Science.gov

Sample records for ion exclusion chromatography

  1. Ion-Exclusion Chromatography for Analyzing Organics in Water

    NASA Technical Reports Server (NTRS)

    Sauer, Richard; Rutz, Jeffrey A.; Schultz, John R.

    2006-01-01

    A liquid-chromatography technique has been developed for use in the quantitative analysis of urea (and of other nonvolatile organic compounds typically found with urea) dissolved in water. The technique involves the use of a column that contains an ion-exclusion resin; heretofore, this column has been sold for use in analyzing monosaccharides and food softeners, but not for analyzing water supplies. The prior technique commonly used to analyze water for urea content has been one of high-performance liquid chromatography (HPLC), with reliance on hydrophobic interactions between analytes in a water sample and long-chain alkyl groups bonded to an HPLC column. The prior technique has proven inadequate because of a strong tendency toward co-elution of urea with other compounds. Co-elution often causes the urea and other compounds to be crowded into a narrow region of the chromatogram (see left part of figure), thereby giving rise to low chromatographic resolution and misidentification of compounds. It is possible to quantitate urea or another analyte via ultraviolet- and visible-light absorbance measurements, but in order to perform such measurements, it is necessary to dilute the sample, causing a significant loss of sensitivity. The ion-exclusion resin used in the improved technique is sulfonated polystyrene in the calcium form. Whereas the alkyl-chain column used in the prior technique separates compounds on the basis of polarity only, the ion-exclusion-resin column used in the improved technique separates compounds on the basis of both molecular size and electric charge. As a result, the degree of separation is increased: instead of being crowded together into a single chromatographic peak only about 1 to 2 minutes wide as in the prior technique, the chromatographic peaks of different compounds are now separated from each other and spread out over a range about 33 minutes wide (see right part of figure), and the urea peak can readily be distinguished from the other

  2. Instrumentation: Ion Chromatography.

    ERIC Educational Resources Information Center

    Fritz, James S.

    1987-01-01

    Discusses the importance of ion chromatography in separating and measuring anions. The principles of ion exchange are presented, along with some applications of ion chromatography in industry. Ion chromatography systems are described, as well as ion pair and ion exclusion chromatography, column packings, detectors, and programming. (TW)

  3. Highly sensitive determination of hydrazine ion by ion-exclusion chromatography with ion-exchange enhancement of conductivity detection.

    PubMed

    Mori, Masanobu; Tanaka, Kazuhiko; Xu, Qun; Ikedo, Mikaru; Taoda, Hiroshi; Hu, Wenzhi

    2004-06-11

    An ion-exclusion chromatography method with ion-exchange enhancement of conductivity was developed for the selective separation and sensitive determination of hydrazine ion from alkali/alkaline earth metal cations and ammonium ion. Hydrazine ion was separated by ion-exclusion/penetration effect from other cations on a weakly basic anion-exchange column in the OH- form (TSKgel DEAE-5PW). Moreover, two different ion-exchange resin columns were inserted between the separating column and conductimetric detector in order to improve the sensitivity of hydrazine ion. The first enhancement column packed with a strongly basic anion-exchange resin in the SO4(2-) form (TSKgel SAX) for hydrazine ion can convert from N2H5OH to (N2H5)2SO4. Moreover, the second enhancement column packed with a strongly acidic cation-change resin in the H+ form (TSKgel SCX) can convert to H2SO4. As a result, the sensitivity of hydrazine ion using two conductivity enhancement columns could be 26.8-times greater than using the separating column alone. This method was effectiveness also for the enhancement of ammonium ion (6.1-times) and sodium ion (1.2-times). The calibration graph of hydrazine ion detected as H2SO4 was linear over the concentration range of 0.001-100 ppm (r2 = 0.9988). The detection limit of hydrazine ion in this system was 0.64 ppb. Therefore, hydrazine ion in real boiler water sample could be accurately determined, avoiding the interference of other cations. PMID:15250415

  4. Recovery of ionic liquid and sugars from hydrolyzed biomass using ion exclusion simulated moving bed chromatography.

    PubMed

    Mai, Ngoc Lan; Nguyen, Nam Trung; Kim, Jin-Il; Park, Hyuk-Min; Lee, Sung-Kyun; Koo, Yoon-Mo

    2012-03-01

    Efficient recovery of ionic liquid (IL) from aqueous mixture of ILs and sugars (which derived from enzymatic or chemical catalyzed hydrolysis of ILs-pretreated biomass) is a major drawback for commercialization of biofuel and platform chemicals production from biomass utilized ILs as pretreatment solvent. In this study, simulated moving bed (SMB) chromatography equipped with ion exclusion column (containing [Emim]+ cation) was investigated to separate sugars (glucose and xylose) which are the main products from biomass hydrolysate and 1-ethyl-3-methylimidazolium acetate (EmimAc) which is the ILs used for biomass pretreatment. A four-zone SMB system with a configuration of 2-2-2-2 (2 ion exclusion columns in each zone) was used to recover glucose, xylose and EmimAc from their aqueous mixture with yield of 71.38, 99.37 and 98.92%, respectively. Moreover, the optimization of SMB zone configuration by simulation results in a complete recovery of ILs. This result indicates that for the first time, ion exclusion SMB chromatography could be used for complete recovery of ILs from aqueous sugar mixture. PMID:22265172

  5. Ion Chromatography.

    ERIC Educational Resources Information Center

    Mulik, James D.; Sawicki, Eugene

    1979-01-01

    Accurate for the analysis of ions in solution, this form of analysis enables the analyst to directly assay many compounds that previously were difficult or impossible to analyze. The method is a combination of the methodologies of ion exchange, liquid chromatography, and conductimetric determination with eluant suppression. (Author/RE)

  6. Water ICE: Ion Exclusion Chromatography of Very Weak Acids with a Pure Water Eluent.

    PubMed

    Liao, Hongzhu; Shelor, C Phillip; Dasgupta, Purnendu K

    2016-05-01

    Separation of ions or ionizable compounds with pure water as eluent and detecting them in a simple fashion has been an elusive goal. It has been known for some time that carbonic acid can be separated from strong acids by ion chromatography in the exclusion mode (ICE) using only water as the eluent. The practice of water ICE was shown feasible for very weak acids like silicate and borate with a dedicated element specific detector like an inductively coupled plasma mass spectrometer (ICPMS), but this is rarely practical in most laboratories. Direct conductometric detection is possible for H2CO3 but because of its weak nature, not especially sensitive; complex multistep ion exchange methods do not markedly improve this LOD. It will clearly be impractical in acids that are weaker still. By using a permeative amine introduction device (PAID, Anal. Chem. 2016 , 88 , 2198 - 2204 ) as a conductometric developing agent, we demonstrate that a variety of weak acids (silicate, borate, arsenite, cyanide, carbonate, and sulfide) cannot only be separated on an ion exclusion column, they can be sensitively detected (LODs 0.2-0.4 μM). We observe that the elution order is essentially the same as that on a nonfunctionalized poly(styrene-divinylbenzene) column using 1-10% acetonitrile as eluent and follows the reverse order of the polar surface area (PSA) of the analyte molecules. PSA values have been widely used to predict biological transport of pharmaceuticals across a membrane but never to predict chromatographic behavior. We demonstrate the application of the technique by measuring the silicate and borate depth profiles in the Pacific Ocean; the silicate results show an excellent match with results from a reference laboratory. PMID:27075932

  7. A process for separating acid-sugar mixtures using ion exclusion chromatography

    SciTech Connect

    Hester, R.D.; Hartfield, S.W.; Farina, G.E.

    1994-10-01

    Work using a low-temperature concentrated sulfuric acid hydrolysis process to convert the cellulosic fraction of corn stover to monomeric sugars demonstrated the high conversion efficiencies possible with that process. The TVA work also confirmed the need for a cost-effective acid-sugar separation process. A preparative-scale ion-exclusion chromatography (IEC) system was designed, constructed, and tested with a variety of synthetic solutions and actual hydrolyzates. Although significant dispersion was observed initially, design changes were effective in minimizing this phenomenon. Data collected during the operation of the preparative-scale system were used in the design and construction of an IEC miniplant capable of processing larger volumes of synthetic solutions or hydrolyzates and in the design of an extraction-assisted IEC system. The data were also used to assess the viability of a continuous feed IEC system. This paper includes a discussion of the IEC process, provides overall material balances for various IEC process scenarios, and presents a discussion on process economics.

  8. Continuous ion-exclusion chromatography system for acid/sugar separation

    SciTech Connect

    Springfield, R.M.; Hester, R.D.

    1999-04-01

    A simulated moving bed ion exclusion chromatography system was constructed for the continuous separation of the components in an aqueous feed solution of sucrose and sulfuric acid. A system of 18 columns was arrayed about a central manifold system. Each column was packed with approximately 820 mL of porous cationic exchange resin. The system was designed for the flexibility to use fluid recycle loops and unrestricted placement of all inlet and outlet streams. Monitoring and control functions were performed using a Camile 2000 process controller integrated with a custom-built control computer. The aqueous feed solution, usually containing 10 wt.% sucrose and 10 wt.% sulfuric acid, was generally introduced into the system at a rate of roughly 2 L/hr. Approximately 4 L/hr of water was used to elute materials through the separation system. After optimization, the separation system allowed greater than 95% recovery of the feed sucrose in an exit stream containing 8.8 wt.% sucrose and 98% recovery of the feed acid in a second exit stream containing 5 wt.% acid.

  9. Separation of acid and sugar by ion exclusion chromatography. An application in the conversion of cellulose to ethanol

    SciTech Connect

    Hartfield, S.; Hester, R.

    1993-12-31

    The production of fuel grade alcohol by fermentation from sugars obtained by the acid hydrolysis of cellulose has been hindered by costly methods of cleansing the acid in the sugar stream. An economical and environmentally acceptable acid-sugar separation process based on ion exclusion chromatography has been developed and analyzed. This process recovers the acid for reuse in hydrolysis without producing landfill waste allowing a concentrated acid hydrolysis process to be commercially feasible.

  10. Determination of phytate in high molecular weight, charged organic matrices by two-dimensional size exclusion-ion chromatography

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A two-dimensional chromatography method for analyzing anionic targets (specifically phytate) in complex matrices is described. Prior to quantification by anion exchange chromatography, the sample matrix was prepared by size exclusion chromatography, which removed the majority of matrix complexities....

  11. Qualitative analysis of some carboxylic acids by ion-exclusion chromatography with atmospheric pressure chemical ionization mass spectrometric detection.

    PubMed

    Helale, Murad I H; Tanaka, Kazuhiko; Taoda, Hiroshi; Hu, Wenzhi; Hasebe, Kiyoshi; Haddad, Paul R

    2002-05-17

    A simple, selective and sensitive method for the determination of carboxylic acids has been developed. A mixture of formic, acetic, propionic, valeric, isovaleric, isobutyric, and isocaproic acids has been separated on a polymethacrylate-based weak acidic cation-exchange resin (TSK gel OA pak-A) based on an ion-exclusion chromatographic mechanism with detection using UV-photodiode array, conductivity and atmospheric pressure chemical ionization mass spectrometry (APCI-MS). A mobile phase consisting of 0.85 mM benzoic acid in 10% aqueous methanol (pH 3.89) was used to separate the above carboxylic acids in about 40 min. For LC-MS, the APCI interface was used in the negative ionization mode. Linear plots of peak area versus concentration were obtained over the range 1-30 mM (r2=0.9982) and 1-30 mM (r2=0.9958) for conductimetric and MS detection, respectively. The detection limits of the target carboxylic acids calculated at S/N=3 ranged from 0.078 to 2.3 microM for conductimetric and photometric detection and from 0.66 to 3.82 microM for ion-exclusion chromatography-APCI-MS. The reproducibility of retention times was 0.12-0.16% relative standard deviation for ion-exclusion chromatography and 1.21-2.5% for ion-exclusion chromatography-APCI-MS. The method was applied to the determination of carboxylic acids in red wine, white wine, apple vinegar, and Japanese rice wine. PMID:12108651

  12. [Determination of succinic acid in desvenlafaxine succinate by high performance ion-exclusion chromatography and high performance ion-exchange chromatography].

    PubMed

    Zong, Yanping; Li, Jinghua; Sun, Wei; Liu, Guixia; Lu, Jinghua; Shan, Guangzhi

    2016-02-01

    New methods were developed for the determination of succinic acid in desvenlafaxine succinate (DVS) by high performance ion-exclusion chromatography (HPIEC) and high performance ion-exchange chromatography (HPIC). HPIEC and HPIC methods were used separately to determinate the succinic acid in DVS. With HPIEC, the sample was diluted with 2. 50 x 10(-3) mol/L sulfuric acid solution and filtrated by 0. 22 µm polyether sulfone filter membrane, and then analyzed by HPIEC directly without any further pretreatment. The analytical column was Phenomenex Rezex ROA-organic Acid H+(8%) (300 mmx7. 8 mm). The mobile phase was 2. 50x10(-3) mol/L sulfuric acid solution at the flow rate of 0. 5 mL/min. The column temperature was set at 40 °C, and the detection wavelength was 210 nm. The injection volume was 10 KL. The assay was quantified by external standard method. With HPIC, the sample was diluted with ultrapure water and filtrated by 0. 22 µm polyether sulfone filter membrane, and then analyzed by HPIC directly without any further pretreatment. The analytical column was Dionex IonPac AS11-HC (250 mm x 4 mm) with a guard column IonPacAG11-HC (50 mm x 4 mm). Isocratic KOH elute generator was used at the flow rate of 1. 0 mL/min. The detection was performed by a Dionex suppressed (DIONEX AERS 500 4-mm) conductivity detector. The injection volume was 10 µL. The content computation was performed with peak area external reference method. The results of HPIEC method for succinic acid were 28. 8%, 28. 9% and 28. 9%, while the results of HPIEC method were 28. 2%, 28. 6% and 28. 6%. The results of HPIEC and HPIC methods were not significantly different. The two methods can both be used to determine the contents of succinic acid in DVS. The surveillance analytical method should be chosen according to the situation. PMID:27382725

  13. [Determination of organic acids in rice wine by ion-exclusion chromatography].

    PubMed

    Lin, Xiaojie; Wei, Wei; He, Zhigang; Lin, Xiaozi

    2014-03-01

    An ion-exclusion chromatographic method for the simultaneous determination of organic acids in rice wine was developed. An IC-Pak Ion Exclusion column (300 mm x 7.8 mm, 7 microm) was used at 50 degrees C. The mobile phases were H2SO4 (phase A) and acetonitrile (phase B) (98:2, v/v) at a flow rate of 0.5 mL/min. The gradient elution program was as follows: 0-40 min, 0.01 mol/L H2SO4 to 0.02 mol/L H2SO4; 40-50 min, 0.01 mol/L H2SO4. The injection volume was 10 microL. The detection wavelength was set at 210 nm. The results showed that oxalic acid, maleic acid, citric acid, tartaric acid, malic acid, ascorbic acid, succinic acid, lactic, fumaric acid, acetic acid, propionic acid, isobutyric acid and butyric acid were completely separated and determined in 30 min. The linear correlation coefficients were above 0.999 7 in the range of 0.001- 1.000 g/L. Under the optimized conditions, the recoveries of organic acids in rice wine were in the range of 93.4% - 103.8% with the relative standard deviations (RSDs, n = 5) of 0.1% - 1.5%. This method is feasible, convenient, fast, accurate and applicable for the quantitative analysis of the organic acids in rice wine. PMID:24984473

  14. Determination of volatile fatty acids in landfill leachates by ion-exclusion chromatography.

    PubMed

    Yamamoto, Atsushi; Yasuhara, Akio; Kodama, Shuji; Matsunaga, Akinobu; Suzuki, Shigeru; Mohri, Shino; Yamada, Masato

    2004-03-01

    An ion-exclusion chromatographic method with on-line desalinization for the determination of volatile fatty acids in landfill leachates is described. Highly sensitive conductivity detection of the organic acids was achieved by using dilute p-hydroxybenzoic acid solution as an eluent. Interference with mineral acids was reduced by treatment with barium chloride solution prior to desalinization. A silver-loaded cation-exchange guard column for the desalinization was installed in series with the analytical column to avoid the contamination of organic acids. This method features detection limits of 0.01 mg L(-1) formic acid, 0.02 mg L(-1) acetic acid, 0.05 mg L(-1) propionic acid, and 0.1 mg L(-1) butyric acid, respectively, with an injection of 20 microL sample. Application of the on-line desalinization LC method is illustrated for leachate samples from a Japanese sanitary landfill. PMID:15334921

  15. Determination of sulfite in foods and beverages by ion exclusion chromatography with electrochemical detection: collaborative study.

    PubMed

    Kim, H J

    1990-01-01

    A liquid chromatographic (LC) method for determination of total sulfite in foods and beverages by alkali extraction followed by ion exclusion chromatographic separation and electrochemical detection (IEC-EC) was collaboratively studied by 9 laboratories. Blind duplicate samples of starch, diluted lemon juice, wine cooler, dehydrated seafood, and instant mashed potatoes were analyzed without spiking and with added sulfite at 2 levels. The initial sulfite levels varied from 0 to 384 ppm SO2, and the levels added varied from 10 to 400 ppm. The initial sulfite levels determined by the IEC-EC method and the Monier-Williams method were in good agreement. Recovery of added sulfite by the IEC-EC method was generally higher than that by the Monier-Williams method. Within-laboratory repeatability (RSDr) for the IEC-EC method varied from 4.4 to 26.0%, and overall reproducibility (RSDR) varied from 8.5 to 39.3%. The collaborators found the method to be fast, sensitive, and easy to use, which makes it a useful alternative to the Monier-Williams method. The method has been adopted official first action. PMID:2324032

  16. Effect of the porosity of PS-DVB-copolymers on ion chromatographic behavior in inverse size-exclusion and ion chromatography.

    PubMed

    Füssler, Rainer; Schäfer, Helwig; Seubert, Andreas

    2002-03-01

    Small and highly pressure-stable PS-DVB copolymers of different porosity had been prepared by a two-step swelling procedure which enabled variation of diluent composition, an important characteristic affecting the porosity. The polymers were characterized by inverse size-exclusion chromatography and scanning electron microscopy. Subsequent chloromethylation and amination resulted in anion exchangers suitable for ion chromatography. The pore volume and the pore-size distribution is substantially affected by the fraction of the solvens component in the diluent. It was apparent from scanning electron microscopy that surface structure and the size of the polymer particles was not affected by diluent composition. The functionalization process led to a decrease in pore volume. The pore-size distribution remained unchanged during functionalization, which can be explained in terms of partial closing of all pore sizes. The chromatographic efficiency of the functionalized polymers in ion chromatography was highly dependent on diluent composition and the extent of functionalization was determined by the total pore volume. The composition of the diluent is an excellent tool for optimization of polymers used for the synthesis of surface-functionalized anion exchangers. PMID:11941442

  17. Determination of some aliphatic carboxylic acids in anaerobic digestion process waters by ion-exclusion chromatography with conductimetric detection on a weakly acidic cation-exchange resin column.

    PubMed

    Ito, Kazuaki; Takayama, Yohichi; Ikedo, Mikaru; Mori, Masanobu; Taoda, Hiroshi; Xu, Qun; Hu, Wenzhi; Sunahara, Hiroshi; Hayashi, Tsuneo; Sato, Shinji; Hirokawa, Takeshi; Tanaka, Kazuhiko

    2004-06-11

    The determination of seven aliphatic carboxylic acids, formic, acetic, propionic, isobutyric, n-butyric, isovaleric and n-valeric acids in anaerobic digestion process waters was examined using ion-exclusion chromatography with conductimetric detection. The analysis of these biologically important carboxylic acids is necessary as a measure for evaluating and controlling the process. The ion-exclusion chromatography system employed consisted of polymethacrylate-based weakly acidic cation-exchange resin columns (TSKgel OApak-A or TSKgel Super IC-A/C). weakly acidic eluent (benzoic acid), and conductimetric detection. Particle size and cation-exchange capacity were 5 microm and 0.1 meq./ml for TSKgel OApak-A and 3 microm and 0.2 meq./ml for TSKgel Super IC-A/C, respectively. A dilute eluent (1.0-2.0 mM) of benzoic acid was effective for the high resolution and highly conductimetric detection of the carboxylic acids. The good separation of isobutyric and n-butyric acids was performed using the TSKgel Super IC-A/C column (150 mm x 6.0 mm i.d. x 2). The simple and good chromatograms were obtained by the optimized ion-exclusion chromatography conditions for real samples from mesophilic anaerobic digestors, thus the aliphatic carboxylic acids were successfully determined without any interferences. PMID:15250416

  18. Ion-Exclusion High-Performance Liquid Chromatography of Aliphatic Organic Acids Using a Surfactant-Modified C18 Column.

    PubMed

    Fasciano, Jennifer M; Mansour, Fotouh R; Danielson, Neil D

    2016-07-01

    Ion exclusion chromatography (IELC) of short chain aliphatic carboxylic acids is normally done using a cation exchange column under standard HPLC conditions but not in the ultra-HPLC (UHPLC) mode. A novel IELC method for the separation of this class of carboxylic acids by either HPLC or UHPLC utilizing a C18 column dynamically modified with sodium dodecyl sulfate has been developed. The sample capacity is estimated to be near 10 mM for a 20 µL injection or 0.2 µmol using a 150 × 4.6 mm column. The optimum mobile phase determined for three standard mixtures of organic acids is 1.84 mM sulfuric acid at pH 2.43 and a flow rate of 0.6 mL/min. Under optimized conditions, a HPLC separation of four aliphatic carboxylic acids such as tartaric, malonic, lactic and acetic can be achieved in under 4 min and in <2 min in the UHPLC mode at 2.1 mL/min. A variety of fruit juice and soft drink samples are analyzed. Stability of the column as measured by the retention order of maleic and fumaric acid is estimated to be ∼4,000 column volumes using HPLC and 600 by UHPLC. Reproducible chromatograms are achieved over at least a 2-month period. This study shows that the utility of a C18 column can be easily extended when needed to IELC under either standard or UHPLC conditions. PMID:27006111

  19. Determination of phytate in high molecular weight, charged organic matrices by two-dimensional size exclusion-ion chromatography.

    PubMed

    Elkin, Kyle R; Slingsby, Rosanne; Bryant, Ray B

    2016-08-15

    A two-dimensional chromatography method for analyzing phytate or other ionic targets in matrices containing high molecular weight, charged organic species is described. Prior to quantification by anion exchange chromatography, the sample matrix was prepared by size exclusion chromatography, which removed the majority of the matrix. Quantification of phytate on the AS11-HC was sensitive (0.25µM, 0.17mg/l) and reproducible (4.6% RSD) allowing this method to provide baseline separation of phytate from a manure extract within 14min. The method is simple, requiring only sample filtering, reproducible (between-run variation 5% RSD) and linear from 0.38 to 76µM (0.25-50mg/l). The method is suitable for routine determination of phytate in high organic matrices such as manure extracts. PMID:27260428

  20. Selective determination of ammonium ions by high-speed ion-exclusion chromatography on a weakly basic anion-exchange resin column.

    PubMed

    Mori, Masanobu; Tanaka, Kazuhiko; Helaleh, Murad I H; Xu, Qun; Ikedo, Mikaru; Ogura, Yutaka; Sato, Shinji; Hu, Wenzhi; Hasebe, Kiyoshi

    2003-05-16

    This paper describes an ion-exclusion chromatographic system for the rapid and selective determination of ammonium ion. The optimized ion-exclusion chromatographic system was established with a polymethacrylate-based weakly basic anion-exchange resin column (TSKgel DEAE-5PW) as the separation column, an aqueous solution containing 0.05 mM tetramethylammonium hydroxide (pH 9.10) as eluent with conductimetric detection for the analyte determination. Under the optimum chromatographic conditions, ammonium ion was determined within 2.3 min with a detection limit (S/N=3) better than 0.125 microM. Ammonium ion in rain and river waters was precisely determined using this ion-exclusion chromatographic system. PMID:12830892

  1. Ion Chromatography: An Account of Its Conception and Early Development

    ERIC Educational Resources Information Center

    Small, Hamish

    2004-01-01

    The conception of ion chromatography and its development into a technique ready for commercialization is described. The pioneering development pointed the way to make ion exclusion an important member of the repertoire of IC methods.

  2. Selective and simultaneous determination of phosphate and silicate ions in leaching process waters for ceramics glaze raw materials of narutal origin by ion-exclusion chromatography coupled with UV-detection after postcolumn derivatization.

    PubMed

    Ikedo, Mikaru; Mori, Masanobu; Kurachi, Kazumasa; Hu, Wenzhi; Tanaka, Kazuhiko

    2006-01-01

    The selective and simultaneous ion-exclusion chromatography (IEC) with UV-detection on a weakly acidic cation-exchange resin column in the H+ -form (TSKgel Super IC-A/C) was developed and applied for the simultaneous determination of phosphate and silicate ions as the water quality parameters required for optimizing the water-leaching process for ceramics glaze raw materials of natural origin including feldspar, woods-ash, and straw-ash. Phosphate and silicate ions in these water-leaching process water samples were separated selectively from the coexisting anions such as sulfate, chloride, nitrate and carbonate ions, based on the ion-exclusion separation mechanism. They were detected selectively and simultaneously by a postcolumn derivatization with molybdenum-yellow using the UV-detector. Under the optimized separation and detection conditions (eluent, 0-1 mM sulfuric acid; reactant, 10 mM sodium molybdate-25 mM sulfuric acid; detector, UV at 370 nm; temperature, 45 degrees C), the linearity of calibration was in the range 0.1 - 10 ppm for both phosphate and silicate ions, and the detection limits at S/N = 3 were 2.58 ppb for silicate ions and 4.75 ppb for phosphate ions. The effectiveness of this method was demonstrated in practical applications to the water-leaching process for some ceramics glaze raw materials. PMID:16429785

  3. Use of potassium-form cation-exchange resin as a conductimetric enhancer in ion-exclusion chromatography of aliphatic carboxylic acids.

    PubMed

    Iwata, Tomotaka; Mori, Masanobu; Itabashi, Hideyuki; Tanaka, Kazuhiko

    2009-09-15

    In this study, a cation-exchange resin (CEX) of the K(+)-form, i.e., an enhancer resin, is used as a postcolumn conductimetric enhancer in the ion-exclusion chromatography of aliphatic carboxylic acids. The enhancer resin is filled in the switching valve of an ion chromatograph; this valve is usually used as a suppressor valve in ion-exchange chromatography. An aliphatic carboxylic acid (e.g., CH(3)COOH) separated by a weakly acidic CEX column of the H(+)-form converts into that of the K(+)-form (e.g., CH(3)COOK) by passing through the enhancer resin. In contrast, the background conductivity decreases because a strong acid (e.g., HNO(3)) with a higher conductimetric response in an eluent converts into a salt (e.g., KNO(3)) with a lower conductimetric response. Since the pH of the eluent containing the resin enhancer increases from 3.27 to 5.85, the enhancer accelerates the dissociations of analyte acids. Consequently, peak heights and peak areas of aliphatic carboxylic acids (e.g., acetic acid, propionic acid, butyric acid, and valeric acid) with the enhancer resin are 6.3-8.0 times higher and 7.2-9.2 times larger, respectively, than those without the enhancer resin. Calibrations of peak areas for injected analytes are linear in the concentration range of 0.01-1.0mM. The detection limits (signal-to-noise ratio=3) range from 0.10 microM to 0.39 microM in this system, as opposed to those in the range of 0.24-7.1 microM in the separation column alone. The developed system is successfully applied to the determination of aliphatic carboxylic acids in a chicken droppings sample. PMID:19615503

  4. Simultaneous analysis of silicon and boron dissolved in water by combination of electrodialytic salt removal and ion-exclusion chromatography with corona charged aerosol detection.

    PubMed

    Mori, Masanobu; Sagara, Katsuya; Arai, Kaori; Nakatani, Nobutake; Ohira, Shin-Ichi; Toda, Kei; Itabashi, Hideyuki; Kozaki, Daisuke; Sugo, Yumi; Watanabe, Shigeki; Ishioka, Noriko S; Tanaka, Kazuhiko

    2016-01-29

    Selective separation and sensitive detection of dissolved silicon and boron (DSi and DB) in aqueous solution was achieved by combining an electrodialytic ion isolation device (EID) as a salt remover, an ion-exclusion chromatography (IEC) column, and a corona charged aerosol detector (CCAD) in sequence. DSi and DB were separated by IEC on the H(+)-form of a cation exchange resin column using pure water eluent. DSi and DB were detected after IEC separation by the CCAD with much greater sensitivity than by conductimetric detection. The five-channel EID, which consisted of anion and cation acceptors, cathode and anode isolators, and a sample channel, removed salt from the sample prior to the IEC-CCAD. DSi and DB were scarcely attracted to the anion accepter in the EID and passed almost quantitatively through the sample channel. Thus, the coupled EID-IEC-CCAD device can isolate DSi and DB from artificial seawater and hot spring water by efficiently removing high concentrations of Cl(-) and SO4(2-) (e.g., 98% and 80% at 0.10molL(-1) each, respectively). The detection limits at a signal-to-noise ratio of 3 were 0.52μmolL(-1) for DSi and 7.1μmolL(-1) for DB. The relative standard deviations (RSD, n=5) of peak areas were 0.12% for DSi and 4.3% for DB. PMID:26755416

  5. Simultaneous spectrophotometric determination of orthophosphate and silicate ions in river water using ion-exclusion chromatography with an ascorbate solution as both eluent and reducing agent, followed by postcolumn derivatization with molybdate.

    PubMed

    Nakatani, Nobutake; Masuda, Wakako; Kozaki, Daisuke; Goto, Ryozo; Nakagoshi, Nobukazu; Mori, Masanobu; Hasebe, Kiyoshi; Tanaka, Kazuhiko

    2009-03-01

    Ion-exclusion chromatography was examined for the simultaneous spectrophotometric determinations of orthophosphate and silicate ions in river water using an ascorbate solution as both an eluent and a reducing agent, followed by postcolumn derivatization using molybdate. The detector responses for both ions increased with increased ascorbic acid concentration in the eluent, but peak tailing was observed for the orthophosphate ion. This suggests that the amounts of undissociated orthophosphate ions increased with decreased eluent pH, resulting in the penetration of the phosphate to the Donnan's membrane formed on the resin surface. Using a neutral sodium ascorbate solution as an eluent, the peak shape was improved. With optimized separation and derivatization conditions (eluent, 20 mM sodium ascorbate; color-forming reagent, 10 mM sodium molybdate-60 mM sulfuric acid; flow rates of eluent and color-forming reagent, 0.4 and 0.2 mL min(-1); coil length, 6 m), the detection limits of orthophosphate and silicate ions were 0.9 and 1.0 microg L(-1), respectively. This method was successfully applied to the determination of orthophosphate and silicate ions in Kurose River water and the quantitative evaluations of the effects of water intake to a reservoir and discharge from a biological sewage treatment plant on the fluxes of these ions in the river. PMID:19276594

  6. Simultaneous determinations of Cr(VI) and Cr(III) by ion-exclusion/cation-exchange chromatography with an unmodified silica-gel column.

    PubMed

    Hirata, Shizuko; Kozaki, Daisuke; Sakanishi, Kinya; Nakagoshi, Nobukazu; Tanaka, Kazuhiko

    2010-01-01

    In order to characterize the ion-exclusion and cation-exchange properties of an unmodified silica-gel column, the retention behaviors of Cr(VI) and Cr(III) ions were investigated using a Develosil 30-5 (150 x 4.6 mm i.d.) in the acidic region. Cr(VI) was separated from other anions by an ion-exclusion and ion-adsorption mechanism, and Cr(III) was separated from other cations with a cation-exchange mechanism. When using 2.0 mM oxalic acid (pH 2.6) as an eluent, a good separation of Cr(VI) and Cr(III) was obtained using conductimetric detection in 12 min. The method was successfully applied to the simultaneous determinations of Cr(VI) and Cr(III) added into tap-water and river-water samples. PMID:20215693

  7. ION CHROMATOGRAPHY OF ANIONS

    EPA Science Inventory

    A Dionex Model 10 Ion Chromatograph was evaluated for the measurement of anionic species in water. The theoretical effect of hydrogen ion activity (pH) on the elution time of phosphate and arsenate was tested and empirical selectivity coefficients were determined for the major pr...

  8. Ion Exchange and Liquid Column Chromatography.

    ERIC Educational Resources Information Center

    Walton, Harold F.

    1980-01-01

    Emphasizes recent advances in principles and methodology in ion exchange and chromatography. Two tables list representative examples for inorganic ions and organic compounds. Cites 544 references. (CS)

  9. Immobilized metal ion affinity chromatography.

    PubMed

    Yip, T T; Hutchens, T W

    1992-01-01

    Immobilized metal ion affinity chromatography (IMAC) (1,2) is also referred to as metal chelate chromatography, metal ion interaction chromatography, and ligand-exchange chromatography. We view this affinity separation technique as an intermediate between highly specific, high-affinity bioaffinity separation methods, and wider spectrum, low-specificity adsorption methods, such as ion exchange. The IMAC stationary phases are designed to chelate certain metal ions that have selectivity for specific groups (e.g., His residues) in peptides (e.g., 3-7) and on protein surfaces (8-13). The number of stationary phases that can be synthesized for efficient chelation of metal ions is unlimited, but the critical consideration is that there must be enough exposure of the metal ion to interact with the proteins, preferably in a biospecific manner. Several examples are presented in Fig. 1. The challenge to produce new immobilized chelating groups, including protein surface metal-binding domains (14,15) is being explored continuously. Table 1 presents a list of published procedures for the synthesis and use of stationary phases with immobilized chelating groups. This is by no means exhaustive, and is intended only to give an idea of the scope and versatility of IMAC. Fig. 1 Schematic illustration of several types of immobilized metal-chelating groups, including, iminodiacetate (IDA), tris(carboxymethyl) ethylenediamine (TED), and the metal-binding peptides (GHHPH)(n)G (where n = 1,2,3, and 5) (14,15). Table 1 Immobilized Chelating Groups and Metal Ions Used for Immobilized Metal Ion Affinity Chromatography Chelating group Suitable metal ions Reference Commercial source Immodiacetate Transitional1,2 Pharmacia LKB Pierce Sigma Boehringer Mannheim TosoHaas 2-Hydroxy-3[N-(2- pyrtdylmethyl) glycme]propyl Transitional3 Not available ?-Alky1 mtrilo triacetic acid Transitional4 Not available Carboxymethylated asparhc acid Ca(II)13 Not available Tris (carboxy- methyl) ethylene Diamme

  10. Ion-exclusion chromatography with conductimetric detection of aliphatic carboxylic acids on a weakly acidic cation-exchange resin by elution with benzoic acid-beta-cyclodextrin.

    PubMed

    Tanaka, Kazuhiko; Mori, Masanobu; Xu, Qun; Helaleh, Murad I H; Ikedo, Mikaru; Taoda, Hiroshi; Hu, Wenzhi; Hasebe, Kiyoshi; Fritz, James S; Haddad, Paul R

    2003-05-16

    In this study, an aqueous solution consisting of benzoic acid with low background conductivity and beta-cyclodextrin (beta-CD) of hydrophilic nature and the inclusion effect to benzoic acid were used as eluent for the ion-exclusion chromatographic separation of aliphatic carboxylic acids with different pKa values and hydrophobicity on a polymethacrylate-based weakly acidic cation-exchange resin in the H+ form. With increasing concentration of beta-cyclodextrin in the eluent, the retention times of the carboxylic acids decreased due to the increased hydrophilicity of the polymethacrylate-based cation-exchange resin surface from the adsorption of OH groups of beta-cyclodextrin. Moreover, the eluent background conductivity decreased with increasing concentration of beta-cyclodextrin in 1 mM benzoic acid, which could result in higher sensitivity for conductimetric detection. The ion-exclusion chromatographic separation of carboxylic acids with high resolution and sensitivity was accomplished successfully by elution with a 1 mM benzoic acid-10 mM cyclodextrin solution without chemical suppression. PMID:12830884

  11. Using Ion Exchange Chromatography to Separate and Quantify Complex Ions

    ERIC Educational Resources Information Center

    Johnson, Brian J.

