Science.gov

Sample records for ion nuclear science

  1. Glenn T. Seaborg and heavy ion nuclear science

    SciTech Connect

    Loveland, W. . Dept. of Chemistry Lawrence Berkeley Lab., CA )

    1992-04-01

    Radiochemistry has played a limited but important role in the study of nucleus-nucleus collisions. Many of the important radiochemical studies have taken place in Seaborg's laboratory or in the laboratories of others who have spent time in Berkeley working with Glenn T. Seaborg. I will discuss studies of low energy deep inelastic reactions with special emphasis on charge equilibration, studies of the properties of heavy residues in intermediate energy nuclear collisions and studies of target fragmentation in relativistic and ultrarelativistic reactions. The emphasis will be on the unique information afforded by radiochemistry and the physical insight derived from radiochemical studies. Future roles of radiochemistry in heavy ion nuclear science also will be discussed.

  2. Glenn T. Seaborg and heavy ion nuclear science

    SciTech Connect

    Loveland, W. |

    1992-04-01

    Radiochemistry has played a limited but important role in the study of nucleus-nucleus collisions. Many of the important radiochemical studies have taken place in Seaborg`s laboratory or in the laboratories of others who have spent time in Berkeley working with Glenn T. Seaborg. I will discuss studies of low energy deep inelastic reactions with special emphasis on charge equilibration, studies of the properties of heavy residues in intermediate energy nuclear collisions and studies of target fragmentation in relativistic and ultrarelativistic reactions. The emphasis will be on the unique information afforded by radiochemistry and the physical insight derived from radiochemical studies. Future roles of radiochemistry in heavy ion nuclear science also will be discussed.

  3. Glenn T. Seaborg and heavy ion nuclear science

    NASA Astrophysics Data System (ADS)

    Loveland, W.

    1992-04-01

    Radiochemistry has played a limited but important role in the study of nucleus-nucleus collisions. Many of the important radiochemical studies have taken place in Seaborg's laboratory or in the laboratories of others who have spent time in Berkeley working with Glenn T. Seaborg. Studies of low energy deep inelastic reactions are discussed, and special emphasis is placed on charge equilibration. Additionally, studies of the properties of heavy residues in intermediate energy nuclear collisions and studies of target fragmentation in relativistic and ultrarelativistic reactions are reported. The emphasis will be on the unique information afforded by radiochemistry and the physical insight derived from radiochemical studies. Future roles of radiochemistry in heavy ion nuclear science also will be discussed.

  4. Nuclear Science.

    ERIC Educational Resources Information Center

    Pennsylvania State Dept. of Education, Harrisburg. Bureau of Curriculum Services.

    This document is a report on a course in nuclear science for the high school curriculum. The course is designed to provide a basic but comprehensive understanding of the atom in the light of modern knowledge, and to show how people attempt to harness the tremendous energy liberated through fission and fusion reactions. The course crosses what are…

  5. The on-line charge breeding program at TRIUMF's Ion Trap For Atomic and Nuclear Science for precision mass measurements

    SciTech Connect

    Simon, M. C.; Eberhardt, B.; Jang, F.; Luichtl, M.; Robertson, D.; Chaudhuri, A.; Delheij, P.; Grossheim, A.; Kwiatkowski, A. A.; Mane, E.; Pearson, M. R.; Schultz, B. E.; Bale, J. C.; Chowdhury, U.; Ettenauer, S.; Gallant, A. T.; Dilling, J.; Lennarz, A.; Ma, T.; Andreoiu, C.; and others

    2012-02-15

    TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN) constitutes the only high precision mass measurement setup coupled to a rare isotope facility capable of increasing the charge state of short-lived nuclides prior to the actual mass determination in a Penning trap. Recent developments around TITAN's charge breeder, the electron beam ion trap, form the basis for several successful experiments on radioactive isotopes with half-lives as low as 65 ms and in charge states as high as 22+.

  6. Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Biberian, Jean-Paul

    2006-02-01

    of analysis of Ti foil after glow discharge with deuterium / I. B. Savvatimova and D. V. Gavritenkov. Enhancement mechanisms of low-energy nuclear reactions / F. A. Gareev, I. E. Zhidkova, and Y. L. Ratis. Co-deposition of palladium with hydrogen isotopes / J. Dash and A. Ambadkar. Variation of the concentration of isotopes copper and zinc in human plasmas of patients affected by cancer / A. Triassi. Transmutation of metal at low energy in a confined plasma in water / D. Cirillo and V. Iorio. The conditions and realization of self-similar Coulomb collapse of condensed target and low-energy laboratory nucleosynthesis / S. V. Adamenko and V. I. Vysotskii. The spatial structure of water and the problem of controlled low-energy nuclear reactions in water matrix / V. I. Vysotskii and A. A. Kornilova. Experiments on controlled decontamination of water mixture of longlived active isotopes in biological cells / V. I. Vysotskii. Assessment of the biological effects of "strange" radiation / E. A. Pryakhin ... [et al.]. Possible nuclear transmutation of nitrogen in the earth's atmosphere / M. Fukuhara. Evidences on the occurrence of LENR-type processes in alchemical transmutations / J. Pérez-Pariente. History of the discovery of transmutation at Texas A&M University / J. O.-M. Bockris -- 4. Theory. Quantum electrodynamics. Concerning the modeling of systems in terms of quantum electro dynamics: the special case of "cold fusion" / M. Abyaneh ... [et al.]. Screening. Theoretical model of the probability of fusion between deuterons within deformed lattices with microcracks at room temperature / F. Fulvio. Resonant tunnelling. Effective interaction potential in the deuterium plasma and multiple resonance scattering / T. Toimela. Multiple scattering theory and condensed matter nuclear science - "super-absorption" in a crystal latice / X. Z. Li ... [et al.]. Ion band states. Framework for understanding LENR processes, using conventional condensed matter physics / S. R. Chubb. I

  7. Western Nuclear Science Alliance

    SciTech Connect

    Steve Reese; George Miller; Stephen Frantz; Denis Beller; Denis Beller; Ed Morse; Melinda Krahenbuhl; Bob Flocchini; Jim Elliston

    2010-12-07

    The primary objective of the INIE program is to strengthen nuclear science and engineering programs at the member institutions and to address the long term goal of the University Reactor Infrastructure and Education Assistance Program.

  8. Nuclear Science References Database

    SciTech Connect

    Pritychenko, B.; Běták, E.; Singh, B.; Totans, J.

    2014-06-15

    The Nuclear Science References (NSR) database together with its associated Web interface, is the world's only comprehensive source of easily accessible low- and intermediate-energy nuclear physics bibliographic information for more than 210,000 articles since the beginning of nuclear science. The weekly-updated NSR database provides essential support for nuclear data evaluation, compilation and research activities. The principles of the database and Web application development and maintenance are described. Examples of nuclear structure, reaction and decay applications are specifically included. The complete NSR database is freely available at the websites of the National Nuclear Data Center (http://www.nndc.bnl.gov/nsr) and the International Atomic Energy Agency (http://www-nds.iaea.org/nsr)

  9. Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Takahashi, Akito; Ota, Ken-Ichiro; Iwamura, Yashuhiro

    [symbol]PO[symbol] single crystal during transition through curie point (Tc = 220K) / A. G. Lipson ... [et al.]. Study of energetic and temporal characteristics of X-ray emission from solid-state cathode medium of high-current glow discharge / A. B. Karabut. A novel LiF-based detector for X-ray imaging in hydrogen loaded Ni films under laser irradiation / R. M. Montereali ... [et al.]. Observation and modeling of the ordered motion of hypothetical magnetically charged particles on the multilayer surface and the problem of low-energy fusion / S. V. Adamenko and V. I. Vysotskii -- 5. Material science. Evidence of superstoichiometric H/D lenr active sites and high-temperature superconductivity in a hydrogen-cycled Pd/PdO / A. G. Lipson ... [et al.]. New procedures to make active, fractal-like surfaces on thin Pd wires / F. Celani ... [et al.]. Using resistivity to measure H/Pd and D/Pd loading: Method and significance / M. C. H. McKubre and F. L. Tanzella. Measurements of the temperature coefficient of electric resistivity of hydrogen overloaded Pd / A. Spallone ... [et al.]. Magnetic interaction of hypothetical particles moving beneath the electrode/electrolyte interface to elucidate evolution mechanism of vortex appeared on Pd surface after long-term evolution of deuterium in 0.1 m LiOD / H. Numata and M. Ban. Unusual structures on the material surfaces irradiated by low-energy ions / B. Rodionov and I. Savvatimova -- 6. Theory. Context for understanding why particular nanoscale crystals turn-on faster and other LENR effects / S. R. Chubb. Models for anomalies in condensed matter deuterides / P. L. Hagelstein. Time-dependent EQPET analysis of TSC / A. Takahashi. Unifying theory of low-energy nuclear reaction and transmutation processes in deuterated/hydrogenated metals, acoustic cavitation, glow discharge, and deuteron beam experiments / Y. E. Kim and A. L. Zubarev. Catalytic fusion and the interface between insulators and transition metals / T. A. Chubb. Multiple scattering of deuterium

  10. Nuclear War and Science Teaching.

    ERIC Educational Resources Information Center

    Hobson, Art

    1983-01-01

    Suggests that science-related material on nuclear war be included in introductory courses. Lists nuclear war topics for physics, psychology, sociology, biology/ecology, chemistry, geography, geology/meteorology, mathematics, and medical science. Also lists 11 lectures on nuclear physics which include nuclear war topics. (JN)

  11. Air ions and aerosol science

    NASA Astrophysics Data System (ADS)

    Tammet, Hannes

    1996-03-01

    Collaboration between Gas Discharge and Plasma Physics, Atmospheric Electricity, and Aerosol Science is a factor of success in the research of air ions. The concept of air ion as of any carrier of electrical current through the air is inherent to Atmospheric Electricity under which a considerable statistical information about the air ion mobility spectrum is collected. A new model of air ion size-mobility correlation has been developed proceeding from Aerosol Science and joining the methods of neighboring research fields. The predicted temperature variation of the mobility disagrees with the commonly used Langevin rule for the reduction of air ion mobilities to the standard conditions. Concurrent errors are too big to be neglected in applications. The critical diameter distinguishing cluster ions and charged aerosol particles has been estimated to be 1.4-1.8 nm.

  12. Global Security, Medical Isotopes, and Nuclear Science

    SciTech Connect

    Ahle, L E

    2007-09-17

    Over the past century basic nuclear science research has led to the use of radioactive isotopes into a wide variety of applications that touch our lives everyday. Some are obvious, such as isotopes for medical diagnostics and treatment. Others are less so, such as National/Global security issues. And some we take for granted, like the small amount of 241Am that is in every smoke detector. At the beginning of this century, we are in a position where the prevalence and importance of some applications of nuclear science are pushing the basic nuclear science community for improved models and nuclear data. Yet, at the same time, the push by the basic nuclear science community to study nuclei that are farther and farther away from stability also offer new opportunities for many applications. This talk will look at several global security applications of nuclear science, summarizing current R&D and need for improved nuclear data It will also look at how applications of nuclear science, such as to medicine, will benefit from the push for more and more powerful radioactive ion beam facilities.

  13. Global Security, Medical Isotopes, and Nuclear Science

    SciTech Connect

    Ahle, Larry

    2007-10-26

    Over the past century basic nuclear science research has led to the use of radioactive isotopes into a wide variety of applications that touch our lives everyday. Some are obvious, such as isotopes for medical diagnostics and treatment. Others are less so, such as National/Global security issues. And some we take for granted, like the small amount of 241 Am that is in every smoke detector. At the beginning of this century, we are in a position where the prevalence and importance of some applications of nuclear science are pushing the basic nuclear science community for improved models and nuclear data. Yet, at the same time, the push by the basic nuclear science community to study nuclei that are farther and farther away from stability also offer new opportunities for many applications. This talk will look at several global security applications of nuclear science, summarizing current R and D and need for improved nuclear data It will also look at how applications of nuclear science, such as to medicine, will benefit from the push for more and more powerful radioactive ion beam facilities.

  14. Nuclear Science Centre, New Delhi

    SciTech Connect

    Mehta, G.; Potukuchi, P.; Roy, A.

    1995-08-01

    Argonne is collaborating with the Nuclear Science Centre (NSC), New Delhi, to develop a new type of superconducting accelerating structure for low-velocity heavy ions. A copper model has been evaluated and tests on the niobium prototype are currently in progress. Some technical details of this project are described in the Superconducting Linac Development section of this report. All funding for the prototype has come from the NSC, and they have also stationed two staff members at ATLAS for the past two years to gain experience and work on this project. Additional NSC personnel visited ATLAS for extended periods during 1994 for electronics and cryogenics experience and training. Two NSC staff members are scheduled to spend several months at ANL during 1995 to continue tests and developments of the prototype resonators and to initiate fabrication of the production models for their linac project.

  15. Nuclear science. Annual report, July 1, 1980-June 30, 1981

    SciTech Connect

    Friedlander, E.M.

    1982-06-01

    This annual report describes the scientific research carried out within the Nuclear Science Division between July 1, 1980 and June 30, 1981. The principal activity of the division continues to be the experimental and theoretical investigation of the interaction of heavy ions with target nuclei. Complementary research programs in light-ion nuclear science, in nuclear data evaluations, and in the development of advanced instrumentation are also carried out.

  16. Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Takahashi, Akito; Ota, Ken-Ichiro; Iwamura, Yashuhiro

    Preface -- 1. General. Progress in condensed matter nuclear science / A. Takahashi. Summary of ICCF-12 / X. Z. Li. Overview of light water/hydrogen-based low-energy nuclear reactions / G. H. Miley and P. J. Shrestha -- 2. Excess heat and He detection. Development of "DS-reactor" as the practical reactor of "cold fusion" based on the "DS-cell" with "DS-cathode" / Y. Arata and Y.-C. Zhang. Progress in excess of power experiments with electrochemical loading of deuterium in palladium / V. Violante ... [et al.]. Anomalous energy generation during conventional electrolysis / T. Mizuno and Y. Toriyabe. "Excess heat" induced by deuterium flux in palladium film / B. Liu ... [et al.]. Abnormal excess heat observed during Mizuno-type experiments / J.-F. Fauvarque, P. P. Clauzon and G. J.-M. Lallevé. Seebeck envelope calorimetry with a Pd|D[symbol]O + H[symbol]SO[symbol] electrolytic cell / W.-S. Zhang, J. Dash and Q. Wang. Observation and investigation of nuclear fusion and self-induced electric discharges in liquids / A. I. Koldamasov ... [et al.]. Description of a sensitive seebeck calorimeter used for cold fusion studies / E. Storms. Some recent results at ENEA / M. Apicella ... [et al.]. Heat measurement during plasma electrolysis / K. Iizumi ... [et al.]. Effect of an additive on thermal output during electrolysis of heavy water with a palladium cathode / Q. Wang and J. Dash. Thermal analysis of calorimetric systems / L. D'Aulerio ... [et al.]. Surface plasmons and low-energy nuclear reactions triggering / E. Castagna ... [et al.]. Production method for violent TCB jet plasma from cavity / F. Amini. New results and an ongoing excess heat controversy / L. Kowalski ... [et al.] -- 3. Transmutation. Observation of surface distribution of products by X-ray fluorescence spectrometry during D[symbol] gas permeation through Pd Complexes / Y. Iwamura ... [et al.]. Discharge experiment using Pd/CaO/Pd multi-layered cathode / S. Narita ... [et al.]. Producing transmutation

  17. The NUCLEONICA Nuclear Science Portal

    SciTech Connect

    Magill, Joseph; Dreher, Raymond

    2009-08-19

    NUCLEONICA (www.nucleonica.net) is a new nuclear science web portal which provides a customisable, integrated environment and collaboration platform using the latest internet 'Web 2.0' technology. NUCLEONICA is aimed at professionals, academics and students working in nuclear power, health physics and radiation protection, nuclear and radio-chemistry, and astrophysics. A unique feature of the portal is the wide range of user friendly web-based nuclear science applications. The portal is also ideal for education and training purposes and as a knowledge management platform to preserve nuclear knowledge built up over many decades.

  18. Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Biberian, Jean-Paul

    2006-02-01

    into characteristics of X-ray emission laser beams from solidstate cathode medium of high-current glow discharge / A. B. Karabut. Charged particles from Ti and Pd foils / L. Kowalski ... [et al.]. Cr-39 track detectors in cold fusion experiments: review and perspectives / A. S. Roussetski. Energetic particle shower in the vapor from electrolysis / R. A. Oriani and J. C. Fisher. Nuclear reactions produced in an operating electrolysis cell / R. A. Oriani and J. C. Fisher. Evidence of microscopic ball lightning in cold fusion experiments / E. H. Lewis. Neutron emission from D[symbol] gas in magnetic fields under low temperature / T. Mizuno ... [et al.]. Energetic charged particle emission from hydrogen-loaded Pd and Ti cathodes and its enhancement by He-4 implantation / A. G. Lipson ... [et al.]. H-D permeation. Observation of nuclear transmutation reactions induced by D[symbol] gas permeation through Pd complexes / Y. Iwamura ... [et al.]. Deuterium (hydrogen) flux permeating through palladium and condensed matter nuclear science / Q. M. Wei ... [et al.]. Triggering. Precursors and the fusion reactions in polarized Pd/D-D[symbol]O system: effect of an external electric field / S. Szpak, P. A. Mosier-Boss, and F. E. Gordon. Calorimetric and neutron diagnostics of liquids during laser irradiation / Yu. N. Bazhutov ... [et al.]. Anomalous neutron capture and plastic deformation of Cu and Pd cathodes during electrolysis in a weak thermalized neutron field: evidence of nuclei-lattice exchange / A. G. Lipson and G. H. Miley. H-D loading. An overview of experimental studies on H/Pd over-loading with thin Pd wires and different electrolytic solutions / A. Spallone ... [et al.] -- 3. Transmutations. Photon and particle emission, heat production, and surface transformation in Ni-H system / E. Campari ... [et al.]. Surface analysis of hydrogen-loaded nickel alloys / E. Campari ... [et al.]. Low-energy nuclear reactions and the leptonic monopole / G. Lochak and L. Urutskoev. Results

  19. Nuclear and Astro Physics at the Center of Excellence for Radioactive Ion Beam Studies for Stewardship Science

    SciTech Connect

    Cizewski, Jolie A.

    2010-10-11

    Neutron transfer reactions with radioactive ion beams of atomic nuclei have been used to probe the shell structure of nuclei far from stability and provide information important to understanding the origin of the elements heavier than iron.

  20. Nuclear and Astro Physics at the Center of Excellence for Radioactive Ion Beam Studies for Stewardship Science

    NASA Astrophysics Data System (ADS)

    Cizewski, Jolie A.

    2010-10-01

    Neutron transfer reactions with radioactive ion beams of atomic nuclei have been used to probe the shell structure of nuclei far from stability and provide information important to understanding the origin of the elements heavier than iron.

  1. Nuclear Weapons and Science Education.

    ERIC Educational Resources Information Center

    Wellington, J. J.

    1984-01-01

    Provides suggestions on how science teachers can, and should, deal with the nuclear weapons debate in a balanced and critical way. Includes a table outlining points for and against deterrence and disarmament. (JN)

  2. RAON experimental facilities for nuclear science

    SciTech Connect

    Kwon, Y. K.; Kim, Y. K.; Komatsubara, T.; Moon, J. Y.; Park, J. S.; Shin, T. S.; Kim, Y. J.

    2014-05-02

    The Rare Isotope Science Project (RISP) was established in December 2011 and has put quite an effort to carry out the design and construction of the accelerator complex facility named “RAON”. RAON is a rare isotope (RI) beam facility that aims to provide various RI beams of proton-and neutron-rich nuclei as well as variety of stable ion beams of wide ranges of energies up to a few hundreds MeV/nucleon for the researches in basic science and application. Proposed research programs for nuclear physics and nuclear astrophysics at RAON include studies of the properties of exotic nuclei, the equation of state of nuclear matter, the origin of the universe, process of nucleosynthesis, super heavy elements, etc. Various high performance magnetic spectrometers for nuclear science have been designed, which are KOBRA (KOrea Broad acceptance Recoil spectrometer and Apparatus), LAMPS (Large Acceptance Multi-Purpose Spectrometer), and ZDS (Zero Degree Spectrometer). The status of those spectrometers for nuclear science will be presented with a brief report on the RAON.

  3. Ion-induced nuclear radiotherapy

    DOEpatents

    Horn, K.M.; Doyle, B.L.

    1996-08-20

    Ion-induced Nuclear Radiotherapy (INRT) is a technique for conducting radiosurgery and radiotherapy with a very high degree of control over the spatial extent of the irradiated volume and the delivered dose. Based upon the concept that low energy, ion induced atomic and nuclear reactions can be used to produce highly energetic reaction products at the site of a tumor, the INRT technique is implemented through the use of a conduit-needle or tube which conducts a low energy ion beam to a position above or within the intended treatment area. At the end of the conduit-needle or tube is a specially fabricated target which, only when struck by the ion beam, acts as a source of energetic radiation products. The inherent limitations in the energy, and therefore range, of the resulting reaction products limits the spatial extent of irradiation to a pre-defined volume about the point of reaction. Furthermore, since no damage is done to tissue outside this irradiated volume, the delivered dose may be made arbitrarily large. INRT may be used both as a point-source of radiation at the site of a small tumor, or as a topical bath of radiation to broad areas of diseased tissue. 25 figs.

  4. Ion-induced nuclear radiotherapy

    DOEpatents

    Horn, Kevin M.; Doyle, Barney L.

    1996-01-01

    Ion-induced Nuclear Radiotherapy (INRT) is a technique for conducting radiosurgery and radiotherapy with a very high degree of control over the spatial extent of the irradiated volume and the delivered dose. Based upon the concept that low energy, ion induced atomic and nuclear reactions can be used to produce highly energetic reaction products at the site of a tumor, the INRT technique is implemented through the use of a conduit-needle or tube which conducts a low energy ion beam to a position above or within the intended treatment area. At the end of the conduit-needle or tube is a specially fabricated target which, only when struck by the ion beam, acts as a source of energetic radiation products. The inherent limitations in the energy, and therefore range, of the resulting reaction products limits the spatial extent of irradiation to a pre-defined volume about the point of reaction. Furthermore, since no damage is done to tissue outside this irradiated volume, the delivered dose may be made arbitrarily large. INRT may be used both as a point-source of radiation at the site of a small tumor, or as a topical bath of radiation to broad areas of diseased tissue.

  5. NUCLEAR SCIENCE, AN INTRODUCTORY COURSE.

    ERIC Educational Resources Information Center

    SULCOSKI, JOHN W.

    THIS CURRICULUM GUIDE DESCRIBES A TWELFTH-GRADE INTERDISCIPLINARY, INTRODUCTORY NUCLEAR SCIENCE COURSE. IT IS BELIEVED TO FILL THE NEED FOR AN ADVANCED COURSE THAT IS TIMELY, CHALLENGING, AND APPROPRIATE AS A SEQUENTIAL ADDITION TO THE BIOLOGY-CHEMISTRY-PHYSICS SEQUENCE. PRELIMINARY INFORMATION COVERS SUCH MATTERS AS (1) RADIOISOTOPE WORK AREAS,…

  6. Learning Nuclear Science with Marbles

    NASA Astrophysics Data System (ADS)

    Constan, Zach

    2010-02-01

    Nuclei are small: if an atom was the size of a football field, the nucleus would be an apple sitting on the 50-yd line. At the same time, nuclei are dense: the Earth, compressed to nuclear density, could fit inside four Sears Towers. The subatomic level is strange and exotic. For that reason, it's not hard to get young minds excited about nuclear science. But how does one move beyond analogies like those above and offer a better understanding of the extraordinary world of the nucleus? This is the challenge faced by the outreach program at Michigan State University's National Superconducting Cyclotron Laboratory (NSCL), a National Science Foundation-supported facility specializing in the creation and study of rare isotopes. It was necessary to devise a model of the nucleus that students could interact with and even use to approximate the nuclear reactions that create exotic nuclei. The solution was to use magnetic marbles.

  7. Ion exchange in the nuclear industry

    SciTech Connect

    Bibler, J.P.

    1990-12-31

    Ion exchange is used in nearly every part of the nuclear fuel cycle -- from the purification of uranium from its ore to the final recovery of uranium and transmutation products. Ion exchange also plays a valuable role in the management of nuclear wastes generated in the fuel cycle.

  8. Ion exchange in the nuclear industry

    SciTech Connect

    Bibler, J.P.

    1990-01-01

    Ion exchange is used in nearly every part of the nuclear fuel cycle -- from the purification of uranium from its ore to the final recovery of uranium and transmutation products. Ion exchange also plays a valuable role in the management of nuclear wastes generated in the fuel cycle.

  9. NUCLEAR SCIENCE CURRICULUM PROJECT. INSTRUCTIONAL RESOURCES SUPPLEMENT.

    ERIC Educational Resources Information Center

    Culver City Unified School District, CA.

    DESIGNED AS AN ADJUNCT TO MATERIALS DEVELOPED BY THE NUCLEAR SCIENCE CURRICULUM PROJECT, THIS DOCUMENT PROVIDES RESOURCE MATERIAL WITH WHICH THE NUCLEAR SCIENCE CURRICULUM MAY BE ENRICHED, AND ADDRESSES ITSELF TO (1) INSTRUCTIONAL AIDS PRESENTLY AVAILABLE, (2) USE OF INSTRUCTIONAL AIDS TO SUPPLEMENT THE CURRENT SCIENCE CURRICULA, (3) FACILITIES…

  10. Pioneer women in nuclear science

    NASA Astrophysics Data System (ADS)

    Rayner-Canham, M. F.; Rayner-Canham, G. W.

    1990-11-01

    It is a commonly accepted myth that Marie Curie and Lise Meitner were the only women working in the field of nuclear science during the early part of this century. In fact, there were at least 14 others who published work in this field between 1900 and 1915. This paper provides biographical notes on these women and explores the role of the supervisors. Part of the reason for the significant number of women researchers could have been the supportive attitude of Ernest Rutherford toward female physics graduates. In addition, we argue that several of these women provide better role models for potential women physicists than Marie Curie.

  11. NUCLEAR SCIENCE REFERENCES CODING MANUAL

    SciTech Connect

    WINCHELL,D.F.

    2007-04-01

    This manual is intended as a guide for Nuclear Science References (NSR) compilers. The basic conventions followed at the National Nuclear Data Center (NNDC), which are compatible with the maintenance and updating of and retrieval from the Nuclear Science References (NSR) file, are outlined. The NSR database originated at the Nuclear Data Project (NDP) at Oak Ridge National Laboratory as part of a project for systematic evaluation of nuclear structure data.1 Each entry in this computer file corresponds to a bibliographic reference that is uniquely identified by a Keynumber and is describable by a Topic and Keywords. It has been used since 1969 to produce bibliographic citations for evaluations published in Nuclear Data Sheets. Periodic additions to the file were published as the ''Recent References'' issues of Nuclear Data Sheets prior to 2005. In October 1980, the maintenance and updating of the NSR file became the responsibility of the NNDC at Brookhaven National Laboratory. The basic structure and contents of the NSR file remained unchanged during the transfer. In Chapter 2, the elements of the NSR file such as the valid record identifiers, record contents, and text fields are enumerated. Relevant comments regarding a new entry into the NSR file and assignment of a keynumber are also given in Chapter 2. In Chapter 3, the format for keyword abstracts is given followed by specific examples; for each TOPIC, the criteria for inclusion of an article as an entry into the NSR file as well as coding procedures are described. Authors preparing Keyword abstracts either to be published in a Journal (e.g., Nucl. Phys. A) or to be sent directly to NNDC (e.g., Phys. Rev. C) should follow the illustrations in Chapter 3. The scope of 1See W.B.Ewbank, ORNL-5397 (1978). the literature covered at the NNDC, the categorization into Primary and Secondary sources, etc., is discussed in Chapter 4. Useful information regarding permitted character sets, recommended abbreviations, etc., is

  12. Nuclear Science Division: 1993 Annual report

    SciTech Connect

    Myers, W.D.

    1994-06-01

    This report describes the activities of the Nuclear Science Division for the 1993 calendar year. This was another significant year in the history of the Division with many interesting and important accomplishments. Activities for the following programs are covered here: (1) nuclear structure and reactions program; (2) the Institute for Nuclear and Particle Astrophysics; (3) relativistic nuclear collisions program; (4) nuclear theory program; (5) nuclear data evaluation program, isotope project; and (6) 88-inch cyclotron operations.

  13. Nuclear Science Teaching Aids and Activities.

    ERIC Educational Resources Information Center

    Woodburn, John H.

    This publication is a sourcebook for science teachers. It provides guides for basic laboratory work in nuclear energy, suggesting various teacher and student demonstrations. Ideas for science clubs, science fairs, and project research seminars are presented. Problem-solving activities for both science and mathematics classes are included, as well…

  14. The United Kingdom Nuclear Science Forum

    NASA Astrophysics Data System (ADS)

    MacMahon, Desmond; Forrest, Robin; Judge, Steven

    2005-05-01

    The United Kingdom Nuclear Science Forum effectively acts as the United Kingdom's Nuclear Data Committee. As such it is the interface between the UK nuclear data community and international nuclear data centres. This paper outlines the Forum's terms of reference and describes some of its recent activities.

  15. Nuclear science. Annual report, July 1, 1979-June 30, 1980

    SciTech Connect

    Myers, W.D.; Friedlander, E.M.; Nitschke, J.M.; Stokstad, R.G.

    1981-03-01

    This annual report describes the scientific research carried out within the Nuclear Science Division (NSD) during the period between July 1, 1979 and June 30, 1980. The principal objective of the division continues to be the experimental and theoretical investigation of the interactions of heavy ions with target nuclei, complemented with programs in light ion nuclear science, in nuclear data compilations, and in advanced instrumentation development. The division continues to operate the 88 Inch Cyclotron as a major research facility that also supports a strong outside user program. Both the SuperHILAC and Bevalac accelerators, operated as national facilities by LBL's Accelerator and Fusion Research Division, are also important to NSD experimentalists. (WHK)

  16. Fusion Nuclear Science Pathways Assessment

    SciTech Connect

    C.E. Kessel, et. al.

    2012-02-23

    With the strong commitment of the US to the success of the ITER burning plasma mission, and the project overall, it is prudent to consider how to take the most advantage of this investment. The production of energy from fusion has been a long sought goal, and the subject of several programmatic investigations and time line proposals [1]. The nuclear aspects of fusion research have largely been avoided experimentally for practical reasons, resulting in a strong emphasis on plasma science. Meanwhile, ITER has brought into focus how the interface between the plasma and engineering/technology, presents the most challenging problems for design. In fact, this situation is becoming the rule and no longer the exception. ITER will demonstrate the deposition of 0.5 GW of neutron heating to the blanket, deliver a heat load of 10-20 MW/m2 or more on the divertor, inject 50-100 MW of heating power to the plasma, all at the expected size scale of a power plant. However, in spite of this, and a number of other technologies relevant power plant, ITER will provide a low neutron exposure compared to the levels expected to a fusion power plant, and will purchase its tritium entirely from world reserves accumulated from decades of CANDU reactor operations. Such a decision for ITER is technically well founded, allowing the use of conventional materials and water coolant, avoiding the thick tritium breeding blankets required for tritium self-sufficiency, and allowing the concentration on burning plasma and plasma-engineering interface issues. The neutron fluence experienced in ITER over its entire lifetime will be ~ 0.3 MW-yr/m2, while a fusion power plant is expected to experience 120-180 MW-yr/m2 over its lifetime. ITER utilizes shielding blanket modules, with no tritium breeding, except in test blanket modules (TBM) located in 3 ports on the midplane [2], which will provide early tests of the fusion nuclear environment with very low tritium production (a few g per year).

  17. Nuclear Science, A High School Course.

    ERIC Educational Resources Information Center

    Pennsylvania State Dept. of Education, Harrisburg. Bureau of General and Academic Education.

    This comprehensive guide to the teaching of nuclear science at the secondary level includes recommendations on teaching methods, course and laboratory objectives, textbooks, audiovisual aids, laboratory equipment and experiments, and safety precautions. (MH)

  18. Nuclear physics experiments with ion storage rings

    NASA Astrophysics Data System (ADS)

    Litvinov, Yu. A.; Bishop, S.; Blaum, K.; Bosch, F.; Brandau, C.; Chen, L. X.; Dillmann, I.; Egelhof, P.; Geissel, H.; Grisenti, R. E.; Hagmann, S.; Heil, M.; Heinz, A.; Kalantar-Nayestanaki, N.; Knöbel, R.; Kozhuharov, C.; Lestinsky, M.; Ma, X. W.; Nilsson, T.; Nolden, F.; Ozawa, A.; Raabe, R.; Reed, M. W.; Reifarth, R.; Sanjari, M. S.; Schneider, D.; Simon, H.; Steck, M.; Stöhlker, T.; Sun, B. H.; Tu, X. L.; Uesaka, T.; Walker, P. M.; Wakasugi, M.; Weick, H.; Winckler, N.; Woods, P. J.; Xu, H. S.; Yamaguchi, T.; Yamaguchi, Y.; Zhang, Y. H.

    2013-12-01

    In the last two decades a number of nuclear structure and astrophysics experiments were performed at heavy-ion storage rings employing unique experimental conditions offered by such machines. Furthermore, building on the experience gained at the two facilities presently in operation, several new storage ring projects were launched worldwide. This contribution is intended to provide a brief review of the fast growing field of nuclear structure and astrophysics research at storage rings.

  19. The Science of Low Energy Nuclear Reactions

    NASA Astrophysics Data System (ADS)

    Storms, Edmund

    2007-03-01

    The large literature describing the anomalous behavior attributed to cold fusion or low energy nuclear reactions has been critically described in a recently published book. Over 950 publications are evaluated allowing the phenomenon to be understood. A new class of nuclear reactions has been discovered that are able to generate practical energy without significant radiation or radioactivity. Edmund K Storms, The Science of Low Energy Nuclear Reactions, in press (2006). Also see: http://www.lenr-canr.org/StudentsGuide.htm .

  20. 76 FR 31945 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-02

    ... Nuclear Science Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory Committee (NSAC... Science Foundation on scientific priorities within the field of basic nuclear science research....

  1. 76 FR 62050 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-06

    ... Nuclear Science Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of... that the DOE/NSF Nuclear Science Advisory Committee (NSAC) will be renewed for a two- year period... (National Science Foundation), on scientific priorities within the field of basic nuclear science...

  2. Nuclear Science in the Undergraduate Curriculum: The New Nuclear Science Facility at San Jose State University.

    ERIC Educational Resources Information Center

    Ling, A. Campbell

    1979-01-01

    The following aspects of the radiochemistry program at San Jose State University in California are described: the undergraduate program in radiation chemistry, the new nuclear science facility, and academic programs in nuclear science for students not attending San Jose State University. (BT)

  3. Learning Nuclear Science with Marbles

    ERIC Educational Resources Information Center

    Constan, Zach

    2010-01-01

    Nuclei are "small": if an atom was the size of a football field, the nucleus would be an apple sitting on the 50-yd line. At the same time, nuclei are "dense": the Earth, compressed to nuclear density, could fit inside four Sears Towers. The subatomic level is strange and exotic. For that reason, it's not hard to get young minds excited about…

  4. Los Alamos Neutron Science Center (LANSCE) Nuclear Science Facilities

    SciTech Connect

    Nelson, Ronald Owen; Wender, Steve

    2015-06-19

    The Los Alamos Neutron Science Center (LANSCE) facilities for Nuclear Science consist of a high-energy "white" neutron source (Target 4) with 6 flight paths, three low-energy nuclear science flight paths at the Lujan Center, and a proton reaction area. The neutron beams produced at the Target 4 complement those produced at the Lujan Center because they are of much higher energy and have shorter pulse widths. The neutron sources are driven by the 800-MeV proton beam of the LANSCE linear accelerator. With these facilities, LANSCE is able to deliver neutrons with energies ranging from a milli-electron volt to several hundreds of MeV, as well as proton beams with a wide range of energy, time and intensity characteristics. The facilities, instruments and research programs are described briefly.

  5. NUCLEAR SCIENCE CURRICULUM PROJECT, PROJECT I, INSTRUCTIONAL SPECIFICATIONS.

    ERIC Educational Resources Information Center

    CAMAREN, JAMES

    ON THE PREMISE THAT A KNOWLEDGE OF NUCLEAR SCIENCE IS ESSENTIAL FOR INTELLIGENT DECISION-MAKING REGARDING ITS USES, THE NUCLEAR SCIENCE CURRICULUM PROJECT WAS DEVELOPED. ITS OBJECTIVE IS TO PROVIDE A PROGRAM THAT CAN BE EFFECTIVELY USED IN SCIENCE CLASSES TO PROVIDE AN UNDERSTANDING OF NUCLEAR SCIENCE AND ITS IMPACT ON SOCIETY. THOUGH TEACHER…

  6. 78 FR 12044 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ... Nuclear Science Advisory Committee AGENCY: Office of Science, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory Committee (NSAC... on scientific priorities within the field of basic nuclear science research. Tentative Agenda:...

  7. 75 FR 37783 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-30

    ... Nuclear Science Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory Committee (NSAC... nuclear science research. Tentative Agenda: Agenda will include discussions of the following: Friday,...

  8. 78 FR 62609 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ... Nuclear Science Advisory Committee AGENCY: Office of Science, Department of Energy. ACTION: Notice of... that the DOE/NSF Nuclear Science Advisory Committee (NSAC) will be renewed for a two-year period. The... within the field of basic nuclear science research. Additionally, the renewal of the DOE/NSF...

  9. 77 FR 9219 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-16

    ... Nuclear Science Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory Committee (NSAC... the National Science Foundation on scientific priorities within the field of basic nuclear...

  10. 76 FR 8359 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-14

    ... Nuclear Science Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory Committee (NSAC... scientific priorities within the field of basic nuclear science research. Tentative Agenda: Agenda...

  11. 78 FR 56870 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-16

    ... Nuclear Science Advisory Committee AGENCY: Office of Science, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory. Committee (NSAC... and the National Science Foundation on scientific priorities within the field of basic nuclear...

  12. 75 FR 6651 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-10

    ... Nuclear Science Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory Committee (NSAC... the National Science Foundation on scientific priorities within the field of basic nuclear...

  13. 75 FR 71425 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-23

    .../NSF Nuclear Science Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory... nuclear science research. Tentative Agenda: Agenda will include discussions of the following:...

  14. 78 FR 69658 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-20

    .../NSF Nuclear Science Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory... within the field of basic nuclear science research. Tentative Agenda: Agenda will include discussions...

  15. Materials Science for Nuclear Detection

    SciTech Connect

    Peurrung, Anthony J.

    2008-03-01

    In response to the elevated importance of nuclear detection technology, a variety of research efforts have sought to accelerate the discovery and development of useful new radiation detection materials These efforts have goals such as improving our understanding of how these materials perform, supporting the development of formalized discovery tools, or enabling rapid and effective performance characterization. This article provides an overview of these efforts along with an introduction to the history, physics, and taxonomy of these materials.

  16. PEOPLE IN PHYSICS: Women in nuclear science

    NASA Astrophysics Data System (ADS)

    Stuart, B. H.

    1996-03-01

    The field of nuclear science has seen an unusually large number of discoveries by women this century. This article focuses on the acclaimed work of Marie Curie, her daughter Irène Joliot-Curie, Lise Meitner and Maria Goeppert-Mayer.

  17. The Mysterious Box: Nuclear Science and Art.

    ERIC Educational Resources Information Center

    Keisch, Bernard

    In this booklet intended for junior high school science students a short story format is used to provide examples of the use of nuclear chemistry and physics in the analysis of paints and pigments for authentication of paintings. The techniques discussed include the measurement of the relative amounts of lead-210 and radium-226 in white-lead…

  18. Nuclear Science Curriculum and Curriculum para la Ciencia Nuclear.

    ERIC Educational Resources Information Center

    American Nuclear Society, La Grange Park, IL.

    This document presents a course in the science of nuclear energy, units of which may be included in high school physics, chemistry, and biology classes. It is intended for the use of teachers whose students have already completed algebra and chemistry or physics. Included in this paper are the objectives of this course, a course outline, a…

  19. Activities of the Center of Excellence for Radioactive Ion Beam Studies for Stewardship Science

    NASA Astrophysics Data System (ADS)

    Cizewski, J. A.

    2006-10-01

    The Center of Excellence for Radioactive Ion Beam Studies for Stewardship Science is a consortium of universities, Oak Ridge Associated Universities, and Oak Ridge National Laboratory, led by Rutgers University. The purpose of this project, funded by the NNSA/DP Academic Alliance for Stewardship Science program, is to use radioactive ion beams to study low-energy nuclear reactions of importance to stewardship science, as well as to prepare future researchers in applied nuclear science. These studies are enabled by the plethora of unstable accelerated beams available at the Holifield Radioactive Ion Beam Facility at Oak Ridge. The initial measurements use neutron-rich beams of uranium fission fragments to study the neutron-transfer (d,p) reaction, a possible surrogate of neutron capture reactions. We also develop new radioactive ion beams of interest to nuclear structure, nuclear astrophysics, and stewardship science. This talk will present an overview of the activities of the Center and the available facilities, describe initial results of a (d,p) reaction with a fission fragment beam, and outline activities proposed for the near term. In collaboration with H.K. Carter, ORAU.

  20. Midwest Nuclear Science and Engineering Consortium

    SciTech Connect

    Dr. Wynn Volkert; Dr. Arvind Kumar; Dr. Bryan Becker; Dr. Victor Schwinke; Dr. Angel Gonzalez; Dr. DOuglas McGregor

    2010-12-08

    The objective of the Midwest Nuclear Science and Engineering Consortium (MNSEC) is to enhance the scope, quality and integration of educational and research capabilities of nuclear sciences and engineering (NS/E) programs at partner schools in support of the U.S. nuclear industry (including DOE laboratories). With INIE support, MNSEC had a productive seven years and made impressive progress in achieving these goals. Since the past three years have been no-cost-extension periods, limited -- but notable -- progress has been made in FY10. Existing programs continue to be strengthened and broadened at Consortium partner institutions. The enthusiasm generated by the academic, state, federal, and industrial communities for the MNSEC activities is reflected in the significant leveraging that has occurred for our programs.

  1. Molecular forensic science analysis of nuclear materials

    NASA Astrophysics Data System (ADS)

    Reilly, Dallas David

    Concerns over the proliferation and instances of nuclear material in the environment have increased interest in the expansion of nuclear forensics analysis and attribution programs. A new related field, molecular forensic science (MFS) has helped meet this expansion by applying common scientific analyses to nuclear forensics scenarios. In this work, MFS was applied to three scenarios related to nuclear forensics analysis. In the first, uranium dioxide was synthesized and aged at four sets of static environmental conditions and studied for changes in chemical speciation. The second highlighted the importance of bulk versus particle characterizations by analyzing a heterogeneous industrially prepared sample with similar techniques. In the third, mixed uranium/plutonium hot particles were collected from the McGuire Air Force Base BOMARC Site and analyzed for chemical speciation and elemental surface composition. This work has identified new signatures and has indicated unexpected chemical behavior under various conditions. These findings have lead to an expansion of basic actinide understanding, proof of MFS as a tool for nuclear forensic science, and new areas for expansion in these fields.

  2. 76 FR 69252 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ... Nuclear Science Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory Committee (NSAC... Energy and the National Science Foundation on scientific priorities within the field of basic...

  3. 77 FR 51791 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-27

    ... Nuclear Science Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory Committee (NSAC... Energy and the National Science Foundation on scientific priorities within the field of basic...

  4. 78 FR 716 - DOE/NSF Nuclear Science Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-04

    .../NSF Nuclear Science Advisory Committee AGENCY: Office of Science, DOE. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory Committee (NSAC). DATES... advice and guidance on a continuing basis to the Department of Energy and the National Science...

  5. New versions of sources for nuclear polarized negative ion production

    SciTech Connect

    Dudnikov, V.G.; Shabalin, A.L. ); Wojtsekhowski, B.B. ); Belov, A.S.; Kuzik, V.E.; Plohinsky, Y.V.; Yakushev, V.P. )

    1992-10-05

    Several variants of sources for nuclear polarized negative ion production have been proposed and tested. The simple adaptation of a high intensity polarized proton source for nuclear polarized H[sup [minus

  6. Nuclear astrophysics with radioactive ions at FAIR

    NASA Astrophysics Data System (ADS)

    Reifarth, R.; Altstadt, S.; Göbel, K.; Heftrich, T.; Heil, M.; Koloczek, A.; Langer, C.; Plag, R.; Pohl, M.; Sonnabend, K.; Weigand, M.; Adachi, T.; Aksouh, F.; Al-Khalili, J.; AlGarawi, M.; AlGhamdi, S.; Alkhazov, G.; Alkhomashi, N.; Alvarez-Pol, H.; Alvarez-Rodriguez, R.; Andreev, V.; Andrei, B.; Atar, L.; Aumann, T.; Avdeichikov, V.; Bacri, C.; Bagchi, S.; Barbieri, C.; Beceiro, S.; Beck, C.; Beinrucker, C.; Belier, G.; Bemmerer, D.; Bendel, M.; Benlliure, J.; Benzoni, G.; Berjillos, R.; Bertini, D.; Bertulani, C.; Bishop, S.; Blasi, N.; Bloch, T.; Blumenfeld, Y.; Bonaccorso, A.; Boretzky, K.; Botvina, A.; Boudard, A.; Boutachkov, P.; Boztosun, I.; Bracco, A.; Brambilla, S.; Briz Monago, J.; Caamano, M.; Caesar, C.; Camera, F.; Casarejos, E.; Catford, W.; Cederkall, J.; Cederwall, B.; Chartier, M.; Chatillon, A.; Cherciu, M.; Chulkov, L.; Coleman-Smith, P.; Cortina-Gil, D.; Crespi, F.; Crespo, R.; Cresswell, J.; Csatlós, M.; Déchery, F.; Davids, B.; Davinson, T.; Derya, V.; Detistov, P.; Diaz Fernandez, P.; DiJulio, D.; Dmitry, S.; Doré, D.; Dueñas, J.; Dupont, E.; Egelhof, P.; Egorova, I.; Elekes, Z.; Enders, J.; Endres, J.; Ershov, S.; Ershova, O.; Fernandez-Dominguez, B.; Fetisov, A.; Fiori, E.; Fomichev, A.; Fonseca, M.; Fraile, L.; Freer, M.; Friese, J.; Borge, M. G.; Galaviz Redondo, D.; Gannon, S.; Garg, U.; Gasparic, I.; Gasques, L.; Gastineau, B.; Geissel, H.; Gernhäuser, R.; Ghosh, T.; Gilbert, M.; Glorius, J.; Golubev, P.; Gorshkov, A.; Gourishetty, A.; Grigorenko, L.; Gulyas, J.; Haiduc, M.; Hammache, F.; Harakeh, M.; Hass, M.; Heine, M.; Hennig, A.; Henriques, A.; Herzberg, R.; Holl, M.; Ignatov, A.; Ignatyuk, A.; Ilieva, S.; Ivanov, M.; Iwasa, N.; Jakobsson, B.; Johansson, H.; Jonson, B.; Joshi, P.; Junghans, A.; Jurado, B.; Körner, G.; Kalantar, N.; Kanungo, R.; Kelic-Heil, A.; Kezzar, K.; Khan, E.; Khanzadeev, A.; Kiselev, O.; Kogimtzis, M.; Körper, D.; Kräckmann, S.; Kröll, T.; Krücken, R.; Krasznahorkay, A.; Kratz, J.; Kresan, D.; Krings, T.; Krumbholz, A.; Krupko, S.; Kulessa, R.; Kumar, S.; Kurz, N.; Kuzmin, E.; Labiche, M.; Langanke, K.; Lazarus, I.; Le Bleis, T.; Lederer, C.; Lemasson, A.; Lemmon, R.; Liberati, V.; Litvinov, Y.; Löher, B.; Lopez Herraiz, J.; Münzenberg, G.; Machado, J.; Maev, E.; Mahata, K.; Mancusi, D.; Marganiec, J.; Martinez Perez, M.; Marusov, V.; Mengoni, D.; Million, B.; Morcelle, V.; Moreno, O.; Movsesyan, A.; Nacher, E.; Najafi, M.; Nakamura, T.; Naqvi, F.; Nikolski, E.; Nilsson, T.; Nociforo, C.; Nolan, P.; Novatsky, B.; Nyman, G.; Ornelas, A.; Palit, R.; Pandit, S.; Panin, V.; Paradela, C.; Parkar, V.; Paschalis, S.; Pawłowski, P.; Perea, A.; Pereira, J.; Petrache, C.; Petri, M.; Pickstone, S.; Pietralla, N.; Pietri, S.; Pivovarov, Y.; Potlog, P.; Prokofiev, A.; Rastrepina, G.; Rauscher, T.; Ribeiro, G.; Ricciardi, M.; Richter, A.; Rigollet, C.; Riisager, K.; Rios, A.; Ritter, C.; Rodriguez Frutos, T.; Rodriguez Vignote, J.; Röder, M.; Romig, C.; Rossi, D.; Roussel-Chomaz, P.; Rout, P.; Roy, S.; Söderström, P.; Saha Sarkar, M.; Sakuta, S.; Salsac, M.; Sampson, J.; Sanchez, J.; Rio Saez, del; Sanchez Rosado, J.; Sanjari, S.; Sarriguren, P.; Sauerwein, A.; Savran, D.; Scheidenberger, C.; Scheit, H.; Schmidt, S.; Schmitt, C.; Schnorrenberger, L.; Schrock, P.; Schwengner, R.; Seddon, D.; Sherrill, B.; Shrivastava, A.; Sidorchuk, S.; Silva, J.; Simon, H.; Simpson, E.; Singh, P.; Slobodan, D.; Sohler, D.; Spieker, M.; Stach, D.; Stan, E.; Stanoiu, M.; Stepantsov, S.; Stevenson, P.; Strieder, F.; Stuhl, L.; Suda, T.; Sümmerer, K.; Streicher, B.; Taieb, J.; Takechi, M.; Tanihata, I.; Taylor, J.; Tengblad, O.; Ter-Akopian, G.; Terashima, S.; Teubig, P.; Thies, R.; Thoennessen, M.; Thomas, T.; Thornhill, J.; Thungstrom, G.; Timar, J.; Togano, Y.; Tomohiro, U.; Tornyi, T.; Tostevin, J.; Townsley, C.; Trautmann, W.; Trivedi, T.; Typel, S.; Uberseder, E.; Udias, J.; Uesaka, T.; Uvarov, L.; Vajta, Z.; Velho, P.; Vikhrov, V.; Volknandt, M.; Volkov, V.; von Neumann-Cosel, P.; von Schmid, M.; Wagner, A.; Wamers, F.; Weick, H.; Wells, D.; Westerberg, L.; Wieland, O.; Wiescher, M.; Wimmer, C.; Wimmer, K.; Winfield, J. S.; Winkel, M.; Woods, P.; Wyss, R.; Yakorev, D.; Yavor, M.; Zamora Cardona, J.; Zartova, I.; Zerguerras, T.; Zgura, M.; Zhdanov, A.; Zhukov, M.; Zieblinski, M.; Zilges, A.; Zuber, K.

    2016-01-01

    The nucleosynthesis of elements beyond iron is dominated by neutron captures in the s and r processes. However, 32 stable, proton-rich isotopes cannot be formed during those processes, because they are shielded from the s-process flow and r-process, β-decay chains. These nuclei are attributed to the p and rp process. For all those processes, current research in nuclear astrophysics addresses the need for more precise reaction data involving radioactive isotopes. Depending on the particular reaction, direct or inverse kinematics, forward or time-reversed direction are investigated to determine or at least to constrain the desired reaction cross sections. The Facility for Antiproton and Ion Research (FAIR) will offer unique, unprecedented opportunities to investigate many of the important reactions. The high yield of radioactive isotopes, even far away from the valley of stability, allows the investigation of isotopes involved in processes as exotic as the r or rp processes.

  7. LANSCE nuclear science facilities and activities

    SciTech Connect

    Nelson, Ronald O

    2010-01-01

    Nuclear science activities at the Los Alamos Neutron Science Center (LANSCE) encompass measurements spanning the neutron energy range from thermal to 600 MeV. The neutron sources use spallation of the LANSCE 800 MeV pulsed proton beam with the time-of-flight technique to measure properties of neutron-induced reactions as a function of energy over this large energy range. Current experiments are conducted at the Lujan Center moderated neutron source, the unmoderated WNR target, and with a lead-slowing-down spectrometer. Instruments in use include the DANCE array of BaF{sub 2} scintillators for neutron capture studies, the FIGARO array of liquid scintillator neutron detectors, the GEANIE array of high-resolution HPGe x-ray and gamma-ray detectors, and a number of fission chambers, and other detectors. The LANL capabilities for production and handling of radioactive materials coupled with the neutron sources and detectors at LANSCE are enabling new and challenging measurements for a variety of applications including nuclear energy and nuclear astrophysics. An overview of recent research and examples of results is presented.

  8. Ion transport of Fr nuclear reaction products

    SciTech Connect

    Behr, J.A.; Cahn, S.B.; Dutta, S.B.

    1993-04-01

    Experiments planned for fundamental studies of radioactive atoms in magneto-optic traps require efficient deceleration and transport of nuclear reaction products to energies and locations where they can be trapped. The authors have built a low-energy ion transport system for Francium and other alkalis. A thick Au target is held on a W rod at 45{degrees} to the accelerator beam direction. The heavy-ion fusion reaction 115 MeV {sup 18}O + {sup 197}Au produces {sup 211,210,209}Fr recoil products which are stopped in the target. The target is heated to close to the melting point of Au to allow the Fr to diffuse to the surface, where it is ionized due to Au`s high work function, and is directly extracted by an electrode at 90{degrees} to the accelerator beam direction. The Fr is transported by electrostatic optics {approximately}1 m to a catcher viewed by an {alpha} detector: {ge}15% of the Fr produced in the target reaches the catcher. 2{times}10{sup 5} Fr/sec have been produced at the catcher, yielding at equilibrium a sample of 3x10{sup 7}Fr nuclei. This scheme physically decouples the target diffusion from the surface neutralization process, which can occur at a lower temperature more compatible with the neutral-atom trap.

  9. Nuclear electric propulsion for planetary science missions: NASA technology program planning

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    1993-01-01

    This paper presents the status of technology program planning to develop those Nuclear Electric Propulsion technologies needed to meet the advanced propulsion system requirements for planetary science missions in the next century. The technology program planning is based upon technologies with significant development heritage: ion electric propulsion and the SP-100 space nuclear power technologies. Detailed plans are presented for the required ion electric propulsion technology development and demonstration. Closer coordination between space nuclear power and space electric propulsion technology programs is a necessity as technology plans are being further refined in light of NEP concept definition and possible early NEP flight activities.

  10. Summaries of FY 1980 research in the nuclear sciences

    SciTech Connect

    Not Available

    1980-06-01

    A compilation and index of the projects funded in fiscal year 1980 by the DOE Division of Nuclear Sciences/Office of Basic Energy Sciences is provided. These summaries constitute the basic document by which the DOE nuclear sciences program can be made known in some technical detail to interested persons. (RWR)

  11. Nuclear science outreach program for high school girls

    SciTech Connect

    Foster, D.E.; Stone, C.A.

    1996-12-31

    The authors have developed a 2-week summer school on nuclear science for high school girls. This summer school is an outgrowth of a recent American Nuclear Society high school teachers workshop held at San Jose State University. Young scientists are introduced to concepts in nuclear science through a combination of lectures, laboratory experiments, literature research, and visits to local national laboratories and nuclear facilities. Lectures cover a range of topics, including radioactivity and radioactive decay, statistics, fission and fusion, nuclear medicine, and food irradiation. A variety of applications of nuclear science concepts are also presented.

  12. Status of ion sources at National Institute of Radiological Sciences

    SciTech Connect

    Kitagawa, A.; Fujita, T.; Goto, A.; Hattori, T.; Hamano, T.; Hojo, S.; Honma, T.; Imaseki, H.; Katagiri, K.; Muramatsu, M.; Sakamoto, Y.; Sekiguchi, M.; Suda, M.; Sugiura, A.; Suya, N.

    2012-02-15

    The National Institute of Radiological Sciences (NIRS) maintains various ion accelerators in order to study the effects of radiation of the human body and medical uses of radiation. Two electrostatic tandem accelerators and three cyclotrons delivered by commercial companies have offered various life science tools; these include proton-induced x-ray emission analysis (PIXE), micro beam irradiation, neutron exposure, and radioisotope tracers and probes. A duoplasmatron, a multicusp ion source, a penning ion source (PIG), and an electron cyclotron resonance ion source (ECRIS) are in operation for these purposes. The Heavy-Ion Medical Accelerator in Chiba (HIMAC) is an accelerator complex for heavy-ion radiotherapy, fully developed by NIRS. HIMAC is utilized not only for daily treatment with the carbon beam but also for fundamental experiments. Several ECRISs and a PIG at HIMAC satisfy various research and clinical requirements.

  13. Nuclear electric ion propulsion for three deep space missions

    NASA Astrophysics Data System (ADS)

    Chiravalle, Vincent P.

    2008-03-01

    Nuclear electric ion propulsion is considered for three sample deep space missions starting from a 500 km low Earth orbit encompassing the transfer of a 100 MT payload into a 1500 km orbit around Mars, the rendezvous of a 10 MT payload with the Jovian moon Europa and the rendezvous of a similar payload with Saturn's moon Titan. Near term ion engine and space nuclear reactor technology are assumed. It is shown that nuclear electric ion propulsion offers more than twice the payload for the Mars mission relative to the case when a nuclear thermal rocket is used for the trans-Mars injection maneuver at Earth, and about the same payload advantage relative to the case when solar electric propulsion is used for the Mars heliocentric transfer. For missions to the outer planets nuclear electric ion propulsion increases the payload mass fraction by a factor of two or more compared with high thrust systems that utilize gravity assist trajectories.

  14. Nuclear Science Division annual report, July 1, 1981-September 30, 1982

    SciTech Connect

    Mahoney, J.

    1983-06-01

    This report summarizes the scientific research carried out within the Nuclear Science Division between July 1, 1981, and September 30, 1982. Heavy-ion investigations continue to dominate the experimental and theoretical research efforts. Complementary programs in light-ion nuclear science, in nuclear data evaluation, and in the development of advanced instrumentation are also carried out. Results from Bevalac experiments employing a wide variety of heavy ion beams, along with new or upgraded detector facilities (HISS, the Plastic Ball, and the streamer chamber) are contained in this report. These relativistic experiments have shed important light on the degree of equilibration for central collisions, the time evolution of a nuclear collision, the nuclear density and compressional energy of these collisions, and strange particle production. Reaction mechanism work dominates the heavy-ion research at the 88-Inch Cyclotron and the SuperHILAC. Recent experiments have contributed to our understanding of the nature of light-particle emission in deep-inelastic collisions, of peripheral reactions, incomplete fusion, fission, and evaporation. Nuclear structure investigations at these accelerators continue to be directed toward the understanding of the behavior of nuclei at high angular momentum. Research in the area of exotic nuclei has led to the observation at the 88-Inch Cyclotron of the ..beta..-delayed proton decay of odd-odd T/sub z/ = -2 nuclides; ..beta..-delayed proton emitters in the rare earth region are being investigated at the SuperHILAC.

  15. Nuclear Physics Science Network Requirements Workshop, May 2008 - Final Report

    SciTech Connect

    Tierney, Ed., Brian L; Dart, Ed., Eli; Carlson, Rich; Dattoria, Vince; Ernest, Michael; Hitchcock, Daniel; Johnston, William; Kowalski, Andy; Lauret, Jerome; Maguire, Charles; Olson, Douglas; Purschke, Martin; Rai, Gulshan; Watson, Chip; Vale, Carla

    2008-11-10

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States of America. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In May 2008, ESnet and the Nuclear Physics (NP) Program Office of the DOE Office of Science organized a workshop to characterize the networking requirements of the science programs funded by the NP Program Office. Most of the key DOE sites for NP related work will require significant increases in network bandwidth in the 5 year time frame. This includes roughly 40 Gbps for BNL, and 20 Gbps for NERSC. Total transatlantic requirements are on the order of 40 Gbps, and transpacific requirements are on the order of 30 Gbps. Other key sites are Vanderbilt University and MIT, which will need on the order of 20 Gbps bandwidth to support data transfers for the CMS Heavy Ion program. In addition to bandwidth requirements, the workshop emphasized several points in regard to science process and collaboration. One key point is the heavy reliance on Grid tools and infrastructure (both PKI and tools such as GridFTP) by the NP community. The reliance on Grid software is expected to increase in the future. Therefore, continued development and support of Grid software is very important to the NP science community. Another key finding is that scientific productivity is greatly enhanced by easy researcher-local access to instrument data. This is driving the creation of distributed repositories for instrument data at collaborating institutions, along with a corresponding increase in demand for network-based data transfers and the tools

  16. Molecular forensic science of nuclear materials

    SciTech Connect

    Wilkerson, Marianne Perry

    2010-01-01

    We are interested in applying our understanding of actinide chemical structure and bonding to broaden the suite of analytical tools available for nuclear forensic analyses. Uranium- and plutonium-oxide systems form under a variety of conditions, and these chemical species exhibit some of the most complex behavior of metal oxide systems known. No less intriguing is the ability of AnO{sub 2} (An: U, Pu) to form non-stoichiometric species described as AnO{sub 2+x}. Environmental studies have shown the value of utilizing the chemical signatures of these actinide oxides materials to understand transport following release into the environment. Chemical speciation of actinide-oxide samples may also provide clues as to the age, source, process history, or transport of the material. The scientific challenge is to identify, measure and understand those aspects of speciation of actinide analytes that carry information about material origin and history most relevant to forensics. Here, we will describe our efforts in material synthesis and analytical methods development that we will use to provide the fundamental science required to characterize actinide oxide molecular structures for forensics science. Structural properties and initial results to measure structural variability of uranium oxide samples using synchrotron-based X-ray Absorption Fine Structure will be discussed.

  17. Nuclear physics with unstable ions at storage rings

    NASA Astrophysics Data System (ADS)

    Bosch, Fritz; Litvinov, Yuri A.; Stöhlker, Thomas

    2013-11-01

    During the last two decades, ion storage-cooler rings have been proven as powerful devices for addressing precision experiments in the realm of atomic physics, nuclear physics and nuclear astrophysics. Most important, in particular for stored unstable nuclides, is the unrivalled capability of ion cooler-rings to generate brilliant beams of highest phase-space density owing to sophisticated cooling techniques, and to store them for extended periods of time by preserving their charge state. This report focuses on nuclear physics and nuclear astrophysics experiments with in-flight produced exotic ions that were injected into storage-cooler rings. Those experiments were conducted within the last decade mainly at the only operating facilities that are capable to provide and to store exotic ions, namely the ESR in Darmstadt, Germany and the CSRe-ring in Lanzhou, China. The majority of nuclear physics experiments performed at these equipments concerns ground-state properties of nuclei far from stability, such as masses and lifetimes. The rich harvest of these measurements is presented. In particular it is shown that storage-cooler rings are ideal, if not the only, devices where two-body beta decays of exotic highly-charged ions, such as bound-state beta decay and orbital electron capture, can be studied in every detail, based on “single-ion decay spectroscopy”. Furthermore, experiments at the border between atomic and nuclear physics are discussed which render valuable information on nuclear properties by exploiting one of the most precise tools of atomic spectroscopy on stored ions, the “dielectronic recombination”. Ion storage rings with cooled exotic beams and equipped with thin internal gas targets deliver also unrivalled opportunities for addressing with highest precision key reactions in the fields of nuclear astrophysics and nuclear structure. First very promising experiments exploring the potential of ion cooler-rings in this realm have been already

  18. Nuclear Science Outreach in the World Year of Physics

    NASA Astrophysics Data System (ADS)

    McMahan, Margaret

    2006-04-01

    The ability of scientists to articulate the importance and value of their research has become increasingly important in the present climate of declining budgets, and this is most critical in the field of nuclear science ,where researchers must fight an uphill battle against negative public perception. Yet nuclear science encompasses important technical and societal issues that should be of primary interest to informed citizens, and the need for scientists trained in nuclear techniques are important for many applications in nuclear medicine, national security and future energy sources. The NSAC Education Subcommittee Report [1] identified the need for a nationally coordinated effort in nuclear science outreach, naming as its first recommendation that `the highest priority for new investment in education be the creation by the DOE and NSF of a Center for Nuclear Science Outreach'. This talk will review the present status of public outreach in nuclear science and highlight some specific efforts that have taken place during the World Year of Physics. [1] Education in Nuclear Science: A Status Report and Recommendations for the Beginning of the 21^st Century, A Report of the DOE/NSF Nuclear Science Advisory Committee Subcommittee on Education, November 2004, http://www.sc.doe.gov/henp/np/nsac/docs/NSACCReducationreportfinal.pdf.

