Science.gov

Sample records for ion drift velocity

  1. Negative Ion Drift Velocity and Longitudinal Diffusion in Mixtures of Carbon Disulfide and Methane

    NASA Technical Reports Server (NTRS)

    Dion, Michael P.; Son, S.; Hunter, S. D.; deNolfo, G. A.

    2011-01-01

    Negative ion drift velocity and longitudinal diffusion has been measured for gas mixtures of carbon disulfide (CS2) and methane (CH4)' Measurements were made as a function of total pressure, CS2 partial pressure and electric field. Constant mobility and thermal-limit longitudinal diffusion is observed for all gas mixtures tested. Gas gain for some of the mixtures is also included.

  2. Metastable chlorine ion temperature and drift velocity in an inductively coupled plasma

    SciTech Connect

    Hebner, G.A.

    1996-09-01

    Laser-induced fluorescence has been used to measure the temperature and radial drift velocity of metastable chlorine ions in inductively coupled Cl{sub 2} and Ar/Cl{sub 2} plasmas. In the center of the plasma, the Cl metastable ion temperature varied between 1500 and 3200 K for rf powers between 200 and 400 W and pressures between 7 and 30 mTorr. Increasing the chlorine fraction in an Ar/Cl{sub 2} gas mixture from 10{percent} to 100{percent} increased the Cl metastable ion temperature from approximately 1500 to 3200 K. Spatially resolved measurements of the ion temperature indicated that the ion temperature increased to between 4500 and 5500 K at the edge of the discharge and increased approximately 700 K moving from the rf source toward the lower electrode. Ion drift velocity in the radial direction was between 6{times}10{sup 4} and 8{times}10{sup 4} cm/s at the edge of the plasma. Implications of these measurements on the Ar/Cl{sub 2} chemistry and the energy transport in the plasma are discussed. {copyright} {ital 1996 American Institute of Physics.}

  3. Calculation of poloidal velocity in the tokamak plasma with allowance for density inhomogeneity and diamagnetic drift of ions

    SciTech Connect

    Shurygin, R. V.

    2012-02-15

    A one-dimensional evolution equation for the angle-averaged poloidal momentum of the tokamak plasma is derived in the framework of reduced magnetohydrodynamics with allowance for density inhomogeneity and diamagnetic drift of ions. In addition to fluctuations of the E Multiplication-Sign B drift velocity, the resulting turbulent Reynolds stress tensor includes fluctuations of the ion density and ion pressure, as well as turbulent radial fluxes of particles and heat. It is demonstrated numerically by using a particular example that the poloidal velocity calculated using the refined one-dimensional evolution equation differs substantially from that provided by the simplified model. When passing to the new model, both the turbulent Reynolds force and the Stringer-Winsor force increase, which leads to an increase in the amplitude of the ion poloidal velocity. This, in turn, leads to a decrease in turbulent fluxes of particles and heat due to the effect of shear decorrelation.

  4. Measurements of the ion drift velocities in the presheaths of plasmas with multiple ion species

    NASA Astrophysics Data System (ADS)

    Severn, G.; Yip, C.-S.; Hershkowitz, N.

    2013-11-01

    We have used a variety of diode lasers to perform laser-induced fluorescence (LIF) measurements that were the first to test the Bohm Criterion for multiple ion species plasmas. These measurements led to the discovery that a collective effect, ion-ion instability enhanced friction, is important for sheath formation in multiple ion species plasmas. New LIF schemes were pioneered in order to complete these experiments with diode lasers. With respect to a new LIF scheme for KrII, accessible to diode lasers, challenges remain fielding an ion flow diagnostic in low temperature plasmas.

  5. The role of external electric fields in enhancing ion mobility, drift velocity, and drift-diffusion rates in aqueous electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Murad, Sohail

    2011-03-01

    Molecular simulations have been carried out using the method of molecular dynamics to investigate the role of external electric fields on the ion mobility, drift velocity, and drift-diffusion rate of ions in aqueous electrolyte solutions. These properties are critical for a range of processes including electrodialysis, electro-deionization, electrophoresis, and electroosmosis. Our results show that external electric fields relax the hydrated ion structure at significantly larger time scales (between 300 and 800 ps), than most other relaxation processes in solutions (generally of the order of 1 ps). Previous studies that did not account for the much longer relaxation times did not observe this behavior for ions even with very high electric fields. External electric fields must also overcome several (at least two or more) activation energy barriers to significantly change the structure of hydrated ions. As a result, the dynamic behavior changes almost in bands as a function of electric field strengths, rather than linearly. Finally, the effect of the field is much less dramatic on water than the ions. Thus electric fields will be of more significance in processes that involve the transport of ions (such as electro-deionization) than the transport of water (electroosmosis).

  6. Influences of shear in the ion parallel drift velocity and of inhomogeneous perpendicular electric field on generation of oblique ion acoustic waves

    NASA Astrophysics Data System (ADS)

    Ilyasov, Askar; Chernyshov, Alexander; Mogilevsky, Mikhail; Golovchanskaya, Irina; Kozelov, Boris

    2016-03-01

    It is well known that the broadband electrostatic turbulence observed in the topside auroral ionosphere can be identified with electrostatic ion cyclotron and/or oblique ion acoustic waves. Under certain conditions generation of the ion cyclotron modes is inhibited, so that the oblique ion acoustic waves become the prevailing part of the broadband noise. While generation of ion cyclotron waves by the inhomogeneous distribution of energy density (IEDD) instability has been actively studied in recent years, much less attention was paid to the excitation of ion acoustic waves by means of the IEDD instability. In this work, influence of shear in the ion parallel drift velocities and of inhomogeneous perpendicular electric field on generation of nonlocal oblique ion acoustic mode is studied. It is demonstrated that the shear of the ion parallel drift velocities can generate ion acoustic waves. It is shown that this mechanism of instability development provides broadband spectrum in the frequency range around 0.1 of ion gyrofrequency, and thus, this instability can be invoked to explain the observed broadband electrostatic turbulence in the auroral region. Effect of the main background plasma parameters on excitation of oblique ion acoustic waves is analyzed.

  7. Drift velocities of electrons in methane-inert-gas mixtures

    NASA Astrophysics Data System (ADS)

    Foreman, L.; Kleban, P.; Schmidt, L. D.; Davis, H. T.

    1981-03-01

    The drift of electrons in mixtures of methane with argon and helium is measured with a double shutter drift tube as a function of methane composition and electric field-pressure ratio Ep. At certain concentrations, inelastic scattering by methane causes a maximum in the drift velocity as a function of Ep. As the methane mole fraction decreases, the drift velocity maximum decreases and moves to lower values of Ep. In the argon mixtures, the drift velocity at low Ep is greater than it is in either pure gas. Comparision is made with direct numerical solutions of the Boltzmann equation for the mixtures. When the methane mole fractions are appropriately chosen, the data obey roughly a scaling law relating the electron drift velocity versus Ep in a methane-argon mixture with VD versus Ep in a methane-helium mixture.

  8. Two-stream instability with time-dependent drift velocity

    SciTech Connect

    Qin, Hong; Davidson, Ronald C.

    2014-06-26

    The classical two-stream instability driven by a constant relative drift velocity between two plasma components is extended to the case with time-dependent drift velocity. A solution method is developed to rigorously define and calculate the instability growth rate for linear perturbations relative to the time-dependent unperturbed two-stream motions. The stability diagrams for the oscillating two-stream instability are presented over a large region of parameter space. It is shown that the growth rate for the classical two-stream instability can be significantly reduced by adding an oscillatory component to the relative drift velocity.

  9. Measuring the equatorial plasma bubble drift velocities over Morroco

    NASA Astrophysics Data System (ADS)

    Lagheryeb, Amine; Benkhaldoun, Zouhair; Makela, Jonathan J.; Harding, Brian; Kaab, Mohamed; Lazrek, Mohamed; Fisher, Daniel J.; Duly, Timothy M.; Bounhir, Aziza; Daassou, Ahmed

    2015-08-01

    In this work, we present a method to measure the drift velocities of equatorial plasma bubbles (EPBs) in the low latitude ionosphere. To calculate the EPB drift velocity, we use 630.0-nm airglow images collected by the Portable Ionospheric Camera and Small Scale Observatory (PICASSO) system deployed at the Oukkaimden observatory in Morocco. To extract the drift velocity, the individual images were processed by first spatially registering the images using the star field. After this, the stars were removed from the images using a point suppression methodology, the images were projected into geographic coordinates assuming an airglow emission altitude of 250 km. Once the images were projected into geographic coordinates, the intensities of the airglow along a line of constant geomagnetic latitude (31°) are used to detect the presence of an EPB, which shows up as a depletion in airglow intensity. To calculate the EPB drift velocity, we divide the spatial lag between depletions found in two images (found by the application of correlation analysis) by the time difference between these two images. With multiple images, we will have several velocity values and consequently we can draw the EPB drift velocity curve. Future analysis will compare the estimates of the plasma drift velocity with the thermospheric neutral wind velocity estimated by a collocated Fabry-Perot interferometer (FPI) at the observatory.

  10. Drift compression of an intense neutralized ion beam

    SciTech Connect

    Roy, P.K.; Yu, S.S.; Henestroza, E.; Anders, A.; Bieniosek, F.M.; Coleman, J.; Eylon, S.; Greenway, W.G.; Leitner, M.; Logan, B.G.; Waldron, W.L.; Welch, D.R.; Thoma, C.; Sefkow, A.B.; Gilson, E.P.; Efthimion, P.C.; Davidson, R.C.

    2004-10-25

    Longitudinal compression of a tailored-velocity, intense neutralized ion beam has been demonstrated. The compression takes place in a 1-2 m drift section filled with plasma to provide space-charge neutralization. An induction cell produces a head-to-tail velocity ramp that longitudinally compresses the neutralized beam, enhancing the beam peak current by a factor of 50 and producing a pulse duration of about 3 ns. this measurement has been confirmed independently with two different diagnostic systems.

  11. Cap Bubble Drift Velocity in a Confined Test Section

    SciTech Connect

    Xiaodong Sun; Seungjin Kim; Mamoru Ishii; Frank W. Lincoln; Stephen G. Beus

    2002-10-09

    In the two-group interfacial area transport equation, bubbles are categorized into two groups, i.e., spherical/distorted bubbles as group 1 and cap/slug/churn-turbulent bubbles as group 2. The bubble rise velocities for both groups of bubbles may be estimated by the drift flux model by applying different distribution parameters and drift velocities for both groups. However, the drift velocity for group 2 bubbles is not always applicable (when the wall effect becomes important) as in the current test loop of interest where the flow channel is confined by two parallel flat walls, with a dimension of 200-mm in width and 10-mm in gap. The previous experiments indicated that no stable slug flow existed in this test section, which was designed to permit visualization of the flow patterns and bubble characteristics without the distortion associated with curved surfaces. In fact, distorted cap bubbly and churn-turbulent flow was observed. Therefore, it is essential to developed a correlation for cap bubble drift velocity in this confined flow channel. Since the rise velocity of a cap bubble depends on its size, a high-speed movie camera is used to capture images of cap bubbles to obtain the bubble size information. Meanwhile, the rise velocity of cap and elongated bubbles (called cap bubbles hereafter) is investigated by examining the captured images frame by frame. As a result, the conventional correlation of drift velocity for slug bubbles is modified and acceptable agreements between the measurements and correlation estimation are achieved.

  12. Height dependence of spread F bubble drift velocities

    NASA Technical Reports Server (NTRS)

    Hudson, M. K.; Balsley, B. B.

    1979-01-01

    Vertical bubble velocities in equatorial spread F have been investigated analytically by Ott (1978), Osakow and Chaturvedi (1978), all of whom found a proportionality of the vertical velocity to bubble depletion density. The paper presents radar data from two equatorial sites which support theoretical predictions that vertical drift velocities of spread F bubbles increase with height on the bottomside of the F layer. This increase is shown to result from the proportionality of bubble drift velocity to density depletion amplitude, which itself increases with height. The measured rate of increase is found to be dU/dh equals about 2 m/s km. It is concluded that this is consistent with numerical simulation results within a factor of 2.

  13. Electron and hole drift velocity in chemical vapor deposition diamond

    NASA Astrophysics Data System (ADS)

    Gabrysch, Markus; Majdi, Saman; Twitchen, Daniel J.; Isberg, Jan

    2011-03-01

    The time-of-flight technique has been used to measure the drift velocities for electrons and holes in high-purity single-crystalline CVD diamond. Measurements were made in the temperature interval 83≤T≤460 K and for electric fields between 90 and 4×103 V/cm, applied in the <100> crystallographic direction. The study includes low-field drift mobilities and is performed in the low-injection regime to perturb the applied electric field only minimally.

  14. Linear and nonlinear coupled drift and ion acoustic waves in collisional pair ion-electron magnetoplasma

    SciTech Connect

    Mushtaq, A.; Saeed, R.; Haque, Q.

    2011-04-15

    Linear and nonlinear coupled electrostatic drift and ion acoustic waves are studied in inhomogeneous, collisional pair ion-electron plasma. The Korteweg-de Vries-Burgers (KdVB) equation for a medium where both dispersion and dissipation are present is derived. An attempt is made to obtain exact solution of KdVB equation by using modified tanh-coth method for arbitrary velocity of nonlinear drift wave. Another exact solution for KdVB is obtained, which gives a structure of shock wave. Korteweg-de Vries (KdV) and Burgers equations are derived in limiting cases with solitary and monotonic shock solutions, respectively. Effects of species density, magnetic field, obliqueness, and the acoustic to drift velocity ratio on the solitary and shock solutions are investigated. The results discussed are useful in understanding of low frequency electrostatic waves at laboratory pair ion plasmas.

  15. Filament velocity scaling laws for warm ions

    SciTech Connect

    Manz, P.; Max-Planck-Institut für Plasmaphysik, EURATOM Assoziation, Boltzmannstr. 2, 85748 Garching ; Carralero, D.; Birkenmeier, G.; Müller, H. W.; Scott, B. D.; Müller, S. H.; Fuchert, G.; Stroth, U.; Physik-Department E28, Technische Universität München, James-Franck-Str. 1, 85748 Garching

    2013-10-15

    The dynamics of filaments or blobs in the scrape-off layer of magnetic fusion devices are studied by magnitude estimates of a comprehensive drift-interchange-Alfvén fluid model. The standard blob models are reproduced in the cold ion case. Even though usually neglected, in the scrape-off layer, the ion temperature can exceed the electron temperature by an order of magnitude. The ion pressure affects the dynamics of filaments amongst others by adding up to the interchange drive and the polarisation current. It is shown how both effects modify the scaling laws for filament velocity in dependence of its size. Simplifications for experimentally relevant limit regimes are given. These are the sheath dissipation, collisional, and electromagnetic regime.

  16. Magnetometer-inferred, Equatorial, Daytime Vertical ExB Drift Velocities Observed in the African Longitude Sector

    NASA Astrophysics Data System (ADS)

    Anderson, D. N.; Yizengaw, E.

    2011-12-01

    A recent paper has investigated the sharp longitude gradients in the dayside ExB drift velocities associated with the 4-cell, non-migrating structures thought to be connected with the eastward propagating, diurnal, non-migrating (DE3) tides. Observations of vertical ExB drift velocities obtained from the Ion Velocity Meter (IVM) on the Communication/Navigation Outage Forecast System (C/NOFS) satellite were obtained in the Western Pacific, Eastern Pacific, Peruvian and Atlantic sectors for a few days during the months of October, March and December, 2009. Respective ExB drift velocity gradients at the cell boundaries for these 4 longitude sectors were a.) -1.3m/sec/degree, b.) 3m/sec/degree, c.) -4m/sec/degree and d.) 1m/sec/degree and were observed on a day-to-day basis. In this talk, we estimate the longitude gradients in the dayside, vertical ExB drift velocities from magnetometer H-component observations in the African sector. We briefly describe the technique for obtaining realistic ExB drift velocities associated with the difference in the H-component values between a magnetometer on the magnetic equator and one off the magnetic equator at 6 to 9 degrees dip latitude (delta H). We present magnetometer-inferred, dayside ExB drift velocities obtained from the AMBER (African Meridian B-field Education and Research) magnetometer chain in the East Africa (Ethiopian) longitude sector and the West African (Nigerian) longitude sector. We compare the longitude gradients in ExB drift velocities in the African sector with the C/NOFS- observed longitude gradients mentioned above. We also discuss the advantages of using ground-based magnetometer observations to infer ExB drift velocities compared with the C/NOFS satellite observations.

  17. Nonlinear structure of coupled drift ion acoustic waves in dissipative pair-ion-electron plasmas

    NASA Astrophysics Data System (ADS)

    Masood, W.; Batool, N.

    2013-01-01

    The Kadomtsev-Petviashvili-Burgers (KPB) equation is derived for coupled drift acoustic shock waves in a partially ionized non-uniform pair-ion-electron (PIE) plasma in the presence of both density and temperature gradients respectively. Both linear and nonlinear studies are presented. The nonlinear KPB equation is derived in the small amplitude approximation method and its solution is found using the tanh method. The numerical calculations also presented for PIE plasmas of fullerene plasma for illustration keeping in view the recent experiments. The effect of density and temperature inhomogeneities on the nature of the shock is also highlighted. The role of the velocity of the nonlinear structure with regard to the density and temperature gradients driven drift velocities is also pointed out and the effect of ion-neutral collision frequency is also investigated. This work may be useful for future laboratory experimental investigations on pair-ion-electron plasmas.

  18. Test particle study of ion transport in drift type turbulence

    SciTech Connect

    Vlad, M.; Spineanu, F.

    2013-12-15

    Ion transport regimes in drift type turbulence are determined in the frame of a realistic model for the turbulence spectrum based on numerical simulations. The model includes the drift of the potential with the effective diamagnetic velocity, turbulence anisotropy, and dominant waves. The effects of the zonal flow modes are also analyzed. A semi-analytical method that is able to describe trajectory stochastic trapping or eddying is used for obtaining the transport coefficients as function of the parameters of the turbulence. Analytical approximations of the transport coefficients are derived from the results. They show the transition from Bohm to gyro-Bohm scaling as plasma size increases in very good agreement with the numerical simulations.

  19. Role of ionization and electron drift velocity profile to Rayleigh instability in a Hall thruster plasma

    SciTech Connect

    Singh, Sukhmander; Malik, Hitendra K.

    2012-07-01

    Role of ionization to Rayleigh instability is clarified in a Hall thruster plasma under the variety of profiles of electron drift velocity, namely, step-like profile (SLP) and two different super-Gaussian profiles (SGP1 and SGP2). For this, a relevant Rayleigh equation is derived and solved numerically using fourth-order Runge-Kutta method. Interestingly, an upper cutoff frequency of oscillations {omega}{sub max} is realized for the occurrence of the instability that shows dependence on the ionization rate {alpha}, electron drift velocity u{sub 0}, electron cyclotron frequency {Omega}, azimuthal wave number k{sub y}, plasma density n{sub 0}, density gradient {partial_derivative}n{sub 0}/{partial_derivative}x, ion (electron) thermal speed V{sub thI}(V{sub thE}), and ion (electron) plasma frequency {omega}{sub pi}({omega}{sub pe}). The frequency {omega}{sub max} follows the trend {omega}{sub max} (for SGP2) >{omega}{sub max} (for SLP) >{omega}{sub max} (for SGP1) and shows a similar behaviour with ionization for all types of the velocity profiles. The instability is found to grow faster for the higher {alpha} and the ion temperature but it acquires lower rate under the effect of the higher electron temperature; the perturbed potential also varies in accordance with the growth rate. The electron temperature influences the growth rate and cutoff frequency less significantly in comparison with the ion temperature.

  20. Dominance of the diurnal mode of horizontal drift velocities at F-region heights

    NASA Technical Reports Server (NTRS)

    Kirchhoff, V. W. J. H.; Carpenter, L. A.

    1975-01-01

    Drift measurements perpendicular to the magnetic field are examined, taking into account also some nighttime measurements. Nighttime measurements of drift velocities are more difficult because densities are lower. However, the uncertainty in the drift velocities can be optimized by making use of an approach reported by Kirchhoff (1973). The approach involves a careful selection of the elevation angle of the radar antenna. Measured velocities are discussed along with the magnetospheric perturbation effect. The measurements are compared with conclusions of the dynamo theories.

  1. The effect of plasma shear flow on drift Alfven instabilities of a finite beta plasma and on anomalous heating of ions by ion cyclotron turbulence

    NASA Astrophysics Data System (ADS)

    Jo, Young Hyun; Lee, Hae June; Mikhailenko, Vladimir V.; Mikhailenko, Vladimir S.

    2016-01-01

    It was derived that the drift-Alfven instabilities with the shear flow parallel to the magnetic field have significant difference from the drift-Alfven instabilities of a shearless plasma when the ion temperature is comparable with electron temperature for a finite plasma beta. The velocity shear not only modifies the frequency and the growth rate of the known drift-Alfven instability, which develops due to the inverse electron Landau damping, but also triggers a combined effect of the velocity shear and the inverse ion Landau damping, which manifests the development of the ion kinetic shear-flow-driven drift-Alfven instability. The excited unstable waves have the phase velocities along the magnetic field comparable with the ion thermal velocity, and the growth rate is comparable with the frequency. The development of this instability may be the efficient mechanism of the ion energization in shear flows. The levels of the drift--Alfven turbulence, resulted from the development of both instabilities, are determined from the renormalized nonlinear dispersion equation, which accounts for the nonlinear effect of the scattering of ions by the electromagnetic turbulence. The renormalized quasilinear equation for the ion distribution function, which accounts for the same effect of the scattering of ions by electromagnetic turbulence, is derived and employed for the analysis of the ion viscosity and ions heating, resulted from the interactions of ions with drift-Alfven turbulence. In the same way, the phenomena of the ion cyclotron turbulence and anomalous anisotropic heating of ions by ion cyclotron plasma turbulence has numerous practical applications in physics of the near-Earth space plasmas. Using the methodology of the shearing modes, the kinetic theory of the ion cyclotron turbulence of the plasma with transverse current with strong velocity shear has been developed.

  2. Midlatitude sporadic-E layers and vertical metallic ion drift profiles

    NASA Astrophysics Data System (ADS)

    Royrvik, O.

    1983-02-01

    An investigation of the relationship between the occurrence of midlatitude sporadic-E-layers and convergent points in the ion drift profiles has been made using the 430 MHz incoherent scatter radar at the Arecibo Observatory. Electron concentration profiles were obtained using a 13 baud Barker coded pulse yielding 600 m range resolution, while a 5-pulse sequence with 2.4 km range resolution was used to obtain line-of-sight ion drift velocities. With some exceptions, observed sporadic-E layers occur near convergent points in the vertical metallic ion drift profile, and vertical motions of these layers follow the vertical motions of the convergent point. A sudden increase in the altitude of a sporadic-E layer has been observed. This is attributed to the disappearance of the convergent point, releasing the layer, followed by an ascent of the layer to the closest overlying convergent point.

  3. Computation of the drift velocity of spiral waves using response functions

    NASA Astrophysics Data System (ADS)

    Biktasheva, I. V.; Barkley, D.; Biktashev, V. N.; Foulkes, A. J.

    2010-06-01

    Rotating spiral waves are a form of self-organization observed in spatially extended systems of physical, chemical, and biological nature. In the presence of a small perturbation, the spiral wave’s center of rotation and fiducial phase may change over time, i.e., the spiral wave drifts. In linear approximation, the velocity of the drift is proportional to the convolution of the perturbation with the spiral’s response functions, which are the eigenfunctions of the adjoint linearized operator corresponding to the critical eigenvalues λ=0,±iω . Here, we demonstrate that the response functions give quantitatively accurate prediction of the drift velocities due to a variety of perturbations: a time dependent, periodic perturbation (inducing resonant drift); a rotational symmetry-breaking perturbation (inducing electrophoretic drift); and a translational symmetry-breaking perturbation (inhomogeneity induced drift) including drift due to a gradient, stepwise, and localized inhomogeneity. We predict the drift velocities using the response functions in FitzHugh-Nagumo and Barkley models, and compare them with the velocities obtained in direct numerical simulations. In all cases good quantitative agreement is demonstrated.

  4. Measurement of the electron drift velocity for directional dark matter detectors

    NASA Astrophysics Data System (ADS)

    Mayet, F.; Billard, J.; Bosson, G.; Bourrion, O.; Guillaudin, O.; Lamblin, J.; Richer, J. P.; Riffard, Q.; Santos, D.; Iguaz, F. J.; Lebreton, L.; Maire, D.

    2013-12-01

    Three-dimensional track reconstruction is a key issue for directional Dark Matter detection. It requires a precise knowledge of the electron drift velocity. Magboltz simulations are known to give a good evaluation of this parameter. However, large TPC operated underground on long time scale may be characterized by an effective electron drift velocity that may differ from the value evaluated by simulation. In situ measurement of this key parameter is hence a way to avoid bias in the 3D track reconstruction. We present a dedicated method for the measurement of the electron drift velocity with the MIMAC detector. It is tested on two gas mixtures : CF4 and CF4 + CHF3. We also show that adding CHF3 allows us to lower the electron drift velocity while keeping almost the same Fluorine content of the gas mixture.

  5. Quantum mechanical grad-B drift velocity operator in a weakly non-uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Chan, Poh Kam; Oikawa, Shun-ichi; Kosaka, Wataru

    2016-02-01

    This paper presents the analytical solution for quantum mechanical grad-B drift velocity operator by solving the Heisenberg equation of motion. Using the time dependent operators, it is shown the analytical solution of the position operators in x ̂(t ) and y ̂(t ) of the particle in the presence of a weakly non-uniform magnetic field. It is also shown numerically that the grad-B drift velocity operator agrees with the classical counterpart.

  6. Characterization of the MARS Velocity Filter for Low Velocity Ions

    NASA Astrophysics Data System (ADS)

    Lawrence, K. R.; Alfonso, M. C.; Al-Harbi, A.; Berdugo, E.; Cammarata, P. J.; Folden, C. M., III

    2009-10-01

    A program to study the heaviest elements using the MARS separator at the Cyclotron Institute at Texas A&M University has begun. MARS is typically used for light energetic ions, which travel at high velocities (>0.08c). The velocities of transactinides after production are on the order of 0.02c. This project aims to characterize MARS velocity filter for low velocity ions. Offline experiments to detect alpha particles emitted were conducted using ^241Am as a source. The source was covered with 50 μg/cm^2 ^natC to prevent contamination and ^natAl degraders were used to reduce the velocity of α-particles emitted by source. The separator was tuned with the velocity filter off and no degrader in place. The velocity filter was turned on and the electric field was set. The magnetic field was varied and the rate was measured. This was repeated for different electric field settings for degraders with thicknesses of 6 μm, 12 μm, and 18 μm. Data from the offline experiments were analyzed to determine the acceptance of the velocity filter for ions <0.06c. The results suggest that the acceptance of the velocity filter decreases as the electric field increases, ranging from ±6.3% to ±2.2% over the fields under study.

  7. Drift Compression and Final Focus Options for Heavy Ion Fusion

    SciTech Connect

    Hong Qin; Ronald C. Davidson; John J. Barnard; Edward P. Lee

    2005-02-14

    A drift compression and final focus lattice for heavy ion beams should focus the entire beam pulse onto the same focal spot on the target. We show that this requirement implies that the drift compression design needs to satisfy a self-similar symmetry condition. For un-neutralized beams, the Lie symmetry group analysis is applied to the warm-fluid model to systematically derive the self-similar drift compression solutions. For neutralized beams, the 1-D Vlasov equation is solved explicitly, and families of self-similar drift compression solutions are constructed. To compensate for the deviation from the self-similar symmetry condition due to the transverse emittance, four time-dependent magnets are introduced in the upstream of the drift compression such that the entire beam pulse can be focused onto the same focal spot.

  8. Effect of film elasticity on the drift velocity of capillary-gravity waves

    NASA Astrophysics Data System (ADS)

    Weber, Jan Erik; Saetra, yvind

    1995-02-01

    The effect of an insoluble, elastic surface film on the drift velocity of capillary-gravity waves is studied theoretically on the basis of a Lagrangian description of motion. There is no forcing from the atmosphere, and the wave amplitude is taken to attenuate in time. Defining a nondimensional parameter ?, which combines film elasticity, fluid viscosity, and wave frequency, maximum damping of the linear waves occurs when ?=1 (the Marangoni effect). In this case the frequency of capillary-gravity waves nearly coincides with that of elastic film waves. The nonlinear drift velocity is obtained for general values of ?. In particular, it is found that the absolute maximum of the transient drift current is located below the surface when ??2/3. At the surface, maximum drift velocity (in time domain) occurs for values of ? that are somewhat less than one.

  9. In situ measurement of the electron drift velocity for upcoming directional Dark Matter detectors

    NASA Astrophysics Data System (ADS)

    Billard, J.; Mayet, F.; Bosson, G.; Bourrion, O.; Guillaudin, O.; Lamblin, J.; Richer, J. P.; Riffard, Q.; Santos, D.; Iguaz, F. J.; Lebreton, L.; Maire, D.

    2014-01-01

    Three-dimensional track reconstruction is a key issue for directional Dark Matter detection and it requires a precise knowledge of the electron drift velocity. Magboltz simulations are known to give a good evaluation of this parameter. However, large TPC operated underground on long time scale may be characterized by an effective electron drift velocity that may differ from the value evaluated by simulation. In situ measurement of this key parameter is hence needed as it is a way to avoid bias in the 3D track reconstruction. We present a dedicated method for the measurement of the electron drift velocity with the MIMAC detector. It is tested on two gas mixtures: CF4 and CF4+CHF3. The latter has been chosen for the MIMAC detector as we expect that adding CHF3 to pure CF4 will lower the electron drift velocity. This is a key point for directional Dark Matter as the track sampling along the drift field will be improved while keeping almost the same Fluorine content of the gas mixture. We show that the drift velocity at 50 mbar is reduced by a factor of about 5 when adding 30% of CHF3.

  10. Measurement of Gain and Drift Velocity of the Prototype AT-TPC

    NASA Astrophysics Data System (ADS)

    Wolff, Michael; Soussi Tanani, Rim; Cortesi, Marco; Mittig, Wolfgang; Fritsch, Adam

    2015-10-01

    The Prototype Active-Target Time-Projection Chamber (PAT-TPC) at the National Superconducting Cyclotron Laboratory (NSCL) is used to study reactions induced by radioactive ions in a detector gas that serves both as the target and tracking medium. It employs gaseous amplification of the primary electrons that drift to the amplification gap to track and measure charged particles traversing the active gaseous volume of the chamber. A setup consisting of two THGEMs (Thick Gas Electron Multipliers) stacked on a Micromegas (Micro mesh gas amplifier) device was tested in the PAT-TPC in June and July of 2015. A 337-Si laser, a 252Cf spontaneous fission source, and an α source were used to ionize target gas molecules in the active volume. Electron drift velocity was measured as a function of the electric field held across the volume and for varying gas compositions ranging from pure H2 to a 95:5 H2:C4H10 mixture. Analysis of the tests provided information on conditions for optimal gain for the setup used in an August 2015 PAT-TPC experiment at the University of Notre Dame's Nuclear Science Laboratory and other future experiments. Data and results will be presented. Funded in part thanks to College of Wooster and NSF Grant Nos. PHy-1430152, MRI09-23087, and PHY09-69456.

  11. Modelling of drift wave turbulence with a finite ion temperature gradient

    SciTech Connect

    Hamaguchi, S.; Horton, W.

    1990-10-01

    With the use of consistent orderings in {var epsilon} = {rho}{sub s}/a and {delta} = k{sub {perpendicular}}{rho}{sub s} model equations are derived for the drift instabilities from the electrostatic two-fluid equations. The electrical resistivity {eta} included in the system allows the dynamics of both the collisional drift wave instability ({eta} {ne} 0) and the collisionless ion temperature gradient driven instability ({eta} = 0). The model equations used extensively in earlier nonlinear studies are obtained as appropriate limits of the model equations derived in the present work. The effects of sheared velocity flows in the equilibrium plasma and electron temperature fluctuations are also discussed. 14 refs.

  12. EFFECT OF ION B DRIFT DIRECTION ON TURBULENCE FLOW AND FLOW SHEAR

    SciTech Connect

    FENZI,C; McKEE,G.R; BURRELL,K.H; CARLSTROM,T.N; FONCK,R.J; GROEBNER,R.J

    2003-07-01

    The divertor magnetic geometry has a significant effect on the poloidal flow and resulting flow shear of turbulence in the outer region of L-mode tokamak plasmas, as determined via two-dimensional measurements of density fluctuations with Beam Emission Spectroscopy on DIII-D. Plasmas with similar parameters, except that in one case the ion {del}B drift points towards the divertor X-point (lower single-null, LSN), and in the other case, the ion {del}B drift points away from the divertor X-point (upper single-null, USN), are compared. Inside of r/a=0.9, the turbulence characteristics (amplitude, flow direction, correlation lengths) are similar in both cases, while near r/a=0.92, a dramatic reversal of the poloidal flow of turbulence relative to the core flow direction is observed in plasmas with the ion {del}B drift pointing towards the divertor X-point. No such flow reversal is observed in plasmas with the ion {del}B drift pointing away from the divertor X-point. This poloidal flow reversal results in a significantly larger local shear in the poloidal turbulence flow velocity in plasmas with the ion {del}B drift pointing towards the divertor X-point. Additionally, these plasmas locally exhibit significant dispersion, with two distinct and counter-propagating turbulence modes. Likewise, the radial correlation length of the turbulence is reduced in these plasmas, consistent with biorthogonal decomposition measurements of dominant turbulence structures. The naturally occurring turbulence flow shear in these LSN plasmas may facilitate the LH transition that occurs at an input power of roughly one-half to one-third that of corresponding plasmas with the ion {del}B drift pointing away from the X-point.

  13. Ion Mobility Spectrometry – Mass Spectrometry Performance Using Electrodynamic Ion Funnels and Elevated Drift Gas Pressures

    SciTech Connect

    Baker, Erin Shammel; Clowers, Brian H.; Li, Fumin; Tang, Keqi; Tolmachev, Aleksey V.; Prior, David C.; Belov, Mikhail E.; Smith, Richard D.

    2007-06-28

    The ability of ion mobility spectrometry coupled with mass spectrometry (IMS-MS) to characterize biological mixtures has been illustrated over the past eight years. However, the challenges posed by the extreme complexity of many biological samples have demonstrated the need for higher resolution IMS-MS measurements. We have developed a higher resolution ESI-IMS-TOF MS by utilizing high pressure electrodynamic ion funnels at both ends of the IMS drift cell and operating the drift cell at an elevated pressure compared to a previous design. The ESI-IMS-TOF MS instrument consists of an ESI source, an hourglass ion funnel used for ion accumulation/injection into an 88 cm drift cell followed by a 10 cm ion funnel and a commercial orthogonal time-of-flight mass spectrometer providing high mass measurement accuracy. It was found that the rear (exit) ion funnel could be effectively operated as an extension of the drift cell when the DC fields were matched, allowing the instrument to have an effective drift region of 98 cm. Two differentially pumped quadrupole regions were used to couple the IMS and TOF MS to focus and minimize the ion transient time between the stages. The resolution of the instrument was evaluated at pressures ranging from 4 to12 Torr and ion mobility drift voltages of 16 V/cm (4 Torr) to 43 V/cm (12 Torr). An increase in resolution from 55 to 80 was observed from 4 to 12 Torr nitrogen drift gas with no loss in sensitivity. Given the increased usage of ion funnels prior to ion mobility separations, additional attention was directed towards the influence of drift gas on the observed ion populations trapped and transmitted using an electrodynamic ion funnel. The choice of drift gas was shown to influence the degree of ion heating and relative trapping efficiency within the ion funnel.

  14. Asymptotic velocity of one dimensional diffusions with periodic drift.

    PubMed

    Collet, P; Martnez, S

    2008-06-01

    We consider the asymptotic behavior of the solution of one dimensional stochastic differential equations and Langevin equations in periodic backgrounds with zero average. We prove that in several such models, there is generically a non-vanishing asymptotic velocity, despite of the fact that the average of the background is zero. PMID:17960387

  15. Ion composition and drift observations in the nighttime equatorial ionosphere

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.; Aikin, A. C.; Murthy, B. V. K.

    1974-01-01

    The first in situ measurements of ion composition in the nighttime equatorial E and F region ionospheres (90-300 km) are presented and discussed. These profiles were obtained by two rocket-borne ion mass spectrometers launched from Thumba, India on March 9-10, 1970 at solar zenith angles of 112 deg and 165 deg. Ionosonde data established that the composition was measured at times bounding a period of F region downward drift. During this period the ions O(+) and N(+) were enhanced by one to three orders of magnitude between 220 and 300 km. Below the drift region (200 km), O(+) ceased to be the major ionic constituent, but the concentrations of O(+) and N(+) remained larger than predicted from known radiation sources and loss processes. Here also, both the O2(+) and NO(+) profiles retained nearly the same shape and magnitude throughout the night in agreement with theories assuming scattered UV radiation to be the maintaining source. Light metallic ions including Mg(+), Na(+) and possibly Si(+) were observed to altitude approaching 300 km, while the heavier ions Ca(+) and K(+) were seen in reduced quantity to 200 km. All metal ion profiles exhibited changes which can be ascribed to vertical drifting.

  16. Theoretical and experimental investigation of the drift velocity in AlGaAs/GaAs heterostructures

    NASA Astrophysics Data System (ADS)

    Zandler, G.; Kiener, C.; Boxleitner, W.; Vass, E.; Wirner, C.; Gornik, E.; Weimann, G.

    1991-12-01

    The drift velocity of hot electrons in AlGaAs/GaAs heterostructures is measured at different temperatures by a pulsed I-V technique up to electric fields of 1.2 kV/cm. The experimental results are compared with theoretical drift velocities deduced from the Boltzmann integral equation and a balance equation method. The calculations are carried out with selfconsistent and Stern-Howard wave functions taking into account polar optical phonon and ionized impurity scattering as well as electron-electron collisions. At low field strengths both theoretical methods lead to drift velocities which are in good agreement with the experimental data. It is shown that for higher lattice temperatures and higher electric field strengths intersubband scattering has to be taken into account in the theoretical models.

  17. Transient ion-drift-induced capacitance signals in semiconductors

    SciTech Connect

    Heiser, T.; Weber, E.R.

    1998-08-01

    A theoretical model is developed that describes capacitance signals induced by drift of mobile ions in the space charge region of a Schottky diode. Pairing between the diffusing ion and the doping impurities is taken into account. The coupled partial differential equations are resolved numerically and the influence of key parameters on the signal shape is analyzed. Special emphasis is put on those features that enable transient ion-drift- (TID-) induced signals to be distinguished from capacitance transients caused by deep-level carrier emission processes. Relaxation kinetics and reverse bias dependence of the signal shape represent two reliable tools to verify the ion-drift nature of the signals. Methods for extracting quantitative information on both diffusion and pairing properties of the mobile ions are described. The question of whether pairing or diffusion is limiting the process is addressed. The influence of the doping level on the signal time constant is used to evaluate whether or not the diffusion is trap limited. A semiempirical model is described that permits the estimation of diffusion and pairing coefficients without resolving numerically the differential equations. Experiments are performed on interstitial copper in {ital p}-type silicon to test the predictions of the theoretical model. An overall agreement is found between theory and experiments. {copyright} {ital 1998} {ital The American Physical Society}

  18. Ion behavior and interelectrode breakdown voltage of a drift tube

    NASA Astrophysics Data System (ADS)

    Geng, Hao; Zhao, Zhong-Jun; Duan, Yi-Xiang

    2015-05-01

    We experimentally studied ion behavior and interelectrode breakdown voltage. The ion behavior of a drift tube directly influences the detection of ion intensity, and then influences the detection sensitivity of a system. Interelectrode voltage and pressure directly influence the ion behavior. Gas discharge between electrodes influences the adjustments required for interelectrode voltage. The experimental results show: ion intensity increases exponentially with the increment of voltage between drift electrodes; ion intensity decreases exponentially as pressure increases; with the increment of pressure, the breakdown voltage at first decreases, and then increases; ion injection has a significant influence on breakdown voltage, and this influence depends on the pressure and shapes of the electrodes. We explain the results above through assumptions and by mathematical methods. Supported by Financial Support from the National Major Scientific Instruments and Equipment Development Special Funds (2011YQ030113), National Recruitment Program of Global Experts (NRPGE), the Hundred Talents Program of Sichuan Province (HTPSP) and the Startup Funding of Sichuan University for Setting up the Research Center of Analytical Instrumentation

  19. Linear ion source with closed drift and extended acceleration region

    SciTech Connect

    Park, Dong-Hee; Kim, Ji-Hwan; Ermakov, Yury; Choi, Won-Kook

    2008-02-15

    Ion source with closed drift, which is caused by ExB field, and extended acceleration region is discussed. Though conventional circular-type closed drift ion source has advantages of high efficiency of gas ionization and low ion beam energy, there is a limitation in enlarging the beam size. Linear ion source with horse-track shape with 270 mm ceramic channel width is newly designed and tested. Inert gas (Ar) and reactive gas (O{sub 2}) are discharged. Discharge is ignited with voltage of 90 V. Discharge current is proportional to discharge voltage and increases up to 16.3 A in argon and 15.6 A in oxygen at discharge voltage of 320 V. Extracted ion beam current is also proportional to discharge voltage and is saturated after 280 V for both gases. It is measured up to 0.78 mA/cm{sup 2} in argon beam and 0.73 mA/cm{sup 2} in oxygen beam at a distance of 100 mm from the ion source. Argon ion beam shows better space uniformity than oxygen across the beam extraction region.

  20. Measurement of the drift velocities of electrons and holes in high-ohmic < 100 > silicon

    NASA Astrophysics Data System (ADS)

    Scharf, C.; Klanner, R.

    2015-11-01

    Measurements of the drift velocities of electrons and holes as functions of electric field and temperature in high-purity n- and p-type silicon with < 100 > lattice orientation are presented. The measurements cover electric field values between 2.5 and 50 kV / cm and temperatures between 233 and 333 K. For both electrons and holes differences of more than 15 % are found between our < 100 > results and the < 111 > drift velocities from literature, which are frequently also used for simulating < 100 > sensors. For electrons, the < 100 > results agree with previous < 100 > measurements; however, for holes differences between 5 and 15% are observed for fields above 10 kV / cm. Combining our results with published data of low-field mobilities, we derive parametrizations of the drift velocities in high-ohmic < 100 > silicon for electrons and holes for fields up to 50 kV / cm, and temperatures between 233 and 333 K. In addition, new parametrizations for the drift velocities of electrons and holes are introduced, which provide somewhat better descriptions of existing data for < 111 > silicon than the standard parametrization.

  1. 2-D Drift Velocities from the IMAGE EUV Plasmaspheric Imager

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.

    2006-01-01

    The IMAGE Mission extreme ultraviolet imager (EW) observes He(+) plasmaspheric ions throughout the inner magnetosphere. Limited by ionizing radiation and viewing close to the Sun, images of the He(+) distribution are available every 10 minutes for many hours as the spacecraft passes through apogee in its highly elliptical orbit. As a consistent constituent at about 15%, He(+) is an excellent surrogate for monitoring all of the processes that control the dynamics of plasmaspheric plasma. In particular, the motion of He' transverse to the ambient magnetic field is a direct indication of convective electric fields. The analysis of boundary motions has already achieved new insights into the electrodynamic coupling processes taking place between energetic magnetospheric plasmas and the ionosphere. Yet to be fulfilled, however, is the original promise that global E W images of the plasmasphere might yield two-dimensional pictures of mesoscale to macro-scale electric fields in the inner magnetosphere. This work details the technique and initial application of an IMAGE EUV analysis that appears capable of following thermal plasma motion on a global basis.

  2. 2-D Drift Velocities from the IMAGE EUV Plasmaspheric Imager

    NASA Technical Reports Server (NTRS)

    Gallagher, D.; Adrian, M.

    2007-01-01

    The IMAGE Mission extreme ultraviolet imager (EUY) observes He+ plasmaspheric ions throughout the inner magnetosphere. Limited by ionizing radiation and viewing close to the Sun, images of the He+ distribution are available every 10 minutes for many hours as the spacecraft passes through apogee in its highly elliptical orbit. As a consistent constituent at about 15%, He+ is an excellent surrogate for monitoring all of the processes that control the dynamics of plasmaspheric plasma. In particular, the motion ofHe+ transverse to the ambient magnetic field is a direct indication of convective electric fields. The analysis of boundary motions has already achieved new insights into the electrodynamic coupling processes taking place between energetic magnetospheric plasmas and the ionosphere. Yet to be fulfilled, however, is the original promise that global EUY images of the plasmasphere might yield two-dimensional pictures of meso-scale to macro-scale electric fields in the inner magnetosphere. This work details the technique and initial application of an IMAGE EUY analysis that appears capable of following thermal plasma motion on a global basis.

  3. NUCLEAR PHYSICS: Measurement of Electron-Drift Velocity in Ar+CH4 Mixtures Using Double-Grid Method

    NASA Astrophysics Data System (ADS)

    Zhang, Jia-Guo; Zhang, Guo-Hui; Chen, Jin-Xiang

    2009-11-01

    Based on analyzing the induced signals from the double-grids of an ionization chamber, the electron-drift time between the two grids is determined and the electron-drift velocity is derived. A waveform digitizer is employed to record pulses from the two grids of the ionization chamber. The electron-drift velocity is measured as a function of the reduced electric field E/p for eight different ratios of Ar+CH4 mixtures. By analyzing the experimental data of this study, self-consistency of experimental data is achieved, and formulae for calculating electron-drift velocity in any ratio of Ar+CH4 mixtures are obtained.

  4. Ion-acoustic instabilities driven by an ion velocity ring

    NASA Technical Reports Server (NTRS)

    Akimoto, K.; Papadopoulos, K.; Winske, D.

    1985-01-01

    A ring distribution of ions in velocity space can generate electrostatic waves which propagate predominantly along an ambient magnetic field at frequencies comparable with the ion plasma frequency. A dispersion equation which accounts for these waves is presented, and solved analytically and numerically. It was found that ion-acoustic-like waves are excited in a plasma even if the electron temperature is comparable with the in temperature under the assumption of an anisotropic ion distribution.

  5. Gyrokinetic particle simulation of ion temperature gradient drift instabilities

    SciTech Connect

    Lee, W.W.; Tang, W.M.

    1987-04-01

    Ion temperature gradient drift instabilities have been investigated using gyrokinetic particle simulation techniques for the purpose of identifying the mechanisms responsible for their nonlinear saturation as well as the associated anomalous transport. For simplicity, the simulation has been carried out in a shear-free slab geometry, where the background pressure gradient is held fixed in time to represent quasistatic profiles typical of tokamak discharges. It is found that the nonlinearly generated zero-frequency responses for the ion parallel momentum and pressure are the dominant mechanisms giving rise to saturation. This is supported by the excellent agreement between the simulation results and those obtained from mode coupling calculations.

  6. Augmenting Ion Trap Mass Spectrometers Using a Frequency Modulated Drift Tube Ion Mobility Spectrometer.

    PubMed

    Morrison, Kelsey A; Siems, William F; Clowers, Brian H

    2016-03-15

    Historically, high pressure ion mobility drift tubes have suffered from low ion duty cycles and this problem is magnified when such instrumentation is coupled with ion trap mass spectrometers. To significantly alleviate these issues, we outline the result from coupling an atmospheric pressure, dual-gate drift tube ion mobility spectrometer (IMS) to a linear ion trap mass spectrometer (LIT-MS) via modulation of the ion beam with a linear frequency chirp. The time-domain ion current, once Fourier transformed, reveals a standard ion mobility drift spectrum that corresponds to the standard mode of mobility analysis. By multiplexing the ion beam, it is possible to successfully obtain drift time spectra for an assortment of simple peptide and protein mixtures using an LIT-MS while showing improved signal intensity versus the more common signal averaging technique. Explored here are the effects of maximum injection time, solution concentration, total experiment time, and frequency swept on signal-to-noise ratios (SNRs) and resolving power. Increased inject time, concentration, and experiment time all generally led to an improvement in SNR, while a greater frequency swept increases the resolving power at the expense of SNR. Overall, chirp multiplexing of a dual-gate IMS system coupled to an LIT-MS improves ion transmission, lowers analyte detection limits, and improves spectral quality. PMID:26854901

  7. Intersaccadic drift velocity is sensitive to short-term hypobaric hypoxia.

    PubMed

    Di Stasi, Leandro L; Cabestrero, Raúl; McCamy, Michael B; Ríos, Francisco; Catena, Andrés; Quirós, Pilar; Lopez, Jose A; Saez, Carolina; Macknik, Stephen L; Martinez-Conde, Susana

    2014-04-01

    Hypoxia, defined as decreased availability of oxygen in the body's tissues, can lead to dyspnea, rapid pulse, syncope, visual dysfunction, mental disturbances such as delirium or euphoria, and even death. It is considered to be one of the most serious hazards during flight. Thus, early and objective detection of the physiological effects of hypoxia is critical to prevent catastrophes in civil and military aviation. The few studies that have addressed the effects of hypoxia on objective oculomotor metrics have had inconsistent results, however. Thus, the question of whether hypoxia modulates eye movement behavior remains open. Here we examined the effects of short-term hypobaric hypoxia on the velocity of saccadic eye movements and intersaccadic drift of Spanish Air Force pilots and flight engineers, compared with a control group that did not experience hypoxia. Saccadic velocity decreased with time-on-duty in both groups, in correlation with subjective fatigue. Intersaccadic drift velocity increased in the hypoxia group only, suggesting that acute hypoxia diminishes eye stability, independently of fatigue. Our results suggest that intersaccadic drift velocity could serve as a biomarker of acute hypoxia. These findings may also contribute to our understanding of the relationship between hypoxia episodes and central nervous system impairments. PMID:24877213

  8. Coupled ion acoustic and drift waves in magnetized superthermal electron-positron-ion plasmas

    SciTech Connect

    Adnan, Muhammad; Qamar, Anisa; Mahmood, S.

    2014-09-15

    Linear and nonlinear coupled drift-ion acoustic waves are investigated in a nonuniform magnetoplasma having kappa distributed electrons and positrons. In the linear regime, the role of kappa distribution and positron content on the dispersion relation has been highlighted; it is found that strong superthermality (low value of κ) and addition of positrons lowers the phase velocity via decreasing the fundamental scalelengths of the plasmas. In the nonlinear regime, first, coherent nonlinear structure in the form of dipoles and monopoles are obtained and the boundary conditions (boundedness) in the context of superthermality and positron concentrations are discussed. Second, in case of scalar nonlinearity, a Korteweg–de Vries-type equation is obtained, which admit solitary wave solution. It is found that both compressive and rarefactive solitons are formed in the present model. The present work may be useful to understand the low frequency electrostatic modes in inhomogeneous electron positron ion plasmas, which exist in astrophysical plasma situations such as those found in the pulsar magnetosphere.

  9. Ion Drift and Electric Field Measurement Capabilities of the Canadian Suprathermal Ion Imager

    NASA Astrophysics Data System (ADS)

    Knudsen, D. J.; Burchill, J. K.; Sangalli, L.; Luehr, H.

    2005-12-01

    The Suprathermal Ion Imager (SII) is a hemispherical electrostatic analyzer capable of producing images of 2-D cuts through low-energy (0-20 eV, typically) ion distribution functions. Distributions can then be reduced to produce estimates of ion drift, temperature, density, and anisotropies. We present past and planned precision measurements of ion drift. Measurements from the Cusp2002 and JOULE sounding rocket missions show the SII's ability to resolve ion drifts of order 10 m/s, including low-altitude ion outflows seen in the dayside cusp ionosphere, and upwelling ions seen between 120-150 km altitude inside an auroral arc in the midnight sector. A modified version of the SII is being developed for the ESA Swarm mission, consisting of three, three-axis stabilized satellite payloads optimized for precise measurements of magnetic and electric fields. The SII-based Canadian Electric Field Instrument will measure the 3-D ion drift with 1-sigma resolution and accuracy of 5 and 50 m/s, respectively. The corresponding resolution and accuracy are 0.3 and 3 m/s for electric fields. Electric and magnetic field measurements combined will produce estimates of Poynting flux to a resolution of 1 μW/m2, making Swarm an unprecedented tool for M-T-I coupling studies. The three Swarm satellites will have nearly polar, circular orbits between 300-530 km during a four-year mission beginning in 2009.

  10. Change In The Drift Velocity Of A Jupiter Anticyclone In The Ssstc

    NASA Astrophysics Data System (ADS)

    Schmude, Richard W.

    2012-10-01

    Richard W. Schmude, Jr., Gordon College, 419 College Dr., Barnesville, GA 30204 A white oval (anticyclone) in Jupiter’s South South South Temperate Current (SSSTC) was tracked between 10 July 2011 and 19 January 2012. Tracking was accomplished with the software package WinJUPOS. The northern, southern eastern and western extremities of the anticyclone were measured on 83 different visible light images. All images were on the ALPO Japan Latest website. The longitude, latitude, north-to-south and east-to-west dimensions were measured over the time period. The main findings were that the drift velocity of the anticyclone changed abruptly on about 1 October. The average drift velocity before this date was 5.6 m s-1 and the average rate after this date was -2.1 m s-1. At about the same time as the drift velocity changed the latitude of the center of the anticyclone changed from 50.93° S (0.10°) to 49.79° S (0.09°) and the north-to-south dimension changed from 2.12° (0.06°) to 2.47° (0.06°). Uncertainties are in parentheses. It is suggested that the change in latitude led to the change in drift velocity. An interaction with a folded filamentary region nearby may have led to the change in latitude. Acknowledgements: This work was supported by a grant from the President’s Faculty Development Initiative at Gordon College. The writer is also grateful to the 37 individuals who submitted their images for analysis.

  11. Precision measurement of the carrier drift velocities in langle100rangle silicon

    NASA Astrophysics Data System (ADS)

    Scharf, C.; Klanner, R.

    2015-11-01

    Measurements of the drift velocities of electrons and holes as functions of electric field strength and temperature in high-purity n- and p-type silicon with langle100rangle crystal orientation are presented. The measurements cover electric field strengths between 2.4 and 50 kV/cm and temperatures between 233 and 333 K. Two methods have been used for extracting the drift velocities from current transient measurements: a time-of-flight (tof) method and fits of simulated transients to the measured transients, with the parameters describing the field and temperature dependence of the electron and hole mobilities as free parameters. A new mobility parametrization, which also provides a better description of existing data than previous ones, allowed an extension of the classical tof method to the situation of non-uniform field strengths. For the fit method, the use of the convolution theorem of Fourier transforms enabled us to precisely determine the electronics transfer function of the complete set-up, including the sensor properties. The agreement between the tof and the fit method is about 1%, which corresponds to a time-of-flight uncertainty of 30 ps for a pad diode of 200μ m thickness at the highest voltages. Combining our results with published data of low-field mobilities, we derive parameterizations of the drift velocities in high-ohmic langle100rangle silicon for electrons and holes for field strengths between 0 and 50 kV/cm and temperatures between 233 and 333 K.

  12. The effect of ion drifts on the properties of the tokamak scrape-off plasma

    SciTech Connect

    Petravic, M.; Kuo-Petravic, G.

    1988-09-01

    A plasma fluid model which takes into account ion drifts has been constructed and applied to the scrape-off layer of a tokamak with a poloidal divertor. This model predicts near-sonic toroidal velocities and large poloidal flows in most of the scrapeoff together with steep gradients in the pressure and electrostatic potential along the magnetic field near the X-point, contrary to the predictions of the standard model. The potential step at X-point should reduce parallel heat transport and could act as an H-mode trigger. 12 refs., 4 figs.

  13. East-west ion drifts at mid-latitudes observed by Dynamics Explorer 2

    SciTech Connect

    Heelis, R.A.; Coley, W.R. )

    1992-12-01

    Zonal ion drifts measured from the polar orbiting DE 2 spacecraft are examined to determine the effects of dynamo electric fields and penetration of high latitude electric fields at middle latitudes. Construction of a local time distribution from satellite data results in a mixture of local time and season as well as a range of magnetic activity encompassing Kp [le] 2 and Kp [ge] 3. Thus some combination of magnetospheric effects, expected to dominate during disturbed times, are seen during both quiet and disturbed times and solar tidal influences are most easily observed during quiet times. During quiet times, at invariant latitudes near 25[degrees], the solar diurnal tide dominates the local time distribution of the ion drift. At latitudes above 50[degrees] a diurnal component of comparable magnitude is also present, but its magnetospheric origin produces a shift in phase of almost 180[degrees] from the lower latitude diurnal tide. In the intervening region, between 20[degrees] and 50[degrees] invariant latitude, semidurnal and terdiurnal components in the local time distribution of the drift velocity are also seen. These components are generally larger than those seen by ground based radars during quiet times and may be attributable in part to a difference in solar activity and in part to a combination of the solar tides and magnetospheric penetration fields.

  14. Topside equatorial zonal ion velocities measured by C/NOFS during rising solar activity

    NASA Astrophysics Data System (ADS)

    Coley, W. R.; Stoneback, R. A.; Heelis, R. A.; Hairston, M. R.

    2014-02-01

    The Ion Velocity Meter (IVM), a part of the Coupled Ion Neutral Dynamic Investigation (CINDI) instrument package on the Communication/Navigation Outage Forecast System (C/NOFS) spacecraft, has made over 5 yr of in situ measurements of plasma temperatures, composition, densities, and velocities in the 400-850 km altitude range of the equatorial ionosphere. These measured ion velocities are then transformed into a coordinate system with components parallel and perpendicular to the geomagnetic field allowing us to examine the zonal (horizontal and perpendicular to the geomagnetic field) component of plasma motion over the 2009-2012 interval. The general pattern of local time variation of the equatorial zonal ion velocity is well established as westward during the day and eastward during the night, with the larger nighttime velocities leading to a net ionospheric superrotation. Since the C/NOFS launch in April 2008, F10.7 cm radio fluxes have gradually increased from around 70 sfu to levels in the 130-150 sfu range. The comprehensive coverage of C/NOFS over the low-latitude ionosphere allows us to examine variations of the topside zonal ion velocity over a wide level of solar activity as well as the dependence of the zonal velocity on apex altitude (magnetic latitude), longitude, and solar local time. It was found that the zonal ion drifts show longitude dependence with the largest net eastward values in the American sector. The pre-midnight zonal drifts show definite solar activity (F10.7) dependence. The daytime drifts have a lower dependence on F10.7. The apex altitude (magnetic latitude) variations indicate a more westerly flow at higher altitudes. There is often a net topside subrotation at low F10.7 levels, perhaps indicative of a suppressed F region dynamo due to low field line-integrated conductivity and a low F region altitude at solar minimum.

  15. Noncontact measurement of electrostatic fields: verification of modeled potentials within ion mobility spectrometer drift tube designs.

    PubMed

    Scott, Jill R; Tremblay, Paul L

    2007-03-01

    The heart of an ion mobility spectrometer is the drift region where ion separation occurs. While the electrostatic potentials within a drift tube design can be modeled, no method for independently validating the electrostatic field has previously been reported. Two basic drift tube designs were modeled using SIMION 7.0 to reveal the expected electrostatic fields: (1) A traditional alternating set of electrodes and insulators and (2) a truly linear drift tube. One version of the alternating electrode/insulator drift tube and two versions of linear drift tubes were then fabricated. The stacked alternating electrodes/insulators were connected through a resistor network to generate the electrostatic gradient in the drift tube. The two linear drift tube designs consisted of two types of resistive drift tubes with one tube consisting of a resistive coating within an insulating tube and the other tube composed of resistive ferrites. The electrostatic fields within each type of drift tube were then evaluated by a noncontact method using a Kelvin-Zisman type electrostatic voltmeter and probe (results for alternative measurement methods provided in supplementary material). The experimental results were then compared with the electrostatic fields predicted by SIMION. Both the modeling and experimental measurements reveal that the electrostatic fields within a stacked ion mobility spectrometer drift tube are only pseudo-linear, while the electrostatic fields within a resistive drift tube approach perfect linearity. PMID:17411220

  16. Drift velocity of a Smoluchowski gas: A numerical demonstration of the fluctuation-dissipation theorem

    NASA Astrophysics Data System (ADS)

    Verbeek, Martijn G.

    2010-08-01

    This Brief Report shows that the Smoluchowski thermostat, a stochastic boundary condition used to mimic a diffusive gas-wall collision, produces the correct stationary nonequilibrium states. The stationary states are generated by placing an ideal gas coupled to a Smoluchowski thermostat in a constant external field. It is shown by simple numerical simulations that the resulting drift velocity is compatible with the definition of the gas particle mobility, satisfying the well-known fluctuation-dissipation theorem. As an interesting application, it is shown that species that are chemically identical but differ in surface momentum accommodation can be separated effectively in the Knudsen regime.

  17. Impact of ion diamagnetic drift on ideal ballooning mode stability in rotating tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Aiba, N.

    2016-04-01

    Drift magnetohydrodynamic (MHD) equations have been derived in order to investigate the ion diamagnetic drift effect on the stability to ideal MHD modes in rotating plasmas. These drift MHD equations have been simplified with the Frieman-Rotenberg formalism under the incompressible assumption, and a new code, MINERVA-DI, has been developed to solve the derived extended Frieman-Rotenberg equation. Benchmark results of the MINERVA-DI code show good agreements with the analytic theory discussing the stability to an internal kink mode and that to a ballooning mode in static plasmas. The stability analyses of the ballooning mode with respect to toroidal rotation with the ion diamagnetic drift effect have been performed using MINERVA-DI. The stabilizing effect by the ion diamagnetic drift is found to be negligible when the rotation frequency is large compared to the ion diamagnetic drift frequency. The direction of plasma rotation affects the ballooning mode stability when the ion diamagnetic drift effect is taken into account. It is identified that there are two physics mechanisms responsible for the dependence of MHD stability on the rotation direction. One is the correction of the dynamic pressure effect on MHD stability by the ion diamagnetic drift, and the other is the change of the MHD eigenmode structure by the combined effect of plasma rotation and ion diamagnetic drift.

  18. A study of vacuum arc ion velocities using a linear set of probes

    SciTech Connect

    Hohenbild, Stefan; Grubel, Christoph; Yushkov, Georgy Yu.; Oks, Efim M.; Anders, Andre

    2008-07-15

    The most likely velocity of ions moving away from vacuum arc cathode spots was measured using a set of probes along the path of plasma expansion. The goal was to determine how much, if any, change of the ion drift velocity occurs in the expanded plasma. The arc discharge current was perturbed to create plasma density markers whose travel is picked up by the set of probes. It was found that the perturbation with current oscillations did not result in consistent data because ion current maxima and minima are not only determined by the plasma production but by the transients of the arc pulse and by the asymmetry of the ion velocity distribution function. Perturbation with a short current spike was more conclusive. The ion velocity was measured to be slightly reduced with increasing distance from the cathode, which can be explained by collisions of ions with the background of neutrals. The ion velocity was increased when the arc current was increased, which correlated with enhanced arc voltage and power dissipation. The ion velocity could be enhanced when the plasma was produced in a non-uniform magnetic field.

  19. Self-consistent analysis of high drift velocity measurements with the STARE system

    NASA Technical Reports Server (NTRS)

    Reinleitner, L. A.; Nielsen, E.

    1985-01-01

    The use of the STARE and SABRE coherent radar systems as valuable tools for geophysical research has been enhanced by a new technique called the Superimposed-Grid-Point method. This method permits an analysis of E-layer plasma irregularity phase velocity versus flow angle utilizing only STARE or SABRE data. As previous work with STARE has indicated, this analysis has clearly shown that the cosine law assumption breaks down for velocities near and exceeding the local ion acoustic velocities. Use of this method is improving understanding of naturally-occurring plasma irregularities in the E-layer.

  20. Sudden appearance of sub-keV structured ions in the inner magnetosphere within one hour: drift simulation

    NASA Astrophysics Data System (ADS)

    Yamauchi, Masatoshi; Ebihara, Yusuke; Dandouras, Iannis; Nilsson, Hans

    2014-05-01

    Energy-latitude dispersed structured sub-keV ions in the inner magnetosphere drifts very slowly in the noon-to-afternoon sectors because the eastward corotation and the westward magnetic drift balances to each other there. However, majority of Cluster ion observation by the Cluster Ion Spectrometry (CIS) COmposition DIstribution Function (CODIF) instrument during 2001-2006 showed significant development or intensification (by more than factor of 3) within 1-2 h in that sector during the Cluster perigee traversals that quickly scans latitudinal structure at a fixed local time (Yamauchi et al., 2013). The frequent observations of significant inbound-outbound differences in the wedge-like dispersed ions by Cluster indicates either new injections or high eastward drift velocity even in the afternoon sector. To examine the former possibility, i.e., whether such sudden appearances in the dayside can be explained by the drift motion of ions that are formed during substorm-related injections, we numerically simulated two such examples, one at noon (8 September 2002) and the other in the afternoon (9 July 2001), based on the same ion drift simulation model that has successfully reproduced the ion pattern of an inbound-outbound symmetric event at 5 MLT observed by the Cluster CIS/CODIF instrument. The model uses backward phase-space mapping to a boundary at the nightside 8 Earth radii and forward numerical simulation using re-constructed distribution function at that boundary. For both examples, the ion drift model with finite duration (limited to 1-2 hours) of proton source in the nightside can explain the observed large inbound-outbound differences in the sub-keV proton population without any new sources. Ion drift motion is thus able to cause rapid changes of complicated ion populations, at remote places from the source long time after the substorm activities, although this result does not eliminate the possibility of having independent ionospheric sources. References: Yamauchi, M. et al.: Cluster observation of few-hour-scale evolution of structured plasma in the inner magnetosphere, Ann. Geophys., 31, 1569-1578, doi:10.5194/angeo-31-1569-2013, 2013.

  1. Advanced numerical studies of the neutralized drift compression of intense ion beam pulses

    NASA Astrophysics Data System (ADS)

    Sefkow, Adam B.; Davidson, Ronald C.

    2007-10-01

    Longitudinal bunch compression of intense ion beams for warm dense matter and heavy ion fusion applications occurs by imposing an axial velocity tilt onto an ion beam across the acceleration gap of a linear induction accelerator, and subsequently allowing the beam to drift through plasma in order to neutralize its space-charge and current as the pulse compresses. The detailed physics and implications of acceleration gap effects and focusing aberration on optimum longitudinal compression are quantitatively reviewed using particle-in-cell simulations, showing their dependence on many system parameters. Finite-size gap effects are shown to result in compression reduction, due to an increase in the effective longitudinal temperature imparted to the beam, and a decrease in intended fractional tilt. Sensitivity of the focal plane quality to initial longitudinal beam temperature is explored, where slower particles are shown to experience increased levels of focusing aberration compared to faster particles. A plateau effect in axial compression is shown to occur for larger initial pulse lengths, where the increases in focusing aberration over the longer drift lengths involved dominate the increases in relative compression, indicating a trade-off between current compression and pulse duration. The dependence on intended fractional tilt is also discussed and agrees well with theory. A balance between longer initial pulse lengths and larger tilts is suggested, since both increase the current compression, but have opposite effects on the final pulse length, drift length, and amount of longitudinal focusing aberration. Quantitative examples are outlined that explore the sensitive dependence of compression on the initial kinetic energy and thermal distribution of the beam particles. Simultaneous transverse and longitudinal current density compression can be achieved in the laboratory using a strong final-focus solenoid, and simulations addressing the effects of focusing aberration in both directions are presented.

  2. Electrostatic ion cyclotron velocity shear instability

    SciTech Connect

    Lemons, D.S.; Winske, D.; Gary, S.P. )

    1992-12-01

    An electrostatic ion cyclotron instability driven by sheared velocity flow perpendicular to a uniform magnetic field is investigated in the local approximation. The dispersion equation, which includes all kinetic effects and involves only one important parameter, is cast in the form of Gordeyev integrals and solved numerically. The instability occurs roughly at multiples of the ion cyclotron frequency (but modified by the shear) with the growth rate of the individual harmonics overlapping in wavenumber. At small values of the shear parameter, the instability exists in two branches, one at long wavelength, [kappa][rho][sub i] [approximately] 0.5, and one at short wavelength, [kappa][rho][sub i] > 1.5 ([kappa][rho][sub i] is the wavenumber normalized to the ion gyroradius). At larger values of the shear parameter only the longer wavelength branch persists. The growth rate of the long wavelength mode, maximized over wavenumber and frequency, increases monotonically with the shear parameter. Properties of the instability are compared to those of Ganguli et al. obtained in the nonlocal limit.

  3. Ion mobility mass spectrometry of peptide, protein, and protein complex ions using a radio-frequency confining drift cell.

    PubMed

    Allen, Samuel J; Giles, Kevin; Gilbert, Tony; Bush, Matthew F

    2016-02-01

    Ion mobility mass spectrometry experiments enable the characterization of mass, assembly, and shape of biological molecules and assemblies. Here, a new radio-frequency confining drift cell is characterized and used to measure the mobilities of peptide, protein, and protein complex ions. The new drift cell replaced the traveling-wave ion mobility cell in a Waters Synapt G2 HDMS. Methods for operating the drift cell and determining collision cross section values using this experimental set up are presented within the context of the original instrument control software. Collision cross sections for 349 cations and anions are reported, 155 of which are for ions that have not been characterized previously using ion mobility. The values for the remaining ions are similar to those determined using a previous radio-frequency confining drift cell and drift tubes without radial confinement. Using this device under 2 Torr of helium gas and an optimized drift voltage, denatured and native-like ions exhibited average apparent resolving powers of 14.2 and 16.5, respectively. For ions with high mobility, which are also low in mass, the apparent resolving power is limited by contributions from ion gating. In contrast, the arrival-time distributions of low-mobility, native-like ions are not well explained using only contributions from ion gating and diffusion. For those species, the widths of arrival-time distributions are most consistent with the presence of multiple structures in the gas phase. PMID:26739109

  4. Rapidly changing distribution of velocity and suspended materials under the drifting Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Ha, Ho Kyung; Im, Jungho; Kim, Yong Hoon; Yae Son, Eun; Lee, Sanggyun

    2015-04-01

    In two summer seasons of 2011 and 2014, the short-term (1-4 days) ice-camp study has been conducted on the drifting Arctic sea ice. In particular, in 2014, the international collaboration with the Marginal Ice Zone program (sponsored by Office of Naval Research) has been integrated. The mooring package comprises the acoustic Doppler velocity profiler, holographic imaging camera, and conductivity-temperature-depth profiler, which are used to understand the dynamic behavior of sea ice and spatial-temporal variation of mixing layer (ML) and suspended particulate matters under the sea ice. Mooring data clearly shows the mixing and entrainment pattern in the upper ML in the marginal ice zone. When ice floes drift toward the pack ice, the upward entrainment from the seasonal pycnocline to sea ice-water boundary was induced by shear across ML and seasonal pycnocline. The entrainment speed was in the range of 0.25-2 m/hr, which matches well with thickening and thinning rate of ML during the near-inertial period (~12 hr). When ice floes drift toward the open ocean, the turbulent wakes at the advancing edge of ice were combined with the entrainment caused by near-inertial motion, which results in a complex mixing pattern of both upward and downward fluxes in the ML. Also, the acoustic backscatter observed by the acoustic Doppler current profiler and beam attenuation from transmissometer revealed the increased concentration of suspended particulate materials in the ML, which can be direct evidence visualizing the mixing pattern. Results suggest that the mixing and entrainment found in our study sustain particulate matters in suspension within the upper ML for a few months.