    2014-01-01

    Ion exchange chromatography is an important technique in the separation of charged species, particularly in biological, inorganic, and environmental samples. In this experiment, students are supplied with a mixture of two substitution-inert complex ions. They separate the complexes by ion exchange chromatography using a "flash"…

  12. Use of a polystyrene-divinylbenzene-based weakly acidic cation-exchange resin column and propionic acid as an eluent in ion-exclusion/adsorption chromatography of aliphatic carboxylic acids and ethanol in food samples.

    PubMed

    Mori, Masanobu; Hironaga, Takahiro; Kajiwara, Hiroe; Nakatani, Nobutake; Kozaki, Daisuke; Itabashi, Hideyuki; Tanaka, Kazuhiko

    2011-01-01

    We developed an ion-exclusion/adsorption chromatography (IEAC) method employing a polystyrene-divinylbenzene-based weakly acidic cation-exchange resin (PS-WCX) column with propionic acid as the eluent for the simultaneous determination of multivalent aliphatic carboxylic acids and ethanol in food samples. The PS-WCX column well resolved mono-, di-, and trivalent carboxylic acids in the acidic eluent. Propionic acid as the eluent gave a higher signal-to-noise ratio, and enabled sensitive conductimetric detection of analyte acids. We found the optimal separation condition to be the combination of a PS-WCX column and 20-mM propionic acid. Practical applicability of the developed method was confirmed by using a short precolumn with a strongly acidic cation-exchange resin in the H(+)-form connected before the separation column; this was to remove cations from food samples by converting them to hydrogen ions. Consequently, common carboxylic acids and ethanol in beer, wine, and soy sauce were successfully separated by the developed method. PMID:21558657

  13. A Size Exclusion Chromatography Laboratory with Unknowns for Introductory Students

    ERIC Educational Resources Information Center

    McIntee, Edward J.; Graham, Kate J.; Colosky, Edward C.; Jakubowski, Henry V.

    2015-01-01

    Size exclusion chromatography is an important technique in the separation of biological and polymeric samples by molecular weight. While a number of laboratory experiments have been published that use this technique for the purification of large molecules, this is the first report of an experiment that focuses on purifying an unknown small…

  14. ION-EXCLUSION CHROMATOGRAPHIC DETERMINATION OF CARBOXYLIC ACIDS USED TO SUPPORT THE MICROBIALLY MEDIATED REDUCTIVE DECHLORINATION OF TETRACHLOROETHENE

    EPA Science Inventory

    An analytical method was developed for the determination of lactic acid, formic acid, acetic acid, propionic acid, and butyric acid in environmental microcosm samples using ion-exclusion chromatography. The chromatographic behavior of various eluents was studied to determine the ...

  15. The History of Ion Chromatography: The Engineering Perspective

    ERIC Educational Resources Information Center

    Evans, Barton

    2004-01-01

    The development of ion chromatography from an engineering perspective is presented. As ion chromatography became more widely accepted, researchers developed dozens of standard applications that enabled the creation of many low-end instruments.

  16. Size-exclusion chromatography system for macromolecular interaction analysis

    DOEpatents

    Stevens, Fred J.

    1988-01-01

    A low pressure, microcomputer controlled system employing high performance liquid chromatography (HPLC) allows for precise analysis of the interaction of two reversibly associating macromolecules such as proteins. Since a macromolecular complex migrates faster than its components during size-exclusion chromatography, the difference between the elution profile of a mixture of two macromolecules and the summation of the elution profiles of the two components provides a quantifiable indication of the degree of molecular interaction. This delta profile is used to qualitatively reveal the presence or absence of significant interaction or to rank the relative degree of interaction in comparing samples and, in combination with a computer simulation, is further used to quantify the magnitude of the interaction in an arrangement wherein a microcomputer is coupled to analytical instrumentation in a novel manner.

  17. Lignin profiling in extracted xylans by size-exclusion chromatography.

    PubMed

    Hutterer, Christian; Schild, Gabriele; Kliba, Gerhard; Potthast, Antje

    2016-10-20

    Utilization of the polymeric parts of lignocellulose is expected to gain increasing importance in future biorefinery scenarios. In that respect, a particular focus is placed on hemicelluloses from different wood species gained from an industrially feasible upgrading step in the production of dissolving pulps from paper pulps. During alkaline post-extractions for hemicellulose removal, residual lignins are extracted as well. They are either covalently linked to the extracted hardwood xylans or simply co-dissolved in the alkaline lye. In order to better describe the lignin in xylan containing lyes, a method for lignin profiling was set up by hyphenating size-exclusion chromatography of xylans with UV detection which facilitates visualization of the residual lignin distribution. Simultaneous lignin quantification was achieved with lignin standards prepared from Kraft cooking liquors. The setup presented may serve as advanced characterization for novel xylan products. PMID:27474629

  18. Size-exclusion chromatography (SEC) of branched polymers and polysaccharides.

    PubMed

    Gaborieau, Marianne; Castignolles, Patrice

    2011-02-01

    Branched polymers are among the most important polymers, ranging from polyolefins to polysaccharides. Branching plays a key role in the chain dynamics. It is thus very important for application properties such as mechanical and adhesive properties and digestibility. It also plays a key role in viscous properties, and thus in the mechanism of the separation of these polymers in size-exclusion chromatography (SEC). Critically reviewing the literature, particularly on SEC of polyolefins, polyacrylates and starch, we discuss common pitfalls but also highlight some unexplored possibilities to characterize branched polymers. The presence of a few long-chain branches has been shown to lead to a poor separation in SEC, as evidenced by multiple-detection SEC or multidimensional liquid chromatography. The local dispersity can be large in that case, and the accuracy of molecular weight determination achieved by current methods is poor, although hydrodynamic volume distributions offer alternatives. In contrast, highly branched polymers do not suffer from this extensive incomplete separation in terms of molecular weight. PMID:20967430

  19. An Empirical Formula From Ion Exchange Chromatography and Colorimetry.

    ERIC Educational Resources Information Center

    Johnson, Steven D.

    1996-01-01

    Presents a detailed procedure for finding an empirical formula from ion exchange chromatography and colorimetry. Introduces students to more varied techniques including volumetric manipulation, titration, ion-exchange, preparation of a calibration curve, and the use of colorimetry. (JRH)

  20. Chromatography

    MedlinePlus

    Chromatography is a way of separating two or more chemical compounds. Chemical compounds are chemicals that are ... of chemical compound. There are different kinds of chromatography. These include gas, high pressure liquid, or ion ...

  1. Ion Chromatography Analysis of Dibutyl Phosphoric Acid

    SciTech Connect

    Ray, R.J.

    1998-12-04

    Analysis of dibutyl phosphate (DBP), a degradation product of tributyl phosphate (TBP), has long been a problem analysis by Ion Chromatography at the Savannah River Site. Due to the presence of UO{sub 2}{sup +2} and high NO{sub 3}{sup {minus}1} concentrations, inadequate recovery and separation of DBP on the chromatographic column had rendered the analysis undependable and very inconsistent, thus causing high uncertainties in the data. The method presented here by the Savannah River Technology Center (SRTC)/Analytical Development Section (ADS) addresses the sample preparation problems encountered when analyzing for DBP in the presence of uranium and nitrate. The data presented reflects the improvements made to decrease data uncertainty and increase data accuracy and precision.

  2. Ion mobility spectrometry after supercritical fluid chromatography

    SciTech Connect

    Morrissey, M.A.

    1988-01-01

    In this work, a Fourier transform ion mobility spectrometer (FT-IMS) was constructed and evaluated as a detector for supercritical fluid chromatography (SFC). The FT-IMS provides both quantitative and qualitative data of a wide range of compounds, selective and nonselective modes of chromatographic detection, and it is compatible with a wide range of SFC mobile phases. Drift spectra are presented for a number of samples, including polymers, lipids, herbicides, antibiotics, and pharmaceuticals. The unique properties of supercritical fluids made it possible to introduce these compounds into the spectrometer. While the drift spectra presented are generally simple, showing only a quasi-molecular ion, a few are surprising complex. Examples of selective and non-selective detection demonstrate the usefulness of the detector. Examples are presented for fish oil concentrate, bacon grease extract, soil extract, and polymer mixtures. In the case of Triton X-100, a non-ionic surfactant, the FT-IMS was able to selectively detect individual oligomers in the polymer mixture. In the case of a polydimethylsilicone mixture the detector isolated a contaminant in the mixture.

  3. Discovery and early development of non-suppressed ion chromatography.

    PubMed

    Fritz, James S; Gjerde, Douglas T

    2010-08-01

    This year marks the 30th anniversary of the publication of Non-Suppressed Ion Chromatography, which is a method for the rapid separation of anions with on-line conductimetric detection. In this method, the separation column is connected directly to the conductimetric detector. This single-column method is a simpler technique than the original suppressed ion chromatography method, which requires a large suppressor column to reduce the background conductance. In the new method, the background signal is reduced to a manageable level simply by using an ion-exchange separation column of low exchange capacity that lowers the eluent concentration needed for separation. The eluent ion used for separation is chosen based on having large, bulky structure, which lowers the equivalent conductance and facilitates detection of the sample anions. This is a personal account of the initial discovery and early development of non-suppressed ion chromatography. The circumstances for the discovery are recounted by the two authors. Methods are described for determination of anions, cations with indirect detection, and techniques for increasing detection sensitivity. A fundamental equation for the prediction of ion chromatography detector response is given, and the development of several types of detection schemes for ion chromatography is discussed. Finally, the impact of non-suppressed ion chromatography is discussed together with comments on the discovery process. PMID:20819275

  4. Ion Exchange Chromatography and Spectrophotometry: An Introductory Undergraduate Laboratory Experiment.

    ERIC Educational Resources Information Center

    Foster, N.; And Others

    1985-01-01

    Describes an experiment in which students use ion exchange chromatography to separate a mixture of chloro complexes of transition metal ions and then use spectrophotometry to define qualitatively the efficiency of the ion exchange columns. Background information, materials needed, and procedures used are included. (JN)

  5. Rapid miniaturized chromatography procedures for iodinated monoclonal antibodies: comparison to gel exclusion chromatography

    SciTech Connect

    Kazikiewicz, J.M.; Zimmer, A.M.; Spies, S.M.; Rosen, S.T.

    1987-09-01

    Chromatographic quality control testing of radioiodinated monoclonal antibodies (/sup 131/I MOAB) is necessary to assess radiochemical purity prior to patient injection. Conventional gel exclusion chromatography column scanning (GCS) is time consuming and not practical. The authors investigated rapid miniaturized chromatographic procedures for evaluating the radiochemical purity of /sup 131/I MOAB. Three systems were evaluated using Gelman ITLC-SG and three solvents: acetone, 85% methanol, and 0.9% NaCl. Radiochemical analysis was performed on Na/sup 131/I of high radiochemical purity and Na/sup 131/I containing radiochemical impurities, as well as three /sup 131/I MOAB preparations. Five separate measurements were obtained for each preparation and solvent, and the results were compared to GCS. The results demonstrated ITLC-SG and 0.9% NaCl was most accurate in assessing radiochemical purity when compared to GCS. With the ITLC-SG and acetone system, and to a lesser degree, the ITLC-SG and 85% methanol system, no separation between /sup 131/I iodate/periodate and /sup 131/I MOAB was achieved, resulting in some instances in the overestimation of the radiochemical purity of the /sup 131/I MOAB.

  6. Various uses of ion chromatography in the manufacture of MEMS

    NASA Astrophysics Data System (ADS)

    Newton, Beverly

    1999-08-01

    Ion Chromatography has already shown its value as a process monitoring and troubleshooting tool for the semiconductor and disk drive manufacturers. Similarly, there are many possible uses for this analytical technique in the manufacture of microelectromechanical devices. Some of these uses are: (i) the analysis of corrosive ions in ultrapure water and ultrapure chemicals; (ii) analysis of plating bath constituents and contaminants; (iii) analysis of corrosive ions found on MEMS devices during manufacturing and which can later cause device failure of reliability problems; (iv) the analysis of corrosive ions found on MEMS manufacturing tools, carriers and other materials that come in contact with the final product. This paper will explore the many uses of ion chromatography for the manufacture of MEMS devices. Special techniques, only recently developed for use on very small objects, will also be presented for the analysis of ions at part per trillion levels.

  7. Using ion exchange chromatography to purify a recombinantly expressed protein.

    PubMed

    Duong-Ly, Krisna C; Gabelli, Sandra B

    2014-01-01

    Ion exchange chromatography (IEX) separates molecules by their surface charge, a property that can vary vastly between different proteins. There are two types of IEX, cation exhange and anion exchange chromatography. The protocol that follows was designed by the authors for anion exchange chromatography of a recombinantly expressed protein having a pI of 4.9 and containing two cysteine residues and one tryptophan residue, using an FPLC system. Prior to anion exchange, the protein had been salted out using ammonium sulfate precipitation and partially purified via hydrophobic interaction chromatography (see Salting out of proteins using ammonium sulfate precipitation and Use and Application of Hydrophobic Interaction Chromatography for Protein Purification). Slight modifications to this protocol may be made to accommodate both the protein of interest and the availability of equipment. PMID:24674065

  8. Analysis of pesticide residues in tobacco with online size exclusion chromatography with gas chromatography and tandem mass spectrometry.

    PubMed

    Guo, Weiyun; Bian, Zhaoyang; Tang, Gangling; Wang, Deguo; Li, Guanghui; Wang, Jianlong

    2016-07-01

    An ultrasensitive method for the simultaneous analysis of pesticides residues in tobacco was developed with online size exclusion chromatography with gas chromatography and tandem mass spectrometry. Tobacco samples were extracted with the solvent mixture of cyclohexane and acetone (7:3, v/v) and centrifuged. Then, the supernatant liquors were injected directly into the online size exclusion chromatography with gas chromatography and tandem mass spectrometry without any other purification procedures after being filtered with a 0.22 μm organic phase filter. The matrix interferences were effectively removed and recoveries of most pesticides were in the range of 72-121%. Especially, for chlorothalonil, the analysis efficiency of this method was much more favorable than that of the general method, in which dispersive solid-phase extraction was used as an additional purified procedure. In addition, the limits of quantitation of this method were from 1 to 50 μg/kg. Therefore, a rapid, cost-effective, labor-saving method was proposed in the present work, which was suitable for the analysis of 41 pesticide residues in tobacco. PMID:27197809

  9. Practical experience with on-line ion chromatography

    SciTech Connect

    Lynch, G.J.

    1991-12-31

    Bettis is heavily involved in on-line ion chromatography and has gained much experience with the systems. This paper serves to pass that experience along to any users, current or prospective, that are interested in the systems. On-line IC is extremely dynamic and the developments over the past few years have helped to produce systems that can provide technical and productivity improvements. The potential uses of the systems are only beginning to be tapped. It is the information provided herein maybe useful to any interested in on-line ion chromatography.

  10. Degradation of Ultra-High Molar Mass Polymers in Size-Exclusion Chromatography

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The degradation of high molar mass polymers during size-exclusion chromatography (SEC) analysis has been a topic of interest for several decades. Should a polymer degrade during analysis, the accuracy of the molar mass (M) and architectural information obtained will be compromised. To this effect,...

  11. Mineral Separation in a CELSS by Ion-exchange Chromatography

    NASA Technical Reports Server (NTRS)

    Ballou, E. V.; Spitze, L. A.; Wong, F. W.; Wydeven, T.; Johnson, C. C.

    1982-01-01

    Operational parameters pertinent to ion exchange chromatography separation were identified. The experiments were performed with 9 mm diameter ion exchange columns and conventional column accessories. The cation separation beds were packed with AG 50W-X2 strong acid cation exchange resin in H(+) form and 200-400 dry mesh particle size. The stripper beds used in some experiments were packed with AG 1-XB strong base cation exchange resin in OH(-) form and 200-400 dry mesh particle size.

  12. ANALYSIS OF FERRIC AND FERROUS IONS IN SOIL EXTRACTS BY ION CHROMATOGRAPHY

    EPA Science Inventory

    A method using ion chromatography (IC) for the analysis of ferrous (Fe 2+) and ferric (Fe 3+) ions in soil extracts has been developed. This method uses an ion exchange column with detection at 520 nm after post-column derivatization. Selectivity is achieved by using an anionic...

  13. CHEMICAL ANALYSIS OF WET SCRUBBERS UTILIZING ION CHROMATOGRAPHY

    EPA Science Inventory

    The report describes the key elements required to develop a sampling and analysis program for a wet scrubber using ion chromatography as the main analytical technique. The first part of the report describes a sampling program for two different types of wet scrubbers: the venturi/...

  14. Purification of the Yersinia entomophaga Yen-TC Toxin Complex Using Size Exclusion Chromatography.

    PubMed

    Jones, Sandra A; Hurst, Mark R H

    2016-01-01

    The Yersinia entomophaga toxin complex (Yen-TC) is the bacterium's main virulence determinant. Because of its high insect activity, methods were developed to allow the routine isolation and purification of Yen-TC from an overnight bacterial culture using size exclusion chromatography. Here we outline an overnight purification procedure using a 100-ml culture volume, where approximately 2 mg of Yen-TC, with an approximate purity of 95-98 %, can be routinely obtained. PMID:27565490

  15. Trace level perchlorate analysis by ion chromatography-mass spectrometry.

    PubMed

    Mathew, Johnson; Gandhi, Jay; Hedrick, Joe

    2005-08-26

    Perchlorate is commonly used as an oxidant in solid fuel propellant for rockets and missiles. Recently perchlorate contamination was found in many aquifers associated with Colorado River and other sites. Perchlorate was also found at elevated level in crops that use contaminated water for irrigation. Ion chromatography with conductivity detection could be used to measure perchlorate levels in drinking and wastewaters as per United States Environmental Protection Agency method 314, but at lower levels and with complexity of the matrix there could be false positive and/or false negative. This study was done to demonstrate the detection of perchlorate with lower detection limit with high ionic matrix by ion chromatography-mass spectrometry. PMID:16106848

  16. Determination of chloride in geological samples by ion chromatography

    USGS Publications Warehouse

    Wilson, S.A.; Gent, C.A.

    1983-01-01

    Samples of silicate rocks are prepared by sodium carbonate fusion and then treated by ion chromatography. The method was tested for geological standards with chloride concentration between 0.003 and 3%. Observed chloride concentrations comparedd favorably with literature values. The relative standard deviation and detection limit for the method were 8% and 7 ppm, respectively. Up to 30 determination per 24-hour period were possible. ?? 1983.

  17. Grafting zwitterionic polymer onto cryogel surface enhances protein retention in steric exclusion chromatography on cryogel monolith.

    PubMed

    Tao, Shi-Peng; Zheng, Jie; Sun, Yan

    2015-04-10

    Cryogel monoliths with interconnected macropores (10-100μm) and hydrophilic surfaces can be employed as chromatography media for protein retention in steric exclusion chromatography (SXC). SXC is based on the principle that the exclusion of polyethylene glycol (PEG) on both a hydrophilic chromatography surface and a protein favors their association, leading to the protein retention on the chromatography surface. Elution of the retained protein can be achieved by reducing PEG concentration. In this work, the surface of polyacrylamide-based cryogel monolith was modified by grafting zwitterionic poly(carboxybetaine methacrylate) (pCBMA), leading the increase in the surface hydrophilicity. Observation by scanning electron microscopy revealed the presence of the grafted pCBMA chain clusters on the cryogel surface, but pCBMA grafting did not result in the changes of the physical properties of the monolith column, and the columns maintained good recyclability in SXC. The effect of the surface grafting on the SXC behavior of γ-globulin was investigated in a wide flow rate range (0.6-12cm/min). It was found that the dynamic retention capacity increased 1.4-1.8 times by the zwitterionic polymer grafting in the flow rate range of 1.5-12cm/min. The mechanism of enhanced protein retention on the zwitterionic polymer-grafted surface was proposed. The research proved that zwitterionic polymer modification was promising for the development of new materials for SXC applications. PMID:25757821

  18. Using size exclusion chromatography-RPLC and RPLC-CIEF as two-dimensional separation strategies for protein profiling

    SciTech Connect

    Simpson, David C.; Ahn, Seonghee; Pasa-Tolic, Ljiljana; Bogdanov, Bogdan; Mottaz, Heather M.; Vilkov, Andrey N.; Anderson, Gordon A.; Lipton, Mary S.; Smith, Richard D.

    2006-07-27

    Bottom-up proteomics (analyzing peptides that result from protein digestion) has demonstrated the capability for broad proteome coverage and good throughput, but is not ideally suited to the discovery and identification of modified proteins. Top-down proteomics (including subjecting intact protein ions to gas-phase dissociation) allows the study of modified proteins, but coverage, sensitivity and throughput are presently problematic. In this work, we describe the combination of bottom-up with intact protein analyses for the characterization of modified proteins. Fractionation at the intact protein level was employed to reduce complexity and increase measurement dynamic range. Bottom-up measurements were used to identify the subset of proteins that were present in each fraction. These identifications were then used in combination with high-accuracy Fourier-transform ion cyclotron resonance (FTICR)-mass spectrometry (MS) intact protein mass measurements to achieve protein and modified-protein identifications. The relative performance of size exclusion chromatography (SEC) fractionation combined with on-line reversed-phase liquid chromatography (RPLC)-FTICR-MS was compared with RPLC fractionation combined with capillary isoelectric focusing (CIEF)-FTICR-MS. Finally, the relative coverage provided by proteomic analyses based on tryptic peptides and intact proteins is considered.

  19. Indirect detection of halide ions via fluorescence quenching of quinine sulfate in microcolumn ion chromatography.

    PubMed

    Takeuchi, Toyohide; Sumida, Junichi

    2004-06-01

    Halide ions could be visualized via fluorescence quenching in microcolumn ion chromatography. The fluorescence of quinine sulfate, which was contained in an acidic eluent, was quenched by halide ions. The observed fluorescence quenching values increased in this order: iodide, bromide, and chloride. The present detection system was relatively sensitive to halide ions except for fluoride: other anions gave smaller signals than halide ions. The present detection system provided quantitative information, so it could be applied to the determination of chloride in water samples. PMID:15228124

  20. Characterization of synthetic dyes by comprehensive two-dimensional liquid chromatography combining ion-exchange chromatography and fast ion-pair reversed-phase chromatography.

    PubMed

    Pirok, Bob W J; Knip, Jitske; van Bommel, Maarten R; Schoenmakers, Peter J

    2016-03-01

    In the late 19th century, newly invented synthetic dyes rapidly replaced the natural dyes on the market. The characterization of mixtures of these so-called early synthetic dyes is complicated through the occurrence of many impurities and degradation products. Conventional one-dimensional liquid chromatography does not suffice to obtain fingerprints with sufficient resolution and baseline integrity. Comprehensive two-dimensional liquid chromatography (LC×LC) is employed in this study, with ion-exchange chromatography in the first dimension and fast ion-pair liquid chromatography in the second. Retention in the first dimension is largely determined by the number of charges, while the selection of a small ion-pair reagent (tetramethylammonium hydroxide) in the second dimension causes retention to be largely determined by the molecular structure of the dye. As a result, there is a high degree of orthogonality of the two dimensions, similar to the values typically encountered in GC×GC. The proposed LC×LC method shows a theroretical peak capacity of about 2000 in an analysis time of about three hours. Clear, informative fingerprints are obtained that open a way to a more efficient characterization of dyes used in objects of cultural heritage. PMID:26868445

  1. Ion exclusion by sub-2-nm carbon nanotube pores

    PubMed Central

    Fornasiero, Francesco; Park, Hyung Gyu; Holt, Jason K.; Stadermann, Michael; Grigoropoulos, Costas P.; Noy, Aleksandr; Bakajin, Olgica

    2008-01-01

    Biological pores regulate the cellular traffic of a large variety of solutes, often with high selectivity and fast flow rates. These pores share several common structural features: the inner surface of the pore is frequently lined with hydrophobic residues, and the selectivity filter regions often contain charged functional groups. Hydrophobic, narrow-diameter carbon nanotubes can provide a simplified model of membrane channels by reproducing these critical features in a simpler and more robust platform. Previous studies demonstrated that carbon nanotube pores can support a water flux comparable to natural aquaporin channels. Here, we investigate ion transport through these pores using a sub-2-nm, aligned carbon nanotube membrane nanofluidic platform. To mimic the charged groups at the selectivity region, we introduce negatively charged groups at the opening of the carbon nanotubes by plasma treatment. Pressure-driven filtration experiments, coupled with capillary electrophoresis analysis of the permeate and feed, are used to quantify ion exclusion in these membranes as a function of solution ionic strength, pH, and ion valence. We show that carbon nanotube membranes exhibit significant ion exclusion that can be as high as 98% under certain conditions. Our results strongly support a Donnan-type rejection mechanism, dominated by electrostatic interactions between fixed membrane charges and mobile ions, whereas steric and hydrodynamic effects appear to be less important. PMID:18539773

  2. A novel amide stationary phase for hydrophilic interaction liquid chromatography and ion chromatography.

    PubMed

    Shen, Guobin; Zhang, Feifang; Yang, Bingcheng; Chu, Changhu; Liang, Xinmiao

    2013-10-15

    A novel amide stationary phase (ASP) for hydrophilic interaction liquid chromatography (HILIC) has been prepared via the Click chemistry method. It was based on the strategy that the amino group of Asparagine was easily transferred to the corresponding azido group and then clicked onto terminal alkyne-silica gel in the presence of Cu(I)-based catalyst. For the tested polar compounds including nucleosides and nucleic acid bases, ASP-based column has demonstrated good performance in terms of separation efficiency and column stability, and the retention mechanism was found to match well the typical HILIC retention. In addition, the ASP described here showed much better selectivity in separation of inorganic anions under ion chromatography mode relative to other kinds of commercial ASP. PMID:24054569

  3. Ion chromatography in the manufacture of multilayer circuit boards

    SciTech Connect

    Smith, R.E.

    1990-09-01

    Ion chromatography (IC) has proven useful in analyzing chemical solutions used in the manufacture of multilayer circuit boards. The manufacturing process is described briefly and previously published IC methods are reviewed. Then, methods are described for determining chlorate and chlorite in a brown oxide solution; salicylic acid in an epoxy cure agent; formate, sulfate, and tartrate in an electroless copper bath; anionic detergents in a tin-lead brightener and in a cleaning solution; and aqueous photoresist and nonionic brightener in a tin-lead bath. Anion exchange, reverse phase HPLC on a poly(styrene/divinylbenzene), PS/DVB, column and two-dimensional liquid chromatography also are described. Chemically suppressed conductivity and photometric detection are used. 13 refs., 10 figs., 1 tab.

  4. Determination of sulfur dioxide in grapes: comparison of the Monier-Williams method and two ion exclusion chromatographic methods.

    PubMed

    Kim, H J; Conca, K R; Richardson, M J

    1990-01-01

    Results for determination of sulfur dioxide in grapes were compared by 3 methods: the modified Monier-Williams method, acid distillation/ion exclusion chromatography with electrochemical detection (AD/IEC-EC), and alkali extraction/ion exclusion chromatography with electrochemical detection (AE/IEC-EC). An unusual positive response was observed during the later stage of the Monier-Williams distillation of both control grapes and sulfited grapes. Development of volatile acidic compounds in parallel with this Monier-Williams response and darkening of sample was also observed by collection in an alkali trap and analysis using anion exclusion chromatography and photodiode array detection. No parallel increase in sulfite was observed by the more selective AD/IEC-EC method, which clearly demonstrated that the response observed during the later stage of the Monier-Williams method is a false positive, probably due to caramelization reaction products. Monier-Williams results for grapes containing ca 10 ppm sulfite were in reasonably good agreement with those by either the AD/IEC-EC or AE/IEC-EC methods, presumably because the false positive response in the Monier-Williams analysis compensated for the somewhat incomplete recovery of sulfite. The AE/IEC-EC method is recommended because it is rapid, sensitive, straightforward, and free from interference. Accurate results by Monier-Williams analysis could be obtained by limiting distillation to 60 min and correcting for recovery. PMID:2289930

  5. Determination of selected anions in water by ion chromatography

    USGS Publications Warehouse

    Fishman, Marvin J.; Pyen, Grace

    1979-01-01

    Ion chromatography is a rapid, sensitive, precise, and accurate method for the determination of major anions in rainwater and surface waters. Simultaneous analyses of a single sample for bromide, chloride, fluoride, nitrate, nitrite, orthophosphate, and sulfate require approximately 20 minutes to obtain a chromatogram. Minimum detection limits range from 0.01 mg/L for fluoride to 0.20 mg/L for chloride and sulfate. Relative standard deviations were less than 9% for all anions except nitrite in Standard Reference Water Samples. Only one reference sample contained nitrite and its concentration was near the minimum level of detection. Similar precision was found for chloride, nitrate, and sulfate at concentrations less than 5 mg/L in rainfall samples. Precision for fluoride ranged from 12 to 22%, but is attributed to the low concentrations in these samples. The other anions were not detected. To determine accuracy of results, several samples were spiked with known concentrations of fluoride, chloride, nitrate, and sulfate; recoveries ranged from 96 to 103%. Known amounts of bromide and phosphate were added, separately, to several other waters, which contained bromide or phosphate. Recovery of added bromide and phosphate ranged from approximately 95 to 104%. No recovery data were obtained for nitrite. Chloride, nitrate, nitrite, orthophosphate, and sulfate, in several samples, were also determined independently by automated colorimetric procedures. An automated ion-selective electrode method was used to determine fluoride. Results are in agreement with results obtained by ion chromatography. (USGS).

  6. Liquid Chromatography in 1982.

    ERIC Educational Resources Information Center

    Freeman, David H.

    1982-01-01

    Reviews trends in liquid chromatography including apparatus, factors affecting efficient separation of a mixture (peak sharpness and speed), simplified problem-solving, adsorption, bonded phase chromatography, ion selectivity, and size exclusion. The current trend is to control chemical selectivity by the liquid phase. (Author/JN)

  7. Size-exclusion chromatography for the determination of the boiling point distribution of high-boiling petroleum fractions.

    PubMed

    Boczkaj, Grzegorz; Przyjazny, Andrzej; Kamiński, Marian

    2015-03-01

    The paper describes a new procedure for the determination of boiling point distribution of high-boiling petroleum fractions using size-exclusion chromatography with refractive index detection. Thus far, the determination of boiling range distribution by chromatography has been accomplished using simulated distillation with gas chromatography with flame ionization detection. This study revealed that in spite of substantial differences in the separation mechanism and the detection mode, the size-exclusion chromatography technique yields similar results for the determination of boiling point distribution compared with simulated distillation and novel empty column gas chromatography. The developed procedure using size-exclusion chromatography has a substantial applicability, especially for the determination of exact final boiling point values for high-boiling mixtures, for which a standard high-temperature simulated distillation would have to be used. In this case, the precision of final boiling point determination is low due to the high final temperatures of the gas chromatograph oven and an insufficient thermal stability of both the gas chromatography stationary phase and the sample. Additionally, the use of high-performance liquid chromatography detectors more sensitive than refractive index detection allows a lower detection limit for high-molar-mass aromatic compounds, and thus increases the sensitivity of final boiling point determination. PMID:25545251

  8. Using size exclusion chromatography-RPLC and RPLC-CIEF as two-dimensional separation strategies for protein profiling

    SciTech Connect

    Simson, David C.; Ahn, Seonghee; Pasa-Tolic, Liljiana; Bogdanov, Bogdan; Brewer, Heather M.; Vilkov, Andrey N.; Anderson, Gordon A.; Lipton, Mary S.; Smith, Richard D.

    2006-07-01

    Bottom-up proteomics (analyzing peptides that result from protein digestion) has demonstrated capability for broad proteome coverage and good throughput. However, due to incomplete sequence coverage, this approach is not ideally suited to the study of modified proteins. The modification complement of a protein can best be elucidated by analyzing the intact protein. Two-dimensional gel electrophoresis, typically coupled with the analysis of peptides that result from in-gel digestion, is the most frequently applied protein separation technique in MS-based proteomics. As an alternative, numerous column-based liquid phase techniques, which are generally more amenable to automation, are being investigated. In this work, the combination of size exclusion chromatography (SEC) fractionation with reversed-phase liquid chromatography (RPLC)-Fourier-transform ion cyclotron resonance (FTICR)-mass spectrometry (MS) is compared with the combination of RPLC fractionation with capillary isoelectric focusing (CIEF)-FTICR-MS for the analysis of the Shewanella oneidensis proteome. SEC-RPLC-FTICR-MS allowed the detection of 297 proteins, as opposed to 166 using RPLC-CIEF-FTICR-MS, indicating that approaches based on LC-MS provide better coverage. However, there were significant differences in the sets of proteins detected and both approaches provide a basis for accurately quantifying changes in protein and modified protein abundances.

  9. A Size-Exclusion Chromatography Method for Analysis of Clostridium difficile Vaccine Toxins.

    PubMed

    Lancaster, Catherine; Rustandi, Richard R; Pannizzo, Paola; Ha, Sha

    2016-01-01

    High-performance size-exclusion chromatography (HPSEC or SEC) is a method that can be applied to measure size distribution of proteins, including aggregates, monomers, and fragments. In the biopharmaceutical industry the quantitation of aggregates contained in biotherapeutics and protein-based vaccines is critical given the potential impact on safety, immunogenicity, and efficacy. Hence, aggregation analysis of therapeutic proteins or protein-based vaccine products is almost always a requirement of regulatory agencies. SEC, also referred to as gel-filtration chromatography, separates molecules by size through a porous resin stationary phase. Under isocratic flow small molecules are retained on the column longer than large molecules. Here we describe the use of this SEC technique to characterize aggregation levels for four different protein antigens for a Clostridium difficile vaccine. PMID:27507349

  10. Analysis of isoamylase debranched starches with size exclusion chromatography utilizing PFG columns.

    PubMed

    Ciric, Jelena; Woortman, Albert J J; Loos, Katja

    2014-11-01

    Debranched starches were tested with a previously developed method for size exclusion chromatography (SEC) with multi detection utilizing different columns than usually used for the separation of starch in DMSO. A number of debranched starches were analyzed. This system allows good separation of amylose and amylopectin after debranching of starch, and provides quantitative information on the amylose content. Additionally molar mass versus hydrodynamic radii (Rh) distributions of various debranched starches show that the debranching was not 100% and that the differences in the structure of various starches can be followed. PMID:25129767

  11. Separation of complex branched polymers by size-exclusion chromatography probed with multiple detection.

    PubMed

    Gaborieau, Marianne; Nicolas, Julien; Save, Maud; Charleux, Bernadette; Vairon, Jean-Pierre; Gilbert, Robert G; Castignolles, Patrice

    2008-05-01

    Size-exclusion chromatography (SEC) separates polymers by hydrodynamic volume (the universal calibration principle). Molecular weights can be determined using viscometry (relying on universal calibration) and light scattering (independent of universal calibration). In the case of complex branched polyacrylates with tetrahydrofuran as eluent, universal calibration is valid, although the separation in term of molecular weight is incomplete: a given elution slice contains a range of molecular weights, described in terms of a 'local polydispersity'. The local polydispersity index decreases when the number of branches per chain increases and complete separation is reached for highly branched chains. PMID:18378255

  12. Quantification of amyloid fibrils using size exclusion chromatography coupled with online fluorescence and ultraviolet detection.

