Science.gov

Sample records for ion nuclear science

  1. Glenn T. Seaborg and heavy ion nuclear science

    SciTech Connect

    Loveland, W. . Dept. of Chemistry Lawrence Berkeley Lab., CA )

    1992-04-01

    Radiochemistry has played a limited but important role in the study of nucleus-nucleus collisions. Many of the important radiochemical studies have taken place in Seaborg's laboratory or in the laboratories of others who have spent time in Berkeley working with Glenn T. Seaborg. I will discuss studies of low energy deep inelastic reactions with special emphasis on charge equilibration, studies of the properties of heavy residues in intermediate energy nuclear collisions and studies of target fragmentation in relativistic and ultrarelativistic reactions. The emphasis will be on the unique information afforded by radiochemistry and the physical insight derived from radiochemical studies. Future roles of radiochemistry in heavy ion nuclear science also will be discussed.

  2. Glenn T. Seaborg and heavy ion nuclear science

    SciTech Connect

    Loveland, W. |

    1992-04-01

    Radiochemistry has played a limited but important role in the study of nucleus-nucleus collisions. Many of the important radiochemical studies have taken place in Seaborg`s laboratory or in the laboratories of others who have spent time in Berkeley working with Glenn T. Seaborg. I will discuss studies of low energy deep inelastic reactions with special emphasis on charge equilibration, studies of the properties of heavy residues in intermediate energy nuclear collisions and studies of target fragmentation in relativistic and ultrarelativistic reactions. The emphasis will be on the unique information afforded by radiochemistry and the physical insight derived from radiochemical studies. Future roles of radiochemistry in heavy ion nuclear science also will be discussed.

  3. Glenn T. Seaborg and heavy ion nuclear science

    NASA Astrophysics Data System (ADS)

    Loveland, W.

    1992-04-01

    Radiochemistry has played a limited but important role in the study of nucleus-nucleus collisions. Many of the important radiochemical studies have taken place in Seaborg's laboratory or in the laboratories of others who have spent time in Berkeley working with Glenn T. Seaborg. Studies of low energy deep inelastic reactions are discussed, and special emphasis is placed on charge equilibration. Additionally, studies of the properties of heavy residues in intermediate energy nuclear collisions and studies of target fragmentation in relativistic and ultrarelativistic reactions are reported. The emphasis will be on the unique information afforded by radiochemistry and the physical insight derived from radiochemical studies. Future roles of radiochemistry in heavy ion nuclear science also will be discussed.

  4. Nuclear Science.

    ERIC Educational Resources Information Center

    Pennsylvania State Dept. of Education, Harrisburg. Bureau of Curriculum Services.

    This document is a report on a course in nuclear science for the high school curriculum. The course is designed to provide a basic but comprehensive understanding of the atom in the light of modern knowledge, and to show how people attempt to harness the tremendous energy liberated through fission and fusion reactions. The course crosses what are…

  5. The on-line charge breeding program at TRIUMF's Ion Trap For Atomic and Nuclear Science for precision mass measurements

    SciTech Connect

    Simon, M. C.; Eberhardt, B.; Jang, F.; Luichtl, M.; Robertson, D.; Chaudhuri, A.; Delheij, P.; Grossheim, A.; Kwiatkowski, A. A.; Mane, E.; Pearson, M. R.; Schultz, B. E.; Bale, J. C.; Chowdhury, U.; Ettenauer, S.; Gallant, A. T.; Dilling, J.; Lennarz, A.; Ma, T.; Andreoiu, C.; and others

    2012-02-15

    TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN) constitutes the only high precision mass measurement setup coupled to a rare isotope facility capable of increasing the charge state of short-lived nuclides prior to the actual mass determination in a Penning trap. Recent developments around TITAN's charge breeder, the electron beam ion trap, form the basis for several successful experiments on radioactive isotopes with half-lives as low as 65 ms and in charge states as high as 22+.

  6. Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Biberian, Jean-Paul

    2006-02-01

    of analysis of Ti foil after glow discharge with deuterium / I. B. Savvatimova and D. V. Gavritenkov. Enhancement mechanisms of low-energy nuclear reactions / F. A. Gareev, I. E. Zhidkova, and Y. L. Ratis. Co-deposition of palladium with hydrogen isotopes / J. Dash and A. Ambadkar. Variation of the concentration of isotopes copper and zinc in human plasmas of patients affected by cancer / A. Triassi. Transmutation of metal at low energy in a confined plasma in water / D. Cirillo and V. Iorio. The conditions and realization of self-similar Coulomb collapse of condensed target and low-energy laboratory nucleosynthesis / S. V. Adamenko and V. I. Vysotskii. The spatial structure of water and the problem of controlled low-energy nuclear reactions in water matrix / V. I. Vysotskii and A. A. Kornilova. Experiments on controlled decontamination of water mixture of longlived active isotopes in biological cells / V. I. Vysotskii. Assessment of the biological effects of "strange" radiation / E. A. Pryakhin ... [et al.]. Possible nuclear transmutation of nitrogen in the earth's atmosphere / M. Fukuhara. Evidences on the occurrence of LENR-type processes in alchemical transmutations / J. Pérez-Pariente. History of the discovery of transmutation at Texas A&M University / J. O.-M. Bockris -- 4. Theory. Quantum electrodynamics. Concerning the modeling of systems in terms of quantum electro dynamics: the special case of "cold fusion" / M. Abyaneh ... [et al.]. Screening. Theoretical model of the probability of fusion between deuterons within deformed lattices with microcracks at room temperature / F. Fulvio. Resonant tunnelling. Effective interaction potential in the deuterium plasma and multiple resonance scattering / T. Toimela. Multiple scattering theory and condensed matter nuclear science - "super-absorption" in a crystal latice / X. Z. Li ... [et al.]. Ion band states. Framework for understanding LENR processes, using conventional condensed matter physics / S. R. Chubb. I

  7. Western Nuclear Science Alliance

    SciTech Connect

    Steve Reese; George Miller; Stephen Frantz; Denis Beller; Denis Beller; Ed Morse; Melinda Krahenbuhl; Bob Flocchini; Jim Elliston

    2010-12-07

    The primary objective of the INIE program is to strengthen nuclear science and engineering programs at the member institutions and to address the long term goal of the University Reactor Infrastructure and Education Assistance Program.

  8. Nuclear Science References Database

    SciTech Connect

    Pritychenko, B.; Běták, E.; Singh, B.; Totans, J.

    2014-06-15

    The Nuclear Science References (NSR) database together with its associated Web interface, is the world's only comprehensive source of easily accessible low- and intermediate-energy nuclear physics bibliographic information for more than 210,000 articles since the beginning of nuclear science. The weekly-updated NSR database provides essential support for nuclear data evaluation, compilation and research activities. The principles of the database and Web application development and maintenance are described. Examples of nuclear structure, reaction and decay applications are specifically included. The complete NSR database is freely available at the websites of the National Nuclear Data Center (http://www.nndc.bnl.gov/nsr) and the International Atomic Energy Agency (http://www-nds.iaea.org/nsr)

  9. Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Takahashi, Akito; Ota, Ken-Ichiro; Iwamura, Yashuhiro

    [symbol]PO[symbol] single crystal during transition through curie point (Tc = 220K) / A. G. Lipson ... [et al.]. Study of energetic and temporal characteristics of X-ray emission from solid-state cathode medium of high-current glow discharge / A. B. Karabut. A novel LiF-based detector for X-ray imaging in hydrogen loaded Ni films under laser irradiation / R. M. Montereali ... [et al.]. Observation and modeling of the ordered motion of hypothetical magnetically charged particles on the multilayer surface and the problem of low-energy fusion / S. V. Adamenko and V. I. Vysotskii -- 5. Material science. Evidence of superstoichiometric H/D lenr active sites and high-temperature superconductivity in a hydrogen-cycled Pd/PdO / A. G. Lipson ... [et al.]. New procedures to make active, fractal-like surfaces on thin Pd wires / F. Celani ... [et al.]. Using resistivity to measure H/Pd and D/Pd loading: Method and significance / M. C. H. McKubre and F. L. Tanzella. Measurements of the temperature coefficient of electric resistivity of hydrogen overloaded Pd / A. Spallone ... [et al.]. Magnetic interaction of hypothetical particles moving beneath the electrode/electrolyte interface to elucidate evolution mechanism of vortex appeared on Pd surface after long-term evolution of deuterium in 0.1 m LiOD / H. Numata and M. Ban. Unusual structures on the material surfaces irradiated by low-energy ions / B. Rodionov and I. Savvatimova -- 6. Theory. Context for understanding why particular nanoscale crystals turn-on faster and other LENR effects / S. R. Chubb. Models for anomalies in condensed matter deuterides / P. L. Hagelstein. Time-dependent EQPET analysis of TSC / A. Takahashi. Unifying theory of low-energy nuclear reaction and transmutation processes in deuterated/hydrogenated metals, acoustic cavitation, glow discharge, and deuteron beam experiments / Y. E. Kim and A. L. Zubarev. Catalytic fusion and the interface between insulators and transition metals / T. A. Chubb. Multiple scattering of deuterium

  10. Nuclear War and Science Teaching.

    ERIC Educational Resources Information Center

    Hobson, Art

    1983-01-01

    Suggests that science-related material on nuclear war be included in introductory courses. Lists nuclear war topics for physics, psychology, sociology, biology/ecology, chemistry, geography, geology/meteorology, mathematics, and medical science. Also lists 11 lectures on nuclear physics which include nuclear war topics. (JN)

  11. Air ions and aerosol science

    NASA Astrophysics Data System (ADS)

    Tammet, Hannes

    1996-03-01

    Collaboration between Gas Discharge and Plasma Physics, Atmospheric Electricity, and Aerosol Science is a factor of success in the research of air ions. The concept of air ion as of any carrier of electrical current through the air is inherent to Atmospheric Electricity under which a considerable statistical information about the air ion mobility spectrum is collected. A new model of air ion size-mobility correlation has been developed proceeding from Aerosol Science and joining the methods of neighboring research fields. The predicted temperature variation of the mobility disagrees with the commonly used Langevin rule for the reduction of air ion mobilities to the standard conditions. Concurrent errors are too big to be neglected in applications. The critical diameter distinguishing cluster ions and charged aerosol particles has been estimated to be 1.4-1.8 nm.

  12. Global Security, Medical Isotopes, and Nuclear Science

    SciTech Connect

    Ahle, Larry

    2007-10-26

    Over the past century basic nuclear science research has led to the use of radioactive isotopes into a wide variety of applications that touch our lives everyday. Some are obvious, such as isotopes for medical diagnostics and treatment. Others are less so, such as National/Global security issues. And some we take for granted, like the small amount of 241 Am that is in every smoke detector. At the beginning of this century, we are in a position where the prevalence and importance of some applications of nuclear science are pushing the basic nuclear science community for improved models and nuclear data. Yet, at the same time, the push by the basic nuclear science community to study nuclei that are farther and farther away from stability also offer new opportunities for many applications. This talk will look at several global security applications of nuclear science, summarizing current R and D and need for improved nuclear data It will also look at how applications of nuclear science, such as to medicine, will benefit from the push for more and more powerful radioactive ion beam facilities.

  13. Global Security, Medical Isotopes, and Nuclear Science

    SciTech Connect

    Ahle, L E

    2007-09-17

    Over the past century basic nuclear science research has led to the use of radioactive isotopes into a wide variety of applications that touch our lives everyday. Some are obvious, such as isotopes for medical diagnostics and treatment. Others are less so, such as National/Global security issues. And some we take for granted, like the small amount of 241Am that is in every smoke detector. At the beginning of this century, we are in a position where the prevalence and importance of some applications of nuclear science are pushing the basic nuclear science community for improved models and nuclear data. Yet, at the same time, the push by the basic nuclear science community to study nuclei that are farther and farther away from stability also offer new opportunities for many applications. This talk will look at several global security applications of nuclear science, summarizing current R&D and need for improved nuclear data It will also look at how applications of nuclear science, such as to medicine, will benefit from the push for more and more powerful radioactive ion beam facilities.

  14. Nuclear Science Centre, New Delhi

    SciTech Connect

    Mehta, G.; Potukuchi, P.; Roy, A.

    1995-08-01

    Argonne is collaborating with the Nuclear Science Centre (NSC), New Delhi, to develop a new type of superconducting accelerating structure for low-velocity heavy ions. A copper model has been evaluated and tests on the niobium prototype are currently in progress. Some technical details of this project are described in the Superconducting Linac Development section of this report. All funding for the prototype has come from the NSC, and they have also stationed two staff members at ATLAS for the past two years to gain experience and work on this project. Additional NSC personnel visited ATLAS for extended periods during 1994 for electronics and cryogenics experience and training. Two NSC staff members are scheduled to spend several months at ANL during 1995 to continue tests and developments of the prototype resonators and to initiate fabrication of the production models for their linac project.

  15. Nuclear science. Annual report, July 1, 1980-June 30, 1981

    SciTech Connect

    Friedlander, E.M.

    1982-06-01

    This annual report describes the scientific research carried out within the Nuclear Science Division between July 1, 1980 and June 30, 1981. The principal activity of the division continues to be the experimental and theoretical investigation of the interaction of heavy ions with target nuclei. Complementary research programs in light-ion nuclear science, in nuclear data evaluations, and in the development of advanced instrumentation are also carried out.

  16. Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Takahashi, Akito; Ota, Ken-Ichiro; Iwamura, Yashuhiro

    Preface -- 1. General. Progress in condensed matter nuclear science / A. Takahashi. Summary of ICCF-12 / X. Z. Li. Overview of light water/hydrogen-based low-energy nuclear reactions / G. H. Miley and P. J. Shrestha -- 2. Excess heat and He detection. Development of "DS-reactor" as the practical reactor of "cold fusion" based on the "DS-cell" with "DS-cathode" / Y. Arata and Y.-C. Zhang. Progress in excess of power experiments with electrochemical loading of deuterium in palladium / V. Violante ... [et al.]. Anomalous energy generation during conventional electrolysis / T. Mizuno and Y. Toriyabe. "Excess heat" induced by deuterium flux in palladium film / B. Liu ... [et al.]. Abnormal excess heat observed during Mizuno-type experiments / J.-F. Fauvarque, P. P. Clauzon and G. J.-M. Lallevé. Seebeck envelope calorimetry with a Pd|D[symbol]O + H[symbol]SO[symbol] electrolytic cell / W.-S. Zhang, J. Dash and Q. Wang. Observation and investigation of nuclear fusion and self-induced electric discharges in liquids / A. I. Koldamasov ... [et al.]. Description of a sensitive seebeck calorimeter used for cold fusion studies / E. Storms. Some recent results at ENEA / M. Apicella ... [et al.]. Heat measurement during plasma electrolysis / K. Iizumi ... [et al.]. Effect of an additive on thermal output during electrolysis of heavy water with a palladium cathode / Q. Wang and J. Dash. Thermal analysis of calorimetric systems / L. D'Aulerio ... [et al.]. Surface plasmons and low-energy nuclear reactions triggering / E. Castagna ... [et al.]. Production method for violent TCB jet plasma from cavity / F. Amini. New results and an ongoing excess heat controversy / L. Kowalski ... [et al.] -- 3. Transmutation. Observation of surface distribution of products by X-ray fluorescence spectrometry during D[symbol] gas permeation through Pd Complexes / Y. Iwamura ... [et al.]. Discharge experiment using Pd/CaO/Pd multi-layered cathode / S. Narita ... [et al.]. Producing transmutation

  17. The NUCLEONICA Nuclear Science Portal

    SciTech Connect

    Magill, Joseph; Dreher, Raymond

    2009-08-19

    NUCLEONICA (www.nucleonica.net) is a new nuclear science web portal which provides a customisable, integrated environment and collaboration platform using the latest internet 'Web 2.0' technology. NUCLEONICA is aimed at professionals, academics and students working in nuclear power, health physics and radiation protection, nuclear and radio-chemistry, and astrophysics. A unique feature of the portal is the wide range of user friendly web-based nuclear science applications. The portal is also ideal for education and training purposes and as a knowledge management platform to preserve nuclear knowledge built up over many decades.

  18. Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Biberian, Jean-Paul

    2006-02-01

    into characteristics of X-ray emission laser beams from solidstate cathode medium of high-current glow discharge / A. B. Karabut. Charged particles from Ti and Pd foils / L. Kowalski ... [et al.]. Cr-39 track detectors in cold fusion experiments: review and perspectives / A. S. Roussetski. Energetic particle shower in the vapor from electrolysis / R. A. Oriani and J. C. Fisher. Nuclear reactions produced in an operating electrolysis cell / R. A. Oriani and J. C. Fisher. Evidence of microscopic ball lightning in cold fusion experiments / E. H. Lewis. Neutron emission from D[symbol] gas in magnetic fields under low temperature / T. Mizuno ... [et al.]. Energetic charged particle emission from hydrogen-loaded Pd and Ti cathodes and its enhancement by He-4 implantation / A. G. Lipson ... [et al.]. H-D permeation. Observation of nuclear transmutation reactions induced by D[symbol] gas permeation through Pd complexes / Y. Iwamura ... [et al.]. Deuterium (hydrogen) flux permeating through palladium and condensed matter nuclear science / Q. M. Wei ... [et al.]. Triggering. Precursors and the fusion reactions in polarized Pd/D-D[symbol]O system: effect of an external electric field / S. Szpak, P. A. Mosier-Boss, and F. E. Gordon. Calorimetric and neutron diagnostics of liquids during laser irradiation / Yu. N. Bazhutov ... [et al.]. Anomalous neutron capture and plastic deformation of Cu and Pd cathodes during electrolysis in a weak thermalized neutron field: evidence of nuclei-lattice exchange / A. G. Lipson and G. H. Miley. H-D loading. An overview of experimental studies on H/Pd over-loading with thin Pd wires and different electrolytic solutions / A. Spallone ... [et al.] -- 3. Transmutations. Photon and particle emission, heat production, and surface transformation in Ni-H system / E. Campari ... [et al.]. Surface analysis of hydrogen-loaded nickel alloys / E. Campari ... [et al.]. Low-energy nuclear reactions and the leptonic monopole / G. Lochak and L. Urutskoev. Results

  19. Nuclear and Astro Physics at the Center of Excellence for Radioactive Ion Beam Studies for Stewardship Science

    SciTech Connect

    Cizewski, Jolie A.

    2010-10-11

    Neutron transfer reactions with radioactive ion beams of atomic nuclei have been used to probe the shell structure of nuclei far from stability and provide information important to understanding the origin of the elements heavier than iron.

  20. Nuclear and Astro Physics at the Center of Excellence for Radioactive Ion Beam Studies for Stewardship Science

    NASA Astrophysics Data System (ADS)

    Cizewski, Jolie A.

    2010-10-01

    Neutron transfer reactions with radioactive ion beams of atomic nuclei have been used to probe the shell structure of nuclei far from stability and provide information important to understanding the origin of the elements heavier than iron.

  1. Nuclear Weapons and Science Education.

    ERIC Educational Resources Information Center

    Wellington, J. J.

    1984-01-01

    Provides suggestions on how science teachers can, and should, deal with the nuclear weapons debate in a balanced and critical way. Includes a table outlining points for and against deterrence and disarmament. (JN)

  2. RAON experimental facilities for nuclear science

    SciTech Connect

    Kwon, Y. K.; Kim, Y. K.; Komatsubara, T.; Moon, J. Y.; Park, J. S.; Shin, T. S.; Kim, Y. J.

    2014-05-02

    The Rare Isotope Science Project (RISP) was established in December 2011 and has put quite an effort to carry out the design and construction of the accelerator complex facility named “RAON”. RAON is a rare isotope (RI) beam facility that aims to provide various RI beams of proton-and neutron-rich nuclei as well as variety of stable ion beams of wide ranges of energies up to a few hundreds MeV/nucleon for the researches in basic science and application. Proposed research programs for nuclear physics and nuclear astrophysics at RAON include studies of the properties of exotic nuclei, the equation of state of nuclear matter, the origin of the universe, process of nucleosynthesis, super heavy elements, etc. Various high performance magnetic spectrometers for nuclear science have been designed, which are KOBRA (KOrea Broad acceptance Recoil spectrometer and Apparatus), LAMPS (Large Acceptance Multi-Purpose Spectrometer), and ZDS (Zero Degree Spectrometer). The status of those spectrometers for nuclear science will be presented with a brief report on the RAON.

  3. Ion-induced nuclear radiotherapy

    DOEpatents

    Horn, K.M.; Doyle, B.L.

    1996-08-20

    Ion-induced Nuclear Radiotherapy (INRT) is a technique for conducting radiosurgery and radiotherapy with a very high degree of control over the spatial extent of the irradiated volume and the delivered dose. Based upon the concept that low energy, ion induced atomic and nuclear reactions can be used to produce highly energetic reaction products at the site of a tumor, the INRT technique is implemented through the use of a conduit-needle or tube which conducts a low energy ion beam to a position above or within the intended treatment area. At the end of the conduit-needle or tube is a specially fabricated target which, only when struck by the ion beam, acts as a source of energetic radiation products. The inherent limitations in the energy, and therefore range, of the resulting reaction products limits the spatial extent of irradiation to a pre-defined volume about the point of reaction. Furthermore, since no damage is done to tissue outside this irradiated volume, the delivered dose may be made arbitrarily large. INRT may be used both as a point-source of radiation at the site of a small tumor, or as a topical bath of radiation to broad areas of diseased tissue. 25 figs.

  4. Ion-induced nuclear radiotherapy

    DOEpatents

    Horn, Kevin M.; Doyle, Barney L.

    1996-01-01

    Ion-induced Nuclear Radiotherapy (INRT) is a technique for conducting radiosurgery and radiotherapy with a very high degree of control over the spatial extent of the irradiated volume and the delivered dose. Based upon the concept that low energy, ion induced atomic and nuclear reactions can be used to produce highly energetic reaction products at the site of a tumor, the INRT technique is implemented through the use of a conduit-needle or tube which conducts a low energy ion beam to a position above or within the intended treatment area. At the end of the conduit-needle or tube is a specially fabricated target which, only when struck by the ion beam, acts as a source of energetic radiation products. The inherent limitations in the energy, and therefore range, of the resulting reaction products limits the spatial extent of irradiation to a pre-defined volume about the point of reaction. Furthermore, since no damage is done to tissue outside this irradiated volume, the delivered dose may be made arbitrarily large. INRT may be used both as a point-source of radiation at the site of a small tumor, or as a topical bath of radiation to broad areas of diseased tissue.

  5. NUCLEAR SCIENCE, AN INTRODUCTORY COURSE.

    ERIC Educational Resources Information Center

    SULCOSKI, JOHN W.

    THIS CURRICULUM GUIDE DESCRIBES A TWELFTH-GRADE INTERDISCIPLINARY, INTRODUCTORY NUCLEAR SCIENCE COURSE. IT IS BELIEVED TO FILL THE NEED FOR AN ADVANCED COURSE THAT IS TIMELY, CHALLENGING, AND APPROPRIATE AS A SEQUENTIAL ADDITION TO THE BIOLOGY-CHEMISTRY-PHYSICS SEQUENCE. PRELIMINARY INFORMATION COVERS SUCH MATTERS AS (1) RADIOISOTOPE WORK AREAS,…

  6. Learning Nuclear Science with Marbles

    NASA Astrophysics Data System (ADS)

    Constan, Zach

    2010-02-01

    Nuclei are small: if an atom was the size of a football field, the nucleus would be an apple sitting on the 50-yd line. At the same time, nuclei are dense: the Earth, compressed to nuclear density, could fit inside four Sears Towers. The subatomic level is strange and exotic. For that reason, it's not hard to get young minds excited about nuclear science. But how does one move beyond analogies like those above and offer a better understanding of the extraordinary world of the nucleus? This is the challenge faced by the outreach program at Michigan State University's National Superconducting Cyclotron Laboratory (NSCL), a National Science Foundation-supported facility specializing in the creation and study of rare isotopes. It was necessary to devise a model of the nucleus that students could interact with and even use to approximate the nuclear reactions that create exotic nuclei. The solution was to use magnetic marbles.

  7. Ion exchange in the nuclear industry

    SciTech Connect

    Bibler, J.P.

    1990-12-31

    Ion exchange is used in nearly every part of the nuclear fuel cycle -- from the purification of uranium from its ore to the final recovery of uranium and transmutation products. Ion exchange also plays a valuable role in the management of nuclear wastes generated in the fuel cycle.

  8. Ion exchange in the nuclear industry

    SciTech Connect

    Bibler, J.P.

    1990-01-01

    Ion exchange is used in nearly every part of the nuclear fuel cycle -- from the purification of uranium from its ore to the final recovery of uranium and transmutation products. Ion exchange also plays a valuable role in the management of nuclear wastes generated in the fuel cycle.

  9. NUCLEAR SCIENCE CURRICULUM PROJECT. INSTRUCTIONAL RESOURCES SUPPLEMENT.

    ERIC Educational Resources Information Center

    Culver City Unified School District, CA.

    DESIGNED AS AN ADJUNCT TO MATERIALS DEVELOPED BY THE NUCLEAR SCIENCE CURRICULUM PROJECT, THIS DOCUMENT PROVIDES RESOURCE MATERIAL WITH WHICH THE NUCLEAR SCIENCE CURRICULUM MAY BE ENRICHED, AND ADDRESSES ITSELF TO (1) INSTRUCTIONAL AIDS PRESENTLY AVAILABLE, (2) USE OF INSTRUCTIONAL AIDS TO SUPPLEMENT THE CURRENT SCIENCE CURRICULA, (3) FACILITIES…

  10. Pioneer women in nuclear science

    NASA Astrophysics Data System (ADS)

    Rayner-Canham, M. F.; Rayner-Canham, G. W.

    1990-11-01

    It is a commonly accepted myth that Marie Curie and Lise Meitner were the only women working in the field of nuclear science during the early part of this century. In fact, there were at least 14 others who published work in this field between 1900 and 1915. This paper provides biographical notes on these women and explores the role of the supervisors. Part of the reason for the significant number of women researchers could have been the supportive attitude of Ernest Rutherford toward female physics graduates. In addition, we argue that several of these women provide better role models for potential women physicists than Marie Curie.

  11. NUCLEAR SCIENCE REFERENCES CODING MANUAL

    SciTech Connect

    WINCHELL,D.F.

    2007-04-01

    This manual is intended as a guide for Nuclear Science References (NSR) compilers. The basic conventions followed at the National Nuclear Data Center (NNDC), which are compatible with the maintenance and updating of and retrieval from the Nuclear Science References (NSR) file, are outlined. The NSR database originated at the Nuclear Data Project (NDP) at Oak Ridge National Laboratory as part of a project for systematic evaluation of nuclear structure data.1 Each entry in this computer file corresponds to a bibliographic reference that is uniquely identified by a Keynumber and is describable by a Topic and Keywords. It has been used since 1969 to produce bibliographic citations for evaluations published in Nuclear Data Sheets. Periodic additions to the file were published as the ''Recent References'' issues of Nuclear Data Sheets prior to 2005. In October 1980, the maintenance and updating of the NSR file became the responsibility of the NNDC at Brookhaven National Laboratory. The basic structure and contents of the NSR file remained unchanged during the transfer. In Chapter 2, the elements of the NSR file such as the valid record identifiers, record contents, and text fields are enumerated. Relevant comments regarding a new entry into the NSR file and assignment of a keynumber are also given in Chapter 2. In Chapter 3, the format for keyword abstracts is given followed by specific examples; for each TOPIC, the criteria for inclusion of an article as an entry into the NSR file as well as coding procedures are described. Authors preparing Keyword abstracts either to be published in a Journal (e.g., Nucl. Phys. A) or to be sent directly to NNDC (e.g., Phys. Rev. C) should follow the illustrations in Chapter 3. The scope of 1See W.B.Ewbank, ORNL-5397 (1978). the literature covered at the NNDC, the categorization into Primary and Secondary sources, etc., is discussed in Chapter 4. Useful information regarding permitted character sets, recommended abbreviations, etc., is

  12. Nuclear Science Division: 1993 Annual report

    SciTech Connect

    Myers, W.D.

    1994-06-01

    This report describes the activities of the Nuclear Science Division for the 1993 calendar year. This was another significant year in the history of the Division with many interesting and important accomplishments. Activities for the following programs are covered here: (1) nuclear structure and reactions program; (2) the Institute for Nuclear and Particle Astrophysics; (3) relativistic nuclear collisions program; (4) nuclear theory program; (5) nuclear data evaluation program, isotope project; and (6) 88-inch cyclotron operations.

  13. Nuclear Science Teaching Aids and Activities.

    ERIC Educational Resources Information Center

    Woodburn, John H.