  19. MCNPX Extension for Using Light Ion Evaluated Nuclear Data Library.

    Energy Science and Technology Software Center (ESTSC)

    2013-05-23

    Version 00 US DOE 10CFR810 Jurisdiction. MCUNED is an MCNPX extension that handles a light ion evaluated nuclear data library. Using MCUNED, all MCNPX simulations involving transport of light ion could be solved using evaluated libraries instead of MCNPX built-in models.

  20. 2001 Tom W. Bonner Prize in Nuclear Physics Lecture: ECR Ion Sources for Heavy-ion Nuclear Physics

    NASA Astrophysics Data System (ADS)

    Lyneis, Claude

    2001-04-01

    The development of Electron Cyclotron Resonance ion sources has provided new scientific opportunities for the study of heavy-ion nuclear physics. ECR ion sources have become the ion source of choice for heavy-ion accelerators due to their excellent performance in producing CW high charge state heavy-ion beams for virtually any element. In the last two decades, the performance of ECR sources has improved dramatically in terms of beam intensity, maximum charge state and range of beam species. For example, the intensity of O^6+beams has increased from 15 eμA to more than a mA, U^64+ has been extracted from an ECR source, and beams from rare isotopes such as ^48Ca are produced for nuclear structure and heavy element research. This progress has been a result of applying scaling laws related to microwave frequency and magnetic field strength, the development of improved ion source designs, and specialized techniques such as high temperature ovens. The need for radioactive beams in nuclear physics provides new challenges for the ECR ion source community, especially for the production of high intensity heavy-ion beams for the driver linac as currently envisioned for the Rare Isotope Accelerator RIA. This talk will review the advances in ECR ion sources, their application at accelerators, and future challenges.

  1. Teaching on Science, Technology and the Nuclear Arms Race.

    ERIC Educational Resources Information Center

    Schroeer, Dietrich

    1983-01-01

    Describes a course focusing on science, technology, and the nuclear arms race. Two sample homework exercises and course topics are provided. Topics, with lists of questions that might be addressed, focus on nuclear weapons, alternatives to deterrence, and arms control. Approaches to teaching about the nuclear arms race are also provided. (JN)

  2. Nuclear Science Division annual report for 1991

    SciTech Connect

    Myers, W.D.

    1992-04-01

    This paper discusses research being conducted under the following programs: Low energy research program; bevalac research program; ultrarelativistic research program; nuclear theory program; nuclear theory program; nuclear data evaluation program; and 88-inch cyclotron operations.

  3. Advances in U.S. Heavy Ion Fusion Science

    SciTech Connect

    Logan, B.G.; Barnard, J.J.; Bieniosek, F.M.; Cohen, R.H.; Coleman, J.E.; Davidson, R.C.; Efthimion, P.C.; Friedman, A.; Gilson, E.P.; Grisham, L.R.; Grote, D.P.; Henestroza, E.; Kaganovich, I.D.; Kireeff-Covo, M.; Lee, E.P.; Leitner, M.A.; Lund, S.M.; Molvik, A.W.; Ni, P.; Perkins, L. J.; Qin, H.; Roy, P.K.; Sefkow, A.B.; Seidl, P.A.; Startsev, E.A.; Waldron, W.L.

    2007-09-01

    During the past two years, the US heavy ion fusion science program has made significant experimental and theoretical progress in simultaneous transverse and longitudinal beam compression, ion-beam-driven warm dense matter targets, high-brightness beam transport, advanced theory and numerical simulations, and heavy ion target physics for fusion. First experiments combining radial and longitudinal compression {pi} of intense ion beams propagating through background plasma resulted in on-axis beam densities increased by 700X at the focal plane. With further improvements planned in 2008, these results enable initial ion beam target experiments in warm dense matter to begin next year. They are assessing how these new techniques apply to higher-gain direct-drive targets for inertial fusion energy.

  4. Advances in U.S. Heavy Ion Fusion Science

    SciTech Connect

    Barnard, JJ; Logan, B.G.; Barnard, J.J.; Bieniosek, F.M.; Cohen, R.H.; Coleman, J.E.; Davidson, R.C.; Efthimion, P.C.; Friedman, A.; Gilson, E.P.; Grisham, L.R.; Grote, D.P.; Henestroza, E.; Kaganovich, I.D.; Kireeff-Covo, M.; Lee, E.P.; Leitner, M.A.; Lund, S.M.; Molvik, A.W.; Ni, P.; Perkins, L.J.; Qin, H.; Roy, P.K.; Sefkow, A.B.; Seidl, P.A.; Startsev, E.A.; Waldron, W.L.

    2007-09-03

    During the past two years, the US heavy ion fusion science program has made significant experimental and theoretical progress in simultaneous transverse and longitudinal beam compression, ion-beam-driven warm dense matter targets, high-brightness beam transport, advanced theory and numerical simulations, and heavy ion target physics for fusion. First experiments combining radial and longitudinal compression {pi} of intense ion beams propagating through background plasma resulted in on-axis beam densities increased by 700X at the focal plane. With further improvements planned in 2008, these results enable initial ion beam target experiments in warm dense matter to begin next year. They are assessing how these new techniques apply to higher-gain direct-drive targets for inertial fusion energy.

  5. Theory of nuclear excitation by electron capture for heavy ions

    SciTech Connect

    Palffy, Adriana; Scheid, Werner; Harman, Zoltan

    2006-01-15

    We investigate the resonant process of nuclear excitation by electron capture (NEEC), in which a continuum electron is captured into a bound state of an ion with the simultaneous excitation of the nucleus. In order to derive the cross section a Feshbach projection operator formalism is introduced. Nuclear states and transitions are described by a nuclear collective model and making use of experimental data. Transition rates and total cross sections for NEEC followed by the radiative decay of the excited nucleus are calculated for various heavy-ion collision systems.

  6. The universe in the laboratory - Nuclear astrophysics opportunity at the facility for antiproton and ion research

    SciTech Connect

    Langanke, K.

    2014-05-09

    In the next years the Facility for Antiproton and Ion Research FAIR will be constructed at the GSI Helmholtzze-ntrum für Schwerionenforschung in Darmstadt, Germany. This new accelerator complex will allow for unprecedented and pathbreaking research in hadronic, nuclear, and atomic physics as well as in applied sciences. This manuscript will discuss some of these research opportunities, with a focus on supernova dynamics and nucleosynthesis.

  7. Expanding Science Knowledge: Enabled by Nuclear Power

    NASA Technical Reports Server (NTRS)

    Clark, Karla B.

    2011-01-01

    The availability of Radioisotope Power Sources (RPSs) power opens up new and exciting mission concepts (1) New trajectories available (2) Power for long term science and operations Astonishing science value associated with these previously non-viable missions

  8. Multisectional linear ion trap and novel loading method for optical spectroscopy of electron and nuclear transitions.

    PubMed

    Sysoev, Alexey A; Troyan, Victor I; Borisyuk, Peter V; Krasavin, Andrey V; Vasiliev, Oleg S; Palchikov, Vitaly G; Avdeev, Ivan A; Chernyshev, Denis M; Poteshin, Sergey S

    2015-01-01

    There is a growing need for the development of atomic and nuclear frequency standards because of the important contribution of methods for precision time and frequency measurements to the development of fundamental science, technology, and the economy. It is also conditioned by their potential use in optical clocks and quantum logic applications. It is especially important to develop a universal method that could allow one to use ions of most elements effectively (including ones that are not easily evaporated) proposed for the above-mentioned applications. A linear quadrupole ion trap for the optical spectroscopy of electron and nuclear transitions has been developed and evaluated experimentally. An ion source construction is based on an ultra-high vacuum evaporator in which a metal sample is subjected to an electron beam of energy up to 1 keV, resulting in the appearance of gaseous atoms and ions of various charge state. The linear ion trap consists of five successive quadrupole sections including an entrance quadrupole section, quadrupole mass filter, quadrupole ion guide, ion-trap section, and exit quadrupole section. The same radiofrequency but a different direct current voltage feeds the quadrupole sections. The instrument allows the mass and energy selected trapping of ions from ion beams of various intensities and their localization in the area of laser irradiation. The preliminary results presented show that the proposed instrument and methods allow one to produce effectively up to triply charged thorium ions as well as to trap ions for future spectroscopic study. The instrument is proposed for future use in optical clocks and quantum logic application development. PMID:25906029

  9. Lithium Ion Batteries Used for Nuclear Forensics

    NASA Astrophysics Data System (ADS)

    Johnson, Erik B.; Stapels, Christopher J.; Chen, X. Jie; Whitney, Chad; Holbert, Keith E.; Christian, James F.

    2013-10-01

    Nuclear forensics includes the study of materials used for the attribution a nuclear event. Analysis of the nuclear reaction products resulting both from the weapon and the material in the vicinity of the event provides data needed to identify the source of the nuclear material and the weapon design. The spectral information of the neutrons produced by the event provides information on the weapon configuration. The lithium battery provides a unique platform for nuclear forensics, as the Li-6 content is highly sensitive to neutrons, while the battery construction consists of various layers of materials. Each of these materials represents an element for a threshold detector scheme, where isotopes are produced in the battery components through various nuclear reactions that require a neutron energy above a fundamental threshold energy. This study looks into means for extracting neutron spectral information by understanding the isotopic concentration prior to and after exposure. The radioisotopes decay through gamma and beta emission, and radiation spectrometers have been used to measure the radiation spectra from the neutron exposed batteries. The batteries were exposed to various known neutron fields, and analysis was conducted to reconstruct the incident neutron spectra. This project is supported by the Defense Threat Reduction Agency, grant number HDTRA1-11-1-0028.

  10. Nuclear Science Division 1994 annual report

    SciTech Connect

    Myers, W.D.

    1995-06-01

    This report describes the activities of the Nuclear Science Division for the period of January 1, 1994, to December 31, 1994. This was a time of significant accomplishment for all of the programs in the Division. Assembly of the solar neutrino detector at the Sudbury Neutrino Observatory is well under way. All of the components fabricated by LBL were shipped to Sudbury early in the year and our efforts are now divided between assisting the assembly of the detector and preparing software for data analysis once the detector is operational in 1996. Much of the activity at the 88-Inch Cyclotron centered on Gammasphere. The {open_quotes}early implementation{close_quotes} phase of the detector ended in September. This phase was extremely successful, involving over 60 experiments with nearly 200 users from 37 institutions worldwide. The mechanical structure was installed and the final electronic system is expected to operate in March 1995. The Division concurrently hosted a conference on physics for large {gamma}-ray detector arrays at the Clark Kerr Campus at UC Berkeley in August. This was a very successful meeting, reflecting the enthusiasm for this field worldwide. Also at the Cyclotron, the progress toward weak interaction experiments using ultra-thin sources passed a major milestone with the trapping of radioactive {sup 21}Na atoms. We are now engaged in a major upgrade of the experimental area and the outlook is very promising for these novel experiments. Another highlight of research at the Cyclotron was the confirmation of element 106. This development allowed the original LLNL/LBL discovery team to move forward with their proposal to name this element seaborgium.

  11. 50 years of ion channeling in materials science

    NASA Astrophysics Data System (ADS)

    Vantomme, André

    2016-03-01

    In the early days of ion beam analysis, i.e. the early 60s, channeling was discovered and brought to maturity via a combined effort in experimental, computational and theoretical research. It was soon realized that the probability for nuclear interaction (such as nuclear scattering, nuclear reactions, ionization followed by X-ray emission…) would significantly decrease when steering the ion beam along a crystallographic direction of a single crystal. Hence, this effect would be optimally suited to investigate a wide range of materials properties related to their crystal structure, such as defects, elastic strain, the lattice site of impurities, as well as phonon-related properties. In this paper, I will briefly review some of the pioneering work, which led to the discovery and theoretical understanding of ion channeling. Subsequently, a number of applications will be discussed where the strength of the ion beam analysis technique allows deducing information which is often hardly (or not) attainable by other techniques. Throughout the paper, I will reflect on the future of channeling in materials research, and pay special attention to potential pitfalls, challenges and opportunities.

  12. NUCLEAR SCIENCE REFERENCES AS A TOOL FOR DATA EVALUATION.

    SciTech Connect

    WINCHELL,D.F.

    2004-09-26

    For several decades, the Nuclear Science References database has been maintained as a tool for data evaluators and for the wider pure and applied research community. This contribution will describe the database and recent developments in web-based access.

  13. Progress report on nuclear propulsion for space exploration and science

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.; Miller, Thomas J.

    1993-01-01

    NASA is continuing its work in cooperation with the Department of Energy (DOE) on nuclear propulsion - both nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP). The focus of the NTP studies remains on piloted and cargo missions to Mars (with precursor missions to the moon) although studies are under way to examine the potential uses of NTP for science missions. The focus of the NEP studies has shifted to space science missions with consideration of combining a science mission with an earlier demonstration of NEP using the SP-100 space nuclear reactor power system. Both NTP and NEP efforts are continuing in 1993 to provide a good foundation for science and exploration planners. Both NTP and NEP provide a very important transportation resource and in a number of cases enable missions that could not otherwise be accomplished.

  14. Nuclear and Related Analytical Techniques for Environmental and Life Sciences

    NASA Astrophysics Data System (ADS)

    Frontasyeva, Marina

    2010-01-01

    The role of nuclear analytical techniques (NATs) in Environmental and Life Sciences is discussed. Examples of radioanalytical investigations at the IBR-2 pulsed fast reactor in Dubna illustrate the environmental, biomedical, geochemical and industrial applications of instrumental neutron activation analysis.

  15. Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jlab

    SciTech Connect

    Abeyratne, S; Ahmed, S; Barber, D; Bisognano, J; Bogacz, A; Castilla, A; Chevtsov, P; Corneliussen, S; Deconinck, W; Degtiarenko, P; Delayen, J; Derbenev, Ya; DeSilva, S; Douglas, D; Dudnikov, V; Ent, R; Erdelyi, B; Evtushenko, P; Fujii, Yu; Filatov, Yury; Gaskell, D; Geng, R; Guzey, V; Horn, T; Hutton, A; Hyde, C; Johnson, R; Kim, Y; Klein, F; Kondratenko, A; Kondratenko, M; Krafft, G; Li, R; Lin, F; Manikonda, S; Marhauser, F; McKeown, R; Morozov, V; Dadel-Turonski, P; Nissen, E; Ostroumov, P; Pivi, M; Pilat, F; Poelker, M; Prokudin, A; Rimmer, R; Satogata, T; Sayed, H; Spata, M; Sullivan, M; Tennant, C; Terzic, B; Tiefenback, M; Wang, M; Wang, S; Weiss, C; Yunn, B; Zhang, Y

    2012-08-01

    Researchers have envisioned an electron-ion collider with ion species up to heavy ions, high polarization of electrons and light ions, and a well-matched center-of-mass energy range as an ideal gluon microscope to explore new frontiers of nuclear science. In its most recent Long Range Plan, the Nuclear Science Advisory Committee (NSAC) of the US Department of Energy and the National Science Foundation endorsed such a collider in the form of a 'half-recommendation.' As a response to this science need, Jefferson Lab and its user community have been engaged in feasibility studies of a medium energy polarized electron-ion collider (MEIC), cost-effectively utilizing Jefferson Lab's already existing Continuous Electron Beam Accelerator Facility (CEBAF). In close collaboration, this community of nuclear physicists and accelerator scientists has rigorously explored the science case and design concept for this envisioned grand instrument of science. An electron-ion collider embodies the vision of reaching the next frontier in Quantum Chromodynamics - understanding the behavior of hadrons as complex bound states of quarks and gluons. Whereas the 12 GeV Upgrade of CEBAF will map the valence-quark components of the nucleon and nuclear wave functions in detail, an electron-ion collider will determine the largely unknown role sea quarks play and for the first time study the glue that binds all atomic nuclei. The MEIC will allow nuclear scientists to map the spin and spatial structure of quarks and gluons in nucleons, to discover the collective effects of gluons in nuclei, and to understand the emergence of hadrons from quarks and gluons. The proposed electron-ion collider at Jefferson Lab will collide a highly polarized electron beam originating from the CEBAF recirculating superconducting radiofrequency (SRF) linear accelerator (linac) with highly polarized light-ion beams or unpolarized light- to heavy-ion beams from a new ion accelerator and storage complex. Since the very

  16. Ultra-Relativistic Heavy Ion Nuclear Physics

    SciTech Connect

    Braithwaite, W. J.

    1995-05-31

    This report describes an on-going research initiative for the University of Arkansas at Little Rock (UALR): investigating the physics of ultra-relativistic heavy ions, i.e. collisions between massive nuclei which have been accelerated to kinetic energies so large that the rest mass of the ions is a negligible fraction of their total mass-energy. This progress report is being submitted in conjunction with a 3-year grant-renewal proposal, containing additional materials. Three main categories drive the UALRGultra-relativistic heavy ion research. (1) investigations of multi-particle Hanbury-Brown-Twiss (HBT) correlations in the CERN and RHIC energy domains strongly influence the URHI experimental effort, (2) participation in the NA49 Experiment to study 33 TeV (160 GeV/nucleon) Pb on Pb collisions using the SPS facili& at CERN, and (3) participation in the STAR collaboration which is developing a major detector for use with the STAR Experiment at the Relativistic Heavy Ion Collider (RHIC), being built at BNL.

  17. Neutron Transfer Reactions: Surrogates for Neutron Capture for Basic and Applied Nuclear Science

    SciTech Connect

    Cizewski, J. A.; Peters, W. A.; Allen, J.; Hatarik, R.; Matthews, C.; O'Malley, P.; Jones, K. L.; Kozub, R. L.; Howard, J.; Patterson, N.; Paulauskas, S. V.; Rogers, J.; Sissom, D. J.; Pain, S. D.; Adekola, A.; Bardayan, D. W.; Blackmon, J. C.; Liang, F.; Nesaraja, C. D.; Pittman, S. T.

    2009-03-10

    Neutron capture reactions on unstable nuclei are important for both basic and applied nuclear science. A program has been developed at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory to study single-neutron transfer (d,p) reactions with rare isotope beams to provide information on neutron-induced reactions on unstable nuclei. Results from (d,p) studies on {sup 130,132}Sn, {sup 134}Te and {sup 75}As are discussed.

  18. Neutron transfer reactions: Surrogates for neutron capture for basic and applied nuclear science

    SciTech Connect

    Cizewski, J. A.; Jones, K. L.; Kozub, R. L.; Pain, Steven D; Peters, W. A.; Adekola, Aderemi S; Allen, J.; Bardayan, Daniel W; Becker, J.; Blackmon, Jeff C; Chae, K. Y.; Chipps, K.; Erikson, Luke; Gaddis, A. L.; Harlin, Christopher W; Hatarik, Robert; Howard, Joshua A; Jandel, M.; Johnson, Micah; Kapler, R.; Krolas, W.; Liang, J Felix; Livesay, Jake; Ma, Zhanwen; Matei, Catalin; Matthews, C.; Moazen, Brian; Nesaraja, Caroline D; O'Malley, Patrick; Patterson, N. P.; Paulauskas, Stanley; Pelham, T.; Pittman, S. T.; Radford, David C; Rogers, J.; Schmitt, Kyle; Shapira, Dan; ShrinerJr., J. F.; Sissom, D. J.; Smith, Michael Scott; Swan, T. P.; Thomas, J. S.; Vieira, D. J.; Wilhelmy, J. B.; Wilson, Gemma L

    2009-04-01

    Neutron capture reactions on unstable nuclei are important for both basic and applied nuclear science. A program has been developed at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory to study single-neutron transfer (d,p) reactions with rare isotope beams to provide information on neutron-induced reactions on unstable nuclei. Results from (d,p) studies on {sup 130,132}Sn, {sup 134}Te and {sup 75}As are discussed.

  19. The Debrecen Scanning Nuclear Microprobe and its Applications in Biology and Environmental Science

    SciTech Connect

    Kertesz, Zsofia

    2007-11-26

    Nuclear microscopy is one of the most powerful tools which are able to determine quantitative trace element distributions in complex samples on a microscopic scale. The advantage of nuclear microprobes are that different ion beam analytical techniques, like PIXE, RBS, STIM and NRA can be applied at the same time allowing the determination of the sample structure, major, minor and trace element distribution simultaneously.In this paper a nuclear microprobe setup developed for the microanalysis of thin complex samples of organic matrix at the Debrecen Scanning Nuclear Microprobe Facility is presented. The application of nuclear microscopy in life sciences is shown through an example, the study of penetration of TiO{sub 2} nanoparticles of bodycare cosmetics in skin layers.

  20. What Opinions Do High School Students Hold About Nuclear Science?

    ERIC Educational Resources Information Center

    Crater, Harold L.

    1977-01-01

    In 1975, selected high ability secondary students attended a program in Nuclear and Environmental Science. Likert-like pre- and posttests concerning aspects of nuclear technology were given to the students. Results indicated no favorable or unfavorable changes in student attitudes towards the ideas sampled. Sample questions included. (MA)

  1. UNESCO Chemistry Teaching Project in Asia: Experiments on Nuclear Science.

    ERIC Educational Resources Information Center

    Dhabanandana, Salag

    This teacher's guide on nuclear science is divided into two parts. The first part is a discussion of some of the concepts in nuclear chemistry including radioactivity, types of disintegration, radioactive decay and growth, and tracer techniques. The relevant experiments involving the use of radioisotopes are presented in the second part. The…

  2. Middle School Students, Science Textbooks, Television and Nuclear War Issues.

    ERIC Educational Resources Information Center

    Hamm, Mary

    The extent to which the issue of nuclear war technology is treated in middle-school science texts, and how students learn about nuclear war and war technology were studied. Five raters compared the most widely used textbooks for grades 6 and 7 to determine the amount of content on: (1) population growth; (2) world hunger; (3) war technology; (4)…

  3. Comprehensive Nuclear Model Code, Nucleons, Ions, Induced Cross-Sections

    Energy Science and Technology Software Center (ESTSC)

    2002-09-27

    EMPIRE-II is a flexible code for calculation of nuclear reactions in the frame of combined op0tical, Multistep Direct (TUL), Multistep Compound (NVWY) and statistical (Hauser-Feshbach) models. Incident particle can be a nucleon or any nucleus (Heavy Ion). Isomer ratios, residue production cross sections and emission spectra for neutrons, protons, alpha- particles, gamma-rays, and one type of Light Ion can be calculated. The energy range starts just above the resonance region for neutron induced reactions andmore » extends up to several hundreds of MeV for the Heavy Ion induced reactions.« less

  4. Comprehensive Nuclear Model Code, Nucleons, Ions, Induced Cross-Sections

    SciTech Connect

    2002-09-27

    EMPIRE-II is a flexible code for calculation of nuclear reactions in the frame of combined op0tical, Multistep Direct (TUL), Multistep Compound (NVWY) and statistical (Hauser-Feshbach) models. Incident particle can be a nucleon or any nucleus (Heavy Ion). Isomer ratios, residue production cross sections and emission spectra for neutrons, protons, alpha- particles, gamma-rays, and one type of Light Ion can be calculated. The energy range starts just above the resonance region for neutron induced reactions and extends up to several hundreds of MeV for the Heavy Ion induced reactions.

  5. Theoretical aspects of science with radioactive nuclear beams.

    NASA Astrophysics Data System (ADS)

    Dobaczewski, J.; Nazarewicz, W.

    1998-09-01

    Physics of radioactive nuclear beams is one of the main frontiers of nuclear science today. Experimentally, thanks to technological developments, we are on the verge of invading the territory of extreme N/Z ratios in an unprecedented way. Theoretically, nuclear exotica represent a formidable challenge for the nuclear many-body theories and their power to predict nuclear properties in nuclear terra incognita. It is important to remember that the lesson learned by going to the limits of the nuclear binding is also important for 'normal' nuclei from the neighbourhood of the beta stability valley. And, of course, radioactive nuclei are crucial astrophysically; they pave the highway along which the nuclear material is transported up in the proton and neutron numbers during the complicated synthesis process in stars.

  6. Nuclear microscopy in the life sciences at the National University of Singapore. A review.

    PubMed

    Ren, M Q; Thong, P S; Makjanic, J; Ponraj, D; Watt, F

    1999-01-01

    The nuclear microscope is now gaining popularity in the field of life sciences. In particular, the combination of proton-induced X-ray emission to measure the elemental concentrations of inorganic elements, Rutherford backscattering spectrometry to characterize the organic matrix, and scanning transmission ion microscopy to provide information on the density and structure of the sample represents a powerful set of techniques that can be applied simultaneously to the specimen under investigation. These techniques are extremely useful for measuring any imbalances in trace elements in localized regions of biological tissue and, as such, can provide unique information on many diseases. In this article, we describe the nuclear microscope and its related ion-beam techniques, and we review the biomedical work carried out using the nuclear microscope in the National University of Singapore. PMID:10676480

  7. Nuclear Test-Experimental Science: Annual report, fiscal year 1988

    SciTech Connect

    Struble, G.L.; Donohue, M.L.; Bucciarelli, G.; Hymer, J.D.; Kirvel, R.D.; Middleton, C.; Prono, J.; Reid, S.; Strack, B.

    1988-01-01

    Fiscal year 1988 has been a significant, rewarding, and exciting period for Lawrence Livermore National Laboratory's nuclear testing program. It was significant in that the Laboratory's new director chose to focus strongly on the program's activities and to commit to a revitalized emphasis on testing and the experimental science that underlies it. It was rewarding in that revolutionary new measurement techniques were fielded on recent important and highly complicated underground nuclear tests with truly incredible results. And it was exciting in that the sophisticated and fundamental problems of weapons science that are now being addressed experimentally are yielding new challenges and understanding in ways that stimulate and reward the brightest and best of scientists. During FY88 the program was reorganized to emphasize our commitment to experimental science. The name of the program was changed to reflect this commitment, becoming the Nuclear Test-Experimental Science (NTES) Program.

  8. DEVELOPMENT OF INORGANIC ION EXCHANGERS FOR NUCLEAR WASTE REMEDIATION

    EPA Science Inventory

    This research is concerned with the development of highly selective inorganic ion exchangers for the removal of primarily Cs+ and Sr2+ from nuclear tank waste and from groundwater. In this study, we will probe the, origins of selectivity through detailed structural studies and th...

  9. Opportunities in Research in Nuclear Science at MSI

    NASA Astrophysics Data System (ADS)

    van Bibber, Karl

    2013-04-01

    Nuclear science and engineering, once thought to be a field in decline, is experiencing a remarkable renaissance, with all the major nuclear science and engineering programs in the US having doubled in the past ten years, a growth which continues unabated. Students view the vast potential of nuclear power and radiation as transformative for energy, industry and medicine, but also see the associated challenges of nonproliferation and environmental stewardship as important societal goals worthy of their future careers. In order to replenish the pipeline of critical nuclear skills into the DOE national labs for the national security mission, the NNSA Office of Nuclear Nonproliferation in 2011 launched a major education and pipeline initiative called the Nuclear Science and Security Consortium (NSSC), comprised of seven research universities and four national labs. Against the backdrop of the projected dearth of scientists and engineers in the 21st century who could hold security clearances, the NNSA augmented this program with a MSI component to engage traditionally underrepresented minority institutions and students, and thus reach out to previously untapped pools of talent. This talk will review the NSSC MSI program after one year, including the Summer Fellowship Program and the Research Grant Program, along with the experience of two NSSC universities with long-standing research relationships with MSI partners in nuclear science and engineering. The perspective from the DOE labs will be discussed as well, who are the intended beneficiaries of the transition from students to career scientists.

  10. Inorganic ion exchangers for nuclear waste remediation

    SciTech Connect

    Clearfield, A.; Bortun, A.; Bortun, L.; Behrens, E.

    1997-10-01

    The objective of this work is to provide a broad spectrum of inorganic ion exchangers that can be used for a range of applications and separations involving remediation of groundwater and tank wastes. The authors intend to scale-up the most promising exchangers, through partnership with AlliedSignal Inc., to provide samples for testing at various DOE sites. While much of the focus is on exchangers for removal of Cs{sup +} and Sr{sup 2+} from highly alkaline tank wastes, especially at Hanford, the authors have also synthesized exchangers for acid wastes, alkaline wastes, groundwater, and mercury, cobalt, and chromium removal. These exchangers are now available for use at DOE sites. Many of the ion exchangers described here are new, and others are improved versions of previously known exchangers. They are generally one of three types: (1) layered compounds, (2) framework or tunnel compounds, and (3) amorphous exchangers in which a gel exchanger is used to bind a fine powder into a bead for column use. Most of these exchangers can be regenerated and used again.

  11. Impact of contributions of Glenn T. Seaborg on nuclear science

    SciTech Connect

    Hoffman, Darleane C.

    2000-12-26

    Glenn Theodore Seaborg (1912-199) was a world-renowned nuclear chemist, a Nobel Laureate in chemistry in 1951, co-discoverer of plutonium and nine other transuranium elements, Chairman of the U.S. Atomic Energy Commission from 1961-71, scientific advisor to ten U.S. presidents, active in national and international professional societies, an advocate for nuclear power as well as for a comprehensive nuclear test ban treaty, a prolific writer, an avid hiker, environmentalist, and sports enthusiast. He was known and esteemed not only by chemists and other scientists throughout the world, but also by lay people, politicians, statesmen, and students of all ages. This memorial includes a brief glimpse of Glenn Seaborg's early life and education, describes some of his major contributions to nuclear science over his long and fruitful career, and highlights the profound impact of his contributions on nuclear science, both in the U.S. and in the international community.

  12. The Nuclear Education and Staffing Challenge: Rebuilding Critical Skills in Nuclear Science and Technology

    SciTech Connect

    Wogman, Ned A.; Bond, Leonard J.; Waltar, Alan E.; Leber, R E.

    2005-01-01

    The United States, the Department of Energy (DOE) and its National Laboratories, including the Pacific Northwest National Laboratory (PNNL), are facing a serious attrition of nuclear scientists and engineers and their capabilities through the effects of aging staff. Within the DOE laboratories, 75% of nuclear personnel will be eligible to retire by 2010. It is expected that there will be a significant loss of senior nuclear science and technology staff at PNNL within five years. PNNL's nuclear legacy is firmly rooted in the DOE Hanford site, the World War II Manhattan Project, and subsequent programs. Historically, PNNL was a laboratory were 70% of its activities were nuclear/radiological, and now just under 50% of its current business science and technology are nuclear and radiologically oriented. Programs in the areas of Nuclear Legacies, Global Security, Nonproliferation, Homeland Security and National Defense, Radiobiology and Nuclear Energy still involve more than 1,000 of the 3,800 current laboratory staff, and these include more than 420 staff who are certified as nuclear/radiological scientists and engineers. This paper presents the current challenges faced by PNNL that require an emerging strategy to solve the nuclear staffing issues through the maintenance and replenishment of the human nuclear capital needed to support PNNL nuclear science and technology programs.

  13. The Nuclear Education and Staffing Challenge: Rebuilding Critical Skills in Nuclear Science and Technology.

    SciTech Connect

    Wogman, Ned A.; Bond, Leonard J.; Waltar, Alan E.; Leber, R. E.

    2005-01-01

    The United States, the Department of Energy (DOE) and its National Laboratories, including the Pacific Northwest National Laboratory (PNNL), are facing a serious attrition of nuclear scientists and engineers and their capabilities through the effects of aging staff. Within the DOE laboratories, 75% of nuclear personnel will be eligible to retire by 2010. It is expected that there will be a significant loss of senior nuclear science and technology staff at PNNL within five years. PNNL's nuclear legacy is firmly rooted in the DOE Hanford site, the World War II Manhattan Project, and subsequent programs. Historically, PNNL was a laboratory where 70% of its activities were nuclear/radiological, and now just under 50% of its current business science and technology are nuclear and radiologically oriented. Programs in the areas of Nuclear Legacies, Global Security, Nonproliferation, Homeland Security and National Defense, Radiobiology and Nuclear Energy still involve more than 1,000 of the 3,800 current laboratory staff, and these include more than 420 staff who are certified as nuclear/radiological scientists and engineers. This paper presents the current challenges faced by PNNL that require an emerging strategy to solve the nuclear staffing issues through the maintenance and replenishment of the human nuclear capital needed to support PNNL nuclear science and technology programs.

  14. Nuclear quantum effects in water exchange around lithium and fluoride ions

    SciTech Connect

    Wilkins, David M.; Manolopoulos, David; Dang, Liem X.

    2015-02-14

    We employ classical and ring polymer molecular dynamics simulations to study the effect of nuclear quantum fluctuations on the structure and the water exchange dynamics of aqueous solutions of lithium and fluoride ions. While we obtain reasonably good agreement with experimental data for solutions of lithium by augmenting the Coulombic interactions between the ion and the water molecules with a standard Lennard-Jones ion-oxygen potential, the same is not true for solutions of fluoride, for which we find that a potential with a softer repulsive wall gives much better agreement. A small degree of destabilization of the first hydration shell is found in quantum simulations of both ions when compared with classical simulations, with the shell becoming less sharply defined and the mean residence time of the water molecules in the shell decreasing. In line with these modest differences, we find that the mechanisms of the water exchange reactions are unaffected by quantization, so a classical description of these reactions gives qualitatively correct and quantitatively reasonable results. We also find that the quantum effects in solutions of lithium are larger than in solutions of fluoride. This is partly due to the stronger interaction of lithium with water molecules, partly due to the lighter mass of lithium, and partly due to competing quantum effects in the hydration of fluoride, which are absent in the hydration of lithium. LXD was supported by US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences.

  15. Research in Heavy Ion Nuclear Reactions

    SciTech Connect

    Petitt, G.A.; Nelson, W.H.; He, Xiaochun; Lee, W.

    1999-04-14

    This is the final progress report for the experimental nuclear physics program at Georgia State University (GSU) under the leadership of Gus Petitt. In June, 1996, Professor Petitt retired for health reasons and the DOE contract was extended for another year to enable the group to continue it's work. This year has been a productive one. The group has been heavily involved in the E866 experiment at Fermilab where we have taken on the responsibility of developing a new level-3 trigger for the experiment. Bill Lee, the graduate student in our group expects to obtain his thesis data from the run extension currently in progress, which focuses on the A dependence of J/{psi}'s and {Upsilon}'s from beryllium, tungsten, and iron targets. In the past year and a half the GSU group has led the development of a new level-3 software trigger system for E866. Our work on this project is described.

  16. Teaching nuclear science: A cosmological approach

    SciTech Connect

    Viola, V.E. )

    1994-10-01

    Theories of the origin of the chemical elements can be used effectively to provide a unifying theme in teaching nuclear phenomena to chemistry students. By tracing the element-producing steps that are thought to characterize the chemical evolution of the universe, one can introduce the basic principles of nuclear nomenclature, structure, reactions, energetics, and decay kinetics in a self-consistent context. This approach has the additional advantage of giving the student a feeling for the origin of the elements and their relative abundances in the solar system. Further, one can logically introduce all of the basic forces and particles of nature, as well as the many analogies between nuclear and atomic systems. The subjects of heavy-element synthesis, dating, and the practical applications of nuclear phenomena fit naturally in this scheme. Within the nucleosynthesis framework it is possible to modify the presentation of nuclear behavior to suit the audience--ranging from an emphasis on description for the beginning student to a quantitative theoretical approach for graduate students. The subject matter is flexible in that the basic principles can be condensed into a few lecture as part of a more general course of expanded into an entire course. The following sections describe this approach, with primary emphasis on teaching at the elementary level.

  17. Nuclear Forensic Science: Analysis of Nuclear Material Out of Regulatory Control

    NASA Astrophysics Data System (ADS)

    Kristo, Michael J.; Gaffney, Amy M.; Marks, Naomi; Knight, Kim; Cassata, William S.; Hutcheon, Ian D.

    2016-06-01

    Nuclear forensic science seeks to identify the origin of nuclear materials found outside regulatory control. It is increasingly recognized as an integral part of a robust nuclear security program. This review highlights areas of active, evolving research in nuclear forensics, with a focus on analytical techniques commonly employed in Earth and planetary sciences. Applications of nuclear forensics to uranium ore concentrates (UOCs) are discussed first. UOCs have become an attractive target for nuclear forensic researchers because of the richness in impurities compared to materials produced later in the fuel cycle. The development of chronometric methods for age dating nuclear materials is then discussed, with an emphasis on improvements in accuracy that have been gained from measurements of multiple radioisotopic systems. Finally, papers that report on casework are reviewed, to provide a window into current scientific practice.

  18. The MAUS nuclear space reactor with ion propulsion system

    NASA Astrophysics Data System (ADS)

    Mainardi, Enrico

    2006-06-01

    MAUS (Moltiplicatore Avanzato Ultracompatto Spaziale) is a nuclear reactor concept design capable to ensure a reliable, long-lasting, low-mass, compact energy supply needed for advanced, future space missions. The exploration of the solar system and the space beyond requires the development of nuclear energy generators for supplying electricity to space-bases, spacecrafts, probes or satellites, as well as for propelling ships in long space missions. For propulsion, the MAUS nuclear reactor could be used to power electric ion drive engines. An ion engine is able to build up to very high velocities, far greater than chemical propulsion systems, but has high power and long service requirements. The MAUS concept is described, together with the ion propulsion engine and together with the reference thermoionic process used to convert the thermal power into electricity. The design work has been performed at the Nuclear Engineering and Energy Conversion Department of the University of Rome "La Sapienza" starting from 1992 on an issue submitted by the Italian Space Agency (ASI), in cooperation with the research laboratories of ENEA.

  19. Nuclear Chemistry, Science (Experimental): 5316.62.

    ERIC Educational Resources Information Center

    Williams, Russell R.

    This nuclear chemistry module includes topics on atomic structure, instability of the nucleus, detection strengths and the uses of radioactive particles. Laboratory work stresses proper use of equipment and safe handling of radioactive materials. Students with a strong mathematics background may consider this course as advanced work in chemistry.…

  20. Studies in Low-Energy Nuclear Science

    SciTech Connect

    Carl R. Brune; Steven M. Grimes

    2010-01-13

    This report presents a summary of research projects in the area of low energy nuclear reactions and structure, carried out between March 1, 2006 and October 31, 2009 which were supported by U.S. DOE grant number DE-FG52-06NA26187.

  1. Nuclear fission: the interplay of science and technology.

    PubMed

    Stoneham, A M

    2010-07-28

    When the UK's Calder Hall nuclear power station was connected to the grid in 1956, the programmes that made this possible involved a powerful combination of basic and applied research. Both the science and the engineering were novel, addressing new and challenging problems. That the last Calder Hall reactor was shut down only in 2003 attests to the success of the work. The strengths of bringing basic science to bear on applications continued to be recognized until the 1980s, when government and management fashions changed. This paper identifies a few of the technology challenges, and shows how novel basic science emerged from them and proved essential in their resolution. Today, as the threat of climate change becomes accepted, it has become clear that there is no credible solution without nuclear energy. The design and construction of new fission reactors will need continuing innovation, with the interplay between the science and technology being a crucial component. PMID:20566512

  2. Nuclear power risks: challenge to the credibility of science.

    PubMed

    Welch, B L

    1980-01-01

    For a quarter of a century the Federal Government and the nuclear industry have deliberately deceived the American public about the risks of nuclear power. Facts have been systematically withheld, distorted, and obscured, and calculations have been deliberately biased in order to present nuclear power in an unrealistically favorable light. Most persistent and flagrant have been: (a) attempts to "normalize" public perception of nuclear accident casualties with those of more familiar accidents by emphasizing only acute fatalities and ignoring or downplaying the major effects of nuclear accidents, namely, health impairment and death years delayed; and (b) the cloaking of the objectively undocumentable faith of the atomic energy establishment that a nuclear accident is extremely unlikely in a smokescreen of invalid, pseudoquantitative statistical probabilities in order to convince the public that the chance of an accident is negligible. Prime examples of these abuses are found in the Rasmussen report on nuclear reactor safety and in its representation to the public. The deceptive practices used in promoting nuclear power have seriously shaken public faith in government, technology, and science. The scientific community has a special responsibility to minimize such future political abuses of science. For those who were responsible for the deliberate breeches of public trust which resulted in this loss of faith, mere professional disdain will not suffice. They should be punished to the fullest extent of the law. PMID:7353936

  3. Fusion Nuclear Science Facility (FNSF) motivation and required capabilities

    NASA Astrophysics Data System (ADS)

    Peng, Y. K. M.; Park, J. M.; Canik, J. M.; Diem, S. J.; Sontag, A. C.; Lumsdaine, A.; Murakami, M.; Katoh, Y.; Burgess, T. W.; Korsah, K.; Patton, B. D.; Wagner, J. C.; Yoder, G. L.; Cole, M. J.; Fogarty, P. J.; Sawan, M.

    2011-10-01

    A compact (R0 ~ 1.2-1.3m), low aspect ratio, low-Q (<3) Fusion Nuclear Science Facility (FNSF) was recently assessed to provide a fully integrated, D-T-fueled, continuously driven plasma, volumetric nuclear environment of copious neutrons. This environment would be used to carry out, for the first time, discovery-driven research in fusion nuclear science and materials, in parallel with and complementary to ITER. This research would aim to test, discover, and understand new nuclear-nonnuclear synergistic interactions involving plasma material interactions, neutron material interactions, tritium fuel breeding and transport, and power extraction, and innovate and develop solutions for DEMO components. Progress will be reported on the fusion nuclear-nonnuclear coupling effects identified that motivate research on such an FNSF, and on the required capabilities in fusion plasma, device operation, and fusion nuclear science and engineering to fulfill its mission. Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC05-00OR22725.

  4. Proceedings of the workshop on the science of intense radioactive ion beams

    SciTech Connect

    McClelland, J.B.; Vieira, D.J.

    1990-10-01

    This report contains the proceedings of a 2-1/2 day workshop on the Science of Intense Radioactive Ion Beams which was held at the Los Alamos National Laboratory on April 10--12, 1990. The workshop was attended by 105 people, representing 30 institutions from 10 countries. The thrust of the workshop was to develop the scientific opportunities which become possible with a new generation intense Radioactive Ion Beam (RIB) facility, currently being discussed within North America. The workshop was organized around five primary topics: (1) reaction physics; (2) nuclei far from stability/nuclear structure; (3) nuclear astrophysics; (4) atomic physics, material science, and applied research; and (5) facilities. Overview talks were presented on each of these topics, followed by 1-1/2 days of intense parallel working group sessions. The final half day of the workshop was devoted to the presentation and discussion of the working group summary reports, closing remarks and a discussion of future plans for this effort.

  5. Science, Society, and America's Nuclear Waste: Nuclear Waste, Unit 1. Teacher Guide. Second Edition.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 1 of the four-part series Science, Society, and America's Nuclear Waste produced by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management. The goal of this unit is to help students establish the relevance of the topic of nuclear waste to their everyday lives and activities. Particular attention is…

  6. Studies in Low-Energy Nuclear Science

    SciTech Connect

    Brune, Carl R; Grimes, Steven M

    2006-03-30

    This report presents a summary of research projects in the area of low energy nuclear reactions and structure, carried out between 1 January 2003 and 31 December 2005 and supported by U.S. DOE grant number DE-FG03-03NA00074. Cross sections measured with high resolution have been subjected to an Ericson theory analysis to infer information about the nuclear level density. Other measurements were made of the spectral shape of particles produced in evaporation processes; these also yield level density information. A major project was the development of a new Hauser-Feshbach code for analyzing such spectra. Other measurements produced information on the spectra of gamma rays emitted in reactions on heavy nuclei and gave a means of refining our understanding of gamma-ray strength functions. Finally,reactions on light nuclei were studied and subjected to an R-matrix analysis. Cross sections fora network of nuclear reactions proceedingthrough a given compound nucleus shouldgreatly constrain the family of allowed parameters. Modifications to the formalism andcomputer code are also discussed.

  7. Oklo reactors and implications for nuclear science

    NASA Astrophysics Data System (ADS)

    Davis, E. D.; Gould, C. R.; Sharapov, E. I.

    2014-04-01

    We summarize the nuclear physics interests in the Oklo natural nuclear reactors, focusing particularly on developments over the past two decades. Modeling of the reactors has become increasingly sophisticated, employing Monte Carlo simulations with realistic geometries and materials that can generate both the thermal and epithermal fractions. The water content and the temperatures of the reactors have been uncertain parameters. We discuss recent work pointing to lower temperatures than earlier assumed. Nuclear cross-sections are input to all Oklo modeling and we discuss a parameter, the 175Lu ground state cross-section for thermal neutron capture leading to the isomer 176mLu, that warrants further investigation. Studies of the time dependence of dimensionless fundamental constants have been a driver for much of the recent work on Oklo. We critically review neutron resonance energy shifts and their dependence on the fine structure constant α and the ratio Xq = mq/Λ (where mq is the average of the u and d current quark masses and Λ is the mass scale of quantum chromodynamics (QCD)). We suggest a formula for the combined sensitivity to α and Xq that exhibits the dependence on proton number Z and mass number A, potentially allowing quantum electrodynamic (QED) and QCD effects to be disentangled if a broader range of isotopic abundance data becomes available.

  8. Navigating nuclear science: Enhancing analysis through visualization

    SciTech Connect

    Irwin, N.H.; Berkel, J. van; Johnson, D.K.; Wylie, B.N.

    1997-09-01

    Data visualization is an emerging technology with high potential for addressing the information overload problem. This project extends the data visualization work of the Navigating Science project by coupling it with more traditional information retrieval methods. A citation-derived landscape was augmented with documents using a text-based similarity measure to show viability of extension into datasets where citation lists do not exist. Landscapes, showing hills where clusters of similar documents occur, can be navigated, manipulated and queried in this environment. The capabilities of this tool provide users with an intuitive explore-by-navigation method not currently available in today`s retrieval systems.

  9. An Overview of the Nuclear Electric Xenon Ion System (NEXIS) Activity

    NASA Technical Reports Server (NTRS)

    Randolph, Thomas M.; Polk, James E., Jr.

    2004-01-01

    The Nuclear Electric Xenon Ion System (NEXIS) research and development activity within NASA's Project Prometheus, was one of three proposals selected by NASA to develop thruster technologies for long life, high power, high specific impulse nuclear electric propulsion systems that would enable more robust and ambitious science exploration missions to the outer solar system. NEXIS technology represents a dramatic improvement in the state-of-the-art for ion propulsion and is designed to achieve propellant throughput capabilities >= 2000 kg and efficiencies >= 78% while increasing the thruster power to >= 20 kW and specific impulse to >= 6000 s. The NEXIS technology uses erosion resistant carbon-carbon grids, a graphite keeper, a new reservoir hollow cathode, a 65-cm diameter chamber masked to produce a 57-cm diameter ion beam, and a shared neutralizer architecture to achieve these goals. The accomplishments of the NEXIS activity so far include performance testing of a laboratory model thruster, successful completion of a proof of concept reservoir cathode 2000 hour wear test, structural and thermal analysis of a completed development model thruster design, fabrication of most of the development model piece parts, and the nearly complete vacuum facility modifications to allow long duration wear testing of high power ion thrusters.

  10. Nuclear Science Division, 1995--1996 annual report

    SciTech Connect

    Poskanzer, A.M.

    1997-02-01

    This report describes the activities of the Nuclear Science Division (NSD) for the two-year period, January 1, 1995 to January 1, 1997. This was a time of major accomplishments for all research programs in the Division-many of which are highlighted in the reports of this document.

  11. Materials Science of High-Level Nuclear Waste Immobilization

    SciTech Connect

    Weber, William J.; Navrotsky, Alexandra; Stefanovsky, S. V.; Vance, E. R.; Vernaz, Etienne Y.

    2009-01-09

    With the increasing demand for the development of more nuclear power comes the responsibility to address the technical challenges of immobilizing high-level nuclear wastes in stable solid forms for interim storage or disposition in geologic repositories. The immobilization of high-level nuclear wastes has been an active area of research and development for over 50 years. Borosilicate glasses and complex ceramic composites have been developed to meet many technical challenges and current needs, although regulatory issues, which vary widely from country to country, have yet to be resolved. Cooperative international programs to develop advanced proliferation-resistant nuclear technologies to close the nuclear fuel cycle and increase the efficiency of nuclear energy production might create new separation waste streams that could demand new concepts and materials for nuclear waste immobilization. This article reviews the current state-of-the-art understanding regarding the materials science of glasses and ceramics for the immobilization of high-level nuclear waste and excess nuclear materials and discusses approaches to address new waste streams.

  12. Nuclear Science Symposium, 23rd, Scintillation and Semiconductor Counter Symposium, 15th, and Nuclear Power Systems Symposium, 8th, New Orleans, La., October 20-22, 1976, Proceedings

    NASA Technical Reports Server (NTRS)

    Wagner, L. J.

    1977-01-01

    The volume includes papers on semiconductor radiation detectors of various types, components of radiation detection and dosimetric systems, digital and microprocessor equipment in nuclear industry and science, and a wide variety of applications of nuclear radiation detectors. Semiconductor detectors of X-rays, gamma radiation, heavy ions, neutrons, and other nuclear particles, plastic scintillator arrays, drift chambers, spark wire chambers, and radiation dosimeter systems are reported on. Digital and analog conversion systems, digital data and control systems, microprocessors, and their uses in scientific research and nuclear power plants are discussed. Large-area imaging and biomedical nucleonic instrumentation, nuclear power plant safeguards, reactor instrumentation, nuclear power plant instrumentation, space instrumentation, and environmental instrumentation are dealt with. Individual items are announced in this issue.

  13. Planetary Science Enabled by High Power Ion Propulsion Systems from NASA's Prometheus Program

    NASA Astrophysics Data System (ADS)

    Cooper, John

    2004-11-01

    NASA's Prometheus program seeks to develop new generations of spacecraft nuclear-power and ion propulsion systems for applications to future planetary missions. The Science Definition Team for the first mission in the Prometheus series, the Jupiter Icy Moons Orbiter (JIMO), has defined science objectives for in-situ orbital exploration of the icy Galilean moons (Europa, Ganymede, Callisto) and the Jovian magnetosphere along with remote observations of Jupiter's atmosphere and aurorae, the volcanic moon Io, and other elements of the Jovian system. Important to this forum is that JIMO power and propulsion systems will need to be designed to minimize magnetic, radio, neutral gas, and plasma backgrounds that might otherwise interfere with achievement of mission science objectives. Another potential Prometheus mission of high science interest would be an extended tour of primitive bodies in the solar system, including asteroids, Jupiter family comets, Centaurs, and Kuiper Belt Objects (KBO). The final landed phase of this mission might include an active keplerian experiment for detectable (via downlink radio doppler shift) acceleration of a small kilometer-size Centaur or KBO object, likely the satellite of a larger object observable from Earth. This would have obvious application to testing of mitigation techniques for Earth impact hazards.

  14. The Maryland nuclear science baccalaureate degree program: The utility perspective

    SciTech Connect

    Mueller, J.R.

    1989-01-01

    In the early 1980s, Wisconsin Public Service Corporation (WPSC) made a firm commitment to pursue development and subsequent delivery of an appropriate, academically accredited program leading to a baccalaureate degree in nuclear science for its nuclear operations personnel. Recognizing the formidable tasks to be accomplished, WPSC worked closely with the University of Maryland University College (UMUC) in curriculum definition, specific courseware development for delivery by computer-aided instruction, individual student evaluation, and overall program implementation. Instruction began on our nuclear plant site in the fall of 1984. The university anticipates conferring the first degrees from this program at WPSC in the fall of 1989. There are several notable results that WPSC achieved from this degree program. First and most importantly, an increase in the level of education of our employees. It should be stated that this program has been well received by WPSC operator personnel. These employees, now armed with plant experience, a formal degree in nuclear science, and professional education in management are real candidates for advancement in our nuclear organization.

  15. Studies in Low Energy Nuclear Science, Progress Report

    SciTech Connect

    Carl R. Brune; Steven M. Grimes; Thomas N. Massey

    2004-03-01

    OAK-B135 Research in the area of low-energy nuclear science is described. We report on studies of the Z dependence of nuclear level densities, the development of a new Hauser-Feshbach computer code, and plans to measure level densities in nuclei off the line of stability. We also discuss the development of our R-matrix fitting capabilities, including new codes and the application to the C-14 system. Plans for future measurements of the Be-9(alpha,n) and B-11(alpha,n) reactions are discussed.

  16. Nuclear structure and heavy-ion fusion. [Lecture

    SciTech Connect

    Stokstad, R.G.

    1980-10-01

    A series of lectures is presented on experimental studies of heavy-ion fusion reactions with emphasis on the role of nuclear structure in the fusion mechanism. The experiments considered are of three types: the fusion of lighter heavy ions at subcoulomb energies is studied with in-beam ..gamma..-ray techniques; the subbarrier fusion of /sup 16/O and /sup 40/Ar with the isotopes of samarium is detected out of beam by x-radiation from delayed activity; and measurements at very high energies, again for the lighter ions, employ direct particle identification of evaporation residues. The experimental data are compared with predictions based on the fusion of two spheres with the only degree of freedom being the separation of the centers, and which interact via potentials that vary smoothly with changes in the mass and charge of the projectile and target. The data exhibit with the isotopes of samarium, a portion of these deviations can be understood in terms of the changing deformation of the target nucleus, but an additional degree of freedom such as neck formation appears necessary. The results on /sup 10/B + /sup 16/O and /sup 12/C + /sup 14/N ..-->.. /sup 26/Al at high bombarding energies indicate a maximum limiting angular momentum characteristic of the compound nucleus. At lower energies the nuclear structure of the colliding ion seems to affect strongly the cross section for fusion. Measurements made at subbarrier energies for a variety of projectile-target combinations in the 1p and 2s - 1d shell also indicate that the valence nucleons can affect the energy dependence for fusion. About half the systems studied so far have structureless excitation functions which follow a standard prediction. The other half exhibit large variations from this prediction. The possible importance of neutron transfer is discussed. The two-center shell model appears as a promising approach for gaining a qualitative understanding of these phenomena. 95 references, 52 figures, 1 table.

  17. Inclusive inelastic scattering of heavy ions and nuclear correlations

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Townsend, Lawrence W.; Wilson, John W.; Khandelwal, Govind S.

    1990-01-01

    Calculations of inclusive inelastic scattering distributions for heavy ion collisions are considered within the high energy optical model. Using ground state sum rules, the inclusive projectile and complete projectile-target inelastic angular distributions are treated in both independent particle and correlated nuclear models. Comparisons between the models introduced are made for alpha particles colliding with He-4, C-12, and O-16 targets and protons colliding with O-16. Results indicate that correlations contribute significantly, at small momentum transfers, to the inelastic sum. Correlation effects are hidden, however, when total scattering distributions are considered because of the dominance of elastic scattering at small momentum transfers.

  18. Medical applications of nuclear physics and heavy-ion beams

    SciTech Connect

    Alonso, Jose R.

    2000-08-01

    Isotopes and accelerators, hallmarks of nuclear physics, are finding increasingly sophisticated and effective applications in the medical field. Diagnostic and therapeutic uses of radioisotopes are now a $10B/yr business worldwide, with over 10 million procedures and patient studies performed every year. This paper will discuss the use of isotopes for these applications. In addition, beams of protons and heavy ions are being more and more widely used clinically for treatment of malignancies. To be discussed here as well will be the rationale and techniques associated with charged-particle therapy, and the progress in implementation and optimization of these technologies for clinical use.

  19. Nuclear multifragmentation: Antiprotons versus photons and heavy ions

    SciTech Connect

    Cugnon, J.

    1994-09-01

    Nuclear multifragmentation is the phenomenon by which a nucleus breaks into many pieces of intermediate size. It occurs in the excitation-energy regime, between the spallation + evaporation regime and the explosive fragmentation regime. The various models of multifragmentation are briefly reviewed and the possibility of critical behavior in the multifragmentation process is underlined. Unanswered problems are stated. It is shown, by model calculations, that antiproton annihilation is, in many respects, better suited than proton-nucleus and heavy-ion collisions for studying multifragmentation and, in other respects, complementary to these other tools. 36 refs., 17 figs., 1 tab.

  20. Cyclotron-based nuclear science. Progress report, April 1, 1979-March 31, 1980

    SciTech Connect

    Not Available

    1980-06-01

    Research at the cyclotron institute is summarized. These major areas are covered: nuclear structure; nuclear reactions and scattering; polarization studies; interdisciplinary nuclear science; instrumentation and systems development; and publications. (GHT)

  1. Basic Science Research to Support the Nuclear Materials Focus Area

    SciTech Connect

    Chipman, N. A.; Castle, P. M.; Boak, J. M.; Eller, P. G.

    2002-02-26

    The Department of Energy's (DOE's) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area

  2. Basic science research to support the nuclear material focus area

    SciTech Connect

    Boak, J. M.; Eller, P. Gary; Chipman, N. A.; Castle, P. M.

    2002-01-01

    The Department of Energy's (DOE'S) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area

  3. Recent Developments in Cold Fusion / Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Krivit, Steven B.

    2006-03-01

    Krivit is recognized internationally as an expert on the subject matter of cold fusion / condensed matter nuclear science. He is the editor of New Energy Times, the leading source of information for the field of cold fusion. He is the author of the 2005 book, The Rebirth of Cold Fusion and founder of New Energy Institute, an independent nonprofit public benefit corporation dedicated to accelerating the progress of new, sustainable and environmentally friendly energy sources.

  4. Simplified Ion Thruster Xenon Feed System for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Snyder, John Steven; Randolph, Thomas M.; Hofer, Richard R.; Goebel, Dan M.

    2009-01-01

    The successful implementation of ion thruster technology on the Deep Space 1 technology demonstration mission paved the way for its first use on the Dawn science mission, which launched in September 2007. Both Deep Space 1 and Dawn used a "bang-bang" xenon feed system which has proven to be highly successful. This type of feed system, however, is complex with many parts and requires a significant amount of engineering work for architecture changes. A simplified feed system, with fewer parts and less engineering work for architecture changes, is desirable to reduce the feed system cost to future missions. An attractive new path for ion thruster feed systems is based on new components developed by industry in support of commercial applications of electric propulsion systems. For example, since the launch of Deep Space 1 tens of mechanical xenon pressure regulators have successfully flown on commercial spacecraft using electric propulsion. In addition, active proportional flow controllers have flown on the Hall-thruster-equipped Tacsat-2, are flying on the ion thruster GOCE mission, and will fly next year on the Advanced EHF spacecraft. This present paper briefly reviews the Dawn xenon feed system and those implemented on other xenon electric propulsion flight missions. A simplified feed system architecture is presented that is based on assembling flight-qualified components in a manner that will reduce non-recurring engineering associated with propulsion system architecture changes, and is compared to the NASA Dawn standard. The simplified feed system includes, compared to Dawn, passive high-pressure regulation, a reduced part count, reduced complexity due to cross-strapping, and reduced non-recurring engineering work required for feed system changes. A demonstration feed system was assembled using flight-like components and used to operate a laboratory NSTAR-class ion engine. Feed system components integrated into a single-string architecture successfully operated

  5. The ABC`s of nuclear science workshop

    SciTech Connect

    McMahn, P.; Carlock, M.S.; Mattis, H.; Norman, E.; Seaborg, G.

    1997-12-31

    Over the last several years the Contemporary Physics Education Project (CPEP) has developed two wall charts which illustrate contemporary aspects of particle and plasma physics for high school and undergraduate students. We are now working with CPEP on the development of a similar chart for nuclear science. This chart will illustrate the basics of nuclear science coupled with the exciting research which is being done in this field. This workshop will explore the wall chart, along with materials and experiments that have been developed to accompany it. The set of experiments have been developed by high school teachers, chemists, and physicists working together, and include experiments such as, {open_quotes}the ABCs of Nuclear Science,{close_quotes} and experiments exploring the various kinds of radioactive decay, radioactivity in common household products, half-live measurements, radiography, etc. Teachers who join the project as chart field testers will receive a poster size chart and accompanying materials free of charge. The materials also include a video about cosmic rays has also been produced for the classroom.

  6. High-spin nuclear structure studies with radioactive ion beams

    SciTech Connect

    Baktash, C.

    1992-12-31

    Two important developments in the sixties, namely the advent of heavy-ion accelerators and fabrication of Ge detectors, opened the way for the experimental studies of nuclear properties at high angular momentum. Addition of a new degree of freedom, namely spin, made it possible to observe such fascinating phenomena as occurrences and coexistence of a variety of novel shapes, rise, fall and occasionally rebirth of nuclear collectivity, and disappearance of pairing correlations. Today, with the promise of development of radioactive ion beams (RIB) and construction of the third-generation Ge-detection systems (GAMMASPHERE and EUROBALL), the authors are poised to explore new and equally fascinating phenomena that have been hitherto inaccessible. With the addition of yet another dimension, namely the isospin, they will be able to observe and verify predictions for exotic shapes as varied as rigid triaxiality, hyperdeformation and triaxial octupole shapes, or to investigate the T = 0 pairing correlations. In this paper, they shall review, separately for neutron-deficient and neutron-rich nuclei, these and a few other new high-spin physics opportunities that may be realized with RIB. Following this discussion, they shall present a list of the beam species, intensities and energies that are needed to fulfill these goals. The paper will conclude with a description of the experimental techniques and instrumentations that are required for these studies.

  7. Nuclear Science User Facilities (NSUF) Monthly Report March 2015

    SciTech Connect

    Soelberg, Renae

    2015-03-01

    Nuclear Science User Facilities (NSUF) Formerly: Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report February 2015 Highlights; Jim Cole attended the OECD NEA Expert Group on Innovative Structural Materials meeting in Paris, France; Jim Lane and Doug Copsey of Writers Ink visited PNNL to prepare an article for the NSUF annual report; Brenden Heidrich briefed the Nuclear Energy Advisory Committee-Facilities Subcommittee on the Nuclear Energy Infrastructure Database project and provided them with custom reports for their upcoming visits to Argonne National Laboratory, Idaho National Laboratory, Oak Ridge National Laboratory and the Massachusetts Institute of Technology; and University of California-Berkeley Principal Investigator Mehdi Balooch visited PNNL to observe measurements and help finalize plans for completing the desired suite of analyses. His visit was coordinated to coincide with the visit of Jim Lane and Doug Copsey.

  8. Recombinant Science: The Birth of the Relativistic Heavy Ion Collider (431st Brookhaven Lecture)

    SciTech Connect

    Crease, Robert P

    2007-12-12

    As part of the celebration of Brookhaven Lab's 60th anniversary, Robert P. Crease, the Chair of the Philosophy Department at Stony Brook University and BNL's historian, will present the second of two talks on the Lab's history. In "Recombinant Science: The Birth of the Relativistic Heavy Ion Collider," Dr. Crease will focus on the creation of the world's most powerful colliding accelerator for nuclear physics. Known as RHIC, the collider, as Dr. Crease will recount, was formally proposed in 1984, received initial construction funding from the U.S. Department of Energy in 1991, and started operating in 2000. In 2005, the discovery at RHIC of the world's most perfect liquid, a state of matter that last existed just moments after the Big Bang, was announced, and, since then, this perfect liquid of quarks and gluons has been the subject of intense study.

