Sample records for ion recognition impedance

  1. Heteroditopic receptors for ion-pair recognition.

    PubMed

    McConnell, Anna J; Beer, Paul D

    2012-05-21

    Ion-pair recognition is a new field of research emerging from cation and anion coordination chemistry. Specific types of heteroditopic receptor designs for ion pairs and the complexity of ion-pair binding are discussed to illustrate key concepts such as cooperativity. The importance of this area of research is reflected by the wide variety of potential applications of ion-pair receptors, including applications as membrane transport and salt solubilization agents and sensors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Transverse impedances and collective instabilities in a heavy ion accelerator

    NASA Astrophysics Data System (ADS)

    Liu, J.; Yang, J. C.; Xia, J. W.; Yin, D. Y.; Shen, G. D.; Li, P.; Wu, B.; Ruan, S.; Zhao, H.; Wang, G.; Dong, Z. Q.; Wang, K. D.; Yao, L. P.

    2018-06-01

    Evaluation of transverse impedances and collective instabilities is important for determining whether a transverse feedback system or damping schemes should be prepared in the BRing (Booster Ring) at the HIAF (High Intensity Heavy-ion Accelerator Facility). In this paper, some dominant transverse impedances are estimated to build a transverse impedance model of the BRing. With this model, all potential transverse instabilities and their growth times or rates are analyzed by analytical methods or simulations, and the results agree with each other. The growth times of some instabilities are shorter than the duration times of corresponding manipulations, which shows transverse instabilities may have many detrimental impacts on the BRing. To cure the transverse instabilities, a transverse feedback system will be proposed in the design of the BRing. Besides, this paper not only shows the transverse instabilities in the BRing, but also provides the whole method for estimating them in the design of a new accelerator facility.

  3. Molecular recognition of organic ammonium ions in solution using synthetic receptors

    PubMed Central

    Späth, Andreas

    2010-01-01

    Summary Ammonium ions are ubiquitous in chemistry and molecular biology. Considerable efforts have been undertaken to develop synthetic receptors for their selective molecular recognition. The type of host compounds for organic ammonium ion binding span a wide range from crown ethers to calixarenes to metal complexes. Typical intermolecular interactions are hydrogen bonds, electrostatic and cation–π interactions, hydrophobic interactions or reversible covalent bond formation. In this review we discuss the different classes of synthetic receptors for organic ammonium ion recognition and illustrate the scope and limitations of each class with selected examples from the recent literature. The molecular recognition of ammonium ions in amino acids is included and the enantioselective binding of chiral ammonium ions by synthetic receptors is also covered. In our conclusion we compare the strengths and weaknesses of the different types of ammonium ion receptors which may help to select the best approach for specific applications. PMID:20502608

  4. A new lithium-ion battery internal temperature on-line estimate method based on electrochemical impedance spectroscopy measurement

    NASA Astrophysics Data System (ADS)

    Zhu, J. G.; Sun, Z. C.; Wei, X. Z.; Dai, H. F.

    2015-01-01

    The power battery thermal management problem in EV (electric vehicle) and HEV (hybrid electric vehicle) has been widely discussed, and EIS (electrochemical impedance spectroscopy) is an effective experimental method to test and estimate the status of the battery. Firstly, an electrochemical-based impedance matrix analysis for lithium-ion battery is developed to describe the impedance response of electrochemical impedance spectroscopy. Then a method, based on electrochemical impedance spectroscopy measurement, has been proposed to estimate the internal temperature of power lithium-ion battery by analyzing the phase shift and magnitude of impedance at different ambient temperatures. Respectively, the SoC (state of charge) and temperature have different effects on the impedance characteristics of battery at various frequency ranges in the electrochemical impedance spectroscopy experimental study. Also the impedance spectrum affected by SoH (state of health) is discussed in the paper preliminary. Therefore, the excitation frequency selected to estimate the inner temperature is in the frequency range which is significantly influenced by temperature without the SoC and SoH. The intrinsic relationship between the phase shift and temperature is established under the chosen excitation frequency. And the magnitude of impedance related to temperature is studied in the paper. In practical applications, through obtaining the phase shift and magnitude of impedance, the inner temperature estimation could be achieved. Then the verification experiments are conduced to validate the estimate method. Finally, an estimate strategy and an on-line estimation system implementation scheme utilizing battery management system are presented to describe the engineering value.

  5. Wavelet transformation to determine impedance spectra of lithium-ion rechargeable battery

    NASA Astrophysics Data System (ADS)

    Hoshi, Yoshinao; Yakabe, Natsuki; Isobe, Koichiro; Saito, Toshiki; Shitanda, Isao; Itagaki, Masayuki

    2016-05-01

    A new analytical method is proposed to determine the electrochemical impedance of lithium-ion rechargeable batteries (LIRB) from time domain data by wavelet transformation (WT). The WT is a waveform analysis method that can transform data in the time domain to the frequency domain while retaining time information. In this transformation, the frequency domain data are obtained by the convolution integral of a mother wavelet and original time domain data. A complex Morlet mother wavelet (CMMW) is used to obtain the complex number data in the frequency domain. The CMMW is expressed by combining a Gaussian function and sinusoidal term. The theory to select a set of suitable conditions for variables and constants related to the CMMW, i.e., band, scale, and time parameters, is established by determining impedance spectra from wavelet coefficients using input voltage to the equivalent circuit and the output current. The impedance spectrum of LIRB determined by WT agrees well with that measured using a frequency response analyzer.

  6. A simplified fractional order impedance model and parameter identification method for lithium-ion batteries

    PubMed Central

    Yang, Qingxia; Xu, Jun; Cao, Binggang; Li, Xiuqing

    2017-01-01

    Identification of internal parameters of lithium-ion batteries is a useful tool to evaluate battery performance, and requires an effective model and algorithm. Based on the least square genetic algorithm, a simplified fractional order impedance model for lithium-ion batteries and the corresponding parameter identification method were developed. The simplified model was derived from the analysis of the electrochemical impedance spectroscopy data and the transient response of lithium-ion batteries with different states of charge. In order to identify the parameters of the model, an equivalent tracking system was established, and the method of least square genetic algorithm was applied using the time-domain test data. Experiments and computer simulations were carried out to verify the effectiveness and accuracy of the proposed model and parameter identification method. Compared with a second-order resistance-capacitance (2-RC) model and recursive least squares method, small tracing voltage fluctuations were observed. The maximum battery voltage tracing error for the proposed model and parameter identification method is within 0.5%; this demonstrates the good performance of the model and the efficiency of the least square genetic algorithm to estimate the internal parameters of lithium-ion batteries. PMID:28212405

  7. State of charge classification for lithium-ion batteries using impedance based features

    NASA Astrophysics Data System (ADS)

    Patrik Felder, Marian; Götze, Jürgen

    2017-09-01

    Currently, the electrification of the drive train of passenger cars takes place, and the task of obtaining precise knowledge about the condition of the on board batteries gains importance. Due to a flat open circuit voltage (OCV) to state of charge (SoC) characteristic of lithium ion batteries, methods employed in applications with other cell chemistries cannot be adapted. Exploiting the higher significance of the impedance for state estimation for that chemistry, new impedance based features are proposed by this work. To evaluate the suitability of these features, simulations have been conducted using a simplified on-board power supply net as excitation source. The simulation outcome has been investigated regarding the cross correlation factor rxy and in a polynomial regression scenario. The results of the simulations show a best case error below 1 % SoC, which is 3 percentage points lower than using terminal voltage and impedance. When increasing the measurement uncertainty, the difference remains around 2 percent points.

  8. Effect of electrolyte composition on initial cycling and impedance characteristics of lithium-ion cells

    NASA Astrophysics Data System (ADS)

    Abraham, D. P.; Furczon, M. M.; Kang, S.-H.; Dees, D. W.; Jansen, A. N.

    Hybrid-electric vehicles require lithium-battery electrolytes that form stable, low impedance passivation layers to protect the electrodes, while allowing rapid lithium-ion transport under high current charge/discharge pulses. In this article, we describe data acquired on cells containing LiNi 0.8Co 0.15Al 0.05O 2-based positive electrodes, graphite-based negative electrodes, and electrolytes with lithium hexafluorophosphate (LiPF 6), lithium tetrafluoroborate (LiBF 4), lithium bis(oxalato)borate (LiBOB) and lithium difluoro(oxalato) borate (LiF 2OB) salts. The impedance data were collected in cells containing a Li-Sn reference electrode to determine effect of electrolyte composition and testing temperature on individual electrode impedance. The full cell impedance data showed the following trend: LiBOB > LiBF 4 > LiF 2OB > LiPF 6. The negative electrode impedance showed a trend similar to that of the full cell; this electrode was the main contributor to impedance in the LiBOB and LiBF 4 cells. The positive electrode impedance values for the LiBF 4, LiF 2OB, and LiPF 6 cells were comparable; the values were somewhat higher for the LiBOB cell. Cycling and impedance data were also obtained for cells containing additions of LiBF 4, LiBOB, LiF 2OB, and vinylene carbonate (VC) to the EC:EMC (3:7 by wt.) + 1.2 M LiPF 6 electrolyte. Our data indicate that the composition and morphology of the graphite SEI formed during the first lithiation cycle is an important determinant of the negative electrode impedance, and hence full cell impedance.

  9. Electromagnetic Particle-In-Cell simulation on the impedance of a dipole antenna surrounded by an ion sheath

    NASA Astrophysics Data System (ADS)

    Miyake, Y.; Usui, H.; Kojima, H.; Omura, Y.; Matsumoto, H.

    2008-06-01

    We have newly developed a numerical tool for the analysis of antenna impedance in plasma environment by making use of electromagnetic Particle-In-Cell (PIC) plasma simulations. To validate the developed tool, we first examined the antenna impedance in a homogeneous kinetic plasma and confirmed that the obtained results basically agree with the conventional theories. We next applied the tool to examine an ion-sheathed dipole antenna. The results confirmed that the inclusion of the ion-sheath effects reduces the capacitance below the electron plasma frequency. The results also revealed that the signature of impedance resonance observed at the plasma frequency is modified by the presence of the sheath. Since the sheath dynamics can be solved by the PIC scheme throughout the antenna analysis in a self-consistent manner, the developed tool has feasibility to perform more practical and complicated antenna analyses that will be necessary in real space missions.

  10. Electrochemical impedance study of the interaction of metal ions with unlabeled PNA.

    PubMed

    Gao, Lan; Li, Congjuan; Li, Xiaohong; Kraatz, Heinz-Bernhard

    2010-09-14

    The interactions of the metal ions Mg(2+), Zn(2+), Ni(2+), and Co(2+) with thin films of peptide nucleic acids (PNAs) were studied by electrochemical impedance spectroscopy (EIS), and the results show that Zn(2+), Ni(2+) and Co(2+) interacted favorably with the PNA film involving the backbone and the nucleobases with the exception of Mg(2+) for which the interaction with the backbone appears to be dominant.

  11. Lithium Ion Recognition with Nanofluidic Diodes through Host-Guest Complexation in Confined Geometries.

    PubMed

    Ali, Mubarak; Ahmed, Ishtiaq; Ramirez, Patricio; Nasir, Saima; Mafe, Salvador; Niemeyer, Christof M; Ensinger, Wolfgang

    2018-05-15

    The lithium ion recognition is receiving significant attention because of its application in pharmaceuticals, lubricants and, especially, in energy technology. We present a nanofluidic device for specific lithium ion recognition via host-guest complexation in a confined environment. A lithium-selective receptor molecule, the aminoethyl-benzo-12-crown-4 (BC12C4-NH 2 ), is designed and functionalized on single conical nanopores in polyethylene terephthalate (PET) membranes. The native carboxylic acid groups on the pore walls are covalently linked with the crown ether moieties and the process is monitored from the changes in the current-voltage ( I- V) curves. The B12-crown-4 moieties are known to specifically bind with lithium ions and when the modified pore is exposed to different alkali metal chloride solutions separately, significant changes in the ion current and rectification are only observed for lithium chloride. This fact suggests the generation of positively charged B12C4-Li + complexes on the pore surface. Furthermore, the nanofluidic diode is able to recognize the lithium ion even in the presence of high concentrations of potassium ions in the external electrolyte solution. Thus, this nanodevice suggests a strategy to miniaturize nanofluidic porous systems for efficient recognition, extraction, and separation of lithium from raw materials.