    PubMed

    Randrianjatovo-Gbalou, Irina; Marcato-Romain, Claire-Emmanuelle; Girbal-Neuhauser, Elisabeth

    2015-11-01

    An amyloid fibrils investigation within biofilm samples requires distinguishing the amyloid β-sheet structure of these proteins and quantifying them. In this study, the property of amyloids to incorporate the fluorescent dye Thioflavin T has been exploited to propose a method of quantification. The experimental protocol includes the preparation of amyloids from commercial κ-casein (κCN) and their fractionation through size exclusion chromatography (SEC) to provide calibration curves from fluorescence and absorbance signals. Finally, a bacterial biofilm extract was injected into SEC, and the amyloid fibrils could be expressed as equivalent κCN, representing approximately 21% of the total proteins. PMID:26239215

  13. Measurement of interactions between polysaccharides and flavour compounds by exclusion size chromatography: advantages and limits.

    PubMed

    Guichard, E; Etiévant, P

    1998-12-01

    Interactions between flavour compounds and polysaccharides have been studied by exclusion size chromatography, the Hummel and Dreyer method. Hydrogen bonding was found between 2-acetyl thiazole and dextrines of different degrees of polymerisation. The number of binding sites and the affinity constant increase by increasing the degree of polymerisation. Hydrogen bonding was also responsible for the interactions between xanthane and 1-octen-3-ol or 2-acetyl pyrazine, with 1 mole of 1-octen-3-ol bound per pentasaccharide repeating unit. Unfortunately, the number of flavour compounds, which can be studied with this method, is limited due to their low water solubility and their low UV absorption. PMID:9881364

  14. Toward a full characterization of native starch: separation and detection by size-exclusion chromatography.

    PubMed

    Hoang, Ngoc-Ly; Landolfi, Antonin; Kravchuk, Anastasiya; Girard, Etienne; Peate, Jonathan; Hernandez, Javier M; Gaborieau, Marianne; Kravchuk, Olena; Gilbert, Robert G; Guillaneuf, Yohann; Castignolles, Patrice

    2008-09-26

    The structure of starch molecules is relevant to nutrition and industrial applications. Size-exclusion chromatography (SEC, also known as GPC) of native starch generally suffers non-satisfactory repeatability and reproducibility of the dissolution and separation. This work combines two polar organic solvents: dimethylsulfoxide for complete dissolution and dimethylacetamide to limit shear degradation. The separation is as repeatable as that of polystyrene standards performing dissolution and separation at 80 degrees C. Successful covalent-labeling on the glucose unit is claimed to be published here for the first time in non-degradative conditions and allows the use of UV detector with significantly higher sensitivity than with a refractometer. PMID:18722623

  15. Ion chromatography detection of fluoride in calcium carbonate.

    PubMed

    Lefler, Jamie E; Ivey, Michelle M

    2011-09-01

    Fluoride in aquatic systems is increasing due to anthropogenic pollution, but little is known about how this fluoride affects organisms that live in and around aquatic habitats. Fluoride can bioaccumulate in structures comprised of calcium carbonate, such as shells and skeletons of both freshwater and saltwater species as diverse as snails, corals, and coccolithophorid algae. In this article, ion chromatography (IC) techniques are developed to detect and quantify fluoride in a matrix of calcium carbonate. Solid samples are dissolved in hydrochloric acid, pretreated to remove the majority of the chloride ions, and then analyzed using IC. With these methods, the 3σ limit of detection is 0.2 mg of fluoride/kg of calcium carbonate. PMID:21859530

  16. Determination of sulphite in wines using suppressed ion chromatography.

    PubMed

    Yoshikawa, Kenji; Uekusa, Yuki; Sakuragawa, Akio

    2015-05-01

    Suppressed ion chromatography with the use of a conductivity detector was developed for the determination of sulphite ions in wine samples. When a mixed solution of sodium carbonate, sodium bicarbonate, and acetone was used as the mobile phase, simultaneous determination of eight inorganic anions (i.e., fluoride, chloride, nitrite, nitrate, sulphite, phosphate, sulphate, and thiosulphate) was completed in approximately 25 min. Linearity, reproducibility, and detection limits were determined for the proposed method. In the case of sulphite detection, a linear calibration curve with a good correlation coefficient of 0.9992 was obtained from the peak height of sulphite with a relative standard deviation (n = 6) 1.48%. In addition, the detection limit of sulphite was 0.27 mg/L at a signal-to-noise ratio of 3. Further, the developed method was applied for the determination of sulphite contained in several wine samples. PMID:25529696

  17. Protein Nitrogen Determination by Kjeldahl Digestion and Ion Chromatography.

    PubMed

    Wang, Hsiaoling; Pampati, Nagarani; McCormick, William M; Bhattacharyya, Lokesh

    2016-06-01

    We report development and validation of a simple, rapid, and accurate method for the quantitation of protein nitrogen, which combines Kjeldahl digestion and ion chromatography with suppressed conductivity detection and requires nanomolar amount of nitrogen in samples (≥10 μg protein). The mechanism of suppressed conductivity detection does not permit analysis of samples containing copper (present in Kjeldahl digestion solution) and aluminum (present in many vaccines as adjuvants) due to precipitation of their hydroxides within the suppressor. We overcame this problem by including 10 μM oxalic acid in Kjeldahl digests and in the eluent (30 mM methanesulfonic acid). The chromatography is performed using an IonPac CS-16 cation exchange column by isocratic elution. The method reduces the digestion time to less than 1 h and eliminates the distillation and titration steps of the Kjeldahl method, thereby reducing the analysis time significantly and improving precision and accuracy. To determine protein nitrogen in samples containing non-protein nitrogen, proteins are precipitated by a mixture of deoxycholate and trichloroacetic acid and the precipitates are analyzed after dissolving in KOH. The method is particularly useful for biological samples that are limited and can also be applied to food, environmental, and other materials. PMID:27238484

  18. Quantifying vitamin K-dependent holoprotein compaction caused by differential γ-carboxylation using high-pressure size exclusion chromatography.

    PubMed

    Vanderslice, Nicholas C; Messer, Amanda S; Vadivel, Kanagasabai; Bajaj, S Paul; Phillips, Martin; Fatemi, Mostafa; Xu, Weijie; Velander, William H

    2015-06-15

    This study uses high-pressure size exclusion chromatography (HPSEC) to quantify divalent metal ion (X(2+))-induced compaction found in vitamin K-dependent (VKD) proteins. Multiple X(2+) binding sites formed by the presence of up to 12 γ-carboxyglutamic acid (Gla) residues are present in plasma-derived FIX (pd-FIX) and recombinant FIX (r-FIX). Analytical ultracentrifugation (AUC) was used to calibrate the Stokes radius (R) measured by HPSEC. A compaction of pd-FIX caused by the filling of Ca(2+) and Mg(2+) binding sites resulted in a 5 to 6% decrease in radius of hydration as observed by HPSEC. The filling of Ca(2+) sites resulted in greater compaction than for Mg(2+) alone where this effect was additive or greater when both ions were present at physiological levels. Less X(2+)-induced compaction was observed in r-FIX with lower Gla content populations, which enabled the separation of biologically active r-FIX species from inactive ones by HPSEC. HPSEC was sensitive to R changes of approximately 0.01nm that enabled the detection of FIX compaction that was likely cooperative in nature between lower avidity X(2+) sites of the Gla domain and higher avidity X(2+) sites of the epidermal growth factor 1 (EGF1)-like domain. PMID:25804408

  19. Potentiometric sensors with ion-exchange Donnan exclusion membranes.

    PubMed

    Grygolowicz-Pawlak, Ewa; Crespo, Gastón A; Ghahraman Afshar, Majid; Mistlberger, Günter; Bakker, Eric

    2013-07-01

    Potentiometric sensors that exhibit a non-Hofmeister selectivity sequence are normally designed by selective chemical recognition elements in the membrane. In other situations, when used as detectors in separation science, for example, membranes that respond equally to most ions are preferred. With so-called liquid membranes, a low selectivity is difficult to accomplish since these membranes are intrinsically responsive to lipophilic species. Instead, the high solubility of sample lipids in an ionophore-free sensing matrix results in a deterioration of the response. We explore here potentiometric sensors on the basis of ion-exchange membranes commonly used in fuel cell applications and electrodialysis, which have so far not found their way into the field of ion-selective electrodes. These membranes act as Donnan exclusion membranes as the ions are not stripped of their hydration shell as they interact with the membrane. Because of this, lipophilic ions are no longer preferred over hydrophilic ones, making them promising candidates for the detection of abundant ions in the presence of lipophilic ones or as detectors in separation science. Two types of cation-exchanger membranes and one anion-exchange membrane were characterized, and potentiometric measuring ranges were found to be Nernstian over a wide range down to about 10 μM concentrations. Depending on the specific membrane, lipophilic ions gave equal response to hydrophilic ones or were even somewhat discriminated. The medium and long-term stability and reproducibility of the electrode signals were found to be promising when evaluated in synthetic and whole blood samples. PMID:23731350

  20. What can in situ ion chromatography offer for Mars exploration?

    PubMed

    Shelor, C Phillip; Dasgupta, Purnendu K; Aubrey, Andrew; Davila, Alfonso F; Lee, Michael C; McKay, Christopher P; Liu, Yan; Noell, Aaron C

    2014-07-01

    The successes of the Mars exploration program have led to our unprecedented knowledge of the geological, mineralogical, and elemental composition of the martian surface. To date, however, only one mission, the Phoenix lander, has specifically set out to determine the soluble chemistry of the martian surface. The surprising results, including the detection of perchlorate, demonstrated both the importance of performing soluble ion measurements and the need for improved instrumentation to unambiguously identify all the species present. Ion chromatography (IC) is the state-of-the-art technique for soluble ion analysis on Earth and would therefore be the ideal instrument to send to Mars. A flight IC system must necessarily be small, lightweight, low-power, and have low eluent consumption. We demonstrate here a breadboard system that addresses these issues by using capillary IC at low flow rates with an optimized eluent generator and suppressor. A mix of 12 ions known or plausible for the martian soil, including 4 (oxy)chlorine species, has been separated at flow rates ranging from 1 to 10 μL/min, requiring as little as 200 psi at 1.0 μL/min. This allowed the use of pneumatic displacement pumping from a pressurized aluminum eluent reservoir and the elimination of the high-pressure pump entirely (the single heaviest and most energy-intensive component). All ions could be separated and detected effectively from 0.5 to 100 μM, even when millimolar concentrations of perchlorate were present in the same mixtures. PMID:24963874

  1. Chromatography.

    ERIC Educational Resources Information Center

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities on chromatography. Directions for preparing leaf pigment extracts using alcohol are given, and paper chromatography and thin-layer chromatography are described as modifications of the basic principles of chromatography. (KHR)

  2. Metal ion binding to phospholipid bilayers evaluated by microaffinity chromatography.

    PubMed

    Ross, Eric E; Hoag, Christian; Pfeifer, Zach; Lundeen, Christopher; Owens, Sarah

    2016-06-17

    Group I and II ion binding to phospholipid membranes was evaluated by affinity chromatography utilizing a new stationary phase system based on lipid bilayers supported within large-pore particles composed of Stöber silica spheres. Using an inductively coupled plasma mass spectrometer for detection, robust determination of binding selectivity within group II ions is achieved with capillary columns containing nanomole quantities of lipid and using picomoles of metal analyte. Columns with a unique lipid formulation can be prepared within three hours using a solvent-casting assembly method. The observable thermotropic phase behavior of dipalmitoylphosphatidylcholine has a significant effect on alkaline metal binding and demonstrates the dynamic nature of the supported bilayers. Of the group I ions, only lithium exhibits retention with neutral phosphatidylcholine bilayer stationary phases. A comparison of Stöber-based supports with two commercially available large-pore silicas reveals the effect that particle structure has on analyte accessibility to the bilayer surface as evaluated by retention per supported lipid mass. PMID:27189434

  3. Speciation of aluminum in aqueous solutions using ion chromatography.

    PubMed

    Bertsch, P M; Anderson, M A

    1989-03-15

    An ion chromatographic method in which aluminum (AI) is quantitatively determined via postcolumn derivatization with Tiron (4,5-dihydroxy-m-benzenedisulfonic acid) was evaluated for its utility as a method for speciating AI in aqueous solutions. Fluro-, oxalato-, and citratoaluminum complexes were identified by distinct peaks within chromatograms of AI solutions when the appropriate ligand was added. Excellent quantitative agreement between predicted species concentrations (via the thermodynamic speciation model GEOCHEM) and those determined by ion chromatography was obtained for samples prepared in the eluent matrix. The predominantly outer sphere sulfatoaluminum complexes were not observed to elute as singly charged species, but rather exhibited a retention time indistinguishable from the AI(H2O)6(3+) species. It is concluded that inner sphere AI complexes (generally possessing relatively high association constants) possess adequate kinetic stability to withstand degradation during the ion exchange process, whereas outer sphere complexes apparently readily dissociate in the presence of the sulfonate exchange sites. Deviations in sample ionic strength (mu) and pH from that of the eluent resulted in some redistribution among species, the degree of which was ligand specific. PMID:2729589

  4. Peptide Orientation Affects Selectivity in Ion-Exchange Chromatography

    SciTech Connect

    Alpert, Andrew J.; Petritis, Konstantinos; Kangas, Lars J.; Smith, Richard D.; Mechtler, Karl; Mitulovic, Goran; Mohammed, Shabaz; Heck, Albert J.

    2010-06-15

    Here we demonstrate that separation of proteolytic peptides, having the same net charge and one basic residue, is affected by their specific orientation toward the stationary phase in ion-exchange chromatography. In electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) with an anion-exchange material, the C-terminus of the peptides is, on average, oriented toward the stationary phase. In cation exchange, the average peptide orientation is the opposite. Data with synthetic peptides, serving as orientation probes, indicate that in tryptic/Lys-C peptides the C-terminal carboxyl group appears to be in a zwitterionic bond with the side chain of the C-terminal Lys/Arg residue. In effect, the side chain is then less basic than the N-terminus, accounting for the specific orientation of tryptic and Lys-C peptides. Analyses of larger sets of peptides, generated from lysates by either Lys-N, Lys-C, or trypsin, reveal that specific peptide orientation affects the ability of harged side chains, such as phosphate residues, to influence retention. Phosphorylated residues that are remote in the sequence from the binding site affect retention less than those that are closer. When a peptide contains multiple charged sites, then orientation is observed to be less rigid and retention tends to be governed by the peptide’s net charge rather than its sequence. These general observations could be of value in confirming a peptide’s identification and, in particular, phosphosite assignments in proteomics analyses. More generally, orientation accounts for the ability of chromatography to separate peptides of the same compositionbut different sequence.

  5. Peptide Orientation Affects Selectivity in Ion-Exchange Chromatography

    SciTech Connect

    Alpert, Andrew J.; Petritis, Konstantinos; Kangas, Lars J.; Smith, R. D.; Mechtler, Karl; Mitulovic, Goran; Mohammed, Shabaz; Heck, Albert J.

    2010-06-15

    Here we demonstrate that separation of proteolytic peptides, having the same net charge and one basic residue, is affected by their specific orientation toward the stationary phase in ion-exchange chromatography. In electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) with an anion-exchange material, the C-terminus of the peptides is, on average, oriented toward the stationary phase. In cation exchange, the average peptide orientation is the opposite. Data with synthetic peptides, serving as orientation probes, indicate that in tryptic/ Lys-C peptides the C-terminal carboxyl group appears to be in a zwitterionic bond with the side chain of the C-terminal Lys/Arg residue. In effect, the side chain is then less basic than the N-terminus, accounting for the specific orientation of tryptic and Lys-C peptides. Analyses of larger sets of peptides, generated from lysates by either Lys-N, Lys-C, or trypsin, reveal that specific peptide orientation affects the ability of charged side chains, such as phosphate residues, to influence retention. Phosphorylated residues that are remote in the sequence from the binding site affect retention less than those that are closer. When a peptide contains multiple charged sites, then orientation is observed to be less rigid and retention tends to be governed by the peptide’s net charge rather than its sequence. These general observations could be of value in confirming a peptide’s identification and, in particular, phosphosite assignments in proteomics analyses. More generally, orientation accounts for the ability of chromatography to separate peptides of the same composition but different sequence.

  6. Peptide Orientation Affects Selectivity in Ion-Exchange Chromatography

    PubMed Central

    2010-01-01

    Here we demonstrate that separation of proteolytic peptides, having the same net charge and one basic residue, is affected by their specific orientation toward the stationary phase in ion-exchange chromatography. In electrostatic repulsion−hydrophilic interaction chromatography (ERLIC) with an anion-exchange material, the C-terminus of the peptides is, on average, oriented toward the stationary phase. In cation exchange, the average peptide orientation is the opposite. Data with synthetic peptides, serving as orientation probes, indicate that in tryptic/Lys-C peptides the C-terminal carboxyl group appears to be in a zwitterionic bond with the side chain of the C-terminal Lys/Arg residue. In effect, the side chain is then less basic than the N-terminus, accounting for the specific orientation of tryptic and Lys-C peptides. Analyses of larger sets of peptides, generated from lysates by either Lys-N, Lys-C, or trypsin, reveal that specific peptide orientation affects the ability of charged side chains, such as phosphate residues, to influence retention. Phosphorylated residues that are remote in the sequence from the binding site affect retention less than those that are closer. When a peptide contains multiple charged sites, then orientation is observed to be less rigid and retention tends to be governed by the peptide’s net charge rather than its sequence. These general observations could be of value in confirming a peptide’s identification and, in particular, phosphosite assignments in proteomics analyses. More generally, orientation accounts for the ability of chromatography to separate peptides of the same composition but different sequence. PMID:20481592

  7. RNA footprinting analysis using ion pair reverse phase liquid chromatography.

    PubMed Central

    Dickman, Mark J; Conroy, Matthew J; Grasby, Jane A; Hornby, David P

    2002-01-01

    Hydroxyl radical footprinting is a powerful technique often employed in characterization of the tertiary interactions between proteins and nucleic acids. Following the generation of a nucleic acid "ladder" either by chemical or enzymatic reactions, the radiolabeled products are traditionally separated by denaturing gel electrophoresis and further quantified by phosphorimaging techniques. Here we report the use of ion pair reverse phase liquid chromatography to analyze the products of an RNA footprinting reaction using fluorescently labeled RNA molecules. This technique offers several advantages over existing procedures, including rapid analysis, automation, and direct quantification of the cleavage products without the need to employ radiolabeling. To illustrate the resolving power of this technique, we have analyzed the products of base hydrolysis, generated from a fluorescently labeled RNA molecule and have subsequently used this method to define the solvent accessibility of the substrate strand as it docks with the hairpin ribozyme. PMID:11911369

  8. Separation of glyceride positional isomers by silver ion chromatography.

    PubMed

    Févrie, P; Bine, A; Dufossé, L; Grée, R; Yvergnaux, F

    2001-07-20

    Separation of triglyceride and diglyceride positional isomers by silver ion high-performance liquid chromatography coupled with an evaporative light-scattering detector is described. The triglyceride isomers had a fatty acid composition of CLC and CCL, where C and L were caprylic acid and linoleic acid, respectively. Diglyceride isomers, 1,2(2,3)-diglyceride and 1,3-diglyceride, which contained caprylic acid were separated too. A solvent system based on n-hexane, 2-propanol, ethyl acetate, and acetonitrile with a flow-rate of 0.8 ml/min was developed. Calibration curves of CLC and CCL were achieved with triolein as internal standard. Using this method, the incorporation of linoleic acid onto specific a position of glycerol backbone can be monitored. PMID:11510559

  9. Determination of heparin on intraocular lens surfaces by ion chromatography.

    PubMed

    Ander, B; Karlsson, A; Ohrlund, A

    2001-05-11

    A sensitive and selective method has been developed for the determination of heparin on heparin coated PMMA, poly(methyl methacrylate), intraocular lenses. Heparin was hydrolysed to glucosamine and glucuronic acid, and the content of glucosamine was determined using ion chromatography with pulsed amperometric detection. In order to verify that a complete hydrolysis was obtained for the heparin on the coated intraocular lenses, electron spectroscopy for chemical analysis (ESCA) was used for analysing traces of sulphur on the lens surfaces. The sensitivity of the method allows quantitative determination of 150 ng of heparin on one individual lens. The new method was compared to a standard spectrophotometric method, measuring the colour intensity of a heparin toluidine blue complex. Correlation between the methods was shown for samples prepared from PMMA lenses coated with different amounts of heparin. PMID:11403462

  10. Online process control of acidic texturisation baths with ion chromatography.

    PubMed

    Zimmer, Martin; Oltersdorf, Antje; Rentsch, Jochen

    2009-12-15

    Etching of silicon with mixtures of hydrofluoric acid and nitric acid is a widely used process in silicon solar cell fabrication. One precondition for an optimized usage of the acidic etching baths is the exact knowledge of the chemical bath composition. In this paper, we investigated a fast and online-capable method for the total analysis of all bath constituents by ion chromatography. The chromatographical system consists of a low-volume injection valve, which injects the concentrated samples directly into the KOH-based eluent. After separation and detection of nitrate and fluoride, a post-column derivatization with sodium molybdate is applied to detect the hexafluorosilicic acid, which enriches in the texturisation bath during the etching process. The results of the presented approach are discussed and compared with already published chromatographical and titration methods found in literature. PMID:19836511

  11. Enhanced methodology for porting ion chromatography retention data.

    PubMed

    Park, Soo Hyun; Shellie, Robert A; Dicinoski, Greg W; Schuster, Georg; Talebi, Mohammad; Haddad, Paul R; Szucs, Roman; Dolan, John W; Pohl, Christopher A

    2016-03-01

    Porting is a powerful methodology to recalibrate an existing database of ion chromatography (IC) retention times by reflecting the changes of column behavior resulting from either batch-to-batch variability in the production of the column or the manufacture of new versions of a column. This approach has been employed to update extensive databases of retention data of inorganic and organic anions forming part of the "Virtual Column" software marketed by Thermo Fisher Scientific, which is the only available commercial optimization tool for IC separation. The current porting process is accomplished by performing three isocratic separations with two representative analyte ions in order to derive a porting equation which expresses the relationship between old and new data. Although the accuracy of retention prediction is generally enhanced on new columns, errors were observed on some columns. In this work, the porting methodology was modified in order to address this issue, where the porting equation is now derived by using six representative analyte ions (chloride, bromide, iodide, perchlorate, sulfate, and thiosulfate). Additionally, the updated porting methodology has been applied on three Thermo Fisher Scientific columns (AS20, AS19, and AS11HC). The proposed approach showed that the new porting methodology can provide more accurate and robust retention prediction on a wide range of columns, where average errors in retention times for ten test anions under three eluent conditions were less than 1.5%. Moreover, the retention prediction using this new approach provided an acceptable level of accuracy on a used column exhibiting changes in ion-exchange capacity. PMID:26860051

  12. Developments in suppressor technology for inorganic ion analysis by ion chromatography using conductivity detection.

    PubMed

    Hadda, Paul R; Jackson, Peter E; Shaw, Matthew J

    2003-06-01

    A review is presented detailing the development and use of suppression devices for the conductimetric detection of inorganic ions by ion chromatography (IC). An overview of the general response equation for conductivity detection is also given. Topics of discussion include the role and function of suppressors, the development of early suppressors including packed column and membrane devices from 1975 to 1990 and the subsequent progression towards present day commercially available suppressors and recent innovations. Post-suppression devices for signal enhancement are also discussed. PMID:12877197

  13. Size-exclusion chromatography with organic carbon detection using a mass spectrometer.

    PubMed

    Warton, Ben; Heitz, Anna; Allpike, Bradley; Kagi, Robert

    2008-10-17

    A novel organic carbon detector for size-exclusion chromatography (SEC) is described. The instrument uses the conventional UV-persulfate oxidation method to convert organic carbon to CO(2), which is then detected using a mass spectrometer. This system, using the mass spectrometer, had lower limits of detection (LOD) and limits of quantification (LOQ) than a previously described system using a Fourier transform infrared (FTIR) spectroscopy 'lightpipe' detector (i.e. when quantification was based on calibration using phthalate standards). When used to analyse natural organic matter (NOM) in water, it also had a superior signal-to-noise ratio to the previously described system. The use of a mass spectrometer to detect organic carbon (as CO(2)) enables the possibility of further characterisation of NOM by measuring the stable carbon isotope ratios of the various molecular size fractions of organic carbon, as obtained by SEC. PMID:18790486

  14. Extraction and separation of polysaccharides from Laminaria japonica by size-exclusion chromatography.

    PubMed

    Zhang, Heng; Row, Kyung Ho

    2015-04-01

    A large number of studies have suggested that polysaccharides, such as fucoidan and laminarin, in various seaweeds have significant biological properties. A different distribution of molecular weights is a prominent sign of many polysaccharides. Therefore, a simple, fast and reliable high-performance size-exclusion chromatography (HPSEC) method was proposed to separate fucoidan and laminarin from Laminaria japonica. After evaluating the different separation conditions for HPSEC, such as the type of mobile phase and flow rate, an acid extraction method was established and optimized by a systematic investigation of the influencing factors. Under the optimal conditions, 169.2 and 383.8 mg g(-1) of fucoidan and laminarin, respectively, were extracted. This method is suitable for the extraction and separation of polysaccharides with good reproducibility of the retention time, acceptable linearity, small relative standard deviation and low detection limits. PMID:25013027

  15. Measurement of osmotic second virial coefficients by zonal size-exclusion chromatography.

    PubMed

    Winzor, Donald J

    2016-07-01

    Numerical simulation of protein migration reflecting linear concentration dependence of the partition isotherm has been used to invalidate a published procedure for measuring osmotic second virial coefficients (B22) by zonal exclusion chromatography. Failure of the zonal procedure to emulate its frontal chromatographic counterpart reflects ambiguity about the solute concentration that should be used to replace the applied concentration in the rigorous quantitative expression for frontal migration; the recommended use of the peak concentration in the eluted zone is incorrect on theoretical grounds. Furthermore, the claim for its validation on empirical grounds has been traced to the use of inappropriate B22 magnitudes as the standards against which the experimentally derived values were being tested. PMID:27095059

  16. Fluorescence-Detectino Size-Exclusion Chromatography for Precrystallization Screening of Integral Membrane Proteins

    SciTech Connect

    Kawate,T.; Gouaux, E.

    2006-01-01

    Formation of well-ordered crystals of membrane proteins is a bottleneck for structure determination by X-ray crystallography. Nevertheless, one can increase the probability of successful crystallization by precrystallization screening, a process by which one analyzes the monodispersity and stability of the protein-detergent complex. Traditionally, this has required microgram to milligram quantities of purified protein and a concomitant investment of time and resources. Here, we describe a rapid and efficient precrystallization screening strategy in which the target protein is covalently fused to green fluorescent protein (GFP) and the resulting unpurified protein is analyzed by fluorescence-detection size-exclusion chromatography (FSEC). This strategy requires only nanogram quantities of unpurified protein and allows one to evaluate localization and expression level, the degree of monodispersity, and the approximate molecular mass. We show the application of this precrystallization screening to four membrane proteins derived from prokaryotic or eukaryotic organisms.

  17. Size-Exclusion Chromatography for the Analysis of Protein Biotherapeutics and their Aggregates

    PubMed Central

    Hong, Paula; Koza, Stephan; Bouvier, Edouard S. P.

    2012-01-01

    In recent years, the use and number of biotherapeutics has increased significantly. For these largely protein-based therapies, the quantitation of aggregates is of particular concern given their potential effect on efficacy and immunogenicity. This need has renewed interest in size-exclusion chromatography (SEC). In the following review we will outline the history and background of SEC for the analysis of proteins. We will also discuss the instrumentation for these analyses, including the use of different types of detectors. Method development for protein analysis by SEC will also be outlined, including the effect of mobile phase and column parameters (column length, pore size). We will also review some of the applications of this mode of separation that are of particular importance to protein biopharmaceutical development and highlight some considerations in their implementation. PMID:23378719

  18. Ion Exclusion by Sub 2-nm Carbon Nanotube Pores

    SciTech Connect

    Fornasiero, F; Park, H G; Holt, J K; Stadermann, M; Grigoropoulos, C P; Noy, A; Bakajin, O

    2008-04-09

    Carbon nanotubes offer an outstanding platform for studying molecular transport at nanoscale, and have become promising materials for nanofluidics and membrane technology due to their unique combination of physical, chemical, mechanical, and electronic properties. In particular, both simulations and experiments have proved that fluid flow through carbon nanotubes of nanometer size diameter is exceptionally fast compared to what continuum hydrodynamic theories would predict when applied on this length scale, and also, compared to conventional membranes with pores of similar size, such as zeolites. For a variety of applications such as separation technology, molecular sensing, drug delivery, and biomimetics, selectivity is required together with fast flow. In particular, for water desalination, coupling the enhancement of the water flux with selective ion transport could drastically reduce the cost of brackish and seawater desalting. In this work, we study the ion selectivity of membranes made of aligned double-walled carbon nanotubes with sub-2 nm diameter. Negatively charged groups are introduced at the opening of the carbon nanotubes by oxygen plasma treatment. Reverse osmosis experiments coupled with capillary electrophoresis analysis of permeate and feed show significant anion and cation rejection. Ion exclusion declines by increasing ionic strength (concentration) of the feed and by lowering solution pH; also, the highest rejection is observed for the A{sub m}{sup Z{sub A}} C{sub n}{sup Z{sub C}} salts (A=anion, C=cation, z= valence) with the greatest Z{sub A}/Z{sub C} ratio. Our results strongly support a Donnan-type rejection mechanism, dominated by electrostatic interactions between fixed membrane charges and mobile ions, while steric and hydrodynamic effects appear to be less important. Comparison with commercial nanofiltration membranes for water softening reveals that our carbon nanotube membranes provides far superior water fluxes for similar ion

  19. Size distribution analysis of influenza virus particles using size exclusion chromatography.

    PubMed

    Vajda, Judith; Weber, Dennis; Brekel, Dominik; Hundt, Boris; Müller, Egbert

    2016-09-23

    Size exclusion chromatography is a standard method in quality control of biopharmaceutical proteins. In contrast, vaccine analysis is often based on activity assays. The hemagglutination assay is a widely accepted influenza quantification method, providing no insight in the size distribution of virus particles. Capabilities of size exclusion chromatography to complement the hemagglutination assay are investigated. The presented method is comparatively robust regarding different buffer systems, ionic strength and additive concentrations. Addition of 200mM arginine or sodium chloride is necessary to obtain complete virus particle recovery. 0.5 and 1.0M arginine increase the hydrodynamic radius of the whole virus particles by 5nm. Sodium citrate induces virus particle aggregation. Results are confirmed by dynamic light scattering. Retention of a H1N1v strain correlates with DNA contents between 5ng/mL and 670ng/mL. Quantitative elution of the virus preparations is verified on basis of hemagglutination activity. Elution of hemagglutination inducing compounds starts at a flow channel diameter of 7000nm. The universal applicability is demonstrated with three different influenza virus samples, including an industrially produced, pandemic vaccine strain. Size distribution of the pandemic H1N1v 5258, H1N1 PR/8/34, and H3N2 Aichi/2/68 preparations spreads across inter- and intra-particle volume and extends to the secondary interaction dominated range. Thus, virus particle debris seems to induce hemagglutination. Fragments generated by 0.5% Triton™ X-100 treatment increase overall hemagglutination activity. PMID:27578410

  20. Size exclusion chromatography of synthetic polymers and biopolymers on common reversed phase and hydrophilic interaction chromatography columns.

    PubMed

    Caltabiano, Anna M; Foley, Joe P; Barth, Howard G

    2016-03-11

    This work describes the applicability of common reversed phase and HILIC columns for size exclusion chromatography of synthetic and natural polymers. Depending on the nature of the solute and column stationary phase, a "non-retention" condition must be created with the aid of the mobile phase to achieve a unique size-based separation in isocratic mode. The various bonded phases show remarkable differences in size separations that are controlled by mobile phase conditions. Polymer-mobile phase and column-mobile phase solvation interactions determine polymer hydrodynamic volume (or solute bulkiness) and polymer-column steric interaction. Solvation interactions in turn depend on polymer, mobile phase and stationary phase polarities. Column-mobile phase solvation interactions determine the structural order of the bonded ligands that can vary from ordered (extended, aligned away from the silica substrate) to disordered (folded, pointing toward the silica substrate). Chain order increases with increased solvent penetration into the bonded phase. Increased chain order reduces pore volume, and therefore decreases the size-separation efficiency of a column. Conversely, decreased chain order increases pore volume and therefore increases the size-separation efficiency. The thermodynamic quality of the mobile phase also plays a significant role in the separation of polymers. "Poor" solvents can significantly reduce the hydrodynamic diameter of a solute and thus change their retention behavior. Medium polarity stationary phases, such as fluoro-phenyl and cyano, exhibit a unique retention behavior. With an appropriate polarity mobile phase, polar and non-polar synthetic polymers of the same molecular masses can be eluted at the same retention volumes. PMID:26877177

  1. Electrodialytic membrane suppressors for ion chromatography make programmable buffer generators.

    PubMed

    Chen, Yongjing; Srinivasan, Kannan; Dasgupta, Purnendu K

    2012-01-01

    The use of buffer solutions is immensely important in a great variety of disciplines. The generation of continuous pH gradients in flow systems plays an important role in the chromatographic separation of proteins, high-throughput pK(a) determinations, etc. We demonstrate here that electrodialytic membrane suppressors used in ion chromatography can be used to generate buffers. The generated pH, computed from first principles, agrees well with measured values. We demonstrate the generation of phosphate and citrate buffers using a cation-exchange membrane (CEM) -based anion suppressor and Tris and ethylenediamine buffers using an anion-exchange membrane (AEM) -based cation suppressor. Using a mixture of phosphate, citrate, and borate as the buffering ions and using a CEM suppressor, we demonstrate the generation of a highly reproducible (avg RSD 0.20%, n = 3), temporally linear (pH 3.0-11.9, r(2) > 0.9996), electrically controlled pH gradient. With butylamine and a large concentration (0.5 M) of added NaCl, we demonstrate a similar linear pH gradient of large range with a near-constant ionic strength. We believe that this approach will be of value for the generation of eluents in the separation of proteins and other biomolecules and in online process titrations. PMID:22103670

  2. Analysis of starch in food systems by high-performance size exclusion chromatography.

    PubMed

    Ovando-Martínez, Maribel; Whitney, Kristin; Simsek, Senay

    2013-02-01

    Starch has unique physicochemical characteristics among food carbohydrates. Starch contributes to the physicochemical attributes of food products made from roots, legumes, cereals, and fruits. It occurs naturally as distinct particles, called granules. Most starch granules are a mixture of 2 sugar polymers: a highly branched polysaccharide named amylopectin and a basically linear polysaccharide named amylose. The starch contained in food products undergoes changes during processing, which causes changes in the starch molecular weight and amylose to amylopectin ratio. The objective of this study was to develop a new, simple, 1-step, and accurate method for simultaneous determination of amylose and amylopectin ratio as well as weight-averaged molecular weights of starch in food products. Starch from bread flour, canned peas, corn flake cereal, snack crackers, canned kidney beans, pasta, potato chips, and white bread was extracted by dissolving in KOH, urea, and precipitation with ethanol. Starch samples were solubilized and analyzed on a high-performance size exclusion chromatography (HPSEC) system. To verify the identity of the peaks, fractions were collected and soluble starch and beta-glucan assays were performed additional to gas chromatography analysis. We found that all the fractions contain only glucose and soluble starch assay is correlated to the HPSEC fractionation. This new method can be used to determine amylose amylopectin ratio and weight-averaged molecular weight of starch from various food products using as low as 25 mg dry samples. PMID:23330715

  3. High Pressure Size Exclusion Chromatography (HPSEC) of humic substances: molecular sizes, analytical parameters, and column performance

    PubMed

    Conte; Piccolo

    1999-02-01

    High Pressure Size Exclusion chromatography (HPSEC) is increasingly used to evaluate molecular sizes of humic substances from different sources. Asymmetry factors (As), number of theoretical plates (N), coefficient of distribution (k(d)), and column resolution (Rs) were determined for two different HPSEC columns (TSK G3000SW and Biosep S2000) and polysaccharides of known molecular weights were used as standards. Calibration curves were equivalent for both columns whereas analytical parameters revealed that the TSK column was only slightly more efficient in separating polysaccharide standards. Mw and Mn values for humic substances differed according to the molecular weight range of each column but relative standard deviation never exceeded 5% for both columns. Variations between columns were attributed to intrinsic humic properties such as the stability of conformational structures. These results suggested that humic substances in solutions are loosely-bound association of small molecules that may be consistently dispersed by diffusion through size-exclusion pores. HPSEC is confirmed to represent a highly precise method to evaluate the relative molecular-size distribution of dissolved humic substances. PMID:10901671

  4. Fluorophore Absorption Size Exclusion Chromatography (FA-SEC): An Alternative Method for High-Throughput Detergent Screening of Membrane Proteins.

