Science.gov

Sample records for ion pump related

  1. ION PUMP

    DOEpatents

    Milleron, N.

    1961-01-01

    An ion pump and pumping method are given for low vacuum pressures in which gases introduced into a pumping cavity are ionized and thereafter directed and accelerated into a quantity of liquid gettering metal where they are absorbed. In the preferred embodiment the metal is disposed as a liquid pool upon one electrode of a Phillips ion gauge type pump. Means are provided for continuously and remotely withdrawing and degassing the gettering metal. The liquid gettering metal may be heated if desired, although various combinations of gallium, indium, tin, bismuth, and lead, the preferred metals, have very low melting points. A background pressure of evaporated gettering metal may be provided by means of a resistance heated refractory metal wick protruding from the surface of the pcol of gettering metal.

  2. The Evolution of Ion Pumps.

    ERIC Educational Resources Information Center

    Maloney, Peter C.; Wilson, T. Hastings

    1985-01-01

    Constructs an evolutionary sequence to account for the diversity of ion pumps found today. Explanations include primary ion pumps in bacteria, features and distribution of ATP-driven pumps, preference for cation transport, and proton pump reversal. The integrated evolutionary hypothesis should encourage new experimental approaches. (DH)

  3. Miniature Lightweight Ion Pump

    NASA Technical Reports Server (NTRS)

    Sinha, Mahadeva P.

    2010-01-01

    This design offers a larger surface area for pumping of active gases and reduces the mass of the pump by eliminating the additional vacuum enclosure. There are three main components to this ion pump: the cathode and anode pumping elements assembly, the vacuum enclosure (made completely of titanium and used as the cathode and maintained at ground potential) containing the assembly, and the external magnet. These components are generally put in a noble diode (or differential) configuration of the ion pump technology. In the present state of the art, there are two cathodes, one made of titanium and the other of tantalum. The anodes are made up of an array of stainless steel cylinders positioned between the two cathodes. All the elements of the pump are in a vacuum enclosure. After the reduction of pressure in this enclosure to a few microns, a voltage is applied between the cathode and the anode elements. Electrons generated by the ionization are accelerated toward the anodes that are confined in the anode space by the axial magnetic field. For the generation of the axial field along the anode elements, the magnet is designed in a C-configuration and is fabricated from rare earth magnetic materials (Nd-B-Fe or Sm-Co) possessing high energy product values, and the yoke is fabricated from the high permeability material (Hiperco-50A composed of Fe-Co-V). The electrons in this region collide with the gas molecules and generate their positive ions. These ions are accelerated into the cathode and eject cathode material (Ti). The neutral atoms deposit on the anode surfaces. Because of the chemical activity of Ti, the atoms combine with chemically active gas molecules (e.g. N2, O2, etc.) and remove them. New layers of Ti are continually deposited, and the pumping of active gases is thus accomplished. Pumping of the inert gases is accomplished by their burial several atomic layers deep into the cathode. However, they tend to re-emit if the entrapping lattice atoms are

  4. Bioinspired artificial single ion pump.

    PubMed

    Zhang, Huacheng; Hou, Xu; Zeng, Lu; Yang, Fu; Li, Lin; Yan, Dadong; Tian, Ye; Jiang, Lei

    2013-10-30

    Bioinspired artificial functional nanochannels for intelligent molecular and ionic transport control at the nanoscale have wide potential applications in nanofluidics, energy conversion, and biosensors. Although various smart passive ion transport properties of ion channels have been artificially realized, it is still hugely challenging to achieve high level intelligent ion transport features in biological ion pumps. Here we show a unique bioinspired single ion pump based on a cooperative pH response double-gate nanochannel, whose gates could be opened and closed alternately/simultaneously under symmetric/asymmetric pH environments. With the stimulation of the double-gate nanochannel by continuous switching of the symmetric/asymmetric pH stimuli, the bioinspired system systematically realized three key ionic transport features of biological ion pumps, including an alternating gates ion pumping process under symmetric pH stimuli, transformation of the ion pump into an ion channel under asymmetric pH stimuli, and a fail-safe ion pumping feature under both symmetric and asymmetric pH stimuli. The ion pumping processes could well be reproduced under a concentration gradient. With the advantages of the extraordinary ionic transport functions of biological ion pumps, the bioinspired ion pump should find widespread applicability in active transportation-controlling smart nanofluidic devices, efficient energy conversions, and seawater desalinization, and open the way to design and develop novel bioinspired intelligent artificial nanochannel materials. PMID:23773031

  5. Ion-pumping microbial rhodopsins

    PubMed Central

    Kandori, Hideki

    2015-01-01

    Rhodopsins are light-sensing proteins used in optogenetics. The word “rhodopsin” originates from the Greek words “rhodo” and “opsis,” indicating rose and sight, respectively. Although the classical meaning of rhodopsin is the red-colored pigment in our eyes, the modern meaning of rhodopsin encompasses photoactive proteins containing a retinal chromophore in animals and microbes. Animal and microbial rhodopsins possess 11-cis and all-trans retinal, respectively, to capture light in seven transmembrane α-helices, and photoisomerizations into all-trans and 13-cis forms, respectively, initiate each function. Ion-transporting proteins can be found in microbial rhodopsins, such as light-gated channels and light-driven pumps, which are the main tools in optogenetics. Light-driven pumps, such as archaeal H+ pump bacteriorhodopsin (BR) and Cl− pump halorhodopsin (HR), were discovered in the 1970s, and their mechanism has been extensively studied. On the other hand, different kinds of H+ and Cl− pumps have been found in marine bacteria, such as proteorhodopsin (PR) and Fulvimarina pelagi rhodopsin (FR), respectively. In addition, a light-driven Na+ pump was found, Krokinobacter eikastus rhodopsin 2 (KR2). These light-driven ion-pumping microbial rhodopsins are classified as DTD, TSA, DTE, NTQ, and NDQ rhodopsins for BR, HR, PR, FR, and KR2, respectively. Recent understanding of ion-pumping microbial rhodopsins is reviewed in this paper. PMID:26442282

  6. Electrostatic coupling of ion pumps.

    PubMed Central

    Nieto-Frausto, J; Lüger, P; Apell, H J

    1992-01-01

    In this paper the electrostatic interactions between membrane-embedded ion-pumps and their consequences for the kinetics of pump-mediated transport processes have been examined. We show that the time course of an intrinsically monomolecular transport reaction can become distinctly nonexponential, if the reaction is associated with charge translocation and takes place in an aggregate of pump molecules. First we consider the electrostatic coupling of a single dimer of ion-pumps embedded in the membrane. Then we apply the treatment to the kinetic analysis of light-driven proton transport by bacteriorhodopsin which forms two-dimensional hexagonal lattices. Finally, for the case of nonordered molecules, we also consider a model in which the pumps are randomly distributed over the nodes of a lattice. Here the average distance is equal to that deduced experimentally and the elemental size of the lattice is the effective diameter of one single pump. This latter model is applied to an aggregate of membrane-embedded Na, K- and Ca-pumps. In all these cases the electrostatic potential considered is the exact solution calculated from the method of electrical images for a plane membrane of finite thickness immersed in an infinite aqueous solution environment. The distributions of charges (ions or charged binding sites) are considered homogeneous or discrete in the membrane and/or in the external solution. In the case of discrete distributions we compare the results from a mean field approximation and a stochastic simulation. PMID:1371705

  7. Extended ion pumped vacuum friction test

    NASA Technical Reports Server (NTRS)

    Hammel, R. L.

    1971-01-01

    Boundary layer friction data under ion pumped vacuum was taken for sixteen material couples. The test series was an extension of a previous study of the effects of modified ion pumped environments. Sliding distances imposed in the present effort greatly exceeded any studied in the previous contiguous, flight or ground tests. Wear out of specific couples, in particular, thin film lubricants was noted. The behavior of the test hardware including wear out of the mechanisms was noted. As a result, the impact of test interruption was observed for several test couples. Recovery of the friction upon re-establishing sliding in vacuum was generally rapid. The results of the extended sliding study reinforce the previous conclusion that sliding distance (mechanical history) is the primary factor in establishing the force limiting boundary layer friction. General friction value under the extended sliding confirm those observed in previous orbital and the related ground test studies.

  8. Ion channels versus ion pumps: the principal difference, in principle

    PubMed Central

    Gadsby, David C.

    2009-01-01

    Two kinds of border guards control the incessant traffic of ions across cell membranes: ion channels and ion pumps. When open, channels let selected ions diffuse rapidly down electrical and concentration gradients, whereas ion pumps labour tirelessly to maintain the gradients, by consuming energy to slowly move ions against them. Because of their diametrically opposed tasks and their divergent speeds, channels and pumps have traditionally been viewed as completely different entities, as alike as chalk and cheese. But new structural and mechanistic information about both classes of these molecular machines challenges this comfortable separation, forcing its reevaluation. PMID:19339978

  9. Pumping of helium and hydrogen by sputter-ion pumps. II. Hydrogen pumping

    SciTech Connect

    Welch, K.M.; Pate, D.J.; Todd, R.J. )

    1994-05-01

    The pumping of helium by various forms of sputter-ion pumps (i.e., SIPs) is given in part I [K. M. Welch, D. J. Pate, and R. J. Todd, J. Vac. Sci. Technol. A [bold 11], 1607 (1993)]. The pumping of hydrogen in diode and triode SIPs is herein discussed. The type of cathode material used in these pumps is shown to have a significant impact on the effectiveness with which hydrogen is pumped. Examples of this include data for pumps with aluminum, titanium, and titanium-alloy cathodes. Diode pumps with aluminum cathodes are shown to be no more effective in the pumping of hydrogen than in the pumping of helium. The use of titanium anodes and titanium [ital shielding] of a pump body is also shown to impact measurably the speed of a pump at very low pressures. This stems from the fact that hydrogen is [times]10[sup 6] more soluble in titanium than in stainless steel. Hydrogen becomes resident in the anodes because of fast neutral burial. Ions and fast neutrals of hydrogen are also buried in the walls of pump bodies. Outgassing of this hydrogen from the anodes and pump bodies results in a gradual increase in pump base pressure and consequential decrease in hydrogen pump speed at very low base pressures.

  10. Investigation of hydrogen and helium pumping by sputter ion pumps for Jupiter and outer planets mass spectrometer

    NASA Technical Reports Server (NTRS)

    Scott, B. W.

    1977-01-01

    The phenomena of ion pumping is reviewed with emphasis on the pumping mechanism for hydrogen and helium. The experimental tests measure the performance of a small, flight proven ion pump which has a nominal four liter/second pumping speed for air. The speed of this pump for hydrogen and helium, and for hydrogen/helium mixes, is presented with particular detail regarding the time dependence. Pump test results are related to anticipated performance of the mass spectrometer by the pumping speeds for the gases to the partial pressure in the ion source. From this analysis, the pump specifications are quantified in terms of mission goals and in terms of observed pumping speeds for the various gases, load levels, and time periods.

  11. Pumping mechanism for different gases in ion pumps with different configurations

    NASA Astrophysics Data System (ADS)

    Audi, M.

    1988-09-01

    Ion pumps have the capability of pumping all gases of gas. Different phenomena are involved whens differnet gases are pumped. According to the pumping mechanisms in ion pump, gases can be divided in three rough groups: getterable gases, hydrogen and moble gases. Several different configurations of ion pumps have been developed through the years, to optimize their performance. Unfortunately, optimizing performance for one type of gas, often dimnishees performance for other gas. Diode ion pumps are the best choice for pumping getterable gases and hydrogen, but shown dramatic instability in pumping noble gases. Differential cathode ion pumps have a better behavior with noble gases, but slightly lower speeds for other gases. Triode ion pumps are stable when pumping noble gases, but have a reduced hydrogen capacity. The last generation of ion pumps has solved this problem: with a triode configuration and a unique cathode design, they have a high pumping speed for getterable gases, a pumping speed and pumping stability for noble gases even better than standard triode, and a pumping speed and capacity for hydrogen comparable to diode pumps.

  12. The road to understanding an ion pump

    NASA Astrophysics Data System (ADS)

    Toyoshima, Chikashi

    2016-04-01

    In the past 25 years or so I have been working almost exclusively on two proteins: the Ca2+-ATPase of muscle sarcoplasmic reticulum, and the Na+, K+-ATPase expressed in all animal cells, both are membrane ion pumps representing P-type ion translocating ATPases. My ambition as a scientist is to completely understand the meaning of their atomic structures. How I became a scientist is described elsewhere (Nuzzo R 2006 Proc. Natl. Acad. Sci. USA 103 1165-7), and focus here is given to my struggle towards a deep understanding of Ca2+-ATPase. This is a long but very fascinating and rewarding journey.

  13. A nanodevice for rectification and pumping ions

    NASA Astrophysics Data System (ADS)

    Siwy, Zuzanna; Fuliński, Andrzej

    2004-05-01

    The transport properties of single asymmetric nanopores in polyetheylene terephthalate (PET) are examined. The pores were produced by a track etching technique based on the irradiation of the foils by swift heavy ions and subsequent chemical etching. Electrical conductivity measurements show that the nanopores in PET are cation selective and rectify the current with the preferential direction of cation flow from the narrow entrance toward the wide opening of the pore. Moreover, the pore transports potassium ions against the concentration gradient if stimulated by external field fluctuations. We show that the rectifying and pumping effects are based on the ratchet mechanism.

  14. Deionization and desalination using electrostatic ion pumping

    SciTech Connect

    Bourcier, William L.; Aines, Roger D.; Haslam, Jeffery J.; Schaldach, Charlene M.; O'Brien, Kevin C.; Cussler, Edward

    2013-06-11

    The present invention provides a new method and apparatus/system for purifying ionic solutions, such as, for example, desalinating water, using engineered charged surfaces to sorb ions from such solutions. Surface charge is applied externally, and is synchronized with oscillatory fluid movements between substantially parallel charged plates. Ions are held in place during fluid movement in one direction (because they are held in the electrical double layer), and released for transport during fluid movement in the opposite direction by removing the applied electric field. In this way the ions, such as salt, are "ratcheted" across the charged surface from the feed side to the concentrate side. The process itself is very simple and involves only pumps, charged surfaces, and manifolds for fluid collection.

  15. Deionization and desalination using electrostatic ion pumping

    SciTech Connect

    Bourcier, William L.; Aines, Roger D.; Haslam, Jeffery J.; Schaldach, Charlene M.; O'Brien, Kevin C.; Cussler, Edward

    2011-07-19

    The present invention provides a new method and apparatus/system for purifying ionic solutions, such as, for example, desalinating water, using engineered charged surfaces to sorb ions from such solutions. Surface charge is applied externally, and is synchronized with oscillatory fluid movements between substantially parallel charged plates. Ions are held in place during fluid movement in one direction (because they are held in the electrical double layer), and released for transport during fluid movement in the opposite direction by removing the applied electric field. In this way the ions, such as salt, are "ratcheted" across the charged surface from the feed side to the concentrate side. The process itself is very simple and involves only pumps, charged surfaces, and manifolds for fluid collection.

  16. MULTIPLE ELECTRON BEAM ION PUMP AND SOURCE

    DOEpatents

    Ellis, R.E.

    1962-02-27

    A vacuum pump is designed which operates by ionizing incoming air and by withdrawing the ions from the system by means of electrical fields. The apparatus comprises a cylindrical housing communicable with the vessel to be evacuated and having a thin wall section in one end. Suitable coils provide a longitudinal magnetic field within the cylinder. A broad cathode and an anode structure is provided to establish a plurality of adjacent electron beams which are parallel to the cylinder axis. Electron reflector means are provided so that each of the beams constitutes a PIG or reflex discharge. Such structure provides a large region in which incoming gas molecules may be ionized by electron bombardment. A charged electrode assembly accelerates the ions through the thin window, thereby removing the gas from the system. The invention may also be utilized as a highly efficient ion source. (AEC)

  17. The pumping of hydrogen and helium by sputter-ion pumps. Revision 3/93

    SciTech Connect

    Welch, K.M.; Pate, D.J.; Todd, R.J.

    1992-12-31

    The pumping of hydrogen in diode and triode sputter-ion pumps is discussed. The type of cathode material used in these pumps is shown to have a significant impact on the effectiveness with which hydrogen is pumped. Examples of this include data for pumps with aluminum and titanium-alloy cathodes. Diode pumps with aluminum cathodes are shown to be no more effective in the pumping of hydrogen than in the pumping of helium. The use of titanium or titanium alloy anodes is also shown to measurably impact on the speed of these pumps at.very low pressures. This stems from the fact that hydrogen is {times}10{sup 6} more soluble in titanium than in stainless steel. Hydrogen becomes resident in the anodes because of fast neutral burial. Lastly, quantitative data are given for the He speeds and capacities of both noble and conventional diode and triode pumps. The effectiveness of various pump regeneration procedures, subsequent to the pumping of He, is reported.These included bakeout and N{sub 2} glow discharge cleaning. The comparative desorption of He with the subsequent pumping of N{sub 2} is reported on. The N{sub 2} speed of these pumps was used as the benchmark for defining the size of the pumps vs. their respective He speeds.

  18. Differentially pumped dual linear quadrupole ion trap mass spectrometer

    SciTech Connect

    Owen, Benjamin C.; Kenttamaa, Hilkka I.

    2015-10-20

    The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.

  19. Asymmetric Functional Conversion of Eubacterial Light-driven Ion Pumps.

    PubMed

    Inoue, Keiichi; Nomura, Yurika; Kandori, Hideki

    2016-05-01

    In addition to the well-known light-driven outward proton pumps, novel ion-pumping rhodopsins functioning as outward Na(+) and inward Cl(-) pumps have been recently found in eubacteria. They convert light energy into transmembrane electrochemical potential difference, similar to the prototypical archaeal H(+) pump bacteriorhodopsin (BR) and Cl(-) pump halorhodopsin (HR). The H(+), Na(+), and Cl(-) pumps possess the conserved respective DTE, NDQ, and NTQ motifs in the helix C, which likely serve as their functional determinants. To verify this hypothesis, we attempted functional interconversion between selected pumps from each category by mutagenesis. Introduction of the proton-pumping motif resulted in successful Na(+) → H(+) functional conversion. Introduction of the respective characteristic motifs with several additional mutations leads to successful Na(+) → Cl(-) and Cl(-) → H(+) functional conversions, whereas remaining conversions (H(+) → Na(+), H(+) → Cl(-), Cl(-) → Na(+)) were unsuccessful when mutagenesis of 4-6 residues was used. Phylogenetic analysis suggests that a H(+) pump is the common ancestor of all of these rhodopsins, from which Cl(-) pumps emerged followed by Na(+) pumps. We propose that successful functional conversions of these ion pumps are achieved exclusively when mutagenesis reverses the evolutionary amino acid sequence changes. Dependence of the observed functional conversions on the direction of evolution strongly suggests that the essential structural mechanism of an ancestral function is retained even after the gain of a new function during natural evolution, which can be evoked by a few mutations. By contrast, the gain of a new function needs accumulation of multiple mutations, which may not be easily reproduced by limited mutagenesis in vitro. PMID:26929409

  20. Principles of selective ion transport in channels and pumps.

    PubMed

    Gouaux, Eric; Mackinnon, Roderick

    2005-12-01

    The transport of ions across the membranes of cells and organelles is a prerequisite for many of life's processes. Transport often involves very precise selectivity for specific ions. Recently, atomic-resolution structures have been determined for channels or pumps that are selective for sodium, potassium, calcium, and chloride: four of the most abundant ions in biology. From these structures we can begin to understand the principles of selective ion transport in terms of the architecture and detailed chemistry of the ion conduction pathways. PMID:16322449

  1. Do biomolecular ion-motive ATPase work as adiabatic pumps

    NASA Astrophysics Data System (ADS)

    Astumian, Raymond Dean

    2001-03-01

    Biomolecular ion pumps use chemical energy to pump ions from low to high chemical potential across a biological membrane. Experiments show that the chemical energy can be substituted by an external oscillating or stochastically fluctuating electric field. This result can be interpreted analogously to a mechanism for an adiabatic electron pump originally suggested by Thouless (PRB 27: 6083 (1983)) in which two system parameters are modulated out of phase with one another. In our model, internal relaxations of the protein (at least two with different time scales) provide a mechanism for transforming a single ac or stochastically fluctuating external signal into a two phase shifted outputs. For a sinusoidally oscillating electric field, the frequency response for the Sodium-Potassium ATPase for both sodium and rubidium (an analog of potassium) can be fit using a very simple expression with only one fit parameter. These results show how biomolecular pumps can be modelled at the mesoscopic level of detail.

  2. A High Vacuum High Speed Ion Pump

    DOE R&D Accomplishments Database

    Foster, J. S. Jr.; Lawrence, E. O.; Lofgren, E. J.

    1952-08-27

    A vacuum pump based on the properties of a magnetically collimated electric discharge is described. It has a speed in the range 3000 to 7000 liters a second and a base pressure in the order of 10{sup -6} mm. (auth)

  3. Ion pump using cylindrically symmetric spindle magnetic field

    NASA Astrophysics Data System (ADS)

    Rashid, M. H.

    2012-11-01

    For all accelerators and many research and industries, excellent vacuum conditions are required and the highest possible pumping rates are necessary. For most applications the standard ion sputtering pump (ISP) meets these requirements and is optimal for financial point of view also. The physical principle of the ISP is well known and many companies manufacture variety of ISP. Most of them use dipole magnetic field produced by permanent magnet and electric dipole field between the electrodes in which tenuous plasma is created because of interaction of between the relatively fast electrons slow residual gas atoms. Performance of an ISP depends basically on the electron cloud density in between the titanium electrodes but in the available present configurations no consideration has been given to electron confinement which needs a mirror magnetic field. If this is incorporated it will make a robust ISP surely; furthermore, the requirement of constant feeding of high voltage to electrodes for supplying sufficient number of electrons will be reduced too. A study has been performed to create sufficient rotationally symmetric spindle magnetic field (SMF) with inherent presence of magnetic mirror effect to electron motion to confine them for longer time for enhancing the density of electron cloud between the electrodes. It will lessen the electric power feeding the electrodes and lengthen their life-time. Construction of further compact and robust ISP is envisaged herein. The field simulation using the commercially available permanent magnet together with simulation of electron motion in such field will be presented and discussed in the paper.

  4. Separation of Carbon Dioxide from Flue Gas Using Ion Pumping

    SciTech Connect

    Aines, R; Bourcier, W L; Johnson, M R

    2006-04-21

    We are developing a new way of separating carbon dioxide from flue gas based on ionic pumping of carbonate ions dissolved in water. Instead of relying on large temperature or pressure changes to remove carbon dioxide from solvent used to absorb it from flue gas, the ion pump increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, which can be removed from the downstream side of the ion pump as a nearly pure gas. This novel approach to increasing the concentration of the extracted gas permits new approaches to treating flue gas. The slightly basic water used as the extraction medium is impervious to trace acid gases that destroy existing solvents, and no pre-separation is necessary. The simple, robust nature of the process lends itself to small separation plants. Although the energy cost of the ion pump is significant, we anticipate that it will be compete favorably with the current 35% energy penalty of chemical stripping systems in use at power plants. There is the distinct possibility that this simple method could be significantly more efficient than existing processes.

  5. Density scaling of an optically pumped lithium negative ion source

    SciTech Connect

    McGeoch, M.W.; Schlier, R.E.

    1987-07-30

    An experiment is described in which a high density of lithium negative ions (1 x 10/sup 10/ cm/sup -3/) is generated by dissociative attachment of electrons to optically pumped lithium molecules. During a three microsecond period up to 7% of electrons are attached. The possibilities for increased Li/sup -/ density are explored.

  6. Proton/sodium pumping pyrophosphatases: the last of the primary ion pumps.

    PubMed

    Tsai, Jia-Yin; Kellosalo, Juho; Sun, Yuh-Ju; Goldman, Adrian

    2014-08-01

    Membrane-bound pyrophosphatases (M-PPases) are homodimeric enzymes that couple the generation and utilization of membrane potentials to pyrophosphate (PPi) hydrolysis and synthesis. Since the discovery of the link between PPi use and proton transport in purple, non-sulphur bacteria in the 1960s, M-PPases have been found in all three domains of life and have been shown to have a crucial role in stress tolerance and in plant maturation. The discovery of sodium-pumping and sodium/proton-pumping M-PPases showed that the pumping specificity of these enzymes is not limited to protons, further suggesting that M-PPases are evolutionarily very ancient. The recent structures of two M-PPases, the Vigna radiata H(+)-pumping M-PPase and Thermotoga maritima Na(+)-pumping M-PPase, provide the basis for understanding the functional data. They show that M-PPases have a novel fold and pumping mechanism, different to the other primary pumps. This review discusses the current structural understanding of M-PPases and of ion selection among various M-PPases. PMID:24768824

  7. Turning a Poor Ion Channel into a Good Pump

    NASA Astrophysics Data System (ADS)

    Astumian, Dean

    2003-05-01

    We consider a membrane protein that can exist in two configurations, either one of which acts as a poor ion channel, allowing ions to slowly leak across the membrane from high to low elctrochemical potential. We show that random external fluctuations can provide the energy to turn this poor channel into a good pump that drives ion transport from low to high electrochemical potential. We discuss this result in terms of a gambling analogy, and point to possible implications for fields as far ranging as population biology, economics, and actuarial science.

  8. Nuclear power plant safety related pump issues

    SciTech Connect

    Colaccino, J.

    1996-12-01

    This paper summarizes of a number of pump issues raised since the Third NRC/ASME Symposium on Valve and Pump Testing in 1994. General issues discussed include revision of NRC Inspection Procedure 73756, issuance of NRC Information Notice 95-08 on ultrasonic flow meter uncertainties, relief requests for tests that are determined by the licensee to be impractical, and items in the ASME OM-1995 Code, Subsection ISTB, for pumps. The paper also discusses current pump vibration issues encountered in relief requests and plant inspections - which include smooth running pumps, absolute vibration limits, and vertical centrifugal pump vibration measurement requirements. Two pump scope issues involving boiling water reactor waterlog and reactor core isolation cooling pumps are also discussed. Where appropriate, NRC guidance is discussed.

  9. Highly sensitive vacuum ion pump current measurement system

    DOEpatents

    Hansknecht, John Christopher

    2006-02-21

    A vacuum system comprising: 1) an ion pump; 2) power supply; 3) a high voltage DC--DC converter drawing power from the power supply and powering the vacuum pump; 4) a feedback network comprising an ammeter circuit including an operational amplifier and a series of relay controlled scaling resistors of different resistance for detecting circuit feedback; 5) an optional power block section intermediate the power supply and the high voltage DC--DC converter; and 6) a microprocessor receiving feedback information from the feedback network, controlling which of the scaling resistors should be in the circuit and manipulating data from the feedback network to provide accurate vacuum measurement to an operator.

  10. Relating to ion detection

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2001-01-01

    The apparatus and method provide a technique for improving detection of alpha and/or beta emitting sources on items or in locations using indirect means. The emission forms generate ions in a medium surrounding the item or location and the medium is then moved to a detecting location where the ions are discharged to give a measure of the emission levels. To increase the level of ions generated and render the system particularly applicable for narrow pipes and other forms of conduits, the medium pressure is increased above atmospheric pressure. STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

  11. Controlling epileptiform activity with organic electronic ion pumps.

    PubMed

    Williamson, Adam; Rivnay, Jonathan; Kergoat, Loïg; Jonsson, Amanda; Inal, Sahika; Uguz, Ilke; Ferro, Marc; Ivanov, Anton; Sjöström, Theresia Arbring; Simon, Daniel T; Berggren, Magnus; Malliaras, George G; Bernard, Christophe

    2015-05-27

    In treating epilepsy, the ideal solution is to act at a seizure's onset, but only in the affected regions of the brain. Here, an organic electronic ion pump is demonstrated, which directly delivers on-demand pure molecules to specific brain regions. State-of-the-art organic devices and classical pharmacology are combined to control pathological activity in vitro, and the results are verified with electrophysiological recordings. PMID:25866154

  12. Mutant of a Light-Driven Sodium Ion Pump Can Transport Cesium Ions.

    PubMed

    Konno, Masae; Kato, Yoshitaka; Kato, Hideaki E; Inoue, Keiichi; Nureki, Osamu; Kandori, Hideki

    2016-01-01

    Krokinobacter eikastus rhodopsin 2 (KR2) is a light-driven Na(+) pump found in marine bacterium. KR2 pumps Li(+) and Na(+), but it becomes an H(+) pump in the presence of K(+), Rb(+), and Cs(+). Site-directed mutagenesis of the cytoplasmic surface successfully converted KR2 into a light-driven K(+) pump, suggesting that ion selectivity is determined at the cytoplasmic surface. Here we extended this research and successfully created a light-driven Cs(+) pump. KR2 N61L/G263F pumps Cs(+) as well as other monovalent cations in the presence of a protonophore. Ion-transport activities correlated with the additive volume of the residues at 61 and 263. The result suggests that an ion-selectivity filter is affected by these two residues and functions by strict exclusion of K(+) and larger cations in the wild type (N61/G263). In contrast, introduction of large residues possibly destroys local structures of the ion-selectivity filter, leading to the permeation of K(+) (P61/W263) and Cs(+) (L61/F263). PMID:26740141

  13. Pulsed hollow-cathode ion lasers: pumping and lasing parameters

    SciTech Connect

    Zinchenko, S P; Ivanov, I G

    2012-06-30

    Optimal discharge conditions have been experimentally found for ion lasers excited in the hollow-cathode discharge plasma by microsecond current pulses by pumping working atoms in secondkind collisions with ions and metastable buffer-gas atoms. Measurements of the output power of krypton ion and zinc-, cadmium-, mercury-, thallium-, copper-, and gallium-vapour lasers in tubes with cathodes of different diameters showed that the pulse power reaches several tens of watts, and the average power obtained with cathodes 2 cm in diameter and a length of 40 cm or more approaches 1 W. Lasing in most media is observed simultaneously at several lines (the multi-wavelength regime). Lasing on a three-component (He - Kr - Hg) mixture is realised in the multi-wavelength regime at blue, red, and IR lines.

  14. Investigation of a quadrupole ultra-high vacuum ion pump

    NASA Technical Reports Server (NTRS)

    Schwarz, H. J.

    1974-01-01

    The new nonmagnetic ion pump resembles the quadrupole ionization gage. The dimensions are larger, and hyperbolically shaped electrodes replace the four rods. Their surfaces follow y sq. = 36 + x sq. (x, y in centimeters). The electrodes, 55 cm long, are positioned lengthwise in a tube. At one end a cathode emits electrons; at the other end a narrowly wound flat spiral of tungsten clad with titanium on cathode potential can be heated for titanium evaporation. Electrons accelerated by a dc potential of the surface electrodes oscillate between the ends on rotational trajectories, if a high frequency potential superimposed on the dc potential is properly adjusted. Pumping speeds (4-100 liter/sec) for different gases at different peak voltages (1000-3000V) at corresponding frequencies (57-100 MHz), and at different pressures 0.00001 to the minus 9 power Torr were observed. The lowest pressure reached was below 10 to the minus 10 power Torr.

  15. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOEpatents

    Aines, Roger D.; Bourcier, William L.

    2014-08-19

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  16. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOEpatents

    Aines, Roger D.; Bourcier, William L.

    2010-11-09

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  17. ND laser with co-doped ion(s) pumped by visible laser diodes

    NASA Astrophysics Data System (ADS)

    Scheps, Richard

    1993-04-01

    The 1.06 microns Nd transition in a co-doped Cr,Nd:Gd3Sc2Ga3O12 (Cr,Nd:GSGG) gain element is obtained by diode pumping Cr(3+) at 670 run and produces efficient, low threshold laser operation. Although co-doped Cr,Nd:GSGG was developed for more efficient flashlamp pumping, it has the desirable property of having an extraordinarily broad absorption to allow for efficient diode pumping relative to the ND:YAG laser. The consequent broad bandwidth tolerance of the Cr,Nd:GSGG for the diode pumping radiation allows diode pumping of the 1.06 microns transition without regard to the wavelength of the visible diodes which has the potential for reducing the cost of the semiconductor pump and also demonstrates the extended versatility of these diodes which previously had been restricted to pump the Cr(3+) tunable vibronic lasers. CW and long pulse diode pumping provided pump power levels as high as 300 mW CW and 1 W pulsed. The lowest threshold power was measured at 938 micron W and the highest output power was obtained at 43 mW CW and 173 mW pulsed. The best slope efficiency obtained was 42.1%, 78% of the theoretical maximum. Loss measurements indicate a value of 0.4%/cm.

  18. Measurement of NSLS distributed diode sputter ion pump characteristics

    SciTech Connect

    Foerster, C.L.

    1984-01-01

    For the DI pump to have acceptable pumping speed, the pump must be glow discharge conditioned after the 150/sup 0/C max vacuum bakeout. Other DI pump conditioning procedures have not been investigated. Glow discharge conditioning of the system using the DI pump anode significantly improves the pumping speed at low pressures and high pressure pumping speed is slightly improved. The NSLS DI pump speed is not linear with pressure even though the average current is. Pumping speed drops to less than 25% of the high pressure speed at pressures below 10/sup -9/ torr, depending on the pump condition. The pumping speed is sufficiently close to its calculated value at high pressure. These results agree with actual ring experience with the distributed pump. The DI pump is most efficient pumping distributed gas loads from beam operation rather than gas loads introduced at the ends of the pump. Most of the gas load is distributed adjacent to the pump during beam operation due synchrotron radiation included desorption. 11 references, 5 figures.