    This publication is a sourcebook for science teachers. It provides guides for basic laboratory work in nuclear energy, suggesting various teacher and student demonstrations. Ideas for science clubs, science fairs, and project research seminars are presented. Problem-solving activities for both science and mathematics classes are included, as well…

  14. The United Kingdom Nuclear Science Forum

    NASA Astrophysics Data System (ADS)

    MacMahon, Desmond; Forrest, Robin; Judge, Steven

    2005-05-01

    The United Kingdom Nuclear Science Forum effectively acts as the United Kingdom's Nuclear Data Committee. As such it is the interface between the UK nuclear data community and international nuclear data centres. This paper outlines the Forum's terms of reference and describes some of its recent activities.

  15. Nuclear science. Annual report, July 1, 1979-June 30, 1980

    SciTech Connect

    Myers, W.D.; Friedlander, E.M.; Nitschke, J.M.; Stokstad, R.G.

    1981-03-01

    This annual report describes the scientific research carried out within the Nuclear Science Division (NSD) during the period between July 1, 1979 and June 30, 1980. The principal objective of the division continues to be the experimental and theoretical investigation of the interactions of heavy ions with target nuclei, complemented with programs in light ion nuclear science, in nuclear data compilations, and in advanced instrumentation development. The division continues to operate the 88 Inch Cyclotron as a major research facility that also supports a strong outside user program. Both the SuperHILAC and Bevalac accelerators, operated as national facilities by LBL's Accelerator and Fusion Research Division, are also important to NSD experimentalists. (WHK)

  16. Fusion Nuclear Science Pathways Assessment

    SciTech Connect

    C.E. Kessel, et. al.

    2012-02-23

    With the strong commitment of the US to the success of the ITER burning plasma mission, and the project overall, it is prudent to consider how to take the most advantage of this investment. The production of energy from fusion has been a long sought goal, and the subject of several programmatic investigations and time line proposals [1]. The nuclear aspects of fusion research have largely been avoided experimentally for practical reasons, resulting in a strong emphasis on plasma science. Meanwhile, ITER has brought into focus how the interface between the plasma and engineering/technology, presents the most challenging problems for design. In fact, this situation is becoming the rule and no longer the exception. ITER will demonstrate the deposition of 0.5 GW of neutron heating to the blanket, deliver a heat load of 10-20 MW/m2 or more on the divertor, inject 50-100 MW of heating power to the plasma, all at the expected size scale of a power plant. However, in spite of this, and a number of other technologies relevant power plant, ITER will provide a low neutron exposure compared to the levels expected to a fusion power plant, and will purchase its tritium entirely from world reserves accumulated from decades of CANDU reactor operations. Such a decision for ITER is technically well founded, allowing the use of conventional materials and water coolant, avoiding the thick tritium breeding blankets required for tritium self-sufficiency, and allowing the concentration on burning plasma and plasma-engineering interface issues. The neutron fluence experienced in ITER over its entire lifetime will be ~ 0.3 MW-yr/m2, while a fusion power plant is expected to experience 120-180 MW-yr/m2 over its lifetime. ITER utilizes shielding blanket modules, with no tritium breeding, except in test blanket modules (TBM) located in 3 ports on the midplane [2], which will provide early tests of the fusion nuclear environment with very low tritium production (a few g per year).

  17. Nuclear physics experiments with ion storage rings

    NASA Astrophysics Data System (ADS)

    Litvinov, Yu. A.; Bishop, S.; Blaum, K.; Bosch, F.; Brandau, C.; Chen, L. X.; Dillmann, I.; Egelhof, P.; Geissel, H.; Grisenti, R. E.; Hagmann, S.; Heil, M.; Heinz, A.; Kalantar-Nayestanaki, N.; Knöbel, R.; Kozhuharov, C.; Lestinsky, M.; Ma, X. W.; Nilsson, T.; Nolden, F.; Ozawa, A.; Raabe, R.; Reed, M. W.; Reifarth, R.; Sanjari, M. S.; Schneider, D.; Simon, H.; Steck, M.; Stöhlker, T.; Sun, B. H.; Tu, X. L.; Uesaka, T.; Walker, P. M.; Wakasugi, M.; Weick, H.; Winckler, N.; Woods, P. J.; Xu, H. S.; Yamaguchi, T.; Yamaguchi, Y.; Zhang, Y. H.

    2013-12-01

    In the last two decades a number of nuclear structure and astrophysics experiments were performed at heavy-ion storage rings employing unique experimental conditions offered by such machines. Furthermore, building on the experience gained at the two facilities presently in operation, several new storage ring projects were launched worldwide. This contribution is intended to provide a brief review of the fast growing field of nuclear structure and astrophysics research at storage rings.

  18. Nuclear Science, A High School Course.

    ERIC Educational Resources Information Center

    Pennsylvania State Dept. of Education, Harrisburg. Bureau of General and Academic Education.

    This comprehensive guide to the teaching of nuclear science at the secondary level includes recommendations on teaching methods, course and laboratory objectives, textbooks, audiovisual aids, laboratory equipment and experiments, and safety precautions. (MH)

  19. The Science of Low Energy Nuclear Reactions

    NASA Astrophysics Data System (ADS)

    Storms, Edmund

    2007-03-01

    The large literature describing the anomalous behavior attributed to cold fusion or low energy nuclear reactions has been critically described in a recently published book. Over 950 publications are evaluated allowing the phenomenon to be understood. A new class of nuclear reactions has been discovered that are able to generate practical energy without significant radiation or radioactivity. Edmund K Storms, The Science of Low Energy Nuclear Reactions, in press (2006). Also see: http://www.lenr-canr.org/StudentsGuide.htm .

  20. 76 FR 31945 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-02

    ... Nuclear Science Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory Committee (NSAC... Science Foundation on scientific priorities within the field of basic nuclear science research....

  1. 76 FR 62050 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-06

    ... Nuclear Science Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of... that the DOE/NSF Nuclear Science Advisory Committee (NSAC) will be renewed for a two- year period... (National Science Foundation), on scientific priorities within the field of basic nuclear science...

  2. Nuclear Science in the Undergraduate Curriculum: The New Nuclear Science Facility at San Jose State University.

    ERIC Educational Resources Information Center

    Ling, A. Campbell

    1979-01-01

    The following aspects of the radiochemistry program at San Jose State University in California are described: the undergraduate program in radiation chemistry, the new nuclear science facility, and academic programs in nuclear science for students not attending San Jose State University. (BT)

  3. Learning Nuclear Science with Marbles

    ERIC Educational Resources Information Center

    Constan, Zach

    2010-01-01

    Nuclei are "small": if an atom was the size of a football field, the nucleus would be an apple sitting on the 50-yd line. At the same time, nuclei are "dense": the Earth, compressed to nuclear density, could fit inside four Sears Towers. The subatomic level is strange and exotic. For that reason, it's not hard to get young minds excited about…

  4. 78 FR 12044 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ... Nuclear Science Advisory Committee AGENCY: Office of Science, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory Committee (NSAC... on scientific priorities within the field of basic nuclear science research. Tentative Agenda:...

  5. 75 FR 37783 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-30

    ... Nuclear Science Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory Committee (NSAC... nuclear science research. Tentative Agenda: Agenda will include discussions of the following: Friday,...

  6. 78 FR 62609 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ... Nuclear Science Advisory Committee AGENCY: Office of Science, Department of Energy. ACTION: Notice of... that the DOE/NSF Nuclear Science Advisory Committee (NSAC) will be renewed for a two-year period. The... within the field of basic nuclear science research. Additionally, the renewal of the DOE/NSF...

  7. 77 FR 9219 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-16

    ... Nuclear Science Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory Committee (NSAC... the National Science Foundation on scientific priorities within the field of basic nuclear...

  8. 76 FR 8359 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-14

    ... Nuclear Science Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory Committee (NSAC... scientific priorities within the field of basic nuclear science research. Tentative Agenda: Agenda...

  9. 78 FR 56870 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-16

    ... Nuclear Science Advisory Committee AGENCY: Office of Science, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory. Committee (NSAC... and the National Science Foundation on scientific priorities within the field of basic nuclear...

  10. 75 FR 6651 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-10

    ... Nuclear Science Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory Committee (NSAC... the National Science Foundation on scientific priorities within the field of basic nuclear...

  11. 75 FR 71425 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-23

    .../NSF Nuclear Science Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory... nuclear science research. Tentative Agenda: Agenda will include discussions of the following:...

  12. 78 FR 69658 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-20

    .../NSF Nuclear Science Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory... within the field of basic nuclear science research. Tentative Agenda: Agenda will include discussions...

  13. NUCLEAR SCIENCE CURRICULUM PROJECT, PROJECT I, INSTRUCTIONAL SPECIFICATIONS.

    ERIC Educational Resources Information Center

    CAMAREN, JAMES

    ON THE PREMISE THAT A KNOWLEDGE OF NUCLEAR SCIENCE IS ESSENTIAL FOR INTELLIGENT DECISION-MAKING REGARDING ITS USES, THE NUCLEAR SCIENCE CURRICULUM PROJECT WAS DEVELOPED. ITS OBJECTIVE IS TO PROVIDE A PROGRAM THAT CAN BE EFFECTIVELY USED IN SCIENCE CLASSES TO PROVIDE AN UNDERSTANDING OF NUCLEAR SCIENCE AND ITS IMPACT ON SOCIETY. THOUGH TEACHER…

  14. Los Alamos Neutron Science Center (LANSCE) Nuclear Science Facilities

    SciTech Connect

    Nelson, Ronald Owen; Wender, Steve

    2015-06-19

    The Los Alamos Neutron Science Center (LANSCE) facilities for Nuclear Science consist of a high-energy "white" neutron source (Target 4) with 6 flight paths, three low-energy nuclear science flight paths at the Lujan Center, and a proton reaction area. The neutron beams produced at the Target 4 complement those produced at the Lujan Center because they are of much higher energy and have shorter pulse widths. The neutron sources are driven by the 800-MeV proton beam of the LANSCE linear accelerator. With these facilities, LANSCE is able to deliver neutrons with energies ranging from a milli-electron volt to several hundreds of MeV, as well as proton beams with a wide range of energy, time and intensity characteristics. The facilities, instruments and research programs are described briefly.

  15. Materials Science for Nuclear Detection

    SciTech Connect

    Peurrung, Anthony J.

    2008-03-01

    In response to the elevated importance of nuclear detection technology, a variety of research efforts have sought to accelerate the discovery and development of useful new radiation detection materials These efforts have goals such as improving our understanding of how these materials perform, supporting the development of formalized discovery tools, or enabling rapid and effective performance characterization. This article provides an overview of these efforts along with an introduction to the history, physics, and taxonomy of these materials.

  16. Activities of the Center of Excellence for Radioactive Ion Beam Studies for Stewardship Science

    NASA Astrophysics Data System (ADS)

    Cizewski, J. A.

    2006-10-01

    The Center of Excellence for Radioactive Ion Beam Studies for Stewardship Science is a consortium of universities, Oak Ridge Associated Universities, and Oak Ridge National Laboratory, led by Rutgers University. The purpose of this project, funded by the NNSA/DP Academic Alliance for Stewardship Science program, is to use radioactive ion beams to study low-energy nuclear reactions of importance to stewardship science, as well as to prepare future researchers in applied nuclear science. These studies are enabled by the plethora of unstable accelerated beams available at the Holifield Radioactive Ion Beam Facility at Oak Ridge. The initial measurements use neutron-rich beams of uranium fission fragments to study the neutron-transfer (d,p) reaction, a possible surrogate of neutron capture reactions. We also develop new radioactive ion beams of interest to nuclear structure, nuclear astrophysics, and stewardship science. This talk will present an overview of the activities of the Center and the available facilities, describe initial results of a (d,p) reaction with a fission fragment beam, and outline activities proposed for the near term. In collaboration with H.K. Carter, ORAU.

  17. The Mysterious Box: Nuclear Science and Art.

    ERIC Educational Resources Information Center

    Keisch, Bernard

    In this booklet intended for junior high school science students a short story format is used to provide examples of the use of nuclear chemistry and physics in the analysis of paints and pigments for authentication of paintings. The techniques discussed include the measurement of the relative amounts of lead-210 and radium-226 in white-lead…

  18. PEOPLE IN PHYSICS: Women in nuclear science

    NASA Astrophysics Data System (ADS)

    Stuart, B. H.

    1996-03-01

    The field of nuclear science has seen an unusually large number of discoveries by women this century. This article focuses on the acclaimed work of Marie Curie, her daughter Irène Joliot-Curie, Lise Meitner and Maria Goeppert-Mayer.

  19. Nuclear Science Curriculum and Curriculum para la Ciencia Nuclear.

    ERIC Educational Resources Information Center

    American Nuclear Society, La Grange Park, IL.

    This document presents a course in the science of nuclear energy, units of which may be included in high school physics, chemistry, and biology classes. It is intended for the use of teachers whose students have already completed algebra and chemistry or physics. Included in this paper are the objectives of this course, a course outline, a…

  20. Midwest Nuclear Science and Engineering Consortium

    SciTech Connect

    Dr. Wynn Volkert; Dr. Arvind Kumar; Dr. Bryan Becker; Dr. Victor Schwinke; Dr. Angel Gonzalez; Dr. DOuglas McGregor

    2010-12-08

    The objective of the Midwest Nuclear Science and Engineering Consortium (MNSEC) is to enhance the scope, quality and integration of educational and research capabilities of nuclear sciences and engineering (NS/E) programs at partner schools in support of the U.S. nuclear industry (including DOE laboratories). With INIE support, MNSEC had a productive seven years and made impressive progress in achieving these goals. Since the past three years have been no-cost-extension periods, limited -- but notable -- progress has been made in FY10. Existing programs continue to be strengthened and broadened at Consortium partner institutions. The enthusiasm generated by the academic, state, federal, and industrial communities for the MNSEC activities is reflected in the significant leveraging that has occurred for our programs.

  1. Molecular forensic science analysis of nuclear materials

    NASA Astrophysics Data System (ADS)

    Reilly, Dallas David

    Concerns over the proliferation and instances of nuclear material in the environment have increased interest in the expansion of nuclear forensics analysis and attribution programs. A new related field, molecular forensic science (MFS) has helped meet this expansion by applying common scientific analyses to nuclear forensics scenarios. In this work, MFS was applied to three scenarios related to nuclear forensics analysis. In the first, uranium dioxide was synthesized and aged at four sets of static environmental conditions and studied for changes in chemical speciation. The second highlighted the importance of bulk versus particle characterizations by analyzing a heterogeneous industrially prepared sample with similar techniques. In the third, mixed uranium/plutonium hot particles were collected from the McGuire Air Force Base BOMARC Site and analyzed for chemical speciation and elemental surface composition. This work has identified new signatures and has indicated unexpected chemical behavior under various conditions. These findings have lead to an expansion of basic actinide understanding, proof of MFS as a tool for nuclear forensic science, and new areas for expansion in these fields.

  2. 76 FR 69252 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ... Nuclear Science Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory Committee (NSAC... Energy and the National Science Foundation on scientific priorities within the field of basic...

  3. 77 FR 51791 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-27

    ... Nuclear Science Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory Committee (NSAC... Energy and the National Science Foundation on scientific priorities within the field of basic...

  4. 78 FR 716 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-04

    .../NSF Nuclear Science Advisory Committee AGENCY: Office of Science, DOE. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory Committee (NSAC). DATES... advice and guidance on a continuing basis to the Department of Energy and the National Science...

  5. New versions of sources for nuclear polarized negative ion production

    SciTech Connect

    Dudnikov, V.G.; Shabalin, A.L. ); Wojtsekhowski, B.B. ); Belov, A.S.; Kuzik, V.E.; Plohinsky, Y.V.; Yakushev, V.P. )

    1992-10-05

    Several variants of sources for nuclear polarized negative ion production have been proposed and tested. The simple adaptation of a high intensity polarized proton source for nuclear polarized H[sup [minus

  6. Nuclear astrophysics with radioactive ions at FAIR

    NASA Astrophysics Data System (ADS)

    Reifarth, R.; Altstadt, S.; Göbel, K.; Heftrich, T.; Heil, M.; Koloczek, A.; Langer, C.; Plag, R.; Pohl, M.; Sonnabend, K.; Weigand, M.; Adachi, T.; Aksouh, F.; Al-Khalili, J.; AlGarawi, M.; AlGhamdi, S.; Alkhazov, G.; Alkhomashi, N.; Alvarez-Pol, H.; Alvarez-Rodriguez, R.; Andreev, V.; Andrei, B.; Atar, L.; Aumann, T.; Avdeichikov, V.; Bacri, C.; Bagchi, S.; Barbieri, C.; Beceiro, S.; Beck, C.; Beinrucker, C.; Belier, G.; Bemmerer, D.; Bendel, M.; Benlliure, J.; Benzoni, G.; Berjillos, R.; Bertini, D.; Bertulani, C.; Bishop, S.; Blasi, N.; Bloch, T.; Blumenfeld, Y.; Bonaccorso, A.; Boretzky, K.; Botvina, A.; Boudard, A.; Boutachkov, P.; Boztosun, I.; Bracco, A.; Brambilla, S.; Briz Monago, J.; Caamano, M.; Caesar, C.; Camera, F.; Casarejos, E.; Catford, W.; Cederkall, J.; Cederwall, B.; Chartier, M.; Chatillon, A.; Cherciu, M.; Chulkov, L.; Coleman-Smith, P.; Cortina-Gil, D.; Crespi, F.; Crespo, R.; Cresswell, J.; Csatlós, M.; Déchery, F.; Davids, B.; Davinson, T.; Derya, V.; Detistov, P.; Diaz Fernandez, P.; DiJulio, D.; Dmitry, S.; Doré, D.; Dueñas, J.; Dupont, E.; Egelhof, P.; Egorova, I.; Elekes, Z.; Enders, J.; Endres, J.; Ershov, S.; Ershova, O.; Fernandez-Dominguez, B.; Fetisov, A.; Fiori, E.; Fomichev, A.; Fonseca, M.; Fraile, L.; Freer, M.; Friese, J.; Borge, M. G.; Galaviz Redondo, D.; Gannon, S.; Garg, U.; Gasparic, I.; Gasques, L.; Gastineau, B.; Geissel, H.; Gernhäuser, R.; Ghosh, T.; Gilbert, M.; Glorius, J.; Golubev, P.; Gorshkov, A.; Gourishetty, A.; Grigorenko, L.; Gulyas, J.; Haiduc, M.; Hammache, F.; Harakeh, M.; Hass, M.; Heine, M.; Hennig, A.; Henriques, A.; Herzberg, R.; Holl, M.; Ignatov, A.; Ignatyuk, A.; Ilieva, S.; Ivanov, M.; Iwasa, N.; Jakobsson, B.; Johansson, H.; Jonson, B.; Joshi, P.; Junghans, A.; Jurado, B.; Körner, G.; Kalantar, N.; Kanungo, R.; Kelic-Heil, A.; Kezzar, K.; Khan, E.; Khanzadeev, A.; Kiselev, O.; Kogimtzis, M.; Körper, D.; Kräckmann, S.; Kröll, T.; Krücken, R.; Krasznahorkay, A.; Kratz, J.; Kresan, D.; Krings, T.; Krumbholz, A.; Krupko, S.; Kulessa, R.; Kumar, S.; Kurz, N.; Kuzmin, E.; Labiche, M.; Langanke, K.; Lazarus, I.; Le Bleis, T.; Lederer, C.; Lemasson, A.; Lemmon, R.; Liberati, V.; Litvinov, Y.; Löher, B.; Lopez Herraiz, J.; Münzenberg, G.; Machado, J.; Maev, E.; Mahata, K.; Mancusi, D.; Marganiec, J.; Martinez Perez, M.; Marusov, V.; Mengoni, D.; Million, B.; Morcelle, V.; Moreno, O.; Movsesyan, A.; Nacher, E.; Najafi, M.; Nakamura, T.; Naqvi, F.; Nikolski, E.; Nilsson, T.; Nociforo, C.; Nolan, P.; Novatsky, B.; Nyman, G.; Ornelas, A.; Palit, R.; Pandit, S.; Panin, V.; Paradela, C.; Parkar, V.; Paschalis, S.; Pawłowski, P.; Perea, A.; Pereira, J.; Petrache, C.; Petri, M.; Pickstone, S.; Pietralla, N.; Pietri, S.; Pivovarov, Y.; Potlog, P.; Prokofiev, A.; Rastrepina, G.; Rauscher, T.; Ribeiro, G.; Ricciardi, M.; Richter, A.; Rigollet, C.; Riisager, K.; Rios, A.; Ritter, C.; Rodriguez Frutos, T.; Rodriguez Vignote, J.; Röder, M.; Romig, C.; Rossi, D.; Roussel-Chomaz, P.; Rout, P.; Roy, S.; Söderström, P.; Saha Sarkar, M.; Sakuta, S.; Salsac, M.; Sampson, J.; Sanchez, J.; Rio Saez, del; Sanchez Rosado, J.; Sanjari, S.; Sarriguren, P.; Sauerwein, A.; Savran, D.; Scheidenberger, C.; Scheit, H.; Schmidt, S.; Schmitt, C.; Schnorrenberger, L.; Schrock, P.; Schwengner, R.; Seddon, D.; Sherrill, B.; Shrivastava, A.; Sidorchuk, S.; Silva, J.; Simon, H.; Simpson, E.; Singh, P.; Slobodan, D.; Sohler, D.; Spieker, M.; Stach, D.; Stan, E.; Stanoiu, M.; Stepantsov, S.; Stevenson, P.; Strieder, F.; Stuhl, L.; Suda, T.; Sümmerer, K.; Streicher, B.; Taieb, J.; Takechi, M.; Tanihata, I.; Taylor, J.; Tengblad, O.; Ter-Akopian, G.; Terashima, S.; Teubig, P.; Thies, R.; Thoennessen, M.; Thomas, T.; Thornhill, J.; Thungstrom, G.; Timar, J.; Togano, Y.; Tomohiro, U.; Tornyi, T.; Tostevin, J.; Townsley, C.; Trautmann, W.; Trivedi, T.; Typel, S.; Uberseder, E.; Udias, J.; Uesaka, T.; Uvarov, L.; Vajta, Z.; Velho, P.; Vikhrov, V.; Volknandt, M.; Volkov, V.; von Neumann-Cosel, P.; von Schmid, M.; Wagner, A.; Wamers, F.; Weick, H.; Wells, D.; Westerberg, L.; Wieland, O.; Wiescher, M.; Wimmer, C.; Wimmer, K.; Winfield, J. S.; Winkel, M.; Woods, P.; Wyss, R.; Yakorev, D.; Yavor, M.; Zamora Cardona, J.; Zartova, I.; Zerguerras, T.; Zgura, M.; Zhdanov, A.; Zhukov, M.; Zieblinski, M.; Zilges, A.; Zuber, K.

    2016-01-01

    The nucleosynthesis of elements beyond iron is dominated by neutron captures in the s and r processes. However, 32 stable, proton-rich isotopes cannot be formed during those processes, because they are shielded from the s-process flow and r-process, β-decay chains. These nuclei are attributed to the p and rp process. For all those processes, current research in nuclear astrophysics addresses the need for more precise reaction data involving radioactive isotopes. Depending on the particular reaction, direct or inverse kinematics, forward or time-reversed direction are investigated to determine or at least to constrain the desired reaction cross sections. The Facility for Antiproton and Ion Research (FAIR) will offer unique, unprecedented opportunities to investigate many of the important reactions. The high yield of radioactive isotopes, even far away from the valley of stability, allows the investigation of isotopes involved in processes as exotic as the r or rp processes.

  7. Ion transport of Fr nuclear reaction products

    SciTech Connect

    Behr, J.A.; Cahn, S.B.; Dutta, S.B.

    1993-04-01

    Experiments planned for fundamental studies of radioactive atoms in magneto-optic traps require efficient deceleration and transport of nuclear reaction products to energies and locations where they can be trapped. The authors have built a low-energy ion transport system for Francium and other alkalis. A thick Au target is held on a W rod at 45{degrees} to the accelerator beam direction. The heavy-ion fusion reaction 115 MeV {sup 18}O + {sup 197}Au produces {sup 211,210,209}Fr recoil products which are stopped in the target. The target is heated to close to the melting point of Au to allow the Fr to diffuse to the surface, where it is ionized due to Au`s high work function, and is directly extracted by an electrode at 90{degrees} to the accelerator beam direction. The Fr is transported by electrostatic optics {approximately}1 m to a catcher viewed by an {alpha} detector: {ge}15% of the Fr produced in the target reaches the catcher. 2{times}10{sup 5} Fr/sec have been produced at the catcher, yielding at equilibrium a sample of 3x10{sup 7}Fr nuclei. This scheme physically decouples the target diffusion from the surface neutralization process, which can occur at a lower temperature more compatible with the neutral-atom trap.

  8. LANSCE nuclear science facilities and activities

    SciTech Connect

    Nelson, Ronald O

    2010-01-01

    Nuclear science activities at the Los Alamos Neutron Science Center (LANSCE) encompass measurements spanning the neutron energy range from thermal to 600 MeV. The neutron sources use spallation of the LANSCE 800 MeV pulsed proton beam with the time-of-flight technique to measure properties of neutron-induced reactions as a function of energy over this large energy range. Current experiments are conducted at the Lujan Center moderated neutron source, the unmoderated WNR target, and with a lead-slowing-down spectrometer. Instruments in use include the DANCE array of BaF{sub 2} scintillators for neutron capture studies, the FIGARO array of liquid scintillator neutron detectors, the GEANIE array of high-resolution HPGe x-ray and gamma-ray detectors, and a number of fission chambers, and other detectors. The LANL capabilities for production and handling of radioactive materials coupled with the neutron sources and detectors at LANSCE are enabling new and challenging measurements for a variety of applications including nuclear energy and nuclear astrophysics. An overview of recent research and examples of results is presented.

  9. Nuclear electric propulsion for planetary science missions: NASA technology program planning

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    1993-01-01

    This paper presents the status of technology program planning to develop those Nuclear Electric Propulsion technologies needed to meet the advanced propulsion system requirements for planetary science missions in the next century. The technology program planning is based upon technologies with significant development heritage: ion electric propulsion and the SP-100 space nuclear power technologies. Detailed plans are presented for the required ion electric propulsion technology development and demonstration. Closer coordination between space nuclear power and space electric propulsion technology programs is a necessity as technology plans are being further refined in light of NEP concept definition and possible early NEP flight activities.

  10. Status of ion sources at National Institute of Radiological Sciences

    SciTech Connect

    Kitagawa, A.; Fujita, T.; Goto, A.; Hattori, T.; Hamano, T.; Hojo, S.; Honma, T.; Imaseki, H.; Katagiri, K.; Muramatsu, M.; Sakamoto, Y.; Sekiguchi, M.; Suda, M.; Sugiura, A.; Suya, N.

    2012-02-15

    The National Institute of Radiological Sciences (NIRS) maintains various ion accelerators in order to study the effects of radiation of the human body and medical uses of radiation. Two electrostatic tandem accelerators and three cyclotrons delivered by commercial companies have offered various life science tools; these include proton-induced x-ray emission analysis (PIXE), micro beam irradiation, neutron exposure, and radioisotope tracers and probes. A duoplasmatron, a multicusp ion source, a penning ion source (PIG), and an electron cyclotron resonance ion source (ECRIS) are in operation for these purposes. The Heavy-Ion Medical Accelerator in Chiba (HIMAC) is an accelerator complex for heavy-ion radiotherapy, fully developed by NIRS. HIMAC is utilized not only for daily treatment with the carbon beam but also for fundamental experiments. Several ECRISs and a PIG at HIMAC satisfy various research and clinical requirements.

  11. Summaries of FY 1980 research in the nuclear sciences

    SciTech Connect

    Not Available

    1980-06-01

    A compilation and index of the projects funded in fiscal year 1980 by the DOE Division of Nuclear Sciences/Office of Basic Energy Sciences is provided. These summaries constitute the basic document by which the DOE nuclear sciences program can be made known in some technical detail to interested persons. (RWR)

  12. Nuclear science outreach program for high school girls

    SciTech Connect

    Foster, D.E.; Stone, C.A.

    1996-12-31

    The authors have developed a 2-week summer school on nuclear science for high school girls. This summer school is an outgrowth of a recent American Nuclear Society high school teachers workshop held at San Jose State University. Young scientists are introduced to concepts in nuclear science through a combination of lectures, laboratory experiments, literature research, and visits to local national laboratories and nuclear facilities. Lectures cover a range of topics, including radioactivity and radioactive decay, statistics, fission and fusion, nuclear medicine, and food irradiation. A variety of applications of nuclear science concepts are also presented.