  12. The salen based chemosensors for highly selective recognition of Zn2+ ion.

    PubMed

    Zhu, Wenkai; Du, LongChao; Li, Wensheng; Zuo, Jinyan; Shan, Jingrui

    2018-06-03

    Two novel salen based chemosensors have been successfully synthesized. UV-vis absorption, fluorescence emission spectroscopy and cyclic voltammetry (CV) were exploited to investigate their recognition toward various metal ions, including Na + , K + , Mg 2+ , Al 3+ , Zn 2+ , Ag + , Pb 2+ , Co 2+ , Li + , Ba 2+ , Ca 2+ , Cd 2+ , La 3+ , Cu 2+ and Mn 2+ ions. The results indicated that the sensor L1 and L2 exhibited highly selective and sensitive recognition for Zn 2+ ions. The binding stoichiometry ratio of L1-Zn 2+ /L2-Zn 2+ were recognized as 4:1 by the method of Job's plot. Meanwhile, this investigation is confirmed by 1 H NMR. These results indicated that L1 and L2 can be applied as chemosensor for the detection of Zn 2+ ion. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Impedance Analysis of Ion Transport Through Supported Lipid Membranes Doped with Ionophores: A New Kinetic Approach

    PubMed Central

    Alvarez, P. E.; Vallejo, A. E.

    2008-01-01

    Kinetics of facilitated ion transport through planar bilayer membranes are normally analyzed by electrical conductance methods. The additional use of electrical relaxation techniques, such as voltage jump, is necessary to evaluate individual rate constants. Although electrochemical impedance spectroscopy is recognized as the most powerful of the available electric relaxation techniques, it has rarely been used in connection with these kinetic studies. According to the new approach presented in this work, three steps were followed. First, a kinetic model was proposed that has the distinct quality of being general, i.e., it properly describes both carrier and channel mechanisms of ion transport. Second, the state equations for steady-state and for impedance experiments were derived, exhibiting the input–output representation pertaining to the model’s structure. With the application of a method based on the similarity transformation approach, it was possible to check that the proposed mechanism is distinguishable, i.e., no other model with a different structure exhibits the same input–output behavior for any input as the original. Additionally, the method allowed us to check whether the proposed model is globally identifiable (i.e., whether there is a single set of fit parameters for the model) when analyzed in terms of its impedance response. Thus, our model does not represent a theoretical interpretation of the experimental impedance but rather constitutes the prerequisite to select this type of experiment in order to obtain optimal kinetic identification of the system. Finally, impedance measurements were performed and the results were fitted to the proposed theoretical model in order to obtain the kinetic parameters of the system. The successful application of this approach is exemplified with results obtained for valinomycin–K+ in lipid bilayers supported onto gold substrates, i.e., an arrangement capable of emulating biological membranes. PMID:19669528

  14. Novel heavy-metal adsorption material: ion-recognition P(NIPAM-co-BCAm) hydrogels for removal of lead(II) ions.

    PubMed

    Ju, Xiao-Jie; Zhang, Shi-Bo; Zhou, Ming-Yu; Xie, Rui; Yang, Lihua; Chu, Liang-Yin

    2009-08-15

    A novel polymeric lead(II) adsorbent is prepared by incorporating benzo-18-crown-6-acrylamide (BCAm) as metal ion receptor into the thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) hydrogel. Both stimuli-sensitive properties and the Pb(2+)-adsorption capabilities of the prepared P(NIPAM-co-BCAm) hydrogels are investigated. The prepared P(NIPAM-co-BCAm) hydrogels exhibit good ion-recognition and Pb(2+)-adsorption characteristics. When crown ether units capture Pb(2+) and form BCAm/Pb(2+) host-guest complexes, the lower critical solution temperature (LCST) of the hydrogel shifts to a higher temperature due to both the repulsion among charged BCAm/Pb(2+) groups and the osmotic pressure within the hydrogel. The adsorption results at different temperatures show that P(NIPAM-co-BCAm) hydrogels adsorb Pb(2+) ions at temperature lower than the LCST, but undergo desorption at temperature higher than the LCST due to the "stretch-to-shrink" configuration change of copolymer networks which is triggered by the change in environmental temperature. This kind of ion-recognition hydrogel is promising as a novel adsorption material for adsorption and separation of Pb(2+) ions. The adsorption and desorption of Pb(2+) could be rationally achieved by simply changing the environmental temperature.

  15. Exploiting enzyme catalysis in ultra-low ion strength media for impedance biosensing of avian influenza virus using a bare interdigitated electrode.

    PubMed

    Fu, Yingchun; Callaway, Zachary; Lum, Jacob; Wang, Ronghui; Lin, Jianhan; Li, Yanbin

    2014-02-18

    Enzyme catalysis is broadly used in various fields but generally applied in media with high ion strength. Here, we propose the exploitation of enzymatic catalysis in ultra-low ion strength media to induce ion strength increase for developing a novel impedance biosensing method. Avian influenza virus H5N1, a serious worldwide threat to poultry and human health, was adopted as the analyte. Magnetic beads were modified with H5N1-specific aptamer to capture the H5N1 virus. This was followed by binding concanavalin A (ConA), glucose oxidase (GOx), and Au nanoparticles (AuNPs) to create bionanocomposites through a ConA-glycan interaction. The yielded sandwich complex was transferred to a glucose solution to trigger an enzymatic reaction to produce gluconic acid, which ionized to increase the ion strength of the solution, thus decreasing the impedance on a screen-printed interdigitated array electrode. This method took advantages of the high efficiency of enzymatic catalysis and the high susceptibility of electrochemical impedance on the ion strength and endowed the biosensor with high sensitivity and a detection limit of 8 × 10(-4) HAU in 200 μL sample, which was magnitudes lower than that of some analogues based on biosensing methods. Furthermore, the proposed method required only a bare electrode for measurements of ion strength change and had negligible change on the surficial properties of the electrode, though some modification of magnetic beads/Au nanoparticles and the construction of a sandwich complex were still needed. This helped to avoid the drawbacks of commonly used electrode immobilization methods. The merit for this method makes it highly useful and promising for applications. The proposed method may create new possibilities in the broad and well-developed enzymatic catalysis fields and find applications in developing sensitive, rapid, low-cost, and easy-to-operate biosensing and biocatalysis devices.

  16. Original implementation of Electrochemical Impedance Spectroscopy (EIS) in symmetric cells: Evaluation of post-mortem protocols applied to characterize electrode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Gordon, Isabel Jiménez; Genies, Sylvie; Si Larbi, Gregory; Boulineau, Adrien; Daniel, Lise; Alias, Mélanie

    2016-03-01

    Understanding ageing mechanisms of Li-ion batteries is essential for further optimizations. To determine performance loss causes, post-mortem analyses are commonly applied. For each type of post-mortem test, different sample preparation protocols are adopted. However, reports on the reliability of these protocols are rare. Herein, Li-ion pouch cells with LiNi1/3Mn1/3Co1/3O2 - polyvinylidene fluoride positive electrode, graphite-carboxymethyl cellulose-styrene rubber negative electrode and LiPF6 - carbonate solvents mixture electrolyte, are opened and electrodes are recovered following a specified protocol. Negative and positive symmetric cells are assembled and their impedances are recorded. A signal analysis is applied to reconstruct the Li-ion pouch cell impedance from the symmetric cells, then comparison against the pouch cell true impedance allows the evaluation of the sample preparation protocols. The results are endorsed by Transmission Electronic Microscopy (TEM) and Gas Chromatography - Mass Spectrometry (GC-MS) analyses. Carbonate solvents used to remove the salt impacts slightly the surface properties of both electrodes. Drying electrodes under vacuum at 25 °C produces an impedance increase, particularly very marked for the positive electrode. Drying at 50 °C under vacuum or/and exposition to the anhydrous room atmosphere is very detrimental.

  17. Operation of a high impedance applied-B extraction ion diode on the SABRE positive polarity linear induction accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, D.L.; Cuneo, M.E.; McKay, P.F.

    We present results from initial experiments with a high impedance applied-B extraction diode on the SABRE ten stage linear induction accelerator (6.7 MV, 300 kA). We have demonstrated efficient coupling of power from the accelerator through an extended MITL (Magnetically Insulated Transmission Line) into a high intensity ion beam. Both MITL electron flow in the diode region and ion diode behavior, including ion source turn-on, virtual cathode formation and evolution, enhancement delay, and ion coupling efficiency, are strongly influenced by the geometry of the diode insulating magnetic field. For our present diode electrode geometry, electrons from the diode feed stronglymore » influence the evolution of the virtual cathode. Both experimental data and particle-in-cell numerical simulations show that uniform insulation of these feed electrons is required for uniform ion emission and efficient diode operation.« less

  18. Superficial Priming in Episodic Recognition

    ERIC Educational Resources Information Center

    Dopkins, Stephen; Sargent, Jesse; Ngo, Catherine T.

    2010-01-01

    We explored the effect of superficial priming in episodic recognition and found it to be different from the effect of semantic priming in episodic recognition. Participants made recognition judgments to pairs of items, with each pair consisting of a prime item and a test item. Correct positive responses to the test item were impeded if the prime…

  19. Fluoride ion recognition by chelating and cationic boranes.

    PubMed

    Hudnall, Todd W; Chiu, Ching-Wen; Gabbaï, François P

    2009-02-17

    Because of the ubiquity of fluoride ions and their potential toxicity at high doses, researchers would like to design receptors that selectively detect this anion. Fluoride is found in drinking water, toothpaste, and osteoporosis drugs. In addition, fluoride ions also can be detected as an indicator of uranium enrichment (via hydrolysis of UF(6)) or of the chemical warfare agent sarin, which releases the ion upon hydrolysis. However, because of its high hydration enthalpy, the fluoride anion is one of the most challenging targets for anion recognition. Among the various recognition strategies that are available, researchers have focused a great deal of attention on Lewis acidic boron compounds. These molecules typically interact with fluoride anions to form the corresponding fluoroborate species. In the case of simple triarylboranes, the fluoroborates are formed in organic solvents but not in water. To overcome this limitation, this Account examines various methods we have pursued to increase the fluoride-binding properties of boron-based receptors. We first considered the use of bifunctional boranes, which chelate the fluoride anion, such as 1,8-diborylnaphthalenes or heteronuclear 1-boryl-8-mercurio-naphthalenes. In these molecules, the neighboring Lewis acidic atoms can cooperatively interact with the anionic guest. Although the fluoride binding constants of the bifunctional compounds exceed those of neutral monofunctional boranes by several orders of magnitude, the incompatibility of these systems with aqueous media limits their utility. More recently, we have examined simple triarylboranes whose ligands are decorated by cationic ammonium or phosphonium groups. These cationic groups increase the electrophilic character of these boranes, and unlike their neutral analogs, they are able to complex fluoride in aqueous media. We have also considered cationic boranes, which form chelate complexes with fluoride anions. Our work demonstrates that Coulombic and chelate

  20. A Multifunctional Bimetallic Molecular Device for Ultrasensitive Detection, Naked-Eye Recognition, and Elimination of Cyanide Ions.