  5. The effect of the time interval used to calculate mean wind velocity on the calculated drift potential, relative drift potential, and resultant drift direction for sands from three deserts in northern China

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengcai; Dong, Zhibao; Zhao, Aiguo

    2016-01-01

    Wind is the power behind many erosion processes and is responsible for many of the characteristics of arid zone geomorphology. Wind velocity is a key factor in determining the potential sand transport, but the nature of the wind velocity data can strongly affect assessments of the risk of blowing sand. In this study, we obtained real-time wind velocity data in a region of the Tengger Desert with shifting sands, in the Badain Jaran Desert, and in the Madoi desertification land, with the data obtained at 1-min intervals, and used the data to determine the influence of how the wind velocity was calculated (mean versus mid-point values and the averaging time used to calculate these values) on sand drift potential. In the three regions, for both the mean and the mid-point wind velocities, the estimated drift potential decreased with increasing averaging time. The relationships between velocities calculated using the different averaging time intervals and the value calculated using a 1-min interval could be expressed as linear functions. The drift potential calculated using the mid-point wind velocity was larger than that calculated using the mean wind velocity.

  6. Application of the Dopplionogram to Doppler-sorted interferometry measurements of ionospheric drift velocity

    NASA Astrophysics Data System (ADS)

    Parkinson, M. L.; Breed, A. M.; Dyson, P. L.; Morris, R. J.

    1999-07-01

    The Dopplionogram was developed as a method of displaying Doppler shifts along the frequency axis of ionograms recorded using B-mode soundings of the Dynasonde, an early type of HF digital ionosonde. The basic idea of recording Doppler shifts in an ionogram format is applied and extended to the Doppler velocity mode of the Digisonde Portable Sounder-4 (DPS-4), a related and more recent type of digital ionosonde. In order to describe our mode of operation a Dopplionogram is redefined to mean a set of stepped-frequency soundings that yields a set of ionospheric Doppler shifts particular to the chosen transmission frequencies. Extension of the technique to include Doppler-sorted interferometry (DSI) analysis of the Doppler spectra facilitates a detailed analysis of ionospheric velocity variations in time and group height. This revitalized approach to DSI should prove useful for the study of ionospheric dynamics for which knowledge of the height profile of electric currents, drift velocity, and neutral winds is required. The technique is demonstrated using measurements of polar cap plasma winds obtained with a DPS-4 located at Casey, Antarctica (66.3°S, 110.5°E).

  7. Electron drift velocities in He and water mixtures: Measurements and an assessment of the water vapour cross-section sets

    SciTech Connect

    Urquijo, J. de; Juárez, A. M.; Basurto, E.; Ness, K. F.; Robson, R. E.; White, R. D.; Brunger, M. J.

    2014-07-07

    The drift velocity of electrons in mixtures of gaseous water and helium is measured over the range of reduced electric fields 0.1–300 Td using a pulsed-Townsend technique. Admixtures of 1% and 2% water to helium are found to produce negative differential conductivity (NDC), despite NDC being absent from the pure gases. The measured drift velocities are used as a further discriminative assessment on the accuracy and completeness of a recently proposed set of electron-water vapour cross-sections [K. F. Ness, R. E. Robson, M. J. Brunger, and R. D. White, J. Chem. Phys. 136, 024318 (2012)]. A refinement of the momentum transfer cross-section for electron-water vapour scattering is presented, which ensures self-consistency with the measured drift velocities in mixtures with helium to within approximately 5% over the range of reduced fields considered.

  8. Electron drift velocities in He and water mixtures: Measurements and an assessment of the water vapour cross-section sets

    NASA Astrophysics Data System (ADS)

    de Urquijo, J.; Basurto, E.; Juárez, A. M.; Ness, K. F.; Robson, R. E.; Brunger, M. J.; White, R. D.

    2014-07-01

    The drift velocity of electrons in mixtures of gaseous water and helium is measured over the range of reduced electric fields 0.1-300 Td using a pulsed-Townsend technique. Admixtures of 1% and 2% water to helium are found to produce negative differential conductivity (NDC), despite NDC being absent from the pure gases. The measured drift velocities are used as a further discriminative assessment on the accuracy and completeness of a recently proposed set of electron-water vapour cross-sections [K. F. Ness, R. E. Robson, M. J. Brunger, and R. D. White, J. Chem. Phys. 136, 024318 (2012)]. A refinement of the momentum transfer cross-section for electron-water vapour scattering is presented, which ensures self-consistency with the measured drift velocities in mixtures with helium to within approximately 5% over the range of reduced fields considered.

  9. Low-latitude zonal and vertical ion drifts seen by DE 2

    NASA Technical Reports Server (NTRS)

    Coley, W. R.; Heelis, R. A.

    1989-01-01

    Horizontal and vertical ion drift data from the DE 2 spacecraft have been used to determine average zonal and vertical plasma flow (electric field) characteristics in the +/- 26-deg dip latitude region during a time of high solar activity. The 'average data' local time profile for an apex height bin centered at 400 km indicates westward plasma flow from 0600 to 1900 solar local time ((SLT) with a maximum westward velocity of 80 m/s in the early afternoon. There is a sharp change to eastward flow at approximately 1900 hours with an early evening peak of 170 m/s. A secondary nighttime maximum exists at 0430 SLT preceeding the reversal to westward flow. This profile is in good agreement with Jicamarca, Peru, radar measurements made under similar solar maximum conditions. Haramonic analysis indicates a net superrotation which is strongest at lower apex altitudes. The diurnal term is dominant, but higher order terms through the quatradiurnal are significant.

  10. Toroidal Momentum Pinch Velocity due to the Coriolis Drift Effect on Small Scale Instabilities in a Toroidal Plasma

    SciTech Connect

    Peeters, A. G.; Angioni, C.; Strintzi, D.

    2007-06-29

    In this Letter, the influence of the ''Coriolis drift'' on small scale instabilities in toroidal plasmas is shown to generate a toroidal momentum pinch velocity. Such a pinch results because the Coriolis drift generates a coupling between the density and temperature perturbations on the one hand and the perturbed parallel flow velocity on the other. A simple fluid model is used to highlight the physics mechanism and gyro-kinetic calculations are performed to accurately assess the magnitude of the pinch. The derived pinch velocity leads to a radial gradient of the toroidal velocity profile even in the absence of a torque on the plasma and is predicted to generate a peaking of the toroidal velocity profile similar to the peaking of the density profile. Finally, the pinch also affects the interpretation of current experiment000.

  11. The Influence of Drift Gas Composition on the Separation Mechanism in Traveling Wave Ion Mobility Spectrometry: Insight from Electrodynamic Simulations

    PubMed Central

    May, Jody C.; McLean, John A.

    2013-01-01

    The influence of three different drift gases (helium, nitrogen, and argon) on the separation mechanism in traveling wave ion mobility spectrometry is explored through ion trajectory simulations which include considerations for ion diffusion based on kinetic theory and the electrodynamic traveling wave potential. The model developed for this work is an accurate depiction of a second-generation commercial traveling wave instrument. Three ion systems (cocaine, MDMA, and amphetamine) whose reduced mobility values have previously been measured in different drift gases are represented in the simulation model. The simulation results presented here provide a fundamental understanding of the separation mechanism in traveling wave, which is characterized by three regions of ion motion: (1) ions surfing on a single wave, (2) ions exhibiting intermittent roll-over onto subsequent waves, and (3) ions experiencing a steady state roll-over which repeats every few wave cycles. These regions of ion motion are accessed through changes in the gas pressure, wave amplitude, and wave velocity. Resolving power values extracted from simulated arrival times suggest that momentum transfer in helium gas is generally insufficient to access regions (2) and (3) where ion mobility separations occur. Ion mobility separations by traveling wave are predicted to be effectual for both nitrogen and argon, with slightly lower resolving power values observed for argon as a result of band-broadening due to collisional scattering. For the simulation conditions studied here, the resolving power in traveling wave plateaus between regions (2) and (3), with further increases in wave velocity contributing only minor improvements in separations. PMID:23888124

  12. Space relevant laboratory studies of ion-acoustic and ion-cyclotron waves driven by parallel-velocity shear

    NASA Astrophysics Data System (ADS)

    Koepke, M. E.; Teodorescu, C.; Reynolds, E. W.

    2003-06-01

    Results from a Q-machine experiment are used to illustrate the dispersion-relation regimes associated with ion-acoustic and ion-cyclotron waves modified by the presence of shear in the magnetic-field-aligned (parallel) ion flow. Identifying the regimes requires knowledge of the sign of the ratio of wavevector components and the sign of parallel-velocity shear. Ion-temperature anisotropy is shown to influence significantly the propagation direction of oblique ion-acoustic waves. The necessity of documenting the instability mechanism with measurements of the electron and ion distribution functions, the electron and ion parallel-velocity shear, the flow-frame Doppler shifts, both small and large values of propagation angle, and the growth rate is illustrated. The existence of these shear-modified, low-frequency waves at values of parallel electron-drift velocity substantially smaller than the excitation thresholds predicted by homogeneous-plasma theory demonstrates the suitability of parallel-velocity shear for playing a role in the mechanism responsible for broadband extremely-low-frequency waves observed in the auroral ionosphere where there exists spatial variations and filamentation in the parallel plasma flow. This article was scheduled to appear in issue 5 of Plasma Phys. Control. Fusion. To access this Special issue please follow this link: http://www.iop.org/EJ/toc/0741-3335/45/5

  13. Ion Mobility Drift Spectrometer (IMDS) as a flight analytical instrument technique

    NASA Technical Reports Server (NTRS)

    Kojiro, D. R.; Carle, G. C.

    1986-01-01

    A detailed knowledge of the history and abundances of the biogenic elements and their compounds throughout the solar system can provide the exobiologists with a basis for understanding the conditions necessary for chemical evolution and the origin of life. The Ion Mobility Drift Spectrometer is an ion molecule reactor coupled with an ion drift spectrometer. Sample molecules are ionized to form product ions in the reactant region. An electric field moves the ions through a drift region against the flow of a drift gas where they are separated according to their size and structure producing an ion mobility spectrum. These spectra provide the IMDS with virtually universal sample identification capability. To conform to the rigid limits of weight, volume and consumables placed on flight instrumentation, several aspects of the IMDS must be studied and redesigned for flight use. In addition to miniaturization of the instrument, a reduction in the high flow rates used for the drift gas is an obvious necessary consideration. The effect of drastically reduced drift flow rates on IMDS spectra was investigated by lowering flow rates from 500ml/min to 50ml/min. Changes in peak shape, drift time and total spectra were studied at each flow rate.

  14. Designing Neutralized Drift Compression for Focusing of Intense Ion Beam Pulses in a Background Plasma

    SciTech Connect

    Kaganovich, I.D.; Davidson, R.C.; Dorf, M.; Startsev, E.A.; Barnard, J.J.; Friedman, A.; Lee, E.P.; Lidia, S.M.; Logan, B.G.; Roy, P.K.; Seidl, P.A.; Welch, D.R.; Sefkow, A.B.

    2009-04-28

    Neutralized drift compression offers an effective method for particle beam focusing and current amplification. In neutralized drift compression, a linear radial and longitudinal velocity drift is applied to a beam pulse, so that the beam pulse compresses as it drifts in the drift-compression section. The beam intensity can increase more than a factor of 100 in both the radial and longitudinal directions, resulting in more than 10,000 times increase in the beam number density during this process. The self-electric and self-magnetic fields can prevent tight ballistic focusing and have to be neutralized by supplying neutralizing electrons. This paper presents a survey of the present theoretical understanding of the drift compression process and plasma neutralization of intense particle beams. The optimal configuration of focusing and neutralizing elements is discussed in this paper.

  15. Behaviour of ion velocity distributions for a simple collision model

    NASA Technical Reports Server (NTRS)

    St-Maurice, J.-P.; Schunk, R. W.

    1974-01-01

    Calculation of the ion velocity distributions for a weakly ionized plasma subjected to crossed electric and magnetic fields. An exact solution to Boltzmann's equation has been obtained by replacing the Boltzmann collision integral with a simple relaxation model. At altitudes above about 150 km, where the ion collision frequency is much less than the ion cyclotron frequency, the ion distribution takes the shape of a torus in velocity space for electric fields greater than 40 mV/m. This shape persists for one to two hours after application of the electric field. At altitudes where the ion collision and cyclotron frequencies are approximately equal (about 120 km), the ion velocity distribution is shaped like a bean for large electric field strengths. This bean-shaped distribution persists throughout the lifetime of ionospheric electric fields. These highly non-Maxwellian ion velocity distributions may have an appreciable affect on the interpretation of ion temperature measurements.

  16. EARLY-TIME VELOCITY AUTOCORRELATION FOR CHARGED PARTICLES DIFFUSION AND DRIFT IN STATIC MAGNETIC TURBULENCE

    SciTech Connect

    Fraschetti, F.; Giacalone, J.

    2012-08-20

    Using test-particle simulations, we investigate the temporal dependence of the two-point velocity correlation function for charged particles scattering in a time-independent spatially fluctuating magnetic field derived from a three-dimensional isotropic turbulence power spectrum. Such a correlation function allowed us to compute the spatial coefficients of diffusion both parallel and perpendicular to the average magnetic field. Our simulations confirm the dependence of the perpendicular diffusion coefficient on turbulence energy density and particle energy predicted previously by a model for early-time charged particle transport. Using the computed diffusion coefficients, we exploit the particle velocity autocorrelation to investigate the timescale over which the particles 'decorrelate' from the solution to the unperturbed equation of motion. Decorrelation timescales are evaluated for parallel and perpendicular motions, including the drift of the particles from the local magnetic field line. The regimes of strong and weak magnetic turbulence are compared for various values of the ratio of the particle gyroradius to the correlation length of the magnetic turbulence. Our simulation parameters can be applied to energetic particles in the interplanetary space, cosmic rays at the supernova shocks, and cosmic-rays transport in the intergalactic medium.

  17. Catastrophic Disruption of comet ISON: Determination of Size and Drift Velocity of ISON Fragments

    NASA Astrophysics Data System (ADS)

    Keane, Jacqueline V.; Milam, Stefanie; Coulson, Iain; Steckloff, Jordan; Knight, Matthew

    2015-08-01

    We report submillimeter dust continuum observations for comet C/2012 S1(ISON) obtained during the time period immediately before perihelion on 2013 November 28 (r = 0.0125AU). Prior to perihelion passage on 28 November 2013, the observed right ascension (RA) and declination (Dec) coordinates of comet C/2012 S1 (ISON) significantly lagged the predicted JPL (# 53) ephemeris. We show that this “braking effect” is due to a dynamic pressure exerted by sublimating gases on the sunward side of the nucleus. When comet ISON was first detected at 850 μm, the 1-mm-sized dust particles were tightly bound to the comet nucleus until at least November 23. Three days later, the dust was less tightly bound, elongated and diffuse, spread out over as much as 120 arc seconds (80,000 km) in the anti-solar direction, suggesting a fragmentation event. We calculate the average braking velocity of the nucleus of comet ISON by comparing the central RA position with the predicted JPL ephemeris. The difference in the observed nucleus distance from the predicted ephemeris in the elapsed time between two observations yields an average drift velocity for the comet. We apply a sublimation mass-loss model to determine the size and fragmentation of the comet ISON's nucleus over time.

  18. Evaluation of drift gas selection in complex sample analyses using a high performance drift tube ion mobility-QTOF mass spectrometer.

    PubMed

    Kurulugama, Ruwan T; Darland, Ed; Kuhlmann, Frank; Stafford, George; Fjeldsted, John

    2015-10-21

    A recently developed uniform-field high resolution ion mobility (IM) quadrupole time of flight (Q-TOF) mass spectrometer is used for evaluating the utility of alternate drift gases for complex sample analyses. This study provides collision cross section comparison for 275 total pesticides including structural isomers in nitrogen, helium, carbon dioxide, nitrous oxide and sulfur hexafluoride drift gases. Furthermore, a set of small molecules and Agilent tune mix compounds were used to study the trends in experimentally derived collision cross section values in argon and the alternate drift gases. Two isomeric trisaccharides, melezitose and raffinose, were used to evaluate the effect of the drift gasses for mobility separation. The hybrid ion mobility Q-TOF mass analyzer used in this study consists of a low pressure uniform field drift tube apparatus coupled to a high resolution Q-TOF mass spectrometer. Conventionally, low pressure ion mobility instruments are operated using helium drift gas to obtain optimal structural information and collision cross-section (CCS) values that compare to theoretical CCS values. The instrument employed in this study uses nitrogen as the standard drift gas but also allows the utility of alternate drift gases for improved structural analysis and selectivity under certain conditions. The use of alternate drift gases with a wide range of polarizabilities allows the evaluation of mobility separation power in terms of induced dipole interactions between the drift gas and the analyte ions. PMID:26178817

  19. Ion drift meter calibration and photoemission correction for the C/NOFS satellite

    NASA Astrophysics Data System (ADS)

    Stoneback, R. A.; Davidson, R. L.; Heelis, R. A.

    2012-08-01

    The Ion Drift Meter (IDM) onboard the Communication/Navigation Outage Forecasting System (C/NOFS) measures ion arrival angles transverse to the satellite path and requires precise attitude determination for proper conversion to ambient ion drift. Low ionospheric densities during the 2008/9 solar minimum restricted quality measurements to altitudes near perigee, limiting the daily local time coverage of the satellite. As the primary ionospheric boundary condition available to calibrate the IDM requires that the integral of meridional (vertical) ion drifts be zero over all local times and longitudes, the limited daily local time coverage necessitated a new calibration procedure. A procedure is presented that utilizes the median meridional drift over all local times determined over a 67 day perigee precession period to calibrate the instrument. Offsets are isolated for both measurement directions by exploiting the different symmetry relationships that the spacecraft orientation has with respect to the meridional direction as a function of magnetic latitude. The low ionospheric densities along with the equatorial orbit of C/NOFS also allowed photoemission currents within the instrument to be detected. A numerical model of photoemission within the drift meter is presented in detail and used to generate a first order software correction to remove a large portion of this error from measurements. Both the photoemission correction and the drift meter calibration procedure are supported by a comparison to vertical ion drifts measured by the Jicamarca Radar Observatory.

  20. Transportation of high-current ion and electron beams in the accelerator drift gap in the presence of an additional electron background

    NASA Astrophysics Data System (ADS)

    Karas', V. I.; Kornilov, E. A.; Manuilenko, O. V.; Tarakanov, V. P.; Fedorovskaya, O. V.

    2015-12-01

    The dynamics of a high-current ion beam propagating in the drift gap of a linear induction accelerator with collective focusing is studied using 3D numerical simulations in the framework of the full system of the Vlasov-Maxwell equations (code KARAT). The ion beam is neutralized by a comoving electron beam in the current density and, partially, in space charge, since the velocities of electrons and ions differ substantially. The dynamics of the high-current ion beam is investigated for different versions of additional neutralization of its space charge. It is established that, for a given configuration of the magnetic field and in the presence of a specially programmed injection of additional electrons from the boundary opposite to the ion injection boundary, the angular divergence of the ion beam almost vanishes, whereas the current of the ion beam at the exit from the accelerator drift gap changes insignificantly and the beam remains almost monoenergetic.

  1. Transportation of high-current ion and electron beams in the accelerator drift gap in the presence of an additional electron background

    SciTech Connect

    Karas’, V. I. Kornilov, E. A.; Manuilenko, O. V.; Tarakanov, V. P.; Fedorovskaya, O. V.

    2015-12-15

    The dynamics of a high-current ion beam propagating in the drift gap of a linear induction accelerator with collective focusing is studied using 3D numerical simulations in the framework of the full system of the Vlasov–Maxwell equations (code KARAT). The ion beam is neutralized by a comoving electron beam in the current density and, partially, in space charge, since the velocities of electrons and ions differ substantially. The dynamics of the high-current ion beam is investigated for different versions of additional neutralization of its space charge. It is established that, for a given configuration of the magnetic field and in the presence of a specially programmed injection of additional electrons from the boundary opposite to the ion injection boundary, the angular divergence of the ion beam almost vanishes, whereas the current of the ion beam at the exit from the accelerator drift gap changes insignificantly and the beam remains almost monoenergetic.

  2. Observations of Counter-Streaming Ion Velocity Distributions in LLBL

    NASA Technical Reports Server (NTRS)

    Vaisberg, O. L.; Avanonv, L. A.; Smirnov, V. N.; Moore, T. E.

    2003-01-01

    We analyze ion velocity distributions observed by Interball-Tail at two LLBL crossings under southward and variable magnetosheath magnetic field. These magnetic conditions lead to highly structured LLBL. D-shape ion velocity distributions were observed within LLBL structures along with other reconnection signatures. Another type of the ion velocity distributions observed within LLBL structures consists of two counter-streaming magnetosheath-type components. We consider two possible scenarios that may lead to development of these counterstreaming ion components: reflection of transmitted magnetosheath ions from the ionosphere and creation of these velocity distributions during formation of the LLBL. We argue that observed counter-streaming component could not be due to ionospheric reflection. The observations of these ion velocity distributions are in favor of the multiple reconnections between magnetosheath and magnetospheric flux tubes.

  3. Influence of residual plasma drift velocity on the post-arc sheath expansion of vacuum circuit breakers

    NASA Astrophysics Data System (ADS)

    Mo, Yongpeng; Shi, Zongqian; Bai, Zhibin; Jia, Shenli; Wang, Lijun

    2016-05-01

    The residual plasma in the inter-contact region of a vacuum circuit breaker moves towards the post-arc cathode at current zero, because the residual plasma mainly comes from the cathode spots during the arc burning process. In the most previous theoretical researches on the post-arc sheath expansion process of vacuum circuit breakers, only the thermal motion of residual plasma was taken into consideration. Alternately, the residual plasma was even assumed to be static at the moment of current zero in some simplified models. However, the influence of residual plasma drift velocity at current zero on the post-arc sheath expansion process was rarely investigated. In this paper, this effect is investigated by a one-dimensional particle-in-cell model. Simulation results indicate that the sheath expands slower with higher residual plasma drift velocity in the initial sheath expansion stage. However, with the increase of residual plasma drift velocity, the overall plasma density in the inter-contact region decreases faster, and the sheath expansion velocity increases earlier. Consequently, as a whole, it needs shorter time to expel the residual plasma from the inter-contact region. Furthermore, if the residual plasma drift velocity is high enough, the sheath expansion process ceases before it develops to the post-arc anode. Besides, the influence of the collisions between charges and neutrals is investigated as well in terms of the density of metal vapor. It shows that the residual plasma drift velocity takes remarkable effect only if the density of the metal vapor is relatively low, which corresponds to the circumstance of low-current interruptions.

  4. Fluid and drift-kinetic description of a magnetized plasma with low collisionality and slow dynamics orderings. II. Ion theory

    NASA Astrophysics Data System (ADS)

    Ramos, J. J.

    2011-10-01

    The ion side of a closed, fluid and drift-kinetic theoretical model to describe slow and macroscopic plasma processes in a fusion-relevant, low collisionality regime is presented. It follows the ordering assumptions and the methodology adopted in the companion electron theory [Ramos, Phys. Plasmas 17, 082502 (2010)]. To reach the frequency scale where collisions begin to play a role, the drift-kinetic equation for the ion distribution function perturbation away from a Maxwellian must be accurate to the second order in the Larmor radius. The macroscopic density, flow velocity and temperature are accounted for in the Maxwellian, and are evolved by a fluid system which includes consistently the gyroviscous part of the stress tensor and second-order contributions to the collisionless perpendicular heat flux involving non-Maxwellian fluid moments. The precise compatibility among these coupled high-order fluid and drift-kinetic equations is made manifest by showing that the evolution of the non-Maxwellian part of the distribution function is such that its first three velocity moments remain equal to zero.

  5. Ion upflow enhanced by drifting F-region plasma structure along the nightside polar cap boundary

    NASA Astrophysics Data System (ADS)

    Semeter, J.; Heinselman, C. J.; Thayer, J. P.; Doe, R. A.; Frey, H. U.

    2003-11-01

    Conjugate observations by the incoherent scatter radar at Sondrestrom, Greenland, and the Wideband Imaging Camera (WIC) on the IMAGE satellite have been used to establish a causal relationship between drifting F-region plasma structure in the polar ionosphere and upward ion number flux near the poleward edge of the auroral oval. A longitudinally extended patch of enhanced F-region density was observed as it advected equatorward across the open-closed field line boundary and into a region of discrete auroral rays and strong ion upflow (Vi > 800 m/s at 900 km altitude). Upward velocities within the upflow region remained constant during the patch transit, such that the upflowing number flux was directly controlled by F-region density (both increased by a factor of 2 within the patch). Because polar cap patches and ion upflows are both longitudinally extended, quasi-stable features of the nightside polar cap boundary, the observed interaction can produce a global-scale increase in plasma density at higher altitudes where suprathermal outflows are initiated.

  6. Drift mode in a bounded plasma having two-ion species

    SciTech Connect

    Ahmad, Ali; Sajid, M.; Saleem, H.

    2008-01-15

    The drift wave is investigated in a two-ion species plasma in several different cases. The global drift mode is studied in a plasma bounded in a cylinder having Gaussian density profile corresponding to different poloidal wavenumbers. The frequency of the mode becomes a little larger when it is investigated without including the ion cyclotron wave dynamics. The effect of magnetic shear on the wave propagation along the density gradient is studied in a Cartesian geometry assuming absorbing boundary. It is found that the wave amplitude is reduced when two-ion species are present (with the same concentration) compared to pure electron-ion plasma.

  7. Ionic Drift Velocity Measurements on A Nano-composite Polymer Electrolyte: 95[90PEO: 10AgNO3]: 5SiO2

    NASA Astrophysics Data System (ADS)

    Chandra, Angesh; Chandra, Archana; Thakur, S. S.; Chakrawarti, V.

    2011-11-01

    Ionic drift velocity (vd) measurements on a hot-press synthesized nano-composite polymer electrolyte (NCPE) membrane: 95[90PEO: 10AgNO3]: 5SiO2, are reported. The ionic transference number (tion) values were determined using dc polarization Transient Ionic Current (TIC) technique for vd measurement at different temperatures. The drift energy (Ed), involved in the thermally activated process was determined from the temperature dependent studies on ionic drift velocity using the log vd vs 1/T Arrhenius plot. At all the temperatures, the ionic drift velocity is directly proportional to the ionic mobility (?) at a fixed value of applied dc potential.

  8. A Study of Ion Velocities Observed by TIDE and How It Relates to Magnetospheric Circulation

    NASA Technical Reports Server (NTRS)

    Elliott, H. A.; Comfort, R. H.; Craven, P. D.; Chandler, M. O.; Moore, T. E.

    1998-01-01

    The high-latitude ion velocities measured by the Thermal Ion Dynamics Experiment (TIDE) instrument on the Polar spacecraft will be examined in relation to magnetospheric circulation. TIDE derives ion velocities from moments of measured distribution functions. Hydrogen and oxygen ions are E X B drifting in the polar cap and cleft regions with a speed of about 5-20 km/s at apogee (approximately 9 Re) and a speed of 1-2 km/s at perigee (approximately 1.8 Re). At perigee 0+ is typically seen flowing down in the polar cap and outflowing from the cleft. At the transition from downflowing to upflowing there is also seen a reversal in the ion convection. The convection at perigee is consistent with standard ionospheric convection models for given Interplanetary Magnetic Field (IMF) conditions. Convection at high altitude (approximately 8.9 Re) polar regions has not been studied very much since there have not been many satellites in this region. Unlike previous missions to this region TIDE in conjunction the Plasma Source Instrument (PSI) can measure ions with as low an energy as several electron Volts. The outflowing ions observed by TIDE at apogee are believed to be important to the overall circulation of the magnetosphere. The convection of these outflowing ions at apogee will be related to the IMF. This study tries to answer the question of how the IMF response of the convection influences the overall circulation of the magnetosphere.

  9. Measurement of ion swarm distribution functions in miniature low-temperature co-fired ceramic ion mobility spectrometer drift tubes.

    PubMed

    Pfeifer, Kent B; Rumpf, Arthur N

    2005-08-15

    Measurements of the performance of a miniature, portable 12-mm-diameter, 57-mm-length low-temperature cofired ceramic (LTCC) ion mobility spectrometer drift tube were undertaken to verify models of ion transport and determine the physical shape of the ion "swarms" in the LTCC tube. Simplified two-dimensional Gaussian models of ion swarm shape were fit to measured data to extract geometrical shape parameters. Results indicate that tube-transfer function effects that produce asymmetric ion swarms are minimized in the tube reducing temporal dispersion. Data are presented that illustrate the swarm shape as a function of gate time, electric field magnitude, and total charge in the ion swarm. Characterization and understanding of the ion transport mechanisms and effects that limit the resolution and other performance parameters of miniature IMS drift tubes is essential to the development of practical, robust, portable systems for "first responder" and homeland security missions. PMID:16097761

  10. Ion mixing in the plasma sheet boundary layer by drift instabilities

    NASA Technical Reports Server (NTRS)

    Horton, W.; Dong, J. Q.; Su, X. N.; Tajima, T.

    1993-01-01

    The linear stability properties of collisionless drift instabilities are analyzed in a Harris equilibrium model of the plasma sheet boundary layer (PSBL). The strearmng ions with drift-type instabilities driven in the PSBL are considered. The fluid approximation leads to growth but predicts that the mode width approaches the gyroradius of the energetic ions. Thus an integral equation theory for the modes is developed taking into account that in the PSBL the curvature drift is weak compared with the grad-B drift. The exact wave particle resonance is kept in the nonlocal response functions. Plasma density, temperature, and magnetic gradient drift motions are taken into account. The drift modes produce an anomalous cross-field momentum transport mixing the PSBL ions on the time scale of tens of seconds. A nonlinear simulation is performed which shows the coalescence of the small scale, fast growing modes into large-scale vortices. The relation between these collective modes and plasma sheet transport phenomena is discussed including the comparison with the competing plasma mixing from single-particle stochasticity.

  11. Drift compression and final focus systems for heavy ion inertial fusion

    SciTech Connect

    de Hoon, M.J.L.

    2001-05-01

    Longitudinal compression of space-charge dominated beams can be achieved by imposing a head-to-tail velocity tilt on the beam. This tilt has to be carefully tailored, such that it is removed by the longitudinal space-charge repulsion by the time the beam reaches the end of the drift compression section. The transverse focusing lattice should be designed such that all parts of the beam stay approximately matched, while the beam smoothly expands transversely to the larger beam radius needed in the final focus system following drift compression. In this thesis, several drift compression systems were designed within these constraints, based on a given desired pulse shape at the end of drift compression systems were designed within these constraints, based on a given desired pulse shape at the end of drift compression. The occurrence of mismatches due to a rapidly increasing current was analyzed. In addition, the sensitivity of drift compression to errors in the initial velocity tilt and current profile was studied. These calculations were done using a new computer code that accurately calculates the longitudinal electric field in the space-charge dominated regime.

  12. Ion velocities in a micro-cathode arc thruster

    SciTech Connect

    Zhuang Taisen; Shashurin, Alexey; Keidar, Michael; Beilis, Isak

    2012-06-15

    Ion velocities in the plasma jet generated by the micro-cathode arc thruster are studied by means of time-of-flight method using enhanced ion detection system (EIDS). The EIDS triggers perturbations (spikes) on arc current waveform, and the larger current in the spike generates denser plasma bunches propagating along with the mainstream plasma. The EIDS utilizes double electrostatic probes rather than single probes. The average Ti ion velocity is measured to be around 2 Multiplication-Sign 10{sup 4} m/s without a magnetic field. It was found that the application of a magnetic field does not change ion velocities in the interelectrode region while leads to ion acceleration in the free expanding plasma plume by a factor of about 2. Ion velocities of about 3.5 Multiplication-Sign 10{sup 4} m/s were detected for the magnetic field of about 300 mT at distance of about 100-200 mm from the cathode. It is proposed that plasma is accelerated due to Lorentz force. The average thrust is calculated using the ion velocity measurements and the cathode mass consumption rate, and its increase with the magnetic field is demonstrated.

  13. Optimization of curved drift tubes for ultraviolet-ion mobility spectrometry

    NASA Astrophysics Data System (ADS)

    Ni, Kai; Ou, Guangli; Zhang, Xiaoguo; Yu, Zhou; Yu, Quan; Qian, Xiang; Wang, Xiaohao

    2015-08-01

    Ion mobility spectrometry (IMS) is a key trace detection technique for toxic pollutants and explosives in the atmosphere. Ultraviolet radiation photoionization source is widely used as an ionization source for IMS due to its advantages of high selectivity and non-radioactivity. However, UV-IMS bring problems that UV rays will be launched into the drift tube which will cause secondary ionization and lead to the photoelectric effect of the Faraday disk. So air is often used as working gas to reduce the effective distance of UV rays, but it will limit the application areas of UV-IMS. In this paper, we propose a new structure of curved drift tube, which can avoid abnormally incident UV rays. Furthermore, using curved drift tube may increase the length of drift tube and then improve the resolution of UV-IMS according to previous research. We studied the homogeneity of electric field in the curved drift tube, which determined the performance of UV-IMS. Numerical simulation of electric field in curved drift tube was conducted by SIMION in our study. In addition, modeling method and homogeneity standard for electric field were also presented. The influences of key parameters include radius of gyration, gap between electrode as well as inner diameter of curved drift tube, on the homogeneity of electric field were researched and some useful laws were summarized. Finally, an optimized curved drift tube is designed to achieve homogenous drift electric field. There is more than 98.75% of the region inside the curved drift tube where the fluctuation of the electric field strength along the radial direction is less than 0.2% of that along the axial direction.

  14. CRADA Final Report CRADA No. LB05-001820"Ion Beam Drift Compression Technology for NDCX"

    SciTech Connect

    First point Scientific, Inc.; E.O. Lawrence Berkeley National Laboratory; Waldron, William L.

    2009-10-05

    Summary of the specific research and project accomplishments: Through this collaboration, LBNL and FPSI determined the specific energy manipulations that apply to the Neutralized Drift Compression Experiment (NDCX) ion beam and developed the preliminary design of a Fast Induction Energy Corrector (FIEC). This effort was successfully completed, firmly establishing the technical feasibility of the proposed approach for regulating the longitudinal energy distribution of the NDCX ion beam. This is a critical step in achieving the NDCX goal of axial compression of the beam by a factor of 100 during neutralized drift.

  15. Low velocity ion stopping in binary ionic mixtures

    SciTech Connect

    Tashev, Bekbolat; Baimbetov, Fazylkhan; Deutsch, Claude; Fromy, Patrice

    2008-10-15

    Attention is focused on the low ion velocity stopping mechanisms in multicomponent and dense target plasmas built of quasiclassical electron fluids neutralizing binary ionic mixtures, such as, deuterium-tritium of current fusion interest, proton-heliumlike iron in the solar interior or proton-helium ions considered in planetology, as well as other mixtures of fiducial concern in the heavy ion beam production of warm dense matter at Bragg peak conditions. The target plasma is taken in a multicomponent dielectric formulation a la Fried-Conte. The occurrence of projectile ion velocities (so-called critical) for which target electron slowing down equals that of given target ion components is also considered. The corresponding multiquadrature computations, albeit rather heavy, can be monitored analytical through a very compact code operating a PC cluster. Slowing down results are systematically scanned with respect to target temperature and electron density, as well as ion composition.

  16. Velocity-dependent isotope fractionation in secondary-ion emission

    SciTech Connect

    Gnaser, H.; Hutcheon, I.D.

    1987-01-15

    The formation of secondary ions is subject to isotopic fractionation (differing ionization probabilities for two isotopes) that depends linearly on the inverse velocity of the ejected ions. Theoretically, such a correlation follows directly from an exponential dependence of the ionization probability P on v/sup -1/, Pproportionalexp(-v/sub 0//v). The parameter v/sub 0/, derived from the experiment, amounts to --2 x 10/sup 6/ cm/sec for B, Si, and Ca ions.

  17. Electrostatic ion cyclotron velocity shear instability

    NASA Technical Reports Server (NTRS)

    Lemons, D. S.; Winske, D.; Gary, S. P.

    1992-01-01

    A local electrostatic dispersion equation is derived for a shear flow perpendicular to an ambient magnetic field, which includes all kinetic effects and involves only one important parameter. The dispersion equation is cast in the form of Gordeyev integrals and is solved numerically. Numerical solutions indicate that an ion cyclotron instability is excited. The instability occurs roughly at multiples of the ion cyclotron frequency (modified by the shear), with the growth rate or the individual harmonics overlapping in the wavenumber. At large values of the shear parameter, the instability is confined to long wavelengths, but at smaller shear, a second distinct branch at shorter wavelengths also appears. The properties of the instability obtained are compared with those obtained in the nonlocal limit by Ganguli et al. (1985, 1988).

  18. A proposed production model of rapid subauroral ion drifts and their relationship to substorm evolution

    NASA Technical Reports Server (NTRS)

    Anderson, P. C.; Hanson, W. B.; Heelis, R. A.; Craven, J. D.; Baker, D. N.; Frank, L. A.

    1993-01-01

    The temporal relationship between subauroral ion drifts (SAIDs) and the phases of an auroral substorm is examined on the basis of multisatellite data. The time of expansive phase onset is identified and the time at which recovery begins is estimated. SAIDs are found to typically occur well after substorm onset (more than 30 min), during the substorm recovery phase. Substantial westward ion drifts and field-aligned currents are observed well equatorward of the auroral oval during the expansion phase of a substorm, but the drifts lack the narrow spike signature associated with SAIDs. A phenomenological model of SAID production that qualitatively agrees with the observed ionospheric signatures and substorm temporal relationship is proposed.

  19. Nonuniform charging effects on ion drag force in drifting dusty plasmas

    SciTech Connect

    Chang, Dong-Man; Chang, Won-Seok; Jung, Young-Dae

    2006-03-01

    The nonuniform polarization charging effects on the ion drag force are investigated in drifting dusty plasmas. The ion drag force due to the ion-dust grain interaction is obtained as a function of the dust charge, ion charge, plasma temperature, Mach number, Debye length, and collision energy. The result shows that the nonuniform charging effects enhance the momentum transfer cross section as well as the ion drag force. It is found that the momentum transfer cross section and the ion drag force including nonuniform polarization charging effects increase with increasing the Mach number and also the ion drag force increases with increasing the temperature. In addition, it is found that the ion drag force is slightly decreasing with an increase of the Debye length.

  20. Digital ionosonde measurements of the height variation of drift velocity in the southern polar cap ionosphere: Initial results

    NASA Astrophysics Data System (ADS)

    Parkinson, M. L.; Monselesan, D. P.; Smith, P. R.; Dyson, P. L.; Morris, R. J.

    1997-10-01

    During the late austral summer of 1995-1996 we operated an HF digital ionosonde located at Casey, Antarctica (66.3°S, 110.5°E, -80.8° corrected geomagnetic (CGM) latitude), in an experimental drift mode with the aim of resolving the height variation of drift velocity in the polar cap ionosphere. We devised control programs for a Digisonde Portable Sounder 4 to collect data at separate frequency-range gates corresponding to the E and F regions to investigate the differences in their motions. During a 4-day campaign commencing March 11, 1996, the mode values of the drift perpendicular to the magnetic field (V⊥) were 85ms-1 in the E region and 485ms-1 in the F region (using 10ms-1 bins and echoes from all heights in each region). Vertical profiles of drift velocity were obtained by sorting echoes into 10-km group-height bins. For measurements obtained within +/-3 hours of magnetic noon the average profile showed that in the lower E region V⊥ increased approximately exponentially with true height. The corresponding velocity scale height was <9.0km at 105 km, where the gradient was >46.7ms-1km-1. The mean value of V⊥ leveled off to about 700ms-1 above 120 km, where it remained up to the F region peak height. The vertical gradient was caused by the increase in collision frequencies at the lower heights. The F region field-aligned component of drift (V∥) showed a strong diurnal variation, with mean values of -30ms-1 near noon and +60ms-1 during the night at a height of 180 km. The average over the whole day reveals a net upward drift of 30ms-1. This behavior is attributed to the interaction between the meridional components of the generally antisunward neutral wind (UN) and perpendicular drift (V⊥S) moving plasma down the field lines during the day and up the field lines during the night, with UN and V⊥S having net equatorward values when averaged over all day. While the E region drift direction tended to be aligned with the basic antisunward convection which dominates the F region above Casey, it also tended to show greater temporal variability in direction, suggesting a smaller-scale size and lifetime for the E region structures giving rise to the echoes. There were events lasting over 2 hours during which the drifts in the two regions were clearly resolved into different azimuths (by nearly 180° for two events). These transient directional shears show the time variability in the phase transition between an F region collisionless, magnetized plasma driven by the E×B/B2 convection to an E region collisional, unmagnetized plasma driven by E and irregular neutral winds.

  1. Drift wave stabilized by an additional streaming ion or plasma population.

    PubMed

    Bashir, M F; Vranjes, J

    2015-03-01

    It is shown that the universally unstable kinetic drift wave in an electron-ion plasma can very effectively be suppressed by adding an extra flowing ion (or plasma) population. The effect of the flow of the added ions is essential, their response is of the type (vph-vf0)exp[-(vph-vf0)2], where vf0 is the flow speed and vph is the phase speed parallel to the magnetic field vector. The damping is strong and it is mainly due to this ion exponential term, and this remains so for vf0

  2. High-velocity tails on the velocity distribution of solar wind ions

    SciTech Connect

    Ogilvie, K.W. ); Geiss, J. ); Gloeckler, G. ); Berdichevsky, D. ); Wilken, B. )

    1993-03-01

    Recent observations of the solar wind using the SWICS instrument on the Ulysses spacecraft have shown the presence of high-velocity [open quotes]tails[close quotes] on the velocity distribution of protons. Similar features have also been observed on the velocity distributions of helium and oxygen ions. Of the order of 1% of the solar wind density is involved in these tails, which are approximately exponential in shape and persist to V = V[sub B] + 10V[sub th] or beyond, where V[sub B] is the bulk velocity and V[sub th] the thermal velocity of the solar wind. This paper contains a preliminary description of the phenomenon. It is clear that it is ultimately connected with the passage of interplanetary shocks past the spacecraft and that particle acceleration at oblique shocks is involved. 21 refs., 6 figs., 2 tabs.

  3. Poloidal velocity of impurity ions in neoclassical theory

    SciTech Connect

    Wong, S. K.; Chan, V. S.; Solomon, W. M.

    2008-08-15

    A formula for the poloidal velocity of impurity ions in a two-species plasma is derived from neoclassical theory in the banana regime, with corrections from the boundary layer separating the trapped and transiting ions. The formula is applicable to plasmas with toroidal rotations that can approach the thermal speeds of the ions. Using the formula to determine the poloidal velocity of C{sup +6} ions in a recently reported experiment [W. M. Solomon et al., Phys. Plasmas 13, 056116 (2006)] leads to agreement in the direction of the central region when it is otherwise from theories without strong toroidal rotations. Comparisons among these theories are made, demonstrating the degree of uncertainty of theoretical predictions.

  4. Pickup Ion Velocity Distributions at Titan: Effects of Spatial Gradients

    NASA Astrophysics Data System (ADS)

    Hartle, R. E.; Sittler, E. C.

    2004-05-01

    The principle source of pickup ions at Titan is its neutral exosphere, extending well above the ionopause into the magnetosphere of Saturn or the solar wind, depending on the moon's orbital position. Thermal and nonthermal processes in the thermosphere generate the distribution of neutral atoms and molecules in the exosphere. The combination of these processes and the range of mass numbers, 1 to over 28, contribute to an exospheric source structure that produces pickup ions with gyroradii that are much larger or smaller than the corresponding scale heights of their neutral sources. The resulting phase space distributions are dependent on the spatial structure of the exosphere as well as that of the magnetic field and background plasma. When the pickup ion gyroradius is less than the source gas scale height, the pickup ion velocity distribution is characterized by a sharp cutoff near the maximum speed, which is twice that of the ambient plasma times the sine of the angle between the magnetic field and the flow velocity. This was the case for pickup H+ ions identified during the Voyager 1 flyby (1). In contrast, as the gyroradius becomes much larger than the scale height, the peak of the velocity distribution in the source region recedes from the maximum speed. In addition, the amplitude of the distribution near the maximum speed decreases. These more beam like distributions of heavy ions were not observed from Voyager 1, but should be observable by more sensitive instruments on future spacecraft, including Cassini. The finite gyroradius effects in the pickup ion velocity distributions are studied by including in the analysis the possible range of spatial structures in the neutral exosphere and background plasma. (1) Hartle, R. E., E. C. Sittler, Jr., K. W. Ogilvie, J. D. Scudder, A. J. Lazarus and S. K. Atrea, Titan's Ion Exosphere Observed from Voyager 1, J. Geophys. Res., 87, 1383-1394, 1982.

  5. Prediction of peptide drift time in ion mobility mass spectrometry from sequence-based features

    PubMed Central

    2013-01-01

    Background Ion mobility-mass spectrometry (IMMS), an analytical technique which combines the features of ion mobility spectrometry (IMS) and mass spectrometry (MS), can rapidly separates ions on a millisecond time-scale. IMMS becomes a powerful tool to analyzing complex mixtures, especially for the analysis of peptides in proteomics. The high-throughput nature of this technique provides a challenge for the identification of peptides in complex biological samples. As an important parameter, peptide drift time can be used for enhancing downstream data analysis in IMMS-based proteomics. Results In this paper, a model is presented based on least square support vectors regression (LS-SVR) method to predict peptide ion drift time in IMMS from the sequence-based features of peptide. Four descriptors were extracted from peptide sequence to represent peptide ions by a 34-component vector. The parameters of LS-SVR were selected by a grid searching strategy, and a 10-fold cross-validation approach was employed for the model training and testing. Our proposed method was tested on three datasets with different charge states. The high prediction performance achieve demonstrate the effectiveness and efficiency of the prediction model. Conclusions Our proposed LS-SVR model can predict peptide drift time from sequence information in relative high prediction accuracy by a test on a dataset of 595 peptides. This work can enhance the confidence of protein identification by combining with current protein searching techniques. PMID:23815343

  6. Storm-to-storm main phase repeatability of the local time variation of disturbed low-latitude vertical ion drifts

    NASA Astrophysics Data System (ADS)

    Huang, Chao-Song

    2015-07-01

    Penetration electric field can be very strong during magnetic storms. However, the variation of penetration electric field with local time (LT) has not been well understood. The Communication/Navigation Outage Forecasting System (C/NOFS) satellite measures the plasma drift/electric field over all local times within ~100 min. In this paper, we present the first nearly simultaneous observations of the dependence of penetration electric field on local time. The meridional ion drift measured by C/NOFS during the main phase of five magnetic storms in 2012 is analyzed. The storm time ion drift shows a large enhancement around 1900 LT, a relatively small enhancement during daytime, and a deep decrease in the postmidnight sector with a peak around 0500 LT. The observed storm time variation of the meridional ion drift with local time represents the variation of the penetration electric field. The averaged ion drifts are in remarkable agreement with recent simulations.

  7. Pic Modeling of a Closed Drift Ion Source for Material Surface Processing

    NASA Astrophysics Data System (ADS)

    Schoessow, Paul; Cary, John; Shaw, Denis; Stoltz, Peter

    2005-10-01

    The closed drift ion source is a technology that uses a DC discharge in a gas cell (Ar, O2) to produce a uniform, linear 300-1500 eV ion beam for in-line surface treatment and cleaning of materials. Maximum ion beam currents are on the order of 1 A / meter of source length. A permanent dipole magnet forms a magnetic circuit with the ferromagnetic cathode enclosure, producing a focusing field in the ion extraction gap that confines electrons. The focusing field shape is controlled by the beveling of the gap. We have developed 2- and 3- dimensional PIC models of the closed drift ion source using the OOPIC Pro and Vorpal codes. We will present numerical results on the ion beam properties, including the ion energy spectrum on the target, and compare them to measurements. We will also investigate possible design modifications such as to the magnetic field shape and discharge electrode geometry that might lead to increased ion current.

  8. Resolving Structural Isomers of Monosaccharide Methyl Glycosides Using Drift Tube and Traveling Wave Ion Mobility Mass Spectrometry

    PubMed Central

    Li, Hongli; Giles, Kevin; Bendiak, Brad; Kaplan, Kimberly; Siems, William F.; Hill, Herbert H.

    2013-01-01

    Monosaccharide structural isomers including sixteen methyl-D-glycopyranosides and four methyl-N-acetylhexosamines were subjected to ion mobility measurements by electrospray ion mobility mass spectrometry. Two ion mobility-MS systems were employed: atmospheric pressure drift tube ion mobility time-of-flight mass spectrometry and a Synapt G2 HDMS system which incorporates a low pressure traveling wave ion mobility separator. All the compounds were investigated as [M+Na]+ ions in the positive mode. A majority of the monosaccharide structural isomers exhibited different mobility drift times in either system, depending on differences in their anomeric and stereochemical configurations. In general, drift time patterns (relative drift times of isomers) matched between the two instruments. Higher resolving power was observed using the atmospheric pressure drift tube. Collision cross section values of monosaccharide structural isomers were directly calculated from the atmospheric pressure ion mobility experiments and a collision cross section calibration curve was made for the traveling wave ion mobility instrument. Overall, it was demonstrated that ion mobility-mass spectrometry using either drift tube or traveling wave ion mobility is a valuable technique for resolving subtle variations in stereochemistry among the sodium adducts of monosaccharide methyl glycosides. PMID:22339760

  9. Lithium-ion drifting: Application to the study of point defects in floating-zone silicon

    NASA Technical Reports Server (NTRS)

    Walton, J. T.; Wong, Y. K.; Zulehner, W.

    1997-01-01

    The use of lithium-ion (Li(+)) drifting to study the properties of point defects in p-type Floating-Zone (FZ) silicon crystals is reported. The Li(+) drift technique is used to detect the presence of vacancy-related defects (D defects) in certain p-type FZ silicon crystals. SUPREM-IV modeling suggests that the silicon point defect diffusivities are considerably higher than those commonly accepted, but are in reasonable agreement with values recently proposed. These results demonstrate the utility of Li(+) drifting in the study of silicon point defect properties in p-type FZ crystals. Finally, a straightforward measurement of the Li(+) compensation depth is shown to yield estimates of the vacancy-related defect concentration in p-type FZ crystals.

  10. Analysis of drifting electron concentration in a self-magnetically insulated ion diode

    NASA Astrophysics Data System (ADS)

    Pushkarev, A. I.; Pak, V. G.

    2015-02-01

    The drifting electron concentration in a self-magnetically insulated ion diode is analyzed using a TEMP-4M accelerator operating in a double bipolar pulse regime with the first pulse (300-600 ns and 150-200 kV) being negative and the second (120 ns and 250-300 kV) being positive. The electron concentration in the drift region is shown to be 1013-1014 cm-3. It is established that the Lorentz force acting on electrons in crossed electric and magnetic fields is 150-200 times greater than the Coulomb repulsion force, which ensures a higher electron concentration in the drift region as compared with the space charge region.

  11. Spin drift velocity, polarization, and current-driven domain-wall motion in (Ga,Mn)(As,P).

    PubMed

    Curiale, J; Lemaître, A; Ulysse, C; Faini, G; Jeudy, V

    2012-02-17

    Current-driven domain-wall motion is studied in (Ga,Mn)(As,P) ferromagnetic semiconducting tracks with perpendicular anisotropy. A linear steady state flow regime is observed over a large temperature range of the ferromagnetic phase (0.1T(c)velocity is found to coincide with the spin drift velocity. This result is obtained below the intrinsic threshold for domain-wall motion which implies a nonadiabatic contribution to the spin transfer torque. The current spin polarization is deduced close to 0 K and to T(c). It suggests that the temperature dependence of the spin polarization can be inferred from the domain-wall dynamics. PMID:22401234

  12. Superconducting accelerating structures for very low velocity ion beams

    SciTech Connect

    Xu, J.; Shepard, K.W.; Ostroumov, P.N.; Fuerst, J.D.; Waldschmidt, G.; Gonin, I.V.; /Fermilab

    2008-01-01

    This paper presents designs for four types of very-low-velocity superconducting accelerating cavity capable of providing several MV of accelerating potential per cavity, and suitable for particle velocities in the range 0.006 < v/c < 0.06. Superconducting TEM-class cavities have been widely applied to CW acceleration of ion beams. SC linacs can be formed as an array of independently-phased cavities, enabling a variable velocity profile to maximize the output energy for each of a number of different ion species. Several laboratories in the US and Europe are planning exotic beam facilities based on SC linacs. The cavity designs presented here are intended for the front-end of such linacs, particularly for the post-acceleration of rare isotopes of low charge state. Several types of SC cavities have been developed recently to cover particle velocities above 0.06c. Superconducting four-gap quarter-wave resonators for velocities 0.008 < {beta} = v/c < 0.05 were developed about two decades ago and have been successfully operated at the ATLAS SC linac at Argonne National Laboratory. Since that time, progress in simulation tools, cavity fabrication and processing have increased SC cavity gradients by a factor of 3-4. This paper applies these tools to optimize the design of a four-gap quarter-wave resonator for exotic beam facilities and other low-velocity applications.

  13. The effect of ion drift on the sheath, presheath, and ion-current collection for cylinders in a collisionless plasma

    NASA Astrophysics Data System (ADS)

    McMahon, J. C.; Xu, G. Z.; Laframboise, J. G.

    2005-06-01

    A calculation is presented of the behavior of the sheath and presheath surrounding an infinite cylindrical conducting object, representing a spacecraft or electrostatic probe, which is moving transversely through a collisionless plasma, such as is encountered in the ionosphere. The calculation is done by solving the coupled Vlasov (collisionless Boltzmann) and Poisson equations in an iterative manner. The results show that for some ratios of probe radius to electron Debye length, the ion current collected by the probe in a drifting plasma can be less than that collected in a nondrifting plasma. These changes in the current-collection behavior can be linked to changes that occur in the sheath and presheath with plasma drift, including at large enough drift speeds the disappearance or "collapse" of the presheath.

  14. Graphene, a material for high temperature devices – intrinsic carrier density, carrier drift velocity, and lattice energy

    PubMed Central

    Yin, Yan; Cheng, Zengguang; Wang, Li; Jin, Kuijuan; Wang, Wenzhong

    2014-01-01

    Heat has always been a killing matter for traditional semiconductor machines. The underlining physical reason is that the intrinsic carrier density of a device made from a traditional semiconductor material increases very fast with a rising temperature. Once reaching a temperature, the density surpasses the chemical doping or gating effect, any p-n junction or transistor made from the semiconductor will fail to function. Here, we measure the intrinsic Fermi level (|EF| = 2.93 kBT) or intrinsic carrier density (nin = 3.87 × 106 cm−2K−2·T2), carrier drift velocity, and G mode phonon energy of graphene devices and their temperature dependencies up to 2400 K. Our results show intrinsic carrier density of graphene is an order of magnitude less sensitive to temperature than those of Si or Ge, and reveal the great potentials of graphene as a material for high temperature devices. We also observe a linear decline of saturation drift velocity with increasing temperature, and identify the temperature coefficients of the intrinsic G mode phonon energy. Above knowledge is vital in understanding the physical phenomena of graphene under high power or high temperature. PMID:25044003

  15. Exact representation of the asymptotic drift speed and diffusion matrix for a class of velocity-jump processes

    NASA Astrophysics Data System (ADS)

    Mascia, Corrado

    2016-01-01

    This paper examines a class of linear hyperbolic systems which generalizes the Goldstein-Kac model to an arbitrary finite number of speeds vi with transition rates μij. Under the basic assumptions that the transition matrix is symmetric and irreducible, and the differences vi -vj generate all the space, the system exhibits a large-time behavior described by a parabolic advection-diffusion equation. The main contribution is to determine explicit formulas for the asymptotic drift speed and diffusion matrix in term of the kinetic parameters vi and μij, establishing a complete connection between microscopic and macroscopic coefficients. It is shown that the drift speed is the arithmetic mean of the velocities vi. The diffusion matrix has a more complicate representation, based on the graph with vertices the velocities vi and arcs weighted by the transition rates μij. The approach is based on an exhaustive analysis of the dispersion relation and on the application of a variant of the Kirchoff's matrix tree Theorem from graph theory.

  16. Fundamental mode of ultra-low frequency electrostatic dust-cyclotron surface waves in a magnetized complex plasma with drifting ions

    NASA Astrophysics Data System (ADS)

    Lee, Seungjun; Lee, Myoung-Jae

    2012-10-01

    The electrostatic dust-cyclotron (EDC) waves in a magnetized dusty plasma was reported that they could be excited by gravity in a collisional plasma [1]. Rosenberg suggested that EDC waves could be excited by ions drifting along the magnetic field in a collisional plasma containing dust grains with large thermal speeds [2]. The existing investigations, however, focus on EDC volume waves in which the boundary effects are not considered. In this work, we attempt to obtain some physical results concerning the fundamental mode of EDC surface wave and the stability of wave by utilizing a kinetic method. The EDC surface wave is assumed to propagate along an external magnetic field at the interface between the plasma and the vacuum. The plasma is comprised of drifting ions flowing along an external magnetic field. To derive the growth rate of surface waves, we employ the specular reflection boundary conditions. The EDC surface wave is found to be unstable when the ion drift velocity is larger than the phase velocity of the wave. In addition, the wave becomes to be more unstable if dust particles carry more negative charges.[4pt] [1] N. D'Angelo, Phys. Lett. A 323, 445 (2004).[0pt] [2] M. Rosenberg, Phys. Scr. 82, 035505 (2010).

  17. Anomalous electron-ion energy coupling in electron drift wave turbulence

    NASA Astrophysics Data System (ADS)

    Zhao, Lei

    Turbulence is a ubiquitous phenomenon in nature, and it is well known that turbulence couples energy input to dissipation by cascade processes. Plasma turbulence play a critical role in tokamak confinement. Magnetized plasma turbulence is quasi 2D, anisotropic, wave like and two fluid (i.e. electrons and ions) in structure. Thus, weakly collisional plasma turbulence can mediate electron and ion energy transfer. The issue of anomalous electron and ion energy coupling is particularly important for low collisionality, electron heated plasmas, such as ITER. In this work, we reconsider the classic problem of turbulent heating and energy transfer pathways in drift wave turbulence. The total turbulent heating, composed of quasilinear electron cooling, quasilinear ion heating, nonlinear ion heating and zonal flow frictional heating, is analyzed. In Chapter 2, the electron and ion energy exchange via linear wave and particle resonance will be computed. To address net heating, we show the turbulent heating in an annulus arises due to a wave energy flux differential across this region. We show this net heating is proportional to the Reynolds work on the zonal flow. Zonal flow friction heats ions, thus the turbulence and zonal flow interaction enters as an important energy transfer channel. Since zonal flows are nonlinearly generated, it follows that we should apply weak turbulence theory to calculate the nonlinear ion turbulent heating via the virtual mode resonance in the electron drift wave turbulence, which will be discussed in Chapter 3. We defines a new collisionless turbulent energy transfer channel through nonlinear Landau damping in the electron and ion energy coupling process. The result shows that nonlinear ion heating can exceed quasilinear ion heating, so that nonlinear heating becomes the principal collisionless wave energy dissipation channel in electron drift wave turbulence. This follows since the beat mode resonates with the bulk of the ion distribution, in contrast to the linear resonance which is located on the tail. This result also suggests that zonal flow shearing is not necessarily the only saturation mechanism of importance, especially for very low collisionality. This observation brings a new perspective on electron heat transport where ions, play a role as an energy "sink" in a collisionless plasma, such as ITER. In addition, it is shown that the electron turbulent energy transfer to ions in a collisionless plasma can be the same order as electron heat transport losses. Thus, it is necessary to consider the influence of collisionless energy transfer to determine the total energy budget in ITER.

  18. Selected Ion Flow-Drift Tube Mass Spectrometry: Quantification of Volatile Compounds in Air and Breath.

    PubMed

    Spesyvyi, Anatolii; Smith, David; Španěl, Patrik

    2015-12-15

    A selected ion flow-drift tube mass spectrometric analytical technique, SIFDT-MS, is described that extends the established selected ion flow tube mass spectrometry, SIFT-MS, by the inclusion of a static but variable E-field along the axis of the flow tube reactor in which the analytical ion-molecule chemistry occurs. The ion axial speed is increased in proportion to the reduced field strength E/N (N is the carrier gas number density), and the residence/reaction time, t, which is measured by Hadamard transform multiplexing, is correspondingly reduced. To ensure a proper understanding of the physics and ion chemistry underlying SIFDT-MS, ion diffusive loss to the walls of the flow-drift tube and the mobility of injected H3O(+) ions have been studied as a function of E/N. It is seen that the derived diffusion coefficient and mobility of H3O(+) ions are consistent with those previously reported. The rate coefficient has been determined at elevated E/N for the association reaction of the H3O(+) reagent ions with H2O molecules, which is the first step in the production of H3O(+)(H2O)1,2,3 reagent hydrate ions. The production of hydrated analyte ion was also experimentally investigated. The analytical performance of SIFDT-MS is demonstrated by the quantification of acetone and isoprene in exhaled breath. Finally, the essential features of SIFDT-MS and SIFT-MS are compared, notably pointing out that a much lower speed of the flow-drive pump is required for SIFDT-MS, which facilitates the development of smaller cost-effective analytical instruments for real time breath and fluid headspace analyses. PMID:26583448

  19. Experimental and theoretical determination of the strongly anisotropic velocity distribution functions of ions in the intrinsic gas plasma in strong fields

    NASA Astrophysics Data System (ADS)

    Mustafaev, A. S.; Sukhomlinov, V. S.; Ainov, M. A.

    2015-12-01

    The first seven coefficient of expansion of the energy and angular distribution functions in the Legendre polynomials for Hg+ ions in the Hg vapor plasma with parameter E/ P ? 400 V/(cm Torr) are measured for the first time using a planar one-sided probe. The analytic solution to the Boltzmann kinetic equation for ions in the plasma of their parent gas is obtained in the conditions when the resonant charge exchange is the predominant process, and an ion acquires on its mean free path a velocity much higher than the characteristic velocity of thermal motion of atoms. The presence of an ambipolar field of an arbitrary strength is taken into account. It is shown that the ion velocity distribution function is determined by two parameters and differs substantially from the Maxwellian distribution. Comparison of the results of calculation of the drift velocity of He+ ions in He, Ar+ in Ar, and Hg+ in Hg with the available experimental data shows their conformity. The results of calculation of the ion distribution function correctly describe the experimental data on its measurement. Analysis of the result shows that in spite of the presence of the strong field, the ion velocity distribution functions are isotropic for ion velocities lower than the average thermal velocity of atoms. With increasing ion velocity, the distribution becomes more and more extended in the direction of the electric field.

  20. Drift Velocity of Small-Scale Artificial Ionospheric Irregularities According to a Multifrequency HF Doppler Radar. II. Observation and Modeling Results

    NASA Astrophysics Data System (ADS)

    Vertogradov, G. G.; Uryadov, V. P.; Vertogradov, V. G.; Vertogradova, E. G.; Kubatko, S. V.

    2015-11-01

    We present the results of observations of the Doppler frequency shift for the radar radio signals of broadcast and exact-time RWM stations, which are scattered by small-scale artificial ionospheric irregularities. By the method described in our previous paper [1] and using the multifrequency HF Doppler radar, estimates were made for a three-dimensional vector of the drift velocity of irregularities. It is shown that the drift velocity of irregularities can vary considerably both in magnitude and direction for short periods of time. The velocity lies in a wide range of values, 20-270 m/s, but sometimes it exceeds 500-700 m/s. The most probable drift velocity ranges from 40 to 70 m/s.

  1. East-west ion drifts at mid-latitudes observed by Dynamics Explorer 2

    NASA Technical Reports Server (NTRS)

    Heelis, R. A.; Coley, W. R.

    1992-01-01

    The effects of the dynamo electric fields and the penetration of high-latitude electric fields on zonal ion drifts were investigated by examining east-west ion drifts at mid-latitudes observed during magnetically quiet and disturbed periods by the polar orbiting DE-2 spacecraft. The influences of the electric field sources can be summarized as follows: (1) semidiurnal and terdiurnal tides are most important during quiet times between 25 deg and 55 deg magnetic local time, (2) the influence of the disturbance dynamo and magnetospheric penetration field are seen on average down to 45 deg during quiet times and down to 35 deg during disturbed times, and (3) direct influence of the auroral zone electric field is important on average down to 60 deg during quiet times and down to 50 deg during disturbed times.

  2. Transmission of a Drift Tube Ion Mobility Spectrometer, Connected with a Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Chernyshev, D. M.; Poteshin, S. S.; Karpov, A. V.; Sysoev, Alexey A.; Sysoev, Alexander A.

    In this work it is experimentally showed that transmission of atmospheric drift tube ion mobility spectrometer (DT-IMS), connected with mass spectrometer (MS), depends on ion mobility of investigated compounds, because of depletion effect of Bradbury-Nielson ion gate (IG), which previously has been approved only by standalone DT-IMS. Theoretical estimation of depletion width of IG is in good agreement with experimental data. Also it is found, that ion lost due to its pulsing work of IG are few times smaller, than its duty cycle. It's explained by difference in influence of coulomb repulsion at 100% and 1% duty cycle - in first case it's significant versus second case, when coulomb repulsion become negligibly small, that reduces lost of ions on entrance of MS interface.

  3. Closed electron drift in a self-magnetically insulated ion diode

    SciTech Connect

    Pushkarev, A. I.; Isakova, Y. I.

    2013-05-15

    The paper investigates a spiral geometry self-magnetically insulated ion diode with an explosive-emission cathode made from graphite. The experiments have been carried out using the TEMP-4M accelerator, with the accelerator configured to operate in double-pulse mode: the first negative pulse (300–500 ns, 100–150 kV) and the second positive pulse (150 ns, 250–300 kV). The ion beam energy density was 0.4–0.8 J/cm{sup 2} and the beam was composed of carbon ions (80%–85%) and protons. In order to increase the efficiency of ion current generation, we have developed a new diode with a spiral-shaped grounded electrode. Using this geometry, it seems possible to realize closed electron drift in a diode with self-magnetic insulation. In the spiral diode, the efficiency of accelerated ions is increased from 5%–9% (conventional self-insulated diodes) up to 30%–40%. The realization of closed electron drift in the diode increases the efficiency of C{sup +} ion generation up to 40–50 times the Childe-Langmuir limit, which is more than 4 times higher than with other known constructions of self-magnetically insulated diodes.

  4. Digitally-multiplexed nanoelectrospray ionization atmospheric pressure drift tube ion mobility spectrometry.

    PubMed

    Kwasnik, Mark; Caramore, Joe; Fernández, Facundo M

    2009-02-15

    One of the shortcomings of atmospheric pressure drift tube ion mobility spectrometry (DTIMS) is its intrinsically low duty cycle (approximately 0.04-1%) caused by the rapid pulsing of the ion gate (25-400 micros) followed by a comparatively long drift time (25-100 ms), which translates into a loss of sensitivity. Multiplexing approaches via Hadamard and Fourier-type gating techniques have been reported for increasing the sensitivity of DTIMS. Here, we report an extended multiplexing approach which encompasses arbitrary binary ion injection waveforms with variable duty cycles ranging from 0.5 to 50%. In this approach, ion mobility spectra can be collected using conventional signal averaging, arbitrary, standard Hadamard and/or "extended" Hadamard operation modes. Initial results indicate signal-to-noise gains ranging from 2-7-fold for both arbitrary and "extended" Hadamard sequences. Standard Hadamard transform IMS provided increased sensitivity, with gains ranging from 9-12-fold, however, mobility spectra suffered from defects that appeared as false peaks, which were reduced or eliminated when using arbitrary or "extended" Hadamard waveforms for multiplexing. Digital multiplexing enables variation of the duty cycle in a continuous manner, minimizing the contribution of imperfect modulation on spectral defects without the need for complex spectral correction methods. By reducing the frequency of gating events employed in the variable duty cycle sequences, the contributions of factors such as ion depletion prior to gating, interaction of successively injected ion packets, and the cumulative effect of imperfect gating events were mitigated. PMID:19133785

  5. Scavenging of atmospheric ions and aerosols by drifting snow in Antarctica

    NASA Astrophysics Data System (ADS)

    Kamra, A. K.; Siingh, Devendraa; Pant, Vimlesh

    2009-02-01

    Measurements of the small-, intermediate-, and large-ion concentrations and the air-earth current density along with simultaneous measurements of the concentration and size distribution of aerosol particles in the size ranges 4.4-163 nm and 0.5-20 μm diameter are reported for a drifting snow period after the occurrence of a blizzard at a coastal station, Maitri, Antarctica. Ion concentrations of all categories and the air-earth current simultaneously decrease by approximately an order of magnitude as the wind speed increases from 5 to 10 ms - 1 . The rate of decrease is the highest for large ions, lowest for small ions and in-between the two for intermediate ions. Total aerosol number concentration decreases in the 4.4-163 nm size range but increases in the 0.5-20 μm size range with wind speed. The size distribution of the nanometer particles shows a dominant maximum at ~ 30 nm diameter throughout the period of observations and the height of the maximum decreases with wind speed. However, larger particles show a maximum at ~ 0.7 μm diameter but the height of the maximum increases with increasing wind speed. The results are explained in terms of scavenging of atmospheric ions and aerosols by the drifting snow particles.

  6. Closed electron drift in a self-magnetically insulated ion diode

    NASA Astrophysics Data System (ADS)

    Pushkarev, A. I.; Isakova, Y. I.

    2013-05-01

    The paper investigates a spiral geometry self-magnetically insulated ion diode with an explosive-emission cathode made from graphite. The experiments have been carried out using the TEMP-4M accelerator, with the accelerator configured to operate in double-pulse mode: the first negative pulse (300-500 ns, 100-150 kV) and the second positive pulse (150 ns, 250-300 kV). The ion beam energy density was 0.4-0.8 J/cm2 and the beam was composed of carbon ions (80%-85%) and protons. In order to increase the efficiency of ion current generation, we have developed a new diode with a spiral-shaped grounded electrode. Using this geometry, it seems possible to realize closed electron drift in a diode with self-magnetic insulation. In the spiral diode, the efficiency of accelerated ions is increased from 5%-9% (conventional self-insulated diodes) up to 30%-40%. The realization of closed electron drift in the diode increases the efficiency of C+ ion generation up to 40-50 times the Childe-Langmuir limit, which is more than 4 times higher than with other known constructions of self-magnetically insulated diodes.

  7. Comparison of low-latitude ion and neutral zonal drifts using DE 2 data

    NASA Technical Reports Server (NTRS)

    Coley, W. R.; Heelis, R. A.; Spencer, N. W.

    1994-01-01

    We have used data from the ion drift meter and the wind and temperature spectrometer on the DE 2 spacecraft to make statistical comparisons of the zonal ion and neutral drifts at dip latitudes (DLAT) in the +/- 35 deg range over all local times. Fourier analysis indicates that the superrotation and the diurnal components of both flows are strongly peaked at the dip equator, with the superrotation term becoming negative for the absolute value DLAT greater than or equal 20 deg. One interesting feature is the presence of a period (2200-0500 solar local time) in the 300-400 km altitude region near the dip equator where the ion drift is more strongly eastward than the neutral flow. This would seem to indicate the presence of an electric field source of greater strength than the F region dynamo elsewhere along the geomagnetic field line. Model calculations indicate that a possible mechanism for this source lies in the vertical shear in the zonal neutral wind in the 100-200 km altitude region.

  8. Study of daytime vertical E × B drift velocities inferred from ground-based magnetometer observations of ΔH, at low latitudes under geomagnetically disturbed conditions

    NASA Astrophysics Data System (ADS)

    Subhadra Devi, P. K.; Unnikrishnan, K.