  13. Nuclear electric ion propulsion for three deep space missions

    NASA Astrophysics Data System (ADS)

    Chiravalle, Vincent P.

    2008-03-01

    Nuclear electric ion propulsion is considered for three sample deep space missions starting from a 500 km low Earth orbit encompassing the transfer of a 100 MT payload into a 1500 km orbit around Mars, the rendezvous of a 10 MT payload with the Jovian moon Europa and the rendezvous of a similar payload with Saturn's moon Titan. Near term ion engine and space nuclear reactor technology are assumed. It is shown that nuclear electric ion propulsion offers more than twice the payload for the Mars mission relative to the case when a nuclear thermal rocket is used for the trans-Mars injection maneuver at Earth, and about the same payload advantage relative to the case when solar electric propulsion is used for the Mars heliocentric transfer. For missions to the outer planets nuclear electric ion propulsion increases the payload mass fraction by a factor of two or more compared with high thrust systems that utilize gravity assist trajectories.

  14. Nuclear Science Division annual report, July 1, 1981-September 30, 1982

    SciTech Connect

    Mahoney, J.

    1983-06-01

    This report summarizes the scientific research carried out within the Nuclear Science Division between July 1, 1981, and September 30, 1982. Heavy-ion investigations continue to dominate the experimental and theoretical research efforts. Complementary programs in light-ion nuclear science, in nuclear data evaluation, and in the development of advanced instrumentation are also carried out. Results from Bevalac experiments employing a wide variety of heavy ion beams, along with new or upgraded detector facilities (HISS, the Plastic Ball, and the streamer chamber) are contained in this report. These relativistic experiments have shed important light on the degree of equilibration for central collisions, the time evolution of a nuclear collision, the nuclear density and compressional energy of these collisions, and strange particle production. Reaction mechanism work dominates the heavy-ion research at the 88-Inch Cyclotron and the SuperHILAC. Recent experiments have contributed to our understanding of the nature of light-particle emission in deep-inelastic collisions, of peripheral reactions, incomplete fusion, fission, and evaporation. Nuclear structure investigations at these accelerators continue to be directed toward the understanding of the behavior of nuclei at high angular momentum. Research in the area of exotic nuclei has led to the observation at the 88-Inch Cyclotron of the ..beta..-delayed proton decay of odd-odd T/sub z/ = -2 nuclides; ..beta..-delayed proton emitters in the rare earth region are being investigated at the SuperHILAC.

  15. Nuclear physics with unstable ions at storage rings

    NASA Astrophysics Data System (ADS)

    Bosch, Fritz; Litvinov, Yuri A.; Stöhlker, Thomas

    2013-11-01

    During the last two decades, ion storage-cooler rings have been proven as powerful devices for addressing precision experiments in the realm of atomic physics, nuclear physics and nuclear astrophysics. Most important, in particular for stored unstable nuclides, is the unrivalled capability of ion cooler-rings to generate brilliant beams of highest phase-space density owing to sophisticated cooling techniques, and to store them for extended periods of time by preserving their charge state. This report focuses on nuclear physics and nuclear astrophysics experiments with in-flight produced exotic ions that were injected into storage-cooler rings. Those experiments were conducted within the last decade mainly at the only operating facilities that are capable to provide and to store exotic ions, namely the ESR in Darmstadt, Germany and the CSRe-ring in Lanzhou, China. The majority of nuclear physics experiments performed at these equipments concerns ground-state properties of nuclei far from stability, such as masses and lifetimes. The rich harvest of these measurements is presented. In particular it is shown that storage-cooler rings are ideal, if not the only, devices where two-body beta decays of exotic highly-charged ions, such as bound-state beta decay and orbital electron capture, can be studied in every detail, based on “single-ion decay spectroscopy”. Furthermore, experiments at the border between atomic and nuclear physics are discussed which render valuable information on nuclear properties by exploiting one of the most precise tools of atomic spectroscopy on stored ions, the “dielectronic recombination”. Ion storage rings with cooled exotic beams and equipped with thin internal gas targets deliver also unrivalled opportunities for addressing with highest precision key reactions in the fields of nuclear astrophysics and nuclear structure. First very promising experiments exploring the potential of ion cooler-rings in this realm have been already

  16. Nuclear Physics Science Network Requirements Workshop, May 2008 - Final Report

    SciTech Connect

    Tierney, Ed., Brian L; Dart, Ed., Eli; Carlson, Rich; Dattoria, Vince; Ernest, Michael; Hitchcock, Daniel; Johnston, William; Kowalski, Andy; Lauret, Jerome; Maguire, Charles; Olson, Douglas; Purschke, Martin; Rai, Gulshan; Watson, Chip; Vale, Carla

    2008-11-10

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States of America. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In May 2008, ESnet and the Nuclear Physics (NP) Program Office of the DOE Office of Science organized a workshop to characterize the networking requirements of the science programs funded by the NP Program Office. Most of the key DOE sites for NP related work will require significant increases in network bandwidth in the 5 year time frame. This includes roughly 40 Gbps for BNL, and 20 Gbps for NERSC. Total transatlantic requirements are on the order of 40 Gbps, and transpacific requirements are on the order of 30 Gbps. Other key sites are Vanderbilt University and MIT, which will need on the order of 20 Gbps bandwidth to support data transfers for the CMS Heavy Ion program. In addition to bandwidth requirements, the workshop emphasized several points in regard to science process and collaboration. One key point is the heavy reliance on Grid tools and infrastructure (both PKI and tools such as GridFTP) by the NP community. The reliance on Grid software is expected to increase in the future. Therefore, continued development and support of Grid software is very important to the NP science community. Another key finding is that scientific productivity is greatly enhanced by easy researcher-local access to instrument data. This is driving the creation of distributed repositories for instrument data at collaborating institutions, along with a corresponding increase in demand for network-based data transfers and the tools

  17. Molecular forensic science of nuclear materials

    SciTech Connect

    Wilkerson, Marianne Perry

    2010-01-01

    We are interested in applying our understanding of actinide chemical structure and bonding to broaden the suite of analytical tools available for nuclear forensic analyses. Uranium- and plutonium-oxide systems form under a variety of conditions, and these chemical species exhibit some of the most complex behavior of metal oxide systems known. No less intriguing is the ability of AnO{sub 2} (An: U, Pu) to form non-stoichiometric species described as AnO{sub 2+x}. Environmental studies have shown the value of utilizing the chemical signatures of these actinide oxides materials to understand transport following release into the environment. Chemical speciation of actinide-oxide samples may also provide clues as to the age, source, process history, or transport of the material. The scientific challenge is to identify, measure and understand those aspects of speciation of actinide analytes that carry information about material origin and history most relevant to forensics. Here, we will describe our efforts in material synthesis and analytical methods development that we will use to provide the fundamental science required to characterize actinide oxide molecular structures for forensics science. Structural properties and initial results to measure structural variability of uranium oxide samples using synchrotron-based X-ray Absorption Fine Structure will be discussed.

  18. MCNPX Extension for Using Light Ion Evaluated Nuclear Data Library.

    Energy Science and Technology Software Center (ESTSC)

    2013-05-23

    Version 00 US DOE 10CFR810 Jurisdiction. MCUNED is an MCNPX extension that handles a light ion evaluated nuclear data library. Using MCUNED, all MCNPX simulations involving transport of light ion could be solved using evaluated libraries instead of MCNPX built-in models.

  19. Nuclear Science Outreach in the World Year of Physics

    NASA Astrophysics Data System (ADS)

    McMahan, Margaret

    2006-04-01

    The ability of scientists to articulate the importance and value of their research has become increasingly important in the present climate of declining budgets, and this is most critical in the field of nuclear science ,where researchers must fight an uphill battle against negative public perception. Yet nuclear science encompasses important technical and societal issues that should be of primary interest to informed citizens, and the need for scientists trained in nuclear techniques are important for many applications in nuclear medicine, national security and future energy sources. The NSAC Education Subcommittee Report [1] identified the need for a nationally coordinated effort in nuclear science outreach, naming as its first recommendation that `the highest priority for new investment in education be the creation by the DOE and NSF of a Center for Nuclear Science Outreach'. This talk will review the present status of public outreach in nuclear science and highlight some specific efforts that have taken place during the World Year of Physics. [1] Education in Nuclear Science: A Status Report and Recommendations for the Beginning of the 21^st Century, A Report of the DOE/NSF Nuclear Science Advisory Committee Subcommittee on Education, November 2004, http://www.sc.doe.gov/henp/np/nsac/docs/NSACCReducationreportfinal.pdf.

  20. 2001 Tom W. Bonner Prize in Nuclear Physics Lecture: ECR Ion Sources for Heavy-ion Nuclear Physics

    NASA Astrophysics Data System (ADS)

    Lyneis, Claude

    2001-04-01

    The development of Electron Cyclotron Resonance ion sources has provided new scientific opportunities for the study of heavy-ion nuclear physics. ECR ion sources have become the ion source of choice for heavy-ion accelerators due to their excellent performance in producing CW high charge state heavy-ion beams for virtually any element. In the last two decades, the performance of ECR sources has improved dramatically in terms of beam intensity, maximum charge state and range of beam species. For example, the intensity of O^6+beams has increased from 15 eμA to more than a mA, U^64+ has been extracted from an ECR source, and beams from rare isotopes such as ^48Ca are produced for nuclear structure and heavy element research. This progress has been a result of applying scaling laws related to microwave frequency and magnetic field strength, the development of improved ion source designs, and specialized techniques such as high temperature ovens. The need for radioactive beams in nuclear physics provides new challenges for the ECR ion source community, especially for the production of high intensity heavy-ion beams for the driver linac as currently envisioned for the Rare Isotope Accelerator RIA. This talk will review the advances in ECR ion sources, their application at accelerators, and future challenges.

  1. Advances in U.S. Heavy Ion Fusion Science

    SciTech Connect

    Logan, B.G.; Barnard, J.J.; Bieniosek, F.M.; Cohen, R.H.; Coleman, J.E.; Davidson, R.C.; Efthimion, P.C.; Friedman, A.; Gilson, E.P.; Grisham, L.R.; Grote, D.P.; Henestroza, E.; Kaganovich, I.D.; Kireeff-Covo, M.; Lee, E.P.; Leitner, M.A.; Lund, S.M.; Molvik, A.W.; Ni, P.; Perkins, L. J.; Qin, H.; Roy, P.K.; Sefkow, A.B.; Seidl, P.A.; Startsev, E.A.; Waldron, W.L.

    2007-09-01

    During the past two years, the US heavy ion fusion science program has made significant experimental and theoretical progress in simultaneous transverse and longitudinal beam compression, ion-beam-driven warm dense matter targets, high-brightness beam transport, advanced theory and numerical simulations, and heavy ion target physics for fusion. First experiments combining radial and longitudinal compression {pi} of intense ion beams propagating through background plasma resulted in on-axis beam densities increased by 700X at the focal plane. With further improvements planned in 2008, these results enable initial ion beam target experiments in warm dense matter to begin next year. They are assessing how these new techniques apply to higher-gain direct-drive targets for inertial fusion energy.

  2. Advances in U.S. Heavy Ion Fusion Science

    SciTech Connect

    Barnard, JJ; Logan, B.G.; Barnard, J.J.; Bieniosek, F.M.; Cohen, R.H.; Coleman, J.E.; Davidson, R.C.; Efthimion, P.C.; Friedman, A.; Gilson, E.P.; Grisham, L.R.; Grote, D.P.; Henestroza, E.; Kaganovich, I.D.; Kireeff-Covo, M.; Lee, E.P.; Leitner, M.A.; Lund, S.M.; Molvik, A.W.; Ni, P.; Perkins, L.J.; Qin, H.; Roy, P.K.; Sefkow, A.B.; Seidl, P.A.; Startsev, E.A.; Waldron, W.L.

    2007-09-03

    During the past two years, the US heavy ion fusion science program has made significant experimental and theoretical progress in simultaneous transverse and longitudinal beam compression, ion-beam-driven warm dense matter targets, high-brightness beam transport, advanced theory and numerical simulations, and heavy ion target physics for fusion. First experiments combining radial and longitudinal compression {pi} of intense ion beams propagating through background plasma resulted in on-axis beam densities increased by 700X at the focal plane. With further improvements planned in 2008, these results enable initial ion beam target experiments in warm dense matter to begin next year. They are assessing how these new techniques apply to higher-gain direct-drive targets for inertial fusion energy.

  3. Theory of nuclear excitation by electron capture for heavy ions

    SciTech Connect

    Palffy, Adriana; Scheid, Werner; Harman, Zoltan

    2006-01-15

    We investigate the resonant process of nuclear excitation by electron capture (NEEC), in which a continuum electron is captured into a bound state of an ion with the simultaneous excitation of the nucleus. In order to derive the cross section a Feshbach projection operator formalism is introduced. Nuclear states and transitions are described by a nuclear collective model and making use of experimental data. Transition rates and total cross sections for NEEC followed by the radiative decay of the excited nucleus are calculated for various heavy-ion collision systems.

  4. Teaching on Science, Technology and the Nuclear Arms Race.

    ERIC Educational Resources Information Center

    Schroeer, Dietrich

    1983-01-01

    Describes a course focusing on science, technology, and the nuclear arms race. Two sample homework exercises and course topics are provided. Topics, with lists of questions that might be addressed, focus on nuclear weapons, alternatives to deterrence, and arms control. Approaches to teaching about the nuclear arms race are also provided. (JN)

  5. Nuclear Science Division annual report for 1991

    SciTech Connect

    Myers, W.D.

    1992-04-01

    This paper discusses research being conducted under the following programs: Low energy research program; bevalac research program; ultrarelativistic research program; nuclear theory program; nuclear theory program; nuclear data evaluation program; and 88-inch cyclotron operations.

  6. The universe in the laboratory - Nuclear astrophysics opportunity at the facility for antiproton and ion research

    SciTech Connect

    Langanke, K.

    2014-05-09

    In the next years the Facility for Antiproton and Ion Research FAIR will be constructed at the GSI Helmholtzze-ntrum für Schwerionenforschung in Darmstadt, Germany. This new accelerator complex will allow for unprecedented and pathbreaking research in hadronic, nuclear, and atomic physics as well as in applied sciences. This manuscript will discuss some of these research opportunities, with a focus on supernova dynamics and nucleosynthesis.

  7. Multisectional linear ion trap and novel loading method for optical spectroscopy of electron and nuclear transitions.

    PubMed

    Sysoev, Alexey A; Troyan, Victor I; Borisyuk, Peter V; Krasavin, Andrey V; Vasiliev, Oleg S; Palchikov, Vitaly G; Avdeev, Ivan A; Chernyshev, Denis M; Poteshin, Sergey S

    2015-01-01

    There is a growing need for the development of atomic and nuclear frequency standards because of the important contribution of methods for precision time and frequency measurements to the development of fundamental science, technology, and the economy. It is also conditioned by their potential use in optical clocks and quantum logic applications. It is especially important to develop a universal method that could allow one to use ions of most elements effectively (including ones that are not easily evaporated) proposed for the above-mentioned applications. A linear quadrupole ion trap for the optical spectroscopy of electron and nuclear transitions has been developed and evaluated experimentally. An ion source construction is based on an ultra-high vacuum evaporator in which a metal sample is subjected to an electron beam of energy up to 1 keV, resulting in the appearance of gaseous atoms and ions of various charge state. The linear ion trap consists of five successive quadrupole sections including an entrance quadrupole section, quadrupole mass filter, quadrupole ion guide, ion-trap section, and exit quadrupole section. The same radiofrequency but a different direct current voltage feeds the quadrupole sections. The instrument allows the mass and energy selected trapping of ions from ion beams of various intensities and their localization in the area of laser irradiation. The preliminary results presented show that the proposed instrument and methods allow one to produce effectively up to triply charged thorium ions as well as to trap ions for future spectroscopic study. The instrument is proposed for future use in optical clocks and quantum logic application development. PMID:25906029

  8. Lithium Ion Batteries Used for Nuclear Forensics

    NASA Astrophysics Data System (ADS)

    Johnson, Erik B.; Stapels, Christopher J.; Chen, X. Jie; Whitney, Chad; Holbert, Keith E.; Christian, James F.

    2013-10-01

    Nuclear forensics includes the study of materials used for the attribution a nuclear event. Analysis of the nuclear reaction products resulting both from the weapon and the material in the vicinity of the event provides data needed to identify the source of the nuclear material and the weapon design. The spectral information of the neutrons produced by the event provides information on the weapon configuration. The lithium battery provides a unique platform for nuclear forensics, as the Li-6 content is highly sensitive to neutrons, while the battery construction consists of various layers of materials. Each of these materials represents an element for a threshold detector scheme, where isotopes are produced in the battery components through various nuclear reactions that require a neutron energy above a fundamental threshold energy. This study looks into means for extracting neutron spectral information by understanding the isotopic concentration prior to and after exposure. The radioisotopes decay through gamma and beta emission, and radiation spectrometers have been used to measure the radiation spectra from the neutron exposed batteries. The batteries were exposed to various known neutron fields, and analysis was conducted to reconstruct the incident neutron spectra. This project is supported by the Defense Threat Reduction Agency, grant number HDTRA1-11-1-0028.

  9. 50 years of ion channeling in materials science

    NASA Astrophysics Data System (ADS)

    Vantomme, André

    2016-03-01

    In the early days of ion beam analysis, i.e. the early 60s, channeling was discovered and brought to maturity via a combined effort in experimental, computational and theoretical research. It was soon realized that the probability for nuclear interaction (such as nuclear scattering, nuclear reactions, ionization followed by X-ray emission…) would significantly decrease when steering the ion beam along a crystallographic direction of a single crystal. Hence, this effect would be optimally suited to investigate a wide range of materials properties related to their crystal structure, such as defects, elastic strain, the lattice site of impurities, as well as phonon-related properties. In this paper, I will briefly review some of the pioneering work, which led to the discovery and theoretical understanding of ion channeling. Subsequently, a number of applications will be discussed where the strength of the ion beam analysis technique allows deducing information which is often hardly (or not) attainable by other techniques. Throughout the paper, I will reflect on the future of channeling in materials research, and pay special attention to potential pitfalls, challenges and opportunities.

  10. Expanding Science Knowledge: Enabled by Nuclear Power

    NASA Technical Reports Server (NTRS)

    Clark, Karla B.

    2011-01-01

    The availability of Radioisotope Power Sources (RPSs) power opens up new and exciting mission concepts (1) New trajectories available (2) Power for long term science and operations Astonishing science value associated with these previously non-viable missions

  11. Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jlab

    SciTech Connect

    Abeyratne, S; Ahmed, S; Barber, D; Bisognano, J; Bogacz, A; Castilla, A; Chevtsov, P; Corneliussen, S; Deconinck, W; Degtiarenko, P; Delayen, J; Derbenev, Ya; DeSilva, S; Douglas, D; Dudnikov, V; Ent, R; Erdelyi, B; Evtushenko, P; Fujii, Yu; Filatov, Yury; Gaskell, D; Geng, R; Guzey, V; Horn, T; Hutton, A; Hyde, C; Johnson, R; Kim, Y; Klein, F; Kondratenko, A; Kondratenko, M; Krafft, G; Li, R; Lin, F; Manikonda, S; Marhauser, F; McKeown, R; Morozov, V; Dadel-Turonski, P; Nissen, E; Ostroumov, P; Pivi, M; Pilat, F; Poelker, M; Prokudin, A; Rimmer, R; Satogata, T; Sayed, H; Spata, M; Sullivan, M; Tennant, C; Terzic, B; Tiefenback, M; Wang, M; Wang, S; Weiss, C; Yunn, B; Zhang, Y

    2012-08-01

    Researchers have envisioned an electron-ion collider with ion species up to heavy ions, high polarization of electrons and light ions, and a well-matched center-of-mass energy range as an ideal gluon microscope to explore new frontiers of nuclear science. In its most recent Long Range Plan, the Nuclear Science Advisory Committee (NSAC) of the US Department of Energy and the National Science Foundation endorsed such a collider in the form of a 'half-recommendation.' As a response to this science need, Jefferson Lab and its user community have been engaged in feasibility studies of a medium energy polarized electron-ion collider (MEIC), cost-effectively utilizing Jefferson Lab's already existing Continuous Electron Beam Accelerator Facility (CEBAF). In close collaboration, this community of nuclear physicists and accelerator scientists has rigorously explored the science case and design concept for this envisioned grand instrument of science. An electron-ion collider embodies the vision of reaching the next frontier in Quantum Chromodynamics - understanding the behavior of hadrons as complex bound states of quarks and gluons. Whereas the 12 GeV Upgrade of CEBAF will map the valence-quark components of the nucleon and nuclear wave functions in detail, an electron-ion collider will determine the largely unknown role sea quarks play and for the first time study the glue that binds all atomic nuclei. The MEIC will allow nuclear scientists to map the spin and spatial structure of quarks and gluons in nucleons, to discover the collective effects of gluons in nuclei, and to understand the emergence of hadrons from quarks and gluons. The proposed electron-ion collider at Jefferson Lab will collide a highly polarized electron beam originating from the CEBAF recirculating superconducting radiofrequency (SRF) linear accelerator (linac) with highly polarized light-ion beams or unpolarized light- to heavy-ion beams from a new ion accelerator and storage complex. Since the very

  12. Ultra-Relativistic Heavy Ion Nuclear Physics

    SciTech Connect

    Braithwaite, W. J.

    1995-05-31

    This report describes an on-going research initiative for the University of Arkansas at Little Rock (UALR): investigating the physics of ultra-relativistic heavy ions, i.e. collisions between massive nuclei which have been accelerated to kinetic energies so large that the rest mass of the ions is a negligible fraction of their total mass-energy. This progress report is being submitted in conjunction with a 3-year grant-renewal proposal, containing additional materials. Three main categories drive the UALRGultra-relativistic heavy ion research. (1) investigations of multi-particle Hanbury-Brown-Twiss (HBT) correlations in the CERN and RHIC energy domains strongly influence the URHI experimental effort, (2) participation in the NA49 Experiment to study 33 TeV (160 GeV/nucleon) Pb on Pb collisions using the SPS facili& at CERN, and (3) participation in the STAR collaboration which is developing a major detector for use with the STAR Experiment at the Relativistic Heavy Ion Collider (RHIC), being built at BNL.

  13. Nuclear Science Division 1994 annual report

    SciTech Connect

    Myers, W.D.

    1995-06-01

    This report describes the activities of the Nuclear Science Division for the period of January 1, 1994, to December 31, 1994. This was a time of significant accomplishment for all of the programs in the Division. Assembly of the solar neutrino detector at the Sudbury Neutrino Observatory is well under way. All of the components fabricated by LBL were shipped to Sudbury early in the year and our efforts are now divided between assisting the assembly of the detector and preparing software for data analysis once the detector is operational in 1996. Much of the activity at the 88-Inch Cyclotron centered on Gammasphere. The {open_quotes}early implementation{close_quotes} phase of the detector ended in September. This phase was extremely successful, involving over 60 experiments with nearly 200 users from 37 institutions worldwide. The mechanical structure was installed and the final electronic system is expected to operate in March 1995. The Division concurrently hosted a conference on physics for large {gamma}-ray detector arrays at the Clark Kerr Campus at UC Berkeley in August. This was a very successful meeting, reflecting the enthusiasm for this field worldwide. Also at the Cyclotron, the progress toward weak interaction experiments using ultra-thin sources passed a major milestone with the trapping of radioactive {sup 21}Na atoms. We are now engaged in a major upgrade of the experimental area and the outlook is very promising for these novel experiments. Another highlight of research at the Cyclotron was the confirmation of element 106. This development allowed the original LLNL/LBL discovery team to move forward with their proposal to name this element seaborgium.

  14. NUCLEAR SCIENCE REFERENCES AS A TOOL FOR DATA EVALUATION.

    SciTech Connect

    WINCHELL,D.F.

    2004-09-26

    For several decades, the Nuclear Science References database has been maintained as a tool for data evaluators and for the wider pure and applied research community. This contribution will describe the database and recent developments in web-based access.

  15. Progress report on nuclear propulsion for space exploration and science

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.; Miller, Thomas J.

    1993-01-01

    NASA is continuing its work in cooperation with the Department of Energy (DOE) on nuclear propulsion - both nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP). The focus of the NTP studies remains on piloted and cargo missions to Mars (with precursor missions to the moon) although studies are under way to examine the potential uses of NTP for science missions. The focus of the NEP studies has shifted to space science missions with consideration of combining a science mission with an earlier demonstration of NEP using the SP-100 space nuclear reactor power system. Both NTP and NEP efforts are continuing in 1993 to provide a good foundation for science and exploration planners. Both NTP and NEP provide a very important transportation resource and in a number of cases enable missions that could not otherwise be accomplished.

  16. Nuclear and Related Analytical Techniques for Environmental and Life Sciences

    NASA Astrophysics Data System (ADS)

    Frontasyeva, Marina

    2010-01-01

    The role of nuclear analytical techniques (NATs) in Environmental and Life Sciences is discussed. Examples of radioanalytical investigations at the IBR-2 pulsed fast reactor in Dubna illustrate the environmental, biomedical, geochemical and industrial applications of instrumental neutron activation analysis.

  17. Comprehensive Nuclear Model Code, Nucleons, Ions, Induced Cross-Sections

    SciTech Connect

    2002-09-27

    EMPIRE-II is a flexible code for calculation of nuclear reactions in the frame of combined op0tical, Multistep Direct (TUL), Multistep Compound (NVWY) and statistical (Hauser-Feshbach) models. Incident particle can be a nucleon or any nucleus (Heavy Ion). Isomer ratios, residue production cross sections and emission spectra for neutrons, protons, alpha- particles, gamma-rays, and one type of Light Ion can be calculated. The energy range starts just above the resonance region for neutron induced reactions and extends up to several hundreds of MeV for the Heavy Ion induced reactions.

  18. Comprehensive Nuclear Model Code, Nucleons, Ions, Induced Cross-Sections

    Energy Science and Technology Software Center (ESTSC)

    2002-09-27

    EMPIRE-II is a flexible code for calculation of nuclear reactions in the frame of combined op0tical, Multistep Direct (TUL), Multistep Compound (NVWY) and statistical (Hauser-Feshbach) models. Incident particle can be a nucleon or any nucleus (Heavy Ion). Isomer ratios, residue production cross sections and emission spectra for neutrons, protons, alpha- particles, gamma-rays, and one type of Light Ion can be calculated. The energy range starts just above the resonance region for neutron induced reactions andmore » extends up to several hundreds of MeV for the Heavy Ion induced reactions.« less

  19. Neutron Transfer Reactions: Surrogates for Neutron Capture for Basic and Applied Nuclear Science

    SciTech Connect

    Cizewski, J. A.; Peters, W. A.; Allen, J.; Hatarik, R.; Matthews, C.; O'Malley, P.; Jones, K. L.; Kozub, R. L.; Howard, J.; Patterson, N.; Paulauskas, S. V.; Rogers, J.; Sissom, D. J.; Pain, S. D.; Adekola, A.; Bardayan, D. W.; Blackmon, J. C.; Liang, F.; Nesaraja, C. D.; Pittman, S. T.

    2009-03-10

    Neutron capture reactions on unstable nuclei are important for both basic and applied nuclear science. A program has been developed at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory to study single-neutron transfer (d,p) reactions with rare isotope beams to provide information on neutron-induced reactions on unstable nuclei. Results from (d,p) studies on {sup 130,132}Sn, {sup 134}Te and {sup 75}As are discussed.

  20. Neutron transfer reactions: Surrogates for neutron capture for basic and applied nuclear science

    SciTech Connect

    Cizewski, J. A.; Jones, K. L.; Kozub, R. L.; Pain, Steven D; Peters, W. A.; Adekola, Aderemi S; Allen, J.; Bardayan, Daniel W; Becker, J.; Blackmon, Jeff C; Chae, K. Y.; Chipps, K.; Erikson, Luke; Gaddis, A. L.; Harlin, Christopher W; Hatarik, Robert; Howard, Joshua A; Jandel, M.; Johnson, Micah; Kapler, R.; Krolas, W.; Liang, J Felix; Livesay, Jake; Ma, Zhanwen; Matei, Catalin; Matthews, C.; Moazen, Brian; Nesaraja, Caroline D; O'Malley, Patrick; Patterson, N. P.; Paulauskas, Stanley; Pelham, T.; Pittman, S. T.; Radford, David C; Rogers, J.; Schmitt, Kyle; Shapira, Dan; ShrinerJr., J. F.; Sissom, D. J.; Smith, Michael Scott; Swan, T. P.; Thomas, J. S.; Vieira, D. J.; Wilhelmy, J. B.; Wilson, Gemma L

    2009-04-01

    Neutron capture reactions on unstable nuclei are important for both basic and applied nuclear science. A program has been developed at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory to study single-neutron transfer (d,p) reactions with rare isotope beams to provide information on neutron-induced reactions on unstable nuclei. Results from (d,p) studies on {sup 130,132}Sn, {sup 134}Te and {sup 75}As are discussed.

