruk, V. G.; Ivanov, A. P.; Kvaternyuk, S. M.; Barun, V. V.

    2016-03-01

    We have designed an experimental setup, based on two integrating spheres, that lets us measure the optical diffuse reflectance spectra (diffuse reflection coefficient vs. wavelength) of human skin quickly under clinical conditions in vivo. For the wavelength interval 520-1100 nm, we give the values of the diffuse reflection coefficient for healthy tissue, skin with a benign nevus, and skin with a malignant melanoma for a large group of test subjects. We experimentally established a number of wavelengths in the red-near IR region of the spectrum which can be used for early differential diagnosis of nevi and melanoma in patient cancer screening. According to the Kramer-Welch test, the probability of the diffuse reflection coefficient for skin with melanoma and a nevus having different distributions is >0.94, and at many wavelengths it is >0.999. By solving the inverse problem, we estimated the changes in a number of structural and biophysical parameters of the tissue on going from healthy skin to nevus and melanoma. The results obtained can provide a basis for developing a clinical approach to identifying the risk of malignant transformation of the skin before surgery and histological analysis of the tissue.

  15. Determination of the diffusion coefficient of hydrogen in gamma titanium aluminides during electrolytic charging

    SciTech Connect

    Sundaram, P.A.; Wessel, E.; Clemens, H.; Kestler, H.; Ennis, P.J.; Quadakkers, W.J.; Singheiser, L.

    2000-03-14

    The diffusion coefficient of hydrogen in some gamma based titanium aluminide alloys was determined at room temperature using an electrochemical techniques. A cast Ti-48Al-2Cr alloy as well as Ti-46.5Al-4(Cr,Nb,Ta,B) sheet material with primary annealed and designed fully lamellar microstructures were subjected to cathodic hydrogen charging at room temperature in the galvanostatic mode. The potential variation with time was monitored form which data the values of the diffusion coefficient of hydrogen, D were calculated form well known error function/infinite series solutions to Fick's second law. Very good correlation was obtained with respect to theoretical calculations. The diffusion coefficients appear to be in close agreement with those for the cast alloy calculated from microhardness measurements. The value of D can be overestimated for thick specimens. Results show that neither the microstructure in terms of grain/lamellar colony size, nor the charging current density, appear to have a significant effect on the value of D. Lattice diffusion appears to be rate controlling.

  16. An interpretation of potential scale dependence of the effectivematrix diffusion coefficient

    SciTech Connect

    Liu, H.H.; Zhang, Y.Q.; Zhou, Q.; Molz, F.J.

    2005-11-30

    Matrix diffusion is an important process for solutetransport in fractured rock, and the matrix diffusion coefficient is akey parameter for describing this process. Previous studies indicatedthat the effective matrix diffusion coefficient values, obtained from alarge number of field tracer tests, are enhanced in comparison with localvalues and may increase with test scale. In this study, we have performednumerical experiments to investigate potential mechanisms behind possiblescale-dependent behavior. The focus of the experiments is on solutetransport in flow paths having geometries consistent with percolationtheories and characterized by local flow loops formed mainly bysmall-scale fractures. The water velocity distribution through a flowpath was determined using discrete fracture network flow simulations, andsolute transport was calculated using a previously derivedimpulse-response function and a particle-tracking scheme. Values foreffective (or up-scaled) transport parameters were obtained by matchingbreakthrough curves from numerical experiments with an analyticalsolution for solute transport along a single fracture. Results indicatethat a combination of local flow loops and the associated matrixdiffusion process, together with scaling properties in flow pathgeometry, seems to be the dominant mechanism causing the observed scaledependence of theeffective matrix diffusion coefficient (at a range ofscales).

  17. Binary Diffusion Coefficient Data of Various Gas Systems Determined Using a Loschmidt Cell and Holographic Interferometry

    NASA Astrophysics Data System (ADS)

    Kugler, T.; Rausch, M. H.; Fröba, A. P.