    2014-03-01

    In this study, 30 storm sudden commencement (SSC) events during the period 2001-2007 for which daytime vertical E × B drift velocities from JULIA radar, Jicamarca (geographic latitude 11.91°S, geographic longitude 283.11°E, 0.81°N dip latitude), Peru and ΔH component of geomagnetic field measured as the difference between the magnitudes of the horizontal (H) components between two magnetometers deployed at two different locations Jicamarca (geographic latitude 11.91°S, geographic longitude 283.11°E, 0.81°N dip latitude) and Piura (geographic latitude 5.21°S, geographic longitude 279.41°E, 6.81°N dip latitude), in Peru, were considered. It is observed that a positive correlation exists between peak value of daytime vertical E × B drift velocity and peak value of ΔH for the three consecutive days of SSC. A qualitative analysis made after selecting the peak values of daytime vertical E × B drift velocity and ΔH showed that 57% of the events have daytime vertical E × B drift velocity peak in the magnitude range 20-30 m/s and 63% of the events have ΔH peak in the range 80-100 nT. The maximum probable (45%) range of time of occurrence of peak value for both vertical E × B drift velocity and ΔH during the daytime hours were found to be the same, i.e., 10:00-12:00 LT. A strong positive correlation was also found to exist between the daytime vertical E × B drift velocity and ΔH for all the three consecutive days of SSC, for all the events considered. To establish a quantitative relationship between day time vertical E × B drift velocity and ΔH, linear and polynomial (order 2 and 3) regression analysis (Least Square Method (LSM)) were carried out, considering the fully disturbed day after the commencement of the storm as ‘disturbed period’ for the SSC events selected for analysis. The formulae indicating the relationship between daytime vertical E × B drift velocity and ΔH, for the ‘disturbed periods’, obtained through the regression analysis were verified using the JULIA radar observed E × B drift velocity for 3 selected events. Root Mean Square (RMS) error analysis carried out for each case suggest that polynomial regression (order 3) analysis provides a better agreement with the observations from among the linear, polynomial (order 2 and 3) analysis.

  9. Locality of ion-drift wave spectra in weakly-turbulent dusty plasmas

    NASA Astrophysics Data System (ADS)

    Onishchenko, Oleg G.; Pokhotelov, Oleg A.; Pavlenko, Vladimir P.; Sagdeev, Roald Z.; Stenflo, Lennart; Shukla, Padma K.

    2001-11-01

    The locality of weakly turbulent Kolmogorov spectra for the ion-drift waves in dusty plasmas and the flute waves in electron-ion plasmas is analyzed. Using a standard kinetic approach for the description of the wave turbulence it is shown that the wave spectrum associated with the enstrophy flux is nonlocal whereas that related to the energy flux is local. The nonlocality of the wave enstrophy spectrum is associated with the long wavelength part of the turbulence. It is found that the wave energy flux is directed to smaller spatial scales.

  10. Solvable Examples of Drift and Diffusion of Ions in Non-uniform Electric Fields

    SciTech Connect

    Cahn, Robert; Cahn, Robert N.; Jackson, John David

    2008-05-30

    The drift and diffusion of a cloud of ions in a fluid are distorted by an inhomogeneous electric field. If the electric field carries the center of the distribution in a straight line and the field configuration is suitably symmetric, the distortion can be calculated analytically. We examine the specific examples of fields with cylindrical and spherical symmetry in detail assuming the ion distributions to be of a generally Gaussian form. The effects of differing diffusion coefficients in the transverse and longitudinal directions are included.

  11. International Reference Ionosphere: Past, present, and future. I - Electron density. II - Plasma temperatures, ion composition and ion drift

    NASA Technical Reports Server (NTRS)

    Bilitza, D.; Rawer, D.; Bossy, L.; Guliaeva, T.

    1993-01-01

    The most important investigations leading to the International Reference Ionosphere 1990 (IRI-90) are overviewed, and the latest version of the model is described. The shortcomings and limitations of the IRI-90 are pointed out, together with the ways of overcoming them. The list of studies that the IRI group has yet to carry out includes the investigations of magnetic storm effects as the highest priority. This paper discusses determinations of and the available data on the electron density, plasma temperatures, ion composition, and ion drift in the ionosphere, together with future improvements needed on these parameters.

  12. Two-Dimensional Numerical Simulation of Trapped Ion Mode and Drift Wave Turbulence.

    NASA Astrophysics Data System (ADS)

    Kingsbury, Owen Todd

    The first chapter is the paper entitled "Two-dimensional numerical simulation of trapped electron mode turbulent transport in a tokamak". Trapped electrons are lumped into hot and cold fluids to treat temperature gradient effects. The ion temperature gradient and dissipative trapped electron modes were simultaneously present. A plasma particle pinch was found only at extremely low collisionalities and a heat conduction pinch was found at moderate collisionalities, although there was no energy flow pinch seen. The second chapter is the paper entitled "Two -dimensional numerical simulation of trapped ion mode turbulence in a tokamak". The simulation of long wavelength trapped ion mode turbulence was used to investigate Bohm (macroscopic) versus gyro-Bohm (microscopic) scaling behavior in tokamaks. A nonlinear two-field model of dissipative trapped ion turbulence evolving trapped ion and trapped electron density fluctuations showed gyro-Bohm-like scaling in contrast to earlier simulation work by Saison, Wimmel, and Sardei (Plasma Physics, Vol. 20, pp. 1 to 20, 1978). In fact nearly all features of trapped ion mode turbulence and transport originally posited by Kadomstev and Pogutse (Reviews of Plasma Physics, Vol. 5) were recovered. The third chapter is the paper entitled "Numerical simulation of drift waves and trapped ion modes". Simulations were used to study the interaction of trapped electron drift waves (DW) and trapped ion modes (TIM). Wavenumber (k) space was divided into long wave and short wave regions at a poloidal wavenumber corresponding to the ion bounce frequency. Two field models were used to describe trapped electron drift wave dynamics at short waves and trapped ion mode dynamics for long waves. The principal result of this study was that the TIM did not contribute to the diffusion significantly, regardless of the model for the nonlinear coupling to the DW. The appendix documents a sparsely populated k -space grid scheme that was invented to perform the TIM/DW simulations. The method did not give physical results and was not used. The argument in the appendix states that it is not possible to mock up the nonlinear convolutions in Fourier representation such that some of the modes need not be included.

  13. Beam dynamics of the Neutralized Drift Compression Experiment-II (NDCX-II),a novel pulse-compressing ion accelerator

    SciTech Connect

    Friedman, A.; Barnard, J.J.; Cohen, R.H.; Grote, D.P.; Lund, S.M.; Sharp, W.M.; Faltens, A.; Henestroza, E.; Jung, J.-Y.; Kwan, J.W.; Lee, E.P.; Leitner, M.A.; Logan, B.G.; Vay, J.-L.; Waldron, W.L.; Davidson, R.C.; Dorf, M.; Gilson, E.P.; Kaganovich, I.D.

    2009-12-19

    Intense beams of heavy ions are well suited for heating matter to regimes of emerging interest. A new facility, NDCX-II, will enable studies of warm dense matter at {approx}1 eV and near-solid density, and of heavy-ion inertial fusion target physics relevant to electric power production. For these applications the beam must deposit its energy rapidly, before the target can expand significantly. To form such pulses, ion beams are temporally compressed in neutralizing plasma; current amplification factors of {approx}50-100 are routinely obtained on the Neutralized Drift Compression Experiment (NDCX) at LBNL. In the NDCX-II physics design, an initial non-neutralized compression renders the pulse short enough that existing high-voltage pulsed power can be employed. This compression is first halted and then reversed by the beam's longitudinal space-charge field. Downstream induction cells provide acceleration and impose the head-to-tail velocity gradient that leads to the final neutralized compression onto the target. This paper describes the discrete-particle simulation models (1-D, 2-D, and 3-D) employed and the space-charge-dominated beam dynamics being realized.

  14. Beam dynamics of the Neutralized Drift Compression Experiment-II (NDCX-II), a novel pulse-compressing ion accelerator

    SciTech Connect

    Friedman, A; Barnard, J J; Cohen, R H; Grote, D P; Lund, S M; Sharp, W M; Faltens, A; Henestroza, E; Jung, J; Kwan, J W; Lee, E P; Leitner, M A; Logan, B G; Vay, J; Waldron, W L; Davidson, R C; Dorf, M; Gilson, E P; Kaganovich, I

    2009-11-19

    Intense beams of heavy ions are well suited for heating matter to regimes of emerging interest. A new facility, NDCX-II, will enable studies of warm dense matter at {approx}1 eV and near-solid density, and of heavy-ion inertial fusion target physics relevant to electric power production. For these applications the beam must deposit its energy rapidly, before the target can expand significantly. To form such pulses, ion beams are temporally compressed in neutralizing plasma; current amplification factors of {approx}50-100 are routinely obtained on the Neutralized Drift Compression Experiment (NDCX) at LBNL. In the NDCX-II physics design, an initial non-neutralized compression renders the pulse short enough that existing high-voltage pulsed power can be employed. This compression is first halted and then reversed by the beam's longitudinal space-charge field. Downstream induction cells provide acceleration and impose the head-to-tail velocity gradient that leads to the final neutralized compression onto the target. This paper describes the discrete-particle simulation models (1-D, 2-D, and 3-D) employed and the space-charge-dominated beam dynamics being realized.

  15. Development of An Ion-Drift Time-of-Flight Chemical Ionization Mass Spectrometry Technique for Measurements of Aerosol Precursor Gases

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Ma, Y.; Chen, M.

    2012-12-01

    We have developed a new technique, i.e., ion-drift time-of-flight chemical ionization mass spectrometry (ID-ToF-CIMS) for measurements of aerosol precursor gases, including ammonia, amines, organic acids and oxygenated VOCs at pptv level with a response time less than 1 s. The ID-ToF-CIMS was modified from an Aerodyne high resolution ToF-CIMS with a custom-designed ion-drift tube, which can control the ion flight velocity and hence the ion-molecular reaction time. In addition, the tunable electric field generated by the drift tube can break up water clusters to select the major reagent ions. The advantages of the ID-ToF-CIMS over the traditional quadrupole-based ID-CIMS were the high mass-resolving power of the ToF mass analyzer and the capability of simultaneous measurement of the full mass range (typically up to 300 m/z) of product ions. Using hydronium ion based reagent ions, we demonstrated that the ID-ToF-CIMS can unambiguously measure ammonia (NH3) at 18.03 m/z, methyl amine (CH3NH2) at 32.05 m/z, formic acid (HCOOH) at 47.01 m/z and acetone (CH3COCH3) at 59.05 m/z. Calibrations were performed with both compressed commercial standard gases and permeation tubes and the results showed that the instrument detection limit can reach pptv level for 1 s average time or less. The ID-ToF-CIMS was also field tested in a mobile laboratory on the campus of Nanjing University of Information Science & Technology (NUIST). The preliminary results will be discussed.

  16. A Monte Carlo simulation of the effect of ion self-collisions on the ion velocity distribution function in the high-latitude F-region

    NASA Technical Reports Server (NTRS)

    Barghouthi, I. A.; Barakat, A. R.; Schunk, R. W.

    1994-01-01

    Non-Maxwellian ion velocity distribution functions have been theoretically predicted and confirmed by observations, to occur at high latitudes. These distributions deviate from Maxwellian due to the combined effect of the E x B drift and ion-neutral collisions. At high altitude and/or for solar maximum conditions, the ion-to-neutral density ratio increases and, hence, the role of ion self-collisions becomes appreciable. A Monte Carlo simulation was used to investigate the behavior of O(+) ions that are E x B-drifting through a background of neutral O, with the effect of O(+) (Coulomb) self-collisions included. Wide ranges of the ion-to-neutral density ratio n(sub i)/n(sub n) and the electrostatic field E were considered in order to investigate the change of ion behavior with solar cycle and with altitude. For low altitudes and/or solar minimum (n(sub i)/n(sub n) less than or equal to 10(exp -5)), the effect of self-collisions is negligible. For higher values of n(sub i)/n(sub n), the effect of self-collisions becomes significant and, hence, the non-Maxwellian features of the O(+) distribution are reduced. The Monte Carlo results were compared to those that used simplified collision models in order to assess their validity. In general, the simple collision models tend to be more accurate for low E and for high n(sub i)/n(sub n).

  17. Progress in Doppler Velocity Measurements of Ions in the DIII-D Divertor and SOL

    NASA Astrophysics Data System (ADS)

    Allen, S. L.; Meyer, W. H.; Samuel, C.; Howard, J.; Groth, M.

    2015-11-01

    We present recent progress in Doppler velocity measurements of ions using coherence imaging. A new in-situ calibration technique has been developed, focusing on CIII emission (465nm), and an optimized tomographic inversion routine provides time-resolved (~2 ms) flow images between shots. The CIII flow velocity in the divertor changes direction in response to a change in the sense of the DIII-D toroidal field, indicating the importance of drifts; the details of the flow image also changes near the x-point. Initial comparisons with UEDGE modeling will be presented. A second polarization interferometer system has been installed on the LLNL wide-view periscope, providing a tangential view of the scrape-off region around the plasma core. Initial measurements with a high spatial resolution camera (5.5 Megapixel) with ~10 ms time resolution will be presented. Both systems have a remote filter wheel to select visible impurity lines, e.g. CIII, CII, along with the main ion in Helium plasmas. Work supported by the US Department of Energy under DE-FC02-04ER54698 and DE-AC52-07NA27344.

  18. Li+ alumino-silicate ion source development for the Neutralized Drift Compression Experiment (NDCX)

    SciTech Connect

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W.; Seidl, Peter A.; Waldron, William L.; Wu, James K.

    2010-10-01

    We report results on lithium alumino-silicate ion source development in preparation for warmdense-matter heating experiments on the new Neutralized Drift Compression Experiment (NDCXII). The practical limit to the current density for a lithium alumino-silicate source is determined by the maximum operating temperature that the ion source can withstand before running into problems of heat transfer, melting of the alumino-silicate material, and emission lifetime. Using small prototype emitters, at a temperature of ~;;1275 oC, a space-charge-limited Li+ beam current density of J ~;;1 mA/cm2 was obtained. The lifetime of the ion source was ~;;50 hours while pulsing at a rate of 0.033 Hz with a pulse duration of 5-6 mu s.

  19. Properties of ion temperature gradient drift instabilities in H-mode plasmas

    SciTech Connect

    Hahm, T.S.; Tang, W.M.

    1988-11-01

    Experimental results from tokamaks such as DIII-D and JET have indicated that the electron density profile in H-mode (''high- confinement'') discharges can be nearly flat over most of the plasma, and, in some cases, even inverted (outwardly peaked). These conditions have very interesting implications for pictures of anomalous thermal transport based on the presence of ion temperature gradient drift instabilities. The present paper includes a new derivation of the ion temperature gradient threshold for weak density gradient /eta//sub i/ modes when ion transit resonances are taken into account; and the first derivation of threshold conditions for the onset of /eta//sub i/-modes when /eta//sub i/ is negative along with the properties of these negative /eta//sub i/ instabilities when the thresholds are exceeded. Possible consequences for confinement in H-mode plasmas are discussed. 32 refs., 8 figs.

  20. Effects of electrode geometry on the ion beam extraction of closed drift type anode layer linear ion source

    SciTech Connect

    Lee, Seunghun; Kim, Jong-Kuk; Kim, Do-Geun

    2012-02-15

    Closed drift type anode layer linear ion source was investigated with focusing on the electrode geometry effects on ion beam emission and anode layer formation. In the electrode geometry, the discharge gap between anode and cathode plays an important role to control anode layer formation as well as electron generation. When the discharge gap is increased from 2 to 3 mm, the ion current density was enhanced from 0.9 to 1.35 mA/cm{sup 2}. Computational simulation by using an object oriented particle in cell showed that the discharge volume was extended due to enhanced electron generation and the electric field at the anode layer was enhanced from 1.32 to 1.52 MV/cm.

  1. A gated atmospheric pressure drift tube ion mobility spectrometer-time-of-flight mass spectrometer.

    PubMed

    Heptner, Andre; Reinecke, Tobias; Langejuergen, Jens; Zimmermann, Stefan

    2014-08-22

    Identifying the compounds of an unknown gas mixture by using an ion mobility spectrometer (IMS) is a difficult task, because several ion species can be generated in the ionization process. One method to analyze the occurring peaks in an IMS spectrum is coupling an IMS to a mass spectrometer (MS). In our setup we coupled a (3)H drift tube IMS to a Bruker micrOTOF II. Therefore, the detector plate of the IMS is pierced and a transfer capillary is inserted. The ions are transferred via gas flow and electric fields into the MS. The transmission of the ions through the transfer capillary can be shuttered very precisely by increasing the electric potential of the detector generating a repulsive electric field. Thus, it is possible to transfer single ion clouds of generated IMS spectra into the mass spectrometer where a corresponding mass spectrum is generated. In this work we analyze the positive and negative IMS spectra of single analytes as well as gas mixtures and characterize the occurring ion species. PMID:25015244

  2. Anisotropy of the He+, C+, N+, O+, and Ne+ pickup ion velocity distribution functions

    NASA Astrophysics Data System (ADS)

    Drews, C.; Berger, L.; Taut, A.; Wimmer-Schweingruber, R. F.

    2016-04-01

    Context. Interstellar and inner-source pickup ions (PUIs) are produced by the ionization of neutral atoms that originate either outside or inside the heliosphere. Just after ionization, the singly charged ions are picked up by the magnetized solar wind plasma and develop strong anisotropic toroidal features in their velocity distribution functions (VDF). As the plasma parcel moves outwards with the solar wind, the pickup ion VDF gets more and more affected by resonant wave-particle interactions, changing heliospheric conditions, and plasma drifts, which lead to a gradual isotropization of the pickup ion VDF. Past investigations of the pickup ion torus distribution were limited to He+ pickup ions at 1 astronomical unit (AU). Aims: The aim of this study is to quantify the state of anisotropy of the He+, C+, N+, O+, and Ne+ pickup ion VDF at 1 AU. Changes between the state of anisotropy between PUIs of different mass-per-charges can be used to estimate the significance of resonant wave-particle interactions for the isotropization of their VDF, and to investigate the numerous simplifications that are generally made for the description of the phase-space transport of PUIs. Methods: Pulse height analysis data by the PLAsma and SupraThermal Ion Composition instrument (PLASTIC) on board the Solar Terrestrial RElations Observatory Ahead (STEREO A) is used to obtain velocity-spectra of He+, C+, N+, O+, and Ne+ relative to the solar wind, f(wsw). The wsw-spectra are sorted by two different configurations of the local magnetic field - one in which the torus distribution lies within the instrument's aperture, φ⊥, and one in which the torus distribution lies exclusively outside the instrument's field of view, φ∥. The ratio of the PUI spectra between φ⊥ and φ∥ is used to determine the degree of anisotropy of the PUI VDF. Results: The data shows that the formation of a torus distribution at 1 AU is significantly more prominent for O+ (and N+) than for He+ (and Ne+). This cannot be explained by resonant wave-particle interactions as the sole mechanism for the isotropization of the PUI VDF. The anisotropy of the O+ VDF compared to He+ is highly fluctuating but consistently higher over an observation period of six years and therefore unlikely to be related to either specific heliospheric conditions or solar activity variations. To our surprise, we also found a clear signature of a C+ torus distribution at 1 AU very similar to the one of He+, although as an inner-source PUI, C+ should have a considerably different spectral and spatial injection pattern than interstellar PUIs.

  3. Pedersen density drift instabilities

    NASA Technical Reports Server (NTRS)

    Gary, S. P.; Cole, T. E.

    1983-01-01

    This paper describes the linear kinetic theory of electrostatic-drift instabilities driven by Pedersen and density-drift velocities. The model uses a uniform magnetic field B; a weak, uniform density gradient in the x direction; and a weak, uniform electric field in the y direction. Weak charged-neutral collisions are represented by the addition of BGK model terms to the Vlasov equation. The resulting local dispersion equation is used to study the properties of the associated instabilities at ka(i) greater than about 1 (where k is the wave number and a(i) is the ion gyroradius). Results show that the E x B gradient drift instability at ka(i) = about 1 may grow in the auroral ionosphere primarily in the vicinity of 200 km and only if the electron density is sufficiently small.

  4. Heat flux modeling using ion drift effects in DIII-D H-mode plasmas with resonant magnetic perturbations

    NASA Astrophysics Data System (ADS)

    Wingen, A.; Schmitz, O.; Evans, T. E.; Spatschek, K. H.

    2014-01-01

    The heat flux patterns measured in low-collisionality DIII-D H-mode plasmas strongly deviate from simultaneously measured CII emission patterns, used as indicator of particle flux, during applied resonant magnetic perturbations. While the CII emission clearly shows typical striations, which are similar to magnetic footprint patterns obtained from vacuum field line tracing, the heat flux is usually dominated by one large peak at the strike point position. The vacuum approximation, which only considers applied magnetic fields and neglects plasma response and plasma effects, cannot explain the shape of the observed heat flux pattern. One possible explanation is the effect of particle drifts. This is included in the field line equations and the results are discussed with reference to the measurement. Electrons and ions show different drift motions at thermal energy levels in a guiding center approximation. While electrons hardly deviate from the field lines, ions can drift several centimetres away from field line flux surfaces. A model is presented in which an ion heat flux, based on the ion drift motion from various kinetic energies as they contribute to a thermal Maxwellian distribution, is calculated. The simulated heat flux is directly compared to measurements with a varying edge safety factor q95. This analysis provides evidence for the dominate effect of high-energy ions in carrying heat from the plasma inside the separatrix to the target. High-energy ions are deposited close to the unperturbed strike line, while low-energy ions can travel into the striated magnetic topology.

  5. Threshold field for soft damage and electron drift velocity in InGaN two-dimensional channels

    NASA Astrophysics Data System (ADS)

    Ardaravičius, L.; Kiprijanovič, O.; Liberis, J.; Šermukšnis, E.; Matulionis, A.; Ferreyra, R. A.; Avrutin, V.; Özgür, Ü.; Morkoç, H.

    2015-10-01

    Experimental investigation of electron transport along a two-dimensional channel confined in an InGaN alloy of Al{}0.82In{}0.18N/AlN/In{}0.1Ga{}0.9N/GaN structure was performed at room temperature under near-equilibrium thermal-bath temperature. A soft damage was observed at a threshold electric field applied in the channel plane. The threshold current for soft damage and the supplied electric power were lower in the channels with a higher electron density. The results are interpreted in terms of plasmon-assisted heat dissipation. In agreement with ultra-fast decay of hot phonons in the vicinity of the resonance with plasmons, the electron drift velocity acquires a highest value of ˜2 × 107 cm s-1 at 180 kV cm-1 in channels with 1 × 1013 cm-2 and decreases as the electron density increases. No negative differential resistance is observed. The effective hot-phonon lifetime is estimated as ˜ 2 ps at 1.6 × 1013 cm-2 at low electric fields and is found to decrease as the field increases.

  6. Unexpected transverse velocity component of Xe{sup +} ions near the exit plane of a Hall thruster

    SciTech Connect

    Bourgeois, G.; Mazouffre, S.; Sadeghi, N.

    2010-11-15

    The velocity component of singly charged xenon ions in a plane perpendicular to the thrust axis of the 1 kW-class PPS100-ML Hall effect thruster is deduced from laser induced fluorescence measurements on the 5d {sup 2}F{sub 7/2}{yields}6p {sup 2}D{sub 5/2}{sup 0} electronic transition at 834.72 nm. Measurements are carried out at several locations in the near field of the channel exhaust. Thruster operating parameters, such as magnetic field strength, discharge voltage, and xenon mass flow rate, are varied over a wide range. The initial aim of this work was to measure the azimuthal velocity of the ions due to their weak magnetic deflection. Surprisingly, experimental results cannot be explained by the one and only Lorentz force acting on Xe{sup +} ions. A realistic picture of the ion trajectory in the ExB drift plane is obtained when adding a velocity component directed toward the external cathode.

  7. Effects of drift gas on collision cross sections of a protein standard in linear drift tube and traveling wave ion mobility mass spectrometry.

    PubMed

    Jurneczko, Ewa; Kalapothakis, Jason; Campuzano, Iain D G; Morris, Michael; Barran, Perdita E

    2012-10-16

    There has been a significant increase in the use of ion mobility mass spectrometry (IM-MS) to investigate conformations of proteins and protein complexes following electrospray ionization. Investigations which employ traveling wave ion mobility mass spectrometry (TW IM-MS) instrumentation rely on the use of calibrants to convert the arrival times of ions to collision cross sections (CCS) providing "hard numbers" of use to structural biology. It is common to use nitrogen as the buffer gas in TW IM-MS instruments and to calibrate by extrapolating from CCS measured in helium via drift tube (DT) IM-MS. In this work, both DT and TW IM-MS instruments are used to investigate the effects of different drift gases (helium, neon, nitrogen, and argon) on the transport of multiply charged ions of the protein myoglobin, frequently used as a standard in TW IM-MS studies. Irrespective of the drift gas used, recorded mass spectra are found to be highly similar. In contrast, the recorded arrival time distributions and the derived CCS differ greatly. At low charge states (7 ≤ z ≤ 11) where the protein is compact, the CCS scale with the polarizability of the gas; this is also the case for higher charge states (12 ≤ z ≤ 22) where the protein is more unfolded for the heavy gases (neon, argon, and nitrogen) but not the case for helium. This is here interpreted as a different conformational landscape being sampled by the lighter gas and potentially attributable to increased field heating by helium. Under nanoelectrospray ionization (nESI) conditions, where myoglobin is sprayed from an aqueous solution buffered to pH 6.8 with 20 mM ammonium acetate, in the DT IM-MS instrument, each buffer gas can yield a different arrival time distribution (ATD) for any given charge state. PMID:22974196

  8. Lower-hybrid instabilities driven by an ion velocity ring

    NASA Technical Reports Server (NTRS)

    Akimoto, K.; Papadopoulos, K.; Winske, D.

    1985-01-01

    The lower-hybrid instabilities in high-beta (ratio of plasma to magnetic pressure) plasmas driven by ring-ion distributions in velocity space are investigated. A dispersion equation including electromagnetic effects is derived. In the low-beta limit, analytic expressions are obtained which illuminate the physical nature of the instabilities. The complete dispersion equation is solved numerically as a function of ring speed and plasma beta for several types of ring distribution. Electromagnetic effects are important for relatively energetic rings even in the low-beta regime, suppressing growth rates and shifting the angle of propagation to more oblique angles. Stabilization by thermal effects is also discussed. Application of these results to the earth's bow shock, AMPTE, comets and solar flares is suggested.

  9. Relative ion expansion velocity in laser-produced plasmas

    NASA Technical Reports Server (NTRS)

    Goldsmith, S.; Moreno, J. C.; Griem, H. R.; Cohen, Leonard; Richardson, M. C.

    1988-01-01

    The spectra of highly ionized titanium, Ti XIII through Ti XXI, and C VI Lyman lines were excited in laser-produced plasmas. The plasma was produced by uniformly irradiating spherical glass microballoons coated with thin layers of titanium and parylene. The 24-beam Omega laser system produced short, 0.6 ns, and high-intensity, 4 x 10 to the 14th W/sq cm, laser pulses at a wavelength of 351 nm. The measured wavelength for the 2p-3s Ti XIII resonance lines had an average shift of + 0.023 A relative to the C VI and Ti XX spectral lines. No shift was found between the C VI, Ti XIX, and Ti XX lines. The shift is attributed to a Doppler effect, resulting from a difference of (2.6 + or - 0.2) x 10 to the 7th cm/s in the expansion velocities of Ti XIX and Ti XX ions compared to Ti XIII ions.

  10. Modeling of ion acceleration through drift and diffusion at interplanetary shocks

    NASA Technical Reports Server (NTRS)

    Decker, R. B.; Vlahos, L.

    1986-01-01

    A test particle simulation designed to model ion acceleration through drift and diffusion at interplanetary shocks is described. The technique consists of integrating along exact particle orbits in a system where the angle between the shock normal and mean upstream magnetic field, the level of magnetic fluctuations, and the energy of injected particles can assume a range of values. The technique makes it possible to study time-dependent shock acceleration under conditions not amenable to analytical techniques. To illustrate the capability of the numerical model, proton acceleration was considered under conditions appropriate for interplanetary shocks at 1 AU, including large-amplitude transverse magnetic fluctuations derived from power spectra of both ambient and shock-associated MHD waves.

  11. Analysis of heterogeneous uptake by nanoparticles via differential mobility analysis-drift tube ion mobility spectrometry.

    PubMed

    Oberreit, Derek R; McMurry, Peter H; Hogan, Christopher J

    2014-04-21

    Improved methods are needed to study sorption of vapor molecules by particles in the gas phase (heterogeneous uptake), which is an important process in both natural and engineered environments. Here, a new measurement system, composed of a differential mobility analyzer (DMA) and drift tube ion mobility spectrometer (DTIMS) in series, is used to examine the heterogeneous uptake of water vapor by 2.85-7.6 nm particles composed of lithium and sodium iodide. The extent of heterogeneous uptake is determined by controlling the relative humidity of the drift region in the DTIMS in the 0-30% range (in air at atmospheric pressure and room temperature), and is quantified via the dimensionless growth factor (GF), i.e. the ratio of the mobility diameter of particles at a prescribed relative humidity relative to their mobility diameter under dry conditions. The precision in GF estimation of the DMA-DTIMS system is shown to be below 0.2%. An analytical equation to calculate the growth factor, based upon predictions of the equilibrium constants for the successive uptake of vapor molecules by particles, is also presented. While the equation is sufficiently general to enable comparison between measured GFs and predictions from any theoretical expression for equilibrium constants, we specifically compare measurements to GF predictions based on the classical Kelvin-Thomson-Raoult (KTR) model for the vapor pressure of a small particle, with consideration of the influence of the ion-dipole potential on water vapor-nanoparticle collisions. It is shown that KTR calculations drastically underpredict the extent of heterogeneous uptake for the examined nanoparticles. PMID:24600691

  12. Mobility-Resolved Ion Selection in Uniform Drift Field Ion Mobility Spectrometry/Mass Spectrometry; Dynamic Switching in Structures for Lossless Ion Manipulations

    SciTech Connect

    Webb, Ian K.; Garimella, Venkata BS; Tolmachev, Aleksey V.; Chen, Tsung-Chi; Zhang, Xinyu; Cox, Jonathan T.; Norheim, Randolph V.; Prost, Spencer A.; Lamarche, Brian L.; Anderson, Gordon A.; Ibrahim, Yehia M.; Smith, Richard D.

    2014-10-07

    A Structures for Lossless Ion Manipulations (SLIM) module that allows ion mobility separations and the switching of ions between alternative drift paths is described. The SLIM switch component has a “Tee” configuration and allows switching of ions between a linear path and a 90-degree bend. By controlling switching times, ions can be deflected to an alternative channel as a function of their mobilities. In the initial evaluation the switch is used in a static mode and shown compatible with high performance ion mobility separations at 4 torr. In the “dynamic mode” we show that mobility-selected ions can be switched into the alternative channel, and that various ion species can be independently selected based on their mobilities for time-of-flight mass spectrometer (TOF MS) IMS detection and mass analysis. This development also provides the basis for e.g. the selection of specific mobilities for storage and accumulation, and key modules for the assembly of SLIM devices enabling much more complex sequences of ion manipulations.

  13. Ion acceleration in Ar-Xe and Ar-He plasmas. II. Ion velocity distribution functions

    SciTech Connect

    Biloiu, Ioana A.; Scime, Earl E.

    2010-11-15

    Ion velocity distribution functions (ivdfs) are investigated by laser induced fluorescence in Ar-Xe and Ar-He expanding helicon plasmas as a function of gas composition. In the case of Ar-Xe plasma, it was found that in the helicon source, both the Ar{sup +} and Xe{sup +} vdfs are unimodal. Their parallel speeds are subsonic and unaffected by changes in gas composition. At the end of the source, the argon ivdf shows a bimodal structure indicative of an electric double layer upstream of the measurement location. The fast argon ion component parallel velocity increases with Xe fraction from 6.7 to 8 km/s as the Xe fraction increases from 0% to 4%. In the expansion region, the bimodal character of Ar ivdf is maintained with a supersonic fast component reaching parallel speeds of 10.5 km/s. For all the studied plasma conditions and different spatial locations, the Xe{sup +} vdf exhibits a unimodal structure with a maximum parallel flow velocity of 2.2 km/s at the end of the source. For Ar-He plasma, the Ar ivdf is bimodal with the fast ion component parallel velocity increasing from 5.2 to 7.8 km/s as the He fraction increases from 0% to 30%. For the same He fraction range, the slow argon ion population distribution changes from a single Gaussian to a wide distribution extending all the way from the speed of the fast population to 0 m/s.

  14. Heat flux modeling using ion drift effects in DIII-D H-mode plasmas with resonant magnetic perturbations

    SciTech Connect

    Wingen, A.; Institut für Theoretische Physik, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf ; Schmitz, O.; Evans, T. E.; Spatschek, K. H.

    2014-01-15

    The heat flux patterns measured in low-collisionality DIII-D H-mode plasmas strongly deviate from simultaneously measured CII emission patterns, used as indicator of particle flux, during applied resonant magnetic perturbations. While the CII emission clearly shows typical striations, which are similar to magnetic footprint patterns obtained from vacuum field line tracing, the heat flux is usually dominated by one large peak at the strike point position. The vacuum approximation, which only considers applied magnetic fields and neglects plasma response and plasma effects, cannot explain the shape of the observed heat flux pattern. One possible explanation is the effect of particle drifts. This is included in the field line equations and the results are discussed with reference to the measurement. Electrons and ions show different drift motions at thermal energy levels in a guiding center approximation. While electrons hardly deviate from the field lines, ions can drift several centimetres away from field line flux surfaces. A model is presented in which an ion heat flux, based on the ion drift motion from various kinetic energies as they contribute to a thermal Maxwellian distribution, is calculated. The simulated heat flux is directly compared to measurements with a varying edge safety factor q{sub 95}. This analysis provides evidence for the dominate effect of high-energy ions in carrying heat from the plasma inside the separatrix to the target. High-energy ions are deposited close to the unperturbed strike line, while low-energy ions can travel into the striated magnetic topology.

  15. Vertical E × B drift velocity variations and associated low-latitude ionospheric irregularities investigated with the TOPEX and GPS satellite data

    NASA Astrophysics Data System (ADS)

    Horvath, I.; Essex, E. A.

    2003-04-01

    With a well-selected data set, the various events of the vertical E × B drift velocity variations at magnetic-equator-latitudes, the resultant ionospheric features at low-and mid-latitudes, and the practical consequences of these E × B events on the equatorial radio signal propagation are demonstrated. On a global scale, the development of a equatorial anomaly is illustrated with a series of 1995 global TOPEX TEC (total electron content) maps. Locally, in the Australian longitude region, some field-aligned TOPEX TEC cross sections are combined with the matching Guam (144.86° E; 13.59° N, geographic) GPS (Global Positioning System) TEC data, covering the northern crest of the equatorial anomaly. Together, the 1998 TOPEX and GPS TEC data are utilized to show the three main events of vertical E × B drift velocity variations: (1) the pre-reversal enhancement, (2) the reversal and (3) the downward maximum. Their effects on the dual-frequency GPS recordings are documented with the raw Guam GPS TEC data and with the filtered Guam GPS dTEC/min or 1-min GPS TEC data after Aarons et al. (1997). During these E × B drift velocity events, the Port Moresby (147.10° E; - 9.40° N, geographic) virtual height or h'F ionosonde data (km), which cover the southern crest of the equatorial anomaly in the Australian longitude region, show the effects of plasma drift on the equatorial ionosphere. With the net (D

  16. Spectroscopic measurement of ion temperature and ion velocity distributions in the flux-coil generated FRC.

    PubMed

    Gupta, D; Bolte, N; Gota, H; Hayashi, R; Kiyashko, V; Marsili, P; Morehouse, M; Primavera, S; Roche, T; Wessel, F

    2010-10-01

    One aim of the flux-coil generated field reversed configuration at Tri Alpha Energy (TAE) is to establish the plasma where the ion rotational energy is greater than the ion thermal energy. To verify this, an optical diagnostic was developed to simultaneously measure the Doppler velocity-shift and line-broadening using a 0.75 m, 1800 groves/mm, spectrometer. The output spectrum is magnified and imaged onto a 16-channel photomultiplier tube (PMT) array. The individual PMT outputs are coupled to high-gain, high-frequency, transimpedance amplifiers, providing fast-time response. The Doppler spectroscopy measurements, along with a survey spectrometer and photodiode-light detector, form a suite of diagnostics that provide insights into the time evolution of the plasma-ion distribution and current when accelerated by an azimuthal-electric field. PMID:21033923

  17. Parametric Excitation of Geodesic Acoustic Modes by Electron Drift Waves and Ion Temperature Gradient Modes in Tokamak Plasmas

    SciTech Connect

    Guzdar, P. N.; Kleva, R. G.; Chakrabarti, N.; Kaw, P. K.; Singh, R.; Naulin, V.; Rasmussen, J. J.

    2008-11-01

    Geodesic Acoustic Modes (GAMs) have been predicted and subsequently observed in many toroidal plasma devices. Bicoherence studies on various devices have suggested three-wave mode coupling processes between GAMs and high frequency turbulence. Thus the parametric coupling of GAMS to drift waves and/or ion temperature gradient(ITG{r_brace} modes is a potential candidate for excitation of these modes. In this paper we discuss the resonant three-wave coupling mechanism for the excitation of GAMs by ITG and finite beta drift waves in homogeneous and inhomogeneous plasmas and compare theoretical predictions with observed characteristics of the GAMs.

  18. Characteristics of equatorial plasma bubble zonal drift velocity and tilt based on Hong Kong GPS CORS network: From 2001 to 2012

    NASA Astrophysics Data System (ADS)

    Ji, Shengyue; Chen, Wu; Weng, Duojie; Wang, Zhenjie

    2015-08-01

    Hong Kong (22.3°N, 114.2°E, dip: 30.5°N; geomagnetic 15.7°N, 173.4°W, declination: 2.7°W) is a low-latitude area, and the Hong Kong Continuously Operating Reference Station (CORS) network has been developed and maintained by Lands Department of Hong Kong government since 2001. Based on the collected GPS observations of a whole solar cycle from 2001 to 2012, a method is proposed to estimate the zonal drift velocity as well as the tilt of the observed plasma bubbles, and the estimated results are statistically analyzed. It is found that although the plasma bubbles are basically vertical within the equatorial plane, the tilt can be as big as more than 60° eastward or westward sometimes. And, the tilt and the zonal drift velocity are correlated. When the velocity is large, the tilt is also large generally. Another finding is that large velocity and tilt generally occur in spring and autumn and in solar active years.

  19. Li+ alumino-silicate ion source development for the Neutralized Drift Compression Experiment (NDCX-II)

    SciTech Connect

    LBNL; Roy, P.K.; Greenway, W.; Kwan, J.W.; Seidl, P.A.; Waldron, W.

    2011-04-20

    To heat targets to electron-volt temperatures for the study of warm dense matter with intense ion beams, low mass ions, such as lithium, have an energy loss peak (dE/dx) at a suitable kinetic energy. The Heavy Ion Fusion Sciences (HIFS) program at Lawrence Berkeley National Laboratory will carry out warm dense matter experiments using Li{sup +} ion beam with energy 1.2-4 MeV in order to achieve uniform heating up to 0.1-1 eV. The accelerator physics design of Neutralized Drift Compression Experiment (NDCX-II) has a pulse length at the ion source of about 0.5 {micro}s. Thus for producing 50 nC of beam charge, the required beam current is about 100 mA. Focusability requires a normalized (edge) emittance {approx}2 {pi}-mm-mrad. Here, lithium aluminosilicate ion sources, of {beta}-eucryptite, are being studied within the scope of NDCX-II construction. Several small (0.64 cm diameter) lithium aluminosilicate ion sources, on 70%-80% porous tungsten substrate, were operated in a pulsed mode. The distance between the source surface and the mid-plane of the extraction electrode (1 cm diameter aperture) was 1.48 cm. The source surface temperature was at 1220 C to 1300 C. A 5-6 {micro}s long beam pulsed was recorded by a Faraday cup (+300 V on the collector plate and -300 V on the suppressor ring). Figure 1 shows measured beam current density (J) vs. V{sup 3/2}. A space-charge limited beam density of {approx}1 mA/cm{sup 2} was measured at 1275 C temperature, after allowing a conditioning time of about {approx} 12 hours. Maximum emission limited beam current density of {ge} 1.8mA/cm{sup 2} was recorded at 1300 C with 10-kV extractions. Figure 2 shows the lifetime of two typical sources with space-charge limited beam current emission at a lower extraction voltage (1.75 kV) and at temperature of 1265 {+-} 7 C. These data demonstrate a constant, space-charge limited beam current for 20-50 hours. The lifetime of a source is determined by the loss of lithium from the alumino-silicate material either as ions or as neutral atoms. Our measurements suggest that for the low duty factor ({approx}10{sup -8}) required for NDCX-II, the lifetime of an emitter depends mostly on the duration that the emitter spends at elevated temperature, that is, at {ge} 1250 C. At this temperature, lithium loss is due mostly to neutral loss (not charged ion extraction). Extension of the lifetime of the source may be possible by lowering the temperature between beam pulses, when the idling time is sufficiently long between shots. The NDCX-II design seeks to operate the ion source at the maximum current density without running into heat management and lifetime problems. In preparation to fabricate a large (10.9 cm in diameter) source for the NDCXII experiment, recently a 7.6 cm diameter source has been fabricated. The method of fabrication of this larger source is similar to that of fabrication of a 6.3mm diameter source, except a longer furnace heating time was used due to mass differences. NDCX-II construction is in progress. Progress of lithium source study for NDCX-II is available in literature.

  20. Neoclassical polarization drift of collisionless single ions in a sheared radial electric field in a tokamak magnetic geometry

    SciTech Connect

    Baek, Hoyul; Ku, Seunghoe; Chang, C. S.

    2006-01-15

    Neoclassical polarization drift is known to play critical role in the dynamical behavior of a sheared radial electric field E{sub r} in a toroidal confinement device. However, basic studies on the effect of radial electric shear on neoclassical polarization drift have not yet appeared in the literature. In the present report, the neoclassical polarization drift speed V{sub NP} of collisionless single ions is studied using a guiding-center code in a time-varying, spatially sheared E{sub r} in a realistic tokamak geometry. It is found numerically that the V{sub NP} for single ions is not only a function of the time derivative {partial_derivative}E{sub r}/{partial_derivative}t, but also a strong function of the radial shear {delta}r{partial_derivative}E{sub r}/{partial_derivative}r if the shear length is on the same order as the ion banana width {delta}r. Comparison with an analytic investigation reveals that this effect is simply due to the finite banana modification to the orbital average E{sub r}. An approximate analytic formula has been presented for collisionless single banana ions in a conventional tokamak magnetic geometry. The trapped-passing boundary layer physics is not treated.

  1. Ion velocity distributions in the vicinity of the current sheet in Earth's distant magnetotail

    NASA Technical Reports Server (NTRS)

    Frank, L. A.; Paterson, W. R.; Ackerson, K. L.; Kokubun, S.; Kivelson, M. G.; Yamamoto, T.; Fairfield, D. H.

    1994-01-01

    Observations of the three-dimensional velocity distributions of positive ions and electrons have been recently gained for the first time in Earth's distant magnetotail with the Galileo and Geotail spacecraft. For this brief discussion of these exciting results the focus is on the overall character of the ion velocity distributions during substorm activity. The ion velocity distributions within and near the magnetotail current sheet are not accurately described as convecting, isotropic Maxwellians. The observed velocity distributions are characterized by at least two robust types. The first type is similar to the 'lima bean'-shaped velocity distributions that are expected from the nonadiabatic acceleration of ions which execute Speiser-type trajectories in the current sheet. The second distribution is associated with the presence of cold ion beams that presumably also arise from the acceleration of plasma mantle ions in the electric and weak magnetic fields in the current sheet. The ion velocity distributions in a magnetic field structure that is similar to that for plasmoids are also examined. Again the velocity distributions are not Maxwellian but are indicative of nonadiabatic acceleration. An example of the pressure tensor within the plasmoid-like event is also presented because it is anticipated that the off-diagonal elements are important in a description of magnetotail dynamics. Thus our concept of magnetotail dynamics must advance from the present assumption of co-moving electron and ion Maxwellian distributions into reformulations in terms of global kinematical models and nonadiabatic particle motion.

  2. Drift Velocity of Small-Scale Artificial Ionospheric Irregularities According to Multifrequency HF Doppler Radar. I. Method of Calculation and Its Hardware Implementation

    NASA Astrophysics Data System (ADS)

    Vertogradov, G. G.; Uryadov, V. P.; Vertogradov, V. G.; Vertogradova, E. G.; Kubatko, S. V.

    2015-10-01

    The method of calculating the total drift velocity vector of small-scale artificial ionospheric irregularities as measured by the effective Doppler frequency shift of aspect-scattered signals from several diagnostic illumination transmitters operated at different frequencies is discussed. The technique of adaptive simulation of decameter radio waves propagating in an inhomogeneous magnetized ionosphere with allowance for the aspect scattering effects due to small-scale field-aligned irregularities is developed. A multifrequency HF Doppler radar for simultaneous measurement of the Doppler spectra of radio signals at a set of frequencies is described.

  3. Spectral anomalies of the effect of light-induced drift of caesium atoms caused by the velocity dependence of transport collision frequencies

    SciTech Connect

    Parkhomenko, A I; Shalagin, A M

    2014-10-31

    The spectral features of the light-induced drift (LID) velocity of caesium atoms in inert buffer gases are studied theoretically. A strong temperature dependence of the spectral LID line shape of Cs atoms in Ar or Kr atmosphere in the vicinity of T ∼ 1000 K is predicted. It is shown that the anomalous LID of Cs atoms in binary buffer mixtures of two different inert gases can be observed at virtually any (including ambient) temperature, depending on the content of the components in these mixtures. The results obtained make it possible to precisely test the interatomic interaction potentials in the experiments on the anomalous LID. (quantum optics)

  4. Effects of errors in velocity tilt on maximum longitudinal compression during neutralized drift compression of intense beam pulses: I. general description

    SciTech Connect

    Kaganovich, Igor D.; Massidda, Scottt; Startsev, Edward A.; Davidson, Ronald C.; Vay, Jean-Luc; Friedman, Alex

    2012-06-21

    Neutralized drift compression offers an effective means for particle beam pulse compression and current amplification. In neutralized drift compression, a linear longitudinal velocity tilt (head-to-tail gradient) is applied to the non-relativistic beam pulse, so that the beam pulse compresses as it drifts in the focusing section. The beam current can increase by more than a factor of 100 in the longitudinal direction. We have performed an analytical study of how errors in the velocity tilt acquired by the beam in the induction bunching module limit the maximum longitudinal compression. It is found that the compression ratio is determined by the relative errors in the velocity tilt. That is, one-percent errors may limit the compression to a factor of one hundred. However, a part of the beam pulse where the errors are small may compress to much higher values, which are determined by the initial thermal spread of the beam pulse. It is also shown that sharp jumps in the compressed current density profile can be produced due to overlaying of different parts of the pulse near the focal plane. Examples of slowly varying and rapidly varying errors compared to the beam pulse duration are studied. For beam velocity errors given by a cubic function, the compression ratio can be described analytically. In this limit, a significant portion of the beam pulse is located in the broad wings of the pulse and is poorly compressed. The central part of the compressed pulse is determined by the thermal spread. The scaling law for maximum compression ratio is derived. In addition to a smooth variation in the velocity tilt, fast-changing errors during the pulse may appear in the induction bunching module if the voltage pulse is formed by several pulsed elements. Different parts of the pulse compress nearly simultaneously at the target and the compressed profile may have many peaks. The maximum compression is a function of both thermal spread and the velocity errors. The effects of the finite gap width of the bunching module on compression are analyzed analytically.

  5. Enhancing Biological Analyses with Three Dimensional Field Asymmetric Ion Mobility, Low Field Drift Time Ion Mobility and Mass Spectrometry (µFAIMS/IMS-MS) Separations

    SciTech Connect

    Zhang, Xing; Ibrahim, Yehia M.; Chen, Tsung-Chi; Kyle, Jennifer E.; Norheim, Randolph V.; Monroe, Matthew E.; Smith, Richard D.; Baker, Erin Shammel

    2015-06-30

    We report the first evaluation of a platform coupling a high speed field asymmetric ion mobility spectrometry microchip (µFAIMS) with drift tube ion mobility and mass spectrometry (IMS-MS). The µFAIMS/IMS-MS platform was used to analyze biological samples and simultaneously acquire multidimensional information of detected features from the measured FAIMS compensation fields and IMS drift times, while also obtaining accurate ion masses. These separations thereby increase the overall separation power, resulting increased information content, and provide more complete characterization of more complex samples. The separation conditions were optimized for sensitivity and resolving power by the selection of gas compositions and pressures in the FAIMS and IMS separation stages. The resulting performance provided three dimensional separations, benefitting both broad complex mixture studies and targeted analyses by e.g. improving isomeric separations and allowing detection of species obscured by “chemical noise” and other interfering peaks.

  6. Drift Compression and Final Focus for Intense Heavy Ion Beams with Non-periodic, Time-dependent Lattice

    SciTech Connect

    Hong Qin; Ronald C. Davidson; John J. Barnard; Edward P. Lee

    2005-02-14

    In the currently envisioned configurations for heavy ion fusion, it is necessary to longitudinally compress the beam bunches by a large factor after the acceleration phase. Because the space-charge force increases as the beam is compressed, the beam size in the transverse direction will increase in a periodic quadrupole lattice. If an active control of the beam size is desired, a larger focusing force is needed to confine the beam in the transverse direction, and a non-periodic quadrupole lattice along the beam path is necessary. In this paper, we describe the design of such a focusing lattice using the transverse envelope equations. A drift compression and final focus lattice should focus the entire beam pulse onto the same focal spot on the target. This is difficult with a fixed lattice, because different slices of the beam may have different perveance and emittance. Four time-dependent magnets are introduced in the upstream of drift compression to focus the entire pulse onto the sam e focal spot. Drift compression and final focusing schemes are developed for a typical heavy ion fusion driver and for the Integrated Beam Experiment (IBX) being designed by the Heavy Ion Fusion Virtual National Laboratory.

  7. Ion velocity distributions in the sheath and presheath of a biased object in plasma

    SciTech Connect

    Miloch, W. J.; Gulbrandsen, N.; Mishra, L. N.; Fredriksen, A.

    2011-08-15

    Ion velocity distributions in the vicinity of a spherical object with a negative potential with respect to collisionless, source-free plasma are studied with three-dimensional numerical simulations. The ion dynamics around the object leads to distorted radial velocity distributions in the presheath and the sheath edge region. Far in the sheath, an increase in the thermal velocity in the radial direction is observed. Different potentials of the object, ion temperatures, and ion masses are considered, as well as the role of spatial and temporal resolutions in laboratory measurements of ion velocity distributions. The simulations are carried out with the DiP3D, a three-dimensional particle-in-cell numerical code.

  8. Non-Lorentzian ion cyclotron resonance line shapes arising from velocity-dependent ion-neutral collision frequencies

    NASA Technical Reports Server (NTRS)

    Whealton, J. H.; Mason, E. A.

    1973-01-01

    An asymptotic solution of the Boltzmann equation is developed for ICR absorption, without restrictions on the ion-neutral collision frequency or mass ratio. Velocity dependence of the collision frequency causes deviations from Lorentzian line shape.

  9. An Effective Approach for Coupling Direct Analysis in Real Time with Atmospheric Pressure Drift Tube Ion Mobility Spectrometry

    NASA Astrophysics Data System (ADS)

    Keelor, Joel D.; Dwivedi, Prabha; Fernández, Facundo M.

    2014-09-01

    Drift tube ion mobility spectrometry (DTIMS) has evolved as a robust analytical platform routinely used for screening small molecules across a broad suite of chemistries ranging from food and pharmaceuticals to explosives and environmental toxins. Most modern atmospheric pressure IM detectors employ corona discharge, photoionization, radioactive, or electrospray ion sources for efficient ion production. Coupling standalone DTIMS with ambient plasma-based techniques, however, has proven to be an exceptional challenge. Device sensitivity with near-ground ambient plasma sources is hindered by poor ion transmission at the source-instrument interface, where ion repulsion is caused by the strong electric field barrier of the high potential ion mobility spectrometry (IMS) inlet. To overcome this shortfall, we introduce a new ion source design incorporating a repeller point electrode used to shape the electric field profile and enable ion transmission from a direct analysis in real time (DART) plasma ion source. Parameter space characterization studies of the DART DTIMS setup were performed to ascertain the optimal configuration for the source assembly favoring ion transport. Preliminary system capabilities for the direct screening of solid pharmaceuticals are briefly demonstrated.

  10. An effective approach for coupling direct analysis in real time with atmospheric pressure drift tube ion mobility spectrometry.

    PubMed

    Keelor, Joel D; Dwivedi, Prabha; Fernández, Facundo M

    2014-09-01

    Drift tube ion mobility spectrometry (DTIMS) has evolved as a robust analytical platform routinely used for screening small molecules across a broad suite of chemistries ranging from food and pharmaceuticals to explosives and environmental toxins. Most modern atmospheric pressure IM detectors employ corona discharge, photoionization, radioactive, or electrospray ion sources for efficient ion production. Coupling standalone DTIMS with ambient plasma-based techniques, however, has proven to be an exceptional challenge. Device sensitivity with near-ground ambient plasma sources is hindered by poor ion transmission at the source-instrument interface, where ion repulsion is caused by the strong electric field barrier of the high potential ion mobility spectrometry (IMS) inlet. To overcome this shortfall, we introduce a new ion source design incorporating a repeller point electrode used to shape the electric field profile and enable ion transmission from a direct analysis in real time (DART) plasma ion source. Parameter space characterization studies of the DART DTIMS setup were performed to ascertain the optimal configuration for the source assembly favoring ion transport. Preliminary system capabilities for the direct screening of solid pharmaceuticals are briefly demonstrated. PMID:24903510

  11. Comparative analysis of nocturnal vertical plasma drift velocities inferred from ground-based ionosonde measurements of hmF2 and h‧F

    NASA Astrophysics Data System (ADS)

    Adebesin, B. O.; Adeniyi, J. O.; Adimula, I. A.; Oladipo, O. A.; Olawepo, A. O.; Reinisch, B. W.

    2015-01-01

    Variations in the evening/nighttime ionosonde vertical plasma drift velocities inferred from the time rate of change of both the base of the F-layer height (Vz(h‧F)) and height of the peak electron density (Vz(hmF2)) from an equatorial station were compared for better description of the E×B drifts. For better interpretation, both results were compared with the Incoherent Scatter (IS) radar observations (Vz(ISR)) which is taken to be the most accurate method of measuring drift, and therefore the data of reference level. An equinoctial maximum and June solstice minimum in post-sunset pre-reversal enhancement (PRE) was observed for Vz(hmF2), Vz(ISR), and Vz(h‧F). The percentage correlation between VzhmF2 and Vzh‧F ranges within 55-70%. While PRE for Vz(hmF2) peaked at 19 LT for all seasons, Vz(h‧F) peaked at 18 LT for September equinox and December solstice, and start earlier. The nighttime downward reversal peak magnitudes for Vz(hmF2) and Vz(h‧F) are respectively within the range of -4 to -14 and -2 to -14 m/s; whereas Vz(ISR) ranges within -12 and -34 m/s; and the peak time was reached earlier with the ionosonde observations than for the ISR. The PRE peak magnitude for Vz(hmF2), Vz(h‧F) and Vz(ISR) varies between 3-14, 2-14, and 4-14 m/s for the entire seasons. Our results revealed higher drift correlation coefficients in both Vz(hmF2) vs. Vz(ISR) (0.983) and Vz(h‧F) vs. Vz(ISR) (0.833) relationships during the equinoxes between 16-20 LT, at which time the F-layer altitude is higher than the 300 km threshold value; and lower for solstice period (0.326 and 0.410 in similar order). A better linear relationship between Vz(hmF2) and Vz(h‧F2) was observed during the reversal (19-21 LT) phase period. PRE velocity was shown to be seasonal and solar activity dependent. Both VzhmF2 and Vzh‧F compares almost equally with the ISR measurement. However, the PRE peak magnitude for the drift inferred using h‧F2 is closer to the corresponding ISR magnitude during the equinoxes; whereas the drift inferred from hmF2 best represent the ISR magnitude for solstices. We established that both VzhmF2 and Vzh‧F are governed by the same mechanism at nighttime, and as such any of them can be used to infer vertical drift as long as the 300 km threshold value condition is considered, otherwise chemical correction may be required for the F-layer uplift.

  12. Direct analysis in real time coupled to multiplexed drift tube ion mobility spectrometry for detecting toxic chemicals.

    PubMed

    Harris, Glenn A; Kwasnik, Mark; Fernández, Facundo M

    2011-03-15

    Current and future chemical threats to homeland security motivate the need for new chemical detection systems to provide border, transportation, and workplace security. We present the first successful coupling of a commercial direct analysis in real time (DART) ion source to a resistive glass monolithic drift tube ion mobility spectrometer (DTIMS) as the basis for a low maintenance, versatile, and robust chemical monitoring system. in situ ionization within the electric field gradient of the instrument enhances sensitivity and provides a safe sampling strategy. The instrument uses nitrogen as both the DART discharge and DTIMS drift gases, allowing for a high electric field to be used for ion separation while keeping cost-of-use low. With the use of a traditional signal averaging acquisition mode, the 95% probability of detection (POD) for analytes sampled from melting point capillary tubes was 11.81% v/v for DMMP, 1.13% v/v for 2-CEES, and 10.61 mM for methamidophos. Sensitivity was improved via a prototype transmission-mode geometry interface, resulting in an almost 2 orders of magnitude decrease in the POD level for DMMP (0.28% v/v). As an alternative to transmission mode operation, digital multiplexing of the DTIMS ion injection step was also implemented, finding a 3-fold improvement in signal-to-noise ratios for 200 μs gate injections and a 4.5-fold for 400 μs gate injections. PMID:21319810

  13. A velocity map imaging spectrometer for electron?ion and ion?ion coincidence experiments with synchrotron radiation

    SciTech Connect

    Advanced Light Source; Kilcoyne, Arthur L; Rolles, D.; Pesic, Z.D.; Perri, M.; Bilodeau, R.C.; Ackerman, G.D.; Rude, B.S.; Kilcoyne, A.L.D.; Bozek, J.D.; Berrah, N.

    2007-04-27

    We have built a velocity imaging (VMI) spectrometer optimized for angle-resolved photoionization experiments with synchrotron radiation (SR) in the VUV and soft X-tay range. The spectrometer is equiped with four electrostatic lenses that focus the charged photoionization products onto a position-sensitive multi-hit delay-line anode. The use of two additional electrostatic lens elements as compared to the standard design of Eppink and Parker [T.J.B. Eppink and D.H. Parker, Rev. Sci. Instrum. 68 (1997) 3477]provides better focusing of an extended interaction region, which is crucial for most SR applications. Furthermore, the apparatus is equipped with a second micro-channel plate detector opposite to the VMI spectrometer, enabling electron-ion coincidence experiments and thereby mass-resolved ion spectroscopy independent of the time structure of the synchrotron radiation. First results for the photofragmentation of CO2 molecules are presented.

  14. Ion velocities in direct current arc plasma generated from compound cathodes

    SciTech Connect

    Zhirkov, I.; Rosen, J.; Eriksson, A. O.; Oerlikon Balzers Coating AG, Iramali 18, 9496 Balzers

    2013-12-07

    Arc plasma from Ti-C, Ti-Al, and Ti-Si cathodes was characterized with respect to charge-state-resolved ion energy. The evaluated peak velocities of different ion species in plasma generated from a compound cathode were found to be equal and independent on ion mass. Therefore, measured difference in kinetic energies can be inferred from the difference in ion mass, with no dependence on ion charge state. The latter is consistent with previous work. These findings can be explained by plasma quasineutrality, ion acceleration by pressure gradients, and electron-ion coupling. Increasing the C concentration in Ti-C cathodes resulted in increasing average and peak ion energies for all ion species. This effect can be explained by the “cohesive energy rule,” where material and phases of higher cohesive energy generally result in increasing energies (velocities). This is also consistent with the here obtained peak velocities around 1.37, 1.42, and 1.55 (10{sup 4} m/s) for ions from Ti{sub 0.84}Al{sub 0.16}, Ti{sub 0.90}Si{sub 0.10}, and Ti{sub 0.90}C{sub 0.10} cathodes, respectively.

  15. Level-energy-dependent mean velocities of excited tungsten atoms sputtered by krypton-ion bombardment

    SciTech Connect

    Nogami, Keisuke; Sakai, Yasuhiro; Mineta, Shota; Kato, Daiji; Murakami, Izumi; Sakaue, Hiroyuki A.; Kenmotsu, Takahiro; Furuya, Kenji; Motohashi, Kenji

    2015-11-15

    Visible emission spectra were acquired from neutral atoms sputtered by 35–60 keV Kr{sup +} ions from a polycrystalline tungsten surface. Mean velocities of excited tungsten atoms in seven different 6p states were also obtained via the dependence of photon intensities on the distance from the surface. The average velocities parallel to the surface normal varied by factors of 2–4 for atoms in the different 6p energy levels. However, they were almost independent of the incident ion kinetic energy. The 6p-level energy dependence indicated that the velocities of the excited atoms were determined by inelastic processes that involve resonant charge exchange.

  16. Temperature dynamics and velocity scaling laws for interchange driven, warm ion plasma filaments

    NASA Astrophysics Data System (ADS)

    Olsen, Jeppe; Madsen, Jens; Nielsen, Anders Henry; Rasmussen, Jens Juul; Naulin, Volker

    2016-04-01

    The influence of electron and ion temperature dynamics on the radial convection of isolated structures in magnetically confined plasmas is investigated by means of numerical simulations. It is demonstrated that the maximum radial velocity of these plasma blobs roughly follows the inertial velocity scaling, which is proportional to the ion acoustic speed times the square root of the filament particle density times the sum of the electron and ion temperature perturbations. Only for small blobs the cross field convection does not follow this scaling. The influence of finite Larmor radius effects on the cross-field blob convection is shown not to depend strongly on the dynamical ion temperature field. The blob dynamics of constant finite and dynamical ion temperature blobs is similar. When the blob size is on the order of 10 times the ion Larmor radius the blobs stay coherent and decelerate slowly compared to larger blobs which dissipate faster due to fragmentation and turbulent mixing.

  17. Mass loading and velocity diffusion models for heavy pickup ions at comet Grigg-Skjellerup

    NASA Technical Reports Server (NTRS)

    Huddleston, D. E.; Coates, A. J.; Johnstone, A. D.; Neubauer, Fritz M.

    1993-01-01

    We compare model predictions of cometary water group ion densities and the solar wind slow down with measurements made by the Giotto Johnstone plasma analyzer implanted ion sensor at the encounter with comet Grigg-Skjellerup (G-S) on July 10, 1992. The observed slope of the ion density profile on approach to the comet is unexpectedly steep. Possible explanations for this are discussed. We present also a preliminary investigation of the quasilinear velocity-space diffusion of the implanted heavy ion population at G-S using a transport equation including souce, convection, adiabatic compression, and velocity diffusion terms. Resulting distributions are anisotropic, in agreement with observations. We consider theoretically the waves that may be generated by the diffusion process for the observed solar wind conditions. At initial ion injections, waves are generated at omega approximately Omega(sub i) the ion gyrofrequency, and lower frequencies are predicted for diffusion toward a bispherical shell.

  18. Electric and magnetic drift of non-adiabatic ions in the earth's geomagnetic tail current sheet

    NASA Technical Reports Server (NTRS)

    Beard, D. B.; Cowley, S. W. H.

    1985-01-01

    It has been shown recently that nonadiabatic particles in the earth's magnetotail drift across the tail roughly as predicted for adiabatic particles with 90 deg pitch angles. In this paper it is shown that this result implies the existence of an approximate invariant of the motion. Adding the effect of convection associated electric fields, the approximate bounce averaged motion of nonadiabatic particles in the magnetotail can be obtained. Thus the particle motion and energization due to combined magnetic and electric drifts in the magnetotail are easily predicted.

  19. Kr II and Xe II axial velocity distribution functions in a cross-field ion source

    SciTech Connect

    Lejeune, A.; Bourgeois, G.; Mazouffre, S.

    2012-07-15

    Laser induced fluorescence measurements were carried out in a cross-field ion source to examine the behaviour of the axial ion velocity distribution functions (VDFs) in the expanding plasma. In the present paper, we focus on the axial VDFs of Kr II and Xe II ions. We examine the contourplots in a 1D-phase space (x,v{sub x}) representation in front of the exhaust channel and along the centerline of the ion source. The main ion beam, whose momentum corresponds to the ions that are accelerated through the whole potential drop, is observed. A secondary structure reveals the ions coming from the opposite side of the channel. We show that the formation of the neutralized ion flow is governed by the annular geometry. The assumption of a collisionless shock or a double layer due to supersonic beam interaction is not necessary. A non-negligible fraction of slow ions originates in local ionization or charge-exchange collision events between ions of the expanding plasma and atoms of the background residual gas. Slow ions that are produced near the centerline in the vicinity of the exit plane are accelerated toward the source body with a negative velocity leading to a high sputtering of front face. On the contrary, the ions that are produced in the vicinity of the channel exit plane are partially accelerated by the extended electric field.

  20. Flute mode waves near the lower hybrid frequency excited by ion rings in velocity space

    NASA Technical Reports Server (NTRS)

    Cattell, C.; Hudson, M.

    1982-01-01

    Discrete emissions at the lower hybrid frequency are often seen on the S3-3 satellite. Simultaneous observation of perpendicularly heated ions suggests that these ions may provide the free energy necessary to drive the instability. Studies of the dispersion relation for flute modes excited by warm ion rings in velocity space show that waves are excited with real frequencies near the lower hybrid frequency and with growth rates ranging from about 0.01 to 1 times the ion cyclotron frequency. Numerical results are therefore consistent with the possibility that the observed ions are the free energy source for the observed waves.

  1. Ionospheric ion velocity distributions and associated transport properties in the presence of auroral electric field gradients

    SciTech Connect

    St. Maurice, J.P.; Winkler, E.; Hamza, A.M.

    1994-10-01

    The authors have done modeling of the response of ions in the F region to strong horizontal gradients in the convection electric field. They have used kinetic equations, and find in the boundary regions where the most rapid changes in the elctric field are experienced, that the ions exhibit a strongly asymmetric velocity distribution. The sign of the gradient also makes a big difference in the ions distribution functions.

  2. Magnetized plasma sheath with two positive ions where collision frequencies have a power law dependency on ions velocities

    NASA Astrophysics Data System (ADS)

    Masoudi, S. Farhad; Khoramabadi, Mansor

    2015-09-01

    We study the dynamics of collisional magnetized plasma sheath with two species of positive ions by using the plasma fluid model. The basic equations of the fluid model are solved numerically where the sheath is in the external magnetic field and the elastic collision between ions and neutrals has been taken into account. In our model, we assume that the collisional momentum transferring cross section has a power law dependency on ion flow velocity. Our analysis demonstrates that the sheath dynamics are sensitive to the power law dependency, especially for the ion with greater density.

  3. The Impact of Ion-Cyclotron Wave Dissipation on Minor Ion Velocity Distributions in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Cranmer, S. R.; Field, G. B.; Noci, G.; Kohl, J. L.

    1997-12-01

    We present theoretical models of the acceleration and heating of minor ions in the solar wind, as well as detailed anisotropic velocity distribution functions computed numerically by solving the Boltzmann transport equation. We examine the compatibility between these models and spectroscopic measurements of the velocities and kinetic temperatures of various particle species in the solar corona. The SOHO Ultraviolet Coronagraph Spectrometer (UVCS/SOHO) has measured hydrogen kinetic temperatures in polar coronal holes in excess of 3 million K, and O VI ion kinetic temperatures of at least 200 million K. In addition, the velocity distributions parallel to the open magnetic field are smaller than those perpendicular to the field, possibly implying temperature anisotropy ratios of order 100 for minor ions. We examine various features of plasma heating by the dissipation of high-frequency ion-cyclotron resonance Alfven waves, which may be the most natural physical mechanism to produce the observed plasma conditions. The modeled ion velocity distributions depend sensitively on the assumed amplitudes and frequencies of the waves, and these computations can be used to accurately predict many quantitative features of the wave power spectrum. Indeed, the more ionic species that are observed spectroscopically, the greater the extent in frequency space the wave spectrum can be inferred. This work is supported by the National Aeronautics and Space Administration under grant NAG5-3192 to the Smithsonian Astrophysical Observatory, by Agenzia Spaziale Italiana, and by Swiss funding agencies.

  4. Ionization of highly charged iodine ions near the Bohr velocity

    NASA Astrophysics Data System (ADS)

    Zhou, Xianming; Cheng, Rui; Lei, Yu; Sun, Yuanbo; Ren, Jieru; Liu, Shidong; Deng, Jiachuan; Zhao, Yongtao; Xiao, Guoqing

    2015-01-01

    We have measured the L-shell X-rays of iodine from the collisions of 3 MeV Iq+(q=15,20,22,25,26) ions with an iron target. It is found that the X-ray yield decreases with the increasing initial charge state. The energy of the subshell X-ray has a blue shift, which is independent of the projectile charge state. In addition, the relative intensity ratios of Lβ1,3,4 and Lβ2,15 to Lα1,2 X-ray are obtained and compared with the theoretical calculations. That they are larger than for a singly ionized atom can be understood by the multiple ionization effect of the outer-shell electrons.

  5. Solar energetic particle drifts in the Parker spiral

    NASA Astrophysics Data System (ADS)

    Dalla, S.; Marsh, M. S.; Kelly, J.; Laitinen, T.

    2013-10-01

    Drifts in the Parker spiral interplanetary magnetic field are known to be an important component in the propagation of galactic cosmic rays, while they are thought to be negligible for solar energetic particles (SEPs). As a result, they have so far been ignored in SEP propagation modeling and data analysis. We examine drift velocities in the Parker spiral within single particle first-order adiabatic theory, in a local coordinate system with an axis parallel to the magnetic field. We show that, in the presence of scattering in interplanetary space, protons at the high end of the SEP energy range experience significant gradient and curvature drift. In the scatter-free case, drift due to magnetic field curvature is present. The magnitude of drift velocity increases by more than an order of magnitude at high heliographic latitudes compared to near the ecliptic; it has a strong dependence on radial distance r from the Sun, reaching a maximum at r˜1 AU at low heliolatitudes and r˜10 AU at high heliolatitudes. Due to the mass over charge dependence of drift velocities, the effect of drift for partially ionized SEP heavy ions is stronger than for protons. Drift is therefore likely to be a considerable source of cross-field transport for high-energy SEPs.

  6. Laser-induced fluorescence measurements of argon and xenon ion velocities near the sheath boundary in 3 ion species plasmas

    NASA Astrophysics Data System (ADS)

    Yip, Chi-Shung; Hershkowitz, Noah; Severn, Greg; Baalrud, Scott D.

    2016-05-01

    The Bohm sheath criterion is studied with laser-induced fluorescence in three ion species plasmas using two tunable diode lasers. Krypton is added to a low pressure unmagnetized DC hot filament discharge in a mixture of argon and xenon gas confined by surface multi-dipole magnetic fields. The argon and xenon ion velocity distribution functions are measured at the sheath-presheath boundary near a negatively biased boundary plate. The potential structures of the plasma sheath and presheath are measured by an emissive probe. Results are compared with previous experiments with Ar-Xe plasmas, where the two ion species were observed to reach the sheath edge at nearly the same speed. This speed was the ion sound speed of the system, which is consistent with the generalized Bohm criterion. In such two ion species plasmas, instability enhanced collisional friction was demonstrated [Hershkowitz et al., Phys. Plasmas 18(5), 057102 (2011).] to exist which accounted for the observed results. When three ion species are present, it is demonstrated under most circumstances the ions do not fall out of the plasma at their individual Bohm velocities. It is also shown that under most circumstances the ions do not fall out of the plasma at the system sound speed. These observations are also consistent with the presence of the instabilities.