    PubMed

    Lin, Sung-Yao; Sun, Xing-Han; Hsiao, Yu-Hsuan; Chang, Shao-En; Li, Guan-Syun; Hu, Nien-Jen

    2016-01-01

    Membrane proteins play key roles in many fundamental functions in cells including ATP synthesis, ion and molecule transporter, cell signalling and enzymatic reactions, accounting for ~30% genes of whole genomes. However, the hydrophobic nature of membrane proteins frequently hampers the progress of structure determination. Detergent screening is the critical step in obtaining stable detergent-solubilized membrane proteins and well-diffracting protein crystals. Fluorescence Detection Size Exclusion Chromatography (FSEC) has been developed to monitor the extraction efficiency and monodispersity of membrane proteins in detergent micelles. By tracing the FSEC profiles of GFP-fused membrane proteins, this method significantly enhances the throughput of detergent screening. However, current methods to acquire FSEC profiles require either an in-line fluorescence detector with the SEC equipment or an off-line spectrofluorometer microplate reader. Here, we introduce an alternative method detecting the absorption of GFP (FA-SEC) at 485 nm, thus making this methodology possible on conventional SEC equipment through the in-line absorbance spectrometer. The results demonstrate that absorption is in great correlation with fluorescence of GFP. The comparably weaker absorption signal can be improved by using a longer path-length flow cell. The FA-SEC profiles were congruent with the ones plotted by FSEC, suggesting FA-SEC could be a comparable and economical setup for detergent screening of membrane proteins. PMID:27332877

  5. Fluorophore Absorption Size Exclusion Chromatography (FA-SEC): An Alternative Method for High-Throughput Detergent Screening of Membrane Proteins

    PubMed Central

    Hsiao, Yu-Hsuan; Chang, Shao-En; Li, Guan-Syun; Hu, Nien-Jen

    2016-01-01

    Membrane proteins play key roles in many fundamental functions in cells including ATP synthesis, ion and molecule transporter, cell signalling and enzymatic reactions, accounting for ~30% genes of whole genomes. However, the hydrophobic nature of membrane proteins frequently hampers the progress of structure determination. Detergent screening is the critical step in obtaining stable detergent-solubilized membrane proteins and well-diffracting protein crystals. Fluorescence Detection Size Exclusion Chromatography (FSEC) has been developed to monitor the extraction efficiency and monodispersity of membrane proteins in detergent micelles. By tracing the FSEC profiles of GFP-fused membrane proteins, this method significantly enhances the throughput of detergent screening. However, current methods to acquire FSEC profiles require either an in-line fluorescence detector with the SEC equipment or an off-line spectrofluorometer microplate reader. Here, we introduce an alternative method detecting the absorption of GFP (FA-SEC) at 485 nm, thus making this methodology possible on conventional SEC equipment through the in-line absorbance spectrometer. The results demonstrate that absorption is in great correlation with fluorescence of GFP. The comparably weaker absorption signal can be improved by using a longer path-length flow cell. The FA-SEC profiles were congruent with the ones plotted by FSEC, suggesting FA-SEC could be a comparable and economical setup for detergent screening of membrane proteins. PMID:27332877

  6. Ion-exchange chromatography by dicarboxyl cellulose gel.

    PubMed

    Kim, U J; Kuga, S

    2001-06-01

    A new column packing material for ion-exchange chromatography was prepared from cellulose gel by periodate oxidation followed by chlorite oxidation to form spatially paired carboxyl groups (dicarboxyl cellulose, DCC). The carboxyl group was quantitatively introduced to spherical cellulose gel by controlling the extent of oxidation. The DCC gels were examined for their ion-exchange activity for various amines at pH of 2.5-5.5. In this pH range, aromatic amines with acid dissociation constant (pKa) below 2.7 showed no interaction with DCC gels as expected from their lack of protonation. The amines with pKa greater than 3.3, both aromatic and aliphatic, showed strong interaction corresponding to the amount of carboxyl introduced to the gel. However, these amines showed anomalous dependence on pH of the mobile phase, showing a maximum in retention factor at around pH 4. This is in contrast with the nearly constant retention factor of these amines on conventional carboxylated cellulose packing at pH greater than 4.0. The maximum retention factor at pH 4 of DCC gel was 4-5-times greater than that of conventional gel having a similar amount of carboxyls. Since pKa of dicarboxyl groups ranges 3-5 as determined by acid-base titration, the pH giving maximum retention corresponds to the pH at which one of paired carboxyls is dissociated. Possible cause of this anomaly is presented in terms of dissociation state of dicarboxyl groups and its interaction with amines. PMID:11459309

  7. Elucidating the redox cycle of environmental phosphorus using ion chromatography.

    PubMed

    Pech, Herbe; Vazquez, Maria G; Van Buren, Jean; Shi, Lixin; Ivey, Michelle M; Salmassi, Tina M; Pasek, Matthew A; Foster, Krishna L

    2011-09-01

    Historically, it was assumed that reactive, inorganic phosphorus present in pristine environments was solely in the form of orthophosphate. However, this assumption contradicts theories of biogenesis and the observed metabolic behavior of select microorganisms. This paper discusses the role of ion chromatography (IC) in elucidating the oxidation-reduction cycle of environmental phosphorus. These methods employ suppressed-IC, coupled with tandem conductivity and electrospray mass spectrometry detectors to identify and quantify phosphorus oxyanions in natural water, synthetic cosmochemical, and biological samples. These techniques have been used to detect phosphite and orthophosphate in geothermal hot springs. Hypophosphite, phosphite, and orthophosphate have been detected in synthetic schreibersite corrosion samples, and termite extract supernatant. Synthetic schreibersite corrosion samples were also analyzed for two poly-phosphorus compounds, hypophosphate and pyrophosphate, and results show these samples did not contain concentrations above the 1.3 and 2.0 μM respective 3σ limit of detection. These methods are readily adaptable to a variety of matrices, and contribute to the elucidation of the oxidation-reduction cycle of phosphorus oxyanions in the environment. In contrast to most studies, these techniques have been used to show that phosphorus actively participates in redox processes in both the biological and geological world. PMID:21859529

  8. Determination of cyanogenic compounds in edible plants by ion chromatography.

    PubMed

    Cho, Hye-Jeon; Do, Byung-Kyung; Shim, Soon-Mi; Kwon, Hoonjeong; Lee, Dong-Ha; Nah, Ahn-Hee; Choi, Youn-Ju; Lee, Sook-Yeon

    2013-06-01

    Cyanogenic glycosides are HCN-producing phytotoxins; HCN is a powerful and a rapidly acting poison. It is not difficult to find plants containing these compounds in the food supply and/or in medicinal herb collections. The objective of this study was to investigate the distribution of total cyanide in nine genera (Dolichos, Ginkgo, Hordeum, Linum, Phaseolus, Prunus, Phyllostachys, Phytolacca, and Portulaca) of edible plants and the effect of the processing on cyanide concentration. Total cyanide content was measured by ion chromatography following acid hydrolysis and distillation. Kernels of Prunus genus are used medicinally, but they possess the highest level of total cyanide of up to 2259.81 CN(-)/g dry weight. Trace amounts of cyanogenic compounds were detected in foodstuffs such as mungbeans and bamboo shoots. Currently, except for the WHO guideline for cassava, there is no global standard for the allowed amount of cyanogenic compounds in foodstuffs. However, our data emphasize the need for the guidelines if plants containing cyanogenic glycosidesare to be developed as dietary supplements. PMID:24278641

  9. Fluoride and aluminum release from restorative materials using ion chromatography

    PubMed Central

    OKTE, Zeynep; BAYRAK, Sule; FIDANCI, Ulvi Reha; SEL, Tevhide

    2012-01-01

    Objective The aim of this study was to determine the amounts of fluoride and aluminum released from different restorative materials stored in artificial saliva and double-distilled water. Material and Methods Cylindrical specimens (10 x 1 mm) were prepared from 4 different restorative materials (Kavitan Plus, Vitremer, Dyract Extra, and Surefil). For each material, 20 specimens were prepared, 10 of which were stored in 5 mL artificial saliva and 10 of which were stored in 5 mL of double-distilled water. Concentrations of fluoride and aluminum in the solutions were measured using ion chromatography. Measurements were taken daily for one week and then weekly for two additional weeks. Data were analyzed using two-way ANOVA and Duncan's multiple range tests (p<0.05). Results The highest amounts of both fluoride and aluminum were released by the resin-modified glass ionomer cement Vitremer in double-distilled water (p<0.05). All materials released significantly more fluoride in double-distilled water than in artificial saliva (p<0.05). In artificial saliva, none of the materials were observed to release aluminum. Conclusion It was concluded that storage media and method of analysis should be taken into account when the fluoride and aluminum release from dental materials is assessed. PMID:22437674

  10. How unequivocally do ion chromatography experiments determine carbon cluster geometries?

    SciTech Connect

    Strout, D.L.; Book, L.D.; Millam, J.M.; Xu, C.; Scuseria, G.E.

    1994-09-01

    Ion chromatography experiments on carbon clusters have provided a powerful tool for characterizing the products of the laser ablation of graphite. Using this technique, several families of carbon clusters have been observed, and their role in a plausible fullerene formation process has been hypothesized. In this work, we have examined the experimental mobility results from a theoretical perspective. Our most interesting finding is the existence of a family of three-dimensional 2 + 4 cycloaddition products whose members match the experimental mobilities of the so-called `ring III` family over a range of cluster sizes, whereas previous studies have asserted that the `ring III` clusters are planar. In agreement with previous research, we find that the `ring I` and `ring II` families consist of monocyclic and bicycle rings, respectively. However, these families should be broadly defined so as to include ring structures with carbon branches, because short carbon branches have only a negligible effect on cluster mobility. 28 refs., 6 figs., 6 tabs.

  11. Fluorometric determination of ammonium ion by ion chromatography using postcolumn derivatization with o-phthaldialdehyde.

    PubMed

    Kuo, Chun-Ting; Wang, Po-Yen; Wu, Chien-Hou

    2005-08-26

    A postcolumn fluorometric derivatization method for the determination of trace amounts of ammonium ion (microg/L level) under matrices with high concentrations of sodium and amino acids has been developed. In this method, ammonium ion was determined by ion chromatography combined with fluorometric detection (IC-FL) in less than 16 min. IC was performed in a high-capacity cation-exchange Dionex IonPac CS16 analytical column (250 mm x 5 mm) under isocratic conditions with 30 mM methanesulfonic acid (MSA) as mobile phase at flow-rate 1.0 mL/min. To remove amino acid interference, the postcolumn derivatization based on the reaction of ammonia with o-phthaldialdehyde (OPA) and sulfite was applied. The excitation and emission wavelengths were 364 and 425 nm, respectively. The effects of pH, reaction temperature and time, OPA-reagent composition and concentration, and sample matrix were studied. The linear range and detection limit of this method were similar to the standard method. The IC-FL method with a postcolumn fluorometric derivatization allows the routine determination of ammonium ion in extreme matrices where the ratios of sodium and amino acids to ammonium are up to 2,800,000:1 and 28,000:1, respectively. PMID:16106853

  12. Soft nanofluidics governing minority ion exclusion in charged hydrogels.

    PubMed

    Braschler, Thomas; Wu, Songmei; Wildhaber, Fabien; Bencherif, Sidi A; Mooney, David J

    2015-05-28

    We investigate ionic partition of negatively charged molecular probes into also negatively charged, covalently crosslinked alginate hydrogels. The aim is to delimit the domain of validity of the major nanoelectrostatic models, and in particular to assess the influence of hydrogel chain mobility on ionic partition. We find that the widely used Gibbs-Donnan model greatly overestimates exclusion of the co-ion probes used. For low molecular weight probes, a much better fit is obtained by taking into account the electrostatics in the nanometric gel pores by means of the Poisson-Boltzmann framework; the fit is improved slightly when taking into account alginate chain mobility. For high molecular weight probes, we find it essential to take into account local gel deformation due to electrostatic repulsion between the flexible gel strands and the probe. This is achieved by combining Poisson-Boltzmann simulations with heterogeneous pore size distribution given by the Ogston model, or more simply and precisely, by applying a semi-empirical scaling law involving the ratio between Debye length and pore size. PMID:25921409

  13. Size-exclusion chromatography of biological samples which contain extremely alkaline proteins.

    PubMed

    Hayakawa, Kou; Guo, Lei; Terentyeva, Elena A; Li, Xiao Kang; Kimura, Hiromitsu; Hirano, Masahiko; Yoshikawa, Kazuyuki; Yoshinaga, Teruo; Nagamine, Takeaki; Katsumata, Noriyuki; Tanaka, Toshiaki

    2003-06-30

    An improved size-exclusion chromatography (SEC) was developed to isolate extremely basic (alkaline) proteins, such as trypsin (pI=10.5), lysozyme (pI=11), and histone (pI=10.8). Develosil 300 Diol-5 (300 x 8 mm I.D., 30 nm average pore diameter) column was used with an eluent of 0.1 M sodium phosphate, 1.5 M sodium chloride, glycerol (40%, v/v), 2-propanol (10%, v/v), and Brij-58 (1%, v/v). Under these conditions, the final apparent pH becomes to 4.0, and pH adjustment is not necessary. Column temperature and flow rate were 15 degrees C and 0.2 ml/min, respectively. This elution system is stable and reliable, and applications onto human pancreatic juice, human bile, and tissue homogenates were successfully achieved. Since this system is convenient for protein analysis, it is expected to be generally applicable to clinical and biochemical research for identifying protein components in combination with microsequencing. PMID:12834974

  14. Combining size-exclusion chromatography with differential hydrogen-deuterium exchange to study protein conformational changes.

    PubMed

    Makarov, Alexey A; Helmy, Roy

    2016-01-29

    Methods for protein characterization are being actively developed based on the growing importance of protein therapies and applications. The goal of this study was to demonstrate the use of size-exclusion chromatography (SEC) in combination with differential hydrogen-deuterium exchange (HDX) to compare protein global conformational changes at different solution conditions. Using chaotropic mobile phase additive, differential HDX was used to detect a number of solvent accessible labile protons of protein on-column at pH and temperature conditions which provided unrestricted intrinsic H/D exchange (all-or-nothing approach). Varying SEC on-column conditions allowed for protein conformational changes to be observed. Temperature and pressure were independently studied with regards to their effect on the proteins' (insulin, cytochrome C, ubiquitin, and myoglobin) conformational changes in the solution. The obtained ΔHDX profiles revealed protein conformational changes in solution under varied conditions manifested as the difference in the number of protons exchanged to deuterons, or vice-versa. The approach described in this manuscript could prove useful for protein batch-to-batch comparisons, for optimization of chemical reactions with enzyme as catalyst or for protein chemical modification reactions. PMID:26763301

  15. Influence of extraction method on size exclusion chromatography fingerprints of EPS from wastewater sludges.

    PubMed

    Bourven, I; Simon, S; Guibaud, G

    2013-01-01

    Extracellular polymeric substances (EPS) were separated using two serial-linked size exclusion chromatography (SEC) columns to obtain detailed fingerprints. The chromatographic profile results were influenced by the nature of biological sludge (activated sludges, anaerobic granules, anaerobic flocculated sludges). Furthermore, our results highlight that EPS fingerprints are also highly dependent on the extraction method. If physical extractions modify only the relative absorbance of the chromatographic peaks, heating during extraction induces significant modifications of the fingerprints, probably owing to better organic matter extraction efficiency as well as an increase in hydrolysis for some compounds but not for EPS extracted from anaerobic granular sludges. This confirms that thermal treatment is a proper method to extract EPS from anaerobic granular sludges. The use of chemical extraction results in major changes on the EPS fingerprints. This work demonstrates that some chromatographic peaks are due to residues from the chemical reagent (such as EDTA, glutaraldehyde) which can modify or form complexes with some EPS macromolecules. As a result, due to its sensitivity to sludge origin and/or extraction procedure, SEC appears to be a suitable tool for an accurate qualitative EPS characterization. PMID:23530346

  16. Size-exclusion chromatography of poly(ethylene 2,6-naphthalate).

    PubMed

    Mourey, T H; Slater, L A; Galipo, R C; Janes, D L; Moody, R E

    2012-09-21

    A solvent mixture of 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) and dichloroacetic acid (DCAA) is used to dissolve difficultly soluble poly(ethylene 2,6-naphthalate) (PEN). Solutions can be diluted and analyzed in a common size-exclusion chromatography (SEC) eluent, HFIP. The HFIP/DCAA mixture is better at dissolving PEN than either solvent individually and it is easier and safer to work with than phenolic and strongly acidic eluents. Dissolution temperatures between 50 and 60 °C are sufficiently low to minimize hydrolytic degradation of the polyester. PEN does not dissolve in the solvent mixture if the water concentration is greater than 0.76 wt%, and preferably the water content should be less than 0.13 wt% to eliminate minor prepeak artifacts. The procedure is suitable for PEN that is less than 48% crystalline, including prepolymers, oriented films and some solid-state polymerized materials. Highly crystalline polymers can be melt-quenched into a more amorphous state to render them soluble. The dilute solution conformational properties of PEN are compared to PET in HFIP, and molar mass-intrinsic viscosity scaling constants and unperturbed dimensions are calculated from SEC data. PMID:22897859

  17. Characterisation of dissolved organic matter in stormwater using high-performance size exclusion chromatography.

    PubMed

    Huang, Huiping; Chow, Christopher W K; Jin, Bo

    2016-04-01

    Understanding the complexity of dissolved organic matter (DOM) in stormwater has drawn a lot of interest, since DOM from stormwater causes not only environmental impacts, but also worsens downstream aquatic quality associated with water supply and treatability. This study introduced and employed high-performance size exclusion chromatography (HPSEC) coupled with an ultraviolet-visible (UV-vis) diode array detector to assess changes in stormwater-associated DOM characteristics. Stormwater DOM was also analysed in relation to storm event characteristics, water quality and spectroscopic analysis. Statistical tools were used to determine the correlations within DOM and water quality measurements. Results showed that dissolved organic carbon (DOC) and UV absorbance at 254 nm (UV254) as conventional DOM parameters were found to be correlated well to the changes in stormwater quality during each of the three storm events studied. Both detector wavelengths (210 and 254 nm) and their ratio (A210/A254) were found to provide additional information on the physiochemical properties of stormwater-associated DOM. This study indicated that A210/A254 is an important parameter which could be used to estimate the DOM proportions of functional groups and conjugated carbon species. This study provided also an understanding of stormwater quality constituents through assessing variability and sensitivity for various parameters, and the additional information of rainfall characteristics on runoff quality data for a better understanding of parameter correlations and influences. PMID:27090716

  18. Continuous spin fractionation and characterization by size-exclusion chromatography for styrene-butadiene block copolymers.

    PubMed

    Xiong, Xiaopeng; Eckelt, John; Wolf, Bernhard A; Zhang, Zhengjun; Zhang, Lina

    2006-03-31

    Linear and star-shaped styrene-butadiene block copolymers synthesized by anionic polymerization of butadiene and styrene were fractionated by applying a newly developed large-scale fractionation technique, named continuous spin fractionation (CSF). Their molecular weight and polydispersity index (d=M(w)/M(n)) were measured with size-exclusion chromatography and static light scattering. For the linear triblock copolymer a fractionation via temperature variation turned out to be better suited than the usual isothermal procedure. The star-shaped polymer with the d value of 1.33 was fractionated in two CSF steps to get the targeted sample, which has a considerably more uniform structure and a narrower molecular weight distribution (d=1.11). The corresponding starting linear diblock copolymer was fractionated in one step reducing d from 1.68 to 1.17. With one set of simple laboratory equipment, 1kg polymer can be fractionated per day. Utilizing CSF, for the first time, we fractionated successfully the block copolymers. PMID:16466731

  19. Purification of quantum dot-based bioprobes via high-performance size exclusion chromatography.

    PubMed

    Wu, Jia-Kai; Tian, Zhi-Quan; Zhang, Zhi-Ling; Liu, An-An; Tang, Bo; Zhang, Li-Juan; Chen, Zhi-Liang; Pang, Dai-Wen

    2016-10-01

    Due to excellent optical properties, quantum dots (QDs) have been widely applied to sensing, labeling, and imaging. For the fabrication of QD-based bioprobes, purification is usually the crucial step. Hydrophilic octylamine grafted polyacrylic acid modified QDs (OPA-QDs) were prepared, and purified by high-performance size exclusion chromatography (HPSEC) to remove excess OPA and aggregated QDs. The percentage of suspended agglomerates of OPA-QDs in the unpurified OPA-QDs increases from 4% to 31% through a year, but the purified OPA-QDs of the same batch possess excellent colloidal stability for at least one year. Subsequently, QD-based bioprobes were fabricated by the conjugation between QDs and streptavidin (SA) or antibody (IgG), generating QD-SA and QD-IgG, respectively, which were purified via HPSEC. Finally, the resulting QD-SA and QD-IgG were adopted to detect tumour markers on slices and showed specific positive signals without nonspecific adsorption, which was contrary to the unpurified QD-IgG. Thus, the HPSEC-coupled system proposed in the current work is potent and universal for the generation of purified and monodisperse QD-based bioprobes, which is promising in the nanobiodetection field. PMID:27474280

  20. Studying Arsenite-Humic Acid Complexation Using Size Exclusion Chromatography-Inductively Coupled Plasma Mass Spectrometry

    PubMed Central

    Liu, Guangliang; Cai, Yong

    2012-01-01

    Arsenic (As) can form complexes with dissolved organic matter (DOM), which affects the fate of arsenic in waste sites and natural environments. It remains a challenge to analyze DOM-bound As, in particular by using a direct chromatographic separation method. Size exclusion chromatography (SEC) hyphenated with UV spectrophotometer and inductively coupled plasma mass spectrometry (ICP-MS) was developed to characterize the complexation of arsenite (AsIII) with DOM. This SEC-UV-ICP-MS method is able to differentiate AsIII-DOM complexes from free As species and has the advantage of direct determination of both free and DOM-bound AsIII through mild separation. The suitability of this method for studying AsIII-DOM complexation was demonstrated by its application, in combination with the Scatchard plot and nonlinear regression of ligand binding model, for characterizing AsIII complexation with humic acid (HA) in the absence or presence of natural sand. The results suggest that, consistent with polyelectrolytic nature of HA, the AsIII-HA complexation should be accounted for by multiple classes of binding sites. By loosely classifying the binding sites into strong (S1) and weak (S2) sites, the apparent stability constants (Ks) of the resulting As-DOM complexes were calculated as log Ks1 = 6.5–7.1 while log Ks2 = 4.7–5.0. PMID:22664255

  1. Size exclusion chromatography for analyses of fibroin in silk: optimization of sampling and separation conditions

    NASA Astrophysics Data System (ADS)

    Pawcenis, Dominika; Koperska, Monika A.; Milczarek, Jakub M.; Łojewski, Tomasz; Łojewska, Joanna

    2014-02-01

    A direct goal of this paper was to improve the methods of sample preparation and separation for analyses of fibroin polypeptide with the use of size exclusion chromatography (SEC). The motivation for the study arises from our interest in natural polymers included in historic textile and paper artifacts, and is a logical response to the urgent need for developing rationale-based methods for materials conservation. The first step is to develop a reliable analytical tool which would give insight into fibroin structure and its changes caused by both natural and artificial ageing. To investigate the influence of preparation conditions, two sets of artificially aged samples were prepared (with and without NaCl in sample solution) and measured by the means of SEC with multi angle laser light scattering detector. It was shown that dialysis of fibroin dissolved in LiBr solution allows removal of the salt which destroys stacks chromatographic columns and prevents reproducible analyses. Salt rich (NaCl) water solutions of fibroin improved the quality of chromatograms.

  2. Effects of solution conditions on characteristics and size exclusion chromatography of pneumococcal polysaccharides and conjugate vaccines.

    PubMed

    Hadidi, Mahsa; Buckley, John J; Zydney, Andrew L

    2016-11-01

    Molecular properties of bacterial polysaccharides and protein-polysaccharide conjugates play an important role in the efficiency and immunogenicity of the final vaccine product. Size exclusion chromatography (SEC) is commonly used to analyze and characterize biopolymers, including capsular polysaccharides. The objective of this work was to determine the effects of solution ionic strength and pH on the SEC retention of several capsular polysaccharides from S. pneumoniae bacteria in their native and conjugated forms. The retention time of the charged polysaccharides increased with increasing ionic strength and decreasing pH due to compaction of the polysaccharides associated with a reduction in the intramolecular electrostatic interactions. The calculated radius of gyration was in good agreement with model calculations based on the worm-like chain model accounting for the increase in chain stiffness and excluded volume of the charged polysaccharide at low ionic strength. These results provide important insights into the effects of solution ionic strength on physical properties and SEC behavior of capsular polysaccharides and their corresponding conjugates. PMID:27516244

  3. Rapid characterization of biotherapeutic proteins by size-exclusion chromatography coupled to native mass spectrometry

    PubMed Central

    Haberger, Markus; Leiss, Michael; Heidenreich, Anna-Katharina; Pester, Oxana; Hafenmair, Georg; Hook, Michaela; Bonnington, Lea; Wegele, Harald; Haindl, Markus; Reusch, Dietmar; Bulau, Patrick

    2016-01-01

    ABSTRACT High-molecular weight aggregates such as antibody dimers and other side products derived from incorrect light or heavy chain association typically represent critical product-related impurities for bispecific antibody formats. In this study, an approach employing ultra-pressure liquid chromatography size-exclusion separation combined with native electrospray ionization mass spectrometry for the simultaneous formation, identification and quantification of size variants in recombinant antibodies was developed. Samples exposed to storage and elevated temperature(s) enabled the identification of various bispecific antibody size variants. This test system hence allowed us to study the variants formed during formulation and bio-process development, and can thus be transferred to quality control units for routine in-process control and release analytics. In addition, native SEC-UV/MS not only facilitates the detailed analysis of low-abundant and non-covalent size variants during process characterization/validation studies, but is also essential for the SEC-UV method validation prior to admission to the market. PMID:26655595

  4. Evaluating the impact of different exogenous factors on silk textiles deterioration with use of size exclusion chromatography

    NASA Astrophysics Data System (ADS)

    Pawcenis, Dominika; Smoleń, Mariusz; Aksamit-Koperska, Monika A.; Łojewski, Tomasz; Łojewska, Joanna

    2016-06-01

    Size exclusion chromatography (SEC), especially coupled with multiple angle laser light scattering detector (MALLS) is a powerful tool in diagnostics of deterioration of historic and art objects to evaluate their condition. In this paper, SEC-UV-MALLS-DRI technique was applied to study degradation of silk fibroin samples ( Bombyx mori) artificially aged under various conditions: in the presence of oxygen, in different amount of water vapour and in volatile organic products (VOCs), all at temperature of 90 °C. Conditions were chosen in such a way that it mimicked real conditions of textiles' storing during exhibitions and in show cases. The influence of temperature, moisture and VOCs content on the state of silk textiles was examined with the use of size exclusion chromatography. Pseudo-zero-order Ekenstam equation was applied to study degradation rates of fibroin with use of the approximated values of DP of fibroin.

  5. Analysis of a MIL-L-27502 lubricant from a gas-turbine engine test by size-exclusion chromatography

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Morales, W.

    1983-01-01

    Size exclusion chromatography was used to determine the chemical degradation of MIL-L-27502 oil samples from a gas turbine engine test run at a bulk oil temperature of 216 C. Results revealed a progressive loss of primary ester and additive depletion and the formation of higher molecular weight products with time. The high molecular weight products absorbed strongly in the ultraviolet indicating the presence of chromophoric groups.

  6. Size-exclusion chromatography-based enrichment of extracellular vesicles from urine samples

    PubMed Central

    Lozano-Ramos, Inés; Bancu, Ioana; Oliveira-Tercero, Anna; Armengol, María Pilar; Menezes-Neto, Armando; Del Portillo, Hernando A.; Lauzurica-Valdemoros, Ricardo; Borràs, Francesc E.

    2015-01-01

    Renal biopsy is the gold-standard procedure to diagnose most of renal pathologies. However, this invasive method is of limited repeatability and often describes an irreversible renal damage. Urine is an easily accessible fluid and urinary extracellular vesicles (EVs) may be ideal to describe new biomarkers associated with renal pathologies. Several methods to enrich EVs have been described. Most of them contain a mixture of proteins, lipoproteins and cell debris that may be masking relevant biomarkers. Here, we evaluated size-exclusion chromatography (SEC) as a suitable method to isolate urinary EVs. Following a conventional centrifugation to eliminate cell debris and apoptotic bodies, urine samples were concentrated using ultrafiltration and loaded on a SEC column. Collected fractions were analysed by protein content and flow cytometry to determine the presence of tetraspanin markers (CD63 and CD9). The highest tetraspanin content was routinely detected in fractions well before the bulk of proteins eluted. These tetraspanin-peak fractions were analysed by cryo-electron microscopy (cryo-EM) and nanoparticle tracking analysis revealing the presence of EVs. When analysed by sodium dodecyl sulphate–polyacrylamide gel electrophoresis, tetraspanin-peak fractions from urine concentrated samples contained multiple bands but the main urine proteins (such as Tamm–Horsfall protein) were absent. Furthermore, a preliminary proteomic study of these fractions revealed the presence of EV-related proteins, suggesting their enrichment in concentrated samples. In addition, RNA profiling also showed the presence of vesicular small RNA species. To summarize, our results demonstrated that concentrated urine followed by SEC is a suitable option to isolate EVs with low presence of soluble contaminants. This methodology could permit more accurate analyses of EV-related biomarkers when further characterized by -omics technologies compared with other approaches. PMID:26025625

  7. Single-step isolation of extracellular vesicles by size-exclusion chromatography

    PubMed Central

    Böing, Anita N.; van der Pol, Edwin; Grootemaat, Anita E.; Coumans, Frank A. W.; Sturk, Auguste; Nieuwland, Rienk

    2014-01-01

    Background Isolation of extracellular vesicles from plasma is a challenge due to the presence of proteins and lipoproteins. Isolation of vesicles using differential centrifugation or density-gradient ultracentrifugation results in co-isolation of contaminants such as protein aggregates and incomplete separation of vesicles from lipoproteins, respectively. Aim To develop a single-step protocol to isolate vesicles from human body fluids. Methods Platelet-free supernatant, derived from platelet concentrates, was loaded on a sepharose CL-2B column to perform size-exclusion chromatography (SEC; n=3). Fractions were collected and analysed by nanoparticle tracking analysis, resistive pulse sensing, flow cytometry and transmission electron microscopy. The concentrations of high-density lipoprotein cholesterol (HDL) and protein were measured in each fraction. Results Fractions 9–12 contained the highest concentrations of particles larger than 70 nm and platelet-derived vesicles (46%±6 and 61%±2 of totals present in all collected fractions, respectively), but less than 5% of HDL and less than 1% of protein (4.8%±1 and 0.65%±0.3, respectively). HDL was present mainly in fractions 18–20 (32%±2 of total), and protein in fractions 19–21 (36%±2 of total). Compared to the starting material, recovery of platelet-derived vesicles was 43%±23 in fractions 9–12, with an 8-fold and 70-fold enrichment compared to HDL and protein. Conclusions SEC efficiently isolates extracellular vesicles with a diameter larger than 70 nm from platelet-free supernatant of platelet concentrates. Application SEC will improve studies on the dimensional, structural and functional properties of extracellular vesicles. PMID:25279113

  8. A broad-standard technique for correcting for band broadening in size-exclusion chromatography.

    PubMed

    Zhang, Peng; Mazoyer, Paul; Gilbert, Robert G

    2016-04-22

    Band broadening in size-exclusion chromatography (SEC) is always present to some extent. Broadening effects on averages such as the weight- and number average molecular weights (MW¯ and Mn¯ respectively) are minimal with modern SEC systems. However, broadening distorts the shape of the true molecular weight distribution (MWD), which causes problems if one wants to compare the detailed form of the MWD to a model. An addition to current methods for overcoming this problem is presented. One starts with a sufficiently wide range of samples whose exact values of Mn¯ andMW¯ have been measured by non-SEC methods (e.g. by fluorimetry and light scattering, respectively, of the sample without size separation). A true (unbroadened) molecular weight distribution for a sample can be obtained by deconvolution (here using a maximum-entropy algorithm) by fitting SEC data for these samples to these exact Mn¯ and MW¯ values to find the values of the parameters in a sufficiently flexible assumed broadening function. This was modelled using simulated band broadening and subsequent deconvolution, with the broadening parameters least-squares fitted to the "exact" sets of values of Mn¯ and MW¯. The results show that if these Mn¯ and MW¯ values are for a series of broad (not narrow) standards covering a sufficient range of molecular weight, then after deconvolution, a good representation of the original molecular weight distribution used in the simulation is obtained. The method should prove useful for water-soluble polymers, for which it is often difficult to obtain narrow standards of a wide range of molecular weight, as required in a number of well-established methods for correcting for band broadening. PMID:27016112

  9. Size-exclusion chromatography in the measurements of concentration and molecular weight of some EOR polymers

    SciTech Connect

    Hunt, J.A.; Young, T.S.; Green, D.W.; Willhite, G.P.

    1988-08-01

    Procedures that involve the use of size exclusion chromatography (SEC) for the measurement of concentration and weight-averaged molecular weight, M-bar/sub w/, of some EOR polymers were developed and found to give improved detectability, accuracy, and/or efficiency. The separation of polymer from low-molecular-weight impurities by size allows unambiguous detection of polymer properties such as concentration and M-bar/sub w/. A combination of an SEC column of a pore size small enough to exclude the polymer totally and a mobile phase of ionic strength of 1.5 was found suitable for the separation of polyacrylamide, partially hydrolyzed polyacrylamide, cationic polyacrylamide derivative, and xanthan polysaccharide from impurities. Concentration detection of the separated polymer sample with a variable-wavelength ultraviolet (UV) detector was found to give superior detectability over detection by refractive index difference. A wavelength of 214 nm (2,140 A) was used for the detection of these polymers on the basis of the spectra of samples purified by dialysis. With the active polymer assay determined by reprecipitation into a nonsolvent, the detection limit by UV was determined to be <0.1 ..mu..g/cm/sup 3/ for polyacrylamide and a cationic polyacrylamide derivative, <0.2 ..mu..g/cm/sup 3/ for partially hydrolyzed polyacrylamide, and <0.7 ..mu..g/cm/sup 3/ for a xanthan polysaccharide. The linear calibration range was up to 500 ..mu..g/cm/sup 3/. The precision of the concentration measurement was better than 4% for polyacrylamide and its derivative and 5% for polysaccharide at a 95% confidence level.