    PubMed

    Chow, Cheuk-Fai; Ho, Pui-Yu; Wong, Wing-Leung; Gong, Cheng-Bin

    2015-09-07

    A new bimetallic Fe(II) -Cu(II) complex was synthesized, characterized, and applied as a selective and sensitive sensor for cyanide detection in water. This complex is the first multifunctional device that can simultaneously detect cyanide ions in real water samples, amplify the colorimetric signal upon detection for naked-eye recognition at the parts-per-million (ppb) level, and convert the toxic cyanide ion into the much safer cyanate ion in situ. The mechanism of the bimetallic complex for high-selectivity recognition and signaling toward cyanide ions was investigated through a series of binding kinetics of the complex with different analytes, including CN(-) , SO4 (2-) , HCO3 (-) , HPO4 (2-) , N3 (-) , CH3 COO(-) , NCS(-) , NO3 (-) , and Cl(-) ions. In addition, the use of the indicator/catalyst displacement assay (ICDA) is demonstrated in the present system in which one metal center acts as a receptor and inhibitor and is bridged to another metal center that is responsible for signal transduction and catalysis, thus showing a versatile approach to the design of new multifunctional devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Mechanistic insights into metal ion activation and operator recognition by the ferric uptake regulator

    NASA Astrophysics Data System (ADS)

    Deng, Zengqin; Wang, Qing; Liu, Zhao; Zhang, Manfeng; Machado, Ana Carolina Dantas; Chiu, Tsu-Pei; Feng, Chong; Zhang, Qi; Yu, Lin; Qi, Lei; Zheng, Jiangge; Wang, Xu; Huo, Xinmei; Qi, Xiaoxuan; Li, Xiaorong; Wu, Wei; Rohs, Remo; Li, Ying; Chen, Zhongzhou

    2015-07-01

    Ferric uptake regulator (Fur) plays a key role in the iron homeostasis of prokaryotes, such as bacterial pathogens, but the molecular mechanisms and structural basis of Fur-DNA binding remain incompletely understood. Here, we report high-resolution structures of Magnetospirillum gryphiswaldense MSR-1 Fur in four different states: apo-Fur, holo-Fur, the Fur-feoAB1 operator complex and the Fur-Pseudomonas aeruginosa Fur box complex. Apo-Fur is a transition metal ion-independent dimer whose binding induces profound conformational changes and confers DNA-binding ability. Structural characterization, mutagenesis, biochemistry and in vivo data reveal that Fur recognizes DNA by using a combination of base readout through direct contacts in the major groove and shape readout through recognition of the minor-groove electrostatic potential by lysine. The resulting conformational plasticity enables Fur binding to diverse substrates. Our results provide insights into metal ion activation and substrate recognition by Fur that suggest pathways to engineer magnetotactic bacteria and antipathogenic drugs.

  2. Tracking of electrochemical impedance of batteries

    NASA Astrophysics Data System (ADS)

    Piret, H.; Granjon, P.; Guillet, N.; Cattin, V.

    2016-04-01

    This paper presents an evolutionary battery impedance estimation method, which can be easily embedded in vehicles or nomad devices. The proposed method not only allows an accurate frequency impedance estimation, but also a tracking of its temporal evolution contrary to classical electrochemical impedance spectroscopy methods. Taking into account constraints of cost and complexity, we propose to use the existing electronics of current control to perform a frequency evolutionary estimation of the electrochemical impedance. The developed method uses a simple wideband input signal, and relies on a recursive local average of Fourier transforms. The averaging is controlled by a single parameter, managing a trade-off between tracking and estimation performance. This normalized parameter allows to correctly adapt the behavior of the proposed estimator to the variations of the impedance. The advantage of the proposed method is twofold: the method is easy to embed into a simple electronic circuit, and the battery impedance estimator is evolutionary. The ability of the method to monitor the impedance over time is demonstrated on a simulator, and on a real Lithium ion battery, on which a repeatability study is carried out. The experiments reveal good tracking results, and estimation performance as accurate as the usual laboratory approaches.

  3. Biostable L-DNAzyme for Sensing of Metal Ions in Biological Systems

    PubMed Central

    2015-01-01

    DNAzymes, an important type of metal ion-dependent functional nucleic acid, are widely applied in bioanalysis and biomedicine. However, the use of DNAzymes in practical applications has been impeded by the intrinsic drawbacks of natural nucleic acids, such as interferences from nuclease digestion and protein binding, as well as undesired intermolecular interactions with other nucleic acids. On the basis of reciprocal chiral substrate specificity, the enantiomer of D-DNAzyme, L-DNAzyme, could initiate catalytic cleavage activity with the same achiral metal ion as a cofactor. Meanwhile, by using the advantage of nonbiological L-DNAzyme, which is not subject to the interferences of biological matrixes, as recognition units, a facile and stable L-DNAzyme sensor was proposed for sensing metal ions in complex biological samples and live cells. PMID:26691677

  4. Sensorless battery temperature measurements based on electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Raijmakers, L. H. J.; Danilov, D. L.; van Lammeren, J. P. M.; Lammers, M. J. G.; Notten, P. H. L.

    2014-02-01

    A new method is proposed to measure the internal temperature of (Li-ion) batteries. Based on electrochemical impedance spectroscopy measurements, an intercept frequency (f0) can be determined which is exclusively related to the internal battery temperature. The intercept frequency is defined as the frequency at which the imaginary part of the impedance is zero (Zim = 0), i.e. where the phase shift between the battery current and voltage is absent. The advantage of the proposed method is twofold: (i) no hardware temperature sensors are required anymore to monitor the battery temperature and (ii) the method does not suffer from heat transfer delays. Mathematical analysis of the equivalent electrical-circuit, representing the battery performance, confirms that the intercept frequency decreases with rising temperatures. Impedance measurements on rechargeable Li-ion cells of various chemistries were conducted to verify the proposed method. These experiments reveal that the intercept frequency is clearly dependent on the temperature and does not depend on State-of-Charge (SoC) and aging. These impedance-based sensorless temperature measurements are therefore simple and convenient for application in a wide range of stationary, mobile and high-power devices, such as hybrid- and full electric vehicles.

  5. A calix[4]arene strapped calix[4]pyrrole: an ion-pair receptor displaying three different cesium cation recognition modes.

    PubMed

    Kim, Sung Kuk; Sessler, Jonathan L; Gross, Dustin E; Lee, Chang-Hee; Kim, Jong Seung; Lynch, Vincent M; Delmau, Laetitia H; Hay, Benjamin P

    2010-04-28

    An ion-pair receptor, the calix[4]pyrrole-calix[4]arene pseudodimer 2, bearing a strong anion-recognition site but not a weak cation-recognition site, has been synthesized and characterized by standard spectroscopic means and via single-crystal X-ray diffraction analysis. In 10% CD(3)OD in CDCl(3) (v/v), this new receptor binds neither the Cs(+) cation nor the F(-) anion when exposed to these species in the presence of other counterions; however, it forms a stable 1:1 solvent-separated CsF complex when exposed to these two ions in concert with one another in this same solvent mixture. In contrast to what is seen in the case of a previously reported crown ether "strapped" calixarene-calixpyrrole ion-pair receptor 1 (J. Am. Chem. Soc. 2008, 130, 13162-13166), where Cs(+) cation recognition takes place within the crown, in 2.CsF cation recognition takes place within the receptor cavity itself, as inferred from both single-crystal X-ray diffraction analyses and (1)H NMR spectroscopic studies. This binding mode is supported by calculations carried out using the MMFF94 force field model. In 10% CD(3)OD in CDCl(3) (v/v), receptor 2 shows selectivity for CsF over the Cs(+) salts of Cl(-), Br(-), and NO(3)(-) but will bind these other cesium salts in the absence of fluoride, both in solution and in the solid state. In the case of CsCl, an unprecedented 2:2 complex is observed in the solid state that is characterized by two different ion-pair binding modes. One of these consists of a contact ion pair with the cesium cation and chloride anion both being bound within the central binding pocket and in direct contact with one another. The other mode involves a chloride anion bound to the pyrrole NH protons of a calixpyrrole subunit and a cesium cation sandwiched between two cone shaped calix[4]pyrroles originating from separate receptor units. In contrast to what is seen for CsF and CsCl, single-crystal X-ray structural analyses and (1)H NMR spectroscopic studies reveal that

  6. Electrochemical impedance analysis of perovskite–electrolyte interfaces

    DOE PAGES

    Li, Zhen; Mercado, Candy C.; Yang, Mengjin; ...

    2017-01-31

    Here, the flat band potentials and carrier densities of spin coated and sprayed MAPbI 3, FA 0.85Cs 0.15PbI 3, and MAPbBr 3 perovskite films were determined using the Mott-Schottky relation. The films developed a space charge layer and exhibited p-type conduction with carrier concentration ~ 10 16 cm -3 for spin coated films. Electrochemical impedance spectra showed typical space charge impedance at frequencies > 1 kHz with increasing capacitance < 1 kHz owing to an ion diffusion component.

  7. EPR and impedance spectroscopic investigations on lithium bismuth borate glasses containing nickel and vanadium ions

    NASA Astrophysics Data System (ADS)

    Yadav, Arti; Khasa, Satish; Hooda, Ashima; Dahiya, Manjeet S.; Agarwal, Ashish; Chand, Prem

    2016-03-01

    Glasses having composition 7NiO • 23Li2O • 20Bi2O3 • 50B2O3, 7V2O5 • 23Li2O • 20Bi2O3 • 50B2O3 and x(2NiO • V2O5) • (30 - x)Li2O • 50B2O3 • 20Bi2O3 (with x = 0, 2, 5, 7 & 10 mol%) prepared through melt-quench route are explored by analyzing density, impedance spectroscopy and electron paramagnetic resonance (EPR). It is found that both density and molar volume increase with an increase in substitution of 2NiO • V2O5 in the base glass matrix. Different dielectric parameters viz. dielectric loss (ε), electrical modulus (M), loss tangent (tanδ) etc. are evaluated and their variations with frequency and temperature are analyzed which reveals that these glasses exhibit a non-Debye relaxation behavior. A phenomenal description of the capacitive behavior is obtained by considering the circuitry as a parallel combination of bulk resistance (Rb) and constant phase element (CPE). The conduction mechanism is found to follow Quantum Mechanical Tunneling (QMT) model. Spin Hamiltonian Parameters (SHPs) and covalency rates are calculated from the EPR spectra of vanadyl ion. The observed EPR spectra confirmed that V4 + ion exists as vanadyl ion in the octahedral coordination with tetragonal compression.

  8. Theoretical interpretation of Warburg's impedance in unsupported electrolytic cells.

    PubMed

    Barbero, G

    2017-12-13

    We discuss the origin of Warburg's impedance in unsupported electrolytic cells containing only one group of positive and one group of negative ions. Our analysis is based on the Poisson-Nernst-Planck model, where the generation-recombination phenomenon is neglected. We show that to observe Warburg-like impedance the diffusion coefficient of the positive ions has to differ from that of the negative ones, and furthermore the electrodes have to be not blocking. We assume that the non-blocking properties of the electrodes can be described by means of an Ohmic model, where the charge exchange between the cell and the external circuit is described by means of an electrode conductivity. For simplicity we consider a symmetric cell. However, our analysis can be easily generalized to more complicated situations, where the cell is not symmetric and the charge exchange is described by the Chang-Jaffe model, or by a linearized version of the Butler-Volmer equation. Our analysis allows justification of the expression for Warburg's impedance proposed previously by several groups, based on wrong assumptions.

  9. Neutralized ion beam modification of cellulose membranes for study of ion charge effect on ion-beam-induced DNA transfer

    NASA Astrophysics Data System (ADS)

    Prakrajang, K.; Sangwijit, K.; Anuntalabhochai, S.; Wanichapichart, P.; Yu, L. D.