  9. Recent developments of ion sources for life-science studies at the Heavy Ion Medical Accelerator in Chiba (invited).

    PubMed

    Kitagawa, A; Drentje, A G; Fujita, T; Muramatsu, M; Fukushima, K; Shiraishi, N; Suzuki, T; Takahashi, K; Takasugi, W; Biri, S; Rácz, R; Kato, Y; Uchida, T; Yoshida, Y

    2016-02-01

    With about 1000-h of relativistic high-energy ion beams provided by Heavy Ion Medical Accelerator in Chiba, about 70 users are performing various biology experiments every year. A rich variety of ion species from hydrogen to xenon ions with a dose rate of several Gy/min is available. Carbon, iron, silicon, helium, neon, argon, hydrogen, and oxygen ions were utilized between 2012 and 2014. Presently, three electron cyclotron resonance ion sources (ECRISs) and one Penning ion source are available. Especially, the two frequency heating techniques have improved the performance of an 18 GHz ECRIS. The results have satisfied most requirements for life-science studies. In addition, this improved performance has realized a feasible solution for similar biology experiments with a hospital-specified accelerator complex. PMID:26932117

  10. Recent developments of ion sources for life-science studies at the Heavy Ion Medical Accelerator in Chiba (invited)

    NASA Astrophysics Data System (ADS)

    Kitagawa, A.; Drentje, A. G.; Fujita, T.; Muramatsu, M.; Fukushima, K.; Shiraishi, N.; Suzuki, T.; Takahashi, K.; Takasugi, W.; Biri, S.; Rácz, R.; Kato, Y.; Uchida, T.; Yoshida, Y.

    2016-02-01

    With about 1000-h of relativistic high-energy ion beams provided by Heavy Ion Medical Accelerator in Chiba, about 70 users are performing various biology experiments every year. A rich variety of ion species from hydrogen to xenon ions with a dose rate of several Gy/min is available. Carbon, iron, silicon, helium, neon, argon, hydrogen, and oxygen ions were utilized between 2012 and 2014. Presently, three electron cyclotron resonance ion sources (ECRISs) and one Penning ion source are available. Especially, the two frequency heating techniques have improved the performance of an 18 GHz ECRIS. The results have satisfied most requirements for life-science studies. In addition, this improved performance has realized a feasible solution for similar biology experiments with a hospital-specified accelerator complex.

  11. Science, society, and America's nuclear waste. [Contains glossary

    SciTech Connect

    Not Available

    1992-01-01

    High-energy, ionizing radiation is called ionizing because it can knock electrons out of atoms and molecules, creating electrically charged particles called ions. Material that ionizing radiation passes through absorbs energy from the radiation mainly through this process of ionization. Ionizing radiation can be used for many beneficial purposes, but it also can cause serious, negative health effects. That is why it is one of the most thoroughly studied subjects in modern science. Most of our attention in this publication is focused on ionizing radiation -- what it is, where it comes from, and some of its properties.

  12. Scientific Opportunities to Reduce Risk in Nuclear Process Science

    SciTech Connect

    Bredt, Paul R.; Felmy, Andrew R.; Gauglitz, Phillip A.; Hobbs, David T.; Krahn, Steve; Machara, N.; Mcilwain, Michael; Moyer, Bruce A.; Poloski, Adam P.; Subramanian, K.; Vienna, John D.; Wilmarth, B.

    2008-07-18

    Cleaning up the nation’s nuclear weapons complex remains as one of the most technologically challenging and financially costly problems facing the U.S. Department of Energy (DOE). Safety, cost, and technological challenges have often delayed progress in retrieval, processing, and final disposition of high-level waste, spent nuclear fuel, and challenging materials. Some of the issues result from the difficulty and complexity of the technological issues; others have programmatic bases, such as contracting strategies that may provide undue focus on near-term, specific clean-up goals or difficulty in developing and maintaining stakeholder confidence in the proposed solutions. We propose that independent basic fundamental science research focused on the full cleanup life-cycle offers an opportunity to help address these challenges by providing 1) scientific insight into the fundamental mechanisms involved in currently selected processing and disposal options, 2) a rational path to the development of alternative technologies should the primary options fail, 3) confidence that models that predict long-term performance of different disposal options are based upon the best available science, 4) fundamental science discovery that enables transformational solutions to revolutionize the current baseline processes.

  13. Nuclear astrophysics at the Holifield Radioactive Ion Beam Facility

    SciTech Connect

    Smith, M.S.

    1994-12-31

    The potential for understanding spectacular stellar explosions such as novae, supernovae, and X-ray bursts will be greatly enhanced by the availability of the low-energy, high-intensity, accelerated beams of proton-rich radioactive nuclei currently being developed at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory. These beams will be utilized in absolute cross section measurements of crucial (p, {gamma}) capture reactions in efforts to resolve the substantial qualitative uncertainties in current models of explosive stellar hydrogen burning outbursts. Details of the nuclear astrophysics research program with the unique HRIBF radioactive beams and a dedicated experimental endstation--centered on the Daresbury Recoil Separator--will be presented.

  14. IBA-Europhysics Prize in Applied Nuclear Science and Nuclear Methods in Medicine

    NASA Astrophysics Data System (ADS)

    MacGregor, I. J. Douglas

    2014-03-01

    The Nuclear Physics Board of the European Physical Society is pleased to announce that the 2013 IBA-Europhysics Prize in Applied Nuclear Science and Nuclear Methods in Medicine is awarded to Prof. Marco Durante, Director of the Biophysics Department at GSI Helmholtz Center (Darmstadt, Germany); Professor at the Technical University of Darmstadt (Germany) and Adjunct Professor at the Temple University, Philadelphia, USA. The prize was presented in the closing Session of the INPC 2013 conference by Mr. Thomas Servais, R&D Manager for Accelerator Development at the IBA group, who sponsor the IBA Europhysics Prize. The Prize Diploma was presented by Dr. I J Douglas MacGregor, Chair-elect of the EPS Nuclear Physics Division and Chair of the IBA Prize committee.

  15. Characterization of ion Coulomb crystals for fundamental sciences

    NASA Astrophysics Data System (ADS)

    Okada, Kunihiro; Ichikawa, Masanari; Wada, Michiharu

    2015-11-01

    We performed classical molecular dynamics (MD) simulations in order to search the conditions for efficient sympathetic cooling of highly charged ions (HCIs) in a linear Paul trap. Small two-component ion Coulomb crystals consisting of laser-cooled ions and HCIs were characterized by the results of the MD simulations. We found that the spatial distribution is determined by not only the charge-to-mass ratio but also the space charge effect. Moreover, the simulation results suggest that the temperature of HCIs do not necessarily decrease with increasing the number of laser-cooled ions in the cases of linear ion crystals. We also determined the cooling limit of sympathetically cooled 165Ho14+ ions in small linear ion Coulomb crystals. The present results show that sub-milli-Kelvin temperatures of at least 10 Ho14+ ions will be achieved by sympathetic cooling with a single laser-cooled Be+.

  16. Nuclear electric propulsion for future NASA space science missions

    SciTech Connect

    Yen, Chen-wan L.

    1993-07-20

    This study has been made to assess the needs, potential benefits and the applicability of early (circa year 2000) Nuclear Electric Propulsion (NEP) technology in conducting NASA science missions. The study goals are: to obtain the performance characteristics of near term NEP technologies; to measure the performance potential of NEP for important OSSA missions; to compare NEP performance with that of conventional chemical propulsion; to identify key NEP system requirements; to clarify and depict the degree of importance NEP might have in advancing NASA space science goals; and to disseminate the results in a format useful to both NEP users and technology developers. This is a mission performance study and precludes investigations of multitudes of new mission operation and systems design issues attendant in a NEP flight.

  17. Scientific Opportunities to Reduce Risk in Nuclear Process Science - 9279

    SciTech Connect

    Bredt, Paul R.; Felmy, Andrew R.; Gauglitz, Phillip A.; Poloski, Adam P.; Vienna, John D.; Moyer, Bruce A.; Hobbs, David; Wilmarth, B.; Mcilwain, Michael; Subramanian, K.; Krahn, Steve; Machara, N.

    2009-03-01

    In this document, we propose that scientific investments for the disposal of nuclear and hazardous wastes should not be focused solely on what may be viewed as current Department of Energy needs, but also upon longer-term investments in specific areas of science that underpin technologies presently in use. In the latter regard, we propose four science theme areas: 1) the structure and dynamics of materials and interfaces, 2) coupled chemical and physical processes, 3) complex solution phase phenomena, and 4) chemical recognition phenomena. The proposed scientific focus for each of these theme areas and the scientific opportunities are identified, along with links to major risks within the initiative areas identified in EM’s Engineering and Technology Roadmap.

  18. Status of the SPES project, a new tool for fundamental and apply science studies with exotic ion beams at LNL

    NASA Astrophysics Data System (ADS)

    Napoli, D. R.; Andrighetto, A.; Antonini, P.; Bellan, L.; Bellato, M.; Benini, D.; Bermudez, J.; Bisoffi, G.; Boratto, E.; Bortolato, D.; Calabretta, L.; Calderolla, M.; Calore, A.; Campo, D.; Carturan, S.; Cinausero, M.; Comunian, M.; Corradetti, S.; De Angelis, G.; De Ruvo, P. L.; Esposito, J.; Ferrari, L.; Galatá, A.; Gelain, F.; Giacchini, M.; Giacomazzi, P.; Gobbi, C.; Gramegna, F.; Gulmini, M.; Lollo, M.; Lombardi, A.; Maggiore, M.; Manzolaro, M.; Michinelli, R.; Modanese, P.; Moisio, M. F.; Monetti, A.; Mozzi, A.; Palmieri, A.; Pasquato, F.; Pedretti, D.; Pegoraro, R.; Pisent, A.; Poggi, M.; Pranovi, L.; Prete, G.; Roncolato, C.; Rossignoli, M.; Russo, A. D.; Sarchiapone, L.; Scarpa, D.; Silingardi, R.; Dobon, J. J. Valiente; Visentin, E.; Vivian, G.; Zafiropoulos, D.; Prete, G. F.

    2016-07-01

    SPES, a new accelerator facility for both the production of exotic ion beams and radio-pharmaceuticals, is presently being installed at the Laboratori Nazionali di Legnaro in Italy (LNL). The new cyclotron, which will provide high intensity proton beams for the production of the rare isotopes, has been installed and is now in the commissioning phase. We present here the status of the part of the project devoted to the production and acceleration of fission fragments created in the interaction of an intense proton beam on a production target of UCx. The expected SPES radioactive beams intensities, their quality and their maximum energies (up to 11 MeV/A for A=130) will permit to perform forefront research in nuclear structure and nuclear dynamics far from the stability valley. Another low energy section of the facility is foreseen for new and challenging research, both in the nuclear physics and in the material science frameworks.

  19. Nuclear-polarization correction to the bound-electron g factor in heavy hydrogenlike ions.

    PubMed

    Nefiodov, A V; Plunien, G; Soff, G

    2002-08-19

    The influence of nuclear polarization on the bound-electron g factor in heavy hydrogenlike ions is investigated. Numerical calculations are performed for the K- and L-shell electrons taking into account the dominant virtual nuclear excitations. This determines the ultimate limit for tests of QED utilizing measurements of the bound-electron g factor in highly charged ions. PMID:12190457

  20. 75 FR 34439 - Defense Science Board Task Force on Nuclear Treaty Monitoring and Verification

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ... of the Secretary Defense Science Board Task Force on Nuclear Treaty Monitoring and Verification... Science Board Task Force on Nuclear Treaty Monitoring and Verification will meet in closed session on July... on August 24-25, 2010. ADDRESSES: Both meetings will be held at Science Applications...

  1. Science and art in heavy-ion collisions

    SciTech Connect

    Weiss, M.S.

    1982-08-09

    One of the more intriguing phenomena discovered in heavy-ion physics is the seeming appearance of high energy structure in the excitation spectra of inelastically scattered heavy ions. For reasons illustrated, these may well be a phenomena unique to heavy ions and their explanation perhaps unique to TDHF.

  2. Scientific Opportunities to Reduce Risk in Nuclear Process Science

    SciTech Connect

    Bredt, Paul R.; Felmy, Andrew R.; Gauglitz, Phillip A.; Poloski, Adam P.; Vienna, John D.; Moyer, Bruce A.; Hobbs, David; Wilmarth, B.; Mcilwain, Michael; Subramanian, K.; Krahn, Steve; Machara, N.

    2009-08-28

    Cleaning up the nation’s nuclear weapons complex remains as one of the most technologically challenging and financially costly problems facing the U.S. Department of Energy (DOE). Safety, cost, and technological challenges have often delayed progress in retrieval, processing, and final disposition of high-level waste, spent nuclear fuel, and challenging materials. Some of the issues result from the difficulty and complexity of the technological issues; others have programmatic bases, such as strategies that may provide undue focus on near-term goals or difficulty in developing and maintaining stakeholder confidence in the proposed solutions. We propose that independent basic fundamental science research, addressing the full cleanup life-cycle, offers an opportunity to help address these challenges by providing 1) scientific insight into the fundamental mechanisms involved in currently selected processing and disposal options, 2) a rational path to the development of alternative technologies should the primary options fail, 3) confidence that models that predict long-term performance of different disposal options are based upon the best available science, and 4) fundamental science discovery that enables transformational solutions to revolutionize the current baseline processes. Over the last 3 years, DOE’s Office of Environmental Management (EM) has experienced a fundamental shift in philosophy. The mission focus of driving to closure has been replaced by one of enabling the long-term needs of DOE and the nation. Resolving new challenges, such as the disposition of DOE spent nuclear fuel, have been added to EM’s responsibilities. In addition, the schedules for addressing several elements of the cleanup mission have been extended. As a result, EM’s mission is no longer focused only on driving the current baselines to closure. Meeting the mission will require fundamental advances over at least a 30-year window if not longer as new challenges are added. The

  3. A New ECR Ion Source for Nuclear Astrophysics Studies

    NASA Astrophysics Data System (ADS)

    Cesaratto, John M.

    2008-10-01

    The Laboratory for Experimental Nuclear Astrophysics (LENA) is a low energy facility designed to study nuclear reactions of astrophysical interest at energies which are important for nucleosysthesis. In general, these reactions have extremely small cross sections, requiring intense beams and efficient detection systems. Recently, a new, high intensity electron-cyclotron-resonance (ECR) ion source has been constructed (based on a design by Wills et al.[1]), which represents a substantial improvement in the capabilities of LENA. Beam is extracted from an ECR plasma excited at 2.45 GHz and confined by an array of permanent magnets. It has produced H^+ beams in excess of 1 mA on target over the energy range 100 - 200 keV, which greatly increases our ability to measure small cross sections. Initial measurements will focus on the ^23Na(p,γ)^24Mg reaction, which is of interest in a variety of astrophysical scenarios. The present uncertainty in the rate of this reaction is the result of an unobserved resonance expected at Elab =144 keV, which should be detectable using beams from the new ECR source. In collaboration with Arthur E. Champagne and Thomas B. Clegg, University of North Carolina, Chapel Hill and TUNL. [3pt] [1] J. S. C. Wills et al., Rev. Sci. Instrum. 69, 65 (1999).

  4. Nuclear powered Mars cargo transport mission utilizing advanced ion propulsion

    SciTech Connect

    Galecki, D.L.; Patterson, M.J.

    1987-01-01

    Nuclear-powered ion propulsion technology was combined with detailed trajectory analysis to determine propulsion system and trajectory options for an unmanned cargo mission to Mars in support of manned Mars missions. A total of 96 mission scenarios were identified by combining two power levels, two propellants, four values of specific impulse per propellant, three starting altitudes, and two starting velocities. Sixty of these scenarios were selected for a detailed trajectory analysis; a complete propulsion system study was then conducted for 20 of these trajectories. Trip times ranged from 344 days for a xenon propulsion system operating at 300 kW total power and starting from lunar orbit with escape velocity, to 770 days for an argon propulsion system operating at 300 kW total power and starting from nuclear start orbit with circular velocity. Trip times for the 3 MW cases studied ranged from 356 to 413 days. Payload masses ranged from 5700 to 12,300 kg for the 300 kW power level, and from 72,200 to 81,500 kg for the 3 MW power level.

  5. Future directions for separation science in nuclear and radiochemistry

    SciTech Connect

    Pruett, D.J.

    1986-01-01

    Solvent extraction and ion exchange have been the most widely used separation techniques in nuclear and radiochemistry since their development in the 1940s. Many successful separations processes based on these techniques have been used for decades in research laboratories, analytical laboratories, and industrial plants. Thus, it is easy to conclude that most of the fundamental and applied research that is needed in these areas has been done, and that further work in these ''mature'' fields is unlikely to be fruitful. A more careful review, however, reveals that significant problems remain to be solved, and that there is a demand for the development of new reagents, methods, and systems to solve the increasingly complex separations problems in the nuclear field. Specifically, new separation techniques based on developments in membrane technology and biotechnology that have occurred over the last 20 years should find extensive applications in radiochemical separations. Considerable research is needed in such areas as interfacial chemistry, the design and control of highly selective separation agents, critically evaluated data bases and mathematical models, and the fundamental chemistry of dilute solutions if these problems are to be solved and new techniques developed in a systematic way. Nonaqueous separation methods, such as pyrochemical and fluoride volatility processes, have traditionally played a more limited role in nuclear and radiochemistry, but recent developments in the chemistry and engineering of these processes promises to open up new areas of research and application in the future.

  6. Nuclear fragmentation of GCR-like ions: comparisons between data and PHITS

    NASA Astrophysics Data System (ADS)

    Zeitlin, Cary; Guetersloh, Stephen; Heilbronn, Lawrence; Miller, Jack; Sihver, Lembit; Mancusi, Davide; Fukumura, Aki; Iwata, Yoshi; Murakami, Takeshi

    We present a summary of results from recent work in which we have compared nuclear fragmentation cross section data to predictions of the PHITS Monte Carlo simulation. The studies used beams of 12 C, 35 Cl, 40 Ar, 48 Ti, and 56 Fe at energies ranging from 290 MeV/nucleon to 1000 MeV/nucleon. Some of the data were obtained at the Brookhaven National Laboratory, others at the National Institute of Radiological Sciences in Japan. These energies and ion species are representative of the heavy ion component of the Galactic Cosmic Rays (GCR), which contribute significantly to the dose and dose equivalent that will be received by astronauts on deep-space missions. A critical need for NASA is the ability to accurately model the transport of GCR heavy ions through matter, including spacecraft walls, equipment racks, and other shielding materials, as well as through tissue. Nuclear interaction cross sections are of primary importance in the GCR transport problem. These interactions generally cause the incoming ion to break up (fragment) into one or more lighter ions, which continue approximately along the initial trajectory and with approximately the same velocity the incoming ion had prior to the interaction. Since the radiation dose delivered by a particle is proportional to the square of the quantity (charge/velocity), i.e., to (Z/β)2 , fragmentation reduces the dose (and, typically, dose equivalent) delivered by incident ions. The other mechanism by which dose can be reduced is ionization energy loss, which can lead to some particles stopping in the shielding. This is the conventional notion of shielding, but it is not applicable to human spaceflight, since the particles in the GCR tend to be highly energetic and because shielding must be relatively thin in order to keep overall mass as low as possible, keeping launch costs within reason. To support these goals, our group has systematically measured a large number of nuclear cross sections, intended to be used as either

  7. Science, Society, and America's Nuclear Waste: The Nuclear Waste Policy Act, Unit 3. Teacher Guide. Second Edition.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 3 of the four-part series, Science, Society, and America's Nuclear Waste, produced by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management. The goal of this unit is to identify the key elements of the United States' nuclear waste dilemma and introduce the Nuclear Waste Policy Act and the role of the…

  8. Magnet design considerations for Fusion Nuclear Science Facility

    DOE PAGESBeta

    Zhai, Yuhu; Kessel, Chuck; El-guebaly, Laila; Titus, Peter

    2016-02-25

    The Fusion Nuclear Science Facility (FNSF) is a nuclear confinement facility to provide a fusion environment with components of the reactor integrated together to bridge the technical gaps of burning plasma and nuclear science between ITER and the demonstration power plant (DEMO). Compared to ITER, the FNSF is smaller in size but generates much higher magnetic field, 30 times higher neutron fluence with 3 orders of magnitude longer plasma operation at higher operating temperatures for structures surrounding the plasma. Input parameters to the magnet design from system code analysis include magnetic field of 7.5 T at the plasma center withmore » plasma major radius of 4.8 m and minor radius of 1.2 m, and a peak field of 15.5 T on the TF coils for FNSF. Both low temperature superconductor (LTS) and high temperature superconductor (HTS) are considered for the FNSF magnet design based on the state-of-the-art fusion magnet technology. The higher magnetic field can be achieved by using the high performance ternary Restack Rod Process (RRP) Nb3Sn strands for toroidal field (TF) magnets. The circular cable-in-conduit conductor (CICC) design similar to ITER magnets and a high aspect ratio rectangular CICC design are evaluated for FNSF magnets but low activation jacket materials may need to be selected. The conductor design concept and TF coil winding pack composition and dimension based on the horizontal maintenance schemes are discussed. Neutron radiation limits for the LTS and HTS superconductors and electrical insulation materials are also reviewed based on the available materials previously tested. As a result, the material radiation limits for FNSF magnets are defined as part of the conceptual design studies for FNSF magnets.« less

  9. The Stewardship Science Academic Alliance: A Model of Education for Fundamental and Applied Low-energy Nuclear Science

    NASA Astrophysics Data System (ADS)

    Cizewski, J. A.

    2014-06-01

    The Stewardship Science Academic Alliances (SSAA) were inaugurated in 2002 by the National Nuclear Security Administration of the U. S. Department of Energy. The purpose is to enhance connections between NNSA laboratories and the activities of university scientists and their students in research areas important to NNSA, including low-energy nuclear science. This paper highlights some of the ways that the SSAA fosters education and training of graduate students and postdoctoral scholars in low-energy nuclear science, preparing them for careers in fundamental and applied research and development.

  10. The Stewardship Science Academic Alliance: A Model of Education for Fundamental and Applied Low-energy Nuclear Science

    SciTech Connect

    Cizewski, J.A.

    2014-06-15

    The Stewardship Science Academic Alliances (SSAA) were inaugurated in 2002 by the National Nuclear Security Administration of the U. S. Department of Energy. The purpose is to enhance connections between NNSA laboratories and the activities of university scientists and their students in research areas important to NNSA, including low-energy nuclear science. This paper highlights some of the ways that the SSAA fosters education and training of graduate students and postdoctoral scholars in low-energy nuclear science, preparing them for careers in fundamental and applied research and development.

  11. Nuclear Science References (NSR) from the National Nuclear Data Center (NNDC)

    DOE Data Explorer

    The Nuclear Science References (NSR) database is an indexed bibiliography of primary and secondary references in nuclear physics research. About 80 journals are regularly scanned for articles. Recent references are added on a weekly basis. Approximately 4300 entries are added to the database annually. In general, articles are included in NSR if they include measured, calculated, or deduced quantitative nuclear structure or reaction data. Papers that apply previously known data are generally not included. Examples of this include neutron activation analysis using known cross sections or radiological dating using known half-lives. The database can be searched like a normal bibliographic database but can also be searched by the data that distinguishes it, data such as the nuclide, target/parent/daughter, reaction, incident particles, and outgoing particles. (Specialized Interface) [Taken from the NSR Help pages at http://www.nndc.bnl.gov/nsr/nsr_help.jsp

  12. FUTURE SCIENCE AT THE RELATIVISTIC HEAVY ION COLLIDER.

    SciTech Connect

    LUDLAM, T.

    2006-12-21

    QCD was developed in the 1970's as a theory of the strong interaction describing the confinement of quarks in hadrons. An early consequence of this picture was the realization that at sufficiently high temperature, or energy density, the confining forces are overcome by color screening effects, resulting in a transition from hadronic matter to a new state--later named the Quark Gluon Plasma--whose bulk dynamical properties are determined by the quark and gluon degrees of freedom, rather than those of confined hadrons. The suggestion that this phase transition in a fundamental theory of nature might occur in the hot, dense nuclear matter created in heavy ion collisions triggered a series of experimental searches during the past two decades at CERN and at BNL, with successively higher-energy nuclear collisions. This has culminated in the present RHIC program. In their first five years of operation, the RHIC experiments have identified a new form of thermalized matter formed in Au+Au collisions at energy densities more than 100 times that of a cold atomic nucleus. Measurements and comparison with relativistic hydrodynamic models indicate that the matter thermalizes in an unexpectedly short time ( < 1 fm/c) , has an energy density at least 15 times larger than needed for color deconfinement, has a temperature about 2 times the critical temperature of {approx}170 MeV predicted by lattice QCD, and appears to exhibit collective motion with ideal hydrodynamic properties--a ''perfect liquid'' that appears to flow with a near-zero viscosity to entropy ratio - lower than any previously observed fluid and perhaps close to a universal lower bound. There are also indications that the new form of matter directly involves quarks. Comparison of measured relative hadron abundances with very successful statistical models indicates that hadrons chemically decouple at a temperature of 160-170 MeV. There is evidence suggesting that this happens very close to the quark-hadron phase

  13. Heavy-ion collisions and the nuclear equation of state

    SciTech Connect

    Keane, D.

    1992-01-01

    The overall goal of this project is to study nucleus-nucleus collisions experimentally at intermediate and relativistic energies, with emphasis on measurement and interpretation of correlation effects that provide insight into the nuclear phase diagram and the nuclear equation of state. During the past year, the PI has been on leave at Lawrence Berkeley Lab and has worked on this research project full-time. A large fraction of the effort of the PI and graduate students has gone into preparing for experiments using the Time Projection Chamber at LBL's Bevalac accelerator; in March 1992, this device successfully took data in production mode for the first time, and the first physics analysis is now under way. The PI has carried out simulations that help to define the physics performance and engineering specifications of the recently-approved STAR detector for the Relativistic Heavy Ion Collider, and has identified a new capability of this device with the potential for being an important quark-gluon plasma signature. A Postdoctoral Fellow, jointly supported by this grant and Kent State University, has been recruited to augment these efforts. Since May 1991, 11 journal papers have been published or submitted for publication; 2 conference proceedings and 9 reports or abstracts have also been published during the past year. One paper in Phys. Rev. Left., one in Phys. Rev. C, and one conference proceedings are based on the thesis project of one of the PI's Ph.D. students who is expected to graduate later this year. Partly in response to the impending closure of the Bevalac, the PI's group has recently joined the NA49 experiment at CERN.

  14. Ion Beam Nanosculpting and Materials Science with Single Nanopores

    SciTech Connect

    Golovchenko, J A; Branton, D

    2009-10-03

    Work is reported in these areas: Nanopore studies; Ion sculpting of metals; High energy ion sculpting; Metrology of nanopores with single wall carbon nanotube probes; Capturing molecules in a nanopore; Strand separation in a nanopore; and DNA molecules and configurations in solid-state nanopores.

  15. Nuclear Science Division annual report, October 1, 1984-September 30, 1985

    SciTech Connect

    Mahoney, J.

    1986-09-01

    This report summarizes the activities of the Nuclear Science Division during the period October 1, 1984 to September 30, 1985. As in previous years, experimental research has for the most part been carried out using three local accelerators, the Bevalac, the SuperHILAC and the 88-Inch Cyclotron. However, during this time, preparations began for a new generation of relativistic heavy-ion experiments at CERN. The Nuclear Science Division is involved in three major experiments at CERN and several smaller ones. The report is divided into 5 sections. Part I describes the research programs and operations, and Part II contains condensations of experimental papers arranged roughly according to program and in order of increasing energy, without any further subdivisions. Part III contains condensations of theoretical papers, again ordered according to program but in order of decreasing energy. Improvements and innovations in instrumentation and in experimental or analytical techniques are presented in Part IV. Part V consists of appendices, the first listing publications by author for this period, in which the LBL report number only is given for papers that have not yet appeared in journals; the second contains abstracts of PhD theses awarded during this period; and the third gives the titles and speakers of the NSD Monday seminars, the Bevatron Research Meetings and the theory seminars that were given during the report period. The last appendix is an author index for this report.

  16. Science of Signatures Workshop on Secondary Ion Mass Spectrometry (SIMS) Applications July 24, 2012

    SciTech Connect

    Hickmott, Donald D; Riciputi, Lee D

    2012-07-23

    The science of signatures focus areas are: (1) Radiological and Nuclear; (2) Chemical and Materials (including explosives); (3) Biological - Signatures of Disease and Health; (4) Energy; (5) Climate; and (6) Space.

  17. Nuclear science research at the WNR and LANSCE neutron sources

    SciTech Connect

    Lisowski, P.W.

    1994-06-01

    The Weapons Neutron Research (WNR) Facility and the Los Alamos Neutron Scattering Center (LANSCE) use 800 MeV proton beam from the Los Alamos Meson Physics Facility (LAMPF) to generate intense bursts of neutrons. Experiments using time-of-flight (TOF) energy determination can cover an energy range from thermal to about 2 MeV at LANSCE and 0.1 to 800 MeV at WNR. At present, three flight paths at LANSCE and six flight paths at WNR are used in basic and applied nuclear science research. In this paper we present a status report on WNR and LANSCE, discuss plans for the future, and describe three experiments recently completed or underway that use the unique features of these sources.

  18. Tritium Plasma Experiment Upgrade for Fusion Tritium and Nuclear Sciences

    NASA Astrophysics Data System (ADS)

    Shimada, Masashi; Taylor, Chase N.; Kolasinski, Robert D.; Buchenauer, Dean A.

    2015-11-01

    The Tritium Plasma Experiment (TPE) is a unique high-flux linear plasma device that can handle beryllium, tritium, and neutron-irradiated plasma facing materials, and is the only existing device dedicated to directly study tritium retention and permeation in neutron-irradiated materials [M. Shimada et.al., Rev. Sci. Instru. 82 (2011) 083503 and and M. Shimada, et.al., Nucl. Fusion 55 (2015) 013008]. Recently the TPE has undergone major upgrades in its electrical and control systems. New DC power supplies and a new control center enable remote plasma operations from outside of the contamination area for tritium, minimizing the possible exposure risk with tritium and beryllium. We discuss the electrical upgrade, enhanced operational safety, improved plasma performance, and development of tritium plasma-driven permeation and optical spectrometer system. This upgrade not only improves operational safety of the worker, but also enhances plasma performance to better simulate extreme plasma-material conditions expected in ITER, Fusion Nuclear Science Facility (FNSF), and Demonstration reactor (DEMO). This work was prepared for the U.S. Department of Energy, Office of Fusion Energy Sciences, under the DOE Idaho Field Office contract number DE-AC07-05ID14517.

  19. Laboratory for Nuclear Science. High Energy Physics Program

    SciTech Connect

    Milner, Richard

    2014-07-30

    High energy and nuclear physics research at MIT is conducted within the Laboratory for Nuclear Science (LNS). Almost half of the faculty in the MIT Physics Department carry out research in LNS at the theoretical and experimental frontiers of subatomic physics. Since 2004, the U.S. Department of Energy has funded the high energy physics research program through grant DE-FG02-05ER41360 (other grants and cooperative agreements provided decades of support prior to 2004). The Director of LNS serves as PI. The grant supports the research of four groups within LNS as “tasks” within the umbrella grant. Brief descriptions of each group are given here. A more detailed report from each task follows in later sections. Although grant DE-FG02-05ER41360 has ended, DOE continues to fund LNS high energy physics research through five separate grants (a research grant for each of the four groups, as well as a grant for AMS Operations). We are pleased to continue this longstanding partnership.

  20. REACTOR DOSIMETRY STUDY OF THE RHODE ISLAND NUCLEAR SCIENCE CENTER.

    SciTech Connect

    HOLDEN, N.E.,; RECINIELLO, R.N.; HU, J.-P.

    2005-05-08

    The Rhode Island Nuclear Science Center (RINSC), located on the Narragansett Bay Campus of the University of Rhode Island, is a state-owned and US NRC-licensed nuclear facility constructed for educational and industrial applications. The main building of RINSC houses a two-megawatt (2 MW) thermal power critical reactor immersed in demineralized water within a shielded tank. As its original design in 1958 by the Rhode Island Atomic Energy Commission focused on the teaching and research use of the facility, only a minimum of 3.85 kg fissile uranium-235 was maintained in the fuel elements to allow the reactor to reach a critical state. In 1986 when RINSC was temporarily shutdown to start US DOE-directed core conversion project for national security reasons, all the U-Al based Highly-Enriched Uranium (HEU, 93% uranium-235 in the total uranium) fuel elements were replaced by the newly developed U{sub 3}Si{sub 2}-Al based Low Enriched Uranium (LEU, {le}20% uranium-235 in the total uranium) elements. The reactor first went critical after the core conversion was achieved in 1993, and feasibility study on the core upgrade to accommodate Boron Neutron-Captured Therapy (BNCT) was completed in 2000 [3]. The 2-MW critical reactor at RINSC which includes six beam tubes, a thermal column, a gamma-ray experimental station and two pneumatic tubes has been extensive utilized as neutron-and-photon dual source for nuclear-specific research in areas of material science, fundamental physics, biochemistry, and radiation therapy. After the core conversion along with several major system upgrade (e.g. a new 3-MW cooling tower, a large secondary piping system, a set of digitized power-level instrument), the reactor has become more compact and thus more effective to generate high beam flux in both the in-core and ex-core regions for advance research. If not limited by the manpower and operating budget in recent years, the RINSC built ''in concrete'' structure and control systems should have

  1. NUCLEAR DATA NEEDS FOR ADVANCED REACTOR SYSTEMS. A NEA NUCLEAR SCIENCE COMMITTEE INITIATIVE.

    SciTech Connect

    SALVATORES,J.M.; ALIBERTI, G.; PALMIOTTI, G.; ROCHMAN, D.; OBLOZINSKY, P.; HERMANN, M.; TALOU, P.; KAWANO, T.; LEAL, L.; KONING, A.; KODELI, I.

    2007-04-22

    The Working Party on Evaluation Cooperation (WPEC) of the OECD Nuclear Energy Agency Nuclear Science Committee has established an International Subgroup to perform an activity in order to develop a systematic approach to define data needs for Gen-IV and, in general, for advanced reactor systems. A methodology, based on sensitivity analysis has been agreed and representative core configurations for Sodium, Gas and Lead cooled Fast Reactors (SFR, GFR, LFR) have been defined as well as a high burn-up VHTR and a high burn-up PWR. In the case of SFRs, both a TRU burner (called in fact SFR) and a core configuration with homogeneous recycling of not separated TRU (called EFR) have been considered.

  2. Highly Compressed Ion Beam for High Energy Density Science

    SciTech Connect

    Friedman, A.; Barnard, J.J.; Briggs, R.J.; Callahan, D.A.; Caporaso, G.J.; Celata, C.M.; Davidson, R.C.; Faltens, A.; Grisham, L.; Grote, D.P.; Henestroza, E.; Kaganovich I.; Lee, E.P.; Lee, R.W.; Leitner, M.; Logan, B.G.; Nelson, S.D.; Olson, C.L.; Penn, G.; Reginato,L.R.; Renk, T.; Rose, D.; Seessler, A.; Staples, J.W.; Tabak, M.; Thoma,C.; Waldron, W.; Welch, D.R.; Wurtele, J.; Yu, S.S.

    2005-05-16

    The Heavy Ion Fusion Virtual National Laboratory is developing the intense ion beams needed to drive matter to the High Energy Density regimes required for Inertial Fusion Energy and other applications. An interim goal is a facility for Warm Dense Matter studies, wherein a target is heated volumetrically without being shocked, so that well-defined states of matter at 1 to 10 eV are generated within a diagnosable region. In the approach they are pursuing, low to medium mass ions with energies just above the Bragg peak are directed onto thin target ''foils,'' which may in fact be foams with mean densities 1% to 10% of solid. This approach complements that being pursued at GSI Darmstadt, wherein high-energy ion beams deposit a small fraction of their energy in a cylindrically target. They present the beam requirements for Warm Dense Matter experiments. The authors discuss neutralized drift compression and final focus experiments and modeling. They describe suitable accelerator architectures based on Drift-Tube Linac, RF, single-gap, Ionization-Front Accelerator, and Pulse-Line Ion Accelerator concepts. The last of these is being pursued experimentally. Finally, they discuss plans toward a user facility for target experiments.

  3. Irradiation of nuclear track emulsions with thermal neutrons, heavy ions, and muons

    SciTech Connect

    Artemenkov, D. A. Bradnova, V.; Zaitsev, A. A.; Zarubin, P. I.; Zarubina, I. G.; Kattabekov, R. R.; Mamatkulov, K. Z.; Rusakova, V. V.

    2015-07-15

    Exposures of test samples of nuclear track emulsion were analyzed. Angular and energy correlations of products originating from the thermal-neutron-induced reaction n{sub th} +{sup 10} B → {sup 7} Li + (γ)+ α were studied in nuclear track emulsions enriched in boron. Nuclear track emulsions were also irradiated with {sup 86}Kr{sup +17} and {sup 124}Xe{sup +26} ions of energy about 1.2 MeV per nucleon. Measurements of ranges of heavy ions in nuclear track emulsionsmade it possible to determine their energies on the basis of the SRIM model. The formation of high-multiplicity nuclear stars was observed upon irradiating nuclear track emulsions with ultrarelativistic muons. Kinematical features studied in this exposure of nuclear track emulsions for events of the muon-induced splitting of carbon nuclei to three alpha particles are indicative of the nucleardiffraction interaction mechanism.

  4. Irradiation of nuclear track emulsions with thermal neutrons, heavy ions, and muons

    NASA Astrophysics Data System (ADS)

    Artemenkov, D. A.; Bradnova, V.; Zaitsev, A. A.; Zarubin, P. I.; Zarubina, I. G.; Kattabekov, R. R.; Mamatkulov, K. Z.; Rusakova, V. V.

    2015-07-01

    Exposures of test samples of nuclear track emulsion were analyzed. Angular and energy correlations of products originating from the thermal-neutron-induced reaction n th +10 B → 7 Li + (γ)+ α were studied in nuclear track emulsions enriched in boron. Nuclear track emulsions were also irradiated with 86Kr+17 and 124Xe+26 ions of energy about 1.2 MeV per nucleon. Measurements of ranges of heavy ions in nuclear track emulsionsmade it possible to determine their energies on the basis of the SRIM model. The formation of high-multiplicity nuclear stars was observed upon irradiating nuclear track emulsions with ultrarelativistic muons. Kinematical features studied in this exposure of nuclear track emulsions for events of the muon-induced splitting of carbon nuclei to three alpha particles are indicative of the nucleardiffraction interaction mechanism.

  5. Applications of laser produced ion beams to nuclear analysis of materials

    NASA Astrophysics Data System (ADS)

    Mima, K.; Azuma, H.; Fujita, K.; Yamazaki, A.; Okuda, C.; Ukyo, Y.; Kato, Y.; Arrabal, R. Gonzalez; Soldo, F.; Perlado, J. M.; Nishimura, H.; Nakai, S.

    2012-07-01

    Laser produced ion beams have unique characteristics which are ultra-short pulse, very low emittance, and variety of nuclear species. These characteristics could be used for analyzing various materials like low Z ion doped heavy metals or ceramics. Energies of laser produced ion beam extend from 0.1MeV to 100MeV. Therefore, various nuclear processes can be induced in the interactions of ion beams with samples. The ion beam driven nuclear analysis has been developed for many years by using various electrostatic accelerators. To explore the applicability of laser ion beam to the analysis of the Li ion battery, a proton beam with the diameter of ˜ 1.0 μm at Takasaki Ion Acceleration for Advanced Radiation Application (TIARA), JAEA was used. For the analysis, the PIGE (Particle-Induced Gamma Ray Emission) is used. The proton beam scans over Li battery electrode samples to diagnose Li density in the LiNi0.85Co0.15O2 anode. As the results, PIGE images for Li area density distributions are obtained with the spatial resolution of better than 1.5μm FWHM. By the Li PIGE images, the depth dependence of de-intercalation levels of Li in the anode is obtained. By the POP experiments at TIARA, it is clarified that laser produced ion beam is appropriate for the Li ion battery analysis. 41.85.Lc, 41.75.Jv, 42.62.cf.

  6. Possibilities for Nuclear Photo-Science with Intense Lasers

    SciTech Connect

    Barty, C J; Hartemann, F V; McNabb, D P; Messerly, M; Siders, C; Anderson, S; Barnes, P; Betts, S; Gibson, D; Hagmann, C; Hernandez, J; Johnson, M; Jovanovic, I; Norman, R; Pruet, J; Rosenswieg, J; Shverdin, M; Tremaine, A

    2006-06-26

    The interaction of intense laser light with relativistic electrons can produce unique sources of high-energy x rays and gamma rays via Thomson scattering. ''Thomson-Radiated Extreme X-ray'' (T-REX) sources with peak photon brightness (photons per unit time per unit bandwidth per unit solid angle per unit area) that exceed that available from world's largest synchrotrons by more than 15 orders of magnitude are possible from optimally designed systems. Such sources offer the potential for development of ''nuclear photo-science'' applications in which the primary photon-atom interaction is with the nucleons and not the valence electrons. Applications include isotope-specific detection and imaging of materials, inverse density radiography, transmutation of nuclear waste and fundamental studies of nuclear structure. Because Thomson scattering cross sections are small, < 1 barn, the output from a T-REX source is optimized when the laser spot size and the electron spot size are minimized and when the electron and laser pulse durations are similar and short compared to the transit time through the focal region. The principle limitation to increased x-ray or gamma-ray brightness is ability to focus the electron beam. The effects of space charge on electron beam focus decrease approximately linearly with electron beam energy. For this reason, T-REX brightness increases rapidly as a function of the electron beam energy. As illustrated in Figure 1, above 100 keV these sources are unique in their ability to produce bright, narrow-beam, tunable, narrow-band gamma rays. New, intense, short-pulse, laser technologies for advanced T-REX sources are currently being developed at LLNL. The construction of a {approx}1 MeV-class machine with this technology is underway and will be used to excite nuclear resonance fluorescence in variety of materials. Nuclear resonance fluorescent spectra are unique signatures of each isotope and provide an ideal mechanism for identification of nuclear

  7. A description of a wide beam saddle field ion source used for nuclear target applications

    SciTech Connect

    Greene, J.P.; Schiel, S.L.; Thomas, G.E.

    1997-07-01

    A description is given of a new, wide beam saddle field sputter source used for the preparation of targets applied in nuclear physics experiments. The ion source characteristics are presented and compared with published results obtained with other sources. Deposition rates acquired utilizing this source are given for a variety of target materials encountered in nuclear target production. New applications involving target thinning and ion milling are discussed.

  8. ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology

    SciTech Connect

    Chadwick, M B; Oblozinsky, P; Herman, M; Greene, N M; McKnight, R D; Smith, D L; Young, P G; MacFarlane, R E; Hale, G M; Haight, R C; Frankle, S; Kahler, A C; Kawano, T; Little, R C; Madland, D G; Moller, P; Mosteller, R; Page, P; Talou, P; Trellue, H; White, M; Wilson, W B; Arcilla, R; Dunford, C L; Mughabghab, S F; Pritychenko, B; Rochman, D; Sonzogni, A A; Lubitz, C; Trumbull, T H; Weinman, J; Brown, D; Cullen, D E; Heinrichs, D; McNabb, D; Derrien, H; Dunn, M; Larson, N M; Leal, L C; Carlson, A D; Block, R C; Briggs, B; Cheng, E; Huria, H; Kozier, K; Courcelle, A; Pronyaev, V; der Marck, S

    2006-10-02

    We describe the next generation general purpose Evaluated Nuclear Data File, ENDF/B-VII.0, of recommended nuclear data for advanced nuclear science and technology applications. The library, released by the U.S. Cross Section Evaluation Working Group (CSEWG) in December 2006, contains data primarily for reactions with incident neutrons, protons, and photons on almost 400 isotopes. The new evaluations are based on both experimental data and nuclear reaction theory predictions. The principal advances over the previous ENDF/B-VI library are the following: (1) New cross sections for U, Pu, Th, Np and Am actinide isotopes, with improved performance in integral validation criticality and neutron transmission benchmark tests; (2) More precise standard cross sections for neutron reactions on H, {sup 6}Li, {sup 10}B, Au and for {sup 235,238}U fission, developed by a collaboration with the IAEA and the OECD/NEA Working Party on Evaluation Cooperation (WPEC); (3) Improved thermal neutron scattering; (4) An extensive set of neutron cross sections on fission products developed through a WPEC collaboration; (5) A large suite of photonuclear reactions; (6) Extension of many neutron- and proton-induced reactions up to an energy of 150 MeV; (7) Many new light nucleus neutron and proton reactions; (8) Post-fission beta-delayed photon decay spectra; (9) New radioactive decay data; and (10) New methods developed to provide uncertainties and covariances, together with covariance evaluations for some sample cases. The paper provides an overview of this library, consisting of 14 sublibraries in the same, ENDF-6 format, as the earlier ENDF/B-VI library. We describe each of the 14 sublibraries, focusing on neutron reactions. Extensive validation, using radiation transport codes to simulate measured critical assemblies, show major improvements: (a) The long-standing underprediction of low enriched U thermal assemblies is removed; (b) The {sup 238}U, {sup 208}Pb, and {sup 9}Be reflector

  9. Ion Exchange Resins for Long-Term Spent Nuclear Fuel Storage

    SciTech Connect

    Rideaux, J.

    1999-03-08

    This paper will specifically address the use and life cycle of ion exchange resins as they relate to the SRS Spent Nuclear Fuel Storage Basins. This paper also chronicles the use of two types of ion exchange resins and their affect on basin water quality from the sixties until today.

  10. Nuclear Science Division annual report, October 1, 1986--September 30, 1987

    SciTech Connect

    Mahoney, J.

    1988-09-01

    This report summarizes the activities of the Nuclear Science Division during the period October 1, 1986 to September 30, 1987. A highlight of the experimental program during this time was the completion of the first round of heavy-ion running at CERN with ultrarelativistic oxygen and sulfur beams. Very rapid progress is being made in the analysis of these important experiments and preliminary results are presented in this report. During this period, the Bevalac also continued to produce significant new physics results, while demand for beam time remained high. An important new community of users has arrived on the scene, eager to exploit the unique low-energy heavy-beam capabilities of the Bevalac. Another major highlight of the program has been the performance of the Dilepton Spectrometer which has entered into production running. Dileptons have been observed in the p + Be and Ca + Ca reactions at several bombarding energies. New data on pion production with heavy beams measured in the streamer chamber to shed light on the question of nuclear compressibility, while posing some new questions concerning the role of Coulomb forces on the observed pion spectra. In another quite different area, the pioneering research with radioactive beams is continuing and is proving to be one of the fastest growing programs at the Bevalac. Exotic secondary beams (e.g., 8He, 11Li, and 14Be) have been produced for fundamental nuclear physics studies. In order to further enhance the scientific research program and ensure the continued vitality of the facility, the Laboratory has proposed an upgrade of the existing Bevalac. Specifically, the Upgrade would replace the Bevatron with a modern, strong-focusing synchrotron to provide higher intensity and higher quality beams to continue the forefront research program. Other papers on nuclear physics research are included in this report.

  11. Filtered fast neutron irradiation system using Texas A&M University Nuclear Science Center Reactor

    NASA Astrophysics Data System (ADS)

    Jang, S. Y.; Kim, C. H.; Reece, W. D.; Braby, L. A.

    2004-09-01

    A heavily filtered fast neutron irradiation system (FNIS) was developed for a variety of applications, including the study of long-term health effects of fast neutrons by evaluating the biological mechanisms of damage in cultured cells and living animals such as rats or mice. This irradiation system includes an exposure cave made with a lead-bismuth alloy, a cave positioning system, a gamma and neutron monitoring system, a sample transfer system, and interchangeable filters. This system was installed in the irradiation cell of the Texas A&M University Nuclear Science Center Reactor (NSCR). For a realistic modeling of the NSCR, the irradiation cell, and the FNIS, this study used the Monte Carlo N-Particle (MCNP) code and a set of high-temperature ENDF/B-VI continuous neutron cross-section data. Sensitivity analysis was performed to find the characteristics of the FNIS as a function of the thickness of the lead-bismuth alloy. A paired ion chamber system was constructed with a tissue-equivalent plastic (A-150) and propane gas for total dose monitoring and with graphite and argon for gamma dose monitoring. This study, in addition, tested the Monte Carlo modeling of the FNIS system, as well as the performance of the system by comparing the calculated results with experimental measurements using activation foils and paired ion chambers.

  12. ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology

    NASA Astrophysics Data System (ADS)

    Chadwick, M. B.; Obložinský, P.; Herman, M.; Greene, N. M.; McKnight, R. D.; Smith, D. L.; Young, P. G.; MacFarlane, R. E.; Hale, G. M.; Frankle, S. C.; Kahler, A. C.; Kawano, T.; Little, R. C.; Madland, D. G.; Moller, P.; Mosteller, R. D.; Page, P. R.; Talou, P.; Trellue, H.; White, M. C.; Wilson, W. B.; Arcilla, R.; Dunford, C. L.; Mughabghab, S. F.; Pritychenko, B.; Rochman, D.; Sonzogni, A. A.; Lubitz, C. R.; Trumbull, T. H.; Weinman, J. P.; Brown, D. A.; Cullen, D. E.; Heinrichs, D. P.; McNabb, D. P.; Derrien, H.; Dunn, M. E.; Larson, N. M.; Leal, L. C.; Carlson, A. D.; Block, R. C.; Briggs, J. B.; Cheng, E. T.; Huria, H. C.; Zerkle, M. L.; Kozier, K. S.; Courcelle, A.; Pronyaev, V.; van der Marck, S. C.

    2006-12-01

    We describe the next generation general purpose Evaluated Nuclear Data File, ENDF/B-VII.0, of recommended nuclear data for advanced nuclear science and technology applications. The library, released by the U.S. Cross Section Evaluation Working Group (CSEWG) in December 2006, contains data primarily for reactions with incident neutrons, protons, and photons on almost 400 isotopes, based on experimental data and theory predictions. The principal advances over the previous ENDF/B-VI library are the following: (1) New cross sections for U, Pu, Th, Np and Am actinide isotopes, with improved performance in integral validation criticality and neutron transmission benchmark tests; (2) More precise standard cross sections for neutron reactions on H, 6Li, 10B, Au and for 235,238U fission, developed by a collaboration with the IAEA and the OECD/NEA Working Party on Evaluation Cooperation (WPEC); (3) Improved thermal neutron scattering; (4) An extensive set of neutron cross sections on fission products developed through a WPEC collaboration; (5) A large suite of photonuclear reactions; (6) Extension of many neutron- and proton-induced evaluations up to 150 MeV; (7) Many new light nucleus neutron and proton reactions; (8) Post-fission beta-delayed photon decay spectra; (9) New radioactive decay data; (10) New methods for uncertainties and covariances, together with covariance evaluations for some sample cases; and (11) New actinide fission energy deposition. The paper provides an overview of this library, consisting of 14 sublibraries in the same ENDF-6 format as the earlier ENDF/B-VI library. We describe each of the 14 sublibraries, focusing on neutron reactions. Extensive validation, using radiation transport codes to simulate measured critical assemblies, show major improvements: (a) The long-standing underprediction of low enriched uranium thermal assemblies is removed; (b) The 238U and 208Pb reflector biases in fast systems are largely removed; (c) ENDF/B-VI.8 good

  13. Ion chromatographic determination of transition metals in irradiated nuclear reactor surveillance samples.

    PubMed

    Louw, I

    1996-02-01

    The determination of transition metal ions in radioactive (+/-25 microCi/g) low-alloy steels (nuclear reactor surveillance samples) by ion chromatography (IC) is described. The analysis has been done directly without prior separation of the iron matrix. The eluted metal ions have been detected with a UV-visible spectrophotometric detector after post-column complexation with 4-(2-pyridylazo)resorcinol. The results are in a good agreement with the certified values for the standard reference material used. The method was applied to nuclear reactor surveillance samples for the determination of Cu, Mn, Co and Ni. PMID:15048428

  14. Probing the nuclear symmetry energy with heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Coupland, Daniel David Schechtman

    There are two distinct components involved in using heavy ion collisions to constrain the density dependence of the symmetry energy. On one hand, observables sensitive to the symmetry energy must be identified and measured with enough precision to provide meaningful constraints. On the other hand, nuclear reaction simulations are used to predict those observables for different possible forms of the symmetry energy. Examination of both components and the interface between them is important to improve the constraints. This thesis contributes to both the experimental and theoretical parts of this endeavor. First, we examine the uncertainties in the simulation of the isospin diffusion observable by varying the input physics within the pBUU transport code. In addition to the symmetry energy, several other uncertain parts of the calculation affect isospin diffusion, most notably the in-medium nucleon-nucleon cross sections and light cluster production. There is also a difference in the calculated isospin transport ratios depending on whether they are computed using the isospin asymmetry of the heavy residue or of all forward-moving fragments. We suggest that measurements comparing these two quantities would help place constraints on the input physics, including the density dependence of the symmetry energy. Second, we present a measurement of the neutron and proton kinetic energy spectra emitted from central collisions of 124Sn + 124Sn and 112Sn + 112Sn at beam energies of 50 MeV per nucleon and 120 MeV per nucleon. Previous transport simulations indicate that ratios of these spectra are sensitive to the density dependence of the symmetry energy and to the isovector momentum dependence of the mean field. Protons were detected in the Large Area Silicon Strip Array (LASSA) and neutrons were detected in the MSU Neutron Walls. The multiplicity of charged particles detected in the MSU Miniball was used to determine the impact parameter of the collisions. Several thin

  15. Nuclear astrophysics experiments with stored, highly-charged ions at FRS-ESR at GSI

    SciTech Connect

    Scheidenberger, Christoph

    2010-08-12

    At the FRS-ESR complex of GSI a nuclear physics program with exotic nuclei has been established in last 18 years, which also addresses key questions and nuclear properties relevant in nuclear astrophysics. The paper summarizes production of exotic nuclei, lifetime studies of highly-charged ions, direct mass measurements and reactions at internal targets. A few comments on the analysis of two-body weak decays are given.

  16. Understanding the nuclear initial state with an electron ion collider

    NASA Astrophysics Data System (ADS)

    Toll, Tobias

    2013-09-01

    In these proceedings I describe how a future electron-ion collider will allow us to directly measure the initial spatial distribution of gluons in heavy ions, as well as its variance ("lumpiness") in exclusive diffraction. I show the feasibility of such a measurement by means of simulated data from the novel event generator Sartre.

  17. Topics in nuclear and radiochemistry for college curricula and high school science programs

    SciTech Connect

    Not Available

    1990-01-01

    The concern with the current status and trends of nuclear chemistry and radiochemistry education in academic institutions was addressed in a recent workshop. The 1988 workshop considered the important contributions that scientist with nuclear and radiochemistry backgrounds have made and are continuing to make to other sciences and to various applied fields. Among the areas discussed were environmental studies, life sciences, materials science, separation technology, hot atom chemistry, cosmochemistry, and the rapidly growing field of nuclear medicine. It is intent of the organizer and participants of this symposium entitled Topics in Nuclear and Radiochemistry for College Curricula and High School Science Program'' to provide lecture material on topics related to nuclear and radiochemistry to educators. It is our hope that teachers, who may or may not be familiar with the field, will find this collections of articles useful and incorporate some of them into their lectures.

  18. The roles of electronic and nuclear stopping in the desorption valine negative molecular ions

    SciTech Connect

    Hunt, J.E.; Salehpour, M.; Fishel, D.L.; Tou, J.C.

    1988-01-01

    The yield of valine negative molecular ions has been measured as a function of Xe/sup +/, Kr/sup +/, and Ar/sup +/ primary ion velocity. The electronic and nuclear stopping powers are comparable in magnitude and opposite in slope in the experimental velocity region. The yield data are explained in terms of electronic stopping power alone, with no contribution from nuclear stopping power within the experimental error. Low molecular weight atomic species are found to be best described by a nuclear stopping power related process. 18 refs., 3 figs.

  19. An Advanced Tokamak Fusion Nuclear Science Facility (FNSF-AT)

    NASA Astrophysics Data System (ADS)

    Chan, V. S.; Garofalo, A. M.; Stambaugh, R. D.

    2010-11-01

    A Fusion Development Facility (FDF) is a candidate for FNSF-AT. It is a compact steady-state machine of moderate gain that uses AT physics to provide the neutron fluence required for fusion nuclear science development. FDF is conceived as a double-null plasma with high elongation and triangularity, predicted to allow good confinement of high plasma pressure. Steady-state is achieved with high bootstrap current and radio frequency current drive. Neutral beam injection and 3D non-resonant magnetic field can provide edge plasma rotation for stabilization of MHD and access to Quiescent H-mode. The estimated power exhaust is somewhat lower than that of ITER because of higher core radiation and stronger tilting of the divertor plates. FDF is capable of further developing all elements of AT physics, qualifying them for an advanced performance DEMO. The latest concept has accounted for realistic neutron shielding and divertor implementation. Self-consistent evolution of the transport profiles and equilibrium will quantify the stability and confinement required to meet the FNS mission.

  20. Heavy ion fusion science research for high energy density physics and fusion applications

    SciTech Connect

    LOGAN, B.G.; Logan, B.G.; Bieniosek, F.M.; Barnard, J.J.; Cohen, R.H.; Coleman, J.E.; Davidson, R.C.; Efthimion, P.C.; Friedman, A.; Gilson, E.P.; Greenway, W.G.; Grisham, L.; Grote, D.P.; Henestroza, E.; Hoffmann, D.H.H.; Kaganovich, I.D.; Kireeff Covo, M.; Kwan, J.W.; LaFortune, K.N.; Lee, E.P.; Leitner, M.; Lund, S.M.; Molvik, A.W.; Ni, P.; Penn, G.E.; Perkins, L.J.; Qin, H.; Roy, P.K.; Sefkow, A.B.; Seidl, P.A.; Sharp, W.; Startsev, E.A.; Varentsov, D.; Vay, J.-L.; Waldron, W.L.; Wurtele, J.S.; Welch, D.; Westenskow, G.A.; Yu, S.S.

    2007-06-25

    During the past two years, the U.S. heavy ion fusion science program has made significant experimental and theoretical progress in simultaneous transverse and longitudinal beam compression, ion-beam-driven warm dense matter targets, high brightness beam transport, advanced theory and numerical simulations, and heavy ion target designs for fusion. First experiments combining radial and longitudinal compression of intense ion beams propagating through background plasma resulted in on-axis beam densities increased by 700X at the focal plane. With further improvements planned in 2007, these results will enable initial ion beam target experiments in warm dense matter to begin next year at LBNL. We are assessing how these new techniques apply to low-cost modular fusion drivers and higher-gain direct-drive targets for inertial fusion energy.

  1. Nuclear Science Symposium, 26th and Symposium on Nuclear Power Systems, 11th, San Francisco, Calif., October 17-19, 1979, Proceedings

    NASA Technical Reports Server (NTRS)

    Kerns, C. R.

    1980-01-01

    The paper covers the studies presented on nuclear science and nuclear power systems symposiums. The studies deal with nuclear radiation detectors, nuclear circuits and systems, space and medical instrumentation, as well as with environmental and reactor instrumentation. Data preprocessing and acquisition are discussed. Emphasis is placed on the engineered safety features of nuclear systems.

  2. Undergraduate and Graduate Opportunities in Nuclear Science at Simon Fraser University

    NASA Astrophysics Data System (ADS)

    Andreoiu, Corina; Brodovitch, J.-C.; D'Auria, J. M.; Starosta, K.

    2012-10-01

    The Departments of Chemistry and Physics at Simon Fraser University offer a Nuclear Science Minor at undergraduate level. The program, which is unique in Canada, attracts students from all departments of the Faculty of Science, and, occasionally, from other departments such as engineering and business. Students graduating with this minor have the opportunity to get employment in academia and a variety of industries ranging from nuclear power to nuclear medicine, safety, accelerators, etc. At the graduate level, the Nuclear Science group in the Department of Chemistry attracts students to its in-house program and also in collaboration with TRIUMF, Canada's Laboratory for Nuclear and Particle Physics. The graduate program offer a rich plethora of topics in experimental nuclear science ranging from understanding the matter at subatomic level and its role in astrochemistry to applications of nuclear science in radiation measurements and monitoring, nuclear instrumentation, etc. The academic components of the program, its goals and future developments are presented in this paper along with enrolment statistics for the last ten years.

  3. Nuclear interactions in heavy ion transport and event-based risk models.

    PubMed

    Cucinotta, Francis A; Plante, Ianik; Ponomarev, Artem L; Kim, Myung-Hee Y

    2011-02-01

    The physical description of the passage of heavy ions in tissue and shielding materials is of interest in radiobiology, cancer therapy and space exploration, including a human mission to Mars. Galactic cosmic rays (GCRs) consist of a large number of ion types and energies. Energy loss processes occur continuously along the path of heavy ions and are well described by the linear energy transfer (LET), straggling and multiple scattering algorithms. Nuclear interactions lead to much larger energy deposition than atomic-molecular collisions and alter the composition of heavy ion beams while producing secondary nuclei often in high multiplicity events. The major nuclear interaction processes of importance for describing heavy ion beams was reviewed, including nuclear fragmentation, elastic scattering and knockout-cascade processes. The quantum multiple scattering fragmentation model is shown to be in excellent agreement with available experimental data for nuclear fragmentation cross sections and is studied for application to thick target experiments. A new computer model, which was developed for the description of biophysical events from heavy ion beams at the NASA Space Radiation Laboratory (NSRL), called the GCR Event Risk-Based Model (GERMcode) is described. PMID:21242169

  4. A,B,C`s of nuclear science

    SciTech Connect

    Noto, V.A.; Norman, E.B.; Chan, Yuen-Dat; Dairiki, J.; Matis, H.S.; McMahan, M.A.; Otto, R.

    1995-08-07

    This introductory level presentation contains information on nuclear structure, radioactivity, alpha decay, beta decay, gamma decay, half-life, nuclear reactions, fusion, fission, cosmic rays, and radiation protection. Nine experiments with procedures and test questions are included.

  5. An Analysis of the Universal Decimal Classification as a Term System for Nuclear Science and Technology

    ERIC Educational Resources Information Center

    Stueart, Robert D.

    1971-01-01

    The possibilities of merging the terminology of the Universal Decimal Classification System with that of a term system - Engineers Joint Council's Thesaurus - for nuclear science and technology are explored. (12 references) (Author/NH)

  6. Nuclear polarization study: new frontiers for tests of QED in heavy highly charged ions.

    PubMed

    Volotka, Andrey V; Plunien, Günter

    2014-07-11

    A systematic investigation of the nuclear polarization effects in one- and few-electron heavy ions is presented. The nuclear polarization corrections in the zeroth and first orders in 1/Z are evaluated to the binding energies, the hyperfine splitting, and the bound-electron g factor. It is shown that the nuclear polarization contributions can be substantially canceled simultaneously with the rigid nuclear corrections. This allows for new prospects for probing the QED effects in a strong electromagnetic field and the determination of fundamental constants. PMID:25062173

  7. Apparatus and method for extracting power from energetic ions produced in nuclear fusion

    DOEpatents

    Fisch, Nathaniel J.; Rax, Jean M.

    1994-01-01

    An apparatus and method of extracting power from energetic ions produced by nuclear fusion in a toroidal plasma to enhance respectively the toroidal plasma current and fusion reactivity. By injecting waves of predetermined frequency and phase traveling substantially in a selected poloidal direction within the plasma, the energetic ions become diffused in energy and space such that the energetic ions lose energy and amplify the waves. The amplified waves are further adapted to travel substantially in a selected toroidal direction to increase preferentially the energy of electrons traveling in one toroidal direction which, in turn, enhances or generates a toroidal plasma current. In an further adaptation, the amplified waves can be made to preferentially increase the energy of fuel ions within the plasma to enhance the fusion reactivity of the fuel ions. The described direct, or in situ, conversion of the energetic ion energy provides an efficient and economical means of delivering power to a fusion reactor.

  8. Apparatus and method for extracting power from energetic ions produced in nuclear fusion

    DOEpatents

    Fisch, N.J.; Rax, J.M.

    1994-12-20

    An apparatus and method of extracting power from energetic ions produced by nuclear fusion in a toroidal plasma to enhance respectively the toroidal plasma current and fusion reactivity. By injecting waves of predetermined frequency and phase traveling substantially in a selected poloidal direction within the plasma, the energetic ions become diffused in energy and space such that the energetic ions lose energy and amplify the waves. The amplified waves are further adapted to travel substantially in a selected toroidal direction to increase preferentially the energy of electrons traveling in one toroidal direction which, in turn, enhances or generates a toroidal plasma current. In an further adaptation, the amplified waves can be made to preferentially increase the energy of fuel ions within the plasma to enhance the fusion reactivity of the fuel ions. The described direct, or in situ, conversion of the energetic ion energy provides an efficient and economical means of delivering power to a fusion reactor. 4 figures.