  1. The Debrecen Scanning Nuclear Microprobe and its Applications in Biology and Environmental Science

    SciTech Connect

    Kertesz, Zsofia

    2007-11-26

    Nuclear microscopy is one of the most powerful tools which are able to determine quantitative trace element distributions in complex samples on a microscopic scale. The advantage of nuclear microprobes are that different ion beam analytical techniques, like PIXE, RBS, STIM and NRA can be applied at the same time allowing the determination of the sample structure, major, minor and trace element distribution simultaneously.In this paper a nuclear microprobe setup developed for the microanalysis of thin complex samples of organic matrix at the Debrecen Scanning Nuclear Microprobe Facility is presented. The application of nuclear microscopy in life sciences is shown through an example, the study of penetration of TiO{sub 2} nanoparticles of bodycare cosmetics in skin layers.

  2. What Opinions Do High School Students Hold About Nuclear Science?

    ERIC Educational Resources Information Center

    Crater, Harold L.

    1977-01-01

    In 1975, selected high ability secondary students attended a program in Nuclear and Environmental Science. Likert-like pre- and posttests concerning aspects of nuclear technology were given to the students. Results indicated no favorable or unfavorable changes in student attitudes towards the ideas sampled. Sample questions included. (MA)

  3. UNESCO Chemistry Teaching Project in Asia: Experiments on Nuclear Science.

    ERIC Educational Resources Information Center

    Dhabanandana, Salag

    This teacher's guide on nuclear science is divided into two parts. The first part is a discussion of some of the concepts in nuclear chemistry including radioactivity, types of disintegration, radioactive decay and growth, and tracer techniques. The relevant experiments involving the use of radioisotopes are presented in the second part. The…

  4. Middle School Students, Science Textbooks, Television and Nuclear War Issues.

    ERIC Educational Resources Information Center

    Hamm, Mary

    The extent to which the issue of nuclear war technology is treated in middle-school science texts, and how students learn about nuclear war and war technology were studied. Five raters compared the most widely used textbooks for grades 6 and 7 to determine the amount of content on: (1) population growth; (2) world hunger; (3) war technology; (4)…

  5. Nuclear microscopy in the life sciences at the National University of Singapore. A review.

    PubMed

    Ren, M Q; Thong, P S; Makjanic, J; Ponraj, D; Watt, F

    1999-01-01

    The nuclear microscope is now gaining popularity in the field of life sciences. In particular, the combination of proton-induced X-ray emission to measure the elemental concentrations of inorganic elements, Rutherford backscattering spectrometry to characterize the organic matrix, and scanning transmission ion microscopy to provide information on the density and structure of the sample represents a powerful set of techniques that can be applied simultaneously to the specimen under investigation. These techniques are extremely useful for measuring any imbalances in trace elements in localized regions of biological tissue and, as such, can provide unique information on many diseases. In this article, we describe the nuclear microscope and its related ion-beam techniques, and we review the biomedical work carried out using the nuclear microscope in the National University of Singapore. PMID:10676480

  6. Theoretical aspects of science with radioactive nuclear beams.

    NASA Astrophysics Data System (ADS)

    Dobaczewski, J.; Nazarewicz, W.

    1998-09-01

    Physics of radioactive nuclear beams is one of the main frontiers of nuclear science today. Experimentally, thanks to technological developments, we are on the verge of invading the territory of extreme N/Z ratios in an unprecedented way. Theoretically, nuclear exotica represent a formidable challenge for the nuclear many-body theories and their power to predict nuclear properties in nuclear terra incognita. It is important to remember that the lesson learned by going to the limits of the nuclear binding is also important for 'normal' nuclei from the neighbourhood of the beta stability valley. And, of course, radioactive nuclei are crucial astrophysically; they pave the highway along which the nuclear material is transported up in the proton and neutron numbers during the complicated synthesis process in stars.

  7. DEVELOPMENT OF INORGANIC ION EXCHANGERS FOR NUCLEAR WASTE REMEDIATION

    EPA Science Inventory

    This research is concerned with the development of highly selective inorganic ion exchangers for the removal of primarily Cs+ and Sr2+ from nuclear tank waste and from groundwater. In this study, we will probe the, origins of selectivity through detailed structural studies and th...

  8. Inorganic ion exchangers for nuclear waste remediation

    SciTech Connect

    Clearfield, A.; Bortun, A.; Bortun, L.; Behrens, E.

    1997-10-01

    The objective of this work is to provide a broad spectrum of inorganic ion exchangers that can be used for a range of applications and separations involving remediation of groundwater and tank wastes. The authors intend to scale-up the most promising exchangers, through partnership with AlliedSignal Inc., to provide samples for testing at various DOE sites. While much of the focus is on exchangers for removal of Cs{sup +} and Sr{sup 2+} from highly alkaline tank wastes, especially at Hanford, the authors have also synthesized exchangers for acid wastes, alkaline wastes, groundwater, and mercury, cobalt, and chromium removal. These exchangers are now available for use at DOE sites. Many of the ion exchangers described here are new, and others are improved versions of previously known exchangers. They are generally one of three types: (1) layered compounds, (2) framework or tunnel compounds, and (3) amorphous exchangers in which a gel exchanger is used to bind a fine powder into a bead for column use. Most of these exchangers can be regenerated and used again.

  9. Nuclear Test-Experimental Science: Annual report, fiscal year 1988

    SciTech Connect

    Struble, G.L.; Donohue, M.L.; Bucciarelli, G.; Hymer, J.D.; Kirvel, R.D.; Middleton, C.; Prono, J.; Reid, S.; Strack, B.

    1988-01-01

    Fiscal year 1988 has been a significant, rewarding, and exciting period for Lawrence Livermore National Laboratory's nuclear testing program. It was significant in that the Laboratory's new director chose to focus strongly on the program's activities and to commit to a revitalized emphasis on testing and the experimental science that underlies it. It was rewarding in that revolutionary new measurement techniques were fielded on recent important and highly complicated underground nuclear tests with truly incredible results. And it was exciting in that the sophisticated and fundamental problems of weapons science that are now being addressed experimentally are yielding new challenges and understanding in ways that stimulate and reward the brightest and best of scientists. During FY88 the program was reorganized to emphasize our commitment to experimental science. The name of the program was changed to reflect this commitment, becoming the Nuclear Test-Experimental Science (NTES) Program.

  10. Opportunities in Research in Nuclear Science at MSI

    NASA Astrophysics Data System (ADS)

    van Bibber, Karl

    2013-04-01

    Nuclear science and engineering, once thought to be a field in decline, is experiencing a remarkable renaissance, with all the major nuclear science and engineering programs in the US having doubled in the past ten years, a growth which continues unabated. Students view the vast potential of nuclear power and radiation as transformative for energy, industry and medicine, but also see the associated challenges of nonproliferation and environmental stewardship as important societal goals worthy of their future careers. In order to replenish the pipeline of critical nuclear skills into the DOE national labs for the national security mission, the NNSA Office of Nuclear Nonproliferation in 2011 launched a major education and pipeline initiative called the Nuclear Science and Security Consortium (NSSC), comprised of seven research universities and four national labs. Against the backdrop of the projected dearth of scientists and engineers in the 21st century who could hold security clearances, the NNSA augmented this program with a MSI component to engage traditionally underrepresented minority institutions and students, and thus reach out to previously untapped pools of talent. This talk will review the NSSC MSI program after one year, including the Summer Fellowship Program and the Research Grant Program, along with the experience of two NSSC universities with long-standing research relationships with MSI partners in nuclear science and engineering. The perspective from the DOE labs will be discussed as well, who are the intended beneficiaries of the transition from students to career scientists.

  11. Nuclear quantum effects in water exchange around lithium and fluoride ions

    SciTech Connect

    Wilkins, David M.; Manolopoulos, David; Dang, Liem X.

    2015-02-14

    We employ classical and ring polymer molecular dynamics simulations to study the effect of nuclear quantum fluctuations on the structure and the water exchange dynamics of aqueous solutions of lithium and fluoride ions. While we obtain reasonably good agreement with experimental data for solutions of lithium by augmenting the Coulombic interactions between the ion and the water molecules with a standard Lennard-Jones ion-oxygen potential, the same is not true for solutions of fluoride, for which we find that a potential with a softer repulsive wall gives much better agreement. A small degree of destabilization of the first hydration shell is found in quantum simulations of both ions when compared with classical simulations, with the shell becoming less sharply defined and the mean residence time of the water molecules in the shell decreasing. In line with these modest differences, we find that the mechanisms of the water exchange reactions are unaffected by quantization, so a classical description of these reactions gives qualitatively correct and quantitatively reasonable results. We also find that the quantum effects in solutions of lithium are larger than in solutions of fluoride. This is partly due to the stronger interaction of lithium with water molecules, partly due to the lighter mass of lithium, and partly due to competing quantum effects in the hydration of fluoride, which are absent in the hydration of lithium. LXD was supported by US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences.

  12. Impact of contributions of Glenn T. Seaborg on nuclear science

    SciTech Connect

    Hoffman, Darleane C.

    2000-12-26

    Glenn Theodore Seaborg (1912-199) was a world-renowned nuclear chemist, a Nobel Laureate in chemistry in 1951, co-discoverer of plutonium and nine other transuranium elements, Chairman of the U.S. Atomic Energy Commission from 1961-71, scientific advisor to ten U.S. presidents, active in national and international professional societies, an advocate for nuclear power as well as for a comprehensive nuclear test ban treaty, a prolific writer, an avid hiker, environmentalist, and sports enthusiast. He was known and esteemed not only by chemists and other scientists throughout the world, but also by lay people, politicians, statesmen, and students of all ages. This memorial includes a brief glimpse of Glenn Seaborg's early life and education, describes some of his major contributions to nuclear science over his long and fruitful career, and highlights the profound impact of his contributions on nuclear science, both in the U.S. and in the international community.

  13. Research in Heavy Ion Nuclear Reactions

    SciTech Connect

    Petitt, G.A.; Nelson, W.H.; He, Xiaochun; Lee, W.

    1999-04-14

    This is the final progress report for the experimental nuclear physics program at Georgia State University (GSU) under the leadership of Gus Petitt. In June, 1996, Professor Petitt retired for health reasons and the DOE contract was extended for another year to enable the group to continue it's work. This year has been a productive one. The group has been heavily involved in the E866 experiment at Fermilab where we have taken on the responsibility of developing a new level-3 trigger for the experiment. Bill Lee, the graduate student in our group expects to obtain his thesis data from the run extension currently in progress, which focuses on the A dependence of J/{psi}'s and {Upsilon}'s from beryllium, tungsten, and iron targets. In the past year and a half the GSU group has led the development of a new level-3 software trigger system for E866. Our work on this project is described.

  14. The Nuclear Education and Staffing Challenge: Rebuilding Critical Skills in Nuclear Science and Technology

    SciTech Connect

    Wogman, Ned A.; Bond, Leonard J.; Waltar, Alan E.; Leber, R E.

    2005-01-01

    The United States, the Department of Energy (DOE) and its National Laboratories, including the Pacific Northwest National Laboratory (PNNL), are facing a serious attrition of nuclear scientists and engineers and their capabilities through the effects of aging staff. Within the DOE laboratories, 75% of nuclear personnel will be eligible to retire by 2010. It is expected that there will be a significant loss of senior nuclear science and technology staff at PNNL within five years. PNNL's nuclear legacy is firmly rooted in the DOE Hanford site, the World War II Manhattan Project, and subsequent programs. Historically, PNNL was a laboratory were 70% of its activities were nuclear/radiological, and now just under 50% of its current business science and technology are nuclear and radiologically oriented. Programs in the areas of Nuclear Legacies, Global Security, Nonproliferation, Homeland Security and National Defense, Radiobiology and Nuclear Energy still involve more than 1,000 of the 3,800 current laboratory staff, and these include more than 420 staff who are certified as nuclear/radiological scientists and engineers. This paper presents the current challenges faced by PNNL that require an emerging strategy to solve the nuclear staffing issues through the maintenance and replenishment of the human nuclear capital needed to support PNNL nuclear science and technology programs.

  15. The Nuclear Education and Staffing Challenge: Rebuilding Critical Skills in Nuclear Science and Technology.

    SciTech Connect

    Wogman, Ned A.; Bond, Leonard J.; Waltar, Alan E.; Leber, R. E.

    2005-01-01

    The United States, the Department of Energy (DOE) and its National Laboratories, including the Pacific Northwest National Laboratory (PNNL), are facing a serious attrition of nuclear scientists and engineers and their capabilities through the effects of aging staff. Within the DOE laboratories, 75% of nuclear personnel will be eligible to retire by 2010. It is expected that there will be a significant loss of senior nuclear science and technology staff at PNNL within five years. PNNL's nuclear legacy is firmly rooted in the DOE Hanford site, the World War II Manhattan Project, and subsequent programs. Historically, PNNL was a laboratory where 70% of its activities were nuclear/radiological, and now just under 50% of its current business science and technology are nuclear and radiologically oriented. Programs in the areas of Nuclear Legacies, Global Security, Nonproliferation, Homeland Security and National Defense, Radiobiology and Nuclear Energy still involve more than 1,000 of the 3,800 current laboratory staff, and these include more than 420 staff who are certified as nuclear/radiological scientists and engineers. This paper presents the current challenges faced by PNNL that require an emerging strategy to solve the nuclear staffing issues through the maintenance and replenishment of the human nuclear capital needed to support PNNL nuclear science and technology programs.

  16. The MAUS nuclear space reactor with ion propulsion system

    NASA Astrophysics Data System (ADS)

    Mainardi, Enrico

    2006-06-01

    MAUS (Moltiplicatore Avanzato Ultracompatto Spaziale) is a nuclear reactor concept design capable to ensure a reliable, long-lasting, low-mass, compact energy supply needed for advanced, future space missions. The exploration of the solar system and the space beyond requires the development of nuclear energy generators for supplying electricity to space-bases, spacecrafts, probes or satellites, as well as for propelling ships in long space missions. For propulsion, the MAUS nuclear reactor could be used to power electric ion drive engines. An ion engine is able to build up to very high velocities, far greater than chemical propulsion systems, but has high power and long service requirements. The MAUS concept is described, together with the ion propulsion engine and together with the reference thermoionic process used to convert the thermal power into electricity. The design work has been performed at the Nuclear Engineering and Energy Conversion Department of the University of Rome "La Sapienza" starting from 1992 on an issue submitted by the Italian Space Agency (ASI), in cooperation with the research laboratories of ENEA.

  17. Nuclear Forensic Science: Analysis of Nuclear Material Out of Regulatory Control

    NASA Astrophysics Data System (ADS)

    Kristo, Michael J.; Gaffney, Amy M.; Marks, Naomi; Knight, Kim; Cassata, William S.; Hutcheon, Ian D.

    2016-06-01

    Nuclear forensic science seeks to identify the origin of nuclear materials found outside regulatory control. It is increasingly recognized as an integral part of a robust nuclear security program. This review highlights areas of active, evolving research in nuclear forensics, with a focus on analytical techniques commonly employed in Earth and planetary sciences. Applications of nuclear forensics to uranium ore concentrates (UOCs) are discussed first. UOCs have become an attractive target for nuclear forensic researchers because of the richness in impurities compared to materials produced later in the fuel cycle. The development of chronometric methods for age dating nuclear materials is then discussed, with an emphasis on improvements in accuracy that have been gained from measurements of multiple radioisotopic systems. Finally, papers that report on casework are reviewed, to provide a window into current scientific practice.

  18. Teaching nuclear science: A cosmological approach

    SciTech Connect

    Viola, V.E. )

    1994-10-01

    Theories of the origin of the chemical elements can be used effectively to provide a unifying theme in teaching nuclear phenomena to chemistry students. By tracing the element-producing steps that are thought to characterize the chemical evolution of the universe, one can introduce the basic principles of nuclear nomenclature, structure, reactions, energetics, and decay kinetics in a self-consistent context. This approach has the additional advantage of giving the student a feeling for the origin of the elements and their relative abundances in the solar system. Further, one can logically introduce all of the basic forces and particles of nature, as well as the many analogies between nuclear and atomic systems. The subjects of heavy-element synthesis, dating, and the practical applications of nuclear phenomena fit naturally in this scheme. Within the nucleosynthesis framework it is possible to modify the presentation of nuclear behavior to suit the audience--ranging from an emphasis on description for the beginning student to a quantitative theoretical approach for graduate students. The subject matter is flexible in that the basic principles can be condensed into a few lecture as part of a more general course of expanded into an entire course. The following sections describe this approach, with primary emphasis on teaching at the elementary level.

  19. Nuclear fission: the interplay of science and technology.

    PubMed

    Stoneham, A M

    2010-07-28

    When the UK's Calder Hall nuclear power station was connected to the grid in 1956, the programmes that made this possible involved a powerful combination of basic and applied research. Both the science and the engineering were novel, addressing new and challenging problems. That the last Calder Hall reactor was shut down only in 2003 attests to the success of the work. The strengths of bringing basic science to bear on applications continued to be recognized until the 1980s, when government and management fashions changed. This paper identifies a few of the technology challenges, and shows how novel basic science emerged from them and proved essential in their resolution. Today, as the threat of climate change becomes accepted, it has become clear that there is no credible solution without nuclear energy. The design and construction of new fission reactors will need continuing innovation, with the interplay between the science and technology being a crucial component. PMID:20566512

  20. Nuclear Chemistry, Science (Experimental): 5316.62.

    ERIC Educational Resources Information Center

    Williams, Russell R.

    This nuclear chemistry module includes topics on atomic structure, instability of the nucleus, detection strengths and the uses of radioactive particles. Laboratory work stresses proper use of equipment and safe handling of radioactive materials. Students with a strong mathematics background may consider this course as advanced work in chemistry.…

  1. Studies in Low-Energy Nuclear Science

    SciTech Connect

    Carl R. Brune; Steven M. Grimes

    2010-01-13

    This report presents a summary of research projects in the area of low energy nuclear reactions and structure, carried out between March 1, 2006 and October 31, 2009 which were supported by U.S. DOE grant number DE-FG52-06NA26187.

  2. Nuclear power risks: challenge to the credibility of science.

    PubMed

    Welch, B L

    1980-01-01

    For a quarter of a century the Federal Government and the nuclear industry have deliberately deceived the American public about the risks of nuclear power. Facts have been systematically withheld, distorted, and obscured, and calculations have been deliberately biased in order to present nuclear power in an unrealistically favorable light. Most persistent and flagrant have been: (a) attempts to "normalize" public perception of nuclear accident casualties with those of more familiar accidents by emphasizing only acute fatalities and ignoring or downplaying the major effects of nuclear accidents, namely, health impairment and death years delayed; and (b) the cloaking of the objectively undocumentable faith of the atomic energy establishment that a nuclear accident is extremely unlikely in a smokescreen of invalid, pseudoquantitative statistical probabilities in order to convince the public that the chance of an accident is negligible. Prime examples of these abuses are found in the Rasmussen report on nuclear reactor safety and in its representation to the public. The deceptive practices used in promoting nuclear power have seriously shaken public faith in government, technology, and science. The scientific community has a special responsibility to minimize such future political abuses of science. For those who were responsible for the deliberate breeches of public trust which resulted in this loss of faith, mere professional disdain will not suffice. They should be punished to the fullest extent of the law. PMID:7353936

  3. Proceedings of the workshop on the science of intense radioactive ion beams

    SciTech Connect

    McClelland, J.B.; Vieira, D.J.

    1990-10-01

    This report contains the proceedings of a 2-1/2 day workshop on the Science of Intense Radioactive Ion Beams which was held at the Los Alamos National Laboratory on April 10--12, 1990. The workshop was attended by 105 people, representing 30 institutions from 10 countries. The thrust of the workshop was to develop the scientific opportunities which become possible with a new generation intense Radioactive Ion Beam (RIB) facility, currently being discussed within North America. The workshop was organized around five primary topics: (1) reaction physics; (2) nuclei far from stability/nuclear structure; (3) nuclear astrophysics; (4) atomic physics, material science, and applied research; and (5) facilities. Overview talks were presented on each of these topics, followed by 1-1/2 days of intense parallel working group sessions. The final half day of the workshop was devoted to the presentation and discussion of the working group summary reports, closing remarks and a discussion of future plans for this effort.

  4. Fusion Nuclear Science Facility (FNSF) motivation and required capabilities

    NASA Astrophysics Data System (ADS)

    Peng, Y. K. M.; Park, J. M.; Canik, J. M.; Diem, S. J.; Sontag, A. C.; Lumsdaine, A.; Murakami, M.; Katoh, Y.; Burgess, T. W.; Korsah, K.; Patton, B. D.; Wagner, J. C.; Yoder, G. L.; Cole, M. J.; Fogarty, P. J.; Sawan, M.

    2011-10-01

    A compact (R0 ~ 1.2-1.3m), low aspect ratio, low-Q (<3) Fusion Nuclear Science Facility (FNSF) was recently assessed to provide a fully integrated, D-T-fueled, continuously driven plasma, volumetric nuclear environment of copious neutrons. This environment would be used to carry out, for the first time, discovery-driven research in fusion nuclear science and materials, in parallel with and complementary to ITER. This research would aim to test, discover, and understand new nuclear-nonnuclear synergistic interactions involving plasma material interactions, neutron material interactions, tritium fuel breeding and transport, and power extraction, and innovate and develop solutions for DEMO components. Progress will be reported on the fusion nuclear-nonnuclear coupling effects identified that motivate research on such an FNSF, and on the required capabilities in fusion plasma, device operation, and fusion nuclear science and engineering to fulfill its mission. Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC05-00OR22725.

  5. Science, Society, and America's Nuclear Waste: Nuclear Waste, Unit 1. Teacher Guide. Second Edition.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 1 of the four-part series Science, Society, and America's Nuclear Waste produced by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management. The goal of this unit is to help students establish the relevance of the topic of nuclear waste to their everyday lives and activities. Particular attention is…

  6. Studies in Low-Energy Nuclear Science

    SciTech Connect

    Brune, Carl R; Grimes, Steven M

    2006-03-30

    This report presents a summary of research projects in the area of low energy nuclear reactions and structure, carried out between 1 January 2003 and 31 December 2005 and supported by U.S. DOE grant number DE-FG03-03NA00074. Cross sections measured with high resolution have been subjected to an Ericson theory analysis to infer information about the nuclear level density. Other measurements were made of the spectral shape of particles produced in evaporation processes; these also yield level density information. A major project was the development of a new Hauser-Feshbach code for analyzing such spectra. Other measurements produced information on the spectra of gamma rays emitted in reactions on heavy nuclei and gave a means of refining our understanding of gamma-ray strength functions. Finally,reactions on light nuclei were studied and subjected to an R-matrix analysis. Cross sections fora network of nuclear reactions proceedingthrough a given compound nucleus shouldgreatly constrain the family of allowed parameters. Modifications to the formalism andcomputer code are also discussed.

  7. Oklo reactors and implications for nuclear science

    NASA Astrophysics Data System (ADS)

    Davis, E. D.; Gould, C. R.; Sharapov, E. I.

    2014-04-01

    We summarize the nuclear physics interests in the Oklo natural nuclear reactors, focusing particularly on developments over the past two decades. Modeling of the reactors has become increasingly sophisticated, employing Monte Carlo simulations with realistic geometries and materials that can generate both the thermal and epithermal fractions. The water content and the temperatures of the reactors have been uncertain parameters. We discuss recent work pointing to lower temperatures than earlier assumed. Nuclear cross-sections are input to all Oklo modeling and we discuss a parameter, the 175Lu ground state cross-section for thermal neutron capture leading to the isomer 176mLu, that warrants further investigation. Studies of the time dependence of dimensionless fundamental constants have been a driver for much of the recent work on Oklo. We critically review neutron resonance energy shifts and their dependence on the fine structure constant α and the ratio Xq = mq/Λ (where mq is the average of the u and d current quark masses and Λ is the mass scale of quantum chromodynamics (QCD)). We suggest a formula for the combined sensitivity to α and Xq that exhibits the dependence on proton number Z and mass number A, potentially allowing quantum electrodynamic (QED) and QCD effects to be disentangled if a broader range of isotopic abundance data becomes available.

  8. An Overview of the Nuclear Electric Xenon Ion System (NEXIS) Activity

    NASA Technical Reports Server (NTRS)

    Randolph, Thomas M.; Polk, James E., Jr.

    2004-01-01

    The Nuclear Electric Xenon Ion System (NEXIS) research and development activity within NASA's Project Prometheus, was one of three proposals selected by NASA to develop thruster technologies for long life, high power, high specific impulse nuclear electric propulsion systems that would enable more robust and ambitious science exploration missions to the outer solar system. NEXIS technology represents a dramatic improvement in the state-of-the-art for ion propulsion and is designed to achieve propellant throughput capabilities >= 2000 kg and efficiencies >= 78% while increasing the thruster power to >= 20 kW and specific impulse to >= 6000 s. The NEXIS technology uses erosion resistant carbon-carbon grids, a graphite keeper, a new reservoir hollow cathode, a 65-cm diameter chamber masked to produce a 57-cm diameter ion beam, and a shared neutralizer architecture to achieve these goals. The accomplishments of the NEXIS activity so far include performance testing of a laboratory model thruster, successful completion of a proof of concept reservoir cathode 2000 hour wear test, structural and thermal analysis of a completed development model thruster design, fabrication of most of the development model piece parts, and the nearly complete vacuum facility modifications to allow long duration wear testing of high power ion thrusters.

  9. Navigating nuclear science: Enhancing analysis through visualization

    SciTech Connect

    Irwin, N.H.; Berkel, J. van; Johnson, D.K.; Wylie, B.N.

    1997-09-01

    Data visualization is an emerging technology with high potential for addressing the information overload problem. This project extends the data visualization work of the Navigating Science project by coupling it with more traditional information retrieval methods. A citation-derived landscape was augmented with documents using a text-based similarity measure to show viability of extension into datasets where citation lists do not exist. Landscapes, showing hills where clusters of similar documents occur, can be navigated, manipulated and queried in this environment. The capabilities of this tool provide users with an intuitive explore-by-navigation method not currently available in today`s retrieval systems.

  10. Nuclear Science Division, 1995--1996 annual report

    SciTech Connect

    Poskanzer, A.M.

    1997-02-01

    This report describes the activities of the Nuclear Science Division (NSD) for the two-year period, January 1, 1995 to January 1, 1997. This was a time of major accomplishments for all research programs in the Division-many of which are highlighted in the reports of this document.

  11. Materials Science of High-Level Nuclear Waste Immobilization

    SciTech Connect

    Weber, William J.; Navrotsky, Alexandra; Stefanovsky, S. V.; Vance, E. R.; Vernaz, Etienne Y.

    2009-01-09

    With the increasing demand for the development of more nuclear power comes the responsibility to address the technical challenges of immobilizing high-level nuclear wastes in stable solid forms for interim storage or disposition in geologic repositories. The immobilization of high-level nuclear wastes has been an active area of research and development for over 50 years. Borosilicate glasses and complex ceramic composites have been developed to meet many technical challenges and current needs, although regulatory issues, which vary widely from country to country, have yet to be resolved. Cooperative international programs to develop advanced proliferation-resistant nuclear technologies to close the nuclear fuel cycle and increase the efficiency of nuclear energy production might create new separation waste streams that could demand new concepts and materials for nuclear waste immobilization. This article reviews the current state-of-the-art understanding regarding the materials science of glasses and ceramics for the immobilization of high-level nuclear waste and excess nuclear materials and discusses approaches to address new waste streams.

  12. Nuclear Science Symposium, 23rd, Scintillation and Semiconductor Counter Symposium, 15th, and Nuclear Power Systems Symposium, 8th, New Orleans, La., October 20-22, 1976, Proceedings

    NASA Technical Reports Server (NTRS)

    Wagner, L. J.

    1977-01-01

    The volume includes papers on semiconductor radiation detectors of various types, components of radiation detection and dosimetric systems, digital and microprocessor equipment in nuclear industry and science, and a wide variety of applications of nuclear radiation detectors. Semiconductor detectors of X-rays, gamma radiation, heavy ions, neutrons, and other nuclear particles, plastic scintillator arrays, drift chambers, spark wire chambers, and radiation dosimeter systems are reported on. Digital and analog conversion systems, digital data and control systems, microprocessors, and their uses in scientific research and nuclear power plants are discussed. Large-area imaging and biomedical nucleonic instrumentation, nuclear power plant safeguards, reactor instrumentation, nuclear power plant instrumentation, space instrumentation, and environmental instrumentation are dealt with. Individual items are announced in this issue.