    2012-02-01

    Low-energy ion beam biotechnology (IBBT) has recently been rapidly developed worldwide. Ion-beam-induced DNA transfer is one of the important applications of IBBT. However, mechanisms involved in this application are not yet well understood. In this study plasma-neutralized ion beam was applied to investigate ion charge effect on induction of DNA transfer. Argon ion beam at 7.5 keV was neutralized by RF-driven plasma in the beam path and then bombarded cellulose membranes which were used as the mimetic plant cell envelope. Electrical properties such as impedance and capacitance of the membranes were measured after the bombardment. An in vitro experiment on plasmid DNA transfer through the cellulose membrane was followed up. The results showed that the ion charge input played an important role in the impedance and capacitance changes which would affect DNA transfer. Generally speaking, neutral particle beam bombardment of biologic cells was more effective in inducing DNA transfer than charged ion beam bombardment.

  10. Resonance-mode electrochemical impedance measurements of silicon dioxide supported lipid bilayer formation and ion channel mediated charge transport.

    PubMed

    Lundgren, Anders; Hedlund, Julia; Andersson, Olof; Brändén, Magnus; Kunze, Angelika; Elwing, Hans; Höök, Fredrik

    2011-10-15

    A single-chip electrochemical method based on impedance measurements in resonance mode has been employed to study lipid monolayer and bilayer formation on hydrophobic alkanethiolate and SiO(2) substrates, respectively. The processes were monitored by temporally resolving changes in interfacial capacitance and resistance, revealing information about the rate of formation, coverage, and defect density (quality) of the layers at saturation. The resonance-based impedance measurements were shown to reveal significant differences in the layer formation process of bilayers made from (i) positively charged lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-ethylphosphocholine (POEPC), (ii) neutral lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) on SiO(2), and (iii) monolayers made from POEPC on hydrophobic alkanethiolate substrates. The observed responses were represented with an equivalent circuit, suggesting that the differences primarily originate from the presence of a conductive aqueous layer between the lipid bilayers and the SiO(2). In addition, by adding the ion channel gramicidin D to bilayers supported on SiO(2), channel-mediated charge transport could be measured with high sensitivity (resolution around 1 pA). © 2011 American Chemical Society

  11. Adaptive approach for on-board impedance parameters and voltage estimation of lithium-ion batteries in electric vehicles

    NASA Astrophysics Data System (ADS)

    Farmann, Alexander; Waag, Wladislaw; Sauer, Dirk Uwe

    2015-12-01

    Robust algorithms using reduced order equivalent circuit model (ECM) for an accurate and reliable estimation of battery states in various applications become more popular. In this study, a novel adaptive, self-learning heuristic algorithm for on-board impedance parameters and voltage estimation of lithium-ion batteries (LIBs) in electric vehicles is introduced. The presented approach is verified using LIBs with different composition of chemistries (NMC/C, NMC/LTO, LFP/C) at different aging states. An impedance-based reduced order ECM incorporating ohmic resistance and a combination of a constant phase element and a resistance (so-called ZARC-element) is employed. Existing algorithms in vehicles are much more limited in the complexity of the ECMs. The algorithm is validated using seven day real vehicle data with high temperature variation including very low temperatures (from -20 °C to +30 °C) at different Depth-of-Discharges (DoDs). Two possibilities to approximate both ZARC-elements with finite number of RC-elements on-board are shown and the results of the voltage estimation are compared. Moreover, the current dependence of the charge-transfer resistance is considered by employing Butler-Volmer equation. Achieved results indicate that both models yield almost the same grade of accuracy.

  12. Ion transport restriction in mechanically strained separator membranes

    NASA Astrophysics Data System (ADS)

    Cannarella, John; Arnold, Craig B.

    2013-03-01

    We use AC impedance methods to investigate the effect of mechanical deformation on ion transport in commercial separator membranes and lithium-ion cells as a whole. A Bruggeman type power law relationship is found to provide an accurate correlation between porosity and tortuosity of deformed separators, which allows the impedance of a separator membrane to be predicted as a function of deformation. By using mechanical compression to vary the porosity of the separator membranes during impedance measurements it is possible to determine both the α and γ parameters from the modified Bruggeman relation for individual separator membranes. From impedance testing of compressed pouch cells it is found that separator deformation accounts for the majority of the transport restrictions arising from compressive stress in a lithium-ion cell. Finally, a charge state dependent increase in the impedance associated with charge transfer is observed with increasing cell compression.

  13. Impedance based time-domain modeling of lithium-ion batteries: Part I

    NASA Astrophysics Data System (ADS)

    Gantenbein, Sophia; Weiss, Michael; Ivers-Tiffée, Ellen

    2018-03-01

    This paper presents a novel lithium-ion cell model, which simulates the current voltage characteristic as a function of state of charge (0%-100%) and temperature (0-30 °C). It predicts the cell voltage at each operating point by calculating the total overvoltage from the individual contributions of (i) the ohmic loss η0, (ii) the charge transfer loss of the cathode ηCT,C, (iii) the charge transfer loss and the solid electrolyte interface loss of the anode ηSEI/CT,A, and (iv) the solid state and electrolyte diffusion loss ηDiff,A/C/E. This approach is based on a physically meaningful equivalent circuit model, which is parametrized by electrochemical impedance spectroscopy and time domain measurements, covering a wide frequency range from MHz to μHz. The model is exemplarily parametrized to a commercial, high-power 350 mAh graphite/LiNiCoAlO2-LiCoO2 pouch cell and validated by continuous discharge and charge curves at varying temperature. For the first time, the physical background of the model allows the operator to draw conclusions about the performance-limiting factor at various operating conditions. Not only can the model help to choose application-optimized cell characteristics, but it can also support the battery management system when taking corrective actions during operation.

  14. Impedance-estimation methods, modeling methods, articles of manufacture, impedance-modeling devices, and estimated-impedance monitoring systems

    DOEpatents

    Richardson, John G [Idaho Falls, ID

    2009-11-17

    An impedance estimation method includes measuring three or more impedances of an object having a periphery using three or more probes coupled to the periphery. The three or more impedance measurements are made at a first frequency. Three or more additional impedance measurements of the object are made using the three or more probes. The three or more additional impedance measurements are made at a second frequency different from the first frequency. An impedance of the object at a point within the periphery is estimated based on the impedance measurements and the additional impedance measurements.

  15. A Meier-Gorlin syndrome mutation in a conserved C-terminal helix of Orc6 impedes origin recognition complex formation.

    PubMed

    Bleichert, Franziska; Balasov, Maxim; Chesnokov, Igor; Nogales, Eva; Botchan, Michael R; Berger, James M

    2013-10-08

    In eukaryotes, DNA replication requires the origin recognition complex (ORC), a six-subunit assembly that promotes replisome formation on chromosomal origins. Despite extant homology between certain subunits, the degree of structural and organizational overlap between budding yeast and metazoan ORC has been unclear. Using 3D electron microscopy, we determined the subunit organization of metazoan ORC, revealing that it adopts a global architecture very similar to the budding yeast complex. Bioinformatic analysis extends this conservation to Orc6, a subunit of somewhat enigmatic function. Unexpectedly, a mutation in the Orc6 C-terminus linked to Meier-Gorlin syndrome, a dwarfism disorder, impedes proper recruitment of Orc6 into ORC; biochemical studies reveal that this region of Orc6 associates with a previously uncharacterized domain of Orc3 and is required for ORC function and MCM2-7 loading in vivo. Together, our results suggest that Meier-Gorlin syndrome mutations in Orc6 impair the formation of ORC hexamers, interfering with appropriate ORC functions. DOI:http://dx.doi.org/10.7554/eLife.00882.001.

  16. Arrhenius Behavior of the Bulk Na-Ion Conductivity in Na3Sc2(PO4)3 Single Crystals Observed by Microcontact Impedance Spectroscopy.

    PubMed

    Rettenwander, Daniel; Redhammer, Günther J; Guin, Marie; Benisek, Artur; Krüger, Hannes; Guillon, Olivier; Wilkening, Martin; Tietz, Frank; Fleig, Jürgen

    2018-03-13

    NASICON-based solid electrolytes with exceptionally high Na-ion conductivities are considered to enable future all solid-state Na-ion battery technologies. Despite 40 years of research the interrelation between crystal structure and Na-ion conduction is still controversially discussed and far from being fully understood. In this study, microcontact impedance spectroscopy combined with single crystal X-ray diffraction, and differential scanning calorimetry is applied to tackle the question how bulk Na-ion conductivity σ bulk of sub-mm-sized flux grown Na 3 Sc 2 (PO 4 ) 3 (NSP) single crystals is influenced by supposed phase changes (α, β, and γ phase) discussed in literature. Although we found a smooth structural change at around 140 °C, which we assign to the β → γ phase transition, our conductivity data follow a single Arrhenius law from room temperature (RT) up to 220 °C. Obviously, the structural change, being mainly related to decreasing Na-ion ordering with increasing temperature, does not cause any jumps in Na-ion conductivity or any discontinuities in activation energies E a . Bulk ion dynamics in NSP have so far rarely been documented; here, under ambient conditions, σ bulk turned out to be as high as 3 × 10 -4 S cm -1  at RT ( E a, bulk = 0.39 eV) when directly measured with microcontacts for individual small single crystals.

  17. Arrhenius Behavior of the Bulk Na-Ion Conductivity in Na3Sc2(PO4)3 Single Crystals Observed by Microcontact Impedance Spectroscopy

    PubMed Central

    2018-01-01

    NASICON-based solid electrolytes with exceptionally high Na-ion conductivities are considered to enable future all solid-state Na-ion battery technologies. Despite 40 years of research the interrelation between crystal structure and Na-ion conduction is still controversially discussed and far from being fully understood. In this study, microcontact impedance spectroscopy combined with single crystal X-ray diffraction, and differential scanning calorimetry is applied to tackle the question how bulk Na-ion conductivity σbulk of sub-mm-sized flux grown Na3Sc2(PO4)3 (NSP) single crystals is influenced by supposed phase changes (α, β, and γ phase) discussed in literature. Although we found a smooth structural change at around 140 °C, which we assign to the β → γ phase transition, our conductivity data follow a single Arrhenius law from room temperature (RT) up to 220 °C. Obviously, the structural change, being mainly related to decreasing Na-ion ordering with increasing temperature, does not cause any jumps in Na-ion conductivity or any discontinuities in activation energies Ea. Bulk ion dynamics in NSP have so far rarely been documented; here, under ambient conditions, σbulk turned out to be as high as 3 × 10–4 S cm–1 at RT (Ea, bulk = 0.39 eV) when directly measured with microcontacts for individual small single crystals. PMID:29606799

  18. Electrochemical Impedance Imaging via the Distribution of Diffusion Times

    NASA Astrophysics Data System (ADS)

    Song, Juhyun; Bazant, Martin Z.

    2018-03-01

    We develop a mathematical framework to analyze electrochemical impedance spectra in terms of a distribution of diffusion times (DDT) for a parallel array of random finite-length Warburg (diffusion) or Gerischer (reaction-diffusion) circuit elements. A robust DDT inversion method is presented based on complex nonlinear least squares regression with Tikhonov regularization and illustrated for three cases of nanostructured electrodes for energy conversion: (i) a carbon nanotube supercapacitor, (ii) a silicon nanowire Li-ion battery, and (iii) a porous-carbon vanadium flow battery. The results demonstrate the feasibility of nondestructive "impedance imaging" to infer microstructural statistics of random, heterogeneous materials.

  19. Electrochemical Impedance Imaging via the Distribution of Diffusion Times.

    PubMed

    Song, Juhyun; Bazant, Martin Z

    2018-03-16

    We develop a mathematical framework to analyze electrochemical impedance spectra in terms of a distribution of diffusion times (DDT) for a parallel array of random finite-length Warburg (diffusion) or Gerischer (reaction-diffusion) circuit elements. A robust DDT inversion method is presented based on complex nonlinear least squares regression with Tikhonov regularization and illustrated for three cases of nanostructured electrodes for energy conversion: (i) a carbon nanotube supercapacitor, (ii) a silicon nanowire Li-ion battery, and (iii) a porous-carbon vanadium flow battery. The results demonstrate the feasibility of nondestructive "impedance imaging" to infer microstructural statistics of random, heterogeneous materials.