  9. Nuclear Molecular Resonances in Heavy-Ion Collisions.

    ERIC Educational Resources Information Center

    Erb, Karl A.; Bromley, D. Allan

    1979-01-01

    Explains that some nuclear scattering phenomena can be attributed to states in which two nuclei are bound to each other at their surfaces, revolving and vibrating for a time before coalescing or disintegrating. (Author/GA)

  10. Accelerated Nuclear Energy Materials Development with Multiple Ion Beams

    SciTech Connect

    Fluss, M J; Bench, G

    2009-08-19

    A fundamental issue in nuclear energy is the changes in material properties as a consequence of time, temperature, and neutron fluence. Usually, candidate materials for nuclear energy applications are tested in nuclear reactors to understand and model the changes that arise from a combination of atomic displacements, helium and hydrogen production, and other nuclear transmutations (e.g. fission and the production of fission products). Experiments may be carried out under neutron irradiation conditions in existing nuclear materials test reactors (at rates of 10 to 20 displacements per atom (DPA) per year or burn-up rates of a few percent per year for fertile fuels), but such an approach takes much too long for many high neutron fluence scenarios (300 DPA for example) expected in reactors of the next generation. Indeed it is reasonable to say that there are no neutron sources available today to accomplish sufficiently rapid accelerated aging let alone also provide the temperature and spectral characteristics of future fast spectrum nuclear energy systems (fusion and fission both). Consequently, materials research and development progress continues to be severely limited by this bottleneck.

  11. Applications of laser produced ion beams to nuclear analysis of materials

    SciTech Connect

    Mima, K.; Azuma, H.; Fujita, K.; Yamazaki, A.; Okuda, C.; Ukyo, Y.; Kato, Y.; Arrabal, R. Gonzalez; Soldo, F.; Perlado, J. M.; Nishimura, H.; Nakai, S.

    2012-07-11

    Laser produced ion beams have unique characteristics which are ultra-short pulse, very low emittance, and variety of nuclear species. These characteristics could be used for analyzing various materials like low Z ion doped heavy metals or ceramics. Energies of laser produced ion beam extend from 0.1MeV to 100MeV. Therefore, various nuclear processes can be induced in the interactions of ion beams with samples. The ion beam driven nuclear analysis has been developed for many years by using various electrostatic accelerators. To explore the applicability of laser ion beam to the analysis of the Li ion battery, a proton beam with the diameter of {approx} 1.0 {mu}m at Takasaki Ion Acceleration for Advanced Radiation Application (TIARA), JAEA was used. For the analysis, the PIGE (Particle-Induced Gamma Ray Emission) is used. The proton beam scans over Li battery electrode samples to diagnose Li density in the LiNi{sub 0.85}Co{sub 0.15}O{sub 2} anode. As the results, PIGE images for Li area density distributions are obtained with the spatial resolution of better than 1.5{mu}m FWHM. By the Li PIGE images, the depth dependence of de-intercalation levels of Li in the anode is obtained. By the POP experiments at TIARA, it is clarified that laser produced ion beam is appropriate for the Li ion battery analysis. 41.85.Lc, 41.75.Jv, 42.62.cf.

  12. Towards possible opportunities in nuclear materials science and technology at an X-ray free electron laser research facility

    NASA Astrophysics Data System (ADS)

    Froideval, A.; Badillo, A.; Bertsch, J.; Churakov, S.; Dähn, R.; Degueldre, C.; Lind, T.; Paladino, D.; Patterson, B. D.

    2011-09-01

    Spectroscopy and imaging of condensed matter have benefited greatly from the availability of intense X-ray beams from synchrotron sources, both in terms of spatial resolution and of elemental specificity. The advent of the X-ray free electron laser (X-ray FEL) provides the additional features of ultra-short pulses and high transverse coherence, which greatly expand possibilities to study dynamic processes and to image non-crystalline materials. The proposed SwissFEL facility at the Paul Scherrer Institute is one of at present four X-ray FEL projects worldwide and is scheduled to go into operation in the year 2017. This article describes a selection of problems in nuclear materials science and technology that would directly benefit from this and similar X-ray FEL sources. X-ray FEL-based experiments are proposed to be conducted on nuclear energy-related materials using single-shot X-ray spectroscopy, coherent X-ray scattering and/or X-ray photon correlation spectroscopy in order to address relevant scientific questions such as the evolution in time of the irradiation-induced damage processes, the deformation processes in nuclear materials, the ion diffusion processes in the barrier systems of geological repositories, the boiling heat transfer in nuclear reactors, as well as the structural characterization of graphite dust in advanced nuclear reactors and clay colloid aggregates in the groundwater near a radioactive waste repository.

  13. (Reaction mechanism studies of heavy ion induced nuclear reactions)

    SciTech Connect

    Mignerey, A.C.

    1991-01-01

    This report discusses the following research projects; decay of excited nuclei formed in La-induced reactions at E/A = 45 MeV; mass and charge distributions in Cl-induced heavy ion reactions; and mass and charge distributions in {sup 56}Fe + {sup 165}Ho at E/A = 12 MeV.

  14. Conceptual Design of the Nuclear Electronic Xenon Ion System (NEXIS)

    NASA Technical Reports Server (NTRS)

    Monheiser, Jeff; Polk, Jay; Randolph, Tom

    2004-01-01

    In support of the NEXIS program, Aerojet-Redmond Operations, with review and input from the JPL and Boeing, has completed the design for a development model (DM) discharge chamber assembly and main discharge cathode assembly. These efforts along with the work by JPL to develop the carbon-carbon-composite ion optics assembly have resulted in a complete ion engine design. The goal of the NEXIS program is to significantly advance the current state of the art by developing an ion engine capable of operating at an input power of 20kW, an Isp of 7500 sec and have a total xenon through put capability of 2000 kg. In this paper we will describe the methodology used to design the discharge chamber and cathode assemblies and describe the resulting final design. Specifics will include the concepts used for the mounting of the ion optics along with the concepts used for the gimbal mounts. In addition, we will present results of a vibrational analysis showing how the engine will respond to a typical Delta IV heavy vibration spectrum.

  15. Probing the nuclear structure with heavy-ion reactions

    SciTech Connect

    Broglia, R.A.

    1982-01-01

    Nuclei display distortions in both ordinary space and in gauge space. It is suggested that it is possible to learn about the spatial distribution of the Nilsson orbitals and about the change of the pairing gap with the rotational frequency through the analysis of one- and two-nucleon transfer reactions induced in heavy-ion collisions.

  16. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    SciTech Connect

    Todd R. Allen

    2011-12-01

    This is a document required by Basic Energy Sciences as part of a mid-term review, in the third year of the five-year award period and is intended to provide a critical assessment of the Center for Materials Science of Nuclear Fuels (strategic vision, scientific plans and progress, and technical accomplishments).

  17. Nuclear Power in the Classroom: A Union of Science and Social Studies Education.

    ERIC Educational Resources Information Center

    Shillenn, James K.; Vincenti, John R.

    This paper examines issues that K-12 science and social studies teachers need to keep in mind when teaching about nuclear power. The information needs to be presented in as objective a manner as possible. Science needs to become more social oriented. Team teaching should be encouraged. Elementary and secondary inservice teacher education is…

  18. Crossroads: Quality of Life in a Nuclear World. A High School Science Curriculum.

    ERIC Educational Resources Information Center

    French, Dan; Phillips, Connie

    One of a set of high school curricula on nuclear issues, this 10-day science unit helps students understand the interrelationship between the economy, the arms race, military spending, and the threat of nuclear war. Through activities such as role playing, discussion, brainstorming, and problem solving, students develop their ability to evaluate…

  19. Applied Nuclear Science Research and Development progress report, June 1, 1984-May 31, 1985

    SciTech Connect

    Arthur, E.D.; Mutschlecner, A.D.

    1985-09-01

    This progress report describes the activities of the Los Alamos Applied Nuclear Science Group for June 1, 1984 through May 31, 1985. The topical content includes the theory and evaluation of nuclear cross sections; neutron cross section processing and testing; neutron activation, fission products and actinides; and core neutronics code development and application. 70 refs., 31 figs., 15 tabs. (WRF)

  20. Toward an Automated Analysis of Slow Ions in Nuclear Track Emulsion

    NASA Astrophysics Data System (ADS)

    Mamatkulov, K. Z.; Kattabekov, R. R.; Ambrozova, I.; Artemenkov, D. A.; Bradnova, V.; Kamanin, D. V.; Majling, L.; Marey, A.; Ploc, O.; Rusakova, V. V.; Stanoeva, R.; Turek, K.; Zaitsev, A. A.; Zarubin, P. I.; Zarubina, I. G.

    Application of the nuclear track emulsion technique (NTE) in radioactivity and nuclear fission studies is discussed. It is suggested to use a HSP-1000 automated microscope for searching for a collinear cluster tri-partition of heavy nuclei implanted in NTE. Calibrations of α-particles and ion ranges in a novel NTE are carried out. Surface exposures of NTE samples to a 252Cf source started. Planar events containing fragments and long-range α-particles as well as fragment triples only are studied. NTE samples are calibrated by ions Kr and Xe of energy of 1.2 and 3 A MeV.

  1. Nuclear power risks: challenge to the credibility of science

    SciTech Connect

    Welch, B.L.

    1980-01-01

    For a quarter of a century the Federal Government and the nuclear industry have deliberately deceived the American public about the risks of nuclear power. Facts have been systematically withheld, distorted, and obscured, and calculations have been deliberately biased in order to present nuclear power in an unrealistically favorable light. Most persistent and flagrant have been: (a) attempts to normalize public perception of nuclear accident casualties with those of more familiar accidents; and (b) the cloaking of the objectively undocumentable faith of the atomic energy establishment that a nuclear accident is extremely unlikely in a smokescreen of invalid, pseudoquantitative statistical probabilities in order to convince the public that the chance of an accident is negligible. Prime examples of these abuses are found in the Rasmussen report on nuclear reactor safety and in its representation to the public.

  2. Probing the nuclear equation-of-state and the symmetry energy with heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Verde, Giuseppe

    2014-03-01

    The present status of studies aimed at constraining the nuclear equation of state with heavy-ion collision dynamics is presented. Multifragmentation phenomena, including their isotopic distributions, charge correlations and emission time-scales, may revel the existence of liquid-gas transitions in the phase diagram. Exploring the isotopic degree of freedom in nuclear dynamics is then required in order to constrain the equation of state of asymmetric nuclear matter which presently represents a major priority due to its relevance to both nuclear physics and astrophysics. Some observables that have successfully constrained the density dependence of the symmetry energy are presented, such as neutron-proton yield ratios and isospin diffusion and drift phenomena. The reported results and status of the art is discussed by also considering some of the present problems and some future perspectives for the heavy-ion collision community.

  3. Equation of state of hot polarized nuclear matter and heavy-ion fusion reactions

    SciTech Connect

    Ghodsi, O. N.; Gharaei, R.

    2011-08-15

    We employ the equation of state of hot polarized nuclear matter to simulate the repulsive force caused by the incompressibility effects of nuclear matter in the fusion reactions of heavy colliding ions. The results of our studies reveal that temperature effects of compound nuclei have significant importance in simulating the repulsive force on the fusion reactions for which the temperature of the compound nucleus increases up to about 2 MeV. Since the equation of state of hot nuclear matter depends upon the density and temperature of the nuclear matter, it has been suggested that, by using this equation of state, one can simulate simultaneously both the effects of the precompound nucleons' emission and the incompressibility of nuclear matter to calculate the nuclear potential in fusion reactions within a static formalism such as the double-folding (DF) model.

  4. Overview of Theory and Simulations in the Heavy Ion Fusion ScienceVirtual National Laboratory

    SciTech Connect

    Friedman, Alex

    2006-07-09

    The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) is a collaboration of Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, and Princeton Plasma Physics Laboratory. These laboratories, in cooperation with researchers at other institutions, are carrying out a coordinated effort to apply intense ion beams as drivers for studies of the physics of matter at extreme conditions, and ultimately for inertial fusion energy. Progress on this endeavor depends upon coordinated application of experiments, theory, and simulations. This paper describes the state of the art, with an emphasis on the coordination of modeling and experiment; developments in the simulation tools, and in the methods that underly them, are also treated.

  5. Overview of Theory and Simulations in the Heavy Ion Fusion Science Virtual National Laboratory

    SciTech Connect

    Friedman, A

    2006-07-03

    The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) is a collaboration of Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, and Princeton Plasma Physics Laboratory. These laboratories, in cooperation with researchers at other institutions, are carrying out a coordinated effort to apply intense ion beams as drivers for studies of the physics of matter at extreme conditions, and ultimately for inertial fusion energy. Progress on this endeavor depends upon coordinated application of experiments, theory, and simulations. This paper describes the state of the art, with an emphasis on the coordination of modeling and experiment; developments in the simulation tools, and in the methods that underly them, are also treated.

  6. Failla Memorial lecture. The future of heavy-ion science in biology and medicine.

    PubMed

    Tobias, C A

    1985-07-01

    Interplanetary space contains fluxes of fast moving atomic nuclei. The distribution of these reflects the atomic composition of the universe, and such particles may pose limitations for space flight and for life in space. Over the past 50 years, since the invention of Ernest Lawrence's cyclotron, advances in accelerator technology have permitted the acceleration of charged nuclei to very high velocities. Currently, beams of any stable isotope species up to uranium are available at kinetic energies of several hundred MeV/nucleon at the Berkeley Bevalac. Recently, new areas of particle physics research relating to the mechanisms of spallation and fission have opened up for investigation, and it is now realistic to search for nuclear super-dense states that might be produced in heavy nuclear collisions. The heavy ions hold interest for a broad spectrum of research because of their effectiveness in producing a series of major lesions in DNA along single particle tracks and because of the Bragg depth ionization properties that allow the precise deposition of highly localized doses deep in the human body. Individual heavy ions can also interrupt the continuity of membraneous regions in cells. Heavy ions, when compared to low-LET radiation, have increased effectiveness for mammalian cell lethality, chromosome mutations, and cell transformation. The molecular mechanisms are not completely understood but appear to involve fragmentation and reintegration of DNA. Cells attempt to repair these lesions, and many of the deleterious effects are due to misrepair or misrejoining of DNA. Heavy ions do not require the presence of oxygen for producing their effects, and hypoxic cells in necrotic regions have nearly the same sensitivity as cells in well-oxygenated tissues. Heavy ions are effective in delaying or blocking the cell division process. Heavy ions are also strong enhancers of viral-induced cell transformation, a process that requires integration of foreign DNA. Some cell

  7. Investigation of an online, problem-based introduction to nuclear sciences: A case study

    SciTech Connect

    Schmidt, M.; Easter, M.; Jiazhen, W.; Jonassen, D.

    2006-07-01

    An online, grant-funded course on nuclear engineering in society was developed at a large Midwestern university with the goal of providing non-majors a meaningful introduction to the many applications of nuclear science in a modern society and to stimulate learner interest in academic studies and/or professional involvement in nuclear science. Using a within-site case study approach, the current study focused on the efficacy of the online learning environment's support of learners' acquisition of knowledge and the impact of the environment on learners' interest in and beliefs about nuclear sciences in society. Findings suggest the environment successfully promoted learning and had a positive impact on learners' interests and beliefs. (authors)

  8. 1986 Nuclear Science Symposium, 33rd, and 1986 Symposium on Nuclear Power Systems, 18th, Washington, DC, Oct. 29-31, 1986, Proceedings

    NASA Technical Reports Server (NTRS)

    Stubblefield, F. W. (Editor)

    1987-01-01

    Papers are presented on space, low-energy physics, and general nuclear science instrumentations. Topics discussed include data acquisition systems and circuits, nuclear medicine imaging and tomography, and nuclear radiation detectors. Consideration is given to high-energy physics instrumentation, reactor systems and safeguards, health physics instrumentation, and nuclear power systems.

  9. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy,and Related Fields

    SciTech Connect

    Grisham, L. R.; Kwan, J. W.

    2008-08-01

    Some years ago it was suggested that halogen negative ions could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons - can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion - ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.

  10. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields

    SciTech Connect

    Grisham, L.R.; Kwan, J.W.

    2008-08-01

    Some years ago it was suggested that halogen negative ions [1]could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons -- can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion-ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.

  11. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields

    SciTech Connect

    L. Grisham and J.W. Kwan

    2008-08-12

    Some years ago it was suggested that halogen negative ions [1] could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons -- can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion-ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.

  12. FUSION NUCLEAR SCIENCE FACILITY (FNSF) BEFORE UPGRADE TO COMPONENT TEST FACILITY (CTF)

    SciTech Connect

    Peng, Yueng Kay Martin; Canik, John; Diem, Stephanie J; Milora, Stanley L; Park, J. M.; Sontag, Aaron C; Fogarty, P. J.; Lumsdaine, Arnold; Murakami, Masanori; Burgess, Thomas W; Cole, Michael J; Katoh, Yutai; Korsah, Kofi; Patton, Bradley D; Wagner, John C; Yoder, III, Graydon L

    2011-01-01

    The compact (R0~1.2-1.3m) Fusion Nuclear Science Facility (FNSF) is aimed at providing a fully integrated, continuously driven fusion nuclear environment of copious fusion neutrons. This facility would be used to test, discover, and understand the complex challenges of fusion plasma material interactions, nuclear material interactions, tritium fuel management, and power extraction. Such a facility properly designed would provide, initially at the JET-level plasma pressure (~30%T2) and conditions (e.g., Hot-Ion H-Mode, Q<1)), an outboard fusion neutron flux of 0.25 MW/m2 while requiring a fusion power of ~19 MW. If and when this research is successful, its performance can be extended to 1 MW/m2 and ~76 MW by reaching for twice the JET plasma pressure and Q. High-safety factor q and moderate-plasmas are used to minimize or eliminate plasma-induced disruptions, to deliver reliably a neutron fluence of 1 MW-yr/m2 and a duty factor of 10% presently anticipated for the FNS research. Success of this research will depend on achieving time-efficient installation and replacement of all internal components using remote handling (RH). This in turn requires modular designs for the internal components, including the single-turn toroidal field coil center-post. These device goals would further dictate placement of support structures and vacuum weld seals behind the internal and shielding components. If these goals could be achieved, the FNSF would further provide a ready upgrade path to the Component Test Facility (CTF), which would aim to test, for 6 MW-yr/m2 and 30% duty cycle, the demanding fusion nuclear engineering and technologies for DEMO. This FNSF-CTF would thereby complement the ITER Program, and support and help mitigate the risks of an aggressive world fusion DEMO R&D Program. The key physics and technology research needed in the next decade to manage the potential risks of this FNSF are identified.

  13. Fusion Nuclear Science Facility (FNSF) before Upgrade to Component Test Facility (CTF)

    SciTech Connect

    Peng, Yueng Kay Martin

    2010-01-01

    The compact (R0~1.2-1.3m) Fusion Nuclear Science Facility (FNSF) is aimed at providing a fully integrated, continuously driven fusion nuclear environment of copious fusion neutrons. This facility would be used to test, discover, understand, and innovate scientific and technical solutions for the challenges facing DEMO, by addressing the multi-scale synergistic interactions involving fusion plasma material interactions, tritium fuel cycle, power extraction, and the nuclear effects on materials. Such a facility properly designed would provide, initially at the JET-level plasma pressure (~30%T2) and conditions (e.g., Hot-Ion H-Mode), an outboard fusion neutron flux of 0.25 MW/m2 while requiring a fusion power of 19 MW. If and when this research operation is successful, its performance can be extended to 1 MW/m2 and 76 MW by reaching for twice the JET plasma pressure and Q. High-safety factor q and moderate- plasmas would minimize plasma-induced disruptions, helping to deliver reliably a neutron fluence of 1 MW-yr/m2 and a duty factor of 10% presently anticipated for the FNS research. Success of this research will depend on achieving time-efficient installation and replacement of all components using extensive remote handling (RH). This in turn requires modular designs for all internal components, including the single-turn toroidal field coil center-post with RH-compatible bi-directional sliding joints. Such device goals would further dictate placement of support structures and vacuum seal welds behind the internal and shielding components. If these further goals could be achieved, the FNSF would provide a ready upgrade path to the Component Test Facility (CTF), which would aim to test, at higher neutron fluence and duty cycle, the demanding fusion nuclear engineering and technologies for DEMO. This FNSF-CTF strategy would be complementary to the ITER and the Broader Approach programs, and thereby help mitigate the risks of an aggressive world fusion DEMO R&D Program

  14. Particle Accelerator Applications: Ion and Electron Irradiation in Materials Science, Biology and Medicine

    NASA Astrophysics Data System (ADS)

    Rodríguez-Fernández, Luis

    2010-09-01

    Although the developments of particle accelerators are devoted to basic study of matter constituents, since the beginning these machines have been applied with different purposes in many areas also. Today particle accelerators are essential instruments for science and technology. This work presents an overview of the main application for direct particle irradiation with accelerator in material science, biology and medicine. They are used for material synthesis by ion implantation and charged particle irradiation; to make coatings and micromachining; to characterize broad kind of samples by ion beam analysis techniques; as mass spectrometers for atomic isotopes determination. In biomedicine the accelerators are applied for the study of effects by charged particles on cells. In medicine the radiotherapy by electron irradiation is widely used, while hadrontherapy is still under development. Also, they are necessary for short life radioisotopes production required in radiodiagnostic.

  15. Using the World Wide WEB to promote science education in nuclear energy and RWM

    SciTech Connect

    Robinson, M.

    1996-12-31

    A priority of government and business in the United States and other first tier industrial countries continues to be the improvement of science, mathematics and technology (SMT) instruction in pre university level education. The U.S. federal government has made SMT instruction an educational priority and set goals for improving it in the belief that science, math and technology education are tied to our economic well being and standard of living. The new national standards in mathematics education, science education and the proposed standards in technology education are all aimed at improving knowledge and skills in the essential areas that the federal government considers important for protecting our technological advantage in the world economy. This paper will discuss a pilot project for establishing graphical Web capability in a limited number of rural Nevada schools (six) with support from the US Department of Energy (DOE) and the state of Nevada. The general goals of the pilot project are as follows: (1) to give rural teachers and students access to up to date science information on the Web; (2) to determine whether Web access can improve science teaching and student attitudes toward science in rural Nevada schools; and (3) to identify science content on the Web that supports the National Science Standards and Benchmarks. A specific objective that this paper will address is stated as the following question: What potential do nuclear energy information office web sites offer for changing student attitudes about nuclear energy and creating greater nuclear literacy.

  16. Improvement of technology for treatment of spent radioactive ion-exchange resins at nuclear power stations

    NASA Astrophysics Data System (ADS)

    Korchagin, Yu. P.; Aref'ev, E. K.; Korchagin, E. Yu.

    2010-07-01

    Results from tests of technology for decontaminating spent radioactive ion-exchange resins at the Balakovo and Kalinin nuclear power stations are presented. Versions of technological schemes with cleaning and repeated use of decontaminating solution are considered. The possibility of considerably reducing the volume of radioactive wastes is demonstrated.

  17. 1st International Nuclear Science and Technology Conference 2014 (INST2014)

    NASA Astrophysics Data System (ADS)

    2015-04-01

    Nuclear technology has played an important role in many aspects of our lives, including agriculture, energy, materials, medicine, environment, forensics, healthcare, and frontier research. The International Nuclear Science and Technology Conference (INST) aims to bring together scientists, engineers, academics, and students to share knowledge and experiences about all aspects of nuclear sciences. INST has evolved from a series of national conferences in Thailand called Nuclear Science and Technology (NST) Conference, which has been held for 11 times, the first being in 1986. INST2014 was held in August 2014 and hosted by Thailand Institute of Nuclear Technology (TINT). The theme was "Driving the future with nuclear technology". The conference working language was English. The proceedings were peer reviewed and considered for publication. The topics covered in the conference were: • Agricultural and food applications [AGR] • Environmental applications [ENV] • Radiation processing and industrial applications [IND] • Medical and nutritional applications [MED] • Nuclear physics and engineering [PHY] • Nuclear and radiation safety [SAF] • Other related topics [OTH] • Device and instrument presentation [DEV] Awards for outstanding oral and poster presentations will be given to qualified students who present their work during the conference.

  18. Probing Ultrafast Nuclear Dynamics in Halomethanes by Time-Resolved Electron and Ion Imaging

    NASA Astrophysics Data System (ADS)

    Ziaee, F.; Rudenko, A.; Rolles, D.; Savelyev, E.; Bomme, C.; Boll, R.; Manschwetus, B.; Erk, B.; Trippel, S.; Wiese, J.; Kuepper, J.; Amini, K.; Lee, J.; Brouard, M.; Brausse, F.; Rouzee, A.; Olshin, P.; Mereshchenko, A.; Lahl, J.; Johnsson, P.; Simon, M.; Marchenko, T.; Holland, D.; Underwood, J.

    2016-05-01

    Femtosecond pump-probe experiments provide opportunities to investigate photochemical reaction dynamics and the resulting changes in molecular structure in detail. Here, we present a study of the UV-induced photodissociation of gas-phase halomethane molecules (CH3 I, CH2 IBr, ...) in a pump-probe arrangement using two complementary probe schemes, either using a femtosecond near-infrared laser or the FLASH free-electron laser. We measured electrons and ions produced during the interaction using a double-sided velocity map imaging spectrometer equipped with a CCD camera for electron detection and with the Pixel Imaging Mass Spectrometry (PImMS) camera for ions, which can record the arrival time for up to four ions per pixel. This project is supported by the DOE, Office of Science, BES, Division of Chemical, Geological, and Biological Sciences.

  19. Computational templates for introductory nuclear science using mathcad

    NASA Astrophysics Data System (ADS)

    Sarantites, D. G.; Sobotka, L. G.

    2013-01-01

    Computational templates used to teach an introductory course in nuclear chemistry and physics at Washington University in St. Louis are presented in brief. The templates cover both basic and applied topics.

  20. Nuclear point mass effects in the interaction of energetic ion with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zheng, Li-Ping; Yan, Long; Zhu, Zhi-Yong; Ma, Guo-Liang

    2016-03-01

    We have calculated deposited energies of various energetic ions in carbon nanotubes, to study nuclear point mass effects, with the help of a static Monte Carlo (MC) simulation program. As a result of nuclear point mass effects, we show that at the same incident energy, the ion-deposited energy maximizes, while its mass has intermediate mass values, such as 11B, 12C and 14N ion masses, under hundreds keV 4He, 11B, 12C, 14N, 20Ne, 28Si and 40Ar ion irradiations of a thin-walled carbon nanotube. We also show that at the same incident energy, the coordination defect number maximizes, while its mass has an intermediate mass (20Ne) value, under hundreds keV 4He, 20Ne and 40Ar ion irradiations of the thin-walled nanotube. We derive an ion-deposited energy formula to analyze these maximum phenomena, and compare the MC simulation results with the MD (molecular dynamics) ones.

  1. Ideology in science and technology: the case of civilian nuclear power

    SciTech Connect

    Harrod, A.N.

    1987-01-01

    This dissertation traces the complicated interrelationships between ideology and interest within the civilian nuclear power controversy. The first chapter introduces the topic. The second chapter provides a social-political-economic overview of the context in which the conflicting ideologies arose. Factors looked at are the ascendancy of the physical sciences, the development of nuclear energy, the disenchantment with science and technology and the consequent rise of an anti-nuclear ideology. Chapter III uses the theories of Alvin Gouldner to understand the structure of ideology. The chapter defines ideology's similarities to and differences from scientific discourse. Chapter IV examines the ideological discourse of a selected sample of scientists who have spoken for and against civilian nuclear power. In parallel to chapter IV, chapter V examines a scientific controversy among the sample of experts. It shows how scientific disagreement can be produced and how ideology is most closely linked to science. Chapter VI examines the social interests of the scientists and experts to discover ways that interests have shaped the ideological and scientific positions for and against civilian nuclear energy. Based on the foregoing, chapter VII concludes that the introduction of science and experts into a controversy cannot be expected to end disagreement over policy because of the link between science and ideology.

  2. Light ion components of the galactic cosmic rays: Nuclear interactions and transport theory

    NASA Astrophysics Data System (ADS)

    Cucinotta, F. A.; Townsend, L. W.; Wilson, J. W.; Shinn, J. L.; Badhwar, G. D.; Dubey, R. R.

    Light nuclei are present in the primary galactic cosmic rays (GCR) and are produced in thick targets due to projectile or target fragmentation from both nucleon and heavy induced reactions. In the primary GCR, He-4 is the most abundant nucleus after H-1. However, there are also a substantial fluxes of H-2 and He-3. In this paper we describe theoretical models based on quantum multiple scattering theory for the description of light ion nuclear interactions. The energy dependence of the light ion fragmentation cross section is considered with comparisons of inclusive yields and secondary momentum distributions to experiments described. We also analyze the importance of a fast component of lights ions from proton and neutron induced target fragementation. These theoretical models have been incorporated into the cosmic ray transport code HZETRN and will be used to analyze the role of shielding materials in modulating the production and the energy spectrum of light ions.

  3. Light ion components of the galactic cosmic rays: Nuclear interactions and transport theory

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Townsend, L. W.; Wilson, J. W.; Shinn, J. L.; Badhwar, G. D.; Dubey, R. R.

    1996-01-01

    Light nuclei are present in the primary galactic cosmic rays (GCR) and are produced in thick targets due to projectile or target fragmentation from both nucleon and heavy induced reactions. In the primary GCR, He-4 is the most abundant nucleus after H-1. However, there are also a substantial fluxes of H-2 and He-3. In this paper we describe theoretical models based on quantum multiple scattering theory for the description of light ion nuclear interactions. The energy dependence of the light ion fragmentation cross section is considered with comparisons of inclusive yields and secondary momentum distributions to experiments described. We also analyze the importance of a fast component of lights ions from proton and neutron induced target fragementation. These theoretical models have been incorporated into the cosmic ray transport code HZETRN and will be used to analyze the role of shielding materials in modulating the production and the energy spectrum of light ions.

  4. Nuclear Technology, Global Warming, and the Politicization of Science

    NASA Astrophysics Data System (ADS)

    Weart, Spencer

    2016-03-01

    Since the mid 20th century physical scientists have engaged in two fierce public debates on issues that posed existential risks to modern society: nuclear weapons and global warming. The two overlapped with a third major debate over the deployment of nuclear power reactors. Each controversy included technical disagreements raised by a minority among the scientists themselves. Despite efforts to deal with the issues objectively, the scientists became entangled in left vs. right political polarization. All these debates, but particularly the one over climate change, resulted in a deterioration of public faith in the objectivity and integrity of scientists.

  5. Application of laser produced ion beams to nuclear analysis of materials

    NASA Astrophysics Data System (ADS)

    Mima, Kunioki; Fujita, K.; Azuma, H.; Yamazaki, A.; Kato, Y.; Okuda, C.; Ukyo, Y.; Sawada, H.; Gonzalez-Arrabal, Raquel; Perlado, J. M.; Nishimura, H.; Nakai, S.

    2013-11-01

    The ion beam driven nuclear analysis has been developed for many years by using various electrostatic accelerators. A proton micro-beam with the beam diameter of ˜1.5 μm at Takasaki Ion Acceleration for Advanced Radiation Application (TIARA), JAEA was used to analyze the positive electrode of the Li-ion battery with PIGE and PIXE. WThe PIGE and PIXE images of Li and Ni respectively for LixNi0.8Co0.15Al0.05O2(x = 0.75 ˜ 1.0) anodes have been taken. The PIGE images of LixNi0.8Co0.15Al0.05O2 particles and the depth profile of the Li density have been obtained with high spatial resolution (a few μm). The images of the Li density distribution are very useful for the R&D of the Li ion battery. In order to make the in-situ ion beam analysis of the Li battery possible, a compact accelerator for a high quality MeV proton beam is necessary. Form this point of view, the diagnostics of Li ion battery is an appropriate field for the applications of laser produced ion beams.

  6. The Politics of Science and Technology: Nuclear and Solar Alternatives.

    ERIC Educational Resources Information Center

    Etzkowitz, Henry

    Historical data reveal that U.S. government policy and military and corporate interests have been instrumental in the development of nuclear energy and the underdevelopment of solar energy. It was not until 1972 that solar energy was funded by the Energy Research and Development Agency (ERDA) and in 1974 solar energy received $12.2 million as…

  7. The Need for a Strong Science and Technology Program in the Nuclear Weapons Complex for the 21st Century

    SciTech Connect

    Garaizar, Xabier

    2009-07-02

    In this paper I argue for the need for a strong Science and Technology program in the Nuclear Weapons Complex as the basis for maintaining a credible deterrence capability. The current Nuclear Posture Review establishes a New Triad as the basis for the United States deterrence strategy in a changing security environment. A predictive science capability is at the core of a credible National Nuclear Weapons program in the 21st Century. In absence of nuclear testing, the certification of our current Nuclear Weapons relies on predictive simulations and quantification of the associated simulation uncertainties. In addition, a robust nuclear infrastructure needs an active research and development program that considers all the required nuclear scenarios, including new configurations for which there is no nuclear test data. This paper also considers alternative positions to the need for a Science and Technology program in the Nuclear Weapons complex.

  8. Selective Detection of Low-Velocity Ions Using Nuclear Emulsion Films

    NASA Astrophysics Data System (ADS)

    Naka, Tatsuhiro; Kuge, Ken'ichi; Nakamura, Mitsuhiro

    2013-11-01

    We focused on the difference between the photographic sensitivities of nuclear emulsion films by the electronic stopping power (ESP) and nuclear stopping power (NSP) of charged particles. The effects of high-velocity particles, in which ESP was dominant, and of low-velocity particles, where both ESP and NSP were effective, were compared. Low-velocity Kr ions formed internal latent images by the interaction with NSP. This may be due to the formation of crystal defects by atomic collisions along the route of these ions in silver halide crystals, and such defects are detected only by internal development. On the other hand, high-velocity ions like α-rays did not form internal latent images in the emulsion with Au+S sensitization, because sensitization centers on the surface of crystals accumulated excited electrons by ESP and only surface latent images were formed. It is demonstrated that internal latent images are characteristic signals by NSP. Low-velocity ions are selectively detectable by the internal development, even in high background fields like γ-rays, β-rays, or other high-velocity ions.

  9. Science Is Important, but Politics Drives the Siting of Nuclear Waste Repositories

    NASA Astrophysics Data System (ADS)

    Shaw, George H.

    2014-02-01

    In 1982, I worked on the Nuclear Waste Policy Act as an AGU Congressional Science Fellow tasked with assisting a member of the House Energy and Commerce Committee. When I recently read the suggestion that clay-rich strata (shales) could be a viable medium for high-level nuclear waste (HLW) disposal [Neuzil, 2013], I could not help but remember the insights I gained more than 30 years ago from my time on the Hill.

  10. Dependence of simulated positron emitter yields in ion beam cancer therapy on modeling nuclear fragmentation.

    PubMed

    Lühr, Armin; Priegnitz, Marlen; Fiedler, Fine; Sobolevsky, Nikolai; Bassler, Niels

    2014-01-01

    In ion beam cancer therapy, range verification in patients using positron emission tomography (PET) requires the comparison of measured with simulated positron emitter yields. We found that (1) changes in modeling nuclear interactions strongly affected the positron emitter yields and that (2) Monte Carlo simulations with SHIELD-HIT10Areasonably matched the most abundant PET isotopes (11)C and (15)O. We observed an ion-energy (i.e., depth) dependence of the agreement between SHIELD-HIT10Aand measurement. Improved modeling requires more accurate measurements of cross-section values. PMID:23352823

  11. Temperature and density dependence of properties of nuclear matter deduced from heavy ion collisions

    SciTech Connect

    Shlomo, Shalom

    2010-11-24

    Heavy-ion collision experiments are often employed to determine properties of nuclear matter under extreme conditions of temperature and density. This has been the subject of many investigations in recent decades, since understanding the equation of state of hot nuclear matter is very important in the study supernovae, neutron stars and nuclei. We present a short and limited review of the theoretical and experimental status of determining the temperature and density of the disassembling hot nucleus from ratios of the yields of emitted fragments.

  12. Dennis Kovar and Low-Energy Nuclear Science in the United States at the turn of the century

    NASA Astrophysics Data System (ADS)

    Janssens, Robert

    2011-10-01

    This presentation will retrace aspects of Dennis Kovar's research career as a staff member within the Physics Division at Argonne National Laboratory. Dennis led pioneering work on understanding how the total cross section in heavy-ion induced reactions is distributed into elastic and inelastic scattering, transfer, incomplete and complete fusion with a focus on the interaction between these different channels. It will also discuss the decisive role Dennis played in stewarding low energy nuclear science, once he joined the Office of Nuclear Physics at the Department of Energy. In particular, this presentation will review Dennis' role in helping making the case for physics with rare isotopes. Through his many valuable suggestions and probing questions he was instrumental in challenging and stimulating to community into an adventure that ultimately culminated in the proposal for the development of FRIB, the facility for Rare Isotope Beams. Work supported by the US Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.

  13. Performance Evaluation of an Expanded Range XIPS Ion Thruster System for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Oh, David Y.; Goebel, Dan M.

    2006-01-01

    This paper examines the benefit that a solar electric propulsion (SEP) system based on the 5 kW Xenon Ion Propulsion System (XIPS) could have for NASA's Discovery class deep space missions. The relative cost and performance of the commercial heritage XIPS system is compared to NSTAR ion thruster based systems on three Discovery class reference missions: 1) a Near Earth Asteroid Sample Return, 2) a Comet Rendezvous and 3) a Main Belt Asteroid Rendezvous. It is found that systems utilizing a single operating XIPS thruster provides significant performance advantages over a single operating NSTAR thruster. In fact, XIPS performs as well as systems utilizing two operating NSTAR thrusters, and still costs less than the NSTAR system with a single operating thruster. This makes XIPS based SEP a competitive and attractive candidate for Discovery class science missions.

  14. Design of an intense ion source and LEBT for Jinping Underground Nuclear Astrophysics experiments

    NASA Astrophysics Data System (ADS)

    Wu, Q.; Sun, L. T.; Cui, B. Q.; Lian, G.; Yang, Y.; Ma, H. Y.; Tang, X. D.; Zhang, X. Z.; Zhang, Z. M.; Liu, W. P.

    2016-09-01

    The ongoing Jinping Underground Nuclear Astrophysics experiment (JUNA) will take the advantage of the ultralow background in China Jinping Underground Laboratory (CJPL), high current accelerator driven by on an ECR source and highly sensitive detector to study directly a number of important reactions for the first time within their relevant stellar energy range. A 2.45 GHz ECR ion source is one of its key components to provide 10 emA H+, 10 emA He+ and 2.0 emA He2+ beams for the study of (p,γ), (p,α), (α,p) and (α,γ) reactions in the first phase of the JUNA project. Ion beam is extracted from the source with energies up to 50 kV/q. The following low energy beam transport (LEBT) system transports and matches the ion beam from the exit of ion source to the acceleration tube (AT). The design status of the ECR ion source and LEBT system for the JUNA project are presented. The potential risks of the ion source are also discussed and analysed.

  15. Nuclear theory and science of the facility for rare isotope beams

    NASA Astrophysics Data System (ADS)

    Balantekin, A. B.; Carlson, J.; Dean, D. J.; Fuller, G. M.; Furnstahl, R. J.; Hjorth-Jensen, M.; Janssens, R. V. F.; Li, Bao-An; Nazarewicz, W.; Nunes, F. M.; Ormand, W. E.; Reddy, S.; Sherrill, B. M.

    2014-03-01

    The Facility for Rare Isotope Beams (FRIB) will be a world-leading laboratory for the study of nuclear structure, reactions and astrophysics. Experiments with intense beams of rare isotopes produced at FRIB will guide us toward a comprehensive description of nuclei, elucidate the origin of the elements in the cosmos, help provide an understanding of matter in neutron stars and establish the scientific foundation for innovative applications of nuclear science to society. FRIB will be essential for gaining access to key regions of the nuclear chart, where the measured nuclear properties will challenge established concepts, and highlight shortcomings and needed modifications to current theory. Conversely, nuclear theory will play a critical role in providing the intellectual framework for the science at FRIB, and will provide invaluable guidance to FRIB's experimental programs. This review overviews the broad scope of the FRIB theory effort, which reaches beyond the traditional fields of nuclear structure and reactions, and nuclear astrophysics, to explore exciting interdisciplinary boundaries with other areas.

  16. Scientific Grand Challenges: Forefront Questions in Nuclear Science and the Role of High Performance Computing

    SciTech Connect

    Khaleel, Mohammad A.

    2009-10-01

    This report is an account of the deliberations and conclusions of the workshop on "Forefront Questions in Nuclear Science and the Role of High Performance Computing" held January 26-28, 2009, co-sponsored by the U.S. Department of Energy (DOE) Office of Nuclear Physics (ONP) and the DOE Office of Advanced Scientific Computing (ASCR). Representatives from the national and international nuclear physics communities, as well as from the high performance computing community, participated. The purpose of this workshop was to 1) identify forefront scientific challenges in nuclear physics and then determine which-if any-of these could be aided by high performance computing at the extreme scale; 2) establish how and why new high performance computing capabilities could address issues at the frontiers of nuclear science; 3) provide nuclear physicists the opportunity to influence the development of high performance computing; and 4) provide the nuclear physics community with plans for development of future high performance computing capability by DOE ASCR.

  17. Ion engine propelled Earth-Mars cycler with nuclear thermal propelled transfer vehicle, volume 2

    NASA Technical Reports Server (NTRS)

    Meyer, Rudolf X.; Baker, Myles; Melko, Joseph

    1994-01-01

    The goal of this project was to perform a preliminary design of a long term, reusable transportation system between earth and Mars which would be capable of providing both artificial gravity and shelter from solar flare radiation. The heart of this system was assumed to be a Cycler spacecraft propelled by an ion propulsion system. The crew transfer vehicle was designed to be propelled by a nuclear-thermal propulsion system. Several Mars transportation system architectures and their associated space vehicles were designed.

  18. Relativistic calculations of the nuclear recoil effect in highly charged Li-like ions

    NASA Astrophysics Data System (ADS)

    Zubova, N. A.; Shabaev, V. M.; Tupitsyn, I. I.; Plunien, G.

    2013-09-01

    Relativistic theory of the nuclear recoil effect in highly charged Li-like ions is considered within the Breit approximation. The normal mass shift (NMS) and the relativistic NMS (RNMS) are calculated by perturbation theory to zeroth and first orders in the parameter 1/Z. The calculations are performed using the dual kinetic balance method with the basis functions constructed from B-splines. The results of the calculations are compared with the theoretical values obtained by other methods.

  19. Calibration of solid state nuclear track detectors at high energy ion beams for cosmic radiation measurements: HAMLET results

    NASA Astrophysics Data System (ADS)

    Szabó, J.; Pálfalvi, J. K.

    2012-12-01

    The MATROSHKA experiments and the related HAMLET project funded by the European Commission aimed to study the dose burden of the crew working on the International Space Station (ISS). During these experiments a human phantom equipped with several thousands of radiation detectors was exposed to cosmic rays inside and outside the ISS. Besides the measurements realized in Earth orbit, the HAMLET project included also a ground-based program of calibration and intercomparison of the different detectors applied by the participating groups using high-energy ion beams. The Space Dosimetry Group of the Centre for Energy Research (formerly Atomic Energy Research Institute) participated in these experiments with passive solid state nuclear track detectors (SSNTDs). The paper presents the results of the calibration experiments performed in the years 2008-2011 at the Heavy Ion Medical Accelerator (HIMAC) of the National Institute of Radiological Sciences (NIRS), Chiba, Japan. The data obtained serve as update and improvement for the previous calibration curves which are necessary for the evaluation of the SSNTDs exposed in unknown space radiation fields.

  20. Advanced neutron irradiation system using Texas A&M University Nuclear Science Center Reactor

    NASA Astrophysics Data System (ADS)

    Jang, Si Young

    A heavily filtered fast neutron irradiation system (FNIS) was developed for a variety of applications, including the study of long-term health effects of fast neutrons by evaluating the biological mechanisms of damage in cultured cells and living animals such as rats or mice. This irradiation system includes an exposure cave made with a lead-bismuth alloy, a cave positioning system, a gamma and neutron monitoring system, a sample transfer system, and interchangeable filters. This system was installed in the irradiation cell of the Texas A&M University Nuclear Science Center Reactor (NSCR). By increasing the thickness of the lead-bismuth alloy, the neutron spectra were shifted into lower energies by the scattering interactions of fast neutrons with the alloy. It is possible, therefore, by changing the alloy thickness, to produce distinctly different dose weighted neutron spectra inside the exposure cave of the FNIS. The calculated neutron spectra showed close agreement with the results of activation foil measurements, unfolded by SAND-II close to the cell window. However, there was a considerable less agreement for locations far away from the cell window. Even though the magnitude of values such as neutron flux and tissue kerma rates in air differed, the weighted average neutron energies showed close agreement between the MCNP and SAND-II since the normalized neutron spectra were in a good agreement each other. A paired ion chamber system was constructed, one with a tissue equivalent plastic (A-150) and propane gas for total dose monitoring, and another with graphite and argon for photon dose monitoring. Using the pair of detectors, the neutron to gamma ratio can be inferred. With the 20 cm-thick FNIS, the absorbed dose rates of neutrons measured with the paired ion chamber method and calculated with the SAND-II results were 13.7 +/- 0.02 Gy/min and 15.5 Gy/min, respectively. The absorbed dose rate of photons and the gamma contribution to total dose were 6.7 x 10

  1. An Analysis of World-Wide Contributions to "Nuclear Science Abstracts," Volume 22 (1968).

    ERIC Educational Resources Information Center

    Vaden, William M.

    Beginning with volume 20, "Nuclear Science Abstracts" (NSA) citations, exclusive of abstracts, have been recorded on magnetic tape. The articles have been categorized by 34 elements of the citations such as title, author, source, journal, report number, etc. At the time of this report more than 130,000 citations had been stored for purposes of…

  2. Science, Society, and America's Nuclear Waste: Ionizing Radiation, Unit 2. Teacher Guide. Second Edition.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 2 of the four-part series, Science, Society, and America's Nuclear Waste, produced by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management. The goal of this unit is to convey factual information relevant to radioactivity and radiation and relate that information both to the personal lives of students…

  3. Nuclear science and engineering and health physics fellowships: 1984 description. Research areas for the practicum

    SciTech Connect

    Not Available

    1984-01-01

    This booklet describes available research areas at participating centers where a practicum may be held under the Nuclear Science and Engineering and Health Physics Fellowship program. After a year of graduate study each fellow is expected to arrange for a practicum period at one of the participating centers.

  4. Searching the "Nuclear Science Abstracts" Data Base by Use of the Berkeley Mass Storage System

    ERIC Educational Resources Information Center

    Herr, J. Joanne; Smith, Gloria L.

    1972-01-01

    Advantages of the Berkeley Mass Storage System (MSS) for information retrieval other than its size are: high serial-read rate, archival data storage; and random-access capability. By use of this device, the search cost in an SDI system based on the Nuclear Science Abstracts" data base was reduced by 20 percent. (6 references) (Author/NH)

  5. Science, Society, and America's Nuclear Waste: The Waste Management System, Unit 4. Teacher Guide. Second Edition.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 4 of the four-part series, Science, Society, and America's Nuclear Waste, produced by the U.S. Department of Energy's Office Civilian Radioactive Waste Management. The goal of this unit is to explain how transportation, a geologic repository, and the multi-purpose canister will work together to provide short-term and long-term…

  6. Real world experiences with nuclear science in the classroom: What an individual can do

    SciTech Connect

    Fox, M.R.

    1991-06-01

    Contributing factors to science illiteracy are discussed. Also, the educational institutions as a factor, and specific activities which have been achieved to help mitigate a small part of the problem are described. The activities undertaken with the grades K--12 in education communities related to energy education and to nuclear energy education are included.

  7. Nuclear medicine and imaging research (quantitative studies in radiopharmaceutical science)

    SciTech Connect

    Cooper, M.D.; Beck, R.N.

    1990-09-01

    This is a report of progress in Year Two (January 1, 1990--December 31, 1990) of Grant FG02-86ER60438, Quantitative Studies in Radiopharmaceutical Science,'' awarded for the three-year period January 1, 1989--December 31, 1991 as a competitive renewal following site visit in the fall of 1988. This program addresses the problems involving the basic science and technology underlying the physical and conceptual tools of radioactive tracer methodology as they relate to the measurement of structural and functional parameters of physiologic importance in health and disease. The principal tool is quantitative radionuclide imaging. The overall objective of this program is to further the development and transfer of radiotracer methodology from basic theory to routine clinical practice in order that individual patients and society as a whole will receive the maximum net benefit from the new knowledge gained. The focus of the research is on the development of new instruments and radiopharmaceuticals, and the evaluation of these through the phase of clinical feasibility. 25 refs., 13 figs., 1 tab.

  8. Production of beams from solid materials at Center for Nuclear Study electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Ohshiro, Y.; Yamaka, S.; Watanabe, S.; Kobayashi, K.; Kotaka, Y.; Nishimura, M.; Kase, M.; Muto, H.; Yamaguchi, H.; Shimoura, S.

    2014-02-01

    Two methods for the feed of vapor from solid materials in the Center for Nuclear Study ECR ion source are described. A rod placed near the wall of the plasma chamber, operating up to a melting point of 2600 °C, has been used for CaO, SiO2, and FeO. An oven with a number of openings, operating up to 800 °C, has been used for P2O5, Li, and S. Typical ion beam intensities of 7Li2+, 6Li3+, 40Ca12+, and 56Fe15+ are achieved 280, 75, 28, and 7 eμA, respectively. High intensity heavy ion beams are stably supplied into the azimuthally varying field cyclotron.

  9. Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials.

    PubMed

    Hofmann, F; Mason, D R; Eliason, J K; Maznev, A A; Nelson, K A; Dudarev, S L

    2015-01-01

    Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying with transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants. PMID:26527099

  10. Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials

    SciTech Connect

    Hofmann, F.; Mason, D. R.; Eliason, J. K.; Maznev, A. A.; Nelson, K. A.; Dudarev, S. L.

    2015-11-03

    Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying with transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants.

  11. Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials

    DOE PAGESBeta

    Hofmann, F.; Mason, D. R.; Eliason, J. K.; Maznev, A. A.; Nelson, K. A.; Dudarev, S. L.

    2015-11-03

    Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying withmore » transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants.« less

  12. Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials

    PubMed Central

    Hofmann, F.; Mason, D. R.; Eliason, J. K.; Maznev, A. A.; Nelson, K. A.; Dudarev, S. L.

    2015-01-01

    Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying with transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants. PMID:26527099

  13. Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials

    NASA Astrophysics Data System (ADS)

    Hofmann, F.; Mason, D. R.; Eliason, J. K.; Maznev, A. A.; Nelson, K. A.; Dudarev, S. L.

    2015-11-01

    Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying with transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants.

  14. Effects of nuclear forces on ion thermalization in high-temperature plasmas

    NASA Technical Reports Server (NTRS)

    Gould, R. J.

    1982-01-01

    A number of investigations have been concerned with the kinetic theory and processes associated with a relativistic electron gas. Gould (1981) has considered a condition in which upon the ultimate thermalization the temperature can be such that the electron gas is highly relativistic while the gas of protons and other ions is nonrelativistic. With the nuclear component nonrelativistic but having energies in the MeV range and above, it is necessary to consider the effects of nuclear forces in the scattering of the ions in their thermalization. The effects of nuclear forces in the thermalization of ions in plasmas have been computed, principally in connection with problems of controlle; fusion. The present investigation is concerned with an attempt to express results in analytic form to as great a degree as possible. The p-p problem, which is the fundamental problem in astrophysical plasma, is studied. Attention is given to a low-energy formulation, the s-wave phase shift, the effective stopping number, Fokker-Planck operators, and the interaction with the electron gas.

  15. Science based integrated approach to advanced nuclear fuel development - vision, approach, and overview

    SciTech Connect

    Unal, Cetin; Pasamehmetoglu, Kemal; Carmack, Jon

    2010-01-01

    Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Rcactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems is critical. In order to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. The purpose of this paper is to identify the modeling and simulation approach in order to deliver predictive tools for advanced fuels development. The coordination between experimental nuclear fuel design, development technical experts, and computational fuel modeling and simulation technical experts is a critical aspect of the approach and naturally leads to an integrated, goal-oriented science-based R & D approach and strengthens both the experimental and computational efforts. The Advanced Fuels Campaign (AFC) and Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Integrated Performance and Safety Code (IPSC) are working together to determine experimental data and modeling needs. The primary objective of the NEAMS fuels IPSC project is to deliver a coupled, three-dimensional, predictive computational platform for modeling the fabrication and both normal and abnormal operation of nuclear fuel pins and assemblies, applicable to both existing and future reactor fuel designs. The science based program is pursuing the development of an integrated multi-scale and multi-physics modeling and simulation platform for nuclear fuels. This overview paper discusses the vision, goals and approaches how to develop and implement the new approach.

  16. Nuclear Deterrence in the 21st Century: The Role of Science and Engineering

    SciTech Connect

    Martz, Joseph C; Ventura, Jonathan S

    2008-01-01

    Twenty-first century security challenges are multi-polar and asymmetric. A few nations have substantial nuclear arsenals and active nuclear weapons programs that still threaten vital US national security directly or by supporting proliferation. Maintaining a credible US nuclear deterrent and containing further proliferation will continue to be critical to US national security. Overlaid against this security backdrop, the rising worldwide population and its effects on global climate, food, and energy resources are greatly complicating the degree and number of security challenges before policy makers.This new paradigm requires new ways to assure allies that the United States remains a trusted security partner and to deter potential adversaries from aggressive actions that threaten global stability. Every U.S. President since Truman has affirmed the role of nuclear weapons as a supreme deterrent and protector of last resort of U.S. national security interests. Recently, President Bush called for a nuclear deterrent consistent with the 'lowest number of nuclear weapons' that still protects U.S. interests. How can this be achieved? And how can we continue on a path of nuclear reductions while retaining the security benefits of nuclear deterrence? Science and engineering have a key role to play in a potential new paradigm for nuclear deterrence, a concept known as 'capability-based deterrence.'

  17. Heavy-ion injector based on an electron cyclotron ion source for the superconducting linear accelerator of the Rare Isotope Science Project

    NASA Astrophysics Data System (ADS)

    Hong, In-Seok; Kim, Yong-Hwan; Choi, Bong-Hyuk; Choi, Suk-Jin; Park, Bum-Sik; Jin, Hyun-Chang; Kim, Hye-Jin; Heo, Jeong-Il; Kim, Deok-Min; Jang, Ji-Ho

    2016-02-01

    The injector for the main driver linear accelerator of the Rare Isotope Science Project in Korea, has been developed to allow heavy ions up to uranium to be delivered to the inflight fragmentation system. The critical components of the injector are the superconducting electron cyclotron resonance (ECR) ion sources, the radio frequency quadrupole (RFQ), and matching systems for low and medium energy beams. We have built superconducting magnets for the ECR ion source, and a prototype with one segment of the RFQ structure, with the aim of developing a design that can satisfy our specifications, demonstrate stable operation, and prove results to compare the design simulation.

  18. Heavy-ion injector based on an electron cyclotron ion source for the superconducting linear accelerator of the Rare Isotope Science Project.

    PubMed

    Hong, In-Seok; Kim, Yong-Hwan; Choi, Bong-Hyuk; Choi, Suk-Jin; Park, Bum-Sik; Jin, Hyun-Chang; Kim, Hye-Jin; Heo, Jeong-Il; Kim, Deok-Min; Jang, Ji-Ho

    2016-02-01

    The injector for the main driver linear accelerator of the Rare Isotope Science Project in Korea, has been developed to allow heavy ions up to uranium to be delivered to the inflight fragmentation system. The critical components of the injector are the superconducting electron cyclotron resonance (ECR) ion sources, the radio frequency quadrupole (RFQ), and matching systems for low and medium energy beams. We have built superconducting magnets for the ECR ion source, and a prototype with one segment of the RFQ structure, with the aim of developing a design that can satisfy our specifications, demonstrate stable operation, and prove results to compare the design simulation. PMID:26931946

  19. Benchmarking nuclear models of FLUKA and GEANT4 for carbon ion therapy.

    PubMed

    Böhlen, T T; Cerutti, F; Dosanjh, M; Ferrari, A; Gudowska, I; Mairani, A; Quesada, J M

    2010-10-01

    As carbon ions, at therapeutic energies, penetrate tissue, they undergo inelastic nuclear reactions and give rise to significant yields of secondary fragment fluences. Therefore, an accurate prediction of these fluences resulting from the primary carbon interactions is necessary in the patient's body in order to precisely simulate the spatial dose distribution and the resulting biological effect. In this paper, the performance of nuclear fragmentation models of the Monte Carlo transport codes, FLUKA and GEANT4, in tissue-like media and for an energy regime relevant for therapeutic carbon ions is investigated. The ability of these Monte Carlo codes to reproduce experimental data of charge-changing cross sections and integral and differential yields of secondary charged fragments is evaluated. For the fragment yields, the main focus is on the consideration of experimental approximations and uncertainties such as the energy measurement by time-of-flight. For GEANT4, the hadronic models G4BinaryLightIonReaction and G4QMD are benchmarked together with some recently enhanced de-excitation models. For non-differential quantities, discrepancies of some tens of percent are found for both codes. For differential quantities, even larger deviations are found. Implications of these findings for the therapeutic use of carbon ions are discussed. PMID:20844337

  20. Ion track reconstruction in 3D using alumina-based fluorescent nuclear track detectors.

    PubMed

    Niklas, M; Bartz, J A; Akselrod, M S; Abollahi, A; Jäkel, O; Greilich, S

    2013-09-21

    Fluorescent nuclear track detectors (FNTDs) based on Al2O3: C, Mg single crystal combined with confocal microscopy provide 3D information on ion tracks with a resolution only limited by light diffraction. FNTDs are also ideal substrates to be coated with cells to engineer cell-fluorescent ion track hybrid detectors (Cell-Fit-HD). This radiobiological tool enables a novel platform linking cell responses to physical dose deposition on a sub-cellular level in proton and heavy ion therapies. To achieve spatial correlation between single ion hits in the cell coating and its biological response the ion traversals have to be reconstructed in 3D using the depth information gained by the FNTD read-out. FNTDs were coated with a confluent human lung adenocarcinoma epithelial (A549) cell layer. Carbon ion irradiation of the hybrid detector was performed perpendicular and angular to the detector surface. In situ imaging of the fluorescently labeled cell layer and the FNTD was performed in a sequential read-out. Making use of the trajectory information provided by the FNTD the accuracy of 3D track reconstruction of single particles traversing the hybrid detector was studied. The accuracy is strongly influenced by the irradiation angle and therefore by complexity of the FNTD signal. Perpendicular irradiation results in highest accuracy with error of smaller than 0.10°. The ability of FNTD technology to provide accurate 3D ion track reconstruction makes it a powerful tool for radiobiological investigations in clinical ion beams, either being used as a substrate to be coated with living tissue or being implanted in vivo. PMID:23965401

  1. Ion track reconstruction in 3D using alumina-based fluorescent nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Niklas, M.; Bartz, J. A.; Akselrod, M. S.; Abollahi, A.; Jäkel, O.; Greilich, S.

    2013-09-01

    Fluorescent nuclear track detectors (FNTDs) based on Al2O3: C, Mg single crystal combined with confocal microscopy provide 3D information on ion tracks with a resolution only limited by light diffraction. FNTDs are also ideal substrates to be coated with cells to engineer cell-fluorescent ion track hybrid detectors (Cell-Fit-HD). This radiobiological tool enables a novel platform linking cell responses to physical dose deposition on a sub-cellular level in proton and heavy ion therapies. To achieve spatial correlation between single ion hits in the cell coating and its biological response the ion traversals have to be reconstructed in 3D using the depth information gained by the FNTD read-out. FNTDs were coated with a confluent human lung adenocarcinoma epithelial (A549) cell layer. Carbon ion irradiation of the hybrid detector was performed perpendicular and angular to the detector surface. In situ imaging of the fluorescently labeled cell layer and the FNTD was performed in a sequential read-out. Making use of the trajectory information provided by the FNTD the accuracy of 3D track reconstruction of single particles traversing the hybrid detector was studied. The accuracy is strongly influenced by the irradiation angle and therefore by complexity of the FNTD signal. Perpendicular irradiation results in highest accuracy with error of smaller than 0.10°. The ability of FNTD technology to provide accurate 3D ion track reconstruction makes it a powerful tool for radiobiological investigations in clinical ion beams, either being used as a substrate to be coated with living tissue or being implanted in vivo.

  2. Nuclear Science Symposium, 4th, and Nuclear Power Systems Symposium, 9th, San Francisco, Calif., October 19-21, 1977, Proceedings

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Consideration is given to the following types of high energy physics instrumentation: drift chambers, multiwire proportional chambers, calorimeters, optical detectors, ionization and scintillation detectors, solid state detectors, and electronic and digital subsystems. Attention is also paid to reactor instrumentation, nuclear medicine instrumentation, data acquisition systems for nuclear instrumentation, microprocessor applications in nuclear science, environmental instrumentation, control and instrumentation of nuclear power generating stations, and radiation monitoring. Papers are also presented on instrumentation for the High Energy Astronomy Observatory.

  3. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    SciTech Connect

    Todd R. Allen, Director

    2011-04-01

    The Office of Science, Basic Energy Sciences, has funded the INL as one of the Energy Frontier Research Centers in the area of material science of nuclear fuels. This document is the required annual report to the Office of Science that outlines the accomplishments for the period of May 2010 through April 2011. The aim of the Center for Material Science of Nuclear Fuels (CMSNF) is to establish the foundation for predictive understanding of the effects of irradiation-induced defects on thermal transport in oxide nuclear fuels. The science driver of the center’s investigation is to understand how complex defect and microstructures affect phonon mediated thermal transport in UO2, and achieve this understanding for the particular case of irradiation-induced defects and microstructures. The center’s research thus includes modeling and measurement of thermal transport in oxide fuels with different levels of impurities, lattice disorder and irradiation-induced microstructure, as well as theoretical and experimental investigation of the evolution of disorder, stoichiometry and microstructure in nuclear fuel under irradiation. With the premise that thermal transport in irradiated UO2 is a phonon-mediated energy transport process in a crystalline material with defects and microstructure, a step-by-step approach will be utilized to understand the effects of types of defects and microstructures on the collective phonon dynamics in irradiated UO2. Our efforts under the thermal transport thrust involved both measurement of diffusive phonon transport (an approach that integrates over the entire phonon spectrum) and spectroscopic measurements of phonon attenuation/lifetime and phonon dispersion. Our distinct experimental efforts dovetail with our modeling effort involving atomistic simulation of phonon transport and prediction of lattice thermal conductivity using the Boltzmann transport framework.

  4. Fission-Fusion: A new reaction mechanism for nuclear astrophysics based on laser-ion acceleration

    NASA Astrophysics Data System (ADS)

    Thirolf, P. G.; Habs, D.; Gross, M.; Allinger, K.; Bin, J.; Henig, A.; Kiefer, D.; Ma, W.; Schreiber, J.

    2011-10-01

    We propose to produce neutron-rich nuclei in the range of the astrophysical r-process around the waiting point N = 126 by fissioning a dense laser-accelerated thorium ion bunch in a thorium target (covered by a CH2 layer), where the light fission fragments of the beam fuse with the light fission fragments of the target. Via the `hole-boring' mode of laser Radiation Pressure Acceleration using a high-intensity, short pulse laser, very efficiently bunches of 232Th with solid-state density can be generated from a Th target and a deuterated CD2 foil, both forming the production target assembly. Laser-accelerated Th ions with about 7 MeV/u will pass through a thin CH2 layer placed in front of a thicker second Th foil (both forming the reaction target) closely behind the production target and disintegrate into light and heavy fission fragments. In addition, light ions (d,C) from the CD2 layer of the production target will be accelerated as well, inducing the fission process of 232Th also in the second Th layer. The laser-accelerated ion bunches with solid-state density, which are about 1014 times more dense than classically accelerated ion bunches, allow for a high probability that generated fission products can fuse again. The high ion beam density may lead to a strong collective modification of the stopping power, leading to significant range and thus yield enhancement. Using a high-intensity laser as envisaged for the ELI-Nuclear Physics project in Bucharest (ELI-NP), order-of-magnitude estimates promise a fusion yield of about 103 ions per laser pulse in the mass range of A = 180-190, thus enabling to approach the r-process waiting point at N = 126.