    2015-11-01

    The paper reports on binary diffusion coefficient data for the gaseous systems argon-neon, krypton-helium, ammonia-helium, nitrous oxide-nitrogen, and propane-helium measured using a Loschmidt cell combined with holographic interferometry between (293.15 and 353.15) K as well as between (1 and 10) bar. The investigations on the noble gas systems aimed to validate the measurement apparatus by comparing the binary diffusion coefficients measured as a function of temperature and pressure with theoretical data. In previous studies, it was already shown that the raw concentration-dependent data measured with the applied setup are affected by systematic effects if pure gases are used prior to the diffusion process. Hence, the concentration-dependent measurement data were processed to obtain averaged binary diffusion coefficients at a mean mole fraction of 0.5. The data for the molecular gas systems complete literature data on little investigated systems of technical interest and point out the capabilities of the applied measurement apparatus. Further experimental data are reported for the systems argon-helium, krypton-argon, krypton-neon, xenon-helium, xenon-krypton, nitrous oxide-carbon dioxide, and propane-carbon dioxide at 293.15 K, 2 bar, and a mean mole fraction of 0.5.

  18. Method for the measurement of the diffusion coefficient of benzalkonium chloride.

    PubMed

    Smith, M J; Flowers, T H; Cowling, M J; Duncan, H J

    2002-03-01

    Biofilm formation on the optical ports of cameras and underwater sensors is the primary cause of their reduced useful deployment time. The use of a transparent hydrogel coating containing the cationic surfactant benzalkonium chloride has been shown to extend the deployment times for up to 12 weeks for these instruments. In order to predict the effective lifetime of these coatings it was necessary to obtain the diffusion coefficient of the benzalkonium chloride used in the coatings. Benzalkonium chloride can have different alkyl chain lengths ranging from C8H17 to C18H37 with chain length greatly affecting its chemical properties. The benzalkonium chloride materials investigated here were mixtures of C12H25 and C14H29 as well as C14H29 on its own. These materials were selected for their proven biofilm resistant qualities. The diaphragm diffusion cell technique was investigated for its applicability to the measurement of diffusion coefficients of molecules with surfactant properties and the ability to form micelles. The method was found to be satisfactory for the cationic surfactant benzalkonium chloride. The average value of the membrane cell integral diffusion coefficient D was 7.78 x 10(-6) cm2 s(-1) at 25 degrees C and there was no significant effect of alkyl chain length on the measured value of D. PMID:11996332

  19. Protein effective rotational correlation times from translational self-diffusion coefficients measured by PFG-NMR.

    PubMed

    Yao, Shenggen; Babon, Jeffrey J; Norton, Raymond S

    2008-08-01

    Molecular rotational correlation times are of interest for many studies carried out in solution, including characterization of biomolecular structure and interactions. Here we have evaluated the estimates of protein effective rotational correlation times from their translational self-diffusion coefficients measured by pulsed-field gradient NMR against correlation times determined from both collective and residue-specific (15)N relaxation analyses and those derived from 3D structure-based hydrodynamic calculations. The results show that, provided the protein diffusive behavior is coherent with the Debye-Stokes-Einstein model, translational diffusion coefficients provide rapid estimates with reasonable accuracy of their effective rotational correlation times. Effective rotational correlation times estimated from translational diffusion coefficients may be particularly beneficial in cases where i) isotopically labelled material is not available, ii) collective backbone (15)N relaxation rates are difficult to interpret because of the presence of flexible termini or loops, or iii) a full relaxation analysis is practically difficult because of limited sensitivity owing to low protein concentration, high molecular mass or low temperatures. PMID:18583018

  20. Determining diffusion coefficients of ionic liquids by means of field cycling nuclear magnetic resonance relaxometry

    SciTech Connect

    Kruk, D.; Meier, R.; Rössler, E. A.; Rachocki, A.; Korpała, A.; Singh, R. K.