  20. Architecture of optical sensor for recognition of multiple toxic metal ions from water.

    PubMed

    Shenashen, M A; El-Safty, S A; Elshehy, E A

    2013-09-15

    Here, we designed novel optical sensor based on the wormhole hexagonal mesoporous core/multi-shell silica nanoparticles that enabled the selective recognition and removal of these extremely toxic metals from drinking water. The surface-coating process of a mesoporous core/double-shell silica platforms by several consequence decorations using a cationic surfactant with double alkyl tails (CS-DAT) and then a synthesized dicarboxylate 1,5-diphenyl-3-thiocarbazone (III) signaling probe enabled us to create a unique hierarchical multi-shell sensor. In this design, the high loading capacity and wrapping of the CS-DAT and III organic moieties could be achieved, leading to the formation of silica core with multi-shells that formed from double-silica, CS-DAT, and III dressing layers. In this sensing system, notable changes in color and reflectance intensity of the multi-shelled sensor for Cu(2+), Co(2+), Cd(2+), and Hg(2+) ions, were observed at pH 2, 8, 9.5 and 11.5, respectively. The multi-shelled sensor is added to enable accessibility for continuous monitoring of several different toxic metal ions and efficient multi-ion sensing and removal capabilities with respect to reversibility, selectivity, and signal stability. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Online tuning of impedance matching circuit for long pulse inductively coupled plasma source operation—An alternate approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudhir, Dass; Bandyopadhyay, M., E-mail: mainak@ter-india.org; Chakraborty, A.

    2014-01-15

    Impedance matching circuit between radio frequency (RF) generator and the plasma load, placed between them, determines the RF power transfer from RF generator to the plasma load. The impedance of plasma load depends on the plasma parameters through skin depth and plasma conductivity or resistivity. Therefore, for long pulse operation of inductively coupled plasmas, particularly for high power (∼100 kW or more) where plasma load condition may vary due to different reasons (e.g., pressure, power, and thermal), online tuning of impedance matching circuit is necessary through feedback. In fusion grade ion source operation, such online methodology through feedback is notmore » present but offline remote tuning by adjusting the matching circuit capacitors and tuning the driving frequency of the RF generator between the ion source operation pulses is envisaged. The present model is an approach for remote impedance tuning methodology for long pulse operation and corresponding online impedance matching algorithm based on RF coil antenna current measurement or coil antenna calorimetric measurement may be useful in this regard.« less

  2. A Fluorescent Hypochlorite Probe Built on 1,10-Phenanthroline Scaffold and its Ion Recognition Features.

    PubMed

    Algi, Melek Pamuk

    2016-03-01

    In this study, the synthesis of 7-((Hydroxyimino)methyl)-1,10-phenanthroline-4-carbaldehyde oxime (1) in two steps starting from 4,7-dimethyl-1,10-phenanthroline (2) is reported. It is found that compound 1 can be used as a fluorogenic probe for the detection of hypochlorite ion in aqueous solution. NMR and mass spectral analysis indicate that probe 1 undergoes a chemical transformation through its oxime units upon treatment with hypochlorite, which results in a remarkable enhancement of the emission intensity. Also, metal ion recognition properties of probe 1 is investigated. It is noted that compound 1 is responsive to Zn(2+), Cd(2+), Ni(2+) and Cu(2+) metal ions, which reduced the emission intensity under identical conditions. Graphical Abstract The design, synthesis and properties of a new fluorescent hypochlorite probe is described. It is found that probe 1 immediately undergoes an oxidation reaction with NaClO through its oxime units in 0.1 M Na2CO3-NaHCO3 buffer containing DMF (pH = 9.0, 30:1 v/v) at room temperature, which resulted in a remarkable enhancement of the emission intensity. It is noteworthy that this novel probe 1 is highly selective to hypochlorite ion when compared to some other ROS and anions. On the other hand, probe 1 also induces turn-off fluorogenic responses to metal ions such as Zn(2+), Cd(2+), Ni(2+) and Cu(2+) ions under identical conditions.

  3. SABRE extraction ion diode results and the prospects for light ion inertial fusion energy drivers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuneo, M.E.; Adams, R.G.; Bailey, J.E.

    Experimental and theoretical work over the last 6 years shows that high-brightness ion beams meeting the requirements for an IFE-injector could be possible with control of electrode plasma and electron sheath, uniformity and stability. This control is achieved by establishing: (1) diode alignment, (2) appropriate B-field uniformity, profiles, and intensity, (3) clean surfaces for minimal plasma formation at high electric fields, and (4) pure, preformed, uniform, non-protonic anode plasmas. The authors have not achieved the integration of these issues required prior to ion program suspension, and yet partial integration has resulted in significant improvements. The authors have found that themore » ion source has a profound impact on ion diode performance. The production of pre-formed lithium ion sources required for fusion has been more difficult than anyone ever imagined under typical pulsed-power conditions. They have used a laser at 40 to 80 MW/cm{sup 2} to pre-form, for the first time, non-protonic plasmas from a LiAg anode film, and in-situ deposited Li films. Ion beams have also been generated from carbon surfaces with this laser. They observe a 20 ns earlier turn on of current, at a Child-Langmuir level, and the best impedance history that they have ever produced with an enhancement below 4, and no impedance collapse for up to 45 ns. This impedance history may be acceptable to drive the 2nd stage of a two-stage system. Divergence in these experiments may have been dominated by laser and source non-uniformity. Also, the ion beams produced were either dominated by contaminant ions for the case of Li, or by a charge-state spread in the case of carbon. They have discovered nothing however, to indicate that simultaneously achieving the requisite divergence, current density, and impedance history is fundamentally impossible. Recommendations are given for further work on these systems.« less

  4. Feedback control impedance matching system using liquid stub tuner for ion cyclotron heating

    NASA Astrophysics Data System (ADS)

    Nomura, G.; Yokota, M.; Kumazawa, R.; Takahashi, C.; Torii, Y.; Saito, K.; Yamamoto, T.; Takeuchi, N.; Shimpo, F.; Kato, A.; Seki, T.; Mutoh, T.; Watari, T.; Zhao, Y.

    2001-10-01

    A long pulse discharge more than 2 minutes was achieved using Ion Cyclotron Range of Frequency (ICRF) heating only on the Large Helical Device (LHD). The final goal is a steady state operation (30 minutes) at MW level. A liquid stub tuner was newly invented to cope with the long pulse discharge. The liquid surface level was shifted under a high RF voltage operation without breakdown. In the long pulse discharge the reflected power was observed to gradually increase. The shift of the liquid surface was thought to be inevitably required at the further longer discharge. An ICRF heating system consisting of a liquid stub tuner was fabricated to demonstrate a feedback control impedance matching. The required shift of the liquid surface was predicted using a forward and a reflected RF powers as well as the phase difference between them. A liquid stub tuner was controlled by the multiprocessing computer system with CINOS (CHS Integration No Operating System) methods. The prime objective was to improve the performance of data processing and controlling a signal response. By employing this method a number of the program steps was remarkably reduced. A real time feedback control was demonstrated in the system using a temporally changed electric resistance.

  5. Colorimetric and luminescent bifunctional iridium(III) complexes for the sensitive recognition of cyanide ions

    NASA Astrophysics Data System (ADS)

    Chen, Xiudan; Wang, Huili; Li, Jing; Hu, Wenqin; Li, Mei-Jin

    2017-02-01

    Two new cyclometalated iridium(III) complexes [(ppy)2Irppz]Cl (1) and [(ppy)2Irbppz]Cl (2) (where ppy = 2-phenylpyridine, ppz = 4,7-phenanthrolino-5,6:5,6-pyrazine, bppz = 2.3-di-2-pyridylpyrazine), were designed and synthesized. The structure of [(ppy)2Irppz]Cl was determined by single crystal X-ray diffraction. Their photophysical properties were also studied. This kind of complexes could coordinate with Cu2 +, the photoluminescence (PL) of the complex was quenched, and the color changed from orange-red to green. The forming M-Cu (M: complexes 1 and 2) ensemble could be further utilized as a colorimetric and emission ;turn-on; bifunctional detection for CN-, especially for complex 1-Cu2 + showed a high sensitivity toward CN- with a limit of diction is 97 nM. Importantly, this kind of iridium(III) complexes shows a unique recognition of cyanide ions over other anions which makes it an eligible sensing probe for cyanide ions.

  6. Insight towards the conserved water mediated recognition of catalytic and structural Zn(+2) ions in human Matrix Metalloproteinase-8 enzyme: A study by MD-simulation methods.

    PubMed

    Chakrabarti, Bornali; Bairagya, Hridoy R; Mishra, Deepak Kr; Chatterjee, Pradip Kumar; Mukhopadhyay, Bishnu P

    2013-01-01

    Human matrix metalloproteinase-8 (hMMP-8) plays a important role in the progression of colorectal cancer, metastasis, multiple sclerosis and rheumetoid arthritis. Extensive MD-simulation of the PDB and solvated structures of hMMP-8 has revealed the presence of few conserved water molecules around the catalytic and structural zinc (ZnC and ZnS) ions. The coordination of two conserved water molecules (W and WS) to ZnS and the H-bonding interaction of WS to S151 have indicated the plausible involvement of that metal ion in the catalytic process. Beside this the coupling of ZnC and ZnS metal ions (ZnC - W(H) (W(1))…..W(2) ….H(162) - ZnS) through two conserved hydrophilic centers (occupied by water molecules) may also provide some rational on the recognition of two zinc ions which were separated by ~13 Å in their X-ray structures. This unique recognition of both the Zn(+2) ions in the enzyme through conserved water molecules may be implemented/ exploited for the design of antiproteolytic agent using water mimic drug design protocol.

  7. Axolemmal and septal conduction in the impedance of the earthworm medial giant nerve fiber.

    PubMed Central

    Krause, T L; Fishman, H M; Bittner, G D

    1994-01-01

    Ionic conduction in the axolemmal and septal membranes of the medial giant fiber (MGF) of the earthworm (EW) Lumbricus terrestris was assessed by impedance spectroscopy in the frequency range 2.5-1000 Hz. Impedance loci in the complex plane were described by two semi-circular arcs, one at a lower characteristic frequency (100 Hz) and the other at a higher frequency (500 Hz). The lower frequency arc had a chord resistance of 53 k omega and was not affected by membrane potential changes or ion channel blockers [tetrodotoxin (TTX), 3,4-diaminopyridine (3,4-DAP), 4-aminopyridine (4-AP), and tetraethylammonium (TEA)]. The higher frequency arc had a chord resistance of 274 k omega at resting potential, was voltage-dependent, and was affected by the addition of TTX, 3,4-DAP, 4-AP, and TEA to the physiological EW salines. When all four blockers were added to the bathing solution, the impedance locus was described by two voltage-independent arcs. Considering the effects of these and other (i.e., Cd and Ni) ion channel blockers, we conclude that: 1) the higher frequency locus reflects conduction by voltage-sensitive ion channels in the axolemmal membrane, which contains at least four ion channels selective for sodium, calcium, and potassium (delayed rectifier and calcium-dependent), and 2) the lower frequency locus reflects voltage-insensitive channels in the septal membrane, which separates adjacent MGFs. PMID:7524713

  8. AC-impedance measurements during thermal runaway process in several lithium/polymer batteries

    NASA Astrophysics Data System (ADS)

    Uchida, I.; Ishikawa, H.; Mohamedi, M.; Umeda, M.