  5. Corrosion of steel drums containing cemented ion-exchange resins as intermediate level nuclear waste

    NASA Astrophysics Data System (ADS)

    Duffó, G. S.; Farina, S. B.; Schulz, F. M.

    2013-07-01

    Exhausted ion-exchange resins used in nuclear reactors are immobilized by cementation before being stored. They are contained in steel drums that may undergo internal corrosion depending on the presence of certain contaminants. The objective of this work is to evaluate the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins with different aggressive species. The corrosion potential and the corrosion rate of the steel, and the electrical resistivity of the matrix were monitored for 900 days. Results show that the cementation of ion-exchange resins seems not to pose special risks regarding the corrosion of the steel drums. The corrosion rate of the steel in contact with cemented ion-exchange resins in the absence of contaminants or in the presence of 2.3 wt.% sulphate content remains low (less than 0.1 μm/year) during the whole period of the study (900 days). The presence of chloride ions increases the corrosion rate of the steel at the beginning of the exposure but, after 1 year, the corrosion rate drops abruptly reaching a value close to 0.1 μm/year. This is probably due to the lack of water to sustain the corrosion process. When applying the results obtained in the present work to estimate the corrosion depth of the steel drums containing the cemented radioactive waste after a period of 300 years, it is found that in the most unfavourable case (high chloride contamination), the corrosion penetration will be considerably lower than the thickness of the wall of the steel drums. Cementation of ion-exchange resins does not seem to pose special risks regarding the corrosion of the steel drums that contained them; even in the case the matrix is highly contaminated with chloride ions.

  6. Arthur L. Schawlow Prize in Laser Science Talk: Trapped Ion Quantum Networks with Light

    NASA Astrophysics Data System (ADS)

    Monroe, Christopher

    2015-05-01

    Laser-cooled atomic ions are standards for quantum information science, acting as qubit memories with unsurpassed levels of quantum coherence while also allowing near-perfect measurement. When qubit state-dependent optical dipole forces are applied to a collection of trapped ions, their Coulomb interaction is modulated in a way that allows the entanglement of the qubits through quantum gates that can form the basis of a quantum computer. Similar optical forces allow the simulation of quantum many-body physics, where recent experiments are approaching a level of complexity that cannot be modelled with conventional computers. Scaling to much larger numbers of qubits can be accomplished by coupling trapped ion qubits through optical photons, where entanglement over remote distances can be used for quantum communication and large-scale distributed quantum computers. Laser sources and quantum optical techniques are the workhorse for such quantum networks, and will continue to lead the way as future quantum hardware is developed. This work is supported by the ARO with funding from the IARPA MQCO program, the DARPA Quiness Program, the ARO MURI on Hybrid Quantum Circuits, the AFOSR MURIs on Quantum Transduction and Quantum Verification, and the NSF Physics Frontier Center at JQI.

  7. 2010 IEEE Nuclear Science Symposium, Medical Imaging Conference, and Room Temperature Semiconductor Detectors Workshop

    NASA Astrophysics Data System (ADS)

    The Nuclear Science Symposium (NSS) offers an outstanding opportunity for scientists and engineers interested or actively working in the fields of nuclear science, radiation instrumentation, software and their applications, to meet and discuss with colleagues from around the world. The program emphasizes the latest developments in technology and instrumentation and their implementation in experiments for space sciences, accelerators, other radiation environments, and homeland security. The Medical Imaging Conference (MIC) is the foremost international scientific meeting on the physics, engineering and mathematical aspects of nuclear medicine based imaging. As the field develops, multi-modality approaches are becoming more and more important. The content of the MIC reflects this, with a growing emphasis on the methodologies of X-ray, optical and MR imaging as they relate to nuclear imaging techniques. In addition, specialized topics will be addressed in the Short Courses and Workshops programs. The Workshop on Room-Temperature Semiconductor Detectors (RTSD) represents the largest forum of scientists and engineers developing new semiconductor radiation detectors and imaging arrays. Room-temperature solid-state radiation detectors for X-ray, gamma-ray, and neutron radiation are finding increasing applications in such diverse fields as medicine, homeland security, astrophysics and environmental remediation. The objective of this workshop is to provide a forum for discussion of the state of the art of material development for semiconductor, scintillator, and organic materials for detection, materials characterization, device fabrication and technology, electronics and applications.

  8. Fundamental Science-Based Simulation of Nuclear Waste Forms

    SciTech Connect

    Devanathan, Ramaswami; Gao, Fei; Sun, Xin; Khaleel, Mohammad A.

    2010-10-04

    This report presents a hierarchical multiscale modeling scheme based on two-way information exchange. To account for all essential phenomena in waste forms over geological time scales, the models have to span length scales from nanometer to kilometer and time scales from picoseconds to millenia. A single model cannot cover this wide range and a multi-scale approach that integrates a number of different at-scale models is called for. The approach outlined here involves integration of quantum mechanical calculations, classical molecular dynamics simulations, kinetic Monte Carlo and phase field methods at the mesoscale, and continuum models. The ultimate aim is to provide science-based input in the form of constitutive equations to integrated codes. The atomistic component of this scheme is demonstrated in the promising waste form xenotime. Density functional theory calculations have yielded valuable information about defect formation energies. This data can be used to develop interatomic potentials for molecular dynamics simulations of radiation damage. Potentials developed in the present work show a good match for the equilibrium lattice constants, elastic constants and thermal expansion of xenotime. In novel waste forms, such as xenotime, a considerable amount of data needed to validate the models is not available. Integration of multiscale modeling with experimental work is essential to generate missing data needed to validate the modeling scheme and the individual models. Density functional theory can also be used to fill knowledge gaps. Key challenges lie in the areas of uncertainty quantification, verification and validation, which must be performed at each level of the multiscale model and across scales. The approach used to exchange information between different levels must also be rigorously validated. The outlook for multiscale modeling of wasteforms is quite promising.

  9. The use of low energy, ion induced nuclear reactions for proton radiotherapy applications

    SciTech Connect

    Horn, K.M.; Doyle, B.; Segal, M.N.; Hamm, R.W.; Adler, R.J.; Glatstein, E.

    1995-04-01

    Medical radiotherapy has traditionally relied upon the use of external photon beams and internally implanted radioisotopes as the chief means of irradiating tumors. However, advances in accelerator technology and the exploitation of novel means of producing radiation may provide useful alternatives to some current modes of medical radiation delivery with reduced total dose to surrounding healthy tissue, reduced expense, or increased treatment accessibility. This paper will briefly overview currently established modes of radiation therapy, techniques still considered experimental but in clinical use, innovative concepts under study that may enable new forms of treatment or enhance existing ones. The potential role of low energy, ion-induced nuclear reactions in radiotherapy applications is examined specifically for the 650 keV d({sup 3}He,p){sup 4}He nuclear reaction. This examination will describe the basic physics associated with this reaction`s production of 17.4 MeV protons and the processes used to fabricate the necessary materials used in the technique. Calculations of the delivered radiation dose, heat generation, and required exposure times are presented. Experimental data are also presented validating the dose calculations. The design of small, lower cost ion accelerators, as embodied in `nested`-tandem and radio frequency quadrupole accelerators is examined, as is the potential use of high-output {sup 3}He and deuterium ion sources. Finally, potential clinical applications are discussed in terms of the advantages and disadvantages of this technique with respect to current radiotherapy methods and equipment.

  10. Science in Flux: NASA's Nuclear Program at Plum Brook Station 1955-2005

    NASA Technical Reports Server (NTRS)

    Bowles, Mark D.

    2006-01-01

    Science in Flux traces the history of one of the most powerful nuclear test reactors in the United States and the only nuclear facility ever built by NASA. In the late 1950's NASA constructed Plum Brook Station on a vast tract of undeveloped land near Sandusky, Ohio. Once fully operational in 1963, it supported basic research for NASA's nuclear rocket program (NERVA). Plum Brook represents a significant, if largely forgotten, story of nuclear research, political change, and the professional culture of the scientists and engineers who devoted their lives to construct and operate the facility. In 1973, after only a decade of research, the government shut Plum Brook down before many of its experiments could be completed. Even the valiant attempt to redefine the reactor as an environmental analysis tool failed, and the facility went silent. The reactors lay in costly, but quiet standby for nearly a quarter-century before the Nuclear Regulatory Commission decided to decommission the reactors and clean up the site. The history of Plum Brook reveals the perils and potentials of that nuclear technology. As NASA, Congress, and space enthusiasts all begin looking once again at the nuclear option for sending humans to Mars, the echoes of Plum Brook's past will resonate with current policy and space initiatives.

  11. A coupled effect of nuclear and electronic energy loss on ion irradiation damage in lithium niobate

    DOE PAGESBeta

    Liu, Peng; Zhang, Yanwen; Xue, Haizhou; Jin, Ke; Crespillo, Miguel L.; Wang, Xuelin; Weber, William J.

    2016-01-09

    Understanding irradiation effects induced by elastic energy loss to atomic nuclei and inelastic energy loss to electrons in a crystal, as well as the coupled effect between them, is a scientific challenge. Damage evolution in LiNbO3 irradiated by 0.9 and 21 MeV Si ions at 300 K has been studied utilizing Rutherford backscattering spectrometry in channeling mode. During the low-energy ion irradiation process, damage accumulation produced due to elastic collisions is described utilizing a disorder accumulation model. Moreover, low electronic energy loss is shown to induce observable damage that increases with ion fluence. For the same electronic energy loss, themore » velocity of the incident ion could affect the energy and spatial distribution of excited electrons, and therefore effectively modify the diameter of the ion track. Furthermore, nonlinear additive phenomenon of irradiation damage induced by high electronic energy loss in pre-damaged LiNbO3 has been observed. The result indicates that pre-existing damage induced from nuclear energy loss interacts synergistically with inelastic electronic energy loss to promote the formation of amorphous tracks and lead to rapid phase transformation, much more efficient than what is observed in pristine crystal solely induced by electronic energy loss. As a result, this synergistic effect is attributed to the fundamental mechanism that the defects produced by the elastic collisions result in a decrease in thermal conductivity, increase in the electron-phonon coupling, and further lead to higher intensity in thermal spike from intense electronic energy deposition along high-energy ion trajectory.« less

  12. Influence of nuclear interactions in polyethylene range compensators for carbon-ion radiotherapy

    SciTech Connect

    Kanematsu, Nobuyuki Koba, Yusuke; Ogata, Risa; Himukai, Takeshi

    2014-07-15

    Purpose: A recent study revealed that polyethylene (PE) would cause extra carbon-ion attenuation per range shift by 0.45%/cm due to compositional differences in nuclear interactions. The present study aims to assess the influence of PE range compensators on tumor dose in carbon-ion radiotherapy. Methods: Carbon-ion radiation was modeled to be composed of primary carbon ions and secondary particles, for each of which the dose and the relative biological effectiveness (RBE) were estimated at a tumor depth in the middle of spread-out Bragg peak. Assuming exponential behavior for attenuation and yield of these components with depth, the PE effect on dose was calculated for clinical carbon-ion beams and was partly tested by experiment. The two-component model was integrated into a treatment-planning system and the PE effect was estimated in two clinical cases. Results: The attenuation per range shift by PE was 0.1%–0.3%/cm in dose and 0.2%–0.4%/cm in RBE-weighted dose, depending on energy and range-modulation width. This translates into reduction of RBE-weighted dose by up to 3% in extreme cases. In the treatment-planning study, however, the effect on RBE-weighted dose to tumor was typically within 1% reduction. Conclusions: The extra attenuation of primary carbon ions in PE was partly compensated by increased secondary particles for tumor dose. In practical situations, the PE range compensators would normally cause only marginal errors as compared to intrinsic uncertainties in treatment planning, patient setup, beam delivery, and clinical response.

  13. Nickel Ion Inhibits Nuclear Factor-Kappa B Activity in Human Oral Squamous Cell Carcinoma

    PubMed Central

    Shionome, Takashi; Endo, Shigeki; Omagari, Daisuke; Asano, Masatake; Toyoma, Hitoshi; Ishigami, Tomohiko; Komiyama, Kazuo

    2013-01-01

    Background The spontaneous IL-8 secretion observed in OSCC is partially dependent on the disregulated activity of transcription factor NF-κB. Nickel compounds are well established human carcinogens, however, little is known about the influence of nickel on the spontaneous secretion of IL-8 in oral squamous cell carcinoma (OSCC) cells. The aim of the present study was to investigate whether Ni2+ ions can influence on IL-8 secretion by OSCC. Methods and Results The IL-8 secretion was measured by ELISA. The expression of IL-8 mRNA was examined by real-time PCR. The NF-κB activity was measured by luciferase assay. The phosphorylation status and nuclear localization of NF-κB subunits were examined by Western blotting or Transfactor kit and immunofluorescence staining, respectively. The interaction of NF-κB p50 subunit and Ni2+ ions was examined by Ni2+-column pull down assay. The site-directed mutagenesis was used to generate a series of p50 mutants. Scratch motility assay was used to monitor the cell mobility. Our results demonstrated that, on the contrary to our expectations, Ni2+ ions inhibited the spontaneous secretion of IL-8. As IL-8 reduction was observed in a transcriptional level, we performed the luciferase assay and the data indicated that Ni2+ ions reduced the NF-κB activity. Measurement of p50 subunit in the nucleus and the immunofluorescence staining revealed that the inhibitory effect of Ni2+ ions was attributed to the prevention of p50 subunit accumulation to the nucleus. By Ni2+-column pull down assay, Ni2+ ions were shown to interact directly with His cluster in the N-terminus of p50 subunit. The inhibitory effect of Ni2+ ions was reverted in the transfectant expressing the His cluster-deleted p50 mutant. Moreover, Ni2+ ions inhibited the OSCC mobility in a dose dependent fashion. Conclusions Taken together, inhibition of NF-κB activity by Ni2+ ion might be a novel therapeutic strategy for the treatment of oral cancer. PMID:23844176

  14. Nuclear quantum effects in water exchange around lithium and fluoride ions

    SciTech Connect

    Wilkins, David M.; Manolopoulos, David E.; Dang, Liem X.

    2015-02-14

    We employ classical and ring polymer molecular dynamics simulations to study the effect of nuclear quantum fluctuations on the structure and the water exchange dynamics of aqueous solutions of lithium and fluoride ions. While we obtain reasonably good agreement with experimental data for solutions of lithium by augmenting the Coulombic interactions between the ion and the water molecules with a standard Lennard-Jones ion-oxygen potential, the same is not true for solutions of fluoride, for which we find that a potential with a softer repulsive wall gives much better agreement. A small degree of destabilization of the first hydration shell is found in quantum simulations of both ions when compared with classical simulations, with the shell becoming less sharply defined and the mean residence time of the water molecules in the shell decreasing. In line with these modest differences, we find that the mechanisms of the exchange processes are unaffected by quantization, so a classical description of these reactions gives qualitatively correct and quantitatively reasonable results. We also find that the quantum effects in solutions of lithium are larger than in solutions of fluoride. This is partly due to the stronger interaction of lithium with water molecules, partly due to the lighter mass of lithium and partly due to competing quantum effects in the hydration of fluoride, which are absent in the hydration of lithium.

  15. Track structure based modelling of light ion radiation effects on nuclear and mitochondrial DNA

    NASA Astrophysics Data System (ADS)

    Schmitt, Elke; Ottolenghi, Andrea; Dingfelder, Michael; Friedland, Werner; Kundrat, Pavel; Baiocco, Giorgio

    2016-07-01

    Space radiation risk assessment is of great importance for manned spaceflights in order to estimate risks and to develop counter-measures to reduce them. Biophysical simulations with PARTRAC can help greatly to improve the understanding of initial biological response to ionizing radiation. Results from modelling radiation quality dependent DNA damage and repair mechanisms up to chromosomal aberrations (e.g. dicentrics) can be used to predict radiation effects depending on the kind of mixed radiation field exposure. Especially dicentric yields can serve as a biomarker for an increased risk due to radiation and hence as an indicator for the effectiveness of the used shielding. PARTRAC [1] is a multi-scale biophysical research MC code for track structure based initial DNA damage and damage response modelling. It integrates physics, radiochemistry, detailed nuclear DNA structure and molecular biology of DNA repair by NHEJ-pathway to assess radiation effects on cellular level [2]. Ongoing experiments with quasi-homogeneously distributed compared to sub-micrometre focused bunches of protons, lithium and carbon ions allow a separation of effects due to DNA damage complexity on nanometre scale from damage clustering on (sub-) micrometre scale [3, 4]. These data provide an unprecedented benchmark for the DNA damage response model in PARTRAC and help understand the mechanisms leading to cell killing and chromosomal aberrations (e.g. dicentrics) induction. A large part of space radiation is due to a mixed ion field of high energy protons and few heavier ions that can be only partly absorbed by the shielding. Radiation damage induced by low-energy ions significantly contributes to the high relative biological efficiency (RBE) of ion beams around Bragg peak regions. For slow light ions the physical cross section data basis in PARTRAC has been extended to investigate radiation quality effects in the Bragg peak region [5]. The resulting range and LET values agree with ICRU data

  16. Nuclear Medical Science Officers: Army Health Physicists Serving and Defending Their Country Around the Globe

    NASA Astrophysics Data System (ADS)

    Melanson, Mark; Bosley, William; Santiago, Jodi; Hamilton, Daniel

    2010-02-01

    Tracing their distinguished history back to the Manhattan Project that developed the world's first atomic bomb, the Nuclear Medical Science Officers are the Army's experts on radiation and its health effects. Serving around the globe, these commissioned Army officers serve as military health physicists that ensure the protection of Soldiers and those they defend against all sources of radiation, military and civilian. This poster will highlight the various roles and responsibilities that Nuclear Medical Science Officers fill in defense of the Nation. Areas where these officers serve include medical health physics, deployment health physics, homeland defense, emergency response, radiation dosimetry, radiation research and training, along with support to the Army's corporate radiation safety program and international collaborations. The poster will also share some of the unique military sources of radiation such as depleted uranium, which is used as an anti-armor munition and in armor plating because of its unique metallurgic properties. )

  17. Spectroscopic study of energetic helium-ion irradiation effects on nuclear graphite tiles

    NASA Astrophysics Data System (ADS)

    Kim, Do Wan; Lee, K. W.; Choi, D. M.; Noh, S. J.; Kim, H. S.; Lee, Cheol Eui

    2016-02-01

    Helium ion-irradiation effects on the nuclear graphite tiles were studied in order to understand the structural modifications and damages that can be produced by fusion reaction in tokamaks. The surface morphological changes due to increasing dose of the irradiation were examined by the field-effect scanning electron microscopy, and X-ray photoelectron spectroscopy elucidated the changes in the shallow surface bonding configurations caused by the energetic irradiation. Raman spectroscopy revealed the structural defects and diamond-like carbon sites that increased with increasing irradiation dose, and the average inter-defect distance was found from the Raman peak intensities as a function of the irradiation dose.

  18. Interplay between compound and fragments aspects of nuclear fission and heavy-ion reaction

    SciTech Connect

    Moller, Peter; Iwamoto, A; Ichikawa, I

    2010-09-10

    The scission point in nuclear fission plays a special role where one-body system changes to two-body system. Inverse of this situation is realized in heavy-ion fusion reaction where two-body system changes to one body system. Among several peculiar phenomena expected to occur during this change, we focus our attention to the behavior of compound and fragments shell effects. Some aspects of the interplay between compound and fragments shell effect are discussed related to the topics of the fission valleys in the potential energy surface of actinide nuclei and the fusion-like trajectory found in the cold fusion reaction leading to superheavy nuclei.

  19. Upper limit on the cross section for nuclear charge pickup by relativistic uranium ions

    SciTech Connect

    Westphal, A.J.; Price, P.B.; Snowden-Ifft, D.P. Nuclear Science Division, Lawrence Berkeley Laboratory, Berkeley, California 94720 )

    1992-05-01

    We have searched for examples of nuclear charge pickup by relativistic uranium ions in targets of both uranium and phosphate glass. We find none, which allows us to set an upper limit of 7.7 mb per target atom at the 90% confidence level on the cross section for this process. An extrapolation of the approximately quadratic dependence on projectile charge of the cross section for charge pickup predicts a cross section which would be {similar to}10 times larger. This breakdown in the scaling can be understood by the propensity of the actinides to fission upon the deposition of sufficient excitation energy.

  20. University Reactor Conversion Lessons Learned Workshop for Texas A&M University Nuclear Science Center Reactor

    SciTech Connect

    Eric C. Woolstenhulme; Dana M. Meyer

    2007-04-01

    The objectives of this meeting were to capture the observations, insights, issues, concerns, and ideas of those involved in the Texas A&M University Nuclear Science Center (TAMU NSC) TRIGA Reactor Conversion so that future efforts can be conducted with greater effectiveness, efficiency, and with fewer challenges. This workshop was held in conjunction with a similar workshop for the University of Florida Reactor Conversion. Some of the generic lessons from that workshop are included in this report for completeness.

  1. Billion-fold enhancement in sensitivity of nuclear magnetic resonance spectroscopy for magnesium ions in solution.

    PubMed

    Gottberg, Alexander; Stachura, Monika; Kowalska, Magdalena; Bissell, Mark L; Arcisauskaite, Vaida; Blaum, Klaus; Helmke, Alexander; Johnston, Karl; Kreim, Kim; Larsen, Flemming H; Neugart, Rainer; Neyens, Gerda; Garcia Ruiz, Ronald F; Szunyogh, Daniel; Thulstrup, Peter W; Yordanov, Deyan T; Hemmingsen, Lars

    2014-12-15

    β-nuclear magnetic resonance (NMR) spectroscopy is highly sensitive compared to conventional NMR spectroscopy, and may be applied for several elements across the periodic table. β-NMR has previously been successfully applied in the fields of nuclear and solid-state physics. In this work, β-NMR is applied, for the first time, to record an NMR spectrum for a species in solution. (31)Mg β-NMR spectra are measured for as few as 10(7) magnesium ions in ionic liquid (EMIM-Ac) within minutes, as a prototypical test case. Resonances are observed at 3882.9 and 3887.2 kHz in an external field of 0.3 T. The key achievement of the current work is to demonstrate that β-NMR is applicable for the analysis of species in solution, and thus represents a novel spectroscopic technique for use in general chemistry and potentially in biochemistry. PMID:25303164

  2. Nuclear research with heavy ions. Annual progress report. January 1, 1980-December 31, 1980

    SciTech Connect

    Kaplan, M.

    1980-10-01

    The program of research is oriented towards experimental studies of the interactions between heavy ions and complex nuclei. These interactions are probed by detailed measurements of light-charged-particle emission using counter telescopes for atomic number and mass number identification. Singles measurements of the charged-particle energy spectra and angular distributions, together with coincidence correlations with heavy nuclear-reaction fragments, provide insight into the contributing reaction mechanisms. The application of the statistical model to the appropriate experimental data allows the determination of parameters necessary to calibrate the theory, and gives indications of dynamical control vs. equilibrium in the several degrees of freedom associated with the nuclear collisions. A large body of data are presented and discussed for /sup 40/Ar reactions with /sup 116/Sn, /sup 154/Sm, /sup 164/Dy, and /sup 197/Au targets. Complete results are also given for twelve reactions which produce /sup 194/Hg compound nuclei at several excitation energies.

  3. Effect of sodium and potassium ions on cesium absorption from nuclear power plant waste solutions on synthetic zeolites

    SciTech Connect

    Harjula, R.; Lehto, J.

    1986-01-01

    The separation of cesium from low-active waste solutions from a nuclear power plant by ion exchange using synthetic zeolites Zeolon 900 and Linde AW-500 was studied. The pH of the waste solutions was 6-13 and the concentrations of sodium and potassium ions were 8-2700 and 0.5-240 mmol/L, respectively. The distribution coefficient of cesium was determined as a function of pH and sodium and potassium ion concentration. Column breakthrough curves were contained and an empirical equation was derived to calculate the column performance at different sodium and potassium ion concentrations.

  4. From Crisis to Transition: The State of Russian Science Based on Focus Groups with Nuclear Physicists

    SciTech Connect

    Gerber, T P; Ball, D Y

    2001-12-09

    The collapse of the Soviet system led to a sharp contraction of state funding for science. Formerly privileged scientists suddenly confronted miserly salaries (often paid late), plummeting social prestige, deteriorating research facilities and equipment, and few prospects for improvement. Many departed the field of science for more lucrative opportunities, both within Russia and abroad. The number of inventions, patent applications, and publications by Russian scientists declined. Reports of desperate nuclear physicists seeking work as tram operators and conducting hunger strikes dramatized the rapid collapse of one of the contemporary world's most successful scientific establishments. Even more alarming was the 1996 suicide of Vladimir Nechai, director of the second largest nuclear research center in Russia (Chelyabinsk-70, now known as Snezhinsk). Nechai, a respected theoretical physicist who spent almost 40 years working on Soviet and Russian nuclear programs, killed himself because he could no longer endure his inability to rectify a situation in which his employees had not been paid for more than 5 months and were ''close to starvation.'' The travails of Russia's scientists sparked interest in the West primarily because of the security threat posed by their situation. The seemingly relentless crisis in science raised fears that disgruntled scientists might sell their nuclear weapons expertise to countries or organizations that harbor hostile intentions toward the United States. Such concerns are particularly pressing in the wake of the September 2001 terrorist attacks in the US. At the same time, we should not overlook other critical implications that the state of Russian science has for Russia's long-term economic and political development. It is in the West's interest to see Russia develop a thriving market economy and stable democracy. A successful scientific community can help on both counts. Science and technology can attract foreign investment and fuel

  5. A 3-year plan for beam science in the heavy-ion fusion virtual national laboratory

    SciTech Connect

    Logan, B. Grant

    2001-09-10

    In December 1998, LBNL Director Charles Shank and LLNL Director Bruce Tarter signed a Memorandum of Agreement to create the Heavy-Ion Fusion Virtual National Laboratory (HIF-VNL) with the purpose of improving the efficiency and productivity of heavy ion research through coordination of the two laboratories' efforts under one technical director. In 1999, PPPL Director Robert Goldston signed the VNL MOA for PPPL's heavy-ion fusion group to join the VNL. LBNL and LLNL each contribute about 45% of the $10.6 M/yr trilab VNL effort, and PPPL contributes currently about 10% of the VNL effort. The three labs carry out collaborative experiments, theory and simulations of a variety of intense beam scientific issues described below. The tri-lab HIF VNL program is part of the DOE Office of Fusion Energy Sciences (OFES) fusion program. A short description of the four major tasks areas of HIF-VNL research is given in the next section. The task areas are: High Current Experiment, Final Focus/Chamber Transport, Source/Injector/Low Energy Beam Transport (LEBT), and Theory/Simulation. As a result of the internal review, more detailed reviews of the designs, costs and schedules for some of the tasks have been completed, which will provide more precision in the scheduled completion dates of tasks. The process for the ongoing engineering reviews and governance for the future management of tasks is described in section 3. A description of the major milestones and scientific deliverables for flat guidance budgets are given in section 4. Section 5 describes needs for enabling technology development for future experiments that require incremental funding.

  6. Los Alamos neutron science center nuclear weapons stewardship and unique national scientific capabilities

    SciTech Connect

    Schoenberg, Kurt F

    2010-12-15

    This presentation gives an overview of the Los Alamos Neutron Science Center (LANSCE) and its contributions to science and the nuclear weapons program. LANSCE is made of multiple experimental facilities (the Lujan Center, the Weapons Neutron Research facility (WNR), the Ultra-Cold Neutron facility (UCN), the proton Radiography facility (pRad) and the Isotope Production Facility (IPF)) served by the its kilometer long linear accelerator. Several research areas are supported, including materials and bioscience, nuclear science, materials dynamics, irradiation response and medical isotope production. LANSCE is a national user facility that supports researchers worldwide. The LANSCE Risk Mitigation program is currently in progress to update critical accelerator equipment to help extend the lifetime of LANSCE as a key user facility. The Associate Directorate of Business Sciences (ADBS) plays an important role in the continued success of LANSCE. This includes key procurement support, human resource support, technical writing support, and training support. LANSCE is also the foundation of the future signature facility MARIE (Matter-Radiation Interactions in Extremes).

  7. Scientometric mapping of vacuum research in nuclear science & technology: a global perspective

    NASA Astrophysics Data System (ADS)

    Kademani, B. S.; Sagar, A.; Kumar, A.; Kumar, V.

    2008-05-01

    This paper attempts to analyse the growth and development of Vacuum research in Nuclear Science and Technology, as reflected in publication output covered by International Nuclear Information System (INIS) database during 2002-2006. A total of 12027 papers were published in the field of vacuum science. United States topped the list with 1936 (16.10%) publications followed by Japan with 1770 (14.70%) publications, The highest number of publications (3276) were published in 2004. The average number of publications published per year were 2405.4. The highest number of publications were in 'Physics of Elementary Particles and Fields' with 2644 (21.98%) publications. The authorship and collaboration trend is towards multi-authored papers. The highly productive institutions were: Japan Atomic Energy Research Institute (Japan) with 366 publications, University of Tokyo (Japan) with 274 publications, Hiroshima University (Japan) with 245 publications, Osaka University Japan (Japan) with 224 publications and Chinese Academy of Science (P-R-China) with 223 publications. The most preferred journals for publication were: Journal of Vacuum Science and Technology-A with 857 papers, Physical Review -D with 765 papers, Journal of High Energy Physics with 500 papers, Thin Solid Films with 311 papers, Journal of Electron Spectroscopy and Related Phenomena with 309 papers, and AIP Conference Proceedings with 308 papers.

  8. NSCL and FRIB at Michigan State University: Nuclear science at the limits of stability

    NASA Astrophysics Data System (ADS)

    Gade, A.; Sherrill, B. M.

    2016-05-01

    The National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University (MSU) is a scientific user facility that offers beams of rare isotopes at a wide range of energies. This article describes the facility, its capabilities, and some of the experimental devices used to conduct research with rare isotopes. The versatile nuclear science program carried out by researchers at NSCL continues to address the broad challenges of the field, employing sensitive experimental techniques that have been developed and optimized for measurements with rare isotopes produced by in-flight separation. Selected examples showcase the broad program, capabilities, and the relevance for forefront science questions in nuclear physics, addressing, for example, the limits of nuclear existence; the nature of the nuclear force; the origin of the elements in the cosmos; the processes that fuel explosive scenarios in the Universe; and tests for physics beyond the standard model of particle physics. NSCL will cease operations in approximately 2021. The future program will be carried out at the Facility for Rare Isotope Beams, FRIB, presently under construction on the MSU campus adjacent to NSCL. FRIB will provide fast, stopped, and reaccelerated beams of rare isotopes at intensities exceeding NSCL’s capabilities by three orders of magnitude. An outlook will be provided on the enormous opportunities that will arise upon completion of FRIB in the early 2020s.

  9. Heavy-Ion-Fusion-Science: Summary of U.S. Progress

    SciTech Connect

    Yu, Simon S.; Logan, B.G.; Barnard, J.J.; Bieniosek, F.M.; Davidson, R.C.; Friedman, A.; Gilson, E.P.; Grisham, L.R.; Kwan, J.W.; Leitner, M.A.; Molvik, A.W.; Qin, H.; Roy, P.K.; Seidl, P.A.; Waldron,W.L.; Briggs, R.J.; Olson, C.L.; Kishek, R.A.; Welch, D.R.

    2006-04-16

    Over the past two years noteworthy experimental and theoretical progress has been made towards the top-level scientific question for the U.S. program in Heavy Ion Fusion Science and High Energy Density Physics: ''How can heavy ion beams be compressed to the high intensity required to create high energy density matter and fusion conditions''? [1]. New results in transverse and longitudinal beam compression, beam-target interaction, high-brightness transport, beam production, as well as a new scheme in beam acceleration will be reported. Longitudinal and Transverse Beam Compression: The Neutralized Transport Experiment (NTX) demonstrated transverse beam density enhancement by a factor greater than 100 when an otherwise space-charge dominated ion beam was neutralized by a plasma source [2]. This experiment was followed by the Neutralized Drift Compression Experiment (NDCX) in which an ion beam was longitudinally compressed by a factor of 50 [3]. This was accomplished by applying a linear head-to-tail velocity ''tilt'' to the beam, and then allowing the beam to drift through a meter-long neutralizing plasma. In both the transverse and longitudinal experiments, extensive 3-D simulations, using LSP, were carried out, and the agreement with experiments was excellent [4]. A three-dimensional kinetic model for longitudinal compression was developed, and it was shown that the Vlasov equation possesses a class of exact solutions for the problem [5]. Beam-Target Interaction: We have also made significant progress in identifying the unique role ion beams can play in heating material to warm dense matter (WDM) conditions. We have identified promising accelerator, beam, and target configurations, as well as new experiments on material properties. It is shown that the target temperature uniformity can be maximized if the ion energy at target corresponds to the maximum in the energy loss rate dE/dX [6]. Ions of moderate energy (a few to tens of MeV) may be used. The energy must be

  10. Study of Nuclear Reactions with 11C and 15O Radioactive Ion Beams

    SciTech Connect

    Lee, Dongwon

    2007-05-14

    Nuclear reaction study with radioactive ion beams is one of the most exciting research topics in modern nuclear physics. The development of radioactive ion beams has allowed nuclear scientists and engineers to explore many unknown exotic nuclei far from the valley of nuclear stability, and to further our understanding of the evolution of the universe. The recently developed radioactive ion beam facility at the Lawrence Berkeley National Laboratory's 88-inch cyclotron is denoted as BEARS and provides {sup 11}C, {sup 14}O and {sup 15}O radioactive ion beams of high quality. These moderate to high intensity, proton-rich radioactive ion beams have been used to explore the properties of unstable nuclei such as {sup 12}N and {sup 15}F. In this work, the proton capture reaction on {sup 11}C has been evaluated via the indirect d({sup 11}C, {sup 12}N)n transfer reaction using the inverse kinematics method coupled with the Asymptotic Normalization Coefficient (ANC) theoretical approach. The total effective {sup 12}N {yields} {sup 11}C+p ANC is found to be (C{sub eff}{sup 12{sub N}}){sup 2} = 1.83 {+-} 0.27 fm{sup -1}. With the high {sup 11}C beam intensity available, our experiment showed excellent agreement with theoretical predictions and previous experimental studies. This study also indirectly confirmed that the {sup 11}C(p,{gamma}) reaction is a key step in producing CNO nuclei in supermassive low-metallicity stars, bypassing the slow triple alpha process. The newly developed {sup 15}O radioactive ion beam at BEARS was used to study the poorly known level widths of {sup 16}F via the p({sup 15}O,{sup 15}O)p reaction. Among the nuclei in the A=16, T=1 isobaric triad, many states in {sup 16}N and {sup 16}O have been well established, but less has been reported on {sup 16}F. Four states of {sup 16}F below 1 MeV have been identified experimentally: 0{sup -}, 1{sup -}, 2{sup -}, and 3{sup -} (E{sub x} = 0.0, 0.19, 0.42, and 0.72 MeV, respectively). Our study utilized R

  11. Study of nuclear reactions with carnon-11 and oxygen-15 radioactive ion beams

    NASA Astrophysics Data System (ADS)

    Lee, Dongwon

    Nuclear reaction study with radioactive ion beams is one of the most exciting research topics in modern nuclear physics. The development of radioactive ion beams has allowed nuclear scientists and engineers to explore many unknown exotic nuclei far from the valley of nuclear stability, and to further our understanding of the evolution of the universe. The recently developed radioactive ion beam facility at the Lawrence Berkeley National Laboratory's 88-inch cyclotron is denoted as BEARS and provides 11C, 14O and 15O radioactive ion beams of high quality. These moderate to high intensity, proton-rich radioactive ion beams have been used to explore the properties of unstable nuclei such as 12N and 15F. In this work, the proton capture reaction on 11C has been evaluated via the indirect d(11C,12N)n transfer reaction using the inverse kinematics method coupled with the Asymptotic Normalization Coefficient (ANC) theoretical approach. The total effective 12N→11C +p ANC is found to be C12Neff 2 = 1.83 +/- 0.27 fm-1. With the high 11C beam intensity available, our experiment showed excellent agreement with theoretical predictions and previous experimental studies. This study also indirectly confirmed that the 11C(p,gamma) reaction is a key step in producing CNO nuclei in supermassive low-metallicity stars, bypassing the slow triple alpha process. The newly developed 15O radioactive ion beam at BEARS was used to study the poorly known level widths of 16F via the p(15O,15O)p reaction. Among the nuclei in the A=16, T=1 isobaric triad, many states in 16N and 16O have been well established, but less has been reported on 16F. Four states of 16F below 1 MeV have been identified experimentally: 0-, 1-, 2-, and 3- (Ex = 0.0, 0.19, 0.42, and 0.72 MeV, respectively). Our study utilized R-matrix analysis and found that the 0- state has a level width of 23.1 +/- 2.2 keV, and that the broader 1 - state has a width of 91.1 +/- 9.9 keV. The level width of the 2- state is found to be 3

  12. Nuclear-interaction correction of integrated depth dose in carbon-ion radiotherapy treatment planning.

    PubMed

    Inaniwa, T; Kanematsu, N; Hara, Y; Furukawa, T

    2015-01-01

    In treatment planning of charged-particle therapy, tissue heterogeneity is conventionally modeled as water with various densities, i.e. stopping effective densities ρ(S), and the integrated depth dose measured in water (IDD) is applied accordingly for the patient dose calculation. Since the chemical composition of body tissues is different from that of water, this approximation causes dose calculation errors, especially due to difference in nuclear interactions. Here, we propose and validate an IDD correction method for these errors in patient dose calculations. For accurate handling of nuclear interactions, ρ(S) of the patient is converted to nuclear effective density ρ(N), defined as the ratio of the probability of nuclear interactions in the tissue to that in water using a recently formulated semi-empirical relationship between the two. The attenuation correction factor Φ(w)(p), defined as the ratio of the attenuation of primary carbon ions in a patient to that in water, is calculated from a linear integration of ρ(N) along the beam path. In our treatment planning system, a carbon-ion beam is modeled to be composed of three components according to their transverse beam sizes: primary carbon ions, heavier fragments, and lighter fragments. We corrected the dose contribution from primary carbon ions to IDD as proportional to Φ(w)(p), and corrected that from lighter fragments as inversely proportional to Φ(w)(p). We tested the correction method for some non-water materials, e.g. milk, lard, ethanol and water solution of potassium phosphate (K2HPO4), with un-scanned and scanned carbon-ion beams. In un-scanned beams, the difference in IDD between a beam penetrating a 150 mm-thick layer of lard and a beam penetrating water of the corresponding thickness amounted to -4%, while it was +6% for a 150 mm-thick layer of 40% K2HPO4. The observed differences were accurately predicted by the correction method. The corrected IDDs agreed with the measurements within

  13. NSAC Recommends a Relativistic Heavy-Ion Collider.

    ERIC Educational Resources Information Center

    Physics Today, 1984

    1984-01-01

    Describes the plan submitted by the Nuclear Science Advisory Committee to the Department of Energy and National Science Foundation urging construction of an ultrarelativistic heavy-ion collider designed to accelerate nucleon beams of ions as heavy as uranium. Discusses the process of selecting the type of facility as well as siting. (JM)

  14. Nuclear induces effects and mass correlations in low and multiply charged helium-like ions

    NASA Astrophysics Data System (ADS)

    Stoyanov, Zh K.; Pavlov, R. L.; Mihailov, L. M.; Velchev, Ch J.; Mutafchieva, Y. D.; Tonev, D.; Chamel, N.

    2016-06-01

    The ground-state electron energies, the mass correction and mass polarization of low and multiply charged helium-like ions are analytically and numerically calculated. Approximately 3500 different kinds of ions with charge Z = 2 ÷ 118 are considered. The two-electron Schrodinger equation was solved using a discrete variational-perturbation approach developed by the authors and based on explicitly correlated wave functions. This approach takes into account the motion of the nucleus and yields accurate values for the electron characteristics. The results are presented with and without the inclusion of the mass polarization in the minimization procedure. The relative importance of mass correlations and relativistic effects in the formation of the electron energy characteristics of the helium-like ions are studied for different values of Z. The role of the inclusion of the mass polarization in the minimization procedure as an instrument to present and take into account the effects induced by the nuclear properties, structure and characteristics has been shown.

  15. Influence of nuclear interactions in body tissues on tumor dose in carbon-ion radiotherapy

    SciTech Connect

    Inaniwa, T. Kanematsu, N.; Tsuji, H.; Kamada, T.

    2015-12-15

    Purpose: In carbon-ion radiotherapy treatment planning, the planar integrated dose (PID) measured in water is applied to the patient dose calculation with density scaling using the stopping power ratio. Since body tissues are chemically different from water, this dose calculation can be subject to errors, particularly due to differences in inelastic nuclear interactions. In recent studies, the authors proposed and validated a PID correction method for these errors. In the present study, the authors used this correction method to assess the influence of these nuclear interactions in body tissues on tumor dose in various clinical cases. Methods: Using 10–20 cases each of prostate, head and neck (HN), bone and soft tissue (BS), lung, liver, pancreas, and uterine neoplasms, the authors first used treatment plans for carbon-ion radiotherapy without nuclear interaction correction to derive uncorrected dose distributions. The authors then compared these distributions with recalculated distributions using the nuclear interaction correction (corrected dose distributions). Results: Median (25%/75% quartiles) differences between the target mean uncorrected doses and corrected doses were 0.2% (0.1%/0.2%), 0.0% (0.0%/0.0%), −0.3% (−0.4%/−0.2%), −0.1% (−0.2%/−0.1%), −0.1% (−0.2%/0.0%), −0.4% (−0.5%/−0.1%), and −0.3% (−0.4%/0.0%) for the prostate, HN, BS, lung, liver, pancreas, and uterine cases, respectively. The largest difference of −1.6% in target mean and −2.5% at maximum were observed in a uterine case. Conclusions: For most clinical cases, dose calculation errors due to the water nonequivalence of the tissues in nuclear interactions would be marginal compared to intrinsic uncertainties in treatment planning, patient setup, beam delivery, and clinical response. In some extreme cases, however, these errors can be substantial. Accordingly, this correction method should be routinely applied to treatment planning in clinical practice.

  16. Forty years of the Institute for Nuclear Research (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 22 December 2010)

    NASA Astrophysics Data System (ADS)

    2011-09-01

    On 22 December 2010, the scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), devoted to the 40th anniversary of the Institute for Nuclear Research, RAS, was held at the Institute for Nuclear Research, RAS in Troitsk. The agenda of the session announced on the website www.gpad.ac.ru of the RAS Physical Sciences Division listed the following reports: (1) Matveev V A (Institute for Nuclear Research, RAS, Moscow) "Introductory word"; (2) Gavrin V N (Institute for Nuclear Research, RAS, Moscow) "Contribution of the SAGE results to the understanding of solar physics and neutrino physics"; (3) Domogatsky G V (Institute for Nuclear Research, RAS, Moscow) "Baikal neutrino experiment"; (4) Tkachev I I (Institute for Nuclear Research, RAS, Moscow) "Observation of the Greisen - Zatsepin - Kuz'min effect at the Telescope Array Observatory"; (5) Kudenko Yu G (Institute for Nuclear Research, RAS, Moscow) "Neutrino T2K experiment: the first results"; (6) Sadykov R A (Institute for Nuclear Research, RAS, Moscow) "Fields of study of condensed media at the neutron facility at the INR, RAS"; (7) Zhuikov B L (Institute for Nuclear Research, RAS, Moscow) "Production of isotopes at the INR, RAS: reality and prospects".The papers written on the base of reports 1-5 and 7 are published below. In addition, the paper "High-power diode-pumped alkali lasers" by A M Shalagin is published. The paper is based on the report presented at the scientific session of the General Assembly of the Physical Sciences Division, RAS (13 December 2010) devoted to the 50th anniversary of the laser, the main materials of the session having been published in Usp. Fiz. Nauk 181 (8) 867 (2011) [Phys. Usp. 54 837 (2011)]. • Institute for Nuclear Research of the Russian Academy of Sciences turns 40, V A Matveev Physics-Uspekhi, 2011, Volume 54, Number 9, Pages 939-940 • The Russian-American gallium experiment SAGE, V N Gavrin Physics-Uspekhi, 2011, Volume 54, Number 9

  17. Status of a compact electron cyclotron resonance ion source for National Institute of Radiological Sciences-930 cyclotron

    NASA Astrophysics Data System (ADS)

    Hojo, S.; Katagiri, K.; Nakao, M.; Sugiura, A.; Muramatsu, M.; Noda, A.; Okada, T.; Takahashi, Y.; Komiyama, A.; Honma, T.; Noda, K.

    2014-02-01

    The Kei-source is a compact electron cyclotron resonance ion source using only permanent magnets and a frequency of 10 GHz. It was developed at the National Institute of Radiological Sciences (NIRS) for producing C4+ ions oriented for high-energy carbon therapy. It has also been used as an ion source for the NIRS-930 cyclotron. Its microwave band region for the traveling-wave-tube amplifier and maximum output power are 8-10 GHz and 350 W, respectively. Since 2006, it has provided various ion beams such as proton, deuteron, carbon, oxygen, and neon with sufficient intensity (200 μA for proton and deuteron, 50 μA for C4+, for example) and good stability for radioisotope production, tests of radiation damage, and basic research experiments. Its horizontal and vertical emittances were measured using a screen monitor and waist-scan. The present paper reports the current status of the Kei-source.

  18. Status of a compact electron cyclotron resonance ion source for National Institute of Radiological Sciences-930 cyclotron.

    PubMed

    Hojo, S; Katagiri, K; Nakao, M; Sugiura, A; Muramatsu, M; Noda, A; Okada, T; Takahashi, Y; Komiyama, A; Honma, T; Noda, K

    2014-02-01

    The Kei-source is a compact electron cyclotron resonance ion source using only permanent magnets and a frequency of 10 GHz. It was developed at the National Institute of Radiological Sciences (NIRS) for producing C(4+) ions oriented for high-energy carbon therapy. It has also been used as an ion source for the NIRS-930 cyclotron. Its microwave band region for the traveling-wave-tube amplifier and maximum output power are 8-10 GHz and 350 W, respectively. Since 2006, it has provided various ion beams such as proton, deuteron, carbon, oxygen, and neon with sufficient intensity (200 μA for proton and deuteron, 50 μA for C(4+), for example) and good stability for radioisotope production, tests of radiation damage, and basic research experiments. Its horizontal and vertical emittances were measured using a screen monitor and waist-scan. The present paper reports the current status of the Kei-source. PMID:24593538

  19. QED calculations of three-photon transition probabilities in H-like ions with arbitrary nuclear charge

    NASA Astrophysics Data System (ADS)

    Zalialiutdinov, T.; Solovyev, D.; Labzowsky, L.

    2016-03-01

    The quantum electrodynamical theory of three-photon transitions in hydrogen-like ions is presented. Emission probabilities of various three-photon decay channels for 2{p}3/2, 2{p}1/2 and 2{s}1/2 states are calculated for Z, the nuclear charge value, 1≤slant Z≤slant 95. The results are given in two different gauges. The fully relativistic three-photon decay rates of hydrogen-like ions with half-integer nuclear spin are given for transitions between fine structure components. The results can be applied to the Bose-Einstein statistics tests for multiphoton systems.

  20. Recent results of the laser ion source facility at INFN-LNS and applications to nuclear and applied research

    SciTech Connect

    Gammino, S.; Celona, L.; Torrisi, L.; Giuffrida, L.; Cavallaro, S.; Miracoli, R.; Margarone, D.; Mascali, D.

    2010-02-15

    A pulsed neodymium-doped yttrium aluminum garnet laser ion source has been used as proton beams generator. The laser wavelength is 1064 nm, the pulse duration is 9 ns and the intensity reaches 10{sup 10} W/cm{sup 2}. Laser irradiates hydrogenated polymers targets located in a chamber at 10{sup -7} mbar. The ions are post-accelerated in a suitable chamber by 30 kV of voltage between the target, positively biased, and the following ground electrode. The extracted beams is characterized through a time-of-flight technique. Possible applications to the field of nuclear physics, such as nuclear excitation and de-excitations, nuclear reactions and nuclear fusion, will be presented and discussed.

  1. The Australian Institute of Nuclear Science & Engineering - a model for University-National Laboratory collaboration

    SciTech Connect

    Gammon, R.B.

    1994-12-31

    This paper describes the aims and activities of the Australian Institute of Nuclear Science and Engineering (AINSE), from its foundation in 1958 through to 1993. The philosophy, structure and funding of the Institute are briefly reviewed, followed by an account of the development of national research facilities at the Lucas Heights Research Laboratories, with particular emphasis on nuclear techniques of analysis using neutron scattering instruments and particle accelerators. AINSE`s program of Grants, Fellowships and Studentships are explained with many examples given of projects having significance in the context of Australia`s national goals. Conference and training programs are also included. The achievements during these years demonstrate that AINSE has been an efficient and cost- effective model for collaboration between universities and a major national laboratory. In recent years, industry, government organisations and the tertiary education system have undergone major re-structuring and rationalization. A new operational structure for AINSE has evolved in response to these changes and is described.

  2. Track structure based modelling of light ion radiation effects on nuclear and mitochondrial DNA

    NASA Astrophysics Data System (ADS)

    Schmitt, Elke; Ottolenghi, Andrea; Dingfelder, Michael; Friedland, Werner; Kundrat, Pavel; Baiocco, Giorgio

    2016-07-01

    Space radiation risk assessment is of great importance for manned spaceflights in order to estimate risks and to develop counter-measures to reduce them. Biophysical simulations with PARTRAC can help greatly to improve the understanding of initial biological response to ionizing radiation. Results from modelling radiation quality dependent DNA damage and repair mechanisms up to chromosomal aberrations (e.g. dicentrics) can be used to predict radiation effects depending on the kind of mixed radiation field exposure. Especially dicentric yields can serve as a biomarker for an increased risk due to radiation and hence as an indicator for the effectiveness of the used shielding. PARTRAC [1] is a multi-scale biophysical research MC code for track structure based initial DNA damage and damage response modelling. It integrates physics, radiochemistry, detailed nuclear DNA structure and molecular biology of DNA repair by NHEJ-pathway to assess radiation effects on cellular level [2]. Ongoing experiments with quasi-homogeneously distributed compared to sub-micrometre focused bunches of protons, lithium and carbon ions allow a separation of effects due to DNA damage complexity on nanometre scale from damage clustering on (sub-) micrometre scale [3, 4]. These data provide an unprecedented benchmark for the DNA damage response model in PARTRAC and help understand the mechanisms leading to cell killing and chromosomal aberrations (e.g. dicentrics) induction. A large part of space radiation is due to a mixed ion field of high energy protons and few heavier ions that can be only partly absorbed by the shielding. Radiation damage induced by low-energy ions significantly contributes to the high relative biological efficiency (RBE) of ion beams around Bragg peak regions. For slow light ions the physical cross section data basis in PARTRAC has been extended to investigate radiation quality effects in the Bragg peak region [5]. The resulting range and LET values agree with ICRU data

  3. The integration of science and politics to clean up 50 years in the nuclear sandbox

    SciTech Connect

    Lyons, C.E.; Holeman, T.

    1999-07-01

    The Cold War was fought between world superpowers for approximately 40 years from the end of the second World War until the end of the 1980s. During that time, the US government devoted billions of dollars to the development and production of nuclear weapons. Now the Cold War is over and the US is left with numerous nuclear weapons factories, stockpiles of nuclear materials, and mountains of waste to decontaminate and decommission. In the heat of the Cold War, little or no thought was given to how the facilities building bombs would be dismantled. Far too little attention was paid to the potential human health and environmental impact of the weapons production. Now, dozens of communities across the country face the problems this negligence created. In many cases, the location, extent, and characteristics of the waste and contamination are unknown, due to negligence or due to intentional hiding of waste and associated problems. Water supplies are contaminated and threatened; air quality is degraded and threatened; workers and residents risk contamination and health impacts; entire communities risk disaster from potential nuclear catastrophe. The US government, in the form of the US Department of Energy (DOE), now accepts responsibility for creating and cleaning up the mess. But it is the local communities, the home towns of the bomb factories and laboratories, that carry a significant share of the burden of inventing the science and politics required to clean up 50 years in the nuclear sandbox. The purpose of this paper is to evaluate the role of the local community in addressing the cleanup of the US nuclear weapons complex. Local governments do not own nor are responsible for the environmental aftermath, but remain the perpetual neighbor to the facility, the hometown of workers, and long-term caretaker of the off-site impacts of the on-site contamination and health risks.

  4. Gamma irradiation-induced modifications of polymers found in nuclear waste embedding processes Part II: The ion-exchange resin

    NASA Astrophysics Data System (ADS)

    Debré, O.; Nsouli, B.; Thomas, J.-P.; Stevenson, I.; Colombini, D.; Romero, M.-A.

    1997-08-01

    Ion exchange resins (IERs) saturated in cesium and borate ions are well representative of low and medium activity nuclear waste to be embedded in an epoxy resin/amine hardener, such a conditioning procedure being under qualification. In order to test these materials in realistic conditions they are externally irradiated (air and water), in mixed beds saturated in fixed ions (cesium and borate) and water. Irradiation effects are evidenced with the HSF-SIMS technique by the variation of the emission characteristic of both the fixed ions, the chemical structure of the IERs and their interrelationship, both from the analysis of the solid material and of the residual or rinsing water. It appears that the fixed ions can be released in surrounding water as a consequence of radiation-induced resin fragments solubility.

  5. Low energy nuclear reactions with RIBRAS, Radioactive Ion Beam in Brasil, system

    NASA Astrophysics Data System (ADS)

    Guimarães, V.; Lépine-Szily, A.; Lichtenthäler, R.; de Faria, P. N.; Barioni, A.; Pires, K. C. C.; Morcelle, V.; Mendes, D. R.; Zamora, J. C.; Morais, M. C.; Condori, R. P.; Benjamim, E. A.; Monteiro, D. S.; Crema, E.; Moro, A. M.; Lubian, J.

    2011-09-01

    RIBRAS, Radioactive Ion beam in Brasil, is a system based on superconducting solenoids which can produce low energy RNB (Radioactive Nuclear Beams) at the University of São Paulo, Brazil. Secondary radioactive beams of light particles such as 6He, 7Be and 8Li have been produced and low energy elastic scattering and transfer reaction experiments have been performed. The recent scientific program using this facility includes elastic scattering and transfer reactions of 6He halo nucleus on 9Be, 27Al, 51V and 120Sn targets and 8Li on 9Be, 12C and 51V targets. The total reaction cross section as a function of energy has been extracted from the elastic scattering data and the role of breakup of weakly bound or exotic nuclei is discussed. Also spectroscopic factors have been obtained from the transfer reactions.

  6. Designing of a lead ion model source for plasma separation of spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Antonov, N. N.; Vorona, N. A.; Gavrikov, A. V.; Samokhin, A. A.; Smirnov, V. P.

    2016-02-01

    Plasma sources of model substances are required for solving problems associated with the development of a plasma separation method for spent nuclear fuel (SNF). Lead is chosen as the substance simulating the kinetics and dynamics of the heavy SNF component. We report on the results of analysis of the discharge in lead vapor with a concentration of 1012-1013 cm-3. Ionization is produced by an electron beam (with electron energy up to 500 eV) in the centimeter gap between planar electrodes. The discharge is simulated using the hydrodynamic and one-particle approximations. The current-voltage characteristics and efficiencies of single ionization depending on the vapor concentrations and thermoelectron current are obtained. The experimentally determined ion currents on the order of 100 μA for an ionization efficiency on the order of 0.1% are in conformity with the result of simulation.

  7. Progress and challenges of nuclear science development in Vietnam - an outlook on the occassion of the 10-th anniversary of the Dalat Nuclear Research Reactor

    SciTech Connect

    Hien, P.D.

    1994-12-31

    Over ten years since the commissioning of the Dalat nuclear research reactor a number of nuclear techniques have been developed and applied in Vietnam Manufacturing of radioisotopes and nuclear instruments, development of isotope tracer and nuclear analytical techniques for environmental studies, exploitation of filtered neutron beams, ... have been major activities of reactor utilizations. Efforts made during ten years of reactor operation have resulted also in establishing and sustaining the applications of nuclear techniques in medicine, industry, agriculture, etc. The successes achieved and lessons teamed over the past ten years are discussed illustrating the approaches taken for developing the nuclear science in the conditions of a country having a very low national income and experiencing a transition from a centrally planned to a market-oriented economic system.

  8. Emittance study of a 28 GHz electron cyclotron resonance ion source for the Rare Isotope Science Project superconducting linear accelerator.

    PubMed

    Park, Bum-Sik; Hong, In-Seok; Jang, Ji-Ho; Jin, Hyunchang; Choi, Sukjin; Kim, Yonghwan

    2016-02-01

    A 28 GHz electron cyclotron resonance (ECR) ion source is being developed for use as an injector for the superconducting linear accelerator of the Rare Isotope Science Project. Beam extraction from the ECR ion source has been simulated using the KOBRA3-INP software. The simulation software can calculate charged particle trajectories in three dimensional complex magnetic field structures, which in this case are formed by the arrangement of five superconducting magnets. In this study, the beam emittance is simulated to understand the effects of plasma potential, mass-to-charge ratio, and spatial distribution. The results of these simulations and their comparison to experimental results are presented in this paper. PMID:26931953

  9. Emittance study of a 28 GHz electron cyclotron resonance ion source for the Rare Isotope Science Project superconducting linear accelerator

    NASA Astrophysics Data System (ADS)

    Park, Bum-Sik; Hong, In-Seok; Jang, Ji-Ho; Jin, Hyunchang; Choi, Sukjin; Kim, Yonghwan

    2016-02-01

    A 28 GHz electron cyclotron resonance (ECR) ion source is being developed for use as an injector for the superconducting linear accelerator of the Rare Isotope Science Project. Beam extraction from the ECR ion source has been simulated using the KOBRA3-INP software. The simulation software can calculate charged particle trajectories in three dimensional complex magnetic field structures, which in this case are formed by the arrangement of five superconducting magnets. In this study, the beam emittance is simulated to understand the effects of plasma potential, mass-to-charge ratio, and spatial distribution. The results of these simulations and their comparison to experimental results are presented in this paper.

  10. Relativistic nuclear recoil, electron correlation and QED effects in highly charged Ar ions

    NASA Astrophysics Data System (ADS)

    Harman, Z.; Soria Orts, R.; Lapierre, A.; Crespo Lopez-Urrutia, J. R.; Artemyev, A. N.; Tupitsyn, I. I.; Jentschura, U. D.; Keitel, C. H.; Tawara, H.; Ullrich, J.; Shabaev, V. M.; Volotka, A. V.

    2007-06-01

    We have performed extensive theoretical studies on the 1s^22s^22p^2P3/2 -- ^2P1/2 M1 transition in Ar^13+ ions. Accurate radiative lifetimes are sensitive to QED corrections like the electron anomalous magnetic moment and to relativistic electron correlation effects. The lifetime of the P3/2 metastable state was determined to be 9.573(4)(5) ms (stat)(syst) [1] using the Heidelberg electron beam ion trap. Theoretical predictions cluster around a value that is significantly shorter than this high-precision experimental result. This discrepancy is presently unexplained. The wavelengths of the above transition in Ar^13+ and the 1s^22s2p ^3P1 -- ^3P2 M1 transition in Ar^14+ were compared for the isotopes ^36Ar and ^40Ar [2]. The observed mass shift has confirmed the relativistic theory of nuclear recoil effects in many-body systems. Our calculations, based on the fully relativistic recoil operator, are in excellent agreement with the measured results. [1] A. Lapierre, U.D. Jentschura, J.R. Crespo L'opez-Urrutia et al., Phys. Rev. Lett. 95, 183001 (2005); [2] R. Soria Orts, Z. Harman, J.R. Crespo L'opez-Urrutia et al., Phys. Rev. Lett. 97, 103002 (2006)

  11. Millimeter length micromachining using a heavy ion nuclear microprobe with standard magnetic scanning

    NASA Astrophysics Data System (ADS)

    Nesprías, F.; Debray, M. E.; Davidson, J.; Kreiner, A. J.; Vega, N.; de la Fournière, E.

    2013-04-01

    In order to increase the scanning length of our microprobe, we have developed an irradiation procedure suitable for use in any nuclear microprobe, extending at least up to 400% the length of our heavy ion direct writing facility using standard magnetic exploration. Although this method is limited to patterns of a few millimeters in only one direction, it is useful for the manufacture of curved waveguides, optical devices such Mach-Zehnder modulators, directional couplers as well as channels for micro-fluidic applications. As an example, this technique was applied to the fabrication of 3 mm 3D-Mach-Zehnder modulators in lithium niobate with short Y input/output branches and long shaped parallel-capacitor control electrodes. To extend and improve the quality of the machined structures we developed new scanning control software in LabView™ platform. The new code supports an external dose normalization, electrostatic beam blanking and is capable of scanning figures at 16 bit resolution using a National Instruments™ PCI-6731 High-Speed I/O card. A deep and vertical micromachining process using swift 35Cl ions 70 MeV bombarding energy and direct write patterning was performed on LiNbO3, a material which exhibits a strong natural anisotropy to conventional etching. The micromachined structures show the feasibility of this method for manufacturing micro-fluidic channels as well.

  12. Reformulation of a clinical-dose system for carbon-ion radiotherapy treatment planning at the National Institute of Radiological Sciences, Japan

    NASA Astrophysics Data System (ADS)

    Inaniwa, Taku; Kanematsu, Nobuyuki; Matsufuji, Naruhiro; Kanai, Tatsuaki; Shirai, Toshiyuki; Noda, Koji; Tsuji, Hiroshi; Kamada, Tadashi; Tsujii, Hirohiko

    2015-04-01

    At the National Institute of Radiological Sciences (NIRS), more than 8,000 patients have been treated for various tumors with carbon-ion (C-ion) radiotherapy in the past 20 years based on a radiobiologically defined clinical-dose system. Through clinical experience, including extensive dose escalation studies, optimum dose-fractionation protocols have been established for respective tumors, which may be considered as the standards in C-ion radiotherapy. Although the therapeutic appropriateness of the clinical-dose system has been widely demonstrated by clinical results, the system incorporates several oversimplifications such as dose-independent relative biological effectiveness (RBE), empirical nuclear fragmentation model, and use of dose-averaged linear energy transfer to represent the spectrum of particles. We took the opportunity to update the clinical-dose system at the time we started clinical treatment with pencil beam scanning, a new beam delivery method, in 2011. The requirements for the updated system were to correct the oversimplifications made in the original system, while harmonizing with the original system to maintain the established dose-fractionation protocols. In the updated system, the radiation quality of the therapeutic C-ion beam was derived with Monte Carlo simulations, and its biological effectiveness was predicted with a theoretical model. We selected the most used C-ion beam with αr = 0.764 Gy-1 and β = 0.0615 Gy-2 as reference radiation for RBE. The C-equivalent biological dose distribution is designed to allow the prescribed survival of tumor cells of the human salivary gland (HSG) in entire spread-out Bragg peak (SOBP) region, with consideration to the dose dependence of the RBE. This C-equivalent biological dose distribution is scaled to a clinical dose distribution to harmonize with our clinical experiences with C-ion radiotherapy. Treatment plans were made with the original and the updated clinical-dose systems, and both

  13. Effect of lanthanide ions on dynamic nuclear polarization enhancement and liquid-state T1 relaxation.

    PubMed

    Gordon, Jeremy W; Fain, Sean B; Rowland, Ian J

    2012-12-01

    In the dynamic nuclear polarization process, microwave irradiation facilitates exchange of polarization from a radical's unpaired electron to nuclear spins at cryogenic temperatures, increasing polarization by >10,000. Doping samples with Gd(3+) ions further increases the achievable solid-state polarization. However, on dissolution, paramagnetic lanthanide metals can be potent relaxation agents, decreasing liquid-state polarization. Here, the effects of lanthanide metals on the solid and liquid-state magnetic properties of [1-(13)C]pyruvate are studied. The results show that in addition to gadolinium, holmium increases not only the achievable polarization but also the rate of polarization. Liquid-state relaxation studies found that unlike gadolinium, holmium minimally affects T(1). Additionally, results reveal that linear contrast agents dissociate in pyruvic acid, greatly reducing liquid-state T(1). Although macrocyclic agents do not readily dissociate, they yield lower solid-state polarization. Results indicate that polarization with free lanthanides and subsequent chelation during dissolution produces the highest polarization enhancement while minimizing liquid-state relaxation. PMID:22367680

  14. Measuring the Nuclear Magnetic Octupole Moment of a Single Trapped Barium-137 Ion

    NASA Astrophysics Data System (ADS)

    Kleczewski, Adam; Fortson, Norval; Blinov, Boris

    2009-05-01

    Recent measurements of hyperfine structure in the cesium-133 atom resolved a nuclear magnetic octupole moment φ much larger than expected from the nuclear shell model[1]. To explore this issue further, we are undertaking an experiment to measure the hyperfine structure in the 5D manifold of a single trapped barium-137 ion which, together with reliable calculations in alkali-like Ba^+, should resolve φ with sensitivity better than the shell model value [2]. We use a TmHo:YLF laser tuned to 2051 nm and a fiber laser tuned to 1762 nm to drive the 6S1/2 to 5D3/2 and 6S1/2 to 5D5/2 electric quadrupole transitions. These lasers allow us to selectively populate any hyperfine sub-level in the 5D manifold. We will then perform RF spectroscopy on the 5D states to make a precision measurement of the hyperfine frequency intervals. We report on the development of the laser and RF spectroscopy systems. [1] V. Gerginov, A. Derevianko, and C. E. Tanner, Phys. Rev. Lett. 91, 072501 [2] K. Beloy, A. Derevianko, V. A. Dzuba, G. T. Howell, B. B. Blinov, E. N. Fortson, arXiv:0804.4317v1 [physics.atom-ph] 28 Apr 2008

  15. Role of Electronic Structure In Ion Band State Theory of Low Energy Nuclear Reactions

    NASA Astrophysics Data System (ADS)

    Chubb, Scott

    2004-03-01

    The Nuts and Bolts of our Ion Band State (IBS) theory of low energy nuclear reactions (LENR's) in palladium-deuteride (PdD) and palladium-hydride (PdH) are the electrons that hold together or tear apart the bonds (or lack of bonds) between deuterons (d's) or protons (p's) and the host material. In PdDx and PdH_x, this bonding is strongly correlated with loading: in ambient loading conditions (x< 0. 6), the bonding in hibits IBS occupation. As x arrow 1, slight increases and decreases in loading can lead to vibrations (which have conventionally been thought to occur from phonons) that can induce potential losses or increases of p/d. Naive assumptions about phonons fail to include these losses and increases. These effects can occur because neither H or D has core electrons and because in either PdD or PdH, the electrons near the Fermi Energy have negligible overlap with the nucleus of either D or H. I use these ideas to develop a formal justification, based on a generalization of conventional band theory (Scott Chubb, "Semi-Classical Conduction of Charged and Neutral Particles in Finite Lattices," 2004 March Meeting."), for the idea that occupation of IBS's can occur and that this can lead to nuclear reactions.