  13. Planetary Science Enabled by High Power Ion Propulsion Systems from NASA's Prometheus Program

    NASA Astrophysics Data System (ADS)

    Cooper, John

    2004-11-01

    NASA's Prometheus program seeks to develop new generations of spacecraft nuclear-power and ion propulsion systems for applications to future planetary missions. The Science Definition Team for the first mission in the Prometheus series, the Jupiter Icy Moons Orbiter (JIMO), has defined science objectives for in-situ orbital exploration of the icy Galilean moons (Europa, Ganymede, Callisto) and the Jovian magnetosphere along with remote observations of Jupiter's atmosphere and aurorae, the volcanic moon Io, and other elements of the Jovian system. Important to this forum is that JIMO power and propulsion systems will need to be designed to minimize magnetic, radio, neutral gas, and plasma backgrounds that might otherwise interfere with achievement of mission science objectives. Another potential Prometheus mission of high science interest would be an extended tour of primitive bodies in the solar system, including asteroids, Jupiter family comets, Centaurs, and Kuiper Belt Objects (KBO). The final landed phase of this mission might include an active keplerian experiment for detectable (via downlink radio doppler shift) acceleration of a small kilometer-size Centaur or KBO object, likely the satellite of a larger object observable from Earth. This would have obvious application to testing of mitigation techniques for Earth impact hazards.

  14. Nuclear structure and heavy-ion fusion. [Lecture

    SciTech Connect

    Stokstad, R.G.

    1980-10-01

    A series of lectures is presented on experimental studies of heavy-ion fusion reactions with emphasis on the role of nuclear structure in the fusion mechanism. The experiments considered are of three types: the fusion of lighter heavy ions at subcoulomb energies is studied with in-beam ..gamma..-ray techniques; the subbarrier fusion of /sup 16/O and /sup 40/Ar with the isotopes of samarium is detected out of beam by x-radiation from delayed activity; and measurements at very high energies, again for the lighter ions, employ direct particle identification of evaporation residues. The experimental data are compared with predictions based on the fusion of two spheres with the only degree of freedom being the separation of the centers, and which interact via potentials that vary smoothly with changes in the mass and charge of the projectile and target. The data exhibit with the isotopes of samarium, a portion of these deviations can be understood in terms of the changing deformation of the target nucleus, but an additional degree of freedom such as neck formation appears necessary. The results on /sup 10/B + /sup 16/O and /sup 12/C + /sup 14/N ..-->.. /sup 26/Al at high bombarding energies indicate a maximum limiting angular momentum characteristic of the compound nucleus. At lower energies the nuclear structure of the colliding ion seems to affect strongly the cross section for fusion. Measurements made at subbarrier energies for a variety of projectile-target combinations in the 1p and 2s - 1d shell also indicate that the valence nucleons can affect the energy dependence for fusion. About half the systems studied so far have structureless excitation functions which follow a standard prediction. The other half exhibit large variations from this prediction. The possible importance of neutron transfer is discussed. The two-center shell model appears as a promising approach for gaining a qualitative understanding of these phenomena. 95 references, 52 figures, 1 table.

  15. Inclusive inelastic scattering of heavy ions and nuclear correlations

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Townsend, Lawrence W.; Wilson, John W.; Khandelwal, Govind S.

    1990-01-01

    Calculations of inclusive inelastic scattering distributions for heavy ion collisions are considered within the high energy optical model. Using ground state sum rules, the inclusive projectile and complete projectile-target inelastic angular distributions are treated in both independent particle and correlated nuclear models. Comparisons between the models introduced are made for alpha particles colliding with He-4, C-12, and O-16 targets and protons colliding with O-16. Results indicate that correlations contribute significantly, at small momentum transfers, to the inelastic sum. Correlation effects are hidden, however, when total scattering distributions are considered because of the dominance of elastic scattering at small momentum transfers.

  16. Nuclear multifragmentation: Antiprotons versus photons and heavy ions

    SciTech Connect

    Cugnon, J.

    1994-09-01

    Nuclear multifragmentation is the phenomenon by which a nucleus breaks into many pieces of intermediate size. It occurs in the excitation-energy regime, between the spallation + evaporation regime and the explosive fragmentation regime. The various models of multifragmentation are briefly reviewed and the possibility of critical behavior in the multifragmentation process is underlined. Unanswered problems are stated. It is shown, by model calculations, that antiproton annihilation is, in many respects, better suited than proton-nucleus and heavy-ion collisions for studying multifragmentation and, in other respects, complementary to these other tools. 36 refs., 17 figs., 1 tab.

  17. Medical applications of nuclear physics and heavy-ion beams

    SciTech Connect

    Alonso, Jose R.

    2000-08-01

    Isotopes and accelerators, hallmarks of nuclear physics, are finding increasingly sophisticated and effective applications in the medical field. Diagnostic and therapeutic uses of radioisotopes are now a $10B/yr business worldwide, with over 10 million procedures and patient studies performed every year. This paper will discuss the use of isotopes for these applications. In addition, beams of protons and heavy ions are being more and more widely used clinically for treatment of malignancies. To be discussed here as well will be the rationale and techniques associated with charged-particle therapy, and the progress in implementation and optimization of these technologies for clinical use.

  18. The Maryland nuclear science baccalaureate degree program: The utility perspective

    SciTech Connect

    Mueller, J.R.

    1989-01-01

    In the early 1980s, Wisconsin Public Service Corporation (WPSC) made a firm commitment to pursue development and subsequent delivery of an appropriate, academically accredited program leading to a baccalaureate degree in nuclear science for its nuclear operations personnel. Recognizing the formidable tasks to be accomplished, WPSC worked closely with the University of Maryland University College (UMUC) in curriculum definition, specific courseware development for delivery by computer-aided instruction, individual student evaluation, and overall program implementation. Instruction began on our nuclear plant site in the fall of 1984. The university anticipates conferring the first degrees from this program at WPSC in the fall of 1989. There are several notable results that WPSC achieved from this degree program. First and most importantly, an increase in the level of education of our employees. It should be stated that this program has been well received by WPSC operator personnel. These employees, now armed with plant experience, a formal degree in nuclear science, and professional education in management are real candidates for advancement in our nuclear organization.

  19. Studies in Low Energy Nuclear Science, Progress Report

    SciTech Connect

    Carl R. Brune; Steven M. Grimes; Thomas N. Massey

    2004-03-01

    OAK-B135 Research in the area of low-energy nuclear science is described. We report on studies of the Z dependence of nuclear level densities, the development of a new Hauser-Feshbach computer code, and plans to measure level densities in nuclei off the line of stability. We also discuss the development of our R-matrix fitting capabilities, including new codes and the application to the C-14 system. Plans for future measurements of the Be-9(alpha,n) and B-11(alpha,n) reactions are discussed.

  20. Simplified Ion Thruster Xenon Feed System for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Snyder, John Steven; Randolph, Thomas M.; Hofer, Richard R.; Goebel, Dan M.

    2009-01-01

    The successful implementation of ion thruster technology on the Deep Space 1 technology demonstration mission paved the way for its first use on the Dawn science mission, which launched in September 2007. Both Deep Space 1 and Dawn used a "bang-bang" xenon feed system which has proven to be highly successful. This type of feed system, however, is complex with many parts and requires a significant amount of engineering work for architecture changes. A simplified feed system, with fewer parts and less engineering work for architecture changes, is desirable to reduce the feed system cost to future missions. An attractive new path for ion thruster feed systems is based on new components developed by industry in support of commercial applications of electric propulsion systems. For example, since the launch of Deep Space 1 tens of mechanical xenon pressure regulators have successfully flown on commercial spacecraft using electric propulsion. In addition, active proportional flow controllers have flown on the Hall-thruster-equipped Tacsat-2, are flying on the ion thruster GOCE mission, and will fly next year on the Advanced EHF spacecraft. This present paper briefly reviews the Dawn xenon feed system and those implemented on other xenon electric propulsion flight missions. A simplified feed system architecture is presented that is based on assembling flight-qualified components in a manner that will reduce non-recurring engineering associated with propulsion system architecture changes, and is compared to the NASA Dawn standard. The simplified feed system includes, compared to Dawn, passive high-pressure regulation, a reduced part count, reduced complexity due to cross-strapping, and reduced non-recurring engineering work required for feed system changes. A demonstration feed system was assembled using flight-like components and used to operate a laboratory NSTAR-class ion engine. Feed system components integrated into a single-string architecture successfully operated

  1. Cyclotron-based nuclear science. Progress report, April 1, 1979-March 31, 1980

    SciTech Connect

    Not Available

    1980-06-01

    Research at the cyclotron institute is summarized. These major areas are covered: nuclear structure; nuclear reactions and scattering; polarization studies; interdisciplinary nuclear science; instrumentation and systems development; and publications. (GHT)

  2. High-spin nuclear structure studies with radioactive ion beams

    SciTech Connect

    Baktash, C.

    1992-12-31

    Two important developments in the sixties, namely the advent of heavy-ion accelerators and fabrication of Ge detectors, opened the way for the experimental studies of nuclear properties at high angular momentum. Addition of a new degree of freedom, namely spin, made it possible to observe such fascinating phenomena as occurrences and coexistence of a variety of novel shapes, rise, fall and occasionally rebirth of nuclear collectivity, and disappearance of pairing correlations. Today, with the promise of development of radioactive ion beams (RIB) and construction of the third-generation Ge-detection systems (GAMMASPHERE and EUROBALL), the authors are poised to explore new and equally fascinating phenomena that have been hitherto inaccessible. With the addition of yet another dimension, namely the isospin, they will be able to observe and verify predictions for exotic shapes as varied as rigid triaxiality, hyperdeformation and triaxial octupole shapes, or to investigate the T = 0 pairing correlations. In this paper, they shall review, separately for neutron-deficient and neutron-rich nuclei, these and a few other new high-spin physics opportunities that may be realized with RIB. Following this discussion, they shall present a list of the beam species, intensities and energies that are needed to fulfill these goals. The paper will conclude with a description of the experimental techniques and instrumentations that are required for these studies.

  3. Basic Science Research to Support the Nuclear Materials Focus Area

    SciTech Connect

    Chipman, N. A.; Castle, P. M.; Boak, J. M.; Eller, P. G.

    2002-02-26

    The Department of Energy's (DOE's) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area

  4. Basic science research to support the nuclear material focus area

    SciTech Connect

    Boak, J. M.; Eller, P. Gary; Chipman, N. A.; Castle, P. M.

    2002-01-01

    The Department of Energy's (DOE'S) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area

  5. Recent Developments in Cold Fusion / Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Krivit, Steven B.

    2006-03-01

    Krivit is recognized internationally as an expert on the subject matter of cold fusion / condensed matter nuclear science. He is the editor of New Energy Times, the leading source of information for the field of cold fusion. He is the author of the 2005 book, The Rebirth of Cold Fusion and founder of New Energy Institute, an independent nonprofit public benefit corporation dedicated to accelerating the progress of new, sustainable and environmentally friendly energy sources.

  6. The ABC`s of nuclear science workshop

    SciTech Connect

    McMahn, P.; Carlock, M.S.; Mattis, H.; Norman, E.; Seaborg, G.

    1997-12-31

    Over the last several years the Contemporary Physics Education Project (CPEP) has developed two wall charts which illustrate contemporary aspects of particle and plasma physics for high school and undergraduate students. We are now working with CPEP on the development of a similar chart for nuclear science. This chart will illustrate the basics of nuclear science coupled with the exciting research which is being done in this field. This workshop will explore the wall chart, along with materials and experiments that have been developed to accompany it. The set of experiments have been developed by high school teachers, chemists, and physicists working together, and include experiments such as, {open_quotes}the ABCs of Nuclear Science,{close_quotes} and experiments exploring the various kinds of radioactive decay, radioactivity in common household products, half-live measurements, radiography, etc. Teachers who join the project as chart field testers will receive a poster size chart and accompanying materials free of charge. The materials also include a video about cosmic rays has also been produced for the classroom.

  7. Recombinant Science: The Birth of the Relativistic Heavy Ion Collider (431st Brookhaven Lecture)

    SciTech Connect

    Crease, Robert P

    2007-12-12

    As part of the celebration of Brookhaven Lab's 60th anniversary, Robert P. Crease, the Chair of the Philosophy Department at Stony Brook University and BNL's historian, will present the second of two talks on the Lab's history. In "Recombinant Science: The Birth of the Relativistic Heavy Ion Collider," Dr. Crease will focus on the creation of the world's most powerful colliding accelerator for nuclear physics. Known as RHIC, the collider, as Dr. Crease will recount, was formally proposed in 1984, received initial construction funding from the U.S. Department of Energy in 1991, and started operating in 2000. In 2005, the discovery at RHIC of the world's most perfect liquid, a state of matter that last existed just moments after the Big Bang, was announced, and, since then, this perfect liquid of quarks and gluons has been the subject of intense study.

  8. Recent developments of ion sources for life-science studies at the Heavy Ion Medical Accelerator in Chiba (invited).

    PubMed

    Kitagawa, A; Drentje, A G; Fujita, T; Muramatsu, M; Fukushima, K; Shiraishi, N; Suzuki, T; Takahashi, K; Takasugi, W; Biri, S; Rácz, R; Kato, Y; Uchida, T; Yoshida, Y

    2016-02-01

    With about 1000-h of relativistic high-energy ion beams provided by Heavy Ion Medical Accelerator in Chiba, about 70 users are performing various biology experiments every year. A rich variety of ion species from hydrogen to xenon ions with a dose rate of several Gy/min is available. Carbon, iron, silicon, helium, neon, argon, hydrogen, and oxygen ions were utilized between 2012 and 2014. Presently, three electron cyclotron resonance ion sources (ECRISs) and one Penning ion source are available. Especially, the two frequency heating techniques have improved the performance of an 18 GHz ECRIS. The results have satisfied most requirements for life-science studies. In addition, this improved performance has realized a feasible solution for similar biology experiments with a hospital-specified accelerator complex. PMID:26932117

  9. Recent developments of ion sources for life-science studies at the Heavy Ion Medical Accelerator in Chiba (invited)

    NASA Astrophysics Data System (ADS)

    Kitagawa, A.; Drentje, A. G.; Fujita, T.; Muramatsu, M.; Fukushima, K.; Shiraishi, N.; Suzuki, T.; Takahashi, K.; Takasugi, W.; Biri, S.; Rácz, R.; Kato, Y.; Uchida, T.; Yoshida, Y.

    2016-02-01

    With about 1000-h of relativistic high-energy ion beams provided by Heavy Ion Medical Accelerator in Chiba, about 70 users are performing various biology experiments every year. A rich variety of ion species from hydrogen to xenon ions with a dose rate of several Gy/min is available. Carbon, iron, silicon, helium, neon, argon, hydrogen, and oxygen ions were utilized between 2012 and 2014. Presently, three electron cyclotron resonance ion sources (ECRISs) and one Penning ion source are available. Especially, the two frequency heating techniques have improved the performance of an 18 GHz ECRIS. The results have satisfied most requirements for life-science studies. In addition, this improved performance has realized a feasible solution for similar biology experiments with a hospital-specified accelerator complex.

  10. Nuclear Science User Facilities (NSUF) Monthly Report March 2015

    SciTech Connect

    Soelberg, Renae

    2015-03-01

    Nuclear Science User Facilities (NSUF) Formerly: Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report February 2015 Highlights; Jim Cole attended the OECD NEA Expert Group on Innovative Structural Materials meeting in Paris, France; Jim Lane and Doug Copsey of Writers Ink visited PNNL to prepare an article for the NSUF annual report; Brenden Heidrich briefed the Nuclear Energy Advisory Committee-Facilities Subcommittee on the Nuclear Energy Infrastructure Database project and provided them with custom reports for their upcoming visits to Argonne National Laboratory, Idaho National Laboratory, Oak Ridge National Laboratory and the Massachusetts Institute of Technology; and University of California-Berkeley Principal Investigator Mehdi Balooch visited PNNL to observe measurements and help finalize plans for completing the desired suite of analyses. His visit was coordinated to coincide with the visit of Jim Lane and Doug Copsey.

  11. Science, society, and America's nuclear waste. [Contains glossary

    SciTech Connect

    Not Available

    1992-01-01

    High-energy, ionizing radiation is called ionizing because it can knock electrons out of atoms and molecules, creating electrically charged particles called ions. Material that ionizing radiation passes through absorbs energy from the radiation mainly through this process of ionization. Ionizing radiation can be used for many beneficial purposes, but it also can cause serious, negative health effects. That is why it is one of the most thoroughly studied subjects in modern science. Most of our attention in this publication is focused on ionizing radiation -- what it is, where it comes from, and some of its properties.

  12. Nuclear astrophysics at the Holifield Radioactive Ion Beam Facility

    SciTech Connect

    Smith, M.S.

    1994-12-31

    The potential for understanding spectacular stellar explosions such as novae, supernovae, and X-ray bursts will be greatly enhanced by the availability of the low-energy, high-intensity, accelerated beams of proton-rich radioactive nuclei currently being developed at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory. These beams will be utilized in absolute cross section measurements of crucial (p, {gamma}) capture reactions in efforts to resolve the substantial qualitative uncertainties in current models of explosive stellar hydrogen burning outbursts. Details of the nuclear astrophysics research program with the unique HRIBF radioactive beams and a dedicated experimental endstation--centered on the Daresbury Recoil Separator--will be presented.

  13. Scientific Opportunities to Reduce Risk in Nuclear Process Science

    SciTech Connect

    Bredt, Paul R.; Felmy, Andrew R.; Gauglitz, Phillip A.; Hobbs, David T.; Krahn, Steve; Machara, N.; Mcilwain, Michael; Moyer, Bruce A.; Poloski, Adam P.; Subramanian, K.; Vienna, John D.; Wilmarth, B.

    2008-07-18

    Cleaning up the nation’s nuclear weapons complex remains as one of the most technologically challenging and financially costly problems facing the U.S. Department of Energy (DOE). Safety, cost, and technological challenges have often delayed progress in retrieval, processing, and final disposition of high-level waste, spent nuclear fuel, and challenging materials. Some of the issues result from the difficulty and complexity of the technological issues; others have programmatic bases, such as contracting strategies that may provide undue focus on near-term, specific clean-up goals or difficulty in developing and maintaining stakeholder confidence in the proposed solutions. We propose that independent basic fundamental science research focused on the full cleanup life-cycle offers an opportunity to help address these challenges by providing 1) scientific insight into the fundamental mechanisms involved in currently selected processing and disposal options, 2) a rational path to the development of alternative technologies should the primary options fail, 3) confidence that models that predict long-term performance of different disposal options are based upon the best available science, 4) fundamental science discovery that enables transformational solutions to revolutionize the current baseline processes.

  14. Nuclear-polarization correction to the bound-electron g factor in heavy hydrogenlike ions.

    PubMed

    Nefiodov, A V; Plunien, G; Soff, G

    2002-08-19

    The influence of nuclear polarization on the bound-electron g factor in heavy hydrogenlike ions is investigated. Numerical calculations are performed for the K- and L-shell electrons taking into account the dominant virtual nuclear excitations. This determines the ultimate limit for tests of QED utilizing measurements of the bound-electron g factor in highly charged ions. PMID:12190457

  15. Characterization of ion Coulomb crystals for fundamental sciences

    NASA Astrophysics Data System (ADS)

    Okada, Kunihiro; Ichikawa, Masanari; Wada, Michiharu

    2015-11-01

    We performed classical molecular dynamics (MD) simulations in order to search the conditions for efficient sympathetic cooling of highly charged ions (HCIs) in a linear Paul trap. Small two-component ion Coulomb crystals consisting of laser-cooled ions and HCIs were characterized by the results of the MD simulations. We found that the spatial distribution is determined by not only the charge-to-mass ratio but also the space charge effect. Moreover, the simulation results suggest that the temperature of HCIs do not necessarily decrease with increasing the number of laser-cooled ions in the cases of linear ion crystals. We also determined the cooling limit of sympathetically cooled 165Ho14+ ions in small linear ion Coulomb crystals. The present results show that sub-milli-Kelvin temperatures of at least 10 Ho14+ ions will be achieved by sympathetic cooling with a single laser-cooled Be+.

  16. IBA-Europhysics Prize in Applied Nuclear Science and Nuclear Methods in Medicine

    NASA Astrophysics Data System (ADS)

    MacGregor, I. J. Douglas

    2014-03-01

    The Nuclear Physics Board of the European Physical Society is pleased to announce that the 2013 IBA-Europhysics Prize in Applied Nuclear Science and Nuclear Methods in Medicine is awarded to Prof. Marco Durante, Director of the Biophysics Department at GSI Helmholtz Center (Darmstadt, Germany); Professor at the Technical University of Darmstadt (Germany) and Adjunct Professor at the Temple University, Philadelphia, USA. The prize was presented in the closing Session of the INPC 2013 conference by Mr. Thomas Servais, R&D Manager for Accelerator Development at the IBA group, who sponsor the IBA Europhysics Prize. The Prize Diploma was presented by Dr. I J Douglas MacGregor, Chair-elect of the EPS Nuclear Physics Division and Chair of the IBA Prize committee.

  17. Status of the SPES project, a new tool for fundamental and apply science studies with exotic ion beams at LNL

    NASA Astrophysics Data System (ADS)

    Napoli, D. R.; Andrighetto, A.; Antonini, P.; Bellan, L.; Bellato, M.; Benini, D.; Bermudez, J.; Bisoffi, G.; Boratto, E.; Bortolato, D.; Calabretta, L.; Calderolla, M.; Calore, A.; Campo, D.; Carturan, S.; Cinausero, M.; Comunian, M.; Corradetti, S.; De Angelis, G.; De Ruvo, P. L.; Esposito, J.; Ferrari, L.; Galatá, A.; Gelain, F.; Giacchini, M.; Giacomazzi, P.; Gobbi, C.; Gramegna, F.; Gulmini, M.; Lollo, M.; Lombardi, A.; Maggiore, M.; Manzolaro, M.; Michinelli, R.; Modanese, P.; Moisio, M. F.; Monetti, A.; Mozzi, A.; Palmieri, A.; Pasquato, F.; Pedretti, D.; Pegoraro, R.; Pisent, A.; Poggi, M.; Pranovi, L.; Prete, G.; Roncolato, C.; Rossignoli, M.; Russo, A. D.; Sarchiapone, L.; Scarpa, D.; Silingardi, R.; Dobon, J. J. Valiente; Visentin, E.; Vivian, G.; Zafiropoulos, D.; Prete, G. F.

    2016-07-01

    SPES, a new accelerator facility for both the production of exotic ion beams and radio-pharmaceuticals, is presently being installed at the Laboratori Nazionali di Legnaro in Italy (LNL). The new cyclotron, which will provide high intensity proton beams for the production of the rare isotopes, has been installed and is now in the commissioning phase. We present here the status of the part of the project devoted to the production and acceleration of fission fragments created in the interaction of an intense proton beam on a production target of UCx. The expected SPES radioactive beams intensities, their quality and their maximum energies (up to 11 MeV/A for A=130) will permit to perform forefront research in nuclear structure and nuclear dynamics far from the stability valley. Another low energy section of the facility is foreseen for new and challenging research, both in the nuclear physics and in the material science frameworks.

  18. Science and art in heavy-ion collisions

    SciTech Connect

    Weiss, M.S.

    1982-08-09

    One of the more intriguing phenomena discovered in heavy-ion physics is the seeming appearance of high energy structure in the excitation spectra of inelastically scattered heavy ions. For reasons illustrated, these may well be a phenomena unique to heavy ions and their explanation perhaps unique to TDHF.

  19. Nuclear powered Mars cargo transport mission utilizing advanced ion propulsion

    SciTech Connect

    Galecki, D.L.; Patterson, M.J.

    1987-01-01

    Nuclear-powered ion propulsion technology was combined with detailed trajectory analysis to determine propulsion system and trajectory options for an unmanned cargo mission to Mars in support of manned Mars missions. A total of 96 mission scenarios were identified by combining two power levels, two propellants, four values of specific impulse per propellant, three starting altitudes, and two starting velocities. Sixty of these scenarios were selected for a detailed trajectory analysis; a complete propulsion system study was then conducted for 20 of these trajectories. Trip times ranged from 344 days for a xenon propulsion system operating at 300 kW total power and starting from lunar orbit with escape velocity, to 770 days for an argon propulsion system operating at 300 kW total power and starting from nuclear start orbit with circular velocity. Trip times for the 3 MW cases studied ranged from 356 to 413 days. Payload masses ranged from 5700 to 12,300 kg for the 300 kW power level, and from 72,200 to 81,500 kg for the 3 MW power level.

  20. A New ECR Ion Source for Nuclear Astrophysics Studies

    NASA Astrophysics Data System (ADS)

    Cesaratto, John M.

    2008-10-01

    The Laboratory for Experimental Nuclear Astrophysics (LENA) is a low energy facility designed to study nuclear reactions of astrophysical interest at energies which are important for nucleosysthesis. In general, these reactions have extremely small cross sections, requiring intense beams and efficient detection systems. Recently, a new, high intensity electron-cyclotron-resonance (ECR) ion source has been constructed (based on a design by Wills et al.[1]), which represents a substantial improvement in the capabilities of LENA. Beam is extracted from an ECR plasma excited at 2.45 GHz and confined by an array of permanent magnets. It has produced H^+ beams in excess of 1 mA on target over the energy range 100 - 200 keV, which greatly increases our ability to measure small cross sections. Initial measurements will focus on the ^23Na(p,γ)^24Mg reaction, which is of interest in a variety of astrophysical scenarios. The present uncertainty in the rate of this reaction is the result of an unobserved resonance expected at Elab =144 keV, which should be detectable using beams from the new ECR source. In collaboration with Arthur E. Champagne and Thomas B. Clegg, University of North Carolina, Chapel Hill and TUNL. [3pt] [1] J. S. C. Wills et al., Rev. Sci. Instrum. 69, 65 (1999).

  1. Scientific Opportunities to Reduce Risk in Nuclear Process Science - 9279

    SciTech Connect

    Bredt, Paul R.; Felmy, Andrew R.; Gauglitz, Phillip A.; Poloski, Adam P.; Vienna, John D.; Moyer, Bruce A.; Hobbs, David; Wilmarth, B.; Mcilwain, Michael; Subramanian, K.; Krahn, Steve; Machara, N.

    2009-03-01

    In this document, we propose that scientific investments for the disposal of nuclear and hazardous wastes should not be focused solely on what may be viewed as current Department of Energy needs, but also upon longer-term investments in specific areas of science that underpin technologies presently in use. In the latter regard, we propose four science theme areas: 1) the structure and dynamics of materials and interfaces, 2) coupled chemical and physical processes, 3) complex solution phase phenomena, and 4) chemical recognition phenomena. The proposed scientific focus for each of these theme areas and the scientific opportunities are identified, along with links to major risks within the initiative areas identified in EM’s Engineering and Technology Roadmap.

  2. Nuclear electric propulsion for future NASA space science missions

    SciTech Connect

    Yen, Chen-wan L.

    1993-07-20

    This study has been made to assess the needs, potential benefits and the applicability of early (circa year 2000) Nuclear Electric Propulsion (NEP) technology in conducting NASA science missions. The study goals are: to obtain the performance characteristics of near term NEP technologies; to measure the performance potential of NEP for important OSSA missions; to compare NEP performance with that of conventional chemical propulsion; to identify key NEP system requirements; to clarify and depict the degree of importance NEP might have in advancing NASA space science goals; and to disseminate the results in a format useful to both NEP users and technology developers. This is a mission performance study and precludes investigations of multitudes of new mission operation and systems design issues attendant in a NEP flight.

  3. 75 FR 34439 - Defense Science Board Task Force on Nuclear Treaty Monitoring and Verification

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ... of the Secretary Defense Science Board Task Force on Nuclear Treaty Monitoring and Verification... Science Board Task Force on Nuclear Treaty Monitoring and Verification will meet in closed session on July... on August 24-25, 2010. ADDRESSES: Both meetings will be held at Science Applications...

  4. Scientific Opportunities to Reduce Risk in Nuclear Process Science

    SciTech Connect

    Bredt, Paul R.; Felmy, Andrew R.; Gauglitz, Phillip A.; Poloski, Adam P.; Vienna, John D.; Moyer, Bruce A.; Hobbs, David; Wilmarth, B.; Mcilwain, Michael; Subramanian, K.; Krahn, Steve; Machara, N.