    In this work, we present a set of thermal characterization experiments of charged prismatic polymer lithium-ion battery (PLB) comparatively with those of a lithium-ion battery (LIB). These cells at different state of charge (SOC) were tested inside an accelerated rate calorimeter (ARC) to determine the onset-of-thermal runaway (OTR) temperatures. In addition, the thermally activated components of these cells were followed by monitoring the impedance (at 1 kHz) and the open-circuit voltage (OCV) as a function of temperature. An increase in the impedance was observed at around 133 °C corresponding to the polyethylene separator shutdown. Above 140 °C, the OCV dropped to zero indicating an internal short-circuit due the separator meltdown suggesting that the pinholes created in the separator at meltdown are large enough to create an internal short-circuit.

  9. Impedance characteristics of nanoparticle-LiCoO{sub 2}+PVDF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panjaitan, Elman, E-mail: elmanp@batan.go.id; Kartini, Evvy, E-mail: kartini@batan.go.id; Honggowiranto, Wagiyo

    2016-02-08

    The impendance of np-LiCoO{sub 2}+xPVDF, as a cathode material candidate for lithium-ion battery (LIB), has been characterized using impedance spectroscopy for x = 0, 5, 10, 15 and 20 volume percentage (%v/v) and for frequencies in the 42 Hz to 5 MHz range. Both real and imaginary components of the impedance were found to be frequency dependent, and both tend to increase for increasing PVDF (polyvinyilidene fluoride) concentration, except that for 10% PVDF both real and imaginary components of impedance are smaller than for 5%. The mechanism for relaxation time for each addition of PVDF was analyzed using Cole-Cole plots. The analysismore » showed that the relaxation times of the nanostructured LiCoO{sub 2} with PVDF additive is relatively constant. Further, PVDF addition increases the bulk resistance and decreases the bulk capacitance of the nanostructured LiCoO{sub 2}.« less

  10. TRANSVERSE IMPEDANCE OF THE SQUID GIANT AXON DURING CURRENT FLOW

    PubMed Central

    Cole, Kenneth S.; Baker, Richard F.

    1941-01-01

    The change in the transverse impedance of the squid giant axon caused by direct current flow has been measured at frequencies from 1 kc. per second to 500 kc. per second. The impedance change is equivalent to an increase of membrane conductance at the cathode to a maximum value approximately the same as that obtained during activity and a decrease at the anode to a minimum not far from zero. There is no evidence of appreciable membrane capacity change in either case. It then follows that the membrane has the electrical characteristics of a rectifier. Interpreting the membrane conductance as a measure of ion permeability, this permeability is increased at the cathode and decreased at the anode. PMID:19873233

  11. Impedance matched, high-power, rf antenna for ion cyclotron resonance heating of a plasma

    DOEpatents

    Baity, Jr., Frederick W.; Hoffman, Daniel J.; Owens, Thomas L.

    1988-01-01

    A resonant double loop radio frequency (rf) antenna for radiating high-power rf energy into a magnetically confined plasma. An inductive element in the form of a large current strap, forming the radiating element, is connected between two variable capacitors to form a resonant circuit. A real input impedance results from tapping into the resonant circuit along the inductive element, generally near the midpoint thereof. The impedance can be matched to the source impedance by adjusting the separate capacitors for a given tap arrangement or by keeping the two capacitances fixed and adjustng the tap position. This results in a substantial reduction in the voltage and current in the transmission system to the antenna compared to unmatched antennas. Because the complete circuit loop consisting of the two capacitors and the inductive element is resonant, current flows in the same direction along the entire length of the radiating element and is approximately equal in each branch of the circuit. Unidirectional current flow permits excitation of low order poloidal modes which penetrate more deeply into the plasma.

  12. Ionic conductivity and mixed-ion effect in mixed alkali metaphosphate glasses.

    PubMed

    Tsuchida, Jefferson Esquina; Ferri, Fabio Aparecido; Pizani, Paulo Sergio; Martins Rodrigues, Ana Candida; Kundu, Swarup; Schneider, José Fabián; Zanotto, Edgar Dutra

    2017-03-01

    In this work, mixed alkali metaphosphate glasses based on K-Na, Rb-Na, Rb-Li, Cs-Na and Cs-Li combinations were studied by differential scanning calorimetry (DSC), complex impedance spectroscopy, and Raman spectroscopy. DSC analyses show that both the glass transition (T g ) and melting temperatures (T m ) exhibit a clear mixed-ion effect. The ionic conductivity shows a strong mixed-ion effect and decreases by more than six orders of magnitude at room temperature for Rb-Na or Cs-Li alkali pairs. This study confirms that the mixed-ion effect may be explained as a natural consequence of random ion mixing because ion transport is favoured between well-matched energy sites and is impeded due to the structural mismatch between neighbouring sites for dissimilar ions.

  13. Human balancing of an inverted pendulum: is sway size controlled by ankle impedance?

    PubMed Central

    Loram, Ian D; Kelly, Sue M; Lakie, Martin

    2001-01-01

    Using the ankle musculature, subjects balanced a large inverted pendulum. The equilibrium of the pendulum is unstable and quasi-regular sway was observed like that in quiet standing. Two main questions were addressed. Can subjects systematically change sway size in response to instruction and availability of visual feedback? If so, do subjects decrease sway size by increasing ankle impedance or by some alternative mechanism? The position of the pendulum, the torque generated at each ankle and the soleus and tibialis anterior EMG were recorded. Results showed that subjects could significantly reduce the mean sway size of the pendulum by giving full attention to that goal. With visual feedback sway size could be minimised significantly more than without visual feedback. In changing sway size, the frequency of the sways was not changed. Results also revealed that ankle impedance and muscle co-contraction were not significantly changed when the sway size was decreased. As the ankle impedance and sway frequency do not change when the sway size is decreased, this implies no change in ankle stiffness or viscosity. Increasing ankle impedance, stiffness or viscosity are not the only methods by which sway size could be reduced. A reduction in torque noise or torque inaccuracy via a predictive process which provides active damping could reduce sway size without changing ankle impedance and is plausible given the data. Such a strategy involving motion recognition and generation of an accurate motor response may require higher levels of control than changing ankle impedance by altering reflex or feedforward gain. PMID:11313453

  14. New equivalent-electrical circuit model and a practical measurement method for human body impedance.

    PubMed

    Chinen, Koyu; Kinjo, Ichiko; Zamami, Aki; Irei, Kotoyo; Nagayama, Kanako

    2015-01-01

    Human body impedance analysis is an effective tool to extract electrical information from tissues in the human body. This paper presents a new measurement method of impedance using armpit electrode and a new equivalent circuit model for the human body. The lowest impedance was measured by using an LCR meter and six electrodes including armpit electrodes. The electrical equivalent circuit model for the cell consists of resistance R and capacitance C. The R represents electrical resistance of the liquid of the inside and outside of the cell, and the C represents high frequency conductance of the cell membrane. We propose an equivalent circuit model which consists of five parallel high frequency-passing CR circuits. The proposed equivalent circuit represents alpha distribution in the impedance measured at a lower frequency range due to ion current of the outside of the cell, and beta distribution at a high frequency range due to the cell membrane and the liquid inside cell. The calculated values by using the proposed equivalent circuit model were consistent with the measured values for the human body impedance.

  15. A DEMO relevant fast wave current drive high harmonic antenna exploiting the high impedance technique

    NASA Astrophysics Data System (ADS)

    Milanesio, D.; Maggiora, R.

    2015-12-01

    Ion Cyclotron (IC) antennas are routinely adopted in most of the existing nuclear fusion experiments, even though their main goal, i.e. to couple high power to the plasma (MW), is often limited by rather severe drawbacks due to high fields on the antenna itself and on the unmatched part of the feeding lines. In addition to the well exploited auxiliary ion heating during the start-up phase, some non-ohmic current drive (CD) at the IC range of frequencies may be explored in view of the DEMO reactor. In this work, we suggest and describe a compact high frequency DEMO relevant antenna, based on the high impedance surfaces concept. High-impedance surfaces are periodic metallic structures (patches) usually displaced on top of a dielectric substrate and grounded by means of vertical posts embedded inside the dielectric, in a mushroom-like shape. These structures present a high impedance, within a given frequency band, such that the image currents are in-phase with the currents of the antenna itself, thus determining a significant efficiency increase. After a general introduction on the properties of high impedance surfaces, we analyze, by means of numerical codes, a dielectric based and a full metal solution optimized to be tested and benchmarked on the FTU experiment fed with generators at 433MHz.

  16. A DEMO relevant fast wave current drive high harmonic antenna exploiting the high impedance technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milanesio, D., E-mail: daniele.milanesio@polito.it; Maggiora, R.

    Ion Cyclotron (IC) antennas are routinely adopted in most of the existing nuclear fusion experiments, even though their main goal, i.e. to couple high power to the plasma (MW), is often limited by rather severe drawbacks due to high fields on the antenna itself and on the unmatched part of the feeding lines. In addition to the well exploited auxiliary ion heating during the start-up phase, some non-ohmic current drive (CD) at the IC range of frequencies may be explored in view of the DEMO reactor. In this work, we suggest and describe a compact high frequency DEMO relevant antenna,more » based on the high impedance surfaces concept. High-impedance surfaces are periodic metallic structures (patches) usually displaced on top of a dielectric substrate and grounded by means of vertical posts embedded inside the dielectric, in a mushroom-like shape. These structures present a high impedance, within a given frequency band, such that the image currents are in-phase with the currents of the antenna itself, thus determining a significant efficiency increase. After a general introduction on the properties of high impedance surfaces, we analyze, by means of numerical codes, a dielectric based and a full metal solution optimized to be tested and benchmarked on the FTU experiment fed with generators at 433MHz.« less

  17. High-Voltage, High-Impedance Ion Beam Production

    DTIC Science & Technology

    2009-06-01

    the anode tube with a loosely-crumpled, thin aluminized- mylar foil. This spoils the virtual cathode and greatly reduces the neutron signal, as seen...ions follow ballistic (straight-line) trajectories in the drift tube (see Sec. VIII), then (except for the small displacement associated with bending...mTorr) ambient in the drift tube . Based on our previous experience, we would expect charge, but not necessarily current, neutralization of the beam

  18. Constant current loop impedance measuring system that is immune to the effects of parasitic impedances

    NASA Technical Reports Server (NTRS)

    Anderson, Karl F. (Inventor)

    1994-01-01

    A constant current loop measuring system is provided for measuring a characteristic of an environment. The system comprises a first impedance positionable in the environment, a second impedance coupled in series with said first impedance and a parasitic impedance electrically coupled to the first and second impedances. A current generating device, electrically coupled in series with the first and second impedances, provides a constant current through the first and second impedances to produce first and second voltages across the first and second impedances, respectively, and a parasitic voltage across the parasitic impedance. A high impedance voltage measuring device measures a voltage difference between the first and second voltages independent of the parasitic voltage to produce a characteristic voltage representative of the characteristic of the environment.

  19. Detection of Chamber Conditioning Through Optical Emission and Impedance Measurements

    NASA Technical Reports Server (NTRS)

    Cruden, Brett A.; Rao, M. V. V. S.; Sharma, Surendra P.; Meyyappan, Meyya

    2001-01-01

    During oxide etch processes, buildup of fluorocarbon residues on reactor sidewalls can cause run-to-run drift and will necessitate some time for conditioning and seasoning of the reactor. Though diagnostics can be applied to study and understand these phenomena, many of them are not practical for use in an industrial reactor. For instance, measurements of ion fluxes and energy by mass spectrometry show that the buildup of insulating fluorocarbon films on the reactor surface will cause a shift in both ion energy and current in an argon plasma. However, such a device cannot be easily integrated into a processing system. The shift in ion energy and flux will be accompanied by an increase in the capacitance of the plasma sheath. The shift in sheath capacitance can be easily measured by a common commercially available impedance probe placed on the inductive coil. A buildup of film on the chamber wall is expected to affect the production of fluorocarbon radicals, and thus the presence of such species in the optical emission spectrum of the plasma can be monitored as well. These two techniques are employed on a GEC (Gaseous Electronics Conference) Reference Cell to assess the validity of optical emission and impedance monitoring as a metric of chamber conditioning. These techniques are applied to experimental runs with CHF3 and CHF3/O2/Ar plasmas, with intermediate monitoring of pure argon plasmas as a reference case for chamber conditions.