  16. Development of Advanced Nuclide Separation and Recovery Methods using Ion-Exchanhge Techniques in Nuclear Backend

    NASA Astrophysics Data System (ADS)

    Miura, Hitoshi

    The development of compact separation and recovery methods using selective ion-exchange techniques is very important for the reprocessing and high-level liquid wastes (HLLWs) treatment in the nuclear backend field. The selective nuclide separation techniques are effective for the volume reduction of wastes and the utilization of valuable nuclides, and expected for the construction of advanced nuclear fuel cycle system and the rationalization of waste treatment. In order to accomplish the selective nuclide separation, the design and synthesis of novel adsorbents are essential for the development of compact and precise separation processes. The present paper deals with the preparation of highly functional and selective hybrid microcapsules enclosing nano-adsorbents in the alginate gel polymer matrices by sol-gel methods, their characterization and the clarification of selective adsorption properties by batch and column methods. The selective separation of Cs, Pd and Re in real HLLW was further accomplished by using novel microcapsules, and an advanced nuclide separation system was proposed by the combination of selective processes using microcapsules.

  17. Effect of Lanthanide Ions on Dynamic Nuclear Polarization Enhancement and Liquid State T1 Relaxation

    PubMed Central

    Gordon, Jeremy; Fain, Sean B.; Rowland, Ian J

    2012-01-01

    In the dynamic nuclear polarization process, microwave irradiation facilitates exchange of polarization from a radical’s unpaired electron to nuclear spins at cryogenic temperatures, increasing polarization by >10000. Doping samples with Gd3+ ions further increases the achievable solid-state polarization. However, upon dissolution, paramagnetic lanthanide metals can be potent relaxation agents, decreasing liquid-state polarization. Here, the effects of lanthanide metals on the solid and liquid-state magnetic properties of [1-13C]pyruvate are studied. The results show that in addition to gadolinium, holmium not only increases the achievable polarization but also the rate of polarization. Liquid-state relaxation studies found that unlike gadolinium, holmium minimally affects T1. Additionally, results reveal that linear contrast agents dissociate in pyruvic acid, greatly reducing liquid-state T1. While macrocyclic agents do not readily dissociate, they yield lower solid-state polarization. Results indicate that polarization with free lanthanides and subsequent chelation during dissolution produces the highest polarization enhancement while minimizing liquid-state relaxation. PMID:22367680

  18. Nuclear interactions of high energy heavy ions and applications in astrophysics

    SciTech Connect

    Wefel, J.P.

    1992-01-23

    This program was established for the purpose of studying projectile fragmentation; (1) as a function of energy, focusing first on the intermediate energy region, < 1 GeV/nucleon, where there have been few previous measurements and no systematic studies, and (2) as a function of projectile mass, starting with light beams and proceeding to species as heavy as nickel (and possibly beyond). The intermediate energy region is important as the transition between the lower energy data, where the interaction appears to be dominated by collective effects and the decay of excited nuclei, and the highest energy results, where nucleon-nucleon interactions are fundamental, limiting fragmentation'' applies, and the nucleus may well break-up before any de-excitation. The mass dependence of projectile fragmentation is largely unknown since most detailed work has involved light ion beams. Nuclear structure effects, for example, may well be quite prominent for heavier beams. Furthermore, the nuclear excitation functions for the production of different fragment isotopes have immediate application to the astrophysical interpretation of existing isotopic datasets obtained from balloon and satellite measurements of galactic cosmic rays.

  19. Radioactive Barium Ion Trap Based on Metal-Organic Framework for Efficient and Irreversible Removal of Barium from Nuclear Wastewater.

    PubMed

    Peng, Yaguang; Huang, Hongliang; Liu, Dahuan; Zhong, Chongli

    2016-04-01

    Highly efficient and irreversible capture of radioactive barium from aqueous media remains a serious task for nuclear waste disposal and environmental protection. To address this task, here we propose a concept of barium ion trap based on metal-organic framework (MOF) with a strong barium-chelating group (sulfate and sulfonic acid group) in the pore structures of MOFs. The functionalized MOF-based ion traps can remove >90% of the barium within the first 5 min, and the removal efficiency reaches 99% after equilibrium. Remarkably, the sulfate-group-functionalized ion trap demonstrates a high barium uptake capacity of 131.1 mg g(-1), which surpasses most of the reported sorbents and can selectively capture barium from nuclear wastewater, whereas the sulfonic-acid-group-functionalized ion trap exhibits ultrafast kinetics with a kinetic rate constant k2 of 27.77 g mg(-1) min(-1), which is 1-3 orders of magnitude higher than existing sorbents. Both of the two MOF-based ion traps can capture barium irreversibly. Our work proposes a new strategy to design barium adsorbent materials and provides a new perspective for removing radioactive barium and other radionuclides from nuclear wastewater for environment remediation. Besides, the concrete mechanisms of barium-sorbent interactions are also demonstrated in this contribution. PMID:26999358

  20. Cold Nuclear Matter Effects on Heavy Quark Production in Relativistic Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Durham, John Matthew

    2011-12-01

    The experimental collaborations at the Relativistic Heavy Ion Collider (RHIC) have established that dense nuclear matter with partonic degrees of freedom is formed in collisions of heavy nuclei at 200 GeV. Information from heavy quarks has given significant insight into the dynamics of this matter. Charm and bottom quarks are dominantly produced by gluon fusion in the early stages of the collision, and thus experience the complete evolution of the medium. The production baseline measured in p + p collisions can be described by fixed order plus next to leading log perturbative QCD calculations within uncertainties. In central Au+Au collisions, suppression has been measured relative to the yield in p + p scaled by the number of nucleon-nucleon collisions, indicating a significant energy loss by heavy quarks in the medium. The large elliptic flow amplitude v2 provides evidence that the heavy quarks flow along with the lighter partons. The suppression and elliptic flow of these quarks are in qualitative agreement with calculations based on Langevin transport models that imply a viscosity to entropy density ratio close to the conjectured quantum lower bound of 1/4pi. However, a full understanding of these phenomena requires measurements of cold nuclear matter (CNM) effects, which should be present in Au+Au collisions but are difficult to distinguish experimentally from effects due to interactions with the medium. This thesis presents measurements of electrons at midrapidity from the decays of heavy quarks produced in d+Au collisions at RHIC. A significant enhancement of these electrons is seen at a transverse momentum below 5 GeV/c, indicating strong CNM effects on charm quarks that are not present for lighter quarks. A simple model of CNM effects in Au+Au collisions suggests that the level of suppression in the hot nuclear medium is comparable for all quark flavors.

  1. Initial Key Results from the NSAC Subcommittee Survey on Nuclear Science PhDs 5-10 Years Later

    NASA Astrophysics Data System (ADS)

    Cerny, Joseph

    2004-05-01

    As a component of a study for the Nuclear Science Advisory Committee which has been asked, in part, to document the effectiveness of the current education in nuclear science, a web-based survey is being conducted by a Subcommittee on all US nuclear science PhDs who graduated 5 to 10 years ago. The survey questionnaire has six sections: (A) the overall career path from the time one received the PhD until the present and the demographic background; (B) the search for the first job after receiving the PhD; (C) the retrospective evaluation of one's doctoral education and experience; (D) the assessment of the usefulness of the doctoral degree; (E) the intersection of family and career; and (F) recommendations and opinions. Inital results of this survey will be presented, focussing on the doctoral and postdoctoral experience. Responses to two open-ended questions are of particular interest: What advice would you offer to graduate students who are just beginning studies in nuclear science; and what recommendations would you offer doctoral programs in nuclear science today?

  2. Challenges in Uncertainty and the Science of Nuclear Waste Disposal (Invited)

    NASA Astrophysics Data System (ADS)

    Alley, W. M.; Alley, R.

    2013-12-01

    Disposal of high-level nuclear waste is a first-of-a-kind endeavor, further saddled by the ambitious goal to achieve containment over periods well beyond human experience. In the United States, as well as other countries, the time period for performance assessment to provide a safety case for deep geologic repositories has gone from 10,000 years in the 1990s to one million years today. Even when the standard was established for 10,000 years, the National Academy of Sciences Board on Radioactive Waste Management warned of the 'scientific trap' set by encouraging the public to expect certainty about repository safety well beyond what science can provide. Paradoxically, the emphasis on predicting repository behavior thousands of centuries into the future stands in stark contrast to a lack of risk assessment of indefinite aboveground storage for the next several generations. We review the uncertainties and technical basis for a geologic repository at Yucca Mountain compared to extended onsite and interim storage. In order to make progress with geologic disposal of nuclear waste, it is important to evaluate any option in the context of the relative merits and limitations of alternative geologic settings, interim storage, and the status quo of extended onsite storage.

  3. Maximizing the science return of interplanetary missions using nuclear electric power

    SciTech Connect

    Zubrin, R.M.

    1995-01-20

    The multi-kilowatt power sources on the spaecraft also enables active sensing, including radar, which could be used to do topographic and subsurface studies of clouded bodies such as Titan, ground pentrating sounding of Pluto, the major planet`s moons, and planetoids, and topside sounding of the electrically conductive atmospheres of Jupiter, Saturn, Uranus and Neptune to produce profiles of fluid density, conductivity, and horizontal and vertical velocity as a function of depth and global location. Radio science investigations of planetary atmospheres and ring systems would be greatly enhanced by increased transmitter power. The scientific benefits of utilizing such techniques are discussed, and a comparison is made with the quantity and quality of science that a low-powered spacecraft employing RTGs could return. It is concluded that the non-propulsive benefits of nuclear power for spacecraft exploring the outer solar system are enormous, and taken together with the well documented mission enhancements enabled by electric propulsion fully justify the expanditures needed to bring a space qualified nuclear electric power source into being. {copyright} 1995 {ital American} {ital Institute} {ital of} {ital Physics}

  4. Radiative Lifetime for Nuclear Spin Conversion of Water-Ion H_2O^+

    NASA Astrophysics Data System (ADS)

    Tanaka, Keiichi; Harada, Kensuke; Oka, Takeshi

    2013-06-01

    Nuclear spin conversion interaction of the water ion, H_2O^+, has been studied to derive the spontaneous emission lifetime between the ortho- and para-levels. The H_2O^+ ion is a radical with ^2 B _1 electronic ground state and the off-diagonal electron spin-nuclear spin interaction term, T_{ab} (S_aΔ I_b + S_bΔ I_a), connects para and ortho levels, because Δ {I} = {I}_1 - {I}_2 has nonvanishing matrix elements between I = 0 and 1. The T_{ab} coupling constant, derived by an ab initio calculation in MRD-CI/Bk level to be 72 MHz, is larger than that of H_2O by 4 orders of magnitude, makes the ortho to para conversion of H_2O^+ faster than that of H_2O by 8 orders of magnitude and possibly competitive with other astrophysical processes. Last year we reported ortho and para coupling channels below 900 cm^{-1} caused by accidental near degeneracy of rotational levels. For example, hyperfine components of the 4_{2,2}(o) and 3_{3,0}(p) levels mix each other by 1.2 x 10^{-3} due to the near degeneracy (Δ E = 0.417 cm^{-1}), but the lower lying 1_{0,1}(p) and 1_{1,1}(o) levels mix only by 8.9 x 10^{-5} because of their large separation (Δ E = 16.27 cm^{-1}). In the present study, we solved the radiative rate equations including all the rotational levels below 900 cm^{-1} to give the o-p conversion lifetime to be 0.451, 3.27, 398 and 910 years for the equilibrium o/p ratio of 3.00, 3.00, 4.52, and 406 when the radiation temperature T_r is 100, 60, 20 and 5 K. These results qualitatively help to understand the observed high o/p ratio of 4.8 ± 0.5 (corresponding to the nuclear spin temperature of 21 K) toward Sgr B2, but they are too slow to compete with the reaction by collision unless the number of density of H_2 in the region is very low (n˜1 cm^{-3}) or the radiative temperature is very high (T_r > 50K). K. Tanaka, K. Harada, and T. Oka, the 67th OSU Symposium MG06, 2012. P. Schilke, et al., A&A 521, L11 (2010). K. Tanaka, K. Harada, and T. Oka, J. Phys. Chem. A

  5. Construction and Test of a 10 Kv Ion Accelerator in the Faculty of Science of U.N.A.M

    NASA Astrophysics Data System (ADS)

    Fuentes, B. E.; Yousif, F. B.; López-Patiaño, J.

    A low energy accelerator was constructed in the Faculty of Science of the National Autonomous University of Mexico (UNAM) for atomic and molecular experiments in the energy range 1.0 - 10.0 keV. We present a general description as well as results of experiments performed by undergraduate and graduate physics students in different stages of the construction. Experiments include characterization of the velocity filter, identification of hydrogen ions and TOF spectra.

  6. Co-visualization of DNA damage and ion traversals in live mammalian cells using a fluorescent nuclear track detector.

    PubMed

    Kodaira, Satoshi; Konishi, Teruaki; Kobayashi, Alisa; Maeda, Takeshi; Ahmad, Tengku Ahbrizal Farizal Tengku; Yang, Gen; Akselrod, Mark S; Furusawa, Yoshiya; Uchihori, Yukio

    2015-03-01

    The geometric locations of ion traversals in mammalian cells constitute important information in the study of heavy ion-induced biological effect. Single ion traversal through a cellular nucleus produces complex and massive DNA damage at a nanometer level, leading to cell inactivation, mutations and transformation. We present a novel approach that uses a fluorescent nuclear track detector (FNTD) for the simultaneous detection of the geometrical images of ion traversals and DNA damage in single cells using confocal microscopy. HT1080 or HT1080-53BP1-GFP cells were cultured on the surface of a FNTD and exposed to 5.1-MeV/n neon ions. The positions of the ion traversals were obtained as fluorescent images of a FNTD. Localized DNA damage in cells was identified as fluorescent spots of γ-H2AX or 53BP1-GFP. These track images and images of damaged DNA were obtained in a short time using a confocal laser scanning microscope. The geometrical distribution of DNA damage indicated by fluorescent γ-H2AX spots in fixed cells or fluorescent 53BP1-GFP spots in living cells was found to correlate well with the distribution of the ion traversals. This method will be useful for evaluating the number of ion hits on individual cells, not only for micro-beam but also for random-beam experiments. PMID:25324538

  7. HEAVY ION FUSION SCIENCE VIRTUAL NATIONAL LABORATORY 4th QUARTER 2008 MILESTONE REPORT

    SciTech Connect

    Bieniosek, F.M.; Anders, A.; Barnard, J.J.; Dickinson, M.R.; Greenway, W.; Henestroza, E.; Katayanagi, T.; Logan, B.G.; Lee, C.W.; Leitner, M.; Lidia, S.; More, R.M.; Ni, P.; Roy, P.K.; Seidl, P.A.; Waltron, W.

    2008-09-16

    This milestone has been met. In the previous quarter (3rd quarter FY2008), the Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) completed the new experimental target chamber facility for future Warm Dense Matter (WDM) experiments [1]. The target chamber is operational and target experiments are now underway, using beams focused by a final focus solenoid and compressed by an improved bunching waveform. Initial experiments have demonstrated the capability of the Neutralized Drift Compression Experiment (NDCX) beam to heat bulk matter in target foils. The experiments have focused on tuning and characterizing the NDCX beam in the target chamber, implementing the target assembly, and implementing target diagnostics in the target chamber environment. We have completed a characterization and initial optimization of the compressed and uncompressed NDCX beam entering the target chamber. The neutralizing plasma has been significantly improved to increase the beam neutralization in the target chamber. Preliminary results from recent beam tests of a gold cone for concentrating beam energy on target are encouraging and indicate the potential to double beam intensity on target. Other advantages of the cone include the large amount of neutralizing secondary electrons expected from the grazing incidence at the cone walls, and the shielding of the target from the edges of the beam pulse. The first target temperature measurements with the fast optical pyrometer were made on Sep. 12, 2008. The fast optical pyrometer is a unique and significant new diagnostic. These new results demonstrate for the first time beam heating of the target to a temperature well over 2000 K. The initial experimental results are suggestive of potentially interesting physics. The rapid initial rise and subsequent decay of the target temperature during the beam pulse indicate changes in the balance of beam heating and target evaporative cooling, a behavior which may be affected by phenomena such

  8. Validating mass spectrometry measurements of nuclear materials via a non-contact volume analysis method of ion sputter craters

    SciTech Connect

    Willingham, David G.; Naes, Benjamin E.; Fahey, Albert J.

    2015-01-01

    A combination of secondary ion mass spectrometry, optical profilometry and a statistically-driven algorithm was used to develop a non-contact volume analysis method to validate the useful yields of nuclear materials. The volume analysis methodology was applied to ion sputter craters created in silicon and uranium substrates sputtered by 18.5 keV O- and 6.0 keV Ar+ ions. Sputter yield measurements were determined from the volume calculations and were shown to be comparable to Monte Carlo calculations and previously reported experimental observations. Additionally, the volume calculations were used to determine the useful yields of Si+, SiO+ and SiO2+ ions from the silicon substrate and U+, UO+ and UO2+ ions from the uranium substrate under 18.5 keV O- and 6.0 keV Ar+ ion bombardment. This work represents the first steps toward validating the interlaboratory and cross-platform performance of mass spectrometry for the analysis of nuclear materials.

  9. Combined effects of nuclear and electronic energy losses in solids irradiated with a dual-ion beam

    NASA Astrophysics Data System (ADS)

    Thomé, Lionel; Debelle, Aurélien; Garrido, Frédérico; Trocellier, Patrick; Serruys, Yves; Velisa, Gihan; Miro, Sandrine

    2013-04-01

    Single and dual-beam irradiations of oxide (c-ZrO2, MgO, Gd2Ti2O7) and carbide (SiC) single crystals were performed to study combined effects of nuclear (Sn) and electronic (Se) energy losses. Rutherford backscattering experiments in channeling conditions show that the Sn/Se cooperation induces a strong decrease of the irradiation-induced damage in SiC and MgO and almost no effects in c-ZrO2 and Gd2Ti2O7. The healing process is ascribed to electronic excitations arising from the electronic energy loss of swift ions. These results present a strong interest for both fundamental understanding of the ion-solid interactions and technological applications in the nuclear industry where expected cooperative Sn/Se effects may lead to the preservation of the integrity of nuclear devices.

  10. Depth Profiling of N and C in Ion Implanted ZnO and Si Using Deuterium Induced Nuclear Reaction Analysis

    SciTech Connect

    Kennedy, John; Murmu, Peter; Markwitz, Andreas

    2008-11-03

    Nuclear Reaction Analysis (NRA) with deuteron ion beams has been used to probe for ion implanted nitrogen and carbon with high sensitivity in zinc oxide and silicon single crystals. The ion implanted N was measured using 1.4 MeV deuteron ion beams and was found to be in agreement with calculated values. The limit of detection for N in ZnO is 8x10{sup 14} ions cm{sup -2}. Raman measurements of the ion implanted samples showed three additional modes at 275, 504, and 644 cm{sup -1} compared to the un-implanted ZnO crystals. The NRA and Raman results provided information on the N concentration, depth distribution, and structural changes that occur in dependence on the nitrogen ion fluences. The deuterium induced {sup 12}C(d,p){sup 13}C reaction was used to measure the carbon impurity/dose in ion implanted silicon. It was found that the use of a large cold shield (liquid nitrogen trap) in the ion implanter chamber greatly reduces the amount of carbon impurity on the surface of ion implanted silicon. Various implantations with N{sub 2}, O{sub 2}, NO, NO{sub 2} and Pb ions were performed with and without cooling of the liquid nitrogen trap. Simultaneous detection of ppm-level concentrations of {sup 12}C, {sup 16}O and {sup 14}N enables highly sensitive measurement of impurities that may be incorporated during the fabrication process, transport of the samples and/or storage of the samples in air.

  11. Like a bridge over troubled water--Opening pathways for integrating social sciences and humanities into nuclear research.

    PubMed

    Turcanu, Catrinel; Schröder, Jantine; Meskens, Gaston; Perko, Tanja; Rossignol, Nicolas; Carlé, Benny; Hardeman, Frank

    2016-03-01

    Research on nuclear technologies has been largely driven by a detachment of the 'technical content' from the 'social context'. However, social studies of science and technology--also for the nuclear domain--emphasize that 'the social' and 'the technical' dimensions of technology development are inter-related and co-produced. In an effort to create links between nuclear research and innovation and society in mutually beneficial ways, the Belgian Nuclear Research Centre started fifteen years ago a 'Programme of Integration of Social Aspects into nuclear research' (PISA). In line with broader science-policy agendas (responsible research and innovation and technology assessment), this paper argues that the importance of such programmes is threefold. First, their multi-disciplinary basis and participatory character contribute to a better understanding of the interactions between science, technology and society, in general, and the complexity of nuclear technology assessment in particular. Second, their functioning as (self -)critical policy supportive research with outreach to society is an essential prerequisite for policies aiming at generating societal trust in the context of controversial issues related to nuclear technologies and exposure to ionising radiation. Third, such programmes create an enriching dynamic in the organisation itself, stimulating collective learning and transdisciplinarity. The paper illustrates with concrete examples these claims and concludes by discussing some key challenges that researchers face while engaging in work of this kind. PMID:26736182

  12. 1988 Nuclear Science Symposium, Orlando, FL, Nov. 9-11, 1988, Proceedings

    NASA Astrophysics Data System (ADS)

    Pordes, Ruth

    1989-02-01

    Papers on nuclear science are presented, covering topics such as performance of a lead radiator, a gas tube calorimeter, various types of detectors, multiwire proportional counters, the DELPHI time projection chamber, scintillator research, bolometeric detectors, liquid xenon detectors for gamma-ray astronomy, calorimetry, trigger processors, front end electronics, advanced custom circuits, data aquisition systems, and radiation damage on ICs, detectors, and CCDs. Topics related to space physics and astronomy include high amplitude events in microchannel plates, large format microchannel plate detectors, HGI2 X-ray detectors, Ga solar neutrino detectors, semiconductor thermistors at low temperatures, blocked impurity band hybrid IR focal plane arrays, a three-dimensional position sensitive scintillation detector, proportional counters, X-ray imaging telescopes, a daytime star sensor for a stabilized balloon platform, multiphase CCD operation, EUV microchannel plate detectors, EUV remote sensing, digital optical spark chambers, detector arrays, microcomputer control of IR detector arrays, array speckle interferometry, and design of a space IR telescope facility. Other subjects include medical detectors, medical imaging, health physics, nuclear well logging, and nuclear power systems.

  13. Present and Future Applications of Digital Electronics in Nuclear Science - a Commercial Prospective

    NASA Astrophysics Data System (ADS)

    Tan, Hui

    2011-10-01

    Digital readout electronics instrumenting radiation detectors have experienced significant advancements in the last decade or so. This on one hand can be attributed to the steady improvements in commercial digital processing components such as analog-to-digital converters (ADCs), digital-to-analog converters (DACs), field-programmable-gate-arrays (FPGAs), and digital-signal-processors (DSPs), and on the other hand can also be attributed to the increasing needs for improved time, position, and energy resolution in nuclear physics experiments, which have spurred the rapid development of commercial off-the-shelf high speed, high resolution digitizers or spectrometers. Absent from conventional analog electronics, the capability to record fast decaying pulses from radiation detectors in digital readout electronics has profoundly benefited nuclear physics researchers since they now can perform detailed pulse processing for applications such as gamma-ray tracking and decay-event selection and reconstruction. In this talk, present state-of-the-art digital readout electronics and its applications in a variety of nuclear science fields will be discussed, and future directions in hardware development for digital electronics will also be outlined, all from the prospective of a commercial manufacturer of digital electronics.

  14. Nuclear Science Division annual report for the period October 1, 1987--September 30, 1988

    SciTech Connect

    Mahoney, J.

    1989-10-01

    Highlights of the low energy research program included the identification of new super-deformed bands in gadolinium and palladium isotopes using the HERA array. Other work at the 88-Inch Cyclotron involved studies of the fragmentation of light nuclei; the spectroscopy of nuclear far from stability and interesting new experiments on the properties of the heaviest elements. Two other programs deserve special mention, the new program in Nuclear Astrophysics and the spectroscopic studies being carried out at OASIS. This isotope separator is now in full operation at the SuperHILAC after many yeas of development. At the Bevalac, important new results were obtained on the properties of hot dense nuclear matter produced in central collisions of heavy ions. First measurements were made using the di-lepton spectrometer which provide the most direct access to the conditions at the earliest stage of the reaction. New results on pion interferometry have been obtained using the Janus spectrometer and surprises continue to be found in careful analysis of data from the Plastic Ball detector, most recently the identification of a new component of hydrodynamic flow. Also at the Bevalac the intermediate energy program continued to grow, studying the evolution of the reaction mechanism from incomplete fusion to the fireball regime, as did the spectroscopic studies using secondary radioactive beams. The third major component of the experimental program is the study of ultra-relativistic nuclear collisions using the CERN SPS. This year saw the completing of analysis of the first round of experiments with important results being obtained on general particle production, the space-time evolution of the system and strangeness production.

  15. [Cyclotron based nuclear science]. Progress in research, April 1, 1992--March 31, 1993

    SciTech Connect

    Not Available

    1993-07-01

    The period 1 April 1992--31 March 1993 saw the initial runs of three new spectrometers, which constitute a major portion of the new detection capabilities developed for this facility. These devices are the Proton Spectrometer (PSP) (data from which are shown on the cover of this document), the Mass Achroniat Recoil Mass Spectrometer (MARS), and the Multipole Dipole Multipole (MDM) Particle Spectrometer. The ECR-K500 cyclotron combination operated 5,849 hours. The beam was on target 39% of this time. Studies of nuclear dynamics and nuclear thermodynamics using the neutron ball have come to fruition. A critical re-evaluation of the available data on the giant monopole resonance indicated that the incompressibility is not specified to a range smaller than 200--350 MeV by those data. New systematic experiments using the MDM spectrometer are now underway. The MEGA collaboration obtained the first data on the {mu} {yields} e{gamma} decay rate and determination of the Michel parameter in normal {mu} decay. Experiments appear to confirm the existence of monoenergetic pair peaks even for relatively low Z{sub projectile} -- Z{sub target} combinations. Studies of the ({alpha},2{alpha}) knockout reaction indicate that this reaction may prove to be a valuable tool for determination of reaction rates of astrophysical interest. Theoretical work reported in this document ranges from nuclear structure calculations using the IBM-2 model to calculations of kaon production and the in-medium properties of the rho and phi mesons. Nuclear dynamics and exotic shapes and fragmentation modes of hot nuclei are also addressed. New measurements of x-ray emission from highly ionized ions, of molecular dissociation and of surface interactions are reported. The research is presented in nearly 50 brief summaries usually including data and references.

  16. Nuclear Science Symposium, 27th, and Symposium on Nuclear Power Systems, 12th, Orlando, Fla., November 5-7, 1980, Proceedings

    NASA Technical Reports Server (NTRS)

    Martini, M.

    1981-01-01

    Advances in instrumentation for use in nuclear-science studies are described. Consideration is given to medical instrumentation, computerized fluoroscopy, environmental instrumentation, data acquisition techniques, semiconductor detectors, microchannel plates and photomultiplier tubes, reactor instrumentation, neutron detectors and proportional counters, and space instrumentation.

  17. Nuclear Spin Lattice Relaxation and Conductivity Studies of the Non-Arrhenius Conductivity Behavior in Lithium Fast Ion Conducting Sulfide Glasses

    SciTech Connect

    Benjamin Michael Meyer

    2003-05-31

    As time progresses, the world is using up more of the planet's natural resources. Without technological advances, the day will eventually arrive when these natural resources will no longer be sufficient to supply all of the energy needs. As a result, society is seeing a push for the development of alternative fuel sources such as wind power, solar power, fuel cells, and etc. These pursuits are even occurring in the state of Iowa with increasing social pressure to incorporate larger percentages of ethanol in gasoline. Consumers are increasingly demanding that energy sources be more powerful, more durable, and, ultimately, more cost efficient. Fast Ionic Conducting (FIC) glasses are a material that offers great potential for the development of new batteries and/or fuel cells to help inspire the energy density of battery power supplies. This dissertation probes the mechanisms by which ions conduct in these glasses. A variety of different experimental techniques give a better understanding of the interesting materials science taking place within these systems. This dissertation discusses Nuclear Magnetic Resonance (NMR) techniques performed on FIC glasses over the past few years. These NMR results have been complimented with other measurement techniques, primarily impedance spectroscopy, to develop models that describe the mechanisms by which ionic conduction takes place and the dependence of the ion dynamics on the local structure of the glass. The aim of these measurements was to probe the cause of a non-Arrhenius behavior of the conductivity which has been seen at high temperatures in the silver thio-borosilicate glasses. One aspect that will be addressed is if this behavior is unique to silver containing fast ion conducting glasses. more specifically, this study will determine if a non-Arrhenius correlation time, {tau}, can be observed in the Nuclear Spin Lattice Relaxation (NSLR) measurements. If so, then can this behavior be modeled with a new single distribution

  18. Nuclear Science Division: Annual report for the period October 1, 1985-September 30, 1986

    SciTech Connect

    Mahoney, J.

    1987-07-01

    Research has for the most part been carried out using three local accelerators, the Bevalac, the SuperHILAC and the 88-Inch Cyclotron. However, at CERN, oxygen-16 beams were accelerated to 3.2 TeV using the LBL-GSI heavy ion injector into the CERN SPS. First results obtained during the beam test period are presented in this report. Bevalac research has probed new regions of the nuclear matter equation of state. Studies of collisions between the most massive nuclei have revealed rich new phenomena such as collective flow, where the pressures generated force the emerging particles away from the beam direction. Experiments on dileptons e/sup +/e/sup -/ pairs) utilizing the newly completed Dilepton Spectrometer (DLS) are being carried out to glean new insights into the hot, high-density stage of the collision. Major new results on the nuclear structure of exotic, very neutron-rich light nuclei are being obtained by exploiting the projectile fragmentation process to produce secondary radioactive beams. The Laboratory has proposed the Bevalac Upgrade Project to replace the Bevalac's weak-focusing synchrotron with a modern, strong-focusing synchrotron to provide higher intensity and higher quality beams. The significant enhancement of the heavy ion capability at the 88-Inch Cyclotron as a result of the recent development of the ECR source has led to a renaissance of the cyclotron as indicated by the increased demand for beam time. A variety of other scientific activities were also carried out during this period. The Isotopes Project published the first edition of a new radioactivity reference book for applied users-The Table of Radioactive Isotopes and division members organized several major scientific meetings.

  19. Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006

    SciTech Connect

    Roberto, J.; Diaz de la Rubia, T.; Gibala, R.; Zinkle, S.; Miller, J.R.; Pimblott, S.; Burns, C.; Raymond, K.; Grimes, R.; Pasamehmetoglu, K.; Clark, S.; Ewing, R.; Wagner, A.; Yip, S.; Buchanan, M.; Crabtree, G.; Hemminger, J.; Poate, J.; Miller, J.C.; Edelstein, N.; Fitzsimmons, T.; Gruzalski, G.; Michaels, G.; Morss, L.; Peters, M.; Talamini, K.

    2006-10-01

    The global utilization of nuclear energy has come a long way from its humble beginnings in the first sustained nuclear reaction at the University of Chicago in 1942. Today, there are over 440 nuclear reactors in 31 countries producing approximately 16% of the electrical energy used worldwide. In the United States, 104 nuclear reactors currently provide 19% of electrical energy used nationally. The International Atomic Energy Agency projects significant growth in the utilization of nuclear power over the next several decades due to increasing demand for energy and environmental concerns related to emissions from fossil plants. There are 28 new nuclear plants currently under construction including 10 in China, 8 in India, and 4 in Russia. In the United States, there have been notifications to the Nuclear Regulatory Commission of intentions to apply for combined construction and operating licenses for 27 new units over the next decade. The projected growth in nuclear power has focused increasing attention on issues related to the permanent disposal of nuclear waste, the proliferation of nuclear weapons technologies and materials, and the sustainability of a once-through nuclear fuel cycle. In addition, the effective utilization of nuclear power will require continued improvements in nuclear technology, particularly related to safety and efficiency. In all of these areas, the performance of materials and chemical processes under extreme conditions is a limiting factor. The related basic research challenges represent some of the most demanding tests of our fundamental understanding of materials science and chemistry, and they provide significant opportunities for advancing basic science with broad impacts for nuclear reactor materials, fuels, waste forms, and separations techniques. Of particular importance is the role that new nanoscale characterization and computational tools can play in addressing these challenges. These tools, which include DOE synchrotron X

  20. Formation of plasmid DNA strand breaks induced by low-energy ion beam: indication of nuclear stopping effects.

    PubMed

    Chen, Y; Jiang, B; Chen, Y; Ding, X; Liu, X; Chen, C; Guo, X; Yin, G

    1998-07-01

    Plasmid pGEM 3zf(+) was irradiated by nitrogen ion beam with energies between 20 and 100 keV and the fluence kept as 1x10(12)ions/cm2. The irradiated plasmid was assayed by neutral electrophoresis and quantified by densitometry. The yields of DNA with single-strand and double-strand breaks first increased then decreased with increasing ion energy. There was a maximal yield value in the range of 20-100 keV. The relationship between DNA double-strand breaks (DSB) cross-section and linear energy transfer (LET) also showed a peak-shaped distribution. To understand the physical process during DNA strand breaks, a Monte Carlo calculation code known as TRIM (Transport of Ions in Matter) was used to simulate energy losses due to nuclear stopping and to electronic stopping. It can be assumed that nuclear stopping plays a more important role in DNA strand breaks than electronic stopping in this energy range. The physical mechanisms of DNA strand breaks induced by a low-energy ion beam are also discussed. PMID:9728742

  1. The Rhode Island Nuclear Science Center conversion from HEU to LEU fuel

    SciTech Connect

    Tehan, Terry

    2000-09-27

    The 2-MW Rhode Island Nuclear Science Center (RINSC) open pool reactor was converted from 93% UAL-High Enriched Uranium (HEU) fuel to 20% enrichment U3Si2-AL Low Enriched Uranium (LEU) fuel. The conversion included redesign of the core to a more compact size and the addition of beryllium reflectors and a beryllium flux trap. A significant increase in thermal flux level was achieved due to greater neutron leakage in the new compact core configuration. Following the conversion, a second cooling loop and an emergency core cooling system were installed to permit operation at 5 MW. After re-licensing at 2 MW, a power upgrade request will be submitted to the NRC.

  2. Development of Students' Metacognitive Strategies In Science Learning Regarding Nuclear Energy

    NASA Astrophysics Data System (ADS)

    Siriuthen, Warawun; Yuenyong, Chokchai

    2010-07-01

    This research aimed to develop 48 Grade 10 students' learning process and metacognitive strategies in the `Nuclear Energy' topic through the Science, Technology and Society (STS) approach. The STS teaching approach consists of five stages: identification of social issues, identification of potential solutions, need for knowledge, decision-making, and socialization. he data were analyzed through rubric score of learning process and metacognitive strategies, which consists of five strategies: Recalling, Planning, Monitoring and Maintaining, Evaluating, and Relating. The findings revealed that most students used learning process in a high level. They performed a very low level in almost all of the metacognitive strategies. The factors potentially impeded their development of awareness about learning process and metacognitive strategies were characteristics of content and students, learning processes, and student habit.

  3. Higher temperature reactor materials workshop sponsored by the Department of Energy Office of Nuclear Energy, Science, and Technology (NE) and the Office of Basic Energy Sciences (BES).

    SciTech Connect

    Allen, T.; Bruemmer, S.; Kassner, M.; Odette, R.; Stoller, R.; Was, G.; Wolfer, W.; Zinkle, S.; Elmer, J.; Motta, A.

    2002-08-12

    On March 18-21, 2002, the Department of Energy, Office of Nuclear Energy, Science, and Technology (NE) and the Office of Basic Energy Sciences (BES) sponsored a workshop to identify needs and opportunities for materials research aimed at performance improvements of structural materials in higher temperature reactors. The workshop focused discussion around the reactor concepts proposed as part of the Generation IV Nuclear Energy System Roadmap. The goal of the Generation IV initiative is to make revolutionary improvements in nuclear energy system design in the areas of sustainability, economics, safety and reliability. The Generation IV Nuclear Energy Systems Roadmap working groups have identified operation at higher temperature as an important step in improving economic performance and providing a means for nuclear energy to support thermochemical production of hydrogen. However, the move to higher operating temperatures will require the development and qualification of advanced materials to perform in the more challenging environment. As part of the process of developing advanced materials for these reactor concepts, a fundamental understanding of materials behavior must be established and the data-base defining critical performance limitations of these materials under irradiation must be developed. This workshop reviewed potential reactor designs and operating regimes, potential materials for application in high-temperature reactor environments, anticipated degradation mechanisms, and research necessary to understand and develop reactor materials capable of satisfactory performance while subject to irradiation damage at high temperature. The workshop brought together experts from the reactor materials and fundamental materials science communities to identify research and development needs and opportunities to provide optimum high temperature nuclear energy system structural materials.

  4. Network Science for Deterrence: Sheathing the Sword of the Terrorism/Nuclear Horseman

    NASA Astrophysics Data System (ADS)

    Carley, Kathleen

    2010-03-01

    After 9/11, network analysis became popular as a way to connect and disconnect the dots. It was heralded as the new science with intrinsic value for understanding and breaking up terrorist groups, insurgencies and hostile foreign governments. The limit of the initially forwarded approach was that it focused on only the social network -- who talked to whom. However ,the networks of war, terror or nuclear or cyber, are complex networks composed of people, organizations, resources, and capabilities connected in a geo-temporal web that constrains and enables activities that are ``hidden'' in the web of everyday life. Identifying these networks requires extraction and fusion of information from cyber-mediated realms resulting in a network map of the hostile groups and their relations to the populations in which they are embedded. These data are at best a sample, albeit a very large sample, replete with missing and incomplete data. Geo-temporal considerations in addition to information loss and error called into question the value of traditional network approaches. In this talk, a new approaches and associated technologies that integrate scientific advances in machine learning, network statistics, and the social and organizational science with traditional graph theoretic approaches to social networks are presented. Then, examples, of how these technologies can be used as part of a deterrence strategy are described. Examples related to terrorism and groups such as al-Qaida and Hamas, cyber and nuclear deterrence are described. By taking this meta-network approach, embracing the complexity and simultaneously examining not just one network, but the connections among networks, it is possible to identify emergent leaders, locate changes in activities, and forecast the potential impact of various interventions. Key challenges, such as data-streaming and deception, that need to be addressed scientifically are referenced.

  5. Two-Photon Interactions with Nuclear Breakup in Relativistic Heavy Ion Collisions

    SciTech Connect

    Baltz, Anthony J.; Gorbunov, Yuri; R Klein, Spencer; Nystrand, Joakim

    2010-07-07

    Highly charged relativistic heavy ions have high cross-sections for two-photon interactions. The photon flux is high enough that two-photon interactions may be accompanied by additional photonuclear interactions. Except for the shared impact parameter, these interactions are independent. Additional interactions like mutual Coulomb excitation are of experimental interest, since the neutrons from the nuclear dissociation provide a simple, relatively unbiased trigger. We calculate the cross sections, rapidity, mass and transverse momentum (p{sub T}) distributions for exclusive {gamma}{gamma} production of mesons and lepton pairs, and for {gamma}{gamma} reactions accompanied by mutual Coulomb dissociation. The cross-sections for {gamma}{gamma} interactions accompanied by multiple neutron emission (XnXn) and single neutron emission (1n1n) are about 1/10 and 1/100 of that for the unaccompanied {gamma}{gamma} interactions. We discuss the accuracy with which these cross-sections may be calculated. The typical p{sub T} of {gamma}{gamma} final states is several times smaller than for comparable coherent photonuclear interactions, so p{sub T} may be an effective tool for separating the two classes of interactions.

  6. Nuclear physics with a medium-energy Electron-Ion Collider

    SciTech Connect

    A. Accardi, V. Guzey, A. Prokudin, C. Weiss

    2012-06-01

    A polarized ep/eA collider (Electron-Ion Collider, or EIC) with variable center-of-mass energy {radical}s {approx} 20-70 GeV and a luminosity {approx}10{sup 34} cm{sup -2} s{sup -1} would be uniquely suited to address several outstanding questions of Quantum Chromodynamics (QCD) and the microscopic structure of hadrons and nuclei: (i) the three-dimensional structure of the nucleon in QCD (sea quark and gluon spatial distributions, orbital motion, polarization, correlations); (ii) the fundamental color fields in nuclei (nuclear parton densities, shadowing, coherence effects, color transparency); (iii) the conversion of color charge to hadrons (fragmentation, parton propagation through matter, in-medium jets). We briefly review the conceptual aspects of these questions and the measurements that would address them, emphasizing the qualitatively new information that could be obtained with the collider. Such a medium-energy EIC could be realized at Jefferson Lab after the 12 GeV Upgrade (MEIC), or at Brookhaven National Lab as the low-energy stage of eRHIC.

  7. Two-photon interactions with nuclear breakup in relativistic heavy ion collisions

    SciTech Connect

    Baltz, Anthony J.; Gorbunov, Yuri; Klein, Spencer R.; Nystrand, Joakim

    2009-10-15

    Highly charged relativistic heavy ions have high cross sections for two-photon interactions. The photon flux is high enough that two-photon interactions may be accompanied by additional photonuclear interactions. Except for the shared impact parameter, these interactions are independent. Additional interactions like mutual Coulomb excitation are of experimental interest, because the neutrons from the nuclear dissociation provide a simple, relatively unbiased trigger. We calculate the cross sections, rapidity, mass, and transverse momentum (p{sub T}) distributions for exclusive {gamma}{gamma} production of mesons and lepton pairs and for {gamma}{gamma} reactions accompanied by mutual Coulomb dissociation. The cross sections for {gamma}{gamma} interactions accompanied by multiple neutron emission (XnXn) and single-neutron emission (1n1n) are about 1/10 and 1/100 of that for the unaccompanied {gamma}{gamma} interactions. We discuss the accuracy with which these cross sections may be calculated. The typical p{sub T} of {gamma}{gamma} final states is several times smaller than for comparable coherent photonuclear interactions, so p{sub T} may be an effective tool for separating the two classes of interactions.

  8. Nuclear Science Symposium, 25th, and Symposium on Nuclear Power Systems, 10th, Washington, D.C., October 18-20, 1978, Proceedings

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Detectors of various types are discussed, taking into account drift chambers, calorimetry, multiwire proportional chambers, signal processing, the use of semiconductors, and photo/optical applications. Circuits are considered along with instrumentation for space, nuclear medicine instrumentation, data acquisition and systems, environmental instrumentation, reactor instrumentation, and nuclear power systems. Attention is given to a new approach to high accuracy gaseous detectors, the current status of electron mobility and free-ion yield in high mobility liquids, a digital drift chamber digitizer system, the stability of oxides in high purity germanium, the quadrant photomultiplier, and the theory of imaging with a very limited number of projections.

  9. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics.

    PubMed

    Yorita, T; Hatanaka, K; Fukuda, M; Ueda, H; Yasuda, Y; Morinobu, S; Tamii, A; Kamakura, K

    2014-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP. PMID:24593475

  10. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics

    SciTech Connect

    Yorita, T. Hatanaka, K.; Fukuda, M.; Ueda, H.; Yasuda, Y.; Morinobu, S.; Tamii, A.; Kamakura, K.

    2014-02-15

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.

  11. MITEE: A Compact Ultralight Nuclear Thermal Propulsion Engine for Planetary Science Missions

    NASA Astrophysics Data System (ADS)

    Powell, J.; Maise, G.; Paniagua, J.

    2001-01-01

    A new approach for a near-term compact, ultralight nuclear thermal propulsion engine, termed MITEE (Miniature Reactor Engine) is described. MITEE enables a wide range of new and unique planetary science missions that are not possible with chemical rockets. With U-235 nuclear fuel and hydrogen propellant the baseline MITEE engine achieves a specific impulse of approximately 1000 seconds, a thrust of 28,000 newtons, and a total mass of only 140 kilograms, including reactor, controls, and turbo-pump. Using higher performance nuclear fuels like U-233, engine mass can be reduced to as little as 80 kg. Using MITEE, V additions of 20 km/s for missions to outer planets are possible compared to only 10 km/s for H2/O2 engines. The much greater V with MITEE enables much faster trips to the outer planets, e.g., two years to Jupiter, three years to Saturn, and five years to Pluto, without needing multiple planetary gravity assists. Moreover, MITEE can utilize in-situ resources to further extend mission V. One example of a very attractive, unique mission enabled by MITEE is the exploration of a possible subsurface ocean on Europa and the return of samples to Earth. Using MITEE, a spacecraft would land on Europa after a two-year trip from Earth orbit and deploy a small nuclear heated probe that would melt down through its ice sheet. The probe would then convert to a submersible and travel through the ocean collecting samples. After a few months, the probe would melt its way back up to the MITEE lander, which would have replenished its hydrogen propellant by melting and electrolyzing Europa surface ice. The spacecraft would then return to Earth. Total mission time is only five years, starting from departure from Earth orbit. Other unique missions include Neptune and Pluto orbiter, and even a Pluto sample return. MITEE uses the cermet Tungsten-UO2 fuel developed in the 1960's for the 710 reactor program. The W-UO2 fuel has demonstrated capability to operate in 3000 K hydrogen for

  12. Ion-Surface Collisions in Mass Spectrometry: Where Analytical Chemistry Meets Surface Science

    SciTech Connect

    Laskin, Julia

    2015-02-01

    This article presents a personal perspective regarding the development of key concepts in understanding hyperthermal collisions of polyatomic ions with surfaces as a unique tool for mass spectrometry applications. In particular, this article provides a historic overview of studies focused on understanding the phenomena underlying surface-induced dissociation (SID) and mass-selected deposition of complex ions on surfaces. Fast energy transfer in ion-surface collisions makes SID especially advantageous for structural characterization of large complex molecules, such as peptides, proteins, and protein complexes. Soft, dissociative, and reactive landing of mass-selected ions provide the basis for preparatory mass spectrometry. These techniques enable precisely controlled deposition of ions on surfaces for a variety of applications. This perspective article shows how basic concepts developed in the 1920s and 1970s have evolved to advance promising mass-spectrometry-based applications.

  13. Cometary science. Birth of a comet magnetosphere: a spring of water ions.

    PubMed

    Nilsson, Hans; Stenberg Wieser, Gabriella; Behar, Etienne; Wedlund, Cyril Simon; Gunell, Herbert; Yamauchi, Masatoshi; Lundin, Rickard; Barabash, Stas; Wieser, Martin; Carr, Chris; Cupido, Emanuele; Burch, James L; Fedorov, Andrei; Sauvaud, Jean-André; Koskinen, Hannu; Kallio, Esa; Lebreton, Jean-Pierre; Eriksson, Anders; Edberg, Niklas; Goldstein, Raymond; Henri, Pierre; Koenders, Christoph; Mokashi, Prachet; Nemeth, Zoltan; Richter, Ingo; Szego, Karoly; Volwerk, Martin; Vallat, Claire; Rubin, Martin

    2015-01-23

    The Rosetta mission shall accompany comet 67P/Churyumov-Gerasimenko from a heliocentric distance of >3.6 astronomical units through perihelion passage at 1.25 astronomical units, spanning low and maximum activity levels. Initially, the solar wind permeates the thin comet atmosphere formed from sublimation, until the size and plasma pressure of the ionized atmosphere define its boundaries: A magnetosphere is born. Using the Rosetta Plasma Consortium ion composition analyzer, we trace the evolution from the first detection of water ions to when the atmosphere begins repelling the solar wind (~3.3 astronomical units), and we report the spatial structure of this early interaction. The near-comet water population comprises accelerated ions (<800 electron volts), produced upstream of Rosetta, and lower energy locally produced ions; we estimate the fluxes of both ion species and energetic neutral atoms. PMID:25613894

  14. Lattice location of O18 in ion implanted Fe crystals by Rutherford backscattering spectrometry, channeling and nuclear reaction analysis

    NASA Astrophysics Data System (ADS)

    Vairavel, Mathayan; Sundaravel, Balakrishnan; Panigrahi, Binaykumar

    2016-09-01

    There are contradictory theoretical predictions of lattice location of oxygen interstitial atom at tetrahedral and octahedral interstices in bcc Fe. For validating these predictions, 300 keV O18 ions with fluence of 5 × 1015 ions/cm2 are implanted into bcc Fe single crystals at room temperature and annealed at 400 °C. The Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA)/channeling measurements are carried out with 850 keV protons. The lattice location of implanted O18 is analysed using the α-particles yield from O18(p,α)N15 nuclear reaction. The tilt angular scans of α-particle yield along <110> and <100> axial directions are performed at room temperature. Lattice location of O18 is found to be at tetrahedral interstitial site by comparing the experimental scan with simulated scans using FLUX7 software.

  15. Students' Knowledge of Nuclear Science and Its Connection with Civic Scientific Literacy in Two European Contexts: The Case of Newspaper Articles

    ERIC Educational Resources Information Center

    Tsaparlis, Georgios; Hartzavalos, Sotiris; Nakiboglu, Canan

    2013-01-01

    Nuclear science has uses and applications that are relevant and crucial for world peace and sustainable development, so knowledge of its basic concepts and topics should constitute an integral part of civic scientific literacy. We have used two newspaper articles that deal with uses of nuclear science that are directly relevant to life, society,…

  16. Discourse, Power, and Knowledge in the Management of "Big Science": The Production of Consensus in a Nuclear Fusion Research Laboratory.

    ERIC Educational Resources Information Center

    Kinsella, William J.

    1999-01-01

    Extends a Foucauldian view of power/knowledge to the archetypical knowledge-intensive organization, the scientific research laboratory. Describes the discursive production of power/knowledge at the "big science" laboratory conducting nuclear fusion research and illuminates a critical incident in which the fusion research "discipline" imposes…

  17. Direct Production of Electron-Positron Pairs by 200-GeV/Nucleon Oxygen and Sulfur Ions in Nuclear Emulsion

    NASA Technical Reports Server (NTRS)

    Derrickson, J. H.; Eby, P. B.; Moon, K. H.; Parnell, T. A.; King, D. T.; Gregory, J. C.; Takahashi, Y.; Ogata, T.

    1995-01-01

    Measurements of direct Coulomb electron-positron pair production have been made on the tracks of relativistic heavy ions in nuclear track emulsion. Tracks of 0(16) and S(32) at 200 GeV/nucleon were studied. The measured total cross sections and energy and emission angle distributions for the pair members are compared to theoretical predictions. The data are consistent with some recent calculations when knock-on electron contamination is accounted for.

  18. Probing nuclear symmetry energy at high densities using pion, kaon, eta and photon productions in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Xiao, Zhi-Gang; Yong, Gao-Chan; Chen, Lie-Wen; Li, Bao-An; Zhang, Ming; Xiao, Guo-Qing; Xu, Nu

    2014-02-01

    The high-density behavior of nuclear symmetry energy is among the most uncertain properties of dense neutron-rich matter. Its accurate determination has significant ramifications in understanding not only the reaction dynamics of heavy-ion reactions, especially those induced by radioactive beams, but also many interesting phenomena in astrophysics, such as the explosion mechanism of supernova and the properties of neutron stars. The heavy-ion physics community has devoted much effort during the last few years to constrain the high-density symmetry using various probes. In particular, the / ratio has been most extensively studied both theoretically and experimentally. All models have consistently predicted qualitatively that the / ratio is a sensitive probe of the high-density symmetry energy especially with beam energies near the pion production threshold. However, the predicted values of the / ratio are still quite model dependent mostly because of the complexity of modeling pion production and reabsorption dynamics in heavy-ion collisions, leading to currently still controversial conclusions regarding the high-density behavior of nuclear symmetry energy from comparing various model calculations with available experimental data. As more / data become available and a deeper understanding about the pion dynamics in heavy-ion reactions is obtained, more penetrating probes, such as the K +/ K 0 ratio, meson and high-energy photons are also being investigated or planned at several facilities. Here, we review some of our recent contributions to the community effort of constraining the high-density behavior of nuclear symmetry energy in heavy-ion collisions. In addition, the status of some worldwide experiments for studying the high-density symmetry energy, including the HIRFL-CSR external target experiment (CEE) are briefly introduced.

  19. Synergy of Nuclear and Electronic Energy Losses in Ion-irradiation Processes: the Case of Vitreous Silicon Dioxide

    SciTech Connect

    Toulemonde, Marcel; Weber, William J.; Li, Guosheng; Shutthanandan, V.; Kluth, Patrick; Yang, Tengfei; Wang, Yugang; Zhang, Yanwen

    2011-02-16

    Structural modification of vitreous SiO2 by Au ion irradiation is investigated over an energy regime (~ 0.3-15 MeV) where the decrease of the nuclear energy loss with increasing energy is compensated by the increase of the electronic energy loss, leading to a nearly constant total energy loss of ~ 4 keV/nm. The radii of damaged zones resulting from the ion impact, deduced from changes in infrared bands as a function of ion fluence, decrease from 4.9 nm at 0.3 MeV to 2.5 and 2.6 nm at 9.8 MeV and 14.8 MeV, respectively. Based on previous data where vitreous SiO2 was irradiated with much higher energy Au ions, the damage zone radius increases from 2.4 nm at 22.7 MeV to 5.4 nm at 168 MeV, and a U-shaped dependence on energy within experimental uncertainty is observed in the energy region from 0.3 MeV to 168 MeV. The current results demonstrate that large damage radii at low and high ion energy can be explained by the elastic or inelastic thermal spike model, respectively. In the transition regime where both nuclear and electronic energy loss are significant, an unified thermal spike model consisting a coherent synergy of the elastic collision spike model with the inelastic thermal spike model is suggested to interpret and describe the radius evolution from the nuclear to the electronic energy regime.

  20. Synergy of Nuclear and Electronic Energy Losses in Ion-irradiation Processes: the Case of Vitreous Silicon Dioxide

    SciTech Connect

    Toulemonde, Marcel; Weber, William J; Li, Guosheng; Shutthanandan, Vaithiyalingam; Kluth, Patrick; Yang, Tengfei; Wang, Yuguang; Zhang, Yanwen

    2011-01-01

    Structural modification of vitreous SiO2 by Au ion irradiation is investigated over an energy regime (~ 0.3-15 MeV) where the decrease of the nuclear energy loss with increasing energy is compensated by the increase of the electronic energy loss, leading to a nearly constant total energy loss of ~ 4 keV/nm. The radii of damaged zones resulting from the ion impact, deduced from changes in infrared bands as a function of ion fluence, decrease from 4.9 nm at 0.3 MeV to 2.5 and 2.6 nm at 9.8 MeV and 14.8 MeV, respectively. Based on previous data where vitreous SiO2 was irradiated with much higher energy Au ions, the damage zone radius increases from 2.4 nm at 22.7 MeV to 5.4 nm at 168 MeV, and a U-shaped dependence on energy within experimental uncertainty is observed in the energy region from 0.3 MeV to 168 MeV. The current results demonstrate that large damage radii at low and high ion energy can be explained by the elastic or inelastic thermal spike model, respectively. In the transition regime where both nuclear and electronic energy loss are significant, an unified thermal spike model consisting a coherent synergy of the elastic collision spike model with the inelastic thermal spike model is suggested to interpret and describe the radius evolution from the nuclear to the electronic energy regime.

  1. Failla Memorial Lecture: the future of heavy-ion science in biology and medicine

    SciTech Connect

    Tobias, C.A.

    1985-07-01

    An extensive review, with over 100 references, of the use of accelerator techniques in radiobiology is presented. Currently, beams of any stable isotope species up to uranium are available at kinetic energies of several hundred MeV/nucleon at the Berkeley Bevalac. The heavy ions hold interest for a broad spectrum of research because of their effectiveness in producing a series of major lesions in DNA along single particle tracks and because of the Bragg depth ionization properties that allow the precise deposition of highly localized doses deep in the human body. Heavy ions, when compared to low-LET radiation, have increased effectiveness for mammalian cell lethality, chromosome mutations, and cell transformation. The molecular mechanisms are not completely understood but appear to involve fragmentation and reintegration of DNA. Heavy ions do not require the presence of oxygen for producing their effects. Heavy ions are effective in delaying or blocking the cell division process. These radiobiological properties, combined with the ability to deliver highly localized internal doses, make accelerated heavy ions potentially important radiotherapeutic tools. Other novel approaches include the utilization of radioactive heavy beams as instant tracers. Heavy-ion radiography and microscopy respond to delicate changes in tissue electron density. The authors laboratory is in the process of proposing a research biomedical heavy-ion accelerator; the availability of such machines would greatly accelerate cancer and brain research with particle beams.

  2. MeV per nucleon ion irradiation of nuclear materials with high energy synchrotron X-ray characterization

    NASA Astrophysics Data System (ADS)

    Pellin, M. J.; Yacout, Abdellatif M.; Mo, Kun; Almer, Jonathan; Bhattacharya, S.; Mohamed, Walid; Seidman, D.; Ye, Bei; Yun, D.; Xu, Ruqing; Zhu, Shaofei

    2016-04-01

    The combination of MeV/Nucleon ion irradiation (e.g. 133 MeV Xe) and high energy synchrotron x-ray characterization (e.g. at the Argonne Advanced Photon Source, APS) provides a powerful characterization method to understand radiation effects and to rapidly screen materials for the nuclear reactor environment. Ions in this energy range penetrate ∼10 μm into materials. Over this range, the physical interactions vary (electronic stopping, nuclear stopping and added interstitials). Spatially specific x-ray (and TEM and nanoindentation) analysis allow individual quantification of these various effects. Hard x-rays provide the penetration depth needed to analyze even nuclear fuels. Here, this combination of synchrotron x-ray and MeV/Nucleon ion irradiation is demonstrated on U-Mo fuels. A preliminary look at HT-9 steels is also presented. We suggest that a hard x-ray facility with in situ MeV/nucleon irradiation capability would substantially accelerate the rate of discovery for extreme materials.

  3. Bulk nuclear properties from dynamical description of heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Hong, Jun

    Mapping out the equation of state (EOS) of nuclear matter is a long standing problem in nuclear physics. Both experimentalists and theoretical physicists spare no effort in improving understanding of the EOS. In this thesis, we examine observables sensitive to the EOS within the pBUU transport model based on the Boltzmann equation. By comparing theoretical predictions with experimental data, we arrive at new constraints for the EOS. Further we propose novel promising observables for analysis of future experimental data. One set of observables that we examine within the pBUU model are pion yields. First, we find that net pion yields in central heavy-ion collisions (HIC) are strongly sensitive to the momentum dependence of the isoscalar nuclear mean field. We reexamine the momentum dependence that is assumed in the Boltzmann equation model for the collisions and optimize that dependence to describe the FOPI measurements of pion yields from the Au+Au collisions at different beam energies. Alas such optimized dependence yields a somewhat weaker baryonic elliptic flow than seen in measurements. Subsequently, we use the same pBUU model to generate predictions for baryonic elliptic flow observable in HIC, while varying the incompressibility of nuclear matter. In parallel, we test the sensitivity of pion multiplicity to the density dependence of EOS, and in particular to incompressibility, and optimize that dependence to describe both the elliptic flow and pion yields. Upon arriving at acceptable regions of density dependence of pressure and energy, we compare our constraints on EOS with those recently arrived at by the joint experiment and theory effort FOPI-IQMD. We should mention that, for the more advanced observables from HIC, there remain discrepancies of up to 30%, depending on energy, between the theory and experiment, indicating the limitations of the transport theory. Next, we explore the impact of the density dependence of the symmetry energy on observables

  4. Modeling of the charge-state separation at ITEP experimental facility for material science based on a Bernas ion source

    NASA Astrophysics Data System (ADS)

    Barminova, H. Y.; Saratovskyh, M. S.

    2016-02-01

    The experiment automation system is supposed to be developed for experimental facility for material science at ITEP, based on a Bernas ion source. The program CAMFT is assumed to be involved into the program of the experiment automation. CAMFT is developed to simulate the intense charged particle bunch motion in the external magnetic fields with arbitrary geometry by means of the accurate solution of the particle motion equation. Program allows the consideration of the bunch intensity up to 1010 ppb. Preliminary calculations are performed at ITEP supercomputer. The results of the simulation of the beam pre-acceleration and following turn in magnetic field are presented for different initial conditions.

  5. Nuclear reactions with 11C and 14O radioactive ion beams

    SciTech Connect

    Guo, Fanqing

    2004-12-09

    Radioactive ion beams (RIBs) have been shown to be a useful tool for studying proton-rich nuclides near and beyond the proton dripline and for evaluating nuclear models. To take full advantage of RIBs, Elastic Resonance Scattering in Inverse Kinematics with Thick Targets (ERSIKTT), has proven to be a reliable experimental tool for investigations of proton unbound nuclei. Following several years of effort, Berkeley Experiments with Accelerated Radioactive Species (BEARS), a RIBs capability, has been developed at the Lawrence Berkeley National Laboratory's 88-Inch Cyclotron. The current BEARS provides two RIBs: a 11C beam of up to 2x108 pps intensity on target and an 14O beam of up to 3x104 pps intensity. While the development of the 11C beam has been relatively easy, a number of challenges had to be overcome to obtain the 14O beam. The excellent 11C beam has been used to investigate several reactions. The first was the 197Au(11C,xn)208-xnAt reaction, which was used to measure excitation functions for the 4n to 8n exit channels. The measured cross sections were generally predicted quite well using the fusion-evaporation code HIVAP. Possible errors in the branching ratios of ?? decays from At isotopes as well as the presence of incomplete fusion reactions probably contribute to specific overpredictions. 15F has been investigated by the p(14O,p)14O reaction with the ERSIKTT technology. Several 14O+p runs have been performed. Excellent energy calibration was obtained using resonances from the p(14N,p)14N reaction in inverse kinematics, and comparing the results to those obtained earlier with normal kinematics. The differences between 14N+p and 14O+p in the stopping power function have been evaluated for better energy calibration. After careful calibration, the energy levels of 15F were fitted with an R-matrix calculation. Spins and parities were assigned to the two observed resonances. This new measurement of the 15F ground state supports the disappearance of the Z = 8

  6. Compact Full-Field Ion Detector System for CubeSat Science Beyond LEO

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.; Clark, Pamela E.