  19. Representing pump-capacity relations in groundwater simulation models.

    PubMed

    Konikow, L F

    2010-01-01

    The yield (or discharge) of constant-speed pumps varies with the total dynamic head (or lift) against which the pump is discharging. The variation in yield over the operating range of the pump may be substantial. In groundwater simulations that are used for management evaluations or other purposes, where predictive accuracy depends on the reliability of future discharge estimates, model reliability may be enhanced by including the effects of head-capacity (or pump-capacity) relations on the discharge from the well. A relatively simple algorithm has been incorporated into the widely used MODFLOW groundwater flow model that allows a model user to specify head-capacity curves. The algorithm causes the model to automatically adjust the pumping rate each time step to account for the effect of drawdown in the cell and changing lift, and will shut the pump off if lift exceeds a critical value. The algorithm is available as part of a new multinode well package (MNW2) for MODFLOW. PMID:19732161

  20. Growth of microscopic cones on titanium cathodes of sputter-ion pumps driven by sorption of large argon quantities

    SciTech Connect

    Porcelli, Tommaso; Siviero, Fabrizio; Bongiorno, Gero A.; Michelato, Paolo; Pagani, Carlo

    2015-09-15

    Microscopic cones have been observed on titanium cathodes of sputter-ion pumps (SIPs) after pump operation. The cones were studied by means of scanning electron microscopy and energy dispersive x-ray analysis. Size and morphology of these cones are clearly correlated with the nature and the relative amount of each gas species pumped by each SIP during its working life. In particular, their growth was found to be fed by sputtering mechanisms, mostly during Ar pumping, and to be driven by the electromagnetic field applied to the Penning cells of each SIP. Experimental findings suggest that the formation and extent of such conic structures on cathode surfaces might play a leading role in the onset of phenomena typically related to the functioning of SIPs, e.g., the so-called argon instability.

  1. Stationary Engineers Apprenticeship. Related Training Modules. 13.1-13.7 Pumps.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This learning module, one in a series of 20 related training modules for apprentice stationary engineers, deals with pumps. Addressed in the individual instructional packages included in the module are the following topics: types, classifications, and applications of pumps; pump construction; procedures for calculating pump heat and pump flow;…

  2. Structural Mechanism for Light-driven Transport by a New Type of Chloride Ion Pump, Nonlabens marinus Rhodopsin-3.

    PubMed

    Hosaka, Toshiaki; Yoshizawa, Susumu; Nakajima, Yu; Ohsawa, Noboru; Hato, Masakatsu; DeLong, Edward F; Kogure, Kazuhiro; Yokoyama, Shigeyuki; Kimura-Someya, Tomomi; Iwasaki, Wataru; Shirouzu, Mikako

    2016-08-19

    The light-driven inward chloride ion-pumping rhodopsin Nonlabens marinus rhodopsin-3 (NM-R3), from a marine flavobacterium, belongs to a phylogenetic lineage distinct from the halorhodopsins known as archaeal inward chloride ion-pumping rhodopsins. NM-R3 and halorhodopsin have distinct motif sequences that are important for chloride ion binding and transport. In this study, we present the crystal structure of a new type of light-driven chloride ion pump, NM-R3, at 1.58 Å resolution. The structure revealed the chloride ion translocation pathway and showed that a single chloride ion resides near the Schiff base. The overall structure, chloride ion-binding site, and translocation pathway of NM-R3 are different from those of halorhodopsin. Unexpectedly, this NM-R3 structure is similar to the crystal structure of the light-driven outward sodium ion pump, Krokinobacter eikastus rhodopsin 2. Structural and mutational analyses of NM-R3 revealed that most of the important amino acid residues for chloride ion pumping exist in the ion influx region, located on the extracellular side of NM-R3. In contrast, on the opposite side, the cytoplasmic regions of K. eikastus rhodopsin 2 were reportedly important for sodium ion pumping. These results provide new insight into ion selection mechanisms in ion pumping rhodopsins, in which the ion influx regions of both the inward and outward pumps are important for their ion selectivities. PMID:27365396

  3. Evaluation of left ventricular assist device pump bladders cast from ion-sputtered polytetrafluorethylene mandrels

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A highly thromboresistant blood contacting interface for use in implanatable blood pump is investigated. Biomaterials mechanics, dynamics, durability, surface morphology, and chemistry are among the critical consideration pertinent to the choice of an appropriate blood pump bladder material. The use of transfer cast biopolymers from ion beam textured surfaces is investigated to detect subtle variations in blood pump surface morphology using Biomer as the biomaterial of choice. The efficacy of ion beam sputtering as an acceptable method of fabricating textured blood interfaces is evaluated. Aortic grafts and left ventricular assist devices were implanted in claves; the blood interfaces were fabricated by transfer casting methods from ion beam textured polytetrafluorethylene mandrels. The mandrels were textured by superimposing a 15 micron screen mesh; ion sputtering conditions were 300 volts beam energy, 40 to 50 mA beam, and a mandrel to source distance of 25 microns.

  4. Efficient combining of ion pumps and getter-palladium thin films

    SciTech Connect

    Paolini, C.; Mura, M.; Ravelli, F.

    2008-07-15

    Nonevaporable getters (NEGs) have been extensively studied in the last several years for their sorption properties toward many gases. In particular, an innovative alloy as a thin film by magnetron sputtering was developed and characterized at the European Organization for Nuclear Research. It is composed of Ti-Zr-V and protected by an overlayer of palladium (Pd), according to a technology for which the authors got the licence. NEG-Pd thin films used in combination with ion getter pumps is a simple, easy way to handle pumping devices for ultrahigh and extremely high vacuum applications. To show how to apply this coating technology to the internal surface of different types of ion pumps, the authors carried out several tests on pumps of various shapes, sizes (in terms of nominal pumping speed), and types (diode, noble diode, and triode). Special care was taken during the thermal cycle of baking and activation of the pumps to preserve the internal film from sources of contamination and/or from the sputtering of the titanium cathodes of the pump. Some important remarks will be made about the most appropriate conditions of pressure and temperature. The performance of the NEG-Pd-coated ion pumps was evaluated in terms of ultimate pressure and hydrogen pumping speed. The contribution of the thin film is particularly relevant for the pumping of this gas, due to its high sticking factor on palladium and the great sorption capacity of the underlying getter. Finally, the possibility of further improvement by substituting palladium with other Pd-based alloys will also be evaluated.

  5. Temporal Analysis of Valence & Electrostatics in Ion-Motive Sodium Pump.

    PubMed

    Fonseca, J; Kaya, S; Guennoun, S; Rakowski, R

    2007-09-01

    The present work establishes a unique framework for the simulation study of ion-motive pumps in general and the Na(+)/K(+)-ATPase, or sodium pump, in particular. We shall discuss the implications of electrostatic analysis, valence calculations, and protein cavity data, each carried over data extracted from molecular dynamics simulations, on the structure-function relationship of Na(+)/K(+)-ATPase. These diverse set of tools will be used to investigate atomic-level characteristics that remain undetermined such as ion binding and accessibility. PMID:18769504

  6. Relating to monitoring ion sources

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan

    2002-01-01

    The apparatus and method provide techniques for monitoring the position on alpha contamination in or on items or locations. The technique is particularly applicable to pipes, conduits and other locations to which access is difficult. The technique uses indirect monitoring of alpha emissions by detecting ions generated by the alpha emissions. The medium containing the ions is moved in a controlled manner frog in proximity with the item or location to the detecting unit and the signals achieved over time are used to generate alpha source position information.

  7. COMPARISON OF RELATIVE EMISSIONS FROM DOUBLE MECHANICAL PUMP SEALS TO OTHER TYPES OF PUMP SHAFT SEALS

    EPA Science Inventory

    The report gives results of a comparison of pump seal data from nine petroleum refineries, to evaluate emissions from double mechanical pump seals versus those from other types of pump shaft seals. Light- and heavy-liquid service seals were compared separately. Non-methane leak r...

  8. Rocket-borne Ion Mass Spectrometer for the Mesosphere That is Pumped by Rocket Aerodynamics

    NASA Astrophysics Data System (ADS)

    Sternovsky, Zoltan; Smith, Steven; Robertson, Scott

    The mesospheric region close to the mesopause is populated by electrons, ions and aerosol particles. The number density of aerosol particles may exceed that of the background plasma creating conditions where the free electron density is reduced. Understanding the full charge balance of the region requires the simultaneous detection of electrons, charged aerosol particles and ions. Rocket borne instruments for the measurement of electrons and aerosols are readily available. Mass spectrometers for ions have been flown that were evacuated by cryogenic vacuum pumps with liquid helium or neon. There have not been flights since 1993 because these instruments required expensive deliveries of cryogens and frequent refilling. Advances in (1) aerodynamic modeling, (2) mass spectrometer design, and (3) ion detection technology make possible a new approach to mass spectrometry in the mesosphere in which the spectrometer is pumped by the flow around the rocket. A miniature Rotating Field Mass Analyzer (RFMS) is presented that is suitable for the measurement of ions in from 70 km upward. RFMS has a 2 x 2 x 20 mm3 velocity selection cell and utilizes and advanced ion detector that is capable of single ions operation mode at these altitudes. The instrument is pumped by the aerodynamic effect of the supersonic payload. A prototype version of RFMS is under laboratory testing.

  9. Ionization-Assisted Getter Pumping for Ultra-Stable Trapped Ion Frequency Standards

    NASA Technical Reports Server (NTRS)

    Tjoelker, Robert L.; Burt, Eric A.

    2010-01-01

    A method eliminates (or recovers from) residual methane buildup in getter-pumped atomic frequency standard systems by applying ionizing assistance. Ultra-high stability trapped ion frequency standards for applications requiring very high reliability, and/or low power and mass (both for ground-based and space-based platforms) benefit from using sealed vacuum systems. These systems require careful material selection and system processing (cleaning and high-temperature bake-out). Even under the most careful preparation, residual hydrogen outgassing from vacuum chamber walls typically limits the base pressure. Non-evaporable getter pumps (NEGs) provide a convenient pumping option for sealed systems because of low mass and volume, and no power once activated. An ion gauge in conjunction with a NEG can be used to provide a low mass, low-power method for avoiding the deleterious effects of methane buildup in high-performance frequency standard vacuum systems.

  10. Ar-ion-laser-pumped infrared dye laser at 875-1084 nm

    SciTech Connect

    Kato, K.

    1984-12-01

    High-efficiency high-power cw dye-laser operation has been acheived from 875 to 1084 nm by pumping two styryl derivatives with an Ar-ion laser. Peak output powers as high as 900 and 750 mW were obtained around 925 and 980 nm, respectively.

  11. PUMPS

    DOEpatents

    Thornton, J.D.

    1959-03-24

    A pump is described for conveving liquids, particure it is not advisable he apparatus. The to be submerged in the liquid to be pumped, a conduit extending from the high-velocity nozzle of the injector,and means for applying a pulsating prcesure to the surface of the liquid in the conduit, whereby the surface oscillates between positions in the conduit. During the positive half- cycle of an applied pulse liquid is forced through the high velocity nozzle or jet of the injector and operates in the manner of the well known water injector and pumps liquid from the main intake to the outlet of the injector. During the negative half-cycle of the pulse liquid flows in reverse through the jet but no reverse pumping action takes place.

  12. Spectroscopic Measurements of Photo Pumped Highly Charged Ions

    NASA Astrophysics Data System (ADS)

    Graf, A.; Beiersdorfer, P.; Brown, G. V.; Crespo Lopez Urrutia, J. R.

    2011-11-01

    We report on recent x-ray laser spectroscopic measurements of line emission from photo-excited highly charged ions. The ion cloud of the HI-LIGHT portable electron beam ion trap (EBIT) was used as a target for the Linac Coherent Light Source (LCLS) free electron laser in the Soft X-Ray (SXR) end station. The SXR monochromator allowed a precision investigation of transition energies and oscillator strength ratios of emission lines from Na-like Fe^15+ and Ne-like Fe^16+ important for astrophysical diagnostics. We have demonstrated a technique for calibration of the SXR monochromator photon energy scale using photo-excited resonant fluorescence spectra of very well known lines from H-like and He-like F and O. Numerous instruments were used to diagnose the fluorescent and autoionizing decay channels of the trapped plasma including an Iglet-X broadband germanium detector, a variable line spacing reflection grating soft x-ray/VUV spectrometer and a Wien filter based ion extraction system. An overview of the experiment as well as preliminary results will be presented.

  13. A Optically Pumped Polarized Lithium Ion Source and AN Investigation of CARBON-12

    NASA Astrophysics Data System (ADS)

    Mendez, Anthony James, II

    A source of vector and tensor polarized ^{6,7}Li ions has been constructed and tested. The ion source uses laser optical pumping of an atomic beam of lithium, followed by adiabatic radiofrequency transitions, selectively populating a single magnetic substate of the neutral atom. The atomic beam is formed by vaporizing lithium metal in an oven and extracting the beam through a heated nozzle/collimator assembly. The atomic beam is irradiated transversely in a weak holding magnetic field by electro-optically modulated, circularly polarized light of wavelength 670.8 nm, obtained from a ring dye laser pumped by an Ar^+ laser. Optical pumping produces a nearly pure m_{F } = F population distribution. Adiabatic rf transitions can then be used to transfer the population to any of the other desired magnetic substates. The polarized atomic beam is ionized positively on an electrically heated tungsten strip and charge exchanged to Li^ - in a cesium vapor. A Wien filter is used to produce the desired spin axis orientation, and then the beam is injected into a tandem Van de Graaff-superconducting linac for acceleration up to 9 MeV/nucleon. A helium gas polarimeter has been calibrated for use in rapid on-line monitoring of the polarization on target. Cross section angular distributions and a complete set of analyzing powers T_{kq}( theta) for the ^{12} C(^6vec{rm Li} , alpha)^{14 }N reaction have been measured at 33 MeV. Full finite range DWBA calculations have been performed to analyze the data for states up to E_{x} = 9.70 MeV in ^{14}N. Nilsson model wavefunctions for the ^{14} N states were used to calculate deuteron cluster transfer spectroscopic amplitudes. Although the calculations did not produce a satisfactory description of the entire data set, they showed clear evidence of L-mixing effects and a sensitivity to the ^6Li D state. The deduced D state-S state ratio in ^6 Li is in agreement with earlier work, and the uncertainty as to the relative sign of the ^6Li = alpha

  14. Light-Driven Ca(2+) Ion Pump: How Does It Work?

    PubMed

    Lai, Cheng-Tsung; Zhang, Yu; Schatz, George C

    2015-12-10

    Work done by Bennett et al. [ Nature 2002 , 420 , 398 - 401 ] demonstrated that Ca(2+) ions can be actively transported through a lipid bilayer membrane by an artificial photosynthetic machine. However, details of the pump process, such as the oxidation state of the shuttle molecule and stoichiometry of the shuttle-ion complex, are not fully understood, which hinders the development of ion pumps of this type with higher efficiency. In this study, we combine all atom molecular dynamics simulations and quantum mechanics calculations to estimate the time scale of the shuttle-ion complex diffusion process and charge transfer step. We find that the process of shuttle-ion complex diffusion across the lipid bilayer membrane is the rate-limiting step, with a time scale of seconds to minutes. Other processes such as charge transfer between the redox reaction center and the shuttle molecule have picoseconds time scales. We also show that a shuttle-ion complex with 2:1 stoichiometry ratio has a lower energy barrier across the lipid membrane than other choices of complexes. The calculations show that the Ca(2+) ion is likely to be shuttled by a semiquinone type of shuttle molecule as this has the lowest free energy barrier across the lipid bilayer membrane, the fewest electrons transferred in the redox cycle, and it does not generate (or require) proton flow. Estimates of ion flow rates are consistent with measured values. PMID:26584359

  15. Measurement of Asymmetric Optical Pumping of Ions Accelerating in a Magnetic-field Gradient

    SciTech Connect

    Xuan Sun; Earl Scime; Mahmood Miah; Samuel Cohen; Frederick Skiff

    2004-10-28

    We report observations of asymmetric optical pumping of argon ions accelerating in a magnetic field gradient. The signature is a difference in the laser-induced-fluorescence (LIF) emission amplitude from a pair of Zeeman-split states. A model that reproduces the dependence of the asymmetry on magnetic-field and ion-velocity gradients is described. With the model, the fluorescence intensity ratio provides a new method of measuring ion collisionality. This phenomenon has implications for interpreting stellar plasma spectroscopy data which often exhibit unequal Zeeman state intensities.

  16. Miniature Electrostatic, High-Vacuum Ion Pump Architecture Using A Nanostructured Field Emission Electron Source

    NASA Astrophysics Data System (ADS)

    Basu, A.; Perez, M. A.; Velásquez-García, L. F.

    2015-12-01

    We report a field emission-based, electrostatic ion pump architecture for generation of high vacuum within a small chamber that is compatible with miniaturized cold-atom interferometry systems. The design increases the ionization probability using a helical electron collector. To create vacuum, electrons from a nanostructured field emitter array impact-ionize the gas molecules within the chamber; then, the ions generated are gettered by a negatively charged annular-shaped titanium ion collector. A proof-of-concept pump prototype was developed and characterized using a 200 cm3 stainless steel vacuum chamber. The pressure inside the chamber was observed to decrease from 7.8×10-7 Torr to 7.2×10-7 Torr as the bias voltage on the ion collector was varied from -100 V to -1000 V while the emission current was kept constant at approximately 3.2 μA. The functional form of the experimental pump characteristics is in agreement with a proposed reduced-order model.

  17. Repeated Administration of Inhibitors for Ion Pumps Reduce Markedly Tumor Growth in Vivo

    PubMed Central

    Hrgovic, Igor; Glavic, Zeljko; Kovacic, Zeljko; Mulic, Smaila; Zunic, Lejla; Hrgovic, Zlatko

    2014-01-01

    ABSTRACT Introduction: Measurements of extracellular pH show that the micro environment of malignant tumors is more acidic than that of normal cells, whereas pH does not differ appreciable in normal and malignant cells. The acid micro environment of tumors is created by the secretion of tumor factors and ATP hydrolysis in hypoxic tumor tissue. In order to survive in a low pH-environment tumor cells develop regulatory mechanisms which keep their intracellular pH stable. Two of the most important systems are the Na+/H+ ion pump and the Na-dependent HCO3-/Cl- pump of stilbenian derivatives. Material and methods: Experiments were carried out on DBA mice of both sexes at the age of 4 month. Laboratory animals were grown in our institute and supplied with food and aqua ad libitum. Results: After termination of the experiments the mean tumor diameter in the control group was 12.4±0.8mm, in group A it was 6.9±0.6mm, and in group B we measured 6.6±3.1mm. At the final day the tumor size in treated animals was twice as small as in the control group. In addition we observed the rate of survival. In the control group only 18% of the animals were still alive at day 18. Considering the rate of survival a statistically significant difference between treated and untreated animals was observed. The survival of tumor cells is dependent on the function of these ion pumps which keep their intracellular pH values constant in the setting of an acid extracellular environment. Conclusion: The activity of the ion pump is especially important at the beginning of cell division and in cell proliferation. Our in vivo experiments demonstrate that prolonged administration of intratumoral ion pump inhibitors suppresses tumor growth as well as enhances survival of tumor-bearing animals. Research of inhibitors of ion pumps and their action in tumor growth opens new perspectives into pathophysiology of malignant tumors and may create new therapeutic options. PMID:24937925

  18. Conversion of a light-driven proton pump into a light-gated ion channel

    PubMed Central

    Vogt, A.; Guo, Y.; Tsunoda, S. P.; Kateriya, S.; Elstner, M.; Hegemann, P.

    2015-01-01

    Interest in microbial rhodopsins with ion pumping activity has been revitalized in the context of optogenetics, where light-driven ion pumps are used for cell hyperpolarization and voltage sensing. We identified an opsin-encoding gene (CsR) in the genome of the arctic alga Coccomyxa subellipsoidea C-169 that can produce large photocurrents in Xenopus oocytes. We used this property to analyze the function of individual residues in proton pumping. Modification of the highly conserved proton shuttling residue R83 or its interaction partner Y57 strongly reduced pumping power. Moreover, this mutation converted CsR at moderate electrochemical load into an operational proton channel with inward or outward rectification depending on the amino acid substitution. Together with molecular dynamics simulations, these data demonstrate that CsR-R83 and its interacting partner Y57 in conjunction with water molecules forms a proton shuttle that blocks passive proton flux during the dark-state but promotes proton movement uphill upon illumination. PMID:26597707

  19. TOWARDS 100% POLARIZATION IN THE OPTICALLY-PUMPED POLARIZED ION SOURCE.

    SciTech Connect

    ZELENSKI,A.; ALESSI, J.; KOKHANOVSKI, S.; KPONOU, A.; RITTER, B.J.; ZUBETS, V.

    2007-06-25

    The depolarization factors in the multi-step spin-transfer polarization technique and basic limitations on maximum polarization in the OPPIS (Optically-Pumped Polarized H{sup -} Ion Source) are discussed. Detailed studies of polarization losses in the RHIC OPPIS and the source parameters optimization resulted in the OPPIS polarization increase to 86-90%. This contributed to increasing polarization in the AGS and RHIC to 65-70%.

  20. Stochastic pumping of ions based on colored noise in bacterial channels under acidic stress.

    PubMed

    López, M Lidón; Queralt-Martín, María; Alcaraz, Antonio

    2016-07-21

    Fluctuation-driven ion transport can be obtained in bacterial channels with the aid of different types of colored noise including the biologically relevant Lorentzian one. Using the electrochemical rectification of the channel current as a ratchet mechanism we observe transport of ions up to their concentration gradient under conditions similar to that met in vivo, namely moderate pH gradients and asymmetrically charged lipid membranes. We find that depending on the direction of the concentration gradient the channel can pump either cations or anions from the diluted side to the concentrated one. We discuss the possible relevance of this phenomenon for the pH homeostasis of bacterial cells. PMID:27349445

  1. Electro-osmotic pumping and ion-concentration polarization based on conical nanopores

    NASA Astrophysics Data System (ADS)

    Yeh, Hung-Chun; Chang, Chih-Chang; Yang, Ruey-Jen

    2015-06-01

    A numerical investigation is performed into the characteristics of an electro-osmotic pump consisting of a negatively charged conical nanopore. It is shown that the dependence of the flow rectification effect on the bias direction is the reverse of that of the ion current rectification effect. Moreover, the nozzle mode (i.e., the bias is applied from the base side of the nanopore to the tip side) has a higher flow rate compared to the diffuser mode (i.e., the bias is applied from the tip side of the nanopore to the base side). The results showed that the ion-concentration polarization effect occurred inside the conical nanopore, resulting in surface conduction dominating in the ionic current. The ions inside the nanopore are depleted and enriched under the nozzle mode and the diffuser mode, respectively. As a result, the electro-osmotic pump yields a greater pumping pressure, flow rate, and energy conversion efficiency when operating in the nozzle mode. In addition, we also investigated the flow rate rectification behavior for the conical nanopore. The best flow rate rectification factor in this work is 2.06 for an electrolyte concentration of 10-3M .

  2. Hot, metastable hydronium ion in the Galactic centre: formation pumping in X-ray-irradiated gas?

    PubMed

    Lis, Dariusz C; Schilke, Peter; Bergin, Edwin A; Emprechtinger, Martin

    2012-11-13

    With a 3.5 m diameter telescope passively cooled to approximately 80 K, and a science payload comprising two direct detection cameras/medium resolution imaging spectrometers (PACS and SPIRE) and a very high spectral resolution heterodyne spectrometer (HIFI), the Herschel Space Observatory is providing extraordinary observational opportunities in the 55-670 μm spectral range. HIFI has opened for the first time to high-resolution spectroscopy the submillimetre band that includes the fundamental rotational transitions of interstellar hydrides, the basic building blocks of astrochemistry. We discuss a recent HIFI discovery of metastable rotational transitions of the hydronium ion (protonated water, H(3)O(+)), with rotational level energies up to 1200 K above the ground state, in absorption towards Sagittarius B2(N) in the Galactic centre. Hydronium is an important molecular ion in the oxygen chemical network. Earlier HIFI observations have indicated a general deficiency of H(3)O(+) in the diffuse gas in the Galactic disc. The presence of hot H(3)O(+) towards Sagittarius B2(N) thus appears to be related to the unique physical conditions in the central molecular zone, manifested, for example, by the widespread presence of abundant H(3)(+). One intriguing theory for the high rotational temperature characterizing the population of the H(3)O(+) metastable levels may be formation pumping in molecular gas irradiated by X-rays emitted by the Galactic centre black hole. Alternatively, the pervasive presence of enhanced turbulence in the central molecular zone may give rise to shocks in the lower-density medium that is exposed to energetic radiation. PMID:23028163

  3. Crystal structures of bR(D85S) favor a model of bacteriorhodopsin as a hydroxyl-ion pump.

    PubMed

    Facciotti, Marc T; Rouhani, Shahab; Glaeser, Robert M

    2004-04-30

    Structural features on the extracellular side of the D85S mutant of bacteriorhodopsin (bR) suggest that wild-type bR could be a hydroxyl-ion pump. A position between the protonated Schiff base and residue 85 serves as an anion-binding site in the mutant protein, and hydroxyl ions should have access to this site during the O-intermediate of the wild-type bR photocycle. The guanidinium group of R82 is proposed (1) to serve as a shuttle that eliminates the Born energy penalty for entry of an anion into this binding pocket, and conversely, (2) to block the exit of a proton or a related proton carrier. PMID:15111113

  4. Stochastic pumping of ions based on colored noise in bacterial channels under acidic stress

    NASA Astrophysics Data System (ADS)

    López, M. Lidón; Queralt-Martín, María; Alcaraz, Antonio

    2016-07-01

    Fluctuation-driven ion transport can be obtained in bacterial channels with the aid of different types of colored noise including the biologically relevant Lorentzian one. Using the electrochemical rectification of the channel current as a ratchet mechanism we observe transport of ions up to their concentration gradient under conditions similar to that met in vivo, namely moderate pH gradients and asymmetrically charged lipid membranes. We find that depending on the direction of the concentration gradient the channel can pump either cations or anions from the diluted side to the concentrated one. We discuss the possible relevance of this phenomenon for the pH homeostasis of bacterial cells.Fluctuation-driven ion transport can be obtained in bacterial channels with the aid of different types of colored noise including the biologically relevant Lorentzian one. Using the electrochemical rectification of the channel current as a ratchet mechanism we observe transport of ions up to their concentration gradient under conditions similar to that met in vivo, namely moderate pH gradients and asymmetrically charged lipid membranes. We find that depending on the direction of the concentration gradient the channel can pump either cations or anions from the diluted side to the concentrated one. We discuss the possible relevance of this phenomenon for the pH homeostasis of bacterial cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02638a

  5. Luminescence mechanism for Er3+ ions in a silicon-rich nitride host under electrical pumping

    NASA Astrophysics Data System (ADS)

    Berencén, Y.; Illera, S.; Rebohle, L.; Ramírez, J. M.; Wutzler, R.; Cirera, A.; Hiller, D.; Rodríguez, J. A.; Skorupa, W.; Garrido, B.

    2016-03-01

    A combined experimental and theoretical study on the electroluminescent excitation mechanism for trivalent erbium (Er3+) ions in a silicon-rich nitride (SiN x ) host is presented. Direct impact by hot electrons is demonstrated to be the fundamental excitation mechanism. The Er3+ excitation by energy transfer from silicon nanostructures and/or defects is shown to be marginal under electrical pumping. A bilayer structure made of a SiO2 electron-accelerating layer and an Er-implanted SiN x layer has been sandwiched between a metal-insulator-semiconductor structure with a highly doped N-type silicon substrate and an indium-tin-oxide window functioning as a transparent electrode. Monte Carlo (MC) simulations are used to model hot electron transport in the proposed device structure. Acoustic, polar and non-polar optical electron-phonon scattering mechanisms are considered as well as a new scattering process related to the trapping/detrapping on energetically shallow traps in the band gap of silicon nitride. For SiO2 layers around 20 nm-thick and beyond, the number and kinetic energy of hot electrons before entering the SiN x layer are maximal. A significant enhancement of the 1.54 μm electroluminescence power efficiency of two orders of magnitude is observed in devices composed of a 20 nm-thick SiO2 layer compared to those composed of 10 nm-thick SiO2. We demonstrate by MC simulations that such a difference, in terms of power efficiency, is ascribed to the high-energy tail of the hot electron energy distribution, which becomes more pronounced as the SiO2 electron-accelerating layer thickness increases. It is also unveiled that direct excitation of the 1.54 μm Er3+ main radiative transition requiring an excitation energy of only 0.8 eV is inefficient, and that the major part of the Er3+ ions are excited via higher level energy states. The obtained results are sufficiently consistent to be extended to other trivalent rare-earth ions inside similar insulating material

  6. Oscillating two stream instability of electromagnetic pump in the ion cyclotron range of frequency in a plasma

    SciTech Connect

    Ahmad, Nafis; Tripathi, V. K.; Rafat, M.; Husain, Mudassir M.

    2009-06-15

    An analytical formalism of oscillating two stream instability of a large amplitude electromagnetic wave in the ion cyclotron range of frequency in a plasma is developed. The instability produces electrostatic ion cyclotron sidebands and a driven low frequency mode. The nonlinear coupling arises primarily due to the motion of ions and is strong when the pump frequency is close to ion cyclotron frequency and the oscillatory ion velocity is a significant fraction of acoustic speed. For propagation perpendicular to the ambient magnetic field, the X-mode pump wave produces flute type perturbation with maximum growth rate at some specific wavelengths, which are three to four times larger than the ion Larmor radius. For propagation at oblique angles to ambient magnetic field, the ion cyclotron O-mode, the growth rate increases with the wave number of the low frequency mode.

  7. A macroscopic H+ and Cl- ions pump via reconstitution of EcClC membrane proteins in lipidic cubic mesophases.

    PubMed

    Speziale, Chiara; Salvati Manni, Livia; Manatschal, Cristina; Landau, Ehud M; Mezzenga, Raffaele

    2016-07-01

    Functional reconstitution of membrane proteins within lipid bilayers is crucial for understanding their biological function in living cells. While this strategy has been extensively used with liposomes, reconstitution of membrane proteins in lipidic cubic mesophases presents significant challenges related to the structural complexity of the lipid bilayer, organized on saddle-like minimal surfaces. Although reconstitution of membrane proteins in lipidic cubic mesophases plays a prominent role in membrane protein crystallization, nanotechnology, controlled drug delivery, and pathology of diseased cells, little is known about the molecular mechanism of protein reconstitution and about how transport properties of the doped mesophase mirror the original molecular gating features of the reconstituted membrane proteins. In this work we design a general strategy to demonstrate correct functional reconstitution of active and selective membrane protein transporters in lipidic mesophases, exemplified by the bacterial ClC exchanger from Escherichia coli (EcClC) as a model ion transporter. We show that its correct reconstitution in the lipidic matrix can be used to generate macroscopic proton and chloride pumps capable of selectively transporting charges over the length scale of centimeters. By further exploiting the coupled chloride/proton exchange of this membrane protein and by combining parallel or antiparallel chloride and proton gradients, we show that the doped mesophase can operate as a charge separation device relying only on the reconstituted EcClC protein and an external bias potential. These results may thus also pave the way to possible applications in supercapacitors, ion batteries, and molecular pumps. PMID:27313210

  8. Electron impact cross section measurements related to 'nuclear pumping'

    NASA Technical Reports Server (NTRS)

    Trajmar, S.

    1979-01-01

    In direct nuclear pumped lasers the high energy fission fragments generate a large number of secondary electrons and these electrons are mainly responsible for achieving the population inversion in the lasing media. Laboratory measurements concerned with these electron impact processes are summarized and new results are presented on rare gases, N2, CO, CF3I and UF6.

  9. Towards pump probe experiments of defect dynamics with short ion beam pulses

    SciTech Connect

    Schenkel, T.; Lidia, S.; Weis, C. D.; Waldron, W. L.; Schwartz, J.; Minor, Andrew; Hosemann, P; Kwan, J. W.

    2013-01-01

    A novel, induction type linear accelerator, the Neutralized Drift Compression eXperiment (NDCX-II), is currently being commissioned at Berkeley Lab. This accelerator is designed to deliver intense (up to 3 1011 ions/pulse), 0.6 to 600 ns duration pulses of 0.05 1.2 MeV lithium ions at a rate of about 2 pulses per minute onto 1 10 mm scale target areas. When focused to mm-diameter spots, the beam is predicted to volumetrically heat micrometer thick foils to temperatures of 30,000 K. At lower beam power densities, the short excitation pulse with tunable intensity and time profile enables pump probe type studies of defect dynamics in a broad range of materials. We briefly describe the accelerator concept and design, present results from beam pulse shaping experiments and discuss examples of pump probe type studies of defect dynamics following irradiation of materials with intense, short ion beam pulses from NDCX-II.

  10. Towards pump-probe experiments of defect dynamics with short ion beam pulses

    NASA Astrophysics Data System (ADS)

    Schenkel, T.; Lidia, S. M.; Weis, C. D.; Waldron, W. L.; Schwartz, J.; Minor, A. M.; Hosemann, P.; Kwan, J. W.