  7. Carrier gas and ion beam parameter effects on the structure and properties of a-C:H/SiOx films deposited employing closed drift ion beam source

    NASA Astrophysics Data System (ADS)

    Tamulevičienė, Asta; Meškinis, Šarūnas; Kopustinskas, Vitoldas; Tamulevičius, Sigitas

    2012-07-01

    In the present study closed drift ion beam source was used to deposit SiOx containing amorphous hydrogenated carbon films (a-C:H/SiOx) employing hexamethyldisiloxane and H2 or He carrier gas. The structure, optical and mechanical properties of a-C:H/SiOx films deposited using different ion beam energies (300-800 eV) and ion beam current densities (20-80 μA/cm2) were analyzed. Raman spectroscopy has shown that the structure of a-C:H/SiOx films deposited using different carrier gas differs. In the case of H2 carrier gas I(D)/I(G) ratio decreased from 1.1 to 1 with the increase of ion beam energy from 300 eV to 500 eV. It is shown that the increase tendency observed for I(D)/I(G) ratio dependence on the ion beam current density was influenced by the structural changes (Si-H bonds formation) observed in FTIR analysis. The films with maximum hardness (12.8 GPa for He and 11.9 GPa for H2 carrier gas) were formed at 500 eV ion beam energy for both carrier gas. The band gap and B parameter of the films (formed at 500 eV with H2 carrier gas) increase almost linearly with the ion beam current density.

  8. Drift of Auroral Absorption and Ionospheric Convection

    NASA Astrophysics Data System (ADS)

    Makarevitch, R. A.; Honary, F.; McCrea, I. W.; Howells, V. S.

    2004-12-01

    We develop a method for quasi-continuous monitoring of the particle precipitation regions using the cosmic noise absorption (CNA) data from an imaging riometer. The method does not require vast computational resources nor does it involve excessive manual sifting through the data. The horizontal absorption drift velocity is estimated from the regression lines to positions of the maxima in the two-dimensional absorption intensity images for each individual region of enhanced CNA (absorption patches). The absorption drift velocity estimates from a 7x7-beam Imaging Riometer for Ionospheric Studies (IRIS) in Kilpisjarvi are compared with the electrojet plasma flows deduced from magnetic perturbations recorded by the Kilpisjarvi magnetometer as well as with the tristatic ion drift velocities in the F region (for one event) measured by the EISCAT radar facility within the IRIS field of view (FoV). A reasonable agreement was found between the directions of absorption drift and ionospheric convection both in point-by-point comparisons and in terms of direction reversal timings. The absorption patches of lower intensity appear to have smaller drift velocities and to be associated with weaker magnetic perturbations. Based on our observations, we interpret the relatively slow motions of the auroral absorption as associated with the ExB drift of the entire magnetic flux tube as opposed to the gradient-curvature drift of energetic electrons injected into the ionosphere at the substorm onset. Since the absorption intensity in beam 16 of IRIS, the beam closest to that of EISCAT at 90 km, was found to correlate well with the height-integrated Hall conductivity due to particle precipitation inferred from the EISCAT density measurements, we also assess the conductivity gradient effects on the agreement between the convection measurements by different techniques by considering the gradients of the absorption intensity within the IRIS FoV.

  9. Ammonia in the hot core W 51-IRS2: 11 new maser lines and a maser component with a velocity drift

    NASA Astrophysics Data System (ADS)

    Henkel, C.; Wilson, T. L.; Asiri, H.; Mauersberger, R.

    2013-01-01

    With the 100-m telescope at Effelsberg, 19 ammonia (NH3) maser lines have been detected toward the prominent massive star forming region W51-IRS2. Eleven of these inversion lines, the (J, K) = (6, 2), (5, 3), (7, 4), (8, 5), (7, 6), (7, 7), (9, 7), (10, 7), (9, 9), (10, 9), and (12, 12) transitions, are classified as masers for the first time in outer space. All detected masers are related to highly excited inversion doublets. The (5, 4) maser originates from an inversion doublet ~340 K above the ground state, while the (12, 12) transition, at ~1450 K, is the most highly excited NH3 maser line so far known. Strong variability is seen not only in ortho- but also in para-NH3 transitions. Bright narrow emission features are observed, for the first time, in (mostly) ortho-ammonia transitions, at VLSR ~ 45 km s-1, well separated from the quasi-thermal emission near 60 km s-1. These features were absent ~25 years ago and show a velocity drift of about +0.2 km s-1 yr-1. The component is likely related to the SiO maser source in W51-IRS2 and a possible scenario explaining the velocity drift is outlined. The 57 km s-1 component of the (9, 6) maser line is found to be strongly linearly polarised. Maser emission in the (J, K) to (J + 1, K) inversion doublets is strictly forbidden by selection rules for electric dipole transitions in the ground vibrational state. However, such pairs (and even triplets with (J + 2, K)) are common toward W51-IRS2. Similarities in line widths and velocities indicate that such groups of maser lines arise from the same regions, which can be explained by pumping through vibrational excitation. The large number of NH3 maser lines in W51-IRS2 is most likely related to the exceptionally high kinetic temperature and NH3 column density of this young massive star forming region.

  10. Using Ion Imaging to Measure Velocity Distributions in Surface Scattering Experiments.

    PubMed

    Harding, Dan J; Neugebohren, J; Auerbach, Daniel J; Kitsopoulos, T N; Wodtke, Alec M

    2015-12-17

    We present a new implementation of ion imaging for the study of surface scattering processes. The technique uses a combination of spatial ion imaging with laser slicing and delayed pulsed extraction. The scattering velocities of interest are parallel to the imaging plane, allowing speed and angular distributions to be extracted from a single image. The first results of direct scattering of N2 from a clean, single-crystal Au(111) surface are reported, and the speed resolution is shown to be competitive with current state-of-the-art time-of-flight methods for velocity measurements while providing simultaneous measurements of in-plane angular distributions. PMID:26418228

  11. One year variations in the near earth solar wind ion density and bulk flow velocity

    NASA Technical Reports Server (NTRS)

    Bolton, Scott J.

    1990-01-01

    One-year periodic variations in the near earth solar wind ion density and bulk flow velocity are reported. The variations show an inverse relationship between the ion velocity and density. The peak strength of the observed density variation ranges from 50-100 percent over the background. These variations imply either large scale mass loading inside the earth's orbit or intrinsic solar modulations. Analyses of both near earth and Pioneer Venus Orbiter spacecraft data provide a comparison at two different heliocentric distances. Several explanations for these variations are discussed.

  12. Velocity and Energy Distributions of Water Group Ion Around the Enceladus Plume

    NASA Astrophysics Data System (ADS)

    Sakai, S.; Cravens, T.; Pothapragada, S.; Kumar, A.

    2014-12-01

    Enceladus has a dynamic plume on its south pole which is emitting gas, including water vapor, and dust. The gas is ionized by solar EUV radiation and by electron impacts and extends throughout the inner magnetosphere of Saturn. The dust is negatively charged and forms the E ring. Hence, the inner magnetosphere within 10 RS contains a complex mixture of plasma, neutral gas and dust. Cassini observations show that the plasma velocities are less than the co-rotation velocity. The velocity and energy distributions of this need to be explained in order to understand the inner magnetospheric plasma physics. We have investigated the velocity and energy distributions of water group ions in the vicinity of Enceladus using test particle and Monte Carlo methods including collisional processes such as charge exchange and ion-neutral chemical reaction. The model results will be constrained by neutral and ion composition data from the Cassini Ion and Neutral Mass Spectrometer and ion energy spectra from the Plasma Spectrometer (CAPS). We will also discuss related plasma processed in the Enceladus torus.

  13. Ion velocity and plasma potential measurements of a cylindrical cusped field thruster

    SciTech Connect

    MacDonald, N. A.; Young, C. V.; Cappelli, M. A.; Hargus, W. A. Jr.

    2012-05-01

    Measurements of the most probable time-averaged axial ion velocities and plasma potential within the acceleration channel and in the plume of a straight-channeled cylindrical cusped field thruster operating on xenon are presented. Ion velocities for the thruster are derived from laser-induced fluorescence measurements of the 5d[4]{sub 7/2}-6p[3]{sub 5/2} xenon ion excited state transition centered at {lambda}=834.72nm. Plasma potential measurements are made using a floating emissive probe with a thoriated-tungsten filament. The thruster is operated in a power matched condition with 300 V applied anode potential for comparison to previous krypton plasma potential measurements, and a low power condition with 150 V applied anode potential. Correlations are seen between the plasma potential drop outside of the thruster and kinetic energy contours of the accelerating ions.

  14. 2D He+ pickup ion velocity distribution functions: STEREO PLASTIC observations

    NASA Astrophysics Data System (ADS)

    Drews, C.; Berger, L.; Taut, A.; Peleikis, T.; Wimmer-Schweingruber, R. F.

    2015-03-01

    Context. He+ pickup ions are either born from the ionization of interstellar neutral helium inside our heliosphere, the so-called interstellar pickup ions, or through the interaction of solar wind ions with small dust particles, the so-called inner source of pickup ions. Until now, most observations of pickup ions were limited to reduced 1D velocity spectra, which are insufficient to study certain characteristics of the He+ velocity distribution function (VDF). Aims: It is generally assumed that rapid pitch-angle scattering of freshly created pickup ions quickly leads to a fully isotropic He+ VDF. In light of recent observations, this assumption has found to be oversimplified and needs to be reinvestigated. Methods: Using He+ pickup ion data from the PLASTIC instrument on board the STEREO A spacecraft, we reconstruct a reduced form of the He+ VDF in two dimensions. This allows us to study relative changes of the 2D He+ VDF as a function of the configuration of the heliospheric magnetic field. Results: Our observations show that the He+ VDF is highly anisotropic and even indicates that, at least for certain configurations of B, it is not fully gyrotropic. Our results further suggest, that the observed velocity and pitch angle of He+ depends strongly on the local solar magnetic field vector, B, the ecliptic longitude, ?, the solar wind speed, vsw, and the global distribution of B. Conclusions: We found two distinct signatures that systematically change as a function of the alignment of B: (1) a ring beam distribution that is most pronounced at wsw> 0.5 and likely attributed to interstellar He+; (2) a beam signature aligned parallel to B that is most pronounced at wsw < 0.5 and attributed to inner-source He+. The strong anisotropy and the aforementioned dependencies of the He+ VDF also imply that observations of 1D velocity spectra of He+ pickup ions are potentially deceiving.

  15. Effect of ion excape velocity and conversion surface material on H- production

    SciTech Connect

    Johnson, Kenneth F; Tarvainen, Olli A; Geros, E.; Stelzer, J.; Rouleau, G.; Kalvas, T.; Komppula, J.; Carmichael, J.

    2010-10-05

    According to generally accepted models surface production of negative ions depends on ion escape velocity and work function of the surface. We have conducted an experimental study addressing the role of the ion escape velocity on H{sup -} production. A converter-type ion source at Los Alamos Neutron Science Center was employed for the experiment. The ion escape velocity was changed by varying the bias voltage of the converter electrode. It was observed that due to enhanced stripping of H{sup -} no direct gain of extracted beam current can be achieved by increasing the converter voltage. At the same time the conversion efficiency of H{sup -} was observed to vary with converter voltage and follow the existing theories in qualitative manner. We discuss the role of surface material on H{sup -} formation probability and present calculations predicting relative H{sup -} yields from different cesiated surfaces. These calculations are compared with experimental observations from different types of H{sup -} ion sources. The effects caused by varying cesium coverage are also discussed. Finally, we present a novel idea of utilizing materials exhibiting so-called negative electron affinity in H{sup -}/D{sup -} production under UV-light exposure.

  16. Single ionization in highly charged ion-atom collisions at low to intermediate velocities

    NASA Astrophysics Data System (ADS)

    Abdallah, Mohammad Abdallah

    1998-11-01

    Single electron ejection from neutral targets (He and Ne) by the impact of low to highly charged ions (p, He+,/ Ne+,/ He2+,/ C6+,/ O8+, and Ne10+) at low to intermediate impact velocities is studied. A novel technique of electron momentum imaging is implemented. In this technique two-dimensional electron momentum distributions are produced in coincidence with recoil ions and projectile ions. In first generation experiments we studied the ejected electron momentum distributions without analyzing recoil ions momentum. This series of experiments revealed a charge-state dependence and velocity dependence that are contradictory to a dominant saddle point ionization mechanism at intermediate velocities. It showed a possibility of an agreement with a saddle centered distributions for low charge states at low collision velocities. To pursue the problem in more detail, we developed a second generation spectrometer which allowed us to fully determine the recoil ions momentum. This allowed us to determine the collision plane, energy loss (Q-value), and impact parameter for every collision that resulted in a single (target) electron ejection. This series of experiments revealed for the first time very marked structure in electron spectra that were impossible to observe in other experiments. These structures indicate the quasi-molecular nature of the collision process even at velocities comparable to the electron 'classical' orbital velocity. For the collisions of p, He+, and He2+ with He, a π-orbital shape of the electron momentum distribution is observed. This indicates the importance of the rotational coupling 2p/sigma/to2p/pi in the initial promotion of the ground state electron. This is followed by further promotions to the continuum. This agrees with the 'classical' description implied by the saddle-point ionization mechanism picture.

  17. Effects of solar and geomagnetic activities on the zonal drift of equatorial plasma bubbles

    NASA Astrophysics Data System (ADS)

    Huang, Chao-Song; Roddy, Patrick A.

    2016-01-01

    Equatorial plasma bubbles are mostly generated in the postsunset sector and then move in the zonal direction. Plasma bubbles can last for several hours and move over hundreds of kilometers (even more than 1000 km). In this study, we use measurements of ion density by the Communication/Navigation Outage Forecasting System satellite to determine the orbit-averaged drift velocity of plasma bubbles. The objective of the study is to identify the dependence of the bubble drift on the solar radio flux and geomagnetic activities. In total, 5463 drift velocities are derived over May 2008 to April 2014, and a statistical analysis is performed. The average pattern of the bubble drift is in good agreement with the zonal drift of the equatorial F region plasma. The zonal drift velocity of plasma bubbles increases with the solar radio flux. However, the increase shows different features at different local times. Geomagnetic activities cause a decrease of the eastward drift velocity of plasma bubbles, equivalent to the occurrence of a westward drift, through disturbance dynamo process. In particular, the decrease of the eastward drift velocity appears to become accelerated when the Dst index is smaller than -60 nT or Kp is larger than 4.

  18. MAVEN Observations of Escaping Planetary Ions from the Martian Atmosphere: Mass, Velocity, and Spatial Distributions

    NASA Astrophysics Data System (ADS)

    Dong, Yaxue; Fang, Xiaohua; Brain, D. A.; McFadden, James P.; Halekas, Jasper; Connerney, Jack

    2015-04-01

    The Mars-solar wind interaction accelerates and transports planetary ions away from the Martian atmosphere through a number of processes, including ‘pick-up’ by electromagnetic fields. The MAVEN spacecraft has made routine observations of escaping planetary ions since its arrival at Mars in September 2014. The SupraThermal And Thermal Ion Composition (STATIC) instrument measures the ion energy, mass, and angular spectra. It has detected energetic planetary ions during most of the spacecraft orbits, which are attributed to the pick-up process. We found significant variations in the escaping ion mass and velocity distributions from the STATIC data, which can be explained by factors such as varying solar wind conditions, contributions of particles from different source locations and different phases during the pick-up process. We also study the spatial distributions of different planetary ion species, which can provide insight into the physics of ion escaping process and enhance our understanding of atmospheric erosion by the solar wind. Our results will be further interpreted within the context of the upstream solar wind conditions measured by the MAVEN Solar Wind Ion Analyzer (SWIA) instrument and the magnetic field environment measured by the Magnetometer (MAG) instrument. Our study shows that the ion spatial distribution in the Mars-Sun-Electric-Field (MSE) coordinate system and the velocity space distribution with respect to the local magnetic field line can be used to distinguish the ions escaping through the polar plume and those through the tail region. The contribution of the polar plume ion escape to the total escape rate will also be discussed.

  19. Velocity-shear origin of low-frequency electrostatic ion-gyroresonant waves

    NASA Astrophysics Data System (ADS)

    Carroll, J. J., III; Koepke, M. E.; Zintl, M. W.; Gavrishchaka, V.; Ganguli, G.

    Electrostatic ion-cyclotron waves with spectral features below the ion gyrofrequency and spaced by small fractions of the ion gyrofrequency are reported, a result not possible for waves associated with the well-known current-driven electrostatic ion-cyclotron (CDEIC) instability. This is accomplished by producing a localized, transverse (to the magnetic field B zˆ) electric field E(x) xˆ in a laboratory plasma to excite inhomogeneous energy-density driven (IEDD) waves and by exploiting the kyνE dependence of the IEDD mode frequency, where ky and νE are the components of the IEDD wavevector and plasma drift speed, respectively, along the E × B direction. The IEDD frequency range is shown to reach down to one-third of the ion gyrofrequency, a range usually reserved for other types of waves, e.g., ion-acoustic waves. These results may be relevant to broadband ELF waves observed in the ionosphere.

  20. Velocity and Density of Low Energy Ions in High-Latitude Magnetosphere

    NASA Technical Reports Server (NTRS)

    Elliott, Heather A.; Comfort, Richard H.; Chandler, M. O.; Craven, P. D.; Moore, T. E.

    1999-01-01

    This study examines the characteristics of low energy ions at the polar cap boundary and within the polar cap in relationship to the convection velocity. The source of low energy ions in the magnetosphere could be driven by solar wind/IMF (interplanetary magnetic fields) interactions affecting energization processes of ionospheric ions. The IMF also influences the convection pattern which is in part responsible for determining the path ions take as they leave the ionosphere and contribute to magnetospheric populations. The primary source of data for this study is the Thermal Ion Dynamics Experiment (TIDE) on board the Polar satellite. TIDE can measure 3-D velocities and covers an energy range ideal for examining the polar cap plasma (0-450 eV). Due to certain limitations, this study uses H+ measurements at apogee and O+ measurements at perigee. At apogee H+ is very field-aligned and outflowing, and at perigee O+ is often moving downward in the polar cap proper. The path highly field-aligned flows take across the polar cap are also affected by changes in the magnetic field line topology which varies with geophysical conditions. Convection near the polar cap boundary is of particular interest since often the convection there is highly structured, and convection reversals may play a role in causing ion outflow. This study will examine in particular the density structures of ions in relationship to the convection velocity. Examining such relationships may provide insight into understanding the consequences of the 3-D flow on the density of ions in the polar cap, and transport of ions across the polar cap.

  1. 2D He+ Pickup Ion Velocity Distribution Functions: STEREO PLASTIC Observations

    NASA Astrophysics Data System (ADS)

    Drews, C.; Berger, L.; Peleikis, T.; Wimmer-Schweingruber, R. F.

    2014-12-01

    He+ pickup ions are either born from the ionization of interstellar neutral helium atoms inside our heliosphere, the so called interstellar pickup ions, or through the interaction of solar wind ions with small dust particles close to the Sun, the so called inner-source of pickup ions. Until now, most observations of He+ pickup ions were limited to reduced 1D velocity spectra, which are insufficient to study certain characteristics of the He+ Velocity Distribution Function (VDF). It is generally assumed that rapid pitch-angle scattering of freshly created pickup ions quickly leads to a fully isotropic He+ VDF. In the light of recent observations, this assumption has found to be oversimplified and needs to be re-investigated. Using He+ pickup ion data from the PLASTIC instrument on board the STEREO A spacecraft we reconstruct a reduced form of the He+ VDF in 2 dimensions (see figure). The reduced form of the He+ VDF allows us to study the pitch-angle distribution and anisotropy of the He+ VDF as a function of the solar magnetic field, B. Our observations show clear signs of a significant anisotropy of the He+ VDF and even indicates that, at least for certain configurations of B, it is not even fully gyrotropic. Our results further suggest, that the observed velocity and pitch-angle of He+ depends strongly on the solar magnetic field vector, B, the ecliptic longitude, λ, the solar wind speed, vsw, and the history of B. Consequently, we argue that reduced 1D velocity spectra of He+ are insufficient to study quantities like the pitch-angle scattering rate, τ, or the adiabatic cooling index γ.

  2. Plasma immersion ion implantation characteristics with q-nonextensive electron velocity distribution

    NASA Astrophysics Data System (ADS)

    Safa, N. Navab; Ghomi, H.; Niknam, A. R.

    2015-06-01

    The plasma immersion ion implantation process is investigated in the presence of q-nonextensive electrons by using a one-dimensional fluid model. The effect of the nonextensivity parameter, q, on the plasma parameters and sheath dynamics during the implantation process is studied. The results show that the implantation dose can be enhanced in the presence of energetic electrons at the tail of the distribution function. Different parameters of plasma such as sheath thickness, ion velocity and ion density show more change at the larger values of the q-parameter. Furthermore, the results of simulation tend to what is predicted by the Maxwellian electron distribution function (q = 1).

  3. Effects of a sheared ion velocity on the linear stability of ITG modes

    SciTech Connect

    Lontano, M.; Lazzaro, E.; Varischetti, M. C.

    2006-11-30

    The linear dispersion of the ion temperature gradient (ITG) modes, in the presence of a non uniform background ion velocity U(parallel sign) U(parallel sign)(x) ez, in the direction of the sheared equilibrium magnetic field B0 = B0(x) ez, has been studied in the frame of the two-fluid guiding center approximation, in slab geometry. Generally speaking, the presence of an ion flow destabilizes the oscillations. The role of the excited K-H instability is discussed.

  4. Regulation of ion drifts and anisotropies by parametrically unstable finite-amplitude Alfvén-cyclotron waves in the fast solar wind

    SciTech Connect

    Maneva, Y. G.; Araneda, J. A.; Marsch, E.

    2014-03-10

    We study the preferential heating and differential acceleration of minor ions by dissipation of ion-acoustic waves (IAWs) generated by parametric instabilities of a finite-amplitude monochromatic Alfvén-cyclotron pump wave. We consider the associated kinetic effects of Landau damping and nonlinear pitch-angle scattering of protons and α particles in the tenuous plasma of coronal holes and the fast solar wind. Various data collected by Wind spacecraft show signatures for a local transverse heating of the minor ions, presumably by Alfvén-cyclotron wave dissipation, and an unexpected parallel heating by a so far unknown mechanism. Here, we present the results from a set of 1.5 dimensional hybrid simulations in search for a plausible explanation for the observed field-aligned kinetic features in the fast solar wind minor ions. We investigate the origin and regulation of ion relative drifts and temperature anisotropies in low plasma β, fast solar wind conditions. Depending on their initial drifts, both ion species can heat up not only transversely through cyclotron resonance and non-resonant wave-particle interactions, but also strongly in the parallel direction by Landau damping of the daughter IAWs. We discuss the dependence of the relative ion drifts and temperature anisotropies on the plasma β of the individual species and we describe the effect of the pump wave amplitude on the ion heating and acceleration.

  5. A Novel pH-dependent Drift Improvement Method for Zirconium Dioxide Gated pH-Ion Sensitive Field Effect Transistors

    PubMed Central

    Chang, Kow-Ming; Chang, Chih-Tien; Chao, Kuo-Yi; Lin, Chia-Hung

    2010-01-01

    A novel compensation method for Zirconium dioxide gated Ion Sensitive Field Effect Transistors (ISFETs) to improve pH-dependent drift was demonstrated. Through the sequential measurements for both the n-channel and p-channel ISFETs, 75–100% pH-dependent drift could be successfully suppressed for the first seven hours. As a result, a nearly constant drift rate versus pH value was obtained, which increases the accuracy of pH measurements. Meanwhile, the drawback of the hyperbolic-like change with time of the common drift behavior for ISFETs was improved. A state-of-the-art integrated scheme adopting this method was also illustrated. PMID:22399897

  6. A novel pH-dependent drift improvement method for zirconium dioxide gated pH-ion sensitive field effect transistors.

    PubMed

    Chang, Kow-Ming; Chang, Chih-Tien; Chao, Kuo-Yi; Lin, Chia-Hung

    2010-01-01

    A novel compensation method for Zirconium dioxide gated Ion Sensitive Field Effect Transistors (ISFETs) to improve pH-dependent drift was demonstrated. Through the sequential measurements for both the n-channel and p-channel ISFETs, 75-100% pH-dependent drift could be successfully suppressed for the first seven hours. As a result, a nearly constant drift rate versus pH value was obtained, which increases the accuracy of pH measurements. Meanwhile, the drawback of the hyperbolic-like change with time of the common drift behavior for ISFETs was improved. A state-of-the-art integrated scheme adopting this method was also illustrated. PMID:22399897

  7. On the nonlinear stability of a quasi-two-dimensional drift kinetic model for ion temperature gradient turbulence

    SciTech Connect

    Plunk, G. G.

    2015-04-15

    We study a quasi-two-dimensional electrostatic drift kinetic system as a model for near-marginal ion temperature gradient driven turbulence. A proof is given for the nonlinear stability of this system under conditions of linear stability. This proof is achieved using a transformation that diagonalizes the linear dynamics and also commutes with nonlinear E × B advection. For the case when linear instability is present, a corollary is found that forbids nonlinear energy transfer between appropriately defined sets of stable and unstable modes. It is speculated that this may explain the preservation of linear eigenmodes in nonlinear gyrokinetic simulations. Based on this property, a dimensionally reduced (∞×∞→1) system is derived that may be useful for understanding dynamics around the critical gradient of Dimits.

  8. Distribution of electrons, ions, and fine (dust) particles in cylindrical fine particle (dusty) plasmas: drift-diffusion analysis

    NASA Astrophysics Data System (ADS)

    Totsuji, Hiroo

    2016-04-01

    Based on the drift-diffusion equations, the behaviour of electrons, ions and fine particles in fine particle plasmas is analysed both analytically and numerically. The cylindrical symmetry of the system is assumed and the cases of up to two species (sizes) of fine particles are considered. It is shown that, in the domain where fine particles exist, the charge neutrality is satisfied to a much higher accuracy, so that the electrostatic potential and the electron distribution are almost flat, and the change in the negative charges due to fine particles is compensated by the ion distribution. This occurs when the charge density of particles multiplied by their charge number exceeds the electron and ion charge densities, and is analytically attributed to the participation of fine particles to the screening of the space charge. The condition for the formation of void at the centre is obtained and the behaviour of particle distribution for parameters around the condition is observed. In the case of two species, the possibility is shown that smaller particles are distributed inside of the domain of larger particles and, when the larger ones form a void, it is filled with smaller ones, the enhanced charge neutrality being recovered.

  9. Non-solar UV produced ions observed optically from the 'Crit I' critical velocity ionization experiment

    NASA Technical Reports Server (NTRS)

    Stenbaek-Nielsen, H. C.; Wescott, E. M.; Rees, D.; Valenzuela, A.; Brenning, N.

    1990-01-01

    A critical velocity ionization experiment was carried out with a heavily instrumented rocket launched from Wallops Island on May 13, 1986. Two neutral barium beams were created by explosive shaped charges released from the rocket and detonated at 48 deg to B at altitudes near 400 km and below the solar UV cutoff. Critical velocity ionization was expected to form a detectable ion jet along the release field line, but, instead, an ion cloud of fairly uniform intensity was observed stretching from the release field line across to where the neutral barium jet reached sunlight. The process creating these ions must have been present from the time of the release; the efficiency is estimated to be equivalent to an ionization time constant of 1800 sec. This ionization is most likely from collisions between the neutral barium jet and the ambient atmospheric oxygen, and, if so, the cross section for collisional ionization is 9 x 10 to the -18th sq cm.

  10. Ion velocity distribution at the termination shock: 1-D PIC simulation

    SciTech Connect

    Lu Quanming; Yang Zhongwei; Lembege, Bertrand

    2012-11-20

    The Voyager 2 (V2) plasma observations of the proton temperature downstream of the quasi-perpendicular heliospheric termination shock (TS) showed that upstream thermal solar wind ions played little role in the shock dissipation mechanism and their downstream temperature is an order of magnitude smaller than predicted by MHD Rankine-Hugoniot conditions. While pickup ions (PUI) are generally expected to play an important role in energy dissipation at the shock, the details remain unclear. Here, one-dimensional (1-D) Particle-in-cell (PIC) code is used to examine kinetic properties and downstream velocity distribution functions of pickup ions (the hot supra-thermal component) and solar wind protons (SWs, the cold component) at the perpendicular heliospheric termination shock. The code treats the pickup ions self-consistently as a third component. Present results show that: (1) both of the incident SWs and PUIs can be separated into two parts: reflected (R) ions and directly transmitted (DT) ions, the energy gain of the R ions at the shock front is much larger than that of the DT ions; (2) the fraction of reflected SWs and their downstream temperature decrease with the relative percentage PUI%; (3) no matter how large the PUI% is, the downstream ion velocity distribution function always can be separated into three parts: 1. a high energy tail (i.e. the wings) dominated by the reflected PUIs, 2. a low energy core mainly contributed by the directly transmitted SWs, and 3. a middle energy part which is a complicated superposition of reflected SWs and directly transmitted PUIs. The significance of the presence of pickup ions on shock front micro-structure and nonstationarity is also discussed.

  11. Nonlinear turbulent magnetic diffusion and effective drift velocity of a large-scale magnetic field in two-dimensional magnetohydrodynamic turbulence.

    PubMed

    Kleeorin, Nathan; Rogachevskii, Igor

    2007-06-01

    We study a nonlinear quenching of turbulent magnetic diffusion and effective drift velocity of large-scale magnetic field in a developed two-dimensional MHD turbulence at large magnetic Reynolds numbers. We show that transport of the mean-square magnetic potential strongly changes quenching of turbulent magnetic diffusion. In particularly, the catastrophic quenching of turbulent magnetic diffusion does not occur for the large-scale magnetic fields B > B(eq)/square root[Rm] when a divergence of the flux of the mean-square magnetic potential is not zero, where B(eq) is the equipartition mean magnetic field determined by the turbulent kinetic energy and Rm is the magnetic Reynolds number. In this case the quenching of turbulent magnetic diffusion is independent of magnetic Reynolds number. The situation is similar to three-dimensional MHD turbulence at large magnetic Reynolds numbers whereby the catastrophic quenching of the alpha effect does not occur when a divergence of the flux of the small-scale magnetic helicity is not zero. PMID:17677365

  12. Theoretical evaluation of peak capacity improvements by use of liquid chromatography combined with drift tube ion mobility-mass spectrometry.

    PubMed

    Causon, Tim J; Hann, Stephan

    2015-10-16

    In the domain of liquid phase separations, the quality of separation obtainable is most readily gauged by consideration of classical chromatographic peak capacity theory. Column-based multidimensional strategies for liquid chromatography remain the most attractive and practical route for increasing the number of spatially resolved components in order to reduce stress on necessary mass spectrometric detection. However, the stress placed on a chromatographic separation step as a second dimension in a comprehensive online methodology (i.e. online LC×LC) is rather high. As an alternative to online LC×LC combinations, coupling of HPLC with ion mobility spectrometry hyphenated to mass spectrometry (IMS-MS) has emerged as an attractive approach to permit comprehensive sampling of first dimension chromatographic peaks and subsequent introduction to an orthogonal IMS separation prior to measurement of ions by a mass spectrometer. In the present work, utilization of classical peak capacity and ion mobility theory allows theoretical assessment of the potential of two- (LC×IMS-MS) or even three-dimensional (LC×LC×IMS-MS) experimental setups to enhance peak capacity and, therefore, the number of correctly annotated features within the framework of complex, non-targeted analysis problems frequently addressed using HPLC-MS strategies. Theoretical calculations indicate that newly-available drift tube IMS-MS instrumentation can yield peak capacities of between 10 and 40 using nitrogen drift gas for typical non-targeted metabolomic, lipidomic and proteomic applications according to the expected reduced mobilities of components in the respective samples. Theoretically, this approach can significantly improve the overall peak capacity of conventional HPLC-(MS) methodologies to in excess of 10(4) depending upon the column length and gradient time employed. A more elaborate combination of LC×LC×IMS-MS would improve the ion suppression limitation and possibly allow access to theoretically even higher peak capacities, but such a combination may render the IMS separation practically redundant as well as imparting the well-known dilution problems associated with LC×LC. Finally, some predictions for the separation of co-eluted isobaric compounds can also be made by considering the required peak-to-peak resolution for acceptable IMS separation. The here-described theoretical predication approach can be used to aid method development for HPLC×IMS-MS and is also accompanied by some practical considerations that should be contemplated in associated non-targeted analysis workflows. PMID:26372446

  13. Computed versus measured ion velocity distribution functions in a Hall effect thruster

    NASA Astrophysics Data System (ADS)

    Garrigues, L.; Mazouffre, S.; Bourgeois, G.

    2012-06-01

    We compare time-averaged and time-varying measured and computed ion velocity distribution functions in a Hall effect thruster for typical operating conditions. The ion properties are measured by means of laser induced fluorescence spectroscopy. Simulations of the plasma properties are performed with a two-dimensional hybrid model. In the electron fluid description of the hybrid model, the anomalous transport responsible for the electron diffusion across the magnetic field barrier is deduced from the experimental profile of the time-averaged electric field. The use of a steady state anomalous mobility profile allows the hybrid model to capture some properties like the time-averaged ion mean velocity. Yet, the model fails at reproducing the time evolution of the ion velocity. This fact reveals a complex underlying physics that necessitates to account for the electron dynamics over a short time-scale. This study also shows the necessity for electron temperature measurements. Moreover, the strength of the self-magnetic field due to the rotating Hall current is found negligible.

  14. Positive/negative ion velocity mapping apparatus for electron-molecule reactions

    SciTech Connect

    Wu Bin; Xia Lei; Li Hongkai; Zeng Xianjin; Tian Shanxi

    2012-01-15

    In molecular dissociative ionization by electron collisions and dissociative electron attachment to molecule, the respective positively and negatively charged fragments are the important products. A compact ion velocity mapping apparatus is developed for the angular distribution measurements of the positive or negative fragments produced in the electron-molecule reactions. This apparatus consists of a pulsed electron gun, a set of ion velocity mapping optic lenses, a two-dimensional position detector including two pieces of micro-channel plates, and a phosphor screen, and a charge-coupled-device camera for data acquisition. The positive and negative ion detections can be simply realized by changing the voltage polarity of ion optics and detector. Velocity sliced images can be directly recorded using a narrow voltage pulse applied on the rear micro-channel plate. The efficient performance of this system is evaluated by measuring the angular distribution of O{sup -} from the electron attachments to NO at 7.3 and 8.3 eV and O{sup +} from the electron collision with CO at 40.0 eV.

  15. Upgrade of a CHERS diagnostic system for fast-ion and drift-instability measurements

    NASA Astrophysics Data System (ADS)

    Nishizawa, Takashi; Craig, D.; den Hartog, D. J.; Nornberg, M. D.

    2015-11-01

    Energetic particle modes and drift instabilities have fluctuation frequencies above the 100 kHz design specification for the current Charge Exchange Recombination Spectroscopy (CHERS) diagnostic on MST. Upgrading the CHERS system to detect fluctuations at these frequencies requires an optimization of all the light detection stages including the photomultiplier tubes (PMTs), the transimpedance amplifiers, and the data acquisition system. The PMTs need to have a linear response to the photon flux and be protected against abnormal events with much brighter light than ordinary plasmas. For this purpose, the resistor- divider network for the PMTs has been optimized based on the results of circuit-simulations and gain and linearity measurements. The pulse outputs of the PMTs corresponding to a single photoelectron are about 7.5 ns long. Therefore, the raw PMT signals require transimpedance amplifiers with shaping capabilities that will allow practical digitization rates. This digitization intrinsically causes errors in photon counts. We modeled each stage involved in the diagnostic using a Poisson process, circuit-simulations, and the superposition theorem to estimate those errors. We will discuss the details of the measurements and simulations and how parameters are optimized. This work is supported by the US DOE.

  16. Benchmark and combined velocity-space tomography of fast-ion D-alpha spectroscopy and collective Thomson scattering measurements

    NASA Astrophysics Data System (ADS)

    Jacobsen, A. S.; Salewski, M.; Geiger, B.; Korsholm, S. B.; Leipold, F.; Nielsen, S. K.; Rasmussen, J.; Stejner, M.; Weiland, M.; the ASDEX Upgrade Team

    2016-04-01

    We demonstrate the combination of fast-ion D-alpha spectroscopy (FIDA) and collective Thomson scattering (CTS) measurements to determine a common best estimate of the fast-ion velocity distribution function by velocity-space tomography. We further demonstrate a benchmark of FIDA tomography and CTS measurements without using a numerical simulation as common reference. Combined velocity-space tomographies from FIDA and CTS measurements confirm that sawtooth crashes reduce the fast-ion phase-space densities in the plasma center and affect ions with pitches close to one more strongly than those with pitches close to zero.

  17. Measurements of nitrous acid (HONO) using ion drift-chemical ionization mass spectrometry during the 2009 SHARP field campaign

    NASA Astrophysics Data System (ADS)

    Levy, Misti; Zhang, Renyi; Zheng, Jun; Zhang, Annie L.; Xu, Wen; Gomez-Hernandez, Mario; Wang, Yuan; Olaguer, Eduardo

    2014-09-01

    We have developed a novel approach for ambient measurements of nitrous acid (HONO) using ion drift-chemical ionization mass spectrometry (ID-CIMS). HONO is ionized using the sulfur hexafluoride anion, representing the first application of this reagent ion under humid tropospheric conditions. During the 2009 Study of Houston Atmospheric Radical Precursors (SHARP) Field Campaign, HONO measurements were continuously conducted from 1 May to 1 June at a site located on the campus of the University of Houston. Diurnally, HONO concentration accumulates in the late afternoon, reaches a nighttime maximum, and declines rapidly after sunrise. The nighttime HONO peaks show close correlations with the NO2 concentration, particle surface area, and soot mass concentration, indicating that the aerosol-phase chemistry likely contributes to HONO formation. A higher nighttime HONO peak concentration typically precedes a higher and earlier ozone peak concentration of the following day, by about 20 ppb higher and four hours earlier than those with a lower preceding HONO peak concentration. Because of its high detection sensitivity and fast-responding time, the ID-CIMS method described in this work may greatly facilitate HONO detection under typical tropospheric conditions.

  18. Inversion methods for fast-ion velocity-space tomography in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Jacobsen, A. S.; Stagner, L.; Salewski, M.; Geiger, B.; Heidbrink, W. W.; Korsholm, S. B.; Leipold, F.; Nielsen, S. K.; Rasmussen, J.; Stejner, M.; Thomsen, H.; Weiland, M.; the ASDEX Upgrade Team

    2016-04-01

    Velocity-space tomography has been used to infer 2D fast-ion velocity distribution functions. Here we compare the performance of five different tomographic inversion methods: truncated singular value decomposition, maximum entropy, minimum Fisher information and zeroth- and first-order Tikhonov regularization. The inversion methods are applied to fast-ion {{\\text{D}}α} measurements taken just before and just after a sawtooth crash in the ASDEX Upgrade tokamak as well as to synthetic measurements from different test distributions. We find that the methods regularizing by penalizing steep gradients or maximizing entropy perform best. We assess the uncertainty of the calculated inversions taking into account photon noise, uncertainties in the forward model as well as uncertainties introduced by the regularization which allows us to distinguish regions of high and low confidence in the tomographies. In high confidence regions, all methods agree that ions with pitch values close to zero, as well as ions with large pitch values, are ejected from the plasma center by the sawtooth crash, and that this ejection depletes the ion population with large pitch values more strongly.

  19. Double-modulation spectroscopy of molecular ions - Eliminating the background in velocity-modulation spectroscopy

    NASA Technical Reports Server (NTRS)

    Lan, Guang; Tholl, Hans Dieter; Farley, John W.

    1991-01-01

    Velocity-modulation spectroscopy is an established technique for performing laser absorption spectroscopy of molecular ions in a discharge. However, such experiments are often plagued by a coherent background signal arising from emission from the discharge or from electronic pickup. Fluctuations in the background can obscure the desired signal. A simple technique using amplitude modulation of the laser and two lock-in amplifiers in series to detect the signal is demonstrated. The background and background fluctuations are thereby eliminated, facilitating the detection of molecular ions.

  20. Velocity map ion imaging applied to studies of molecularfragementation with synchrotron radiation

    SciTech Connect

    Pesic, Z.D.; Rolles, D.; Perri, M.; Bilodeau, R.C.; Ackerman,G.D.; Rude, B.S.; Kilcoyne, A.L.D.; Bozek, J.D.; Berrah, N.

    2006-12-01

    A novel apparatus has been employed to investigate molecularfragmentation following inner-shell photoionization by synchrotronradiation.A modified design of the velocity map imaging spectrometer,first introduced by Eppink and Parker [A.T.J.B. Eppink, D.H. Parker, Rev.Sci. Instrum. 68 (1997) 3477], provides high detection efficiency andgood focusing properties for an extended interaction region, while theuse of atime and position resolving anode allows electron ion and ion ioncoincidence measurements. We discuss overall capabilities of thespectrometerand present first results for the C(1s) photoionization ofCO2. Special emphasis is placed on the analysis of time and vectorcorrelations betweenions detected in coincidence.

  1. Theoretical investigations on plasma processes in the Kaufman thruster. [electron and ion velocity distribution

    NASA Technical Reports Server (NTRS)

    Wilhelm, H. E.

    1974-01-01

    An analysis of the sputtering of metal surfaces and grids by ions of medium energies is given and it is shown that an exact, nonlinear, hyperbolic wave equation for the temperature field describes the transient transport of heat in metals. Quantum statistical and perturbation theoretical analysis of surface sputtering by low energy ions are used to develop the same expression for the sputtering rate. A transport model is formulated for the deposition of sputtered atoms on system components. Theoretical efforts in determining the potential distribution and the particle velocity distributions in low pressure discharges are briefly discussed.

  2. Sub-Auroral Ion Drifts as a Source of Mid-Latitude Plasma Density Irregularities

    NASA Astrophysics Data System (ADS)

    Sotnikov, V.; Kim, T.; Mishin, E.; Paraschiv, I.; Rose, D.

    Ionospheric irregularities cause scintillations of electromagnetic signals that can severely affect navigation and transionospheric communication, in particular during space storms. At midlatitudes, such space weather events are caused mainly by subauroral electric field structures (SAID/SAPS) [1, 2]. SAID/SAPS -related shear flows and plasma density troughs point to interchange and Kelvin-Helmholtz type instabilities as a possible source of plasma irregularities. A model of nonlinear development of these instabilities based on the two-fluid hydrodynamic description with inclusion of finite Larmor radius effects will be presented. A numerical code in C language to solve the derived nonlinear equations for analysis of interchange and flow velocity shear instabilities in the ionosphere was developed. This code was used to analyze competition between interchange and Kelvin Helmholtz instabilities in the equatorial region [3]. The high-resolution simulations with continuous density and velocity profiles will be driven by the ambient conditions corresponding to the in situ Defence Military Satellite Program (DMSP) satellite low-resolution data [2] during UHF/GPS L-band subauroral scintillation events. [1] Mishin, E. (2013), Interaction of substorm injections with the subauroral geospace: 1. Multispacecraft observations of SAID, J. Geophys. Res. Space Phys., 118, 5782-5796, doi:10.1002/jgra.50548. [2] Mishin, E., and N. Blaunstein (2008), Irregularities within subauroral polarization stream-related troughs and GPS radio interference at midlatitudes. In: T. Fuller-Rowell et al. (eds), AGU Geophysical Monograph 181, MidLatitude Ionospheric Dynamics and Disturbances, pp. 291-295, doi:10.1029/181GM26, Washington, DC, USA. [3] V. Sotnikov, T. Kim, E. Mishin, T. Genoni, D. Rose, I. Paraschiv, Development of a Flow Velocity Shear Instability in the Presence of Finite Larmor Radius Effects, AGU Fall Meeting, San Francisco, 15 - 19 December, 2014.

  3. Apparent velocity threshold in the electronic stopping of slow hydrogen ions in LiF.

    PubMed

    Draxler, M; Chenakin, S P; Markin, S N; Bauer, P

    2005-09-01

    The electronic energy loss of hydrogen ions (protons and deuterons) in thin supported films of LiF has been studied in backscattering geometry for specific energies from 700 eV/u to 700 keV/u, using Rutherford backscattering spectroscopy and time-of-flight low-energy ion scattering spectroscopy. For specific energies below 8 keV/u, our data confirm velocity proportionality for the stopping cross section epsilon (like in a metal) down to 3.8 keV/u, as observed previously for protons and antiprotons despite the large band gap (14 eV) of LiF. Below 3.8 keV/u, the present results indicate an apparent velocity threshold at about 0.1 a.u. for the onset of electronic stopping. PMID:16197001

  4. Apparent Velocity Threshold in the Electronic Stopping of Slow Hydrogen Ions in LiF

    SciTech Connect

    Draxler, M.; Chenakin, S.P.; Markin, S.N.; Bauer, P.

    2005-09-09

    The electronic energy loss of hydrogen ions (protons and deuterons) in thin supported films of LiF has been studied in backscattering geometry for specific energies from 700 eV/u to 700 keV/u, using Rutherford backscattering spectroscopy and time-of-flight low-energy ion scattering spectroscopy. For specific energies below 8 keV/u, our data confirm velocity proportionality for the stopping cross section {epsilon} (like in a metal) down to 3.8 keV/u, as observed previously for protons and antiprotons despite the large band gap (14 eV) of LiF. Below 3.8 keV/u, the present results indicate an apparent velocity threshold at about 0.1 a.u. for the onset of electronic stopping.

  5. Conformational ordering of biomolecules in the gas phase: nitrogen collision cross sections measured on a prototype high resolution drift tube ion mobility-mass spectrometer.

    PubMed

    May, Jody C; Goodwin, Cody R; Lareau, Nichole M; Leaptrot, Katrina L; Morris, Caleb B; Kurulugama, Ruwan T; Mordehai, Alex; Klein, Christian; Barry, William; Darland, Ed; Overney, Gregor; Imatani, Kenneth; Stafford, George C; Fjeldsted, John C; McLean, John A

    2014-02-18

    Ion mobility-mass spectrometry measurements which describe the gas-phase scaling of molecular size and mass are of both fundamental and pragmatic utility. Fundamentally, such measurements expand our understanding of intrinsic intramolecular folding forces in the absence of solvent. Practically, reproducible transport properties, such as gas-phase collision cross-section (CCS), are analytically useful metrics for identification and characterization purposes. Here, we report 594 CCS values obtained in nitrogen drift gas on an electrostatic drift tube ion mobility-mass spectrometry (IM-MS) instrument. The instrument platform is a newly developed prototype incorporating a uniform-field drift tube bracketed by electrodynamic ion funnels and coupled to a high resolution quadrupole time-of-flight mass spectrometer. The CCS values reported here are of high experimental precision (±0.5% or better) and represent four chemically distinct classes of molecules (quaternary ammonium salts, lipids, peptides, and carbohydrates), which enables structural comparisons to be made between molecules of different chemical compositions for the rapid "omni-omic" characterization of complex biological samples. Comparisons made between helium and nitrogen-derived CCS measurements demonstrate that nitrogen CCS values are systematically larger than helium values; however, general separation trends between chemical classes are retained regardless of the drift gas. These results underscore that, for the highest CCS accuracy, care must be exercised when utilizing helium-derived CCS values to calibrate measurements obtained in nitrogen, as is the common practice in the field. PMID:24446877

  6. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer

    PubMed Central

    2014-01-01

    Ion mobility-mass spectrometry measurements which describe the gas-phase scaling of molecular size and mass are of both fundamental and pragmatic utility. Fundamentally, such measurements expand our understanding of intrinsic intramolecular folding forces in the absence of solvent. Practically, reproducible transport properties, such as gas-phase collision cross-section (CCS), are analytically useful metrics for identification and characterization purposes. Here, we report 594 CCS values obtained in nitrogen drift gas on an electrostatic drift tube ion mobility-mass spectrometry (IM-MS) instrument. The instrument platform is a newly developed prototype incorporating a uniform-field drift tube bracketed by electrodynamic ion funnels and coupled to a high resolution quadrupole time-of-flight mass spectrometer. The CCS values reported here are of high experimental precision (0.5% or better) and represent four chemically distinct classes of molecules (quaternary ammonium salts, lipids, peptides, and carbohydrates), which enables structural comparisons to be made between molecules of different chemical compositions for the rapid omni-omic characterization of complex biological samples. Comparisons made between helium and nitrogen-derived CCS measurements demonstrate that nitrogen CCS values are systematically larger than helium values; however, general separation trends between chemical classes are retained regardless of the drift gas. These results underscore that, for the highest CCS accuracy, care must be exercised when utilizing helium-derived CCS values to calibrate measurements obtained in nitrogen, as is the common practice in the field. PMID:24446877

  7. Measuring ion velocity distribution functions through high-aspect ratio holes in inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Cunge, G.; Darnon, M.; Dubois, J.; Bezard, P.; Mourey, O.; Petit-Etienne, C.; Vallier, L.; Despiau-Pujo, E.; Sadeghi, N.

    2016-02-01

    Several issues associated with plasma etching of high aspect ratio structures originate from the ions' bombardment of the sidewalls of the feature. The off normal angle incident ions are primarily due to their temperature at the sheath edge and possibly to charging effects. We have measured the ion velocity distribution function (IVDF) at the wafer surface in an industrial inductively coupled plasma reactor by using multigrid retarding field analyzers (RFA) in front of which we place 400 μm thick capillary plates with holes of 25, 50, and 100 μm diameters. The RFA then probes IVDF at the exit of the holes with Aspect Ratios (AR) of 16, 8, and 4, respectively. The results show that the ion flux dramatically drops with the increase in AR. By comparing the measured IVDF with an analytical model, we concluded that the ion temperature is 0.27 eV in our plasma conditions. The charging effects are also observed and are shown to significantly reduce the ion energy at the bottom of the feature but only with a "minor" effect on the ion flux and the shape of the IVDF.

  8. A Survey of Velocity Distributions of Solar Wind Ions : ACE/SWICS observations

    NASA Astrophysics Data System (ADS)

    Berger, L.; Marsch, E.; Wimmer-Schweingruber, R. F.

    2014-12-01

    The state of solar wind ions is generally described by a small set of state variables. In detail these aretotal density (or flux), center of mass (or bulk) velocity, and temperature. These variables are obtainedfrom measured velocity distributions either by fitting a Maxwell-Boltzmann distribution or by calculatingthe zeroth, first, and second order moments of the distribution. Obviously the first approach requires athermalized distribution to yield meaningful results, while the second approach is universally valid.However, in both cases the shape of the distribution can not be reproduced by the derived parameters.From observations of solar wind protons and alpha particles it is known that the assumption of a thermalized distribution is not valid, at least for the majority of observations. For heavy solar wind ions most observationsare severely limited by statistics and do not even allow to distinguish whether the distribution is thermal or not.This often insufficient characterization of the solar wind VDF severely limits the information which can beobtained for more detailed studies, especially about microscopic kinetic physics and the associatedwave-particle interactions. These naturally yield deviations from Maxwell-Boltzmann distributions.To address this problem we have analyzed ten years worth of data from the Solar Wind Ion Composition Spectrometer (SWICS)and the Magnetometer (MAG) on the Advanced Composition Explorer (ACE). From our analysis we obtained reduced 1D velocity spectra in 12 minute cadence for some 40 solar wind ions, from protons and alpha particles up to iron.Using the magnetic field vector information we were able to study periods where the reduced 1D spectra representthe parallel and perpendicular shape of the velocity distributions. We present our results and discussthem in the aforementioned context.

  9. Superconducting twin quarter wave resonator for acceleration of low velocity heavy ions

    NASA Astrophysics Data System (ADS)

    Kabumoto, H.; Takeuchi, S.; Matsuda, M.; Ishizaki, N.; Otokawa, Y.

    2010-01-01

    We have designed and fabricated a superconducting twin quarter wave resonator (Twin-QWR) made of niobium and copper for the acceleration of low velocity heavy ions. The resonator has two inner conductors and three acceleration gaps, which give a resonant frequency of 129.8 MHz and an optimum beam velocity of 6% of the light velocity. Each inner conductor resonates like in a coaxial quarter-wave line resonator. The resonator was designed to have a separable structure so that we could treat the inner conductor's part fully made of high purity niobium apart from the outer conductor made of niobium and copper. We obtained an acceleration field gradient of 5.8 MV/m at an RF power input of 4 W.

  10. A millimeter/submillimeter velocity modulation spectrometer for studies of molecular ions

    NASA Astrophysics Data System (ADS)

    Savage, C.; Ziurys, L. M.

    2005-04-01

    A millimeter/submillimeter direct absorption spectrometer has been constructed that employs velocity modulation to selectively detect molecular ions. The instrument consists of a phase-locked Gunn oscillator/Schottky diode multiplier source, a gas absorption cell, and an InSb hot-electron bolometer detector. The gas cell is a single-pass system with two ring-type discharge electrodes at either end, which are connected to an rf power supply. Modulation of the ac discharge at a rate of 50 kHz and phase-sensitive detection at 1f allows for selective observation of molecular ion signals and suppression of absorption from neutral species. The spectrometer can also be used in source-modulated mode, where the signal-to-noise ratio for signals generated in an ac plasma are significantly better than for dc discharges. Combining source modulation with the ac discharge for signal detection and velocity modulation for ion identification provides a powerful technique for molecular ion spectroscopy at millimeter/submillimeter wavelengths. This instrument has been used to measure the pure rotational spectra of CO+, HCO+, and SH+ with better precision than previous studies.

  11. First Absolutely Calibrated Localized Measurements of Ion Velocity in the MST in Locked and Rotating Plasmas

    NASA Astrophysics Data System (ADS)

    Baltzer, M.; Craig, D.; den Hartog, D. J.; Nornberg, M. D.; Munaretto, S.

    2015-11-01

    An Ion Doppler Spectrometer (IDS) is used on MST for high time-resolution passive and active measurements of impurity ion emission. Absolutely calibrated measurements of flow are difficult because the spectrometer records data within 0.3 nm of the C+5 line of interest, and commercial calibration lamps do not produce lines in this narrow range . A novel optical system was designed to absolutely calibrate the IDS. The device uses an UV LED to produce a broad emission curve in the desired region. A Fabry-Perot etalon filters this light, cutting transmittance peaks into the pattern of the LED emission. An optical train of fused silica lenses focuses the light into the IDS with f/4. A holographic diffuser blurs the light cone to increase homogeneity. Using this light source, the absolute Doppler shift of ion emissions can be measured in MST plasmas. In combination with charge exchange recombination spectroscopy, localized ion velocities can now be measured. Previously, a time-averaged measurement along the chord bisecting the poloidal plane was used to calibrate the IDS; the quality of these central chord calibrations can be characterized with our absolute calibration. Calibration errors may also be quantified and minimized by optimizing the curve-fitting process. Preliminary measurements of toroidal velocity in locked and rotating plasmas will be shown. This work has been supported by the US DOE.

  12. Velocity space diffusion of pickup ions from the water group at Comet Halley

    SciTech Connect

    Coates, A.J.; Johnstone, A.D. ); Wilken, B.; Jockers, K. ); Glassmeier, K.H. )

    1989-08-01

    The authors have studied the diffusion in velocity space of cometary ions using the distributions of ions measured by the implanted ion spectrometer on Giotto during the inbound pass. The measurements were transformed into a frame comoving with the solar wind and oriented with the magnetic field. The observations show the evolution of the pitch angle distribution in the solar wind turbulence to form a shell from the initial ring. Diffusion in energy takes place simultaneously but on a longer time scale. Comparison with theory is inhibited by the lack of a suitable spatial model, but the simple arguments they can make indicate that pitch angle diffusion, and the process of parallel pickup, take place more slowly than theory suggests.

  13. Effect of trajectory fluctuations on nucleon drift and diffusion in deep inelastic heavy ion collisions

    SciTech Connect

    Chattopadhyay, S.; Pal, D. )

    1990-01-01

    The role of trajectory fluctuations on the first and second moments obtained in the mean trajectory approximation for the proton and neutron distributions of the projectile-like fragments produced in deep inelastic heavy ion collisions has been studied in the framework of stochastic transfer of single nucleons. At each instant of time the neutron and proton numbers of the colliding nuclei are considered to be given by dynamically evolving Gaussian distributions generating trajectory fluctuations. The first moments calculated in this method differ considerably from those obtained in the mean trajectory approximation for the systems with strong gradient in the driving force around the point of injection. The second moments, however, do not change appreciably for all the systems studied.

  14. Giotto-IMS observations of ion flow velocities and temperatures outside the contact surface of Comet Halley. [Ion Mass Spectrometer (IMS)

    NASA Technical Reports Server (NTRS)

    Goldstein, B. E.; Neugebauer, M.; Balsiger, H.; Drake, J.; Fuselier, S. A.; Goldstein, R.; Ip, WING-H.; Rettenmund, U.; Rosenbauer, H.; Schwenn, R.

    1986-01-01

    Fluid parameters for He(++) ions obtained from the Giotto ion mass spectrometer are presented. Proton densities and velocities and thermal speeds of protons, alpha particles, and heavy ions in the hour before closest approach are discussed. A region of enhanced He(++) ion densities, and velocity, and decreased temperature is observed from 20:26 to 21:45. Sharp decreases in the proton density are observed at 23:30 and at 23:41. There is a relative flow velocity between alpha particles and oxygen ions of 30 km/sec during a period from 22:55 to 23:30; the difference in flow velocity is less than the experimental uncertainities. The flow properties of protons observed during this period are also discussed.

  15. Investigation of localized 2D convection mapping based on artificially generated Swarm ion drift data

    NASA Astrophysics Data System (ADS)

    Fiori, R. A. D.; Boteler, D. H.; Koustov, A. V.; Knudsen, D.; Burchill, J. K.

    2014-07-01

    Ionospheric plasma flow is an indicator of the interconnection between the solar wind, interplanetary magnetic field (IMF), and Earth’s magnetosphere. Ionospheric convection has been mapped in the past using either a widespread data set for instantaneous convection mapping over a short time period or data from an instrument measuring convection in a spatially confined region over a long time period for the purpose of building a statistically averaged convection pattern. This study explores convection mapping using a spherical cap harmonic analysis (SCHA) technique within a localized spherical cap based on data that will be available from the Swarm three-satellite constellation. Convection is mapped in the vicinity of hypothetical Swarm satellite tracks where it is adequately constrained by data. By using statistical models to emulate Swarm measurements, we demonstrate that such mapping can be successful based on data from the Swarm A and Swarm B satellites. Convection is divided into well constrained and poorly constrained subsets to determine parameters characterizing goodness-of-fit based on known quantities. Using the subset of well constrained maps, it is determined that convection is best mapped for a spherical cap having an angular radius of θc=10°. The difference between the maximum mapped convection and the maximum velocity measured along the satellite track (Δv) is introduced to evaluate goodness-of-fit. For the examples presented in this paper, we show that a threshold value of Δv=281 m/s successfully differentiates between well and poorly constrained maps 77.6% of the time. It is shown that convection can be represented over a larger region through the use of multiple spherical caps.

  16. Atomic collision experiments utilizing low-velocity, highly-charged ion beams

    SciTech Connect

    Johnson, B.M.; Jones, K.W.; Meron, M.

    1982-01-01

    Intense beams of highly-stripped ions are now routinely produced at low velocities using the Brookhaven dual MP-tandens in a unique four-stage accel/decel mode. This mode of operation combines three stages of acceleration, stripping at high energy, and one stage of deceleration to near-zero velocity. To date, experiments have used 10-100 nA beams of bare and few-electron heavy ions at energies as low as 0.2 MeV/amu, and upgrades of the facility should push the lower limit below 0.1 MeV/amu. Recent experiments, such as measurements of charge transfer and x-ray production for S/sup 6-16+/ on He and Ar at 6 to 20 MeV and P(b) measurements for MO x-rays produced in Cl/sup 16 +/ + Ar collisions at 20, 10, and 5 MeV have demonstrated the usefulness of highly-stripped, low-velocity projectiles. These experiments and a few possibilities for future experiments are discussed.

  17. Laboratory Course on Drift Chambers

    SciTech Connect

    Garcia-Ferreira, Ix-B.; Garcia-Herrera, J.; Villasenor, L.

    2006-09-25

    Drift chambers play an important role in particle physics experiments as tracking detectors. We started this laboratory course with a brief review of the theoretical background and then moved on to the the experimental setup which consisted of a single-sided, single-cell drift chamber. We also used a plastic scintillator paddle, standard P-10 gas mixture (90% Ar, 10% CH4) and a collimated 90Sr source. During the laboratory session the students performend measurements of the following quantities: a) drift velocities and their variations as function of the drift field; b) gas gains and c) diffusion of electrons as they drifted in the gas.

  18. Extension of charge-state-distribution calculations for ion-solid collisions towards low velocities and many-electron ions

    NASA Astrophysics Data System (ADS)

    Lamour, E.; Fainstein, P. D.; Galassi, M.; Prigent, C.; Ramirez, C. A.; Rivarola, R. D.; Rozet, J.-P.; Trassinelli, M.; Vernhet, D.

    2015-10-01

    Knowledge of the detailed evolution of the whole charge-state distribution of projectile ions colliding with targets is required in several fields of research such as material science and atomic and nuclear physics but also in accelerator physics, and in particular in regard to the several foreseen large-scale facilities. However, there is a lack of data for collisions in the nonperturbative energy domain and that involve many-electron projectiles. Starting from the etacha model we developed [Rozet et al., Nucl. Instrum. Methods Phys. Res., Sect. B 107, 67 (1996), 10.1016/0168-583X(95)00800-4], we present an extension of its validity domain towards lower velocities and larger distortions. Moreover, the system of rate equations is able to take into account ions with up to 60 orbital states of electrons. The computed data from the different new versions of the etacha code are compared to some test collision systems. The improvements made are clearly illustrated by 28.9 MeV u-1P b56 + ions, and laser-generated carbon ion beams of 0.045 to 0.5 MeV u-1 , passing through carbon or aluminum targets, respectively. Hence, those new developments can efficiently sustain the experimental programs that are currently in progress on the "next-generation" accelerators or laser facilities.

  19. Cold reactive collisions between laser-cooled ions and velocity-selected neutral molecules

    NASA Astrophysics Data System (ADS)

    Bell, Martin; Willitsch, Stefan; Gingell, Alexander; Procter, Simon; Softley, Timothy

    2008-03-01

    The recent development of a range of techniques for producing ``cold'' molecules at very low translational temperatures T < 1 K in the gas phase has provided the opportunity for studying molecular collisions in a new physical regime. We report a new experimental method to study reactive collisions between ions and neutral molecules at very low temperatures which allows for tunable collision energies and a variety of chemically diverse reaction partners. Our technique relies on the combination of a quadrupole-guide velocity selector for the generation of cold polar molecules with a facility to produce strongly ordered samples of laser-cooled ions in an ion trap, usually referred to as Coulomb crystals. Despite the low fluxes of neutral molecules obtained from the quadrupole-guide, the strong localization and long trapping times of the ions allows chemical reactions to be studied at the single-particle level. In a proof-of-principle experiment, we have studied the chemical reaction between translationally cold CH3F molecules and laser-cooled Ca^+ ions in a collision energy range corresponding to 1-10 K. The characteristics of our cold-molecule sources and the performance of the new technique as well as perspectives for further developments will be discussed.

  20. MEASUREMENTS OF ANISOTROPIC ION TEMPERATURES, NON-THERMAL VELOCITIES, AND DOPPLER SHIFTS IN A CORONAL HOLE

    SciTech Connect

    Hahn, M.; Savin, D. W.

    2013-02-15

    We present a new diagnostic allowing one to measure the anisotropy of ion temperatures and non-thermal velocities, as well as Doppler shifts with respect to the ambient magnetic field. This method provides new results, as well as an independent test for previous measurements obtained with other techniques. Our spectral data come from observations of a low-latitude, on-disk coronal hole. A potential field source surface model was used to calculate the angle between the magnetic field lines and the line of sight for each spatial bin of the observation. A fit was performed to determine the line widths and Doppler shifts parallel and perpendicular to the magnetic field. For each line width component we derived ion temperatures T {sub i,} and T {sub i, Parallel-To} and non-thermal velocities v {sub nt,} and v {sub nt, Parallel-To }. T {sub i,} was cooler than off-limb polar coronal hole measurements, suggesting increasing collisional cooling with decreasing height. T {sub i, Parallel-To} is consistent with a uniform temperature of (1.8 {+-} 0.2) Multiplication-Sign 10{sup 6} K for each ion. Since parallel ion heating is expected to be weak, this ion temperature should reflect the proton temperature. A comparison between our results and others implies a large proton temperature gradient around 1.02 R {sub Sun }. The non-thermal velocities are thought to be proportional to the amplitudes of various waves. Our results for v {sub nt,} agree with Alfven wave amplitudes inferred from off-limb polar coronal hole line width measurements. Our v {sub nt, Parallel-To} results are consistent with slow magnetosonic wave amplitudes inferred from Fourier analysis of time-varying intensity fluctuations. Doppler shift measurements yield outflows of Almost-Equal-To 5 km s{sup -1} for ions formed over a broad temperature range. This differs from other studies that found a strong Doppler shift dependence on formation temperature.

  1. Time scales for formation and spreading of velocity shells of pickup ions in the solar wind

    NASA Technical Reports Server (NTRS)

    Gaffey, J. D., Jr.; Wu, C. S.; Winske, D.

    1988-01-01

    This paper discusses the process of assimilation (pickup) by the solar wind of newly ionized atoms and molecules. Generally, the pickup process is considered to evolve in three stages: (1) the initial interaction of newly created ions with the interplanetary magnetic field to form the ring-beam distribution; (2) pitch angle scattering of the ring beam to form a hollow shell; and (3) slower velocity diffusion to form a partially filled-in shell distribution. Using numerical simulations of turbulence such as would occur naturally in the solar wind and such as would be encountered near cometary bow shocks, the processes of shell formation and evolution are studied, and the results are used to estimate the time scales for shell formation and diffusion in several situations of recent observational interest, the interstellar He data obtained by AMPTE and cometary ion pickup distributions obtained by various spacecraft at comets Giacobini-Zinner and Halley.

  2. Effects of gamma-ray and high energy carbon ion irradiation on swimming velocity of Euglena gracilis

    NASA Astrophysics Data System (ADS)

    Sakashita, T.; Doi, M.; Yasuda, H.; Fuma, S.; Häder, D.-P.

    The effects of gamma-ray and high energy carbon ion irradiation on the swimming velocity of the photosynthetic flagellate Euglena gracilis strain Z were studied, focusing on a dose-effect relationship. Cells were exposed to 60Co gamma-rays at 6 doses of 10, 15, 20, 40, 100 and 200 Gy for water, and also to 290 MeV/amu carbon ions from the Heavy Ion Medical Accelerator in Chiba at 7 doses (5, 10, 15, 20, 50, 100 and 200 Gy for water). The swimming velocity was measured by a biomonitoring system, called ECOTOX. The swimming velocities of Euglena gracilis cells were significantly decreased by >40 Gy gamma-rays and >5 Gy carbon ions, respectively. The 50% effective doses for inhibition, 34±4 Gy (gamma-rays) and 13±1 Gy (290 MeV/amu carbon ions), were estimated from the best fit to data of the logistic model. The relative biological effectiveness (2.6±0.4) was calculated by the ratio of 50% effective doses. The inhibition of the swimming velocity of the cells irradiated with gamma-rays was still present after 3 days, while recovery of the swimming velocity was shown in the cells exposed to 290 MeV/amu carbon ions. It is suggested that ionizing radiation inhibits ATP production and/or increases frictional drag on beating of the flagellum, thus decreasing swimming velocity.

  3. Ion Bernstein waves in a plasma with a kappa velocity distribution

    SciTech Connect

    Nsengiyumva, F.; Mace, R. L.; Hellberg, M. A.

    2013-10-15

    Using a Vlasov-Poisson model, a numerical investigation of the dispersion relation for ion Bernstein waves in a kappa-distributed plasma has been carried out. The dispersion relation is found to depend significantly on the spectral index of the ions, κ{sub i}, the parameter whose smallness is a measure of the departure from thermal equilibrium of the distribution function. Over all cyclotron harmonics, the typical Bernstein wave curves are shifted to higher wavenumbers (k) if κ{sub i} is reduced. For waves whose frequency lies above the lower hybrid frequency, ω{sub LH}, an increasing excess of superthermal particles (decreasing κ{sub i}) reduces the frequency, ω{sub peak}, of the characteristic peak at which the group velocity vanishes, while the associated k{sub peak} is increased. As the ratio of ion plasma to cyclotron frequency (ω{sub pi}/ω{sub ci}) is increased, the fall-off of ω at large k is smaller for lower κ{sub i} and curves are shifted towards larger wavenumbers. In the lower hybrid frequency band and harmonic bands above it, the frequency in a low-κ{sub i} plasma spans only a part of the intraharmonic space, unlike the Maxwellian case, thus exhibiting considerably less coupling between adjacent bands for low κ{sub i}. It is suggested that the presence of the ensuing stopbands may be a useful diagnostic for the velocity distribution characteristics. The model is applied to the Earth's plasma sheet boundary layer in which waves propagating perpendicularly to the ambient magnetic field at frequencies between harmonics of the ion cyclotron frequency are frequently observed.

  4. Hybrid Simulations of the Termination Shock: Ion Velocity Distributions in the Heliosheath

    NASA Astrophysics Data System (ADS)

    Gary, S. Peter; Liu, Kaijun; Winske, Dan; Funsten, Herbert O.; Wu, Pin; Schwadron, Nathan A.

    2010-11-01

    TheLos Alamos hybrid simulation code has been used to examine kinetic properties of pickup ions at the heliospheric termination shock and in the downstream heliosheath. The simulations represent the electrons as a zero-mass fluid, and address only perpendicular shocks. Three topics are studied. First, one-dimensional shock simulations show that, contrary to a widely held opinion, specular reflection does not play a role in the energy gain of pickup ions at the termination shock. Rather, pickup ions which gain the most energy at the shock are those with gyrophase which enables them to return upstream and interact with the motional electric field. Second, simulations are carried out for three different upstream Mach numbers; the results show that faster solar wind flows lead to an increased flux of ions in the tails of the suprathermal component, consistent with energetic neutral atom observations by the IBEX spacecraft. Third, two-dimensional simulations of the shock show that anisotropies in the proton velocity distribution caused by the termination shock give rise to both Alfvén-cyclotron and proton mirror instabilities in the heliosheath. In these simulations, the cyclotron instability dominates and, via pitch-angle scattering, reduces the proton anisotropies in the heliosheath.

  5. Calculation of the Ion Distribution Function over Transverse Velocities under ICR Heating Conditions and Separation Parameters of a Collector of Heated Ions

    SciTech Connect

    Karchevskii, A.I.; Potanin, E.P.

    2004-12-15

    The ion distribution function over transverse velocities and the ion heating efficiency (which is defined as the fraction {eta} of ions heated above a certain energy W{sub min}) are calculated in the context of a plasma method for isotope separation on the basis of ion cyclotron resonance heating. The ion distribution function over longitudinal velocities is assumed to be linear in the range of low velocities. It is shown that, when the ions are heated to high energies, the averaged ion distribution function over transverse velocities becomes highly nonequilibrium and has two peaks. Results are presented from calculations of the ion heating efficiency {eta} for W{sub min} = 40 eV and for different values of the parameter p that characterizes the ratio of the wavelength {lambda} of the antenna electric field to the length L of the heating region. The relative roles of the time-of-flight and the Doppler broadening are analyzed, and the separation parameters of a collector of heated ions are estimated.

  6. Drift and Hysteresis Effects on AlN/SiO2 Gate pH Ion-Sensitive Field-Effect Transistor

    NASA Astrophysics Data System (ADS)

    Chiang, Jung-Lung; Chou, Jung-Chuan; Chen, Ying-Chung; Liau, Guo Shiang; Cheng, Chien-Chuan

    2003-08-01

    The nonideal and unstable factors of AlN-based ion-sensitive field-effect transistor (ISFET) devices including the drift and hysteresis effects have been investigated in this study. The drift and hysteresis of AlN-based pH-ISFET devices have been measured using a constant current constant voltage (CCCV) readout circuit. The drift rates were obtained by long-time monitoring for 12 h in pH = 1, 3, 5, 7, 9, and 11 buffer solutions, which indicated that the drift rate increased with the pH value. The hysteresis effect was investigated by exposing the AlN gate ISFET in pH = 7-3-7-11-7 loop cycles with loop times of 960 s, 1920 s and 3840 s, and the magnitudes of hysteresis of 1.0, 1.5 and 4.5 mV were obtained, respectively. The temperature coefficient of hysteresis was found to be approximately 0.234 mV/°C. In addition, it was also found that the hysteresis width with pH started from acid side is smaller than that started from basic side, which results in an asymmetric hysteresis effect.