    2009-08-28

    Cleaning up the nation’s nuclear weapons complex remains as one of the most technologically challenging and financially costly problems facing the U.S. Department of Energy (DOE). Safety, cost, and technological challenges have often delayed progress in retrieval, processing, and final disposition of high-level waste, spent nuclear fuel, and challenging materials. Some of the issues result from the difficulty and complexity of the technological issues; others have programmatic bases, such as strategies that may provide undue focus on near-term goals or difficulty in developing and maintaining stakeholder confidence in the proposed solutions. We propose that independent basic fundamental science research, addressing the full cleanup life-cycle, offers an opportunity to help address these challenges by providing 1) scientific insight into the fundamental mechanisms involved in currently selected processing and disposal options, 2) a rational path to the development of alternative technologies should the primary options fail, 3) confidence that models that predict long-term performance of different disposal options are based upon the best available science, and 4) fundamental science discovery that enables transformational solutions to revolutionize the current baseline processes. Over the last 3 years, DOE’s Office of Environmental Management (EM) has experienced a fundamental shift in philosophy. The mission focus of driving to closure has been replaced by one of enabling the long-term needs of DOE and the nation. Resolving new challenges, such as the disposition of DOE spent nuclear fuel, have been added to EM’s responsibilities. In addition, the schedules for addressing several elements of the cleanup mission have been extended. As a result, EM’s mission is no longer focused only on driving the current baselines to closure. Meeting the mission will require fundamental advances over at least a 30-year window if not longer as new challenges are added. The

  5. Nuclear fragmentation of GCR-like ions: comparisons between data and PHITS

    NASA Astrophysics Data System (ADS)

    Zeitlin, Cary; Guetersloh, Stephen; Heilbronn, Lawrence; Miller, Jack; Sihver, Lembit; Mancusi, Davide; Fukumura, Aki; Iwata, Yoshi; Murakami, Takeshi

    We present a summary of results from recent work in which we have compared nuclear fragmentation cross section data to predictions of the PHITS Monte Carlo simulation. The studies used beams of 12 C, 35 Cl, 40 Ar, 48 Ti, and 56 Fe at energies ranging from 290 MeV/nucleon to 1000 MeV/nucleon. Some of the data were obtained at the Brookhaven National Laboratory, others at the National Institute of Radiological Sciences in Japan. These energies and ion species are representative of the heavy ion component of the Galactic Cosmic Rays (GCR), which contribute significantly to the dose and dose equivalent that will be received by astronauts on deep-space missions. A critical need for NASA is the ability to accurately model the transport of GCR heavy ions through matter, including spacecraft walls, equipment racks, and other shielding materials, as well as through tissue. Nuclear interaction cross sections are of primary importance in the GCR transport problem. These interactions generally cause the incoming ion to break up (fragment) into one or more lighter ions, which continue approximately along the initial trajectory and with approximately the same velocity the incoming ion had prior to the interaction. Since the radiation dose delivered by a particle is proportional to the square of the quantity (charge/velocity), i.e., to (Z/β)2 , fragmentation reduces the dose (and, typically, dose equivalent) delivered by incident ions. The other mechanism by which dose can be reduced is ionization energy loss, which can lead to some particles stopping in the shielding. This is the conventional notion of shielding, but it is not applicable to human spaceflight, since the particles in the GCR tend to be highly energetic and because shielding must be relatively thin in order to keep overall mass as low as possible, keeping launch costs within reason. To support these goals, our group has systematically measured a large number of nuclear cross sections, intended to be used as either

  6. Future directions for separation science in nuclear and radiochemistry

    SciTech Connect

    Pruett, D.J.

    1986-01-01

    Solvent extraction and ion exchange have been the most widely used separation techniques in nuclear and radiochemistry since their development in the 1940s. Many successful separations processes based on these techniques have been used for decades in research laboratories, analytical laboratories, and industrial plants. Thus, it is easy to conclude that most of the fundamental and applied research that is needed in these areas has been done, and that further work in these ''mature'' fields is unlikely to be fruitful. A more careful review, however, reveals that significant problems remain to be solved, and that there is a demand for the development of new reagents, methods, and systems to solve the increasingly complex separations problems in the nuclear field. Specifically, new separation techniques based on developments in membrane technology and biotechnology that have occurred over the last 20 years should find extensive applications in radiochemical separations. Considerable research is needed in such areas as interfacial chemistry, the design and control of highly selective separation agents, critically evaluated data bases and mathematical models, and the fundamental chemistry of dilute solutions if these problems are to be solved and new techniques developed in a systematic way. Nonaqueous separation methods, such as pyrochemical and fluoride volatility processes, have traditionally played a more limited role in nuclear and radiochemistry, but recent developments in the chemistry and engineering of these processes promises to open up new areas of research and application in the future.

  7. Science, Society, and America's Nuclear Waste: The Nuclear Waste Policy Act, Unit 3. Teacher Guide. Second Edition.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 3 of the four-part series, Science, Society, and America's Nuclear Waste, produced by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management. The goal of this unit is to identify the key elements of the United States' nuclear waste dilemma and introduce the Nuclear Waste Policy Act and the role of the…

  8. Magnet design considerations for Fusion Nuclear Science Facility

    DOE PAGESBeta

    Zhai, Yuhu; Kessel, Chuck; El-guebaly, Laila; Titus, Peter

    2016-02-25

    The Fusion Nuclear Science Facility (FNSF) is a nuclear confinement facility to provide a fusion environment with components of the reactor integrated together to bridge the technical gaps of burning plasma and nuclear science between ITER and the demonstration power plant (DEMO). Compared to ITER, the FNSF is smaller in size but generates much higher magnetic field, 30 times higher neutron fluence with 3 orders of magnitude longer plasma operation at higher operating temperatures for structures surrounding the plasma. Input parameters to the magnet design from system code analysis include magnetic field of 7.5 T at the plasma center withmore » plasma major radius of 4.8 m and minor radius of 1.2 m, and a peak field of 15.5 T on the TF coils for FNSF. Both low temperature superconductor (LTS) and high temperature superconductor (HTS) are considered for the FNSF magnet design based on the state-of-the-art fusion magnet technology. The higher magnetic field can be achieved by using the high performance ternary Restack Rod Process (RRP) Nb3Sn strands for toroidal field (TF) magnets. The circular cable-in-conduit conductor (CICC) design similar to ITER magnets and a high aspect ratio rectangular CICC design are evaluated for FNSF magnets but low activation jacket materials may need to be selected. The conductor design concept and TF coil winding pack composition and dimension based on the horizontal maintenance schemes are discussed. Neutron radiation limits for the LTS and HTS superconductors and electrical insulation materials are also reviewed based on the available materials previously tested. As a result, the material radiation limits for FNSF magnets are defined as part of the conceptual design studies for FNSF magnets.« less

  9. Nuclear Science References (NSR) from the National Nuclear Data Center (NNDC)

    DOE Data Explorer

    The Nuclear Science References (NSR) database is an indexed bibiliography of primary and secondary references in nuclear physics research. About 80 journals are regularly scanned for articles. Recent references are added on a weekly basis. Approximately 4300 entries are added to the database annually. In general, articles are included in NSR if they include measured, calculated, or deduced quantitative nuclear structure or reaction data. Papers that apply previously known data are generally not included. Examples of this include neutron activation analysis using known cross sections or radiological dating using known half-lives. The database can be searched like a normal bibliographic database but can also be searched by the data that distinguishes it, data such as the nuclide, target/parent/daughter, reaction, incident particles, and outgoing particles. (Specialized Interface) [Taken from the NSR Help pages at http://www.nndc.bnl.gov/nsr/nsr_help.jsp

  10. The Stewardship Science Academic Alliance: A Model of Education for Fundamental and Applied Low-energy Nuclear Science

    NASA Astrophysics Data System (ADS)

    Cizewski, J. A.

    2014-06-01

    The Stewardship Science Academic Alliances (SSAA) were inaugurated in 2002 by the National Nuclear Security Administration of the U. S. Department of Energy. The purpose is to enhance connections between NNSA laboratories and the activities of university scientists and their students in research areas important to NNSA, including low-energy nuclear science. This paper highlights some of the ways that the SSAA fosters education and training of graduate students and postdoctoral scholars in low-energy nuclear science, preparing them for careers in fundamental and applied research and development.

  11. The Stewardship Science Academic Alliance: A Model of Education for Fundamental and Applied Low-energy Nuclear Science

    SciTech Connect

    Cizewski, J.A.

    2014-06-15

    The Stewardship Science Academic Alliances (SSAA) were inaugurated in 2002 by the National Nuclear Security Administration of the U. S. Department of Energy. The purpose is to enhance connections between NNSA laboratories and the activities of university scientists and their students in research areas important to NNSA, including low-energy nuclear science. This paper highlights some of the ways that the SSAA fosters education and training of graduate students and postdoctoral scholars in low-energy nuclear science, preparing them for careers in fundamental and applied research and development.

  12. Heavy-ion collisions and the nuclear equation of state

    SciTech Connect

    Keane, D.

    1992-01-01

    The overall goal of this project is to study nucleus-nucleus collisions experimentally at intermediate and relativistic energies, with emphasis on measurement and interpretation of correlation effects that provide insight into the nuclear phase diagram and the nuclear equation of state. During the past year, the PI has been on leave at Lawrence Berkeley Lab and has worked on this research project full-time. A large fraction of the effort of the PI and graduate students has gone into preparing for experiments using the Time Projection Chamber at LBL's Bevalac accelerator; in March 1992, this device successfully took data in production mode for the first time, and the first physics analysis is now under way. The PI has carried out simulations that help to define the physics performance and engineering specifications of the recently-approved STAR detector for the Relativistic Heavy Ion Collider, and has identified a new capability of this device with the potential for being an important quark-gluon plasma signature. A Postdoctoral Fellow, jointly supported by this grant and Kent State University, has been recruited to augment these efforts. Since May 1991, 11 journal papers have been published or submitted for publication; 2 conference proceedings and 9 reports or abstracts have also been published during the past year. One paper in Phys. Rev. Left., one in Phys. Rev. C, and one conference proceedings are based on the thesis project of one of the PI's Ph.D. students who is expected to graduate later this year. Partly in response to the impending closure of the Bevalac, the PI's group has recently joined the NA49 experiment at CERN.

  13. FUTURE SCIENCE AT THE RELATIVISTIC HEAVY ION COLLIDER.

    SciTech Connect

    LUDLAM, T.

    2006-12-21

    QCD was developed in the 1970's as a theory of the strong interaction describing the confinement of quarks in hadrons. An early consequence of this picture was the realization that at sufficiently high temperature, or energy density, the confining forces are overcome by color screening effects, resulting in a transition from hadronic matter to a new state--later named the Quark Gluon Plasma--whose bulk dynamical properties are determined by the quark and gluon degrees of freedom, rather than those of confined hadrons. The suggestion that this phase transition in a fundamental theory of nature might occur in the hot, dense nuclear matter created in heavy ion collisions triggered a series of experimental searches during the past two decades at CERN and at BNL, with successively higher-energy nuclear collisions. This has culminated in the present RHIC program. In their first five years of operation, the RHIC experiments have identified a new form of thermalized matter formed in Au+Au collisions at energy densities more than 100 times that of a cold atomic nucleus. Measurements and comparison with relativistic hydrodynamic models indicate that the matter thermalizes in an unexpectedly short time ( < 1 fm/c) , has an energy density at least 15 times larger than needed for color deconfinement, has a temperature about 2 times the critical temperature of {approx}170 MeV predicted by lattice QCD, and appears to exhibit collective motion with ideal hydrodynamic properties--a ''perfect liquid'' that appears to flow with a near-zero viscosity to entropy ratio - lower than any previously observed fluid and perhaps close to a universal lower bound. There are also indications that the new form of matter directly involves quarks. Comparison of measured relative hadron abundances with very successful statistical models indicates that hadrons chemically decouple at a temperature of 160-170 MeV. There is evidence suggesting that this happens very close to the quark-hadron phase

  14. Ion Beam Nanosculpting and Materials Science with Single Nanopores

    SciTech Connect

    Golovchenko, J A; Branton, D

    2009-10-03

    Work is reported in these areas: Nanopore studies; Ion sculpting of metals; High energy ion sculpting; Metrology of nanopores with single wall carbon nanotube probes; Capturing molecules in a nanopore; Strand separation in a nanopore; and DNA molecules and configurations in solid-state nanopores.

  15. Nuclear Science Division annual report, October 1, 1984-September 30, 1985

    SciTech Connect

    Mahoney, J.

    1986-09-01

    This report summarizes the activities of the Nuclear Science Division during the period October 1, 1984 to September 30, 1985. As in previous years, experimental research has for the most part been carried out using three local accelerators, the Bevalac, the SuperHILAC and the 88-Inch Cyclotron. However, during this time, preparations began for a new generation of relativistic heavy-ion experiments at CERN. The Nuclear Science Division is involved in three major experiments at CERN and several smaller ones. The report is divided into 5 sections. Part I describes the research programs and operations, and Part II contains condensations of experimental papers arranged roughly according to program and in order of increasing energy, without any further subdivisions. Part III contains condensations of theoretical papers, again ordered according to program but in order of decreasing energy. Improvements and innovations in instrumentation and in experimental or analytical techniques are presented in Part IV. Part V consists of appendices, the first listing publications by author for this period, in which the LBL report number only is given for papers that have not yet appeared in journals; the second contains abstracts of PhD theses awarded during this period; and the third gives the titles and speakers of the NSD Monday seminars, the Bevatron Research Meetings and the theory seminars that were given during the report period. The last appendix is an author index for this report.

  16. Science of Signatures Workshop on Secondary Ion Mass Spectrometry (SIMS) Applications July 24, 2012

    SciTech Connect

    Hickmott, Donald D; Riciputi, Lee D

    2012-07-23

    The science of signatures focus areas are: (1) Radiological and Nuclear; (2) Chemical and Materials (including explosives); (3) Biological - Signatures of Disease and Health; (4) Energy; (5) Climate; and (6) Space.

  17. Nuclear science research at the WNR and LANSCE neutron sources

    SciTech Connect

    Lisowski, P.W.

    1994-06-01

    The Weapons Neutron Research (WNR) Facility and the Los Alamos Neutron Scattering Center (LANSCE) use 800 MeV proton beam from the Los Alamos Meson Physics Facility (LAMPF) to generate intense bursts of neutrons. Experiments using time-of-flight (TOF) energy determination can cover an energy range from thermal to about 2 MeV at LANSCE and 0.1 to 800 MeV at WNR. At present, three flight paths at LANSCE and six flight paths at WNR are used in basic and applied nuclear science research. In this paper we present a status report on WNR and LANSCE, discuss plans for the future, and describe three experiments recently completed or underway that use the unique features of these sources.

  18. Tritium Plasma Experiment Upgrade for Fusion Tritium and Nuclear Sciences

    NASA Astrophysics Data System (ADS)

    Shimada, Masashi; Taylor, Chase N.; Kolasinski, Robert D.; Buchenauer, Dean A.

    2015-11-01

    The Tritium Plasma Experiment (TPE) is a unique high-flux linear plasma device that can handle beryllium, tritium, and neutron-irradiated plasma facing materials, and is the only existing device dedicated to directly study tritium retention and permeation in neutron-irradiated materials [M. Shimada et.al., Rev. Sci. Instru. 82 (2011) 083503 and and M. Shimada, et.al., Nucl. Fusion 55 (2015) 013008]. Recently the TPE has undergone major upgrades in its electrical and control systems. New DC power supplies and a new control center enable remote plasma operations from outside of the contamination area for tritium, minimizing the possible exposure risk with tritium and beryllium. We discuss the electrical upgrade, enhanced operational safety, improved plasma performance, and development of tritium plasma-driven permeation and optical spectrometer system. This upgrade not only improves operational safety of the worker, but also enhances plasma performance to better simulate extreme plasma-material conditions expected in ITER, Fusion Nuclear Science Facility (FNSF), and Demonstration reactor (DEMO). This work was prepared for the U.S. Department of Energy, Office of Fusion Energy Sciences, under the DOE Idaho Field Office contract number DE-AC07-05ID14517.

  19. Laboratory for Nuclear Science. High Energy Physics Program

    SciTech Connect

    Milner, Richard

    2014-07-30

    High energy and nuclear physics research at MIT is conducted within the Laboratory for Nuclear Science (LNS). Almost half of the faculty in the MIT Physics Department carry out research in LNS at the theoretical and experimental frontiers of subatomic physics. Since 2004, the U.S. Department of Energy has funded the high energy physics research program through grant DE-FG02-05ER41360 (other grants and cooperative agreements provided decades of support prior to 2004). The Director of LNS serves as PI. The grant supports the research of four groups within LNS as “tasks” within the umbrella grant. Brief descriptions of each group are given here. A more detailed report from each task follows in later sections. Although grant DE-FG02-05ER41360 has ended, DOE continues to fund LNS high energy physics research through five separate grants (a research grant for each of the four groups, as well as a grant for AMS Operations). We are pleased to continue this longstanding partnership.

  20. Irradiation of nuclear track emulsions with thermal neutrons, heavy ions, and muons

    SciTech Connect

    Artemenkov, D. A. Bradnova, V.; Zaitsev, A. A.; Zarubin, P. I.; Zarubina, I. G.; Kattabekov, R. R.; Mamatkulov, K. Z.; Rusakova, V. V.

    2015-07-15

    Exposures of test samples of nuclear track emulsion were analyzed. Angular and energy correlations of products originating from the thermal-neutron-induced reaction n{sub th} +{sup 10} B → {sup 7} Li + (γ)+ α were studied in nuclear track emulsions enriched in boron. Nuclear track emulsions were also irradiated with {sup 86}Kr{sup +17} and {sup 124}Xe{sup +26} ions of energy about 1.2 MeV per nucleon. Measurements of ranges of heavy ions in nuclear track emulsionsmade it possible to determine their energies on the basis of the SRIM model. The formation of high-multiplicity nuclear stars was observed upon irradiating nuclear track emulsions with ultrarelativistic muons. Kinematical features studied in this exposure of nuclear track emulsions for events of the muon-induced splitting of carbon nuclei to three alpha particles are indicative of the nucleardiffraction interaction mechanism.

  1. Irradiation of nuclear track emulsions with thermal neutrons, heavy ions, and muons

    NASA Astrophysics Data System (ADS)

    Artemenkov, D. A.; Bradnova, V.; Zaitsev, A. A.; Zarubin, P. I.; Zarubina, I. G.; Kattabekov, R. R.; Mamatkulov, K. Z.; Rusakova, V. V.

    2015-07-01

    Exposures of test samples of nuclear track emulsion were analyzed. Angular and energy correlations of products originating from the thermal-neutron-induced reaction n th +10 B → 7 Li + (γ)+ α were studied in nuclear track emulsions enriched in boron. Nuclear track emulsions were also irradiated with 86Kr+17 and 124Xe+26 ions of energy about 1.2 MeV per nucleon. Measurements of ranges of heavy ions in nuclear track emulsionsmade it possible to determine their energies on the basis of the SRIM model. The formation of high-multiplicity nuclear stars was observed upon irradiating nuclear track emulsions with ultrarelativistic muons. Kinematical features studied in this exposure of nuclear track emulsions for events of the muon-induced splitting of carbon nuclei to three alpha particles are indicative of the nucleardiffraction interaction mechanism.

  2. Applications of laser produced ion beams to nuclear analysis of materials

    NASA Astrophysics Data System (ADS)

    Mima, K.; Azuma, H.; Fujita, K.; Yamazaki, A.; Okuda, C.; Ukyo, Y.; Kato, Y.; Arrabal, R. Gonzalez; Soldo, F.; Perlado, J. M.; Nishimura, H.; Nakai, S.

    2012-07-01

    Laser produced ion beams have unique characteristics which are ultra-short pulse, very low emittance, and variety of nuclear species. These characteristics could be used for analyzing various materials like low Z ion doped heavy metals or ceramics. Energies of laser produced ion beam extend from 0.1MeV to 100MeV. Therefore, various nuclear processes can be induced in the interactions of ion beams with samples. The ion beam driven nuclear analysis has been developed for many years by using various electrostatic accelerators. To explore the applicability of laser ion beam to the analysis of the Li ion battery, a proton beam with the diameter of ˜ 1.0 μm at Takasaki Ion Acceleration for Advanced Radiation Application (TIARA), JAEA was used. For the analysis, the PIGE (Particle-Induced Gamma Ray Emission) is used. The proton beam scans over Li battery electrode samples to diagnose Li density in the LiNi0.85Co0.15O2 anode. As the results, PIGE images for Li area density distributions are obtained with the spatial resolution of better than 1.5μm FWHM. By the Li PIGE images, the depth dependence of de-intercalation levels of Li in the anode is obtained. By the POP experiments at TIARA, it is clarified that laser produced ion beam is appropriate for the Li ion battery analysis. 41.85.Lc, 41.75.Jv, 42.62.cf.

  3. Highly Compressed Ion Beam for High Energy Density Science

    SciTech Connect

    Friedman, A.; Barnard, J.J.; Briggs, R.J.; Callahan, D.A.; Caporaso, G.J.; Celata, C.M.; Davidson, R.C.; Faltens, A.; Grisham, L.; Grote, D.P.; Henestroza, E.; Kaganovich I.; Lee, E.P.; Lee, R.W.; Leitner, M.; Logan, B.G.; Nelson, S.D.; Olson, C.L.; Penn, G.; Reginato,L.R.; Renk, T.; Rose, D.; Seessler, A.; Staples, J.W.; Tabak, M.; Thoma,C.; Waldron, W.; Welch, D.R.; Wurtele, J.; Yu, S.S.

    2005-05-16

    The Heavy Ion Fusion Virtual National Laboratory is developing the intense ion beams needed to drive matter to the High Energy Density regimes required for Inertial Fusion Energy and other applications. An interim goal is a facility for Warm Dense Matter studies, wherein a target is heated volumetrically without being shocked, so that well-defined states of matter at 1 to 10 eV are generated within a diagnosable region. In the approach they are pursuing, low to medium mass ions with energies just above the Bragg peak are directed onto thin target ''foils,'' which may in fact be foams with mean densities 1% to 10% of solid. This approach complements that being pursued at GSI Darmstadt, wherein high-energy ion beams deposit a small fraction of their energy in a cylindrically target. They present the beam requirements for Warm Dense Matter experiments. The authors discuss neutralized drift compression and final focus experiments and modeling. They describe suitable accelerator architectures based on Drift-Tube Linac, RF, single-gap, Ionization-Front Accelerator, and Pulse-Line Ion Accelerator concepts. The last of these is being pursued experimentally. Finally, they discuss plans toward a user facility for target experiments.

  4. REACTOR DOSIMETRY STUDY OF THE RHODE ISLAND NUCLEAR SCIENCE CENTER.

    SciTech Connect

    HOLDEN, N.E.,; RECINIELLO, R.N.; HU, J.-P.

    2005-05-08

    The Rhode Island Nuclear Science Center (RINSC), located on the Narragansett Bay Campus of the University of Rhode Island, is a state-owned and US NRC-licensed nuclear facility constructed for educational and industrial applications. The main building of RINSC houses a two-megawatt (2 MW) thermal power critical reactor immersed in demineralized water within a shielded tank. As its original design in 1958 by the Rhode Island Atomic Energy Commission focused on the teaching and research use of the facility, only a minimum of 3.85 kg fissile uranium-235 was maintained in the fuel elements to allow the reactor to reach a critical state. In 1986 when RINSC was temporarily shutdown to start US DOE-directed core conversion project for national security reasons, all the U-Al based Highly-Enriched Uranium (HEU, 93% uranium-235 in the total uranium) fuel elements were replaced by the newly developed U{sub 3}Si{sub 2}-Al based Low Enriched Uranium (LEU, {le}20% uranium-235 in the total uranium) elements. The reactor first went critical after the core conversion was achieved in 1993, and feasibility study on the core upgrade to accommodate Boron Neutron-Captured Therapy (BNCT) was completed in 2000 [3]. The 2-MW critical reactor at RINSC which includes six beam tubes, a thermal column, a gamma-ray experimental station and two pneumatic tubes has been extensive utilized as neutron-and-photon dual source for nuclear-specific research in areas of material science, fundamental physics, biochemistry, and radiation therapy. After the core conversion along with several major system upgrade (e.g. a new 3-MW cooling tower, a large secondary piping system, a set of digitized power-level instrument), the reactor has become more compact and thus more effective to generate high beam flux in both the in-core and ex-core regions for advance research. If not limited by the manpower and operating budget in recent years, the RINSC built ''in concrete'' structure and control systems should have

  5. A description of a wide beam saddle field ion source used for nuclear target applications

    SciTech Connect

    Greene, J.P.; Schiel, S.L.; Thomas, G.E.

    1997-07-01

    A description is given of a new, wide beam saddle field sputter source used for the preparation of targets applied in nuclear physics experiments. The ion source characteristics are presented and compared with published results obtained with other sources. Deposition rates acquired utilizing this source are given for a variety of target materials encountered in nuclear target production. New applications involving target thinning and ion milling are discussed.

  6. NUCLEAR DATA NEEDS FOR ADVANCED REACTOR SYSTEMS. A NEA NUCLEAR SCIENCE COMMITTEE INITIATIVE.

    SciTech Connect

    SALVATORES,J.M.; ALIBERTI, G.; PALMIOTTI, G.; ROCHMAN, D.; OBLOZINSKY, P.; HERMANN, M.; TALOU, P.; KAWANO, T.; LEAL, L.; KONING, A.; KODELI, I.

    2007-04-22

    The Working Party on Evaluation Cooperation (WPEC) of the OECD Nuclear Energy Agency Nuclear Science Committee has established an International Subgroup to perform an activity in order to develop a systematic approach to define data needs for Gen-IV and, in general, for advanced reactor systems. A methodology, based on sensitivity analysis has been agreed and representative core configurations for Sodium, Gas and Lead cooled Fast Reactors (SFR, GFR, LFR) have been defined as well as a high burn-up VHTR and a high burn-up PWR. In the case of SFRs, both a TRU burner (called in fact SFR) and a core configuration with homogeneous recycling of not separated TRU (called EFR) have been considered.

  7. Ion Exchange Resins for Long-Term Spent Nuclear Fuel Storage

    SciTech Connect

    Rideaux, J.

    1999-03-08

    This paper will specifically address the use and life cycle of ion exchange resins as they relate to the SRS Spent Nuclear Fuel Storage Basins. This paper also chronicles the use of two types of ion exchange resins and their affect on basin water quality from the sixties until today.