    2013-11-01

    A novel, induction type linear accelerator, the Neutralized Drift Compression eXperiment (NDCX-II), is currently being commissioned at Berkeley Lab. This accelerator is designed to deliver intense (up to 3 × 1011 ions/pulse), 0.6 to ∼600 ns duration pulses of 0.05-1.2 MeV lithium ions at a rate of about 2 pulses per minute onto 1-10 mm scale target areas. When focused to mm-diameter spots, the beam is predicted to volumetrically heat micrometer thick foils to temperatures of ∼30,000 °K. At lower beam power densities, the short excitation pulse with tunable intensity and time profile enables pump-probe type studies of defect dynamics in a broad range of materials. We briefly describe the accelerator concept and design, present results from beam pulse shaping experiments and discuss examples of pump-probe type studies of defect dynamics following irradiation of materials with intense, short ion beam pulses from NDCX-II.

  11. Electrogenic active proton pump in Rana esculenta skin and its role in sodium ion transport.

    PubMed Central

    Ehrenfeld, J; Garcia-Romeu, F; Harvey, B J

    1985-01-01

    Kinetic and electrophysiological studies were carried out in the in vitro Rana esculenta skin, bathed in dilute sodium solution, to characterize the proton pump and coupling between sodium absorption (JNa+n) and proton excretion (JH+n). JNa+n and JH+n were both dependent on transepithelial potential (psi ms); hyperpolarizing the skin decreased JNa+n and increased JH+n; depolarization produced the opposite effects. Amiloride (5 X 10(-5) M) at a clamped psi ms of +50 mV inhibited JNa+n without affecting JH+n. Variations of psi ms or pH had identical effects on JH+n. Ethoxzolamide inhibited JH+n and simultaneously increased psi ms by 15-30 mV. These changes were accompanied by depolarization of the apical membrane potential psi mc from -47 to -25 mV and an increase in apical membrane resistance of 30%; no significant effects on basolateral membrane potential (psi cs) and resistance (Rb) nor on shunt resistance (Rj) were observed. The proton pump appears to be localized at the apical membrane. The proton pump was also inhibited by deoxygenation, oligomycin, dicyclohexylcarbodiimide and vanadate (100, 78, 83 and 100% inhibition respectively). The variations of JH+n and of the measured electrical currents were significantly correlated. These findings are supportive evidence of a primary active proton pump, electrogenic and strictly linked to aerobic metabolism. The current-voltage (I-V) relation of the proton pump was obtained as the difference in the I-V curves of the apical membrane extracted before and after proton-pump inhibition by ethoxzolamide during amiloride block of sodium transport. The proton-pump current (IP) was best described by a saturable exponential function of psi mc. Maximal pump current (ImaxP) was calculated to be 200 nequiv h-1 cm-2 at a psi mc of +50 mV and the pump reversal potential ERP was -130 mV. The effect of ethoxzolamide to depolarize psi mc was dependent on the relation between psi mc and ERP. Maximal induced depolarization occurred at a

  12. Compact, efficient, scalable neodymium laser co-doped with activator ions and pumped by visible laser diodes

    NASA Astrophysics Data System (ADS)

    Scheps, Richard

    1994-02-01

    Efficient, low threshold laser emission from a laser crystal doped with chromium and neodymium ions is obtained when pumped by visible laser diodes in the range of 610 nm to 680 nm. A typical laser Cr,Nd:GSGG crystal having an extraordinarily broad absorption bandwidth allows high pump efficiencies when using visible laser diodes, particularly in comparison to the Nd:YAG laser. The broad absorption bandwidth tolerance of the Cr,Nd:GSGG crystal to the pumping wavelengths allows visible diode pumping of the neodymium transition without regard to the wavelength of the visible diodes. Longitudinal or end-pumping to take advantage of the emission properties of the visible laser diodes, a nearly hemispherical laser resonator configuration and other co-doped Cr,Nd laser host materials are disclosed.

  13. Selectivity of externally facing ion-binding sites in the Na/K pump to alkali metals and organic cations.

    PubMed

    Ratheal, Ian M; Virgin, Gail K; Yu, Haibo; Roux, Benoît; Gatto, Craig; Artigas, Pablo

    2010-10-26

    The Na/K pump is a P-type ATPase that exchanges three intracellular Na(+) ions for two extracellular K(+) ions through the plasmalemma of nearly all animal cells. The mechanisms involved in cation selection by the pump's ion-binding sites (site I and site II bind either Na(+) or K(+); site III binds only Na(+)) are poorly understood. We studied cation selectivity by outward-facing sites (high K(+) affinity) of Na/K pumps expressed in Xenopus oocytes, under voltage clamp. Guanidinium(+), methylguanidinium(+), and aminoguanidinium(+) produced two phenomena possibly reflecting actions at site III: (i) voltage-dependent inhibition (VDI) of outwardly directed pump current at saturating K(+), and (ii) induction of pump-mediated, guanidinium-derivative-carried inward current at negative potentials without Na(+) and K(+). In contrast, formamidinium(+) and acetamidinium(+) induced K(+)-like outward currents. Measurement of ouabain-sensitive ATPase activity and radiolabeled cation uptake confirmed that these cations are external K(+) congeners. Molecular dynamics simulations indicate that bound organic cations induce minor distortion of the binding sites. Among tested metals, only Li(+) induced Na(+)-like VDI, whereas all metals tested except Na(+) induced K(+)-like outward currents. Pump-mediated K(+)-like organic cation transport challenges the concept of rigid structural models in which ion specificity at site I and site II arises from a precise and unique arrangement of coordinating ligands. Furthermore, actions by guanidinium(+) derivatives suggest that Na(+) binds to site III in a hydrated form and that the inward current observed without external Na(+) and K(+) represents cation transport when normal occlusion at sites I and II is impaired. These results provide insights on external ion selectivity at the three binding sites. PMID:20937860

  14. The TRIUMF optically-pumped polarized H{sup {minus}} ion source

    SciTech Connect

    Levy, C.D.P.; Jayamanna, K.; McDonald, M.

    1995-09-01

    The TRIUMF dc optically-pumped polarized H{sup {minus}} ion source (OPPIS) produces 200 {micro}A dc H{sup {minus}} current at 85% polarization within a normalized emittance (90%) of 0.8 {pi} mm mrad, for operations at the TRIUMF cyclotron. As a result of development of the ECR primary proton source, 1.6 mA dc polarized H{sup {minus}} current is produced within a normalized emittance of 2 {pi} mm mrad, suitable for high energy accelerators. The OPPIS has also been developed for use in a parity non-conservation experiment which has very severe limits on permissible helicity-correlated changes in beam current and energy.

  15. Experimental and computational studies of the relative flow field in a centrifugal blood pump.

    PubMed

    Ng, B T; Chan, W K; Yu, S C; Li, H D

    2000-01-01

    The relative flow field within the impeller passage of a centrifugal blood pump had been examined using flow visualization technique and computational fluid dynamics. It was found that for a seven-blade radial impeller design, the required flow rate and static pressure rise across the pump could be achieved but the flow field within the blades was highly undesirable. Two vortices were observed near the suction side and these could lead to thrombus formation. Preliminary results presented in this article are part of our overall effort to minimize undesirable flow patterns such flow separation and high shear stress regions within the centrifugal blood pump. This will facilitate the future progress in developing a long-term clinically effective blood pump. PMID:10999375

  16. MtrA of the sodium ion pumping methyltransferase binds cobalamin in a unique mode.

    PubMed

    Wagner, Tristan; Ermler, Ulrich; Shima, Seigo

    2016-01-01

    In the three domains of life, vitamin B12 (cobalamin) is primarily used in methyltransferase and isomerase reactions. The methyltransferase complex MtrA-H of methanogenic archaea has a key function in energy conservation by catalysing the methyl transfer from methyl-tetrahydromethanopterin to coenzyme M and its coupling with sodium-ion translocation. The cobalamin-binding subunit MtrA is not homologous to any known B12-binding proteins and is proposed as the motor of the sodium-ion pump. Here, we present crystal structures of the soluble domain of the membrane-associated MtrA from Methanocaldococcus jannaschii and the cytoplasmic MtrA homologue/cobalamin complex from Methanothermus fervidus. The MtrA fold corresponds to the Rossmann-type α/β fold, which is also found in many cobalamin-containing proteins. Surprisingly, the cobalamin-binding site of MtrA differed greatly from all the other cobalamin-binding sites. Nevertheless, the hydrogen-bond linkage at the lower axial-ligand site of cobalt was equivalently constructed to that found in other methyltransferases and mutases. A distinct polypeptide segment fixed through the hydrogen-bond linkage in the relaxed Co(III) state might be involved in propagating the energy released upon corrinoid demethylation to the sodium-translocation site by a conformational change. PMID:27324530

  17. The photochemistry of sodium ion pump rhodopsin observed by watermarked femto- to submillisecond stimulated Raman spectroscopy.

    PubMed

    Hontani, Yusaku; Inoue, Keiichi; Kloz, Miroslav; Kato, Yoshitaka; Kandori, Hideki; Kennis, John T M

    2016-09-21

    Krokinobacter rhodopsin 2 (KR2) is a recently discovered light-driven Na(+) pump that holds significant promise for application as a neural silencer in optogenetics. KR2 transports Na(+) (in NaCl solution) or H(+) (in larger cation solution, e.g. in CsCl) during its photocycle. Here, we investigate the photochemistry of KR2 with the recently developed watermarked, baseline-free femto- to submillisecond transient stimulated Raman spectroscopy (TSRS), which enables us to investigate retinal chromophore dynamics in real time with high spectral resolution over a large time range. We propose a new photocycle from femtoseconds to submilliseconds: J (formed in ∼200 fs) → K (∼3 ps) → K/L1 (∼20 ps) → K/L2 (∼30 ns) → L/M (∼20 μs). KR2 binds a Na(+) ion that is not transported on the extracellular side, of which the function is unclear. We demonstrate with TSRS that for the D102N mutant in NaCl (with Na(+) unbound, Na(+) transport) and for WT KR2 in CsCl (with Na(+) unbound, H(+) transport), the extracellular Na(+) binding significantly influences the intermediate K/L/M state equilibrium on the photocycle, while the identity of the transported ion, Na(+) or H(+), does not affect the photocycle. Our findings will contribute to further elucidation of the molecular mechanisms of KR2. PMID:27550793

  18. MtrA of the sodium ion pumping methyltransferase binds cobalamin in a unique mode

    PubMed Central

    Wagner, Tristan; Ermler, Ulrich; Shima, Seigo

    2016-01-01

    In the three domains of life, vitamin B12 (cobalamin) is primarily used in methyltransferase and isomerase reactions. The methyltransferase complex MtrA–H of methanogenic archaea has a key function in energy conservation by catalysing the methyl transfer from methyl-tetrahydromethanopterin to coenzyme M and its coupling with sodium-ion translocation. The cobalamin-binding subunit MtrA is not homologous to any known B12-binding proteins and is proposed as the motor of the sodium-ion pump. Here, we present crystal structures of the soluble domain of the membrane-associated MtrA from Methanocaldococcus jannaschii and the cytoplasmic MtrA homologue/cobalamin complex from Methanothermus fervidus. The MtrA fold corresponds to the Rossmann-type α/β fold, which is also found in many cobalamin-containing proteins. Surprisingly, the cobalamin-binding site of MtrA differed greatly from all the other cobalamin-binding sites. Nevertheless, the hydrogen-bond linkage at the lower axial-ligand site of cobalt was equivalently constructed to that found in other methyltransferases and mutases. A distinct polypeptide segment fixed through the hydrogen-bond linkage in the relaxed Co(III) state might be involved in propagating the energy released upon corrinoid demethylation to the sodium-translocation site by a conformational change. PMID:27324530

  19. Ion related problems for the XLS ring

    SciTech Connect

    Bozoki, E.; Halama, H. )

    1989-07-11

    The electron beam in the XLS will collide with the residual gas in the vacuum chamber. The positive ions will be trapped in the potential well of the electron beam. They will perform stable or unstable oscillations around the beam under the repetitive Coulomb force of the bunches. If not cleared, the captured ions will lead to partial or total neutralization of the beam, causing both, a decrease of life-time and a change in the vertical tunes as well as an increase in the tune-spread. They can also cause coherent transverse instabilities. The degree of neutralization {theta} that one can tolerate, is primarily determined by the allowable tune shift, which of the XLS is between 1 and 5 10{sup {minus}3}. Electrostatic clearing electrodes will be used to keep the neutralization below the desired limit. In order to determine their location and the necessary clearing-rate and voltage, we examine the ion production rate, longitudinal velocity of ions in field-free regions and in the dipoles to see what distance the ions can travel without clearing before the neutralization of the beam reaches the prescribed limit, beam potential to see the locations of the potential wells, voltage requirements for ion clearing, critical mass for ion capture in the bunched beam, tune shift caused by neutralization of the beam, pressure rise due to the trapped ions and power dissipation due to beam image current. 13 refs., 3 figs., 4 tabs.

  20. Ion related problems for the XLS ring

    NASA Astrophysics Data System (ADS)

    Bozoki, Eva S.; Halama, Henry

    1991-10-01

    The electron beam in a storage ring collides with the residual gas in the vacuum chamber. As a consequence, low velocity positive ions are produced and trapped in the potential well of the electron beam. They perform stable or unstable oscillations around the beam under the repetitive Coulomb force of the bunches. If not cleared, the captured ions can lead to partial or total neutralization of the beam, causing both a decrease of lifetime and a change in the vertical tunes as well as an increase in the tune spread. It can also cause coherent and incoherent transverse instabilities. An electrostatic clearing electrodes system was designed to keep the neutralization below a desired limit. The location and the geometry of the clearing electrodes as well as the applied clearing voltage is based on the study of the ion production rate, longitudinal velocity of ions in field-free regions and in the dipoles, beam self-electric field, beam potential, critical mass for ion capture in the bunched beam and the bounce frequencies of the ions, tune shift and pressure rise due to trapped ions.

  1. Evidence of high-n hollow-ion emission from Si ions pumped by ultraintense x-rays from relativistic laser plasma

    NASA Astrophysics Data System (ADS)

    Colgan, J.; Faenov, A. Ya.; Pikuz, S. A.; Tubman, E.; Butler, N. M. H.; Abdallah, J., Jr.; Dance, R. J.; Pikuz, T. A.; Skobelev, I. Yu.; Alkhimova, M. A.; Booth, N.; Green, J.; Gregory, C.; Andreev, A.; Lötzsch, R.; Uschmann, I.; Zhidkov, A.; Kodama, R.; McKenna, P.; Woolsey, N.

    2016-05-01

    We report on the first observation of high-n hollow ions (ions having no electrons in the K or L shells) produced in Si targets via pumping by ultra-intense x-ray radiation produced in intense laser-plasma interactions reaching the radiation dominant kinetics regime (RDKR). The existence of these new types of hollow ions in high-energy density plasma has been found via observation of highly resolved x-ray emission spectra of silicon plasma. This has been confirmed by plasma kinetics calculations, underscoring the ability of powerful radiation sources to fully strip electrons from the innermost shells of light atoms. Hollow-ions spectral diagnostics provide a unique opportunity to characterize powerful x-ray radiation of laboratory and astrophysical plasmas. With the use of this technique we provide evidence for the existence of the RDKR via observation of asymmetry in the observed radiation of hollow ions from the front and rear sides of the target.

  2. Pump-probe studies of radiation induced defects and formation of warm dense matter with pulsed ion beams

    NASA Astrophysics Data System (ADS)

    Schenkel, T.; Persaud, A.; Gua, H.; Seidl, P. A.; Waldron, W. L.; Gilson, E. P.; Kaganovich, I. D.; Davidson, R. C.; Friedman, A.; Barnard, J. J.; Minior, A. M.

    2014-10-01

    We report results from the 2nd generation Neutralized Drift Compression Experiment at Berkeley Lab. NDCX-II is a pulsed, linear induction accelerator designed to drive thin foils to warm dense matter (WDM) states with peak temperatures of ~ 1 eV using intense, short pulses of 1.2 MeV lithium ions. Tunability of the ion beam enables pump-probe studies of radiation effects in solids as a function of excitation density, from isolated collision cascades to the onset of phase-transitions and WDM. Ion channeling is an in situ diagnostic of damage evolution during ion pulses with a sensitivity of <0.1% displacements per atom. We will report results from damage evolution studies in thin silicon crystals with Li + and K + beams. Detection of channeled ions tracks lattice disorder evolution with a resolution of ~ 1 ns using fast current measurements. We will discuss pump-probe experiments with pulsed ion beams and the development of diagnostics for WDM and multi-scale (ms to fs) access to the materials physics of collision cascades e.g. in fusion reactor materials. Work performed under auspices of the US DOE under Contract No. DE-AC02-05CH11231.

  3. Summary of tank information relating salt well pumping to flammable gas safety issues

    SciTech Connect

    Caley, S.M.; Mahoney, L.A.; Gauglitz, P.A.

    1996-09-01

    The Hanford Site has 149 single-shell tanks (SSTs) containing radioactive wastes that are complex mixes of radioactive and chemical products. Active use of these SSTs was phased out completely by November 1980, and the first step toward final disposal of the waste in the SSTs is interim stabilization, which involves removing essentially all of the drainable liquid from the tank. Stabilization can be achieved administratively, by jet pumping to remove drainable interstitial liquid, or by supernatant pumping. To date, 116 tanks have been declared interim stabilized; 44 SSTs have had drainable liquid removed by salt well jet pumping. Of the 149 SSTs, 19 are on the Flammable Gas Watch List (FGWL) because the waste in these tanks is known or suspected, in all but one case, to generate and retain mixtures of flammable gases, including; hydrogen, nitrous oxide, and ammonia. Salt well pumping to remove the drainable interstitial liquid from these SSTs is expected to cause the release of much of the retained gas, posing a number of safety concerns. The scope of this work is to collect and summarize information, primarily tank data and observations, that relate salt well pumping to flammable gas safety issues. While the waste within FGWL SSTs is suspected offering flammable gases, the effect of salt well pumping on the waste behavior is not well understood. This study is being conducted for the Westinghouse Hanford Company as part of the Flammable Gas Project at the Pacific Northwest National Laboratory (PNNL). Understanding the historical tank behavior during and following salt well pumping will help to resolve the associated safety issues.

  4. Experimental Study on Basic Performance of Electroosmotic Pump with Ion Exchanging Porous Glass Slit

    NASA Astrophysics Data System (ADS)

    Lee, Ho; Kim, Gyu Man; Lee, Choon Young; Park, Cheol Woo; Kim, Dae Joong

    The basic concept and preliminary performance results of a miniaturized electroosmotic pump with diaphragms were included in the present study. The separation of an electroosmotic pumping liquid from a drug using diaphragms is mainly to have a freedom in choosing an electroosmotic pumping liquid and to achieve the optimal drug delivery with its preferable precise control. As a result, the maximum flow rate and current increased linearly according to the increment of applied voltage that is electric potential.

  5. Predicting the relative toxicity of metal ions using ion characteristics: Microtox{reg_sign} bioluminescence assay

    SciTech Connect

    McCloskey, J.T.; Newman, M.C.; Clark, S.B.

    1996-10-01

    Quantitative structure-activity relationships have been used to predict the relative toxicity of organic compounds. Although not as common, ion characteristics have also proven useful for predicting the relative toxicity of metal ions. The purpose of this study was to determine if the relative toxicity of metal ions using the Microtox{reg_sign} bioassay was predictable using ion characteristics. Median effect concentrations (EC50s) were determined for 20 metals in a NaNO{sub 3} medium, which reflected freshwater speciation conditions, using the Microtox bacterial assay. The log of EC50 values was modeled using several ion characteristics, and Akaike`s Information Criterion was calculated to determine which ion characteristics provided the best fit. Whether modeling total ion or free ion EC50 values, the one variable which best modeled EC50s was the softness index, while a combination of {chi}{sub m}{sup 2}r ({chi}{sub m} = electronegativity, r = Pauling ionic radius) and {vert_bar}log K{sub OH}{vert_bar} was the best two-variable model. Other variables, including {Delta}E{sub 0} and {chi}{sub m}{sup 2}r (one-variable models) and (AN/{Delta}IP, {Delta}E{sub 0}) and ({chi}{sub m}{sup 2}r, Z{sup 2}/r) (two-variable models), also gave adequate fits. Modeling with speciated (free ion) versus unspeciated (total ion) EC50 values did not improve fits. Modeling mono-, di-, and trivalent metal ions separately improved the models. The authors conclude that ion characteristics can be used to predict the relative toxicity of metal ions whether in freshwater (NaNO{sub 3} medium) or saltwater (NaCl medium) speciation conditions and that this approach can be applied to metal ions varying widely in both valence and binding tendencies.

  6. Tracking metal ions through a Cu/Ag efflux pump assigns the functional roles of the periplasmic proteins

    PubMed Central

    Mealman, Tiffany D.; McEvoy, Megan M.; Blackburn, Ninian J.

    2014-01-01

    Copper is an essential nutrient for all aerobic organisms but is toxic in excess. At the host–pathogen interface, macrophages respond to bacterial infection by copper-dependent killing mechanisms, whereas the invading bacteria are thought to counter with an up-regulation of copper transporters and efflux pumps. The tripartite efflux pump CusCBA and its metallochaperone CusF are vital to the detoxification of copper and silver ions in the periplasm of Escherichia coli. However, the mechanism of efflux by this complex, which requires the activation of the inner membrane pump CusA, is poorly understood. Here, we use selenomethionine (SeM) active site labels in a series of biological X-ray absorption studies at the selenium, copper, and silver edges to establish a “switch” role for the membrane fusion protein CusB. We determine that metal-bound CusB is required for activation of cuprous ion transfer from CusF directly to a site in the CusA antiporter, showing for the first time (to our knowledge) the in vitro activation of the Cus efflux pump. This metal-binding site of CusA is unlike that observed in the crystal structures of the CusA protein and is composed of one oxygen and two sulfur ligands. Our results suggest that metal transfer occurs between CusF and apo-CusB, and that, when metal-loaded, CusB plays a role in the regulation of metal ion transfer from CusF to CusA in the periplasm. PMID:25313055

  7. Amplification of light in a plasma by stimulated ion acoustic waves driven by multiple crossing pump beams.

    PubMed

    Kirkwood, R K; Michel, P; London, R A; Callahan, D; Meezan, N; Williams, E; Seka, W; Suter, L; Haynam, C; Landen, O

    2011-08-01

    Experiments demonstrate the amplification of 351 nm laser light in a hot dense plasma similar to those in inertial confinement fusion ignition experiments. A seed beam interacts with one or two counter-propagating pump beams, each with an intensity of 1.2×10(15) W/cm2 at 351 nm, crossing the seed at 24.8° at the position where the flow is Mach 1, allowing resonant stimulation of ion acoustic waves. Results show that the energy and power transferred to the seed are increased with two pumps beyond the level that occurs with a single pump, demonstrating that, under conditions similar to ignition experiments where each beam has a low gain exponent, the total scatter produced by the multiple beams can be significantly larger than that of the individual beams. It is further demonstrated that the amplification is greatly reduced when the pump polarization is orthogonal to the seed, as expected from models of stimulated scatter. PMID:21929115

  8. Existing and Past Methods of Test and Rating Standards Related to Integrated Heat Pump Technologies

    SciTech Connect

    Reedy, Wayne R.

    2010-07-01

    This report evaluates existing and past US methods of test and rating standards related to electrically operated air, water, and ground source air conditioners and heat pumps, 65,000 Btu/hr and under in capacity, that potentiality incorporate a potable water heating function. Two AHRI (formerly ARI) standards and three DOE waivers were identified as directly related. Six other AHRI standards related to the test and rating of base units were identified as of interest, as they would form the basis of any new comprehensive test procedure. Numerous other AHRI and ASHRAE component test standards were also identified as perhaps being of help in developing a comprehensive test procedure.

  9. The TEXTOR helium self-pumping experiment: Design, plans, and supporting ion-beam data on helium retention in nickel

    SciTech Connect

    Brooks, J.N.; Krauss, A.; Mattas, R.F.; Smith, D.L. ); Nygren, R.E.; Doyle, B.L.; McGrath, R.T.; Walsh, D. ); Dippel, K.H.; Finken, K.H. . Inst. fuer Plasmaphysik)' Hirooka, Y. )

    1990-01-01

    A proof-of-principle experiment to demonstrate helium self-pumping in a tokamak is being undertaken in TEXTOR. The experiment will use a helium self-pumping module installed in a modified ALT-I limiter head. The module consists of two, {approximately}25 {times} 25 cm{sup 2} heated nickel alloy trapping plates, a nickel deposition filament array, and associated diagnostics. Between plasma shots a coating of {approximately}50 {angstrom} nickel will be deposited on the two trapping plates. During a shot helium and hydrogen ions will impinge on the plates through a {approximately}3 cm wide entrance slot. The helium removal capability, due to trapping in the nickel, will be assessed for a variety of plasma conditions. In support of the tokamak experiment, the trapping of helium over a range of ion fluences and surface temperatures, and detrapping during subsequent exposure to hydrogen, were measured in ion beam experiments using evaporated nickel surfaces similar to that expected in TEXTOR. Also, the retention of H and He after exposure of a nickel surface to mixed He/H plasmas has bee measured. The results appear favorable, showing high helium trapping ({approximately}10--50% He/Ni) and little or no detrapping by hydrogen. The TEXTOR experiment is planned to begin in 1991. 12 refs., 2 figs., 2 tabs.

  10. Experimental study of the dynamics of a ruby laser pumped by a CW argon-ion laser

    NASA Technical Reports Server (NTRS)

    Afzal, R. S.; Lin, W. P.; Lawandy, N. M.

    1989-01-01

    A study of the dynamics of a ruby laser pumped by a CW argon-ion laser is presented. The ruby laser is predominantly stable but has two accessible unstable states. One state exhibits chaotic output, while the other results in regular self-pulsing. The conditions needed for instability are discussed and homodyne spectra and temporal maps of the phase-space attractors are obtained. In addition, a numerical simulation of nonlinear beam propagation in ruby is presented that shows that strong deviations from plane-wave behavior exist, and that transverse effects must be incorporated into theoretical models of the instability.

  11. Systematic Effects in Laser-Induced Fluorescence Measurments of Ion Density and Temperature Caused by Optical Pumping

    NASA Astrophysics Data System (ADS)

    Langin, Thomas; Strickler, Trevor; McQuillen, Patrick; Killian, Thomas

    2014-10-01

    Ultracold neutral plasmas of strontium are generated by photoionizing laser-cooled atoms. The plasma evolution is probed by laser induced fluorescence (LIF) via the 5s2S1/2-5p2P1/2 ion transition. Spectra are obtained by recording LIF intensity at varying laser detunings. The ion temperature, T, is then measured by fitting a Voigt profile to obtain the Doppler width. However, for linearly (circularly) polarized light, 5p2P1/2 ions have a 7% (33%) chance of decaying to the dark metastable 5d 2D3/2 state (dark opposite spin state). Near resonance, where ions are more likely to scatter multiple photons during the LIF process, the observed signal will be depressed due to optical pumping. This causes an artificial broadening in the spectra and thus artificially high T measurements. Moreover, the loss of ions throughout the excitation process, if not corrected for, will result in artificially low density measurements. We have developed, and experimentally verified, a method for simulating the LIF process in order to determine the LIF-probe durations and intensities for which these effects becomes significant. This work was supported by the National Science Foundation and the Department of Energy (PHY-0714603), the Air Force Office of Scientific Research (FA9550-12-1-0267), the Department of Defense (NDSEG Fellowship), and Shell

  12. Metal Ion Sensors Based on DNAzymes and Related DNA Molecules

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Bing; Kong, Rong-Mei; Lu, Yi

    2011-07-01

    Metal ion sensors are an important yet challenging field in analytical chemistry. Despite much effort, only a limited number of metal ion sensors are available for practical use because sensor design is often a trial-and-error-dependent process. DNAzyme-based sensors, in contrast, can be developed through a systematic selection that is generalizable for a wide range of metal ions. Here, we summarize recent progress in the design of DNAzyme-based fluorescent, colorimetric, and electrochemical sensors for metal ions, such as Pb2+, Cu2+, Hg2+, and UO22+. In addition, we also describe metal ion sensors based on related DNA molecules, including T-T or C-C mismatches and G-quadruplexes.

  13. Metal Ion Sensors Based on DNAzymes and Related DNA Molecules

    PubMed Central

    Kong, Rong-Mei

    2011-01-01

    Metal ion sensors are an important yet challenging field in analytical chemistry. Despite much effort, only a limited number of metal ion sensors are available for practical use because sensor design is often a trial-and-error-dependent process. DNAzyme-based sensors, in contrast, can be developed through a systematic selection that is generalizable for a wide range of metal ions. Here, we summarize recent progress in the design of DNAzyme-based fluorescent, colorimetric, and electrochemical sensors for metal ions, such as Pb2+, Cu2+, Hg2+, and UO22+ In addition, we also describe metal ion sensors based on related DNA molecules, including T-T or C-C mismatches and G-quadruplexes. PMID:21370984

  14. Depth-dose relations for heavy ion beams

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.

    1977-01-01

    Radiation transport of heavy ions in matter is of interest to radiological protection in space and high-altitude aircraft. In addition, heavy ion beams are expected to be of advantage in radiotherapy since their characteristic Bragg curve allows a relative reduction of the dose in reaching a tumor site and the near elimination of exposure beyond the tumor region as the beam exits the body. Furthermore, the radioresistance of tumorous cells due to their hypoxic state may be reduced or eliminated by the high specific ionization of heavy ion beams. The depth-dose distribution of heavy ion beams consists of energy deposited by the attenuated primary beam with its characteristic Bragg curve and a relatively unstructured background due to secondary radiations produced in nuclear reactions. As the ion mass increases, the secondary contribution becomes more structured and may add significantly to the Bragg peak of the primary ions. The result for heavy ions (z greater than 20) is a greatly broadened Bragg peak region, especially in comparison to straggling effects, which may prove to be of importance in radiotherapy and biomedical research.

  15. OSCILLATORY PUMP

    DOEpatents

    Underwood, N.

    1958-09-23

    This patent relates to a pump suitable fur pumping highly corrosive gases wherein no lubricant is needed in the pumping chamber thus eliminating possible contamination sources. The chamber contains a gas inlet and outlet in each side, with a paddle like piston suspended by a sylphon seal between these pcrts. An external arrangement causes the paddle to oscillate rapidly between the ports, alternately compressing and exhausting the gas trapped on each side of the paddle. Since the paddle does nnt touch the chamber sides at any point, no lubricant is required. This pump is useful for pumping large quantities of uranium hexafluorine.

  16. Development of a laser optically pumped polarized target for use in heavy-ion physics. [/sup 151/ /sup 153/Eu

    SciTech Connect

    Shivakumar, B.; Beene, J.R.; Bemis, C.E. Jr.; Erb, K.A.; Ford, J.L.C. Jr.; Shapira, D.

    1982-01-01

    Important micro- and macroscopic details of heavy-ion reactions may be explicitly determined when nuclear spin aligned (polarized) targets are used. For deformed nuclei, the orientation of the symmetry axis of the nuclear density distribution is determined by the nuclear spin orientation. Polarized targets would thus allow experiments to be performed as a function of the orientation of the symmetry axis of the nuclear density distribution. A polarized target of /sup 151/ /sup 153/Eu is being developed at Oak Ridge and is based on laser depopulation optical pumping. A spatially defined target is provided by a supersonic gas jet and consists of Eu atoms seeded into an inert carrier gas. Detailed time-dependent optical-pumping calculations predict approx. = 90% nuclear spin polarization in a Eu target with an expected thickness in excess of 10/sup 15/ atoms/cm/sup 2/. We present some of the effects that will be observable in heavy-ion reactions when deformed polarized targets are used.

  17. Osmotic tolerance of avian spermatozoa: Influence of time, temperature, cryoprotectant and membrane ion pump function on sperm viability

    USGS Publications Warehouse

    Blanco, J.M.; Long, J.A.; Gee, G.; Donoghue, A.M.; Wildt, D.E.

    2008-01-01

    Potential factors influencing sperm survival under hypertonic conditions were evaluated in the Sandhill crane (Grus canadensis) and turkey (Meleagridis gallopavo). Sperm osmotolerance (300-3000 mOsm/kg) was evaluated after: (1) equilibration times of 2, 10, 45 and 60 min at 4 ?C versus 21 ?C; (2) pre-equilibrating with dimethylacetamide (DMA) or dimethylsulfoxide (Me2SO) at either 4 ?C or 21 ?C; and (3) inhibition of the Na+/K+ and the Na+/H+ antiporter membrane ionic pumps. Sperm viability was assessed using the eosin-nigrosin live/dead stain. Species-specific differences occurred in response to hypertonic conditions with crane sperm remaining viable under extreme hypertonicity (3000 mOsm/kg), whereas turkey sperm viability was compromised with only slightly hypertonic (500 mOsm/kg) conditions. The timing of spermolysis under hypertonic conditions was also species-specific, with a shorter interval for turkey (2 min) than crane (10 min) sperm. Turkey sperm osmotolerance was slightly improved by lowering the incubation temperature from 21 to 4 ?C. Pre-equilibrating sperm with DMA reduced the incidence of hypertonic spermolysis only in the crane, at both room and refrigeration temperature. Inhibiting the Na+/K+ and the Na+/H+ antiporter membrane ion pumps did not impair resistance of crane and turkey spermatozoa to hypertonic stress; pump inhibition actually increased turkey sperm survival compared to control sperm. Results demonstrate marked species specificity in osmotolerance between crane and turkey sperm, as well as in the way temperature and time of exposure affect sperm survival under hypertonic conditions. Differences are independent of the role of osmotic pumps in these species.