  7. Observations of the He+ pickup ion torus velocity distribution function with SOHO/CELIAS/CTOF

    NASA Astrophysics Data System (ADS)

    Taut, Andreas; Berger, Lars; Bochsler, Peter; Drews, Christian; Klecker, Berndt; Wimmer-Schweingruber, Robert F.

    2016-03-01

    Interstellar PickUp Ions (PUIs) are created from neutrals coming from the interstellar medium that get ionized inside the heliosphere. Once ionized, the freshly created ions are injected into the magnetized solar wind plasma with a highly anisotropic torus-shaped Velocity Distribution Function (VDF). It has been commonly assumed that wave-particle interactions rapidly destroy this torus by isotropizing the distribution in one hemisphere of velocity space. However, recent observations of a He+ torus distribution using PLASTIC on STEREO showed that the assumption of a rapid isotropization is oversimplified. The aim of this work is to complement these studies. Using He+ data from the Charge Time-Of-Flight (CTOF) sensor of the Charge, ELement, and Isotope Analysis System (CELIAS) on-board the SOlar and Heliospheric Observatory (SOHO) and magnetic field data from the Magnetic Field Investigation (MFI) magnetometer of the WIND spacecraft, we derive the projected 1-D VDF of He+ for different magnetic field configurations. Depending on the magnetic field direction, the initial torus VDF lies inside CTOF's aperture or not. By comparing the VDFs derived under different magnetic field directions with each other we reveal an anisotropic signature of the He+ VDF.

  8. Studies of endothelial monolayer formation on irradiated poly-L-lactide acid with ions of different stopping power and velocity

    NASA Astrophysics Data System (ADS)

    Arbeitman, Claudia R.; del Grosso, Mariela F.; Ibañez, Irene L.; Behar, Moni; Grasselli, Mariano; Bermúdez, Gerardo García

    2015-12-01

    In this work we study cell viability, proliferation and morphology of bovine aortic endothelial cells (BAEC) cultured on poly-L-lactide acid (PLLA) modified by heavy ion irradiation. In a previous study comparing ions beams with the same stopping power we observed an increase in cell density and a better cell morphology at higher ion velocities. In the present work we continued this study using heavy ions beam with different stopping power and ion velocities. To this end thin films of 50 μm thickness were irradiated with 2 MeV/u and 0.10 MeV/u ion beams provided the Tandar (Buenos Aires, Argentina) and Tandetron (Porto Alegre, Brazil) accelerators, respectively. The results suggest that a more dense and elongated cell shapes, similar to the BAEC cells on the internal surface of bovine aorta, was obtained for stopping power of 18.2-22.1 MeV cm2 mg-1 and ion velocity of 2 MeV/u. On the other hand, for low ion velocity 0.10 MeV/u the cells present a more globular shapes.

  9. Measurements of Nitrous Acid (HONO) Using Ion Drift - Chemical Ionization Mass Spectrometry during the 2009 SHARP Field Campaign

    NASA Astrophysics Data System (ADS)

    Levy, M. E.; Zhang, R.

    2013-12-01

    During the 2009 SHARP Field Campaign in Houston, TX, measurements of HONO were continuously conducted from May 1 to June 1 at a site located on the campus of the University of Houston. We have developed a novel approach for ambient measurements of nitrous acid (HONO) using ion drift - chemical ionization mass spectrometry (ID-CIMS). In our innovative method, HONO is ionized using the sulfur hexafluoride anion, representing the first application of this reagent ion under humid tropospheric conditions. In this presentation, we will discuss the temporal trends and sources of HONO, as well as, as the involvement of HONO in the formation of key atmospheric constituents, such as ozone. Diurnally, HONO concentration accumulates in the late afternoon, reaches a nighttime maximum, and declines rapidly after sunrise; the averaged daytime and nighttime concentrations are 0.15 × 0.05 and 0.26 × 0.04, respectively. The nighttime measured HONO peaks show strong correlations with the NO2 concentration, particle surface area, and soot mass concentration, indicating that the aerosol-phase chemistry represents a significant contributor to the HONO yield. A higher nighttime HONO peak concentration consistently precedes a higher and earlier ozone peak concentration of the following day, by about 20 ppb higher and four hours earlier than those with a lower preceding HONO peak concentration do. Using a kinetic approach, we estimate an uptake coefficient in the range of 6 x 10-4 to 2 x 10-3 for the heterogeneous conversion of NO2 to HONO on aerosol surfaces, which is necessary to account for the measured nighttime HONO peaks. Our results underscore the importance of aerosol heterogeneous chemistry in HONO production and the contributions of this non-photolytic HONO source to the radical budget and the photochemical ozone production in this region. Furthermore, because of its high detection sensitivity and fast-responding time, the ID-CIMS method described in this work may greatly facilitate HONO detection under typical tropospheric conditions.

  10. ION TEMPERATURE AND NON-THERMAL VELOCITY IN A SOLAR ACTIVE REGION: USING EMISSION LINES OF DIFFERENT ATOMIC SPECIES

    SciTech Connect

    Imada, S.; Hara, H.; Watanabe, T.

    2009-11-10

    We have studied the characteristics of the ion thermal temperature and non-thermal velocity in an active region observed by the EUV Imaging Spectrometer onboard Hinode. We used two emission lines of different atomic species (Fe XVI 262.98 A and S XIII 256.69 A) to distinguish the ion thermal velocity from the observed full width at half-maximum. We assumed that the sources of the two emission lines are the same thermal temperature. We also assumed that they have the same non-thermal velocity. With these assumptions, we could obtain the ion thermal temperature, after noting that M{sub sulfur} approx 0.6M{sub iron}. We have carried out the ion thermal temperature analysis in the active region where the photon counts are sufficient (>4500). What we found is as follows: (1) the common ion thermal temperatures obtained by Fe XVI and S XIII are approx2.5 MK, (2) the typical non-thermal velocities are approx13 km s{sup -1}, (3) the highest non-thermal velocities (>20 km s{sup -1}) are preferentially observed between the bright points in Fe XVI, while (4) the hottest material (>3 MK) is observed relatively inside the bright points compared with the highest non-thermal velocity region.

  11. Ion drift meter research

    NASA Technical Reports Server (NTRS)

    Heelis, Roderick A.

    1994-01-01

    The final activity period for the DE project has been particularly productive. This period has seen the final delivery of geophysical data sets to the National Space Science Data Center, the granting of three Ph.D. degrees from cumulative work on the project, the operation of automatic data access and display routines for the data, and an increased effort in research and publication of the data. As before the research activities, largely devoted to studies involving the dynamics of the ionosphere, utilize data from the IDM and the RPA and thus the work is not easily attributable to one or the other of these separately funded efforts. In this final report we provide brief descriptions of the work accomplished in the final phase of the program. The Dynamics Explorer program has provided a significant opportunity for much of the community to participate in the data analysis and interpretation. The data, now residing in the national space science data center, are a great legacy that should continue to yield important results for many years.

  12. Absolute Wavelength Calibration of the IDSII Spectrometer for Impurity Ion Velocity Measurements in the MST

    NASA Astrophysics Data System (ADS)

    Baltzer, M.; Craig, D.; den Hartog, D. J.; Nornberg, M. D.; MST Team

    2014-10-01

    The MST operates two Ion Doppler Spectrometers (IDS) for high time-resolution passive and active measurements of impurity ion emission. Absolutely calibrated measurements of flow are difficult because the spectrometers record data within 0.3 nm of the line of interest, and commercial calibration lamps do not produce lines in this narrow range . Four calibration methods were investigated. First, emission along the chord bisecting the poloidal plane was measured as it should have no time-averaged Doppler shift. Second, a calibrated CCD spectrometer and the IDSII were used to observe the same plasma from opposing sides so as to measure opposite Doppler shifts. The unshifted line is located halfway between the two opposing measurements. Third, the two fibers of the IDSI were positioned to take absolute flow measurements using opposing views. Substituting the IDSII for one of the IDSI fibers, absolute measurements of flow from the IDSI were used to calibrate the IDSII. Finally, an optical system was designed to filter an ultraviolet LED, providing a known wavelength source within the spectral range covered by the IDSII. The optical train is composed of an air-gapped etalon and fused silica lenses. The quality of calibration for each of these methods is analyzed and their results compared. Preliminary impurity ion velocity measurements are shown. This work has been supported by the US DOE and the NSF.

  13. Effect of ion temperature on ion-acoustic solitary waves in a plasma with a q-nonextensive electron velocity distribution

    SciTech Connect

    Roy, Kaushik; Saha, Taraknath; Chatterjee, Prasanta

    2012-10-15

    The effect of ion temperature on the existence of arbitrary amplitude ion-acoustic solitary waves is studied in a two component plasma in presence of a q-nonextensive velocity distributed electrons by using Sagdeev's pseudo potential technique. The range of relevent parameters for which solitons may exist is discussed. It is observed that both q, the nonextensive parameter and the ion temperature {sigma}, play significant roles in the formation and existence of solitons.

  14. The Postsunset Vertical Plasma Drift and Its Effects on the Generation of Equatorial Plasma Bubbles Observed by the C/NOFS Satellite

    NASA Astrophysics Data System (ADS)

    Huang, C.; Hairston, M. R.

    2014-12-01

    The prereversal enhancement of the vertical plasma drift in the postsunset sector is an important factor that controls the generation of equatorial plasma bubbles. In this study, we use the measurements of the ion velocity meter (IVM) on board the Communication/Navigation Outage Forecasting System (C/NOFS) satellite to identify the postsunset ion vertical drift and its effects on the occurrence of plasma bubbles. We only include the events when C/NOFS is located within ±5o from the magnetic equator during the interval of 1800-1900 LT and lower than 500 km in altitude. In total, we identified 886 events in which plasma bubbles were detected by C/NOFS between 1900 and 2100 LT and 1170 events in which no plasma bubbles were detected during May 2008-June 2013. The ion vertical drift is almost always upward for the 886 cases of occurrence of plasma bubbles, with a mean value of ~40 m/s. The mean ion vertical drift for bubble occurrence increases with the solar radio flux and varies with longitude. The mean ion vertical drift for the cases without plasma bubbles is smaller than 20 m/s, with minimum values near 60o and 300o longitude, respectively. There is some overlap in the ion vertical drift between the two categories, with plasma bubbles and without plasma bubbles. The occurrence probability of plasma bubbles increases with the ion upward drift when the ion drift is within 0 and 40 m/s.

  15. Velocity space diffusion and nongyrotropy of pickup water group ions at comet Grigg-Skjellerup

    NASA Technical Reports Server (NTRS)

    Coates, A. J.; Johnstone, A. D.; Wilken, B.; Neubauer, Fritz M.

    1993-01-01

    The diffusion of water group cometary ions in velocity space at comet Grigg-Skjellerup was measured during the Giotto spacecraft encounter. The evolution of the collapsed pitch angle and energy distributions during the inbound and outbound passes shows that the timescale for energy diffusion may be similar to that for pitch angle diffusion. Fully isotropic pitch angle distributions were never seen. Also the bulk parameters of the three-dimensional distributions are examined. Transformation of these parameters into a field-aligned solar wind frame allows us to test the gyrotropy of the distributions. These observations imply that there were deviations from gyrotropy throughout the encounter becoming most important near to closest approach.

  16. A new crossed molecular beam apparatus using time-sliced ion velocity imaging technique

    SciTech Connect

    Wu Guorong; Zhang Weiqing; Pan Huilin; Shuai Quan; Jiang Bo; Dai Dongxu; Yang Xueming

    2008-09-15

    A new crossed molecular beam apparatus has been constructed for investigating polyatomic chemical reactions using the time-sliced ion velocity map imaging technique. A unique design is adopted for one of the two beam sources and allows us to set up the molecular beam source either horizontally or vertically. This can be conveniently used to produce versatile atomic or radical beams from photodissociation and as well as electric discharge. Intensive H-atom beam source with high speed ratio was produced by photodissociation of the HI molecule and was reacted with the CD{sub 4} molecule. Vibrational-state resolved HD product distribution was measured by detecting the CD{sub 3} product. Preliminary results were also reported on the F+SiH{sub 4} reaction using the discharged F atom beam. These results demonstrate that this new instrument is a powerful tool for investigating chemical dynamics of polyatomic reactions.

  17. Linear dependence of the postsunset equatorial anomaly electron density on solar flux and its relation to the maximum prereversal E × B drift velocity through its dependence on solar flux

    NASA Astrophysics Data System (ADS)

    Whalen, James A.

    2004-07-01

    The postsunset equatorial ionization anomaly, with maximum F layer electron density, Nemax, occurring near 2100 LT, has been found during solar maximum to be a linear function of the maximum prereversal E × B drift velocity (E × B drift). In order to examine this relation at all levels of solar flux, Nemax is measured during 13 years of an entire solar cycle by eight ionospheric sounders located in the anomaly in both north and south dip latitudes and in eastern Asia, the Pacific, and South America. At each location the monthly median Nemax increases linearly with the monthly average solar flux, Sa, over the range from 70 to 285 sfu. The linear function varies markedly with location and by month at each location. The relation to E × B drift, which is also a linear function of Sa, is determined using measurements of Nemax versus Sa measured at Bogota in the anomaly plotted as a function of E × B versus Sa measured at Jicamarca at the dip equator. The result is that Nemax is a linear function of E × B, which is in agreement with that found previously during solar maximum. Accordingly, the Nemax versus E × B relation is independent of Sa. The fact that Nemax is linear in Sa at each site implies Nemax is linear in E × B at each but with a functional dependence that varies with latitude and longitude.

  18. Coupling laser ablation/desorption electrospray ionization to atmospheric pressure drift tube ion mobility spectrometry for the screening of antimalarial drug quality.

    PubMed

    Harris, Glenn A; Graf, Stephan; Knochenmuss, Richard; Fernández, Facundo M

    2012-07-01

    Significant developments in the field of ambient desorption/ionization mass spectrometry (MS) have led to high-throughput direct analysis and imaging capabilities. However, advances in coupling ambient ionization techniques with standalone drift tube ion mobility spectrometry (DTIMS) have been comparatively slower, despite the attractive ruggedness and simplicity of IMS. In this study, we have developed and characterized a laser ablation/desorption electrospray ionization (LADESI) DTIMS platform, and applied it to the detection of active pharmaceutical ingredients (APIs) in antimalarial tablets collected in developing countries. The overarching goal of this work was to perform an initial evaluation of LADESI DTIMS as a technique with the potential for constituting the core of a portable drug quality-testing platform. The set-up consisted of an IR laser for desorption and an electrospray ionizer for capturing the ablated plume coupled to a high-resolution monolithic resistive glass drift tube ion mobility spectrometer. For more confident API identification, tablet extracts were also investigated via electrospray IM MS to correlate LADESI DTIMS reduced mobility (K(0)) values to m/z values. Overall, it was found that the IR LADESI DTIMS platform provided distinct ion mobility spectral fingerprints that could be used to detect the presence of the expected APIs, helping to distinguish counterfeit drugs from their genuine counterparts. PMID:22606690

  19. Measurement of ion velocity profiles in a magnetic reconnection layer via current sheet jogging

    NASA Astrophysics Data System (ADS)

    Stein, G.; Yoo, J.; Yamada, M.; Ji, H.; Dorfman, S.; Lawrence, E.; Myers, C.; Tharp, T.

    2011-10-01

    In many laboratory plasmas, constructing stationary Langmuir and Mach probe arrays with resolution on the order of electron skin depth is technically difficult, and can introduce significant plasma perturbations. However, complete two- dimensional profiles of plasma density, electron temperature, and ion flow are important for studying the transfer of energy from magnetic fields to particles during magnetic reconnection. Through the use of extra ``Shaping Field'' coils in the Magnetic Reconnection Experiment (MRX) at the Princeton Plasma Physics Laboratory, the inward motion of the current sheet in the reconnection layer can be accelerated, or ``jogged,'' allowing the measurement of different points across the sheet with stationary probes. By acquiring data from Langmuir probes and Mach probes at different locations in the MRX with respect to the current sheet center, profiles of electron density and temperature and a vector plot of two-dimensional ion velocity in the plane of reconnection are created. Results from probe measurements will be presented and compared to profiles generated from computer simulation.

  20. Global equatorial ionospheric vertical plasma drifts measured by the AE-E satellite

    NASA Technical Reports Server (NTRS)

    Fejer, B. G.; De Paula, E. R.; Heelis, R. A.; Hanson, W. B.

    1995-01-01

    Ion drift meter observations from the Atmosphere Explorer E (AE-E) satellite during the period of January 1977 to December 1979 are used to study the dependence of equatorial (dip latitudes less than or equal to 7.5 deg) F region vertical plasma drifts (east-west electric fields) on solar activity, season, and longitude. The satellite-observed ion drifts show large day-to-day and seasonal variations. Solar cycle effects are most pronounced near the dusk sector with a large increase of the prereversal velocity enhancement from solar minimum to maximum. The diuurnal, seasonal, and solar cycle dependence of the logitudinally averaged drifts are consistent with results from the Jicamarca radar except near the June solstice when the AE-E nighttime downward velocities are significantly smaller than those observed by the radar. Pronounced presunrise downward drift enhancements are often observed over a large longituudinal range but not in the Peruvian equatorial region. The satellite data indicate that longitudinal variations are largest near the June solstice, particularly near dawn and dusk but are virtually absent during equinox. The longitudinal dependence of the AE-E vertical drifts is consistent with results from ionosonde data. These measurements were also used to develop a description of equatorial F region vertical drifts in four longitudinal sectors.

  1. Transient field measurements on32S(21 +) ions in Gd at the 1 s electron Bohr velocity

    NASA Astrophysics Data System (ADS)

    Cub, J.; Bussas, M.; Speidel, K.-H.; Karle, W.; Knopp, U.; Busch, H.; Wollersheim, H.-J.; Gerl, J.; Vetter, K.; Ender, C.; Köck, F.; Gerber, J.; Hagelberg, F.

    1993-03-01

    With the known g-factor of the Coulomb excited first 2+-state in32S the transient magnetic field was determined for sulphur ions traversing Gd at a mean velocity of 16 ν 0 ( ν 0=c/137). The degree of polarization deduced for the dominating H-like ions, ¯p1 s =0.10(3), agrees very well with that obtained at lower velocities. In addition, an upper limit of a transient electric field gradient was deduced from the particle- γ-angular correlation which is expected on theoretical grounds.

  2. Gyrokinetic-ion drift-kinetic-electron simulation of the (m = 2, n = 1) cylindrical tearing mode

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Chowdhury, J.; Maksimovic, N.; Parker, S. E.; Wan, W.

    2016-05-01

    Particle-in-cell simulations of (m =2 ,n =1 ) tearing mode in cylindrical plasmas are carried out with kinetic electrons using the split-weight control-variate algorithm [Y. Chen and S. E. Parker, J. Comput. Phys. 220, 839 (2007)]. Radially, global simulation shows global mode structure in agreement with reduced-magnetohydrodynamic eigenmode calculation. Simulations of the tearing layer are verified with analytic results for the collisionless, semi-collisional, and drift-tearing mode.

  3. Drift-tearing magnetic islands in tokamak plasmas

    SciTech Connect

    Fitzpatrick, R.; Waelbroeck, F. L.

    2008-01-15

    A systematic fluid theory of nonlinear magnetic island dynamics in conventional low-{beta}, large aspect-ratio, circular cross-section tokamak plasmas is developed using an extended magnetohydrodynamics model that incorporates diamagnetic flows, ion gyroviscosity, fast parallel electron heat transport, the ion sound wave, the drift wave, and average magnetic field-line curvature. The model excludes the compressible Alfven wave, geodesic field-line curvature, neoclassical effects, and ion Landau damping. A collisional closure is used for plasma dynamics parallel to the magnetic field. Two distinct branches of island solutions are found, namely the 'sonic' and 'hypersonic' branches. Both branches are investigated analytically, using suitable ordering schemes, and in each case the problem is reduced to a relatively simple set of nonlinear differential equations that can be solved numerically via iteration. The solution determines the island phase velocity, relative to the plasma, and the effect of local currents on the island stability. Sonic islands are relatively wide, flatten both the temperature and density profiles, and tend to propagate close to the local ion fluid velocity. Hypersonic islands, on the other hand, are relatively narrow, only flatten the temperature profile, radiate drift-acoustic waves, and tend to propagate close to the local electron fluid velocity. The hypersonic solution branch ceases to exist above a critical island width. Under normal circumstances, both types of island are stabilized by local ion polarization currents.

  4. Understanding the growth rate patterns of ion Bernstein instabilities driven by ring-like proton velocity distributions

    NASA Astrophysics Data System (ADS)

    Min, Kyungguk; Liu, Kaijun

    2016-04-01

    Fast magnetosonic waves in Earth's inner magnetosphere, which have as their source ion Bernstein instabilities, are driven by hot proton velocity distributions (fp) with ∂fp(v⊥)/∂v⊥>0. Two typical types of distributions with such features are ring and shell velocity distributions. Both have been used in studies of ion Bernstein instabilities and fast magnetosonic waves, but the differences between instabilities driven by the two types of distributions have not been thoroughly addressed. The present study uses linear kinetic theory to examine and understand these differences. It is found that the growth rate pattern is primarily determined by the cyclotron resonance condition and the structure of the velocity distribution in gyroaveraged velocity space. For ring-driven Bernstein instabilities, as the parallel wave number (k∥) increases, the discrete unstable modes approximately follow the corresponding proton cyclotron harmonic frequencies while they become broader in frequency space. At sufficiently large k∥, the neighboring discrete modes merge into a continuum. In contrast, for shell-driven Bernstein instabilities, the curved geometry of the shell velocity distribution in gyroaveraged velocity space results in a complex alternating pattern of growth and damping rates in frequency and wave number space and confines the unstable Bernstein modes to relatively small k∥. In addition, when k∥ increases, the unstable modes are no longer limited to the proton cyclotron harmonic frequencies. The local growth rate peak near an exact harmonic at small k∥ bifurcates into two local peaks on both sides of the harmonic when k∥ becomes large.

  5. Analytical Solutions for the Nonlinear Longitudinal Drift Compression (Expansion) of Intense Charged Particle Beams

    SciTech Connect

    Edward A. Startsev; Ronald C. Davidson

    2004-04-09

    To achieve high focal spot intensities in heavy ion fusion, the ion beam must be compressed longitudinally by factors of ten to one hundred before it is focused onto the target. The longitudinal compression is achieved by imposing an initial velocity profile tilt on the drifting beam. In this paper, the problem of longitudinal drift compression of intense charged particle beams is solved analytically for the two important cases corresponding to a cold beam, and a pressure-dominated beam, using a one-dimensional warm-fluid model describing the longitudinal beam dynamics.

  6. The Relation between Relaxation Time, Mean Free Path, Collision Time and Drift Velocity--Pitfalls and a Proposal for an Approach Illustrating the Essentials

    ERIC Educational Resources Information Center

    Jakoby, Bernhard

    2009-01-01

    The collision model is frequently introduced to describe electronic conductivity in solids. Depending on the chosen approach, the introduction of the collision time can lead to erroneous results for the average velocity of the electrons, which enters the expression for the electrical conductivity. In other textbooks, correct results are obtained…

  7. Initial velocity distributions of ions generated by in-flight laser desorption/ionization of individual polystyrene latex microparticles as studied by the delayed ion extraction method.

    PubMed

    Vera, César Costa; Trimborn, Achim; Hinz, Klaus-Peter; Spengler, Bernhard

    2005-01-01

    The delayed ion extraction method has been used to study characteristics of the initial velocity distributions of positive and negative ions produced simultaneously by laser desorption/ionization (LDI) from non-impacted single aerosol polymeric particles, using a bipolar time-of-flight (TOF) instrument (LAMPAS 2). Due to the geometry of the setup and the characteristics of the ablation process, only the projections of the velocities on the axis of the mass spectrometer can be directly studied. Additionally, since the mean initial velocity under these conditions should be close to zero, it was necessary to extend the method by taking into account higher order contributions of the velocity distribution. Theoretical expressions for these higher order terms are presented and discussed. The bipolar characteristics of the instrument permit evaluation and treatment of a possible instrumental artifact caused by small inclinations of the ionizing laser with respect to the ideal incidence direction. Results of a number of experiments are presented and discussed in relation to the theoretical expressions presented, and to possible ablation scenarios. Evidence pointing out that, under our experimental conditions, only partial ablation of the latex particles occurs was obtained. The variance of the distribution of the projection of the initial velocities can be directly estimated from these results. By assuming that the total initial velocities of the ions are developed completely according to a single-temperature adiabatic expansion mechanism, temperatures of approximately 50 K/Da can be assigned to the ion clouds from the variance estimations. If a two-temperature model is used, a radial temperature of about 100 K/Da results. These values are in reasonable agreement with results for polymer ablation from the literature. PMID:15593241

  8. Influence of Reverse Expansion of Laser Plasma on Ions Acceleration

    NASA Astrophysics Data System (ADS)

    Sysoev, Alexander A.; Gracheva, O. I.; Karpov, A. V.

    Effect of laser plasma reverse extension is described in this paper. Influence of the effect on ion acceleration in a laser ion source is researched. This effect leads to sedimentation of ions on metal target, which significantly impacts acceleration time of other ions. In this case, the ions also tend to travel major part of their path with constant velocity. This allows one to consider movement of the ions in plasma drift space, when optimizing time focusing ability of the TOF analyzer.

  9. The Three-dimensional Evolution of Ion-scale Current Sheets: Tearing and Drift-kink Instabilities in the Presence of Proton Temperature Anisotropy

    NASA Astrophysics Data System (ADS)

    Gingell, P. W.; Burgess, D.; Matteini, L.

    2015-03-01

    We present the first three-dimensional (3D) hybrid simulations of the evolution of ion-scale current sheets, with an investigation of the role of temperature anisotropy and associated kinetic instabilities on the growth of the tearing instability and particle heating. We confirm the ability of the ion cyclotron and firehose instabilities to enhance or suppress reconnection, respectively. The simulations demonstrate the emergence of persistent 3D structures, including patchy reconnection sites and the fast growth of a narrow-band drift-kink instability, which suppresses reconnection for thin current sheets with weak guide fields. Potential observational signatures of the 3D evolution of solar wind current sheets are also discussed. We conclude that kinetic instabilities, arising from non-Maxwellian ion populations, are significant to the evolution of 3D current sheets, and two-dimensional studies of heating rates by reconnection may therefore over-estimate the ability of thin, ion-scale current sheets to heat the solar wind by reconnection.

  10. Following the movement of Cu ions in a SSZ-13 zeolite during dehydration, reduction and adsorption: a combined in situ TP-XRD, XANES/DRIFTS study

    SciTech Connect

    Kwak, Ja Hun; Varga, Tamas; Peden, Charles HF; Gao, Feng; Hanson, Jonathan C.; Szanyi, Janos

    2014-05-05

    Cu-SSZ-13 has been shown to possess high activity and superior N2 formation selectivity in the selective catalytic reduction of NOx under oxygen rich conditions. Here, a combination of synchrotron-based (XRD and XANES) and vibrational (DRIFTS) spectroscopy tools have been used to follow the changes in the location and coordination environment of copper ions in a Cu-SSZ-13 zeolite during calcinations, reduction with CO, and adsorption of CO and H2O. XANES spectra collected during these procedures provides critical information not only on the variation in the oxidation state of the copper species in the zeolite structure, but also on the changes in the coordination environment around these ions as they interact with the framework, and with different adsorbates (H2O and CO). Time-resolved XRD data indicate the movement of copper ions and the consequent variation of the unit cell parameters during dehydration. DRIFT spectra provide information about the adsorbed species present in the zeolite, as well as the oxidation states of and coordination environment around the copper ions. A careful analysis of the asymmetric T-O-T vibrations of the CHA framework perturbed by copper ions in different coordination environments proved to be especially informative. The results of this study will aid the identification of the location, coordination and oxidation states of copper ions obtained during in operando catalytic studies. Financial support was provided by the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Part of this work (sample preparation) was performed in the Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL). The EMSL is a national scientific user facility supported by the US DOE, Office of Biological and Environmental Research. PNNL is a multi-program national laboratory operated for the US DOE by Battelle. All of the spectroscopy work reported here was carried out at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL). NSLS is a national scientific user facility supported by the US DOE.

  11. Pseudochemotactic drifts of artificial microswimmers

    NASA Astrophysics Data System (ADS)

    Ghosh, Pulak K.; Li, Yunyun; Marchesoni, Fabio; Nori, Franco

    2015-07-01

    We numerically investigate the motion of active artificial microswimmers diffusing in a fuel concentration gradient. We observe that, in the steady state, their probability density accumulates in the low-concentration regions, whereas a tagged swimmer drifts with velocity depending in modulus and orientation on how the concentration gradient affects the self-propulsion mechanism. Under most experimentally accessible conditions, the particle drifts toward the high-concentration regions (pseudochemotactic drift). A correct interpretation of experimental data must account for such an "anti-Fickian" behavior.

  12. Predictions for the energy loss of light ions in laser-generated plasmas at low and medium velocities.

    PubMed

    Cayzac, W; Bagnoud, V; Basko, M M; Blažević, A; Frank, A; Gericke, D O; Hallo, L; Malka, G; Ortner, A; Tauschwitz, An; Vorberger, J; Roth, M

    2015-11-01

    The energy loss of light ions in dense plasmas is investigated with special focus on low to medium projectile energies, i.e., at velocities where the maximum of the stopping power occurs. In this region, exceptionally large theoretical uncertainties remain and no conclusive experimental data are available. We perform simulations of beam-plasma configurations well suited for an experimental test of ion energy loss in highly ionized, laser-generated carbon plasmas. The plasma parameters are extracted from two-dimensional hydrodynamic simulations, and a Monte Carlo calculation of the charge-state distribution of the projectile ion beam determines the dynamics of the ion charge state over the whole plasma profile. We show that the discrepancies in the energy loss predicted by different theoretical models are as high as 20-30%, making these theories well distinguishable in suitable experiments. PMID:26651804

  13. Influence of H{sup -} velocity on H{sup -} extraction probability from a negative ion source

    SciTech Connect

    Matsumoto, Y.; Nishiura, M.; Shinto, K.; Yamaoka, H.; Sasao, M.; Wada, M.

    2010-02-15

    We investigate influence of H{sup -} initial transport direction and kinetic energy on H{sup -} extraction probability with three-dimensional Monte Carlo calculation. As a result, lower energy H{sup -} ions are strongly trapped by the electrical potential structure, so that initial condition of H{sup -} transport direction is cancelled by alignment of the electric field; thus, it has lower influence for H{sup -} extraction probability. Besides, the potential hill induced by the beam extraction voltage more effectively enhances H{sup -} extraction probability for the lower energy H{sup -} ions. The correlation between the magnitude of the local plasma potential near the extraction region and the mean velocity of H{sup -} ions in the region should determine the H{sup -} extraction probability from the ion source.

  14. Impurity ion temperature and toroidal rotation velocity in JET from high-resolution x-ray and XUV spectroscopy

    SciTech Connect

    Mattioli, M.; Ramette, J.; Saoutic, B.; Denne, B.; Kaellne, E.; Bombarda, F.; Giannella, R.

    1988-10-01

    Doppler shifts and widths of strong spectral lines have been measured on JET (Joint European Torus) both in the x-ray (resonance line of He-like Ni XXVII at 1.5886 A) and in the XUV region (several Ni, C, and He ion lines are available between 100 and 330 A). Time-resolved measurements of impurity ion temperature T/sub z/ and plasma toroidal angular velocity ..omega.. are presented. Radial profiles of both T/sub z/ and ..omega.. are inferred in combination with numerical simulations obtained using an impurity transport code, which allows radial localization of the emitting shells.

  15. High-velocity, multistage, nozzled, ion driven wind generator and method of operation of the same adaptable to mesoscale realization

    NASA Technical Reports Server (NTRS)

    Dunn-Rankin, Derek (Inventor); Rickard, Matthew J. A. (Inventor)

    2011-01-01

    Gas flows of modest velocities are generated when an organized ion flux in an electric field initiates an ion-driven wind of neutral molecules. When a needle in ambient air is electrically charged to a potential sufficient to produce a corona discharge near its tip, such a gas flow can be utilized downstream of a ring-shaped or other permeable earthed electrode. In view of the potential practical applications of such devices, as they represent blowers with no moving parts, a methodology for increasing their flow velocities includes exploitation of the divergence of electric field lines, avoidance of regions of high curvature on the second electrode, control of atmospheric humidity, and the use of linear arrays of stages, terminating in a converging nozzle. The design becomes particularly advantageous when implemented in mesoscale domains.

  16. Simulation of Collisions of Ions with Atoms by the PIC-MC Method. Comparative Estimates

    NASA Astrophysics Data System (ADS)

    Sysun, V. I.; Sysun, A. V.; Ignakhin, V. S.; Titov, V. O.

    2015-11-01

    Monte Carlo models which simulate ion-atom collisions are considered. Efficient models for calculating the time between collisions are proposed which take into account the velocity dependence of the cross sections and also the probability distribution of the velocities of the ions and the probability distribution of the angles after a collision. The simulation results are compared with theoretical values of the drift velocity of the ions.

  17. Transition from collisional drift-wave to multi-instability turbulence in a helicon plasma device

    NASA Astrophysics Data System (ADS)

    Chakraborty Thakur, S.; Ashourvan, A.; Cui, L.; Diamond, P.; Holland, C.; Hong, R.; Tynan, G.; Vaezi, P.; McKee, J.; Scime, E.; Sears, S.

    2015-11-01

    Recent studies in the Controlled Shear Decorrelation eXperiment reported a sharp non-monotonic global transition in the plasma dynamics during the transition to broadband turbulence. Using a combination of probes, high speed imaging and laser induced fluorescence, we find that below a threshold magnetic field, the plasma is dominated by density gradient driven resistive drift waves. Above this threshold a new global equilibrium occurs, characterized by steepened density and ion temperature gradients and both azimuthal and parallel velocity shear layers, along with multiple plasma instabilities. At the center, high azimuthal mode number fluctuations are observed rotating in the ion diamagnetic drift direction, while in the density gradient region, drift waves propagate in the electron diamagnetic direction. Outside of this zone, velocity shear-driven fluctuations are observed. Simultaneously a very bright helicon blue core forms, and appears to be associated with a radial particle transport barrier. This new regime shows very rich plasma dynamics including intermittency, blobs, radial transport barrier, inward particle flux against density gradients etc. Above the threshold conditions, linear stability analysis show co-existence of the ion temperature gradient (ITG) instability and velocity shear instability together with collisional electron drift waves. Supported by CMTFO # DE-SC0008378, US DoE # DE-FG02-04ER54738 and NSF # PHY-1360278.

  18. Number-conserving linear-response study of low-velocity ion stopping in a collisional magnetized classical plasma

    SciTech Connect

    Nersisyan, Hrachya B.; Deutsch, Claude; Das, Amal K.

    2011-03-15

    The results of a theoretical investigation of the low-velocity stopping power of ions in a magnetized collisional and classical plasma are reported. The stopping power for an ion is calculated through the linear-response (LR) theory. The collisions, which lead to a damping of the excitations in the plasma, are taken into account through a number-conserving relaxation time approximation in the LR function. In order to highlight the effects of collisions and magnetic field, we present a comparison of our analytical and numerical results obtained for nonzero damping or magnetic field with those for vanishing damping or magnetic field. It is shown that the collisions remove the anomalous friction obtained previously [Nersisyan et al., Phys. Rev. E 61, 7022 (2000)] for the collisionless magnetized plasmas at low ion velocities. One of the major objectives of this paper is to compare and to contrast our theoretical results with those obtained through a diffusion coefficient formulation based on the Dufty-Berkovsky relation evaluated for a magnetized one-component plasma modeled with target ions and electrons.

  19. Search for auroral belt E-parallel fields with high-velocity barium ion injections

    NASA Technical Reports Server (NTRS)

    Heppner, J. P.; Ledley, B. G.; Miller, M. L.; Marionni, P. A.; Pongratz, M. B.

    1989-01-01

    In April 1984, four high-velocity shaped-charge Ba(+) injections were conducted from two sounding rockets at 770-975 km over northern Alaska under conditions of active auroral and magnetic disturbance. Spatial ionization (brightness) profiles of high-velocity Ba(+) clouds from photometric scans following each release were found to be consistent with the 28-sec theoretical time constant for Ba photoionization determined by Carlsten (1975). These observations therefore revealed no evidence of anomalous fast ionization predicted by the Alfven critical velocity hypothesis.

  20. Development of pitch angle anisotropy and velocity diffusion of pickup ion shell distribution by solar wind turbulence

    NASA Technical Reports Server (NTRS)

    Yoon, Peter H.; Ziebell, L. F.

    1990-01-01

    The evolution of pitch angle anisotropy in initially isotropic spherical shell distribution of pickup ions subjected to a continuous influence of weak or moderate intrinsic solar wind turbulence is investigated using a physical model which assumes that the wave of the solar wind turbulence is propagating mainly in the direction parallel to the ambient magnetic field. It is shown that, because of the pitch angle dependence of the velocity diffusion process, a significant pitch angle anisotropy of pickup ion shell distribution develops in the early stage of the diffusion process. Although it is smeared out later on, the result can be of significant importance, especially if the pickup ion density is large, because the pitch angle anisotropy can excite collective instabilities and increase the wave level, thus accelerating the diffusion process.

  1. Alternative ion-acoustic solitary waves in magnetized plasma consisting of warm adiabatic ions and non-thermal electrons having vortex-like velocity distribution: existence and stability

    NASA Astrophysics Data System (ADS)

    Das, Jayasree; Bandyopadhyay, Anup; Das, K. P.

    2007-12-01

    The solitary structures of the ion-acoustic waves have been considered in a plasma consisting of warm adiabatic ions and non-thermal electrons (due to the presence of fast energetic electrons) having a vortex-like velocity distribution function (due to the presence of trapped electrons), immersed in a uniform (space-independent) and static (time-independent) magnetic field. The nonlinear dynamics of ion-acoustic waves in such a plasma is governed by the Schamel's modified Korteweg-de Vries-Zakharov-Kuznetsov (S-ZK) equation. This equation admits solitary wave solutions having a profile sech4. When the coefficient of the nonlinear term of this equation vanishes, the vortex-like velocity distribution function of electrons simply becomes the non-thermal velocity distribution function of electrons and the nonlinear behaviour of the same ion-acoustic wave is described by a Korteweg-de Vries-Zakharov-Kuznetsov (KdV-ZK) equation. This equation admits solitary wave solutions having a profile sech2. A combined S-KdV-ZK equation more efficiently describes the nonlinear behaviour of an ion-acoustic wave when the vortex-like velocity distribution function of electrons approaches the non-thermal velocity distribution function of electrons, i.e. when the contribution of trapped electrons tends to zero. This combined S-KdV-ZK equation admits an alternative solitary wave solution having a profile different from either sech4 or sech2. The condition for the existence of this alternative solitary wave solution has been derived. It is found that this alternative solitary wave solution approaches the solitary wave solution (the sech2 profile) of the KdV-ZK equation when the contribution of trapped electrons tends to zero. The three-dimensional stability of these solitary waves propagating obliquely to the external uniform and static magnetic field has been investigated by the multiple-scale perturbation expansion method of Allen and Rowlands. The instability condition and the growth rate of the instability have been derived at the lowest order. It is also found that the instability condition and growth rate of instability of the alternative solitary waves are exactly the same as those of the solitary waves as determined from the KdV-ZK equation (the sech2 profile) when the contribution of trapped electrons tends to zero.

  2. Electron injection in semiconductor drift detectors

    SciTech Connect

    Rehak, P. ); Gatti, E.; Longoni, A.; Sampietro, M.; Castoldi, A. ); Vacchi, A. )

    1990-01-01

    The paper reports the first successful results of a simple MOS structure to inject electrons at a given position in Silicon Drift Detectors. The structure allows on-line calibration of the drift velocity of electrons within the detector. The calibration is a practical method to trace the temperature dependence of the electron mobility. Several of these injection structures can be implemented in silicon drift detectors without additional steps in the fabrication process. 5 refs., 11 figs.

  3. Diogene pictorial drift chamber

    SciTech Connect

    Gosset, J.

    1984-01-01

    A pictorial drift chamber, called DIOGENE, has been installed at Saturne in order to study central collisions of high energy heavy ions. It has been adapted from the JADE internal detector, with two major differences to be taken into account. First, the center-of-mass of these collisions is not identical to the laboratory reference frame. Second, the energy loss and the momentum ranges of the particles to be detected are different from the ones in JADE. It was also tried to keep the cost as small as possible, hence the choice of minimum size and minimum number of sensitive wires. Moreover the wire planes are shifted from the beam axis: this trick helps very much to quickly reject the bad tracks caused by the ambiguity of measuring drift distances (positive or negative) through times (always positive).

  4. Dissociation of internal energy-selected methyl bromide ion revealed from threshold photoelectron-photoion coincidence velocity imaging

    SciTech Connect

    Tang, Xiaofeng; National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 ; Zhou, Xiaoguo E-mail: yanbing@jlu.edu.cn; Liu, Shilin; Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 ; Sun, Zhongfa; Liu, Fuyi; Sheng, Liusi; Yan, Bing E-mail: yanbing@jlu.edu.cn

    2014-01-28

    Dissociative photoionization of methyl bromide (CH{sub 3}Br) in an excitation energy range of 10.45–16.90 eV has been investigated by using threshold photoelectron-photoion coincidence (TPEPICO) velocity imaging. The coincident time-of-flight mass spectra indicate that the ground state X{sup 2}E of CH{sub 3}Br{sup +} is stable, and both A{sup 2}A{sub 1} and B{sup 2}E ionic excited states are fully dissociative to produce the unique fragment ion of CH{sub 3}{sup +}. From TPEPICO 3D time-sliced velocity images of CH{sub 3}{sup +} dissociated from specific state-selected CH{sub 3}Br{sup +} ion, kinetic energy release distribution (KERD) and angular distribution of CH{sub 3}{sup +} fragment ion are directly obtained. Both spin-orbit states of Br({sup 2}P) atom can be clearly observed in fast dissociation of CH{sub 3}Br{sup +}(A{sup 2}A{sub 1}) ion along C–Br rupture, while a KERD of Maxwell-Boltzmann profile is obtained in dissociation of CH{sub 3}Br{sup +}(B{sup 2}E) ion. With the aid of the re-calculated potential energy curves of CH{sub 3}Br{sup +} including spin-orbit coupling, dissociation mechanisms of CH{sub 3}Br{sup +} ion in A{sup 2}A{sub 1} and B{sup 2}E states along C–Br rupture are revealed. For CH{sub 3}Br{sup +}(A{sup 2}A{sub 1}) ion, the CH{sub 3}{sup +} + Br({sup 2}P{sub 1/2}) channel is occurred via an adiabatic dissociation by vibration, while the Br({sup 2}P{sub 3/2}) formation is through vibronic coupling to the high vibrational level of X{sup 2}E state followed by rapid dissociation. C–Br bond breaking of CH{sub 3}Br{sup +}(B{sup 2}E) ion can occur via slow internal conversion to the excited vibrational level of the lower electronic states and then dissociation.

  5. Pitch angle and velocity diffusions of newborn ions by turbulence in the solar wind

    NASA Technical Reports Server (NTRS)

    Ziebell, L. F.; Yoon, Peter H.

    1990-01-01

    The temporal evolution of the distribution function of newborn ions under the influence of intrinsic low-frequency solar wind turbulences is studied. In particular, an initial ring-beam distribution of newborn ions under the influence of hydromagnetic waves is considered. A simplified treatment of the resonance broadening effect is given, and its role in the pickup process is discussed. Two different configurations of wave polarization amd direction of propagation are considered. The conditions that lead either to the formation of anisotropic shells as a long-duration transient state or to rapid isotropization of the ion pitch angle distribution are discussed, as are the conditions which lead to significant acceleration of the ions.

  6. Ion Velocity Phase Space Studies of the VASIMR Engine Exhaust Plasma

    NASA Astrophysics Data System (ADS)

    Bering, III; Chang-Diaz, F. R.; Squire, J.; Jacobson, V.; Tarditi, A.; Bengtson, R. D.; Glover, T. W.; Brukardt, M.; McCaskill, G. E.

    2004-11-01

    The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) is a high power engine capable of Isp/thrust modulation at constant power. The plasma is produced by helicon discharge. The bulk of the energy is added by ion cyclotron resonance heating (ICRH.) Axial momentum is obtained by adiabatic expansion of the plasma in a magnetic nozzle. Thrust/specific impulse ratio control in the VASIMR is primarily achieved by the partitioning of the RF power to the helicon and ICRH systems, with the proper adjustment of the propellant flow. Ion dynamics in the exhaust were studied using probes, gridded energy analyzers (RPAÂ's), microwave interferometry and optical techniques. This paper will focus on the RPA data. We will examine the ion dynamics in a deuterium exhaust plasma using ˜9 kW of RF power to the helicon ionization stage and varying power levels to the ICRH acceleration stage. Ion heating of ˜70 eV/ion/kW of applied ICRH has been demonstrated. Results also confirm conversion of transverse ion motion to axial motion.

  7. Time-resolved ion velocity distribution in a cylindrical Hall thruster: heterodyne-based experiment and modeling.

    PubMed

    Diallo, A; Keller, S; Shi, Y; Raitses, Y; Mazouffre, S

    2015-03-01

    Time-resolved variations of the ion velocity distribution function (IVDF) are measured in the cylindrical Hall thruster using a novel heterodyne method based on the laser-induced fluorescence technique. This method consists in inducing modulations of the discharge plasma at frequencies that enable the coupling to the breathing mode. Using a harmonic decomposition of the IVDF, one can extract each harmonic component of the IVDF from which the time-resolved IVDF is reconstructed. In addition, simulations have been performed assuming a sloshing of the IVDF during the modulation that show agreement between the simulated and measured first order perturbation of the IVDF. PMID:25832228

  8. Electron capture dissociation and drift tube ion mobility-mass spectrometry coupled with site directed mutations provide insights into the conformational diversity of a metamorphic protein.

    PubMed

    Harvey, Sophie R; Porrini, Massimiliano; Tyler, Robert C; MacPhee, Cait E; Volkman, Brian F; Barran, Perdita E

    2015-04-28

    Ion mobility mass spectrometry can be combined with data from top-down sequencing to discern adopted conformations of proteins in the absence of solvent. This multi-technique approach has particular applicability for conformationally dynamic systems. Previously, we demonstrated the use of drift tube ion mobility-mass spectrometry (DT IM-MS) and electron capture dissociation (ECD) to study the metamorphic protein lymphotactin (Ltn). Ltn exists in equilibrium between distinct monomeric (Ltn10) and dimeric (Ltn40) folds, both of which can be preserved and probed in the gas-phase. Here, we further test this mass spectrometric framework, by examining two site directed mutants of Ltn, designed to stabilise either distinct fold in solution, in addition to a truncated form consisting of a minimum model of structure for Ltn10. The truncated mutant has similar collision cross sections to the wild type (WT), for low charge states, and is resistant to ECD fragmentation. The monomer mutant (CC3) presents in similar conformational families as observed previously for the WT Ltn monomer. As with the WT, the CC3 mutant is resistant to ECD fragmentation at low charge states. The dimer mutant W55D is found here to exist as both a monomer and dimer. As a monomer W55D exhibits similar behaviour to the WT, but as a dimer presents a much larger charge state and collision cross section range than the WT dimer, suggesting a smaller interaction interface. In addition, ECD on the W55D mutant yields greater fragmentation than for the WT, suggesting a less stable ?-sheet core. The results highlight the power of MS to provide insight into dynamic proteins, providing further information on each distinct fold of Ltn. In addition we observe differences in the fold stability following single or double point mutations. This approach, therefore, has potential to be a useful tool to screen for the structural effects of mutagenesis, even when sample is limited. PMID:25805055

  9. Hypersonic drift-tearing magnetic islands in tokamak plasmas

    SciTech Connect

    Fitzpatrick, R.; Waelbroeck, F. L.

    2007-12-15

    A two-fluid theory of long wavelength, hypersonic, drift-tearing magnetic islands in low-collisionality, low-{beta} plasmas possessing relatively weak magnetic shear is developed. The model assumes both slab geometry and cold ions, and neglects electron temperature and equilibrium current gradient effects. The problem is solved in three asymptotically matched regions. The 'inner region' contains the island. However, the island emits electrostatic drift-acoustic waves that propagate into the surrounding 'intermediate region', where they are absorbed by the plasma. Since the waves carry momentum, the inner region exerts a net force on the intermediate region, and vice versa, giving rise to strong velocity shear in the region immediately surrounding the island. The intermediate region is matched to the surrounding 'outer region', in which ideal magnetohydrodynamic holds. Isolated hypersonic islands propagate with a velocity that lies between those of the unperturbed local ion and electron fluids, but is much closer to the latter. The ion polarization current is stabilizing, and increases with increasing island width. Finally, the hypersonic branch of isolated island solutions ceases to exist above a certain critical island width. Hypersonic islands whose widths exceed the critical width are hypothesized to bifurcate to the so-called 'sonic' solution branch.

  10. Measurement of Time-Dependent Ion Velocity Distribution Function by Laser Induced Fluorescence in a Cylindrical Hall Thruster with Driven Spoke

    NASA Astrophysics Data System (ADS)

    Shi, Yuan; Diallo, Ahmed; Raitses, Yevgeny; Mazouffre, Stephane

    2013-09-01

    This paper reports, for the first time, effects of spoke on ion velocity distribution function measured by time-resolving laser induced fluorescence. To scan ion speed, the 5d4F5/2-6p4D5/2 transition of Xe + is excited using tunable diode laser. Photons from 6p4D5/2-6s4P3/2 transition are collected by a photomultiplier tube and counted by a multichannel scaler. To subtract background, a mechanical chopper is used to generate laser pulses whose power is monitored by a photodiode. To achieve phase-locked accumulation of fluorescence photons, spoke is driven using successively phase-shifted square waves on anode segments and the driving signal is used to synchronize photon accumulation to spoke in data post processing. To resolve three ion velocity components, two laser beams are established, with one beam measuring axial velocity and the other beam measuring some linear combination of radial and azimuthal velocities, depending on the position of collection volume with respect to thruster plume. Measurements shows ion distribution function oscillates with spoke. Along the thruster axis, ion density is strongly modulated while axial ion velocities are not affected. Off-axis effects of spoke will also be discussed.

  11. Multi-point, high-speed passive ion velocity distribution diagnostic on the Pegasus Toroidal Experiment

    SciTech Connect

    Burke, M. G.; Fonck, R. J.; Bongard, M. W.; Schlossberg, D. J.; Winz, G. R.

    2012-10-15

    A passive ion temperature polychromator has been deployed on Pegasus to study power balance and non-thermal ion distributions that arise during point source helicity injection. Spectra are recorded from a 1 m F/8.6 Czerny-Turner polychromator whose output is recorded by an intensified high-speed camera. The use of high orders allows for a dispersion of 0.02 A/mm in 4th order and a bandpass of 0.14 A ({approx}13 km/s) at 3131 A in 4th order with 100 {mu}m entrance slit. The instrument temperature of the spectrometer is 15 eV. Light from the output of an image intensifier in the spectrometer focal plane is coupled to a high-speed CMOS camera. The system can accommodate up to 20 spatial points recorded at 0.5 ms time resolution. During helicity injection, stochastic magnetic fields keep T{sub e} low ({approx}100 eV) and thus low ionization impurities penetrate to the core. Under these conditions, high core ion temperatures are measured (T{sub i} Almost-Equal-To 1.2 keV, T{sub e} Almost-Equal-To 0.1 keV) using spectral lines from carbon III, nitrogen III, and boron IV.

  12. Bulk properties and velocity distributions of water group ions at Comet Halley - Giotto measurements

    NASA Technical Reports Server (NTRS)

    Coates, A. J.; Johnstone, A. D.; Wilken, B.; Jockers, K.; Glassmeier, K.-H.

    1990-01-01

    In the region upstream of Comet Halley, pickup heavy ions of cometary origin were directly observed by the implanted ion spectrometer on Giotto. Diffusion of this population in pitch angle and in energy, during the approach to the comet and on the outbound leg is discussed. The two data sets are compared and qualitative ideas on scattering timescales are inferred. In addition the bulk parameters of these distributions have been computed and a comparison of the observed speed in the solar wind frame and the observed density with expectations is presented. Pitch angle scattering occurs more slowly than expected with filled shells appearing at 2,500,000 km, and significant energy diffusion does not occur until the bow shock region. Also the shell distributions downstream of the shock flow at the bispherical bulk speed (related to the Alfven speed) along the magnetic field with respect to the solar wind in accordance with conservation of energy between the pickup ions and the wave turbulence.

  13. Drift reduction with drift control adjuvants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous drift reduction adjuvants and spray deposition aids are available to applicators of crop production and protection chemicals. Performance of many of the newly introduced drift control adjuvants has not been well documented for aerial application. Five new drift control adjuvants were sele...

  14. Drift reduction with drift control adjuvants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous drift reduction adjuvants and spray deposition aids are available to applicators of crop production and protection chemicals. Performance of many of the newly introduced drift control adjuvants has not been well documented for aerial application. Four new drift control adjuvants were sele...

  15. Upstream gyrophase bunched ions - A mechanism for creation at the bow shock and the growth of velocity space structure through gyrophase mixing

    NASA Technical Reports Server (NTRS)

    Gurgiolo, C.; Parks, G. K.; Mauk, G. H.

    1983-01-01

    The conditions necessary for the production of gyrophase bunched ions at the bow shock are developed. The conditions are applied to the reflection mechanism presented by Paschmann et al. (1980), showing that when in their model a portion of the incident parallel velocity is converted into reflected perpendicular velocity, the reflected particles are gyrophase bunched. The growth of velocity space structure in the gyrophase bunched distribution through gyrophase mixing is also explored. The structure is found to be similar to that reported in diffuse and dispersed ion events. This together with the close correlation of the observation of gyrophase bunched ions with diffuse and dispersed ions has led us to speculate that these two populations may be closely related.

  16. Single-fluid stability of stationary plasma equilibria with velocity shear and magnetic shear

    SciTech Connect

    Miura, Akira

    2009-10-15

    By using incompressible single-fluid equations with a generalized Ohm's law neglecting the electron inertia, a linear eigenmode equation for a magnetic field perturbation is derived for stationary equilibria in a slab geometry with velocity and magnetic shears. The general eigenmode equation contains a fourth-order derivative of the perturbation in the highest order and contains Alfven and whistler mode components for a homogeneous plasma. The ratio of the characteristic ion inertia length to the characteristic inhomogeneity scale length is chosen as a small parameter for expansion. Neglecting whistler mode in the lowest order, the eigenmode equation becomes a second-order differential equation similar to the ideal magnetohydrodynamic eigenmode equation except for the fact that the unperturbed perpendicular velocity contains both electric and ion diamagnetic drifts. A sufficient condition for stability against the Kelvin-Helmholtz instability driven by shear in the ion diamagnetic drift velocity is derived and then applied to tokamaks.

  17. Method for enhancing the resolving power of ion mobility separations over a limited mobility range

    DOEpatents

    Shvartsburg, Alexandre A; Tang, Keqi; Smith, Richard D

    2014-09-23

    A method for raising the resolving power, specificity, and peak capacity of conventional ion mobility spectrometry is disclosed. Ions are separated in a dynamic electric field comprising an oscillatory field wave and opposing static field, or at least two counter propagating waves with different parameters (amplitude, profile, frequency, or speed). As the functional dependencies of mean drift velocity on the ion mobility in a wave and static field or in unequal waves differ, only single species is equilibrated while others drift in either direction and are mobility-separated. An ion mobility spectrum over a limited range is then acquired by measuring ion drift times through a fixed distance inside the gas-filled enclosure. The resolving power in the vicinity of equilibrium mobility substantially exceeds that for known traveling-wave or drift-tube IMS separations, with spectra over wider ranges obtainable by stitching multiple segments. The approach also enables low-cutoff, high-cutoff, and bandpass ion mobility filters.

  18. Background and pickup ion velocity distribution dynamics in Titan's plasma environment: 3D hybrid simulation and comparison with CAPS T9 observations

    NASA Astrophysics Data System (ADS)

    Lipatov, A. S.; Sittler, E. C.; Hartle, R. E.; Cooper, J. F.; Simpson, D. G.

    2011-09-01

    In this report we discuss the ion velocity distribution dynamics from the 3D hybrid simulation. In our model the background, pickup, and ionospheric ions are considered as a particles, whereas the electrons are described as a fluid. Inhomogeneous photoionization, electron-impact ionization and charge exchange are included in our model. We also take into account the collisions between the ions and neutrals. The current simulation shows that mass loading by pickup ions H,H2+, CH4+ and N2+ is stronger than in the previous simulations when O + ions are introduced into the background plasma. In our hybrid simulations we use Chamberlain profiles for the atmospheric components. We also include a simple ionosphere model with average mass M = 28 amu ions that were generated inside the ionosphere. The moon is considered as a weakly conducting body. Special attention will be paid to comparing the simulated pickup ion velocity distribution with CAPS T9 observations. Our simulation shows an asymmetry of the ion density distribution and the magnetic field, including the formation of the Alfvén wing-like structures. The simulation also shows that the ring-like velocity distribution for pickup ions relaxes to a Maxwellian core and a shell-like halo.

  19. Background and Pickup Ion Velocity Distribution Dynamics in Titan's Plasma Environment: 3D Hybrid Simulation and Comparison with CAPS T9 Observations

    NASA Technical Reports Server (NTRS)

    Lipatov, A. S.; Sittler, E. C., Jr.; Hartle, R. E.; Cooper, J. F.; Simpson, D. G.

    2011-01-01

    In this report we discuss the ion velocity distribution dynamics from the 3D hybrid simulation. In our model the background, pickup, and ionospheric ions are considered as a particles, whereas the electrons are described as a fluid. Inhomogeneous photoionization, electron-impact ionization and charge exchange are included in our model. We also take into account the collisions between the ions and neutrals. The current simulation shows that mass loading by pickup ions H(+); H2(+), CH4(+) and N2(+) is stronger than in the previous simulations when O+ ions are introduced into the background plasma. In our hybrid simulations we use Chamberlain profiles for the atmospheric components. We also include a simple ionosphere model with average mass M = 28 amu ions that were generated inside the ionosphere. The moon is considered as a weakly conducting body. Special attention will be paid to comparing the simulated pickup ion velocity distribution with CAPS T9 observations. Our simulation shows an asymmetry of the ion density distribution and the magnetic field, including the formation of the Alfve n wing-like structures. The simulation also shows that the ring-like velocity distribution for pickup ions relaxes to a Maxwellian core and a shell-like halo.

  20. Effect of ion orbit loss on the structure in the H-mode tokamak edge pedestal profiles of rotation velocity, radial electric field, density, and temperature

    SciTech Connect

    Stacey, Weston M.

    2013-09-15

    An investigation of the effect of ion orbit loss of thermal ions and the compensating return ion current directly on the radial ion flux flowing in the plasma, and thereby indirectly on the toroidal and poloidal rotation velocity profiles, the radial electric field, density, and temperature profiles, and the interpretation of diffusive and non-diffusive transport coefficients in the plasma edge, is described. Illustrative calculations for a high-confinement H-mode DIII-D [J. Luxon, Nucl. Fusion 42, 614 (2002)] plasma are presented and compared with experimental results. Taking into account, ion orbit loss of thermal ions and the compensating return ion current is found to have a significant effect on the structure of the radial profiles of these quantities in the edge plasma, indicating the necessity of taking ion orbit loss effects into account in interpreting or predicting these quantities.

  1. Drift-induced modifications to the dynamical polarization of graphene

    NASA Astrophysics Data System (ADS)

    Sabbaghi, Mohsen; Lee, Hyun-Woo; Stauber, Tobias; Kim, Kwang S.

    2015-11-01

    The response function of graphene is calculated in the presence of a constant current across the sample. For small drift velocities and finite chemical potential, analytic expressions are obtained and consequences on the plasmonic excitations are discussed. For general drift velocities and zero chemical potential, numerical results are presented and a plasmon gain region is identified that is related to interband transitions.

  2. Drift Kinetic Theory and Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Webb, G. M.; Le Roux, J. A.; Zank, G. P.

    2009-11-01

    Starting from the Vlasov or Boltzmann equation for cosmic rays in a random and regular magnetic field, we introduce guiding center coordinates and transform the velocity to a frame moving at the electric field drift velocity. The resultant equation is written in terms of the parallel and perpendicular momentum and gyro-phase of the particle, and describes spatial particle transport in guiding center coordinates. Using the drift ordering in which the gyro-scale and gyro-period are assumed short compared to the background flow length and time scales, and averaging over the gyro-phase gives the drift kinetic equation in which the adiabatic moment and total particle energy in the inertial frame are used to describe the momentum and energy of the particle. If the parallel electric field is small, the adiabatic moment of the particles is conserved to lowest order in the drift ordering. The resultant drift kinetic equation properly takes into account the energy changes of the particles due to drifts along the electric field, and betatron acceleration, but contains only the lowest order approximation for the guiding center drift velocity to describe the spatial advection of the particles. A further transformation of variables, in which the particle momentum and pitch angle are specified in the local fluid frame, gives the focussed transport equation derived by Skilling [1] to describe particle transport in a moving plasma medium, such as the solar wind. The connections to previous derivations of the Skilling's pitch angle focussed transport equation are discussed.

  3. Ionization of Ar11+ ions during collisions near the Bohr velocity

    NASA Astrophysics Data System (ADS)

    Zhou, Xianming; Cheng, Rui; Lei, Yu; Liu, Shidong; Deng, Jiachuan; Sun, Yuanbo; Ren, Jieru; Wang, Yuyu; Zhao, Yongtao; Xiao, Guoqing

    2014-12-01

    The K-shell X-rays of argon from the collisions of 1-3 MeV Ar11+ ions with V target were measured. It was found that the Kα X-ray shifts to the high energy by 52 eV, and the intensity ratio of Kβ/Kα was larger than the atomic data, owing to the presence of 2p multiple vacancies. The X-ray production cross sections were obtained and compared with BEA, PWBA and ECPSSR theoretical predictions. The BEA model, taking into account the ionic binding energy, coulomb repulsion and multiple ionization effect on fluorescence yield, presented a better agreement with the experimental cross section data.

  4. A NOVEL X-RAY IMAGING CRYSTAL SPECTROMETER FOR DOPPLER MEASUREMENTS OF ION TEMPERATURE AND PLASMA ROTATION VELOCITY PROFILES

    SciTech Connect

    Bitter, M; Hill, K W; Scott, S; Ince-Cushman, A; Reinke, M; Rice, J E; Beiersdorfer, P; Gu, M F; Lee, S G; Broennimann, C; Eikenberry, E F

    2008-06-06

    A new type of X-ray imaging crystal spectrometer has been implemented on Alcator CMod for Doppler measurements of ion temperature and plasma rotation velocity profiles. The instrument consists of two spherically bent (102)-quartz crystals with radii of curvature of 1444 and 1385 mm and four 'PILATUS II' detector modules. It records spectra of He-like argon from the entire, 72 cm high, elongated plasma cross-section and spectra of H-like argon from a 20 cm high, central region of the plasma, with a spatial resolution of 1.3 cm and a time resolution of less than 20 ms. The new spectrometer concept is also of interest for the diagnosis of burning plasmas on future machines. This paper presents recent experimental results from Aclator C-Mod and discusses challenges in X-ray spectroscopy for the diagnosis of fusion plasmas on future machines.

  5. Cross sections for resonant charge transfer between atoms and their positive ions: Collision velocity approx lt 1 a. u

    SciTech Connect

    Sakabe, Shuji; Izawa, Yasukazu )

    1991-11-01

    Calculated cross sections for resonant charge transfer between atoms and their positive ions are presented in tables and graphs for all nontransition elements in the range of low and intermediate collision velocities ({approx lt}1 a.u.). Experimental data obtained since the 1930s are compiled. The cross sections have been calculated by the impact-parameter and close-coupling methods. To solve the one-electron, time-dependent, spinless electronic wave function in a two-atom system, the wave function was expanded, time-dependent, spinless electronic wave function in a two-atom system, the wave function was expanded in terms of a set traveling atomic wave functions centered about either nucleus. As the eigenfunction of each atom, Hartree-Fock-Slater wave functions were used. The calculated results are in fairly good agreement with the compiled experimental results for the thoroughly studied elements and thus provide a useful interpolation/extrapolation of the experimental data.

  6. Stability analysis of self-gravitational electrostatic drift waves for a streaming nonuniform quantum dusty magnetoplasma

    NASA Astrophysics Data System (ADS)

    Bashir, M. F.; Jamil, M.; Murtaza, G.; Salimullah, M.; Shah, H. A.

    2012-04-01

    Using the quantum hydrodynamic model of plasmas, the stability analysis of self-gravitational electrostatic drift waves for a streaming non-uniform quantum dusty magnetoplasma is presented. For two different frequency domains, i.e., Ω0d≪ω<Ω0i (unmagnetized dust) and ω ≪Ω0d<Ω0i (magnetized dust), we simplify the general dispersion relation for self-gravitational electrostatic drift waves, which incorporates the effects of density inhomogeneity ∇n0α, streaming velocity v0α due to magnetic field inhomogeneity ∇B0, Bohm potential, and the Fermi degenerate pressure. For both frequency domains, the effect of density inhomogeneity gives rise to real oscillations while the ions streaming velocity v0i as well as the effective electron quantum velocity vFe' make these oscillations propagate perpendicular to the ambient magnetic field. This oscillatory behavior of self-gravitational drift waves increases with increase in inhomogeneities and quantum effects while it decreases with increase in the gravitational potential. However, only for the unmagnetized case, the drift waves may become unstable under appropriate conditions giving rise to Jeans instability. The modified threshold condition is also determined for instability by using the intersection method for solving the cubic equation. We note that the inhomogeneity in magnetic field (equilibrium density) through streaming velocity (diamagnetic drift velocity) suppress the Jeans instability depending upon the characteristic scale length of these inhomogeneities. On the other hand, the dust-lower-hybrid wave and the quantum mechanical effects of electrons tend to reduce the growth rate as expected. A number of special cases are also discussed.

  7. Self-shielding flex-circuit drift tube, drift tube assembly and method of making

    DOEpatents

    Jones, David Alexander

    2016-04-26

    The present disclosure is directed to an ion mobility drift tube fabricated using flex-circuit technology in which every other drift electrode is on a different layer of the flex-circuit and each drift electrode partially overlaps the adjacent electrodes on the other layer. This results in a self-shielding effect where the drift electrodes themselves shield the interior of the drift tube from unwanted electro-magnetic noise. In addition, this drift tube can be manufactured with an integral flex-heater for temperature control. This design will significantly improve the noise immunity, size, weight, and power requirements of hand-held ion mobility systems such as those used for explosive detection.

  8. Radar and satellite investigations of equatorial evening vertical drifts and spread F

    NASA Astrophysics Data System (ADS)

    Smith, J. M.; Rodrigues, F. S.; de Paula, E. R.

    2015-11-01

    We analyzed pre-midnight equatorial F region observations made by the 30 MHz coherent backscatter radar of São Luis, Brazil between August 2010 and February 2012. These measurements were processed, and used to create monthly maps of the echo occurrence as a function of local time and height. The maps show the inter-annual variability associated with equatorial spread F (ESF) occurrence in the Brazilian longitude sector. We also constructed monthly curves of the evening vertical drifts, for the Brazilian sector, using measurements by the ion velocity meter (IVM) onboard the C/NOFS satellite. The IVM evening drifts show a good overall agreement with the Scherliess and Fejer (1999) empirical model. Measured and model drifts show the development of the pre-reversal enhancement (PRE) of the vertical plasma drifts during ESF season. Using joint radar and satellite measurements, we found that evening (18:00-18:30 LT) mean non-negative drifts provide a necessary but not sufficient condition for the occurrence of topside ESF echoes. Evening downward (negative) drifts preceded the absence of topside ESF irregularities.

  9. Measurements of HNO3 and N2O5 using Ion drift - Chemical Ionization Mass Spectrometry during the MCMA - 2006 Campaign

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Zhang, R.; Fortner, E. C.; Molina, L.; Aiken, A. C.; Jimenez, J. L.; Gäggeler, K.; Dommen, J.; Dusanter, S.; Stevens, P. S.; Tie, X.

    2008-03-01

    An ion drift - chemical ionization mass spectrometry (ID-CIMS) was deployed in Mexico City between 5 and 31 March to measure HNO3 and N2O5 during the 2006 Mexico City Metropolitan Area (MCMA) field campaign. The observation site, T0, was located at the Instituto Mexicano del Petróleo at the center of the Mexico City Basin with major emissions of pollutants from both domestic and industrial sources. Diurnally, HNO3 was less than 200 parts per trillion (ppt) during the night and in the early morning, increased steadily from around 09:00 a.m. central standard time (CST), reached a peak value of 0.5 to 3 parts per billion (ppb) in the early afternoon, and declined sharply to less than half of the peak value near 05:00 p.m. CST. An inter-comparison between the ID-CIMS and an ion chromatograph/mass spectrometer (ICMS) showed a good correlation in the HNO3 measurements (R2=0.75). The HNO3 mixing ratio was found to anti-correlate with aerosol nitrate, suggesting that the gaseous HNO3 concentration was controlled by the gas-particle partitioning process. During most times of the MCMA 2006 field campaign, N2O5 was found to be under the detection limit (about 20 ppt for a 10 s integration time) of the ID-CIMS, because of high NO mixing ratio (>100 ppb) during the night. With one exception on 26 March 2006, about 40 ppt N2O5 was observed during the late afternoon and early evening hours under a cloudy condition, before NO built up at the surface site. The results revealed that during the 2006 MCMA field campaign HNO3 was primarily produced by the reaction of OH with NO2 and regulated by gas/particle partitioning, and HNO3 production from N2O5 hydrolysis during the nighttime was small because of high NO and low O3 concentrations near the surface.

  10. Measurements of HNO3 and N2O5 using ion drift-chemical ionization mass spectrometry during the MILAGRO/MCMA-2006 campaign

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Zhang, R.; Fortner, E. C.; Volkamer, R. M.; Molina, L.; Aiken, A. C.; Jimenez, J. L.; Gaeggeler, K.; Dommen, J.; Dusanter, S.; Stevens, P. S.; Tie, X.

    2008-11-01

    An ion drift-chemical ionization mass spectrometer (ID-CIMS) was deployed in Mexico City between 7 and 31 March to measure gas-phase nitric acid (HNO3) and dinitrogen pentoxide (N2O5 during the Mexico City Metropolitan Area (MCMA)-2006 field campaign. The observation site was located at the Instituto Mexicano del Petróleo in the northern part of Mexico City urban area with major emissions of pollutants from residential, vehicular and industrial sources. Diurnally, HNO3 was less than 200 parts per trillion (ppt) during the night and early morning. The concentration of HNO3 increased steadily from around 09:00 a.m. central standard time (CST), reached a peak value of 0.5 to 3 parts per billion (ppb) in the early afternoon, and then declined sharply to less than half of the peak value near 05:00 p.m. CST. An inter-comparison between the ID-CIMS and an ion chromatograph/mass spectrometer (ICMS) showed a good agreement between the two HNO3 measurements (R2=0.75). The HNO3 mixing ratio was found to anti-correlate with submicron-sized aerosol nitrate, suggesting that the gas-particle partitioning process was a major factor in determining the gaseous HNO3 concentration. Losses by irreversible reactions with mineral dust and via dry deposition also could be important at this site. Most of the times during the MCMA 2006 field campaign, N2O5 was found to be below the detection limit (about 30 ppt for a 10 s integration time) of the ID-CIMS, because of high NO mixing ratio at the surface (>100 ppb) during the night. An exception occurred on 26 March 2006, when about 40 ppt N2O5 was observed during the late afternoon and early evening hours under cloudy conditions before the build-up of NO at the surface site. The results revealed that during the MCMA-2006 field campaign HNO3 was primarily produced from the reaction of OH with NO2 and regulated by gas/particle transfer and dry deposition. The production of HNO3 from N2O5 hydrolysis during the nighttime was small because of high NO and low O3 concentrations near the surface.