  10. High-throughput characterization of virus-like particles by interlaced size-exclusion chromatography.

    PubMed

    Ladd Effio, Christopher; Oelmeier, Stefan A; Hubbuch, Jürgen

    2016-03-01

    The development and manufacturing of safe and effective vaccines relies essentially on the availability of robust and precise analytical techniques. Virus-like particles (VLPs) have emerged as an important and valuable class of vaccines for the containment of infectious diseases. VLPs are produced by recombinant protein expression followed by purification procedures to minimize the levels of process- and product-related impurities. The control of these impurities is necessary during process development and manufacturing. Especially monitoring of the VLP size distribution is important for the characterization of the final vaccine product. Currently used methods require long analysis times and tailor-made assays. In this work, we present a size-exclusion ultra-high performance liquid chromatography (SE-UHPLC) method to characterize VLPs and quantify aggregates within 3.1min per sample applying interlaced injections. Four analytical SEC columns were evaluated for the analysis of human B19 parvo-VLPs and murine polyoma-VLPs. The optimized method was successfully used for the characterization of five recombinant protein-based VLPs including human papillomavirus (HPV) VLPs, human enterovirus 71 (EV71) VLPs, and chimeric hepatitis B core antigen (HBcAg) VLPs pointing out the generic applicability of the assay. Measurements were supported by transmission electron microscopy and dynamic light scattering. It was demonstrated that the iSE-UHPLC method provides a rapid, precise and robust tool for the characterization of VLPs. Two case studies on purification tools for VLP aggregates and storage conditions of HPV VLPs highlight the relevance of the analytical method for high-throughput process development and process monitoring of virus-like particles. PMID:26845741

  11. Ion-exchange chromatography separation applied to mineral recycle in closed systems

    NASA Technical Reports Server (NTRS)

    Ballou, E.; Spitze, L. A.; Wong, F. W.; Wydeven, T.; Johnson, C. C.

    1981-01-01

    As part of the controlled ecological life support system (CELSS) program, a study is being made of mineral separation on ion-exchange columns. The purpose of the mineral separation step is to allow minerals to be recycled from the oxidized waste products of plants, man, and animals for hydroponic food production. In the CELSS application, relatively large quantities of minerals in a broad concentration range must be recovered by the desired system, rather than the trace quantities and very low concentrations treated in analytical applications of ion-exchange chromatography. Experiments have been carried out to assess the parameters pertinent to the scale-up of ion-exchange chromatography and to determine feasibility. Preliminary conclusions are that the column scale-up is in a reasonable size range for the CELSS application. The recycling of a suitable eluent, however, remains a major challenge to the suitability of using ion exchange chromatography in closed systems.

  12. Determination of water-soluble forms of oxalic and formic acids in soils by ion chromatography

    NASA Astrophysics Data System (ADS)

    Karicheva, E.; Guseva, N.; Kambalina, M.

    2016-03-01

    Carboxylic acids (CA) play an important role in the chemical composition origin of soils and migration of elements. The content of these acids and their salts is one of the important characteristics for agrochemical, ecological, ameliorative and hygienic assessment of soils. The aim of the article is to determine water-soluble forms of same carboxylic acids — (oxalic and formic acids) in soils by ion chromatography with gradient elution. For the separation and determination of water-soluble carboxylic acids we used reagent-free gradient elution ion-exchange chromatography ICS-2000 (Dionex, USA), the model solutions of oxalate and formate ions, and leachates from soils of the Kola Peninsula. The optimal gradient program was established for separation and detection of oxalate and formate ions in water solutions by ion chromatography. A stability indicating method was developed for the simultaneous determination of water-soluble organic acids in soils. The method has shown high detection limits such as 0.03 mg/L for oxalate ion and 0.02 mg/L for formate ion. High signal reproducibility was achieved in wide range of intensities which correspond to the following ion concentrations: from 0.04 mg/g to 10 mg/L (formate), from 0.1 mg/g to 25 mg/L (oxalate). The concentration of formate and oxalate ions in soil samples is from 0.04 to 0.9 mg/L and 0.45 to 17 mg/L respectively.

  13. Selective retention of basic compounds by metal aquo-ion affinity chromatography.

    PubMed

    Asakawa, Yoshiki; Yamamoto, Eiichi; Asakawa, Naoki

    2014-10-01

    A novel metal aquo-ion affinity chromatography has been developed for the analysis of basic compounds using heat-treated silica gel containing hydrated metal cations (metal aquo-ions) as the packing material. The packing materials of the metal aquo-ion affinity chromatography were prepared by the immobilization of a single metal component such as Fe(III), Al(III), Ag(I), and Ni(II) on silica gel followed by extensive heat treatment. The immobilized metals form aquo-ions to present cation-exchange ability for basic analytes and the cation-exchange ability for basic analytes depends on pKa of the immobilized metal species. In the present study, to evaluate the retention characteristics of metal aquo-ion affinity chromatography, the on-line solid-phase extraction of drugs was investigated. Obtained data clearly evidence the selective retention capability of metal aquo-ion affinity chromatography for basic analytes with sufficient capacity. PMID:25044622

  14. Application of ion chromatography to the study of hydrolysis of some halogenated hydrocarbons at ambient temperatures

    NASA Technical Reports Server (NTRS)

    Otterson, D. A.

    1978-01-01

    The application of ion chromatography to the study of very slow rates of hydrolysis of some halogenated hydrocarbons was investigated. The halide concentrations in the aqueous phase of mixtures of a carbonate buffer (pH = 10.3) and either chloroform (CHC13) or fluorotrichloromethane (CFC13) after aging for various lengths of time at room temperature, were determined by ion chromatography. Hydrolysis of CHC13 caused the C1(-) concentration to increase by about 1500 ppb per day. On the other hand neither the F(-) or C1(-) concentration in the CFC13 mixture increased by as much as 1 ppb per day. The magnitude of errors in the determination of halides prevented any firm conclusions regarding hydrolysis in this mixture. However, these results were used to show how ion chromatography could expedite identification of the hydrolyzing substance as well as investigations of hydrolysis mechanisms.

  15. Ion chromatography/mass spectrometry for the determination of organic ammonium and sulfate compounds

    SciTech Connect

    Conboy, J.J.; Henion, J.D. ); Martin, M.W.; Zweigenbaum, J.A. )

    1990-04-15

    The ion spray liquid chromatography/mass spectrometry (LC/MS) interface is coupled via a postsuppressor split with an ion chromatography (IC) system. The micromembrane suppressor selectively removes over 99.9% of the ion-pair agents required for ion chromatography from the eluent. The resulting solution consists of analyte, organic modifier, and water, which is compatible with ion evaporation mass spectrometry. A flow rate of 0.8 or 1.0 mL/min from the column was split after suppression such that approximately 10-20 {mu}L/min was directed to the ion spray LC/MS interface, which was coupled to an atmospheric pressure ionization (API) mass spectrometer. This system provided a convenient way to effect isocratic and gradient separations of organic ions under chromatographic conditions incompatible with most forms of mass spectrometric ionization. This work describes the separation and positive ion detection of quaternary ammonium drugs and tetraalkylammonium compounds of industrial importance using both single and tandem mass spectrometric detection (e.g., IC/MS and IC/MS/MS).

  16. Impact of extraction and elution media on non-size effects in size exclusion chromatography of proteins.

    PubMed

    Lambrecht, Marlies A; Rombouts, Ine; Van Kelst, Lotte; Delcour, Jan A

    2015-10-01

    Size exclusion chromatography is extensively used to separate proteins and to determine their apparent molecular weights. It separates proteins based on hydrodynamic volume, but interactions between the chromatography resin and proteins lead to non-size effects. This report discusses the impact of co-solvents [salt, urea, sodium dodecyl sulfate (SDS), dithiothreitol] in extraction media when separating wheat gluten proteins, soy glycinin, bovine serum albumin and ovalbumin on a Biosep-SEC-S4000 column. With acetonitrile/water (1:1, v/v) containing 0.05% (v/v) trifluoroacetic acid as eluent, salts and SDS in the extraction media increase while urea decreases non-size effects. Most gluten and globular proteins are extractable in sodium phosphate buffer (0.050M; pH 6.8) containing 2.0% (w/v) SDS. This chromatographic medium allows analyzing mixtures of various proteins without any non-size effects. PMID:26365913

  17. Combined Yamamoto approach for simultaneous estimation of adsorption isotherm and kinetic parameters in ion-exchange chromatography.

    PubMed

    Rüdt, Matthias; Gillet, Florian; Heege, Stefanie; Hitzler, Julian; Kalbfuss, Bernd; Guélat, Bertrand

    2015-09-25

    Application of model-based design is appealing to support the development of protein chromatography in the biopharmaceutical industry. However, the required efforts for parameter estimation are frequently perceived as time-consuming and expensive. In order to speed-up this work, a new parameter estimation approach for modelling ion-exchange chromatography in linear conditions was developed. It aims at reducing the time and protein demand for the model calibration. The method combines the estimation of kinetic and thermodynamic parameters based on the simultaneous variation of the gradient slope and the residence time in a set of five linear gradient elutions. The parameters are estimated from a Yamamoto plot and a gradient-adjusted Van Deemter plot. The combined approach increases the information extracted per experiment compared to the individual methods. As a proof of concept, the combined approach was successfully applied for a monoclonal antibody on a cation-exchanger and for a Fc-fusion protein on an anion-exchange resin. The individual parameter estimations for the mAb confirmed that the new approach maintained the accuracy of the usual Yamamoto and Van Deemter plots. In the second case, offline size-exclusion chromatography was performed in order to estimate the thermodynamic parameters of an impurity (high molecular weight species) simultaneously with the main product. Finally, the parameters obtained from the combined approach were used in a lumped kinetic model to simulate the chromatography runs. The simulated chromatograms obtained for a wide range of gradient lengths and residence times showed only small deviations compared to the experimental data. PMID:26306913

  18. Variable-temperature size exclusion chromatography for the study of the structural changes in g-quadruplex.

    PubMed

    Benabou, Sanae; Eritja, Ramon; Gargallo, Raimundo

    2013-01-01

    The conformational equilibria of a guanine-rich sequence found at the promoter region of the human c-kit oncogene are studied by means of circular dichroism spectroscopy (CD) and variable-temperature size exclusion chromatography (SEC). It is shown that the wild sequence ckit21 exists as a mixture of monomeric and multimeric G-quadruplexes. Appropriate mutation of several bases in the wild sequence produces the shift from parallel to antiparallel G-quadruplex, as well as the disappearance of multimeric species. The shift from the antiparallel to the parallel conformation induced by temperature is reflected in both CD and SEC profiles. PMID:25937962

  19. Separation of beta-human chorionic gonadotropin and immunoglobulin G by a miniaturized size exclusion chromatography column

    NASA Astrophysics Data System (ADS)

    Yang, Yongmo; Chae, Junseok

    2009-04-01

    This report describes a miniaturized size exclusion chromatography column that effectively preseparates raw samples for medical point-of-care testing (POCT) devices. The minicolumn is constructed of polydimethylsiloxane fabricated on a glass slide. The minicolumn separates 300 ng/ml of beta-human chorionic gonadotropin (β-hCG) from an immunoglobulin G (IgG)-rich solution (100 μg/ml) in 7.7 min, with 2.23 resolution and 0.018 mm plate height. The complete analyte discrimination shows potential for the sample preparation stage of POCT devices for cancer screening, prognosis, and monitoring.

  20. Separation of basic oligopeptides by ion-pairing reversed-phase chromatography

    NASA Astrophysics Data System (ADS)

    Xie, Wenchun

    The present thesis consist of five chapters. Chapter I introduces background information on the ion-pairing reversed-phase chromatography and liquid chromatography in the critical condition. Chapter II decribes our study on the isocratic separation of oligolysine (dp = 2 to 8) using a fixed content of acetonitrile (ACN) (23%) and different concentrations of HFBA in the mobile phase (0.6-30.6 mM) on a Waters XBridge Shield RP18® column. We found that the retention time of oligolysine increases as the dp increases, because of an increased number of HFBA bound to the peptides. Furthermore, when [HFBA] increased, the retention time increased at different rates. The greater the dp, the faster the rate. Based on a closed pairing model that presumes an equilibrium between an unpaired state and the paired state with a fixed number of HFBA molecules, an equation was derived for the retention factor of oligolysine. In Chapter III, we compare retention behaviors of oligolysine (dp = 2 to 8) and oligoarginine (dp = 2 to 8) when they are separated on the Waters XBridge Shield RP18® using fixed a ACN content (23%) and difference concentrations of HFBA (0.4-30.6 mM) in the mobile phase. The retention time of oligoarginine also increased at different rates as [HFBA] increased. The greater the dp, the faster the rate. The retention time of oligolysine is shorter than that of oligarginine having the dame dp. We applied Eq.1 to analyze the plot of ln k as a function of [HFBA] for each oligopeptide component to obtain the values for n, Kip,m, and βKd,ip. For oligolysine, n increases linearly as dp increase and oligoarginine exhibits an accelerated increase in n as dp rises. The plot of ln βKd,ip against dp followed a linear relationship for both peptides. In Chapter IV, we study the effect of mobile phase composition on the retention of oligolysine (dp = 2 to 8) on the Waters XBridge Shield RP18 ®. The ACN content was changed from 20% to 33% and the HFBA concentration from 0.7 to

  1. Chromatography

    MedlinePlus

    ... a way of separating two or more chemical compounds. Chemical compounds are chemicals that are bonded together. For example, ... and hydrogen. Proteins are another type of chemical compound. There are different kinds of chromatography. These include ...

  2. Ion-exchange sorption and preparative chromatography of biologically active materials

    SciTech Connect

    Samsonov, G.V.

    1986-01-01

    This book presents information on the following topics: the problems of fine physico-chemical biotechnology; types of highly permeable network polyelectrolytes; methods for studying the permeability and porosity of network polyelectrolytes; the conformation state and flexibility of the structural elements of network polyelectrolytes; ion-exchange processes without the sorption of physiologically active substances; ion exchange, hydration, and swelling; nucleosides, nucleotides, alkaloids, sulfonamides, and miscellaneous physiologically active subtances; sharp front formation for the exchange of ions with the same valences; standard quasi-equilibrium frontal chromatography on ionites; sorption kinetics in ionites with structural heterogeneity; experimental investigations of the diffusivities of organic and physiologically active ions in ionite beads; and increasing the efficiency of low-pressure chromatography by using surface-layer and bidispersed ionites.

  3. Dextrin characterization by high-performance anion-exchange chromatography--pulsed amperometric detection and size-exclusion chromatography--multi-angle light scattering--refractive index detection.

    PubMed

    White, D Richard; Hudson, Patricia; Adamson, Julie T

    2003-05-16

    Starch hydrolysis products, or dextrins, are widely used throughout the food industry for their functional properties. Dextrins are saccharide polymers linked primarily by alpha-(1 --> 4) D-glucose units and are prepared by partial hydrolysis of starch. Hydrolysis can be accomplished by the use of acid, enzymes, or by a combination of both. The hydrolysis products are typically characterized by the "dextrose equivalent" (DE), which refers to the total reducing power of all sugars present relative to glucose. While the DE gives the supplier and buyer a rough guide to the bulk properties of the material, the physiochemical properties of dextrins are dependent on the overall oligosaccharide profile. High-performance anion-exchange chromatography (HPAEC) with pulsed amperometric detection and size-exclusion chromatography (SEC) with multi-angle light-scattering and refractive index detection were used to characterize dextrins from commercial sources. HPAEC was used to acquire the oligosaccharide profile, and SEC to obtain an overall molar mass distribution. These methods in combination extended our understanding of the relationship between oligosaccharide profile, DE, and the hydrolysis process. Data from the two techniques enabled a method for estimating the DE that gave results in reasonable agreement with the accepted titration method. PMID:12830879

  4. On-line coupling of size exclusion chromatography with mixed-mode liquid chromatography for comprehensive profiling of biopharmaceutical drug product.

    PubMed

    He, Yan; Friese, Olga V; Schlittler, Michele R; Wang, Qian; Yang, Xun; Bass, Laura A; Jones, Michael T

    2012-11-01

    A methodology based on on-line coupling of size exclusion chromatography (SEC) with mixed-mode liquid chromatography (LC) has been developed. The method allows for simultaneous measurement of a wide range of components in biopharmaceutical drug products. These components include the active pharmaceutical ingredient (protein) and various kinds of excipients such as cations, anions, nonionic hydrophobic surfactant and hydrophilic sugars. Dual short SEC columns are used to separate small molecule excipients from large protein molecules. The separated protein is quantified using a UV detector at 280 nm. The isolated excipients are switched, online, to the Trinity P1 mixed-mode column for separation, and detected by an evaporative light scattering detector (ELSD). Using a stationary phase with 1.7 μm particles in SEC allows for the use of volatile buffers for both SEC and mix-mode separation. This facilitates the detection of different excipients by ELSD and provides potential for online characterization of the protein with mass spectrometry (MS). The method has been applied to quantitate protein and excipients in different biopharmaceutical drug products including monoclonal antibodies (mAb), antibody drug conjugates (ADC) and vaccines. PMID:22999205

  5. Determination of surfactant sodium lauryl ether sulfate by ion pairing chromatography with suppressed conductivity detection

    SciTech Connect

    Ye, M.Y.; Walkup, R.G.; Hill, K.D. )

    1994-01-01

    A method for the determination of the anionic Steol CS-330 surfactant is described. CS-330 is a complex mixture of oligomers due to the various sizes of fatty alcohols and the number of moles of the ethoxylation. The main component of CS-330 is sodium lauryl ether sulfate (SLES). Since a SLES molecule has a hydrophilic sulfate head and a hydrophobic alkyl ethoxyl tail, it is very difficult to separate these molecules with conventional reverse phase chromatography or ion exchange chromatography. This work uses ion pairing chromatography with suppressed conductivity detection. The separation of oligomers in CS-330 is achieved. SLES does not have UV-absorbing chromophores, therefore an optical detector is not very sensitive. Suppressed conductivity detection technique significantly increases sensitivity and a quantitation limit of 56.60 ppm is achieved.

  6. Zonal rate model for stacked membrane chromatography part II: characterizing ion-exchange membrane chromatography under protein retention conditions.

    PubMed

    Francis, Patrick; von Lieres, Eric; Haynes, Charles

    2012-03-01

    The Zonal Rate Model (ZRM) has previously been shown to accurately account for contributions to elution band broadening, including external flow nonidealities and radial concentration gradients, in ion-exchange membrane (IEXM) chromatography systems operated under nonbinding conditions. Here, we extend the ZRM to analyze and model the behavior of retained proteins by introducing terms for intra-column mass transfer resistances and intrinsic binding kinetics. Breakthrough curve (BTC) data from a scaled-down anion-exchange membrane chromatography module using ovalbumin as a model protein were collected at flow rates ranging from 1.5 to 20 mL min(-1). Through its careful accounting of transport nonidealities within and external to the membrane stack, the ZRM is shown to provide a useful framework for characterizing putative protein binding mechanisms and models, for predicting BTCs and complex elution behavior, including the common observation that the dynamic binding capacity can increase with linear velocity in IEXM systems, and for simulating and scaling separations using IEXM chromatography. Global fitting of model parameters is used to evaluate the performance of the Langmuir, bi-Langmuir, steric mass action (SMA), and spreading-type protein binding models in either correlating or fundamentally describing BTC data. When combined with the ZRM, the bi-Langmuir, and SMA models match the chromatography data, but require physically unrealistic regressed model parameters to do so. In contrast, for this system a spreading-type model is shown to accurately predict column performance while also providing a realistic fundamental explanation for observed trends, including an observed increase in dynamic binding capacity with flow rate. PMID:22012741

  7. Application of size-exclusion chromatography-inductively coupled plasma mass spectrometry for fractionation of element species in seeds of legumes.

    PubMed

    Koplík, Richard; Borková, Markéta; Mestek, Oto; Komínková, Jana; Suchánek, Miloslav

    2002-08-01

    Fractionation of soluble species of P, Mn, Fe, Co, Ni, Cu, Zn, Se and Mo in pea and lentil seeds was made by on-line hyphenation of size-exclusion chromatography (SEC) and inductively coupled plasma mass spectrometry. Seed samples were extracted with 0.02 mol l(-1) Tris-HCl buffer solution, pH 7.5. SEC was performed on Superdex 75 and Superdex Peptide columns (300 x 10 mm) with the same buffer solution as the mobile phase. Monitoring of oxide ion 47(PO)+ was used for detection of phosphorus compounds. Other elements were detected as ions of 55Mn, 57Fe, 59Co, 62Ni, 65Cu, 66Zn, 82Se and 95Mo nuclides. Elements in individual elution zones were quantified using external calibration. Complete chromatographic recoveries of elements were found in cases of phosphorus, nickel and copper. Substantial parts of manganese and zinc, as well as traces of cobalt, selenium and molybdenum are retained on the column. Injection of EDTA solution removes these elements from the column. Chromatographic profiles of pea and lentil samples are very similar for all elements except Mo. Main element species in the high-molecular-mass region (approx. 190,000 rel. mol. mass unit) were detected in case of Fe. Low-molecular-mass species (<2000 rel. mol. mass unit) as major element forms are typical for Cu and Zn. PMID:12113984

  8. Application of Ion Chromatography to the Investigation of Real-World Samples

    ERIC Educational Resources Information Center

    Whelan, Rebecca J.; Hannon, Theresa E.; Zare, Richard N.

    2004-01-01

    The use of ion chromatography (IC) as a means to teach important analytical concepts while giving the students a valuable opportunity to identify and investigate a real-world system of interest to them is described. A single IC apparatus can be tailored for different classes of analyses by the selection of different column-eluent combinations.

  9. Method to Determine Oxalate in High-Level Sludge by Ion Chromatography

    SciTech Connect

    Coleman, C.J.

    2002-12-19

    The Sludge Batch 3 macrobatch feed to the DWPF is expected to contain a relatively high concentration of oxalate. A simple acid addition at room temperature has been shown to be in high-level sludge. This sample preparation requires only about five minutes and yields solutions suitable for oxalate determinations by ion chromatography.

  10. Novel determination of phytate by ion chromatography in wild rice and diet composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have developed an ion chromatography (IC) assay using ultraviolet (UV) detection following post-column derivatization with ferric nitrate to determine phytate [inositol hexakis phosphate (iP6)] (1) (2) in wild rice samples and other diet composites. Samples were ground to a fine homogeneous powd...

  11. Developing liquid chromatography ion mobility mass spectometry techniques.

    PubMed

    Valentine, Stephen J; Liu, Xiaoyun; Plasencia, Manolo D; Hilderbrand, Amy E; Kurulugama, Ruwan T; Koeniger, Stormy L; Clemmer, David E

    2005-08-01

    When a packet of ions in a buffer gas is exposed to a weak electric field, the ions will separate according to differences in their mobilities through the gas. This separation forms the basis of the analytical method known as ion mobility spectroscopy and is highly efficient, in that it can be carried out in a very short time frame (micro- to milliseconds). Recently, efforts have been made to couple the approach with liquid-phase separations and mass spectrometry in order to create a high-throughput and high-coverage approach for analyzing complex mixtures. This article reviews recent work to develop this approach for proteomics analyses. The instrumentation is described briefly. Several multidimensional data sets obtained upon analyzing complex mixtures are shown in order to illustrate the approach as well as provide a view of the limitations and required future work. PMID:16097888

  12. Relative Quantification of Sites of Peptide and Protein Modification Using Size Exclusion Chromatography Coupled with Electron Transfer Dissociation

    NASA Astrophysics Data System (ADS)

    Xie, Boer; Sharp, Joshua S.

    2016-04-01

    One difficult problem in the analysis of peptide modifications is quantifying isomeric modifications that differ by the position of the amino acid modified. HPLC separation using C18 reverse phase chromatography coupled with electron transfer dissociation (ETD) in tandem mass spectrometry has recently been shown to be able to relatively quantify how much of a given modification occurs at each amino acid position for isomeric mixtures; however, the resolution of reverse phase chromatography greatly complicates quantification of isomeric modifications by ETD because of the chromatographic separation of peptides with identical modifications at different sequence positions. Using peptide oxidation as a model system, we investigated the use of size exclusion chromatography coupled with ETD fragmentation to separate peptide sequences. This approach allows for the benefits of chromatographic separation of peptide sequences while ensuring co-elution of modification isomers for accurate relative quantification of modifications using standard data-dependent acquisitions. Using this method, the relative amount of modification at each amino acid can be accurately measured from single ETD MS/MS spectra in a standard data-dependent acquisition experiment.

  13. Relative Quantification of Sites of Peptide and Protein Modification Using Size Exclusion Chromatography Coupled with Electron Transfer Dissociation.

    PubMed

    Xie, Boer; Sharp, Joshua S

    2016-08-01

    One difficult problem in the analysis of peptide modifications is quantifying isomeric modifications that differ by the position of the amino acid modified. HPLC separation using C18 reverse phase chromatography coupled with electron transfer dissociation (ETD) in tandem mass spectrometry has recently been shown to be able to relatively quantify how much of a given modification occurs at each amino acid position for isomeric mixtures; however, the resolution of reverse phase chromatography greatly complicates quantification of isomeric modifications by ETD because of the chromatographic separation of peptides with identical modifications at different sequence positions. Using peptide oxidation as a model system, we investigated the use of size exclusion chromatography coupled with ETD fragmentation to separate peptide sequences. This approach allows for the benefits of chromatographic separation of peptide sequences while ensuring co-elution of modification isomers for accurate relative quantification of modifications using standard data-dependent acquisitions. Using this method, the relative amount of modification at each amino acid can be accurately measured from single ETD MS/MS spectra in a standard data-dependent acquisition experiment. Graphical Abstract ᅟ. PMID:27075875

  14. Relative Quantification of Sites of Peptide and Protein Modification Using Size Exclusion Chromatography Coupled with Electron Transfer Dissociation

    NASA Astrophysics Data System (ADS)

    Xie, Boer; Sharp, Joshua S.

    2016-08-01

    One difficult problem in the analysis of peptide modifications is quantifying isomeric modifications that differ by the position of the amino acid modified. HPLC separation using C18 reverse phase chromatography coupled with electron transfer dissociation (ETD) in tandem mass spectrometry has recently been shown to be able to relatively quantify how much of a given modification occurs at each amino acid position for isomeric mixtures; however, the resolution of reverse phase chromatography greatly complicates quantification of isomeric modifications by ETD because of the chromatographic separation of peptides with identical modifications at different sequence positions. Using peptide oxidation as a model system, we investigated the use of size exclusion chromatography coupled with ETD fragmentation to separate peptide sequences. This approach allows for the benefits of chromatographic separation of peptide sequences while ensuring co-elution of modification isomers for accurate relative quantification of modifications using standard data-dependent acquisitions. Using this method, the relative amount of modification at each amino acid can be accurately measured from single ETD MS/MS spectra in a standard data-dependent acquisition experiment.

  15. ION CHROMATOGRAPHY OF PHYTATE IN ROOTS AND TUBERS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ion chromatographic method for the quantification of phytate (InsP6) in foods was adapted for the analysis of roots and tubers. To maximize sensitivity, UV detection following post-column derivatization was compared with evaporative light scattering detection (ELSD). Detection limits for phyta...

  16. Amperometric detection of heavy metal ions in ion pair chromatography at an array of water/nitrobenzene micro interfaces.

    PubMed

    Wilke, S; Wang, H; Muraczewska, M; Müller, H

    1996-09-01

    A novel amperometric detector for heavy metal ions has been developed and successfully applied for ion pair chromatography. The detector is based on the electrochemical transfer of the metal ions across an array of water/nitrobenzene micro interfaces. The ion transfer is facilitated by the neutral ionophores methylenebis(diphenylphosphineoxide) and methylenebis(di- phenylphosphinesulfide). More than eight metals are separated in less than 15 min on an RP18 column using octyl sulfonate as ion pair reagent. For the heavy metals, the limits of decision are 19(Pb(2+)), 9(Zn(2+)), 9l (Co(2+)), 8(Cd(2+)) and 1.6(Mn(2+)) microg/L. The applicability of the new method for water samples is demonstrated. PMID:15048359

  17. Problems in the size exclusion chromatography of poly( N-isopropylacrylamide) on styragel columns

    NASA Astrophysics Data System (ADS)

    Estrin, Ya. I.; Perepelitsina, E. O.; Grishchuk, A. A.

    2016-07-01

    The molecular weights of poly( N-isopropylacrylamide) (PNIPA), calculated according to polystyrene calibration standards upon the elution of THF on styragel columns, appear to be much lower than their actual values determined using independent approaches. This is likely due to interactions between the nitrogen-containing units of PNIPA polymer chains and the sorbent, so the polymer is eluted in the mode intermediate between exclusion and critical. An effective exclusion mode during the elution of PNIPA on a styragel column can be achieved by using an eluent more polar than tetrahydrofuran (particularly, 1-methylpyrrolidone).

  18. Size Exclusion Chromatography: An Experiment for High School and Community College Chemistry and Biotechnology Laboratory Programs

    ERIC Educational Resources Information Center

    Brunauer, Linda S.; Davis, Kathryn K.

    2008-01-01

    A simple multiday laboratory exercise suitable for use in a high school or community college chemistry course or a biotechnology advanced placement biology course is described. In this experiment students gain experience in the use of column chromatography as a tool for the separation and characterization of biomolecules, thus expanding their…

  19. Improved size exclusion chromatography of coal derived materials using N-methyl-2-pyrolidinone as mobile phase

    SciTech Connect

    Johnson, B.R.; Bartle, K.D.; Mitchell, S.C.

    1995-12-31

    A detailed knowledge of the molecular mass distribution (MMD) in coal and its derived products is essential for a fundamental understanding of coal structure, and of the processes occurring during pyrolyis, liquefaction and combustion. In size exclusion chromatography (SEC) tetrahydrofuran (THF) is commonly employed as the mobile phase. However, THF has limited solvating power and consequently a significant proportion of such materials goes undetected. By comparison, N-methyl-2-pyrolidinone is capable of solvating more of the coal sample and therefore gives the opportunity to determine an improved MMD. In this contribution the extended capabilities of NRP as the mobile phase are demonstrated by analysis of the solutions from solvent fractionation of a coal tar pitch, by SEC using UV/V is absorption, fluorescence and differential refractive index detection. Further application to other coal derived materials appears to indicate that separation is by a substantially size-dependent mechanism.

  20. Towards determination of absolute molar mass of cellulose polymer by size exclusion chromatography with mulitple angle laser light scattering detection.

    PubMed

    Pawcenis, Dominika; Thomas, Jacob L; Łojewski, Tomasz; Milczarek, Jakub M; Łojewska, Joanna

    2015-08-28

    The study focuses on determination of a set of crucial parameters for molar mass calculation of cellulose from the results of size exclusion chromatography coupled with multiple angle laser light scattering (MALLS) and differential refractive index (DRI) detectors. In the present work, cellulose has been derivatised to obtain cellulose tricarbanilate (CTC) soluble in tetrahydrofuran (THF). The parameters of Rayleigh scattering in the MALLS detector: refractive index increment (dn/dc) and second virial coefficient (A2) of CTC in THF were determined for laser wavelength 658nm. In order to avoid errors resulting from cellulose derivatisation by-products present in the CTC solution, the so called "on-line" method of measuring dn/dc and A2 was applied. Based on the A2 determination, its influence on cellulose molar mass calculations and cellulose molecular dimensions were critically assessed. The latter includes evaluation of artificially aged cellulose towards conceivable branching by conformation plot analysis. PMID:26210115

  1. Separation of large DNA molecules by size exclusion chromatography-based microchip with on-chip concentration structure

    NASA Astrophysics Data System (ADS)

    Azuma, Naoki; Itoh, Shintaro; Fukuzawa, Kenji; Zhang, Hedong

    2016-06-01

    The separation of DNA molecules according to their size represents a fundamental bioanalytical procedure. Here, we report the development of a chip-sized device, consisting of micrometer-sized fence structures fabricated in a microchannel, for the separation of large DNA molecules (over 10 kbp) based on the principle of size exclusion chromatography (SEC). In order to achieve separation, two approaches were utilized: first, the DNA samples were concentrated immediately prior to separation using nanoslit structures, with the aim of improving the resolution. Second, a theoretical model of SEC-based separation was established and applied in order to predict the optimal voltage range for separation. In this study, we achieved separation of λ DNA (48.5 kbp) and T4 DNA (166 kbp) using the present SEC-based microchip.

  2. Fabricating electrospun cellulose nanofibre adsorbents for ion-exchange chromatography

    PubMed Central

    Dods, Stewart R.; Hardick, Oliver; Stevens, Bob; Bracewell, Daniel G.

    2015-01-01

    Protein separation is an integral step in biopharmaceutical manufacture with diffusion-limited packed bed chromatography remaining the default choice for industry. Rapid bind-elute separation using convective mass transfer media offers advantages in productivity by operating at high flowrates. Electrospun nanofibre adsorbents are a non-woven fibre matrix of high surface area and porosity previously investigated as a bioseparation medium. The effects of compression and bed layers, and subsequent heat treatment after electrospinning cellulose acetate nanofibres were investigated using diethylaminoethyl (DEAE) or carboxylate (COO) functionalisations. Transbed pressures were measured and compared by compression load, COO adsorbents were 30%, 70% and 90% higher than DEAE for compressions 1, 5 and 10 MPa, respectively, which was attributed to the swelling effect of hydrophilic COO groups. Dynamic binding capacities (DBCs) at 10% breakthrough were measured between 2000 and 12,000 CV/h (2 s and 0.3 s residence times) under normal binding conditions, and DBCs increased with reactant concentration from 4 to 12 mg BSA/mL for DEAE and from 10 to 21 mg lysozyme/mL for COO adsorbents. Comparing capacities of compression loads applied after electrospinning showed that the lowest load tested, 1 MPa, yielded the highest DBCs for DEAE and COO adsorbents at 20 mg BSA/mL and 27 mg lysozyme/mL, respectively. At 1 MPa, DBCs were the highest for the lowest flowrate tested but stabilised for flowrates above 2000 CV/h. For compression loads of 5 MPa and 10 MPa, adsorbents recorded lower DBCs than 1 MPa as a result of nanofibre packing and reduced surface area. Increasing the number of bed layers from 4 to 12 showed decreasing DBCs for both adsorbents. Tensile strengths were recorded to indicate the mechanical robustness of the adsorbent and be related to packing the nanofibre adsorbents in large scale configurations such as pleated cartridges. Compared with an

  3. Determination of pore size distributions in capillary-channeled polymer fiber stationary phases by inverse size-exclusion chromatography and implications for fast protein separations.

    PubMed

    Wang, Zhengxin; Marcus, R Kenneth

    2014-07-18

    Capillary-channeled polymer (C-CP) fibers have been utilized as liquid chromatography stationary phases, primarily for biomacromolecule separations on the analytical and preparative scales. The collinear packing of the eight-channeled C-CP fibers provides for very efficient flow, allowing operation at high linear velocity (u>100mm s(-1)) and low backpressure (<2000psi) in analytical-scale separations. To take advantage of these fluid transport properties, there must not be mass transfer limitations as would be imposed by having an appreciably porous phase, wherein solute diffusion limits the overall mass transport rates. To better understand the physical nano-/micro- structure of C-CP fibers, inverse size exclusion chromatography (iSEC) has been employed to determine the pore size distribution (PSD) within C-CP fibers. A diversity of test species (from metal ions to large proteins) was used as probes under non-retaining conditions to obtain a response curve reflecting the apparent partition coefficient (Kd) versus hydrodynamic radii (rm). A mean pore radius (rp) of 4.2nm with standard deviation (sp) of ±1.1nm was calculated by fitting the Kd versus rm data to model equations with a Gaussian pore size distribution, and a pore radius of 4.0±0.1nm was calculated based on a log-normal distribution. The derived mean pore radius is much smaller than traditional support materials, with the standard deviation showing a relatively uniform pore distribution. van Deemter plots were analyzed to provide practical confirmation of the structural implications. Large molecules (e.g., proteins) that are fully excluded from pores have no significant C-terms in the van Deemter plots whereas small molecules that can access the pore volumes display appreciable C-terms, as expected. Fitting of retention data to the Knox equation suggests that the columns operate with a characteristic particle diameter (dp) of ∼53μm. PMID:24877979

  4. Size exclusion and anion exchange high performance liquid chromatography for characterizing metals bound to marine dissolved organic matter.