  18. A differentially pumped dual linear quadrupole ion trap (DLQIT) mass spectrometer: a mass spectrometer capable of MS(n) experiments free from interfering reactions.

    PubMed

    Owen, Benjamin C; Jarrell, Tiffany M; Schwartz, Jae C; Oglesbee, Rob; Carlsen, Mark; Archibold, Enada F; Kenttämaa, Hilkka I

    2013-12-01

    A novel differentially pumped dual linear quadrupole ion trap (DLQIT) mass spectrometer was designed and built to facilitate tandem MS experiments free from interfering reactions. The instrument consists of two differentially pumped Thermo Scientific linear quadrupole ion trap (LQIT) systems that have been connected via an ion transfer octupole encased in a machined manifold. Tandem MS experiments can be performed in the front trap and then the resulting product ions can be transferred via axial ejection into the back trap for further, independent tandem MS experiments in a differentially pumped area. This approach allows the examination of consecutive collision-activated dissociation (CAD) and ion-molecule reactions without unwanted side reactions that often occur when CAD and ion-molecule reactions are examined in the same space. Hence, it greatly facilitates investigations of ion structures. In addition, the overall lower pressure of the DLQIT, as compared to commercial LQIT instruments, results in a reduction of unwanted side reactions with atmospheric contaminants, such as water and oxygen, in CAD and ion-molecule experiments. PMID:24171553

  19. Aging of turbine drives for safety-related pumps in nuclear power plants

    SciTech Connect

    Cox, D.F.

    1995-06-01

    This study was performed to examine the relationship between time-dependent degradation and current industry practices in the areas of maintenance, surveillance, and operation of steam turbine drives for safety-related pumps. These pumps are located in the Auxiliary Feedwater (AFW) system for pressurized-water reactor plants and in the Reactor Core Isolation Cooling and High-Pressure Coolant Injection systems for boiling-water reactor plants. This research has been conducted by examination of failure data in the Nuclear Plant Reliability Data System, review of Licensee Event Reports, discussion of problems with operating plant personnel, and personal observation. The reported failure data were reviewed to determine the cause of the event and the method of discovery. Based on the research results, attempts have been made to determine the predictability of failures and possible preventive measures that may be implemented. Findings in a recent study of AFW systems indicate that the turbine drive is the single largest contributor to AFW system degradation. However, examination of the data shows that the turbine itself is a reliable piece of equipment with a good service record. Most of the problems documented are the result of problems with the turbine controls and the mechanical overspeed trip mechanism; these apparently stem from three major causes which are discussed in the text. Recent improvements in maintenance practices and procedures, combined with a stabilization of the design, have led to improved performance resulting in a reliable safety-related component. However, these improvements have not been universally implemented.

  20. Coronary vascular resistance increases under full bypass support of centrifugal pumps--relation between myocardial perfusion and ventricular workload during pump support.

    PubMed

    Ando, Masahiko; Takewa, Yoshiaki; Nishimura, Takashi; Yamazaki, Kenji; Kyo, Shunei; Ono, Minoru; Tsukiya, Tomonori; Mizuno, Toshihide; Taenaka, Yoshiyuki; Tatsumi, Eisuke

    2012-01-01

    Coronary circulation is closely linked to myocardial oxygen consumption (MVO(2)), and previous reports have suggested decreased coronary flow (CoF) under left ventricular assist device support. Decreased CoF itself under support is not unfavorable because the native heart can be well unloaded and myocardial oxygen demand is also decreased. There should be an autoregulatory system that would maintain optimal CoF according to oxygen demand; however, the detailed mechanism is still unclear. The aim of the current study is to evaluate the effect of centrifugal pumps on CoF under varied bypass rates in relation to left ventricle workload. A centrifugal pump, EVAHEART (Sun Medical Technology Research Corporation, Nagano, Japan), was installed in an adult goat (n = 10, 61.3 ± 6.5 kg). We set up the following conditions, including Circuit-Clamp (i.e., no pump support), 50% bypass, and 100% bypass. In these settings, CoF, MVO(2), pressure-volume area (PVA), and coronary vascular resistance (CVR) were measured. In 100% bypass, CoF, MVO(2), and PVA were all decreased significantly from clamp. While in 50% bypass, CoF and MVO(2) decreased from clamp, but not PVA. There was a significant 40% increase in CVR in 100% bypass from clamp. This CVR increase in 100% bypass was possibly due to mechanical collapse of coronary vascular bed itself by pump support or increased vascular tone through autoregulatory system. In clinical settings, we should adjust optimal pump speed so as not to cause this vascular collapse. However, to clarify autoregulatory system of the coronary perfusion, further investigation is ongoing in ischemic and heart failure models. PMID:21848933

  1. Use of Xenon Difluoride to Clean Hazardous By-Products in Ion Implanter Source Housings, Turbo Pumps, and Fore-Lines

    SciTech Connect

    Despres, J.; Chambers, B.; Bishop, S.; Kaim, R.; Letaj, S.; Sergi, S.; Sweeney, J.; Tang, Y.; Wilson, S.; Yedave, S.

    2011-01-07

    This paper describes the use of xenon difluoride to clean deposits in the source housing, source turbo pump, and source turbo pump fore-line of ion implanters. Xenon difluoride has previously been shown to be effective in increasing the lifetime of the ion source{sup 1,2} and this paper presents an extension of the technology to other areas within the tool. Process by-products that are deposited in the source housing, turbo pump, and turbo pump fore-line can not only pose productivity issues, in the case of coatings on insulators, but can also be flammable and toxic in the case of deposits formed within the turbo pump and fore-line. The results presented in this paper detail the initial successful examples of using xenon difluoride to clean these deposits.ATMI has shown that xenon difluoride is capable of cleaning an insulator in an ion implanter. Typically during use an insulator will become increasingly coated with deposits that could lead to productivity problems. By introducing xenon difluoride into the source housing the insulator residues were effectively cleaned in-situ, thereby extending the maintenance interval and resulting in significant consumable savings.Similar deposits that form in the turbo pump and fore-line could not only lead to production problems due to turbo pump failure or fore-line build-up, but pose significant health risks during the ex-situ cleaning process. Through internal testing ATMI has shown that xenon difluoride is able to clean phosphorus and germanium deposits located within a turbo pump. Additionally, testing has demonstrated that the turbo pump fore-line can be cleaned in-situ without the need to remove these components, thereby virtually eliminating the possibility of fires. The cleaning reaction progress and by-products were monitored using FTIR spectrometry and thermocouples.In order to efficiently clean the source housing, turbo pump, and turbo pump fore-line xenon difluoride delivery must be optimized. This paper also

  2. Ion and water distribution in pig lenses incubated at 0 degree C to disable ion transport pumps.

    PubMed

    Cameron, I L; Hardman, W E; Fullerton, G D; Kellermayer, M; Ludany, A; Miseta, A

    1991-01-01

    This study was designed to test how extended exposure of lenses to sera with different ionic strengths influences the distribution of ions and water in the lens. Pig lenses were incubated in cold sera (0 degree C), which were adjusted to variable concentrations of NaCl, and their K+, Na+, Cl-, and water contents were measured. Incubation at 0 degree C inhibits active transport processes and thereby allows equilibration of the mobile ions and water. The hypothesis was that lens water content (volume) would follow the ion-induced protein changes predicted by a model derived from previous osmotic studies on proteins. As expected, exposure of the lens to cold caused a gain of sodium and a partial loss of potassium. However, the potassium concentration in the lens remained several fold higher than that in the bathing solution (about 41 vs. 1.8-4.6 mM/kg H2O), indicating that a portion of the potassium within the cold-exposed lens was not free to diffuse. That the water content of the lens showed a negative rather than a positive relationship with the concentration of NaCl within the lens was explained by the idea that an increase in NaCl within the lens (up to at least 250 mM/kg H2O) causes a decrease in the osmotically unresponsive water volume associated with lens proteins. PMID:1799442

  3. Relative sensitivity factors for submicron secondary ion mass spectrometry with gallium primary ion beam

    NASA Astrophysics Data System (ADS)

    Satosh, Hitomi; Owari, Masanori; Nihei, Yoshimasa

    1993-08-01

    Relative sensitivity factors (RSFs) of thirteen elements in the oxide glass matrix in secondary ion mass spectrometry (SIMS) excited by a gallium focused ion beam were determined. RSFs were obtained by analyzing powder particles of standard glass samples. Whole volumes of each particles were analyzed in the 'shave-off' mode in order to avoid topographic effects. Reproducibility of RSFs was good, and sample-to-sample scattering of values was relatively small. Dependence of RSFs on the first ionization potential was shown to be reasonable. In order to with the data obtained through the bulk chemical analysis.

  4. Anthocyanins suppress the secretion of proinflammatory mediators and oxidative stress, and restore ion pump activities in demyelination.

    PubMed

    Carvalho, Fabiano B; Gutierres, Jessié M; Bohnert, Crystiani; Zago, Adriana M; Abdalla, Fátima H; Vieira, Juliano M; Palma, Heloisa E; Oliveira, Sara M; Spanevello, Roselia M; Duarte, Marta M; Lopes, Sonia T A; Aiello, Graciane; Amaral, Marta G; Pippi, Ney Luis; Andrade, Cinthia M

    2015-04-01

    The aim of this study was to investigate the protective effect of anthocyanins (ANT) on oxidative and inflammatory parameters, as well as ion pump activities, in the pons of rats experimentally demyelinated with ethidium bromide (EB). Rats were divided in six groups: control, ANT 30 mg/kg, ANT 100 mg/kg, EB (0.1%), EB plus ANT 30 mg/kg and EB plus ANT 100 mg/kg. The EB cistern pons injection occurred on the first day. On day 7, there was a peak in the demyelination. During the 7 days, the animals were treated once per day with vehicle or ANT. It was observed that demyelination reduced Na(+),K(+)-ATPase and Ca(2+)-ATPase activities and increased 4-hydroxynonenal, malondialdehyde, protein carbonyl and NO2plus NO3 levels. In addition, a depletion of glutathione reduced level/nonprotein thiol content and a decrease in superoxide dismutase activity were also seen. The dose of 100 mg/kg showed a better dose-response to the protective effects. The demyelination did not affect the neuronal viability but did increase the inflammatory infiltrate (myeloperoxidase activity) followed by an elevation in interleukin (IL)-1β, IL-6, tumor necrosis factor-α and interferon-γ levels. ANT promoted a reduction in cellular infiltration and proinflammatory mediators. Furthermore, ANT restored the levels of IL-10. Luxol fast blue staining confirmed the loss of myelin in the EB group and the protective effect of ANT 100 mg/kg. In conclusion, this study was the first to show that ANT are able to restore ion pump activities and protect cellular components against the inflammatory and oxidative damages induced by demyelination. PMID:25632845

  5. A discussion of system reliability and the relative importance of pumps and valves to overall system availability

    SciTech Connect

    Poole, A.B.

    1996-12-01

    An analysis was undertaken to establish preliminary trends for how component aging can effect failure rates for swing check valves, centrifugal pumps and motor operated valves. These failure rate trends were evaluated over time and linear aging rate models established. The failure rate models were then used with classic reliability theories to estimate reliability as a function of operating time. Reliability theory was also used to establish a simple system reliability model. Using the system model, the relative importance of pumps and valves to the overall system reliability were studied. Conclusions were established relative to overall system availability over time and the relative unavailabilities of the various components studied.

  6. Pumping potential wells

    NASA Technical Reports Server (NTRS)

    Hershkowitz, N.; Forest, C.; Wang, E. Y.; Intrator, T.

    1987-01-01

    Nonmonotonic plasma potential structures are a common feature of many double layers and sheaths. Steady state plasma potential wells separating regions having different plasma potentials are often found in laboratory experiments. In order to exist, all such structures must find a solution to a common problem. Ions created by charge exchange or ionization in the region of the potential well are electrostatically confined and tend to accumulate and fill up the potential well. The increase in positive charge should eliminate the well. Nevertheless, steady state structures are found in which the wells do not fill up. This means that it is important to take into account processes which pump ions from the well. As examples of ion pumping of plasma wells, potential dips in front of a positively biased electron collecting anode in a relatively cold, low density, multidipole plasma are considered. Pumping is provided by ion leaks from the edges of the potential dip or by oscillating the applied potential. In the former case the two-dimensional character of the problem is shown to be important.

  7. Pumping potential wells

    NASA Technical Reports Server (NTRS)

    Hershkowitz, N.; Forest, C.; Wang, E. Y.; Intrator, T.

    1987-01-01

    Nonmonotonic plasma potential structures are a common feature of many double layers and sheaths. Steady state plasma potential wells separating regions having different plasma potentials are often found in laboratory experiments. In order to exist, such structures all must find a solution to a common problem. Ions created by charge exchange or ionization in the region of the potential well are electrostatically confined and tend to accumulate and fill up the potential well. The increase in positive charge should eliminate the well. Nevertheless, steady state structures are found in which the wells do not fill up. This means that it is important to take into account processes which 'pump' ions from the well. As examples of ion pumping of plasma wells, potential dips in front of a positively biased electro collecting anode in a relatively cold, low density multidipole plasma is considered. Pumping is provided by ion leaks from the edges of the potential dip or by oscillating the applied potential. In the former case the two dimensional character of the problem is shown to be important.

  8. High efficiency picosecond pulse generation in the 675-930 nm region from a dye laser synchronously pumped by an argon-ion laser. Technical report

    SciTech Connect

    Bado, P.; Dupuy, C.; Wilson, K.R.; Boggy, R.; Bowen, J.

    1983-04-01

    Picosecond pulses tunable from 675 to 930 micrometers have been obtained from a dye-laser synchronously pumped at 514.5 micrometers by a mode-locked Argon-ion laser. Peak energy conversion efficiencies between 10% and 29% are observed with pulse durations between 1.7 ps and 16 ps as measured by autocorrelation.

  9. Groundwater levels, trends, and relations to pumping in the Bureau of Reclamation Klamath Project, Oregon and California

    USGS Publications Warehouse

    Gannett, Marshall W.; Breen, Katherine H.

    2015-01-01

    The use of groundwater to supplement surface-water supplies for the Bureau of Reclamation Klamath Project in the upper Klamath Basin of Oregon and California markedly increased between 2000 and 2014. Pre-2001 groundwater pumping in the area where most of this increase occurred is estimated to have been about 28,600 acre-feet per year. Subsequent supplemental pumping rates have been as high as 128,740 acre-feet per year. During this period of increased pumping, groundwater levels in and around the Bureau of Reclamation Klamath Project have declined by about 20-25 feet. Water-level declines are largely due to the increased supplemental pumping, but other factors include increased pumping adjacent to the Klamath Project and drying climate conditions. This report summarizes the distribution and magnitude of supplemental groundwater pumping and groundwater-level declines, and characterizes the relation between the stress and response in subareas of the Klamath Project to aid decision makers in developing groundwater-management strategies.

  10. Are Ring Current Ions Lost in Electromagnetic Ion Cyclotron Wave Dispersion Relation?

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.

    2006-01-01

    Electromagnetic ion cyclotron (EMIC) waves are widely observed in the inner and outer magnetosphere, at geostationary orbit, at high latitudes along the plasmapause, and at the ionospheric altitudes. Interaction of the Ring Current (RC) ions and EMIC waves causes ion scattering into the loss cone and leads to decay of the RC, especially during the main phase of storms when the RC decay times of about one hour or less are observed. The oblique EMIC waves damp due to Landau resonance with the thermal plasmaspheric electrons, and subsequent transport of the dissipating wave energy into the ionosphere below causes an ionosphere temperature enhancement. Induced scattering of these waves by the plasmaspheric thermal ions leads to ion temperature enhancement, and forms a so-called hot zone near the plasmapause where the temperature of core plasma ions can reach tens of thousands of degrees. Relativistic electrons in the outer radiation belt also interact well with the EMIC waves, and during the main and/or recovery phases of the storms these electrons can easily be scattered into the loss cone over a time scale from several hours to a day. The plasma density distribution in the magnetosphere and the ion content play a critical role in EMIC wave generation and propagation, but the wave dispersion relation in the known RC-EMIC wave interaction models is assumed to be determined by the thermal plasma distribution only. In these models, the modification of the EMIC wave dispersion relation caused by the RC ions is not taken into account, and the RC ions are only treated as a source of free energy in order to generate EMIC waves. At the same time, the RC ions can dominate the thermal magnetospheric content in the night MLT sector at great L shells during the main and/or recovery storm phase. In this study, using our self-consistent RC-EMIC wave model [Khazanov et al., 2006], we simulate the May 1998 storm in order to quantify the global EMIC wave redistribution caused by

  11. Effect of Ring Current Ions on Electromagnetic Ion Cyclotron Wave Dispersion Relation

    NASA Technical Reports Server (NTRS)

    Gamayunov, K. V.; Khazanov, G. V.

    2006-01-01

    Electromagnetic ion cyclotron (EMIC) waves are widely observed in the inner and outer magnetosphere, at geostationary orbit, at high latitudes along the plasmapause, and at the ionospheric altitudes. Interaction of the Ring Current (RC) ions and EMIC waves causes ion scattering into the loss cone and leads to decay of the RC, especially during the main phase of storms when the RC decay times of about one hour or less are observed. The oblique EMIC waves damp due to Landau resonance with the thermal plasmaspheric electrons, and subsequent transport of the dissipating wave energy into the ionosphere below causes an ionosphere temperature enhancement. Induced scattering of these waves by the plasmaspheric thermal ions leads to ion temperature enhancement, and forms a so-called hot zone near the plasmapause where the temperature of core plasma ions can reach tens of thousands of degrees. Relativistic electrons in the outer radiation belt also interact well with the EMIC waves, and during the main and/or recovery phases of the storms these electrons can easily be scattered into the loss cone over a time scale from several hours to a day. The plasma density distribution in the magnetosphere and the ion content play a critical role in EMIC wave generation and propagation, but the wave dispersion relation in the known RC-EMIC wave interaction models is assumed to be determined by the thermal plasma distribution only. In these models, the modification of the EMIC wave dispersion relation caused by the RC ions is not taken into account, and the RC ions are only treated as a source of free energy in order to generate EMIC waves. At the same time, the RC ions can dominate the thermal magnetospheric content in the night MLT sector at great L shells during the main and/or recovery storm phase. In this study, using our self-consistent RC-EMIC wave model [Khazanov et al., 2006], we simulate the May 1998 storm in order to quantify the global EMIC wave redistribution caused by

  12. Impact of Ring Current Ions on Electromagnetic Ion Cyclotron Wave Dispersion Relation

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.

    2007-01-01

    Effect of the ring current ions in the real part of electromagnetic ion Cyclotron wave dispersion relation is studied on global scale. Recent Cluster observations by Engebretson et al. showed that although the temperature anisotropy of is energetic (> 10 keV) ring current protons was high during the entire 22 November 2003 perigee pass, electromagnetic ion cyclotron waves were observed only in conjunction with intensification of the ion fluxes below 1 keV by over an order of magnitude. To study the effect of the ring current ions on the wave dispersive properties and the corresponding global wave redistribution, we use a self-consistent model of interacting ring current and electromagnetic ion cyclotron waves, and simulate the May 1998 storm. The main findings of our simulation can be summarized as follows: First, the plasma density enhancement in the night MLT sector during the main and recovery storm phases is mostly caused by injection of suprathermal plasma sheet H + (approximately < 1 keV), which dominate the thermal plasma density. Second, during the recovery storm phases, the ring current modification of the wave dispersion relation leads to a qualitative change of the wave patterns in the postmidnight-dawn sector for L > 4.75. This "new" wave activity is well organized by outward edges of dense suprathermal ring current spots, and the waves are not observed if the ring current ions are not included in the real part of dispersion relation. Third, the most intense wave-induced ring current precipitation is located in the night MLT sector and caused by modification of the wave dispersion relation. The strongest precipitating fluxes of about 8 X 10(exp 6)/ (cm(exp 2) - s X st) are found near L=5.75, MLT=2 during the early recovery phase on 4 May. Finally, the nightside precipitation is more intense than the dayside fluxes, even if there are less intense waves, because the convection field moves ring current ions into the loss cone on the nightside, but drives

  13. Balance of unidirectional monovalent ion fluxes in cells undergoing apoptosis: why does Na+/K+ pump suppression not cause cell swelling?

    PubMed

    Yurinskaya, Valentina E; Rubashkin, Andrey A; Vereninov, Alexey A

    2011-05-01

    Cells dying according to the apoptotic program, unlike cells dying via an unprogrammed mode, are able to avoid swelling and osmotic bursting with membrane disruption.There are indications that apoptosis is accompanied by suppression of the Na+/K+ pump and changes in the K+ and Cl− channels. It remains unclear how ion fluxes through individual ion pathways are integrated so as to induce loss of intracellular ions and concomitant apoptotic volume decrease. A decrease in activity of the sodium pump during apoptosis should cause cell swelling rather than shrinkage. We have made the first systemic analysis of the monovalent ion flux balance in apoptotic cells. Experimental data were obtained for human U937 cells treated with staurosporine for 4–5 h, which is known to induce apoptosis. The data include cellular Cl− content and fluxes, K+, Na+, water content and ouabain-sensitive and -resistant Rb+ fluxes.Unidirectional monovalent ion fluxeswere calculated using these data and a cell model comprising the double Donnan system with the Na+/K+ pump, Cl−, K+, Na+ channels, the Na+–K+–2Cl−cotransporter (NKCC), the Na+–Cl− cotransporter (NC), and the equivalent Cl−/Cl− exchange.Apoptotic cell shrinkage was found to be caused, depending on conditions, either by an increase in the integral channel permeability of membrane for K+ or by suppression of the pump coupledwith a decrease in the integral channel permeability of membrane for Na+. The decrease in the channel permeability of membrane for Na+ plays a crucial role in cell dehydration in apoptosis accompanied by suppression of the pump. Supplemental Table S1 is given for easy calculating flux balance under specified conditions. PMID:21486767

  14. Electron cyclotron resonance ion source related development work for heavy-ion irradiation tests

    SciTech Connect

    Koivisto, H.; Suominen, P.; Tarvainen, O.; Virtanen, A.; Parkkinen, A.

    2006-03-15

    The European Space Agency (ESA) uses the facilities at the Accelerator Laboratory (Department of Physics, University of Jyvaeskylae: JYFL) for heavy-ion irradiation tests of electronic components. Electron cyclotron resonance ion source related development work has been carried out in order to meet the requirements set by the project. During the irradiation tests several beam changes are performed during the day. Therefore, the time needed for the beam changes has to be minimized. As a consequence, a beam cocktail having nearly the same m/q ratio is used. This makes it possible a quick tuning of the cyclotron to select the required ion for the irradiation. In addition to this requirement, very high charge states for the heavy elements are needed to reach a penetration depth of 100 {mu}m in silicon. In this article we present some procedures to optimize the ion source operation. We also present results of the first three-frequency heating tests. The main frequency of 14 GHz was fed from a klystron and both secondary frequencies were launched from a traveling-wave tube amplifier (TWTA). Two separate frequency generators were used simultaneously to provide different signals for the TWTA. During the test an improvement of about 20% was observed for {sup 84}Kr{sup 25+} and {sup 129}Xe{sup 30+} ion beams when the third frequency was applied.

  15. Failures related to surveillance testing of standby equipment. Volume 1. Emergency pumps. Final report

    SciTech Connect

    Mollerus, F.J.; Allen, R.D.; Gilcrest, J.D.

    1985-10-01

    Analysis of recorded failures of standby emergency pumps at nuclear power plants revealed no problems that had been caused by the periodic surveillance testing. Among the failures uncovered during the course of such testing, those occurring in the turbine drives of PWR auxiliary feedwater pumps were most frequent and most significant.

  16. Millwright Apprenticeship. Related Training Modules. 9.1-9.7 Pumps.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This packet, part of the instructional materials for the Oregon apprenticeship program for millwright training, contains seven modules covering pumps. The modules provide information on the following topics: types and classification of pumps, applications, construction, calculating heat and flow, operation, monitoring and troubleshooting, and…

  17. [N II ion spectra related to lightning discharges].

    PubMed

    Yuan, Ping; Liu, Xin-sheng; Zhang, Yi-jun

    2004-03-01

    Appling the atomic structure theory to the research field of physical processes of lightning discharges, parameters such as wavelengths, oscillator strengths, transition probabilities and excitation energy of upper levels have been calculated for the transitions of N II ions related to lightning discharges. Large-scale multi-configuration Dirac-Fock wavefunctions were applied to include the most important effects of relativity, correlation, and rearrangement of the electron density within the same (computational) model. More detailed identification than ever for lightning spectra has been done, and reference data have been provided for further theoretic and experimental works on the physical mechanism of lightning discharges. PMID:15759977

  18. Liquid metal electric pump

    DOEpatents

    Abbin, Joseph P.; Andraka, Charles E.; Lukens, Laurance L.; Moreno, James B.

    1992-01-01

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other.

  19. Update on vascular endothelial Ca2+ signalling: A tale of ion channels, pumps and transporters

    PubMed Central

    Moccia, Francesco; Berra-Romani, Roberto; Tanzi, Franco

    2012-01-01

    A monolayer of endothelial cells (ECs) lines the lumen of blood vessels and forms a multifunctional transducing organ that mediates a plethora of cardiovascular processes. The activation of ECs from as state of quiescence is, therefore, regarded among the early events leading to the onset and progression of potentially lethal diseases, such as hypertension, myocardial infarction, brain stroke, and tumor. Intracellular Ca2+ signals have long been know to play a central role in the complex network of signaling pathways regulating the endothelial functions. Notably, recent work has outlined how any change in the pattern of expression of endothelial channels, transporters and pumps involved in the modulation of intracellular Ca2+ levels may dramatically affect whole body homeostasis. Vascular ECs may react to both mechanical and chemical stimuli by generating a variety of intracellular Ca2+ signals, ranging from brief, localized Ca2+ pulses to prolonged Ca2+ oscillations engulfing the whole cytoplasm. The well-defined spatiotemporal profile of the subcellular Ca2+ signals elicited in ECs by specific extracellular inputs depends on the interaction between Ca2+ releasing channels, which are located both on the plasma membrane and in a number of intracellular organelles, and Ca2+ removing systems. The present article aims to summarize both the past and recent literature in the field to provide a clear-cut picture of our current knowledge on the molecular nature and the role played by the components of the Ca2+ machinery in vascular ECs under both physiological and pathological conditions. PMID:22905291

  20. Laser assisted works for pulsed ion sources: Plasma productions, diagnostics and related computations

    SciTech Connect

    Kasuya, K.; Watanabe, M.; Matsuno, S.; Kamiya, T.; Suzuki, T.; Hushiki, T.; Horioka, K.; Kawakita, Y.; Kuwahara, T.; Shioda, K.; Kanazawa, H.; Okuda, H. )

    1994-10-05

    Recent laser assisted works for pulsed ion beam drivers are described in this paper. The first one is a plasma production by a KrF laser light which may be applicable to an ion source. The second item is a transverse-mode-diagnostic of a discharge-pumped laser. The third one is a one-dimensional computation of the latter laser. [copyright][ital American] [ital Institute] [ital of] [ital Physics] 1994

  1. Relative Sensitivity Factors for Submicron Secondary Ion Mass Spectrometry with Gallium Primary Ion Beam

    NASA Astrophysics Data System (ADS)

    Satoh, Hitomi; Owari, Masanori; Nihei, Yoshimasa

    1993-08-01

    Relative sensitivity factors (RSFs) of thirteen elements in the oxide glass matrix in secondary ion mass spectrometry (SIMS) excited by a gallium focused ion beam were determined. RSFs were obtained by analyzing powder particles of standard glass samples. Whole volumes of each particles were analyzed in the “shave-off” mode in order to avoid topographic effects. Reproducibility of RSFs was good, and sample-to-sample scattering of values was relatively small. Dependence of RSFs on the first ionization potential was shown to be reasonable. In order to check the validity of the RSFs, coal fly ash particles were analyzed. The results were in reasonable agreement with the data obtained through the bulk chemical analysis.

  2. First crystal structures of Na+,K+-ATPase: new light on the oldest ion pump.

    PubMed

    Toyoshima, Chikashi; Kanai, Ryuta; Cornelius, Flemming

    2011-12-01

    Na(+),K(+)-adenosine triphosphatase (NKA) is the first P-type ion translocating adenosine triphosphatase (ATPase) ever identified, and the significance of this class of proteins was highlighted by the 1997 Nobel Prize in Chemistry awarded to Jens C. Skou for the discovery in 1957. More than half a century passed between the initial identification and the publication of a high-resolution crystal structure of NKA. Although the new crystal structures provided many surprises and insights, structural biology on this system remains challenging, as NKA is a very difficult protein to crystallize. Here we explain the reasons behind the challenges, introduce a mechanism that governs the function, and summarize current knowledge of NKA structure in comparison with another member of the P-type ATPase family, Ca(2+)-ATPase. PMID:22153495

  3. 16S community profiling identifies proton pump inhibitor related differences in gastric, lung and oropharyngeal microflora

    PubMed Central

    Rosen, Rachel; Hu, Lan; Amirault, Janine; Khatwa, Umakanth; Ward, Doyle V.; Onderdonk, Andrew

    2015-01-01

    Objectives To test the hypothesis that PPI use results in changes in gastric microflora which, through full column reflux, results in lung and oropharyngeal microflora changes. Study design We performed a prospective, cross sectional cohort study of 116 children (57 off and 59 on PPIs) undergoing simultaneous bronchoscopy and upper endoscopy for the evaluation of chronic cough. We performed 16S sequencing on gastric, bronchoalveolar lavage and oropharyngeal fluid. Fifty patients also underwent multichannel intraluminal impedance (pH-MII) testing. Results Streptococcus was more abundant in the gastric fluid of patients taking proton pump inhibitors (PPIs) and there was a significant correlation with PPI dose (mg/kg/day) and abundance of gastric Streptococcus (p=0.01). There was also a significant difference in the abundance of oropharyngeal Streptococcus in PPI treated patients. Eight unique bacterial genera were found in the gastric and lung fluid but not in the oropharyngeal suggesting exchange between the two sites and two of the seven (Lactococcus, Acinetobacter) were more abundant in patients with more full column reflux, suggesting direct aspiration. Principal component analysis revealed greater overlap between gastric and lung than oropharyngeal microflora. Conclusions PPI use was associated with differences in gastric, lung and oropharyngeal microflora. Although microflora exchange can occur between all three sites, gastric and lung microflora are more closely related and the mechanism of exchange between sites may be aspiration of full column reflux. PMID:25661411

  4. Lithium recovery by means of electrochemical ion pumping: a comparison between salt capturing and selective exchange.

    PubMed

    Trocoli, Rafael; Bidhendi, Ghoncheh Kasiri; La Mantia, Fabio

    2016-03-23

    Currently, lithium carbonate is mainly produced through evaporation of lithium-rich brines, which are located in South American countries such as Bolivia, Chile, and Argentina. The most commonly used process, the lime-soda evaporation, requires a long time and several purification steps, which produces a considerable amount of chemical waste. Recently, several alternative electrochemical methods, based on LiFePO4 as a selective lithium capturing electrode and differing for the reaction at the counter electrode, have been proposed. In this work a comparison between the salt capturing method, based on silver / silver chloride reaction, and the selective exchange method, based on ion intercalation reaction in a Prussian Blue derivative, is performed in terms of energy consumption. In particular, the energy consumption is divided in thermodynamic and kinetic contribution, and the theoretical calculations are compared with the experimental results. The experimental results show a good agreement with the theoretical calculation. The selective exchange method shows superior performances to the salt exchange in terms of purity and efficiency, however the energy consumption is higher. PMID:26910577

  5. A Non-Normal Incidence Pumped Ni-Like Zr XRL for Spectroscopy of Li-Like Heavy Ions at GSI/FAIR

    NASA Astrophysics Data System (ADS)

    Kühl, T.; Ursescu, D.; Bagnoud, V.; Javorkova, D.; Rosmej, O.; Zimmer, D.; Cassou, K.; Kazamias, S.; Klisnick, A.; Ros, D.; Zielbauer, B.; Janulewicz, K.; Nickles, P.; Pert, G.; Neumayer, P.; Dunn, J.

    One of the unique features of the PHELIX laser installation is the combination of the ultra-high intensity laser with the heavy-ion accelerator facility at GSI and its planned extension FAIR. Due to this combination, PHELIX will allow novel investigations in the fields of plasma physics, atomic physics, nuclear physics, and accelerator studies. An important issue within the scientific program is the generation of high quality x-ray laser beams for x-ray laser spectroscopy of highly-charged ions. The long range perspective is the study of nuclear properties of radioactive isotopes within the FAIR [1] project. A novel single mirror focusing scheme for the TCE XRL has been successfully implemented by the LIXAM/MBI/GSI collaboration under different pump geometries. Intense and stable laser operation with Ni-like Zr and Ni-like Ag was demonstrated at pump energies between 2 J and 5 J from the PHELIX pre-amplifier section.