  11. Filamentation instability of nonextensive current-driven plasma in the ion acoustic frequency range

    SciTech Connect

    Khorashadizadeh, S. M. Rastbood, E.; Niknam, A. R.

    2014-12-15

    The filamentation and ion acoustic instabilities of nonextensive current-driven plasma in the ion acoustic frequency range have been studied using the Lorentz transformation formulas. Based on the kinetic theory, the possibility of filamentation instability and its growth rate as well as the ion acoustic instability have been investigated. The results of the research show that the possibility and growth rate of these instabilities are significantly dependent on the electron nonextensive parameter and drift velocity. Besides, the increase of electrons nonextensive parameter and drift velocity lead to the increase of the growth rates of both instabilities. In addition, the wavelength region in which the filamentation instability occurs is more stretched in the presence of higher values of drift velocity and nonextensive parameter. Finally, the results of filamentation and ion acoustic instabilities have been compared and the conditions for filamentation instability to be dominant mode of instability have been presented.

  12. A DRIFT ORDERED SHORT MEAN-FREE DESCRIPTION FOR PARTIALLY IONIZED MAGNETIZED PLASMA

    SciTech Connect

    SIMAKOV, ANDERI N.

    2007-02-08

    Effects of neutral particles, most prominently the associated heat flux and viscosity, can be very important or even dominant at the edge of a tokamak and so must be self-consistently accounted for in a description of magnetized tokamak edge plasma. To the best of our knowledge, this has only been done so far for short mean-free path plasma under MHD-like Braginskii's orderings i.e. assuming that species velocities are on the order of the ion thermal speed. Since plasma flows in modern tokamaks are usually slow compared with the ion thermal speed (at least in the absence of strong external momentum sources) it is more appropriate to use drift orderings in which the plasma flow velocity is instead comparable with the diamagnetic heat flow divided by pressure. Employing drift orderings and evaluating species distribution functions through second order in the small gyroradius and mean-free path expansion parameters allows accounting for the important effects of heat fluxes on species momentum transport (viscosities), which are missing from the large flow ordered treatments. In this work we consider short mean-free path plasma consisting of electrons and single species of singly-charged ions and neutrals. We neglect neutral-neutral and elastic electron-neutral collisions and approximate the neutral-ion charge-exchange cross-section with a constant. We employ drift orderings to evaluate ion, neutral, and electron heat fluxes, viscosity tensors, and momentum and energy exchange terms and formulate a self-consistent system of electron, ion, and neutral fluid equations, thereby generalizing the drift-ordered treatment of fully ionized plasma.

  13. Toward elucidating the mechanism of femtosecond pulse shaping control in photodynamics of molecules by velocity map photoelectron and ion imaging.

    PubMed

    Irimia, Daniel; Janssen, Maurice H M

    2010-06-21

    The control of photofragmentation and ionization in a polyatomic molecule has been studied by femtosecond chirped laser pulse excitation and velocity map photoelectron and ion imaging. The experiments aimed at controlling and investigating the photodynamics in CH(2)BrCl using tunable chirped femtosecond pulses in the visible wavelength region 509-540 nm at maximum intensities of about 4x10(13) W/cm(2). We observe that the time-of-flight mass spectra as well as the photoelectron images can be strongly modified by manipulating the chirp parameter of ultrashort laser pulses. Specifically, a strong enhancement of the CH(2)Cl(+)/CH(2)BrCl(+) ion ratio by a factor of five and changes in the photoelectron spectra are observed for positively chirped pulses centered near 520 nm. These changes are only observed within a narrow window of wavelengths around 520 nm and only for positively chirped pulses. From the combination of the photoelectron spectra and the ion recoil energy of the CH(2)Cl(+) fragment we can deduce that the parent ionization and fragmentation is induced by a multiphoton excitation with five photons. The photoelectron images and the fragment ion images also provide the anisotropy (beta-parameter) of the various electron bands and fragment ions. We conclude that multiphoton excitation of the highest occupied 22a(') and 8a(") CH(2)BrCl molecular orbitals of Br-character are both involved in the five-photon ionization, however, only excitation of the 22a(') orbital appears to be (mostly) involved in the chirped control dynamics leading to enhanced fragmentation to CH(2)Cl(+)(X A(')) + Br((2)P(3/2)). We propose that a wavepacket following or a time-delay resonance mechanism between the two-photon excited n(x)(Br,22a(')) --> (2A(')) repulsive surface and the three-photon near-resonant n(x)(Br,22a(')) --> Rydberg(A(')) state of the neutral CH(2)BrCl molecule is responsible for the enhanced excitation of the n(x)(Br,22a(')) molecular orbital with up-chirped pulses. This leads to enhanced ionization to a configuration in the CH(2)BrCl(+)(X A(')) continuum just above the dissociation limit of the CH(2)Cl(+) + Br((2)P(3/2)) channel, resulting in enhanced fragmentation. PMID:20572700

  14. Drift instabilities in current sheets with guide field

    SciTech Connect

    Yoon, P. H.; Lui, A. T. Y.

    2008-07-15

    Drift instabilities in current sheets with or without the guide field are investigated with a newly developed improved electrostatic dispersion relation. Traditional (local) theories of lower-hybrid drift instability typically assumes small electron drift speed, and expand the electron distribution function in Taylor series. This approximate treatment is removed in this paper. The resulting formalism is uniformly valid for an arbitrary magnitude of relative ion and electron drift speeds, and is valid for an arbitrary strength of the guide field.

  15. Dynamics of positive probes in underdense, strongly magnetized, E×B drifting plasma: Particle-in-cell simulations

    SciTech Connect

    Heinrich, Jonathon R.; Cooke, David L.

    2013-09-15

    Electron trapping, electron heating, space-charge wings, wake eddies, and current collection by a positive probe in E×B drifting plasma were studied in three-dimensional electromagnetic particle-in-cell simulations. In these simulations, electrons and ions were magnetized with respect to the probe and the plasma was underdense (ω{sub pe}<ω{sub ce}). A large drift velocity (Mach 4.5 with respect to the ion acoustic speed) between the plasma and probe was created with background electric and magnetic fields. Four distinct regions developed in the presences of the positive probe: a quasi-trapped electron region, an electron-depletion wing, an ion-rich wing, and a wake region. We report on the observations of strong electron heating mechanisms, space-charge wings, ion cyclotron charge-density eddies in the wake, electron acceleration due to a magnetic presheath, and the current-voltage relationship.

  16. Plasma drifts and polarization electric fields associated with TID-like disturbances in the low-latitude ionosphere: C/NOFS observations

    NASA Astrophysics Data System (ADS)

    Huang, Chao-Song

    2016-02-01

    Medium-scale traveling ionospheric disturbances are often observed at the magnetically conjugate points in the nighttime midlatitude ionosphere. It has been suggested that gravity waves disturb the ionosphere and induce electric fields in one hemisphere and that the electric fields are amplified by the Perkins instability and transmitted along the geomagnetic field lines to the conjugate ionosphere, creating similar disturbances there. However, direct observations of electric fields associated with traveling ionospheric disturbances (TIDs) are very few. In this study, we present low-latitude TID-like disturbances observed by the Communication/Navigation Outage Forecasting System (C/NOFS) satellite. It is found that ion velocity perturbations are generated in the directions parallel and perpendicular to the geomagnetic field within TIDs. Both the parallel and perpendicular ion velocity perturbations show an in-phase correlation with the ion density perturbations. For nighttime TIDs, the amplitude of both the parallel and meridional ion velocity perturbations increases almost linearly with the amplitude of the ion density perturbations, and the meridional ion drift is proportional to the parallel ion velocity. For daytime TIDs, the parallel ion velocity perturbation increases with the ion density perturbation, but the meridional ion velocity perturbation does not change much. The observations provide evidence that polarization electric field is generated within TIDs at low latitudes and maps along the geomagnetic field lines over a large distance.

  17. Drift of dislocation tripoles under ultrasound influence.

    PubMed

    Murzaev, R T; Bachurin, D V; Nazarov, A A

    2016-01-01

    Numerical simulations of dynamics of different stable dislocation tripoles under influence of monochromatic standing sound wave were performed. The basic conditions necessary for the drift and mutual rearrangements between dislocation structures were investigated. The dependence of the drift velocity of the dislocation tripoles as a function of the frequency and amplitude of the external influence was obtained. The results of the work can be useful in analysis of motion and self-organization of dislocation structure under ultrasound influence. PMID:26278625

  18. Sawtooth-Control Mechanism using Toroidally Propagating Ion-Cyclotron-Resonance Waves in Tokamaks

    SciTech Connect

    Graves, J. P.; Coda, S.; Chapman, I.

    2009-02-13

    The sawtooth control mechanism in plasmas employing off-axis toroidally propagating ion cyclotron resonance waves in tokamaks is reinvestigated. The radial drift excursion of energetic passing ions distributed asymmetrically in the velocity parallel to the magnetic field determines stability when the rational q=1 surface resides within a narrow region centered about the shifted fundamental cyclotron resonance.

  19. Dynamics of pickup ion velocity distribution function in Titan's plasma environment (TA encounter): 3D hybrid kinetic modeling and comparison with CAPS observations

    NASA Astrophysics Data System (ADS)

    Simpson, D. G.; Lipatov, A. S.; Sittler, E. C.; Hartle, R. E.; Cooper, J. F.

    2013-12-01

    Wave-particle interactions play a very important role in the plasma dynamics near Titan: mass loading, excitation of the low-frequency waves and the formation of the particle velocity distribution function, e.g. ring/shell-like distributions, etc. The kinetic approach is important for estimation of the collision processes e.g. a charge exchange. The particle velocity distribution function also plays a key role for understanding the observed particle fluxes. In this report we discuss the ion velocity distribution function dynamics from 3D hybrid modeling. The modeling is based on recent analysis of the Cassini Plasma Spectrometer (CAPS) ion measurements during the TA flyby. In our model the background ions, all pickup ions, and ionospheric ions are considered as particles, whereas the electrons are described as a fluid. Inhomogeneous photoionization, electron-impact ionization and charge exchange are included in our model. The temperatures of the background electrons and pickup electrons were also included into the generalized Ohm's law. We also take into account the collisions between the ions and neutrals. We use Chamberlain profiles for the exosphere's components and include a simple ionosphere model with M=28 ions that were generated inside the ionosphere. The moon is considered as a weakly conducting body. Our modeling shows that interaction between background plasma and pickup ions H+, H2+, CH4+ and N2+ has a more complicated structure than was observed in the T9 flyby and modeling due to the large gyroradius of the background O+ ions [1,2,3,4]. Special attention will be paid to comparing the simulated pickup ion velocity distribution with CAPS TA observations. We also compare our kinetic modeling with other hybrid and MHD modeling of Titan's environment. References [1] Sittler, E.C., et al., Energy Deposition Processes in Titan's Upper Atmosphere and Its Induced Magnetosphere. In: Titan from Cassini-Huygens, Brown, R.H., Lebreton J.P., Waite, J.H., Eds., Springer, (Dordrecht, Heidelberg, London, New York, pp. 393-455, 2009). [2] Sittler, E.C., et al., Saturn's Magnetospheric Interaction with Titan as Defined by Cassini Encounters T9 and T18: New Results, Planet. Space Sci., doi.10.1016/j.pss.2009.09.017. [3] Coates, A.J., Interaction of Titan's ionosphere with Saturn's magnetosphere. Phil. Trans. R. Soc. A (2009) 367, 773-788, doi: 10.1098/rsta.2008.0248. [4] Lipatov, A.S., et al., Background and pickup ion velocity distribution dynamics in Titan's plasma environment: 3D hybrid simulation and comparison with CAPS T9 observations. Adv. Space Res. 48, 1114-1125, 2011.

  20. The response of a spherical tissue-equivalent proportional counter to different heavy ions having similar velocities

    PubMed Central

    Taddei, Phillip J.; Borak, Thomas B.; Guetersloh, Stephen B.; Gersey, Brad B.; Zeitlin, Cary; Heilbronn, Lawrence; Miller, Jack; Murakami, Takeshi; Iwata, Yoshiyuki

    2008-01-01

    A tissue-equivalent proportional counter (TEPC) has been used as a dosimeter in mixed radiation fields. Since it does not measure LET directly, the response function must be characterized in order to estimate quality factor and thus equivalent dose for the incident radiation. The objectives of this study were to measure the response of a spherical TEPC for different high-energy heavy ions (HZE) having similar velocity and to determine how quality factors can be determined. Data were obtained at the HIMAC heavy ion accelerator for 4He and 12C at 220 ± 5 MeV/nucleon (β = 0.59) and 12C, 16O, 28Si and 56Fe at 376 ± 15 MeV/nucleon (β = 0.70). A particle spectrometer recorded the charge and position of each incident beam particle. Events with low energy deposition were observed for particles that passed through the wall of the TEPC but not through the sensitive volume. The frequency averaged lineal energy, ȳf, was always less than the LET of the incident particles. The dose averaged lineal energy, ȳD, was approximately equal to LET for particles with LET greater than 10 keV/μm, whereas ȳD was larger than LET for the lighter particles with lower LET. Part of this effect is due to detector resolution and energy straggling that increases the variance of the response function. Although the TEPC is not a LET spectrometer, it can provide real time measurements of dose and provide estimates of quality factors for HZE particles using averaged values of lineal energy. PMID:19079798

  1. Spin drift in highly doped n-type Si

    SciTech Connect

    Kameno, Makoto; Ando, Yuichiro; Shinjo, Teruya; Koike, Hayato; Sasaki, Tomoyuki; Oikawa, Tohru; Suzuki, Toshio; Shiraishi, Masashi

    2014-03-03

    A quantitative estimation of spin drift velocity in highly doped n-type silicon (Si) at 8 K is presented in this letter. A local two-terminal Hanle measurement enables the detection of a modulation of spin signals from the Si as a function of an external electric field, and this modulation is analyzed by using a spin drift-diffusion equation and an analytical solution of the Hanle-type spin precession. The analyses reveal that the spin drift velocity is linearly proportional to the electric field. The contribution of the spin drift effect to the spin signals is crosschecked by introducing a modified nonlocal four-terminal method.

  2. Stability of ion acoustic solitary waves in a magnetized plasma consisting of warm adiabatic ions and non-thermal electrons having vortex-like velocity distribution

    NASA Astrophysics Data System (ADS)

    Das, Jayasree; Bandyopadhyay, Anup; Das, K. P.; Das

    2014-02-01

    Schamel's modified Korteweg-de Vries-Zakharov-Kuznetsov (S-ZK) equation, governing the behavior of long wavelength, weak nonlinear ion acoustic waves propagating obliquely to an external uniform static magnetic field in a plasma consisting of warm adiabatic ions and non-thermal electrons (due to the presence of fast energetic electrons) having vortex-like velocity distribution function (due to the presence of trapped electrons), immersed in a uniform (space-independent) and static (time-independent) magnetic field, admits solitary wave solutions having a sech 4 profile. The higher order stability of this solitary wave solution of the S-ZK equation has been analyzed with the help of multiple-scale perturbation expansion method of Allen and Rowlands (Allen, M. A. and Rowlands, G. 1993 J. Plasma Phys. 50, 413; 1995 J. Plasma Phys. 53, 63). The growth rate of instability is obtained correct to the order k 2, where k is the wave number of a long wavelength plane wave perturbation. It is found that the lowest order (at the order k) instability condition is strongly sensitive to the angle of propagation (δ) of the solitary wave with the external uniform static magnetic field, whereas at the next order (at the order k 2) the solitary wave solutions of the S-ZK equation are unstable irrespective of δ. It is also found that the growth rate of instability up to the order k 2 for the electrons having Boltzmann distribution is higher than that of the non-thermal electrons having vortex-like distribution for any fixed δ.

  3. Cyclotron drift instability in the bow shock.

    NASA Technical Reports Server (NTRS)

    Wu, C. S.; Fredricks, R. W.

    1972-01-01

    It is argued that the cyclotron drift instability (coupled ion waves and electron Bernstein modes) can explain many structural features of the weak electrostatic turbulence observed in bow shock magnetic-field gradients and thus that it provides a more attractive speculation than the ion acoustic or Buneman instabilities previously suggested as weak turbulence sources.

  4. Verification of continuum drift kinetic equation solvers in NIMROD

    NASA Astrophysics Data System (ADS)

    Held, E. D.; Kruger, S. E.; Ji, J.-Y.; Belli, E. A.; Lyons, B. C.

    2015-03-01

    Verification of continuum solutions to the electron and ion drift kinetic equations (DKEs) in NIMROD [C. R. Sovinec et al., J. Comp. Phys. 195, 355 (2004)] is demonstrated through comparison with several neoclassical transport codes, most notably NEO [E. A. Belli and J. Candy, Plasma Phys. Controlled Fusion 54, 015015 (2012)]. The DKE solutions use NIMROD's spatial representation, 2D finite-elements in the poloidal plane and a 1D Fourier expansion in toroidal angle. For 2D velocity space, a novel 1D expansion in finite elements is applied for the pitch angle dependence and a collocation grid is used for the normalized speed coordinate. The full, linearized Coulomb collision operator is kept and shown to be important for obtaining quantitative results. Bootstrap currents, parallel ion flows, and radial particle and heat fluxes show quantitative agreement between NIMROD and NEO for a variety of tokamak equilibria. In addition, velocity space distribution function contours for ions and electrons show nearly identical detailed structure and agree quantitatively. A Θ-centered, implicit time discretization and a block-preconditioned, iterative linear algebra solver provide efficient electron and ion DKE solutions that ultimately will be used to obtain closures for NIMROD's evolving fluid model.

  5. Verification of continuum drift kinetic equation solvers in NIMROD

    SciTech Connect

    Held, E. D.; Ji, J.-Y.; Kruger, S. E.; Belli, E. A.; Lyons, B. C.

    2015-03-15

    Verification of continuum solutions to the electron and ion drift kinetic equations (DKEs) in NIMROD [C. R. Sovinec et al., J. Comp. Phys. 195, 355 (2004)] is demonstrated through comparison with several neoclassical transport codes, most notably NEO [E. A. Belli and J. Candy, Plasma Phys. Controlled Fusion 54, 015015 (2012)]. The DKE solutions use NIMROD's spatial representation, 2D finite-elements in the poloidal plane and a 1D Fourier expansion in toroidal angle. For 2D velocity space, a novel 1D expansion in finite elements is applied for the pitch angle dependence and a collocation grid is used for the normalized speed coordinate. The full, linearized Coulomb collision operator is kept and shown to be important for obtaining quantitative results. Bootstrap currents, parallel ion flows, and radial particle and heat fluxes show quantitative agreement between NIMROD and NEO for a variety of tokamak equilibria. In addition, velocity space distribution function contours for ions and electrons show nearly identical detailed structure and agree quantitatively. A Θ-centered, implicit time discretization and a block-preconditioned, iterative linear algebra solver provide efficient electron and ion DKE solutions that ultimately will be used to obtain closures for NIMROD's evolving fluid model.

  6. Drift compression experiments on MBE-4 and related emittance growth phenomena

    SciTech Connect

    Eylon, S.; Faltens, A.; Fawley, W.; Garvey, T.; Hahn, K.; Henestroza, E.; Smith, L.

    1991-04-01

    We have recently conducted a series of experiments on the MBE-4 heavy ion accelerator in which a velocity tilt was placed on the beam in the first accelerating section beyond the injector, followed by drift compression over the remaining 11 meters. Depending upon the magnitude of the velocity tilt and the accompanying mismatch in the focusing lattice, emittance growth was observed, manifested by butterfly'' shapes in x {minus} x{prime} phase space. We discuss various analytical limits on ion beam compression and relate them to these experiments and also to a driver for a heavy ion fusion reactor. We also present numerical simulations which investigate various aspects of compression and consequent emittance growth. 2 refs., 3 figs., 1 tab.

  7. Model Etch Profiles for Ion Energy Distribution Functions in an Inductively Coupled Plasma Reactor

    SciTech Connect

    Abraham-Shrauner, B.; Chen, W.; Woodworth, J.R.

    1998-12-14

    Rectangular trench profiles are modeled with analytic etch rates determined from measured ion distribution functions. The pattern transfer step for this plasma etch is for trilayer lithography. Argon and chlorine angular ion energy distribution functions measured by a spherical collector ring analyzer are fit to a sum of drifting Maxwellian velocity distribution functions with anisotropic temperatures. The fit of the model ion distribution functions by a simulated annealing optimization procedure converges adequately for only two drifting Maxwellians. The etch rates are proportional to analytic expressions for the ion energy flux. Numerical computation of the etch profiles by integration of the characteristic equations for profile points and connection of the profiles points is efficient.

  8. Experimental test of instability enhanced collisional friction for determining ion loss in two ion species plasmas

    SciTech Connect

    Hershkowitz, N.; Yip, C.-S.; Severn, G. D.

    2011-05-15

    Recent experiments have shown that ions in weakly collisional plasmas containing two ion species of comparable densities approximately reach a common velocity at the sheath edge equal to the bulk plasma ion sound velocity. A recent theory [S. D. Baalrud, C. C. Hegna, and J. D. Callen, Phys. Rev. Lett. 103, 205002 (2009)] suggests that this is a consequence of collisional friction between the two ion species enhanced by the two stream instability. The theory finds that the difference in velocities at the sheath edge depends on the relative concentrations of the two ions. The difference in velocities is small, with both species approaching to the bulk sound velocity, when the concentrations are comparable, and is large, with each species reaching its own Bohm velocity, when the relative concentration differences are large. To test these findings, drift velocities of Ar and Xe ions were measured with laser-induced fluorescence in Ar-Xe and He-Xe plasmas and combined with ion acoustic wave and plasma potential data. In addition, electron temperature was varied by a Maxwell demon [K. R. MacKenzie et al., App. Phys. Lett. 18, 529 (1971)]. The predictions were found to be in excellent agreement with the experimental data. The generalized Bohm criterion in two ion species plasmas is also verified in a wider variety of relative ion concentrations.

  9. Development of a very-low-velocity superconducting linac

    SciTech Connect

    Shepard, K.W.

    1987-01-01

    Four types of superconducting accelerator structures are being developed for use in a low velocity positive-ion injector linac for the ATLAS heavy-ion accelerator. Prototypes of the first two of these have been tested. The structures are all variants of a quarter-wave line terminated with a four-gap interdigital drift-tube array. The two structure types so far tested operate at 48.5 mHz and have an active length of 10 cm (for the particle velocity - .008c type) and 16.5 cm (for the velocity - .014c type). Effective accelerating fields of 10 MV/m have been achieved with the 10 cm structure, corresponding to an effective accelerating potential of 1 MV. The 16.5 cm structure has been operated at field levels of 6 MV/m, also giving an effective potential of 1 MV. Prototypes of the remaining two resonant geometries are under construction.

  10. Adiabatic particle motion in a nearly drift-free magnetic field - Application to the geomagnetic tail

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1978-01-01

    An investigation is made of the adiabatic particle motion occurring in an almost drift-free magnetic field. The dependence of the mean drift velocity on the equatorial pitch angle and the variation of the local drift velocity along the trajectories is studied. The fields considered are two-dimensional and resemble the geomagnetic tail. Derivations are presented for instantaneous and average drift velocities, bounce times, longitudinal invariants, and approximations to the adiabatic Hamiltonian. As expected, the mean drift velocity is significantly smaller than the instantaneous drift velocities found at typical points on the trajectory. The slow drift indicates that particles advance in the dawn-dusk direction rather slowly in the plasma sheet of the magnetospheric tail.

  11. Seismic tomography and continental drift

    NASA Astrophysics Data System (ADS)

    Trubitsyn, V. P.

    2008-11-01

    Based on data of seismic tomography, the structure of the mantle flows of the contemporary Earth and the continental drift are calculated. Results of calculation of the contemporary motion of continents and their future drift for 150 Myr are presented. The present-day positions of six continents and the nine largest islands are taken as an initial state. The contemporary temperature distribution in the mantle is calculated according to the data of seismic tomography. The 3-D distribution of seismic wave velocities is converted into the density distribution and then into the temperature distribution. The Stokes equation is numerically solved for flows in a viscous mantle with floating continents for the given initial temperature distribution. In this way, the velocities of convective flows are determined in the entire present-day mantle and the surface distribution for the Earth’s heat flux is obtained. The reliability of the calculated flows in the mantle is estimated by the comparison of the calculated velocities of the contemporary continents and oceanic lithosphere with data of satellite measurements. Further, evolutionary equations of convection with floating continents were numerically solved. The calculated structure of mantle flows, temperature distribution, and position of continents are presented for a time moment 150 Myr in the future. The resulting successive changes in the position of continents in time show how islands (in particular, Japan and Indonesia) will be attached to continents and how continents will converge, exhibiting a tendency toward the formation of a new supercontinent in the southern hemisphere of the Earth.

  12. Influence of {kappa}-distributed ions on the two-stream instability

    SciTech Connect

    Langmayr, D.; Biernat, H.K.; Erkaev, N.V.

    2005-10-01

    This paper is the first approach for analyzing the influence of {kappa}-distributed particles on the modified two-stream instability (MTSI). It is assumed that the plasma consists of a magnetized Maxwellian electron contribution and unmagnetized {kappa}-distributed ions drifting across the electrons. Within an electrostatic approximation, the influence of the {kappa} parameter on the maximum growth rate of the MTSI is evaluated for the special case of parallel drift velocity and wave propagation.

  13. Development of a High Resolution X-Ray Imaging Crystal Spectrometer for Measurement of Ion-Temperature and Rotation-Velocity Profiles in Fusion Energy Research Plasmas

    SciTech Connect

    Hill, K W; Broennimann, Ch; Eikenberry, E F; Ince-Cushman, A; Lee, S G; Rice, J E; Scott, S

    2008-01-29

    A new imaging high resolution x-ray crystal spectrometer (XCS) has been developed to measure continuous profiles of ion temperature and rotation velocity in fusion plasmas. Following proof-of-principle tests on the Alcator C-Mod tokamak and the NSTX spherical tokamak, and successful testing of a new silicon, pixilated detector with 1 MHz count rate capability per pixel, an imaging XCS is being designed to measure full profiles of Ti and vφ on C-Mod. The imaging XCS design has also been adopted for ITER. Ion-temperature uncertainty and minimum measurable rotation velocity are calculated for the C-Mod spectrometer. The affects of x-ray and uclear-radiation background on the measurement uncertainties are calculated to predict performance on ITER.

  14. Development of a High Resolution X-Ray Imaging Crystal Spectrometer for Measurement of Ion-Temperature and Rotation-Velocity Profiles in Fusion Energy Research Plasmas

    SciTech Connect

    Hill, K W; Broennimann, Ch; Eikenberry, E F; Ince-Cushman, A; Lee, S G; Rice, J E; Scott, S

    2008-02-27

    A new imaging high resolution x-ray crystal spectrometer (XCS) has been developed to measure continuous profiles of ion temperature and rotation velocity in fusion plasmas. Following proof-of-principle tests on the Alcator C-Mod tokamak and the NSTX spherical tokamak, and successful testing of a new silicon, pixilated detector with 1MHz count rate capability per pixel, an imaging XCS is being designed to measure full profiles of Ti and vφ on C-Mod. The imaging XCS design has also been adopted for ITER. Ion-temperature uncertainty and minimum measurable rotation velocity are calculated for the C-Mod spectrometer. The affects of x-ray and nuclear-radiation background on the measurement uncertainties are calculated to predict performance on ITER.

  15. Dike/Drift Interactions

    SciTech Connect

    E. Gaffiney

    2004-11-23

    This report presents and documents the model components and analyses that represent potential processes associated with propagation of a magma-filled crack (dike) migrating upward toward the surface, intersection of the dike with repository drifts, flow of magma in the drifts, and post-magma emplacement effects on repository performance. The processes that describe upward migration of a dike and magma flow down the drift are referred to as the dike intrusion submodel. The post-magma emplacement processes are referred to as the post-intrusion submodel. Collectively, these submodels are referred to as a conceptual model for dike/drift interaction. The model components and analyses of the dike/drift interaction conceptual model provide the technical basis for assessing the potential impacts of an igneous intrusion on repository performance, including those features, events, and processes (FEPs) related to dike/drift interaction (Section 6.1).

  16. Adiabatic particle motion in a nearly drift-free magnetic field: Application to the geomagnetic tail

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1977-01-01

    The guiding center motion of particles in a nearly drift free magnetic field is analyzed in order to investigate the dependence of mean drift velocity on equatorial pitch angle, the variation of local drift velocity along the trajectory, and other properties. The mean drift for adiabatic particles is expressed by means of elliptic integrals. Approximations to the twice-averaged Hamiltonian W near z = O are derived, permitting simple representation of drift paths if an electric potential also exists. In addition, the use of W or of expressions for the longitudinal invariant allows the derivation of the twice averaged Liouville equation and of the corresponding Vlasov equation. Bounce times are calculated (using the drift-free approximation), as are instantaneous guiding center drift velocities, which are then used to provide a numerical check on the formulas for the mean drift.

  17. Quantum Computation with Phase Drift Errors

    NASA Astrophysics Data System (ADS)

    Miquel, César; Paz, Juan Pablo; Zurek, Wojciech Hubert

    1997-05-01

    We numerically simulate the evolution of an ion trap quantum computer made out of 18 ions subject to a sequence of nearly 15 000 laser pulses in order to find the prime factors of N = 15. We analyze the effect of random and systematic phase drift errors arising from inaccuracies in the laser pulses which induce over (under) rotation of the quantum state. Simple analytic estimates of the tolerance for the quality of driving pulses are presented. We examine the use of watchdog stabilization to partially correct phase drift errors concluding that, in the regime investigated, it is rather inefficient.

  18. Free Drifting Buoys

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Information was exchanged between people directly involved with the development, use, and/or potential use of free drifting buoys. Tracking systems and techniques, where methods and accuracy of optical, radio, radar, satellite, and sonic tracking of free-drifting buoys were discussed. Deployment and retrieval covering methods currently used or planned in the deployment and retrieval of free-drifting buoys from boats, ships, helicopters, fixed platforms, and fixed-wing aircraft were reported. Simulation, sensors, and data emphasizing the status of water circulation modeling, and sensors useful on free-drifting buoys, and data display and analysis were described.

  19. Numerical calculation of ion runaway distributions

    NASA Astrophysics Data System (ADS)

    Newton, Sarah; Embréus, Ola; Stahl, Adam; Hirvijoki, Eero; Fülöp, Tünde

    2015-11-01

    Ion acceleration by electric fields is of interest in many plasma scenarios. Limitations of analytic descriptions prevent their general use in following the evolution of such ``runaway ion'' populations. Therefore we have implemented an initial value solver, CODION, for the linearized ion drift kinetic equation, with a non-relativistic Fokker-Planck collision operator. A spectral-Eulerian discretization scheme is used for 2D velocity space. The background plasma is taken to be homogeneous and static, with arbitrary composition. We demonstrate the use of the numerical distribution function to study ion acceleration in solar flares and tokamak plasmas. The variation of the strength and duration of the electric field required to produce a significant fast ion population is illustrated. Low frequency magnetic activity, indicative of toroidal Alfvén eigenmode excitation, has been observed during tokamak disruptions. Taking typical disruption parameters, we show that accelerated bulk ions are unlikely to reach a sufficient velocity to provide the resonant drive.

  20. Gradient drift eigenmodes in the equatorial electrojet

    NASA Technical Reports Server (NTRS)

    Wang, X.-H.; Bhattacharjee, A.

    1994-01-01

    The problem of kilometer-scale irregularities in the daytime equatorial electrojet is revisited by means of an eigenmode analysis of the gradient drift instability. Realistic physical parameters are used, including the modeled altitude variations of ion and electron collision frequencies and mobilities. The full fourth-order system of two coupled differential equations (each of second order) for the denisty and electrostatic potential perturbations is solved numerically by a relaxation technique. Under some approximations, the fourth-order system can be shown to reduce to a second-order differential equation for the perturbed potential or density. The latter is solved using a shooting technique and provides initial guesses for numerical solutions to the full problem. It is shown that the linear growth rate peaks for kilometer-scale waves, contrary to the findings of recent initial-value studies. This occurs because the equilibrium velocity shear is much more effective as a damping mechanism for short-wavelength modes than it is for the longer, kilometer-scale modes. These results provide a natural qualitative explanation for the observed dominance of kilometer-scale structures in the daytime electrojet spectrum.

  1. Magnetotail acceleration using generalized drift theory - A kinetic merging scenario

    NASA Technical Reports Server (NTRS)

    Whipple, E. C.; Rosenberg, M.; Brittnacher, M.

    1990-01-01

    It is possible to describe particle behavior in the magnetotail, including particle energization, by means of generalized drift theory. Generalized drift velocities are obtained by using the generalized first invariant which has been shown to be useful in such current sheet configurations. Particles whose generalized invariant is preserved gain energy entirely in the field-aligned direction. The form of the accelerated particle velocity distribution is obtained and self-consistency conditions are derived.

  2. Collisional effects on nonlinear ion drag force for small grains

    SciTech Connect

    Hutchinson, I. H.; Haakonsen, C. B.

    2013-08-15

    The ion drag force arising from plasma flow past an embedded spherical grain is calculated self-consistently and non-linearly using particle in cell codes, accounting for ion-neutral collisions. Using ion velocity distribution appropriate for ion drift driven by a force field gives wake potential and force greatly different from a shifted Maxwellian distribution, regardless of collisionality. The low-collisionality forces are shown to be consistent with estimates based upon cross-sections for scattering in a Yukawa (shielded) grain field, but only if non-linear shielding length is used. Finite collisionality initially enhances the drag force, but only by up to a factor of 2. Larger collisionality eventually reduces the drag force. In the collisional regime, the drift distribution gives larger drag than the shift distribution even at velocities where their collisionless drags are equal. Comprehensive practical analytic formulas for force that fit the calculations are provided.

  3. Ion heating mechanism in a modified Penning discharge

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1972-01-01

    Ions with Maxwellian energy distributions and kinetic temperatures ranging from 20 eV to 7 keV have been observed in a modified Penning discharge operating in the steady state. Investigation of the plasma revealed two distinct spoke-like concentrations of charge rotating with different velocities in the sheath between the plasma and the anode ring. The faster spoke consists of electrons rotating with the E/B drift velocity, where E is the electric field and B is the magnetic field strength. The slow spoke consists of ions, the thermal velocity of which is observed to be proportional to the spoke velocity. The experimental data are consistent with a model whereby the ion drift velocity in this spoke, corresponding to kilovolt ion energies, is Maxwellianized by strong electrostatic turbulence in the sheath. Theoretical expressions are derived for the frequency of the electron and ion spoke rotation, for the ion kinetic temperature, and for the ion heating efficiency as functions of the discharge parameters. These expressions are shown to be consistent with extensive experimental data.

  4. Influence of Parallel Dynamics and Electron Temperature Fluctuations on Collisional Drift-Wave Simulations of CSDX

    NASA Astrophysics Data System (ADS)

    Vaezi, Payam; Holland, Christopher; Tynan, George; Chakraborty Thakur, Saikat; Brandt, Christian

    2014-10-01

    Previous 2D numerical simulations of collisional drift-wave turbulence in the linear Controlled Shear Decorrelation Experiment (CSDX) device were unable to reproduce experimental observations at magnetic fields above 1.4 kG at either the quantitative or qualitative level. Experimental observations suggest that dynamics of previously neglected ion parallel velocity and associated parallel shear-flow driven instabilities become important at the higher fields. In this poster, we present comparisons of new 3D simulations performed with the BOUT++ framework which include parallel ion velocity dynamics, as well as self-consistent electron temperature fluctuations, to the CSDX observations at multiple magnetic field strengths. We compare the simulated scalings of density and potential fluctuation spectra with magnetic field, as well as radial particle flux and Reynolds stress to 2D results and experimental observations. The comparisons are made using synthetic probe and fast camera diagnostics that incorporate both the electron density and temperature dynamics.

  5. Anomalous drift of spiral waves in heterogeneous excitable media

    NASA Astrophysics Data System (ADS)

    Sridhar, S.; Sinha, Sitabhra; Panfilov, Alexander V.

    2010-11-01

    We study the drift of spiral waves in a simple model of heterogeneous excitable medium, having gradients in the distribution of ion-channel expression or cellular coupling. We report the anomalous drift of spiral waves toward regions having shorter period or stronger coupling, in reaction-diffusion models of excitable media. Such anomalous drift can promote the onset of complex spatiotemporal patterns, e.g., those responsible for life-threatening arrhythmias in the heart.

  6. Booktalking: Avoiding Summer Drift

    ERIC Educational Resources Information Center

    Whittingham, Jeff; Rickman, Wendy A.

    2015-01-01

    Summer drift, otherwise known as loss of reading comprehension skills or reading achievement, has been a well-known and well-documented phenomenon of public education for decades. Studies from the late twentieth century to the present have demonstrated a slowdown in summer drift attributed to specific summer reading programs addressing motivation…

  7. Digisonde Drift Analysis Software

    NASA Astrophysics Data System (ADS)

    Kozlov, Alexander V.; Paznukhov, Vadym V.

    2008-02-01

    This paper introduces a newly developed conceptual Java-based software package for the digisonde drift data analysis and visualization. This package replaced the less versatile Fortran-based applications previously developed at UMLCAR. A dedicated database intended for raw and processed drift data storage, access, and exchange has also been established and is described in this paper.

  8. Drift distance survey in DPIS for high current beam production

    SciTech Connect

    Kanesue,T.; Okamura, M.; Kondo, K.; Tamura, J.; Kashiwagi, H.; Zhang, Z.

    2009-09-20

    In a laser ion source, plasma drift distance is one of the most important design parameters. Ion current density and beam pulse width are defined by plasma drift distance between laser target and beam extraction position. In direct plasma injection scheme (DPIS), which uses a laser ion source and Radio Frequency Quadrupole (RFQ) linac, we can apply relatively higher electric field at the beam extraction due to the unique shape of a positively biased electrode. However, when we aim at very high current acceleration like several tens of mA, we observed mismatched beam extraction conditions. We tested three different ion current at ion extraction region by changing plasma drift distance to study better extraction condition. In this experiment, C{sup 6+} beam was accelerated. We confirmed that the matching condition can be improved by controlling plasma drift distance.

  9. Ion beams from laser-generated plasmas

    NASA Technical Reports Server (NTRS)

    Hughes, R. H.; Anderson, R. J.; Gray, L. G.; Rosenfeld, J. P.; Manka, C. K.; Carruth, M. R.

    1980-01-01

    The paper describes the space-charge-limited beams produced by the plasma blowoffs generated by 20-MW bursts of 1.06-micron radiation from an active Q-switched Nd:YAG laser. Laser power densities near 10 to the 11th/sq cm on solid targets generate thermalized plasma plumes which drift to a 15-kV gridded extraction gap where the ions are extracted, accelerated, and electrostatically focused; the spatially defined ion beams are then magnetically analyzed to determine the charge state content in the beams formed from carbon, aluminum, copper, and lead targets. This technique preserves time-of-flight (TOF) information in the plasma drift region, which permits plasma ion temperatures and mass flow velocities to be determined from the Maxwellian ion curve TOF shapes for the individual charge species.

  10. Particle drift in the Earth's plasma sheet

    NASA Technical Reports Server (NTRS)

    Wolf, R. A.; Pontius, D. H., Jr.

    1993-01-01

    We generalize the derivation of the average gradient/curvature-drift for a flux tube filled with an isotropic distribution of particles at specified kinetic energy. The present treatment is restricted to a two-dimensional magnetic field with zero electric field, but it includes all chaotic and Speiser orbits, which do not correspond to the simple picture of gradient/curvature drift. We assume that particles are evenly distributed throughout the regions of phase space allowed by their energy and canonical momentum. This assumption is closely related but not exactly equivalent to the assumption of isotropic pitch-angle distribution. Our derivation assumes that the maximum Larmor radius is small compared to the scale length for equatorial variations in the flux tube volume, but it does not involve any restrictions on the curvature of the field line. The resulting expression for the drift rate is valid for situations where the particle drift velocity is comparable to the thermal speed in some regions. The apparent implication of this generalized treatment is that the existence of very complex non-adiabatic particle trajectories in the plasma sheet may not invalidate previous estimates of the average rate of particle drift out the sides of the tail, estimates that were made under the assumption of simple guiding-center drifts.

  11. Thermal Electron Contributions to Current-Driven Instabilities: SCIFER Observations in the 1400-km Cleft Ion Fountain and Their Implications to Thermal Ion Energization

    NASA Astrophysics Data System (ADS)

    Adrian, M. L.; Pollock, C. J.; Moore, T. E.; Kintner, P. M.; Arnoldy, R. L.

    2001-12-01

    SCIFER TECHS observations of the variations in the thermal electron distribution in the 1400-km altitude cleft are associated with periods of intense ion heating and field-aligned currents. Energization of the thermal ion plasma in the mid-altitude cleft occurs within density cavities accompanied by enhanced thermal electron temperatures, large field-aligned thermal electron plasma flows and broadband low-frequency electric fields. Variations in the thermal electron contribution to field-aligned current densities indicate small scale ( ~100's m) filamentary structure embedded within the ion energization periods. TECHS observations of the field-aligned drift velocities and temperatures of the thermal electron distribution are presented to evaluate the critical velocity thresholds necessary for the generation of electrostatic ion cyclotron and ion acoustic instabilities. This analysis suggests that, during periods of thermal ion energization, sufficient drift exists in the thermal electron distribution to excite the electrostatic ion cyclotron instability. In addition, brief periods exist within the same interval where the drift of the thermal electron distribution is sufficient to marginally excite the ion acoustic instability. In addition, the presence an enhancement in Langmuir emission at the plasma frequency at the center of the ion energization region, accompanied by the emission's second-harmonic, and collocated with observations of high-frequency electric field solitary structures suggest the presence of electron beam driven decay of Langmuir waves to ion acoustic modes as an additional free energy source for ion energization.

  12. Thermal Electron Contributions to Current-Driven Instabilities: SCIFER Observations in the 1400-km Cleft Ion Fountain and Their Implications to Thermal Ion Energization

    NASA Technical Reports Server (NTRS)

    Adrian, Mark L.; Pollock, C. J.; Moore, T. E.; Kintner, P. M.; Arnoldy, R. L.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    SCIFER TECHS observations of the variations in the thermal electron distribution in the 1400-km altitude cleft are associated with periods of intense ion heating and field-aligned currents. Energization of the thermal ion plasma in the mid-altitude cleft occurs within density cavities accompanied by enhanced thermal electron temperatures, large field-aligned thermal electron plasma flows and broadband low-frequency electric fields. Variations in the thermal electron contribution to field-aligned current densities indicate small scale (approximately 100's m) filamentary structure embedded within the ion energization periods. TECHS observations of the field-aligned drift velocities and temperatures of the thermal electron distribution are presented to evaluate the critical velocity thresholds necessary for the generation of electrostatic ion cyclotron and ion acoustic instabilities. This analysis suggests that, during periods of thermal ion energization, sufficient drift exists in the thermal electron distribution to excite the electrostatic ion cyclotron instability. In addition, brief periods exist within the same interval where the drift of the thermal electron distribution is sufficient to marginally excite the ion acoustic instability. In addition, the presence an enhancement in Langmuir emission at the plasma frequency at the center of the ion energization region, accompanied by the emission's second-harmonic, and collocated with observations of high-frequency electric field solitary structures suggest the presence of electron beam driven decay of Langmuir waves to ion acoustic modes as an additional free energy source for ion energization.

  13. The complex mixed Wentzel–Kramers–Brillouin-full-wave approach and its application to the two dimensional mode structure analysis of ion temperature gradient/collisionless trapped electron mode drift waves

    SciTech Connect

    Lu, Z. X.

    2015-05-15

    The complex mixed Wentzel–Kramers–Brillouin (WKB)-full-wave approach is applied to the 2D mode structure analysis of ion temperature gradient/collisionless trapped electron mode drift waves in tokamak plasmas. The parallel mode structure is calculated with the full-wave approach, while the radial envelope is calculated with the complex WKB method. The tilting of the global mode structure along radius is demonstrated analytically. The effects of the phase and amplitude variation of the radial envelope on the parallel mode structure are included in terms of a complex radial wave vector in the parallel mode equation. It is shown that the radial equilibrium non-uniformity leads to the asymmetry of the parallel mode structure not only in configuration space but also in spectrum space. The mixed approach provides a practical way to analyze the asymmetric component of the global mode structure due to radial equilibrium non-uniformity.

  14. Drift-tube linac geometry optimization at 108 and 216 MHz

    NASA Astrophysics Data System (ADS)

    Ungrin, James; Michel, Walter L.

    1985-10-01

    Drift-tube linear accelerator geometries at 108 and 216 MHz have been studied using the computer code SUPERFISH with the aim of optimizing the effective shunt impedance, ZT2. Optimum ZT2 curves for particle velocities, β = v/ c, ranging from 0.061 (1.75 MeV/amu) to 0.567 (200 MeV/amu) have been generated from over 2500 computer runs with SUPERFISH. These curves, although derived primarily for a high current electronuclear breeder accelerator, have general application for other proton or heavy ion linear accelerators.

  15. Abstraction of Drift Seepage

    SciTech Connect

    J.T. Birkholzer

    2004-11-01

    This model report documents the abstraction of drift seepage, conducted to provide seepage-relevant parameters and their probability distributions for use in Total System Performance Assessment for License Application (TSPA-LA). Drift seepage refers to the flow of liquid water into waste emplacement drifts. Water that seeps into drifts may contact waste packages and potentially mobilize radionuclides, and may result in advective transport of radionuclides through breached waste packages [''Risk Information to Support Prioritization of Performance Assessment Models'' (BSC 2003 [DIRS 168796], Section 3.3.2)]. The unsaturated rock layers overlying and hosting the repository form a natural barrier that reduces the amount of water entering emplacement drifts by natural subsurface processes. For example, drift seepage is limited by the capillary barrier forming at the drift crown, which decreases or even eliminates water flow from the unsaturated fractured rock into the drift. During the first few hundred years after waste emplacement, when above-boiling rock temperatures will develop as a result of heat generated by the decay of the radioactive waste, vaporization of percolation water is an additional factor limiting seepage. Estimating the effectiveness of these natural barrier capabilities and predicting the amount of seepage into drifts is an important aspect of assessing the performance of the repository. The TSPA-LA therefore includes a seepage component that calculates the amount of seepage into drifts [''Total System Performance Assessment (TSPA) Model/Analysis for the License Application'' (BSC 2004 [DIRS 168504], Section 6.3.3.1)]. The TSPA-LA calculation is performed with a probabilistic approach that accounts for the spatial and temporal variability and inherent uncertainty of seepage-relevant properties and processes. Results are used for subsequent TSPA-LA components that may handle, for example, waste package corrosion or radionuclide transport.

  16. Relative drifts and temperature anisotropies of protons and α particles in the expanding solar wind: 2.5D hybrid simulations

    NASA Astrophysics Data System (ADS)

    Maneva, Y. G.; Ofman, L.; Viñas, A.

    2015-06-01

    Context. We perform 2.5D hybrid simulations to investigate the origin and evolution of relative drift speeds between protons and α particles in the collisionless turbulent low- tildeβ solar wind plasma. Aims: We study the generation of differential streaming by wave-particle interactions and absorption of turbulent wave spectra. Next we focus on the role of the relative drifts for the turbulent heating and acceleration of ions in the collisionless fast solar wind streams. Methods: The energy source is given by an initial broad-band spectrum of parallel propagating Alfvén-cyclotron waves, which co-exists with the plasma and is self-consistently coupled to the perpendicular ion bulk velocities. We include the effect of a gradual solar wind expansion, which cools and decelerates the minor ions. We here consider for the first time the combined effect of self-consistently initialized dispersive turbulent Alfvénic spectra with differentially streaming protons and α particles in the expanding solar wind outflows within a 2.5D hybrid simulation study. Results: For differential streaming of Vαp < 0.5VA, the selected initial wave spectrum accelerates the minor ions in the non-expanding wind. At Vαp = 0.5VA the relative drift speed remains nearly steady. For ions that stream below this threshold value, the waves act to increase the magnitude of the relative drift speed. Ions that stream faster than the threshold value become subject to a nonlinear streaming instability, and as the system evolves, their bulk velocities decrease. We find that the solar wind expansion strongly affects the relative drift speed and significantly slows down both ion species for all values of the relative drift speeds considered in this study. The initial nonresonant wave spectra interact with the particles, resulting in preferential and anisotropic heating for the minor ions with a prominent increase of their perpendicular temperature, which overcomes the effect of the double-adiabatic cooling that is due to the solar wind expansion. Finally, the initial parallel spectra undergo a micro-turbulent nonlinear cascade during which oblique waves are generated, whose intensity depends on the value of the relative drift speed.

  17. Generalized Drift-Diffusion Model In Semiconductors

    SciTech Connect

    Mesbah, S.; Bendib-Kalache, K.; Bendib, A.

    2008-09-23

    A new drift-diffusion model is proposed based on the computation of the stationary nonlocal current density. The semi classical Boltzmann equation is solved keeping all the anisotropies of the distribution function with the use of the continued fractions. The conductivity is calculated in the linear approximation and for arbitrary collision frequency with respect to Kv{sub t} where K{sup -1} is the characteristic length scale of the system and V{sub t} is the thermal velocity. The nonlocal conductivity can be used to close the generalized drift-diffusion equations valid for arbitrary collisionality.

  18. Origins of ion irradiation-induced Ga nanoparticle motion on GaAs surfaces

    NASA Astrophysics Data System (ADS)

    Kang, M.; Wu, J. H.; Sofferman, D. L.; Beskin, I.; Chen, H. Y.; Thornton, K.; Goldman, R. S.

    2013-08-01

    We have examined the origins of ion irradiation-induced nanoparticle (NP) motion. Focused-ion-beam irradiation of GaAs surfaces induces random walks of Ga NPs, which are biased in the direction opposite to that of ion beam scanning. Although the instantaneous NP velocities are constant, the NP drift velocities are dependent on the off-normal irradiation angle, likely due to a difference in surface non-stoichiometry induced by the irradiation angle dependence of the sputtering yield. It is hypothesized that the random walks are initiated by ion irradiation-induced thermal fluctuations, with biasing driven by anisotropic mass transport.

  19. Origins of ion irradiation-induced Ga nanoparticle motion on GaAs surfaces

    SciTech Connect

    Kang, M.; Wu, J. H.; Chen, H. Y.; Thornton, K.; Goldman, R. S.; Sofferman, D. L.; Department of Physics, Adelphi University, Garden City, New York 11530-0701 ; Beskin, I.

    2013-08-12

    We have examined the origins of ion irradiation-induced nanoparticle (NP) motion. Focused-ion-beam irradiation of GaAs surfaces induces random walks of Ga NPs, which are biased in the direction opposite to that of ion beam scanning. Although the instantaneous NP velocities are constant, the NP drift velocities are dependent on the off-normal irradiation angle, likely due to a difference in surface non-stoichiometry induced by the irradiation angle dependence of the sputtering yield. It is hypothesized that the random walks are initiated by ion irradiation-induced thermal fluctuations, with biasing driven by anisotropic mass transport.

  20. Dust magneto-gravitational drift wave in g×B configuration

    SciTech Connect

    Salahshoor, M. Niknam, A. R.

    2014-11-15

    The dispersion relation of electrostatic waves in a magnetized complex plasma under gravity is presented. It is assumed that the waves propagate perpendicular to the external fields. The effects of weak electric field, neutral drag force, and ion drag force are also taken into account. The dispersion relation is numerically examined in an appropriate parameter space in which the gravity plays the dominant role in the dynamics of magnetized microparticles. The numerical results show that an unstable low frequency drift wave can be developed in the long wavelength limit. This unstable mode is transformed into an aperiodic stationary structure at a cut-off wavenumber. Furthermore, the influence of the external fields on the dispersion properties is analyzed. It is shown that the instability is essentially due to the E×B drift motion of plasma particles. However, in the absence of weak electric field, the g×B drift motion of microparticles can cause the instability in a wide range of wavenumbers. It is also found that by increasing the magnetic field strength, the wave frequency is first increased and then decreased. This behaviour is explained by the existence of an extremum point in the dust magneto-gravitational drift velocity.

  1. Note on the electric splitting of drift shells. [in magnetospheric convection electric field

    NASA Technical Reports Server (NTRS)

    Kivelson, M. G.; Southwood, D. J.

    1975-01-01

    A nonrelativistic analysis is presented for the deviation of a particle from its dipole magnetic drift shell in the presence of an electric field. An alternative definition of weak shell splitting is introduced in which the corotation drift velocity need not be small with respect to the azimuthal magnetic drift velocity. Approximate explicit solutions are obtained for the asymmetry of drift shells in the strong shell splitting case, i.e., for the case where the cross-magnetosphere potential drop is not small compared to particle kinetic energy. Upper limits to drift shell asymmetry are obtained from considerations of the Alfven layer.

  2. Dodging the Drifts

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This image taken by NASA's Mars Exploration Rover Opportunity is a portion of a mosaic acquired by the panoramic camera. The picture highlights the light-toned outcrop on the rim of 'Erebus Crater' and large, dark, wind-deposited drifts that have filled the center of the crater. Opportunity took this image on the rover's 608th sol (Oct. 9, 2005). The rover is driving west, avoiding the large drifts and crossing the low ripples and outcrop to the right. After traversing to the north of the large drift on the horizon (near the center of the image), Opportunity will drive south to the western rim of the crater.

  3. Ionospheric vertical drifts over an Indian low latitude station and its comparison with IRI-2007 vertical drift model

    NASA Astrophysics Data System (ADS)

    Saranya, P. L.; Prasad, D. S. V. V. D.; Rama Rao, P. V. S.

    2014-09-01

    The vertical plasma drift velocity (Vz=dh‧F/dt) of the Ionospheric F-Region is calculated using the Ionosonde data over an Indian low latitude station, Waltair (17.7°N, 83.3°E, dip 20°N). The vertical drift velocities thus computed are compared with those of the IRI-2007 vertical drift model during the post sunset hours of the high sunspot period of 2001-2002. The vertical drift values are entirely downward between 2000 and 0700 h LT for the IRI-2007 vertical drift model compared to those derived using Ionosonde. The root mean square errors (RMSE) in the vertical drifts during the post sun-set hours computed between the IRI vertical drift model and Ionosonde measured values are found to be 13.54, 21.68 and 22.39 m/s for summer, equinox and winter seasons respectively. The average vertical drifts derived using Ionosonde showing pre-reversal enhancements during evening hours (1700-1900 h LT) over Waltair are found to be 8, 16 and 12 m/s, whereas the IRI-2007 model derived values show 15, 35 and 36 m/s during summer, equinox and winter seasons respectively. The correlation analysis of peak drift velocities derived using Ionosonde and those from IRI model with Rz and F10.7 shows more or less similar variation while they are differed in their variation with Ap index. A good correlation is observed between the vertical plasma drift obtained using Ionosonde and Equatorial Electrojet Strength (EEJ) except during winter, while the correlation coefficients computed using IRI model are little higher than those obtained using Ionosonde with maximum values during summer season. The percentage of deviation for IRI-model correlation coefficient and that of Ionosonde-inferred drift for equinoctial and summer months is around 50% and 25% respectively where as it is more than 100% for winter.

  4. Simulation of the DRIFT Experiment

    NASA Astrophysics Data System (ADS)

    Hyatt, Matt; Ayad, Rachid; Hanson-Hart, Zach; Katz-Hyman, Moshe; Posner, Aaron; Martoff, C. J.

    2003-04-01

    The DRIFT Experiment [1] is an underground search for WIMP Dark Matter using a novel detector invented for this purpose: the Negative Ion TPC (NITPC). To aid in interpreting the results, a simulation code system has been developed. The system uses the CERNLIB program GEANT [2] and the NRC package EGS4 [3] to simulate particle interactions in the detector. These are linked directly to the CERNLIB program GARFIELD, which simulates signal production in the NITPC. Finally the GARFIELD output is converted into the format of the DRIFT DAQ for presentation to the analysis code. The physics and software issues dealt with in this development will be discussed. [1] Low Pressure Negative Ion TPC for Dark Matter Search. D. P. Snowden-Ifft, C. J. Martoff, J. M. Burwell, Phys Rev. D. Rapid Comm. 61, 101301 (2000) [2] GEANT Manual, CERN Program Library Long Writeup W5013, Copyright CERN, Geneva, 1993 . [3] EGS4, National Research Council, Canada. Note PIRS-701. http://www.irs.inms.nrc.ca/inms/irs/EGS4/get_egs4.html . [4] GARFIELD Manual, version 7.04, CERN Program Library Long Writeup W5050, Copyright CERN, Geneva, 2001 .

  5. How LIF has helped to understand ion loss at the boundaries of weakly collisional plasmas

    NASA Astrophysics Data System (ADS)

    Hershkowitz, N.; Ko, E.; Wang, X.; Oksuza, L.; Halab, A.; Servern, G.

    2003-10-01

    Recent experiments in weakly collisional multi-dipole plasmas with one and two positive ion species have provided a much better understanding of ion motion in presheaths near the boundaries of such plasmas. Plasma potential was determined with emissive probes, ion density with Langmuir probes and diode laser LIF, ion drift velocity with Mach probes calibrated with LIF, and directly with LIF, and from the phase velocity of ion acoustic waves. LIF provided measurements of the ion velocity distribution functions and showed that ion-neutral charge exchange results in ion "heating" near boundaries. LIF showed that Ar ions in Ar-He plasma exit the plasma at the plasma/sheath boundary with a velocity greater than the Ar ion Bohm velocity. In single species plasma, the same diagnostic shows Ar average ion exit velocity equals the Bohm velocity. ^A Suleyman Demirel University, Physics Dept., Isparta Turkey ^B KACST, Space Research Institute, Riyadh, Saudi Arabia *Work supported by US DOE grant DE-FG02-97ER 54437

  6. Comparison of computational collisional models in a drift tube

    SciTech Connect

    Verboncoeur, J.P.; Penetrante, B.M.; Park, G.J.

    1995-12-31

    Computational modeling is one of the principal tools for studying collisional plasma discharges, such as capacitive, inductive, and dc discharges. The optimal model depends upon the regime of operation, often characterized by the ratio E/N, where E is the electric field, and N is the number density. A number of electron-neutral collisional models are compared for a range of E/N values of interest in discharge modeling, including a particle-in-cell Monte-Carlo collision (PIC-MCC) code, a Direct Simulation Monte Carlo (DSMC) code, and two Boltzmann codes employing different algorithms. The comparison explores differences in the reaction rates, which can strongly influence the behavior of the discharge. Due to the nonlinear nature of discharges, the study focuses on a drift tube with constant field and uniform background gas. Swarm data is gathered to obtain electron energy distribution functions, as well as moments including drift velocity and mean energy. In addition, rates are compared for elastic scattering, excitation and ionization processes in neon. Ion and space charge effects are neglected in this study.

  7. Drift and reactions of positive tetratomic ions in dry, atmospheric air: Their effects on the dynamics of primary and secondary streamers

    NASA Astrophysics Data System (ADS)

    Bekstein, A.; Yousfi, M.; Benhenni, M.; Ducasse, O.; Eichwald, O.

    2010-05-01

    The ion swarm data, namely, the reduced mobility, diffusion, and reaction rates of the positive tetratomic ions O4+ and N2O2+ in N2 and O2 have been determined from a Monte Carlo simulation using calculated and fitted elastic and inelastic cross sections. The elastic momentum transfer cross sections have been determined from a semiclassical Jeffreys-Wentzell-Kramers-Brilouin (JWKB) approximation based on a rigid core potential model well adapted for polyatomic ions. The inelastic cross sections have been approximated from considerations based on the N4+/O2 and N4+/N2 systems. The validated cross section sets in pure N2 and O2 have been used to determine the O4+ and N2O2+ swarm data in dry air over a large E/N range up to 1000 Td. However, due to the lack of experimental ion transport coefficients necessary for a more rigorous cross section validation, the present data, validated only at low E/N, should be regarded as a first approximation, susceptible to improvements as soon as measurements of ion transport coefficients become available in the literature. Then, the present data are used in a two-dimensional discharge dynamics fluid model for the simulation of the primary and secondary streamers for the case of a positive point-to-plane corona discharge in dry air. Relevant characteristics such as discharge current, charged particle densities, space charge electric field and the variation in active species like N and O radicals (very useful in many nonthermal plasma applications) are analyzed and discussed with and without the consideration of three positive tetratomic ions (N4+, O4+, and N2O2+). More particularly, the non-negligible effect of O4+, in the dynamics of the primary and secondary streamers during the discharge propagation and relaxation stages is highlighted with an emphasis on the role of the related kinetic reactions occurring between the different charged particles.

  8. A Spatially Resolving X-ray Crystal Spectrometer for Measurement of Ion-temperature and Rotation-velocity Profiles on the AlcatorC-Mod Tokamak

    SciTech Connect

    Hill, K. W.; Bitter, M. L.; Scott, S. D.; Ince-Cushman, A.; Reinke, M.; Rice, J. E.; Beiersdorfer, P.; Gu, M. F.; Lee, S. G.; Broennimann, C. H.; Eikenberry, E. F.

    2009-03-24

    A new spatially resolving x-ray crystal spectrometer capable of measuring continuous spatial profiles of high resolution spectra (λ/dλ > 6000) of He-like and H-like Ar Kα lines with good spatial (~1 cm) and temporal (~10 ms) resolutions has been installed on the Alcator C-Mod tokamak. Two spherically bent crystals image the spectra onto four two-dimensional Pilatus II pixel detectors. Tomographic inversion enables inference of local line emissivity, ion temperature (Ti), and toroidal plasma rotation velocity (vφ) from the line Doppler widths and shifts. The data analysis techniqu

  9. Lithium drifted germanium system

    NASA Technical Reports Server (NTRS)

    Fjarlie, E. J.

    1969-01-01

    General characteristics of the lithium-drifted germanium photodiode-Dewar-preamplifier system and particular operating instructions for the device are given. Information is included on solving operational problems.

  10. Search for the best timing strategy in high-precision drift chambers

    SciTech Connect

    Va'vra, J.

    1983-06-01

    Computer simulated drift chamber pulses are used to investigate various possible timing strategies in the drift chambers. In particular, the leading edge, the multiple threshold and the flash ADC timing methods are compared. Although the presented method is general for any drift geometry, we concentrate our discussion on the jet chambers where the drift velocity is about 3 to 5 cm/..mu..sec and the individual ionization clusters are not resolved due to a finite speed of our electronics.

  11. Continuous Wave Cavity Ring-Down Spectroscopy and Laser Induced Fluorescence Measurements of Argon Ion Velocity Distribution Functions in a Helicon Plasma

    NASA Astrophysics Data System (ADS)

    McCarren, Dustin; Vandervort, Robert; Soderholm, Mark; Scime, Earl

    2014-10-01

    LIF is an established and powerful technique, but suffers from the requirement that the initial state of the LIF sequence have a substantial density. This usually limits LIF to ions and atoms with large metastable state densities for the given plasma conditions. Cavity ring down spectroscopy (CRDS) is a proven, ultra-sensitive, cavity enhanced absorption spectroscopy technique and when combined with a continuous wavelength (CW) diode laser that has a sufficiently narrow line width, the Doppler broadened absorption line, i.e., the target specie velocity distribution function (VDFs), is measured. CW-CRDS is designed for measurements of ion and atom states inaccessible to conventional techniques such as LIF. However, being a line integrated technique, CW-CRDS lacks the spatial resolution of LIF. We present a comparison of CW-CRDS and spatially resolved LIF measurements of the VDFs in an argon plasma using the 668.614 nm (in vacuum) line of Ar II.

  12. Study of plasma meniscus and beam halo in negative ion sources using three dimension in real space and three dimension in velocity space particle in cell model.

    PubMed

    Nishioka, S; Miyamoto, K; Okuda, S; Goto, I; Hatayama, A; Fukano, A

    2014-02-01

    Our previous study by two dimension in real space and three dimension in velocity space-particle in cell model shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources. The negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. The purpose of this study is to verify this mechanism with the full 3D model. It is shown that the above mechanism is essentially unchanged even in the 3D model, while the fraction of the beam halo is significantly reduced to 6%. This value reasonably agrees with the experimental result. PMID:24593471

  13. Study of plasma meniscus and beam halo in negative ion sources using three dimension in real space and three dimension in velocity space particle in cell model

    SciTech Connect

    Nishioka, S. Goto, I.; Hatayama, A.; Miyamoto, K.; Okuda, S.; Fukano, A.

    2014-02-15

    Our previous study by two dimension in real space and three dimension in velocity space-particle in cell model shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources. The negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. The purpose of this study is to verify this mechanism with the full 3D model. It is shown that the above mechanism is essentially unchanged even in the 3D model, while the fraction of the beam halo is significantly reduced to 6%. This value reasonably agrees with the experimental result.

  14. A very wide bandwidth Faraday cup suitable for measuring gigahertz structure on ion beams with velocities down to. beta. lt 0. 01

    SciTech Connect

    Bogaty, J.M.; Pardo, R.C.; Clifft, B.E.

    1990-01-01

    A stripline Faraday Cup of exceptional bandwidth (DC to 6.1 gigahertz) has been developed. An electrostatic shield in the ground-plane geometry prevents electric-field coupling of incoming ions so that the time distribution of low-velocity ({beta} {approx gt} .01c) particles can be measured. The cup is very rugged compared to other detectors used for ion-bunch timing measurements. We have measured bunch widths of 400 picoseconds on 3.9 MeV {sup 84}Kr{sup +15} beams (200 nanoampere average). Bunch widths down to 100 picoseconds should be observable with a sampling oscilloscope. Beam bunch shapes have been monitored at current levels of 1.0 nanoampere to 10 microampere average.

  15. Dust acoustic wave growth measured in a drifting, moderately coupled, quiescent dusty plasma

    NASA Astrophysics Data System (ADS)

    Heinrich, J. R.; Kim, S. H.; Meyer, J. R.; Merlino, R. L.

    2011-10-01

    By introducing a grid with a variable bias potential far from the anode of a dc-glow discharge device we developed a technique to produce a drifting dusty plasma. The biased mesh trapped a secondary dust cloud that was released when the grid was returned to its floating potential. The secondary dust suspension then drifted toward the anode, and when it reached a certain distance from the grid, dust acoustic waves (DAW) spontaneously appeared in the suspension. The DAWs began growing at the location where the ion drift velocity was presumably high enough to excite the ion-dust streaming instability. The observed DAWs grew from thermal density fluctuations in a dust cloud that was large enough to support many wavelengths. The amplitude of the DAWs were measured over time to obtain the growth rate. As the wave growth saturated, a transition from linear to nonlinear waves was observed. The measured wave frequencies, wavelengths and growth rates are compared with theoretical values obtained from both fluid and kinetic theory. Work supported by DOE Grant No. DE-FG01-04ER54795.

  16. Planar ion trap (retarding potential analyzer) experiment for atmosphere explorer

    NASA Technical Reports Server (NTRS)

    Hanson, W. B.; Sanatani, S.; Lippincott, C. R.; Zuccaro, D. R.

    1982-01-01

    The retarding potential analyzer and drift meter were carried aboard all three Atmosphere Explorer spacecraft. These instruments measure the total thermal ion concentration and temperature, the bulk thermal ion velocity vector and some limited properties of the relative abundance of H(+), He(+), O(+) and molecular ions. These instruments functioned with no internal failures on all the spacecraft. On AE-E there existed some evidence for external surface contamination that damaged the integrity of the RPA sweep grids. This led to some difficulties in data reduction and interpretation that did not prove to be a disastrous problem. The AE-D spacecraft functioned for only a few months before it re-entered. During this time the satellite suffered from a nutation about the spin axis of about + or - 2 deg. This 2 deg modulation was superimposed upon the ion drift meter horizontal ion arrival angle output requiring the employment of filtering techniques to retrieve the real data.

  17. Electromagnetic drift waves dispersion for arbitrarily collisional plasmas

    SciTech Connect

    Lee, Wonjae Krasheninnikov, Sergei I.; Angus, J. R.

    2015-07-15

    The impacts of the electromagnetic effects on resistive and collisionless drift waves are studied. A local linear analysis on an electromagnetic drift-kinetic equation with Bhatnagar-Gross-Krook-like collision operator demonstrates that the model is valid for describing linear growth rates of drift wave instabilities in a wide range of plasma parameters showing convergence to reference models for limiting cases. The wave-particle interactions drive collisionless drift-Alfvén wave instability in low collisionality and high beta plasma regime. The Landau resonance effects not only excite collisionless drift wave modes but also suppress high frequency electron inertia modes observed from an electromagnetic fluid model in collisionless and low beta regime. Considering ion temperature effects, it is found that the impact of finite Larmor radius effects significantly reduces the growth rate of the drift-Alfvén wave instability with synergistic effects of high beta stabilization and Landau resonance.

  18. Drift and reactions of positive tetratomic ions in dry, atmospheric air: Their effects on the dynamics of primary and secondary streamers

    SciTech Connect

    Bekstein, A.; Yousfi, M.; Benhenni, M.; Ducasse, O.; Eichwald, O.

    2010-05-15

    The ion swarm data, namely, the reduced mobility, diffusion, and reaction rates of the positive tetratomic ions O{sub 4}{sup +} and N{sub 2}O{sub 2}{sup +} in N{sub 2} and O{sub 2} have been determined from a Monte Carlo simulation using calculated and fitted elastic and inelastic cross sections. The elastic momentum transfer cross sections have been determined from a semiclassical Jeffreys-Wentzell-Kramers-Brilouin (JWKB) approximation based on a rigid core potential model well adapted for polyatomic ions. The inelastic cross sections have been approximated from considerations based on the N{sub 4}{sup +}/O{sub 2} and N{sub 4}{sup +}/N{sub 2} systems. The validated cross section sets in pure N{sub 2} and O{sub 2} have been used to determine the O{sub 4}{sup +} and N{sub 2}O{sub 2}{sup +} swarm data in dry air over a large E/N range up to 1000 Td. However, due to the lack of experimental ion transport coefficients necessary for a more rigorous cross section validation, the present data, validated only at low E/N, should be regarded as a first approximation, susceptible to improvements as soon as measurements of ion transport coefficients become available in the literature. Then, the present data are used in a two-dimensional discharge dynamics fluid model for the simulation of the primary and secondary streamers for the case of a positive point-to-plane corona discharge in dry air. Relevant characteristics such as discharge current, charged particle densities, space charge electric field and the variation in active species like N and O radicals (very useful in many nonthermal plasma applications) are analyzed and discussed with and without the consideration of three positive tetratomic ions (N{sub 4}{sup +}, O{sub 4}{sup +}, and N{sub 2}O{sub 2}{sup +}). More particularly, the non-negligible effect of O{sub 4}{sup +}, in the dynamics of the primary and secondary streamers during the discharge propagation and relaxation stages is highlighted with an emphasis on the role of the related kinetic reactions occurring between the different charged particles.