    2014-06-28

    Field Cycling Nuclear Magnetic Resonance (FC NMR) relaxation studies are reported for three ionic liquids: 1-ethyl-3- methylimidazolium thiocyanate (EMIM-SCN, 220–258 K), 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM-BF{sub 4}, 243–318 K), and 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF{sub 6}, 258–323 K). The dispersion of {sup 1}H spin-lattice relaxation rate R{sub 1}(ω) is measured in the frequency range of 10 kHz–20 MHz, and the studies are complemented by {sup 19}F spin-lattice relaxation measurements on BMIM-PF{sub 6} in the corresponding frequency range. From the {sup 1}H relaxation results self-diffusion coefficients for the cation in EMIM-SCN, BMIM-BF{sub 4}, and BMIM-PF{sub 6} are determined. This is done by performing an analysis considering all relevant intra- and intermolecular relaxation contributions to the {sup 1}H spin-lattice relaxation as well as by benefiting from the universal low-frequency dispersion law characteristic of Fickian diffusion which yields, at low frequencies, a linear dependence of R{sub 1} on square root of frequency. From the {sup 19}F relaxation both anion and cation diffusion coefficients are determined for BMIM-PF{sub 6}. The diffusion coefficients obtained from FC NMR relaxometry are in good agreement with results reported from pulsed- field-gradient NMR. This shows that NMR relaxometry can be considered as an alternative route of determining diffusion coefficients of both cations and anions in ionic liquids.

  1. Determination of diffusion, reflection and deexcitation coefficients of metastable excited Ne(3P2) atom

    NASA Astrophysics Data System (ADS)

    Suzuki, S.; Itoh, H.

    2016-05-01

    The diffusion coefficient of the metastable excited Ne(3P2) atom in neon, the reflection coefficient of Ne(3P2) at the surface of an electrode and the rate coefficient of Ne(3P2) for collisional quenching by Ne(1S0) were determined from the gas pressure dependence of the effective lifetime of Ne(3P2). The effective lifetime of Ne(3P2) was measured from the transient current after turning off the Ultraviolet (UV) light in a Townsend discharge. The observed transient current waveform was analysed by solving the diffusion equation for the metastable excited Ne(3P2) atom using the third kind of boundary condition. The rate coefficient of Ne(3P2) for collisional quenching by Ne(1S0) and the reflection coefficient were determined by a nonspectroscopic method for the first time in neon to the best of our knowledge and were (3.2  ±  0.4)  ×  10‑16 cm3 s‑1 and 0.10  ±  0.04, respectively. The obtained diffusion coefficient at 1 Torr was 177  ±  17 cm2 s‑1, which is consistent with the value reported by Dixon and Grant. Moreover, the present results are compared with the results of Phelps and were found to be in good agreement. We also discuss the deexcitation rate of Ne(3P2) at pressures of up to 60 Torr in comparison with previously reported values.

  2. A new in-situ method to determine the apparent gas diffusion coefficient of soils

    NASA Astrophysics Data System (ADS)

    Laemmel, Thomas; Paulus, Sinikka; Schack-Kirchner, Helmer; Maier, Martin

    2015-04-01

    Soil aeration is an important factor for the biological activity in the soil and soil respiration. Generally, gas exchange between soil and atmosphere is assumed to be governed by diffusion and Fick's Law is used to describe the fluxes in the soil. The "apparent soil gas diffusion coefficient" represents the proportional factor between the flux and the gas concentration gradient in the soil and reflects the ability of the soil to "transport passively" gases through the soil. One common way to determine this coefficient is to take core samples in the field and determine it in the lab. Unfortunately this method is destructive and needs laborious field work and can only reflect a small fraction of the whole soil. As a consequence insecurity about the resulting effective diffusivity on the profile scale must remain. We developed a new in-situ method using new gas sampling device, tracer gas and inverse soil gas modelling. The gas sampling device contains several sampling depths and can be easily installed into vertical holes of an auger, which allows for fast installation of the system. At the lower end of the device inert tracer gas is injected continuously. The tracer gas diffuses into the surrounding soil. The resulting distribution of the tracer gas concentrations is used to deduce the diffusivity profile of the soil. For Finite Element Modeling of the gas sampling device/soil system the program COMSOL is used. We will present the results of a field campaign comparing the new in-situ method with lab measurements on soil cores. The new sampling pole has several interesting advantages: it can be used in-situ and over a long time; so it allows following modifications of diffusion coefficients in interaction with rain but also vegetation cycle and wind.