  6. GSH, GSH-related enzymes and GS-X pump in relation to sensitivity of human tumor cell lines to chlorambucil and adriamycin.

    PubMed

    Zhang, K; Yang, E B; Wong, K P; Mack, P

    1999-05-01

    Glutathione (GSH) contents and activities of glutathione S-transferase (GST), glutathione reductase (GSH-RD), glutathione peroxidase (GSHpx) and glutathione conjugate export pump (GS-X pump) were determined in eight human tumor cell lines with different sensitivities to adriamycin and chlorambucil. Correlations between sensitivities of the human tumor cells to adriamycin and chlorambucil and the glutathione related factors were analyzed statistically. Sensitivities of the human tumor cells to chlorambucil were found to be correlated to all the glutathione related factors tested (r=0.68-0.88). IC50 values of adriamycin were also positively correlated to GSH contents and activities of GSH-RD, GSHpx and GS-X pump with r values ranging from 0.66 to 0.77 but not to GST activity (r=0.25). Chang liver cells with highest GSH content and highest activities of GST, GSH-RD, GSHpx and GS-X pump were most resistant to both adriamycin and chlorambucil. These data suggested that glutathione related factors may work as an overall detoxification system participating in the detoxification of anticancer drugs such as adriamycin and chlorambucil, and to be involved in cellular resistance to these drugs. PMID:10200335

  7. Relative ion expansion velocity in laser-produced plasmas

    NASA Technical Reports Server (NTRS)

    Goldsmith, S.; Moreno, J. C.; Griem, H. R.; Cohen, Leonard; Richardson, M. C.

    1988-01-01

    The spectra of highly ionized titanium, Ti XIII through Ti XXI, and C VI Lyman lines were excited in laser-produced plasmas. The plasma was produced by uniformly irradiating spherical glass microballoons coated with thin layers of titanium and parylene. The 24-beam Omega laser system produced short, 0.6 ns, and high-intensity, 4 x 10 to the 14th W/sq cm, laser pulses at a wavelength of 351 nm. The measured wavelength for the 2p-3s Ti XIII resonance lines had an average shift of + 0.023 A relative to the C VI and Ti XX spectral lines. No shift was found between the C VI, Ti XIX, and Ti XX lines. The shift is attributed to a Doppler effect, resulting from a difference of (2.6 + or - 0.2) x 10 to the 7th cm/s in the expansion velocities of Ti XIX and Ti XX ions compared to Ti XIII ions.

  8. Compartmentation of Malate in Relation to Ion Absorption in Beet

    PubMed Central

    Osmond, C. B.; Laties, George G.

    1969-01-01

    Malate in beet discs treated in different salt solutions was labeled by a 30 min pulse of 14CO2, and subsequent changes in specific activity were followed for several hr. In treatments which resulted in net acid synthesis in response to excess cation absorption, malate specific activity fell slowly after removal of 14CO2. In solutions where no net acid synthesis occurred, and from which cation and anion were absorbed equally, malate specific activity fell rapidly when 14CO2 was removed. The foregoing suggests that the net synthesis of organic acids in response to excess cation absorption leads to the removal of organic anions from cytoplasmic metabolic pools as counter-ions in salt transport to the vacuole. The latter hypothesis was further examined by direct measurement of the distribution of labeled malate between cytoplasm and vacuole using the wash-exchange method of compartmental analysis, previously described for inorganic ions. The method satisfied the criterion of exchange specificity necessary for this purpose. Much higher retention of label in the cytoplasm was observed in KCl solutions (no net synthesis) than in K2SO4 solutions (net synthesis) after 3 hr 14CO2 fixation and subsequent wash-exchange. The observed distribution is consistent with the rapid removal of organic anions to the vacuole during net acid synthesis. The significance of organic acid transport in relation to metabolism is discussed. PMID:16657035

  9. Relation of morphology of electrodeposited zinc to ion concentration profile

    NASA Technical Reports Server (NTRS)

    May, C. E.; Kautz, H. E.; Sabo, B. B.

    1977-01-01

    The morphology of electrodeposited zinc was studied with special attention to the ion concentration profile. The initial concentrations were 9M hydroxide ion and 1.21M zincate. Current densities were 6.4 to 64 mA/sq cm. Experiments were run with a horizontal cathode which was observed in situ using a microscope. The morphology of the zinc deposit was found to be a function of time as well as current density; roughly, the log of the transition time from mossy to large crystalline type deposit is inversely proportional to current density. Probe electrodes indicated that the electrolyte in the cathode chamber was mixed by self inducted convection. However, relatively large concentration gradients of the involved species existed across the boundary layer of the cathode. Analysis of the data suggests that the morphology converts from mossy to large crystalline when the hydroxide activity on the cathode surface exceeds about 12 M. Other experiments show that the pulse discharge technique had no effect on the morphology in the system where the bulk concentration of the electrolyte was kept homogeneous via self induced convection.

  10. Formation of Metal-Related Ions in Matrix-Assisted Laser Desorption Ionization.

    PubMed

    Lee, Chuping; Lu, I-Chung; Hsu, Hsu Chen; Lin, Hou-Yu; Liang, Sheng-Ping; Lee, Yuan-Tseh; Ni, Chi-Kung

    2016-09-01

    In a study of the metal-related ion generation mechanism in matrix-assisted laser desorption ionization (MALDI), crystals of matrix used in MALDI were grown from matrix- and salt-containing solutions. The intensities of metal ion and metal adducts of the matrix ion obtained from unwashed crystals were higher than those from crystals washed with deionized water, indicating that metal ions and metal adducts of the matrix ions are mainly generated from the surface of crystals. The contributions of preformed metal ions and metal adducts of the matrix ions inside the matrix crystals were minor. Metal adducts of the matrix and analyte ion intensities generated from a mixture of dried matrix, salt, and analyte powders were similar to or higher than those generated from the powder of dried droplet crystals, indicating that the contributions of the preformed metal adducts of the matrix and analyte ions were insignificant. Correlation between metal-related ion intensity fluctuation and protonated ion intensity fluctuation was observed, indicating that the generation mechanism of the metal-related ions is similar to that of the protonated ions. Because the thermally induced proton transfer model effectively describes the generation of the protonated ions, we suggest that metal-related ions are mainly generated from the salt dissolution in the matrix melted by the laser. Graphical Abstract ᅟ. PMID:27306427

  11. Formation of Metal-Related Ions in Matrix-Assisted Laser Desorption Ionization

    NASA Astrophysics Data System (ADS)

    Lee, Chuping; Lu, I.-Chung; Hsu, Hsu Chen; Lin, Hou-Yu; Liang, Sheng-Ping; Lee, Yuan-Tseh; Ni, Chi-Kung

    2016-06-01

    In a study of the metal-related ion generation mechanism in matrix-assisted laser desorption ionization (MALDI), crystals of matrix used in MALDI were grown from matrix- and salt-containing solutions. The intensities of metal ion and metal adducts of the matrix ion obtained from unwashed crystals were higher than those from crystals washed with deionized water, indicating that metal ions and metal adducts of the matrix ions are mainly generated from the surface of crystals. The contributions of preformed metal ions and metal adducts of the matrix ions inside the matrix crystals were minor. Metal adducts of the matrix and analyte ion intensities generated from a mixture of dried matrix, salt, and analyte powders were similar to or higher than those generated from the powder of dried droplet crystals, indicating that the contributions of the preformed metal adducts of the matrix and analyte ions were insignificant. Correlation between metal-related ion intensity fluctuation and protonated ion intensity fluctuation was observed, indicating that the generation mechanism of the metal-related ions is similar to that of the protonated ions. Because the thermally induced proton transfer model effectively describes the generation of the protonated ions, we suggest that metal-related ions are mainly generated from the salt dissolution in the matrix melted by the laser.

  12. Formation of Metal-Related Ions in Matrix-Assisted Laser Desorption Ionization

    NASA Astrophysics Data System (ADS)

    Lee, Chuping; Lu, I.-Chung; Hsu, Hsu Chen; Lin, Hou-Yu; Liang, Sheng-Ping; Lee, Yuan-Tseh; Ni, Chi-Kung

    2016-09-01

    In a study of the metal-related ion generation mechanism in matrix-assisted laser desorption ionization (MALDI), crystals of matrix used in MALDI were grown from matrix- and salt-containing solutions. The intensities of metal ion and metal adducts of the matrix ion obtained from unwashed crystals were higher than those from crystals washed with deionized water, indicating that metal ions and metal adducts of the matrix ions are mainly generated from the surface of crystals. The contributions of preformed metal ions and metal adducts of the matrix ions inside the matrix crystals were minor. Metal adducts of the matrix and analyte ion intensities generated from a mixture of dried matrix, salt, and analyte powders were similar to or higher than those generated from the powder of dried droplet crystals, indicating that the contributions of the preformed metal adducts of the matrix and analyte ions were insignificant. Correlation between metal-related ion intensity fluctuation and protonated ion intensity fluctuation was observed, indicating that the generation mechanism of the metal-related ions is similar to that of the protonated ions. Because the thermally induced proton transfer model effectively describes the generation of the protonated ions, we suggest that metal-related ions are mainly generated from the salt dissolution in the matrix melted by the laser.

  13. Differential Mobility Spectrometer with Spatial Ion Detector and Methods Related Thereto

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A. (Inventor); Kanik, Isik (Inventor); Duong, Vu A. (Inventor)

    2013-01-01

    Differential mobility spectrometer with spatial ion detector and methods related thereto are disclosed. The use of one or more spatial detector within differential mobility spectrometry can provide for the identification and separation of ions with similar mobility and mass.

  14. Operating experience feedback report: Reliability of safety-related steam turbine-driven standby pumps. Commercial power reactors, Volume 10

    SciTech Connect

    Boardman, J.R.

    1994-10-01

    This report documents a detailed analysis of failure initiators, causes and design features for steam turbine assemblies (turbines with their related components, such as governors and valves) which are used as drivers for standby pumps in the auxiliary feedwater systems of US commercial pressurized water reactor plants, and in the high pressure coolant injection and reactor core isolation cooling systems of US commercial boiling water reactor plants. These standby pumps provide a redundant source of water to remove reactor core heat as specified in individual plant safety analysis reports. The period of review for this report was from January 1974 through December 1990 for licensee event reports (LERS) and January 1985 through December 1990 for Nuclear Plant Reliability Data System (NPRDS) failure data. This study confirmed the continuing validity of conclusions of earlier studies by the US Nuclear Regulatory Commission and by the US nuclear industry that the most significant factors in failures of turbine-driven standby pumps have been the failures of the turbine-drivers and their controls. Inadequate maintenance and the use of inappropriate vendor technical information were identified as significant factors which caused recurring failures.

  15. Relative Contributions of Geothermal Pumping and Long-Term Earthquake Rate to Seismicity at California Geothermal Fields

    NASA Astrophysics Data System (ADS)

    Weiser, D. A.; Jackson, D. D.

    2015-12-01

    In a tectonically active area, a definitive discrimination between geothermally-induced and tectonic earthquakes is difficult to achieve. We focus our study on California's 11 major geothermal fields: Amedee, Brawley, Casa Diablo, Coso, East Mesa, The Geysers, Heber, Litchfield, Salton Sea, Susanville, and Wendel. The Geysers geothermal field is the world's largest geothermal energy producer. California's Department of Oil Gas and Geothermal Resources provides field-wide monthly injection and production volumes for each of these sites, which allows us to study the relationship between geothermal pumping activities and seismicity. Since many of the geothermal fields began injecting and producing before nearby seismic stations were installed, we use smoothed seismicity since 1932 from the ANSS catalog as a proxy for tectonic earthquake rate. We examine both geothermal pumping and long-term earthquake rate as factors that may control earthquake rate. Rather than focusing only on the largest earthquake, which is essentially a random occurrence in time, we examine how M≥4 earthquake rate density (probability per unit area, time, and magnitude) varies for each field. We estimate relative contributions to the observed earthquake rate of M≥4 from both a long-term earthquake rate (Kagan and Jackson, 2010) and pumping activity. For each geothermal field, respective earthquake catalogs (NCEDC and SCSN) are complete above at least M3 during the test period (which we tailor to each site). We test the hypothesis that the observed earthquake rate at a geothermal site during the test period is a linear combination of the long-term seismicity and pumping rates. We use a grid search to determine the confidence interval of the weighting parameters.

  16. Direct nuclear pumped laser

    DOEpatents

    Miley, George H.; Wells, William E.; DeYoung, Russell J.

    1978-01-01

    There is provided a direct nuclear pumped gas laser in which the lasing mechanism is collisional radiated recombination of ions. The gas laser active medium is a mixture of the gases, with one example being neon and nitrogen.

  17. Production and Characterization of Desmalonichrome Relative Binding Affinity for Uranyl Ions in Relation to Other Siderophores.

    PubMed

    Mo, Kai-For; Dai, Ziyu; Wunschel, David S

    2016-06-24

    Siderophores are iron (Fe)-binding secondary metabolites that have been investigated for their uranium-binding properties. Previous work has focused on characterizing hydroxamate types of siderophores, such as desferrioxamine B, for their uranyl (UO2)-binding affinity. Carboxylate forms of these metabolites hold potential to be more efficient chelators of UO2, yet they have not been widely studied. Desmalonichrome is a carboxylate siderophore that is not commercially available and so was obtained from the fungus Fusarium oxysporum cultivated under Fe-depleted conditions. The relative affinity for UO2 binding of desmalonichrome was investigated using a competitive analysis of binding affinities between UO2 acetate and different concentrations of Fe(III) chloride using electrospray ionization mass spectrometry. In addition to desmalonichrome, three other siderophores, including two hydroxamates (desferrioxamine B and desferrichrome) and one carboxylate (desferrichrome A), were studied to understand their relative affinities for the UO2(2+) ion at two pH values. The binding affinities of hydroxamate siderophores to UO2(2+) ions were observed to decrease with increasing Fe(III)Cl3 concentration at the lower pH. On the other hand, decreasing the pH has a smaller impact on the binding affinities between carboxylate siderophores and the UO2(2+) ion. Desmalonichrome in particular was shown to have the greatest relative affinity for UO2 at all pH and Fe(III) concentrations examined. These results suggest that acidic functional groups in the ligands are important for strong chelation with UO2 at lower pH. PMID:27232848

  18. Effects of the instability enhanced friction on relative ion densities in a two-ion species low-temperature plasma

    NASA Astrophysics Data System (ADS)

    Vukovic, Mirko

    2011-10-01

    The instability enhanced friction theory of Baalrud & Hegna (Phys. Plasmas 18, 023505 (2011)) predicts that for comparable ion densities the ions nearly reach a common velocity near the sheath edge in a low temperature plasma. The theory was experimentally confirmed by Yip, Hershkowitz, & Severn (Phys. Rev. Letters 104, 225003 (2010)). We will explore the effects of the theory on relative ion densities in a numerical simulation of an Ar/Xe plasma. Results for a 0D plasma model (Lieberman, Lichtenberg, Principles of Plasma Discharges and Materials Processing, 2005) will be presented.

  19. Ion acceleration from thin foil and extended plasma targets by slow electromagnetic wave and related ion-ion beam instability

    SciTech Connect

    Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Pegoraro, F.; Bulanov, S. S.; Geddes, C. G. R.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2012-10-15

    When ions are accelerated by the radiation pressure of a laser pulse, their velocity cannot exceed the pulse group velocity which can be considerably smaller than the speed of light in vacuum. This is demonstrated in two cases corresponding to a thin foil target irradiated by high intensity laser light and to the hole boring produced in an extended plasma by the laser pulse. It is found that the beams of accelerated ions are unstable against Buneman-like and Weibel-like instabilities which results in the broadening of the ion energy spectrum.

  20. Insulin pumps.

    PubMed

    Pickup, J

    2011-02-01

    The last year has seen a continued uptake of insulin pump therapy in most countries. The USA is still a leader in pump use, with probably some 40% of type 1 diabetic patients on continuous subcutaneous insulin infusion (CSII), but the large variation in usage within Europe remains, with relatively high use (> 15%) in, for example, Norway, Austria, Germany and Sweden and low use (< 5%) in Spain, the UK, Finland and Portugal. There is much speculation on the factors responsible for this variation, and the possibilities include physician attitudes to CSII and knowledge about its benefits and indications for its use (and inappropriate beliefs about dangers), the availability of reimbursement from insurance companies or funding from national health services, the availability of sufficient diabetes nurse educators and dietitians trained in pump procedures, and clear referral pathways for the pump candidate from general practitioner or general hospital to specialist pump centre. There are now several comprehensive national guidelines on CSII use (see ATTD Yearbook 2009) but more work needs to be done in unifying uptake and ensuring all those who can benefit do so. Technology developments recently include increasing use of pumps with continuous glucose monitoring (CGM) connectivity (see elsewhere in this volume) and the emergence of numerous manufacturers developing so-called 'patch pumps', often for the type 2 diabetes market. Interestingly, the evidence base for CSII in this group is not well established, and for this reason the selected papers on CSII in this section include several in this area. The use of CSII in diabetic pregnancy is a long-established practice, in spite of the lack of evidence that it is superior to multiple daily injections (MDI), and few randomised controlled trials have been done in recent years. Several papers in this field this year continue the debate about the usefulness of CSII in diabetic pregnancy and are reviewed here. It is pleasing

  1. A current-driven nanometer water pump.

    PubMed

    Su, Jiaye; Yang, Keda

    2016-03-01

    The design of a water pump, which has huge potential for applications in nanotechnology and daily life, is the dream of many scientists. In this paper, we successfully design a nanometer water pump by using molecular dynamics simulations. Ions of either sodium or chlorine in a narrow channel will generate electric current under electric fields, which then drives the water through a wider channel, similar to recent experimental setups. Considerable water flux is achieved within small field strengths that are accessible by experimentation. Of particular interest, is that for sodium the water flux increases almost linearly with field strengths; while for chlorine there exists a critical field strength, the water flux exhibits a plateau before the critical value and increases linearly after it. This result follows the behavior of ion velocity, which is related to friction behavior. We also estimate the power and energy consumption for such a pump, and compare it to the macroscopic mechanical pumps. A further comparison suggests that different ions will have different pumping abilities. This study not only provides new, significant results with possible connection to existing research, but has tremendous potential application in the design of nanofluidic devices. PMID:26822782

  2. A current-driven nanometer water pump

    NASA Astrophysics Data System (ADS)

    Su, Jiaye; Yang, Keda

    2016-03-01

    The design of a water pump, which has huge potential for applications in nanotechnology and daily life, is the dream of many scientists. In this paper, we successfully design a nanometer water pump by using molecular dynamics simulations. Ions of either sodium or chlorine in a narrow channel will generate electric current under electric fields, which then drives the water through a wider channel, similar to recent experimental setups. Considerable water flux is achieved within small field strengths that are accessible by experimentation. Of particular interest, is that for sodium the water flux increases almost linearly with field strengths; while for chlorine there exists a critical field strength, the water flux exhibits a plateau before the critical value and increases linearly after it. This result follows the behavior of ion velocity, which is related to friction behavior. We also estimate the power and energy consumption for such a pump, and compare it to the macroscopic mechanical pumps. A further comparison suggests that different ions will have different pumping abilities. This study not only provides new, significant results with possible connection to existing research, but has tremendous potential application in the design of nanofluidic devices.

  3. A review of contamination related hydraulic pump problems in Japanese injection molding, extrusion and rubber molding industries

    SciTech Connect

    Sasaki, Akira

    1997-12-31

    It is known that contamination of hydraulic oil is one of the major factors causing hydraulic pump problems. Many test reports on contaminant sensibility of hydraulic pumps have been published with new oil and standard dusts but the results of these tests could not guarantee to predict in-service performance. This report describes three cases investigated. The first investigation was done on hydraulic pumps used for injection molding machines application. The causes of pump problems were examined by analysis of maintenance records. The second investigation was performed to determine overhaul frequency of hydraulic pumps used for aluminum extruders. By introducing a new method of hydraulic oil management which reduces oil oxidation products, pump life was extended from 3,000 to 15,000 hours. The third investigation was done to determine the relationship between pump problems and contamination levels of hydraulic oils of 411 rubber molding machines for 20 months. The results showed that pump problems appeared at half the recommended oil lifetimes for these fluids. These studies showed that the cause of pump problems was clogging of suction strainers leading to pump cavitation. The clogged strainers were washed with several different solvents to identify the causes of suction strainer clogging. Clogging of suction strainers was attributable to sticky oxidation products of hydraulic oils. Electrostatic oil cleaners removed not only micron range solid particles bu also submicron size particles. Hydraulic pump problems have been substantially reduced by introducing this new method of contamination control.

  4. Ion and electron bombardment-related ion emission during the analysis of diamond using secondary ion mass spectrometry

    SciTech Connect

    Guzman de la Mata, Berta; Dowsett, Mark G.

    2007-02-01

    In recent years, the ability to grow single crystal layers of both doped and pure diamonds has improved, and devices for applications in high power electronics and microelectronics are being developed, most of them based on boron doped diamond. In this work, convoluted angular and energy spectra (so-called secondary ion mass spectrometry energy spectra) have been measured for {sup 11}B{sup +}, {sup 12}C{sup +}, {sup 16}O{sup +}, CO{sup +} and CO{sub 2}{sup +} ions ejected from a single crystal boron doped diamond layer under ultralow energy oxygen and electron beam bombardment. A low energy tail was observed in the {sup 12}C{sup +}, CO{sup +}, and CO{sub 2}{sup +} signals, corresponding to ions produced in the gas phase. Changing the bombardment conditions, we have identified interaction with the electron beam as the main ionization mechanism. In the case of {sup 12}C{sup +} it appears that the gas phase ions are produced by electron stimulated desorption and postionization of surface species created by the oxygen beam. We have detected high signals for CO{sup +} and CO{sub 2}{sup +} ionized in the gas phase, which supports a mechanism previously suggested to explain the anomalously fast diamond erosion under oxygen ion beam bombardment. We also observe that some species appearing in the mass spectrum are produced by electron stimulated desorption and this needs to be remembered when analyzing these on insulating diamond with charge compensation.

  5. Laser-Induced Fluorescence Measurements of Translational Temperature and Relative Cycle Number by use of Optically Pumped Trace-Sodium Vapor

    NASA Technical Reports Server (NTRS)

    Dobson, Chris C.

    1999-01-01

    Sodium fluorescence induced by a narrow-bandwidth tunable laser has been used to measure temperature, pressure, axial velocity, and species concentrations in wind tunnels, rocket engine exhausts, and the upper atmosphere. Optical pumping of the ground states of the sodium, however, can radically alter the shape of the laser-induced fluorescence excitation spectrum, complicating such measurements. Here a straightforward extension of rate equations originally proposed to account for the features of the pumped spectrum is used to make temperature measurements from spectra taken in pumped vapor. Also determined from the spectrum is the relative fluorescence cycle number, which has application to measurement of diffusion rate and transverse flow velocity, The accuracy of both the temperature and the cycle-number measurements is comparable with that of temperature measurements made in the absence of pumping.

  6. Laser-Induced Fluorescence Measurements of Translational Temperature and Relative Cycle Number by use of Optically Pumped Trace-Sodium Vapor

    NASA Technical Reports Server (NTRS)

    Dobson, Chris C.

    1998-01-01

    Sodium fluorescence induced by a narrow bandwidth tunable laser has been used to measure temperature, pressure, axial velocity and species concentrations in wind tunnels, rocket engine exhausts and the upper atmosphere. Optical pumping of the ground states of the sodium, however, can radically alter the shape of the laser induced fluorescence excitation spectrum, complicating such measurements. Here a straightforward extension of rate equations originally proposed to account for the features of the pumped spectrum is to make temperature measurements from spectra taken in pumped vapor. Also determined from the spectrum is the relative fluorescence cycle number, which has application to measurement of diffusion rate and transverse flow velocity. The accuracy of both the temperature and cycle-number measurements is comparable with that of temperature measurements made in the absence of pumping.

  7. Laser-induced fluorescence measurements of translational temperature and relative cycle number by use of optically pumped trace-sodium vapor.

    PubMed

    Dobson, C C

    1999-06-20

    Sodium fluorescence induced by a narrow-bandwidth tunable laser has been used to measure temperature, pressure, axial velocity, and species concentrations in wind tunnels, rocket engine exhausts, and the upper atmosphere. Optical pumping of the ground states of the sodium, however, can radically alter the shape of the laser-induced fluorescence excitation spectrum, complicating such measurements. Here a straightforward extension of rate equations originally proposed to account for the features of the pumped spectrum is used to make temperature measurements from spectra taken in pumped vapor. Also determined from the spectrum is the relative fluorescence cycle number, which has application to measurement of diffusion rate and transverse flow velocity. The accuracy of both the temperature and the cycle-number measurements is comparable with that of temperature measurements made in the absence of pumping. PMID:18320000

  8. Alternative backing up pump for turbomolecular pumps

    DOEpatents

    Myneni, Ganapati Rao

    2003-04-22

    As an alternative to the use of a mechanical backing pump in the application of wide range turbomolecular pumps in ultra-high and extra high vacuum applications, palladium oxide is used to convert hydrogen present in the evacuation stream and related volumes to water with the water then being cryo-pumped to a low pressure of below about 1.e.sup.-3 Torr at 150.degree. K. Cryo-pumping is achieved using a low cost Kleemenco cycle cryocooler, a somewhat more expensive thermoelectric cooler, a Venturi cooler or a similar device to achieve the required minimization of hydrogen partial pressure.

  9. Atom probe field ion microscopy and related topics: A bibliography 1989

    SciTech Connect

    Miller, M.K.; Hawkins, A.R.; Russell, K.F.

    1990-12-01

    This bibliography includes references related to the following topics: atom probe field ion microscopy (APFIM), field ion spectroscopy (FIM), field emission microscopy (FEM), liquid metal ion sources (LMIS), scanning tunneling microscopy (STM), and theory. Technique-orientated studies and applications are included. This bibliography covers the period 1989. The references contained in this document were compiled from a variety of sources including computer searches and personal lists of publications.

  10. Fluid mechanic phenomena relating to flow control in conduits and pumps

    NASA Astrophysics Data System (ADS)

    Bayazit, Yilmaz

    first time, thereby contradicting the prior limitation to inertial laminar flow. The Taguchi method was applied to pinpoint the most important among the independent variables with respect to the dimensionless pressure drop, highlighting the importance of the porosity. Control of the liquid flow produced by a pump was analyzed as a problem of fluid-structural interaction.

  11. Electron attachment and ion mobility in hydrocarbons and related systems

    SciTech Connect

    Bakale, G.

    1988-01-01

    During the last two decades, a firm base for the emerging field of liquid state electronics (LSE) has developed through studies of the transport and reaction properties of excess electrons in a variety of liquid-phase systems. Pulse-conductivity techniques were used in many of these studies to measure the mobilities of electrons and ions in pure liquids as well as the rate constants of electron attachment to a wide variety of electron-accepting solutes. Results obtained through such studies have interdisciplinary implications that are described in the discussion that follows which includes examples of the contributions of LSE to physics, chemistry and biology. 42 refs.

  12. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy,and Related Fields

    SciTech Connect

    Grisham, L. R.; Kwan, J. W.

    2008-08-01

    Some years ago it was suggested that halogen negative ions could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons - can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion - ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.

  13. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields

    SciTech Connect

    Grisham, L.R.; Kwan, J.W.

    2008-08-01

    Some years ago it was suggested that halogen negative ions [1]could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons -- can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion-ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.

  14. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields

    SciTech Connect

    L. Grisham and J.W. Kwan

    2008-08-12

    Some years ago it was suggested that halogen negative ions [1] could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons -- can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion-ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.

  15. Mechanical design and fabrication of the transverse field focusing (TFF) matching/pumping section for negative ion based neutral beam systems

    SciTech Connect

    Purgalis, P.; Anderson, O.A.; Koehler, G.W.; Maruyama, Y.; Matuk, C.A.; Owren, H.M.; Paterson, J.A.; Wandesforde, A.H.

    1985-11-01

    A negative ion based neutral beam injection system is under development as proof-of-principle demonstration of a radiation-hardened beamline. The beamline consists of a source, a pre-accelerator, a matching/pumping (M/P) section, and an accelerator. The function of the M/P section is to provide vacuum pumping, to remove electrons, to provide beam edge confinement, to compress the beam thickness to match the requirements of the accelerator, and to transport the 1A, 80 keV, 25 cm high H ribbon beam to the accelerator entrance. Details of the design and fabrication of the M/P section are presented. The M/P section has eight separate, high voltage electrodes forming an ''S'' shaped beam path. Electrons are removed by the electron trap in this path. Beam edge confinement and thickness compression is accomplished by the curvature and face contour of the electrodes. Design heat loads are described. Electrode fabrication is discussed, and the cryopumps used are described. (LEW)

  16. Observations of solar wind stream with high abundance of heavy ions and relation with coronal conditions

    NASA Astrophysics Data System (ADS)

    Zastenker, G. N.; Yermolaev, Yu. I.

    1981-11-01

    Long intervals, during which heavy ions were detected in the high energy tail of the energy spectra of solar wind ions, were recorded by the plasma spectrometer SCS onboard the Prognoz-7 satellite. In particular, such a region with unusual features - low velocity, high density, low temperature of protons and, especially, low temperature of alpha-particles - was observed during 10-13 December 1978. The time dependence of these parameters makes it possible to recognize this event as 'noncompressive density enhancement'. In this region heavy ions such as O(6+), O(7+), Si(7+), Si(8+), Si(9+) and a group of iron from Fe(6+) to Fe(13+) were identified by the electrostatic analyzer. The abundance of these ions relative to protons was about ten times higher than had previously been observed. The coronal temperature, estimated from the ratios of the ion fluxes with different ionization states, is higher than that estimated earlier for the oxygen ions.

  17. Distributions of Li+, Na+ K+, Rb+, and Cs+ tracer ions in erythrocytes at 38 degrees C in relation to entry rates of these ions into cells at 0 degree C.

    PubMed

    Salminen, S; Ekman, A; Rastas, J

    2000-01-01

    Forces that are able to transport Na+ and K+ into two compartments were investigated. A modified Nernst-Planck equation for coupled flows of electric current, water, and ions was integrated. The result shows that if alkali ions in the ion channel of the cell membrane are separated by their electric-current-induced inward flows against an electro-osmotic outward flow of water, the logarithms of the stationary cell/medium distributions of these ions should be proportional to the inverse of their diffusion mobilities. The relationship was tested in human erythrocytes. From inward and outward movements of tracer alkali ions, calculations were made to obtain their stationary distributions at infinite time. The cell/medium distributions determined in this way at 38 degrees C are Li+ = 0.59, 22Na+ = 0.044, 42K+ = 10.0, 86Rb+ = 11.9, and 137Cs+ = 3.07. The entry rates of ions into the cell at 0 degrees C are understood to represent their diffusion mobilities in the pump channel. The entry rates are Li+ = 1.44, 2Na+ = 1, 42K+ = 2.22, 86Rb+ = 2.39, and 137Cs+ = 1.72 relative to that of 22Na+. There is an expected negative correlation between the logarithms of the stationary cell/ medium distributions at 38 degrees C and the inverse of the entry rates into the cell at 0 degrees C for the five ions. It is suggested that the proposed physical forces cause the separation of alkali ions in the channel of Na,K-ATPase. PMID:11156287

  18. In vitro detection of cardiotoxins or neurotoxins affecting ion channels or pumps using beating cardiomyocytes as alternative for animal testing.

    PubMed

    Nicolas, Jonathan; Hendriksen, Peter J M; de Haan, Laura H J; Koning, Rosella; Rietjens, Ivonne M C M; Bovee, Toine F H

    2015-03-01

    The present study investigated if and to what extent murine stem cell-derived beating cardiomyocytes within embryoid bodies can be used as a broad screening in vitro assay for neurotoxicity testing, replacing for example in vivo tests for marine neurotoxins. Effect of nine model compounds, acting on either the Na(+), K(+), or Ca(2+) channels or the Na(+)/K(+) ATP-ase pump, on the beating was assessed. Diphenhydramine, veratridine, isradipine, verapamil and ouabain induced specific beating arrests that were reversible and none of the concentrations tested induced cytotoxicity. Three K(+) channel blockers, amiodarone, clofilium and sematilide, and the Na(+)/K(+) ATPase pump inhibitor digoxin had no specific effect on the beating. In addition, two marine neurotoxins i.e. saxitoxin and tetrodotoxin elicited specific beating arrests in cardiomyocytes. Comparison of the results obtained with cardiomyocytes to those obtained with the neuroblastoma neuro-2a assay revealed that the cardiomyocytes were generally somewhat more sensitive for the model compounds affecting Na(+) and Ca(2+) channels, but less sensitive for the compounds affecting K(+) channels. The stem cell-derived cardiomyocytes were not as sensitive as the neuroblastoma neuro-2a assay for saxitoxin and tetrodotoxin. It is concluded that the murine stem cell-derived beating cardiomyocytes provide a sensitive model for detection of specific neurotoxins and that the neuroblastoma neuro-2a assay may be a more promising cell-based assay for the screening of marine biotoxins. PMID:25479353

  19. The SmeYZ efflux pump of Stenotrophomonas maltophilia contributes to drug resistance, virulence-related characteristics, and virulence in mice.