    2013-01-01

    NASA Glenn Research Center (GRC) is applying its expertise and facilities in harsh environment instrumentation to develop a Compact Full-Field Ion Detector System (CFIDS). The CFIDS is designed to be an extremely compact, low cost instrument, capable of being flown on a wide variety of deep space platforms, to provide comprehensive (composition, velocity, and direction) in situ measurements of heavy ions in space plasma environments with higher fidelity, than previously available.

  7. Proceedings of the 2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering - M and C 2013

    SciTech Connect

    2013-07-01

    The Mathematics and Computation Division of the American Nuclear (ANS) and the Idaho Section of the ANS hosted the 2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M and C 2013). This proceedings contains over 250 full papers with topics ranging from reactor physics; radiation transport; materials science; nuclear fuels; core performance and optimization; reactor systems and safety; fluid dynamics; medical applications; analytical and numerical methods; algorithms for advanced architectures; and validation verification, and uncertainty quantification.

  8. Nuclear γ-ray line emission induced by energetic ions in solar flares and by galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Kiener, J.; Tatischeff, V.; Benhabiles-Mezhoud, H.; de Séréville, N.; Belhout, A.

    2012-05-01

    The γ-ray spectra ol the strongest solar flares often show a broad and complex structure in the 0.1-10 MeV region sitting on a bremsstrahlung continuum. This structure is composed of several outstanding narrow lines and of thousands of unresolved narrow and broad lines forming a quasi-continuum. The major part of this emission is due to prompt deexcitation lines following nuclear interactions of accelerated light and heavy ions with the atomic nuclei composing the solar atmosphere. A similar emission is expected from interactions of galactic cosmic rays with the interstellar gas and dust. Experimental nuclear reaction studies coupled with extensive calculations have been done in the last one and a half decade at Orsay for the modelisation of this γ-ray emission. After a description of the nuclear reaction studies the analysis of one solar flare spectrum and predictions for the emission from the inner Galaxy will be presented.

  9. Three dimensional nuclear magnetic resonance spectroscopic imaging of sodium ions using stochastic excitation and oscillating gradients

    SciTech Connect

    Frederick, B.deB. |

    1994-12-01

    Nuclear magnetic resonance (NMR) spectroscopic imaging of {sup 23}Na holds promise as a non-invasive method of mapping Na{sup +} distributions, and for differentiating pools of Na{sup +} ions in biological tissues. However, due to NMR relaxation properties of {sup 23}Na in vivo, a large fraction of Na{sup +} is not visible with conventional NMR imaging methods. An alternate imaging method, based on stochastic excitation and oscillating gradients, has been developed which is well adapted to measuring nuclei with short T{sub 2}. Contemporary NMR imaging techniques have dead times of up to several hundred microseconds between excitation and sampling, comparable to the shortest in vivo {sup 23}Na T{sub 2} values, causing significant signal loss. An imaging strategy based on stochastic excitation has been developed which greatly reduces experiment dead time by reducing peak radiofrequency (RF) excitation power and using a novel RF circuit to speed probe recovery. Continuously oscillating gradients are used to eliminate transient eddy currents. Stochastic {sup 1}H and {sup 23}Na spectroscopic imaging experiments have been performed on a small animal system with dead times as low as 25{mu}s, permitting spectroscopic imaging with 100% visibility in vivo. As an additional benefit, the encoding time for a 32x32x32 spectroscopic image is under 30 seconds. The development and analysis of stochastic NMR imaging has been hampered by limitations of the existing phase demodulation reconstruction technique. Three dimensional imaging was impractical due to reconstruction time, and design and analysis of proposed experiments was limited by the mathematical intractability of the reconstruction method. A new reconstruction method for stochastic NMR based on Fourier interpolation has been formulated combining the advantage of a several hundredfold reduction in reconstruction time with a straightforward mathematical form.

  10. Ortho-para mixing hyperfine interaction in the H2O+ ion and nuclear spin equilibration.

    PubMed

    Tanaka, Keiichi; Harada, Kensuke; Oka, Takeshi

    2013-10-01

    The ortho to para conversion of water ion, H2O(+), due to the interaction between the magnetic moments of the unpaired electron and protons has been theoretically studied to calculate the spontaneous emission lifetime between the ortho- and para-levels. The electron spin-nuclear spin interaction term, Tab(SaΔIb + SbΔIa) mixes ortho (I = 1) and para (I = 0) levels to cause the "forbidden" ortho to para |ΔI| = 1 transition. The mixing term with Tab = 72.0 MHz is 4 orders of magnitude higher for H2O(+) than for its neutral counterpart H2O where the magnetic field interacting with proton spins is by molecular rotation rather than the free electron. The resultant 10(8) increase of ortho to para conversion rate possibly makes the effect of conversion in H2O(+) measurable in laboratories and possibly explains the anomalous ortho to para ratio recently reported by Herschel heterodyne instrument for the far-infrared (HIFI) observation. Results of our calculations show that the ortho ↔ para mixings involving near-degenerate ortho and para levels are high (∼10(-3)), but they tend to occur at high energy levels, ∼300 K. Because of the rapid spontaneous emission, such high levels are not populated in diffuse clouds unless the radiative temperature of the environment is very high. The low-lying 101 (para) and 111 (ortho) levels of H2O(+) are mixed by ∼10(-4) making the spontaneous emission lifetime for the para 101 → ortho 000 transition 520 years and 5200 years depending on the F value of the hyperfine structure. Thus the ortho ↔ para conversion due to the unpaired electron is not likely to seriously affect thermalization of interstellar H2O(+) unless either the radiative temperature is very high or number density of the cloud is very low. PMID:23530629

  11. Momentum-Dependent Symmetry Potential from Nuclear Collective Flows in Heavy Ion Collisions at Intermediate Energies

    NASA Astrophysics Data System (ADS)

    Xie, Wen-Jie; Feng, Zhao-Qing

    2015-12-01

    Not Available Supported by the National Natural Science Foundation of China under Grant No 11505150, the Yuncheng University Research Project under Grant No YQ-2014014, and the China Postdoctoral Science Foundation under Grant No 2015M582730.

  12. Nuclear Science Symposium, 19th, and Nuclear Power Systems Symposium, 4th, Miami, Fla., December 6-8, 1972, Proceedings.

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Major topics covered include radiation monitoring instrumentation, nuclear circuits and systems, biomedical applications of nuclear radiation in diagnosis and therapy, plasma research for fusion power, reactor control and instrumentation, nuclear power standards, and applications of digital computers in nuclear power plants. Systems and devices for space applications are described, including the Apollo alpha spectrometer, a position sensitive detection system for UV and X-ray photons, a 4500-volt electron multiplier bias supply for satellite use, spark chamber systems, proportional counters, and other devices. Individual items are announced in this issue.

  13. European MSc Programs in Nuclear Sciences - To meet the Need of Stakeholders

    SciTech Connect

    Salbu, Brit; Skipperud, Lindis; Priest, Nick; Garelick, Hemda; Tamponnet, Christian; Mitchell, Peter

    2009-08-19

    A stakeholder needs assessment, carried out under the EU-EURAC and EU-ENEN II projects, clearly showed that, at the European level, there are a significant and constant need for post-graduates with skills in radiochemistry, radioecology, radiation dosimetry and environmental modelling and a smaller, but still important, demand for radiobiologists and bio-modellers. Most of these needs are from government organizations. If only the nuclear industry is considered, then the largest demand is for radiochemists and radiation protection dosimetrists. Given this spectrum of need and existing capacity in the areas of radiobiology it was concluded that the needs identified would be most efficiently met by three new degree programs: European MSc Radiation Protection European MSc Analytical Radiochemistry European MSc Radioecology. All three master programs would be developed using the framework provided by the Bologna Convention and the lecturing could be shared among specialist Scientists within a network of collaborating universities. Therefore, educational plans have been developed for the above MSc degrees. These plans envisage each degree comprising three modules that are common to all the degrees (3x10 ECTS credits), three specialist modules (3x10 ECTS credits) and a research project (1x60 ECTS credits). The courses should be aimed, not only to fill the identified European postgraduate education gap in radiological sciences, but also to provide a modular structure that is easily accessed by stakeholders for CPD training. It is anticipated that the European Masters will meet the academic training requirements of qualified 'experts', as defined by the European Commission and the IAEA. At the Norwegian University of Life Sciences (UMB) a pilot MSc in Radioecology has successfully been initiated in collaboration with UK and France.

  14. ARC: A compact, high-field, disassemblable fusion nuclear science facility and demonstration power plant

    NASA Astrophysics Data System (ADS)

    Sorbom, Brandon; Ball, Justin; Palmer, Timothy; Mangiarotti, Franco; Sierchio, Jennifer; Bonoli, Paul; Kasten, Cale; Sutherland, Derek; Barnard, Harold; Haakonsen, Christian; Goh, Jon; Sung, Choongki; Whyte, Dennis

    2014-10-01

    The Affordable, Robust, Compact (ARC) reactor conceptual design aims to reduce the size, cost, and complexity of a combined Fusion Nuclear Science Facility (FNSF) and demonstration fusion pilot power plant. ARC is a 270 MWe tokamak reactor with a major radius of 3.3 m, a minor radius of 1.1 m, and an on-axis magnetic field of 9.2 T. ARC has Rare Earth Barium Copper Oxide (REBCO) superconducting toroidal field coils with joints to allow disassembly, allowing for removal and replacement of the vacuum vessel as a single component. Inboard-launched current drive of 25 MW LHRF power and 13.6 MW ICRF power is used to provide a robust, steady state core plasma far from disruptive limits. ARC uses an all-liquid blanket, consisting of low pressure, slowly flowing Fluorine Lithium Beryllium (FLiBe) molten salt. The liquid blanket acts as a working fluid, coolant, and tritium breeder, and minimizes the solid material that can become activated. The large temperature range over which FLiBe is liquid permits blanket operation at 800-900 K with single phase fluid cooling and allows use of a high-efficiency Brayton cycle for electricity production in the secondary coolant loop.

  15. The nuclear analytical method in historical science: The case of precious metals from the New World

    SciTech Connect

    Barrandon, J.N.

    1994-01-01

    As in all the other areas of science, the nuclear method of analysis was brought about at the end of the 1940s new tools of research in the studies of man and his environment. If the applications of these methods are well-known in the field of archeology and of numismatics, it is an area where their use are more surprising, it is this that of economic history. The authors would like to illustrate this type of application using two examples: the diffusion in Europe of Potosian silver during the 16th and 17th centuries and also of Brazilian gold in 18th century. Until the 19th century most money was in the form of coinage and monetary history was mainly determined by the inflow of precious metals and the discoveries of new sources, especially in the Americas. Californian gold in the mid 19th century, Brazilian gold in the 18th and silver from Potosi or Mexico in the 16th and 18th centuries all strongly influenced the movement of price levels and European economic development. In these two cases the use of the activation methods developed around a cyclotron proved determinate.

  16. Go Nuclear? What We Make. Science and Technology Education in Philippine Society.

    ERIC Educational Resources Information Center

    Philippines Univ., Quezon City. Inst. for Science and Mathematics Education Development.

    The dialogue in this module (about a nuclear power plant in Morong, Bataan) is designed to help students answer these questions: (1) When did the construction of the plant begin? What delayed the construction? (2) How does a nuclear power plant produce electricity? What are the nuclear reactions involved? (3) How does a nuclear power plant control…

  17. TOPICAL REVIEW: Highly charged ions

    NASA Astrophysics Data System (ADS)

    Gillaspy, J. D.

    2001-10-01

    This paper reviews some of the fundamental properties of highly charged ions, the methods of producing them (with particular emphasis on table-top devices), and their use as a tool for both basic science and applied technology. Topics discussed include: charge dependence and scaling laws along isoelectronic or isonuclear sequences (for wavefunction size or Bohr radius, ionization energy, dipole transition energy, relativistic fine structure, hyperfine structure, Zeeman effect, Stark effect, line intensities, linewidths, strength of parity violation, etc), changes in angular momentum coupling schemes, selection rules, interactions with surfaces, electron-impact ionization, the electron beam ion trap (EBIT), ion accelerators, atomic reference data, cosmic chronometers, laboratory x-ray astrophysics, vacuum polarization, solar flares, ion implantation, ion lithography, ion microprobes (SIMS and x-ray microscope), nuclear fusion diagnostics, nanotechnology, quantum computing, cancer therapy and biotechnology.

  18. Nuclear magnetic resonance of 23Na ions interacting with the gramicidin channel.

    PubMed Central

    Monoi, H.

    1985-01-01

    Basic nuclear magnetic resonance (NMR) features of 23Na ions bound to the gramicidin channel (packaged into lecithin liposomes) were studied. The first binding constant K1 of Na+ was not significantly dependent on channel models employed. With the two-identical-site model (Model I), K1 was 13.7 (+/- 1.4) molal-1 (in the activity basis) at 25 degrees C; when the binding of a third ion was included (Model II), it was 13.0 (+/- 2.0) molal-1. The second binding constant K2 was model dependent; it was 1.6 (+/- 0.2) and 3-4 molal-1 for Models I and II, respectively. The rate constants, k-1 and k-2, of Na+ for exit from singly and doubly loaded channels, respectively, were 8 X 10(5) s-1 less than or equal to k-1 less than or equal to 3 X 10(6) s-1 and 8 X 10(5) s-1 less than or equal to k-2 less than or equal to 1.0 X 10(7) s-1 at 25 degrees C; the lower bound represents a rough approximation of k-1. The ratio k-2/k-1 was greater than one and did not greatly exceed 20. From the competition experiment, K1 of T1+ was 5.7 (+/- 0.6) X 10(2) molal-1. The longitudinal relaxation time T1 of bound 23Na in the state of single occupancy (T 1B sing) was virtually independent of models, 0.56 (+/- 0.03) and 0.55 (+/- 0.04) ms at 25 degrees C for Models I and II, respectively. For the state of double occupancy, T1 of bound 23Na (T 1B doub) was model dependent: 0.27 (+/- 0.01) and 0.4-0.6 ms for Models I and II. The correlation time tau c of bound 23Na was 2.2 (+/- 0.2) ns at 25 degrees C for single occupancy; tau c for double occupancy was not significantly different from this value. The estimated tau c was found to involve no appreciable contribution of the exchange of 23Na between the channel and the bulk solution. Thé quadrupole coupling constant chi was 1.0 (+/- 0.1) MHz for 23Na in single occupancy; chi for double occupancy was 0.9-1.4 MHz, depending on models. A lower bound of the average quadrupole coupling constant chi alpha was 0.13-0.26 MHz at 25 degrees C for 23Na in single

  19. Spectroscopy of Neutrons Generated Through Nuclear Reactions with Light Ions in Short-Pulse Laser-Interaction Experiments

    NASA Astrophysics Data System (ADS)

    Stoeckl, C.; Forrest, C. J.; Glebov, V. Yu.; Sangster, T. C.; Schroder, W. U.

    2015-11-01

    Neutron and charged-particle production has been studied in OMEGA EP laser-driven light-ion reactions including D-D fusion, D-9Be fusion, and 9Be(D,n)10B processes at deuteron energies from 1 to a few MeV. The energetic deuterons are produced in a primary target, which is irradiated with one short-pulse (10-ps) beam with energies of up to 1.25 kJ focused at the target front surface. Charged particles from the backside of the target create neutrons and ions through nuclear reactions in a secondary target placed closely behind the primary interaction target. Angle-dependent yields and spectra of the neutrons generated in the secondary target are measured using scintillator-photomultiplier-based neutron time-of-flight detectors and nuclear activation samples. A Thomson parabola is used to measure the spectra of the primary and secondary charged particles. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and DE-FC02-04ER54789.

  20. Upgrade of the MIT Linear Electrostatic Ion Accelerator (LEIA) for nuclear diagnostics development for Omega, Z and the NIF

    SciTech Connect

    Sinenian, N.; Manuel, M. J.-E.; Zylstra, A. B.; Rosenberg, M.; Waugh, C. J.; Rinderknecht, H. G.; Casey, D. T.; Sio, H.; Ruszczynski, J. K.; Zhou, L.; Johnson, M. Gatu; Frenje, J. A.; Seguin, F. H.; Li, C. K.; Petrasso, R. D.; Ruiz, C. L.; Leeper, R. J.

    2012-04-15

    The MIT Linear Electrostatic Ion Accelerator (LEIA) generates DD and D{sup 3}He fusion products for the development of nuclear diagnostics for Omega, Z, and the National Ignition Facility (NIF). Significant improvements to the system in recent years are presented. Fusion reaction rates, as high as 10{sup 7} s{sup -1} and 10{sup 6} s{sup -1} for DD and D{sup 3}He, respectively, are now well regulated with a new ion source and electronic gas control system. Charged fusion products are more accurately characterized, which allows for better calibration of existing nuclear diagnostics. In addition, in situ measurements of the on-target beam profile, made with a CCD camera, are used to determine the metrology of the fusion-product source for particle-counting applications. Finally, neutron diagnostics development has been facilitated by detailed Monte Carlo N-Particle Transport (MCNP) modeling of neutrons in the accelerator target chamber, which is used to correct for scattering within the system. These recent improvements have resulted in a versatile platform, which continues to support the existing nuclear diagnostics while simultaneously facilitating the development of new diagnostics in aid of the National Ignition Campaign at the National Ignition Facility.

  1. Combined effects of nuclear and electronic energy losses in solids irradiated with a dual-ion beam

    SciTech Connect

    Thome, Lionel; Debelle, Aurelien; Garrido, Frederico; Trocellier, Patrick; Serruys, Yves; Miro, Sandrine

    2013-04-08

    Single and dual-beam irradiations of oxide (c-ZrO{sub 2}, MgO, Gd{sub 2}Ti{sub 2}O{sub 7}) and carbide (SiC) single crystals were performed to study combined effects of nuclear (S{sub n}) and electronic (S{sub e}) energy losses. Rutherford backscattering experiments in channeling conditions show that the S{sub n}/S{sub e} cooperation induces a strong decrease of the irradiation-induced damage in SiC and MgO and almost no effects in c-ZrO{sub 2} and Gd{sub 2}Ti{sub 2}O{sub 7}. The healing process is ascribed to electronic excitations arising from the electronic energy loss of swift ions. These results present a strong interest for both fundamental understanding of the ion-solid interactions and technological applications in the nuclear industry where expected cooperative S{sub n}/S{sub e} effects may lead to the preservation of the integrity of nuclear devices.

  2. Science.

    ERIC Educational Resources Information Center

    Roach, Linda E., Ed.

    This document contains the following papers on science instruction and technology: "A 3-D Journey in Space: A New Visual Cognitive Adventure" (Yoav Yair, Rachel Mintz, and Shai Litvak); "Using Collaborative Inquiry and Interactive Technologies in an Environmental Science Project for Middle School Teachers: A Description and Analysis" (Patricia…

  3. Optical properties of mercury ion thruster exhausts and implications for science instruments

    NASA Technical Reports Server (NTRS)

    Monahan, K. M.; Goldstein, R.

    1974-01-01

    Emission from the exhaust plume of a 30 cm mercury ion thruster was measured from 160 to 600 nm as a function of axial and radial distance from the thruster discharge chamber. The spectrally dispersed absolute intensities were used to construct an empirical volume rate function. The function was integrated along a typical instrument field of view, and the resulting apparent brightness was compared with instrument sensitivities to evaluate the extent of optical interference. Most of the emitted radiation came from UV lines of excited mercury atoms and ions, with no observable continuum emission. The intensity levels degraded rapidly with distance from the thruster so that optical interference was negligible for fields of view not intercepting the beam axis. The operation of only one instrument, a zodiacal photopolarimeter, was considered incompatible with simultaneous thruster operation.

  4. Interaction of heavy ions with nuclear chromatin: Spatiotemporal investigations of biological responses in a cellular environment

    NASA Astrophysics Data System (ADS)

    Jakob, B.; Taucher-Scholz, G.

    2006-04-01

    Ion beams offer the possibility to generate strictly localized DNA lesions within subregions of a cell nucleus. The distribution of the ion-induced damage can be indirectly visualized by immunocytochemical detection of repair-related proteins as radiation-induced foci. The proteins analyzed here were the double-strand break marker γ-H2AX, the excision repair and replication protein PCNA and the cell cycle regulator CDKN1A. A newly developed adjustable sample holder is now used to apply an irradiation geometry characterized by a small angle between the plane of the cellular monolayer and the incoming ion beam. This allows the spatial analysis of protein accumulations along ion trajectories, revealing an unexpected clustering after irradiation with low-energy zinc ions. The patterns of protein aggregation observed show considerable intrinsic variability, but similar patterns of protein clustering were obtained for functionally different proteins irrespective of the type of ion beam applied, confirming previous observations for lower and higher LET beams. Foci sizes within ion tracks were found to be larger for γ-H2AX foci in comparison to CDKN1A foci, in agreement with the known histone H2AX phosphorylation response. The results suggest that not the pattern of dose deposition but the underlying chromatin structure determines the distribution of protein clusters along tracks. Therefore, the requirement of time-lapse studies using live cells is emphasized for future studies on chromatin movement as a potential component of the DNA damage response.

  5. U.S. Heavy Ion Beam Science towards inertial fusion energy

    SciTech Connect

    Logan, B.G.; Baca, D.; Barnard, J.J.; Bieniosek, F.M.; Burkhart, C.; Celata, C.M.; Chacon-Golcher, E.; Cohen, R.H.; Davidson, R.C.; Efthimion P.; Faltens, A.; Friedman, A.; Grisham, L.; Grote, D.P.; Haber, I.; Henestroza, E.; Kaganovich, I.; Kishek, R.A.; Kwan, J.W.; Lee, E.P.; Lee, W.W.; Leitner, M.; Lund, S.M.; Meier, W.R.; Molvik, A.W.; O'Shea, P.G.; Olson, C.; Olson, R.E.; Prost, L.R.; Qin, H.; Reiser, M.; Rose, D.; Sabbi, G.; Seidl, P.A.; Sharp, W.M.; Shuman, D.B.; Vay, J-L.; Waldron, W.L.; Welch, D.; Westenskow, G.A.; Yu, S.S.

    2002-10-01

    Significant experimental and theoretical progress in the U.S heavy-ion fusion (HIF) program is reported in modeling and measurements of intense space-charge-dominated heavy ion and electron beams. Measurements of the transport of a well-matched and aligned high current (0.2A) 1.0 MeV potassium ion beam through 10 electric quadrupoles, with a fill factor of 60%, shows no emittance growth within experimental measurement uncertainty, as expected from the simulations. Another experiment shows that passing a beam through an aperture can reduce emittance to near the theoretical limits, and that plasma neutralization of the beam's space-charge can greatly reduce the focal spot radius. Measurements of intense beamlet current density, emittance, charge-state purity, and energy spread from a new, high-brightness, Argon plasma source for HIF experiments are described. New theory and simulations of neutralization of intense beam space charge with plasma in various focusing chamber configurations indicate that near-emittance-limited beam focal spot sizes can be obtained even with beam perveance an order of magnitude higher than in earlier HIF focusing experiments.

  6. NUMEN Project @ LNS : Heavy ions double charge exchange reactions towards the 0νββ nuclear matrix element determination

    SciTech Connect

    Agodi, C. Calabretta, L.; Calanna, A.; Carbone, D.; Cavallaro, M.; Colonna, M.; Cuttone, G.; Finocchiaro, P.; Pandola, L.; Rifuggiato, D.; Tudisco, S.; Cappuzzello, F.; Greco, V.; Bonanno, D. L.; Bongiovanni, D. G.; Longhitano, F.; Branchina, V.; Foti, A.; Lo Presti, D.; Lanzalone, G.; and others

    2015-10-28

    In the NUMEN Project it is proposed an innovative technique to access the nuclear matrix elements entering in the expression of the life-time of the neutrinoless double beta decay, using relevant cross sections of double charge exchange reactions. A key aspect is the use of MAGNEX large acceptance magnetic spectrometer, for the detection of the ejectiles, and of the INFN Laboratori Nazionali del Sud (LNS) K800 Superconducting Cyclotron (CS), for the acceleration of the required high resolution and low emittance heavy-ion beams.

  7. NUMEN Project @ LNS : Heavy ions double charge exchange reactions towards the 0νββ nuclear matrix element determination

    NASA Astrophysics Data System (ADS)

    Agodi, C.; Cappuzzello, F.; Bonanno, D. L.; Bongiovanni, D. G.; Branchina, V.; Calabretta, L.; Calanna, A.; Carbone, D.; Cavallaro, M.; Colonna, M.; Cuttone, G.; Foti, A.; Finocchiaro, P.; Greco, V.; Lanzalone, G.; Lo Presti, D.; Longhitano, F.; Muoio, A.; Pandola, L.; Rifuggiato, D.; Tudisco, S.

    2015-10-01

    In the NUMEN Project it is proposed an innovative technique to access the nuclear matrix elements entering in the expression of the life-time of the neutrinoless double beta decay, using relevant cross sections of double charge exchange reactions. A key aspect is the use of MAGNEX large acceptance magnetic spectrometer, for the detection of the ejectiles, and of the INFN Laboratori Nazionali del Sud (LNS) K800 Superconducting Cyclotron (CS), for the acceleration of the required high resolution and low emittance heavy-ion beams.

  8. A simple double quantum coherence ESR sequence that minimizes nuclear modulations in Cu2+-ion based distance measurements

    NASA Astrophysics Data System (ADS)

    Ruthstein, Sharon; Ji, Ming; Shin, Byong-kyu; Saxena, Sunil

    2015-08-01

    Double quantum coherence (DQC) ESR is a sensitive method to measure magnetic dipolar interactions between spin labels. However, the DQC experiment on Cu2+ centers presents a challenge at X-band. The Cu2+ centers are usually coordinated to histidine residues in proteins. The electron-nuclear interaction between the Cu2+ ion and the remote nitrogen in the imidazole ring can interfere with the electron-electron dipolar interaction. Herein, we report on a modified DQC experiment that has the advantage of reduced contributions from electron-nuclear interactions, which enhances the resolution of the DQC signal to the electron-electron dipolar modulations. The modified pulse-sequence is verified on Cu2+-NO system in a polyalanine-based peptide and on a coupled Cu2+ system in a polyproline-based peptide. The modified DQC data were compared with the DEER data and good agreement was found.

  9. Strategies for complete mitochondrial genome sequencing on Ion Torrent PGM™ platform in forensic sciences.

    PubMed

    Zhou, Yishu; Guo, Fei; Yu, Jiao; Liu, Feng; Zhao, Jinling; Shen, Hongying; Zhao, Bin; Jia, Fei; Sun, Zhu; Song, He; Jiang, Xianhua

    2016-05-01

    Next generation sequencing (NGS) is a time saving and cost-efficient method to detect the complete mitochondrial genome (mtGenome) compared to Sanger sequencing. In this study we focused on developing strategies for mtGenome sequencing on the Ion Torrent PGM™ platform and NGS data analysis. With our experience, 4, 15 and 30 samples could be loaded onto Ion 314™, Ion 316™ and Ion 318™ chips respectively at a pooling concentration of 26pM, achieving to sufficient average coverage of ≥1500 × and well strand balance of 1.05. Data processing software is essential to NGS mega data analysis. The in-house Perl scripts were developed for primary data analysis to screen out uncertain positions and samples from variant call format (VCF) reports and for pedigree study to perform pairwise comparisons. The Integrative Genomic Viewer (IGV) and the NextGENe software were introduced to secondary data analysis. The mthap and EMMA were employed for haplogroup assignment. The dataset was reviewed and approved by the EMPOP as the final version, which showed 2.66% error rate generated from the Torrent Variant Caller (TVC). Across the mtGenome, 4022 variants were found at 725 nucleotide positions, where ratio of transitions to transversions was estimated at 20.89:1 and 22.18% of variants was concentrated at hypervariable segments I and II (HVS-I and HVS-II). Totally, 107 complete mtGenome haplotypes were observed from 107 Northern Chinese Han and assigned to 88 haplogroups. The random match probability (RMP) of complete mtGenome was calculated as 0.009345794, decreasing 26.19% by comparison to that of HVS-I only, and the haplotype diversity (HD) was evaluated as 1, increasing 0.33% by comparison to that of HVS-I only. Principal component analysis (PCA) showed that our population was clustered to East and Southeast Asians. The strategies in this study are suitable for complete mtGenome sequencing on Ion Torrent PGM™ platform and Northern Chinese Han (EMP00670) is the first

  10. Preorganized and Immobilized Ligands for Metal Ion Separations

    SciTech Connect

    Paine, Robert T.

    2015-07-01

    The research project, in the period 2003-2015, was focused on the discovery of fundamental new principles in f-element ion coordination chemistry and the application of the new knowledge to the development of advanced detection/separations reagents and methods for these ions. The findings relate to the Nation's efforts to safely and efficiently process nuclear materials. In addition, the project provided training for young scientists needed to maintain the Nation's preeminence in nuclear science.

  11. Superconducting magnet performance for 28 GHz electron cyclotron resonance ion source developed at the Korea Basic Science Institute

    SciTech Connect

    Park, Jin Yong; Choi, Seyong; Lee, Byoung-Seob; Yoon, Jang-Hee; Ok, Jung-Woo; Shin, Chang Seouk; Won, Mi-Sook; Kim, Byoung Chul; Ahn, Jung Keun

    2014-02-15

    A superconducting magnet for use in an electron cyclotron resonance ion source was developed at the Korea Basic Science Institute. The superconducting magnet is comprised of three solenoids and a hexapole magnet. According to the design value, the solenoid magnets can generate a mirror field, resulting in axial magnetic fields of 3.6 T at the injection area and 2.2 T at the extraction region. A radial field strength of 2.1 T can also be achieved by hexapole magnet on the plasma chamber wall. NbTi superconducting wire was used in the winding process following appropriate techniques for magnet structure. The final assembly of the each magnet involved it being vertically inserted into the cryostat to cool down the temperature using liquid helium. The performance of each solenoid and hexapole magnet was separately verified experimentally. The construction of the superconducting coil, the entire magnet assembly for performance testing and experimental results are reported herein.

  12. Nuclear Science Division, Annual report, October 1, 1988--December 31, 1990

    SciTech Connect

    Poskanzer, A.M.; Deleplanque, M.A.; Firestone, R.B.; Lofdahl, J.B.

    1991-04-01

    This report contains short papers of research conducted in the following areas: Low energy research program; bevalac research program; ultrarelativistic research program; nuclear theory program; nuclear data evaluation; and, 88-inch cyclotron operations.

  13. Strengthening the fission reactor nuclear science and engineering program at UCLA. Final technical report

    SciTech Connect

    Okrent, D.

    1997-06-23

    This is the final report on DOE Award No. DE-FG03-92ER75838 A000, a three year matching grant program with Pacific Gas and Electric Company (PG and E) to support strengthening of the fission reactor nuclear science and engineering program at UCLA. The program began on September 30, 1992. The program has enabled UCLA to use its strong existing background to train students in technological problems which simultaneously are of interest to the industry and of specific interest to PG and E. The program included undergraduate scholarships, graduate traineeships and distinguished lecturers. Four topics were selected for research the first year, with the benefit of active collaboration with personnel from PG and E. These topics remained the same during the second year of this program. During the third year, two topics ended with the departure o the students involved (reflux cooling in a PWR during a shutdown and erosion/corrosion of carbon steel piping). Two new topics (long-term risk and fuel relocation within the reactor vessel) were added; hence, the topics during the third year award were the following: reflux condensation and the effect of non-condensable gases; erosion/corrosion of carbon steel piping; use of artificial intelligence in severe accident diagnosis for PWRs (diagnosis of plant status during a PWR station blackout scenario); the influence on risk of organization and management quality; considerations of long term risk from the disposal of hazardous wastes; and a probabilistic treatment of fuel motion and fuel relocation within the reactor vessel during a severe core damage accident.

  14. Evaluation of CFETR as a Fusion Nuclear Science Facility using multiple system codes

    NASA Astrophysics Data System (ADS)

    Chan, V. S.; Costley, A. E.; Wan, B. N.; Garofalo, A. M.; Leuer, J. A.

    2015-02-01

    This paper presents the results of a multi-system codes benchmarking study of the recently published China Fusion Engineering Test Reactor (CFETR) pre-conceptual design (Wan et al 2014 IEEE Trans. Plasma Sci. 42 495). Two system codes, General Atomics System Code (GASC) and Tokamak Energy System Code (TESC), using different methodologies to arrive at CFETR performance parameters under the same CFETR constraints show that the correlation between the physics performance and the fusion performance is consistent, and the computed parameters are in good agreement. Optimization of the first wall surface for tritium breeding and the minimization of the machine size are highly compatible. Variations of the plasma currents and profiles lead to changes in the required normalized physics performance, however, they do not significantly affect the optimized size of the machine. GASC and TESC have also been used to explore a lower aspect ratio, larger volume plasma taking advantage of the engineering flexibility in the CFETR design. Assuming the ITER steady-state scenario physics, the larger plasma together with a moderately higher BT and Ip can result in a high gain Qfus ˜ 12, Pfus ˜ 1 GW machine approaching DEMO-like performance. It is concluded that the CFETR baseline mode can meet the minimum goal of the Fusion Nuclear Science Facility (FNSF) mission and advanced physics will enable it to address comprehensively the outstanding critical technology gaps on the path to a demonstration reactor (DEMO). Before proceeding with CFETR construction steady-state operation has to be demonstrated, further development is needed to solve the divertor heat load issue, and blankets have to be designed with tritium breeding ratio (TBR) >1 as a target.

  15. Ion Beam Modification of Materials

    SciTech Connect

    Averback, B; de la Rubia, T D; Felter, T E; Hamza, A V; Rehn, L E

    2005-10-10

    This volume contains the proceedings of the 14th International Conference on Ion Beam Modification of Materials, IBMM 2004, and is published by Elsevier-Science Publishers as a special issue of Nuclear Instruments and Methods B. The conference series is the major international forum to present and discuss recent research results and future directions in the field of ion beam modification, synthesis and characterization of materials. The first conference in the series was held in Budapest, Hungary, 1978, and subsequent conferences were held every two years at locations around the Globe, most recently in Japan, Brazil, and the Netherlands. The series brings together physicists, materials scientists, and ion beam specialists from all over the world. The official conference language is English. IBMM 2004 was held on September 5-10, 2004. The focus was on materials science involving both basic ion-solid interaction processes and property changes occurring either during or subsequent to ion bombardment and ion beam processing in relation to materials and device applications. Areas of research included Nanostructures, Multiscale Modeling, Patterning of Surfaces, Focused Ion Beams, Defects in Semiconductors, Insulators and Metals, Cluster Beams, Radiation Effects in Materials, Photonic Devices, Ion Implantation, Ion Beams in Biology and Medicine including New Materials, Imaging, and Treatment.

  16. Nuclear Power: Pros and Cons. What We Make. Science and Technology Education in Philippine Society.

    ERIC Educational Resources Information Center

    Philippines Univ., Quezon City. Inst. for Science and Mathematics Education Development.

    This module brings together in a panel discussion opposing views and supporting data on the first Philippine nuclear power plant in Morong, Bataan. It extends the discussion of issues and ideas about nuclear power in the dialogue "Go Nuclear" (which should be read before starting this panel discussion). The module deals with the environmental,…

  17. The Science of Nuclear Materials: A Modular, Laboratory-based Curriculum

    SciTech Connect

    Cahill, C.L.; Feldman, G.; Briscoe, W.J.

    2014-06-15

    The development of a curriculum for nuclear materials courses targeting students pursuing Master of Arts degrees at The George Washington University is described. The courses include basic concepts such as radiation and radioactivity as well as more complex topics such the nuclear fuel cycle, nuclear weapons, radiation detection and technological aspects of non-proliferation.

  18. The Science of Nuclear Materials: A Modular, Laboratory-based Curriculum

    NASA Astrophysics Data System (ADS)

    Cahill, C. L.; Feldman, G.; Briscoe, W. J.

    2014-06-01

    The development of a curriculum for nuclear materials courses targeting students pursuing Master of Arts degrees at The George Washington University is described. The courses include basic concepts such as radiation and radioactivity as well as more complex topics such the nuclear fuel cycle, nuclear weapons, radiation detection and technological aspects of non-proliferation.

  19. A Brief History in Time of Ion Traps and their Achievements in Science

    DOE R&D Accomplishments Database

    Holzscheiter, M. H.

    1994-01-01

    A short history of the development of the ion storage technique for precision experiments is given. This is by no means meant to be a complete review of the field, but the intend is to use a few specific examples to describe how the persistence, ingenuity, and experimental skill of a few people has generated the core of a field which is now growing at an ever faster pace, spreading into new areas, developing sub fields, and allowing a view at nature, using very modest experimental equipment, which by far rivals even the most ambitious dreams of high energy physics.

  20. Electron collisions with atoms, ions, molecules, and surfaces: Fundamental science empowering advances in technology.

    PubMed

    Bartschat, Klaus; Kushner, Mark J

    2016-06-28

    Electron collisions with atoms, ions, molecules, and surfaces are critically important to the understanding and modeling of low-temperature plasmas (LTPs), and so in the development of technologies based on LTPs. Recent progress in obtaining experimental benchmark data and the development of highly sophisticated computational methods is highlighted. With the cesium-based diode-pumped alkali laser and remote plasma etching of Si3N4 as examples, we demonstrate how accurate and comprehensive datasets for electron collisions enable complex modeling of plasma-using technologies that empower our high-technology-based society. PMID:27317740

  1. Performance Testing of Yardney Li-Ion Cells and Batteries in Support of JPL's 2009 Mars Science Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Smart, M.C.; Ratnakumar, B.V.; Whitcanack, L. D.; Dewell, E. A.; Jones, L. E.; Salvo, C. G.; Puglia, F. J.; Cohen, S.; Gitzendanner, R.

    2008-01-01

    In 2009, JPL is planning to launch an unmanned rover mission to the planet Mars. This mission, referred to as the Mars Science Laboratory (MSL), will involve the use of a rover that is much larger than the previously developed Spirit and Opportunity Rovers for the 2003 Mars Exploration Rover (MER) mission, that are currently still in operation on the surface of the planet after more than three years. Part of the reason that the MER rovers have operated so successfully, far exceeding the required mission duration of 90 sols, is that they possess robust Li-ion batteries, manufactured by Yardney Technical Products, which have demonstrated excellent life characteristics. Given the excellent performance characteristics displayed, similar lithium-ion batteries have been projected to successfully meet the mission requirements of the up-coming MSL mission. Although comparable in many facets, such as being required to operate over a wide temperature range (-20 to 40 C), the MSL mission has more demanding performance requirements compared to the MER mission, including much longer mission duration (approx. 687 sols vs. 90 sols), higher power capability, and the need to withstand higher temperature excursions. In addition, due to the larger rover size, the MSL mission necessitates the use of a much larger battery to meet the energy, life, and power requirements. In order to determine the viability of meeting these requirements, a number of performance verification tests were performed on 10 Ah Yardney lithium-ion cells (MER design) under MSL-relevant conditions, including mission surface operation simulation testing. In addition, the performance of on-going ground life testing of 10 Ah MER cells and 8-cell batteries will be discussed in the context of capacity loss and impedance growth predictions.

  2. Nuclear safety analyses and core design calculations to convert the Texas A & M University Nuclear Science Center reactor to low enrichment uranium fuel. Final report

    SciTech Connect

    Parish, T.A.

    1995-03-02

    This project involved performing the nuclear design and safety analyses needed to modify the license issued by the Nuclear Regulatory Commission to allow operation of the Texas A& M University Nuclear Science Center Reactor (NSCR) with a core containing low enrichment uranium (LEU) fuel. The specific type of LEU fuel to be considered was the TRIGA 20-20 fuel produced by General Atomic. Computer codes for the neutronic analyses were provided by Argonne National Laboratory (ANL) and the assistance of William Woodruff of ANL in helping the NSCR staff to learn the proper use of the codes is gratefully acknowledged. The codes applied in the LEU analyses were WIMSd4/m, DIF3D, NCTRIGA and PARET. These codes allowed full three dimensional, temperature and burnup dependent calculations modelling the NSCR core to be performed for the first time. In addition, temperature coefficients of reactivity and pulsing calculations were carried out in-house, whereas in the past this modelling had been performed at General Atomic. In order to benchmark the newly acquired codes, modelling of the current NSCR core with highly enriched uranium fuel was also carried out. Calculated results were compared to both earlier licensing calculations and experimental data and the new methods were found to achieve excellent agreement with both. Therefore, even if an LEU core is never loaded at the NSCR, this project has resulted in a significant improvement in the nuclear safety analysis capabilities established and maintained at the NSCR.

  3. Transverse Isotropy: Disappearance of Mott oscillations in sub-barrier elastic scattering of identical heavy ions and the nuclear ineraction

    NASA Astrophysics Data System (ADS)

    Hussein, Mahir; Canto, L. Felipe; Donangelo, Raul

    2015-04-01

    It is found that at a certain critical value of the Sommerfeld parameter the Mott oscillations usually present in the scattering of identical heavy ions, disappear and the cross section becomes quite flat. We call this effect Transverse Isotropy (TI) (L. F. Canto, R. Donangelo and M. S. Hussein, Mod. Phys. Lett. A, 16), 1027 (2001). The critical value of the Sommerfeld parameter at which TI sets in is found to be ηc =√{ 3 s + 2 } , where s is the spin of the nuclei participating in the scattering. No TI is found in the Mott scattering of identical Fermionic nuclei. The critical center of mass energy corresponding to ηc is found to be Ec = 0.40 MeV for α + α (s = 0), and 1.2 MeV for 6 Li + 6 LI (s = 1). We further found that the inclusion of the nuclear interaction induces a significant modification in the TI. This can be verified by calculating the second derivative of the cross section at θ =90° . We suggest measurements at these sub-barrier energies for the purpose of extracting useful information about the nuclear interaction between light heavy ions. Supported by CNPq, FAPESP, FAPERJ, CAPES/ITA.

  4. The determination of the Fe sup 2+ /Fe sup 3+ ratio in simulated nuclear waste glass by ion chromatography

    SciTech Connect

    Jantzen, C.M.

    1990-10-01

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass in the Defense Waste Processing Facility (DWPF). In this facility, control of the oxidation/reduction (redox) equilibrium in the glass melter is critical for processing of the nuclear waste. Therefore, the development of a rapid and reliable analytical method for the determination of the redox equilibrium is of considerable interest. Redox has been determined by measuring the ratio of ferrous to ferric ions in the glass melt. Two analytical techniques for glass redox measurement have been investigated for the DWPF: Mossbauer Spectroscopy which may be subject to interferences from the radiation in actual waste, and a rapid and simple chemical dissolution/spectrophotometric technique. Comparisons of these techniques have been made at several laboratories including Clemson University. In the study attached, the determination of the redox ratio by Ion Chromatography (IC) was investigated as a potential new technology. Clemson University performed IC analyses on the same glasses as previously examined by wet chemical and Mossbauer techniques. Results from all three techniques were highly correlated and IC was reported to be a promising new technology for redox measurement. 19 refs., 19 figs., 5 tabs.

  5. Leach studies on cement-solidified ion exchange resins from decontamination processes at operating nuclear power stations

    SciTech Connect

    McIsaac, C.V.; Akers, D.W.; McConnell, J.W.; Morcos, N.

    1992-08-01

    The effects of varying pH and leachant compositions on the physical stability and leachability of radionuclides and chelating agents were determined for cement-solidified decontamination ion-exchange resin wastes collected from two operating commercial light water reactors. Small scale waste-form specimens were collected during waste solidifications performed at the Brunswick Steam Electric Plant Unit 1 and at the James A. FitzPatrick Nuclear Power Station. The collected specimens were leach tested, and their compressive strength was measured in accordance with the Nuclear Regulatory Commission`s ``Technical Position on Waste Form`` (Revision 1), from the Low-Level Waste Management Branch. Leachates from these studies were analyzed for radionuclides, selected transition metals, and chelating agents to assess the leachability of these waste form constituents. Leachants used for the study were deionized water, simulated seawater, and groundwater compositions similar to those found at Barnwell, South Carolina and Hanford, Washington. Results of this study indicate that initial leachant pH does not affect leachate pH or releases from cement-solidified decontamination ion-exchange resin waste forms. However, differences in leachant composition and the presence of chelating agents may affect the releases of radionuclides and chelating agents. In addition, results from this study indicate that the cumulative releases of radionuclides and chelating agents observed for forms that disintegrated were similar to those for forms that maintained their general physical integrity.

  6. Leach studies on cement-solidified ion exchange resins from decontamination processes at operating nuclear power stations

    SciTech Connect

    McIsaac, C.V.; Akers, D.W.; McConnell, J.W.; Morcos, N.

    1992-01-01

    The effects of varying pH and leachant compositions on the physical stability and leachability of radionuclides and chelating agents were determined for cement-solidified decontamination ion-exchange resin wastes collected from two operating commercial light water reactors. Small scale waste-form specimens were collected during waste solidifications performed at the Brunswick Steam Electric Plant Unit 1 and at the James A. FitzPatrick Nuclear Power Station. The collected specimens were leach tested, and their compressive strength was measured in accordance with the Nuclear Regulatory Commission's Technical Position on Waste Form'' (Revision 1), from the Low-Level Waste Management Branch. Leachates from these studies were analyzed for radionuclides, selected transition metals, and chelating agents to assess the leachability of these waste form constituents. Leachants used for the study were deionized water, simulated seawater, and groundwater compositions similar to those found at Barnwell, South Carolina and Hanford, Washington. Results of this study indicate that initial leachant pH does not affect leachate pH or releases from cement-solidified decontamination ion-exchange resin waste forms. However, differences in leachant composition and the presence of chelating agents may affect the releases of radionuclides and chelating agents. In addition, results from this study indicate that the cumulative releases of radionuclides and chelating agents observed for forms that disintegrated were similar to those for forms that maintained their general physical integrity.

  7. Kinetics of oxygen exchange between bisulfite ion and water as studied by oxygen-17 nuclear magnetic resonance spectroscopy

    SciTech Connect

    Horner, D.A.

    1984-08-01

    The nuclear magnetic relaxation times of oxygen-17 have been measured in aqueous sodium bisulfite solutions in the pH range from 2.5 to 5 as a function of temperature, pH, and S(IV) concentration, at an ionic strength of 1.0 m. The rate law for oxygen exchange between bisulfite ion and water was obtained from an analysis of the data, and is consistent with oxygen exchange occurring via the reaction SO/sub 2/ + H/sub 2/O right reversible H/sup +/ + SHO/sub 3//sup -/. The value of k/sub -1/ is in agreement with relaxation measurements. Direct spectroscopic evidence was found for the existence of two isomers of bisulfite ion: one with the proton bonded to the sulfur (HSO/sub 3//sup -/) and the other with the proton bonded to an oxygen (SO/sub 3/H/sup -/). (The symbol SHO/sub 3//sup -/ in the above chemical equation refers to both isomeric forms of bisulfite ion.) The relative amounts of the two isomers were determined as a function of temperature, and the rate and mechanism of oxygen exchange between the two was investigated. One of the two isomers, presumably SO/sub 3/H/sup -/, exchanges oxygens with water much more rapidly than does the other. A two-pulse sequence was developed which greatly diminished the solvent peak in the NMR spectrum.

  8. Space life sciences: ground-based iron-ion biology and physics, including shielding.

    PubMed

    2005-01-01

    This session of the 35th Scientific Assembly of COSPAR focuses on recent advances in ground-based studies of high-energy (mainly 1 GeV/nucleon) iron ions. The theme is interdisciplinary in nature and encompasses both physics and biology reports. Manned space missions, including those of the International Space Station and the planned Mars mission, will require the extended presence of crew members in space. As such, a better understanding in shielding design--in radiation detection as well as radio-protection based on simulating studies--is much needed. On the other hand, a better understanding of the basic mechanisms that modulate radiation sensitivity; in determining DNA double strand breaks, chromosomal aberrations, and the induction of apoptosis, will provide important information for an interventional approach. PMID:15929229

  9. Webcam science -- Can a useful transmission ion microscope be built for less than 1000?

    NASA Astrophysics Data System (ADS)

    Pallone, Arthur; Barnes, Patrick

    2013-03-01

    Scientists and engineers build simple, low-cost, webcam-based instruments for use in many disciplines. Analysis of the optical signal received through the three broadband color filters - red, green and blue - form the basis of many of those instruments. The CMOS sensors in webcam pixels also produce signals in response to ionizing radiations - such as alpha particles from a radioactive source. Simple alpha radiography has been demonstrated with an alpha source and a webcam modified to expose the sensors. The performance of a direct imaging transmission ion microscope built from such a modified webcam and a commercially available polonium-210 antistatic device mounted to an optics rail is analyzed. Potential uses and limitations of the microscope are also discussed. Undergraduate student

  10. Modeling the Action of Protons and Heavier Ions in Biological Targets: Nuclear Interactions in Hadrontherapy and Space Radiation Protection

    NASA Astrophysics Data System (ADS)

    Ballarini, F.; Battistoni, G.; Cerutti, F.; Ferrari, A.; Gadioli, E.; Garzelli, M. V.; Ottolenghi, A.; Parini, V.; Pelliccioni, M.; Pinsky, L.; Sala, P.; Scannicchio, D.

    2005-05-01

    Tumor treatment with protons and Carbon ions can allow for a better optimization of Tumor Control Probability and Normal Tissue Complication Probability, especially for radio-resistant tumors. Exposure to protons and heavier ions is also of concern for manned space missions such as future travels to the Moon and Mars. Nuclear reactions with the human body constituents, the beam line components (for hadrontherapy), and the spacecraft walls and shielding (for space radiation protection) can significantly modify the characteristics of the primary radiation field and thus the dose distributions in the various target tissues. In this context the FLUKA Monte Carlo transport code, integrated with radiobiological data and coupled with anthropomorphic phantoms, was applied to the characterization of therapeutic proton beams and the calculation of space radiation organ doses, with focus on the role of nuclear interactions. Besides absorbed and equivalent doses, distributions of ``biological'' dose (modeled as the average number of DNA clustered lesions per cell induced in a given organ or tissue) were calculated as well. Concerning space radiation protection, exposure to Galactic Cosmic Rays (GCR) and Solar Particle Events (SPE) under different shielding conditions was simulated. Both for hadrontherapy and for space radiation exposure, nuclear reaction products were found to play a more important role for the equivalent and ``biological'' dose than for the absorbed dose. Furthermore, while for SPEs the doses (both absorbed and equivalent/``biological'') decreased dramatically by increasing the shield thickness, the GCR doses showed a slight shielding dependence. Overall, these examples of application of FLUKA to radiotherapy and radiation protection problems emphasized the need of further models and data, typically double-differential cross sections for nucleus-nucleus interactions at energies below a few hundred MeV/n.

  11. Modeling the Action of Protons and Heavier Ions in Biological Targets: Nuclear Interactions in Hadrontherapy and Space Radiation Protection

    SciTech Connect

    Ballarini, F.; Ottolenghi, A.; Scannicchio, D.; Battistoni, G.; Pelliccioni, M.; Sala, P.; Cerutti, F.; Gadioli, E.; Ferrari, A.; Garzelli, M. V.; Parini, V.; Pinsky, L.

    2005-05-24

    Tumor treatment with protons and Carbon ions can allow for a better optimization of Tumor Control Probability and Normal Tissue Complication Probability, especially for radio-resistant tumors. Exposure to protons and heavier ions is also of concern for manned space missions such as future travels to the Moon and Mars. Nuclear reactions with the human body constituents, the beam line components (for hadrontherapy), and the spacecraft walls and shielding (for space radiation protection) can significantly modify the characteristics of the primary radiation field and thus the dose distributions in the various target tissues. In this context the FLUKA Monte Carlo transport code, integrated with radiobiological data and coupled with anthropomorphic phantoms, was applied to the characterization of therapeutic proton beams and the calculation of space radiation organ doses, with focus on the role of nuclear interactions. Besides absorbed and equivalent doses, distributions of 'biological' dose (modeled as the average number of DNA clustered lesions per cell induced in a given organ or tissue) were calculated as well. Concerning space radiation protection, exposure to Galactic Cosmic Rays (GCR) and Solar Particle Events (SPE) under different shielding conditions was simulated. Both for hadrontherapy and for space radiation exposure, nuclear reaction products were found to play a more important role for the equivalent and 'biological' dose than for the absorbed dose. Furthermore, while for SPEs the doses (both absorbed and equivalent/'biological') decreased dramatically by increasing the shield thickness, the GCR doses showed a slight shielding dependence. Overall, these examples of application of FLUKA to radiotherapy and radiation protection problems emphasized the need of further models and data, typically double-differential cross sections for nucleus-nucleus interactions at energies below a few hundred MeV/n.

  12. High Energy Density Plasmas (HEDP) for studies of basic nuclear science relevant to Stellar and Big Bang Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Frenje, Johan

    2014-06-01

    Thermonuclear reaction rates and nuclear processes have been explored traditionally by means of conventional accelerator experiments, which are difficult to execute at conditions relevant to stellar nucleosynthesis. Thus, nuclear reactions at stellar energies are often studied through extrapolations from higher-energy data or in low-background underground experiments. Even when measurements are possible using accelerators at relevant energies, thermonuclear reaction rates in stars are inherently different from those in accelerator experiments. The fusing nuclei are surrounded by bound electrons in accelerator experiments, whereas electrons occupy mainly continuum states in a stellar environment. Nuclear astrophysics research will therefore benefit from an enlarged toolkit for studies of nuclear reactions. In this presentation, we report on the first use of High Energy Density Plasmas for studies of nuclear reactions relevant to basic nuclear science, stellar and Big Bang nucleosynthesis. These experiments were carried out at the OMEGA laser facility at University of Rochester and the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory, in which spherical capsules were irradiated with powerful lasers to compress and heat the fuel to high enough temperatures and densities for nuclear reactions to occur. Four experiments will be highlighted in this presentation. In the first experiment, the differential cross section for the elastic neutron-triton (n-T) scattering at 14.1 MeV was measured with significantly higher accuracy than achieved in accelerator experiments. In the second experiment, the T(t,2n)4He reaction, a mirror reaction to the 3He(3He,2p)4He reaction that plays an important role in the proton-proton chain that transforms hydrogen into ordinary 4He in stars like our Sun, was studied at energies in the range 15-40 keV. In the third experiment, the 3He+3He solar fusion reaction was studied directly, and in the fourth experiment, we

  13. A 4 π charged-particle detector array for light-ion-induced nuclear fragmentation studies

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, K.; Alexander, A.; Bracken, D. S.; Brzychczyk, J.; Dorsett, J.; Ensman, R.; Renshaw Foxford, E.; Hamilton, T.; Komisarcik, K.; McDonald, K. N.; Morley, K. B.; Poehlman, J.; Powell, C.; Viola, V. E.; Yoder, N. R.; Ottarson, J.; Madden, N.

    1994-12-01

    Operating characteristics of the Indiana Silicon Sphere 4 π detector array are outlined. The detector geometry is spherical, with 90 telescopes in the forward hemisphere and 72 at backward angles, covering a total solid angle of 74% of 4π. Each telescope consists of a simple gas-ion chamber, operated with C3F8 gas, followed by a 0.5 mm thick ion-implanted silicon detector and a 28 mm CsI(Tl) crystal, readout by a photodiode. Custom-built bias supplies and NIM preamp/shaper modules were used in conjunction with commercial CFD, TDC and ADC CAMAC units.

  14. Who Is Afraid of Volume 1181 of the New York Academy of Sciences? Under Threat, the Nuclear Establishment Plays Dirty.

    PubMed

    Katz, Alison Rosamund

    2015-01-01

    Following decades of an internationally coordinated cover-up, critical information about the health consequences of the Chernobyl accident, worldwide but particularly in Western and Eastern Europe, was made available through Volume 1181 of the Annals of the New York Academy of Sciences. The book also contains unique, valuable data from the 3 most affected counties, and it suggests that consequences of the Chernobyl accident are far more serious than has been acknowledged. Many health problems are worsening, including those resulting from irreversible genetic damage. Given the threat that such information represents to the nuclear establishment, it was predictable that Volume 1181, of far higher scientific quality than the United Nations' flagship report The Chernobyl Forum, would meet with violent criticism. Since its publication in 2009, it has been misrepresented and discredited by the nuclear establishment and international health establishment - to the extent of making the absurd and false claim that the New York Academy of Sciences has in some way disowned its own publication. The New York Academy of Sciences defends publication of Volume 1181 on the grounds of its commitment to open discussion of scientific material and publication of material of scientific value. PMID:26077859

  15. Applied nuclear science research and development progress report, June 1, 1985-November 30, 1985

    SciTech Connect

    Arthur, E.D.; Mutschlecner, A.D.

    1986-04-01

    This six month progress report reviews activities in nuclear reaction research. Specific content includes theory and evaluation of nuclear cross sections for neutron, proton, and deuteron reactions for a number of isotopes; the processing and testing of nuclear cross section data; studies of neutron activation, fission products and actinides; and short notes on applications. Data are included in graphic and tabular form and include experimental, evaluated, and theoretical calculations and spectra. 136 refs., 81 figs., 17 tabs. (DWL)

  16. The Radiation Safety Information Computational Center (RSICC): A Resource for Nuclear Science Applications

    SciTech Connect

    Kirk, Bernadette Lugue

    2009-01-01

    The Radiation Safety Information Computational Center (RSICC) has been in existence since 1963. RSICC collects, organizes, evaluates and disseminates technical information (software and nuclear data) involving the transport of neutral and charged particle radiation, and shielding and protection from the radiation associated with: nuclear weapons and materials, fission and fusion reactors, outer space, accelerators, medical facilities, and nuclear waste management. RSICC serves over 12,000 scientists and engineers from about 100 countries.

  17. Nuclear Science and Physics Data from the Isotopes Project, Lawrence Berkeley National Laboratory (LBNL)

    DOE Data Explorer

    The Isotopes Project pages at Lawrence Berkeley National Laboratory have been a source of nuclear data and reference information since the mid-nineties. Almost all of the data, the results of analyses, the specialized charts and interfaces, and the extensive bibiographic references are fed to the National Nuclear Data Center (NNDC) at Brookhaven National Laboratory and maintained there. The Isotope Project pages at LBNL provide a glimpse of early versions for many of the nuclear data resources.

  18. Interfacial transport in lithium-ion conductors

    NASA Astrophysics Data System (ADS)

    Shaofei, Wang; Liquan, Chen

    2016-01-01

    Physical models of ion diffusion at different interfaces are reviewed. The use of impedance spectroscopy (IS), nuclear magnetic resonance (NMR), and secondary ion mass spectrometry (SIMS) techniques are also discussed. The diffusion of ions is fundamental to the operation of lithium-ion batteries, taking place not only within the grains but also across different interfaces. Interfacial ion transport usually contributes to the majority of the resistance in lithium-ion batteries. A greater understanding of the interfacial diffusion of ions is crucial to improving battery performance. Project supported by the Beijing S&T Project, China (Grant No. Z13111000340000), the National Natural Science Foundation of China (Grant Nos. 51325206 and 11234013) and the National Basic Research Program of China (Grant No. 2012CB932900).

  19. The Facility for Antiproton and Ion Research

    NASA Astrophysics Data System (ADS)

    Langanke, K.

    2015-11-01

    In the coming years the Facility for Antiproton and Ion Research FAIR will be constructed at the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, Germany. This new accelerator complex will allow for unprecedented and path-breaking research in hadronic, nuclear and atomic physics as well as applied sciences. This manuscript will discuss some of these research opportunities, with a focus on nuclear physics related to supernova dynamics and nucleosynthesis.

  20. Nuclear reaction effects in conventional risk assessment for energetic ion exposure

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Shinn, Judy L.; Townsend, Lawrence W.

    1990-01-01

    A volume of tissue through which a monoenergetic ion fluence has passed is considered, and the energy absorbed by the media in the passage is evaluated. Various contributions to biological risk are quantified using quality factors presently in force. The effects of newly proposed quality factors are evaluated.

  1. Theoretical nuclear database for high-energy, heavy-ion (HZE) transport

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Cucinotta, F. A.; Wilson, J. W.

    1995-01-01

    Theoretical methods for estimating high-energy, heavy-ion (HZE) particle absorption and fragmentation cross-sections are described and compared with available experimental data. Differences between theory and experiment range from several percent for absorption cross-sections up to about 25%-50% for fragmentation cross-sections.

  2. Hypophosphite ion as a 31P nuclear magnetic resonance probe of membrane potential in erythrocyte suspensions.

    PubMed Central

    Kirk, K; Kuchel, P W; Labotka, R J

    1988-01-01

    Hypophosphorus acid has a single pKa of 1.1 and at physiological pH values it is therefore present almost entirely as the univalent hypophosphite ion. When added to a red cell suspension the ion crosses the cell membrane rapidly, via the anion exchange protein, and the intra- and extracellular populations of the ion give rise to separate 31P NMR resonances. From a single 31P NMR spectrum it was possible to determine the relative amounts of hypophosphite in the intra- and extracellular compartments and thereby estimate the corresponding concentrations. The ratio of intracellular to extracellular hypophosphite concentration was independent of the total hypophosphite concentration for cells suspended in NaCl solutions and was independent of hematocrit. The hypophosphite distribution ratio increased as extracellular NaCl was replaced iso-osmotically with citrate or sucrose, through it remained very similar to the corresponding hydrogen ion distribution ratio. Incorporation of the hypophosphite distribution ratio into the Nernst equation yielded an estimate of the membrane potential. For cells suspended in NaCl solutions the estimated potential was consistently around -10 mV. PMID:3207824

  3. Modifications of the pion-production threshold in the nuclear medium in heavy ion collisions and the nuclear symmetry energy

    NASA Astrophysics Data System (ADS)

    Song, Taesoo; Ko, Che Ming

    2015-01-01

    Using the relativistic Vlasov-Uehling-Uhlenbeck (RVUU) equation based on mean fields from the nonlinear relativistic NLρ and NLρ δ models, which have same nuclear equation of state and symmetry energy but different symmetry energy slope parameters, we study the effect of medium modification of the pion-production threshold on the total pion yield and the π-/π+ ratio in Au+Au collisions. We find that the in-medium threshold effect enhances both the total pion yield and the π-/π+ ratio, compared to those without this effect. Furthermore, including the medium modification of the pion-production threshold leads to a larger π-/π+ ratio for the NLρ δ model with a larger symmetry energy parameter than the NLρ model with a smaller symmetry energy parameter, opposite to that found without the in-medium threshold effect. To reproduce the total pion yield measured by the FOPI Collaboration, we introduce a density-dependent cross section for Δ baryon production from nucleon-nucleon collisions, which suppresses the total pion yield but hardly changes the π-/π+ ratio. Because of the small difference in the stiffness of their symmetry energies, the π-/π+ ratios obtained from both the NLρ and NLρ δ models are consistent with the FOPI data within the experimental errors.

  4. Heavy ion collisions with A = 10/sup 57/: Aspects of nuclear stability and the nuclear equation of state in coalescing neutron-star binary systems

    SciTech Connect

    Mathews, G.J.; Wilson, J.R.; Evans, C.R.; Detweiler, S.L.

    1987-12-01

    The dynamics of the final stages of the coalescence of two neturon stars (such as the binary pulsar PSR 1913+16) is an unsolved problem in astrophysics. Such systems are probably efficient generators of gravitational radiation, and may be significant contributors to heavy-element nucleosynthesis. The input physics for the study of such systems is similar to that required for the strudy of heavy-ion collision hydrodynamics; e.g., a finite temperature nuclear equation of state, properties of nuclei away from stability, etc. We discuss the development of a relativistic hydrodynamics code in three spatial dimensions for the purpose of studying such neutron-star systems. The properties of the mass-radius relation (determined by the nuclear equation of state) may lead to a proposed mechanism by which hot, highly neutronized matter is ejected from the coalescing stars. This material is photodisintegrated into a free (mostly) neutron gas which may subsequently experience rapid-neutron capture (r-process) nucleosynthesis. 15 refs., 4 figs.