    PubMed

    García-Otero, Natalia; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio

    2013-01-14

    Size exclusion chromatography (SEC) followed by anion exchange chromatography (AEC) hyphenated with inductively coupled plasma-mass spectrometry (ICP-MS) was applied for fractionating metals bound to marine dissolved organic matter (DOM). Surface seawater samples (100 L) were subjected to tangential flow ultrafiltration (10,000 Da cut off) for isolating and pre-concentrating dissolved large molecules. The isolated fraction (retentate) consisted of 1L, which was further freeze-dried and re-dissolved to 250 mL with ultrapure water. After HI Trap desalting of the re-dissolved retentate, SEC with UV detection showed marine DOM ranging from 6.5 kDa (lower than the permeable volume of the SEC column) to 16 kDa. A further characterization of this fraction by AEC with UV detection revealed the existence of four groups of macromolecules exhibiting retention times of 2.3, 2.8, 4.5 and 14.0 min. AEC hyphenated with ICP-MS showed the presence of strontium and zinc in the first AE fraction isolated from the SEC fraction; while manganese was found to be bound to the second AE fraction. Cobalt was found to be bound to molecules comprising the third AE fraction. PMID:23265737

  5. Exploration of cardanol-based phenolated and epoxidized resins by size exclusion chromatography and MALDI mass spectrometry.

    PubMed

    Fouquet, Thierry; Puchot, Laura; Verge, Pierre; Bomfim, João A S; Ruch, David

    2014-09-16

    Cardanol and cardanol derivatives are among the most important biobased materials currently investigated in green chemistry, as renewable and promising building blocks in lieu of traditional raw materials from non renewable resources, in particular owing to the olefinic linkages on the C15 alkyl side-chain. Despite the increasing interest they arouse, analytical chemistry dedicated to cardanol and associated resins has been rarely reported in the literature, found even poorer when dealing with chromatography and mass spectrometry. In this work, a thorough molecular characterization was conducted using matrix assisted laser desorption ionization (MALDI) mass spectrometry, size exclusion chromatography (SEC), and SEC-MALDI coupling to gain insights into the composition of phenolated, epoxidized, and epoxidized phenolated cardanol. A nomenclature was proposed to properly describe the numerous species found in these materials, while simulations of the unsaturation patterns and their comparison with the detected patterns in MALDI-MS gave useful details about the phenolation treatment expected to occur on the polyunsaturated C15 side chain. Finally, the SEC-MALDI off-line coupling allowed SEC peaks to be deconvoluted by mass spectrometry and MALDI artefacts related to matrix adduction to be pointed out. PMID:25150696

  6. Size exclusion chromatography: an improved method to harvest Corynebacterium glutamicum cells for the analysis of cytosolic metabolites.

    PubMed

    Persicke, Marcus; Plassmeier, Jens; Neuweger, Heiko; Rückert, Christian; Pühler, Alfred; Kalinowski, Jörn

    2011-07-10

    The efficient separation of Corynebacterium glutamicum cells from culture medium by size exclusion chromatography (SEC) is presented. Residue analysis demonstrated that this method effectively depletes extracellular compounds. For evaluation, SEC was compared with the common methods cold methanol treatment, fast centrifugation and fast filtration. For this purpose, samples of C. glutamicum cells from fermenter cultures were harvested and subjected to a metabolome analysis. In particular, the wild type strain C. glutamicum ATCC13032 and the lysine production strain C. glutamicum DM1730 were grown in a minimal or in a complex medium. Comparison of metabolite pool sizes after harvesting C. glutamicum cells by the methods mentioned above by gas chromatography coupled to mass spectrometry (GC-MS) revealed that SEC is the most suitable method when intracellular metabolite pools are to be measured during growth in complex media or in the presence of significant amounts of secreted metabolites. In contrast to the other methods tested, the SEC method turned out to be fast and able to remove extracellular compounds almost completely. PMID:20817050

  7. Evaluation of Multi-tRNA Synthetase Complex by Multiple Reaction Monitoring Mass Spectrometry Coupled with Size Exclusion Chromatography

    PubMed Central

    Kim, Jun Seok; Lee, Cheolju

    2015-01-01

    Eight aminoacyl-tRNA synthetases (M, K, Q, D, R, I, EP and LARS) and three auxiliary proteins (AIMP1, 2 and 3) are known to form a multi-tRNA synthetase complex (MSC) in mammalian cells. We combined size exclusion chromatography (SEC) with reversed-phase liquid chromatography multiple reaction monitoring mass spectrometry (RPLC-MRM-MS) to characterize MSC components and free ARS proteins in human embryonic kidney (HEK 293T) cells. Crude cell extract and affinity-purified proteins were fractionated by SEC in non-denaturing state and ARSs were monitored in each fraction by MRM-MS. The eleven MSC components appeared mostly in earlier SEC fractions demonstrating their participation in complex formation. TARSL2 and AIMP2-DX2, despite their low abundance, were co-purified with KARS and detected in the SEC fractions, where MSC appeared. Moreover, other large complex-forming ARS proteins, such as VARS and FARS, were detected in earlier fractions. The MRM-MS results were further confirmed by western blot analysis. Our study demonstrates usefulness of combined SEC-MRM analysis for the characterization of protein complexes and in understanding the behavior of minor isoforms or variant proteins. PMID:26544075

  8. Protein losses in ion-exchange and hydrophobic interaction high-performance liquid chromatography

    SciTech Connect

    Goheen, Steven C.; Gibbins, Betty M.

    2000-01-01

    Protein losses in ion-exchange and hydrophobic interaction HPLC were examined. The supports were allnon-porous, packed in columns of identical dimensions. Two ion-exchange chromatography (IEC), anion and cation, as well as a hydrophobic interaction chromatography (HIC) columns were tested. Proteins included cytochrome c, bovine serum albumin (BSA), immunoglobulin G and fibrinogen. Temperature effects on HIC supports were studied for cytochrome c and BSA. Both retention times and recoveries of the proteins were measured. The influence of column residence time on the recovery of proteins were also investigated. We found a linear relationship between the amount of protein recovered and the log of the molecular mass. Retention times also generally increased with temperature for both HIC and IEC. Other trends in retention behavior and recoveries are discussed.

  9. Bioaccumulation of platinum group elements and characterization of their species in Lolium multiflorum by size-exclusion chromatography coupled with ICP-MS.

    PubMed

    Lesniewska, Barbara A; Messerschmidt, Jürgen; Jakubowski, Norbert; Hulanicki, Adam

    2004-04-25

    The bioaccumulation of Pt, Pd and Rh by grass grown hydroponically with nutrient solutions containing these ions at elevated (38.7 mg l(-1) Pt, 21.7 mg l(-1) Pd and 7.1 mg l(-1) Rh) and medium (3.6 mg l(-1) Pt, 4.4 mg l(-1) Pd and 0.5 mg l(-1) Rh) concentrations was studied by using inductively coupled plasma sector field mass spectrometry (ICP-SFMS). The highest bioaccumulation factors were obtained for Pd and Rh in roots and for Pt in leaves. The obtained results showed that most of the studied metals were accumulated in roots, and only a small fraction was really metabolised and transported to leaves. The multi-element capability of ICP-SFMS has been exploited to study the metabolism of platinum group elements (PGEs) in cultivated plants. The species of studied metals were extracted from roots and leaves and separated into two mass fractions by ultra-filtration. The low molecular mass (<10 kDa) fractions of the root and the leaf extracts were investigated by size-exclusion chromatography (SEC) coupled on-line to ICP-SFMS. The presence of Ca, Cu, S and C in the same fractions as Pt, Pd and Rh may indicate the interaction of PGEs with phytochelatins and carbohydrates. PMID:15081741

  10. Quantifying accumulation or exclusion of H+, HO−, and Hofmeister salt ions near interfaces

    PubMed Central

    Pegram, L. M.; Record, M. T.

    Recently, surface spectroscopies and simulations have begun to characterize the non-uniform distributions of salt ions near macroscopic and molecular surfaces. The thermodynamic consequences of these non-uniform distributions determine the often-large ion-specific effects of Hofmeister salts on a very wide range of processes in water. For uncharged surfaces, where these nonuniform ion distributions are confined to the first few layers of water at the surface, a two-state approximation to the distributions of water and ions, called the salt ion partitioning model (SPM) has both molecular and thermodynamic signiicance. Here, we summarize SPM results quantifying the local accumulation of H+, exclusion of HO−, and range of partitioning behavior of Hofmeister anions and cations near macroscopic and molecular interfaces. These results provide a database to interpret or predict Hofmeister salt effects on aqueous processes in terms of structural information regarding amount and composition of the surface exposed or buried in these processes. PMID:23750042

  11. Fractionation of Aspergillus niger cellulases by combined ion exchange affinity chromatography

    SciTech Connect

    Boyer, R.F.; Allen, T.L.; Dykema, P.A.

    1987-02-05

    Eight chemically modified cellulose supports were tested for their ability to adsorb components of the Aspergillus niger cellulase system. At least two of the most effective adsorbents, aminoethyl cellulose and carboxymethyl cellulose, were shown to be useful for the fractionation of cellulases. These supports apparently owe their resolving capacity to both ion exchange and biospecific binding effects; however, the relative importance of each effect is unknown. These observations form the basis for a new cellulase fractionation technique, combined ion exchange-affinity chromatography. 22 references.

  12. Multiple applications of ion chromatography oligosaccharide fingerprint profiles to solve a variety of sugar and sugar-biofuel industry problems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar crops contain a broad variety of carbohydrates used for human consumption and the production of biofuels and bioproducts. Ion chromatography with integrated pulsed amperometric detection (IC-IPAD), also known as high performance anion exchange chromatography (HPAEC), can be used to simultaneo...

  13. Effect of Buffers on Aqueous Solute-Exclusion Zones around Ion-Exchange Resins

    PubMed Central

    Zheng, Jian-ming; Wexler, Adam

    2009-01-01

    Interaction between charged surfaces in aqueous solution is a fundamental feature of colloid science. Theoretically, surface potential falls to half its value at a distance equal to a Debye length, which is typically on the order of tens to hundreds of nanometers. This potential prevents colloids from aggregating. On the other hand, long-range surface effects have been frequently reported. Here we report additional long-range effects. We find that charged latex particles in buffer solutions are uniformly excluded from several-hundred-micron-thick shells surrounding ion-exchange beads. Exclusion is observed whether the beads are charged similarly or oppositely to the particles. Hence, electrostatic interactions between bead and microsphere do not cause particle exclusion. Rather, exclusion may be the consequence of water molecules re-orienting to produce a more ordered structure, which then excludes the particles. PMID:19185312

  14. Determination of alkyl amines in atmospheric aerosol particles: a comparison of gas chromatography-mass spectrometry and ion chromatography approaches

    NASA Astrophysics Data System (ADS)

    Huang, R.-J.; Li, W.-B.; Wang, Y.-R.; Wang, Q. Y.; Ho, K.-F.; Cao, J. J.; Wang, G. H.; Chen, X.; Haddad, I. EI; Zhuang, Z. X.; Wang, X. R.; Prévôt, A. S. H.; O'Dowd, C. D.; Hoffmann, T.

    2014-03-01

    In recent years low molecular weight alkyl amines have been recognized to play an important role in particle formation and growth in the lower atmosphere. However, major uncertainties are associated with their atmospheric processes, sources and sinks, mostly due to the lack of ambient measurements and the difficulties in accurate quantification of alkyl amines at trace level. In this study, we present the evaluation and optimization of two analytical approaches, i.e., gas chromatography-mass spectrometry (GC-MS) and ion chromatography (IC), for the determination of alkyl amines in aerosol particles. Alkyl amines were converted to carbamates through derivatization with isobutyl chloroformate for GC-MS determination. A set of parameters affecting the analytical performances of the GC-MS approach, including reagent amount, reaction time and pH value, was evaluated and optimized. The accuracy is 84.3-99.1%, and the limits of detection obtained are 1.8-3.9 pg. For the IC approach, a solid phase extraction (SPE) column was used to separate alkyl amines from interfering cations before IC analysis. 1-2% (v/v) of acetone (or 2-4% (v/v) of acetonitrile) was added to the eluent to improve the separation of alkyl amines on the IC column. The limits of detection obtained are 2.1-15.9 ng and the accuracy is 55.1-103.4%. The lower accuracy can be attributed to evaporation losses of amines during the sample concentration procedure. Measurements of ambient aerosol particle samples collected in Hong Kong show that the GC-MS approach is superior to the IC approach for the quantification of primary and secondary alkyl amines due to its lower detection limits and higher accuracy.

  15. Determination of alkylamines in atmospheric aerosol particles: a comparison of gas chromatography-mass spectrometry and ion chromatography approaches

    NASA Astrophysics Data System (ADS)

    Huang, R.-J.; Li, W.-B.; Wang, Y.-R.; Wang, Q. Y.; Jia, W. T.; Ho, K.-F.; Cao, J. J.; Wang, G. H.; Chen, X.; Haddad, I. EI; Zhuang, Z. X.; Wang, X. R.; Prévôt, A. S. H.; O'Dowd, C. D.; Hoffmann, T.

    2014-07-01

    In recent years low molecular weight alkylamines have been recognized to play an important role in particle formation and growth in the lower atmosphere. However, major uncertainties are associated with their atmospheric processes, sources and sinks, mostly due to the lack of ambient measurements and the difficulties in accurate quantification of alkylamines at trace level. In this study, we present the evaluation and optimization of two analytical approaches, i.e., gas chromatography-mass spectrometry (GC-MS) and ion chromatography (IC), for the determination of alkylamines in aerosol particles. Alkylamines were converted to carbamates through derivatization with isobutyl chloroformate for GC-MS determination. A set of parameters affecting the analytical performances of the GC-MS approach, including reagent amount, reaction time and pH value, was evaluated and optimized. The accuracy is 84.3-99.1%, and the limits of detection obtained are 1.8-3.9 pg (or 0.02-0.04 ng m-3). For the IC approach, a solid-phase extraction (SPE) column was used to separate alkylamines from interfering cations before IC analysis. 1-2% (v/v) of acetone (or 2-4% (v/v) of acetonitrile) was added to the eluent to improve the separation of alkylamines on the IC column. The limits of detection obtained are 2.1-15.9 ng (or 0.9-6.4 ng m-3), and the accuracy is 55.1-103.4%. The lower accuracy can be attributed to evaporation losses of amines during the sample concentration procedure. Measurements of ambient aerosol particle samples collected in Hong Kong show that the GC-MS approach is superior to the IC approach for the quantification of primary and secondary alkylamines due to its lower detection limits and higher accuracy.

  16. Quantitative confirmation of dimetridazole and ipronidazole in swine feed by capillary gas chromatography/mass spectrometry with multiple ion detection.

    PubMed

    Morris, W J; Nandrea, G J; Roybal, J E; Munns, R K; Shimoda, W; Skinner, H R

    1987-01-01

    Extracts from 4 types of swine feed containing 0.11 ppm each of dimetridazole (DMZ) and ipronidazole (IPR) were analyzed by capillary gas chromatography/mass spectrometry (GC/MS) using multiple ion detection (MID) techniques. We demonstrate in this paper that the quantitative results obtained by capillary GC/MS with MID are comparable for both compounds to results obtained by liquid chromatography and have a lower coefficient of variation for DMZ. Moreover, consistency in the ion ratios (5 ions in DMZ and 6 ions in IPR) permits identification of these compounds by electron ionization MS. PMID:3624166

  17. On-line gas-free electrodialytic eluent generator for capillary ion chromatography.

    PubMed

    Yang, Bingcheng; Takeuchi, Masaki; Dasgupta, Purnendu K

    2008-01-01

    Both low- and high-pressure, gas-free, capillary-scale electrodialytic generators for eluents in ion chromatography are described. While the low-pressure devices rely on planar or tubular membranes, the high-pressure devices rely on ion-exchange beads used both as one-way ionic gates and as ball-on-seat valves to provide sealing. The high-pressure device is easily implemented in the form of a commercial cross fitting and can withstand at least 1400 psi. By design these devices do not produce gas in the eluent channel; hence, it is not necessary to remove gas afterward. With appropriate electrolytes and electrode polarities, such devices can produce either acid or base or salt. In regard to ionic transport, the behavior of these devices fully corresponds to that of a semiconductor diode. To our knowledge, this is the first time such complete equivalence of ion transport through ion-exchange media and with the more familiar example of electron transport through a semiconductor diode under both forward- and reverse-biased conditions have been demonstrated. Reverse bias can be applied to minimize/prevent Donnan-forbidden leakage or ion exchange. Even with 4 M KOH in the electrode compartments and 4 microL/min water flowing through the eluent channel, with a reverse bias of -12 V, the leakage KOH concentration is <30 microM, whereas the KOH concentration with zero voltage applied, herein after termed open circuit penetration (OCP), is 1600 microM. It is suggested that this OCP occurs not as much through Donnan-forbidden leakage but via ion exchange. Chromatograms and reproducibility data are presented for both isocratic and gradient chromatography, using ion-exchange, latex-modified, open tubular and packed monolithic columns. PMID:18062705

  18. Further application of size-exclusion chromatography combined with small-angle X-ray scattering optics for characterization of biological macromolecules.

    PubMed

    Watanabe, Yasushi; Inoko, Yoji

    2011-02-01

    Size-exclusion chromatography (gel filtration chromatography or gel permeation chromatography) in conjunction with online synchrotron radiation solution small-angle X-ray scattering optics, absorbance, and/or refractive index detectors was further assessed by application of biological macromolecules, such as the hollow sphere protein complex, apoferritin, and a linear polysaccharide, pullulan. The net X-ray scattering patterns of the eluted 24-mer molecule of apoferritin showed the specific character for the hollow spherical shape. The chromatographic (time-resolved) X-ray scattering data of the linear polysaccharide pullulan revealed the flexible chain structure during the chromatographic separation in an aqueous solution. These further applications demonstrated that the present measurement technique will be useful for not only the determination of the radius of gyration value of less than about 10 nm and molecular weight below several hundred thousand but also for the structural characterization of the various macromolecules during the chromatography. PMID:20811739

  19. Separation of boron from borated paraffin wax by pyrohydrolysis and alkali extraction methods and its determination using ion chromatography.

    PubMed

    Raut, Vaibhavi Vishwajeet; Jeyakumar, Subbiah; Shah, Dipti Jayesh; Thakur, Uday Kumar; Tomar, Bhupendra Singh; Ramakumar, Karanam Lakshminarayana

    2015-01-01

    A method based on the pyrohydrolysis extraction of boron and its quantification with ion chromatography was proposed for paraffin waxes borated with H3BO3 and B4C. The optimum pyrohydrolysis conditions were identified. Wax samples were mixed with U3O8, which prevents the sample from flare up, and also accelerates the extraction of boron. Pyrohydrolysis was carried out with moist O2 at 950°C for 60 and 90 min for wax with H3BO3 and wax with B4C, respectively. Two simple methods of separation based on alkali extraction and melting wax in alkali were also developed exclusively for wax with H3BO3. In all the separations, the recovery of B was above 98%. During IC separation, B was separated as boron-mannitol anion complex. Linear calibration was obtained it between 0.1 and 50 ppm of B, and LOD was calculated as 5 ppb (S/N = 3). The reproducibility was better than 5% (RSD). PMID:25765277

  20. Purification of proteins containing zinc finger domains using Immobilized Metal Ion Affinity Chromatography

    PubMed Central

    Voráčková, Irena; Suchanová, Šárka; Ulbrich, Pavel; Diehl, William E.; Ruml, Tomáš

    2011-01-01

    Heterologous proteins are frequently purified by Immobilized Metal Ion Affinity Chromatography (IMAC) based on their modification with a hexa-histidine affinity tag (His-tag). The terminal His-tag can, however, alter functional properties of the tagged protein. Numerous strategies for the tag removal have been developed including chemical treatment and insertion of protease target sequences in the protein sequence. Instead of using these approaches, we took an advantage of natural interaction of zinc finger domains with metal ions to purify functionally similar retroviral proteins from two different retroviruses. We found that these proteins exhibited significantly different affinities to the immobilized metal ions, despite that both contain the same type of zinc finger motif (i.e. CCHC). While zinc finger proteins may differ in biochemical properties, the multitude of IMAC platforms should allow relatively simple yet specific method for their isolation in native state. PMID:21600288

  1. Measurement of radionuclides using ion chromatography and flow-cell scintillation counting with pulse shape discrimination

    SciTech Connect

    DeVol, T.A.; Fjeld, R.A.

    1995-10-01

    The use of ion chromatography (IC) for radiochemical separations is a well established technique. IC is commonly used in routine environmental monitoring applications as well as in specialized research applications. Typical usage involves the separation of a single radionuclide from the non-radioactive constituents. During the past decade, a limited amount of research has been conducted using automated IC systems in actinide separation applications (e.g.). More recently, separation procedures for common non-gamma emitting activation and fission products were developed utilizing a high performance liquid chromatography (HPLC) system. In addition, a separation procedure for six common actinides has been developed using a HPLC system. These latter systems used on-line flow-cell detectors for quantification of the radioactive constituents of the effluent stream.

  2. Simultaneous determination of inorganic anions, calcium and magnesium by suppressed ion chromatography.

    PubMed

    García-Fernández, Ruben; García-Alonso, J Ignacio; Sanz-Medel, Alfredo

    2004-04-01

    Suppressed conductimetric detection ion chromatography (IC) was investigated for the separation and detection of common inorganic anions, calcium and magnesium by anion-exchange chromatography using a sodium carbonate-EDTA mobile phase. The formation of anionic Ca2+ -EDTA and Mg2+ -EDTA complexes allowed its separation from other inorganic anions opening the way for their simultaneous determination in a single chromatographic run. The effect of the pH, carbonate and EDTA concentrations in the eluent and the previous addition of EDTA to the samples has been studied. The optimised experimental conditions were applied to the determination of Ca2+ and Mg2+ in mineral waters with results in agreement with alternative ICP-MS methodologies. PMID:15072297

  3. Ni2+-based immobilized metal ion affinity chromatography of lactose operon repressor protein from Escherichia coli.

    PubMed

    Velkov, Tony; Jones, Alun; Lim, Maria L R

    2008-01-01

    A two-step chromatographic sequence is described for the purification of native lactose operon repressor protein from Escherichia coli cells. The first step involves Ni(2+)-based immobilized metal ion affinity chromatography of the soluble cytoplasmic extract. This method provides superior speed, resolution and yield than the established phosphocellulose cation-exchange chromatographic procedure. Anion-exchange chromatography is used for further purification to >95% purity. The identity and purity of the lactose repressor protein were demonstrated using sodium dodecylsulphate polyacrylamide electrophoresis, crystallization, tryptic finger-printing mass spectrometry, and inducer binding assays. The purified lac repressor exhibited inducer sensitivity for operator DNA binding and undergoes a conformational change upon inducer binding. By all these extensive biochemical criteria, the purified protein behaves exactly as that described for the Escherichia coli lactose operon repressor. PMID:18800304

  4. Capillary ion-exchange chromatography with nanogram sensitivity for the analysis of monoclonal antibodies.

    PubMed

    Rea, Jennifer C; Freistadt, Benny S; McDonald, Daniel; Farnan, Dell; Wang, Yajun Jennifer

    2015-12-11

    Ion-exchange chromatography (IEC) is widely used for profiling the charge heterogeneity of proteins, including monoclonal antibodies (mAbs). Despite good resolving power and robustness, ionic strength-based ion-exchange separations are generally product specific and can be time consuming to develop. In addition, conventional analytical scale ion-exchange separations require tens of micrograms of mAbs for each injection, amounts that are often unavailable in sample-limited applications. We report the development of a capillary IEC (c-IEC) methodology for the analysis of nanogram amounts of mAb charge variants. Several key modifications were made to a commercially available liquid chromatography system to perform c-IEC for charge variant analysis of mAbs with nanogram sensitivity. We demonstrate the method for multiple monoclonal antibodies, including antibody fragments, on different columns from different manufacturers. Relative standard deviations of <10% were achieved for relative peak areas of main peak, acidic and basic regions, which are common regions of interest for quantifying monoclonal antibody charge variants using IEC. The results herein demonstrate the excellent sensitivity of this c-IEC characterization method, which can be used for analyzing charge variants in sample-limited applications, such as early-stage candidate screening and in vivo studies. PMID:26596872

  5. Determination of coumarin anticoagulant rodenticide residues in animal tissue by high-performance liquid chromatography. II. fluorescence detection using ion-pair chromatography.

    PubMed

    Hunter, K

    1983-11-18

    A high-performance liquid chromatographic method was developed for the determination of warfarin, coumatetralyl, bromadiolone, difenacoum and brodifacoum in animal tissues using fluorescence detection. Ion-pair chromatography, with the tetrabutylammmonium ion as counter-ion, was used to take full advantage of their native fluorescence. Detection limits in liver tissue after gel permeation clean-up were 0.002 mg kg-1 for coumatetralyl, difenacoum and bromdifacoum, 0.008 mg kg-1 for bromadiolone, and 0.01 mg kg-1 for warfarin. PMID:6655020

  6. Tailored Noise Waveform/ Collision-Induced Dissociation of Ions Stored in a Linear Ion Trap Combined with Liquid Chromatography/Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    SciTech Connect

    Vilkov, Andrey N.; Bogdanov, Bogdan; Pasa-Tolic, Liljiana; Prior, David C.; Anderson, Gordon A.; Masselon, Christophe D.; Moore, Ronald J.; Smith, Richard D.

    2004-11-01

    A new collision-induced dissociation (CID) technique based on broadband tailored noise waveform (TNW) excitation of ions stored in a linear ion trap has been developed. In comparison with the conventional sustained off-resonance irradiation (SORI) CID method commonly used in Fourier transform ion cyclotron resonance mass spectrometry, this MS/MS technique increases throughput by eliminating the long pump-down delay associated with gas introduction into the high vacuum ICR cell region. In addition, the TNW-CID method speeds spectrum acquisition since it does not require Fourier transformation, calculation of resonant frequencies and generation of the excitation waveforms. We demonstrate TNW-CID coupled with on-line capillary reverse phase liquid chromatography separations for identification of peptides. The experimental results are compared with data obtained using conventional quadrupole ion trap MS/MS and SORI-CID MS/MS in an ICR cell.

  7. High-pressure size exclusion chromatography analysis of dissolved organic matter isolated by tangential-flow ultra filtration

    USGS Publications Warehouse

    Everett, C.R.; Chin, Y.-P.; Aiken, G.R.

    1999-01-01

    A 1,000-Dalton tangential-flow ultrafiltration (TFUF) membrane was used to isolate dissolved organic matter (DOM) from several freshwater environments. The TFUF unit used in this study was able to completely retain a polystyrene sulfonate 1,800-Dalton standard. Unaltered and TFUF-fractionated DOM molecular weights were assayed by high-pressure size exclusion chromatography (HPSEC). The weight-averaged molecular weights of the retentates were larger than those of the raw water samples, whereas the filtrates were all significantly smaller and approximately the same size or smaller than the manufacturer-specified pore size of the membrane. Moreover, at 280 nm the molar absorptivity of the DOM retained by the ultrafilter is significantly larger than the material in the filtrate. This observation suggests that most of the chromophoric components are associated with the higher molecular weight fraction of the DOM pool. Multivalent metals in the aqueous matrix also affected the molecular weights of the DOM molecules. Typically, proton-exchanged DOM retentates were smaller than untreated samples. This TFUF system appears to be an effective means of isolating aquatic DOM by size, but the ultimate size of the retentates may be affected by the presence of metals and by configurational properties unique to the DOM phase.

  8. Development and validation of a simple and sensitive size-exclusion chromatography method for quantitative determination of heparin in pharmaceuticals.

    PubMed

    Matanović, Maja Radivojša; Grabnar, Iztok; Grabnar, Pegi Ahlin; Roškar, Robert

    2015-03-01

    Heparin is widely used as an anticoagulant for the treatment and prevention of various thrombotic diseases. However, due to its high anionic charge, heterogeneity in size distribution and high polarity, its analysis is very challenging. In this paper, a novel method based on size-exclusion chromatography (SEC) for quantitative determination of intact heparin in pharmaceuticals is presented. Analyses were performed on a BioSep-SEC-S 2000 column with Larginine solution at pH 6.5 as mobile phase and UV detection at 210 nm. The proposed method was found to be selective, linear (R2>0.997) over the concentration range of 3.1 to 1222 μg mL(-1), with a limit of detection of 1.0 μg mL(-1). Intraday and inter-day precision were below 5.1% and inaccuracy expressed as bias did not exceed 6.5 %. The reported method is simple, selective, sensitive, and requires no laborious sample preparation, which makes it appropriate for routine quantitative analysis of heparin in pharmaceuticals. PMID:25781703

  9. Varations of molecular weight estimation by HP-size exclusion chromatography with UVA versus online DOC detection.

    PubMed

    Her, Namguk; Amy, Gary; Foss, David; Chow, Jaeweon

    2002-08-01

    High performance size exclusion chromatography (HPSEC) with ultraviolet absorbance (UVA) detection has been widely utilized to estimate the molecular weight (MW) and MW distribution of natural organic matter (NOM). However, the estimation of MW with UVA detection is inherently inaccurate because UVA at 254 nm only detects limited components (mostly pi bonded molecules) of NOM, and the molar absorptivity of these different NOM constituents is not equal. In comparison, a SEC chromatogram obtained with a DOC detector showed significant differences compared to a corresponding UVA chromatogram, resulting in different MW values as well as different estimates of polydispersivity. The MWs of Suwannee River humic acid (SRHA), Suwannee River fulvic acid (SRFA), and various mixtures thereof were estimated with HPSEC coupled with UVA and DOC detectors. The results show that UVA is not an adequate detector for quantitative analysis of MW estimation but rather can be used only for limited qualitative analysis. The NOM in several natural waters (Irvine Ranch, California groundwater, and Barr Lake, Colorado surface water) were also characterized to demonstrate the different MWs obtained with the two detectors. The results of the SEC-DOC chromatograms revealed NOM constituent peaks that went undetected by UVA. Utilizing online DOC detection, a better representation of NOM MWs was suggested, with NOM displaying higher weight-averaged MW (Mw) and lower number-averaged MW (Mn) as well as higher polydispersivity. A method for estimation of the MWs of NOM fractional components and polydispersivities is presented. PMID:12188370

  10. Expanding the Chemical Cross-Linking Toolbox by the Use of Multiple Proteases and Enrichment by Size Exclusion Chromatography*

    PubMed Central

    Leitner, Alexander; Reischl, Roland; Walzthoeni, Thomas; Herzog, Franz; Bohn, Stefan; Förster, Friedrich; Aebersold, Ruedi

    2012-01-01

    Chemical cross-linking in combination with mass spectrometric analysis offers the potential to obtain low-resolution structural information from proteins and protein complexes. Identification of peptides connected by a cross-link provides direct evidence for the physical interaction of amino acid side chains, information that can be used for computational modeling purposes. Despite impressive advances that were made in recent years, the number of experimentally observed cross-links still falls below the number of possible contacts of cross-linkable side chains within the span of the cross-linker. Here, we propose two complementary experimental strategies to expand cross-linking data sets. First, enrichment of cross-linked peptides by size exclusion chromatography selects cross-linked peptides based on their higher molecular mass, thereby depleting the majority of unmodified peptides present in proteolytic digests of cross-linked samples. Second, we demonstrate that the use of proteases in addition to trypsin, such as Asp-N, can additionally boost the number of observable cross-linking sites. The benefits of both SEC enrichment and multiprotease digests are demonstrated on a set of model proteins and the improved workflow is applied to the characterization of the 20S proteasome from rabbit and Schizosaccharomyces pombe. PMID:22286754

  11. Improved size exclusion chromatography of coal derived materials using N-methyl-2-pyrrolidinone as mobile phase

    SciTech Connect

    Johnson, B.R.; Bartle, K.D.; Herod, A.A.; Kandiyoti, R.

    1995-12-31

    A detailed knowledge of the molecular mass distribution (MMD) in coal and its derived products is essential for a fundamental understanding of coal structure, and of the processes occurring during pyrolysis, liquefaction and combustion. Indeed with increased economic and environmental pressure to use natural resources more effectively such knowledge can be applied to gaining more from finite coal reserves. Of the methods available for determining MMDs size exclusion chromatography (SEC) is perhaps the most routinely employed. In SEC tetrahydrofuran (THF) is the most commonly employed mobile phase. However THF has limited solvating power for coal derived materials and consequently a significant proportion of such materials goes undetected. In addition the interpretation of chromatograms with reference to calibration of the column with polystyrene standards is flawed. By comparison, N-methyl-2-pyrrolidinone (NMP) is capable of solvating more of the coal sample and therefore gives the opportunity to determine an improved MMD. In this contribution the extended capabilities of NMP as the mobile phase are demonstrated primarily through the analysis of a coal tar pitch. Both NMP and THF are used as mobile phases for SEC using a number of detection techniques, allowing comparison and evaluation of different chromatographic systems to the analysis of coal derived materials.

  12. Structural Evolution of Polylactide Molecular Bottlebrushes: Kinetics Study by Size Exclusion Chromatography, Small Angle Neutron Scattering and Simulations

    SciTech Connect

    Pickel, Deanna L; Kilbey, II, S Michael; Uhrig, David; Hong, Kunlun; Carrillo, Jan-Michael Y; Sumpter, Bobby G; Ahn, Suk-Kyun; Han, Youngkyu; Kim, Dr. Tae-Hwan; Smith, Gregory Scott; Do, Changwoo

    2014-01-01

    Structural evolution from poly(lactide) (PLA) macromonomer to resultant PLA molecular bottlebrush during ring opening metathesis polymerization (ROMP) was investigated for the first time by combining size exclusion chromatography (SEC), small-angle neutron scattering (SANS) and coarse-grained molecular dynamics (CG-MD) simulations. Multiple aliquots were collected at various reaction times during ROMP, and subsequently analyzed by SEC and SANS. The two complementary techniques enable the understanding of systematic changes in conversion, molecular weight and dispersity as well as structural details of PLA molecular bottlebrushes. CG-MD simulation not only predicts the experimental observations, but it also provides further insight into the analysis and interpretation of data obtained in SEC and SANS experiments. We find that PLA molecular bottlebrushes undergo three conformational transitions with increasing conversion (i.e., increasing the backbone length): (1) from an elongated to a globular shape due to longer side chain at lower conversion, (2) from a globular to an elongated shape at intermediate conversion caused by excluded volume of PLA side chain, and (3) the saturation of contour length at higher conversion due to chain transfer reactions.

  13. A combinatorial approach to studying protein complex composition by employing size-exclusion chromatography and proteome analysis.

    SciTech Connect

    Li, S.; Giometti, C.; Biosciences Division

    2007-07-01

    The genome sequences of numerous organisms are available now, but gene sequences alone do not provide sufficient information to accurately deduce protein functions. Protein function is largely dependent on the association of multiple polypeptide chains into large structures with interacting subunits that regulate and support each other. Therefore, the mapping of protein interaction networks in a physiological context is conducive to deciphering protein functions, including those of hypothetical proteins. Although several high-throughput methods to globally identify protein interactions have been reported in recent years, these approaches often have a high rate of nonspecific or artificial interactions detected. For instance, the fraction of false positives of the protein interactions identified by yeast two-hybrid assay has been predicted to be of the order of 50%. We have developed a strategy to globally map Bacillus subtilis protein-protein interactions in a physiological context by fractionating the cell lysates using size-exclusion chromatography (SEC), followed by proteome analysis. Components of both known and unknown protein complexes, multisubunits and multiproteins, have been identified using this strategy. In one case, the partners of the B. subtilis protein complex have been coexpressed in Escherichia coli, and the formation of the overexpressed protein complex has been further confirmed by a pull-down assay.

  14. Size-exclusion chromatography of ultrahigh molecular weight methylcellulose ethers and hydroxypropyl methylcellulose ethers for reliable molecular weight distribution characterization.