    PubMed

    Lin, Yi-Tsung; Huang, Yi-Wei; Chen, Shiang-Jiuun; Chang, Chia-Wei; Yang, Tsuey-Ching

    2015-07-01

    The resistance-nodulation-division (RND)-type efflux pump is one of the causes of the multidrug resistance of Stenotrophomonas maltophilia. The roles of the RND-type efflux pump in physiological functions and virulence, in addition to antibiotic extrusion, have attracted much attention. In this study, the contributions of the constitutively expressed SmeYZ efflux pump to drug resistance, virulence-related characteristics, and virulence were evaluated. S. maltophilia KJ is a clinical isolate of multidrug resistance. The smeYZ isogenic deletion mutant, KJΔYZ, was constructed by a gene replacement strategy. The antimicrobial susceptibility, virulence-related physiological characteristics, susceptibility to human serum and neutrophils, and in vivo virulence between KJ and KJΔYZ were comparatively assessed. The SmeYZ efflux pump contributed resistance to aminoglycosides and trimethoprim-sulfamethoxazole. Inactivation of smeYZ resulted in attenuation of oxidative stress susceptibility, swimming, flagella formation, biofilm formation, and secreted protease activity. Furthermore, loss of SmeYZ increased susceptibility to human serum and neutrophils and decreased in vivo virulence in a murine model. These findings suggest the possibility of attenuation of the resistance and virulence of S. maltophilia with inhibitors of the SmeYZ efflux pump. PMID:25918140

  20. PUMP CONSTRUCTION

    DOEpatents

    Strickland, G.; Horn, F.L.; White, H.T.

    1960-09-27

    A pump which utilizes the fluid being pumped through it as its lubricating fluid is described. This is achieved by means of an improved bearing construction in a pump of the enclosed or canned rotor type. At the outlet end of the pump, adjacent to an impeller mechanism, there is a bypass which conveys some of the pumped fluid to a chamber at the inlet end of the pump. After this chamber becomes full, the pumped fluid passes through fixed orifices in the top of the chamber and exerts a thrust on the inlet end of the pump rotor. Lubrication of the rotor shaft is accomplished by passing the pumped fluid through a bypass at the outlet end of the rotor shaft. This bypass conveys Pumped fluid to a cooling means and then to grooves on the surface of the rotor shait, thus lubricating the shaft.

  1. A Study of Ion Velocities Observed by TIDE and How It Relates to Magnetospheric Circulation

    NASA Technical Reports Server (NTRS)

    Elliott, H. A.; Comfort, R. H.; Craven, P. D.; Chandler, M. O.; Moore, T. E.

    1998-01-01

    The high-latitude ion velocities measured by the Thermal Ion Dynamics Experiment (TIDE) instrument on the Polar spacecraft will be examined in relation to magnetospheric circulation. TIDE derives ion velocities from moments of measured distribution functions. Hydrogen and oxygen ions are E X B drifting in the polar cap and cleft regions with a speed of about 5-20 km/s at apogee (approximately 9 Re) and a speed of 1-2 km/s at perigee (approximately 1.8 Re). At perigee 0+ is typically seen flowing down in the polar cap and outflowing from the cleft. At the transition from downflowing to upflowing there is also seen a reversal in the ion convection. The convection at perigee is consistent with standard ionospheric convection models for given Interplanetary Magnetic Field (IMF) conditions. Convection at high altitude (approximately 8.9 Re) polar regions has not been studied very much since there have not been many satellites in this region. Unlike previous missions to this region TIDE in conjunction the Plasma Source Instrument (PSI) can measure ions with as low an energy as several electron Volts. The outflowing ions observed by TIDE at apogee are believed to be important to the overall circulation of the magnetosphere. The convection of these outflowing ions at apogee will be related to the IMF. This study tries to answer the question of how the IMF response of the convection influences the overall circulation of the magnetosphere.

  2. Industrial Pumps

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A flow inducer is a device that increases the pump intake capacity of a Worthington Centrifugal pump. It lifts the suction pressure sufficiently for the rotating main impeller of the centrifugal pump to operate efficiently at higher fluid intake levels. The concept derives from 1960's NASA technology which was advanced by Worthington Pump Division. The pumps are used to recirculate wood molasses, a highly viscous substance.

  3. Relative ion permeability of normal and cystic fibrosis nasal epithelium.

    PubMed Central

    Knowles, M; Gatzy, J; Boucher, R

    1983-01-01

    The raised transepithelial electric potential difference (PD) across respiratory epithelia in cystic fibrosis (CF) has suggested an abnormality in ion permeation. We characterized this abnormality further by measuring in the nasal epithelia of CF and normal subjects the concentration-PD relationship for amiloride, an inhibitor of cell Na+ permeability, and PD responses to superfusion with solutions of different composition. Amiloride was more efficacious in the CF subjects but the ED50 was not different from that of normals (approximately 2 X 10(-6) M). Na+ replacement by choline induced effects similar to those of amiloride, i.e. a greater depolarization in CF subjects. A 10-fold increase in the K+ concentration of the perfusate induced a small (less than 10 mV) depolarization in both subject populations. When Cl- in the perfusate was replaced by gluconate or SO2-(4) the nasal PD of normal subjects hyperpolarized (lumen became more negative) by approximately 35 mV. A significantly smaller response (less than 17 mV) was induced in CF homozygotes but not in heterozygotes (38 mV). The smaller response of CF subjects appears to reflect an absolute decrease in luminal surface Cl- permeability because pretreatment with amiloride did not increase the response to Cl- free solution (7 mV). Accordingly, three abnormalities (decreased Cl- permeability, raised PD, greater amiloride efficacy) have been identified in CF respiratory epithelia. Whereas "excessive" active Na+ transport can account for these abnormalities and the dessication of airway surface liquid, it is possible that a lower lumenal cell membrane Cl- permeability and inhibition of a potential path of Cl- secretion can also explain the observations. PMID:6853720

  4. Design of Portable Mass Spectrometers with Handheld Probes: Aspects of the Sampling and Miniature Pumping Systems

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Hsun; Chen, Tsung-Chi; Zhou, Xiaoyu; Kline-Schoder, Robert; Sorensen, Paul; Cooks, R. Graham; Ouyang, Zheng

    2015-02-01

    Miniature mass spectrometry analytical systems of backpack configuration fitted with sampling probes could potentially be of significant interest for in-field, real-time chemical analysis. In this study, various configurations were explored in which a long narrow tube was used to connect the turbo and backing pumps used to create and maintain vacuum. Also, for the first time we introduced two new types of pumps for miniature mass spectrometers, the Creare 130 g drag pump and Creare 350 g scroll backing pump. These pumps, along with another Creare 550 turbo pump and the commercially available Pfeiffer HiPace 10 turbo and KnF diaphragm backing pumps, were tested with the backpack configurations. The system performance, especially the scan time, was characterized when used with a discontinuous atmospheric pressure interface (DAPI) for ion introduction. The pumping performance in the pressure region above 1 mtorr is critical for DAPI operation. The 550 g turbo pump was shown to have a relatively higher pumping speed above 1 mtorr and gave a scan time of 300 ms, almost half the value obtained with the larger, heavier HiPace 10 often used with miniature mass spectrometers. The 350 g scroll pump was also found to be an improvement over the diaphragm pumps generally used as backing pumps. With a coaxial low temperature plasma ion source, direct analysis of low volatility compounds glass slides was demonstrated, including 1 ng DNP (2,4-Dinitrophenol) and 10 ng TNT (2,4,6-trinitrotoluene) with Creare 550 g turbo pump as well as 10 ng cocaine and 20 ng DNP with Creare 130 g drag pump.

  5. Design of portable mass spectrometers with handheld probes: aspects of the sampling and miniature pumping systems.

    PubMed

    Chen, Chien-Hsun; Chen, Tsung-Chi; Zhou, Xiaoyu; Kline-Schoder, Robert; Sorensen, Paul; Cooks, R Graham; Ouyang, Zheng

    2015-02-01

    Miniature mass spectrometry analytical systems of backpack configuration fitted with sampling probes could potentially be of significant interest for in-field, real-time chemical analysis. In this study, various configurations were explored in which a long narrow tube was used to connect the turbo and backing pumps used to create and maintain vacuum. Also, for the first time we introduced two new types of pumps for miniature mass spectrometers, the Creare 130 g drag pump and Creare 350 g scroll backing pump. These pumps, along with another Creare 550 turbo pump and the commercially available Pfeiffer HiPace 10 turbo and KnF diaphragm backing pumps, were tested with the backpack configurations. The system performance, especially the scan time, was characterized when used with a discontinuous atmospheric pressure interface (DAPI) for ion introduction. The pumping performance in the pressure region above 1 mtorr is critical for DAPI operation. The 550 g turbo pump was shown to have a relatively higher pumping speed above 1 mtorr and gave a scan time of 300 ms, almost half the value obtained with the larger, heavier HiPace 10 often used with miniature mass spectrometers. The 350 g scroll pump was also found to be an improvement over the diaphragm pumps generally used as backing pumps. With a coaxial low temperature plasma ion source, direct analysis of low volatility compounds glass slides was demonstrated, including 1 ng DNP (2,4-Dinitrophenol) and 10 ng TNT (2,4,6-trinitrotoluene) with Creare 550 g turbo pump as well as 10 ng cocaine and 20 ng DNP with Creare 130 g drag pump. PMID:25404157

  6. Design of Portable Mass Spectrometers with Handheld Probes: Aspects of the Sampling and Miniature Pumping Systems

    PubMed Central

    Chen, Chien-Hsun; Chen, Tsung-Chi; Zhou, Xiaoyu; Kline-Schoder, Robert; Sorensen, Paul; Cooks, R. Graham; Ouyang, Zheng

    2014-01-01

    Miniature mass spectrometry analytical systems of backpack configuration fitted with sampling probes could potentially be of significant interest for in-field, real-time chemical analysis. In this study, various configurations were explored in which a long narrow tube was used to connect the turbo and backing pumps used to create and maintain vacuum. Also, for the first time we introduced two new types of pumps for miniature mass spectrometers, the Creare 130g drag pump and Creare 350g scroll backing pump. These pumps, along with another Creare 550 turbo pump and the commercially available Pfeiffer HiPace 10 turbo and KnF diaphragm backing pumps, were tested with the backpack configurations. The system performance, especially the scan time, was characterized when used with a discontinuous atmospheric pressure interface (DAPI) for ion introduction. The pumping performance in the pressure region above 1 mtorr is critical for DAPI operation. The 550g turbo pump was shown to have a relatively higher pumping speed above 1 mtorr and gave a scan time of 300 ms, almost half the value obtained with the larger, heavier HiPace 10 often used with miniature mass spectrometers. The 350 g scroll pump was also found to be an improvement over the diaphragm pumps generally used as backing pumps. With a coaxial low temperature plasma ion source, direct analysis of low volatility compounds glass slides was demonstrated, including 1 ng DNP (2,4-Dinitrophenol) and 10ng TNT (2,4,6-trinitrotoluene) with Creare 550g turbo pump as well as 10 ng cocaine and 20 ng DNP with Creare 130g drag pump. PMID:25404157

  7. Detailed analysis of hollow ions spectra from dense matter pumped by X-ray emission of relativistic laser plasma

    NASA Astrophysics Data System (ADS)

    Hansen, S. B.; Colgan, J.; Faenov, A. Ya.; Abdallah, J.; Pikuz, S. A.; Skobelev, I. Yu.; Wagenaars, E.; Booth, N.; Culfa, O.; Dance, R. J.; Tallents, G. J.; Evans, R. G.; Gray, R. J.; Kaempfer, T.; Lancaster, K. L.; McKenna, P.; Rossall, A. K.; Schulze, K. S.; Uschmann, I.; Zhidkov, A. G.; Woolsey, N. C.

    2014-03-01

    X-ray emission from hollow ions offers new diagnostic opportunities for dense, strongly coupled plasma. We present extended modeling of the x-ray emission spectrum reported by Colgan et al. [Phys. Rev. Lett. 110, 125001 (2013)] based on two collisional-radiative codes: the hybrid-structure Spectroscopic Collisional-Radiative Atomic Model (SCRAM) and the mixed-unresolved transition arrays (MUTA) ATOMIC model. We show that both accuracy and completeness in the modeled energy level structure are critical for reliable diagnostics, investigate how emission changes with different treatments of ionization potential depression, and discuss two approaches to handling the extensive structure required for hollow-ion models with many multiply excited configurations.

  8. Detailed analysis of hollow ions spectra from dense matter pumped by X-ray emission of relativistic laser plasma

    SciTech Connect

    Hansen, S. B. E-mail: anatolyf@hotmail.com; Colgan, J.; Abdallah, J.; Faenov, A. Ya. E-mail: anatolyf@hotmail.com; Pikuz, S. A.; Skobelev, I. Yu.; Wagenaars, E.; Culfa, O.; Dance, R. J.; Tallents, G. J.; Rossall, A. K.; Woolsey, N. C.; Booth, N.; Lancaster, K. L.; Evans, R. G.; Gray, R. J.; McKenna, P.; Kaempfer, T.; Schulze, K. S.; Uschmann, I.; and others

    2014-03-15

    X-ray emission from hollow ions offers new diagnostic opportunities for dense, strongly coupled plasma. We present extended modeling of the x-ray emission spectrum reported by Colgan et al. [Phys. Rev. Lett. 110, 125001 (2013)] based on two collisional-radiative codes: the hybrid-structure Spectroscopic Collisional-Radiative Atomic Model (SCRAM) and the mixed-unresolved transition arrays (MUTA) ATOMIC model. We show that both accuracy and completeness in the modeled energy level structure are critical for reliable diagnostics, investigate how emission changes with different treatments of ionization potential depression, and discuss two approaches to handling the extensive structure required for hollow-ion models with many multiply excited configurations.

  9. ATP1A2 Mutations in Migraine: Seeing through the Facets of an Ion Pump onto the Neurobiology of Disease.

    PubMed

    Friedrich, Thomas; Tavraz, Neslihan N; Junghans, Cornelia

    2016-01-01

    Mutations in four genes have been identified in familial hemiplegic migraine (FHM), from which CACNA1A (FHM type 1) and SCN1A (FHM type 3) code for neuronal voltage-gated calcium or sodium channels, respectively, while ATP1A2 (FHM type 2) encodes the α2 isoform of the Na(+),K(+)-ATPase's catalytic subunit, thus classifying FHM primarily as an ion channel/ion transporter pathology. FHM type 4 is attributed to mutations in the PRRT2 gene, which encodes a proline-rich transmembrane protein of as yet unknown function. The Na(+),K(+)-ATPase maintains the physiological gradients for Na(+) and K(+) ions and is, therefore, critical for the activity of ion channels and transporters involved neuronal excitability, neurotransmitter uptake or Ca(2+) signaling. Strikingly diverse functional abnormalities have been identified for disease-linked ATP1A2 mutations which frequently lead to changes in the enzyme's voltage-dependent properties, kinetics, or apparent cation affinities, but some mutations are truly deleterious for enzyme function and thus cause full haploinsufficiency. Here, we summarize structural and functional data about the Na(+),K(+)-ATPase available to date and an overview is provided about the particular properties of the α2 isoform that explain its physiological relevance in electrically excitable tissues. In addition, current concepts about the neurobiology of migraine, the correlations between primary brain dysfunction and mechanisms of headache pain generation are described, together with insights gained recently from modeling approaches in computational neuroscience. Then, a survey is given about ATP1A2 mutations implicated in migraine cases as documented in the literature with focus on mutations that were described to completely destroy enzyme function, or lead to misfolded or mistargeted protein in particular model cell lines. We also discuss whether or not there are correlations between these most severe mutational effects and clinical phenotypes

  10. ATP1A2 Mutations in Migraine: Seeing through the Facets of an Ion Pump onto the Neurobiology of Disease

    PubMed Central

    Friedrich, Thomas; Tavraz, Neslihan N.; Junghans, Cornelia

    2016-01-01

    Mutations in four genes have been identified in familial hemiplegic migraine (FHM), from which CACNA1A (FHM type 1) and SCN1A (FHM type 3) code for neuronal voltage-gated calcium or sodium channels, respectively, while ATP1A2 (FHM type 2) encodes the α2 isoform of the Na+,K+-ATPase's catalytic subunit, thus classifying FHM primarily as an ion channel/ion transporter pathology. FHM type 4 is attributed to mutations in the PRRT2 gene, which encodes a proline-rich transmembrane protein of as yet unknown function. The Na+,K+-ATPase maintains the physiological gradients for Na+ and K+ ions and is, therefore, critical for the activity of ion channels and transporters involved neuronal excitability, neurotransmitter uptake or Ca2+ signaling. Strikingly diverse functional abnormalities have been identified for disease-linked ATP1A2 mutations which frequently lead to changes in the enzyme's voltage-dependent properties, kinetics, or apparent cation affinities, but some mutations are truly deleterious for enzyme function and thus cause full haploinsufficiency. Here, we summarize structural and functional data about the Na+,K+-ATPase available to date and an overview is provided about the particular properties of the α2 isoform that explain its physiological relevance in electrically excitable tissues. In addition, current concepts about the neurobiology of migraine, the correlations between primary brain dysfunction and mechanisms of headache pain generation are described, together with insights gained recently from modeling approaches in computational neuroscience. Then, a survey is given about ATP1A2 mutations implicated in migraine cases as documented in the literature with focus on mutations that were described to completely destroy enzyme function, or lead to misfolded or mistargeted protein in particular model cell lines. We also discuss whether or not there are correlations between these most severe mutational effects and clinical phenotypes. Finally, perspectives

  11. Holmium laser pumped with a neodymium laser

    SciTech Connect

    Bowman, S.R.; Rabinovich, W.S.

    1991-07-30

    This patent describes a solid-state laser device. It comprises a holmium laser having a first host material doped with an amount of holmium ions sufficient to produce an output laser emission at about 3 {mu}m when the holmium ions in the holmium laser are pumped by a pump beam at a wavelength of about 1.1 {mu}m; and neodymium laser pump source means for supplying a pump beam to pump the holmium ions in the holmium laser at a wavelength of about 1.1 {mu}m.

  12. Role of proton pump of mitochondria-rich cells for active transport of chloride ions in toad skin epithelium.

    PubMed Central

    Larsen, E H; Willumsen, N J; Christoffersen, B C

    1992-01-01

    1. Active Cl- currents were studied in short-circuited toad skin epithelium in which the passive voltage-activated Cl- current is zero. Under visual control double-barrelled microelectrodes were used for impaling principal cells from the serosal side, or for measuring the pH profile in the solution bathing the apical border. 2. The net inward (active) 36Cl- flux of 27 +/- 8 pmol s-1 cm-2 (16) (mean +/- S.E.M (number of observation)) was abolished by 2 mM-CN- (6.3 +/- 3.5 pmol s-1 cm-2 (8)). The active flux was maintained in the absence of active Na+ transport when the latter was eliminated by either 100 microM-mucosal amiloride, replacement of mucosal Na+ with K+, or by 3 mM-serosal ouabain. 3. In Ringer solution buffered by 24 mM-HCO3- -5% CO2 mucosal amiloride reversed the short circuit current (ISC). The outward ISC was maintained when gluconate replaced mucosal Cl-, and it was reversibly reduced in CO2-free 5 mM-Tris-buffered Ringer solution (pH = 7.40) or by the proton pump inhibitor oligomycin. These observations indicate that the source of the outward ISC is an apical proton pump. 4. Amiloride caused principal cells to hyperpolarize from a basolateral membrane potential, Vb, of -73 +/- 3 (22) to -93 +/- 1 mV (26), and superfusion with CO2-free Tris-buffered Ringer solution induced a further hyperpolarization (Vb = -101 +/- 1 mV (26)) which could be blocked by Ba2+. The CO2-sensitive current changes were null at Vb = EK (potassium reversal potential, -106 +/- 2 mV (55)) implying that they are carried by K+ channels in the basolateral membrane. Such a response cannot account for the inhibition of the outward ISC which by default seems to be located to mitochondria-rich (MR) cells. 5. In the absence of mucosal Cl- a pH gradient was built up above MR cells with pH = 7.02 +/- 0.04 (42) and pH increasing to 7.37 +/- 0.02 (10) above principal cells (pH = 7.40 in bulk solution buffered by 0.1 mM-Tris). This observation localizes a proton pump to the apical membrane

  13. Relative dissociation fractions of CF4 under 15–30 keV H‑, C‑ and O‑ negative ion impact

    NASA Astrophysics Data System (ADS)

    Wang, Dedong; Fan, Yikui; Zhao, Zilong; Min, Guangxin; Zhang, Xuemei

    2016-08-01

    The relative dissociation fractions to produce the fragments of CF4 molecule are studied under the impact of 15 keV to 30 keV H‑, C‑ and O‑ negative ions. By using a time-of-flight mass spectrometer, the recoil ions and ion pairs originating from the target molecule CF4 are detected and identified in coincidence with scattered ions in q = 0 and q = +1 charge states. The fractions for the production of the fragment ions are obtained relative to the {\\text{CF} }3+ yield, while that of the ion pairs relative to the (C+, F+) coincidence yield.

  14. Ion Energy Distributions and their Relative Abundance in Inductively Coupled Plasmas

    NASA Technical Reports Server (NTRS)

    Kim, J. S.; Rao, M. V. V. S.; Cappelli, M. A.; Sharma, S. P.; Arnold, James O. (Technical Monitor)

    1998-01-01

    Study of kinetics of ions and neutrals produced in high density inductively coupled plasma (ICP) discharges is of great importance for achieving a high degree of plasma assisted deposition and etching. In this paper, we present the ion energy distributions (IEDs) of various ions arriving at the grounded lower electrode. The ions were energy as well as mass analyzed by a combination of electrostatic analyzer-quadrupole mass spectrometer for pure Ar and CF4/Ar mixtures. The measurements have been made at gas pressures ranging from 30 to 100 mTorr. In addition, the IEDs were measured when the wafer-supporting electrode was also rf-powered and the effect of the self-bias was observed in the energy distributions of ions. The shapes of the IEDs are discussed an related to the sheath properties and measured electrical waveforms, as a function of pressure and applied power. Relative ion intensities were obtained by integration of each ion kinetic energy distribution function over its energy range.

  15. Workshop summary. Biomedical and Space-Related Research with Heavy Ions at the BEVALAC.

    PubMed

    Schimmerling, W; Curtis, S B

    1989-08-01

    The authors provide an overview of papers presented at a workshop on Biomedical and Space-Related Research with Heavy Ions at the BEVALAC at Lawrence Berkeley Laboratory. Goals of the meeting were to determine the critical experiments using heavy ions as probes in radiation physics, radiation chemistry, macromolecular and cellular biology, evolution science, basic neurophysiology, and medical therapies; how beam lines and facilities at Lawrence Berkeley Laboratory can be improved for these experiments; and implications in priorities and funding for national policy. Workshop topics included physics and facilities, cellular and molecular biology, tissue radiobiology, and the future of heavy ion research. PMID:11536613

  16. Workshop summary. Biomedical and Space-Related Research with Heavy Ions at the BEVALAC

    NASA Technical Reports Server (NTRS)

    Schimmerling, W.; Curtis, S. B.

    1989-01-01

    The authors provide an overview of papers presented at a workshop on Biomedical and Space-Related Research with Heavy Ions at the BEVALAC at Lawrence Berkeley Laboratory. Goals of the meeting were to determine the critical experiments using heavy ions as probes in radiation physics, radiation chemistry, macromolecular and cellular biology, evolution science, basic neurophysiology, and medical therapies; how beam lines and facilities at Lawrence Berkeley Laboratory can be improved for these experiments; and implications in priorities and funding for national policy. Workshop topics included physics and facilities, cellular and molecular biology, tissue radiobiology, and the future of heavy ion research.

  17. Atom probe field ion microscopy and related topics: A bibliography 1990

    SciTech Connect

    Russell, K.F.; Miller, M.K.

    1991-12-01

    This bibliography includes references related to the following topics: atom probe field ion microscopy (APFIM), field ion microscopy (FIM), field emission (FE), ion sources, and field desorption mass microscopy (FDMM). Technique-orientated studies and applications are included. The bibliography covers the period 1990. The references contained in this document were compiled from a variety of sources including computer searches and personal lists of publications. To reduce the length of this document, the references have been reduced to the minimum necessary to locate the articles. The references, listed alphabetically by authors, are subdivided into the categories listed in paragraph one above. An Addendum of references missed in previous bibliographies is included.

  18. Effect of pumping with injection of sodium hyaluronate and the other factors related to outcome in patients with non-reducing disk displacement of the temporomandibular joint.

    PubMed

    Sato, S; Goto, S; Kasahara, T; Kawamura, H; Motegi, K

    2001-06-01

    We retrospectively examined the effect of pumping with injection of sodium hyaluronate into the temporomandibular joint (TMJ) and the other factors influencing outcome in patients with non-reducing disk displacement of the TMJ. Fifty-nine patients underwent pumping with injection of sodium hyaluronate into the TMJ. As control, 62 patients were observed without any treatment. Both groups were observed for 12 months. The relation between outcome and the following clinical characteristics was also studied: sex, age, range of motion for maximal mouth opening, TMJ pain, TMJ noise, tenderness of masticatory muscles, locking duration, intercuspal occlusions, angle of posterior slope of articular eminence and degenerative bony changes of the condyle. Logistic regression analysis revealed that pumping with injection of sodium hyaluronate was related to a good outcome. Clinical characteristics of presentation significantly related to a good outcome were a large maximal mouth opening, a short locking duration, and a steep posterior slope of articular eminence. We conclude that pumping with injection of sodium hyaluronate into the TMJ is an effective treatment method for non-reducing disk displacement of the TMJ and that some clinical characteristics also influence outcome. PMID:11420900

  19. Electrokinetic pumps and actuators

    SciTech Connect

    Phillip M. Paul

    2000-03-01

    Flow and ionic transport in porous media are central to electrokinetic pumping as well as to a host of other microfluidic devices. Electrokinetic pumping provides the ability to create high pressures (to over 10,000 psi) and high flow rates (over 1 mL/min) with a device having no moving parts and all liquid seals. The electrokinetic pump (EKP) is ideally suited for applications ranging from a high pressure integrated pump for chip-scale HPLC to a high flow rate integrated pump for forced liquid convection cooling of high-power electronics. Relations for flow rate and current fluxes in porous media are derived that provide a basis for analysis of complex microfluidic systems as well as for optimization of electrokinetic pumps.

  20. Pump isolation valve

    DOEpatents

    Kinney, Calvin L.; Wetherill, Todd M.

    1983-08-02

    The pump isolation valve provides a means by which the pump may be selectively isolated from the remainder of the coolant system while being compatible with the internal hydraulic arrangement of the pump during normal operation of the pump. The valve comprises a valve cylinder disposed around the pump and adjacent to the last pump diffuser with a turning vane attached to the lower end of the valve cylinder in a manner so as to hydraulically match with the discharge diffuser. The valve cylinder is connected to a drive means for sliding the valve cylinder relative to the diffuser support cylinder so as to block flow in either direction through the discharge diffuser when the valve is in the closed position and to aid in the flow of the coolant from the discharge diffuser by means of the turning vane when the valve is in the open position.

  1. Relative abundance of heavy ions in the inner zone of the radiation belts of the earth

    SciTech Connect

    Panasyuk, M.I.

    1986-03-01

    The energy dependences of the relative abundances of energetic (E > 1 MeV/nucleon) H, He, and O ions in the radiation belts are analyzed on the basis of experimental results obtained from measurement of their spectral characteristics on several satellites: Molniya-2, Kosmos-900, Prognoz-5, Explorer-45, ISEE-1, and OV1-19. It is shown that the formation of the energy dependence of He/H and O/H can be explained with a model providing for ion diffusion into the interior of the radiation belts with Coulomb losses taken into account under thecondition that the total-energy spectra at the boundary are more rigid for the heavy ions and are determined by such parameters of the quiet solar wind as the relative concentrations of the individual ion components and their charge states. It is shown that the fluxes of O and Fe ions with E > 1 MeV/nucleon measured on the orbital stations Salyut-6 and Skylab have an energy dependence of the relative abundances not inconsistent with above-noted mechanism for the formation of energetic ions of the inner radiation belt.

  2. Mealtime-related dosing directions for proton-pump inhibitors in gastroesophageal reflux disease: physician knowledge, patient adherence.

    PubMed

    Solem, Caitlyn; Mody, Reema; Stephens, Jennifer; Macahilig, Cynthia; Gao, Xin

    2014-01-01

    OBJECTIVE To describe physicians' knowledge, patients' adherence, and perceptions of both regarding mealtime-related dosing directions for proton-pump inhibitors (PPIs). DESIGN Chart review and survey of patients and physicians. SETTING United States, with data collected between January and July 2011. PARTICIPANTS Patients being treated for gastroesophageal reflux disease (GERD) with PPIs and their prescribing physicians. MAIN OUTCOME MEASURES Patient- and physician-reported perception of PPI mealtime-related directions as important/inconvenient (seven-point Likert scale; 7 = very important/very inconvenient); physician-reported knowledge of PPI mealtime-related dosing directions based on whether the agent is labeled to be taken 30-60 minutes before eating (DIR-esomeprazole magnesium [Nexium-AstraZeneca], lansoprazole, and omeprazole) or labeled to be taken regardless of meals (NoDIR-dexlansoprazole [Dexilant-Takeda], rabeprazole, and pantoprazole); and patient-reported PPI mealtime-related directions received and adherence to directions. RESULTS Physicians (n = 262) recruited 501 patients who had been prescribed PPIs (262 DIR/239 NoDIR; mean age 51 years, 37% men, 56% nonerosive GERD [29% undocumented]). Across PPIs, physicians frequently reported incorrect directions or "did not know directions" (29% for esomeprazole to 69% for pantoprazole). While 98% of patients reported receiving directions from their physicians and 55% from their pharmacists, only 65% of DIR patients and 18% of NoDIR received directions consistent with product labeling. Physicians perceived greater inconvenience than patients (4.4 vs. 1.6, P < 0.001) and greater importance (5.2 vs. 4.5, P < 0.001) of mealtime-related directions. Overall, 81% of patients reported taking their PPI as directed. CONCLUSION While this patient cohort was adherent to directions given, physicians' directions were often inconsistent with product labeling. Understanding physician and patient knowledge gaps may be

  3. Casing pump

    SciTech Connect

    Bass, H.E.; Bass, R.E.

    1987-09-29

    A natural gas operated pump is described for use in the casing of an oil well, comprising: a tubular pump body having an open lower end for admitting well fluids to the interior of the pump body and an open upper end, wherein a downwardly facing seating surface is formed on the inner periphery of the pump body adjacent the upper end thereof; means for forming a seal between the pump body and the casing of the well; a rod extending longitudinally through the seating surface formed in the pump body and protruding from the upper end of the pump body; a valve member mounted on the rod below the seating surface and shaped to mate with the seating surface; and means for vertically positioning the rod in proportion to fluid pressure within the pump body.

  4. Magnetocaloric pump

    NASA Technical Reports Server (NTRS)

    Brown, G. V.

    1973-01-01

    Very cold liquids and gases such as helium, neon, and nitrogen can be pumped by using magnetocaloric effect. Adiabatic magnetization and demagnetization are used to alternately heat and cool slug of pumped fluid contained in closed chamber.

  5. Oxygen pumps

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Special considerations to be given to the design, fabrication, and use of centrifugal pumps for liquid O2 to avoid conditions that lead to system failure are given. Emphasis was placed on turbine pumps for flight applications.

  6. ELECTROMAGNETIC PUMP

    DOEpatents

    Pulley, O.O.

    1954-08-17

    This patent reiates to electromagnetic pumps for electricity-conducting fluids and, in particular, describes several modifications for a linear conduction type electromagnetic interaction pump. The invention resides in passing the return conductor for the current traversing the fiuid in the duct back through the gap in the iron circuit of the pump. Both the maximum allowable pressure and the efficiency of a linear conduction electromagnetic pump are increased by incorporation of the present invention.

  7. An artificial molecular pump.

    PubMed

    Cheng, Chuyang; McGonigal, Paul R; Schneebeli, Severin T; Li, Hao; Vermeulen, Nicolaas A; Ke, Chenfeng; Stoddart, J Fraser

    2015-06-01

    Carrier proteins consume fuel in order to pump ions or molecules across cell membranes, creating concentration gradients. Their control over diffusion pathways, effected entirely through noncovalent bonding interactions, has inspired chemists to devise artificial systems that mimic their function. Here, we report a wholly artificial compound that acts on small molecules to create a gradient in their local concentration. It does so by using redox energy and precisely organized noncovalent bonding interactions to pump positively charged rings from solution and ensnare them around an oligomethylene chain, as part of a kinetically trapped entanglement. A redox-active viologen unit at the heart of a dumbbell-shaped molecular pump plays a dual role, first attracting and then repelling the rings during redox cycling, thereby enacting a flashing energy ratchet mechanism with a minimalistic design. Our artificial molecular pump performs work repetitively for two cycles of operation and drives rings away from equilibrium toward a higher local concentration. PMID:25984834

  8. An artificial molecular pump

    NASA Astrophysics Data System (ADS)

    Cheng, Chuyang; McGonigal, Paul R.; Schneebeli, Severin T.; Li, Hao; Vermeulen, Nicolaas A.; Ke, Chenfeng; Stoddart, J. Fraser

    2015-06-01

    Carrier proteins consume fuel in order to pump ions or molecules across cell membranes, creating concentration gradients. Their control over diffusion pathways, effected entirely through noncovalent bonding interactions, has inspired chemists to devise artificial systems that mimic their function. Here, we report a wholly artificial compound that acts on small molecules to create a gradient in their local concentration. It does so by using redox energy and precisely organized noncovalent bonding interactions to pump positively charged rings from solution and ensnare them around an oligomethylene chain, as part of a kinetically trapped entanglement. A redox-active viologen unit at the heart of a dumbbell-shaped molecular pump plays a dual role, first attracting and then repelling the rings during redox cycling, thereby enacting a flashing energy ratchet mechanism with a minimalistic design. Our artificial molecular pump performs work repetitively for two cycles of operation and drives rings away from equilibrium toward a higher local concentration.