  8. Possibilities for Nuclear Photo-Science with Intense Lasers

    SciTech Connect

    Barty, C J; Hartemann, F V; McNabb, D P; Messerly, M; Siders, C; Anderson, S; Barnes, P; Betts, S; Gibson, D; Hagmann, C; Hernandez, J; Johnson, M; Jovanovic, I; Norman, R; Pruet, J; Rosenswieg, J; Shverdin, M; Tremaine, A

    2006-06-26

    The interaction of intense laser light with relativistic electrons can produce unique sources of high-energy x rays and gamma rays via Thomson scattering. ''Thomson-Radiated Extreme X-ray'' (T-REX) sources with peak photon brightness (photons per unit time per unit bandwidth per unit solid angle per unit area) that exceed that available from world's largest synchrotrons by more than 15 orders of magnitude are possible from optimally designed systems. Such sources offer the potential for development of ''nuclear photo-science'' applications in which the primary photon-atom interaction is with the nucleons and not the valence electrons. Applications include isotope-specific detection and imaging of materials, inverse density radiography, transmutation of nuclear waste and fundamental studies of nuclear structure. Because Thomson scattering cross sections are small, < 1 barn, the output from a T-REX source is optimized when the laser spot size and the electron spot size are minimized and when the electron and laser pulse durations are similar and short compared to the transit time through the focal region. The principle limitation to increased x-ray or gamma-ray brightness is ability to focus the electron beam. The effects of space charge on electron beam focus decrease approximately linearly with electron beam energy. For this reason, T-REX brightness increases rapidly as a function of the electron beam energy. As illustrated in Figure 1, above 100 keV these sources are unique in their ability to produce bright, narrow-beam, tunable, narrow-band gamma rays. New, intense, short-pulse, laser technologies for advanced T-REX sources are currently being developed at LLNL. The construction of a {approx}1 MeV-class machine with this technology is underway and will be used to excite nuclear resonance fluorescence in variety of materials. Nuclear resonance fluorescent spectra are unique signatures of each isotope and provide an ideal mechanism for identification of nuclear

  9. ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology

    SciTech Connect

    Chadwick, M B; Oblozinsky, P; Herman, M; Greene, N M; McKnight, R D; Smith, D L; Young, P G; MacFarlane, R E; Hale, G M; Haight, R C; Frankle, S; Kahler, A C; Kawano, T; Little, R C; Madland, D G; Moller, P; Mosteller, R; Page, P; Talou, P; Trellue, H; White, M; Wilson, W B; Arcilla, R; Dunford, C L; Mughabghab, S F; Pritychenko, B; Rochman, D; Sonzogni, A A; Lubitz, C; Trumbull, T H; Weinman, J; Brown, D; Cullen, D E; Heinrichs, D; McNabb, D; Derrien, H; Dunn, M; Larson, N M; Leal, L C; Carlson, A D; Block, R C; Briggs, B; Cheng, E; Huria, H; Kozier, K; Courcelle, A; Pronyaev, V; der Marck, S

    2006-10-02

    We describe the next generation general purpose Evaluated Nuclear Data File, ENDF/B-VII.0, of recommended nuclear data for advanced nuclear science and technology applications. The library, released by the U.S. Cross Section Evaluation Working Group (CSEWG) in December 2006, contains data primarily for reactions with incident neutrons, protons, and photons on almost 400 isotopes. The new evaluations are based on both experimental data and nuclear reaction theory predictions. The principal advances over the previous ENDF/B-VI library are the following: (1) New cross sections for U, Pu, Th, Np and Am actinide isotopes, with improved performance in integral validation criticality and neutron transmission benchmark tests; (2) More precise standard cross sections for neutron reactions on H, {sup 6}Li, {sup 10}B, Au and for {sup 235,238}U fission, developed by a collaboration with the IAEA and the OECD/NEA Working Party on Evaluation Cooperation (WPEC); (3) Improved thermal neutron scattering; (4) An extensive set of neutron cross sections on fission products developed through a WPEC collaboration; (5) A large suite of photonuclear reactions; (6) Extension of many neutron- and proton-induced reactions up to an energy of 150 MeV; (7) Many new light nucleus neutron and proton reactions; (8) Post-fission beta-delayed photon decay spectra; (9) New radioactive decay data; and (10) New methods developed to provide uncertainties and covariances, together with covariance evaluations for some sample cases. The paper provides an overview of this library, consisting of 14 sublibraries in the same, ENDF-6 format, as the earlier ENDF/B-VI library. We describe each of the 14 sublibraries, focusing on neutron reactions. Extensive validation, using radiation transport codes to simulate measured critical assemblies, show major improvements: (a) The long-standing underprediction of low enriched U thermal assemblies is removed; (b) The {sup 238}U, {sup 208}Pb, and {sup 9}Be reflector

  10. Ion chromatographic determination of transition metals in irradiated nuclear reactor surveillance samples.

    PubMed

    Louw, I

    1996-02-01

    The determination of transition metal ions in radioactive (+/-25 microCi/g) low-alloy steels (nuclear reactor surveillance samples) by ion chromatography (IC) is described. The analysis has been done directly without prior separation of the iron matrix. The eluted metal ions have been detected with a UV-visible spectrophotometric detector after post-column complexation with 4-(2-pyridylazo)resorcinol. The results are in a good agreement with the certified values for the standard reference material used. The method was applied to nuclear reactor surveillance samples for the determination of Cu, Mn, Co and Ni. PMID:15048428

  11. Probing the nuclear symmetry energy with heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Coupland, Daniel David Schechtman

    There are two distinct components involved in using heavy ion collisions to constrain the density dependence of the symmetry energy. On one hand, observables sensitive to the symmetry energy must be identified and measured with enough precision to provide meaningful constraints. On the other hand, nuclear reaction simulations are used to predict those observables for different possible forms of the symmetry energy. Examination of both components and the interface between them is important to improve the constraints. This thesis contributes to both the experimental and theoretical parts of this endeavor. First, we examine the uncertainties in the simulation of the isospin diffusion observable by varying the input physics within the pBUU transport code. In addition to the symmetry energy, several other uncertain parts of the calculation affect isospin diffusion, most notably the in-medium nucleon-nucleon cross sections and light cluster production. There is also a difference in the calculated isospin transport ratios depending on whether they are computed using the isospin asymmetry of the heavy residue or of all forward-moving fragments. We suggest that measurements comparing these two quantities would help place constraints on the input physics, including the density dependence of the symmetry energy. Second, we present a measurement of the neutron and proton kinetic energy spectra emitted from central collisions of 124Sn + 124Sn and 112Sn + 112Sn at beam energies of 50 MeV per nucleon and 120 MeV per nucleon. Previous transport simulations indicate that ratios of these spectra are sensitive to the density dependence of the symmetry energy and to the isovector momentum dependence of the mean field. Protons were detected in the Large Area Silicon Strip Array (LASSA) and neutrons were detected in the MSU Neutron Walls. The multiplicity of charged particles detected in the MSU Miniball was used to determine the impact parameter of the collisions. Several thin

  12. Nuclear Science Division annual report, October 1, 1986--September 30, 1987

    SciTech Connect

    Mahoney, J.

    1988-09-01

    This report summarizes the activities of the Nuclear Science Division during the period October 1, 1986 to September 30, 1987. A highlight of the experimental program during this time was the completion of the first round of heavy-ion running at CERN with ultrarelativistic oxygen and sulfur beams. Very rapid progress is being made in the analysis of these important experiments and preliminary results are presented in this report. During this period, the Bevalac also continued to produce significant new physics results, while demand for beam time remained high. An important new community of users has arrived on the scene, eager to exploit the unique low-energy heavy-beam capabilities of the Bevalac. Another major highlight of the program has been the performance of the Dilepton Spectrometer which has entered into production running. Dileptons have been observed in the p + Be and Ca + Ca reactions at several bombarding energies. New data on pion production with heavy beams measured in the streamer chamber to shed light on the question of nuclear compressibility, while posing some new questions concerning the role of Coulomb forces on the observed pion spectra. In another quite different area, the pioneering research with radioactive beams is continuing and is proving to be one of the fastest growing programs at the Bevalac. Exotic secondary beams (e.g., 8He, 11Li, and 14Be) have been produced for fundamental nuclear physics studies. In order to further enhance the scientific research program and ensure the continued vitality of the facility, the Laboratory has proposed an upgrade of the existing Bevalac. Specifically, the Upgrade would replace the Bevatron with a modern, strong-focusing synchrotron to provide higher intensity and higher quality beams to continue the forefront research program. Other papers on nuclear physics research are included in this report.

  13. Understanding the nuclear initial state with an electron ion collider

    NASA Astrophysics Data System (ADS)

    Toll, Tobias

    2013-09-01

    In these proceedings I describe how a future electron-ion collider will allow us to directly measure the initial spatial distribution of gluons in heavy ions, as well as its variance ("lumpiness") in exclusive diffraction. I show the feasibility of such a measurement by means of simulated data from the novel event generator Sartre.

  14. Nuclear astrophysics experiments with stored, highly-charged ions at FRS-ESR at GSI

    SciTech Connect

    Scheidenberger, Christoph

    2010-08-12

    At the FRS-ESR complex of GSI a nuclear physics program with exotic nuclei has been established in last 18 years, which also addresses key questions and nuclear properties relevant in nuclear astrophysics. The paper summarizes production of exotic nuclei, lifetime studies of highly-charged ions, direct mass measurements and reactions at internal targets. A few comments on the analysis of two-body weak decays are given.

  15. The roles of electronic and nuclear stopping in the desorption valine negative molecular ions

    SciTech Connect

    Hunt, J.E.; Salehpour, M.; Fishel, D.L.; Tou, J.C.

    1988-01-01

    The yield of valine negative molecular ions has been measured as a function of Xe/sup +/, Kr/sup +/, and Ar/sup +/ primary ion velocity. The electronic and nuclear stopping powers are comparable in magnitude and opposite in slope in the experimental velocity region. The yield data are explained in terms of electronic stopping power alone, with no contribution from nuclear stopping power within the experimental error. Low molecular weight atomic species are found to be best described by a nuclear stopping power related process. 18 refs., 3 figs.

  16. Filtered fast neutron irradiation system using Texas A&M University Nuclear Science Center Reactor

    NASA Astrophysics Data System (ADS)

    Jang, S. Y.; Kim, C. H.; Reece, W. D.; Braby, L. A.

    2004-09-01

    A heavily filtered fast neutron irradiation system (FNIS) was developed for a variety of applications, including the study of long-term health effects of fast neutrons by evaluating the biological mechanisms of damage in cultured cells and living animals such as rats or mice. This irradiation system includes an exposure cave made with a lead-bismuth alloy, a cave positioning system, a gamma and neutron monitoring system, a sample transfer system, and interchangeable filters. This system was installed in the irradiation cell of the Texas A&M University Nuclear Science Center Reactor (NSCR). For a realistic modeling of the NSCR, the irradiation cell, and the FNIS, this study used the Monte Carlo N-Particle (MCNP) code and a set of high-temperature ENDF/B-VI continuous neutron cross-section data. Sensitivity analysis was performed to find the characteristics of the FNIS as a function of the thickness of the lead-bismuth alloy. A paired ion chamber system was constructed with a tissue-equivalent plastic (A-150) and propane gas for total dose monitoring and with graphite and argon for gamma dose monitoring. This study, in addition, tested the Monte Carlo modeling of the FNIS system, as well as the performance of the system by comparing the calculated results with experimental measurements using activation foils and paired ion chambers.

  17. ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology

    NASA Astrophysics Data System (ADS)

    Chadwick, M. B.; Obložinský, P.; Herman, M.; Greene, N. M.; McKnight, R. D.; Smith, D. L.; Young, P. G.; MacFarlane, R. E.; Hale, G. M.; Frankle, S. C.; Kahler, A. C.; Kawano, T.; Little, R. C.; Madland, D. G.; Moller, P.; Mosteller, R. D.; Page, P. R.; Talou, P.; Trellue, H.; White, M. C.; Wilson, W. B.; Arcilla, R.; Dunford, C. L.; Mughabghab, S. F.; Pritychenko, B.; Rochman, D.; Sonzogni, A. A.; Lubitz, C. R.; Trumbull, T. H.; Weinman, J. P.; Brown, D. A.; Cullen, D. E.; Heinrichs, D. P.; McNabb, D. P.; Derrien, H.; Dunn, M. E.; Larson, N. M.; Leal, L. C.; Carlson, A. D.; Block, R. C.; Briggs, J. B.; Cheng, E. T.; Huria, H. C.; Zerkle, M. L.; Kozier, K. S.; Courcelle, A.; Pronyaev, V.; van der Marck, S. C.

    2006-12-01

    We describe the next generation general purpose Evaluated Nuclear Data File, ENDF/B-VII.0, of recommended nuclear data for advanced nuclear science and technology applications. The library, released by the U.S. Cross Section Evaluation Working Group (CSEWG) in December 2006, contains data primarily for reactions with incident neutrons, protons, and photons on almost 400 isotopes, based on experimental data and theory predictions. The principal advances over the previous ENDF/B-VI library are the following: (1) New cross sections for U, Pu, Th, Np and Am actinide isotopes, with improved performance in integral validation criticality and neutron transmission benchmark tests; (2) More precise standard cross sections for neutron reactions on H, 6Li, 10B, Au and for 235,238U fission, developed by a collaboration with the IAEA and the OECD/NEA Working Party on Evaluation Cooperation (WPEC); (3) Improved thermal neutron scattering; (4) An extensive set of neutron cross sections on fission products developed through a WPEC collaboration; (5) A large suite of photonuclear reactions; (6) Extension of many neutron- and proton-induced evaluations up to 150 MeV; (7) Many new light nucleus neutron and proton reactions; (8) Post-fission beta-delayed photon decay spectra; (9) New radioactive decay data; (10) New methods for uncertainties and covariances, together with covariance evaluations for some sample cases; and (11) New actinide fission energy deposition. The paper provides an overview of this library, consisting of 14 sublibraries in the same ENDF-6 format as the earlier ENDF/B-VI library. We describe each of the 14 sublibraries, focusing on neutron reactions. Extensive validation, using radiation transport codes to simulate measured critical assemblies, show major improvements: (a) The long-standing underprediction of low enriched uranium thermal assemblies is removed; (b) The 238U and 208Pb reflector biases in fast systems are largely removed; (c) ENDF/B-VI.8 good

  18. Topics in nuclear and radiochemistry for college curricula and high school science programs

    SciTech Connect

    Not Available

    1990-01-01

    The concern with the current status and trends of nuclear chemistry and radiochemistry education in academic institutions was addressed in a recent workshop. The 1988 workshop considered the important contributions that scientist with nuclear and radiochemistry backgrounds have made and are continuing to make to other sciences and to various applied fields. Among the areas discussed were environmental studies, life sciences, materials science, separation technology, hot atom chemistry, cosmochemistry, and the rapidly growing field of nuclear medicine. It is intent of the organizer and participants of this symposium entitled Topics in Nuclear and Radiochemistry for College Curricula and High School Science Program'' to provide lecture material on topics related to nuclear and radiochemistry to educators. It is our hope that teachers, who may or may not be familiar with the field, will find this collections of articles useful and incorporate some of them into their lectures.

  19. An Advanced Tokamak Fusion Nuclear Science Facility (FNSF-AT)

    NASA Astrophysics Data System (ADS)

    Chan, V. S.; Garofalo, A. M.; Stambaugh, R. D.

    2010-11-01

    A Fusion Development Facility (FDF) is a candidate for FNSF-AT. It is a compact steady-state machine of moderate gain that uses AT physics to provide the neutron fluence required for fusion nuclear science development. FDF is conceived as a double-null plasma with high elongation and triangularity, predicted to allow good confinement of high plasma pressure. Steady-state is achieved with high bootstrap current and radio frequency current drive. Neutral beam injection and 3D non-resonant magnetic field can provide edge plasma rotation for stabilization of MHD and access to Quiescent H-mode. The estimated power exhaust is somewhat lower than that of ITER because of higher core radiation and stronger tilting of the divertor plates. FDF is capable of further developing all elements of AT physics, qualifying them for an advanced performance DEMO. The latest concept has accounted for realistic neutron shielding and divertor implementation. Self-consistent evolution of the transport profiles and equilibrium will quantify the stability and confinement required to meet the FNS mission.

  20. Heavy ion fusion science research for high energy density physics and fusion applications

    SciTech Connect

    LOGAN, B.G.; Logan, B.G.; Bieniosek, F.M.; Barnard, J.J.; Cohen, R.H.; Coleman, J.E.; Davidson, R.C.; Efthimion, P.C.; Friedman, A.; Gilson, E.P.; Greenway, W.G.; Grisham, L.; Grote, D.P.; Henestroza, E.; Hoffmann, D.H.H.; Kaganovich, I.D.; Kireeff Covo, M.; Kwan, J.W.; LaFortune, K.N.; Lee, E.P.; Leitner, M.; Lund, S.M.; Molvik, A.W.; Ni, P.; Penn, G.E.; Perkins, L.J.; Qin, H.; Roy, P.K.; Sefkow, A.B.; Seidl, P.A.; Sharp, W.; Startsev, E.A.; Varentsov, D.; Vay, J.-L.; Waldron, W.L.; Wurtele, J.S.; Welch, D.; Westenskow, G.A.; Yu, S.S.

    2007-06-25

    During the past two years, the U.S. heavy ion fusion science program has made significant experimental and theoretical progress in simultaneous transverse and longitudinal beam compression, ion-beam-driven warm dense matter targets, high brightness beam transport, advanced theory and numerical simulations, and heavy ion target designs for fusion. First experiments combining radial and longitudinal compression of intense ion beams propagating through background plasma resulted in on-axis beam densities increased by 700X at the focal plane. With further improvements planned in 2007, these results will enable initial ion beam target experiments in warm dense matter to begin next year at LBNL. We are assessing how these new techniques apply to low-cost modular fusion drivers and higher-gain direct-drive targets for inertial fusion energy.

  1. Nuclear Science Symposium, 26th and Symposium on Nuclear Power Systems, 11th, San Francisco, Calif., October 17-19, 1979, Proceedings

    NASA Technical Reports Server (NTRS)

    Kerns, C. R.

    1980-01-01

    The paper covers the studies presented on nuclear science and nuclear power systems symposiums. The studies deal with nuclear radiation detectors, nuclear circuits and systems, space and medical instrumentation, as well as with environmental and reactor instrumentation. Data preprocessing and acquisition are discussed. Emphasis is placed on the engineered safety features of nuclear systems.

  2. Nuclear interactions in heavy ion transport and event-based risk models.

    PubMed

    Cucinotta, Francis A; Plante, Ianik; Ponomarev, Artem L; Kim, Myung-Hee Y

    2011-02-01

    The physical description of the passage of heavy ions in tissue and shielding materials is of interest in radiobiology, cancer therapy and space exploration, including a human mission to Mars. Galactic cosmic rays (GCRs) consist of a large number of ion types and energies. Energy loss processes occur continuously along the path of heavy ions and are well described by the linear energy transfer (LET), straggling and multiple scattering algorithms. Nuclear interactions lead to much larger energy deposition than atomic-molecular collisions and alter the composition of heavy ion beams while producing secondary nuclei often in high multiplicity events. The major nuclear interaction processes of importance for describing heavy ion beams was reviewed, including nuclear fragmentation, elastic scattering and knockout-cascade processes. The quantum multiple scattering fragmentation model is shown to be in excellent agreement with available experimental data for nuclear fragmentation cross sections and is studied for application to thick target experiments. A new computer model, which was developed for the description of biophysical events from heavy ion beams at the NASA Space Radiation Laboratory (NSRL), called the GCR Event Risk-Based Model (GERMcode) is described. PMID:21242169

  3. Nuclear polarization study: new frontiers for tests of QED in heavy highly charged ions.

    PubMed

    Volotka, Andrey V; Plunien, Günter

    2014-07-11

    A systematic investigation of the nuclear polarization effects in one- and few-electron heavy ions is presented. The nuclear polarization corrections in the zeroth and first orders in 1/Z are evaluated to the binding energies, the hyperfine splitting, and the bound-electron g factor. It is shown that the nuclear polarization contributions can be substantially canceled simultaneously with the rigid nuclear corrections. This allows for new prospects for probing the QED effects in a strong electromagnetic field and the determination of fundamental constants. PMID:25062173

  4. Apparatus and method for extracting power from energetic ions produced in nuclear fusion

    DOEpatents

    Fisch, Nathaniel J.; Rax, Jean M.

    1994-01-01

    An apparatus and method of extracting power from energetic ions produced by nuclear fusion in a toroidal plasma to enhance respectively the toroidal plasma current and fusion reactivity. By injecting waves of predetermined frequency and phase traveling substantially in a selected poloidal direction within the plasma, the energetic ions become diffused in energy and space such that the energetic ions lose energy and amplify the waves. The amplified waves are further adapted to travel substantially in a selected toroidal direction to increase preferentially the energy of electrons traveling in one toroidal direction which, in turn, enhances or generates a toroidal plasma current. In an further adaptation, the amplified waves can be made to preferentially increase the energy of fuel ions within the plasma to enhance the fusion reactivity of the fuel ions. The described direct, or in situ, conversion of the energetic ion energy provides an efficient and economical means of delivering power to a fusion reactor.

  5. Apparatus and method for extracting power from energetic ions produced in nuclear fusion

    DOEpatents

    Fisch, N.J.; Rax, J.M.

    1994-12-20

    An apparatus and method of extracting power from energetic ions produced by nuclear fusion in a toroidal plasma to enhance respectively the toroidal plasma current and fusion reactivity. By injecting waves of predetermined frequency and phase traveling substantially in a selected poloidal direction within the plasma, the energetic ions become diffused in energy and space such that the energetic ions lose energy and amplify the waves. The amplified waves are further adapted to travel substantially in a selected toroidal direction to increase preferentially the energy of electrons traveling in one toroidal direction which, in turn, enhances or generates a toroidal plasma current. In an further adaptation, the amplified waves can be made to preferentially increase the energy of fuel ions within the plasma to enhance the fusion reactivity of the fuel ions. The described direct, or in situ, conversion of the energetic ion energy provides an efficient and economical means of delivering power to a fusion reactor. 4 figures.

  6. Undergraduate and Graduate Opportunities in Nuclear Science at Simon Fraser University

    NASA Astrophysics Data System (ADS)

    Andreoiu, Corina; Brodovitch, J.-C.; D'Auria, J. M.; Starosta, K.

    2012-10-01

    The Departments of Chemistry and Physics at Simon Fraser University offer a Nuclear Science Minor at undergraduate level. The program, which is unique in Canada, attracts students from all departments of the Faculty of Science, and, occasionally, from other departments such as engineering and business. Students graduating with this minor have the opportunity to get employment in academia and a variety of industries ranging from nuclear power to nuclear medicine, safety, accelerators, etc. At the graduate level, the Nuclear Science group in the Department of Chemistry attracts students to its in-house program and also in collaboration with TRIUMF, Canada's Laboratory for Nuclear and Particle Physics. The graduate program offer a rich plethora of topics in experimental nuclear science ranging from understanding the matter at subatomic level and its role in astrochemistry to applications of nuclear science in radiation measurements and monitoring, nuclear instrumentation, etc. The academic components of the program, its goals and future developments are presented in this paper along with enrolment statistics for the last ten years.

  7. Nuclear Molecular Resonances in Heavy-Ion Collisions.

    ERIC Educational Resources Information Center

    Erb, Karl A.; Bromley, D. Allan

    1979-01-01

    Explains that some nuclear scattering phenomena can be attributed to states in which two nuclei are bound to each other at their surfaces, revolving and vibrating for a time before coalescing or disintegrating. (Author/GA)

  8. A,B,C`s of nuclear science

    SciTech Connect

    Noto, V.A.; Norman, E.B.; Chan, Yuen-Dat; Dairiki, J.; Matis, H.S.; McMahan, M.A.; Otto, R.

    1995-08-07

    This introductory level presentation contains information on nuclear structure, radioactivity, alpha decay, beta decay, gamma decay, half-life, nuclear reactions, fusion, fission, cosmic rays, and radiation protection. Nine experiments with procedures and test questions are included.

  9. Accelerated Nuclear Energy Materials Development with Multiple Ion Beams

    SciTech Connect

    Fluss, M J; Bench, G

    2009-08-19

    A fundamental issue in nuclear energy is the changes in material properties as a consequence of time, temperature, and neutron fluence. Usually, candidate materials for nuclear energy applications are tested in nuclear reactors to understand and model the changes that arise from a combination of atomic displacements, helium and hydrogen production, and other nuclear transmutations (e.g. fission and the production of fission products). Experiments may be carried out under neutron irradiation conditions in existing nuclear materials test reactors (at rates of 10 to 20 displacements per atom (DPA) per year or burn-up rates of a few percent per year for fertile fuels), but such an approach takes much too long for many high neutron fluence scenarios (300 DPA for example) expected in reactors of the next generation. Indeed it is reasonable to say that there are no neutron sources available today to accomplish sufficiently rapid accelerated aging let alone also provide the temperature and spectral characteristics of future fast spectrum nuclear energy systems (fusion and fission both). Consequently, materials research and development progress continues to be severely limited by this bottleneck.

  10. Applications of laser produced ion beams to nuclear analysis of materials

    SciTech Connect

    Mima, K.; Azuma, H.; Fujita, K.; Yamazaki, A.; Okuda, C.; Ukyo, Y.; Kato, Y.; Arrabal, R. Gonzalez; Soldo, F.; Perlado, J. M.; Nishimura, H.; Nakai, S.

    2012-07-11

    Laser produced ion beams have unique characteristics which are ultra-short pulse, very low emittance, and variety of nuclear species. These characteristics could be used for analyzing various materials like low Z ion doped heavy metals or ceramics. Energies of laser produced ion beam extend from 0.1MeV to 100MeV. Therefore, various nuclear processes can be induced in the interactions of ion beams with samples. The ion beam driven nuclear analysis has been developed for many years by using various electrostatic accelerators. To explore the applicability of laser ion beam to the analysis of the Li ion battery, a proton beam with the diameter of {approx} 1.0 {mu}m at Takasaki Ion Acceleration for Advanced Radiation Application (TIARA), JAEA was used. For the analysis, the PIGE (Particle-Induced Gamma Ray Emission) is used. The proton beam scans over Li battery electrode samples to diagnose Li density in the LiNi{sub 0.85}Co{sub 0.15}O{sub 2} anode. As the results, PIGE images for Li area density distributions are obtained with the spatial resolution of better than 1.5{mu}m FWHM. By the Li PIGE images, the depth dependence of de-intercalation levels of Li in the anode is obtained. By the POP experiments at TIARA, it is clarified that laser produced ion beam is appropriate for the Li ion battery analysis. 41.85.Lc, 41.75.Jv, 42.62.cf.

  11. An Analysis of the Universal Decimal Classification as a Term System for Nuclear Science and Technology

    ERIC Educational Resources Information Center

    Stueart, Robert D.

    1971-01-01

    The possibilities of merging the terminology of the Universal Decimal Classification System with that of a term system - Engineers Joint Council's Thesaurus - for nuclear science and technology are explored. (12 references) (Author/NH)

  12. Conceptual Design of the Nuclear Electronic Xenon Ion System (NEXIS)

    NASA Technical Reports Server (NTRS)

    Monheiser, Jeff; Polk, Jay; Randolph, Tom

    2004-01-01

    In support of the NEXIS program, Aerojet-Redmond Operations, with review and input from the JPL and Boeing, has completed the design for a development model (DM) discharge chamber assembly and main discharge cathode assembly. These efforts along with the work by JPL to develop the carbon-carbon-composite ion optics assembly have resulted in a complete ion engine design. The goal of the NEXIS program is to significantly advance the current state of the art by developing an ion engine capable of operating at an input power of 20kW, an Isp of 7500 sec and have a total xenon through put capability of 2000 kg. In this paper we will describe the methodology used to design the discharge chamber and cathode assemblies and describe the resulting final design. Specifics will include the concepts used for the mounting of the ion optics along with the concepts used for the gimbal mounts. In addition, we will present results of a vibrational analysis showing how the engine will respond to a typical Delta IV heavy vibration spectrum.

  13. (Reaction mechanism studies of heavy ion induced nuclear reactions)

    SciTech Connect

    Mignerey, A.C.

    1991-01-01

    This report discusses the following research projects; decay of excited nuclei formed in La-induced reactions at E/A = 45 MeV; mass and charge distributions in Cl-induced heavy ion reactions; and mass and charge distributions in {sup 56}Fe + {sup 165}Ho at E/A = 12 MeV.

  14. Probing the nuclear structure with heavy-ion reactions

    SciTech Connect

    Broglia, R.A.

    1982-01-01

    Nuclei display distortions in both ordinary space and in gauge space. It is suggested that it is possible to learn about the spatial distribution of the Nilsson orbitals and about the change of the pairing gap with the rotational frequency through the analysis of one- and two-nucleon transfer reactions induced in heavy-ion collisions.

  15. Toward an Automated Analysis of Slow Ions in Nuclear Track Emulsion

    NASA Astrophysics Data System (ADS)

    Mamatkulov, K. Z.; Kattabekov, R. R.; Ambrozova, I.; Artemenkov, D. A.; Bradnova, V.; Kamanin, D. V.; Majling, L.; Marey, A.; Ploc, O.; Rusakova, V. V.; Stanoeva, R.; Turek, K.; Zaitsev, A. A.; Zarubin, P. I.; Zarubina, I. G.

    Application of the nuclear track emulsion technique (NTE) in radioactivity and nuclear fission studies is discussed. It is suggested to use a HSP-1000 automated microscope for searching for a collinear cluster tri-partition of heavy nuclei implanted in NTE. Calibrations of α-particles and ion ranges in a novel NTE are carried out. Surface exposures of NTE samples to a 252Cf source started. Planar events containing fragments and long-range α-particles as well as fragment triples only are studied. NTE samples are calibrated by ions Kr and Xe of energy of 1.2 and 3 A MeV.

  16. Probing the nuclear equation-of-state and the symmetry energy with heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Verde, Giuseppe

    2014-03-01

    The present status of studies aimed at constraining the nuclear equation of state with heavy-ion collision dynamics is presented. Multifragmentation phenomena, including their isotopic distributions, charge correlations and emission time-scales, may revel the existence of liquid-gas transitions in the phase diagram. Exploring the isotopic degree of freedom in nuclear dynamics is then required in order to constrain the equation of state of asymmetric nuclear matter which presently represents a major priority due to its relevance to both nuclear physics and astrophysics. Some observables that have successfully constrained the density dependence of the symmetry energy are presented, such as neutron-proton yield ratios and isospin diffusion and drift phenomena. The reported results and status of the art is discussed by also considering some of the present problems and some future perspectives for the heavy-ion collision community.

  17. Towards possible opportunities in nuclear materials science and technology at an X-ray free electron laser research facility

    NASA Astrophysics Data System (ADS)

    Froideval, A.; Badillo, A.; Bertsch, J.; Churakov, S.; Dähn, R.; Degueldre, C.; Lind, T.; Paladino, D.; Patterson, B. D.