  3. Nuclear magnetic resonance measurement of skeletal muscle: anisotrophy of the diffusion coefficient of the intracellular water.

    PubMed Central

    Cleveland, G G; Chang, D C; Hazlewood, C F; Rorschach, H E

    1976-01-01

    The anisotropy of the spin-diffusion coefficient Ds of water protons in skeletal muscle has been studied by pulsed NMR methods. The mid-portion of the tibialis anterior muscle of mature male rats was placed in a special sample holder by means of which the muscle fiber orientation theta relative to the diffusion direction could be varied over the range 0 degrees less than or equal to theta less than or equal to 90 degrees. The value of Ds(theta) was determined for theta = 0 degrees, 45 degrees, and 90 degrees. The measured anisotropy Ds(0)/Ds(90) was 1.39, and the value of Ds(0) was 1.39 X 10(-5) cm2/s. These results are interpreted within the framework of a model calculation in which the diffusion equation is solved for a regular hexagonal network similar to the actin-myosin filament network. The large anisotropy, and the large reduction in the value of Ds measured parallel to the filament axes lead to two major conclusions: (a) interpretations in which the reduction in Ds is ascribed to the effect of geometrical obstructions on the diffusion of "free" water are ruled out; and, (b) there is a large fraction of the cellular water associated with the proteins in such a way that its diffusion coefficient is substantially reduced. PMID:963204

  4. Effect of imaging parameters on the accuracy of apparent diffusion coefficient and optimization strategies

    PubMed Central

    Celik, Azim

    2016-01-01

    PURPOSE We aimed to investigate the effect of key imaging parameters on the accuracy of apparent diffusion coefficient (ADC) maps using a phantom model combined with ADC calculation simulation and propose strategies to improve the accuracy of ADC quantification. METHODS Diffusion-weighted imaging (DWI) sequences were acquired on a phantom model using single-shot echo-planar imaging DWI at 1.5 T scanner by varying key imaging parameters including number of averages (NEX), repetition time (TR), echo time (TE), and diffusion preparation pulses. DWI signal simulations were performed for varying TR and TE. RESULTS Magnetic resonance diffusion signal and ADC maps were dependent on TR and TE imaging parameters as well as number of diffusion preparation pulses, but not on the NEX. However, the choice of a long TR and short TE could be used to minimize their effects on the resulting DWI sequences and ADC maps. CONCLUSION This study shows that TR and TE imaging parameters affect the diffusion images and ADC maps, but their effect can be minimized by utilizing diffusion preparation pulses. Another key imaging parameter, NEX, is less relevant to DWI and ADC quantification as long as DWI signal-to-noise ratio is above a certain level. Based on the phantom results and data simulations, DWI acquisition protocol can be optimized to obtain accurate ADC maps in routine clinical application for whole body imaging. PMID:26573977

  5. Variability of the downwelling diffuse attenuation coefficient with consideration of inelastic scattering.

    PubMed

    Zheng, Xiaobing; Dickey, Tommy; Chang, Grace

    2002-10-20

    In situ time-series measurements of spectral diffuse downwelling irradiance from the Bermuda Testbed Mooring are presented. Averaged diffuse attenuation coefficients of downwelling irradiance, Kd,and their elastic and inelastic components are investigated at seven wavelengths. At shorter wavelengths (<510 nm), Kd is weakly dependent on the solar zenith angle owing to the prevailing scattering effect and therefore can be considered a quasi-inherent optical property. At longer wavelengths (>510 nm), Kd shows a strong dependence on the solar zenith angle. As depth increases, inelastic scattering plays a greater role for the underwater light field at red wavelengths. PMID:12396201

  6. Kernel-based regression of drift and diffusion coefficients of stochastic processes

    NASA Astrophysics Data System (ADS)

    Lamouroux, David; Lehnertz, Klaus

    2009-09-01

    To improve the estimation of drift and diffusion coefficients of stochastic processes in case of a limited amount of usable data due to e.g. non-stationarity of natural systems we suggest to use kernel-based instead of histogram-based regression. We propose a method for bandwidth selection and compare it to a widely used cross-validation method. Kernel-based regression reveals an enhanced ability to estimate drift and diffusion especially for a small amount of data. This allows one to improve resolvability of changes in complex dynamical systems as evidenced by an exemplary analysis of electroencephalographic data recorded from a human epileptic brain.