  9. Thermal Control and Enhancement of Heat Transport Capacity of Two-Phase Loops With Electrohydrodynamic Conduction Pumping

    NASA Technical Reports Server (NTRS)

    Seyed-Yagoobi, J.; Didion, J.; Ochterbeck, J. M.; Allen, J.

    2000-01-01

    There are three kinds of electrohydrodynamics (EHD) pumping based on Coulomb force: induction pumping, ion-drag pumping, and pure conduction pumping. EHD induction pumping relies on the generation of induced charges. This charge induction in the presence of an electric field takes place due to a non-uniformity in the electrical conductivity of the fluid which can be caused by a non-uniform temperature distribution and/or an inhomogeneity of the fluid (e.g. a two-phase fluid). Therefore, induction pumping cannot be utilized in an isothermal homogeneous liquid. In order to generate Coulomb force, a space charge must be generated. There are two main mechanisms for generating a space charge in an isothermal liquid. The first one is associated with the ion injection at a metal/liquid interface and the related pumping is referred to as ion-drag pumping. Ion-drag pumping is not desirable because it can deteriorate the electrical properties of the working fluid. The second space charge generation mechanism is associated with the heterocharge layers of finite thickness in the vicinity of the electrodes. Heterocharge layers result from dissociation of the neutral electrolytic species and recombination of the generated ions. This type of pumping is referred to as pure conduction pumping. This project investigates the EHD pumping through pure conduction phenomenon. Very limited work has been conducted in this field and the majority of the published papers in this area have mistakenly assumed that the electrostriction force was responsible for the net flow generated in an isothermal liquid. The main motivation behind this study is to investigate an EHD conduction pump for a two-phase loop to be operated in the microgravity environment. The pump is installed in the liquid return passage (isothermal liquid) from the condenser section to the evaporator section. Unique high voltage and ground electrodes have been designed that generate sufficient pressure heads with very low

  10. Age and Smoking Related Changes in Metal Ion Levels in Human Lens: Implications for Cataract Formation

    PubMed Central

    Langford-Smith, Alex; Tilakaratna, Viranga; Lythgoe, Paul R.; Clark, Simon J.; Bishop, Paul N.; Day, Anthony J.

    2016-01-01

    Age-related cataract formation is the primary cause of blindness worldwide and although treatable by surgical removal of the lens the majority of sufferers have neither the finances nor access to the medical facilities required. Therefore, a better understanding of the pathogenesis of cataract may identify new therapeutic targets to prevent or slow its progression. Cataract incidence is strongly correlated with age and cigarette smoking, factors that are often associated with accumulation of metal ions in other tissues. Therefore this study evaluated the age-related changes in 14 metal ions in 32 post mortem human lenses without known cataract from donors of 11 to 82 years of age by inductively coupled plasma mass spectrometry; smoking-related changes in 10 smokers verses 14 non-smokers were also analysed. A significant age-related increase in selenium and decrease in copper ions was observed for the first time in the lens tissue, where cadmium ion levels were also increased as has been seen previously. Aluminium and vanadium ions were found to be increased in smokers compared to non-smokers (an analysis that has only been carried out before in lenses with cataract). These changes in metal ions, i.e. that occur as a consequence of normal ageing and of smoking, could contribute to cataract formation via induction of oxidative stress pathways, modulation of extracellular matrix structure/function and cellular toxicity. Thus, this study has identified novel changes in metal ions in human lens that could potentially drive the pathology of cataract formation. PMID:26794210

  11. Redox magnetohydrodynamics enhancement of stripping voltammetry of lead(II), cadmium(II) and zinc(II) ions using 1,4-benzoquinone as an alternative pumping species.

    PubMed

    Ensafi, Ali A; Nazari, Z; Fritsch, I

    2012-01-21

    Differential pulse anodic stripping voltammetry (DPASV) coupled with redox-magnetohydrodynamics (MHD) is used to enhance the anodic stripping voltammetry (ASV) response using a mercury thin film-glassy carbon electrode. The sensitivity increased to at least a factor of two (at 1.2 T) and is facilitated by using 20.0 mmol L(-1) 1,4-benzoquinone as an alternative pumping species to enhance ASV by redox-MHD. The MHD force formed by the cross-product of ion flux with magnetic field induces solution convection during the deposition step, enhancing mass transport of the analytes to the electrode surface and increasing their preconcentrated quantity in the mercury thin film. Therefore, larger ASV peaks and improved sensitivities are obtained, compared with analyses performed without a magnet. The influence of pH, 1,4-benzoquinone concentration, accumulation potential, and time are also investigated. Detection limits of 0.05, 0.09 and 2.2 ng mL(-1) Cd(II), Pb(II) and Zn(II) were established with an accumulation time of 65 s. The method is used for the analysis of Cd(II), Pb(II) and Zn(II) in different water samples, certified reference materials, and saliva samples with satisfactory results. PMID:22116833

  12. Protective Effects of Ferulic Acid on High Glucose-Induced Protein Glycation, Lipid Peroxidation, and Membrane Ion Pump Activity in Human Erythrocytes

    PubMed Central

    Sompong, Weerachat; Cheng, Henrique; Adisakwattana, Sirichai

    2015-01-01

    Ferulic acid (FA) is the ubiquitous phytochemical phenolic derivative of cinnamic acid. Experimental studies in diabetic models demonstrate that FA possesses multiple mechanisms of action associated with anti-hyperglycemic activity. The mechanism by which FA prevents diabetes-associated vascular damages remains unknown. The aim of study was to investigate the protective effects of FA on protein glycation, lipid peroxidation, membrane ion pump activity, and phosphatidylserine exposure in high glucose-exposed human erythrocytes. Our results demonstrated that FA (10-100 μM) significantly reduced the levels of glycated hemoglobin (HbA1c) whereas 0.1-100 μM concentrations inhibited lipid peroxidation in erythrocytes exposed to 45 mM glucose. This was associated with increased glucose consumption. High glucose treatment also caused a significant reduction in Na+/K+-ATPase activity in the erythrocyte plasma membrane which could be reversed by FA. Furthermore, we found that FA (0.1-100 μM) prevented high glucose-induced phosphatidylserine exposure. These findings provide insights into a novel mechanism of FA for the prevention of vascular dysfunction associated with diabetes. PMID:26053739

  13. Detection of pump degradation

    SciTech Connect

    Casada, D.

    1995-04-01

    There are a variety of stressors that can affect the operation of centrifugal pumps. Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump. The most commonly applied method of monitoring the condition of not only pumps, but rotating machinery in general, is vibration analysis. Periodic or continuous special vibration analysis is a cornerstone of most pump monitoring programs. In the nuclear industry, non-spectral vibration monitoring of safety-related pumps is performed in accordance with the ASME code. Pump head and flow rate are also monitored, per code requirements. Although vibration analysis has dominated the condition monitoring field for many years, there are other measures that have been historically used to help understand pump condition; advances in historically applied technologies and developing technologies offer improved monitoring capabilities. The capabilities of several technologies (including vibration analysis, dynamic pressure analysis, and motor power analysis) to detect the presence and magnitude of both stressors and resultant degradation are discussed.

  14. Champagne Heat Pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    2004-01-01

    The term champagne heat pump denotes a developmental heat pump that exploits a cycle of absorption and desorption of carbon dioxide in an alcohol or other organic liquid. Whereas most heat pumps in common use in the United States are energized by mechanical compression, the champagne heat pump is energized by heating. The concept of heat pumps based on other absorption cycles energized by heat has been understood for years, but some of these heat pumps are outlawed in many areas because of the potential hazards posed by leakage of working fluids. For example, in the case of the water/ammonia cycle, there are potential hazards of toxicity and flammability. The organic-liquid/carbon dioxide absorption/desorption cycle of the champagne heat pump is similar to the water/ammonia cycle, but carbon dioxide is nontoxic and environmentally benign, and one can choose an alcohol or other organic liquid that is also relatively nontoxic and environmentally benign. Two candidate nonalcohol organic liquids are isobutyl acetate and amyl acetate. Although alcohols and many other organic liquids are flammable, they present little or no flammability hazard in the champagne heat pump because only the nonflammable carbon dioxide component of the refrigerant mixture is circulated to the evaporator and condenser heat exchangers, which are the only components of the heat pump in direct contact with air in habitable spaces.

  15. Dispersion relation approach to sub-barrier heavy-ion fusion reactions

    SciTech Connect

    Franzin, V.L.M.; Hussein, M.S.

    1988-11-01

    We discuss the conditions under which the dispersion relation technique, extensively employed in the context of elastic scattering, can be used in the analysis of heavy-ion fusion reactions. General unitarity defect arguments are used for this purpose. With the aid of an inverse dispersion relation, which gives the imaginary part of the fusion inclusive polarization potential in terms of the principal part integral involving the real part of the inclusive polarization potential, the sub-barrier fusion of heavy ions is discussed. The system /sup 16/O+/sup A/Sm is taken as an example.

  16. How processing of aspartylphosphate is coupled to lumenal gating of the ion pathway in the calcium pump

    PubMed Central

    Toyoshima, Chikashi; Norimatsu, Yoshiyuki; Iwasawa, Shiho; Tsuda, Takeo; Ogawa, Haruo

    2007-01-01

    Ca2+-ATPase of skeletal muscle sarcoplasmic reticulum is the best-studied member of the P-type or E1/E2 type ion transporting ATPases. It has been crystallized in seven different states that cover nearly the entire reaction cycle. Here we describe the structure of this ATPase complexed with phosphate analogs BeF3− and AlF4− in the absence of Ca2+, which correspond to the E2P ground state and E2∼P transition state, respectively. The luminal gate is open with BeF3− and closed with AlF4−. These and the E1∼P·ADP analog crystal structures show that a two-step rotation of the cytoplasmic A-domain opens and closes the luminal gate through the movements of the M1–M4 transmembrane helices. There are several conformational switches coupled to the rotation, and the one in the cytoplasmic part of M2 has critical importance. In the second step of rotation, positioning of one water molecule couples the hydrolysis of aspartylphosphate to closing of the gate. PMID:18077416

  17. Generation of polarized 4He ion beam by optical pumping using circularly and linearly polarized radiation tuned to D0 line (He metastables 2S1→2P0)

    NASA Astrophysics Data System (ADS)

    Suzuki, T.; Yamauchi, Y.

    2007-06-01

    It is demonstrated that simultaneous optical pumping (OP) by circularly and linearly polarized 1083 nm radiation tuned to the D0 line (He metastables 23S1→23P0 transition) substantially improves the polarization of the He+ ion beam, compared with conventional OP by the circularly polarized D1 ( 23S1→23P1) or D2 ( 23S1→23P2) line.

  18. Predicting relative toxicity and interactions of divalent metal ions: Microtox{reg_sign} bioluminescence assay

    SciTech Connect

    Newman, M.C.; McCloskey, J.T.

    1996-03-01

    Both relative toxicity and interactions between paired metal ions were predicted with least-squares linear regression and various ion characteristics. Microtox{reg_sign} 15 min EC50s (expressed as free ion) for Ca(II), Cd(II), Cu(II), Hg(II), Mg(II), Mn(II), Ni(II), Pb(II), and Zn(II) were most effectively modeled with the constant for the first hydrolysis (K{sub H} for M{sup n+} + H{sub 2}O {yields} MOH{sup a{minus}1} + H{sup +}) although other ion characteristics were also significant in regression models. The {vert_bar}log K{sub H}{vert_bar} is correlated with metal ion affinity to intermediate ligands such as many biochemical functional groups with O donor atoms. Further, ordination of metals according to ion characteristics, e.g., {vert_bar}log K{sub H}{vert_bar} facilitated prediction of paired metal interactions. Pairing metals with strong tendencies to complex with intermediate or soft ligands such as those with O or S donor atoms resulted in strong interactions.

  19. Active frequency stabilization of a 1.062-micron, Nd:GGG, diode-laser-pumped nonplanar ring oscillator to less than 3 Hz of relative linewidth

    NASA Technical Reports Server (NTRS)

    Day, T.; Gustafson, E. K.; Byer, R. L.

    1990-01-01

    Results are presented on the frequency stabilization of two diode-laser-pumped ring lasers that are independently locked to the same high-finesse interferometer. The relative frequency stability is measured by locking the lasers one free spectral range apart and observing the heterodyne beat note. The resultant beat note width of 2.9 Hz is consistent with the theoretical system noise-limited linewidth and is approximately 20 times that expected for shot-noise-limited performance.

  20. The sodium pump α1 sub-unit: a disease progression–related target for metastatic melanoma treatment

    PubMed Central

    Mathieu, Véronique; Pirker, Christine; Martin de Lassalle, Elisabeth; Vernier, Mathieu; Mijatovic, Tatjana; DeNeve, Nancy; Gaussin, Jean-François; Dehoux, Mischael; Lefranc, Florence; Berger, Walter; Kiss, Robert

    2009-01-01

    Melanomas remain associated with dismal prognosis because they are naturally resistant to apoptosis and they markedly metastasize. Up-regulated expression of sodium pump α sub-units has previously been demonstrated when comparing metastatic to non-metastatic melanomas. Our previous data revealed that impairing sodium pump α1 activity by means of selective ligands, that are cardiotonic steroids, markedly impairs cell migration and kills apoptosis-resistant cancer cells. The objective of this study was to determine the expression levels of sodium pump α sub-units in melanoma clinical samples and cell lines and also to characterize the role of α1 sub-units in melanoma cell biology. Quantitative RT-PCR, Western blotting and immunohistochemistry were used to determine the expression levels of sodium pump α sub-units. In vitro cytotoxicity of various cardenolides and of an anti-α1 siRNA was evaluated by means of MTT assay, quantitative videomicroscopy and through apoptosis assays. The in vivo activity of a novel cardenolide UNBS1450 was evaluated in a melanoma brain metastasis model. Our data show that all investigated human melanoma cell lines expressed high levels of the α1 sub-unit, and 33% of human melanomas displayed significant α1 sub-unit expression in correlation with the Breslow index. Furthermore, cardenolides (notably UNBS1450; currently in Phase I clinical trials) displayed marked anti-tumour effects against melanomas in vitro. This activity was closely paralleled by decreases in cMyc expression and by increases in apoptotic features. UNBS1450 also displayed marked anti-tumour activity in the aggressive human metastatic brain melanoma model in vivo. The α1 sodium pump sub-unit could represent a potential novel target for combating melanoma. PMID:19243476

  1. Relative abundance of the light ions in the winter nighttime topside ionosphere

    NASA Technical Reports Server (NTRS)

    Sanatani, S.; Breig, E. L.

    1984-01-01

    Ion concentration measurements with the retarding potential analyzer onboard OGO 6 satellite have served as basis for investigation of the distribution of the light ions, H(+) and He(+), relative to that of O(+) in the 500- to 800-km height range in the winter nighttime ionosphere. This concentration ratio exhibits distinct large-scale horizontal variations, with a relative depression in the ratio observed over a broad region about -45 deg longitude northward of approximately 40 deg dip latitude. The lower ratios are associated primarily with well-defined relative increases in the abundance of O(+), and occur in the same longitude sector that has been characterized in an earlier study by both an observed concurrent relative enhancement in ion temperature and the presence of large fluxes of energetic electrons. Comparisons are presented for the altitude distributions of the concentration ratio between regions representing extremes of the horizontal variation. A simple diffusive-equilibrium model demonstrates that the effects of ion temperature on the O(+) vertical distribution are a significant factor leading to the observed variation of the concentration ratio.

  2. Ion-pair high-performance liquid chromatographic analysis of aspartame and related products.

    PubMed

    Verzella, G; Bagnasco, G; Mangia, A

    1985-12-01

    A simple and accurate quantitative determination of aspartame (L-alpha-aspartyl-L-phenylalanine methyl ester), a new artificial sweetener, is described. The method, which is based on ion-pair high-performance liquid chromatography, allows the determination of aspartame in finished bulk and dosage forms, and the detection of a few related products at levels down to 0.1%. PMID:4086646

  3. Noncovalent Complexation of Monoamine Neurotransmitters and Related Ammonium Ions by Tetramethoxy Tetraglucosylcalix[4]arene

    NASA Astrophysics Data System (ADS)

    Torvinen, Mika; Kalenius, Elina; Sansone, Francesco; Casnati, Alessandro; Jänis, Janne

    2012-02-01

    The noncovalent complexation of monoamine neurotransmitters and related ammonium and quaternary ammonium ions by a conformationally flexible tetramethoxy glucosylcalix[4]arene was studied by electrospray ionization Fourier transform ion cyclotron resonance (ESI-FTICR) mass spectrometry. The glucosylcalixarene exhibited highest binding affinity towards serotonin, norepinephrine, epinephrine, and dopamine. Structural properties of the guests, such as the number, location, and type of hydrogen bonding groups, length of the alkyl spacer between the ammonium head-group and the aromatic ring structure, and the degree of nitrogen substitution affected the complexation. Competition experiments and guest-exchange reactions indicated that the hydroxyl groups of guests participate in intermolecular hydrogen bonding with the glucocalixarene.

  4. The Relative Effectiveness of Pumps Over MDI and Structured Education (REPOSE): study protocol for a cluster randomised controlled trial

    PubMed Central

    White, David; Waugh, Norman; Elliott, Jackie; Lawton, Julia; Barnard, Katharine; Campbell, Michael J; Dixon, Simon; Heller, Simon

    2014-01-01

    Introduction People with type 1 diabetes (T1DM) require insulin therapy to sustain life, and need optimal glycaemic control to prevent diabetic ketoacidosis and serious long-term complications. Insulin is generally administered using multiple daily injections but can also be delivered using an infusion pump (continuous subcutaneous insulin infusion), a more costly option with benefits for some patients. The UK National Institute for Health and Care Excellence (NICE) recommend the use of pumps for patients with the greatest need, citing insufficient evidence to approve extension to a wider population. Far fewer UK adults use pumps than in comparable countries. Previous trials of pump therapy have been small and of short duration and failed to control for training in insulin adjustment. This paper describes the protocol for a large randomised controlled trial comparing pump therapy with multiple daily injections, where both groups are provided with high-quality structured education. Methods and analysis A multicentre, parallel group, cluster randomised controlled trial among 280 adults with T1DM. All participants attended the week-long dose adjustment for normal eating (DAFNE) structured education course, and receive either multiple daily injections or pump therapy for 2 years. The trial incorporates a detailed mixed-methods psychosocial evaluation and cost-effectiveness analysis. The primary outcome will be the change in glycosylated haemoglobin (HbA1c) at 24 months in those participants whose baseline HbA1c is at or above 7.5% (58 mmol/mol). The key secondary outcome will be the proportion of participants reaching the NICE target of an HbA1c of 7.5% (58 mmol/mol) or less at 24 months. Ethics and dissemination The protocol was approved by the Research Ethics Committee North West, Liverpool East and received Medicines and Healthcare products Regulatory Agency (MHRA) clinical trials authorisation. Each participating centre gave National Health Service R

  5. Pump system characterization and reliability enhancement

    SciTech Connect

    Staunton, R.H.

    1997-09-01

    Pump characterization studies were performed at the Oak Ridge National Laboratory (ORNL) to review and analyze six years (1990 to 1995) of data from pump systems at domestic nuclear plants. The studies considered not only pumps and pump motors but also pump related circuit breakers and turbine drives (i.e., the pump system). One significant finding was that the number of significant failures of the pump circuit breaker exceeds the number of significant failures of the pump itself. The study also shows how regulatory code testing was designed for the pump only and therefore did not lead to the discovery of other significant pump system failures. Potential diagnostic technologies both experimental and mature, suitable for on-line and off-line pump testing were identified. The study does not select or recommend technologies but proposes diagnostic technologies and monitoring techniques that should be further evaluated/developed for making meaningful and critically needed improvements in the reliability of the pump system.

  6. Detection of pump degradation

    SciTech Connect

    Casada, D.

    1994-12-31

    There are a variety of stressors that can affect the operation of centrifugal pumps. Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump. The most commonly applied method of monitoring the condition of not only pumps, but rotating machinery in general, is vibration analysis. Periodic or continuous spectral vibration analysis is a cornerstone of most pump monitoring programs. In the nuclear industry, non-spectral vibration monitoring of safety-related pumps is performed in accordance with the ASME code. Although vibration analysis has dominated the condition monitoring field for many years, there are other measures that have been historically used to help understand pump condition: advances in historically applied technologies and developing technologies offer improved monitoring capabilities. The capabilities of several technologies (including vibration analysis, dynamic pressure analysis, and motor power analysis) to detect the presence and magnitude of both stressors and resultant degradation are discussed.

  7. A microbial TRP-like polycystic-kidney-disease-related ion channel gene

    PubMed Central

    Palmer, Christopher P.; Aydar, Ebru; Djamgoz, Mustafa B. A.

    2004-01-01

    Ion channel genes have been discovered in many microbial organisms. We have investigated a microbial TRP (transient receptor potential) ion channel gene which has most similarity to polycystic-kidney-disease-related ion channel genes. We have shown that this gene (pkd2) is essential for cellular viability, and is involved in cell growth and cell wall synthesis. Expression of this gene increases following damage to the cell wall. This fission yeast pkd2 gene, orthologues of which are found in all eukaryotic cells, appears to be a key signalling component in the regulation of cell shape and cell wall synthesis in yeast through an interaction with a Rho1-GTPase. A model for the mode of action of this Schizosaccharomyces pombe protein in a Ca2+ signalling pathway is hypothesized. PMID:15537393

  8. Development and Evaluation of Active Thermal Management System for Lithium-Ion Batteries using Solid-State Thermoelectric Heat Pump and Heat Pipes with Electric Vehicular Applications

    NASA Astrophysics Data System (ADS)

    Parekh, Bhaumik Kamlesh

    Lithium-Ion batteries have become a popular choice for use in energy storage systems in electric vehicles (EV) and Hybrid electric vehicles (HEV) because of high power and high energy density. But the use of EV and HEV in all climates demands for a battery thermal management system (BTMS) since temperature effects their performance, cycle life and, safety. Hence the BTMS plays a crucial role in the performance of EV and HEV. In this paper, three thermal management systems are studied: (a) simple aluminum as heat spreader material, (b) heat pipes as heat spreader, and (c) advanced combined solid state thermoelectric heat pump (TE) and heat pipe system; these will be subsequently referred to as Design A, B and C, respectively. A detailed description of the designs and the experimental setup is presented. The experimental procedure is divided into two broad categories: Cooling mode and Warming-up mode. Cooling mode covers the conditions when a BTMS is responsible to cool the battery pack through heat dissipation and Warming-up mode covers the conditions when the BTMS is responsible to warm the battery pack in a low temperature ambient condition, maintaining a safe operating temperature of the battery pack in both modes. The experimental procedure analyzes the thermal management system by evaluating the effect of each variable like heat sink area, battery heat generation rate, cooling air temperature, air flow rate and TE power on parameters like maximum temperature of the battery pack (T max), maximum temperature difference (DeltaT) and, heat transfer through heat sink/cooling power of TE (Q c). The results show that Design C outperforms Design A and Design B in spite of design issues which reduce its efficiency, but can still be improved to achieve better performance.

  9. Relative Free Energies for Hydration of Monovalent Ions from QM and QM/MM Simulations.

    PubMed

    Lev, Bogdan; Roux, Benoît; Noskov, Sergei Yu

    2013-09-10

    Methods directly evaluating the hydration structure and thermodynamics of physiologically relevant cations (Na(+), K(+), Cl(-), etc.) have wide ranging applications in the fields of inorganic, physical, and biological chemistry. All-atom simulations based on accurate potential energy surfaces appear to offer a viable option for assessing the chemistry of ion solvation. Although MD and free energy simulations of ion solvation with classical force fields have proven their usefulness, a number of challenges still remain. One of them is the difficulty of force field benchmarking and validation against structural and thermodynamic data obtained for a condensed phase. Hybrid quantum mechanical/molecular mechanical (QM/MM) models combined with sampling algorithms have the potential to provide an accurate solvation model and to incorporate the effects from the surrounding, which is often missing in gas-phase ab initio computations. Herein, we report the results from QM/MM free energy simulations of Na(+)/K(+) and Cl(-)/Br(-) hydration where we simultaneously characterized the relative thermodynamics of ion solvation and changes in the solvation structure. The Flexible Inner Region Ensemble Separator (FIRES) method was used to impose a spatial separation between QM region and the outer sphere of solvent molecules treated with the CHARMM27 force field. FEP calculations based on QM/MM simulations utilizing the CHARMM/deMon2k interface were performed with different basis set combinations for K(+)/Na(+) and Cl(-)/Br(-) perturbations to establish the dependence of the computed free energies on the basis set level. The dependence of the computed relative free energies on the size of the QM and MM regions is discussed. The current methodology offers an accurate description of structural and thermodynamic aspects of the hydration of alkali and halide ions in neat solvents and can be used to obtain thermodynamic data on ion solvation in condensed phase along with underlying

  10. Relations between well-field pumping and induced canal leakage in east-central Miami-Dade County, Florida, 2010-2011

    USGS Publications Warehouse

    Nemec, Katherine; Antolino, Dominick; Turtora, Michael; Adam Foster

    2015-01-01

    Results from the groundwater model and the stable isotope data analysis indicate the importance of considering geologic heterogeneity when investigating the relations between pumping and canal leakage, not only at this site, but also at other sites with similar heterogeneous geology. The model results were consistently sensitive to the hydrogeologic framework and changes in hydraulic conductivities. The model and the isotope data indicate that the majority of the groundwater/surface-water interactions occurred within the shallow flow zone. A relatively lower-permeability geologic layer occurring between the shallowest and deep preferential flow zones lessens the interactions between the production wells and the canal.

  11. Gyro-viscosity and linear dispersion relations in pair-ion magnetized plasmas

    SciTech Connect

    Kono, M.; Vranjes, J.

    2015-11-15

    A fluid theory has been developed by taking account of gyro-viscosity to study wave propagation characteristics in a homogeneous pair-ion magnetized plasma with a cylindrical symmetry. The exact dispersion relations derived by the Hankel-Fourier transformation are shown comparable with those observed in the experiment by Oohara and co-workers. The gyro-viscosity is responsible for the change in propagation characteristics of the ion cyclotron wave from forward to backward by suppressing the effect of the thermal pressure which normally causes the forward nature of dispersion. Although the experiment has been already explained by a kinetic theory by the present authors, the kinetic derivations are so involved because of exact particle orbits in phase space, finite Lamor radius effects, and higher order ion cyclotron resonances. The present fluid theory provides a simple and transparent structure to the dispersion relations since the gyro-viscosity is renormalized into the ion cyclotron frequency which itself indicates the backward nature of dispersion. The usual disadvantage of a fluid theory, which treats only fundamental modes of eigen-waves excited in a system and is not able to describe higher harmonics that a kinetic theory does, is compensated by simple derivations and clear picture based on the renormalization of the gyro-viscosity.

  12. Gyro-viscosity and linear dispersion relations in pair-ion magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Kono, M.; Vranjes, J.

    2015-11-01

    A fluid theory has been developed by taking account of gyro-viscosity to study wave propagation characteristics in a homogeneous pair-ion magnetized plasma with a cylindrical symmetry. The exact dispersion relations derived by the Hankel-Fourier transformation are shown comparable with those observed in the experiment by Oohara and co-workers. The gyro-viscosity is responsible for the change in propagation characteristics of the ion cyclotron wave from forward to backward by suppressing the effect of the thermal pressure which normally causes the forward nature of dispersion. Although the experiment has been already explained by a kinetic theory by the present authors, the kinetic derivations are so involved because of exact particle orbits in phase space, finite Lamor radius effects, and higher order ion cyclotron resonances. The present fluid theory provides a simple and transparent structure to the dispersion relations since the gyro-viscosity is renormalized into the ion cyclotron frequency which itself indicates the backward nature of dispersion. The usual disadvantage of a fluid theory, which treats only fundamental modes of eigen-waves excited in a system and is not able to describe higher harmonics that a kinetic theory does, is compensated by simple derivations and clear picture based on the renormalization of the gyro-viscosity.

  13. Ferroelectric Pump

    NASA Technical Reports Server (NTRS)

    Jalink, Antony, Jr. (Inventor); Hellbaum, Richard F. (Inventor); Rohrbach, Wayne W. (Inventor)

    2000-01-01

    A ferroelectric pump has one or more variable volume pumping chambers internal to a housing. Each chamber has at least one wall comprising a dome shaped internally prestressed ferroelectric actuator having a curvature and a dome height that varies with an electric voltage applied between an inside and outside surface of the actuator. A pumped medium flows into and out of each pumping chamber in response to displacement of the ferroelectric actuator. The ferroelectric actuator is mounted within each wall and isolates each ferroelectric actuator from the pumped medium, supplies a path for voltage to be applied to each ferroelectric actuator, and provides for positive containment of each ferroelectric actuator while allowing displacement of the entirety of each ferroelectric actuator in response to the applied voltage.

  14. Axial Pump

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor); Akkerman, James W. (Inventor); Aber, Gregory S. (Inventor); VanDamm, George Arthur (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)

    1997-01-01

    A rotary blood pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial and radial clearances of blades associated with the flow straightener, inducer portion, impeller portion and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with cross-linked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.

  15. Performance of the new Efratom optically pumped rubidium frequency standards and their possible application in space relativity experiments

    NASA Technical Reports Server (NTRS)

    Alley, C. O.; Williams, R.; Singh, G.; Mullendore, J.

    1972-01-01

    The characteristics of Efratom optically pumped rubidium frequency standards are discussed. The Efratom units were compared with cesium beam and hydrogen maser standards and showed a stability of approximately 5 times 10 to the minus 12th power over two one-week periods. Dependency of frequency upon the environmental parameters of pressure, magnetic field, temperature, supply voltage, and acceleration was measured. A package of three units with automatic phase comparison and recording was designed and constructed to allow a measurement of relativistic effects on time with high accuracy during space missions.

  16. Profiling of phospholipids and related lipid structures using multidimensional ion mobility spectrometry-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Trimpin, Sarah; Tan, Bo; Bohrer, Brian C.; O'Dell, David K.; Merenbloom, Samuel I.; Pazos, Mauricio X.; Clemmer, David E.; Walker, J. Michael

    2009-10-01

    Increasingly comprehensive questions related to the biosynthesis of lipids relevant to understanding new signaling pathways have created daunting tasks for their chemical analysis. Here, ion mobility spectrometry (IMS) and mass spectrometry (MS) techniques combined with electrospray ionization have been used to examine mixtures of closely related lipid structures. The drift time distributions of sphingomyelins show baseline separations for ethylene chain length differences ([Delta] ~ 1.2 ms) and partial separations in single unsaturation differences ([Delta] ~ 0.3 ms) revealing that the most compact structures are observed with shorter chains and increasing unsaturation. Drift time distributions of different ionizations frequently fall into families with the same drift times (isodrifts) indicating that the ion attached to the lipid has little structural influence. The present data show that phospholipids, especially phosphatidylinositol, aggregate to form inverted micelles. Phospholipids (phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, sphingomyelin, and phosphatidylinositol) are effectively separated according to their polar head groups. This method also provides information about the mixture composition of the chemically different lipids N-palmitoyl glycine, N-arachidonoyl ethanolamide, and phosphatidylcholine existing over an array of charge states and sizes (inverted micelles) depending on mixture concentration. Multidimensional IMS3-MS introduces an additional dimension to fragmentation analysis by separating the fragmented ions into groups related to size, shape and charge and allows determination of sn-1 and sn-2 substitution as is shown for phosphatidylglycerols. This contribution provides evidence for extending the targeted approach to global lipidomics analysis using the high-efficiency gas-phase separation afforded by multidimensional IMS-MS.

  17. Using InSAR to Evaluate Pumping-Related Aquifer-System Response Between 1992 and 2007 in Ground-Water Basins of Eastern Nevada

    NASA Astrophysics Data System (ADS)

    Donovan, D. J.; Arai, R.; Bell, J.