    2011-09-01

    Spectroscopy and imaging of condensed matter have benefited greatly from the availability of intense X-ray beams from synchrotron sources, both in terms of spatial resolution and of elemental specificity. The advent of the X-ray free electron laser (X-ray FEL) provides the additional features of ultra-short pulses and high transverse coherence, which greatly expand possibilities to study dynamic processes and to image non-crystalline materials. The proposed SwissFEL facility at the Paul Scherrer Institute is one of at present four X-ray FEL projects worldwide and is scheduled to go into operation in the year 2017. This article describes a selection of problems in nuclear materials science and technology that would directly benefit from this and similar X-ray FEL sources. X-ray FEL-based experiments are proposed to be conducted on nuclear energy-related materials using single-shot X-ray spectroscopy, coherent X-ray scattering and/or X-ray photon correlation spectroscopy in order to address relevant scientific questions such as the evolution in time of the irradiation-induced damage processes, the deformation processes in nuclear materials, the ion diffusion processes in the barrier systems of geological repositories, the boiling heat transfer in nuclear reactors, as well as the structural characterization of graphite dust in advanced nuclear reactors and clay colloid aggregates in the groundwater near a radioactive waste repository.

  18. Equation of state of hot polarized nuclear matter and heavy-ion fusion reactions

    SciTech Connect

    Ghodsi, O. N.; Gharaei, R.

    2011-08-15

    We employ the equation of state of hot polarized nuclear matter to simulate the repulsive force caused by the incompressibility effects of nuclear matter in the fusion reactions of heavy colliding ions. The results of our studies reveal that temperature effects of compound nuclei have significant importance in simulating the repulsive force on the fusion reactions for which the temperature of the compound nucleus increases up to about 2 MeV. Since the equation of state of hot nuclear matter depends upon the density and temperature of the nuclear matter, it has been suggested that, by using this equation of state, one can simulate simultaneously both the effects of the precompound nucleons' emission and the incompressibility of nuclear matter to calculate the nuclear potential in fusion reactions within a static formalism such as the double-folding (DF) model.

  19. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    SciTech Connect

    Todd R. Allen

    2011-12-01

    This is a document required by Basic Energy Sciences as part of a mid-term review, in the third year of the five-year award period and is intended to provide a critical assessment of the Center for Materials Science of Nuclear Fuels (strategic vision, scientific plans and progress, and technical accomplishments).

  20. Nuclear Power in the Classroom: A Union of Science and Social Studies Education.

    ERIC Educational Resources Information Center

    Shillenn, James K.; Vincenti, John R.

    This paper examines issues that K-12 science and social studies teachers need to keep in mind when teaching about nuclear power. The information needs to be presented in as objective a manner as possible. Science needs to become more social oriented. Team teaching should be encouraged. Elementary and secondary inservice teacher education is…

  1. Crossroads: Quality of Life in a Nuclear World. A High School Science Curriculum.

    ERIC Educational Resources Information Center

    French, Dan; Phillips, Connie

    One of a set of high school curricula on nuclear issues, this 10-day science unit helps students understand the interrelationship between the economy, the arms race, military spending, and the threat of nuclear war. Through activities such as role playing, discussion, brainstorming, and problem solving, students develop their ability to evaluate…

  2. Applied Nuclear Science Research and Development progress report, June 1, 1984-May 31, 1985

    SciTech Connect

    Arthur, E.D.; Mutschlecner, A.D.

    1985-09-01

    This progress report describes the activities of the Los Alamos Applied Nuclear Science Group for June 1, 1984 through May 31, 1985. The topical content includes the theory and evaluation of nuclear cross sections; neutron cross section processing and testing; neutron activation, fission products and actinides; and core neutronics code development and application. 70 refs., 31 figs., 15 tabs. (WRF)

  3. Nuclear power risks: challenge to the credibility of science

    SciTech Connect

    Welch, B.L.

    1980-01-01

    For a quarter of a century the Federal Government and the nuclear industry have deliberately deceived the American public about the risks of nuclear power. Facts have been systematically withheld, distorted, and obscured, and calculations have been deliberately biased in order to present nuclear power in an unrealistically favorable light. Most persistent and flagrant have been: (a) attempts to normalize public perception of nuclear accident casualties with those of more familiar accidents; and (b) the cloaking of the objectively undocumentable faith of the atomic energy establishment that a nuclear accident is extremely unlikely in a smokescreen of invalid, pseudoquantitative statistical probabilities in order to convince the public that the chance of an accident is negligible. Prime examples of these abuses are found in the Rasmussen report on nuclear reactor safety and in its representation to the public.

  4. Overview of Theory and Simulations in the Heavy Ion Fusion ScienceVirtual National Laboratory

    SciTech Connect

    Friedman, Alex

    2006-07-09

    The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) is a collaboration of Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, and Princeton Plasma Physics Laboratory. These laboratories, in cooperation with researchers at other institutions, are carrying out a coordinated effort to apply intense ion beams as drivers for studies of the physics of matter at extreme conditions, and ultimately for inertial fusion energy. Progress on this endeavor depends upon coordinated application of experiments, theory, and simulations. This paper describes the state of the art, with an emphasis on the coordination of modeling and experiment; developments in the simulation tools, and in the methods that underly them, are also treated.

  5. Overview of Theory and Simulations in the Heavy Ion Fusion Science Virtual National Laboratory

    SciTech Connect

    Friedman, A

    2006-07-03

    The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) is a collaboration of Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, and Princeton Plasma Physics Laboratory. These laboratories, in cooperation with researchers at other institutions, are carrying out a coordinated effort to apply intense ion beams as drivers for studies of the physics of matter at extreme conditions, and ultimately for inertial fusion energy. Progress on this endeavor depends upon coordinated application of experiments, theory, and simulations. This paper describes the state of the art, with an emphasis on the coordination of modeling and experiment; developments in the simulation tools, and in the methods that underly them, are also treated.

  6. Failla Memorial lecture. The future of heavy-ion science in biology and medicine.

    PubMed

    Tobias, C A

    1985-07-01

    Interplanetary space contains fluxes of fast moving atomic nuclei. The distribution of these reflects the atomic composition of the universe, and such particles may pose limitations for space flight and for life in space. Over the past 50 years, since the invention of Ernest Lawrence's cyclotron, advances in accelerator technology have permitted the acceleration of charged nuclei to very high velocities. Currently, beams of any stable isotope species up to uranium are available at kinetic energies of several hundred MeV/nucleon at the Berkeley Bevalac. Recently, new areas of particle physics research relating to the mechanisms of spallation and fission have opened up for investigation, and it is now realistic to search for nuclear super-dense states that might be produced in heavy nuclear collisions. The heavy ions hold interest for a broad spectrum of research because of their effectiveness in producing a series of major lesions in DNA along single particle tracks and because of the Bragg depth ionization properties that allow the precise deposition of highly localized doses deep in the human body. Individual heavy ions can also interrupt the continuity of membraneous regions in cells. Heavy ions, when compared to low-LET radiation, have increased effectiveness for mammalian cell lethality, chromosome mutations, and cell transformation. The molecular mechanisms are not completely understood but appear to involve fragmentation and reintegration of DNA. Cells attempt to repair these lesions, and many of the deleterious effects are due to misrepair or misrejoining of DNA. Heavy ions do not require the presence of oxygen for producing their effects, and hypoxic cells in necrotic regions have nearly the same sensitivity as cells in well-oxygenated tissues. Heavy ions are effective in delaying or blocking the cell division process. Heavy ions are also strong enhancers of viral-induced cell transformation, a process that requires integration of foreign DNA. Some cell

  7. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy,and Related Fields

    SciTech Connect

    Grisham, L. R.; Kwan, J. W.

    2008-08-01

    Some years ago it was suggested that halogen negative ions could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons - can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion - ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.

  8. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields

    SciTech Connect

    Grisham, L.R.; Kwan, J.W.

    2008-08-01

    Some years ago it was suggested that halogen negative ions [1]could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons -- can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion-ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.

  9. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields

    SciTech Connect

    L. Grisham and J.W. Kwan

    2008-08-12

    Some years ago it was suggested that halogen negative ions [1] could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons -- can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion-ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.

  10. 1986 Nuclear Science Symposium, 33rd, and 1986 Symposium on Nuclear Power Systems, 18th, Washington, DC, Oct. 29-31, 1986, Proceedings

    NASA Technical Reports Server (NTRS)

    Stubblefield, F. W. (Editor)

    1987-01-01

    Papers are presented on space, low-energy physics, and general nuclear science instrumentations. Topics discussed include data acquisition systems and circuits, nuclear medicine imaging and tomography, and nuclear radiation detectors. Consideration is given to high-energy physics instrumentation, reactor systems and safeguards, health physics instrumentation, and nuclear power systems.

  11. Investigation of an online, problem-based introduction to nuclear sciences: A case study

    SciTech Connect

    Schmidt, M.; Easter, M.; Jiazhen, W.; Jonassen, D.

    2006-07-01

    An online, grant-funded course on nuclear engineering in society was developed at a large Midwestern university with the goal of providing non-majors a meaningful introduction to the many applications of nuclear science in a modern society and to stimulate learner interest in academic studies and/or professional involvement in nuclear science. Using a within-site case study approach, the current study focused on the efficacy of the online learning environment's support of learners' acquisition of knowledge and the impact of the environment on learners' interest in and beliefs about nuclear sciences in society. Findings suggest the environment successfully promoted learning and had a positive impact on learners' interests and beliefs. (authors)

  12. Particle Accelerator Applications: Ion and Electron Irradiation in Materials Science, Biology and Medicine

    NASA Astrophysics Data System (ADS)

    Rodríguez-Fernández, Luis

    2010-09-01

    Although the developments of particle accelerators are devoted to basic study of matter constituents, since the beginning these machines have been applied with different purposes in many areas also. Today particle accelerators are essential instruments for science and technology. This work presents an overview of the main application for direct particle irradiation with accelerator in material science, biology and medicine. They are used for material synthesis by ion implantation and charged particle irradiation; to make coatings and micromachining; to characterize broad kind of samples by ion beam analysis techniques; as mass spectrometers for atomic isotopes determination. In biomedicine the accelerators are applied for the study of effects by charged particles on cells. In medicine the radiotherapy by electron irradiation is widely used, while hadrontherapy is still under development. Also, they are necessary for short life radioisotopes production required in radiodiagnostic.

  13. Improvement of technology for treatment of spent radioactive ion-exchange resins at nuclear power stations

    NASA Astrophysics Data System (ADS)

    Korchagin, Yu. P.; Aref'ev, E. K.; Korchagin, E. Yu.

    2010-07-01

    Results from tests of technology for decontaminating spent radioactive ion-exchange resins at the Balakovo and Kalinin nuclear power stations are presented. Versions of technological schemes with cleaning and repeated use of decontaminating solution are considered. The possibility of considerably reducing the volume of radioactive wastes is demonstrated.

  14. FUSION NUCLEAR SCIENCE FACILITY (FNSF) BEFORE UPGRADE TO COMPONENT TEST FACILITY (CTF)

    SciTech Connect

    Peng, Yueng Kay Martin; Canik, John; Diem, Stephanie J; Milora, Stanley L; Park, J. M.; Sontag, Aaron C; Fogarty, P. J.; Lumsdaine, Arnold; Murakami, Masanori; Burgess, Thomas W; Cole, Michael J; Katoh, Yutai; Korsah, Kofi; Patton, Bradley D; Wagner, John C; Yoder, III, Graydon L

    2011-01-01

    The compact (R0~1.2-1.3m) Fusion Nuclear Science Facility (FNSF) is aimed at providing a fully integrated, continuously driven fusion nuclear environment of copious fusion neutrons. This facility would be used to test, discover, and understand the complex challenges of fusion plasma material interactions, nuclear material interactions, tritium fuel management, and power extraction. Such a facility properly designed would provide, initially at the JET-level plasma pressure (~30%T2) and conditions (e.g., Hot-Ion H-Mode, Q<1)), an outboard fusion neutron flux of 0.25 MW/m2 while requiring a fusion power of ~19 MW. If and when this research is successful, its performance can be extended to 1 MW/m2 and ~76 MW by reaching for twice the JET plasma pressure and Q. High-safety factor q and moderate-plasmas are used to minimize or eliminate plasma-induced disruptions, to deliver reliably a neutron fluence of 1 MW-yr/m2 and a duty factor of 10% presently anticipated for the FNS research. Success of this research will depend on achieving time-efficient installation and replacement of all internal components using remote handling (RH). This in turn requires modular designs for the internal components, including the single-turn toroidal field coil center-post. These device goals would further dictate placement of support structures and vacuum weld seals behind the internal and shielding components. If these goals could be achieved, the FNSF would further provide a ready upgrade path to the Component Test Facility (CTF), which would aim to test, for 6 MW-yr/m2 and 30% duty cycle, the demanding fusion nuclear engineering and technologies for DEMO. This FNSF-CTF would thereby complement the ITER Program, and support and help mitigate the risks of an aggressive world fusion DEMO R&D Program. The key physics and technology research needed in the next decade to manage the potential risks of this FNSF are identified.

  15. Fusion Nuclear Science Facility (FNSF) before Upgrade to Component Test Facility (CTF)

    SciTech Connect

    Peng, Yueng Kay Martin

    2010-01-01

    The compact (R0~1.2-1.3m) Fusion Nuclear Science Facility (FNSF) is aimed at providing a fully integrated, continuously driven fusion nuclear environment of copious fusion neutrons. This facility would be used to test, discover, understand, and innovate scientific and technical solutions for the challenges facing DEMO, by addressing the multi-scale synergistic interactions involving fusion plasma material interactions, tritium fuel cycle, power extraction, and the nuclear effects on materials. Such a facility properly designed would provide, initially at the JET-level plasma pressure (~30%T2) and conditions (e.g., Hot-Ion H-Mode), an outboard fusion neutron flux of 0.25 MW/m2 while requiring a fusion power of 19 MW. If and when this research operation is successful, its performance can be extended to 1 MW/m2 and 76 MW by reaching for twice the JET plasma pressure and Q. High-safety factor q and moderate- plasmas would minimize plasma-induced disruptions, helping to deliver reliably a neutron fluence of 1 MW-yr/m2 and a duty factor of 10% presently anticipated for the FNS research. Success of this research will depend on achieving time-efficient installation and replacement of all components using extensive remote handling (RH). This in turn requires modular designs for all internal components, including the single-turn toroidal field coil center-post with RH-compatible bi-directional sliding joints. Such device goals would further dictate placement of support structures and vacuum seal welds behind the internal and shielding components. If these further goals could be achieved, the FNSF would provide a ready upgrade path to the Component Test Facility (CTF), which would aim to test, at higher neutron fluence and duty cycle, the demanding fusion nuclear engineering and technologies for DEMO. This FNSF-CTF strategy would be complementary to the ITER and the Broader Approach programs, and thereby help mitigate the risks of an aggressive world fusion DEMO R&D Program

  16. Probing Ultrafast Nuclear Dynamics in Halomethanes by Time-Resolved Electron and Ion Imaging

    NASA Astrophysics Data System (ADS)

    Ziaee, F.; Rudenko, A.; Rolles, D.; Savelyev, E.; Bomme, C.; Boll, R.; Manschwetus, B.; Erk, B.; Trippel, S.; Wiese, J.; Kuepper, J.; Amini, K.; Lee, J.; Brouard, M.; Brausse, F.; Rouzee, A.; Olshin, P.; Mereshchenko, A.; Lahl, J.; Johnsson, P.; Simon, M.; Marchenko, T.; Holland, D.; Underwood, J.

    2016-05-01

    Femtosecond pump-probe experiments provide opportunities to investigate photochemical reaction dynamics and the resulting changes in molecular structure in detail. Here, we present a study of the UV-induced photodissociation of gas-phase halomethane molecules (CH3 I, CH2 IBr, ...) in a pump-probe arrangement using two complementary probe schemes, either using a femtosecond near-infrared laser or the FLASH free-electron laser. We measured electrons and ions produced during the interaction using a double-sided velocity map imaging spectrometer equipped with a CCD camera for electron detection and with the Pixel Imaging Mass Spectrometry (PImMS) camera for ions, which can record the arrival time for up to four ions per pixel. This project is supported by the DOE, Office of Science, BES, Division of Chemical, Geological, and Biological Sciences.

  17. Using the World Wide WEB to promote science education in nuclear energy and RWM

    SciTech Connect

    Robinson, M.

    1996-12-31

    A priority of government and business in the United States and other first tier industrial countries continues to be the improvement of science, mathematics and technology (SMT) instruction in pre university level education. The U.S. federal government has made SMT instruction an educational priority and set goals for improving it in the belief that science, math and technology education are tied to our economic well being and standard of living. The new national standards in mathematics education, science education and the proposed standards in technology education are all aimed at improving knowledge and skills in the essential areas that the federal government considers important for protecting our technological advantage in the world economy. This paper will discuss a pilot project for establishing graphical Web capability in a limited number of rural Nevada schools (six) with support from the US Department of Energy (DOE) and the state of Nevada. The general goals of the pilot project are as follows: (1) to give rural teachers and students access to up to date science information on the Web; (2) to determine whether Web access can improve science teaching and student attitudes toward science in rural Nevada schools; and (3) to identify science content on the Web that supports the National Science Standards and Benchmarks. A specific objective that this paper will address is stated as the following question: What potential do nuclear energy information office web sites offer for changing student attitudes about nuclear energy and creating greater nuclear literacy.

  18. Nuclear point mass effects in the interaction of energetic ion with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zheng, Li-Ping; Yan, Long; Zhu, Zhi-Yong; Ma, Guo-Liang

    2016-03-01

    We have calculated deposited energies of various energetic ions in carbon nanotubes, to study nuclear point mass effects, with the help of a static Monte Carlo (MC) simulation program. As a result of nuclear point mass effects, we show that at the same incident energy, the ion-deposited energy maximizes, while its mass has intermediate mass values, such as 11B, 12C and 14N ion masses, under hundreds keV 4He, 11B, 12C, 14N, 20Ne, 28Si and 40Ar ion irradiations of a thin-walled carbon nanotube. We also show that at the same incident energy, the coordination defect number maximizes, while its mass has an intermediate mass (20Ne) value, under hundreds keV 4He, 20Ne and 40Ar ion irradiations of the thin-walled nanotube. We derive an ion-deposited energy formula to analyze these maximum phenomena, and compare the MC simulation results with the MD (molecular dynamics) ones.

  19. 1st International Nuclear Science and Technology Conference 2014 (INST2014)

    NASA Astrophysics Data System (ADS)

    2015-04-01

    Nuclear technology has played an important role in many aspects of our lives, including agriculture, energy, materials, medicine, environment, forensics, healthcare, and frontier research. The International Nuclear Science and Technology Conference (INST) aims to bring together scientists, engineers, academics, and students to share knowledge and experiences about all aspects of nuclear sciences. INST has evolved from a series of national conferences in Thailand called Nuclear Science and Technology (NST) Conference, which has been held for 11 times, the first being in 1986. INST2014 was held in August 2014 and hosted by Thailand Institute of Nuclear Technology (TINT). The theme was "Driving the future with nuclear technology". The conference working language was English. The proceedings were peer reviewed and considered for publication. The topics covered in the conference were: • Agricultural and food applications [AGR] • Environmental applications [ENV] • Radiation processing and industrial applications [IND] • Medical and nutritional applications [MED] • Nuclear physics and engineering [PHY] • Nuclear and radiation safety [SAF] • Other related topics [OTH] • Device and instrument presentation [DEV] Awards for outstanding oral and poster presentations will be given to qualified students who present their work during the conference.

  20. Computational templates for introductory nuclear science using mathcad

    NASA Astrophysics Data System (ADS)

    Sarantites, D. G.; Sobotka, L. G.

    2013-01-01

    Computational templates used to teach an introductory course in nuclear chemistry and physics at Washington University in St. Louis are presented in brief. The templates cover both basic and applied topics.

  1. Ideology in science and technology: the case of civilian nuclear power

    SciTech Connect

    Harrod, A.N.

    1987-01-01

    This dissertation traces the complicated interrelationships between ideology and interest within the civilian nuclear power controversy. The first chapter introduces the topic. The second chapter provides a social-political-economic overview of the context in which the conflicting ideologies arose. Factors looked at are the ascendancy of the physical sciences, the development of nuclear energy, the disenchantment with science and technology and the consequent rise of an anti-nuclear ideology. Chapter III uses the theories of Alvin Gouldner to understand the structure of ideology. The chapter defines ideology's similarities to and differences from scientific discourse. Chapter IV examines the ideological discourse of a selected sample of scientists who have spoken for and against civilian nuclear power. In parallel to chapter IV, chapter V examines a scientific controversy among the sample of experts. It shows how scientific disagreement can be produced and how ideology is most closely linked to science. Chapter VI examines the social interests of the scientists and experts to discover ways that interests have shaped the ideological and scientific positions for and against civilian nuclear energy. Based on the foregoing, chapter VII concludes that the introduction of science and experts into a controversy cannot be expected to end disagreement over policy because of the link between science and ideology.

  2. Light ion components of the galactic cosmic rays: Nuclear interactions and transport theory

    NASA Astrophysics Data System (ADS)

    Cucinotta, F. A.; Townsend, L. W.; Wilson, J. W.; Shinn, J. L.; Badhwar, G. D.; Dubey, R. R.

    Light nuclei are present in the primary galactic cosmic rays (GCR) and are produced in thick targets due to projectile or target fragmentation from both nucleon and heavy induced reactions. In the primary GCR, He-4 is the most abundant nucleus after H-1. However, there are also a substantial fluxes of H-2 and He-3. In this paper we describe theoretical models based on quantum multiple scattering theory for the description of light ion nuclear interactions. The energy dependence of the light ion fragmentation cross section is considered with comparisons of inclusive yields and secondary momentum distributions to experiments described. We also analyze the importance of a fast component of lights ions from proton and neutron induced target fragementation. These theoretical models have been incorporated into the cosmic ray transport code HZETRN and will be used to analyze the role of shielding materials in modulating the production and the energy spectrum of light ions.

  3. Light ion components of the galactic cosmic rays: Nuclear interactions and transport theory

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Townsend, L. W.; Wilson, J. W.; Shinn, J. L.; Badhwar, G. D.; Dubey, R. R.

    1996-01-01

    Light nuclei are present in the primary galactic cosmic rays (GCR) and are produced in thick targets due to projectile or target fragmentation from both nucleon and heavy induced reactions. In the primary GCR, He-4 is the most abundant nucleus after H-1. However, there are also a substantial fluxes of H-2 and He-3. In this paper we describe theoretical models based on quantum multiple scattering theory for the description of light ion nuclear interactions. The energy dependence of the light ion fragmentation cross section is considered with comparisons of inclusive yields and secondary momentum distributions to experiments described. We also analyze the importance of a fast component of lights ions from proton and neutron induced target fragementation. These theoretical models have been incorporated into the cosmic ray transport code HZETRN and will be used to analyze the role of shielding materials in modulating the production and the energy spectrum of light ions.

  4. Application of laser produced ion beams to nuclear analysis of materials

    NASA Astrophysics Data System (ADS)

    Mima, Kunioki; Fujita, K.; Azuma, H.; Yamazaki, A.; Kato, Y.; Okuda, C.; Ukyo, Y.; Sawada, H.; Gonzalez-Arrabal, Raquel; Perlado, J. M.; Nishimura, H.; Nakai, S.

    2013-11-01

    The ion beam driven nuclear analysis has been developed for many years by using various electrostatic accelerators. A proton micro-beam with the beam diameter of ˜1.5 μm at Takasaki Ion Acceleration for Advanced Radiation Application (TIARA), JAEA was used to analyze the positive electrode of the Li-ion battery with PIGE and PIXE. WThe PIGE and PIXE images of Li and Ni respectively for LixNi0.8Co0.15Al0.05O2(x = 0.75 ˜ 1.0) anodes have been taken. The PIGE images of LixNi0.8Co0.15Al0.05O2 particles and the depth profile of the Li density have been obtained with high spatial resolution (a few μm). The images of the Li density distribution are very useful for the R&D of the Li ion battery. In order to make the in-situ ion beam analysis of the Li battery possible, a compact accelerator for a high quality MeV proton beam is necessary. Form this point of view, the diagnostics of Li ion battery is an appropriate field for the applications of laser produced ion beams.

  5. Nuclear Technology, Global Warming, and the Politicization of Science

    NASA Astrophysics Data System (ADS)

    Weart, Spencer

    2016-03-01

    Since the mid 20th century physical scientists have engaged in two fierce public debates on issues that posed existential risks to modern society: nuclear weapons and global warming. The two overlapped with a third major debate over the deployment of nuclear power reactors. Each controversy included technical disagreements raised by a minority among the scientists themselves. Despite efforts to deal with the issues objectively, the scientists became entangled in left vs. right political polarization. All these debates, but particularly the one over climate change, resulted in a deterioration of public faith in the objectivity and integrity of scientists.

  6. Selective Detection of Low-Velocity Ions Using Nuclear Emulsion Films

    NASA Astrophysics Data System (ADS)

    Naka, Tatsuhiro; Kuge, Ken'ichi; Nakamura, Mitsuhiro

    2013-11-01

    We focused on the difference between the photographic sensitivities of nuclear emulsion films by the electronic stopping power (ESP) and nuclear stopping power (NSP) of charged particles. The effects of high-velocity particles, in which ESP was dominant, and of low-velocity particles, where both ESP and NSP were effective, were compared. Low-velocity Kr ions formed internal latent images by the interaction with NSP. This may be due to the formation of crystal defects by atomic collisions along the route of these ions in silver halide crystals, and such defects are detected only by internal development. On the other hand, high-velocity ions like α-rays did not form internal latent images in the emulsion with Au+S sensitization, because sensitization centers on the surface of crystals accumulated excited electrons by ESP and only surface latent images were formed. It is demonstrated that internal latent images are characteristic signals by NSP. Low-velocity ions are selectively detectable by the internal development, even in high background fields like γ-rays, β-rays, or other high-velocity ions.

  7. Dependence of simulated positron emitter yields in ion beam cancer therapy on modeling nuclear fragmentation.

    PubMed

    Lühr, Armin; Priegnitz, Marlen; Fiedler, Fine; Sobolevsky, Nikolai; Bassler, Niels

    2014-01-01

    In ion beam cancer therapy, range verification in patients using positron emission tomography (PET) requires the comparison of measured with simulated positron emitter yields. We found that (1) changes in modeling nuclear interactions strongly affected the positron emitter yields and that (2) Monte Carlo simulations with SHIELD-HIT10Areasonably matched the most abundant PET isotopes (11)C and (15)O. We observed an ion-energy (i.e., depth) dependence of the agreement between SHIELD-HIT10Aand measurement. Improved modeling requires more accurate measurements of cross-section values. PMID:23352823

  8. The Politics of Science and Technology: Nuclear and Solar Alternatives.

    ERIC Educational Resources Information Center

    Etzkowitz, Henry

    Historical data reveal that U.S. government policy and military and corporate interests have been instrumental in the development of nuclear energy and the underdevelopment of solar energy. It was not until 1972 that solar energy was funded by the Energy Research and Development Agency (ERDA) and in 1974 solar energy received $12.2 million as…

  9. The Need for a Strong Science and Technology Program in the Nuclear Weapons Complex for the 21st Century

    SciTech Connect

    Garaizar, Xabier

    2009-07-02

    In this paper I argue for the need for a strong Science and Technology program in the Nuclear Weapons Complex as the basis for maintaining a credible deterrence capability. The current Nuclear Posture Review establishes a New Triad as the basis for the United States deterrence strategy in a changing security environment. A predictive science capability is at the core of a credible National Nuclear Weapons program in the 21st Century. In absence of nuclear testing, the certification of our current Nuclear Weapons relies on predictive simulations and quantification of the associated simulation uncertainties. In addition, a robust nuclear infrastructure needs an active research and development program that considers all the required nuclear scenarios, including new configurations for which there is no nuclear test data. This paper also considers alternative positions to the need for a Science and Technology program in the Nuclear Weapons complex.

  10. Science Is Important, but Politics Drives the Siting of Nuclear Waste Repositories

    NASA Astrophysics Data System (ADS)

    Shaw, George H.

    2014-02-01

    In 1982, I worked on the Nuclear Waste Policy Act as an AGU Congressional Science Fellow tasked with assisting a member of the House Energy and Commerce Committee. When I recently read the suggestion that clay-rich strata (shales) could be a viable medium for high-level nuclear waste (HLW) disposal [Neuzil, 2013], I could not help but remember the insights I gained more than 30 years ago from my time on the Hill.