  20. MONITORING ANTIBODY-ANTIGEN REACTIONS AT CONDUCTING POLYMER-BASED IMMUNOSENSORS USING IMPEDANCE SPECTROSCOPY. (R825323)

    EPA Science Inventory

    Abstract

    The mechanisms of antibody¯antigen (Ab¯Ag) interactions at conducting polypyrrole electrodes have been investigated using impedance spectroscopy techniques. The effects of the variation in ion exchange, solution composition, and...

  1. Plasma-filled applied B ion diode experiments using a plasma opening switch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renk, T.J.

    1994-12-15

    In order for a plasma opening switch (POS) to open quickly and transfer power efficiently from an inductively charged vacuum transmission line to an applied B ion diode, the load impedance of the ion diode may be required to have an initial low impedance phase. A plasma-filled diode has such an impedance history. To test the effect of a plasma-filled diode on POS-diode coupling, a drifting plasma was introduced from the cathode side of an applied B ion diode operated on the LION accelerator (1.5 MV, 4 [Omega], 40 ns) at Cornell University. This plasma readily crossed the 2.1 Tmore » magnetic insulation field of the diode, and resulted in both increased diode electrical power, and an increased ability of the ion beam to remove material from a target. The plasma did not appear to have a noticeable effect on local beam steering angle.« less

  2. Ferroelectric relaxor behaviour and impedance spectroscopy of Bi2O3-doped barium zirconium titanate ceramics

    NASA Astrophysics Data System (ADS)

    Mahajan, Sandeep; Thakur, O P; Bhattacharya, D K; Sreenivas, K

    2009-03-01

    Bi2O3-doped barium zirconate titanate ceramics, Ba1-xBix(Zr0.05Ti0.95)O3, have been prepared by the conventional solid-state reaction method. The ferroelectric relaxor behaviour and dielectric properties have been investigated in detail. By XRD analysis, it is suggested that up to x = 0.04, Bi3+ substitutes A-site ion, and thereafter with higher Bi3+ content, it enters the B-site sub lattice. Substitution of Bi3+ ions induces ferroelectric relaxor behaviour and the degree of relaxation behaviour increases with bismuth concentration. The remanent polarization and strain behaviour show a slight increase with the substitution level. The degree of hysteresis (strain versus electric field) also reduces from 21.4% to 4.6% with bismuth substitution. Impedance measurements were made on the prepared sample over a wide range of temperatures (300-723 K) and frequencies (40 Hz-1 MHz), which show the presence of both bulk and grain boundary effects in the material. The bulk and grain boundary conductivities determined from impedance study indicate the Arrhenius-type thermally activated process. Impedance spectroscopy is shown to be an efficient method capable of detecting the contributions of the resistances of grains and grain boundaries to the complex impedance of a ceramic system, accurately estimating its electrical conductivity as well as its corresponding activation energies and drawing conclusions on its structural properties.

  3. Simple and rapid mercury ion selective electrode based on 1-undecanethiol assembled Au substrate and its recognition mechanism.

    PubMed

    Li, Xian-Qing; Liang, Hai-Qing; Cao, Zhong; Xiao, Qing; Xiao, Zhong-Liang; Song, Liu-Bin; Chen, Dan; Wang, Fu-Liang

    2017-03-01

    A simple and rapid mercury ion selective electrode based on 1-undecanethiol (1-UDT) assembled Au substrate (Au/1-UDT) has been well constructed. 1-UDT was for the purpose of generating self-assembled monolayer on gold surface to recognize Hg 2+ in aqueous solution, which had a working concentration range of 1.0×10 -8 -1.0×10 -4 molL -1 , with a Nernst response slope of 28.83±0.4mV/-pC, a detection limit of 4.5×10 -9 molL -1 , and a good selectivity over the other tested cations. Also, the Au/1-UDT possessed good reproducibility, stability, and short response time. The recovery obtained for the determination of mercury ion in practical tremella samples was in the range of 99.8-103.4%. Combined electrochemical analysis and X-ray photoelectron spectroscopy (XPS) with quantum chemical computation, the probable recognition mechanism of the electrode for selective recognition of Hg 2+ has been investigated. The covalent bond formed between mercury and sulfur is stronger than the one between gold and sulfur and thus prevents the adsorption of 1-UDT molecules on the gold surface. The quantum chemical computation with density functional theory further demonstrates that the strong interaction between the mercury atom and the sulfur atom on the gold surface leads to the gold sulfur bond ruptured and the gold mercury metallophilic interaction. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Baseline impedance measured during high-resolution esophageal impedance manometry reliably discriminates GERD patients.

    PubMed

    Ravi, K; Geno, D M; Vela, M F; Crowell, M D; Katzka, D A

    2017-05-01

    Baseline impedance measured with ambulatory impedance pH monitoring (MII-pH) and a mucosal impedance catheter detects gastroesophageal reflux disease (GERD). However, these tools are limited by cost or patient tolerance. We investigated whether baseline impedance measured during high-resolution impedance manometry (HRIM) distinguishes GERD patients from controls. Consecutive patients with clinical HRIM and MII-pH testing were identified. Gastroesophageal reflux disease was defined by esophageal pH <4 for ≥5% of both the supine and total study time, whereas controls had an esophageal pH <4 for ≤3% of the study performed off PPI. Baseline impedance was measured over 15 seconds during the landmark period of HRIM and over three 10 minute intervals during the overnight period of MII-pH. Among 29 GERD patients and 26 controls, GERD patients had a mean esophageal acid exposure time of 22.7% compared to 1.2% in controls (P<.0001). Mean baseline impedance during HRIM was lower in GERD (1061 Ω) than controls (2814 Ω) (P<.0001). Baseline mucosal impedance measured during HRIM and MII-pH correlated (r=0.59, P<.0001). High-resolution esophageal manometry baseline impedance had high diagnostic accuracy for GERD, with an area under the curve (AUC) of 0.931 on receiver operating characteristics (ROC) analysis. A HRIM baseline impedance threshold of 1582 Ω had a sensitivity of 86.2% and specificity of 88.5% for GERD, with a positive predictive value of 89.3% and negative predictive value of 85.2%. Baseline impedance measured during HRIM can reliably discriminate GERD patients with at least moderate esophageal acid exposure from controls. This diagnostic tool may represent an accurate, cost-effective, and less invasive test for GERD. © 2016 John Wiley & Sons Ltd.

  5. Single-ion conducting diblock terpolymers for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Morris, Melody; Epps, Thomas H., III

    Block polymer (BP) electrolytes provide an attractive route to overcome the competing constraints of high conductivity and mechanical/thermal stability in lithium-ion batteries through nanoscale self-assembly. For example, macromolecules can be engineered such that one domain conducts lithium ions and the other prevents lithium dendrite formation. Herein, we report on the behavior of a single-ion conducting BP electrolyte that was designed to facilitate the transport of lithium ions. These polymers differ from traditional salt-doped BP electrolytes, which require the addition of a lithium salt to bestow conductivity and typically suffer from substantial counterion motion that reduces efficiency. New single-ion BPs were synthesized, and the nanoscale morphologies were determined using small angle X-ray scattering and transmission electron microscopy. Electrolyte performance was measured using AC impedance spectroscopy and DC polarization, and the results were correlated to nanoscale morphology and ion content. Enhanced physical understanding of single-ion BPs was gained by connecting the ion mobility to the chemistry, chain structure, and ion content of the single-ion BP. These studies can be applied to other charged-neutral block polymers to elucidate the effects of ion content on self-assembly and macroscopic properties.

  6. Overview Of Impedance Sensors

    NASA Astrophysics Data System (ADS)

    Abele, John E.

    1989-08-01

    Electrical impedance has been one of the many "tools of great promise" that physicians have employed in their quest to measure and/or monitor body function or physiologic events. So far, the expectations for its success have always exceeded its performance. In simplistic terms, physiologic impedance is a measure of the resistance in the volume between electrodes which changes as a function of changes in that volume, the relative impedance of that volume, or a combination of these two. The history and principles of electrical impedance are very nicely reviewed by Geddes and Baker in their textbook "Principles of Applied Biomedical Instrumentation". It is humbling, however, to note that Cremer recorded variations in electrical impedance in frog hearts as early as 1907. The list of potential applications includes the measurement of thyroid function, estrogen activity, galvanic skin reflex, respiration, blood flow by conductivity dilution, nervous activity and eye movement. Commercial devices employing impedance have been and are being used to measure respiration (pneumographs and apneamonitors), pulse volume (impedance phlebographs) and even noninvasive cardiac output.

  7. Use of a radial self-field diode geometry for intense pulsed ion beam generation at 6 MeV on Hermes III

    DOE PAGES

    Renk, Timothy Jerome; Harper-Slaboszewicz, Victor Jozef; Mikkelson, Kenneth A.; ...

    2014-12-15

    We investigate the generation of intense pulsed focused ion beams at the 6 MeV level using an inductive voltage adder (IVA) pulsed-power generator, which employs a magnetically insulated transmission line (MITL). Such IVA machines typical run at an impedance of few tens of Ohms. Previous successful intense ion beam generation experiments have often featured an “axial” pinch-reflex ion diode (i.e., with an axial anode-cathode gap) and operated on a conventional Marx generator/water line driver with an impedance of a few Ohms and no need for an MITL. The goals of these experiments are to develop a pinch-reflex ion diode geometrymore » that has an impedance to efficiently match to an IVA, produces a reasonably high ion current fraction, captures the vacuum electron current flowing forward in the MITL, and focuses the resulting ion beam to small spot size. Furthermore, a new “radial” pinch-reflex ion diode (i.e., with a radial anode-cathode gap) is found to best demonstrate these properties. Operation in both positive and negative polarities was undertaken, although the negative polarity experiments are emphasized. Particle-in-cell (PIC) simulations are consistent with experimental results indicating that, for diode impedances less than the self-limited impedance of the MITL, almost all of the forward-going IVA vacuum electron flow current is incorporated into the diode current. PIC results also provide understanding of the diode-impedance and ion-focusing properties of the diode. Additionally, a substantial high-energy ion population is also identified propagating in the “reverse” direction, i.e., from the back side of the anode foil in the electron beam dump.« less

  8. The testing of batteries linked to supercapacitors with electrochemical impedance spectroscopy: A comparison between Li-ion and valve regulated lead acid batteries

    NASA Astrophysics Data System (ADS)

    Ferg, Ernst; Rossouw, Claire; Loyson, Peter

    2013-03-01

    For electric vehicles, a supercapacitor can be coupled to the electrical system in order to increase and optimize the energy and power densities of the drive system during acceleration and regenerative breaking. This study looked at the charge acceptance and maximum discharge ability of a valve regulated lead acid (VRLA) and a Li-ion battery connected in parallel to supercapacitors. The test procedure evaluated the advantage of using a supercapacitor at a 2 F:1 Ah ratio with the battery types at various states of charge (SoC). The results showed that about 7% of extra charge was achieved over a 5-s test time for a Li-ion hybrid system at 20% SoC, whereas at the 80% SoC the additional capacity was approximately 16%. While for the VRLA battery hybrid system, an additional charge of up to 20% was achieved when the battery was at 80% SoC, with little or no benefit at the 20% SoC. The advantage of the supercapacitor in parallel with a VRLA battery was noticeable on its discharge ability, where significant extra capacity was achieved for short periods of time for a battery at the 60% and 40% SoC when compared to the Li-ion hybrid system. The study also made use of Electrochemical Impedance Spectroscopy (EIS) with a suitable equivalent circuit model to explain, in particular, the internal resistance and capacitance differences observed between the different battery chemistries with and without a supercapacitor.