    2008-12-01

    proximity of proposed new production, the geometry and magnitude of existing production, the Muddy Springs area was targeted for close examination. The results showed that although the area produces about 8.7 hm3/yr (7,000 acre-ft/yr) of pumped water from both the carbonate and alluvial aquifers and has experienced minor water-level declines, no visible subsidence was detected over a multi-year period. Similarly, basins containing earth fissures, common indicators of aquifer-system compaction and/or pumping strain, were analyzed for evidence of subsidence. Fissures are present in Garnet, Dry Lake, and Delamar Valleys, but InSAR results revealed no visible subsidence signals in these valleys, indicating that the fissures are not groundwater related. Of particular interest, InSAR revealed a subsidence signal associated with oil production in Railroad Valley. Results show that up to several centimeters of subsidence occurred in the Trap Spring field during the early to mid-1990's when the field initially went into major production, and that the signal was controlled by faults bounding the reservoir.

  18. A perpendicular ion beam instability - Solutions to the linear dispersion relation. [for F region ionosphere

    NASA Technical Reports Server (NTRS)

    Kintner, P. M.; Kelley, M. C.

    1983-01-01

    A 200-eV Xe(+) ion beam directed perpendicular to the terrestrial magnetic field in the F region ionosphere produced very narrow band electrostatic emissions just above multiples of the hydrogen cyclotron frequency. Although the plasma conditions associated with the ion beam were undoubtedly very complex, a simple ion beam in a background ionosphere is considered first. The dispersion relation for flute mode waves and an unmagnetized perpendicular ion beam is solved for a diffuse H(+) plasma and then for a combination of dense O(+) and diffuse H(+). These solutions account for most of the wave properties, including the observation of narrow spectral peaks separated by the hydrogen cyclotron frequency and the observation of no spectral peaks below 2000 Hz. We cannot dismiss field-aligned currents associated with the Xe(+) beam as an alternate source of free energy for the narrow band emissions. However, our intention here is to examine closely the Xe(+) beam as a source for directly exciting the plasma waves.

  19. Submersible pump

    SciTech Connect

    Todd, D. B.

    1985-08-27

    A method and apparatus for using a submersible pump to lift reservoir fluids in a well while having the tubing/casing annulus isolated from the produced fluids. The apparatus allows the submersible pump to be positioned above the annular packoff device. The apparatus comprises an outer shield that encloses the pump and can be attached to the production tubing. The lower end of the shield attaches to a short tubing section that seals with the annular packoff device or a receptacle above the annular packoff device.

  20. Air circuit with heating pump

    NASA Astrophysics Data System (ADS)

    Holik, H.; Bauder, H. J.; Brugger, H.; Reinhart, A.; Spott, K. H.

    1980-12-01

    A pump which draws energy from exhaust air from a paper drying process to heat up the blow air was studied. The use of a heat pump instead of a steam heated exchanger can reduce primary energy consumption for blown air heating by more than half and the costs for air heating up to half. The amortization times for the heat pump extend from 5 to 10 years. Since in the pulp and paper industry, amortization times of less than two years are required for such relatively small investments, the heat pump so far is only used to heat blown air under highly favorable conditions. The rising energy prices shorten the heat pump amortization time. The 100% fuel price increase brought the heat pump with diesel engine drive already to very favorable amortization times of 2 to 5 years. A 20% increase will make the heat pump economically advantageous with an amortization time between 1 and 2 years.

  1. Nuclear-pumped flashlamp sources

    NASA Astrophysics Data System (ADS)

    Miley, George H.; Prelas, Mark A.

    2000-08-01

    Due to pump source restrictions, Nuclear-Pumped Lasers (NPLs) typically have relatively long (micro- to milli-second) pulse lengths with only modest peak powers but with very high total energy. These pump power restraints seriously limit the choice of laser media. One way to avoid this problem is to employ a Nuclear Driven Flashlamp (NDF) for the primary pumped element in the system. The fluorescence from this NDF can then be used for pumping a laser or for other high intensity light applications. The first experimental example of this approach was a 3He-XeBr2 NDF employed by Williams and Miley (1993) to pump a small iodine laser. The present paper discusses issues involved in scaling such an NDF up to high power levels. Possible optimum configurations include use of microsphere or fiber pump elements dispersed in the NPF media. Analysis of such possibilities is presented along with consideration of special reflecting surface designs.

  2. Relative biological effectiveness of accelerated heavy ions for induction of morphological transformation in Syrian hamster embryo cells.

    PubMed

    Han, Z B; Suzuki, H; Suzuki, F; Suzuki, M; Furusawa, Y; Kato, T; Ikenaga, M

    1998-09-01

    Syrian hamster embryo cells were used to study the morphological transformation induced by accelerated heavy ions with different linear energy transfer (LET) ranging from 13 to 400 keV/micron. Exponentially growing cells were irradiated with 12C or 28Si ion beams generated by the Heavy Ion Medical Accelerator in Chiba (HIMAC), then inoculated to culture dishes. Morphologically altered colonies were scored as transformants. Over the LET range examined, the frequency of transformation induced by the heavy ions increased sharply at very low doses no greater than 5 cGy. The relative biological effectiveness (RBE) of the heavy ions relative to X-rays first increased with LET, reached a maximum value of about 7 at 100 keV/micron, then decreased with the further increase of LET. Our findings confirmed that high LET heavy ions are much more effective than X-rays for the induction of in vitro cell transformation. PMID:9868868

  3. Keeping Hearts Pumping

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A collaboration between NASA, Dr. Michael DeBakey, Dr. George Noon, and MicroMed Technology, Inc., resulted in a life-saving heart pump for patients awaiting heart transplants. The MicroMed DeBakey VAD functions as a "bridge to heart transplant" by pumping blood throughout the body to keep critically ill patients alive until a donor heart is available. Weighing less than 4 ounces and measuring 1 inch by 3 inches, the pump is approximately one-tenth the size of other currently marketed pulsatile VADs. This makes it less invasive and ideal for smaller adults and children. Because of the pump's small size, less than 5 percent of the patients implanted developed device-related infections. It can operate up to 8 hours on batteries, giving patients the mobility to do normal, everyday activities.The MicroMed DeBakey VAD is a registered trademark of MicroMed Technology, Inc.

  4. Collisional pumping in polarized sodium vapor

    SciTech Connect

    Kaplan, S.N.; pyle, R.V.; Ruby, L.; Schlachter, A.S.; Stearns, J.W.; Anderson, L.W.

    1986-01-01

    Collisional pumping has been proposed as a mechanism for efficient transfer of spin from an electron-spin-polarized target to the nuclei of a fast atom or ion beam. Collisional pumping takes place in low magnetic fields, can give polarization transfer approaching 100%, and offers the potential for producing polarized beams orders of magnitude more intense than presently achieved. Recently reported calculations of electronic spin-exchange cross sections at useful ion-source energies suggest significantly greater rates of pumping than first estimated, and give cause for increased optimism about sucessful implementation. Collisional pumping is described, and beam characteristics are given for prototype polarized source parameters.

  5. Electrokinetic pump

    DOEpatents

    Patel, Kamlesh D.

    2007-11-20

    A method for altering the surface properties of a particle bed. In application, the method pertains particularly to an electrokinetic pump configuration where nanoparticles are bonded to the surface of the stationary phase to alter the surface properties of the stationary phase including the surface area and/or the zeta potential and thus improve the efficiency and operating range of these pumps. By functionalizing the nanoparticles to change the zeta potential the electrokinetic pump is rendered capable of operating with working fluids having pH values that can range from 2-10 generally and acidic working fluids in particular. For applications in which the pump is intended to handle highly acidic solutions latex nanoparticles that are quaternary amine functionalized can be used.

  6. A linear dispersion relation for the hybrid kinetic-ion/fluid-electron model of plasma physics

    NASA Astrophysics Data System (ADS)

    Told, D.; Cookmeyer, J.; Astfalk, P.; Jenko, F.

    2016-07-01

    A dispersion relation for a commonly used hybrid model of plasma physics is developed, which combines fully kinetic ions and a massless-electron fluid description. Although this model and variations of it have been used to describe plasma phenomena for about 40 years, to date there exists no general dispersion relation to describe the linear wave physics contained in the model. Previous efforts along these lines are extended here to retain arbitrary wave propagation angles, temperature anisotropy effects, as well as additional terms in the generalized Ohm’s law which determines the electric field. A numerical solver for the dispersion relation is developed, and linear wave physics is benchmarked against solutions of a full Vlasov–Maxwell dispersion relation solver. This work opens the door to a more accurate interpretation of existing and future wave and turbulence simulations using this type of hybrid model.

  7. Numerical investigation of conduction pumping of dielectric liquid film using flush-mounted electrodes

    NASA Astrophysics Data System (ADS)

    Gharraei, Reza; Esmaeilzadeh, Esmaeil; Heirani Nobari, Mohammad Reza

    2014-02-01

    Electrohydrodynamic conduction pumping of dielectric liquid films using flush-mounted electrodes is investigated numerically. Two major factors consisting of the ion mobility difference and electrodes' configuration can affect the conduction pumps. The relative importance of these factors on the hydrodynamic behavior has been studied at different configurations of flush-mounted electrodes for conduction pumping of various dielectric liquids with different electrical properties. Furthermore, the effect of heterocharge layer structure on the hydrodynamic behavior of conduction pump has been studied. The electrical behavior and flow patterns of dielectric liquids with real measured mobilities are compared with the experimental results, and new features of conduction pumping are found. The numerical results indicate that in the various operating conditions, the flow direction is dictated by the dominant factor.

  8. A Simpler Energy Transfer Efficiency Model to Predict Relative Biological Effect for Protons and Heavier Ions

    PubMed Central

    Jones, Bleddyn

    2015-01-01

    The aim of this work is to predict relative biological effectiveness (RBE) for protons and clinically relevant heavier ions, by using a simplified semi-empirical process based on rational expectations and published experimental results using different ion species. The model input parameters are: Z (effective nuclear charge) and radiosensitivity parameters αL and βL of the control low linear energy transfer (LET) radiation. Sequential saturation processes are assumed for: (a) the position of the turnover point (LETU) for the LET–RBE relationship with Z, and (b) the ultimate value of α at this point (αU) being non-linearly related to αL. Using the same procedure for β, on the logical assumption that the changes in β with LET, although smaller than α, are symmetrical with those of α, since there is symmetry of the fall off of LET–RBE curves with increasing dose, which suggests that LETU must be identical for α and β. Then, using iso-effective linear quadratic model equations, the estimated RBE is scaled between αU and αL and between βU and βL from for any input value of Z, αL, βL, and dose. The model described is fitted to the data of Barendsen (alpha particles), Weyrather et al. (carbon ions), and Todd for nine different ions (deuterons to Argon), which include variations in cell surviving fraction and dose. In principle, this new system can be used to complement the more complex methods to predict RBE with LET such as the local effect and MKM models which already have been incorporated into treatment planning systems in various countries. It would be useful to have a secondary check to such systems, especially to alert clinicians of potential risks by relatively easy estimation of relevant RBEs. In clinical practice, LET values smaller than LETU are mostly encountered, but the model extends to higher values beyond LETU for other purposes such as radiation, protection, and astrobiology. Considerable further research is required, perhaps in a

  9. The relation between ion temperature anisotropy and formation of slow shocks in collisionless magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Higashimori, K.; Hoshino, M.

    2012-01-01

    We perform a two-dimensional simulation by using an electromagnetic hybrid code to study the formation of slow-mode shocks in collisionless magnetic reconnection in low beta plasmas, and we focus on the relation between the formation of slow shocks and the ion temperature anisotropy enhanced at the shock downstream region. It is known that as magnetic reconnection develops, the parallel temperature along the magnetic field becomes large in association with the anisotropic plasma sheet boundary layer ion beams, and this temperature anisotropy has a tendency to suppress the formation of slow shocks. On the basis of our simulation result, we found that the slow shock formation is suppressed due to the large temperature anisotropy near the X-type region, but the ion temperature anisotropy relaxes with increasing the distance from the magnetic neutral point. As a result, two pairs of current structures, which are the strong evidence of dissipation of magnetic field in slow shocks, are formed at the distance ∣x∣ ≥ 115 λi from the neutral point.

  10. Effects of Dietary Selenium Against Lead Toxicity Are Related to the Ion Profile in Chicken Muscle.

    PubMed

    Jin, Xi; Liu, Chun Peng; Teng, Xiao Hua; Fu, Jing

    2016-08-01

    Complex antagonistic interactions between Selenium (Se) and heavy metals have been reported in previous studies. However, little is known regarding the effects of Se on lead (Pb)-induced toxicity and the ion profile in the muscles of chickens. In this present study, we fed chickens either Se or Pb or both Se and Pb supplement and later analyzed the concentrations of 26 ions in chicken muscle tissues. We determined that a Se- and Pb-containing diets significantly affected microelements in chicken muscle. Treatment with Se increased the content of Se but resulted in a reduced concentration of Cu, As, Cd, Sn, Hg, and Ba. Treatment with Pb increased concentrations of Ni while reducing those of B, V, Cr, Fe, Co, Cu, Zn, and Mo. Moreover, Se also reduced the concentration of Pb, Zn, Co, Fe, V, and Cr, which in contrast were induced by Pb. Additionally, we also found that synergistic and antagonistic interactions existed between Se and Pb supplementation. Our findings suggested that Se can exert a negative effect on Pb in chicken muscle tissues and may be related to changes in ion profiles. PMID:26743866

  11. Ion bombardment investigations of impregnated cathodes

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaobing; Gaertner, Georg

    2003-06-01

    Ion bombardment is one of the important factors limiting the performance of impregnated cathodes (=Ba dispenser cathodes) in high end television tubes or in colour monitor tubes. Hence, when designing a new gun with, e.g. higher electron beam current density, it is important also to model the influence of ion bombardment. Therefore, relations between basic parameters as a function of temperature need to be known quantitatively. In this paper, the emission slump of impregnated cathodes has been analyzed in a diode configuration in UHV with a differentially pumped Ar ion gun. The emission degeneration during and regeneration periods after ion bombardment have been investigated as function of cathode temperature, ion current and ion energy. One of the important results is, that the degeneration time coefficient is only weakly dependent on ion energy. The data matrix obtained can be used to improve the ion bombardment model applied in new electron gun design.

  12. Mechanistic insights related to the design and construction of lithium single ion conductors

    NASA Astrophysics Data System (ADS)

    Spahlinger, Gregory

    Lithium single ion conductors are a class of electrolytes, typically designed for lithium ion batteries, with the potential to improve the performance of these batteries. The benefits of single ion conductors arise out of the fact that their immobile anions are not capable of concentrating near the anode of the battery, causing an increase in resistance as the battery is discharged. Unfortunately lithium single ion conductors suffer severe drawbacks in their conductivity which have been attributed to diverse causes. Because of the low success rate of single ion conductors in the literature and previous work in the Baker group, I have chosen to investigate mechanistic questions related to the design and construction of these materials, without engineering new materials. An attractive design strategy for the screening of immobile anion moieties for single ion conductors would be the use of the copper catalyzed alkyne azide (CUAAC) "click" reaction in order to efficiently introduce anions onto a polymer or nanoparticle support in a way that is efficient and tunable. A variable added by this strategy would be the presence of a 1,2,3-triazole moiety which is without any significant precedent in the lithium ion electrolyte literature. In order to assess the impact of the triazole in on the conductivity of an electrolyte a series of model compounds were synthesized containing a variable number of triazoles in an otherwise poly(ethylene glycol) like oligomer chain. The model compounds were subjected to differential scanning calorimetry, electrochemical impedance spectroscopy, and in one case single crystal X-ray diffraction, and solvent shells were modeled for lithium with and without triazoles using ab initio quantum chemistry calculations. It was concluded that the triazole is not significantly stronger than an ether oxygen as a ligand in the electrolytes, however the triazole has a substantial dipole which exerts some deleterious effects on the conductivity, leading to

  13. Characterization of the electrogenic sodium pump in cardiac Purkinje fibres

    PubMed Central

    Eisner, D. A.; Lederer, W. J.

    1980-01-01

    1. The Na pump is examined in sheep cardiac Purkinje fibres using a two micro-electrode voltage clamp technique. 2. After reducing the external K concentration, [K]o, to zero for 2 min or more, subsequent addition of an `activator cation' (known to activate the Na pump in other preparations) produces a transient increase of outward current. This outward current transient is abolished by 10-5 M-strophanthidin (cf. Gadsby & Cranefield, 1979a). 3. It is concluded that this transient increase of outward current is a result of a transient stimulation of the sodium pump by the raised [Na]i following exposure to 0-Ko. Although this current transient may reflect the activity of an electrogenic Na pump, it is difficult to use K as the activator cation to establish this point. This is due to the extracellular K depletion that occurs during Na pump reactivation and the subsequent change that this K depletion produces in the current—voltage relationship of the Purkinje fibre. 4. Rbo or Cso have been used instead of Ko to reactivate the Na pump when examining the transient increase of outward current. On adding either of these cations after exposing a preparation to a solution without such `activator cations', the outward current transient is relatively voltage independent over a wide range of potentials (-90 to +10 mV). It is concluded that, following the addition of Rbo or Cso, the transient increase of outward current is a direct measure of the transient increase of the electrogenic Na pump current. 5. Increasing [Rb]o or [Cs]o over the range of 0-40 mM increases the rate of decay of the electrogenic Na pump current transient. Using a simple model (cf. Rang & Ritchie, 1968), it is shown that the decay rate constant of the electrogenic Na pump current transient is a good measure of the degree of activation of the external site of the Na pump. At a given concentration of activator cation, Rbo produces a greater activation of the Na pump than does Cso. The K0.5 for Rbo is 6

  14. AUTOMATED DETERMINATION OF PRECURSOR ION, PRODUCT ION, AND NEUTRAL LOSS COMPOSITIONS AND DECONVOLUTION OF COMPOSITE MASS SPECTRA USING ION CORRELATION BASED ON EXACT MASSES AND RELATIVE ISOTOPIC ABUNDANCES

    EPA Science Inventory

    After a dispersive event, rapid determination of elemental compositions of ions in mass spectra is essential for tentatively identifying compounds. A Direct Analysis in Real Time (DART)® ion source interfaced to a JEOL AccuTOF® mass spectrometer provided exact masses accurate to ...

  15. PLT rotating pumped limiter

    SciTech Connect

    Cohen, S.A.; Budny, R.V.; Corso, V.; Boychuck, J.; Grisham, L.; Heifetz, D.; Hosea, J.; Luyber, S.; Loprest, P.; Manos, D.

    1984-07-01

    A limiter with a specially contoured front face and the ability to rotate during tokamak discharges has been installed in a PLT pump duct. These features have been selected to handle the unique particle removal and heat load requirements of ICRF heating and lower-hybrid current-drive experiments. The limiter has been conditioned and commissioned in an ion-beam test stand by irradiation with 1 MW power, 200 ms duration beams of 40 keV hydrogen ions. Operation in PLT during ohmic discharges has proven the ability of the limiter to reduce localized heating caused by energetic electron bombardment and to remove about 2% of the ions lost to the PLT walls and limiters.

  16. High power impulse magnetron sputtering and related discharges: scalable plasma sources for plasma-based ion implantation and deposition

    SciTech Connect

    Anders, Andre

    2009-09-01

    High power impulse magnetron sputtering (HIPIMS) and related self-sputtering techniques are reviewed from a viewpoint of plasma-based ion implantation and deposition (PBII&D). HIPIMS combines the classical, scalable sputtering technology with pulsed power, which is an elegant way of ionizing the sputtered atoms. Related approaches, such as sustained self-sputtering, are also considered. The resulting intense flux of ions to the substrate consists of a mixture of metal and gas ions when using a process gas, or of metal ions only when using `gasless? or pure self-sputtering. In many respects, processing with HIPIMS plasmas is similar to processing with filtered cathodic arc plasmas, though the former is easier to scale to large areas. Both ion implantation and etching (high bias voltage, without deposition) and thin film deposition (low bias, or bias of low duty cycle) have been demonstrated.

  17. A model for the relative intensities among ion pair → valence transitions in the heavier halogens and rare gas halides

    NASA Astrophysics Data System (ADS)

    Jewsbury, Philip; Lawley, Kenneth

    1990-03-01

    The separated atom or ( JAMAJBMB) coupling scheme is applied to the electronic structure of both ion pair and valence states of the heavier halogens and rare gas halides. Relative transition moments from low vibrational levels of selected ion pair states to all the valence states and the resulting radiative lifetimes are derived. σ↔σ electron transfer between atomic orbitals is assumed for parallel transitions. Russell-Saunders coupling is used for the atomic or ionic basis functions in the reference model. Departures from the model arising from partial jj coupling in the halogen positive ions and from intramolecular electrostatic effects each produce characteristic changes in the relative intensities of the various fluorescent systems from a given ion pair state. The effect of J and MJ state mixing between asymptotically degenerate valence states is discussed and ion pair → valence transition intensities are shown to be a sensitive function of this mixing.

  18. Electrokinetic pump

    DOEpatents

    Hencken, Kenneth R.; Sartor, George B.

    2004-08-03

    An electrokinetic pump in which the porous dielectric medium of conventional electrokinetic pumps is replaced by a patterned microstructure. The patterned microstructure is fabricated by lithographic patterning and etching of a substrate and is formed by features arranged so as to create an array of microchannels. The microchannels have dimensions on the order of the pore spacing in a conventional porous dielectric medium. Embedded unitary electrodes are vapor deposited on either end of the channel structure to provide the electric field necessary for electroosmotic flow.

  19. DIFFUSION PUMP

    DOEpatents

    Levenson, L.

    1963-09-01

    A high-vacuum diffusion pump is described, featuring a novel housing geometry for enhancing pumping speed. An upright, cylindrical lower housing portion is surmounted by a concentric, upright, cylindrical upper housing portion of substantially larger diameter; an uppermost nozzle, disposed concentrically within the upper portion, is adapted to eject downwardly a conical sheet of liquid outwardly to impinge upon the uppermost extremity of the interior wall of the lower portion. Preferably this nozzle is mounted upon a pedestal rising coaxially from within the lower portion and projecting up into said upper portion. (AEC)

  20. Dispersion relation of electrostatic ion cyclotron waves in multi-component magneto-plasma

    SciTech Connect

    Khaira, Vibhooti Ahirwar, G.

    2015-07-31

    Electrostatic ion cyclotron waves in multi component plasma composed of electrons (denoted by e{sup −}), hydrogen ions (denoted by H{sup +}), helium ions (denoted by He{sup +}) and positively charged oxygen ions (denoted by O{sup +})in magnetized cold plasma. The wave is assumed to propagate perpendicular to the static magnetic field. It is found that the addition of heavy ions in the plasma dispersion modified the lower hybrid mode and also allowed an ion-ion mode. The frequencies of the lower hybrid and ion- ion hybrid modes are derived using cold plasma theory. It is observed that the effect of multi-ionfor different plasma densities on electrostatic ion cyclotron waves is to enhance the wave frequencies. The results are interpreted for the magnetosphere has been applied parameters by auroral acceleration region.

  1. An Alternating Current Electroosmotic Pump Based on Conical Nanopore Membranes.

    PubMed

    Wu, Xiaojian; Ramiah Rajasekaran, Pradeep; Martin, Charles R

    2016-04-26

    Electroosmotic flow (EOF) is used to pump solutions through microfluidic devices and capillary electrophoresis columns. We describe here an EOF pump based on membrane EOF rectification, an electrokinetic phenomenon we recently described. EOF rectification requires membranes with asymmetrically shaped pores, and conical pores in a polymeric membrane were used here. We show here that solution flow through the membrane can be achieved by applying a symmetrical sinusoidal voltage waveform across the membrane. This is possible because the alternating current (AC) carried by ions through the pore is rectified, and we previously showed that rectified currents yield EOF rectification. We have investigated the effect of both the magnitude and frequency of the voltage waveform on flow rate through the membrane, and we have measured the maximum operating pressure. Finally, we show that operating in AC mode offers potential advantages relative to conventional DC-mode EOF pumps. PMID:27046145

  2. Multi-dimensional TOF-SIMS analysis for effective profiling of disease-related ions from the tissue surface

    PubMed Central

    Park, Ji-Won; Jeong, Hyobin; Kang, Byeongsoo; Kim, Su Jin; Park, Sang Yoon; Kang, Sokbom; Kim, Hark Kyun; Choi, Joon Sig; Hwang, Daehee; Lee, Tae Geol

    2015-01-01

    Time-of-flight secondary ion mass spectrometry (TOF-SIMS) emerges as a promising tool to identify the ions (small molecules) indicative of disease states from the surface of patient tissues. In TOF-SIMS analysis, an enhanced ionization of surface molecules is critical to increase the number of detected ions. Several methods have been developed to enhance ionization capability. However, how these methods improve identification of disease-related ions has not been systematically explored. Here, we present a multi-dimensional SIMS (MD-SIMS) that combines conventional TOF-SIMS and metal-assisted SIMS (MetA-SIMS). Using this approach, we analyzed cancer and adjacent normal tissues first by TOF-SIMS and subsequently by MetA-SIMS. In total, TOF- and MetA-SIMS detected 632 and 959 ions, respectively. Among them, 426 were commonly detected by both methods, while 206 and 533 were detected uniquely by TOF- and MetA-SIMS, respectively. Of the 426 commonly detected ions, 250 increased in their intensities by MetA-SIMS, whereas 176 decreased. The integrated analysis of the ions detected by the two methods resulted in an increased number of discriminatory ions leading to an enhanced separation between cancer and normal tissues. Therefore, the results show that MD-SIMS can be a useful approach to provide a comprehensive list of discriminatory ions indicative of disease states. PMID:26046669

  3. Linear and nonlinear physics of the magnetoacoustic cyclotron instability of fusion-born ions in relation to ion cyclotron emission

    NASA Astrophysics Data System (ADS)

    Carbajal, L.; Dendy, R. O.; Chapman, S. C.; Cook, J. W. S.

    2014-01-01

    The magnetoacoustic cyclotron instability (MCI) probably underlies observations of ion cyclotron emission (ICE) from energetic ion populations in tokamak plasmas, including fusion-born alpha-particles in JET and TFTR [Dendy et al., Nucl. Fusion 35, 1733 (1995)]. ICE is a potential diagnostic for lost alpha-particles in ITER; furthermore, the MCI is representative of a class of collective instabilities, which may result in the partial channelling of the free energy of energetic ions into radiation, and away from collisional heating of the plasma. Deep understanding of the MCI is thus of substantial practical interest for fusion, and the hybrid approximation for the plasma, where ions are treated as particles and electrons as a neutralising massless fluid, offers an attractive way forward. The hybrid simulations presented here access MCI physics that arises on timescales longer than can be addressed by fully kinetic particle-in-cell simulations and by analytical linear theory, which the present simulations largely corroborate. Our results go further than previous studies by entering into the nonlinear stage of the MCI, which shows novel features. These include stronger drive at low cyclotron harmonics, the re-energisation of the alpha-particle population, self-modulation of the phase shift between the electrostatic and electromagnetic components, and coupling between low and high frequency modes of the excited electromagnetic field.

  4. Linear and nonlinear physics of the magnetoacoustic cyclotron instability of fusion-born ions in relation to ion cyclotron emission

    SciTech Connect

    Carbajal, L. Cook, J. W. S.; Dendy, R. O.; Chapman, S. C.

    2014-01-15

    The magnetoacoustic cyclotron instability (MCI) probably underlies observations of ion cyclotron emission (ICE) from energetic ion populations in tokamak plasmas, including fusion-born alpha-particles in JET and TFTR [Dendy et al., Nucl. Fusion 35, 1733 (1995)]. ICE is a potential diagnostic for lost alpha-particles in ITER; furthermore, the MCI is representative of a class of collective instabilities, which may result in the partial channelling of the free energy of energetic ions into radiation, and away from collisional heating of the plasma. Deep understanding of the MCI is thus of substantial practical interest for fusion, and the hybrid approximation for the plasma, where ions are treated as particles and electrons as a neutralising massless fluid, offers an attractive way forward. The hybrid simulations presented here access MCI physics that arises on timescales longer than can be addressed by fully kinetic particle-in-cell simulations and by analytical linear theory, which the present simulations largely corroborate. Our results go further than previous studies by entering into the nonlinear stage of the MCI, which shows novel features. These include stronger drive at low cyclotron harmonics, the re-energisation of the alpha-particle population, self-modulation of the phase shift between the electrostatic and electromagnetic components, and coupling between low and high frequency modes of the excited electromagnetic field.

  5. Thermally Actuated Hydraulic Pumps

    NASA Technical Reports Server (NTRS)

    Jones, Jack; Ross, Ronald; Chao, Yi

    2008-01-01

    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  6. Characterization of a Cyanobacterial Chloride-pumping Rhodopsin and Its Conversion into a Proton Pump.

    PubMed

    Hasemi, Takatoshi; Kikukawa, Takashi; Kamo, Naoki; Demura, Makoto

    2016-01-01

    Light-driven ion-pumping rhodopsins are widely distributed in microorganisms and are now classified into the categories of outward H(+) and Na(+) pumps and an inward Cl(-) pump. These different types share a common protein architecture and utilize the photoisomerization of the same chromophore, retinal, to evoke photoreactions. Despite these similarities, successful pump-to-pump conversion had been confined to only the H(+) pump bacteriorhodopsin, which was converted to a Cl(-) pump in 1995 by a single amino acid replacement. In this study we report the first success of the reverse conversion from a Cl(-) pump to a H(+) pump. A novel microbial rhodopsin (MrHR) from the cyanobacterium Mastigocladopsis repens functions as a Cl(-) pump and belongs to a cluster that is far distant from the known Cl(-) pumps. With a single amino acid replacement, MrHR is converted to a H(+) pump in which dissociable residues function almost completely in the H(+) relay reactions. MrHR most likely evolved from a H(+) pump, but it has not yet been highly optimized into a mature Cl(-) pump. PMID:26578511

  7. Parametric dependence of ion temperature and relative density in the NASA Lewis SUMMA facility. [superconducting magnetic mirror

    NASA Technical Reports Server (NTRS)

    Snyder, A.; Lauver, M. R.; Patch, R. W.

    1976-01-01

    Further hot-ion plasma experiments were conducted in the SUMMA superconducting magnetic mirror facility. A steady-state ExB plasma was formed by applying a strong radially inward dc electric field between cylindrical anodes and hollow cathodes located near the magnetic mirror maxima. Extending the use of water cooling to the hollow cathodes, in addition to the anodes, resulted in higher maximum power input to the plasma. Steady-state hydrogen plasmas with ion kinetic temperatures as high as 830 eV were produced. Functional relations were obtained empirically among the plasma current, voltage, magnetic flux density, ion temperature, and relative ion density. The functional relations were deduced by use of a multiple correlation analysis. Data were obtained for midplane magnetic fields from 0.5 to 3.37 tesla and input power up to 45 kW. Also, initial absolute electron density measurements are reported from a 90 deg Thomson scattering laser system.

  8. Relative Advantages of Direct and Indirect Drive for an Inertial Fusion Energy Power Plant Driven by a Diode-Pumped Solid-State Laser

    SciTech Connect

    Orth, C.D.

    2001-03-06

    This paper reviews our current understanding of the relative advantages of direct drive (DD) and indirect drive (ID) for a 1 GWe inertial fusion energy (IFE) power plant driven by a diode-pumped solid-state laser (DPSSL). This comparison is motivated by a recent study (1) that shows that the projected cost of electricity (COE) for DD is actually about the same as that for ID even though the target gain for DD can be much larger. We can therefore no longer assume that DD is the ultimate targeting scenario for IFE, and must begin a more rigorous comparison of these two drive options. The comparison begun here shows that ID may actually end up being preferred, but the uncertainties are still rather large.

  9. 18. Electrically driven pumps in Armory Street Pump House. Pumps ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Electrically driven pumps in Armory Street Pump House. Pumps in background formerly drew water from the clear well. They went out of service when use of the beds was discontinued. Pumps in the foreground provide high pressure water to Hamden. - Lake Whitney Water Filtration Plant, Armory Street Pumphouse, North side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  10. SELF-CONSISTENT ION CYCLOTRON ANISOTROPY-BETA RELATION FOR SOLAR WIND PROTONS

    SciTech Connect

    Isenberg, Philip A.; Maruca, Bennett A.; Kasper, Justin C. E-mail: bmaruca@ssl.berkeley.edu

    2013-08-20

    We derive a set of self-consistent marginally stable states for a system of ion-cyclotron waves propagating parallel to the large-scale magnetic field through a homogeneous proton-electron plasma. The proton distributions and the wave dispersions are related through the condition that no further ion-cyclotron resonant particle scattering or wave growth/damping may take place. The thermal anisotropy of the protons in these states therefore defines the threshold value for triggering the proton-cyclotron anisotropy instability. A number of recent papers have noted that the anisotropy of solar wind protons at 1 AU does not seem to be limited by the proton-cyclotron anisotropy threshold, even at low plasma beta. However, this puzzle seems to be due solely to the estimation of this anisotropy threshold under the assumption that the protons have a bi-Maxwellian distribution. We note that bi-Maxwellian distributions are never marginally stable to the resonant cyclotron interaction, so these estimates do not represent physically valid thresholds. The threshold anisotropies obtained from our marginally stable states are much larger, as a function of proton parallel beta, than the bi-Maxwellian estimates, and we show that the measured data remains below these more rigorous thresholds. Thus, the results of this paper resolve the apparent contradiction presented by the solar wind anisotropy observations at 1 AU: the bi-Maxwellian anisotropies are not rigorous thresholds, and so do not limit the proton distributions in the solar wind.