  19. Drift Scale THM Model

    SciTech Connect

    J. Rutqvist

    2004-10-07

    This model report documents the drift scale coupled thermal-hydrological-mechanical (THM) processes model development and presents simulations of the THM behavior in fractured rock close to emplacement drifts. The modeling and analyses are used to evaluate the impact of THM processes on permeability and flow in the near-field of the emplacement drifts. The results from this report are used to assess the importance of THM processes on seepage and support in the model reports ''Seepage Model for PA Including Drift Collapse'' and ''Abstraction of Drift Seepage'', and to support arguments for exclusion of features, events, and processes (FEPs) in the analysis reports ''Features, Events, and Processes in Unsaturated Zone Flow and Transport and Features, Events, and Processes: Disruptive Events''. The total system performance assessment (TSPA) calculations do not use any output from this report. Specifically, the coupled THM process model is applied to simulate the impact of THM processes on hydrologic properties (permeability and capillary strength) and flow in the near-field rock around a heat-releasing emplacement drift. The heat generated by the decay of radioactive waste results in elevated rock temperatures for thousands of years after waste emplacement. Depending on the thermal load, these temperatures are high enough to cause boiling conditions in the rock, resulting in water redistribution and altered flow paths. These temperatures will also cause thermal expansion of the rock, with the potential of opening or closing fractures and thus changing fracture permeability in the near-field. Understanding the THM coupled processes is important for the performance of the repository because the thermally induced permeability changes potentially effect the magnitude and spatial distribution of percolation flux in the vicinity of the drift, and hence the seepage of water into the drift. This is important because a sufficient amount of water must be available within a drift to transport any exposed radionuclides out of the drift to the groundwater below, and eventually to people within the accessible environment. Absent sufficient water, radionuclides cannot be transported and there would be no significant health effect on people, even if radioactive waste containers were damaged or corroded to such an extent that radionuclides were exposed to water.

  20. Time-Resolved Laser-Induced Fluorescence Measurements of Ion Velocity Distribution in the Plume of a 6 kW Hall Thruster with Unperturbed Discharge Oscillations

    NASA Astrophysics Data System (ADS)

    Durot, Christopher; Gallimore, Alec

    2014-10-01

    We present laser-induced fluorescence (LIF) measurements of the time-resolved ion velocity distribution in the plume of a 6 kW laboratory Hall thruster. To our knowledge, these are the first measurements of time-resolved ion velocity distribution on completely unperturbed Hall thruster operating conditions. To date, time-resolved LIF measurements have been made on Hall thrusters with oscillations driven or perturbed to be amenable to averaging techniques that assume a periodic oscillation. Natural Hall thruster breathing and spoke oscillations, however, are not periodic due to chaotic variations in amplitude and frequency. Although the system averages over many periods of nonperiodic oscillation, it recovers the time-resolved signal in part by assuming that a constant transfer function exists relating discharge current and LIF signal and averaging over the transfer function itself (http://dx.doi.org/10.1063/1.4856635). The assumption of a constant transfer function has been validated for a Hall thruster and the technique is now applied to a Hall thruster for the first time.

  1. Numerical simulation of drifting snow sublimation in the saltation layer

    PubMed Central

    Dai, Xiaoqing; Huang, Ning

    2014-01-01

    Snow sublimation is an important hydrological process and one of the main causes of the temporal and spatial variation of snow distribution. Compared with surface sublimation, drifting snow sublimation is more effective due to the greater surface exposure area of snow particles in the air. Previous studies of drifting snow sublimation have focused on suspended snow, and few have considered saltating snow, which is the main form of drifting snow. In this study, a numerical model is established to simulate the process of drifting snow sublimation in the saltation layer. The simulated results show 1) the average sublimation rate of drifting snow particles increases linearly with the friction velocity; 2) the sublimation rate gradient with the friction velocity increases with increases in the environmental temperature and the undersaturation of air; 3) when the friction velocity is less than 0.525 m/s, the snowdrift sublimation of saltating particles is greater than that of suspended particles; and 4) the snowdrift sublimation in the saltation layer is less than that of the suspended particles only when the friction velocity is greater than 0.625 m/s. Therefore, the drifting snow sublimation in the saltation layer constitutes a significant portion of the total snow sublimation. PMID:25312383

  2. Ion-molecule reaction dynamics: Velocity map imaging studies of N+ and O+ with CD3OD

    NASA Astrophysics Data System (ADS)

    Pei, Linsen; Farrar, James M.

    2015-08-01

    We present a study of the charge transfer reactions of the atomic ions N+and O+ with methanol in the collision energy range from ˜2 to 4 eV. Charge transfer is driven primarily by energy resonance, although the widths of the product kinetic energy distributions suggest that significant interchange between relative translation and product vibration occurs. Charge transfer with CD3OD is more exoergic for N+, and the nascent parent ion products appear to be formed in excited B ˜ and C ˜ electronic states, and fragment to CD2OD+ by internal conversion and vibrational relaxation to the ground electronic state. The internal excitation imparted to the parent ion is sufficient to result in loss of one or two D atoms from the carbon atom. The less exoergic charge transfer reaction of O+ forms nascent parent ions in the excited A ˜ state, and internal conversion to the ground state only results in ejection of single D atom. Selected isotopomers of methanol were employed to identify reaction products, demonstrating that deuterium atom loss from nascent parent ions occurs by C-D bond cleavage. Comparison of the kinetic energy distributions for charge transfer to form CD3OD+ and CD2OD+ by D atom loss with the known dynamics for hydride abstraction from a carbon atom provides strong evidence that the D loss products are formed by dissociative charge transfer rather than hydride (deuteride) transfer. Isotopic labeling also demonstrates that chemical reaction in the N+ + CD3OD system to form NO+ + CD4 does not occur in the energy range of these experiments, contrary to earlier speculation in the literature.

  3. Projectile velocity and target temperature dependence of charge-state distributions of multicharged ions scattered during grazing interactions with a Au(110) surface

    SciTech Connect

    Yan, Q.; Zehner, D.M.; Meyer, F.W.; Schippers, S.

    1996-07-01

    We have made systematic measurements of scattered projectile charge-state distributions for multicharged He, N, Ne, Na, and Ar ions grazingly incident on a Au(110) single-crystal target. For projectiles whose neutral binding energies lie below the valence band (N, Ar, He, and Ne), observed 1+ charge fractions were small at low velocities and steeply increased above well-defined threshold velocities. However, for Na projectiles with neutral binding energy above the Fermi level, a large (about 84{percent}) 1+ charge fraction was found. The velocity dependence of the Na neutral fraction shows a {open_quote}{open_quote}kinematic resonance{close_quote}{close_quote} due to the virtual population of electronic states above the Fermi level in the projectile rest frame. The measured sample temperature dependence of the scattered 1+ charge fraction for Ne{sup 9+} projectiles incident along the [110] surface channeling direction reveals a significant decrease in projectile neutralization once the (2{times}1)-(1{times}1) phase transition temperature of the Au(110) surface at 650 K has been reached. {copyright} {ital 1996 The American Physical Society.}

  4. Drift Degradation Analysis

    SciTech Connect

    D. Kicker

    2004-09-16

    Degradation of underground openings as a function of time is a natural and expected occurrence for any subsurface excavation. Over time, changes occur to both the stress condition and the strength of the rock mass due to several interacting factors. Once the factors contributing to degradation are characterized, the effects of drift degradation can typically be mitigated through appropriate design and maintenance of the ground support system. However, for the emplacement drifts of the geologic repository at Yucca Mountain, it is necessary to characterize drift degradation over a 10,000-year period, which is well beyond the functional period of the ground support system. This document provides an analysis of the amount of drift degradation anticipated in repository emplacement drifts for discrete events and time increments extending throughout the 10,000-year regulatory period for postclosure performance. This revision of the drift degradation analysis was developed to support the license application and fulfill specific agreement items between the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Department of Energy (DOE). The earlier versions of ''Drift Degradation Analysis'' (BSC 2001 [DIRS 156304]) relied primarily on the DRKBA numerical code, which provides for a probabilistic key-block assessment based on realistic fracture patterns determined from field mapping in the Exploratory Studies Facility (ESF) at Yucca Mountain. A key block is defined as a critical block in the surrounding rock mass of an excavation, which is removable and oriented in an unsafe manner such that it is likely to move into an opening unless support is provided. However, the use of the DRKBA code to determine potential rockfall data at the repository horizon during the postclosure period has several limitations: (1) The DRKBA code cannot explicitly apply dynamic loads due to seismic ground motion. (2) The DRKBA code cannot explicitly apply loads due to thermal stress. (3) The DRKBA code, which determines structurally controlled key-block failure, is not applicable for stress-controlled failure in the lithophysal units. To address these limitations, additional numerical codes have been included that can explicitly apply seismic and thermal loads, providing significant improvements to the analysis of drift degradation and extending the validity of drift degradation models.

  5. Spiral silicon drift detectors

    SciTech Connect

    Rehak, P.; Gatti, E.; Longoni, A.; Sampietro, M.; Holl, P.; Lutz, G.; Kemmer, J.; Prechtel, U.; Ziemann, T.

    1988-01-01

    An advanced large area silicon photodiode (and x-ray detector), called Spiral Drift Detector, was designed, produced and tested. The Spiral Detector belongs to the family of silicon drift detectors and is an improvement of the well known Cylindrical Drift Detector. In both detectors, signal electrons created in silicon by fast charged particles or photons are drifting toward a practically point-like collection anode. The capacitance of the anode is therefore kept at the minimum (0.1pF). The concentric rings of the cylindrical detector are replaced by a continuous spiral in the new detector. The spiral geometry detector design leads to a decrease of the detector leakage current. In the spiral detector all electrons generated at the silicon-silicon oxide interface are collected on a guard sink rather than contributing to the detector leakage current. The decrease of the leakage current reduces the parallel noise of the detector. This decrease of the leakage current and the very small capacities of the detector anode with a capacitively matched preamplifier may improve the energy resolution of Spiral Drift Detectors operating at room temperature down to about 50 electrons rms. This resolution is in the range attainable at present only by cooled semiconductor detectors. 5 refs., 10 figs.

  6. Electrons Ejected with Half the Projectile Velocity and the Saddle Point Mechanism in Ion-Atom Collisions

    SciTech Connect

    Sidky, Emil Y.; Illescas, Clara; Lin, C. D.

    2000-08-21

    Full three-dimensional ejected electron momentum distributions for proton impact ionization of atomic hydrogen are calculated for impact energies 10 through 50 keV. The distributions show a peak in the longitudinal momentum at half the projectile impact velocity: the v/2 peak. A quantitative assessment of saddle point ionization, based on quantum and classical analysis, reveals that the v/2 peak is a false indicator for this mechanism. The influence of the potential saddle on ionization is seen to decrease rapidly from 10 to 50 keV. (c) 2000 The American Physical Society.

  7. Ballistic Mass And Velocity Analyzer

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara; Smith, Steven J.; Hecht, Michael

    1996-01-01

    Proposed device for measuring distribution of masses and velocities of ions in plasma or ion beam of general type denoted variously as mass, velocity, and energy analyzers. Yields indications of charge-to-mass ratios and velocities; from these quantities, one computes masses and energies if one also either measures charges of ions by other means or else makes realistic assumption that each ion carries small number (usually 1) of fundamental units of electric charge. In comparison with older devices of this type, device smaller, and operates faster, yielding simultaneous indications of both charge-to-mass ratios and velocities.

  8. Charge state effect on the K-shell ionization of iron by xenon ions near the Bohr velocity

    NASA Astrophysics Data System (ADS)

    Zhou, Xian-Ming; Zhao, Yong-Tao; Ren, Jie-Ru; Cheng, Rui; Lei, Yu; Sun, Yuan-Bo; Xu, Ge; Wang, Yu-Yu; Liu, Shi-Dong; Xiao, Guo-Qing

    2013-11-01

    Fe K-shell ionization cross sections induced by 2.4-6.0 MeV Xe20+ are measured and compared with different binary-encounter-approximation (BEA) models. The results indicate that the BEA model corrected both by the Coulomb repulsion and by the effective nuclear charge (Zeff) agrees well with the experimental data. Comparison of Fe K-shell X-ray emission induced by 5 MeV xenon ions with different initial charge states (20+, 22+, 26+, 30+) verifies the applicability of the effective nuclear charge (Zeff) correction for the BEA model. It is found that Zeff correction is reasonable to describe direct ionization induced by xenon ions with no initial M-shell vacancies. However, when the M shell is opened, the Zeff corrected BEA model is unable to explain the inner-shell ionization, and the electron transfer by molecular-orbital promotion should be considered.

  9. Scalings of Alfvén-cyclotron and ion Bernstein instabilities on temperature anisotropy of a ring-like velocity distribution in the inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Min, Kyungguk; Liu, Kaijun; Gary, S. Peter

    2016-03-01

    A ring-like proton velocity distribution with ∂fp(v⊥)/∂v⊥>0 and which is sufficiently anisotropic can excite two distinct types of growing modes in the inner magnetosphere: ion Bernstein instabilities with multiple ion cyclotron harmonics and quasi-perpendicular propagation and an Alfvén-cyclotron instability at frequencies below the proton cyclotron frequency and quasi-parallel propagation. Recent particle-in-cell simulations have demonstrated that even if the maximum linear growth rate of the latter instability is smaller than the corresponding growth of the former instability, the saturation levels of the fluctuating magnetic fields can be greater for the Alfvén-cyclotron instability than for the ion Bernstein instabilities. In this study, linear dispersion theory and two-dimensional particle-in-cell simulations are used to examine scalings of the linear growth rate and saturation level of the two types of growing modes as functions of the temperature anisotropy T⊥/T|| for a general ring-like proton distribution with a fixed ring speed of 2vA, where vA is the Alfvén speed. For the proton distribution parameters chosen, the maximum linear theory growth rate of the Alfvén-cyclotron waves is smaller than that of the fastest-growing Bernstein mode for the wide range of anisotropies (1≤T⊥/T||≤7) considered here. Yet the corresponding particle-in-cell simulations yield a higher saturation level of the fluctuating magnetic fields for the Alfvén-cyclotron instability than for the Bernstein modes as long as T⊥/T|| ≳ 3. Since fast magnetosonic waves with ion Bernstein instability properties observed in the magnetosphere are often not accompanied by electromagnetic ion cyclotron waves, the results of the present study indicate that the ring-like proton distributions responsible for the excitation of these fast magnetosonic waves should not be very anisotropic.

  10. Experimental limits on the velocities of sodium atoms sputtered from solid surfaces by hydrogen ions. [Na cloud production around Io

    NASA Technical Reports Server (NTRS)

    Stoner, J. O., Jr.

    1976-01-01

    Optical emission at 589.0 nm by sodium atoms sputtered from solid targets by hydrogen molecular ions was observed, and no accompanying broadening or shifts of this line could be detected relative to that from a laboratory lamp. This allowed an upper limit of about 500,000 cm/sec on the mean speed of ejected sodium atoms to be calculated. The results are consistent with the hypothesis that the atomic sodium cloud surrounding Io is produced by this mechanism.

  11. Influence of plasma beta on the generation of lower hybrid and whistler waves by an ion velocity ring distribution

    SciTech Connect

    Winske, D.; Daughton, W.

    2015-02-02

    We present results of three-dimensional electromagnetic particle-in-cell simulations of the lower hybrid ion ring instability, similar to our earlier results [D. Winske and W. Daughton, Phys. Plasma, 19, 072109, 2012], but at higher electron beta (βe = ratio of electron thermal pressure to magnetic pressure = 0.06, rather than at 0.006) with Ti = Te. At higher electron beta the level of lower hybrid waves at saturation normalized to the ion thermal energy (βi = 0.06 also) is only slightly smaller, but the corresponding magnetic fluctuations are about an order of magnitude larger, consistent with linear theory. After saturation, the waves evolve into whistler waves, through a number of possible mechanisms, with an average growth rate considerably smaller than the linear growth rate of the lower hybrid waves, to a peak fluctuation level that is about 20% above the lower hybrid wave saturation level. The ratio of the peak magnetic fluctuations associated with the whistler waves relative to those of the saturated lower hybrid waves, the ratio of the nonlinear growth rate of whistlers relative to the linear growth rate of lower hybrid waves, the amount of energy extracted from the ring and the amount of heating of the background ions and electrons are comparable to those in the lower electron beta 3-D simulation. This suggests that even at higher electron beta, the linear and nonlinear physics of the lower hybrid ion ring instability is dominated by electrostatic, wave-particle rather than wave-wave interactions.

  12. Influence of plasma beta on the generation of lower hybrid and whistler waves by an ion velocity ring distribution

    SciTech Connect

    Winske, D. Daughton, W.

    2015-02-15

    We present results of three-dimensional electromagnetic particle-in-cell simulations of the lower hybrid ion ring instability, similar to our earlier results [D. Winske and W. Daughton, Phys. Plasma 19, 072109 (2012)], but at higher electron beta (β{sub e} = ratio of electron thermal pressure to magnetic pressure = 0.06, rather than at 0.006) with T{sub i} = T{sub e}. At higher electron beta, the level of lower hybrid waves at saturation normalized to the ion thermal energy (β{sub i} = 0.06 also) is only slightly smaller, but the corresponding magnetic fluctuations are about an order of magnitude larger, consistent with linear theory. After saturation, the waves evolve into whistler waves, through a number of possible mechanisms, with an average growth rate considerably smaller than the linear growth rate of the lower hybrid waves, to a peak fluctuation level that is about 20% above the lower hybrid wave saturation level. The ratio of the peak magnetic fluctuations associated with the whistler waves relative to those of the saturated lower hybrid waves, the ratio of the nonlinear growth rate of whistlers relative to the linear growth rate of lower hybrid waves, the amount of energy extracted from the ring, and the amount of heating of the background ions and electrons are comparable to those in the lower electron beta 3D simulation. This suggests that even at higher electron beta, the linear and nonlinear physics of the lower hybrid ion ring instability is dominated by electrostatic, wave-particle rather than wave-wave interactions.

  13. Influence of plasma beta on the generation of lower hybrid and whistler waves by an ion velocity ring distribution

    DOE PAGESBeta

    Winske, D.; Daughton, W.

    2015-02-02

    We present results of three-dimensional electromagnetic particle-in-cell simulations of the lower hybrid ion ring instability, similar to our earlier results [D. Winske and W. Daughton, Phys. Plasma, 19, 072109, 2012], but at higher electron beta (βe = ratio of electron thermal pressure to magnetic pressure = 0.06, rather than at 0.006) with Ti = Te. At higher electron beta the level of lower hybrid waves at saturation normalized to the ion thermal energy (βi = 0.06 also) is only slightly smaller, but the corresponding magnetic fluctuations are about an order of magnitude larger, consistent with linear theory. After saturation, themore » waves evolve into whistler waves, through a number of possible mechanisms, with an average growth rate considerably smaller than the linear growth rate of the lower hybrid waves, to a peak fluctuation level that is about 20% above the lower hybrid wave saturation level. The ratio of the peak magnetic fluctuations associated with the whistler waves relative to those of the saturated lower hybrid waves, the ratio of the nonlinear growth rate of whistlers relative to the linear growth rate of lower hybrid waves, the amount of energy extracted from the ring and the amount of heating of the background ions and electrons are comparable to those in the lower electron beta 3-D simulation. This suggests that even at higher electron beta, the linear and nonlinear physics of the lower hybrid ion ring instability is dominated by electrostatic, wave-particle rather than wave-wave interactions.« less

  14. Computer simulations of H{sup +} and H{sub 3}{sup +} transport parameters in hydrogen drift tubes

    SciTech Connect

    Simko, T.; Martisovits, V.; Bretagne, J.; Gousset, G.

    1997-11-01

    The coupled transport of H{sup +} and H{sub 3}{sup +} ions in molecular hydrogen is theoretically studied by using drift-tube-like computer simulations. The drift velocity and the longitudinal and the transverse diffusion coefficients of these ions are calculated for the reduced electric field E/n (where n is the gas density) ranging from 10 to 600 Td (1 Td=10{sup {minus}17} Vcm{sup 2}). A large influence of the rotational and vibrational H{sup +}-H{sub 2} excitations is noted even at low E/n for H{sup +} ions. The presence of ion conversion reactions in collisions with background gas during the transport is shown to influence the transport parameters from about 150 Td. A comparison with experimentally determined transport parameters is performed with the aim of testing available scattering models: the collisional cross-section values are adjusted to get a good agreement with experimental ion mobilities. A relatively good agreement is obtained also for the longitudinal and the transverse diffusion coefficients, which indicates the consistency of the refined cross-section set. However, the transverse diffusion coefficient of H{sub 3}{sup +} ions exhibits larger deviation from experimental results at higher E/n; as a possible explanation the role of proton-transfer and vibrational-excitation channels in H{sub 3}{sup +}-H{sub 2} collisions is discussed. {copyright} {ital 1997} {ital The American Physical Society}

  15. Hydrodynamic description of an unmagnetized plasma with multiple ion species. I. General formulation

    NASA Astrophysics Data System (ADS)

    Simakov, Andrei N.; Molvig, Kim

    2016-03-01

    A generalization of the Braginskii ion fluid description [S. I. Braginskii, Sov. Phys. - JETP 6, 358 (1958)] to the case of an unmagnetized collisional plasma with multiple ion species is presented. An asymptotic expansion in the ion Knudsen number is used to derive the individual ion species continuity, as well as the total ion mass density, momentum, and energy evolution equations accurate through the second order. Expressions for the individual ion species drift velocities with respect to the center of mass reference frame, as well as for the total ion heat flux and viscosity, which are required to close the fluid equations, are evaluated in terms of the first-order corrections to the lowest order Maxwellian ion velocity distribution functions. A variational formulation for evaluating such corrections and its relation to the plasma entropy are presented. Employing trial functions for the corrections, written in terms of expansions in generalized Laguerre polynomials, and maximizing the resulting functionals produce two systems of linear equations (for "vector" and "tensor" portions of the corrections) for the expansion coefficients. A general matrix formulation of the linear systems as well as expressions for the resulting transport fluxes are presented in forms convenient for numerical implementation. The general formulation is employed in Paper II [A. N. Simakov and K. Molvig, Phys. Plasmas 23, 032116 (2016)] to evaluate the individual ion drift velocities and the total ion heat flux and viscosity for specific cases of two and three ion species plasmas.

  16. Experimental observation of ion-cyclotron turbulence in the presence of transverse-velocity shear. Ph.D. Thesis

    SciTech Connect

    Amatucci, W.E.

    1994-01-01

    This laboratory investigation documents the influence of transverse, localized, dc electric fields (TLE) on the excitation of ion-cyclotron waves driven by magnetic field-aligned current (FAC) in a Q-machine plasma device. A segmented disk electrode, located on axis at the end of the plasma column, is used to independently control TLE and FAC in the plasma (potassium plasma, n approximately equals 10(exp 9) cm(exp {minus}3), rho(i) approximately equals 0.2 cm, T(e) = T(i) approximately equals 0.2 eV). Ion-cyclotron waves have been characterized in both the weak-TLE and large-FAC regime and the strong-TLE and small-FAC regime. The existence of a new category of oscillation identified as the inhomogeneous energy-density driven (IEDD) instability is verified based on the properties of the waves in the latter regime. In the weak-TLE regime, current-driven electrostatic ion-cyclotron (CDEIC) waves with features in qualitative agreement with previous laboratory results have been observed at sufficiently large FAC. These waves have a frequency spectrum with a single narrow spectral feature located slightly above the ion-cyclotron frequency (omega approximately equals 1.2 Omega(i)). The waves are standing in the radial direction with peak oscillation amplitude located in the center of the FAC channel and are azimuthally symmetric (m = 0). Small magnitude TLE were found to have negligible effect on the characteristics of the waves. In the strong-TLE regime, a decrease in the threshold FAC level is observed. This transition in the instability threshold is accompanied by changes in the frequency spectra, propagation characteristics, and mode amplitude profiles. In the presence of strong-TLE, the ion-cyclotron waves propagate azimuthally in the E x B direction with k(theta) rho(i) = 0.4 and m = 1. The frequency spectrum becomes broadband and spiky, and shifts with the applied TLE strength.

  17. Drift laws for spiral waves on curved anisotropic surfaces.

    PubMed

    Dierckx, Hans; Brisard, Evelien; Verschelde, Henri; Panfilov, Alexander V

    2013-07-01

    Rotating spiral waves organize spatial patterns in chemical, physical, and biological excitable systems. Factors affecting their dynamics, such as spatiotemporal drift, are of great interest for particular applications. Here, we propose a quantitative description for spiral wave dynamics on curved surfaces which shows that for a wide class of systems, including the Belousov-Zhabotinsky reaction and anisotropic cardiac tissue, the Ricci curvature scalar of the surface is the main determinant of spiral wave drift. The theory provides explicit equations for spiral wave drift direction, drift velocity, and the period of rotation. Depending on the parameters, the drift can be directed to the regions of either maximal or minimal Ricci scalar curvature, which was verified by direct numerical simulations. PMID:23944539

  18. Transient and steady drift currents in waves damped by surfactants

    NASA Astrophysics Data System (ADS)

    Christensen, Kai Haakon

    2005-04-01

    In this paper we study the Lagrangian mean drift induced by spatially damped capillary-gravity waves on a surface covered by an elastic film. The analysis is developed with regard to a typical laboratory setup, and explicit solutions for both transient and steady horizontal drift velocities are given. We consider a situation where the film covers the entire surface and is prevented from drifting away, e.g., by a film barrier. The drift below an inextensible film resembles the drift under an ice cover, with a jetlike current in the wave propagation direction just below the surface. If the film is elastic the solution changes drastically. For certain values of the film elasticity parameter the mean flow is in the direction opposite to that of wave propagation in the upper part of the water column.

  19. Drift laws for spiral waves on curved anisotropic surfaces

    NASA Astrophysics Data System (ADS)

    Dierckx, Hans; Brisard, Evelien; Verschelde, Henri; Panfilov, Alexander V.

    2013-07-01

    Rotating spiral waves organize spatial patterns in chemical, physical, and biological excitable systems. Factors affecting their dynamics, such as spatiotemporal drift, are of great interest for particular applications. Here, we propose a quantitative description for spiral wave dynamics on curved surfaces which shows that for a wide class of systems, including the Belousov-Zhabotinsky reaction and anisotropic cardiac tissue, the Ricci curvature scalar of the surface is the main determinant of spiral wave drift. The theory provides explicit equations for spiral wave drift direction, drift velocity, and the period of rotation. Depending on the parameters, the drift can be directed to the regions of either maximal or minimal Ricci scalar curvature, which was verified by direct numerical simulations.

  20. DC Electric Fields, Associated Plasma Drifts, and Irregularities Observed on the C/NOFS Satellite

    NASA Technical Reports Server (NTRS)

    Pfaff, R.; Freudenreich, H.; Klenzing, J.

    2011-01-01

    Results are presented from the Vector Electric Field Investigation (VEFI) on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite, a mission designed to understand, model, and forecast the presence of equatorial ionospheric irregularities. The VEFI instrument includes a vector DC electric field detector, a fixed-bias Langmuir probe operating in the ion saturation regime, a flux gate magnetometer, an optical lightning detector, and associated electronics including a burst memory. Compared to data obtained during more active solar conditions, the ambient DC electric fields and their associated E x B drifts are variable and somewhat weak, typically < 1 mV/m. Although average drift directions show similarities to those previously reported, eastward/outward during day and westward/downward at night, this pattern varies significantly with longitude and is not always present. Daytime vertical drifts near the magnetic equator are largest after sunrise, with smaller average velocities after noon. Little or no pre-reversal enhancement in the vertical drift near sunset is observed, attributable to the solar minimum conditions creating a much reduced neutral dynamo at the satellite altitude. The nighttime ionosphere is characterized by larger amplitude, structured electric fields, even where the plasma density appears nearly quiescent. Data from successive orbits reveal that the vertical drifts and plasma density are both clearly organized with longitude. The spread-F density depletions and corresponding electric fields that have been detected thus far have displayed a preponderance to appear between midnight and dawn. Associated with the narrow plasma depletions that are detected are broad spectra of electric field and plasma density irregularities for which a full vector set of measurements is available for detailed study. The VEFI data represents a new set of measurements that are germane to numerous fundamental aspects of the electrodynamics and irregularities inherent to the Earth s low latitude ionosphere.

  1. The "zebra stripes": An effect of F region zonal plasma drifts on the longitudinal distribution of radiation belt particles

    NASA Astrophysics Data System (ADS)

    Lejosne, Solène; Roederer, Juan G.

    2016-01-01

    We examine a characteristic effect, namely, the ubiquitous appearance of structured peaks and valleys called zebra stripes in the spectrograms of energetic electrons and ions trapped in the inner belt below L ~ 3. We propose an explanation of this phenomenon as a purely kinematic consequence of particle drift velocity modulation caused by F region zonal plasma drifts in the ionosphere. In other words, we amend the traditional assumption that the electric field associated with ionospheric plasma drives trapped particle distributions into rigid corotation with the Earth. An equation based on a simple first-order model is set up to determine quantitatively the appearance of zebra stripes as a function of magnetic time. Our numerical predictions are in agreement with measurements by the Radiation Belt Storm Probes Ion Composition Experiment detector onboard Van Allen Probes, namely: (1) the central energy of any peak identified in the spectrum on the dayside is the central energy of a spectral valley on the night side, and vice versa; (2) there is also an approximate peak-to-valley inversion when comparing the spectrum of trapped electrons with that of trapped ions in the same place; and (3) the actual energy separation between two consecutive peaks (or number of stripes) in the spectrogram of a trapped population is an indicator of the time spent by the particles drifting under quiet conditions.

  2. Charged particle flows in the beam extraction region of a negative ion source for NBI

    NASA Astrophysics Data System (ADS)

    Geng, S.; Tsumori, K.; Nakano, H.; Kisaki, M.; Ikeda, K.; Osakabe, M.; Nagaoka, K.; Takeiri, Y.; Shibuya, M.; Kaneko, O.

    2016-02-01

    Experiments by a four-pin probe and photodetachment technique were carried out to investigate the charged particle flows in the beam extraction region of a negative hydrogen ion source for neutral beam injector. Electron and positive ion flows were obtained from the polar distribution of the probe saturation current. Negative hydrogen ion flow velocity and temperature were obtained by comparing the recovery times of the photodetachment signals at opposite probe tips. Electron and positive ions flows are dominated by crossed field drift and ambipolar diffusion. Negative hydrogen ion temperature is evaluated to be 0.12 eV.

  3. SRA: a new ion accelerator scheme

    SciTech Connect

    Choe, J.Y.; Uhm, H.S.

    1983-08-01

    The space-charge resonance accelerator consists of a relativistic electron beam propagating through a dielectric loaded drift tube. In a range of physical parameters, the phase velocity of a self-growing space-charge wave increases slowly from zero to a large beam velocity as it propagates into the downstream region, thereby trapping and accelerating ions with its electric field. The self-growing mechanism of the space-charge wave is a typical Cherenkov radiation. This paper presents schematics and calculation methods which describe the accelerator, its dynamics, and its fields.

  4. Lower Hybrid Drift in Simulations of Hypersonic Plasma

    NASA Astrophysics Data System (ADS)

    Niehoff, D.; Ashour-Abdalla, M.; Niemann, C.; Schriver, D.; Sotnikov, V. I.; Lapenta, G.

    2014-12-01

    It has been shown experimentally that hypersonic plasma (defined as moving with a bulk flow velocity of more than 5 to 10 times the Mach speed) traveling through a magnetic field will create a diamagnetic cavity, or bubble [1]. At the edge of the bubble, opposing field and density gradients can drive the lower hybrid drift instability [2]. We will explore two and a half dimensional (2 space and 3 velocity dimensions) simulations of hypersonic plasma within a parameter regime motivated by the aforementioned diamagnetic bubble experiments, wherein we find oscillations excited near the lower hybrid frequency propagating perpendicular to the bulk motion of the plasma and the background magnetic field. The simulations are run using the implicit PIC code iPIC3D so that we are able to capture dynamics of the plasma below ion scales, but not be forced to resolve all electron scales [3]. [1] Niemann et al, Phys. Plasmas 20, 012108 (2013) [2] Davidson et al, Phys. Fluids, Vol. 20, No. 2, February 1977 [3] S. Markidis et al, Math. Comput. Simul. (2009), doi 10.1016/j.matcom.2009.08.038

  5. Redshift drift reconstruction for some cosmological models from observations

    NASA Astrophysics Data System (ADS)

    Zhang, Ming-Jian; Liu, Wen-Biao

    2013-12-01

    Redshift drift is a tool to directly probe the expansion history of the universe. Based on the Friedmann-Robertson-Walker framework, we reconstruct the velocity drift and deceleration factor for several cosmological models using observational H(z) data from the differential ages of galaxies and baryon acoustic oscillation peaks, luminosity distance of Type Ia supernovae, cosmic microwave background shift parameter, and baryon acoustic oscillation distance parameter. They can, for the first time, provide an objective and quantifiable measure of the redshift drift. We find that reconstructed velocity drift with different peak values and corresponding redshifts can potentially provide a method to distinguish the quality of competing dark energy models at low redshifts. Better fitting between models and observational data indicate that current data are insufficient to distinguish the quality of these models. However, by comparing with the simulated velocity drift from Liske et al, we find that the Dvali-Gabadadze-Porrati model is inconsistent with the data at high redshift, which originally piqued the interest of researchers in the topic of redshift drift. Considering the deceleration factor, we are able to give a stable instantaneous estimation of a transition redshift of zt ~ 0.7 from joint constraints, which incorporates a more complete set of values than the previous study that used a single data set.

  6. A Benign, Low Z Electron Capture Agent for Negative Ion TPCs

    NASA Technical Reports Server (NTRS)

    Martoff, C. J.; Dion, M. P.; Hosack, M.; Barton, D.; Black, J. K.

    2008-01-01

    We have identified nitromethane (CH3NO2) as an effective electron capture agent for negative ion TPCs (NITPCs). We present drift velocity and longitudinal diffusion measurements for negative ion gas mixtures using nitromethane as the capture agent. Not only is nitromethane substantially more benign than the only other identified capture agent, CS2, but its low atomic number will enable the use of the NITPC as a photoelectric X-ray polarimeter in the 1-10 keV band.

  7. HIV envelope drift

    SciTech Connect

    Myers, G.

    1988-01-01

    The consensus sequences for (HIV) the Human Immunodeficiency Virus,envelope proteins can also be examined with regard to what might be called differential drift. Conserved and hypervariable regions, or domains, of the envelope were defined in 1986, when the extent of conspicuous HIV variation began to be noticed. Although a large fraction of the envelope residues are subject to drift, once substition at some particular site begins, constraints will most likely naturally arise in relation to which residues will admit of substitution thereafater. Thus, we should not expect that the type 1 and type 2 HIVs will manifest identical patterns of conservation and hypervariability. They already reveal significant differences in the number of cysteine residues, for example; although it is far less obvious, there is some indication that with the sequences analyzed thus far that the Zairean and North American HIVs may be differentially drifting as a direct consequence of their high rates of diversification. What makes this case of drift so extraordinary is the rapid pace which appears to be characteristic of the HIV speciation, stemming from not merely the high mutation rate, but also from proliferation in what might be for these viruses a relatively new ecological niche. 3 figs.

  8. Continental drift before 1900.

    PubMed

    Rupke, N A

    1970-07-25

    The idea that Francis Bacon and other seventeenth and eighteenth century thinkers first conceived the notion of continental drift does not stand up to close scrutiny. The few authors who expressed the idea viewed the process as a catastrophic event. PMID:16057953

  9. High resolution drift chambers

    SciTech Connect

    Va'vra, J.

    1985-07-01

    High precision drift chambers capable of achieving less than or equal to 50 ..mu..m resolutions are discussed. In particular, we compare so called cool and hot gases, various charge collection geometries, several timing techniques and we also discuss some systematic problems. We also present what we would consider an ''ultimate'' design of the vertex chamber. 50 refs., 36 figs., 6 tabs.

  10. IN DRIFT CORROSION PRODUCTS

    SciTech Connect

    D.M. Jolley

    1999-12-02

    As directed by a written development plan (CRWMS M&O 1999a), a conceptual model for steel and corrosion products in the engineered barrier system (EBS) is to be developed. The purpose of this conceptual model is to assist Performance Assessment Operations (PAO) and its Engineered Barrier Performance Department in modeling the geochemical environment within a repository drift, thus allowing PAO to provide a more detailed and complete in-drift geochemical model abstraction and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near-Field Environment (NFE) Revision 2 (NRC 1999). This document provides the conceptual framework for the in-drift corrosion products sub-model to be used in subsequent PAO analyses including the EBS physical and chemical model abstraction effort. This model has been developed to serve as a basis for the in-drift geochemical analyses performed by PAO. However, the concepts discussed within this report may also apply to some near and far-field geochemical processes and may have conceptual application within the unsaturated zone (UZ) and saturated zone (SZ) transport modeling efforts.

  11. Measuring the effect of ion-induced drift-gas polarization on the electrical mobilities of multiply-charged ionic liquid nanodrops in air.

    PubMed

    Fernández-García, Juan; Fernández de la Mora, Juan

    2013-12-01

    The electrical mobilities of multiply-charged nanodrops of the ionic liquid 1-ethyl, 3-methylimidazolium dicyanamide (EMI-N[CN]2) were accurately measured in air at 20 °C for mass-selected clusters of composition [EMI-N[CN]2] n [EMI(+)] z , with 2 ≤ n ≤ 369 and 1 ≤ z ≤ 10. We confirm prior reports that the mobility Z of a globular ion of mass m is given approximately by the modified Stokes-Millikan law for spheres, Z  =  Z SM,mod (d m   +  d g , z, m), where d m   =  (6m/πρ)(1/3) is the nanodrop mass-diameter based on the density ρ of the liquid (corrected for the capillary compression and electrostatic deformation of the nanodrop), and d g is an effective air molecule diameter. There is however a measurable (up to 7%) and systematic z-dependent departure of Z from Z SM,mod . As theoretically expected at small ε (*) , this effect is accurately described by a simple correction factor of the form Z/Z SM,mod   =  δ(1  -  βε (*)), where kTε (*) is the potential energy due to the ion-induced dipole (polarization) attraction between a perfectly-conducting charged nanodrop and a polarized neutral gas-molecule at a distance (d m   +  d g )/2 from its center. An excellent fit of this model to hundreds of data points is found for d g ≈ 0.26 nm, β ≈ 0.36, and δ ≈ 0.954. Accounting for the effect of polarization decreases d g considerably with respect to values inferred from earlier nanodrop measurements that ignored this effect. In addition, and in spite of ambiguities in the mobility calibration scale, the measured constant δ smaller than unity increases Millikan's drag enhancement factor from the accepted value ξ m ≈ 1.36 to the new value ξ ≈ ξ m /δ ≈ 1.42  ± 0.03. PMID:24048890

  12. Measuring the Effect of Ion-Induced Drift-Gas Polarization on the Electrical Mobilities of Multiply-Charged Ionic Liquid Nanodrops in Air

    NASA Astrophysics Data System (ADS)

    Fernández-García, Juan; Fernández de la Mora, Juan

    2013-12-01

    The electrical mobilities of multiply-charged nanodrops of the ionic liquid 1-ethyl, 3-methylimidazolium dicyanamide (EMI-N[CN]2) were accurately measured in air at 20 °C for mass-selected clusters of composition [EMI-N[CN]2] n [EMI+] z , with 2 ≤ n ≤ 369 and 1 ≤ z ≤ 10. We confirm prior reports that the mobility Z of a globular ion of mass m is given approximately by the modified Stokes-Millikan law for spheres, Z = Z SM, mod ( d m + d g , z, m), where d m = (6 m/ πρ)1/3 is the nanodrop mass-diameter based on the density ρ of the liquid (corrected for the capillary compression and electrostatic deformation of the nanodrop), and d g is an effective air molecule diameter. There is however a measurable (up to 7 %) and systematic z-dependent departure of Z from Z SM,mod . As theoretically expected at small ɛ * , this effect is accurately described by a simple correction factor of the form Z/ Z SM, mod = δ(1 - βɛ *), where kTɛ * is the potential energy due to the ion-induced dipole ( polarization) attraction between a perfectly-conducting charged nanodrop and a polarized neutral gas-molecule at a distance ( d m + d g )/2 from its center. An excellent fit of this model to hundreds of data points is found for d g ≈ 0.26 nm, β ≈ 0.36, and δ ≈ 0.954. Accounting for the effect of polarization decreases d g considerably with respect to values inferred from earlier nanodrop measurements that ignored this effect. In addition, and in spite of ambiguities in the mobility calibration scale, the measured constant δ smaller than unity increases Millikan's drag enhancement factor from the accepted value ξ m ≈ 1.36 to the new value ξ ≈ ξ m / δ ≈ 1.42 ± 0.03.

  13. Estimation of the Solar Wind Velocity at 85 AU from Voyager-1/LECP Energetic Ion Angular Distributions

    NASA Astrophysics Data System (ADS)

    Roelof, E. C.; Decker, R. B.; Krimigis, S. M.

    2003-12-01

    Voyager-1 (V1) encountered a remarkable region of the heliosphere at 85 AU during the last half of 2002 (Krimigis, et al., this Conference). Because the plasma instrument on Voyager-1 is inoperative, we extract the solar wind velocity (V) by using its effect upon the intensity anisotropy measured by the Low Energy Charged Particle (LECP) instrument. The V1 LECP measurements indicated significant field-aligned anisotropies strong enough to invalidate the use of the linearized Compton-Getting transformation. Consequently, based on gyrotropic weak-scattering theory we assume an exponential distribution ˜ exp(α μ ) in pitch-cosine (μ ) that is convected with the solar wind. We transform it (non-linearly) into the spacecraft frame with a Galilean velocity transformation. We measure a power-law index for the energy spectrum k=1.5. We allow for weak coupling (backscatter) between hemispheres by setting the anisotropy parameter α =α + for the forward and α =α - for the backward hemisphere. The time-averaged LECP distributions consistently peak in spin sector 7 (the Sun splits sectors 1 and 8, the latter being blocked by a shield), so we assign the mean direction of the magnetic field to its center and normalize the intensities there. The normalized intensities in the remaining 6 sectors for each LECP channel are then fitted by a least-squares minimization that varies the remaining parameters (α +, α -, and V). Thus we extract the solar wind velocity from the LECP angular distributions. The best fits give V=0 over proton energies from 30 keV to 1 MeV, with energy-dependent uncertainties averaging ˜50 km/s. We cannot explain our observations using conventional diffusion-convection (strong-scattering) theory under the assumption that V1 did not leave the normal solar wind and magnetic field. The condition for diffusion-convection equilibrium with no radial streaming in the inertial frame implies a positive radial gradient with a source of particles beyond V1 in order to nullify the solar wind convection. Over the same time period, LECP observes a strong azimuthal anisotropy, which (if the average magnetic field is wound in a Parker sense), corresponds to gradient of increasing intensity as one moves inward along the field. This parallel streaming then implies a source of particles inside the radius of Voyager, but this is inconsistent with the positive radial gradient demanded by the radial transport equation. A quantitative analysis of the latter leads to a mean radial gradient ˜100%/AU with a comparable standard deviation. These are orders of magnitude bigger than gradients usually deduced for the outer heliosphere. We consider it unreasonable that such a configuration could endure there for half a year.

  14. A spatially resolving x-ray crystal spectrometer for measurement of ion-temperature and rotation-velocity profiles on the Alcator C-Mod tokamak

    SciTech Connect

    Hill, K. W.; Bitter, M. L.; Scott, S. D.; Ince-Cushman, A.; Reinke, M.; Rice, J. E.; Beiersdorfer, P.; Gu, M.-F.; Lee, S. G.; Broennimann, Ch.; Eikenberry, E. F.

    2008-10-15

    A new spatially resolving x-ray crystal spectrometer capable of measuring continuous spatial profiles of high resolution spectra ({lambda}/d{lambda}>6000) of He-like and H-like Ar K{alpha} lines with good spatial ({approx}1 cm) and temporal ({approx}10 ms) resolutions has been installed on the Alcator C-Mod tokamak. Two spherically bent crystals image the spectra onto four two-dimensional Pilatus II pixel detectors. Tomographic inversion enables inference of local line emissivity, ion temperature (T{sub i}), and toroidal plasma rotation velocity (v{sub {phi}}) from the line Doppler widths and shifts. The data analysis techniques, T{sub i} and v{sub {phi}} profiles, analysis of fusion-neutron background, and predictions of performance on other tokamaks, including ITER, will be presented.

  15. Study of ion-ion plasma formation in negative ion sources by a three-dimensional in real space and three-dimensional in velocity space particle in cell model

    NASA Astrophysics Data System (ADS)

    Nishioka, S.; Goto, I.; Miyamoto, K.; Hatayama, A.; Fukano, A.

    2016-01-01

    Recently, in large-scale hydrogen negative ion sources, the experimental results have shown that ion-ion plasma is formed in the vicinity of the extraction hole under the surface negative ion production case. The purpose of this paper is to clarify the mechanism of the ion-ion plasma formation by our three dimensional particle-in-cell simulation. In the present model, the electron loss along the magnetic filter field is taken into account by the " √{τ///τ⊥ } model." The simulation results show that the ion-ion plasma formation is due to the electron loss along the magnetic filter field. Moreover, the potential profile for the ion-ion plasma case has been looked into carefully in order to discuss the ion-ion plasma formation. Our present results show that the potential drop of the virtual cathode in front of the plasma grid is large when the ion-ion plasma is formed. This tendency has been explained by a relationship between the virtual cathode depth and the net particle flux density at the virtual cathode.

  16. Dike Propagation Near Drifts

    SciTech Connect

    NA

    2002-03-04

    The purpose of this Analysis and Model Report (AMR) supporting the Site Recommendation/License Application (SR/LA) for the Yucca Mountain Project is the development of elementary analyses of the interactions of a hypothetical dike with a repository drift (i.e., tunnel) and with the drift contents at the potential Yucca Mountain repository. This effort is intended to support the analysis of disruptive events for Total System Performance Assessment (TSPA). This AMR supports the Process Model Report (PMR) on disruptive events (CRWMS M&O 2000a). This purpose is documented in the development plan (DP) ''Coordinate Modeling of Dike Propagation Near Drifts Consequences for TSPA-SR/LA'' (CRWMS M&O 2000b). Evaluation of that Development Plan and the work to be conducted to prepare Interim Change Notice (ICN) 1 of this report, which now includes the design option of ''Open'' drifts, indicated that no revision to that DP was needed. These analyses are intended to provide reasonable bounds for a number of expected effects: (1) Temperature changes to the waste package from exposure to magma; (2) The gas flow available to degrade waste containers during the intrusion; (3) Movement of the waste package as it is displaced by the gas, pyroclasts and magma from the intruding dike (the number of packages damaged); (4) Movement of the backfill (Backfill is treated here as a design option); (5) The nature of the mechanics of the dike/drift interaction. These analyses serve two objectives: to provide preliminary analyses needed to support evaluation of the consequences of an intrusive event and to provide a basis for addressing some of the concerns of the Nuclear Regulatory Commission (NRC) expressed in the Igneous Activity Issue Resolution Status Report.

  17. Pre-sheath density drop induced by ion-neutral friction along plasma blobs and implications for blob velocities

    SciTech Connect

    Furno, I.; Chabloz, V.; Fasoli, A.; Loizu, J.; Theiler, C.

    2014-01-15

    The pre-sheath density drop along the magnetic field in field-aligned, radially propagating plasma blobs is investigated in the TORPEX toroidal experiment [Fasoli et al., Plasma Phys. Controlled Fusion 52, 124020 (2010)]. Using Langmuir probes precisely aligned along the magnetic field, we measure the density n{sub se} at a poloidal limiter, where blobs are connected, and the upstream density n{sub 0} at a location half way to the other end of the blobs. The pre-sheath density drop n{sub se}/n{sub 0} is then computed and its dependence upon the neutral background gas pressure is studied. At low neutral gas pressures, the pre-sheath density drop is ≈0.4, close to the value of 0.5 expected in the collisionless case. In qualitative agreement with a simple model, this value decreases with increasing gas pressure. No significant dependence of the density drop upon the radial distance into the limiter shadow is observed. The effect of reduced blob density near the limiter on the blob radial velocity is measured and compared with predictions from a blob speed-versus-size scaling law [Theiler et al., Phys. Rev. Lett. 103, 065001 (2009)].

  18. Drift wave turbulence in the presence of a dust density gradient

    SciTech Connect

    Kendl, A.; Shukla, P. K.

    2011-10-15

    We present turbulent properties of electrostatic drift waves in a nonuniform collisional plasma composed of magnetized electrons and ions in the presence of immobile dust particles. For this purpose, we derive a pair of nonlinear quasi-two-dimensional equations exhibiting the coupling between the generalized ion vorticity and the density fluctuations associated with collisional drift waves. The effect of a dust density gradient on the initial drift instability and fully developed turbulence is examined numerically.

  19. Effects of particle drifts on the solar modulation of galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Jokipii, J. R.; Levy, E. H.

    1977-01-01

    Gradient and curvature drifts in an Archimedean-spiral magnetic field are shown to produce a significant effect on the modulation of galactic cosmic rays by the solar wind. The net modulation, heliocentric radial gradient, and average energy change of particles which reach the inner solar system are significantly reduced. The effects of drifts are due to the fact that cosmic rays for which the drift velocity is comparable to the wind velocity or larger, have more rapid access to the inner solar system than in the absence of drifts.

  20. Dual mode ion mobility spectrometer and method for ion mobility spectrometry

    DOEpatents

    Scott, Jill R [Idaho Falls, ID; Dahl, David A [Idaho Falls, ID; Miller, Carla J [Idaho Falls, ID; Tremblay, Paul L [Idaho Falls, ID; McJunkin, Timothy R [Idaho Falls, ID

    2007-08-21

    Ion mobility spectrometer apparatus may include an ion interface that is operable to hold positive and negative ions and to simultaneously release positive and negative ions through respective positive and negative ion ports. A first drift chamber is operatively associated with the positive ion port of the ion interface and encloses an electric field therein. A first ion detector operatively associated with the first drift chamber detects positive ions from the first drift chamber. A second drift chamber is operatively associated with the negative ion port of the ion interface and encloses an electric field therein. A second ion detector operatively associated with the second drift chamber detects negative ions from said second drift chamber.

  1. Drift compression and final focus options for heavy ionfusion

    SciTech Connect

    Qin, Hong; Davidson, Ronald C.; Barnard, John J.; Lee, Edward P.

    2005-01-18

    A drift compression and final focus lattice for heavy ion beams should focus the entire beam pulse onto the same focal spot on the target. The authors show that this requirement implies that the drift compression design needs to satisfy a self-similar symmetry condition. For un-neutralized beams, the Lie symmetry group analysis is applied to the warm-fluid model to systematically derive the self-similar drift compression solutions. For neutralized beams, the 1D Vlasov equation is solved explicitly and families of self-similar drift compression solutions are constructed. To compensate for the deviation from the self-similar symmetry condition due to the transverse emittance, four time-dependent magnets are introduced in the upstream of the drift compression such that the entire beam pulse can be focused onto the same focal spot.

  2. Drift wave instability in the Io plasma torus

    NASA Technical Reports Server (NTRS)

    Huang, T. S.; Hill, T. W.

    1991-01-01

    A linear normal mode analysis of the drift wave instability in the Io plasma torus was carried out on the basis of the Richmond (1973) and Huang et al. (1990) analyses of drift waves in the vicinity of the earth's plasmapause. Results indicate that the outer torus boundary is linearly unstable to the growth of electrostatic drift waves. It is shown that the linear growth rate is proportional to the ion drift frequency and to the ratio of the flux tube charge content to the Jovian ionospheric Pedersen conductance. It is also shown that various theoretical models of global radial transport in Jupiter's atmosphere (including corotating convection, interchange diffusion, and transient flux tube convection) can be understood as plausible nonlinear evolutions of electrostatic drift waves.

  3. DRIFT COMPENSATED DIRECT COUPLED AMPLIFIER

    DOEpatents

    Windsor, A.A.

    1959-05-01

    An improved direct-coupled amplifier having zerolevel drift correction is described. The need for an auxiliary corrective-potential amplifier is eliminated thereby giving protection against overload saturation of the zero- level drift correcting circuit. (T.R.H.)

  4. Gyrokinetic simulation of momentum transport with residual stress from diamagnetic level velocity shears

    SciTech Connect

    Waltz, R. E.; Staebler, G. M.; Solomon, W. M.

    2011-04-15

    Residual stress refers to the remaining toroidal angular momentum (TAM) flux (divided by major radius) when the shear in the equilibrium fluid toroidal velocity (and the velocity itself) vanishes. Previously [Waltz et al., Phys. Plasmas 14, 122507 (2007); errata 16, 079902 (2009)], we demonstrated with GYRO [Candy and Waltz, J. Comp. Phys. 186, 545 (2003)] gyrokinetic simulations that TAM pinching from (ion pressure gradient supported or diamagnetic level) equilibrium ExB velocity shear could provide some of the residual stress needed to support spontaneous toroidal rotation against normal diffusive loss. Here we show that diamagnetic level shear in the intrinsic drift wave velocities (or ''profile shear'' in the ion and electron density and temperature gradients) provides a comparable residual stress. The individual signed contributions of these small (rho-star level) ExB and profile velocity shear rates to the turbulence level and (rho-star squared) ion energy transport stabilization are additive if the rates are of the same sign. However because of the additive stabilization effect, the contributions to the small (rho-star cubed) residual stress is not always simply additive. If the rates differ in sign, the residual stress from one can buck out that from the other (and in some cases reduce the stabilization.) The residual stress from these diamagnetic velocity shear rates is quantified by the ratio of TAM flow to ion energy (power) flow (M/P) in a global GYRO core simulation of a ''null'' toroidal rotation DIII-D [Mahdavi and Luxon, Fusion Sci. Technol. 48, 2 (2005)] discharge by matching M/P profiles within experimental uncertainty. Comparison of global GYRO (ion and electron energy as well as particle) transport flow balance simulations of TAM transport flow in a high-rotation DIII-D L-mode quantifies and isolates the ExB shear and parallel velocity (Coriolis force) pinching components from the larger ''diffusive'' parallel velocity shear driven component and the much smaller profile shear residual stress component.

  5. Rotation of a tenuous plasma with a high toroidal velocity in a Tokamak

    NASA Astrophysics Data System (ADS)

    Mikhailovskii, A. B.

    The question of plasma rotation in a Tokamak is of interest for problems of neoclassical transport and also for instability theory. In recent years, the original inferences of the neoclassical transport theory have been placed in doubt in some papers, for the reason that the influence of poloidal rotation of the plasma on the transport was not taken into account previously. Earlier, the rotation problem in the Pfirsch-Schleuter regime was considered and it was demonstrated that even with an essentially radial electric field, the velocity of poloidal rotation cannot substantially exceed the drift-temperature velocity of the ions. It follows from this that there is no basis for reconsideration of the neoclassical transport theory in the said regime. The problem of plasma rotation in the plateau and banana regimes was examined and it was demonstrated that the velocity of poloidal rotation in these regimes is also of the order of the drift-temperature velocity of the ions and thus is immaterial for transport problems.

  6. Results from the DRIFT Dark Matter Search

    NASA Astrophysics Data System (ADS)

    Ayad, R.; Hyatt, M.; Hanson-Hart, Z.; Katz-Hyman, M.; Martoff, C. J.; Kirkpatrick, J.; Snowden-Ifft, D. P.; Lawson, T. B.; Lightfoot, P. K.; Morgan, B.; Paling, S. M.; Robinson, M.; Spooner, N. J. C.

    2004-05-01

    DRIFT [1] is the only direction-sensitive WIMP Dark Matter search experiment now running underground. It employs a novel detector invented for this purpose: the Negative Ion TPC (NITPC). Data is collected in the form of digitized time-records of signals received on each active anode wire of the NITPC endcap. New Results from 2002 data taking will be presented, especially on underground neutron calibration and background. [1] Low Pressure Negative Ion TPC for Dark Matter Search. D. P.Snowden-Ifft, C. J. Martoff, J. M. Burwell, Phys Rev. D. Rapid Comm. 61,101301 (2000).

  7. Vertical characteristics of midlatitude E and F region ionospheric drifts during disturbed conditions..

    NASA Astrophysics Data System (ADS)

    Boska, Josef; Kouba, Daniel; Koucka Knizova, Petra; Potuznikova, Katerina

    2015-04-01

    Modern HF digisonde DPS-4 D (Digisonde Portable Sounder), which is in operation at the Pruhonice observatory of the Institute of Atmospheric Physics, Prague (IAP) from 2004, enables us to carry out standard ionospheric sounding and ionospheric drifts measurements. Using standard mode of automatic drift (autodrift mode) measurements the velocity of the F region drifts is usually determined in the vicinity of the peak of the electron density profile (N(h) profile). Since 2005 we are also measuring ionospheric drifts at the heights of the ionospheric E region. This new experimental arrangement makes possible to study vertical changes and profiles of the ionospheric drift velocity in two different ionospheric regions. From E region within the altitudinal interval of 90-150 km to F region in altitudes from 150 km up to height of the maximum electron density profile N(h). This paper present the results of the analysis of the plasma drifts velocity in two different ionospheric regions observed under quiet geomagnetic and ionospheric conditions and especially during ionospheric spread F conditions. These spread F conditions are often observed in the ionosphere as effect of travelling ionopheric disturbances TIDs. The presence of this TIDS can be detected from the F layer isoelectrondensity contours. The spread F conditions are often present also under moderate-to-intense ionospheric and geomagnetic storm conditions. Our results shows, that behavior of Es layer drifts can be different than drifts in E-layer. During winter geomagnetic storm -more dramatic increasing of all drift velocities components was observed (50 - 100 m/s vertical drift component). Different behaviour ionospheric drifts at the heights intervals 90 - 110 km and 110 - 130 km was observed during winter storm. Significant height changes of the drift velocity height profile in the interval of heights 90 - 130 km during winter event was observed. Our results shows that behavior of Es layer drifts can be different than drifts in E-layer. All components of the ionospheric F region drift velocity, measured during medium and strong geomagnetic events are strongly disturbed by storm conditions. Observed drift velocity components reached during strong storm values ~100- 150 m/s during summer and ~500 m/s during winter storms.

  8. Drift wave instability in a nonuniform quantum dusty magnetoplasma

    NASA Astrophysics Data System (ADS)

    Salimullah, M.; Jamil, M.; Zeba, I.; Uzma, Ch.; Shah, H. A.

    2009-03-01

    Using the quantum hydrodynamic model of plasmas and with quantum effects arising through the Bohm potential and the Fermi degenerate pressure, the possible drift waves and their instabilities have been investigated in considerable detail in a nonuniform dusty magnetoplasma. It is found that in the presence of a nonuniform ambient magnetic field, the drift waves grow in amplitude by taking energy from the streaming ions and density inhomogeneity. The implication of the drift wave instability for nonthermal electrostatic fluctuations to laboratory and astrophysical environments is also pointed out.

  9. Excitation of Zonal Flow by Drift Waves in Toroidal Plasmas

    SciTech Connect

    L. Chen; R. White; Z. Lin

    1999-11-01

    An analytical dispersion relation is derived which shows that, in toroidal plasmas, zonal flows can be spontaneously excited via modulations in the radial envelope of a single-n coherent drift wave, with n the toroidal mode number. Predicted instability features are verified by 3D global gyrokinetic simulations of the ion-temperature-gradient mode. Nonlinear equations for mode amplitudes demonstrate saturation of the linearly unstable pump wave and bursting behavior in the drift-wave intensity and zonal flows.

  10. South Polar Wind Drifts

    NASA Technical Reports Server (NTRS)

    2004-01-01

    11 April 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows evidence of wind deposition of fine sediment in the form of drifts in the lee of obstacles in the martian south polar region. The picture is located near 83.4oS, 8.1oW. The image covers an area about 3 km (1.9 mi) across. Sunlight illuminates the scene from the upper left.

  11. Coupled-cavity drift-tube linac

    DOEpatents

    Billen, J.H.

    1996-11-26

    A coupled-cavity drift-tube linac (CCDTL) combines features of the Alvarez drift-tube linac (DTL) and the {pi}-mode coupled-cavity linac (CCL). In one embodiment, each accelerating cavity is a two-cell, 0-mode DTL. The center-to-center distance between accelerating gaps is {beta}{lambda}, where {lambda} is the free-space wavelength of the resonant mode. Adjacent accelerating cavities have oppositely directed electric fields, alternating in phase by 180 degrees. The chain of cavities operates in a {pi}/2 structure mode so the coupling cavities are nominally unexcited. The CCDTL configuration provides an rf structure with high shunt impedance for intermediate velocity charged particles, i.e., particles with energies in the 20-200 MeV range. 5 figs.

  12. Coupled-cavity drift-tube linac

    DOEpatents

    Billen, James H.

    1996-01-01

    A coupled-cavity drift-tube linac (CCDTL) combines features of the Alvarez drift-tube linac (DTL) and the .pi.-mode coupled-cavity linac (CCL). In one embodiment, each accelerating cavity is a two-cell, 0-mode DTL. The center-to-center distance between accelerating gaps is .beta..lambda., where .lambda. is the free-space wavelength of the resonant mode. Adjacent accelerating cavities have oppositely directed electric fields, alternating in phase by 180 degrees. The chain of cavities operates in a .pi./2 structure mode so the coupling cavities are nominally unexcited. The CCDTL configuration provides an rf structure with high shunt impedance for intermediate velocity charged particles, i.e., particles with energies in the 20-200 MeV range.

  13. Drift waves in helically symmetric stellarators

    SciTech Connect

    Rafiq, T.; Hegna, C.

    2005-11-15

    The local linear stability of electron drift waves and ion temperature gradient modes (ITG) is investigated in a quasihelically symmetric (QHS) stellarator and a conventional asymmetric (Mirror) stellarator. The geometric details of the different equilibria are emphasized. Eigenvalue equations for the models are derived using the ballooning mode formalism and solved numerically using a standard shooting technique in a fully three-dimensional stellarator configuration. While the eigenfunctions have a similar shape in both magnetic geometries, they are slightly more localized along the field line in the QHS case. The most unstable electron drift modes are strongly localized at the symmetry points (where stellarator symmetry is present) and in the regions where normal curvature is unfavorable and magnitude of the local magnetic shear and magnetic field is minimum. The presence of a large positive local magnetic shear in the bad curvature region is found to be destabilizing. Electron drift modes are found to be more affected by the normal curvature than by the geodesic curvature. The threshold of stability of the ITG modes in terms of {eta}{sub i} is found to be 2/3 in this fluid model consistent with the smallest threshold for toroidal geometry with adiabatic electrons. Optimization to favorable drift wave stability has small field line curvature, short connection lengths, the proper combination of geodesic curvature and local magnetic shear, large values of local magnetic shear, and the compression of flux surfaces in the unfavorable curvature region.

  14. Toroidal universal drift instability: A global gyrokinetic study

    SciTech Connect

    Chowdhury, J.; Ganesh, R.; Brunner, S.; Vaclavik, J.; Villard, L.

    2010-10-15

    An electron density gradient driven instability identified as the toroidal branch of the universal drift instability is studied using a global gyrokinetic model treating both electrons and ions fully nonadiabatically and valid at all orders in the ratio of the Larmor radius to the wavelength. The physics of the magnetic drift resonance, Landau resonance and transit resonance, which are considered to be important for the toroidal universal mode, are kept for both species. A systematic parametric study is carried out for the mode. The toroidal universal drift mode is observed to sustain finite temperature gradient and can thus coexist with the temperature gradient driven modes and may contribute to the observed particle transport along with other drift modes. Especially at intermediate scales between the ion temperature gradient driven mode and electron temperature gradient driven mode, this branch of the drift instability can also be a plausible candidate for the observed particle loss. The effect of magnetic fluctuations on the mode is also investigated. In contrast to the slab mode, the toroidal branch of the universal drift mode is found to be strongly stabilized by electromagnetic effects at finite plasma {beta}. Finally, the effect of trapped electrons on the universal mode is studied and compared with the other possible modes in the same parameter regime, namely, ion temperature gradient mode in the presence of trapped electrons and pure trapped electron modes.

  15. Non-twist map bifurcation of drift-lines and drift-island formation in saturated 3D MHD equilibria

    NASA Astrophysics Data System (ADS)

    Pfefferle, David; Cooper, Wilfred A.; Graves, Jonathan P.

    2015-11-01

    Based on non-canonical perturbation theory, guiding-centre drift equations are identified as perturbed magnetic field-line equations. The topology of passing-particle orbits, called drift-lines, is completely determined by the magnetic configuration. In axisymmetric tokamak fields, drift-lines lie on shifted flux-surfaces, called drift-surfaces. Field-lines and drift-lines are subject to island structures at rational surfaces only when a non-axisymmetric component is added. The picture is different in the case of 3D saturated MHD equilibrium like the helical core associated with a non-resonant internal kink mode. In assuming nested flux-surfaces, these bifurcated states, expected for a reversed q-profile with qmin close yet above unity and conveniently obtained in VMEC, feature integrable field-lines. The helical drift-lines however become resonant with the axisymmetric component in the region of qmin and spontaneously generate drift-islands. Due to the locally reversed sheared q-profile, the drift-island structure follows the bifurcation/reconnection mechanism of non-twist maps. This result provides a theoretical interpretation of NBI fast ion helical hot-spots in Long-Lived Modes as well as snake-like impurity density accumulation in internal MHD activity.

  16. Drifts of electron orbits induced by toroidal electric field in tokamaks

    SciTech Connect

    Abdullaev, S. S.

    2015-03-15

    The drifts of electron orbits induced by the toroidal electric field in tokamaks are analyzed. Based on the relativistic Hamiltonian equations for guiding centre motion, the formula for the drift velocity v{sub dr} is derived. It describes the outward drift of passing particles as well as the inward drift (the Ware pinch) of trapped particles. Unlike the approximate formula for v{sub dr} given in Guan et al. [Phys. Plasmas 17, 092502 (2010)] for circular electron orbits, it describes qualitatively new features of the outward drift of electron orbits. Particularly, the new formula describes the evolution of the orbit's shape, the formation of X-point and the associated separatrix. It is shown that the outward drift velocity is proportional to the inverse aspect ratio of tokamaks.

  17. Emplacement Drift System Description Document

    SciTech Connect

    Eric Loros

    2001-07-31

    The Emplacement Drift System is part of the Engineered Barrier System and provides the interface between the various waste package (WP) systems and the Ground Control System. In conjunction with the various WPs, the Emplacement Drift System limits the release and transport of radionuclides from the WP to the Natural Barrier following waste emplacement. Collectively, the Emplacement Drift System consists of the structural support hardware (emplacement drift invert and WP emplacement pallet) and any performance-enhancing barriers (drip shields and invert ballast) installed or placed in the emplacement drifts. The Emplacement Drift System is entirely located within the emplacement drifts in the subsurface portion of the Monitored Geologic Repository (MGR); specifically, it is physically bounded by the Subsurface Facility System, the Ground Support System, and the Natural Barrier. The Emplacement Drift System supports the key MGR functions of limiting radionuclide release to the Natural Barrier, minimizing the likelihood of a criticality external to the WPs, limiting natural and induced environmental effects, and providing WP support. The Emplacement Drift System limits radionuclide release to the Natural Barrier by controlling the movement of radionuclides within the emplacement drift and to the Natural Barrier, and by limiting water contact with the WPs. The Emplacement Drift System provides physical support and barriers for emplaced WPs that reduce water contact. The Emplacement Drift WP spacing supports the thermal loading performance by complimenting drift layout and orientation as described in the system description document for the Subsurface Facility System. The Emplacement Drift System supports the WP and also provides an environment that aids in enhancing WP confinement performance. As part of the Engineered Barrier System, the Emplacement Drift System interfaces with the WP systems. The Emplacement Drift System also interfaces with the Natural Barrier, Subsurface Facility System, and Ground Control System for the space and location of emplaced WPs, for the controlled release of radionuclides, and for controlling the heat, chemical, and physical effects that interact between these systems. The Emplacement Drift System interfaces with the Subsurface Ventilation System for preclosure heat removal from WPs. The Emplacement Drift System interfaces with the Waste Emplacement/Retrieval System and the Performance Confirmation Emplacement Drift Monitoring System for equipment clearance for the emplacement, retrieval, and monitoring of waste.

  18. Adiabatic-drift-loss modification of the electromagnetic loss-cone instability for anisotropic plasma

    NASA Astrophysics Data System (ADS)

    Juhl, B.; Treumann, R. A.

    1980-09-01

    Observation of the adiabatic behavior of energetic particle pitch-angle distributions in the magnetosphere in the past indicated the development of pronounced minima or drift-loss cones on the pitch-angle distributions centered at angles between particle velocity and magnetic field of approximately 90 deg in connection with storm-time changes in magnetospheric convection and magnetic field. Using a model of a drift-modified loss-cone distribution (MLCD) of the butterfly type, the linear stability of electromagnetic whistler or ion-cyclotron waves propagating parallel to the magnetic field has been investigated. The instability is shown to be quenched at high frequencies less than the marginally stable frequency, which is equal to A/(A + 1), where A is the thermal anisotropy. This quenching becomes stronger the higher are the respective parallel hot particle thermal velocity and cold plasma density. Particles around pitch-angles of approximately 90 deg are identified as generating electromagnetic cyclotron waves near the marginally stable frequency. It is concluded that the absence of electromagnetic VLF and ELF noise during times when MLCD develops is the result of the shift of the unstable spectrum to low frequencies.

  19. Analytical and numerical treatment of drift-tearing and resistive drift instabilities in plasma slab

    NASA Astrophysics Data System (ADS)

    Mirnov, V. V.; Hegna, C. C.; Sauppe, J. P.; Sovinec, C. R.

    2015-11-01

    We consider modification to linear resistive MHD instability theory in a slab due to two categories of non-MHD effects: (1) electron and ion diamagnetic flows caused by equilibrium pressure gradients and (2) electron and ion decoupling on short scales associated with kinetic Alfven and whistler waves. The relationship between the expected stabilizing response due to the effects (1) and the destabilizing contribution caused by the dispersive waves (2) is investigated. An analytic solution combining the effect of diamagnetic flows and the ion-sound gyroradius contribution is derived using a perturbative approach. Linear numerical simulations using the NIMROD code are performed with cold ions and hot electrons in plasma slab with a doubly periodic box bounded by two perfectly conducting walls. Configurations with magnetic shear are unstable to current-driven drift-tearing instability. A second linearly unstable resistive drift type mode with largely electrostatic perturbations is also observed in simulations. The resistive-drift mode is suppressed by magnetic shear in unbounded domains but can remain unstable in the simulations with finite slab thickness and perfectly conducting wall. Additionally, the growth rate is sensitive to the magnetic shear length. We analyze whether these modes can be unstable in cylindrical configurations with magnetic shear typical for reversed field pinches. The material is based on work supported by the U.S. DOE and NSF.

  20. Drift in the uppermost part of the ocean

    NASA Astrophysics Data System (ADS)

    Röhrs, Johannes; Christensen, Kai H.

    2015-12-01

    Lagrangian drift velocities within the uppermost meter of the ocean mostly depend on the local wind forcing, turbulent mixing, and waves. While the interior part of the Ekman layer has been extensively studied using drogued drifters, the drift at—or very close to—the surface is less investigated. The wind response of surface currents on time scales from 1 h to 10 days is analyzed using two types of satellite-tracked drifters: (i) spherical floats on the surface and (ii) drifters with a drogue centered at 70 cm depth. The response of drifting objects to wind and wave forcing is highly dependent on the vertical position, even within the upper meter of the ocean. The surface drifters are wind coherent for both cyclonic and anticyclonic subinertial frequencies. In contrast, the subsurface drift responds primarily to anticyclonic forcing that resonates with the intrinsic ocean dynamics.

  1. The Electron Drift Technique for Measuring Electric and Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Paschmann, G.; McIlwain, C. E.; Quinn, J. M.; Torbert, R. B.; Whipple, E. C.; Christensen, John (Technical Monitor)

    1998-01-01

    The electron drift technique is based on sensing the drift of a weak beam of test electrons that is caused by electric fields and/or gradients in the magnetic field. These quantities can, by use of different electron energies, in principle be determined separately. Depending on the ratio of drift speed to magnetic field strength, the drift velocity can be determined either from the two emission directions that cause the electrons to gyrate back to detectors placed some distance from the emitting guns, or from measurements of the time of flight of the electrons. As a by-product of the time-of-flight measurements, the magnetic field strength is also determined. The paper describes strengths and weaknesses of the method as well as technical constraints.