  7. Thermal Expansion and Diffusion Coefficients of Carbon Nanotube-Polymer Composites

    NASA Technical Reports Server (NTRS)

    Wei, Chengyu; Srivastava, Deepak; Cho, Kyeongjae; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Classical molecular dynamics (MD) simulations employing Brenner potential for intra-nanotube interactions and van der Waals forces for polymer-nanotube interface have been used to investigate thermal expansion and diffusion characteristics of carbon nanotube-polyethylene composites. Addition of carbon nanotubes to polymer matrix is found to significantly increase the glass transition temperature Tg, and thermal expansion and diffusion coefficients in the composite above Tg. The increase has been attributed to the temperature dependent increase of the excluded volume for the polymer chains, and the findings could have implications in the composite processing, coating and painting applications.

  8. Integral formula for the effective diffusion coefficient in two-dimensional channels

    NASA Astrophysics Data System (ADS)

    Kalinay, Pavol

    2016-07-01

    The effective one-dimensional description of diffusion in two-dimensional channels of varying cross section is revisited. The effective diffusion coefficient D (x ) , extending Fick-Jacobs equation, depending on the longitudinal coordinate x , is derived here without use of scaling of the transverse coordinates. The result of the presented method is an integral formula for D (x ) , calculating its value at x as an integral of contributions from the neighboring positions x' depending on h (x') , a function shaping the channel. Unlike the standard formulas based on the scaling, the new proposed formula also describes D (x ) correctly near the cusps, or in wider channels.

  9. A MATLAB program to calculate translational and rotational diffusion coefficients of a single particle

    NASA Astrophysics Data System (ADS)

    Charsooghi, Mohammad A.; Akhlaghi, Ehsan A.; Tavaddod, Sharareh; Khalesifard, H. R.

    2011-02-01

    We developed a graphical user interface, MATLAB based program to calculate the translational diffusion coefficients in three dimensions for a single diffusing particle, suspended inside a fluid. When the particles are not spherical, in addition to their translational motion also a rotational freedom is considered for them and in addition to the previous translational diffusion coefficients a planar rotational diffusion coefficient can be calculated in this program. Time averaging and ensemble averaging over the particle displacements are taken to calculate the mean square displacement variations in time and so the diffusion coefficients. To monitor the random motion of non-spherical particles a reference frame is used that the particle just have translational motion in it. We call it the body frame that is just like the particle rotates about the z-axis of the lab frame. Some statistical analysis, such as velocity autocorrelation function and histogram of displacements for the particle either in the lab or body frames, are available in the program. Program also calculates theoretical values of the diffusion coefficients for particles of some basic geometrical shapes; sphere, spheroid and cylinder, when other diffusion parameters like temperature and fluid viscosity coefficient can be adjusted. Program summaryProgram title: KOJA Catalogue identifier: AEHK_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHK_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 48 021 No. of bytes in distributed program, including test data, etc.: 1 310 320 Distribution format: tar.gz Programming language: MatLab (MathWorks Inc.) version 7.6 or higher. Statistics Toolbox and Curve Fitting Toolbox required. Computer: Tested on windows and linux, but generally it would work on any

  10. Ion beam analysis of diffusion in heterogeneous materials

    NASA Astrophysics Data System (ADS)

    Clough, A. S.; Jenneson, P. M.

    1998-04-01

    Ion-beam analysis has been applied to a variety of problems involving diffusion in heterogeneous materials. An energy loss technique has been used to study both the diffusion of water and the surface segregation of fluoropolymers in polymeric matrices. A scanning micro-beam technique has been developed to allow water concentrations in hydrophilic polymers and cements to be measured together with associated solute elements. It has also been applied to the diffusion of shampoo into hair.