  5. Application of Ion Exchange Technique to Decontamination of Polluted Water Generated by Fukushima Nuclear Disaster

    NASA Astrophysics Data System (ADS)

    Takeshita, Kenji; Ogata, Takeshi

    By the Fukushima nuclear disaster, large amounts of water and sea water polluted mainly with radioactive Cs were generated and the environment around the nuclear site was contaminated by the fallout from the nuclear site. The coagulation settling process using ferric ferrocyanide and an inorganic coagulant and the adsorption process using ferric ferrocyanide granulated by silica binder were applied to the treatment of polluted water. In the coagulation settling process, Cs was removed completely from polluted water and sea water (DF∼104). In the adsorption process, the recovery of trace Cs (10 ppb) in sea water, which was not suitable for the use of zeolite, was attained successfully. Finally, the recovery of Cs from sewage sludge was tested by a combined process with the hydrothermal process using subcritical water and the coagulation settling process using ferric ferrocyanide. 96% of radioactive Cs was recovered successfully from sewage sludge with the radioactivity of 10,000 Bq/kg.

  6. HCN2 ion channels: basic science opens up possibilities for therapeutic intervention in neuropathic pain.

    PubMed

    Tsantoulas, Christoforos; Mooney, Elizabeth R; McNaughton, Peter A

    2016-09-15

    Nociception - the ability to detect painful stimuli - is an invaluable sense that warns against present or imminent damage. In patients with chronic pain, however, this warning signal persists in the absence of any genuine threat and affects all aspects of everyday life. Neuropathic pain, a form of chronic pain caused by damage to sensory nerves themselves, is dishearteningly refractory to drugs that may work in other types of pain and is a major unmet medical need begging for novel analgesics. Hyperpolarisation-activated cyclic nucleotide (HCN)-modulated ion channels are best known for their fundamental pacemaker role in the heart; here, we review data demonstrating that the HCN2 isoform acts in an analogous way as a 'pacemaker for pain', in that its activity in nociceptive neurons is critical for the maintenance of electrical activity and for the sensation of chronic pain in pathological pain states. Pharmacological block or genetic deletion of HCN2 in sensory neurons provides robust pain relief in a variety of animal models of inflammatory and neuropathic pain, without any effect on normal sensation of acute pain. We discuss the implications of these findings for our understanding of neuropathic pain pathogenesis, and we outline possible future opportunities for the development of efficacious and safe pharmacotherapies in a range of chronic pain syndromes. PMID:27621481

  7. Nuclear data for r-process models from ion trap measurements

    NASA Astrophysics Data System (ADS)

    Clark, Jason

    2016-06-01

    To truly understand how elements are created in the universe via the astrophysical r process, accurate nuclear data are required. Historically, the isotopes involved in the r process have been difficult to access for study, but the development of new facilities and measurement techniques have put many of the r-process isotopes within reach. This paper will discuss the new CARIBU facility at Argonne National Laboratory and two pieces of experimental equipment, the Beta-decay Paul Trap and the Canadian Penning Trap, that will dramatically increase the nuclear data available for models of the astrophysical r process.

  8. Collective Sideward Flow of Nuclear Matter in Violent High-Energy Heavy-Ion Collisions

    SciTech Connect

    Stöcker, Horst; Maruhn, Jouchim A.; Greiner, Walter

    1980-03-01

    The nuclear fluid dynamical model with final thermal breakup is used to study the reactions {sup 20}Ne + {sup 238}U and {sup 40} Ar + {sup 40}Ca at E{sub LAB}=390 MeV/n. Calculated double differential cross sections d{sup 2}{sigma}/d{Omega}dE are in agreement with recent experimental data. It is shown that azimuthally dependent triple differential cross sections d{sup 3}{sigma}/dEd cos{theta}d{phi} yield considerably deeper insight into the collision process and allow for snapshots of the reactions. Strongly correlated jets of nuclear matter are predicted.

  9. NELMA project. I. Objectives of the methodical aspects. [Nuclear Energy Laboratory of Medical and Agricultural Sciences

    SciTech Connect

    Madueme, G.C.

    1980-09-01

    The significance of the NELMA Project is presented. The main aim is to inject new and useful frontiers into the medical care facilities in Nigeria and to provide broader scopes for applying excited nuclear probes to research in bio-agricultural economics as well as in nuclear and solid state physics.

  10. What's There to Debate about Nuclear Energy? Promoting Multidimensional Science Literacy by Implementing STS Strategies

    ERIC Educational Resources Information Center

    Bartley, Elise; Brown, Patrick L.; Concannon, James P.; Stumpe, Laura

    2013-01-01

    In this lesson, the teacher begins by reviewing some key energy topics with the students. Next, students are asked to focus closely on nuclear energy as a viable resource by closely reading, highlighting, and annotating an article regarding the future of nuclear energy. The culminating activity and evaluation of students understanding of energy…

  11. Science and art of synthesis and crafting of nano/microstructures and devices using ion-crafted templates: a review

    NASA Astrophysics Data System (ADS)

    Chakarvarti, S. K.

    2006-03-01

    The miniaturization of devices and synthesis of new materials have a tremendous role in the development of powerful electronics as well as material based technologies in other areas but for the laws of quantum mechanics posing limitations besides the increasing cost and difficulties in manufacturing at such a small scale. The quest, therefore, for the alternative technologies have stimulated a surge of interest in nano-meter scale materials and devices in the recent years. Metallic nano wires are the most attractive materials because of their unique properties having myriad applications like interconnects for nano-electronics, magnetic devices, chemical and biosensors, where as the hollow tubules are equally considered to be candidate for more potent applications- both in physical as well as biosciences. Materials' processing for nano-structured devices is indispensable to their rational design. The technique, known as "Template Synthesis", using electrochemical/electro less deposition is one of the most important processes for manufacturing nano/micro structures, nano-composites and devices and is relatively inexpensive and simple. The technique involves in using membranes- ion crafted ones (popularly known as Particle Track-Etch Membranes or Nuclear Track Filters), alumite substrate membranes, besides other types of membranes as templates. The parameters viz., diameter as well as length i.e., the aspect ratio, shape and wall surface traits in these membranes are controllable. In the present work, a detailed review of this technique, synthesis of nano/micro materials including hybrid materials and devices like field-ion emitters, resonant tunneling diodes (RTDs) etc. will be presented including most of the results obtained in our laboratory.

  12. SYNCHROTRON RADIATION, FREE ELECTRON LASER, APPLICATION OF NUCLEAR TECHNOLOGY, ETC.: Experimental verification of therapeutic doses for the superficially-placed tumor radiotherapy with heavy ions at HIRFL

    NASA Astrophysics Data System (ADS)

    Liu, Xin-Guo; Li, Qiang; Wu, Qing-Feng; Tao, Jia-Jun; Jin, Xiao-Dong

    2009-02-01

    Up to now, clinical trials of heavy-ion radiotherapy for superficially placed tumors have been carried out for six times and over 60 selected patients have been treated with 80-100 MeV/u carbon ions supplied by the Heavy Ion Research Facility in Lanzhou (HIRFL) at the Institute of Modern Physics, Chinese Academy of Sciences since November, 2006. A passive irradiation system and a dose optimization method for radiotherapy with carbon-ion beams have been developed. Experimental verification of longitudinally therapeutic dose distributions was conducted under the condition of simulating patient treatment in the therapy terminal at HIRFL. The measured depth-dose distributions basically coincide with the expected ones. These results indicate that the irradiation system and the dose optimization method are effective in the ongoing carbon-ion radiotherapy for shallow-seated tumors at HIRFL.

  13. Engineering study for the treatment of spent ion exchange resin resulting from nuclear process applications

    SciTech Connect

    Place, B.G.

    1990-09-01

    This document is an engineering study of spent ion exchange resin treatment processes with the purpose of identifying one or more suitable treatment technologies. Classifications of waste considered include all classes of low-level waste (LLW), mixed LLW, transuranic (TRU) waste, and mixed TRU waste. A total of 29 process alternatives have been evaluated. Evaluation parameters have included economic parameters (both total life-cycle costs and capital costs), demonstrated operability, environmental permitting, operational availability, waste volume reduction, programmatic consistency, and multiple utilization. The results of this study suggest that there are a number of alternative process configurations that are suitable for the treatment of spent ion exchange resin. The determinative evaluation parameters were economic variables (total life-cycle cost or capital cost) and waste volume reduction. Immobilization processes are generally poor in volume reduction. Thermal volume reduction processes tend to have high capital costs. There are immobilization processes and thermal volume reduction processes that can treat all classifications of spent ion exchange resin likely to be encountered. 40 refs., 19 figs., 17 tabs.

  14. Energy Frontier Research Center Center for Materials Science of Nuclear Fuels

    SciTech Connect

    Todd Allen

    2014-04-01

    Scientific Successes • The first phonon density of states (PDOS) measurements for UO2 to include anharmonicity were obtained using time-of-flight inelastic neutron scattering at the Spallation Neutron Source (SNS), and an innovative, experimental-based anharmonic smoothing technique has enabled quantitative benchmarking of ab initio PDOS simulations. • Direct comparison between anharmonicity-smoothed ab initio PDOS simulations for UO2 and experimental measurements has demonstrated the need for improved understanding of UO2 at the level of phonon dispersion, and, further, that advanced lattice dynamics simulations including finite temperatures approaches will be required for handling this strongly correlated nuclear fuel. • PDOS measurements performed on polycrystalline samples have identified the phonon branches and energy ranges most highly impacted by fission-product and hyper-stoichiometry lattice defects in UO2. These measurements have revealed the broad-spectrum impact of oxygen hyper-stoichiometry on thermal transport. The reduction in thermal conductivity caused by hyper-stoichiometry is many times stronger than that caused by substitutional fission-product impurities. • Laser-based thermo-reflectance measurements on UO2 samples irradiated with light (i.e. He) ions to introduce point defects have been coupled with MD simulations and lattice parameter measurements to determine the role of uranium and oxygen point defects in reducing thermal conductivity. • A rigorous perturbation theory treatment of phonon lifetimes in UO2 based on a 3D discretization of the Brillouin zone coupled with experimentally measured phonon dispersion has been implemented that produces improved predictions of the temperature dependent thermal conductivity. • Atom probe investigations of the influence of grain boundary structure on the segregation behavior of Kr in UO2 have shown that smaller amounts of Kr are present at low angle grain boundaries than at large angle grain

  15. Nuclear stopping in heavy-ion collisions at 100 MeV/nucleon from inclusive and exclusive neutral pion measurements

    SciTech Connect

    Badala, A.; Barbera, R.; Palmeri, A.; Pappalardo, G.S.; Riggi, F.; Russo, A.C.; Russo, G.; Turrisi, R. ||

    1996-04-01

    Inclusive and exclusive measurements of neutral pions in heavy-ion collisions around 100 MeV/nucleon, carried out in a near 4{pi} geometry, have been analyzed to obtain information on the nuclear stopping of the projectile. Stopping of the projectile has been investigated by the analysis of the source velocity, of the distribution of the energetic products of the collisions, and of the associated rapidity distribution of the baryon matter. Collisions were classified according to their centrality by the charged particle multiplicity. Clear evidence for this phenomenon has been obtained by the study of different observables. Both stopping and reabsorption effects play an essential role in the interpretation of the results. {copyright} {ital 1996 The American Physical Society.}

  16. Activation analysis study on Li-ion batteries for nuclear forensic applications

    NASA Astrophysics Data System (ADS)

    Johnson, Erik B.; Whitney, Chad; Holbert, Keith E.; Zhang, Taipeng; Stannard, Tyler; Christie, Anthony; Harper, Peter; Anderson, Blake; Christian, James F.

    2015-06-01

    The nuclear materials environment has been increasing significantly in complexity over the past couple of decades. The prevention of attacks from nuclear weapons is becoming more difficult, and nuclear forensics is a deterrent by providing detailed information on any type of nuclear event for proper attribution. One component of the nuclear forensic analysis is a measurement of the neutron spectrum. As an example, the neutron component provides information on the composition of the weapons, whether boosting is involved or the mechanisms used in creating a supercritical state. As 6Li has a large cross-section for thermal neutrons, the lithium battery is a primary candidate for assessing the neutron spectrum after detonation. The absorption process for 6Li yields tritium, which can be measured at a later point after the nuclear event, as long as the battery can be processed in a manner to successfully extract the tritium content. In addition, measuring the activated constituents after exposure provides a means to reconstruct the incident neutron spectrum. The battery consists of a spiral or folded layers of material that have unique, energy dependent interactions associated with the incident neutron flux. A detailed analysis on the batteries included a pre-irradiated mass spectrometry analysis to be used as input for neutron spectrum reconstruction. A set of batteries were exposed to a hard neutron spectrum delivered by the University of Massachusetts, Lowell research reactor Fast Neutron Irradiator (FNI). The gamma spectra were measured from the batteries within a few days and within a week after the exposure to obtain sufficient data on the activated materials in the batteries. The activity was calculated for a number of select isotopes, indicating the number of associated neutron interactions. The results from tritium extraction are marginal. A measurable increase in detected particles (gammas and betas) below 50 keV not self-attenuated by the battery was observed

  17. Conference on Nuclear Energy and Science for the 21st Century: Atoms for Peace Plus Fifty - Washington, D.C., October 2003

    SciTech Connect

    Pfaltzgraff, Robert L

    2006-10-22

    This conference's focus was the peaceful uses of the atom and their implications for nuclear science, energy security, nuclear medicine and national security. The conference also provided the setting for the presentation of the prestigious Enrico Fermi Prize, a Presidential Award which recognizes the contributions of distinguished members of the scientific community for a lifetime of exceptional achievement in the science and technology of nuclear, atomic, molecular, and particle interactions and effects. An impressive group of distinguished speakers addressed various issues that included: the impact and legacy of the Eisenhower Administration’s “Atoms for Peace” concept, the current and future role of nuclear power as an energy source, the challenges of controlling and accounting for existing fissile material, and the horizons of discovery for particle or high-energy physics. The basic goal of the conference was to examine what has been accomplished over the past fifty years as well as to peer into the future to gain insights into what may occur in the fields of nuclear energy, nuclear science, nuclear medicine, and the control of nuclear materials.

  18. Texas A and M University student/professional nuclear science and engineering conference

    SciTech Connect

    Not Available

    1984-03-12

    Abstracts of papers presented at the meeting are included. Topics discussed include: reactor engineering; space nuclear power systems; health physics and dosimetry; fusion engineering and physics; and reactor physics and theory.

  19. Single and Multi-Nucleon Transfer Reactions for Nuclear Moment Studies Toward Radioactive-Ion Beams

    SciTech Connect

    Lozeva, R. L.; Georgiev, G. P.; Audi, G.; Cabaret, S.; Fiori, E.; Gaulard, C.; Hauschilda, K.; Lopez-Martens, A.; Risegari, L.; Blazhev, A.; Jolie, J.; Moschner, K.; Zell, K.-O.; Daugas, J.-M.; Faul, T.; Morel, P.; Roig, O.; Ferraton, M.; Ibrahim, F.

    2010-04-30

    This study is a part of an experimental program to measure nuclear moments in transfer reactions. It aims to probe for a first time the nuclear -spin orientation in multi-nucleon transfer. Fist experiments were performed to measure the quadrupole moment of an isomeric state in {sup 66}Cu (I{sup p}i 6{sup -}, E{sub x} = 1154 keV, T{sub 1/2} = 595(20) ns) in single nucleon transfer and the population of mus isomers in {sup 66}Cu and {sup 63}Ni in multi-nucleon transfer. The experimentally tested methodology allows broad applications toward more exotic species and feasibility of these reactions to produce species away from stability.

  20. Rutherford backscattering and nuclear reaction analyses of hydrogen ion-implanted ZnO bulk single crystals

    NASA Astrophysics Data System (ADS)

    Kaida, T.; Kamioka, K.; Ida, T.; Kuriyama, K.; Kushida, K.; Kinomura, A.

    2014-08-01

    The origins of low resistivity in H ion-implanted ZnO bulk single crystals are studied by Rutherford backscattering spectrometry (RBS), nuclear reaction analysis (NRA) photoluminescence (PL), and Van der Pauw methods. The H-ion implantation (peak concentration: 1.45 × 1020 cm-3) into ZnO is performed using a 500 keV implanter. The resistivity decreases from 2.5 × 103 Ω cm for unimplanted ZnO to 6.5 Ω cm for as-implanted one. RBS measurements show that Zn interstitial as a shallow donor is not recognized in as-implanted samples. From photoluminescence measurements, the broad green band emission is observed in as-implanted samples. NRA measurements for as-implanted ZnO suggest the existence of the oxygen interstitial. The origins of the low resistivity in the as-implanted sample are attributed to both the H interstitial as a shallow donor and complex donor between H and disordered O. The activation energy of H related donors estimated from the temperature dependence of carrier concentration is 29 meV.

  1. Elliptic flow and nuclear modification factor in ultrarelativistic heavy-ion collisions within a partonic transport model.

    PubMed

    Uphoff, Jan; Senzel, Florian; Fochler, Oliver; Wesp, Christian; Xu, Zhe; Greiner, Carsten

    2015-03-20

    The quark gluon plasma produced in ultrarelativistic heavy-ion collisions exhibits remarkable features. It behaves like a nearly perfect liquid with a small shear viscosity to entropy density ratio and leads to the quenching of highly energetic particles. We show that both effects can be understood for the first time within one common framework. Employing the parton cascade Boltzmann approach to multiparton scatterings, the microscopic interactions and the space-time evolution of the quark gluon plasma are calculated by solving the relativistic Boltzmann equation. Based on cross sections obtained from perturbative QCD with explicitly taking the running coupling into account, we calculate the nuclear modification factor and elliptic flow in ultrarelativistic heavy-ion collisions. With only one single parameter associated with coherence effects of medium-induced gluon radiation, the experimental data of both observables can be understood on a microscopic level. Furthermore, we show that perturbative QCD interactions with a running coupling lead to a sufficiently small shear viscosity to entropy density ratio of the quark gluon plasma, which provides a microscopic explanation for the observations stated by hydrodynamic calculations. PMID:25839262

  2. Photonuclear Reaction Studies at HIγS: Developing the Science of Remote Detection of Nuclear Materials

    NASA Astrophysics Data System (ADS)

    Howell, C. R.

    2015-10-01

    Development of gamma-ray beam interrogation technologies for remote detection of special nuclear materials and isotope analysis requires comprehensive databases of nuclear structure information and gamma-ray induced nuclear reaction observables. Relevant nuclear structure details include the energy, spin and parity of excited states that have significant probability for electromagnetic transition from the ground state, i.e, the angular momentum transferred in the reaction is Δl ≤ 2. This talk will report recent Nuclear Resonance Fluorescence (NRF) measurements to identify and characterize new low-spin states in actinide nuclei at energies from 1 to 4 MeV, which is the energy range most important for remote analysis methods. These measurements are carried out using the nearly mono-energetic linearly polarized gamma-ray beam at the High Intensity Gamma-ray Source (HIγS) at the Triangle Universities Nuclear Laboratory. Also, studies of the (γ, n) reaction on a variety of nuclei with linearly polarized beams at HIγS indicate that this reaction might be used to discern between fissile and non-fissile materials. This work will be described. In addition, an overview will be given of a concept for a next generation laser Compton-backing scattering gamma-ray source to be implemented as an upgrade to increase the beam intensity at HIγS by more than an order of magnitude.

  3. Interaction of science and diplomacy: Latin American, the United States and nuclear energy, 1945-1955

    SciTech Connect

    Cabral, R.

    1986-01-01

    Nuclear programs in Argentina and Brazil can be traced to August 1945 when their scientific communities articulated responses to the atomic bombings of Japan. They culminated in attempts to develop independent nuclear programs, sharply opposed by the United States, during the nationalist governments of Juan Peron and Getulio Vargas. This dissertation, based on primary sources from the three nations, analyzes these programs and the American responses. Latin America entered the nuclear age attempting to control natural resources, to improve scientific establishments, and to appraise Latin American-United States relations. Despite some clear warnings about nuclear dangers, the new form of energy was seen as the solution to industrial problems, poverty, and outside political interference. International opposition, which may have included nuclear threats from the United States, blocked Argentina's first attempt in 1947. After 1948, Peron wanted a nuclear program for cheap energy and prestige. The qualifications of the Brazilian scientists gave more substance to their program. The program originated in August, 1945, but assumed national proportion with the government of Vargas in 1951. Lack of American cooperation forced Vargas to establish a secret program with Germany. American troops intervened taking over the German equipment already completed. The final collapse came about with Vargas' suicide in August, 1954.

  4. On quantum mechanical transport coefficients in nonequilibrium nuclear processes with application to heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Hamdouni, Yamen

    2010-12-01

    The elements of the quantum mechanical Markovian diffusion matrix leading to a Gibbs equilibrium state for a set of N coupled quantum harmonic oscillators are derived within Lindblad's axiomatic approach. Consequences of the fundamental constraints on the quantum friction coefficients are discussed. We derive the equations of motion for the expectation values and variances, and we solve them analytically. We apply our results to the description of the charge and mass asymmetry coordinates in heavy-ion collisions, and we investigate the effect of dissipation on tunneling in sub-barrier processes.

  5. [Reaction mechanism studies of heavy ion induced nuclear reactions]. Annual progress report, [January 1992--February 1993

    SciTech Connect

    Mignerey, A.C.

    1993-02-01

    Completed work is summarized on the topics of excitation energy division in deep-inelastic reactions and the onset of multifragmentation in La-induced reactions at E/A = 45 MeV. Magnetic fields are being calculated for the PHOBOS detector system, a two-arm multiparticle spectrometer for studying low-transverse-momentum particles produced at the Relativistic Heavy Ion Collider. The Maryland Forward Array is being developed for detection of the reaction products from very peripheral collisions; it consists of two individual units of detectors: the annular silicon detector in front and the plastic phoswich detector at back.

  6. Nuclear fragmentation energy and momentum transfer distributions in relativistic heavy-ion collisions

    NASA Technical Reports Server (NTRS)

    Khandelwal, Govind S.; Khan, Ferdous

    1989-01-01

    An optical model description of energy and momentum transfer in relativistic heavy-ion collisions, based upon composite particle multiple scattering theory, is presented. Transverse and longitudinal momentum transfers to the projectile are shown to arise from the real and absorptive part of the optical potential, respectively. Comparisons of fragment momentum distribution observables with experiments are made and trends outlined based on our knowledge of the underlying nucleon-nucleon interaction. Corrections to the above calculations are discussed. Finally, use of the model as a tool for estimating collision impact parameters is indicated.

  7. Characterization of scintillator materials for fast-ion loss detectors in nuclear fusion reactors

    NASA Astrophysics Data System (ADS)

    Jiménez-Ramos, M. C.; García López, J.; García-Muñoz, M.; Rodríguez-Ramos, M.; Carmona Gázquez, M.; Zurro, B.

    2014-08-01

    In fusion plasma reactors, fast ion generated by heating systems and fusion born particles must be well confined. The presence of magnetohydrodynamic (MHD) instabilities can lead to a significant loss of these ions, which may reduce drastically the heating efficiency and may cause damage to plasma facing components in the vacuum vessel. In order to understand the physics underlying the fast ion loss mechanism, scintillator based detectors have been installed in several fusion devices. In this work we present the absolute photon yield and its degradation with ion fluence in terms of the number of photons emitted per incident ion of several scintillators thin coatings: SrGa2S4:Eu2+ (TG-Green), Y3Al5O12:Ce3+ (P46) and Y2O3:Eu3+ (P56) when irradiated with light ions of different masses (deuterium ions, protons and α-particles) at energies between approximately 575 keV and 3 MeV. The photon yield will be discussed in terms of the energy deposited by the particles into the scintillator. For that, the actual composition and thickness of the thin layers were determined by Rutherford Backscattering Spectrometry (RBS). A collimator with 1 mm of diameter, which defines the beam size for the experiments, placed at the entrance of the chamber. An electrically isolated sample holder biased to +300 V to collect the secondary electrons, connected to a digital current integrator (model 439 by Ortec) to measure the incident beam current. A home made device has been used to store the real-time evolution of the beam current in a computer file allowing the correction of the IL yields due to the current fluctuations. The target holder is a rectangle of 150 × 112 mm2 and can be tilted. The X and Y movements are controlled through stepping motors, which permits a fine control of the beam spot positioning as well as the study of several samples without venting the chamber. A silica optical fiber of 1 mm diameter fixed to the vacuum chamber, which collects the light from the scintillators

  8. Heavy-ion collisions and the nuclear equation of state. Progress report, August 15, 1992--April 1993

    SciTech Connect

    Keane, D.

    1993-08-01

    The overall goal of this project is to study nucleus-nucleus collisions experimentally at intermediate and relativistic energies, with emphasis on measurement and interpretation of correlation effects that provide insight into the nuclear phase diagram and the nuclear equation of state. During the course of this reporting period, the PI returned to Kent from a 15-month leave at Lawrence Berkeley Lab, which had been devoted 100% to work on this research project. The EOS Time Projection Chamber at LBL`s Bevalac accelerator has continued to be the major focus of research for all of the supported personnel; about a year ago, this detector successfully took data in production mode for the first time, and accumulated in excess of 1000 hours of beam time before the termination of the Bevalac in February 1993. Reduction and analysis of these data is currently our first priority. Effort has also been devoted to the STAR detector at the Relativistic Heavy Ion Collider, in the form of contributions to the Conceptual Design Report, work on HV control hardware and software for use with the STAR Time Projection Chamber, and tracking software development.

  9. Constraining the high-density behavior of the nuclear equation of state from strangeness production in heavy-ion collisions

    SciTech Connect

    Feng Zhaoing

    2011-06-15

    The dynamics of pions and strange particles in heavy-ion collisions in the region of 1A GeV energies is investigated by the lanzhou quantum molecular dynamics model for probing the nuclear equation of state at suprasaturation densities. The total multiplicities and the ratios obtained in {sup 197}Au+{sup 197}Au over {sup 12}C+{sup 12}C systems are calculated for selected Skyrme parameters SkP, SLy6, Ska, and SIII, which correspond to different modulus of incompressibility of symmetric nuclear matter and different cases of the stiffness of symmetry energy. A decreasing trend of the excitation functions of the ratios for strange particle production with increasing incident energy was observed. The available data of K{sup +} production measured by KaoS collaboration are described well with the parameter SkP, which results in a soft equation of state. The conclusions cannot be modified by an in-medium kaon-nucleon potential.

  10. An overview of the Nuclear Electric Xenon Ion System (NEXIS) program

    NASA Technical Reports Server (NTRS)

    Polk, Jay E.; Goebel, Don; Brophy, John R.; Beatty, John; Monheiser, J.; Giles, D.; Hobson, D.; Wilson, F.; Christensen, J.; De Pano, M.; Hart, S.; Ohlinger, W.; Hill, D. N.; Williams, J.; Wilbur, P.; Laufer, D. M.; Farnell, C.

    2003-01-01

    NASA is investigating high power, high specific impulse propulsion technologies that could enable ambitious flights such as multi-body rendezvous missions, outer planet orbiters and interstellar precursor missions. The requirements for these missions are much more demanding than those for state-of-the-art solar-powered ion propulsion applications. The purpose of the NEXIS program is to develop advanced ion thruster technologies that satisfy the requirements for high power, high specific impulse operation, high efficiency and long thruster life. The nominal design point for the NEXIS thruster is 20 kWe at a specific impulse of 7500 s with an efficiency over 78% and a xenon throughput capability of greater than 2000 kg. These performance and throughput goals will be achieved by applying a combination of advanced technologies including a large discharge chamber, erosion resistant carbon-carbon grids, an advanced reservoir hollow cathode and techniques for increasing propellant efficiency such as grid masking and accelerator grid aperture diameter tailoring. This paper provides an overview of the challenges associated with these requirements and how they are being addressed in the NEXIS program.

  11. MITEE-B: A Compact Ultra Lightweight Bi-Modal Nuclear Propulsion Engine for Robotic Planetary Science Missions

    NASA Astrophysics Data System (ADS)

    Powell, James; Maise, George; Paniagua, John; Borowski, Stanley

    2003-01-01

    Nuclear thermal propulsion (NTP) enables unique new robotic planetary science missions that are impossible with chemical or nuclear electric propulsion systems. A compact and ultra lightweight bi-modal nuclear engine, termed MITEE-B (MInature ReacTor EnginE - Bi-Modal) can deliver 1000's of kilograms of propulsive thrust when it operates in the NTP mode, and many kilowatts of continuous electric power when it operates in the electric generation mode. The high propulsive thrust NTP mode enables spacecraft to land and takeoff from the surface of a planet or moon, to hop to multiple widely separated sites on the surface, and virtually unlimited flight in planetary atmospheres. The continuous electric generation mode enables a spacecraft to replenish its propellant by processing in-situ resources, provide power for controls, instruments, and communications while in space and on the surface, and operate electric propulsion units. Six examples of unique and important missions enabled by the MITEE-B engine are described, including: (1) Pluto lander and sample return; (2) Europa lander and ocean explorer; (3) Mars Hopper; (4) Jupiter atmospheric flyer; (5) SunBurn hypervelocity spacecraft; and (6) He3 mining from Uranus. Many additional important missions are enabled by MITEE-B. A strong technology base for MITEE-B already exists. With a vigorous development program, it could be ready for initial robotic science and exploration missions by 2010 AD. Potential mission benefits include much shorter in-space times, reduced IMLEO requirements, and replenishment of supplies from in-situ resources.

  12. A study on stack configuration of continuous electrodeionization for removal of heavy metal ions from the primary coolant of a nuclear power plant.

    PubMed

    Yeon, Kyeong-Ho; Song, Jung-Hoon; Moon, Seung-Hyeon

    2004-04-01

    This study investigated the production of high-purity water in the primary coolant of a nuclear power plant via the continuous electrodeionization (CEDI) process, using ion exchange resins as ion-conducting media between ion exchange membranes. The effectiveness of this method was examined with respect to the removal of heavy metals. The study was carried out on a laboratory scale with an effective area of 20 cm(2). The CEDI system was operated with a layered bed of cation exchange resins, anion exchange resins, and mixed-bed ion exchange resins. The stack configuration was designed to prevent a reaction between metal ions and hydroxide ions. The CEDI operation with the layered bed removed more than 99% of the ions at 30% of the current efficiency. The results showed that, with an inlet conductivity of 40 microScm(-1), a linear velocity of 4.17 cms(-1), and an applied current density of 17 mAcm(-2), the CEDI process yielded an outlet conductivity of 0.5 microScm(-1), thereby preventing the precipitation of metal ions. This study therefore successfully demonstrated the feasibility of the CEDI operation for the removal of heavy metals at a very low concentration. PMID:15026246

  13. Observation of a single rare-earth ion in a crystal by electric-field modulation spectroscopy for a readout of a nuclear-spin qubit

    NASA Astrophysics Data System (ADS)

    Ichimura, Kouichi; Goto, Hayato; Nakamura, Satoshi; Kujiraoka, Mamiko

    2015-03-01

    Nuclear spin states of rare-earth-metal ions in a crystal are known as good candidates for qubits in solids because of their long coherence time and their good controllability by lights. In the frequency-domain quantum computer (FDQC), nuclear spin states of the ions are employed as qubits defined in a frequency domain, and interaction between the qubits is mediated by a single cavity mode. In FDQC we can use adiabatic passage with dark states to perform single-qubit gates and two-qubit gates, and a single-qubit gate using adiabatic passage has been demonstrated. For two-qubit gates, quantum states of qubit ions need to be read out and operated individually. In order to observe a single ion in a crystal, we studied modulated signals due to ions in a cavity-mode spectrum of a monolithic optical cavity made of Pr3+:Y2SiO5. Owing to the cavity enhancement and the electric-field modulation spectroscopy, signals which are likely due to individual ions (statistical fine structure in an inhomogeneously broadened optical trandition) were observed.

  14. Characterization of scintillator materials for fast-ion loss detectors in nuclear fusion reactors

    NASA Astrophysics Data System (ADS)

    Jiménez-Ramos, M. C.; García López, J.; García-Muñoz, M.; Rodríguez-Ramos, M.; Carmona Gázquez, M.; Zurro, B.

    2014-08-01

    In fusion plasma reactors, fast ion generated by heating systems and fusion born particles must be well confined. The presence of magnetohydrodynamic (MHD) instabilities can lead to a significant loss of these ions, which may reduce drastically the heating efficiency and may cause damage to plasma facing components in the vacuum vessel. In order to understand the physics underlying the fast ion loss mechanism, scintillator based detectors have been installed in several fusion devices. In this work we present the absolute photon yield and its degradation with ion fluence in terms of the number of photons emitted per incident ion of several scintillators thin coatings: SrGa2S4:Eu2+ (TG-Green), Y3Al5O12:Ce3+ (P46) and Y2O3:Eu3+ (P56) when irradiated with light ions of different masses (deuterium ions, protons and α-particles) at energies between approximately 575 keV and 3 MeV. The photon yield will be discussed in terms of the energy deposited by the particles into the scintillator. For that, the actual composition and thickness of the thin layers were determined by Rutherford Backscattering Spectrometry (RBS). A collimator with 1 mm of diameter, which defines the beam size for the experiments, placed at the entrance of the chamber. An electrically isolated sample holder biased to +300 V to collect the secondary electrons, connected to a digital current integrator (model 439 by Ortec) to measure the incident beam current. A home made device has been used to store the real-time evolution of the beam current in a computer file allowing the correction of the IL yields due to the current fluctuations. The target holder is a rectangle of 150 × 112 mm2 and can be tilted. The X and Y movements are controlled through stepping motors, which permits a fine control of the beam spot positioning as well as the study of several samples without venting the chamber. A silica optical fiber of 1 mm diameter fixed to the vacuum chamber, which collects the light from the scintillators

  15. U.S. Department of Energy physical protection upgrades at the Latvian Academy of Sciences Nuclear Research Center, Latvia

    SciTech Connect

    Haase, M.; Hine, C.; Robertson, C.

    1996-12-31

    Approximately five years ago, the Safe, Secure Dismantlement program was started between the US and countries of the Former Soviet Union (FSU). The purpose of the program is to accelerate progress toward reducing the risk of nuclear weapons proliferation, including such threats as theft, diversion, and unauthorized possession of nuclear materials. This would be accomplished by strengthening the material protection, control, and accounting systems within the FSU countries. Under the US Department of Energy`s program of providing cooperative assistance to the FSU countries in the areas of Material Protection, Control, and Accounting (MPC and A), the Latvian Academy of Sciences Nuclear Research Center (LNRC) near Riga, Latvia, was identified as a candidate site for a cooperative MPC and A project. The LNRC is the site of a 5-megawatt IRT-C pool-type research reactor. This paper describes: the process involved, from initial contracting to project completion, for the physical protection upgrades now in place at the LNRC; the intervening activities; and a brief overview of the technical aspects of the upgrades.

  16. The politics of atmospheric sciences: "nuclear winter" and global climate change.

    PubMed

    Dörries, Matthias

    2011-01-01

    This article, by exploring the individual and collective trajectories that led to the "nuclear winter" debate, examines what originally drew scientists on both sides of the controversy to this research. Stepping back from the day-to-day action and looking at the larger cultural and political context of nuclear winter reveals sometimes surprising commonalities among actors who found themselves on opposing sides, as well as differences within the apparently coherent TTAPS group (the theory's originators: Richard P. Turco, Owen Brian Toon, Thomas P. Ackerman, James B. Pollack, and Carl Sagan). This story foreshadows that of recent research on anthropogenic climate change, which was substantially shaped during this--apparently tangential--cold war debate of the 1980s about research on the global effects of nuclear weapons. PMID:21936194

  17. Nuclear research with heavy ions. Annual progress report, January 1, 1992--December 31, 1992

    SciTech Connect

    Kaplan, M.

    1992-08-01

    This report discusses the following topics; studies of light-charged-particle emission from fission and er reactions in the system 344-MeV{sup 28}Si+{sup 121}Sb {yields} {sup 149}Tb; the role of reversed kinematics and double kinematic solutions in nuclear reactions studies; improvements in interactive data analysis and graphical representations; studies of the reaction 856-MeV {sup 98}Mo + {sup 51}V{yields}{sup 149}Tb(E*=224-MeV): emission of intermediate-mass fragments; particle-particle correlations in compound nucleus reactions: preliminary consideration of lifetime estimates from small angle data; light particle emission studies using a new scintillator array; statistical evaporation calculations: developments with the computer codes LILITA-N90 and CASCADE; star collaboration studies: simulations for the conceptual design of the STAR detector system at RHIC; asymmetric fission of 149Tb* from the finite-range, rotating-liquid-drop model: mean total kinetic energies for binary fragmentation; and charged-particle evaporation from hot composite nuclei: evidence over a broad z range for distortions from cold nuclear profiles.

  18. Oxygen isotopic measurements by secondary ion mass spectrometry in uranium oxide microparticles: a nuclear forensic diagnostic.

    PubMed

    Tamborini, G; Phinney, D; Blidstein, O; Betti, M

    2002-12-01

    To exploit oxygen isotopic measurement by SIMS as a diagnostic tool in nuclear forensics, the magnitude and reproducibility of 0-isotope instrumental mass discrimination for O-isotope standards in the SIMS laboratory at the Institute for Transuranium Elements has been evaluated. Tests for matrix-dependent discrimination effects on three different O-isotope standards with substantially different matrix compositions have been performed. The results were checked by an interlaboratory comparison of O-isotope discrimination with those obtained in the SIMS laboratory at the Lawrence Livermore National Laboratory on two standards. The results from the two laboratories are in very good agreement, indicating statistically indistinguishable instrumental mass discrimination factors for 180/160 ratios on the Cameca 6f and 3f, when the analyses are performed under the experimental conditions described. The 2sigma(mean) uncertainties of these factors are in the range of 0.3-0.9%. In accordance with the tested methodology, 0-isotope compositions were measured in three particulate uranium oxide samples of nuclear forensics interest. PMID:12498207

  19. Nuclear spin polarization following intermediate-energy heavy-ion reactions

    SciTech Connect

    Groh, D. E.; Pinter, J. S.; Mantica, P. F.; Mertzimekis, T. J.; Stuchbery, A. E.; Khoa, D. T.

    2007-11-15

    Intermediate-energy heavy-ion collisions can produce a spin polarization of the projectile-like species. Spin polarization has been observed for both nucleon removal and nucleon pickup processes. Qualitative agreement with measured spin polarization as a function of the momentum of the projectile-like fragment is found in a kinematic model that considers conservation of linear and angular momentum and assumes peripheral interactions between the fast projectile and target. Better quantitative agreement was reached by including more realistic angular distributions and deorientation caused by {gamma}-ray emission and by correcting for the out-of-plane acceptance. The newly introduced corrections were found to apply to both nucleon removal and nucleon pickup processes.

  20. The LHC heavy-ion programme: The energy frontier of nuclear collisions

    NASA Astrophysics Data System (ADS)

    Jowett, John M.

    The greater part of the beam time at CERN's Large Hadron Collider (LHC) is devoted to colliding proton beams for the purposes of elementary particle physics at the highest available energies per colliding nucleon [Myers (2015)]. However a substantial fraction -- about one month per operating year -- is devoted to colliding the nuclei of heavy atoms with each other or, sometimes, with protons. The much larger total energies in these "ultrarelativistic heavy-ion" collisions produce tiny droplets of strongly-interacting matter, the quark-gluon plasma, at the highest densities and temperatures available in the laboratory. The LHC thus recreates the substance that filled the universe in the first microseconds of its history and exposes it to detailed scrutiny with its array of extraordinarily capable detectors...

  1. New frontiers in science and technology: nuclear techniques in nutrition123

    PubMed Central

    Davidsson, Lena; Tanumihardjo, Sherry

    2011-01-01

    The use of nuclear techniques in nutrition adds value by the increased specificity and sensitivity of measures compared with conventional techniques in a wide range of applications. This article provides a brief overview of well-established stable-isotope techniques to evaluate micronutrient bioavailability and assess human-milk intake in breastfed infants to monitor the transfer of micronutrients from the mother to the infant. Recent developments are highlighted in the use of nuclear techniques to evaluate biological interactions between food, nutrition, and health to move the agenda forward. PMID:21653797

  2. Sodium-23 and potassium-39 nuclear magnetic resonance relaxation in eye lens. Examples of quadrupole ion magnetic relaxation in a crowded protein environment.

    PubMed Central

    Stevens, A; Paschalis, P; Schleich, T

    1992-01-01

    Single and multiple quantum nuclear magnetic resonance (NMR) spectroscopic techniques were used to investigate the motional dynamics of sodium and potassium ions in concentrated protein solution, represented in this study by cortical and nuclear bovine lens tissue homogenates. Both ions displayed homogeneous biexponential magnetic relaxation behavior. Furthermore, the NMR relaxation behavior of these ions in lens homogenates was consistent either with a model that assumed the occurrence of two predominant ionic populations, "free" and "bound," in fast exchange with each other or with a model that assumed an asymmetric Gaussian distribution of correlation times. Regardless of the model employed, both ions were found to occur in a predominantly "free" or "unbound" rapidly reorienting state. The fraction of "bound" 23Na+, assuming a discrete two-site model, was approximately 0.006 and 0.017 for cortical and nuclear homogenates, respectively. Corresponding values for 39K+ were 0.003 and 0.007, respectively. Estimated values for the fraction of "bound" 23Na+ or 39K+ obtained from the distribution model (tau C greater than omega L-1) were less than or equal to 0.05 for all cases examined. The correlation times of the "bound" ions, derived using either a two-site or distribution model, yielded values that were at least one order of magnitude smaller than the reorientational motion of the constituent lens proteins. This observation implies that the apparent correlation time for ion binding is dominated by processes other than protein reorientational motion, most likely fast exchange between "free" and "bound" environments. The results of NMR visibility studies were consistent with the above findings, in agreement with other studies performed by non-NMR methods. These studies, in combination with those presented in the literature, suggest that the most likely role for sodium and potassium ions in the lens appears to be the regulation of cell volume by affecting the

  3. AFM characterization of model nuclear fuel oxide multilayer structures modified by heavy ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Hawley, M. E.; Devlin, D. J.; Reichhardt, C. J.; Sickafus, K. E.; Usov, I. O.; Valdez, J. A.; Wang, Y. Q.

    2010-10-01

    This work explored a potential new model dispersion fuel form consisting of an actinide material embedded in a radiation tolerant matrix that captures fission products (FPs) and is easily separated chemically as waste from the fuel material. To understand the stability of this proposed dispersion fuel form design, an idealized model system composed of a multilayer film was studied. This system consisted of a tri-layer structure of an MgO layer sandwiched between two HfO 2 layers. HfO 2 served as a surrogate fissile material for UO 2 while MgO represented a stable, fissile product (FP) getter that is easily separated from the fissile material. This type of multilayer film structure allowed us to control the size of and spacing between each layer. The films were grown at room temperature by e-beam deposition on a Si(1 1 1) substrate and post-annealed annealing at a range of temperatures to crystallize the HfO 2 layers. The 550 °C annealed sample was subsequently irradiated with 10 MeV Au 3+ ions at a range of fluences from 5 × 10 13 to 3.74 × 10 16 ions/cm 2. Separate single layer constituent films and the substrate were also irradiated at 5 × 10 15 and 8 × 10 14 and 2 × 10 16, respectively. After annealing and irradiation, the samples were characterized using atomic force imaging techniques to determine local changes in microstructure and mechanical properties. All samples annealed above 550 °C cracked. From the AFM results we observed both crack healing and significant modification of the surface at higher fluences.

  4. Nuclear de-excitation processes following medium energy heavy ion collisions

    SciTech Connect

    Blann, M.

    1986-09-01

    As heavy ion reaction studies have progressed from beam energies below 10 MeV/nucleon to higher energies, many non-equilibrium reaction phenomena have been observed. Among these are nucleon emission with velocities in excess of the beam velocity, incomplete momentum transfer to evaporation residue and fission-like fragments, ..gamma..-rays with energies in excess of 100 MeV, and ..pi../sup 0/ production when beam energies are below the threshold for production by the nucleon-nucleon collision mechanism. Additionally, prefission neutrons have been observed in excess of numbers expected from equilibrium models. A few of the approaches which have been applied to these phenomena are as follows: Intranuclear cascade: two body collisions are assumed to mediate the equilibration. The geometry and momentum space is followed semiclassically. The approach has many successes though it may suffer in a few applications is not following holes; TDHF considers one body processes only; in the energy regime of interest, two body processes are important so that this may not be a viable approach; Boltzmann-Uehling-Uhlenbeck or Vlasov-Uehling-Uhlenbeck (BUU/VUU) equations combine both one body and two body dynamics. The spatial and momentum evolution of the reactions are followed in a mean field. These should be the Cadillacs of the models. They are computationally tedious, and sometimes significant approximations are made in order to achieve computational tract ability; models of collective deceleration. A very simple model approach is discussed to interpret these phenomena, the Boltzmann master equation (BME). The hybrid model was the first to be applied to the question of heavy ion precompound decay, and the BME second. 26 refs., 5 figs., 2 tabs.

  5. Reaction mechanism studies of heavy ion induced nuclear reactions. Annual progress report

    SciTech Connect

    Mignerey, A.C.

    1981-07-01

    The research summarized in this report was performed during the period August 1, 1980 to June 30, 1981. The experimental emphasis in the heavy-ion-induced reaction studies continues to be discrete charge and mass resolution of all projectile-like fragments measured. In an experiment performed at the Argonne National Laboratory Superconducting LINAC, the /sup 37/Cl beam was used to bombard targets of /sup 40/Ca and /sup 209/Bi. This experiment is compared to results of our previous /sup 56/Fe-induced experiments. Attempts were made to extend the /sup 56/Fe reactions to lower energies at the Lawrence Berkeley Laboratory SuperHILAC. In a desire to improve the mass and charge resolution of previous experiments we tried a time-of-flight telescope employing both a channel-plate start and stop signal. This was backed by an ion chamber ..delta..E and silicon E detector. The operational difficulties encountered are being corrected and we hope to have a reliable system ready this fall. Studies of target fragmentation in /sup 4/He-induced reactions are continuing via experiments and model calculations. The program which began at the University of Maryland Cyclotron has been continued at the Indiana University Cyclotron with 120 and 200 MeV /sup 4/He incident on /sup 12/C and /sup 27/Al targets. While the Indiana data are currently being analyzed and no results are yet available, a summary of the Maryland work is given. Also presented in this section are the model calculations used to describe the data. 28 refs.

  6. Nuclear Chemistry.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1979

    1979-01-01

    Provides a brief review of the latest developments in nuclear chemistry. Nuclear research today is directed toward increased activity in radiopharmaceuticals and formation of new isotopes by high-energy, heavy-ion collisions. (Author/BB)

  7. ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data

    NASA Astrophysics Data System (ADS)

    Chadwick, M. B.; Herman, M.; Obložinský, P.; Dunn, M. E.; Danon, Y.; Kahler, A. C.; Smith, D. L.; Pritychenko, B.; Arbanas, G.; Arcilla, R.; Brewer, R.; Brown, D. A.; Capote, R.; Carlson, A. D.; Cho, Y. S.; Derrien, H.; Guber, K.; Hale, G. M.; Hoblit, S.; Holloway, S.; Johnson, T. D.; Kawano, T.; Kiedrowski, B. C.; Kim, H.; Kunieda, S.; Larson, N. M.; Leal, L.; Lestone, J. P.; Little, R. C.; McCutchan, E. A.; MacFarlane, R. E.; MacInnes, M.; Mattoon, C. M.; McKnight, R. D.; Mughabghab, S. F.; Nobre, G. P. A.; Palmiotti, G.; Palumbo, A.; Pigni, M. T.; Pronyaev, V. G.; Sayer, R. O.; Sonzogni, A. A.; Summers, N. C.; Talou, P.; Thompson, I. J.; Trkov, A.; Vogt, R. L.; van der Marck, S. C.; Wallner, A.; White, M. C.; Wiarda, D.; Young, P. G.

    2011-12-01

    The ENDF/B-VII.1 library is our latest recommended evaluated nuclear data file for use in nuclear science and technology applications, and incorporates advances made in the five years since the release of ENDF/B-VII.0. These advances focus on neutron cross sections, covariances, fission product yields and decay data, and represent work by the US Cross Section Evaluation Working Group (CSEWG) in nuclear data evaluation that utilizes developments in nuclear theory, modeling, simulation, and experiment. The principal advances in the new library are: (1) An increase in the breadth of neutron reaction cross section coverage, extending from 393 nuclides to 423 nuclides; (2) Covariance uncertainty data for 190 of the most important nuclides, as documented in companion papers in this edition; (3) R-matrix analyses of neutron reactions on light nuclei, including isotopes of He, Li, and Be; (4) Resonance parameter analyses at lower energies and statistical high energy reactions for isotopes of Cl, K, Ti, V, Mn, Cr, Ni, Zr and W; (5) Modifications to thermal neutron reactions on fission products (isotopes of Mo, Tc, Rh, Ag, Cs, Nd, Sm, Eu) and neutron absorber materials (Cd, Gd); (6) Improved minor actinide evaluations for isotopes of U, Np, Pu, and Am (we are not making changes to the major actinides 235,238U and 239Pu at this point, except for delayed neutron data and covariances, and instead we intend to update them after a further period of research in experiment and theory), and our adoption of JENDL-4.0 evaluations for isotopes of Cm, Bk, Cf, Es, Fm, and some other minor actinides; (7) Fission energy release evaluations; (8) Fission product yield advances for fission-spectrum neutrons and 14 MeV neutrons incident on 239Pu; and (9) A new decay data sublibrary. Integral validation testing of the ENDF/B-VII.1 library is provided for a variety of quantities: For nuclear criticality, the VII.1 library maintains the generally-good performance seen for VII.0 for a wide range

  8. Educational Programs and Facilities in Nuclear Science and Engineering. Fifth Edition.

    ERIC Educational Resources Information Center

    Oak Ridge Associated Universities, TN.

    This publication contains detailed descriptions of nuclear programs and facilities of 182 four-year educational institutions. Instead of chapters, the contents are presented in five tables. Table I presents the degrees, graduate appointments, special facilities and programs of the institutions. The institutions are arranged in alphabetical order…

  9. On the Balance Energy and Nuclear Dynamics in Peripheral Heavy-Ion Collisions

    NASA Astrophysics Data System (ADS)

    Chugh, Rajiv; Puri, Rajeev K.

    We present here the system size dependence of balance energy for semi-central and peripheral collisions using quantum molecular dynamics model. For this study, the reactions of Ne20+Ne20, Ca40+Ca40, Ni58+ Ni58, Nb93+Nb93, Xe131+Xe131, and Au197+Au197 are simulated at different incident energies and impact parameters. A hard equation of state along with nucleon-nucleon cross-sections between 40 and 55 mb explains the data nicely. Interestingly, balance energy follows a power law ∝Aτ for the mass dependence at all colliding geometries. The power factor τ is close to -(1)/(3) in central collisions, whereas it is -(2)/(3) for peripheral collisions suggesting stronger system size dependence at peripheral geometries. This also suggests that in the absence of momentum dependent interactions, Coulomb's interaction plays an exceedingly significant role. These results are further analyzed for nuclear dynamics at the balance point.

  10. Evidence for nuclear Landau-Zener effect: New resonance mechanism in heavy-ion reactions

    SciTech Connect

    Abe, Y.; Park, J.Y.

    1983-12-01

    Characteristic resonancelike peaks recently observed in the angle-integrated inelastic cross sections for the /sup 13/C-/sup 17/O system are understood in terms of the Landau-Zener excitation mechanism at energy level crossings. Angle-integrated inelastic cross sections estimated with the Landau-Zener formula show a series of resonancelike peaks as a function of incident energy, each of which is associated with a grazing angular momentum of the relative motion between nuclei. Simple expressions are given for resonance energies and ''widths'' of new ''resonances.'' This resonance mechanism is a new one, which has not been known in nuclear reactions nor in atomic collisions, although it is based on the well-known Landau-Zener promotion mechanism.

  11. Light detection with spectral analysis at the Legnaro nuclear microprobe: Applications in material and earth sciences

    NASA Astrophysics Data System (ADS)

    Vittone, E.; Lo Giudice, A.; Manfredotti, C.; Egeni, G.; Rudello, V.; Rossi, P.; Gennaro, G.; Pratesi, G.; Corazza, M.

    2001-07-01

    Among the numerous ion beam analytical (IBA) techniques available for material characterisation, ionoluminescence (IL) has not attracted the interest that it should deserve. Although the importance of IL technique, particularly if combined with other IBA techniques, has been widely proven, very few apparatuses to analyse light emission spectra have been installed at the microbeam facilities. In this paper we present the new IL apparatus installed at the Legnaro (LNL) Ion Microbeam Facility. The system is a modification of the OXFORD MONOCL2 apparatus for cathodoluminescence. Light collection is performed by using a retractable parabolic mirror located at a very short distance from the sample, with a small aperture to allow the ion beam to hit the sample. Accurate positioning of the retractable mirror directly coupled to a chamber mounted high-resolution monochromator allows for high light collection efficiency. This design assures that IL can be used with low beam currents (<1 pA) with the consequent reduction of the radiation damage, which often occurs during ionoluminescence measurements. A summary of some meaningful results obtained with such an apparatus is presented. The combination of IL/PIXE was used to characterise natural silica glass, known as Libyan Desert Glass, and cubic BN grains; polycristalline CVD diamond has been studied by a synergetic combination of IBICC/IL technique.

  12. The Relationship of Science Knowledge, Attitude and Decision Making on Socio-scientific Issues: The Case Study of Students' Debates on a Nuclear Power Plant in Korea

    NASA Astrophysics Data System (ADS)

    Jho, Hunkoog; Yoon, Hye-Gyoung; Kim, Mijung

    2014-05-01

    The purpose of this study was to investigate the relationship of students' understanding of science knowledge, attitude and decision making on socio-scientific issues (SSI), especially on the issues of nuclear energy in Korea. SSI-focused instructions were developed to encourage students to understand and reflect on knowledge, attitude and decision making on nuclear energy in the current society. Eighty-nine students attended the instruction and participated in pre and post questionnaires to understand their understandings of nuclear energy. In this study, science knowledge was categorized into content and contextual knowledge, attitude consisted of images, safety, risk, potential, benefits and future roles, and decision making section included preference and alternative about lifetime extension of nuclear power plant. The results of questionnaires were analyzed by correlation, cross-tabulation and regression. As a result, while students' understandings of science knowledge were significantly improved throughout the instruction, they maintained similar attitude and decision making on the issue. Regarding the relationship of the three domains, attitude showed some degree of connection to decision making whereas science knowledge did not show a significant relationship to decision making. This finding challenges SSI teaching in content-based science curriculum and classroom. Reflection and implications on the way of teaching SSI in the classroom were discussed further in this paper.

  13. Recovery effects due to the interaction between nuclear and electronic energy losses in SiC irradiated with a dual-ion beam

    NASA Astrophysics Data System (ADS)

    Thomé, Lionel; Velisa, Gihan; Miro, Sandrine; Debelle, Aurélien; Garrido, Frédérico; Sattonnay, Gaël; Mylonas, Stamatis; Trocellier, Patrick; Serruys, Yves

    2015-03-01

    Single and dual-beam ion irradiations of silicon carbide (SiC) were performed to study possible Synergetic effects between Nuclear (Sn) and Electronic (Se) Energy Losses. Results obtained combining Rutherford backscattering in channeling conditions, Raman spectroscopy, and transmission electron microscopy techniques show that dual-beam irradiation of SiC induces a dramatic change in the final sample microstructure with a substantial decrease of radiation damage as compared to single-beam irradiation. Actually, a defective layer containing dislocations is formed upon dual-beam irradiation (Sn&Se), whereas single low-energy irradiation (Sn alone) or even sequential (Sn + Se) irradiations lead to full amorphization. The healing process is ascribed to the electronic excitation arising from the electronic energy loss of swift ions. These results shed new light on the long-standing puzzling problem of the existence of a possible synergy between Sn and Se in ion-irradiation experiments. This work is interesting for both fundamental understanding of the ion-solid interactions and technological applications in the nuclear industry where recovery Sn/Se effects may preserve the integrity of nuclear devices.

  14. Understanding of the mechanical and structural changes induced by alpha particles and heavy ions in the French simulated nuclear waste glass

    NASA Astrophysics Data System (ADS)

    Karakurt, G.; Abdelouas, A.; Guin, J.-P.; Nivard, M.; Sauvage, T.; Paris, M.; Bardeau, J.-F.

    2016-07-01

    Borosilicate glasses are considered for the long-term confinement of high-level nuclear wastes. External irradiations with 1 MeV He+ ions and 7 MeV Au5+ ions were performed to simulate effects produced by alpha particles and by recoil nuclei in the simulated SON68 nuclear waste glass. To better understand the structural modifications, irradiations were also carried out on a 6-oxides borosilicate glass, a simplified version of the SON68 glass (ISG glass). The mechanical and macroscopic properties of the glasses were studied as function of the deposited electronic and nuclear energies. Alpha particles and gold ions induced a volume change up to -0.7% and -2.7%, respectively, depending on the glass composition. Nano-indentations tests were used to determine the mechanical properties of the irradiated glasses. A decrease of about -22% to -38% of the hardness and a decrease of the reduced Young's modulus by -8% were measured after irradiations. The evolution of the glass structure was studied by Raman spectroscopy, and also 11B and 27Al Nuclear Magnetic Resonance (MAS-NMR) on a 20 MeV Kr irradiated ISG glass powder. A decrease of the silica network connectivity after irradiation with alpha particles and gold ions is deduced from the structural changes observations. NMR spectra revealed a partial conversion of BO4 to BO3 units but also a formation of AlO5 and AlO6 species after irradiation with Kr ions. The relationships between the mechanical and structural changes are also discussed.

  15. SYNCHROTRON RADIATION, FREE ELECTRON LASER, APPLICATION OF NUCLEAR TECHNOLOGY, ETC.: Design of the IMP microbeam irradiation system for 100 MeV/u heavy ions

    NASA Astrophysics Data System (ADS)

    Sheng, Li-Na; Song, Ming-Tao; Zhang, Xiao-Qi; Yang, Xiao-Tian; Gao, Da-Qing; He, Yuan; Zhang, Bin; Liu, Jie; Sun, You-Mei; Dang, Bing-Rong; Li, Wen-Jian; Su, Hong; Man, Kai-Di; Guo, Yi-Zhen; Wang, Zhi-Guang; Zhan, Wen-Long

    2009-04-01

    A state-of-the-art high energy heavy ion microbeam irradiation system is constructed at the Institute of Modern Physics of the Chinese Academy of Sciences. This microbeam system operates in both full current intensity mode and single ion mode. It delivers a predefined number of ions to pre-selected targets for research in biology and material science. The characteristic of this microbeam system is high energy and vertical irradiation. A quadrupole focusing system, in combination with a series of slits, has been designed to optimize the spatial resolution. A symmetrically achromatic system leads the beam downwards and serves simultaneously as an energy analyzer. A high gradient quadrupole triplet finally focuses a C6+ ion beam to 1 μm in the vacuum chamber within the energy range from 10 MeV/u to 100 MeV/u. In this paper, the IMP microbeam system is described in detail. A systematic investigation of the ion beam optics of this microbeam system is presented together with the associated aberrations. Comparison is made between the IMP microbeam system and the other existing systems to further discuss the performance of this microbeam. Then the optimized initial beam parameters are given for high resolution and high hitting efficiency. At last, the experiment platform is briefly introduced.

  16. Report of the defense science board task force on defense nuclear agency. Final report

    SciTech Connect

    Not Available

    1993-04-01

    The Task Force recommends that: (1) DNA continue to be the DoD focal point for nuclear expertise; (2) The DNA charter be modified to provide focus for non-nuclear activities of critical importance to the DoD. It gives DNA authority to conduct technology base development for advanced conventional munitions, and become a focal point for technologies related to non- and counter-proliteration of weapon systems of mass destruction and their infrastructure (WMD); and (3) Anticipating cessation of UGETs, DNA should aggressively pursue technology development for AGT, AGT/UGT correlation and advanced computations, with emphasis on new theater scenarios, but with the ability to reconstitute for UGT resumption or AGT for large strategic threats within a year or two.

  17. Nuclear science research with dynamic high energy density plasmas at NIF

    NASA Astrophysics Data System (ADS)

    Shaughnessy, D. A.; Gharibyan, N.; Moody, K. J.; Despotopulos, J. D.; Grant, P. M.; Yeamans, C. B.; Berzak Hopkins, L.; Cerjan, C. J.; Schneider, D. H. G.; Faye, S.

    2016-05-01

    Nuclear reaction measurements are performed at the National Ignition Facility in a high energy density plasma environment by adding target materials to the outside of the hohlraum thermo-mechanical package on an indirect-drive exploding pusher shot. Materials are activated with 14.1-MeV neutrons and the post-shot debris is collected via the Solid Radiochemistry diagnostic, which consists of metal discs fielded 50 cm from target chamber center. The discs are removed post-shot and analyzed via radiation counting and mass spectrometry. Results from a shot using Nd and Tm foils as targets are presented, which indicate enhanced collection of the debris in the line of sight of a given collector. The capsule performance was not diminished due to the extra material. This provides a platform for future measurements of nuclear reaction data through the use of experimental packages mounted external to the hohlraum.

  18. Heavy-ion collisions and the nuclear equation of state. Progress report, August 15, 1991--March 1992

    SciTech Connect

    Keane, D.

    1992-09-01

    The overall goal of this project is to study nucleus-nucleus collisions experimentally at intermediate and relativistic energies, with emphasis on measurement and interpretation of correlation effects that provide insight into the nuclear phase diagram and the nuclear equation of state. During the past year, the PI has been on leave at Lawrence Berkeley Lab and has worked on this research project full-time. A large fraction of the effort of the PI and graduate students has gone into preparing for experiments using the Time Projection Chamber at LBL`s Bevalac accelerator; in March 1992, this device successfully took data in production mode for the first time, and the first physics analysis is now under way. The PI has carried out simulations that help to define the physics performance and engineering specifications of the recently-approved STAR detector for the Relativistic Heavy Ion Collider, and has identified a new capability of this device with the potential for being an important quark-gluon plasma signature. A Postdoctoral Fellow, jointly supported by this grant and Kent State University, has been recruited to augment these efforts. Since May 1991, 11 journal papers have been published or submitted for publication; 2 conference proceedings and 9 reports or abstracts have also been published during the past year. One paper in Phys. Rev. Left., one in Phys. Rev. C, and one conference proceedings are based on the thesis project of one of the PI`s Ph.D. students who is expected to graduate later this year. Partly in response to the impending closure of the Bevalac, the PI`s group has recently joined the NA49 experiment at CERN.

  19. 20 Years of Success: Science, Technology, and the Nuclear Weapons Stockpile

    SciTech Connect

    None, None

    2015-10-22

    On Oct. 22, 2015, NNSA celebrated the proven success of the Stockpile Stewardship Program at a half-day public event featuring remarks by Secretary of Energy Ernest Moniz, Secretary of State John Kerry, and Under Secretary for Nuclear Security and NNSA Administrator Lt. Gen. (retired) Frank G. Klotz. The event also featured remarks by Deputy Secretary of Energy Elizabeth Sherwood-Randall and NNSA Principal Deputy Administrator Madelyn Creedon.

  20. The science case for 37Ar as a monitor for underground nuclear explosions

    SciTech Connect

    Haas, Derek A.; Orrell, John L.; Bowyer, Ted W.; McIntyre, Justin I.; Miley, Harry S.; Aalseth, Craig E.; Hayes, James C.

    2010-06-04

    A new calculation of the production of 37Ar from nuclear explosion neutron interactions on 40Ca in a suite of common sub-surface materials (rock, etc) is presented. Even in mineral structures that are relatively low in Ca, the resulting 37Ar signature is large enough for detection in cases of venting or gaseous diffusion driven by barometric pumping. Field and laboratory detection strategies and projected sensitivities are presented.