  2. Ion cyclotron and spin-flip emissions from fusion products in tokamaks

    SciTech Connect

    Arunasalam, V.; Greene, G.J.; Young, K.M.

    1993-02-01

    Power emission by fusion products of tokamak plasmas in their ion cyclotron range of frequencies (ICRF) and at their spin-flip resonance frequency is calculated for some specific model fusion product velocity-space distribution functions. The background plasma of say deuterium (D) is assumed to be in equilibrium with a Maxwellian distribution both for the electrons and ions. The fusion product velocity distributions analyzed here are: (1) A monoenergetic velocity space ring distribution. (2) A monoenergetic velocity space spherical shell distribution. (3) An anisotropic Maxwellian distribution with T {perpendicular} {ne} T{parallel}and with appreciable drift velocity along the confining magnetic field. Single ``dressed`` test particle spontaneous emission calculations are presented first and the radiation temperature for ion cyclotron emission (ICE) is analyzed both for black-body emission and nonequilibrium conditions. Thresholds for instability and overstability conditions are then examined and quasilinear and nonlinear theories of the electromagnetic ion cyclotron modes are discussed. Distinctions between ``kinetic or causal instabilities`` and ``hydrodynamic instabilities`` are drawn and some numerical estimates are presented for typical tokamak parameters. Semiquantitative remarks are offered on wave accessibility, mode conversion, and parametric decay instabilities as possible for spatially localized ICE. Calculations are carried out both for k{parallel} = 0 for k{parallel} {ne} 0. The effects of the temperature anisotropy and large drift velocities in the parallel direction are also examined. Finally, proton spin-flip resonance emission and absorption calculations are also presented both for thermal equilibrium conditions and for an ``inverted`` population of states.

  3. Ion cyclotron and spin-flip emissions from fusion products in tokamaks

    SciTech Connect

    Arunasalam, V.; Greene, G.J.; Young, K.M.

    1993-02-01

    Power emission by fusion products of tokamak plasmas in their ion cyclotron range of frequencies (ICRF) and at their spin-flip resonance frequency is calculated for some specific model fusion product velocity-space distribution functions. The background plasma of say deuterium (D) is assumed to be in equilibrium with a Maxwellian distribution both for the electrons and ions. The fusion product velocity distributions analyzed here are: (1) A monoenergetic velocity space ring distribution. (2) A monoenergetic velocity space spherical shell distribution. (3) An anisotropic Maxwellian distribution with T [perpendicular] [ne] T[parallel]and with appreciable drift velocity along the confining magnetic field. Single dressed'' test particle spontaneous emission calculations are presented first and the radiation temperature for ion cyclotron emission (ICE) is analyzed both for black-body emission and nonequilibrium conditions. Thresholds for instability and overstability conditions are then examined and quasilinear and nonlinear theories of the electromagnetic ion cyclotron modes are discussed. Distinctions between kinetic or causal instabilities'' and hydrodynamic instabilities'' are drawn and some numerical estimates are presented for typical tokamak parameters. Semiquantitative remarks are offered on wave accessibility, mode conversion, and parametric decay instabilities as possible for spatially localized ICE. Calculations are carried out both for k[parallel] = 0 for k[parallel] [ne] 0. The effects of the temperature anisotropy and large drift velocities in the parallel direction are also examined. Finally, proton spin-flip resonance emission and absorption calculations are also presented both for thermal equilibrium conditions and for an inverted'' population of states.

  4. Particle-in-cell simulations of the critical ionization velocity effect in finite size clouds

    NASA Technical Reports Server (NTRS)

    Moghaddam-Taaheri, E.; Lu, G.; Goertz, C. K.; Nishikawa, K. - I.

    1994-01-01

    The critical ionization velocity (CIV) mechanism in a finite size cloud is studied with a series of electrostatic particle-in-cell simulations. It is observed that an initial seed ionization, produced by non-CIV mechanisms, generates a cross-field ion beam which excites a modified beam-plasma instability (MBPI) with frequency in the range of the lower hybrid frequency. The excited waves accelerate electrons along the magnetic field up to the ion drift energy that exceeds the ionization energy of the neutral atoms. The heated electrons in turn enhance the ion beam by electron-neutral impact ionization, which establishes a positive feedback loop in maintaining the CIV process. It is also found that the efficiency of the CIV mechanism depends on the finite size of the gas cloud in the following ways: (1) Along the ambient magnetic field the finite size of the cloud, L (sub parallel), restricts the growth of the fastest growing mode, with a wavelength lambda (sub m parallel), of the MBPI. The parallel electron heating at wave saturation scales approximately as (L (sub parallel)/lambda (sub m parallel)) (exp 1/2); (2) Momentum coupling between the cloud and the ambient plasma via the Alfven waves occurs as a result of the finite size of the cloud in the direction perpendicular to both the ambient magnetic field and the neutral drift. This reduces exponentially with time the relative drift between the ambient plasma and the neutrals. The timescale is inversely proportional to the Alfven velocity. (3) The transvers e charge separation field across the cloud was found to result in the modulation of the beam velocity which reduces the parallel heating of electrons and increases the transverse acceleration of electrons. (4) Some energetic electrons are lost from the cloud along the magnetic field at a rate characterized by the acoustic velocity, instead of the electron thermal velocity. The loss of energetic electrons from the cloud seems to be larger in the direction of plasma drift relative to the neutrals, where the loss rate is characterized by the neutral drift velocity. It is also shown that a factor of 4 increase in the ambient plasma density, increases the CIV ionization yield by almost 2 orders of magnitude at the end of a typical run. It is concluded that a larger ambient plasma density can result in a larger CIV yield because of (1) larger seed ion production by non-CIV mechanisms, (2) smaller Alfven velocity and hence weak momentum coupling, and (3) smaller ratio of the ion beam density to the ambient ion density, and therefore a weaker modulation of the beam velocity. The simulation results are used to interpret various chemical release experiments in space.

  5. Strong impact of neutrals on anomalous inward drift and width of steep gradient zone

    NASA Astrophysics Data System (ADS)

    Becker, G.

    1999-01-01

    The fundamental properties of the anomalous inward drift and the width of the steep gradient zone in H mode plasmas are explored. A special version of the 1.5-D BALDUR transport code is used to determine the profiles of the electron heat diffusivity and vin/D by transport analysis. The strong rise with radius of vin/D in the edge region is explained by a linear dependence on the neutral deuterium density n0, resulting in a new scaling expression vin(x)/D(x) = F0Zeff(x)n0(x)2x/(ρwxs2). Applying this in simulations reproduces the empirical fit of the vin/D profile not only in the edge plasma but also in the bulk plasma. Modellings with this scaling yield the observed flattening of density profiles with rising line averaged density. The decreasing penetration of deuterium atoms to the core causes a decline of the inward drift. The new scaling is shown to be compatible with gas oscillation experiments, while n0-independent scalings are not. This further explains the strong density profile peaking and rise of vin/D during and after pellet injection by the increase in neutral density. The width of the steep gradient zone is found to be connected with the penetration of neutrals at the edge and the presence of high inward drift velocities. The anomalous inward drift is attributed to ion dynamics, i.e. to the friction between fluctuating deuterons and deuterium atoms diffusing inward. A more general vin/D scaling including impurity effects is presented.

  6. ABSTRACTION OF DRIFT SEEPAGE

    SciTech Connect

    Michael L. Wilson

    2001-02-08

    Drift seepage refers to flow of liquid water into repository emplacement drifts, where it can potentially contribute to degradation of the engineered systems and release and transport of radionuclides within the drifts. Because of these important effects, seepage into emplacement drifts is listed as a ''principal factor for the postclosure safety case'' in the screening criteria for grading of data in Attachment 1 of AP-3.15Q, Rev. 2, ''Managing Technical Product Inputs''. Abstraction refers to distillation of the essential components of a process model into a form suitable for use in total-system performance assessment (TSPA). Thus, the purpose of this analysis/model is to put the information generated by the seepage process modeling in a form appropriate for use in the TSPA for the Site Recommendation. This report also supports the Unsaturated-Zone Flow and Transport Process Model Report. The scope of the work is discussed below. This analysis/model is governed by the ''Technical Work Plan for Unsaturated Zone Flow and Transport Process Model Report'' (CRWMS M&O 2000a). Details of this activity are in Addendum A of the technical work plan. The original Work Direction and Planning Document is included as Attachment 7 of Addendum A. Note that the Work Direction and Planning Document contains tasks identified for both Performance Assessment Operations (PAO) and Natural Environment Program Operations (NEPO). Only the PAO tasks are documented here. The planning for the NEPO activities is now in Addendum D of the same technical work plan and the work is documented in a separate report (CRWMS M&O 2000b). The Project has been reorganized since the document was written. The responsible organizations in the new structure are the Performance Assessment Department and the Unsaturated Zone Department, respectively. The work plan for the seepage abstraction calls for determining an appropriate abstraction methodology, determining uncertainties in seepage, and providing probability distributions of seepage. These are all discussed in detail in this report. In addition, the work plan calls for evaluation of effects of episodic flow and thermal-hydrologic-chemical alteration of hydrologic properties. As discussed in Section 5, these effects are not addressed in detail in this report because they can be argued to be insignificant. Effects of thermal-mechanical alteration of hydrologic properties are also not addressed in detail in this report because suitable process-model results are not available at this time. If these effects are found to be important, they should be included in the seepage abstraction in a future revision.

  7. Spaced antenna drift

    NASA Technical Reports Server (NTRS)

    Royrvik, O.

    1983-01-01

    It has been suggested that the spaced antenna drift (SAD) technique could be successfully used by VHF radars and that it would be superior to a Doppler-beam-swinging (DBS) technique because it would take advantage of the aspect sensitivity of the scattered signal, and might also benefit from returns from single meteors. It appears, however, that the technique suffers from several limitations. On the basis of one SAD experiment performed at the very large Jicamarca radar, it is concluded that the SAD technique can be compared in accuracy to the DBS technique only if small antenna dimensions are used.

  8. Quaternary contourite drifts of the Western Spitsbergen margin

    NASA Astrophysics Data System (ADS)

    Rebesco, Michele; Wåhlin, Anna; Laberg, Jan Sverre; Schauer, Ursula; Beszczynska-Möller, Agnieszka; Lucchi, Renata Giulia; Noormets, Riko; Accettella, Daniela; Zarayskaya, Yulia; Diviacco, Paolo

    2013-09-01

    The study of contourite drifts is an increasingly used tool for understanding the climate history of the oceans. In this paper we analyse two contourite drifts along the continental margin west of Spitsbergen, just south of the Fram Strait where significant water mass exchanges impact the Arctic climate. We detail the internal geometry and the morphologic characteristics of the two drifts on the base of multichannel seismic reflection data, sub-bottom profiles and bathymetry. These mounded features, that we propose to name Isfjorden and Bellsund drifts, are located on the continental slope between 1200 and 1800 m depth, whereas the upper slope is characterized by reduced- or non-deposition. The more distinct Isfjorden Drift is about 25 km wide and 45 km long, and over 200 ms TWT thick. We revise the 13 years-long time series of velocity, temperature, and salinity obtained from a mooring array across the Fram Strait. Two distinct current cores are visible in the long-term average. The shallower current core has an average northward velocity of about 20 cm/s, while the deeper bottom current core at about 1450 m depth has an average northward velocity of about 9 cm/s. We consider Norwegian Sea Deep Water episodically ventilated by relatively dense and turbid shelf water from the Barents Sea responsible for the accumulation of the contourites. The onset of the drift growth west of Spitsbergen is inferred to be about 1.3 Ma and related to the Early Pleistocene glacial expansion recorded in the area. The lack of mounded contouritic deposits on the continental slope of the Storfjorden is related to consecutive erosion by glacigenic debris flows. The Isfjorden and Bellsund drifts are inferred to contain the record of the regional palaeoceanography and glacial history and may constitute an excellent target of future scientific drilling.

  9. Quaternary Contourite Drifts of the Western Spitsbergen Margin

    NASA Astrophysics Data System (ADS)

    Laberg, J. S.; Rebesco, M.; Wahlin, A.; Schauer, U.; Beszczynska-Möller, A.; Lucchi, R. G.; Noormets, R.; Accettella, D.; Zarayskaya, Y.; Diviacco, P.

    2014-12-01

    The study of contourite drifts is an increasingly used tool for understanding the climate history of the oceans. In this paper we analyse two contourite drifts along the continental margin west of Spitsbergen, just south of the Fram Strait where significant water mass exchanges impact the Arctic climate. We detail the internal geometry and the morphologic characteristics of the two drifts on the base of multichannel seismic reflection data, sub-bottom profiles and bathymetry. These mounded features, that we propose to name Isfjorden and Bellsund drifts, are located on the continental slope between 1200 and 1800 m depth, whereas the upper slope is characterized by reduced- or non-deposition. The more distinct Isfjorden Drift is about 25 km wide and 45 km long, and over 200 ms TWT thick. We revise the 13 years-long time series of velocity, temperature, and salinity obtained from a mooring array across the Fram Strait. Two distinct current cores are visible in the long-term average. The shallower current core has an average northward velocity of about 20 cm/s, while the deeper bottom current core at about 1450 m depth has an average northward velocity of about 9 cm/s. We consider Norwegian Sea Deep Water episodically ventilated by relatively dense and turbid shelf water from the Barents Sea responsible for the accumulation of the contourites. The onset of the drift growth west of Spitsbergen is inferred to be about 1.3 Ma and related to the Early Pleistocene glacial expansion recorded in the area. The lack of mounded contouritic deposits on the continental slope of the Storfjorden is related to consecutive erosion by glacigenic debris flows. The Isfjorden and Bellsund drifts are inferred to contain the record of the regional palaeoceanography and glacial history and may constitute an excellent target of future scientific drilling.

  10. Laced permanent magnet quadrupole drift tube magnets

    SciTech Connect

    Feinberg, B.; Behrsing, G.U.; Halbach, K.; Marks, J.S.; Morrison, M.E.; Nelson, D.H.

    1989-03-01

    Twenty-three laced permanent magnet quadrupole drift tube magnets have been constructed, tested, and installed in the SuperHILAC heavy ion linear accelerator at LBL, marking the first accelerator use of this new type of quadrupole. The magnets consist of conventional tape-wound quadrupole electromagnets, using iron pole-pieces, with permanent magnet material (samarium cobalt) inserted between the poles to reduce the effects of saturation. The iron is preloaded with magnetic flux generated by the permanent magnet material, resulting in an asymmetrical saturation curve. Since the polarity of the individual quadrupole magnets in a drift tube linac is never reversed, we can take advantage of this asymmetrical saturation to provide about 20% greater focusing strength than is available with conventional quadrupoles, while replacing the vanadium permendur poletips with iron poletips. Comparisons between these magnets and conventional tape-wound quadrupoles will be presented. 3 refs., 5 figs.

  11. Electromagnetic nonlinear gyrokinetics with polarization drift

    SciTech Connect

    Duthoit, F.-X.; Hahm, T. S.; Wang, Lu

    2014-08-15

    A set of new nonlinear electromagnetic gyrokinetic Vlasov equation with polarization drift and gyrokinetic Maxwell equations is systematically derived by using the Lie-transform perturbation method in toroidal geometry. For the first time, we recover the drift-kinetic expression for parallel acceleration [R. M. Kulsrud, in Basic Plasma Physics, edited by A. A. Galeev and R. N. Sudan (North-Holland, Amsterdam, 1983)] from the nonlinear gyrokinetic equations, thereby bridging a gap between the two formulations. This formalism should be useful in addressing nonlinear ion Compton scattering of intermediate-mode-number toroidal Alfvén eigenmodes for which the polarization current nonlinearity [T. S. Hahm and L. Chen, Phys. Rev. Lett. 74, 266 (1995)] and the usual finite Larmor radius effects should compete.

  12. A magnetospheric critical velocity experiment - Particle results

    NASA Technical Reports Server (NTRS)

    Torbert, R. B.; Newell, P. T.

    1986-01-01

    In March of 1983, a barium injection sounding rocket experiment (The Star of Lima) was conducted to investigate Alfven's critical ionization velocity (CIV) hypothesis in space. Included in the instrumented payload was a particle detection experiment consisting of five retarding potential analyzers. Despite conditions that appeared to be optimal for the critical velocity effect, the particle data, in agreement with optical observations, indicates that a fractional ionization of only approximately .0005 was observed, indicating that the conditions required for the effect to occur are still not well understood. However many of the required phenomena associated with the CIV effect were observed; in particular a superthermal electron population was formed at the expense of ion drift kinetic energy in the presence of intense electrostatic waves near the lower hybrid frequency. The amount of ionization produced is plausibly consistent with the observed electron flux, but could also be accounted for by residual solar UV at the injection point. It is shown based on the data set that one obvious explanation for the low ionization efficiency, namely that the ionizing superthermal electrons may rapidly escape along field lines, can be ruled out.

  13. A new rf structure for intermediate-velocity particles

    SciTech Connect

    Billen, J.H.; Krawczyk, F.L.; Wood, R.L.; Young, L.M.

    1994-09-01

    This paper describes an rf structure with high shunt impedance and good field stability for particle velocities o.1 {le} {beta} {le} 0.5. Traditionally, the drift-tube linac (DTL) has been the structure of choice for this velocity range. The new structure, called a coupled-cavity drift-tube linac (CCDTL), combines features of the Alvarez DTL and the {pi}-mode coupled-cavity linac (CCL). Each accelerating cavity is a two-cell, 0-mode DTL. The center-to-center distance between gaps is {gamma}{lambda}. Adjacent accelerating cavities have oppositely directed electric fields, alternating in phase by 180{degrees}. The chain of cavities operates in a {pi}/2 structure mode so the coupling cavities are nominally unexcited. We will discuss 2-D and 3-D electromagnetic code calculations, and some initial measurements on a low-power model of a CCDTL. We will compare shunt impedance calculations for DTL, CCL, and CCDTL structures. The CCDTL has potential application for a wide range of ion linacs. For example, high-intensity proton linacs could use the CCDTL instead of a DTL up to an energy of about 200 MeV. Another example is a stand-alone, low-duty, low-current, very high gradient, proton, cancer therapy machine. The advantage for this application would be a saving in the cost of the machine because the linac would be short.

  14. Magnetic conjugate point observations of kilometer and hundred-meter scale irregularities and zonal drifts

    NASA Astrophysics Data System (ADS)

    de Paula, E. R.; Muella, M. T. A. H.; Sobral, J. H. A.; Abdu, M. A.; Batista, I. S.; Beach, T. L.; Groves, K. M.

    2010-08-01

    The Conjugate Point Equatorial Experiment (COPEX) campaign was carried out in Brazil, between October and December 2002, to study the conjugate nature of plasma bubble irregularities and to investigate their generation mechanisms, development characteristics, spatial-temporal distribution, and dynamics. In this work we will focus mainly on the zonal spaced GPS (1.575 GHz) and VHF (250 MHz) receivers' data collected simultaneously at two magnetic conjugate sites of the COPEX geometry: Boa Vista and Campo Grande. These GPS/VHF receivers were set up to detect the equatorial scintillations and to measure ionospheric scintillation pattern velocities. Then, the zonal irregularity drift velocities were estimated by applying a methodology that corrects the effects caused by vertical drifts and geometrical factors. The results reveal the coexistence of kilometer- (VHF) and hundred-meter-scale (GPS L-band) irregularities into the underlying depletion structure. Over the conjugate site of Campo Grande, the average zonal velocity at VHF seems to be consistently larger than the estimated GPS velocities until ˜0200 UT, whereas over Boa Vista the irregularities detected from both techniques are drifting with comparable velocities. The hundred-meter-scale structures causing L-band scintillations appear to be drifting with comparable velocities over both the conjugate sites, whereas the kilometer-scale structures are drifting over Campo Grande with larger average velocities (before 0300 UT). Complementary data of ionospheric parameters scaled from collocated digital ionosondes are used in the analysis to explain differences/similarities on the scintillation/zonal drift results.

  15. Fingermark ridge drift.

    PubMed

    De Alcaraz-Fossoul, Josep; Roberts, Katherine A; Feixat, Carme Barrot; Hogrebe, Gregory G; Badia, Manel Gené

    2016-01-01

    Distortions of the fingermark topography are usually considered when comparing latent and exemplar fingerprints. These alterations are characterized as caused by an extrinsic action, which affects entire areas of the deposition and alters the overall flow of a series of contiguous ridges. Here we introduce a novel visual phenomenon that does not follow these principles, named fingermark ridge drift. An experiment was designed that included variables such as type of secretion (eccrine and sebaceous), substrate (glass and polystyrene), and degrees of exposure to natural light (darkness, shade, and direct light) indoors. Fingermarks were sequentially visualized with titanium dioxide powder, photographed and analyzed. The comparison between fresh and aged depositions revealed that under certain environmental conditions an individual ridge could randomly change its original position regardless of its unaltered adjacent ridges. The causes of the drift phenomenon are not well understood. We believe it is exclusively associated with intrinsic natural aging processes of latent fingermarks. This discovery will help explain the detection of certain dissimilarities at the minutiae/ridge level; determine more accurate "hits"; identify potentially erroneous corresponding points; and rethink identification protocols, especially the criteria of "no single minutiae discrepancy" for a positive identification. PMID:26646735

  16. Double-hump H+ velocity distribution in the polar wind

    NASA Astrophysics Data System (ADS)

    Barakat, A. R.; Barghouthi, I. A.; Schunk, R. W.

    The polar wind is an ambipolar plasma outflow from the terrestrial ionosphere at high latitudes. As the ions drift upward along geomagnetic flux tubes, they move from collision-dominated (ion barosphere) to collisionless (ion exosphere) regions. A transition layer is embedded between these two regions where the ion characteristics change rapidly. A Monte Carlo simulation was used to study the steady-state flow of H+ ions through a background of O+ ions. The simulation domain covered the collision-dominated, transition, and collisionless regions. The model properly accounted for the divergence of magnetic field lines, the gravitational force, the electrostatic field, and H+-O+ collisions. The H+ velocity distribution, f(H+), was found to be very close to Maxwellian at low altitudes (deep in the barosphere). As the ions drifted to higher altitudes, f(H+) formed an upward tail. In the transition layer, the upward tail evolved into a second peak with a kidney bean shape, and hence, f(H+) developed a double-humped shape. The second peak grew with altitude and eventually became dominant as the ions reached the exosphere. This behavior is due to the interplay between the electrostatic force and the velocity-dependent Coulomb collisions. Moreover, the H+ heat flux, q(H+), was found to change rapidly with altitude in the transition layer from a positive maximum to a negative minimum. This remarkable feature of q(H+) is closely related to the coincident formation of the double-humped structure of f(H+). The double-hump distribution might destabilize the plasma or, at least, cause enhanced thermal fluctuations. The double-hump f(H+), and the associated wave turbulence, have several consequences with regard to our understanding of the polar wind and similar space physics problems. The plasma turbulence can significantly alter the behavior of the plasma in and above the transition region and, therefore, should be considered in future polar wind models. The wave turbulence can serve as a signature for the formation of the double-hump f(H+). Also, more sophisticated (than the existing bi-Maxwellian 16-moment) generalized transport equations might be needed to properly handle problems such as the one considered here.

  17. Zonal flow excitation by drift waves in toroidal plasmas

    SciTech Connect

    L Chen; Z. Lin; R. White

    2000-06-13

    Recent 3D gyrokinetic and gyrofluid simulations in toroidal plasmas have demonstrated that zonal flows play a crucial role in regulating the nonlinear evolution of electrostatic drift-wave instabilities such as the ion temperature gradient (ITG) modes and, as a consequence, the level of the anomalous ion thermal transport, and that zonal flows could be spontaneously excited by ITG turbulence, suggesting parametric instability processes as the generation mechanism. Diamond et. al. have proposed the modulational instability of drift-wave turbulence ( plasmons ) in a slab-geometry treatment.

  18. Drift-Scale Radionuclide Transport

    SciTech Connect

    J. Houseworth

    2004-09-22

    The purpose of this model report is to document the drift scale radionuclide transport model, taking into account the effects of emplacement drifts on flow and transport in the vicinity of the drift, which are not captured in the mountain-scale unsaturated zone (UZ) flow and transport models ''UZ Flow Models and Submodels'' (BSC 2004 [DIRS 169861]), ''Radionuclide Transport Models Under Ambient Conditions'' (BSC 2004 [DIRS 164500]), and ''Particle Tracking Model and Abstraction of Transport Process'' (BSC 2004 [DIRS 170041]). The drift scale radionuclide transport model is intended to be used as an alternative model for comparison with the engineered barrier system (EBS) radionuclide transport model ''EBS Radionuclide Transport Abstraction'' (BSC 2004 [DIRS 169868]). For that purpose, two alternative models have been developed for drift-scale radionuclide transport. One of the alternative models is a dual continuum flow and transport model called the drift shadow model. The effects of variations in the flow field and fracture-matrix interaction in the vicinity of a waste emplacement drift are investigated through sensitivity studies using the drift shadow model (Houseworth et al. 2003 [DIRS 164394]). In this model, the flow is significantly perturbed (reduced) beneath the waste emplacement drifts. However, comparisons of transport in this perturbed flow field with transport in an unperturbed flow field show similar results if the transport is initiated in the rock matrix. This has led to a second alternative model, called the fracture-matrix partitioning model, that focuses on the partitioning of radionuclide transport between the fractures and matrix upon exiting the waste emplacement drift. The fracture-matrix partitioning model computes the partitioning, between fractures and matrix, of diffusive radionuclide transport from the invert (for drifts without seepage) into the rock water. The invert is the structure constructed in a drift to provide the floor of the drift. The reason for introducing the fracture-matrix partitioning model is to broaden the conceptual model for flow beneath waste emplacement drifts in a way that does not rely on the specific flow behavior predicted by a dual continuum model and to ensure that radionuclide transport is not underestimated. The fracture-matrix partitioning model provides an alternative method of computing the partitioning of radionuclide releases from drifts without seepage into rock fractures and rock matrix. Drifts without seepage are much more likely to have a significant fraction of radionuclide releases into the rock matrix, and therefore warrant additional attention in terms of the partitioning model used for TSPA.

  19. Quantitative velocity modulation spectroscopy

    NASA Astrophysics Data System (ADS)

    Hodges, James N.; McCall, Benjamin J.

    2016-05-01

    Velocity Modulation Spectroscopy (VMS) is arguably the most important development in the 20th century for spectroscopic study of molecular ions. For decades, interpretation of VMS lineshapes has presented challenges due to the intrinsic covariance of fit parameters including velocity modulation amplitude, linewidth, and intensity. This limitation has stifled the growth of this technique into the quantitative realm. In this work, we show that subtle changes in the lineshape can be used to help address this complexity. This allows for determination of the linewidth, intensity relative to other transitions, velocity modulation amplitude, and electric field strength in the positive column of a glow discharge. Additionally, we explain the large homogeneous component of the linewidth that has been previously described. Using this component, the ion mobility can be determined.

  20. Obliquely propagating ion acoustic waves in the auroral E region: Further evidence of irregularity production by field-aligned electron streaming

    SciTech Connect

    Villain, J.P. ); Hanuise, C. ); Greenwald, R.A.; Baker, K.B.; Ruohoniemi, J.M. )

    1990-06-01

    Common volume observations of E region high-latitude irregularities at decameter wavelengths have been obtained with the JHU/APL HF radar located at Goose Bay, Labrador, and the SHERPA HF radar located at Schefferville, Quebec. In this paper, the authors analyze an event with characteristics similar to those of a distinctive type of event described by Villain et al. (1987). The experimental configuration, which combines the azimuthal-scanning capability of the Goose Bay radar with the frequency-scanning operation of the Schefferville radar, has provided unambiguous evidence of the existence of two irregularity layers at different altitudes within the E region. The layers, which exhibit different characteristics, can be related to the action of the gradient drift and ion acoustic instability mechanisms. It is shown that the ion acoustic modes have phase velocities in the range of 400 to 550 m/s and are produced in regions of subcritical perpendicular electron Hall drift. They infer that the observed irregularities are produced through a combination of perpendicular and field-aligned relative electron-ion drifts. Features previously observed but no t satisfactorily explained by perpendicular drift excitation alone can be understood in terms of field-aligned drift excitation. They conclude that the role of electron-ion field-aligned drift may be much more important than previously realized.

  1. Ions

    MedlinePlus

    ... normal substances exist in the body as ions. Common examples include sodium, potassium, calcium, chloride, and bicarbonate. These substances are known as electrolytes . Ions can be created using radiation such as ...

  2. Structure of kinetic/non-kinetic scale velocity shear layers and associated Kelvin-Helmholtz vortices: particle simulations

    NASA Astrophysics Data System (ADS)

    Nakamura, T.; Hasegawa, H.; Shinohara, I.

    2009-12-01

    Recent in-situ observations have revealed that Kelvin-Helmholtz (KH) vortices can roll-up not only at the Earth's magnetopause but also at the Mercury's magnetopause. Since kinetic effects cannot be neglected in Mercury-like small-scale situations, to universally understand the structure of the KH vortex the kinetic effects should be considered. Thus, in this study, we have performed 2D full particle (EM-PIC) simulations of KH vortices arising from kinetic and non-kinetic scale velocity shear layers. In this study, we focus on the basic situation in which the initial density, temperature and magnetic field are uniform and the magnetic field is perpendicular to the k-vector of KH instability. First, we investigated the kinetic equilibrium of velocity shear layers. In our simulation settings, particles are initialized with shifted Maxwellian velocity distributions having a bulk flow Vx0=±V0*tanh(Y/D0), where D0 is the initial half thickness of the velocity shear layer and V0 is the initial velocity jump across the shear layer. The +V0 (-V0) case corresponds to the dawn (dusk) case of the Earth’s and Mercury's situations. The Maxwellian loading of the particles, however, is only an approximation of equilibrium conditions, and past kinetic studies have shown that the true equilibrium condition is affected by the ion gyro-motion especially when D0<ρi, where ρi is the ion gyro radius. In this study, to exactly understand ion kinetic effects to the true equilibrium of various-scale velocity shear layer, we performed a parameter survey of D0 and V0. As a result, we found that in all cases until about 10 ion gyro-cycles the shear layer reaches the kinetic equilibrium, and further that when D0<ρi the thickness of the shear layer in the kinetic equilibrium always becomes 2ρi. It means there is a low threshold of the velocity shear layer which is determined by ρi. Moreover, we also found that the low threshold of the thickness in the dawn (dusk) case becomes thicker (thinner) as V0/Vthi increases, where Vthi is the ion thermal speed. This is because gyro-radii of ions which cross the boundary become larger (smaller) by the outward (inward) convection electric field in the dawn (dusk) case. Next, we investigated the evolution process of the KHI arising from kinetic and non-kinetic scale velocity shear layers. We first found that the linear growth rates of KHI are not affected by kinetic effects even when D0<ρi. This is because before the KHI onset, the velocity shear layer reaches the true kinetic equilibrium and is flattened to 2ρi. We next found that the ion rotation speed of the KH vortex flow in the dawn (dusk) case is larger (smaller) than the electron rotation speed. This result can be explained by the centrifugal drift for ions; since the directions of the centrifugal force in both cases are outward from the vortex centers, the directions of the centrifugal drift are different according to the rotation directions of vortices. In the dawn (dusk) case, the ion centrifugal drift strengthens (weakens) the ion rotation speed. Note that this centrifugal drift effect becomes larger as the vortex size becomes smaller. In our presentation, we will discuss the application of these results to the Earth's and Mercury's magnetopause.

  3. Interferometric phase velocity measurements in the auroral electrojet

    NASA Technical Reports Server (NTRS)

    Labelle, J.; Kintner, P. M.; Kelley, M. C.

    1986-01-01

    A double-probe electric field detector and two spatially separated fixed-bias Langmuir probes were flown on a Taurus-Tomahawk sounding rocket launched from Poker Flat Research Range in March 1982. Interesting wave data have been obtained from about 10s of the downleg portion of the flight during which the rocket passed through the auroral electrojet. Here the electric field receiver and both density fluctuation (delta-n/n) receivers responded to a broad band of turbulence centered at 105 km-altitude and at frequencies generally below 4 kHz. Closer examination of the two delta-n/n turbulent waveforms reveals that they are correlated; from the phase difference between the two signals, the phase velocity of the waves in the rocket reference frame is inferred. The magnitude and direction of the observed phase velocity are consistent either with waves which travel at the ion sound speed or with waves which travel at the electron drift velocity. The observed phase velocity varies by about 50 percent over a 5 km altitude range, an effect which probably results from shear in the zonal neutral wind, although, unfortunately, no simultaneous neutral wind measurements exist to confirm this.

  4. Study of magnetic field enhanced plasma immersion ion implantation in Silicon

    NASA Astrophysics Data System (ADS)

    Pillaca, E. J. D. M.; Kostov, K. G.; Ueda, M.

    2014-05-01

    A comparison between experimental measurements and numerical calculations of the ion current distribution in plasma immersion ion implantation (PIII) with external magnetic field is presented. Later, Silicon samples were implanted with nitrogen ion to analyze the effect on them. The magnetic field considered is essentially non-uniform and is generated by two magnetic coils installed on vacuum chamber. The presence of both, electric and magnetic field in PIII create a crossed ExB field system, promoting drift velocity of the plasma around the target. The results found shows that magnetized electrons drifting in ExB field provide electron-neutral collision. The efficient ionization increases the plasma density around the target where a magnetic confinement is formed. As result, the ion current density increases, promoting significant changes in the samples surface properties, especially in the surface wettability.

  5. Model etch profiles for ion energy distribution functions in an inductively coupled plasma reactor

    SciTech Connect

    Chen, W.; Abraham-Shrauner, B.; Woodworth, J.R.

    1999-09-01

    Rectangular trench profiles are modeled with analytic etch rates determined from measured ion distribution functions. The pattern transfer step for this plasma etch is for trilayer lithography. Argon and chlorine angular ion energy distribution functions measured by a spherical collector ring analyzer are fit to a sum of drifting Maxwellian velocity distribution functions with anisotropic temperatures. The fit of the model ion distribution functions by a simulated annealing optimization procedure converges adequately for only two drifting Maxwellians. The etch rates are proportional to analytic expressions for the ion energy flux. Numerical computation of the etch profiles by integration of the characteristic equations for profile points and connection of the profiles points is efficient. {copyright} {ital 1999 American Vacuum Society.}

  6. Laser light-induced drift of radioactive {sup 22}Na and {sup 24}Na

    SciTech Connect

    Gangrskii, Y.P.; Zemlyanoi, S.G.; Zuzaan, P.

    1994-09-01

    Laser light-induced drift of {sup 22}Na and {sup 24}Na in Kr as the buffer gas is investigated. The resonance frequency at which the {sup 22}Na and {sup 24}Na atoms drift in opposite directions is determined for the D{sub 2} line. The distribution of both isotopes along the drift tube was measured at 300 K and 1000 K. These measurements were performed by recording the {gamma}-rays emitted as the isotopes decay. An isotope separation factor of up to 20 with an efficiency of 50% and drift velocity of 1.1 m/s was achieved. 14 refs., 3 figs., 1 tab.

  7. Drift dynamics of larval pallid sturgeon and shovelnose sturgeon in a natural side channel of the Upper Missouri River, Montana

    USGS Publications Warehouse

    Braaten, P.J.; Fuller, D.B.; Holte, L.D.; Lott, R.D.; Viste, W.; Brandt, T.F.; Legare, R.G.

    2008-01-01

    The drift dynamics of larval shovelnose sturgeon Scaphirhynchus platorynchus (1, 2, 6, and 10 d posthatch [dph]) and pallid sturgeon S. albus (1, 2, 5, 9, 11, and 17 dph) were examined in a natural side channel of the Missouri River to quantify the vertical drift location of larvae in the water column, determine the drift velocity of larvae relative to water velocity, and simulate the cumulative distance (km) drifted by larvae during ontogenetic development. Larvae were released at the side-channel inlet and sampled at points 100, 500, 900, and 1,300 m downstream. Larvae drifted primarily near the riverbed, as 58-79% of recaptured shovelnose sturgeon and 63-89% of recaptured pallid sturgeon were sampled in the lower 0.5 m of the water column. The transition from the drifting to the benthic life stage was initiated at 6 dph (mean length, 15.6 mm) for shovelnose sturgeon and at 11-17 dph (mean length, 18.1-20.3 mm) for pallid sturgeon. Across ages, the drift rates of larval shovelnose sturgeon averaged 0.09-0.16 m/s slower than the mean water column velocity. The drift rates of pallid sturgeon were similar to or slightly slower (0.03-0.07 m/s) than the mean water column velocity for 1-11-dph larvae. Conversely, 17-dph larval pallid sturgeon dispersed downstream at a much slower rate (mean, 0.20 m/s slower than the mean water column velocity) owing to their transition to benthic habitats. Drift simulations indicated that the average larval shovelnose sturgeon may drift from 94 to 250 km and the average larval pallid sturgeon may drift from 245 to 530 km, depending on water velocity. Differences in larval drift dynamics between species provide a possible explanation for differences in recruitment between shovelnose sturgeon and pallid sturgeon in the upper Missouri River. ?? Copyright by the American Fisheries Society 2008.

  8. Progress in semiconductor drift detectors

    SciTech Connect

    Rehak, P.; Walton, J.; Gatti, E.; Longoni, A.; Sanpietro, M.; Kemmer, J.; Dietl, H.; Holl, P.; Klanner, R.; Lutz, G.

    1985-01-01

    Progress in testing semiconductor drift detectors is reported. Generally better position and energy resolutions were obtained than resolutions published previously. The improvement is mostly due to new electronics better matched to different detectors. It is shown that semiconductor drift detectors are becoming versatile and reliable detectors for position and energy measurements.

  9. Strange Attractors in Drift Wave Turbulence

    SciTech Connect

    Jerome L.V. Lewandowski

    2003-09-03

    There are growing experimental, numerical and theoretical evidences that the anomalous transport observed in tokamaks and stellarators is caused by slow, drift-type modes (such as trapped electron modes and ion-temperature gradient-driven modes). Although typical collision frequencies in hot, magnetized fusion plasmas can be quite low in absolute values, collisional effects are nevertheless important since they act as dissipative sinks. As it is well known, dissipative systems with many (strictly speaking more than two) degrees of freedom are often chaotic and may evolve towards a so-called attractor.

  10. A drift model of interchange instability

    SciTech Connect

    Benilov, E. S.; Power, O. A.

    2007-08-15

    A set of asymptotic equations is derived, describing the dynamics of the flute mode in a magnetized plasma with cold ions, under a 'local' approximation (i.e., near a particular point). The asymptotic set is then used to calculate the growth rate of interchange instability in the slab model. It is shown that, unlike the magnetohydrodynamic ordering, the drift one allows instability to occur for either sign of the pressure gradient (i.e., for both 'bad' and 'good' curvature of the magnetic field). It is also demonstrated that finite beta gives rise to an extra instability that does not exist in the small-beta limit.

  11. Effects of grids in drift tubes

    SciTech Connect

    Okamura M.; Yamauchi, H.

    2012-05-20

    In 2011, we upgraded a 201 MHz buncher in the proton injector for the alternating gradient synchrotron (AGS) - relativistic heavy ion collider (RHIC) complex. In the buncher we installed four grids made of tungsten to improve the transit time factor. The grid installed drift tubes have 32 mm of inner diameter and the each grid consists of four quadrants. The quadrants were cut out precisely from 1mm thick tungsten plates by a computerized numerically controlled (CNC) wire cutting electrical discharge machining (EDM). The 3D electric field of the grid was simulated.

  12. Heating and acceleration of solar wind ions by turbulent wave spectrum in inhomogeneous expanding plasma

    NASA Astrophysics Data System (ADS)

    Ofman, Leon; Ozak, Nataly; Viñas, Adolfo F.

    2016-03-01

    Near the Sun (< 10Rs) the acceleration, heating, and propagation of the solar wind are likely affected by the background inhomogeneities of the magnetized plasma. The heating and the acceleration of the solar wind ions by turbulent wave spectrum in inhomogeneous plasma is studied using a 2.5D hybrid model. The hybrid model describes the kinetics of the ions, while the electrons are modeled as massless neutralizing fluid in an expanding box approach. Turbulent magnetic fluctuations dominated by power-law frequency spectra, which are evident from in-situ as well as remote sensing measurements, are used in our models. The effects of background density inhomogeneity across the magnetic field on the resonant ion heating are studied. The effect of super-Alfvénic ion drift on the ion heating is investigated. It is found that the turbulent wave spectrum of initially parallel propagating waves cascades to oblique modes, and leads to enhanced resonant ion heating due to the inhomogeneity. The acceleration of the solar wind ions is achieved by the parametric instability of large amplitude waves in the spectrum, and is also affected by the inhomogeneity. The results of the study provide the ion temperature anisotropy and drift velocity temporal evolution due to relaxation of the instability. The non-Maxwellian velocity distribution functions (VDFs) of the ions are modeled in the inhomogeneous solar wind plasma in the acceleration region close to the Sun.

  13. Instability Caused by Dust Drift and the Observed Polar Mesospheric Summer Echoes (PMSE's)

    NASA Astrophysics Data System (ADS)

    Tsytovich, V. N.; Havnes, O.

    2002-12-01

    Observations show that the Polar Mesopause Summer Echoes (PMSE's) radar scattering layers near the Earth mesopause are strongly linked to the dust layer in the same hight region [1]. No single mechanism has been found which is capable of explaining the PMSE over large frequency range and different atmospheric conditions at which it has been observed. One possible explanation in the high frequency range around 1 GH is the non-coherent scattering on the non-linear plasma screening clouds around dust particles [2]. This requires that a < λD (a is the size of the grains, λD is the Debye radius) and that P = ndZd/ni is close to 1. New simultaneous and common volume observations by radars at 50 MHz and by rockets show that PMSE can also occur for P << 1 and that the reflected signal rise rapidly with dust charge density as P increases in the range below about 0.1. This may be an indication that some instability caused by dust is developing. In the regions of PMSE's the ion-dust mean free path λid = λD2/aP is 6 orders of magnitude larger than the ion-neutral mean free path λin and most instabilities are damped by high rate of ion-neutral collisions. We investigate the role of gravity forced dust drift in typical conditions (nn ≈ 1014 cm-3, T ≈ 100° K, a ≈ 0.01 μm with the falling velocity ≈ 20cm/s thermal dust velocity of the order of 50 cm/s). The gravity balance, the condition of charge neutrality and the balance of ionization and absorption on dust is taken into account. In the dispersion equation we include account the changes in dust charges, the ion-neutral collisions, the ion and electron pressures, the dust-ion drag and the dust inertia. We find an instability of dissipative type caused by the dust drift, dust charge variations and dust drag. The instability develops in broad range of wave lengths with threshold for typical parameters being estimated as λ > 10cm(1/√P ). For P = 0.01 (approximately the lowest value observed) this corresponds to 1 m which is much shorter than the wavelength (6 m) at which the observations of PMSE for the low P-value were done. The growth rate is estimated to be developing in ≈ 200 s during which the dust falls 50m while the thickness of PMSE layer is from several hundred meters to several kilometers. The instability operates till λmax ≈ 30 m.

  14. Weddell Sea ice drift: Kinematics and wind forcing

    NASA Astrophysics Data System (ADS)

    Vihma, Timo; Launiainen, Jouko; Uotila, Juha

    1996-08-01

    Ice drift in the Weddell Sea was studied on the basis of positional and meteorological data from Argos buoys drifting in 1990-1992 and surface pressure analyses from the European Centre for Medium Range Weather Forecasts (ECMWF). The drift kinematics showed differences between the eastern and western parts of the Weddell Sea. Close to the Antarctic Peninsula, the ice drifted as an almost nonrotating uniform field at a low speed, having reduced small-scale motions with little meandering, compared to regions further to the east. Inertial motion was detected from the ice drift in areas east of 35°W and in the region of the Antarctic Circumpolar Current. On timescales of days, wind was the primary forcing factor for the drift. A linear model between the wind and ice drift explained 40-80% of the drift velocity variance. The degree of explanation was higher in the central Weddell Sea (around 40°W) and lower closer to the Antarctic Peninsula. The geostrophic wind was found to provide almost as good a basis for the general drift estimation as the surface wind observed by the buoys, although strong cyclones were not well detected by the ECMWF analyses. The data suggest a dependency upon atmospheric stability such that stable stratification reduces the wind forcing on the drift. For 60-80% of the time the direction of the drift deviated less than 45° from the geostrophic wind and for 45-70% of the time less than 45° from the ocean current. Ice transport through a transect crossing the Weddell Sea from the Antarctic Peninsula tip to Kapp Norwegia was estimated on the basis of the geostrophic winds, the drift's observed response to the wind, and literature-based information on ice concentration and thickness. The estimated annual mean net export in 1992-1994 varied from 8000 to 22,000 m3/s. Most of the net export took place in winter and spring, export prevailing west of 35°W and import east of it.

  15. Equatorial ionospheric zonal drift by monitoring local GPS reference networks

    NASA Astrophysics Data System (ADS)

    Ji, Shengyue; Chen, Wu; Ding, Xiaoli; Zhao, Chunmei

    2011-08-01

    The propagation of electromagnetic waves through the turbulent ionosphere produces scintillations through diffraction, and understanding the physical nature of scintillations is important for engineers and technologists as well as for scientists. In recent years, the establishment of the Global Positioning System (GPS) provided a new technique that can be used to study ionospheric scintillations. The usual way of doing that is the deployment of GPS receivers closely spaced in east-west magnetic direction and then estimating the zonal drift velocities based on the signal power observations. One of the weaknesses of this method is that high-rate sampling such as 20 Hz is required for close-spaced stations and generally no such data are available for studying ionospheric scintillation in the past years. In this research work, a scintillation monitoring method based on slant TEC (STEC) observations of local GPS Continuously Operating Reference Station (CORS) network is proposed. First, the past research works on the equatorial ionospheric drift velocities are summarized. Then, by comparing the scintillation pattern of the signal power and STEC observations of California local GPS reference network, we find that the STEC is a good choice for estimating the ionospheric zonal drift velocity. Then it is illustrated how to calculate the ionospheric scintillation velocity based on STEC. Finally, the proposed method is applied to Hong Kong GPS reference network and several cases of the calculated ionospheric zonal velocities are given.

  16. Effect of solenoidal magnetic field on drifting laser plasma

    SciTech Connect

    Takahashi, Kazumasa; Sekine, Megumi; Okamura, Masahiro; Cushing, Eric; Jandovitz, Peter

    2013-04-19

    An ion source for accelerators requires to provide a stable waveform with a certain pulse length appropriate to the application. The pulse length of laser ion source is easy to control because it is expected to be proportional to plasma drifting distance. However, current density decay is proportional to the cube of the drifting distance, so large current loss will occur under unconfined drift. We investigated the stability and current decay of a Nd:YAG laser generated copper plasma confined by a solenoidal field using a Faraday cup to measure the current waveform. It was found that the plasma was unstable at certain magnetic field strengths, so a baffle was introduced to limit the plasma diameter at injection and improve the stability. Magnetic field, solenoid length, and plasma diameter were varied in order to find the conditions that minimize current decay and maximize stability.

  17. Ion Loss as Intrinsic Momentum Source in Tokamaks

    NASA Astrophysics Data System (ADS)

    Boedo, J. A.

    2013-10-01

    Measurements of D+ parallel velocity at the DIII-D edge are consistent with the kinetic loss of thermal ions as the mechanism for edge momentum generation. Edge velocity profiles exhibit a co-Ip peak velocity of 40-60 km/s in OH, L- and H-mode. The flow layer acts as a robust boundary value not affected by NBI injection. D+ velocity measurements are compared to a first-principles, collisionless, kinetic model predicting the existence of a loss-cone distribution in velocity space resulting in a co-Ip directed velocity. A fine Er structure, found by probes, has 10-20 kV/m peaks in the scrape-off layer (SOL) and LCFS and when incorporated in the kinetic model, results in: 1) ~30%-50% increase in the peak parallel velocity over the zero field case and, 2) broadened rotation profile into the SOL. The model-data agreement shows this mechanism is important, competing with pre-sheath acceleration and Pfirsch-Schluter drives. Computations with XGC0, a full-f particle-in-cell drift-kinetic solver with collisional kinetic ions and electrons, and NEO, a drift kinetic code with multiple species and linearized F-P collisions confirms the relevance of the ion orbit loss the impact of kinetic effects on Er and the measured C6+ and D+ velocities inside the LCFS. Work supported by the US DOE under DE-FG02-07ER54917, DE-FC02-08ER54977, & DE-FC02-04ER54698.

  18. Electrodeless drift chambers with 50-cm drift distance

    SciTech Connect

    Ayres, D.S.; Price, L.E.

    1982-08-01

    The electrodeless drift-chamber technique is potentially very useful in applications requiring the drifting of ionization in gas over long distances in narrow channels. Chamber construction is simple and cheap; the technique is well suited to very large detectors operating in low-rate environments. Prototype tests on planar chambers reveal excellent drifting characteristics after the initial charging, but show a substantial degradation of pulse height from cosmic rays over a two-week period. The loss of efficiency appears to be caused by excess charge buildup on the dielectric surfaces of the chamber. Several solutions are suggested.

  19. An experimental test and models of drift and dispersal processes of pallid sturgeon (Scaphirhynchus albus) free embryos in the Missouri River

    USGS Publications Warehouse

    Braaten, P.J.; Fuller, D.B.; Lott, R.D.; Ruggles, M.P.; Brandt, T.F.; Legare, R.G.; Holm, R.J.

    2012-01-01

    Free embryos of wild pallid sturgeon Scaphirhynchus albus were released in the Missouri River and captured at downstream sites through a 180-km reach of the river to examine ontogenetic drift and dispersal processes. Free embryos drifted primarily in the fastest portion of the river channel, and initial drift velocities for all age groups (mean = 0.66–0.70 m s−1) were only slightly slower than mean water column velocity (0.72 m s−1). During the multi-day long-distance drift period, drift velocities of all age groups declined an average of 9.7% day−1. Younger free embryos remained in the drift upon termination of the study; whereas, older age groups transitioned from drifting to settling during the study. Models based on growth of free embryos, drift behavior, size-related variations in drift rates, and channel hydraulic characteristics were developed to estimate cumulative distance drifted during ontogenetic development through a range of simulated water temperatures and velocity conditions. Those models indicated that the average free embryo would be expected to drift several hundred km during ontogenetic development. Empirical data and model results highlight the long-duration, long-distance drift and dispersal processes for pallid sturgeon early life stages. In addition, results provide a likely mechanism for lack of pallid sturgeon recruitment in fragmented river reaches where dams and reservoirs reduce the length of free-flowing river available for pallid sturgeon free embryos during ontogenetic development.

  20. Drift-pump coil design for a tandem mirror reactor

    SciTech Connect

    Logan, B.G.; Neef, W.S.

    1983-12-01

    This paper describes both the theory and mechanical design behind a new concept for trapped ion removal from tandem mirror end plugs. The design has been developed for the Mirror Advanced Reactor Study (MARS). The new drift-pump coils replace charge-exchange pump beams. Pump beams consume large amounts of power and seriously reduce reactor performance. Drift-pump coils consume only a few megawatts of power and introduce no added burden to the reactor vacuum pumps. In addition, they are easy to replace. The coils are similar in shape to a paper clip and are located at two positions in each end plug. The coils between the transition coil and the first anchor yin-yang serve to remove ions trapped in the magnetic well just outboard of the high field choke coil. The coils located between the anchor coil set and the plug coil set remove sloshing ions and trapped cold ions from the plug region.

  1. A parametric study of the drift-tearing mode using an extended-magnetohydrodynamic model

    SciTech Connect

    King, J. R.; Kruger, S. E.

    2014-10-15

    The linear, collisional, constant-ψ drift-tearing mode is analyzed for different regimes of the plasma-β, ion-skin-depth parameter space with an unreduced, extended-magnetohydrodynamic model. New dispersion relations are found at moderate plasma β and previous drift-tearing results are classified as applicable at small plasma β.

  2. Theory of semicollisional drift-interchange modes in cylindrical plasmas

    SciTech Connect

    Hahm, T.S.; Chen, L.

    1985-01-01

    Resistive interchange instabilities in cylindrical plasmas are studied, including the effects of electron diamagnetic drift, perpendicular resistivity, and plasma compression. The analyses are pertinent to the semicollisional regime where the effective ion gyro-radius is larger than the resistive layer width. Both analytical and numerical results show that the modes can be completely stabilized by the perpendicular plasma transport. Ion sound effects, meanwhile, are found to be negligible in the semicollisional regime.

  3. A statistical analysis of systematic errors in temperature and ram velocity estimates from satellite-borne retarding potential analyzers

    SciTech Connect

    Klenzing, J. H.; Earle, G. D.; Heelis, R. A.; Coley, W. R.

    2009-05-15

    The use of biased grids as energy filters for charged particles is common in satellite-borne instruments such as a planar retarding potential analyzer (RPA). Planar RPAs are currently flown on missions such as the Communications/Navigation Outage Forecast System and the Defense Meteorological Satellites Program to obtain estimates of geophysical parameters including ion velocity and temperature. It has been shown previously that the use of biased grids in such instruments creates a nonuniform potential in the grid plane, which leads to inherent errors in the inferred parameters. A simulation of ion interactions with various configurations of biased grids has been developed using a commercial finite-element analysis software package. Using a statistical approach, the simulation calculates collected flux from Maxwellian ion distributions with three-dimensional drift relative to the instrument. Perturbations in the performance of flight instrumentation relative to expectations from the idealized RPA flux equation are discussed. Both single grid and dual-grid systems are modeled to investigate design considerations. Relative errors in the inferred parameters for each geometry are characterized as functions of ion temperature and drift velocity.

  4. Fast Correction Optics to Reduce Chromatic Aberrations in Longitudinally Compressed Ion Beams

    SciTech Connect

    Lidia, S.M.; Lee, E.P.; Ogata, D.; Seidl, P.A.; Waldron, W.L.; Lund, S.M.

    2009-04-30

    Longitudinally compressed ion beam pulses are currently employed in ion-beam based warm dense matter studies [1]. Compression arises from an imposed time-dependent longitudinal velocity ramp followed by drift in a neutralized channel. Chromatic aberrations in the final focusing system arising from this chirp increase the attainable beam spot and reduce the effective fluence on target. We report recent work on fast correction optics that remove the time-dependent beam envelope divergence and minimizes the beam spot on target. We present models of the optical element design and predicted ion beam fluence.

  5. Space-charge limiting currents in magnetically focused intense relativistic beams with an ion channel

    SciTech Connect

    Li Jianqing; Mo Yuanlong

    2006-12-15

    The intense relativistic beam propagation through the drift tube filled with background plasma is investigated. The self-consistent differential equations, which describe the laminar-flow equilibria state in magnetically focused relativistic beams with an ion channel, are presented. By solving these equations using the Runge-Kutta method, the azimuthal velocity, the axial velocity, and the electron beam density, which are functions of radial position, can be calculated. Then the space-charge limiting current and the externally applied magnetic field can be obtained for solid beams and hollow beams. In the case of plasma fill, the axial velocity of the laminar flow is a nonuniform radial profile. The simulated results show that the background plasma can increase the space-charge limiting current, reduce the externally applied magnetic field, and improve the electron beam propagation through the drift tube.

  6. HF Doppler observations of vertical plasma drifts in the evening F region at the equator

    SciTech Connect

    Jayachandran, B.; Balan, N.; Nampoothiri, S.P.; Rao, P.B. )

    1987-10-01

    Hf Doppler observations of vertical plasma drifts in the evening F region of the equatorial ionosphere at Trivandrum (8.5{degrees}N, 77{degrees}E; dip 0.9{degrees}S) are presented. The observations reveal a consistent pattern characterized by a post-sun-sent enhancement with peak drift velocity in the range 30-60 m s{sup {minus}1} for quiet conditions. Under moderately disturbed conditions, the enhancement is found to be down by as much as a factor of 2, while no such appreciable change is noted for highly disturbed conditions. The pattern of drift velocity dependence on magnetic activity is seen to be consistent with that of spread F occurrence. A striking feature of the observations is the presence of a significant fluctuating component in the drift velocity with quasiperiods ranging from a few minutes to a few tens of minutes during both quiet and disturbing periods.

  7. Imaging and Rapid-Scanning Ion Mass Spectrometer (IRM) for the CASSIOPE e-POP Mission

    NASA Astrophysics Data System (ADS)

    Yau, Andrew W.; Howarth, Andrew; White, Andrew; Enno, Greg; Amerl, Peter

    2015-06-01

    The imaging and rapid-scanning ion mass spectrometer (IRM) is part of the Enhanced Polar Outflow Probe (e-POP) instrument suite on the Canadian CASSIOPE small satellite. Designed to measure the composition and detailed velocity distributions of ions in the ˜1-100 eV/q range on a non-spinning spacecraft, the IRM sensor consists of a planar entrance aperture, a pair of electrostatic deflectors, a time-of-flight (TOF) gate, a hemispherical electrostatic analyzer, and a micro-channel plate (MCP) detector. The TOF gate measures the transit time of each detected ion inside the sensor. The hemispherical analyzer disperses incident ions by their energy-per-charge and azimuth in the aperture plane onto the detector. The two electrostatic deflectors may be optionally programmed to step through a sequence of deflector voltages, to deflect ions of different incident elevation out of the aperture plane and energy-per-charge into the sensor aperture for sampling. The position and time of arrival of each detected ion at the detector are measured, to produce an image of 2-dimensional (2D), mass-resolved ion velocity distribution up to 100 times per second, or to construct a composite 3D velocity distribution by combining successive images in a deflector voltage sequence. The measured distributions are then used to investigate ion composition, density, drift velocity and temperature in polar ion outflows and related acceleration and transport processes in the topside ionosphere.

  8. Drift-Kinetic Simulations of Neoclassical Transport

    SciTech Connect

    Belli, E. A.; Candy, J.

    2008-11-01

    We present results from numerical studies of neoclassical transport for multi-species plasmas. The code, NEO, provides a first-principles based calculation of the neoclassical transport coefficients directly from solution of the distribution function by solving a hierarchy of equations derived by expanding the fundamental drift-kinetic equation in powers of {rho}{sub *i}, the ratio of the ion gyroradius to system size. It extends previous studies by including the self-consistent coupling of electrons and multiple ion species and strong toroidal rotation effects. Systematic calculations of the second-order particle and energy fluxes and first-order plasma flows and bootstrap current and comparisons with existing theories are given for multi-species plasmas. The ambipolar relation {sigma}{sub a}z{sub a}{gamma}{sub a} = 0, which can only be maintained with complete cross-species collisional coupling, is confirmed. The effects of plasma shaping are also explored.

  9. Mechanisms and scalings of energetic ion transport via tokamak microturbulence

    SciTech Connect

    Hauff, T.; Jenko, F.

    2008-11-15

    The turbulent ExB advection of energetic ions in three-dimensional tokamak geometry is investigated both analytically and numerically. It is shown that orbit averaging (leading to a significant reduction of the diffusivity) is only valid for low magnetic shear. At moderate or high magnetic shear, a rather slow decrease of the diffusivity is found, proportional to (E/T{sub e}){sup -1} or (E/T{sub e}){sup -1.5} for particles with a large or small parallel velocity component, respectively. The decorrelation mechanisms responsible for this behavior are studied and explained in detail. Moreover, it is found that resonances between the toroidal drift of the particles and the diamagnetic drift of the turbulence can lead to an enhancement of the fast ion transport.

  10. Effects of Solar Energetic Particle deceleration due to drift

    NASA Astrophysics Data System (ADS)

    Dalla, Silvia; Marsh, Micheal S.; Laitinen, Timo

    2015-04-01

    Solar Energetic Particles (SEPs) experience deceleration during their propagation through the interplanetary magnetic field (IMF). Adiabatic deceleration has been known for decades to be an important process that influences SEP intensity profiles and spectra, and needs to be properly accounted for in models.Recently we have shown that drifts due to the gradient and curvature of the large scale Parker IMF cause SEP cross-field transport of a nearly symmetric nature in the heliolongitudinal direction and asymmetric in the heliolatitudinal one. As a result of the latitudinal drift, SEPs move in the direction opposite to that of the solar wind electric field and experience deceleration.Drift-induced deceleration is not accounted for by focussed transport approaches that neglect drift velocities within their spatial convection term, i.e. it is not included in the majority of current SEP models, on which interpretations of SEP data are based.Here we use 3D full orbit test particle simulations to demonstrate the effect of drift-induced deceleration on SEP populations injected near the Sun at different energies. Protons injected at 100 MeV experience latitudinal drifts of about 5 to 10 degrees and the associated deceleration reduces their kinetic energy by between 20 and 55% of the initial value, after four days. At lower energies (1 MeV) the spatial drift is of the order of 0.1 of a degree, however the effect of drift-induced deceleration is stronger, with particles losing between 35 and 90% of the initial kinetic energy during the same time.We show that the magnitude of drift-induced deceleration is similar to that of standard adiabatic deceleration, indicating that it needs to be accounted for in models. While adiabatic energy change is strongly influenced by the scattering conditions, the dependence of drift-induced deceleration on the level of pitch-angle scattering is weak. We discuss ways in which deceleration associated with drift could be included within SEP models.

  11. ON PLASMA ROTATION AND DRIFTING SUBPULSES IN PULSARS: USING ALIGNED PULSAR B0826-34 AS A VOLTMETER

    SciTech Connect

    Van Leeuwen, J.; Timokhin, A. N. E-mail: andrey.timokhin@nasa.gov

    2012-06-20

    We derive the exact drift velocity of plasma in the pulsar polar cap, in contrast to the order-of-magnitude expressions presented by Ruderman and Sutherland and generally used throughout the literature. We emphasize that the drift velocity depends not on the absolute value, as is generally used, but on the variation of the accelerating potential across the polar cap. If we assume that drifting subpulses in pulsars are indeed due to this plasma drift, several observed subpulse-drift phenomena that are incompatible with the Ruderman and Sutherland family of models can now be explained: we show that variations of drift rate, outright drift reversals, and the connection between drift rates and mode changes have natural explanations within the frame of the 'standard' pulsar model, when derived exactly. We apply this model for drifting subpulses to the case of PSR B0826-34, an aligned pulsar with two separate subpulse-drift regions emitted at two different colatitudes. Careful measurement of the changing and reversing drift rate in each band independently sets limits on the variation of the accelerating potential drop. The derived variation is small, {approx}10{sup -3} times the vacuum potential drop voltage. We discuss the implications of this result for pulsar modeling.

  12. The electron forewake: Shadowing and drift-energization as flowing magnetized plasma encounters an obstacle

    NASA Astrophysics Data System (ADS)

    Haakonsen, Christian Bernt; Hutchinson, Ian H.

    2015-10-01

    Flow of magnetized plasma past an obstacle creates a traditional wake, but also a forewake region arising from shadowing of electrons. The electron forewakes resulting from supersonic flows past insulating and floating-potential obstacles are explored with 2D electrostatic particle-in-cell simulations, using a physical ion to electron mass ratio. Drift-energization is discovered to give rise to modifications to the electron velocity-distribution, including a slope-reversal, providing a novel drive of forewake instability. The slope-reversal is present at certain locations in all the simulations, and appears to be quite robustly generated. Wings of enhanced electron density are observed in some of the simulations, also associated with drift-energization. In the simulations with a floating-potential obstacle, the specific potential structure behind that obstacle allows fast electrons to cross the wake, giving rise to a more traditional shadowing-driven two-stream instability. Fluctuations associated with such instability are observed in the simulations, but this instability-mechanism is expected to be more sensitive to the plasma parameters than that associated with the slope-reversal.

  13. Quantum diffusion with drift and the Einstein relation. I

    SciTech Connect

    De Roeck, Wojciech; Fröhlich, Jürg; Schnelli, Kevin

    2014-07-15

    We study the dynamics of a quantum particle hopping on a simple cubic lattice and driven by a constant external force. It is coupled to an array of identical, independent thermal reservoirs consisting of free, massless Bose fields, one at each site of the lattice. When the particle visits a site x of the lattice it can emit or absorb field quanta of the reservoir at x. Under the assumption that the coupling between the particle and the reservoirs and the driving force are sufficiently small, we establish the following results: The ergodic average over time of the state of the particle approaches a non-equilibrium steady state describing a non-zero mean drift of the particle. Its motion around the mean drift is diffusive, and the diffusion constant and the drift velocity are related to one another by the Einstein relation.

  14. Apparatus and method for laser velocity interferometry

    DOEpatents

    Stanton, Philip L.; Sweatt, William C.; Crump, Jr., O. B.; Bonzon, Lloyd L.

    1993-09-14

    An apparatus and method for laser velocity interferometry employing a fixed interferometer cavity and delay element. The invention permits rapid construction of interferometers that may be operated by those non-skilled in the art, that have high image quality with no drift or loss of contrast, and that have long-term stability even without shock isolation of the cavity.

  15. High Performance Ion Mobility Spectrometry Using Hourglass Electrodynamic Funnel And Internal Ion Funnel

    DOEpatents

    Smith, Richard D.; Tang, Keqi; Shvartsburg, Alexandre A.

    2005-11-22

    A method and apparatus enabling increased sensitivity in ion mobility spectrometry/mass spectrometry instruments which substantially reduces or eliminates the loss of ions in ion mobility spectrometer drift tubes utilizing a device for transmitting ions from an ion source which allows the transmission of ions without significant delay to an hourglass electrodynamic ion funnel at the entrance to the drift tube and/or an internal ion funnel at the exit of the drift tube. An hourglass electrodynamic funnel is formed of at least an entry element, a center element, and an exit element, wherein the aperture of the center element is smaller than the aperture of the entry element and the aperture of the exit elements. Ions generated in a relatively high pressure region by an ion source at the exterior of the hourglass electrodynamic funnel are transmitted to a relatively low pressure region at the entrance of the hourglass funnel through a conductance limiting orifice. Alternating and direct electrical potentials are applied to the elements of the hourglass electrodynamic funnel thereby drawing ions into and through the hourglass electrodynamic funnel thereby introducing relatively large quantities of ions into the drift tube while maintaining the gas pressure and composition at the interior of the drift tube as distinct from those at the entrance of the electrodynamic funnel and allowing a positive gas pressure to be maintained within the drift tube, if desired. An internal ion funnel is provided within the drift tube and is positioned at the exit of said drift tube. The advantage of the internal ion funnel is that ions that are dispersed away from the exit aperture within the drift tube, such as those that are typically lost in conventional drift tubes to any subsequent analysis or measurement, are instead directed through the exit of the drift tube, vastly increasing the amount of ions exiting the drift tube.

  16. Drift and pseudomomentum in bounded turbulent shear flows

    NASA Astrophysics Data System (ADS)

    Phillips, W. R. C.

    2015-10-01

    This paper is concerned with the evaluation of two Lagrangian measures which arise in oscillatory or fluctuating shear flows when the fluctuating field is rotational and the spectrum of wave numbers which comprise it is continuous. The measures are the drift and pseudomomentum. Phillips [J. Fluid Mech. 430, 209 (2001), 10.1017/S0022112000002858] has shown that the measures are, in such instances, succinctly expressed in terms of Lagrangian integrals of Eulerian space-time correlations. But they are difficult to interpret, and the present work begins by expressing them in a more insightful form. This is achieved by assuming the space-time correlations are separable as magnitude, determined by one-point velocity correlations, and spatial diminution. The measures then parse into terms comprised of the mean Eulerian velocity, one-point velocity correlations, and a family of integrals of spatial diminution, which in turn define a series of Lagrangian time and velocity scales. The pseudomomentum is seen to be strictly negative and related to the turbulence kinetic energy, while the drift is mixed and strongly influenced by the Reynolds stress. Both are calculated for turbulent channel flow for a range of Reynolds numbers and appear, as the Reynolds number increases, to approach a terminal form. At all Reynolds numbers studied, the pseudomomentum has a sole peak located in wall units in the low teens, while at the highest Reynolds number studied, Reτ=5200 , the drift is negative in the vicinity of that peak, positive elsewhere, and largest near the rigid boundary. In contrast, the time and velocity scales grow almost logarithmically over much of the layer. Finally, the drift and pseudomomentum are discussed in the context of coherent wall layer structures with which they are intricately linked.

  17. Production of Magnetic Turbulence by Cosmic Rays Drifting Upstream of Supernova Remnant Shocks

    NASA Technical Reports Server (NTRS)

    Stroman, Thomas; Niemiec, Jacek; Pohl, Martin; Nishikawa, Ken-ichi

    2008-01-01

    I will present results of our recent two- and three-dimensional Particle-In-Cell simulations of magnetic-turbulence production by cosmic-ray ions drifting upstream of supernova remnant shocks. These studies' aim is twofold: test recent predictions of strong amplification in short wavelength, non-resonant wave modes, and study the subsequent evolution of the magnetic turbulence, including its backreaction on cosmic-ray trajectories. We confirm that the drifting cosmic rays give rise to a turbulent magnetic field, but show that an oblique filamentary mode grows more rapidly than the non-resonant parallel modes found in analytical theory. The field perturbations grow more slowly than estimated using a quasi-linear analytical approach for the parallel plane-wave mode, and saturate in amplitude at deltaB/B approximately equal to 1. The backreaction of the magnetic turbulence on the particles leads to an alignment of the bulk-flow velocities of the cosmic rays and the background medium. This is an essential characteristic of cosmic ray-modified shocks: the upstream flow speed is continuously changed by the cosmic rays. The reduction of relative drift between cosmic rays and background medium accounts for the saturation of the instability at only moderate magnetic-field amplitudes. It is possible that the prolonged magnetic field growth observed in recent MHD simulations results from a cosmic-ray current assumed to be constant and thus immune to the backreaction from the turbulent field. We speculate that the parallel plane-wave mode found in analytical treatments very quickly leads co filamentation, which we observe in our PIC modeling and is also apparent in the MHD simulations.

  18. Mass loading in velocity shears

    SciTech Connect

    Perez-de-Tejada, H.; Durand-Manterola, H.

    1996-02-01

    An analysis is presented on the motion of contaminant ions picked up by the solar wind within velocity shears. An expression is obtained for the ion density in terms of the flow speed across the velocity shear. It is argued that enhanced densities occur in the region where the flow speed is small and that local values may become significantly larger than the ion density outside the velocity shear. A comparison is made with measurements obtained across the plasma wake of comet Giacobini{endash}Zinner with the International Cometary Explorer (ICE) spacecraft. Within the velocity shear of that comet{close_quote}s ionosheath the cometary ion density becomes large and reaches values that are different from those expected when the ion population depends only on the ionization of a uniform outflow of neutral particles from the cometary nucleus. The enhanced plasma density expected within the velocity shear is compatible with the shape of the density profile of contaminant ions detected in that region. {copyright} {ital 1996 American Institute of Physics.}

  19. Drift solitons and shocks in inhomogeneous quantum magnetoplasmas

    SciTech Connect

    Haque, Q.; Mahmood, S.

    2008-03-15

    Linear and nonlinear drift waves are studied in inhomogeneous electron-ion quantum magnetoplasma with neutrals in the background. The Korteweg-de Vries-Burgers equation is derived by using the quantum hydrodynamic model for nonlinear drift waves with quantum corrections. Both soliton and shock solutions are obtained in different limits. It is noticed that the width of the solitary hump is decreased with the increase in the quantum parameter. However this effect is reversed for the solitary dip case. It is also found that oscillatory shock wave is dependent on the quantum parameter. However, the monotonic shock formation is independent of the quantum parameter.

  20. THE 15 LAYER SILICON DRIFT DETECTOR TRACKER IN EXPERIMENT 896.

    SciTech Connect

    PANDY,S.U.

    1998-11-08

    Large linear silicon drift detectors have been developed and are in production for use in several experiments. Recently 15 detectors were used as a tracking device in BNL-AGS heavy ion experiment (E896). The detectors were successfully operated in a 6.2 T magnetic field. The behavior of the detectors, such as drift uniformity, resolution, and charge collection efficiency are presented. The effect of the environment on the detector performance is discussed. Some results from the experimental run are presented. The detectors performed well in an experimental environment. This is the first tracking application of these detectors.