    PubMed

    Li, Yongfu; Shen, Hongwei; Lyons, John W; Sammler, Robert L; Brackhagen, Meinolf; Meunier, David M

    2016-03-15

    Size-exclusion chromatography (SEC) coupled with multi-angle laser light scattering (MALLS) and differential refractive index (DRI) detectors was employed for determination of the molecular weight distributions (MWD) of methylcellulose ethers (MC) and hydroxypropyl methylcellulose ethers (HPMC) having weight-average molecular weights (Mw) ranging from 20 to more than 1,000kg/mol. In comparison to previous work involving right-angle light scattering (RALS) and a viscometer for MWD characterization of MC and HPMC, MALLS yields more reliable molecular weight for materials having weight-average molecular weights (Mw) exceeding about 300kg/mol. A non-ideal SEC separation was observed for cellulose ethers with Mw>800kg/mol, and was manifested by upward divergence of logM vs. elution volume (EV) at larger elution volume at typical SEC flow rate such as 1.0mL/min. As such, the number-average molecular weight (Mn) determined for the sample was erroneously large and polydispersity (Mw/Mn) was erroneously small. This non-ideality resulting in the late elution of high molecular weight chains could be due to the elongation of polymer chains when experimental conditions yield Deborah numbers (De) exceeding 0.5. Non-idealities were eliminated when sufficiently low flow rates were used. Thus, using carefully selected experimental conditions, SEC coupled with MALLS and DRI can provide reliable MWD characterization of MC and HPMC covering the entire ranges of compositions and molecular weights of commercial interest. PMID:26794765

  15. Ion Exchange Chromatography and Mass Spectrometric Methods for Analysis of Cadmium-Phytochelatin (II) Complexes

    PubMed Central

    Merlos Rodrigo, Miguel Angel; Cernei, Natalia; Kominkova, Marketa; Zitka, Ondrej; Beklova, Miroslava; Zehnalek, Josef; Kizek, Rene; Adam, Vojtech

    2013-01-01

    In this study, in vitro formed Cd-phytochelatin (PC2) complexes were characterized using ion exchange chromatography (IEC) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The ratio of both studied compounds as well as experimental conditions were optimized. The highest yield of the complex was observed under an applied concentration of 100 µg·mL−1 PC2 and 100 µg·mL−1 of CdCl2. The data obtained show that IEC in combination with MALDI-TOF is a reliable and fast method for the determination of these complexes. PMID:23538727

  16. Method for the determination of dissolved chloride, nitrate, and sulfate in natural water using ion chromatography

    USGS Publications Warehouse

    Brinton, Terry I.; Antweiler, Ronald C.; Taylor, Howard E.

    1996-01-01

    Ion chromatography was used for the determination of dissolved chloride, nitrate and sulfate in natural water where concentrations ranged from a detection limit of 0.02 milligrams per liter to 80 milligrams per liter for chloride, to 18 milligrams per liter for nitrate, and to 280 milligrams per liter for sulfate. Specific conductance was the mode of detection used. Three analytical sample size loops of 11, 61, and 250 microliters, were used to include the analytical ranges described. U.S. Geological Survey Standard Reference Water Samples were analyzed to test the precision and accuracy of the analyses.

  17. Indirect determination of cyanide compounds by ion chromatography with conductivity measurement

    SciTech Connect

    Nonomura, M.

    1987-09-01

    Ion chromatography (IC) is a suitable analytical technique for the determination of anions. The cyanide is not detected by the conductivity detector of the ion chromatograph due to its low dissolution constant (pK = 9.2). This paper describes an IC procedure for the determination of free cyanide and metal cyanide complexes that uses a conductivity detector. It is based on the oxidation of cyanide ion by sodium hypochlorite to cyanate ion (pK = 3.66). Therefore, cyanide ion can now be measured indirectly by the conductivity detector. In this procedure, optimum operating conditions were examined. In addition, the interferences from anions and reducing agents were investigated. The method was applied to the determination of metal cyanide complexes. The coefficients of variation (%) for CN/sup -/ (1.05 mg/L), Zn(CN)/sub 4//sup 2 -/ (CN/sup -/, 0.80 mg/L), and Ni(CN)/sub 4//sup 2 -/ (CN/sup -/, 0.96 mg/L) were 1.1%, 1.5%, and 0.5%, respectively. The proposed method proved to be useful for the determination of cyanide compounds in natural water and waste water.

  18. A new type of metal chelate affinity chromatography using trivalent lanthanide ions for phosphopeptide enrichment.

    PubMed

    Mirza, Munazza R; Rainer, Matthias; Messner, Christoph B; Güzel, Yüksel; Schemeth, Dieter; Stasyk, Taras; Choudhary, Muhammad I; Huber, Lukas A; Rode, Bernd M; Bonn, Günther K

    2013-05-21

    In this study, a new type of immobilized metal-ion affinity chromatography (IMAC) resin for the isolation of phosphopeptides was synthesized which is based on the specific interaction between phosphate groups and chelated lanthanide metal ions. In this regard trivalent lanthanum, holmium and erbium ions were chelated to a highly porous phosphonate polymer which was prepared by radical polymerization of vinylphosphonic acid (VPA) and divinylbenzene (DVB). The developed method was evaluated with peptide mixtures from digested standard proteins (α-casein, β-casein and ovalbumin) as well as with bovine milk, egg white and a spiked HeLa cell lysate. Compared to the commonly used TiO2 approach, the presented method showed higher selectivity for phosphorylated peptides. This can be explained by the strong preference of trivalent lanthanide ions for phosphates with which they form very tight ionic bonds. Mono- and multiply phosphorylated peptides could be enriched and released in a single basic elution step, while non-phosphorylated peptides remained on the resin. Ab initio quantum mechanical energy minimizations of model complexes for polymer-ion-ligand interactions provided geometries, binding energies and charges which are discussed in conjunction with the observed experimental properties, leading to the most satisfying agreement. The presented lanthanide-IMAC resins represent promising affinity materials for the selective isolation of phosphopeptides from biological samples. PMID:23552617

  19. Hyphenating size‐exclusion chromatography with electrospray mass spectrometry; using on‐line liquid‐liquid extraction to study the lipid composition of lipoprotein particles

    PubMed Central

    Osei, Michael; Griffin, Julian L.

    2015-01-01

    Rationale Lipoproteins belong to the most commonly measured clinical biochemical parameters. Lipidomics is an orthogonal approach and aims to profile the individual lipid molecules that jointly form the lipoprotein particles. However, in the first step of the extraction of lipid molecules from serum, an organic solvent is used leading to dissociation of the lipoproteins. Thus far it has been impossible to combine lipidomics and lipoprotein analysis in one analytical system. Methods Human plasma was diluted in phosphate‐buffered saline (PBS) and injected onto a Superose 6 PC 3.2 column with PBS as a mobile phase to separate lipoproteins. The eluent was led to a Syrris FLLEX module, which also received CHCl3/MeOH (3:1). The two phases were mixed and subsequently separated using a Teflon membrane in an especially designed pressurized flow chamber. The organic phase was led to a standard electrospray source of an Orbitrap mass spectrometer. Results Size‐exclusion chromatography (SEC) has been commonly applied to separate lipoproteins and is considered a practical alternative to ultracentrifugation. Through the on‐line liquid‐liquid extraction method it becomes possible to obtained detailed mass spectra of lipids across different lipoprotein fractions. The extracted ion chromatograms of specific lipid signals showed their distribution against the size of lipoprotein particles. Conclusions The application of on‐line liquid‐liquid extraction allows for the continuous electrospray‐based mass spectral analysis of SEC eluent, providing the detailed lipid composition of lipoprotein particles separated by size. This approach provides new possibilities for the study of the biochemistry of lipoproteins. © 2015 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd. PMID:26443395

  20. Characterization of dihydrostreptomycin-related substances by liquid chromatography coupled to ion trap mass spectrometry.

    PubMed

    Pendela, Murali; Hoogmartens, Jos; Van Schepdael, Ann; Adams, Erwin

    2009-06-01

    Dihydrostreptomycin sulphate (DHS) is a water-soluble, broad-spectrum aminoglycoside antibiotic. For quantitative analysis, the European Pharmacopoeia (Ph. Eur.) prescribes an ion-pairing liquid chromatography/ultraviolet (LC/UV) method using a C18 stationary phase. Several unknown compounds were detected in commercial samples. Hence, for characterization of these unknown peaks in a commercial DHS sample, the Ph. Eur. method was coupled to mass spectrometry (MS). However, since the Ph. Eur. method uses a non-volatile mobile phase, each peak eluted was collected and desalted before introduction into the mass spectrometer. The desalting procedure was applied to remove the non volatile salt, buffer and ion-pairing reagent in the collected fraction. In total, 20 impurities were studied and 14 of them were newly characterized. Five impurities which are already reported in the literature were also traced in this LC/UV method. PMID:19449319

  1. Positive-ion thermospray liquid chromatography-mass spectrometry: detection of organic acidurias.

    PubMed

    Buchanan, D N; Muenzer, J; Thoene, J G

    1990-12-14

    Positive-ion thermospray liquid chromatography-mass spectrometry (TSP-LC-MS) is used to detect organic acids via the direct injection of untreated urine from newborns and infants. Two methods are reported for the separation of organic acids. The separation of urinary organic acids is effected in either an acidic, pH 2.5 sulfuric acid, or a non-acidic, 0.05 M ammonium acetate, pH 6.8, mobile phase. Use of pH 2.5 sulfuric acid and an HPX-87H organic acid column produces better separation but has less sensitivity than the use of 0.05 M ammonium acetate, pH 6.8 and a C18 column. Positive ion TSP-LC-MS has been used to detect methylmalonic aciduria, 3-hydroxy-3-methylglutaric aciduria, propionic aciduria, isovaleric aciduria and argininosuccinic aciduria. PMID:1709942

  2. The removal of uranium from acidic media using ion exchange and/or extraction chromatography

    SciTech Connect

    FitzPatrick, J.R.; Schake, B.S.; Murphy, J.; Holmes, K; West, M.H.

    1996-06-01

    The separation and purification of uranium from either nitric acid or hydrochloric acid media can be accomplished by using either solvent extraction or ion-exchange. Over the past two years at Los Alamos, emerging programs are focused on recapturing the expertise required to do limited, small-quantity processing of enriched uranium. During this period of time, we have been investigating ion-addition, waste stream polishing is associated with this effort in order to achieve more complete removal of uranium prior to recycle of the acid. Extraction chromatography has been demonstrated to further polish the uranium from both nitric and hydrochloric acid media thus allowing for a more complete recovery of the actinide material and creation of less waste during the processing steps.

  3. Determination of anionic surfactants during wastewater recycling process by ion pair chromatography with suppressed conductivity detection

    NASA Technical Reports Server (NTRS)

    Levine, L. H.; Judkins, J. E.; Garland, J. L.; Sager, J. C. (Principal Investigator)

    2000-01-01

    A direct approach utilizing ion pairing reversed-phase chromatography coupled with suppressed conductivity detection was developed to monitor biodegradation of anionic surfactants during wastewater recycling through hydroponic plant growth systems and fixed-film bioreactors. Samples of hydroponic nutrient solution and bioreactor effluent with high concentrations (up to 120 mS electrical conductance) of inorganic ions can be analyzed without pretreatment or interference. The presence of non-ionic surfactants did not significantly affect the analysis. Dynamic linear ranges for tested surfactants [Igepon TC-42, ammonium lauryl sulfate, sodium laureth sulfate and sodium alkyl (C10-C16) ether sulfate] were 2 to approximately 500, 1 to approximately 500, 2.5 to approximately 550 and 3.0 to approximately 630 microg/ml, respectively.

  4. [Content determination of dencichine in Panax Notoginseng by a reversed phase ion-pair chromatography].

    PubMed

    Li, Lin; Wang, Cheng-xiao; Qu, Yuan; Cui, Xiu-ming

    2015-10-01

    To build a reversed phase ion-pair chromatography to determination content of Dencichine from Panax notoginseng. Using Tetrabutyl ammonium hydroxide ions by the combination of reagent and HPLC method without derivatization to test the content of dencichine directly. The optimum conditions of supersonic extraction were solid-to-liquid ratio 1: 20, Continuous ultrasonic extraction: twice, each time 15 minutes; 3,500 r · min⁻¹, then centrifuging 15 minutes. Dencichine in different age, place, part and the different Processing mode were examined. The method is simple with sound separation degree and stability, which can facilitate the determination of dencichine content directly and provide the basis in quality standard of raw material. PMID:27062822

  5. Electrospray liquid chromatography quadrupole ion trap mass spectrometry determination of phenyl urea herbicides in water.

    PubMed

    Draper, W M

    2001-06-01

    Phenyl urea herbicides were determined in water by electrospray quadrupole ion trap liquid chromatography-mass spectrometry (ES-QIT-LC-MS). Over a wide concentration range [M - H](-) and MH(+) ions were prominent in ES spectra. At high concentrations dimer and trimer ions appeared, and sodium, potassium, and ammonium adducts also were observed. In the case of isopturon, source collision-induced dissociation (CID) fragmentation with low offset voltages increased the ion current associated with MH(+) and diminished dimer and trimer ion abundance. In the mass analyzer CID involved common pathways, for example, daughter ions of [M - H](-) resulted from loss of R(2)NH in N',N'-dialkyl ureas or loss of C(3)H(5)NO(2) (87 amu) in N'-methoxy ureas. A 2 mm (i.d.) x 15 cm C(18) reversed phase column was used for LC-MS with a linear methanol/water gradient and 0.5 mL/min flow rate. Between 1 and 100 pg/microg/L the response was highly linear with instrument detection limits ranging from <10 to 50 pg injected. Whereas the positive ES signal intensity was greater for each of the compounds except fluometuron, negative ion monitoring gave the highest signal-to-noise ratio. Analysis of spiked Colorado River water, a source high in total dissolved solids and total organic carbon, demonstrated that ES-QIT-LC-MS was routinely capable of quantitative analysis at low nanogram per liter concentrations in conjunction with a published C(18) SPE method. Under these conditions experimental method detection limits were between 8.0 and 36 ng/L, and accuracy for measurements in the 20-50 parts per trillion range was from 77 to 96%. Recoveries were slightly lower in surface water (e.g., 39-76%), possibly due to suppression of ionization. PMID:11409961

  6. Computer-assisted multi-segment gradient optimization in ion chromatography.

    PubMed

    Tyteca, Eva; Park, Soo Hyun; Shellie, Robert A; Haddad, Paul R; Desmet, Gert

    2015-02-13

    This study reports simulation and optimization of ion chromatography separations using multi-segment gradient elution. First, an analytical expression for the gradient retention factor under these complex elution profiles was derived. This allows a rapid retention time prediction calculations under different gradient conditions, during computer-assisted method development. Next, these analytical expressions were implemented in an in-house written Matlab(®) routine that searches for the optimal (multi-segment) gradient conditions, either via a four-segment grid search or via the recently proposed one-segment-per-component search, in which the slope is adjusted after the elution of each individual component. Evaluation of the retention time simulation and optimization approaches was performed on a mixture of 18 inorganic anions and different subsets with varying number of compounds. The two considered multi-segment gradient optimization searches resulted in similar proposed gradient profiles, and corresponding chromatograms. Moreover, the resultant chromatograms were clearly superior to the chromatograms obtained from the best simple linear gradient profiles, found via a fine grid search. The proposed approach is useful for automated method development in ion chromatography in which complex elution profiles are often used to increase the separation power. PMID:25596760

  7. Determination of perchlorate in infant formula by isotope dilution ion chromatography/tandem mass spectrometry

    PubMed Central

    Wang, Z.; Lau, B.P.-Y.; Tague, B.; Sparling, M.; Forsyth, D.

    2011-01-01

    A sensitive and selective isotope dilution ion chromatography/tandem mass spectrometry (ID IC-MS/MS) method was developed and validated for the determination of perchlorate in infant formula. The perchlorate was extracted from infant formula by using 20 ml of methanol and 5 ml of 1% acetic acid. All samples were spiked with 18O4 isotope-labelled perchlorate internal standard prior to extraction. After purification on a graphitised carbon solid-phase extraction column, the extracts were injected into an ion chromatography system equipped with an Ionpac AS20 column for separation of perchlorate from other anions. The presence of perchlorate in samples was quantified by isotope dilution mass spectrometry. Analysis of both perchlorate and its isotope-labelled internal standard was carried out on a Waters Quattro Ultima triple quadrupole mass spectrometer operating in a multiple reaction monitoring (MRM) negative ionisation mode. The method was validated for linearity and range, accuracy, precision, sensitivity, and matrix effects. The limit of quantification (LOQ) was 0.4 μg 1−1 for liquid infant formula and 0.95 μg kg−1 for powdered infant formula. The recovery ranged from 94% to 110% with an average of 98%. This method was used to analyse 39 infant formula, and perchlorate concentrations ranging from

  8. Interpretation of size-exclusion chromatography for the determination of molecular-size distribution of human immunoglobulins.

    PubMed

    Christians, S; Schluender, S; van Treel, N D; Behr-Gross, M-E

    2016-01-01

    Molecular-size distribution by size-exclusion chromatography (SEC) [1] is used for the quantification of unwanted aggregated forms in therapeutic polyclonal antibodies, referred to as human immunoglobulins (Ig) in the European Pharmacopoeia. Considering not only the requirements of the monographs for human normal Ig (0338, 0918 and 2788) [2-4], but also the general chapter on chromatographic techniques (2.2.46) [5], several chromatographic column types are allowed for performing this test. Although the EDQM knowledge database gives only 2 examples of suitable columns as a guide for the user, these monographs permit the use of columns with different lengths and diameters, and do not prescribe either particle size or pore size, which are considered key characteristics of SEC columns. Therefore, the columns used may differ significantly from each other with regard to peak resolution, potentially resulting in ambiguous peak identity assignment. In some cases, this may even lead to situations where the manufacturer and the Official Medicines Control Laboratory (OMCL) in charge of Official Control Authority Batch Release (OCABR) have differing molecular-size distribution profiles for aggregates of the same batch of Ig, even though both laboratories follow the requirements of the relevant monograph. In the present study, several formally acceptable columns and the peak integration results obtained therewith were compared. A standard size-exclusion column with a length of 60 cm and a particle size of 10 µm typically detects only 3 Ig fractions, namely monomers, dimers and polymers. This column type was among the first reliable HPLC columns on the market for this test and very rapidly became the standard for many pharmaceutical manufacturers and OMCLs for batch release testing. Consequently, the distribution of monomers, dimers and polymers was established as the basis for the interpretation of the results of the molecular-size distribution test in the relevant monographs

  9. Continuous measurement of macronutrient ions in the transpiration stream of intact plants using the meadow spittlebug coupled with ion chromatography.

    PubMed

    Malone, Michael; Herron, Michelle; Morales, M-Angeles

    2002-11-01

    A method is described for continuous, nondestructive analysis of xylem-borne mineral nutrients in intact transpiring plants. The method uses the xylem-feeding insect the meadow spittlebug (Philaenus spumarius L. [Homoptera: Cercopidae]). This insect will feed from a wide range of plant species and organs. Insect excreta can be collected at all times of the day and night, and its mineral ion content can be analyzed rapidly, and without purification, by ion chromatography. The excreta will have a mineral content virtually identical to that of xylem sap. Cages suitable for containing the insects and collecting excreta from any desired location on plants in both laboratory and greenhouse are described. Even in the greenhouse, evaporation had only a minor effect on the sample ion content. Example results are presented which illustrate dynamics, over several days, in the xylem concentrations of sodium (Na(+)), potassium (K(+)), NH(4)(+), magnesium (Mg(2+)), calcium (Ca(2+)), chloride (Cl(-)), NO(3)(-), PO(4)(3-), and SO(4)(2-). These data were collected from young plants growing in pots of compost in the laboratory and from fully mature pepper (Capsicum annuum L. cv Bellboy) plants growing in hydroponics (rockwool) in the greenhouse. This method should facilitate studies of macronutrient uptake and transport in a range of plants and environments. PMID:12428008

  10. Ion-pair reversed phase liquid chromatography with ultraviolet detection for analysis of ultraviolet transparent cations.

    PubMed

    He, Yan; Cook, Kenneth S; Littlepage, Eric; Cundy, John; Mangalathillam, Ratish; Jones, Michael T

    2015-08-21

    This paper describes the use of an anionic ion-pair reagent (IPR) to impove the ultraviolet (UV) detection and hydrophobic retention of polar and UV transparent cations. Anionic IPR added to the mobile phase forms an ion-pair with cations. Formation of the ion-pair causes a redshift in the absorption wavength, making it possible for direct UV detection of UV-inactive cations. The ion-pairs with increased hydrophobicity were separated by reversed phase liquid chromatography (RPLC). Different perfluorinated caboxylic acids (trifluoroacetic acid, heptafluorobutyric acid, nonafluoropentanoic acid) were evaluted as IPR in the separation and detection of the common cations sodium, ammonium and Tris(hydroxymethyl)aminomethane (Tris). The effects of the IPR type and concentration on separation and detection have been investigated to understand the separation and detection mechanisms. The optimal separation and detection condtions were attained with mobile phase containing 0.1% nonafluoropentanoic acid and with the UV detection at 210nm. UV detection and charged aerosol detection (CAD) were compared in the quantitation of the cations. The limit of quantitation (LOQ) of sodium and Tris with UV detection is comparable to that by CAD. The LOQ of ammonium with UV detection (1ppm or 3ng) is about 20-fold lower than that (20ppm or 60ng) by CAD. The RPLC-UV method was used to monitor ammonium clearance during ultrafiltration and diafiltration in the manfucaturing of biopharmceutical drug substance. PMID:26195039

  11. Anion exchangers with branched functional ion exchange layers of different hydrophilicity for ion chromatography.

    PubMed

    Shchukina, O I; Zatirakha, A V; Smolenkov, A D; Nesterenko, P N; Shpigun, O A

    2015-08-21

    Novel polystyrene-divinylbenzene (PS-DVB) based anion exchangers differing from each other in the structure of the branched functional ion exchange layer are prepared to investigate the role of linker and functional site on ion exchange selectivity. The proposed method of synthesis includes the obtaining of aminated PS-DVB particles by means of their acylation with following reductive amination with methylamine. Further modification of the obtained secondary aminogroups is provided by the alkylation with either 1,4-butanediol diglycidyl ether (1,4-BDDGE) or resorcinol diglycidyl ether (RDGE), which form the linkers of different hydrophobicity, and amination of terminal epoxide rings with trimethylamine (TMA), dimethylethanolamine (DMEA), methyldiethanolamine (MDEA) or triethanolamine (TEA). The variation of the structure and hydrophobicity of the linker and terminal quaternary ammonium sites in the functional layer allows the alteration of selectivity and separation efficiency of the obtained adsorbents. The ion exchange selectivity and separation efficiency of the anion exchangers are evaluated using the model mixtures of anions (F(-), HCOO(-), Cl(-), NO2(-), Br(-), NO3(-), HPO4(2-) and SO4(2-)) in potassium hydroxide eluents. The adsorbents show the decrease of selectivity with increasing the hydrophilicity of the terminal functional site. The anion exchangers having more flexible and hydrophilic 1,4-BDDGE linker provide smaller separation factors for most of the analytes as compared with RDGE-containing adsorbents with the same terminal ion exchange sites, but are characterized with higher column efficiencies and better peak symmetry for polarizable anions. In case of 1,4-BDDGE-modified anion exchangers of the particle size of 3.3μm functionalized with DMEA and MDEA the calculated values of column efficiencies for polarizable NO3(-) and Br(-) are up to 49,000 and 53,000N/m, respectively, which is almost twice higher than the values obtained for the RDGE

  12. Isolation of Exosomes from Blood Plasma: Qualitative and Quantitative Comparison of Ultracentrifugation and Size Exclusion Chromatography Methods

    PubMed Central

    Baranyai, Tamás; Herczeg, Kata; Onódi, Zsófia; Voszka, István; Módos, Károly; Marton, Nikolett; Nagy, György; Mäger, Imre; Wood, Matthew J.; El Andaloussi, Samir; Pálinkás, Zoltán; Kumar, Vikas; Nagy, Péter; Kittel, Ágnes; Buzás, Edit Irén; Ferdinandy, Péter; Giricz, Zoltán

    2015-01-01

    Background Exosomes are emerging targets for biomedical research. However, suitable methods for the isolation of blood plasma-derived exosomes without impurities have not yet been described. Aim Therefore, we investigated the efficiency and purity of exosomes isolated with potentially suitable methods; differential ultracentrifugation (UC) and size exclusion chromatography (SEC). Methods and Results Exosomes were isolated from rat and human blood plasma by various UC and SEC conditions. Efficiency was investigated at serial UC of the supernatant, while in case of SEC by comparing the content of exosomal markers of various fractions. Purity was assessed based on the presence of albumin. We found that the diameter of the majority of isolated particles fell into the size range of exosomes, however, albumin was also present in the preparations, when 1h UC at 4°C was applied. Furthermore, with this method only a minor fraction of total exosomes could be isolated from blood as deduced from the constant amount of exosomal markers CD63 and TSG101 detected after serial UC of rat blood plasma samples. By using UC for longer time or with shorter sedimentation distance at 4°C, or UC performed at 37°C, exosomal yield increased, but albumin impurity was still observed in the isolates, as assessed by transmission electron microscopy, dynamic light scattering and immunoblotting against CD63, TSG101 and albumin. Efficiency and purity were not different in case of using further diluted samples. By using SEC with different columns, we have found that although a minor fraction of exosomes can be isolated without significant albumin content on Sepharose CL-4B or Sephacryl S-400 columns, but not on Sepharose 2B columns, the majority of exosomes co-eluted with albumin. Conclusion Here we show that it is feasible to isolate exosomes from blood plasma by SEC without significant albumin contamination albeit with low vesicle yield. PMID:26690353

  13. Comparison of Diafiltration and Size-Exclusion Chromatography to Recover Hemicelluloses From Process Water From Thermomechanical Pulping of Spruce

    NASA Astrophysics Data System (ADS)

    Andersson, Alexandra; Persson, Tobias; Zacchi, Guido; Stålbrand, Henrik; Jönsson, Ann-Sofi

    Hemicelluloses constitute one of the most abundant renewable resources on earth. To increase their utilization, the isolation of hemicelluloses from industrial biomass side-streams would be beneficial. A method was investigated to isolate hemicelluloses from process water from a thermomechanical pulp mill. The method consists of three steps: removal of solids by microfiltration, preconcentration of the hemicelluloses by ultrafiltration, and purification by either size-exclusion chromatography (SEC) or diafiltration. The purpose of the final purification step is to separate hemicelluloses from small oligosaccharides, monosaccharides, and salts. The ratio between galactose, glucose, and mannose in oligo- and polysaccharides after preconcentration was 0.8∶1∶2.8, which is similar to that found in galactoglucomannan. Continuous diafiltration was performed using a composite fluoro polymer membrane with cutoff of 1000 Da. After diafiltration with four diavolumes the purity of the hemicelluloses was 77% (gram oligo- and polysaccharides/ gram total dissolved solids) and the recovery was 87%. Purification by SEC was performed with 5, 20, and 40% sample loadings, respectively and a flow rate of 12 or 25 mL/min (9 or 19 cm/h). The purity of hemicelluloses after SEC was approx 82%, and the recovery was above 99%. The optimal sample load and flow rate were 20% and 25 mL/min, respectively. The process water from thermomechanical pulping of spruce is inexpensive. Thus, the recovery of hemicelluloses is not of main importance. If the purity of 77%, obtained with diafiltration, is sufficient for the utilization of the hemicelluloses, diafiltration probably offers a less expensive alternative in this application.

  14. Quantification and characterization of dissolved organic nitrogen in wastewater effluents by electrodialysis treatment followed by size-exclusion chromatography with nitrogen detection.

    PubMed

    Chon, Kangmin; Lee, Yunho; Traber, Jacqueline; von Gunten, Urs

    2013-09-15

    Dissolved organic nitrogen (DON) can act as a precursor of nitrogenous disinfection byproducts during oxidative water treatment. Quantification and characterization of DON are still challenging for waters with high concentrations of dissolved inorganic nitrogen (DIN, including ammonia, nitrate and nitrite) relative to total dissolved nitrogen (TDN) due to the cumulative analytical errors of independently measured nitrogen species (i.e., DON = TDN - NO2(-) - NO3(-) - NH4(+)/NH3) and interference of DIN species to TDN quantification. In this study, a novel electrodialysis (ED)-based treatment for selective DIN removal was developed and optimized with respect to type of ion-exchange membrane, sample pH, and ED duration. The optimized ED method was then coupled with size-exclusion chromatography with organic carbon, UV, and nitrogen detection (SEC-OCD-ND) for advanced DON analysis in wastewater effluents. Among the tested ion-exchange membranes, the PC-AR anion- and CMT cation-exchange membranes showed the lowest DOC loss (1-7%) during ED treatment of a wastewater effluent at ambient pH (8.0). A good correlation was found between the decrease of the DIN/TDN ratio and conductivity. Therefore, conductivity has been adopted as a convenient way to determine the optimal duration of the ED treatment. In the pH range of 7.0-8.3, ED treatment of various wastewater effluents with the PC-AR/CMT membranes showed that the relative residual conductivity could be reduced to less than 0.50 (DIN removal >90%; DIN/TDN ratio ≤ 0.60) with lower DOC losses (6%) than the previous dialysis and nanofiltration methods (DOC loss >10%). In addition, the ED method is shorter (0.5 h) than the previous methods (>1-24 h). The relative residual conductivity was further reduced to ≈ 0.20 (DIN removal >95%; DIN/TDN ratio ≤ 0.35) by increasing the ED duration to 0.7 h (DOC loss = 8%) for analysis by SEC-OCD-ND, which provided new information on distribution and ratio of organic carbon and

  15. Characterization of the synthesis of N,N-dimethyltryptamine by reductive amination using gas chromatography ion trap mass spectrometry.

    PubMed

    Brandt, Simon D; Moore, Sharon A; Freeman, Sally; Kanu, Abu B

    2010-07-01

    The present study established an impurity profile of a synthetic route to the hallucinogenic N,N-dimethyltryptamine (DMT). The synthesis was carried out under reductive amination conditions between tryptamine and aqueous formaldehyde in the presence of acetic acid followed by reduction with sodium cyanoborohydride. Analytical characterization of this synthetic route was carried out by gas chromatography ion trap mass spectrometry using electron- and chemical-ionization modes. Methanol was employed as a liquid CI reagent and the impact of stoichiometric modifications on side-products formation was also investigated. Tryptamine 1, DMT 2, 2-methyltetrahydro-β-carboline (2-Me-THBC, 3), N-methyl-N-cyanomethyltryptamine (MCMT, 4), N-methyltryptamine (NMT, 5), 2-cyanomethyl-tetrahydro-β-carboline (2-CM-THBC, 6) and tetrahydro-β-carboline (THBC, 7) have been detected under a variety of conditions. Replacement of formaldehyde solution with paraformaldehyde resulted in incomplete conversion of the starting material whereas a similar replacement of sodium cyanoborohydride with sodium borohydride almost exclusively produced THBC instead of the expected DMT. Compounds 1 to 7 were quantified and the limits of detection were 28.4, 87.7, 21.5, 23.4, 41.1, 36.6, and 34.9 ng mL(-1), respectively. The limits of quantification for compounds 1 to 7 were 32.4, 88.3, 25.4, 24.6, 41.4, 39.9, and 37.0 µg mL(-1), respectively. Linearity was observed in the range of 20.8-980 µg mL(-1) with correlation coefficients > 0.99. The application holds great promise in the area of forensic chemistry where development of reliable analytical methods for the detection, identification, and quantification of DMT are crucial and also in pharmaceutical analysis where DMT might be prepared for use in human clinical studies. PMID:20648523

  16. [Determination of alditols in foods by ion chromatography-mass spectrometry].

    PubMed

    Zhou, Hongbin; Xiong, Zhiyu; Li, Ping; Li, Jing; Sun, Li; Zhao, Yunxia

    2013-11-01

    A method for the determination of alditols in foods by ion chromatography-mass spectrometry (IC-MS) has been developed. The samples were extracted and cleaned up with the solid phase extraction (SPE). Then, the ion chromatographic separation was performed on a CarboPar MA1 column. The alditols were determined by MS with the selected ion monitoring (SIM) mode and quantified by the external standard method. The calibration curves showed good linearity in the certain ranges with the correlation coefficients (R2) greater than 0.99. The limits of quantification (S/N = 10) of erythritol, xylitol, D-sorbitol, D-mannitol, lactitol, maltitol were 0.98, 1.99, 2.24, 5.92, 13.56, 13.21 mg/kg and the limits of detection (S/N = 3) were 0.28, 0.59, 0.71, 1.74, 4.14, 4.03 mg/kg, respectively. The spiked recoveries of the alditols in the foods at different levels were in the range of 82.5%-108.0% with the relative standard deviations (RSDs) of 1.5%-7.6%. The sensitivity, accuracy and precision of the method meet the technical standards of the determination. The method can be applied to the determination of alditols in foods. PMID:24558846

  17. Determination of sulfur anions in spent oil shale leachates by ion chromatography

    SciTech Connect

    Niss, N.D.

    1989-07-01

    The leaching and transport of chemical constituents from spent oil shale disposal areas is an area of environmental concern at the present time. Sulfur-containing compounds are prevalent in spent oil shales and have the potential to leach into aqueous systems surrounding disposal sites. Computer modeling has been used in recent years to predict the transport of species in an aqueous environment. The quality of model predictions, however, depends on the validation steps taken in comparing model predictions with laboratory data on ion speciation. Further, the quality of the validation step depends on the reliability of laboratory methods in generating ion speciation data. The purpose of this study was to develop methods to separate and quantify sulfur-containing anions in spent oil shale leachates by suppressed ion chromatography. The anions studied were S{sup 2{minus}} (sulfide), SO{sup 2{minus}}{sub 3} (sulfite), SO{sup 2{minus}}{sub 4} (sulfate), SCN{sup {minus}} (thiocyanate), S{sub 2}O{sup 2{minus}}{sub 3} (thiosulfate), and S{sub 4}O{sup 2{minus}}{sub 6} (tetrathionate). After the separations were developed, a series of method-challenging experiments were performed to test the reliability of the methods and assure the development of an analytically sound product. 24 refs., 7 figs., 5 tabs.

  18. Determination of trace sulfides in turbid waters by gas dialysis/ion chromatography

    SciTech Connect

    Goodwin, L.R.; Francom, D.; Urso, A.; Dieken, F.P.

    1988-02-01

    The accuracy of the methylene blue colorimetric procedure for the determination of sulfide in environmental waters and waste waters is influenced by turbidity interferences even after application of recommended pretreatment techniques. The direct analysis of sulfide by ion chromatography (IC), without sample pretreatment, is complicated by field preservation of samples with zinc ion (or equivalent). A continuous-flow procedure has been developed that converts the acid-extractable sulfide to H/sub 2/S, which is separated from the sample matrix by a gas dialysis membrane and then trapped in a dilute sodium hydroxide solution. A 200-..mu..L portion of this solution is injected into the ion chromatograph for analysis with an electrochemical detector. Detection limits as low as 1.9 ng/mL have been obtained. Good agreement was found between the gas dialysis/IC and methylene blue methods for nonturbid standards. The addition of ascorbic acid as an antioxidant is required to obtain adequate recoveries from spiked tap and well waters.

  19. Investigating effects of sample pretreatment on protein stability using size-exclusion chromatography and high-resolution continuum source atomic absorption spectrometry.

    PubMed

    Rakow, Tobias; El Deeb, Sami; Hahne, Thomas; El-Hady, Deia Abd; AlBishri, Hassan M; Wätzig, Hermann

    2014-09-01

    In this study, size-exclusion chromatography and high-resolution atomic absorption spectrometry methods have been developed and evaluated to test the stability of proteins during sample pretreatment. This especially includes different storage conditions but also adsorption before or even during the chromatographic process. For the development of the size exclusion method, a Biosep S3000 5 μm column was used for investigating a series of representative model proteins, namely bovine serum albumin, ovalbumin, monoclonal immunoglobulin G antibody, and myoglobin. Ambient temperature storage was found to be harmful to all model proteins, whereas short-term storage up to 14 days could be done in an ordinary refrigerator. Freezing the protein solutions was always complicated and had to be evaluated for each protein in the corresponding solvent. To keep the proteins in their native state a gentle freezing temperature should be chosen, hence liquid nitrogen should be avoided. Furthermore, a high-resolution continuum source atomic absorption spectrometry method was developed to observe the adsorption of proteins on container material and chromatographic columns. Adsorption to any container led to a sample loss and lowered the recovery rates. During the pretreatment and high-performance size-exclusion chromatography, adsorption caused sample losses of up to 33%. PMID:24964383

  20. [Determination of inorganic anions and gluconate by two-dimensional ion chromatography].

    PubMed

    Chen, Ailian; Ding, Hui; Fang, Linmei; Shi, Chaoou

    2015-12-01

    A new two-dimensional ion chromatography method was developed to parallelly analyze two different types of samples with the application of valve switching technology-suppressed conductivity and pulsed amperometric analysis system, for concurrent determination of chloride, nitrite, sulfate, nitrate four inorganic anions and gluconate. The first dimensional chromatography was using Ionpac AG18+Ionpac AS18 anion analysis columns with a suppressed conductivity detector for the separation and detection of Cl-, NO2-, SO4(2-) and NO3-. Respectively, the elution was 5 and 20 mmol/L NaOH at an isocratic flow rate of 1.0 mL/min and sample injection volume of 25 μL. The second dimensional chromatography was utilizing two guard columns, CarboPac PA1 and CarboPac PA20, with 90 mmol/L NaOH solution for the isocratic eluent of 0.8 mL/min. Gluconate was enriched by an AG15 column and switched into the pulsed amperometric detector. The results showed that: each inorganic anion in 0. 1-5.0 mg/L and gluconate in 0.085 6-4.282 5 mg/L had a good linear relationship (R2 ≥ 0.994 5). The RSDs of the peak areas were between 1.05%-1.94%. The limits of detection were 0.61-2.17 μg/L for the anions and 24.24 μg/L for the gluconate. The recoveries were between 90.3% - 102.8%. The two detection modes parallelly have good separation efficiency, detection accuracy and the precision of the separation and are suitable for the analysis of complex samples. PMID:27097469

  1. Portable, fully autonomous, ion chromatography system for on-site analyses.

    PubMed

    Elkin, Kyle R

    2014-07-25

    The basic operating principles of a portable, fully autonomous, ion chromatography system are described. The system affords the user the ability to collect and analyze samples continuously for 27 days, or about 1930 injections before needing any user intervention. Within the 13 kg system, is a fully computer controlled autosampling, chromatography and data acquisition system. An eluent reflux device (ERD), which integrates eluent suppression and generation in a single multi-chambered device, is used to minimize eluent consumption. During operation, about 1 μL of water per minute is lost to waste while operating standard-bore chromatography at 0.5 mL min(-1) due to eluent refluxing. Over the course of 27 days, about 100mL of rinse water is consumed, effectively eliminating waste production. Data showing the reproducibility (below 1% relative standard deviation over 14 days) of the device is also presented. Chromatographic analyses of common anions (Cl(-), NO3(-), SO4(2-), PO4(3-)), is accomplished in under 15 min using a low backpressure guard column with ∼ 25 mM KOH isocratic elution. For detection, a small capacitively-coupled contactless conductivity detector (C4D) is employed, able to report analytes in the sub to low micromolar range. Preconcentration of the injected samples gives a 50-fold decrease in detection limits, primarily utilized for in-situ detection of phosphate (LOQ 10 μg L(-1)). Field analyses are shown for multiple on-site analyses of stream water indifferent weather conditions. PMID:24913366

  2. Degradation study of enniatins by liquid chromatography-triple quadrupole linear ion trap mass spectrometry.

    PubMed

    Serrano, A B; Meca, G; Font, G; Ferrer, E

    2013-12-15

    Enniatins A, A1, B and B1 (ENs) are mycotoxins produced by Fusarium spp. and are normal contaminants of cereals and derivate products. In this study, the stability of ENs was evaluated during food processing by simulation of pasta cooking. Thermal treatments at different incubation times (5, 10 and 15 min) and different pH (4, 7 and 10) were applied in an aqueous system and pasta resembling system (PRS). The concentrations of the targeted mycotoxins were determined using liquid chromatography coupled to tandem mass spectrometry. High percentages of ENs reduction (81-100%) were evidenced in the PRS after the treatments at 5, 10 and 15 min of incubation. In contrast to the PRS, an important reduction of the ENs was obtained in the aqueous system after 15 min of incubation (82-100%). In general, no significant differences were observed between acid, neutral and basic solutions. Finally, several ENs degradation products were identified using the technique of liquid chromatography-triple quadrupole linear ion trap mass spectrometry. PMID:23993608

  3. Ion-exchange vs reversed-phase chromatography for separation and determination of basic psychotropic drugs.

    PubMed

    Petruczynik, Anna; Wróblewski, Karol; Deja, Michał; Waksmundzka-Hajnos, Monika

    2015-11-01

    Ion exchange chromatography, an alternative to reversed-phase (RP) chromatography, is described in this paper. We aimed to obtain optimal conditions for the separation of basic drugs because silica-based RP stationary phases show silanol effect and make the analysis of basic analytes hardly possible. The retention, separation selectivity, symmetry of peaks and system efficiency were examined in different eluent systems containing different types of buffers at acidic pH and with the addition of organic modifiers: methanol and acetonitrile. The obtained results reveal a large influence of the salt cation used for buffer preparation and the type of organic modifier on the retention behavior of the analytes. These results were also compared with those obtained on an XBridge C18 column. The obtained results demonstrated that SCX stationary phases can be successfully used as alternatives to C18 stationary phases in the separation of basic compounds. The most selective and efficient chromatographic systems were applied for the quantification of some psychotropic drugs in fortified human serum samples. PMID:25944095

  4. Determination of hexavalent chromium in cosmetic products by ion chromatography and postcolumn derivatization.

    PubMed

    Kang, Eun Kyung; Lee, Somi; Park, Jin-Hee; Joo, Kyung-Mi; Jeong, Hye-Jin; Chang, Ih Seop

    2006-05-01

    Chromium hydroxide green [Cr(2)O(OH)(4)] and chromium oxide green (Cr(2)O(3)) are colouring agents for use in cosmetic products. These colourants may contain chromium (VI), which cause skin allergies through percutaneous adsorption on the skin. Eye shadow is a representative cosmetic product in which significant colourants are used. We analysed the chromium (VI) in the eye shadows by ion chromatography and post column derivatization. We optimize conditions of chromium (VI) analysis in eye shadows. During the pretreatment procedure, there are no exchange of chromium (III) to chromium (VI). This method has a limit of quantification for chromium (VI) of 1.0 microg l(-1), recovery rate of 100 +/- 3% and analysis time less than 10 min. This result is 300 times more sensitive than the high-performance liquid chromatography method. We applied the optimized method to analyse 22 eye shadows and 6 colouring agents. 2 out of 22 of the products contained more than 5 mg l(-1). In our previous work, 5 mg l(-1) of Cr represented a threshold level. There was much more Cr(VI) in the colouring agents. The Cr(VI) in one of the colouring agents was 97.6 mg l(-1). PMID:16689807

  5. Modeling of ion exchange expanded-bed chromatography for the purification of C-phycocyanin.

    PubMed

    Moraes, Caroline Costa; Mazutti, Marcio A; Maugeri, Francisco; Kalil, Susana Juliano

    2013-03-15

    This work is focused on the experimental evaluation and mathematical modeling of ion exchange expanded-bed chromatography for the purification of C-phycocyanin from crude fermentative broth containing Spirulina platensis cells. Experiments were carried out in different expansion degree to evaluate the process performance. The experimental breakthrough curves were used to estimate the mass transfer and kinetics parameters of the proposed model, using the Particle Swarm Optimization algorithm (PSO). The proposed model satisfactorily fitted the experimental data. The results from the model application pointed out that the increase in the initial bed height does not influence the process efficiency, however enables the operation of expanded-bed column at high volumetric flow rates, improving the productivity. It was also shown that the use of mathematical modeling was a good and promising tool for the optimization of chromatographic processes. PMID:23411140

  6. Liquid chromatography/coordination ion spray-mass spectrometry for the analysis of rubber vulcanization products.

    PubMed

    Hayen, Heiko; Alvarez-Grima, M Montserrat; Debnath, Subhas C; Noordermeer, Jacques W M; Karst, Uwe

    2004-02-15

    Liquid chromatography/coordination ion spray-mass spectrometry has been used for the identification of reaction products in a model rubber vulcanization process. After LC separation using reversed-phase conditions, AgBF(4) in acetonitrile was added, and strong signals were observed for silica-rubber coupling agents and products of the reaction between these and alkenes. The method performs best for substances containing sulfur chains with chain lengths between two and eight sulfur atoms, but sulfur-free compounds containing triethoxysilyl groups were detected as well. For the latter, the postcolumn addition of NaBF(4) proved to be a suitable alternative. Besides the coupling agents, various reaction products, including sulfur-chain bridged alkenes were identified. PMID:14961739

  7. Coxsackievirus B3 VLPs purified by ion exchange chromatography elicit strong immune responses in mice.

    PubMed

    Koho, Tiia; Koivunen, Minni R L; Oikarinen, Sami; Kummola, Laura; Mäkinen, Selina; Mähönen, Anssi J; Sioofy-Khojine, Amirbabak; Marjomäki, Varpu; Kazmertsuk, Artur; Junttila, Ilkka; Kulomaa, Markku S; Hyöty, Heikki; Hytönen, Vesa P; Laitinen, Olli H

    2014-04-01

    Coxsackievirus B3 (CVB3) is an important cause of acute and chronic viral myocarditis, and dilated cardiomyopathy (DCM). Although vaccination against CVB3 could significantly reduce the incidence of serious or fatal viral myocarditis and various other diseases associated with CVB3 infection, there is currently no vaccine or therapeutic reagent in clinical use. In this study, we contributed towards the development of a CVB3 vaccine by establishing an efficient and scalable ion exchange chromatography-based purification method for CVB3 virus and baculovirus-insect cell-expressed CVB3 virus-like particles (VLPs). This purification system is especially relevant for vaccine development and production on an industrial scale. The produced VLPs were characterized using a number of biophysical methods and exhibited excellent quality and high purity. Immunization of mice with VLPs elicited a strong immune response, demonstrating the excellent vaccine potential of these VLPs. PMID:24485896

  8. Ion-Exchange Chromatography to Analyze Components of a Clostridium difficile Vaccine.

    PubMed

    Rustandi, Richard R; Wang, Feng; Lancaster, Catherine; Kristopeit, Adam; Thiriot, David S; Heinrichs, Jon H

    2016-01-01

    Ion-exchange (IEX) chromatography is one of many separation techniques that can be employed to analyze proteins. The separation mechanism is based on a reversible interaction between charged amino acids of a protein to the charged ligands attached to a column at a given pH. This interaction depends on both the pI and conformation of the protein being analyzed. The proteins are eluted by increasing the salt concentration or pH gradient. Here we describe the use of this technique to characterize the charge variant heterogeneities and to monitor stability of four protein antigen components of a Clostridium difficile vaccine. Furthermore, the IEX technique can be used to monitor reversion to toxicity for formaldehyde-treated Clostridium difficile toxins. PMID:27507348

  9. Effect of modulator sorption on gradient shape in ion-exchange chromatography

    NASA Technical Reports Server (NTRS)

    Velayudhan, A.; Ladisch, M. R.; Mitchell, C. A. (Principal Investigator)

    1995-01-01

    Mobile phase additives, or modulators, are used in gradient elution chromatography to facilitate separation and reduce separation time. The modulators are usually assumed to be linearly adsorbed or unadsorbed. Here, the consequences of nonlinear modulator adsorption are examined for ion-exchange gradient elution through a series of simulations. Even when the buffer salt is identical to the modulator salt, gradient deformation is observed; the extent of deformation increases as the volume of the feed is increased. When the modulator salt is different from the buffer salt, unusual effects are observed, and the chromatograms are quite different from those predicted by classical gradient elution theory. In particular, local increases in the buffer concentration are found between feed bands, and serve to improve the separation. These effects become more pronounced as the feed volume increases, and could therefore prove valuable in preparative applications.

  10. Quantitative determination of medroxyprogesterone acetate in plasma by liquid chromatography/electrospray ion trap mass spectrometry.

    PubMed

    Kim, S M; Kim, D H

    2001-01-01

    A sensitive and rapid liquid chromatography/electrospray ion trap mass spectrometry (LC/MS/MS) method has been developed for the quantitative determination of medroxyprogesterone acetate (MPA) in human plasma. Plasma samples (1.0 mL) were simply extracted with pentane and the extracts were analyzed by HPLC with the detection of the analyte in the selective reaction monitoring (SRM) mode. The determination of MPA was accurate and reproducible, with a limit of quantitation of 0.05 ng/mL in plasma. The standard calibration curve for MPA was linear (r = 0.998) over the concentration range 0.05-6.0 ng/mL in human plasma. Analysis precision over the concentration range of MPA was lower than 18.8% (relative standard deviation, RSD) and accuracy was between 96.2 and 108.7%. PMID:11675672

  11. A simple screening method using ion chromatography for the diagnosis of cerebral creatine deficiency syndromes.

    PubMed

    Wada, Takahito; Shimbo, Hiroko; Osaka, Hitoshi

    2012-08-01

    Cerebral creatine deficiency syndromes (CCDS) are caused by genetic defects in L-arginine:glycine amidinotransferase, guanidinoacetate methyltransferase or creatine transporter 1. CCDS are characterized by abnormal concentrations of urinary creatine (CR), guanidinoacetic acid (GA), or creatinine (CN). In this study, we describe a simple HPLC method to determine the concentrations of CR, GA, and CN using a weak-acid ion chromatography column with a UV detector without any derivatization. CR, GA, and CN were separated clearly with the retention times (mean ± SD, n = 3) of 5.54 ± 0.0035 min for CR, 6.41 ± 0.0079 min for GA, and 13.53 ± 0.046 min for CN. This new method should provide a simple screening test for the diagnosis of CCDS. PMID:22080216

  12. Chloride determination by ion chromatography in petroleum coke after digestion by microwave-induced combustion.

    PubMed

    Pereira, Juliana S F; Diehl, Liange O; Duarte, Fábio A; Santos, Maria F P; Guimarães, Regina C L; Dressler, Valderi L; Flores, Erico M M

    2008-12-12

    Microwave-induced combustion was applied to petroleum coke digestion in closed vessels for further chloride determination by ion chromatography. Samples were pressed as pellets and placed on a quartz holder. Combustion was performed using oxygen pressure of 2 MPa and 50 microl of 6 moll(-1) NH(4)NO(3) as aid for ignition. Recoveries from 97 to 102% were obtained for all studied absorbing solutions (water, H(2)O(2), Na(2)CO(3) or (NH(4))(2)CO(3)). Accuracy was evaluated using certified reference materials with agreement better than 98% using water as absorbing solution with reflux step. The limit of quantification was 3.8 microg g(-1). PMID:18996537

  13. Uncovering biologically significant lipid isomers with liquid chromatography, ion mobility spectrometry and mass spectrometry.

    PubMed

    Kyle, Jennifer E; Zhang, Xing; Weitz, Karl K; Monroe, Matthew E; Ibrahim, Yehia M; Moore, Ronald J; Cha, Jeeyeon; Sun, Xiaofei; Lovelace, Erica S; Wagoner, Jessica; Polyak, Stephen J; Metz, Thomas O; Dey, Sudhansu K; Smith, Richard D; Burnum-Johnson, Kristin E; Baker, Erin S

    2016-02-15

    Understanding how biological molecules are generated, metabolized and eliminated in living systems is important for interpreting processes such as immune response and disease pathology. While genomic and proteomic studies have provided vast amounts of information over the last several decades, interest in lipidomics has also grown due to improved analytical technologies revealing altered lipid metabolism in type 2 diabetes, cancer, and lipid storage disease. Mass spectrometry (MS) measurements are currently the dominant approach for characterizing the lipidome by providing detailed information on the spatial and temporal composition of lipids. However, interpreting lipids' biological roles is challenging due to the existence of numerous structural and stereoisomers (i.e. distinct acyl chain and double-bond positions), which are often unresolvable using present approaches. Here we show that combining liquid chromatography (LC) and structurally-based ion mobility spectrometry (IMS) measurement with MS analyses distinguishes lipid isomers and allows insight into biological and disease processes. PMID:26734689

  14. Production of an anti-Candida peptide via fed batch and ion exchange chromatography.

    PubMed

    Mukherjee, Rudra Palash; Beitle, Robert; Jayanthi, Srinivas; Kumar, T K S; McNabb, David S

    2016-07-01

    Interest in peptides as diagnostic and therapeutic materials require their manufacture via either a recombinant or synthetic route. This study examined the former, where a recombinant fusion consisting of an antifungal peptide was expressed and isolated from Escherichia coli. Fed batch fermentation with E. coli harboring an arabinose-inducible plasmid produced the 12 residue anti-Candida peptide fused to the N-terminal of Green Fluorescent Protein (GFPUV ). The purification of the fusion protein, using ion-exchange chromatography, was monitored by using the intrinsic fluorescence of GFPUV . The recombinant antifungal peptide was successfully released by cyanogen bromide-induced cleavage of the fusion protein. The recombinant peptide showed the expected antifungal activity. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:865-871, 2016. PMID:27162203

  15. High-resolution determination of 147Pm in urine using dynamic ion-exchange chromatography.

    PubMed

    Elchuk, S; Lucy, C A; Burns, K I

    1992-10-15

    A procedure has been developed for measuring 147Pm in bioassay samples, based on the separation and preconcentration of 147Pm from the urine matrix by adsorption onto a conventional cation-exchange column with final separation and purification by HPLC using dynamic ion-exchange chromatography. The concentration of 147Pm is determined by collecting the appropriate HPLC fraction and measuring the 147Pm by liquid scintillation counting. The limit of detection is 0.1 Bq (3 fg) 147Pm based on a 500-mL sample of urine and a counting time of 30 min with a background of 100 cpm. Ten samples can be processed in 1.5-2 days. PMID:1466450

  16. Determination of 112 halogenated pesticides using gas chromatography/mass spectrometry with selected ion monitoring.

    PubMed

    Mercer, Gregory E

    2005-01-01

    A procedure for the analysis of 112 halogenated pesticides that do not contain phosphorus has been developed. The procedure uses gas chromatography with a mass selective detector (GC-MSD), electron impact ionization, and selected-ion monitoring. This GC-MSD procedure provided lower limits of quantitation and provided increased confirmational data compared to the traditional element-selective GC procedures that are commonly used for the detection of this class of pesticides. These analytical improvements were demonstrated by the 25 pesticides that were detected at < or =50 ng/g levels in a variety of fruit and vegetable matrixes using this procedure that were missed by the traditional element selective GC procedures. Validation of the procedure was performed using 20 representative target pesticides with an acetone extraction and a solid-phase extraction cleanup. These target pesticides were used to demonstrate repeatability and linearity of the chromatographic response and recovery from fruit and vegetable matrixes. PMID:16385996

  17. Fabrication and evaluation of an electrodialytic carbonate eluent generator for ion chromatography.

    PubMed

    Shen, Guobin; Lu, Yifei; Chen, Feifei; Zhang, Feifang; Yang, Bingcheng

    2016-10-01

    An electrodialytic potassium carbonate eluent generator and its associated potassium bicarbonate eluent generator have been fabricated for ion chromatography (IC). The device can withstand high backpressure up to ∼32MPa and no observable leakage under such pressure is found during 2h. In the range of 0-13.7mM, potassium carbonate concentration can be generated linearly with the applied current with a slope that is essentially Faradaic. At least 10mM potassium carbonate can be online changed into 10mM potassium bicarbonate via a potassium bicarbonate eluent generator, which offers an easy way to manipulate the separation selectivity. When coupled with IC system, the device demonstrated good reproducibility indicated by less than 0.52% of the relative standard deviation of the retention times. PMID:27474291

  18. Uncovering biologically significant lipid isomers with liquid chromatography, ion mobility spectrometry and mass spectrometry

    SciTech Connect

    Kyle, Jennifer E.; Zhang, Xing; Weitz, Karl K.; Monroe, Matthew E.; Ibrahim, Yehia M.; Moore, Ronald J.; Cha, Jeeyeon; Sun, Xiaofei; Lovelace, Erica S.; Wagoner, Jessica; Polyak, Stephen J.; Metz, Thomas O.; Dey, Sudhansu K.; Smith, Richard D.; Burnum-Johnson, Kristin E.; Baker, Erin S.

    2016-01-01

    Understanding how biological molecules are generated, metabolized and eliminated in living systems is important for interpreting processes such as immune response and disease pathology. While genomic and proteomic studies have provided vast amounts of information over the last several decades, interest in lipidomics has also grown due to improved analytical technologies revealing altered lipid metabolism in type 2 diabetes, cancer, and lipid storage disease. Liquid chromatography and mass spectrometry (LC-MS) measurements are currently the dominant approach for characterizing the lipidome by providing detailed information on the spatial and temporal composition of lipids. However, interpreting lipids’ biological roles is challenging due to the existence of numerous structural and stereoisomers (i.e. distinct acyl chain and double-bond positions), which are unresolvable using present LC-MS approaches. Here we show that combining structurally-based ion mobility spectrometry (IMS) with LC-MS measurements distinguishes lipid isomers and allows insight into biological and disease processes.

  19. Determination of paraquat in marijuana by reversed-phase paired-ion high performance liquid chromatography.

    PubMed

    Needham, L; Paschal, D; Rollen, Z J; Liddle, J; Bayse, D

    1979-02-01

    A sensitive and selective method is described for the quantitative determination of paraquat in marijuana. Paraquat is extracted from finely ground plant material with hydrochloric acid with sonification, and the resulting acidic solution is extracted with chloroform:isopropanol (9:1) and evaporated to dryness. The residue is reconstituted with aqueous phosphate buffer pH 7.0; the solution is passed through a C-18 SEP-PAK TM and is analyzed with high performance liquid chromatography, using a reversed-phase column and an "ion pairing" reagent in the mobile phase. The recovery of paraquat in laboratory-spiked material varied from 90-97%. Results obtained with confiscated, field-sprayed marijuana by the procedure described were in excellent agreement with those obtained with a well-established ultraviolet procedure. The calculated limit of detection with this method is 2 ng of paraquat. PMID:479338

  20. Determination of total dissolved inorganic carbon in freshwaters by reagent-free ion chromatography.

    PubMed

    Polesello, Stefano; Tartari, Gabriele; Giacomotti, Paola; Mosello, Rosario; Cavalli, Silvano

    2006-06-16

    Studies of inorganic carbon cycle in natural waters provide important information on the biological productivity and buffer capacity. Determination of total inorganic carbon, alkalinity and dissolved carbon dioxide gives an indication of the balance between photosynthesis and respiration by biota, both within the water column and sediments, and carbon dioxide transfers from the water column to the atmosphere. There are few methods to measure and distinguish the different forms of inorganic carbon, but all require a measure or an indirect quantification of total inorganic carbon. A direct measurement of TIC in water is made possible by the introduction of electrolytic generated hydroxide eluent in ion chromatography which allows to detect a chromatographic peak for carbonate. The advantage of this method is that all the inorganic forms of carbon are converted in carbonate at eluent pH and can be detected as a single peak by conductivity detection. Repeatability of carbonate peak was evaluated at different levels from 0.02 to 6 mequiv.l(-1) both in high purity water and in real samples and ranged from 1 to 9%. The calibration curve was not linear and has to be fitted by a quadratic curve. Limit of detection was estimated to be 0.02 mequiv.l(-1). Accuracy has been estimated by comparing ion chromatography method with total inorganic carbon calculated from alkalinity and pH. The correlation between the two methods was good (R(2)=0.978, n=141). The IC method has been applied to different typologies of surface waters (alpine and subalpine lakes and rivers) characterised by different chemical characteristics (alkalinity from 0.05 to 2 mequiv.l(-1) and pH from 6.7 to 8.5) and low total organic carbon concentrations. This analytical method allowed to describe the distribution of TIC along the water column of two Italian deep lakes. PMID:16620857

  1. DIONEX ICS3000 ION CHROMATOGRAPHY SYSTEM INSTALLATION AND INSTRUMENT ASSESSMENT FOR SRNL APPLICATIONS

    SciTech Connect

    Wiedenman, B.; White, T.

    2009-11-16

    Ion Chromatography (IC) is routinely used at the Savannah River National Laboratory (SRNL) for sample analysis and characterization. Results from IC analysis are valued in corrosion control maintenance and measurement programs, remediation waste process control, soil and ground water measurement, nuclear materials processing, and various other research and development programs. Presented in this report are analytical methods developed on a DIONEX ICS3000 Reagent Free Ion Chromatography (RFIC) system located in AD at SRNL. This IC system contains two independent analysis channels comprising of a mobile phase generator, a pump, stationary phase columns, a suppressor and a conductivity detector. One channel is dedicated to anion analysis using Potassium Hydroxide (KOH) as the mobile phase while a second channel is configured for cation analysis using Methanesulfonic Acid (MSA) as the mobile phase. Both channels share an autosampler and the peak analysis software, Chromeleon{reg_sign} v.6.8. Instrument configuration is modified from the manufacturer for radiological service. Listed within this report are Dionex ICS3000 parameters and results for the analysis of routine anions and cations. Additional method parameters and discussion are presented on the analysis of Acetate (CH{sub 3}COO{sup -}) and Iodate (IO{sub 3}{sup -}). Previous IC analysis instruments at AD have been based upon carbonate/bicarbonate buffer mobile phase chemistry. This report represents a transition to hydroxide as a mobile phase eluent. The hydroxide eluent offers a lower baseline conductivity, which allows for greater sample dilution and/or lower detection limits. Also the hydroxide mobile phase and column set has a significant separation of the phosphate peak from the nitrate and sulfate peaks vs. the carbonate/bicarbonate mobile phase and column set, an advantage for the industrial waste analyzed at SRNL.

  2. Chemical Speciation Analysis of Sports Drinks by Acid-Base Titrimetry and Ion Chromatography: A Challenging Beverage Formulation Project

    ERIC Educational Resources Information Center

    Drossman, Howard

    2007-01-01

    Students have standardized a sodium hydroxide solution and analyzed commercially available sports drinks by titrimetric analysis of the triprotic citric acid, dihydrogen phosphate, and dihydrogen citrate and by ion chromatography for chloride, total phosphate and citrate. These experiments are interesting examples of analyzing real-world food and…

  3. Determination of Methylamines and Trimethylamine-N-oxide in particulate matter by non-suppressed ion chromatography

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An ion chromatography method with non-suppressed conductivity detection was developed for the simultaneous determination of methylamines (methylamine, dimethylamine, trimethylamine) and trimethylamine-N-oxide in particulate matter air samples. The analytes were well separated by means of cation-exch...

  4. SPECIATION OF SELENIUM(IV) AND SELENIUM(VI) USING COUPLED ION CHROMATOGRAPHY: HYDRIDE GENERATION ATOMIC ABSORPTION SPECTROMETRY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A simple method was developed to speciate inorganic selenium in the microgram per liter range using coupled ion chromatography-hydride generation atomic absorption spectrometry. Because of the differences in toxicity and adsorption behavior, determination of the redox states selenite, Se(IV), and s...

  5. Formation of iron complexs from trifluoroacetic acid based liquid chromatography mobile phases as interference ions in liquid chromatography/electrospray ionization mass spectrometric analysis

    SciTech Connect

    Shukla, Anil K.; Zhang, Rui; Orton, Daniel J.; Zhao, Rui; Clauss, Therese RW; Moore, Ronald J.; Smith, Richard D.

    2011-05-30

    Two unexpected singly charged ions at m/z 1103 and 944 have been observed in mass spectra obtained from electrospray ionization-mass spectrometric analysis of liquid chromatography effluents with mobile phases containing trifluoroacetic acid. Accurate mass measurement and tandem mass spectrometry studies revealed that these two ions are not due to any contamination from solvents and chemicals used for mobile and stationary phases or from the laboratory atmospheric environment. Instead these ions are clusters of trifluoroacetic acid formed in association with acetonitrile, water and iron from the stainless steel union used to connect the column with the electrospray tip and to apply high voltage; the molecular formulae are Fe+((OH)(H2O)2)9(CF3COOH)5 and Fe+((OH)(H2O)2)6 (CF3COOH)5.

  6. Insights Into Water-Soluble Organic Aerosol Sources From Carbon-13 Ratios of Size Exclusion Chromatography Fractions

    NASA Astrophysics Data System (ADS)

    Ruehl, C. R.; Chuang, P. Y.; McCarthy, M. D.

    2008-12-01

    Many sources of organic aerosols have been identified and quantified, and much of this work has used individual (mosty water-insoluble) compounds as tracers of primary sources. However, most organic aerosol cannot be molecularly characterized, and the water-soluble organic carbon (WSOC) in many aerosols is thought to originate from gaseous precursors (i.e., it is secondary in nature). It can therefore be difficult to infer aerosol sources, particularly of background (i.e., aged) aerosols, and of the relatively high-MW component of aerosols. The stable isotope ratios (δ13C) of organic aerosols have been used to distinguish between sources, with lighter values (-30‰ to -25‰) interpreted as having originated from fossil fuel combustion and C4 biogenic emission, and heavier values (-25‰ to - 20‰) indicating a marine or C3 biogenic source. Most published measurements were of either total suspended particulates or PM2.5, however, and it is unknown to what extent these fractions differ from submicron WSOC. We report δ13C for submicron WSOC collected at a variety of sites, ranging from marine to polluted to background continental. Bulk marine organic δ13C ranged from -30.4 to - 27.6‰, slightly lighter than previously published results. This could be due to the elimination of supermicron cellular material or other biogenic primary emissions from the sample. Continental WSOC δ13C ranged from -19.1 to -29.8‰, with heavier values (-19.8 ± 1.0‰) in Oklahoma and lighter values at Great Smoky Mountain National Park in Tennessee (-25.8 ± 2.6‰) and Illinois (-24.5 ± 1.0‰). This likely results from the greater proportional of C3 plant material in the Oklahoma samples. In addition to bulk samples, we used size exclusion chromatography (SEC) to report δ13C of organic aerosols as a function of hydrodynamic diameter. Variability and magnitude of hydrodynamic diameter was greatest at low SEC pH, indicative of the acidic character of submicron WSOC. Tennessee

  7. Size Exclusion Chromatography Studies of the Initial Self-Association Steps of Chicken Egg White Lysozyme Nucleation

    NASA Technical Reports Server (NTRS)

    Ewing, Felecia; Donovan, David; Pusey, Marc

    2000-01-01

    Nucleation is one of the least understood aspects of crystallogenesis. In the case of macromolecule nucleation, this understanding is further hampered by uncertainty over what precisely is being discussed. We define the process of solute self-association (aggregation, oligomerization, interaction, clustering, etc.) whereby n-mers (n > or = 2) having a crystallographic or nascent crystallographic arrangement leading to the critical nucleus reversibly form in the solution, to be part of the nucleation process. This reversible self-association process is a fundamental part of the nucleation process, and occurs as a function of the solute concentration. In the case of chicken egg white lysozyme, a considerable body of experimental evidence leads us to the conclusion that it also forms the crystal growth units. Size exclusion chromatography is a simple and direct method for determining the equilibrium constants for the self-association process. A Pharmacia FPLC system was used to provide accurate solution flow rates. The column, injection valve, and sample loop were all mounted within a temperature-controlled chamber. Chromatographically re-purified lysozyme was first dialyzed against the column equilibration buffer, with injection onto the column after several hours pre-incubation at the running temperature. Preliminary experiments, were carried out using a Toyopearl HW-50F column (1 x 50cm), equilibrated with 0.1 M sodium acetate, 5% sodium chloride, pH 4.6, at 15C. Protein concentrations from 0.1 to 4 mg/ml were employed (C(sub sat) = 1.2 mg/ml). The data from several different protein preparations consistently shows a progressively decreasing elution volume with increasing protein concentration, indicating that reversible self-association is occurring. The dotted line indicates the monomeric lysozyme elution volume. However, lysozyme interacts with the column matrix in these experiments, which complicates data analysis.Accordingly, we are testing silica-based HPLC

  8. IDENTIFICATION OF MICROCYSTIN TOXINS FROM A STRAIN OF MICROCYSTIS AERUGINOSA BY LIQUID CHROMATOGRAPHY INTRODUCTION INTO A HYBRID LINEAR ION TRAP-FOURIER TRANSFORM ION CYCLOTRON RESONANCE MASS SPECTROMETER

    EPA Science Inventory

    The cyclic heptapeptide microcystin toxins produced by a strain of Microcystis aeruginosa that has not been investigated previously were separated by liquid chromatography and identified by high-accuracy m/z measurements of their [M + H]+ ions and the fragment i...

  9. Design for gas chromatography-corona discharge-ion mobility spectrometry.

    PubMed

    Jafari, Mohammad T; Saraji, Mohammad; Sherafatmand, Hossein

    2012-11-20

    A corona discharge ionization-ion mobility spectrometry (CD-IMS) with a novel sample inlet system was designed and constructed as a detector for capillary gas chromatography. In this design, a hollow needle was used instead of a solid needle which is commonly used for corona discharge creation, helping us to have direct axial interfacing for GC-IMS. The capillary column was passed through the needle, resulting in a reaction of effluents with reactant ions on the upstream side of the corona discharge ionization source. Using this sample introduction design, higher ionization efficiency was achieved relative to the entrance direction through the side of the drift tube. In addition, the volume of the ionization region was reduced to minimize the resistance time of compounds in the ionization source, increasing chromatographic resolution of the instrument. The effects of various parameters such as drift gas flow, makeup gas flow, and column tip position inside the needle were investigated. The designed instrument was exhaustively validated in terms of sensitivity, resolution, and reproducibility by analyzing the standard solutions of methyl isobutyl ketone, heptanone, nonanone, and acetophenone as the test compounds. The results obtained by CD-IMS detector were compared with those of the flame ionization detector, which revealed the capability of the proposed GC-IMS for two-dimensional separation (based on the retention time and drift time information) and identification of an analyte in complex matrixes. PMID:23083064

  10. Separation of amaranthine-type betacyanins by ion-pair high-speed countercurrent chromatography.

    PubMed

    Jerz, Gerold; Gebers, Nadine; Szot, Dominika; Szaleniec, Maciej; Winterhalter, Peter; Wybraniec, Slawomir

    2014-05-30

    Betacyanins, red-violet plant pigments, were fractionated by ion-pair high-speed countercurrent chromatography (IP-HSCCC) from leaves extract of Iresine lindenii Van Houtte, an ornamental plant of the family Amaranthaceae. An HSCCC solvent system consisting of TBME-1-BuOH-ACN-H2O (1:3:1:5, v/v/v/v) was applied using ion-pair forming heptafluorobutyric acid (HFBA). Significantly different elution profiles of betacyanin diastereomeric pairs (derivatives based on betanidin and isobetanidin) observed in the HSCCC in comparison to HPLC systems indicate a complementarity of both techniques' fractionation capabilities. The numerous diastereomeric pairs can be selectively separated from each other using the HSCCC system simplifying the pigment purification process. Apart from the three well known highly abundant pigments (amaranthine, betanin and iresinin I) together with their isoforms, three new acylated (feruloylated and sinapoylated) betacyanins as well as known pigment hylocerenin (previously isolated from cacti fruits) were characterized in the plant for the first time and they are new for the whole Amaranthaceae family. PMID:24767836