  9. Cosmic heavy ion tracks in mesoscopic biological test objects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Facius, R.

    1994-12-31

    Since more than 20 years ago, when the National Academy of Sciences and the National Research Council of the U.S.A. released their report on `HZE particle effects in manned spaced flight`, it has been emphasized how difficult - if not even impossible - it is to assess their radiobiological impact on man from conventional studies where biological test organisms are stochastically exposed to `large` fluences of heavy ions. An alternative, competing approach had been realized in the BIOSTACK experiments, where the effects of single cosmic as well as accelerator - heavy ions on individual biological test organisms could be investigated.more » Although presented from the beginning as the preferable approach for terrestrial investigations with accelerator heavy ions too (`The BIOSTACK as an approach to high LET radiation research`), only recently this insight is gaining more widespread recognition. In space flight experiments, additional constraints imposed by the infrastructure of the vehicle or satellite further impede such investigations. Restrictions concern the physical detector systems needed for the registration of the cosmic heavy ions` trajectories as well as the biological systems eligible as test organisms. Such optimized procedures and techniques were developed for the investigations on chromosome aberrations induced by cosmic heavy ions in cells of the stem meristem of lettuce seeds (Lactuca sativa) and for the investigation of the radiobiological response of Wolffia arriza, which is the smallest flowering (water) plant. The biological effects were studied by the coworkers of the Russian Institute of Biomedical Problems (IBMP) which in cooperation with the European Space Agency ESA organized the exposure in the Biosatellites of the Cosmos series.« less

  10. Use of a radial self-field diode geometry for intense pulsed ion beam generation at 6 MeV on Hermes III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renk, T. J., E-mail: tjrenk@sandia.gov; Harper-Slaboszewicz, V.; Mikkelson, K. A.

    2014-12-15

    We investigate the generation of intense pulsed focused ion beams at the 6 MeV level using an inductive voltage adder (IVA) pulsed-power generator, which employs a magnetically insulated transmission line (MITL). Such IVA machines typical run at an impedance of few tens of Ohms. Previous successful intense ion beam generation experiments have often featured an “axial” pinch-reflex ion diode (i.e., with an axial anode-cathode gap) and operated on a conventional Marx generator/water line driver with an impedance of a few Ohms and no need for an MITL. The goals of these experiments are to develop a pinch-reflex ion diode geometry thatmore » has an impedance to efficiently match to an IVA, produces a reasonably high ion current fraction, captures the vacuum electron current flowing forward in the MITL, and focuses the resulting ion beam to small spot size. A new “radial” pinch-reflex ion diode (i.e., with a radial anode-cathode gap) is found to best demonstrate these properties. Operation in both positive and negative polarities was undertaken, although the negative polarity experiments are emphasized. Particle-in-cell (PIC) simulations are consistent with experimental results indicating that, for diode impedances less than the self-limited impedance of the MITL, almost all of the forward-going IVA vacuum electron flow current is incorporated into the diode current. PIC results also provide understanding of the diode-impedance and ion-focusing properties of the diode. In addition, a substantial high-energy ion population is also identified propagating in the “reverse” direction, i.e., from the back side of the anode foil in the electron beam dump.« less

  11. Time resolved impedance spectroscopy analysis of lithium phosphorous oxynitride - LiPON layers under mechanical stress

    NASA Astrophysics Data System (ADS)

    Glenneberg, Jens; Bardenhagen, Ingo; Langer, Frederieke; Busse, Matthias; Kun, Robert

    2017-08-01

    In this paper we present investigations on the morphological and electrochemical changes of lithium phosphorous oxynitride (LiPON) under mechanically bent conditions. Therefore, two types of electrochemical cells with LiPON thin films were prepared by physical vapor deposition. First, symmetrical cells with two blocking electrodes (Cu/LiPON/Cu) were fabricated. Second, to simulate a more application-related scenario cells with one blocking and one non-blocking electrode (Cu/LiPON/Li/Cu) were analyzed. In order to investigate mechanical distortion induced transport property changes in LiPON layers the cells were deposited on a flexible polyimide substrate. Morphology of the as-prepared samples and deviations from the initial state after applying external stress by bending the cells over different radii were investigated by Focused Ion Beam- Scanning Electron Microscopy (FIB-SEM) cross-section and surface images. Mechanical stress induced changes in the impedance were evaluated by time-resolved electrochemical impedance spectroscopy (EIS). Due to the formation of a stable, ion-conducting solid electrolyte interphase (SEI), cells with lithium show decreased impedance values. Furthermore, applying mechanical stress to the cells results in a further reduction of the electrolyte resistance. These results are supported by finite element analysis (FEA) simulations.

  12. Surface cleaning techniques and efficient B-field profiles for lithium ion sources on extraction ion diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuneo, M.E.; Menge, P.R.; Hanson, D.L.

    Application of ion beams to Inertial Confinement Fusion requires efficient production, transport and focusing of an intense, low microdivergence beam of an appropriate range ion. At Sandia, the authors are studying the production of lithium ion beams in extraction applied-B ion diodes on the SABRE accelerator (5 MV, 250 kA). Evidence on both SABRE (1 TW) and PBFA-II (20 TW) indicates that the lithium beam turns off and is replaced by a beam of mostly protons and carbon, possibly due to electron thermal and stimulated desorption of hydrocarbon surface contamination with subsequent avalanche ionization. Turn-off of the lithium beam ismore » accompanied by rapid impedance collapse. Surface cleaning techniques are being developed to reduce beam contamination, increase the total lithium energy and reduce the rate of diode impedance collapse. Application of surface cleaning techniques has increased the production of lithium from passive LiF sources by a factor of 2. Improved diode electric and magnetic field profiles have increased the diode efficiency and production of lithium by a factor of 5, without surface cleaning. Work is ongoing to combine these two advances which are discussed here.« less

  13. Ultra-wideband impedance sensor

    DOEpatents

    McEwan, Thomas E.

    1999-01-01

    The ultra-wideband impedance sensor (UWBZ sensor, or Z-sensor) is implemented in differential and single-ended configurations. The differential UWBZ sensor employs a sub-nanosecond impulse to determine the balance of an impedance bridge. The bridge is configured as a differential sample-and-hold circuit that has a reference impedance side and an unknown impedance side. The unknown impedance side includes a short transmission line whose impedance is a function of the near proximity of objects. The single-ended UWBZ sensor eliminates the reference side of the bridge and is formed of a sample and hold circuit having a transmission line whose impedance is a function of the near proximity of objects. The sensing range of the transmission line is bounded by the two-way travel time of the impulse, thereby eliminating spurious Doppler modes from large distant objects that would occur in a microwave CW impedance bridge. Thus, the UWBZ sensor is a range-gated proximity sensor. The Z-sensor senses the near proximity of various materials such as metal, plastic, wood, petroleum products, and living tissue. It is much like a capacitance sensor, yet it is impervious to moisture. One broad application area is the general replacement of magnetic sensors, particularly where nonferrous materials need to be sensed. Another broad application area is sensing full/empty levels in tanks, vats and silos, e.g., a full/empty switch in water or petroleum tanks.

  14. Ultra-wideband impedance sensor

    DOEpatents

    McEwan, T.E.

    1999-03-16

    The ultra-wideband impedance sensor (UWBZ sensor, or Z-sensor) is implemented in differential and single-ended configurations. The differential UWBZ sensor employs a sub-nanosecond impulse to determine the balance of an impedance bridge. The bridge is configured as a differential sample-and-hold circuit that has a reference impedance side and an unknown impedance side. The unknown impedance side includes a short transmission line whose impedance is a function of the near proximity of objects. The single-ended UWBZ sensor eliminates the reference side of the bridge and is formed of a sample and hold circuit having a transmission line whose impedance is a function of the near proximity of objects. The sensing range of the transmission line is bounded by the two-way travel time of the impulse, thereby eliminating spurious Doppler modes from large distant objects that would occur in a microwave CW impedance bridge. Thus, the UWBZ sensor is a range-gated proximity sensor. The Z-sensor senses the near proximity of various materials such as metal, plastic, wood, petroleum products, and living tissue. It is much like a capacitance sensor, yet it is impervious to moisture. One broad application area is the general replacement of magnetic sensors, particularly where nonferrous materials need to be sensed. Another broad application area is sensing full/empty levels in tanks, vats and silos, e.g., a full/empty switch in water or petroleum tanks. 2 figs.

  15. I/O impedance controller

    DOEpatents

    Ruesch, Rodney; Jenkins, Philip N.; Ma, Nan

    2004-03-09

    There is disclosed apparatus and apparatus for impedance control to provide for controlling the impedance of a communication circuit using an all-digital impedance control circuit wherein one or more control bits are used to tune the output impedance. In one example embodiment, the impedance control circuit is fabricated using circuit components found in a standard macro library of a computer aided design system. According to another example embodiment, there is provided a control for an output driver on an integrated circuit ("IC") device to provide for forming a resistor divider network with the output driver and a resistor off the IC device so that the divider network produces an output voltage, comparing the output voltage of the divider network with a reference voltage, and adjusting the output impedance of the output driver to attempt to match the output voltage of the divider network and the reference voltage. Also disclosed is over-sampling the divider network voltage, storing the results of the over sampling, repeating the over-sampling and storing, averaging the results of multiple over sampling operations, controlling the impedance with a plurality of bits forming a word, and updating the value of the word by only one least significant bit at a time.

  16. Pathogen identification using peptide nanotube biosensors and impedance AFM

    NASA Astrophysics Data System (ADS)

    Maccuspie, Robert I.

    Pathogen identification at highly sensitive levels is crucial to meet urgent needs in fighting the spread of disease or detecting bioterrorism events. Toward that end, a new method for biosensing utilizing fluorescent antibody nanotubes is proposed. Fundamental studies on the self-assembly of these peptide nanotubes are performed, as are applications of aligning these nanotubes on surfaces. As biosensors, these nanotubes incorporate recognition units with antibodies at their ends and fluorescent signaling units at their sidewalls. When viral pathogens were mixed with these antibody nanotubes in solution, the nanotubes rapidly aggregated around the viruses. The size of the aggregates increased as the concentration of viruses increased, as detected by flow cytometry on the order of attomolar concentrations by changes in fluorescence and light scattering intensities. This enabled determination of the concentrations of viruses at trace levels (102 to 106 pfu/mL) within 30 minutes from the receipt of samples to the final quantitative data analysis, as demonstrated on Adenovirus, Herpes Simplex Virus, Influenza, and Vaccinia virus. As another separate approach, impedance AFM is used to study the electrical properties of individual viruses and nanoparticles used as model systems. The design, development, and implementation of the impedance AFM for an Asylum Research platform is described, as well as its application towards studying the impedance of individual nanoparticles as a model system for understanding the fundamental science of how the life cycle of a virus affects its electrical properties. In combination, these approaches fill a pressing need to quantify viruses both rapidly and sensitively.

  17. Impedance methodology: A new way to characterize the setting reaction of dental cements.

    PubMed

    Villat, Cyril; Tran, Xuan-Vinh; Tran, V X; Pradelle-Plasse, Nelly; Ponthiaux, Pierre; Wenger, François; Grosgogeat, Brigitte; Colon, Pierre

    2010-12-01

    Impedance spectroscopy is a non-destructive, quantitative method, commonly used nowadays for industrial research on cement and concrete. The aim of this study is to investigate the interest of impedance spectroscopy in the characterization of setting process of dental cements. Two types of dental cements are used in this experiment: a new Calcium Silicate cement Biodentine™ (Septodont, Saint Maur-des Fossés, France) and a glass ionomer cement resin modified or not (Fuji II(®) LC Improved Capsules and Fuji IX(®) GP Fast set Capsules, GC Corp., Tokyo, Japan). The conductivity of the dental cements was determined by impedance spectroscopy measurements carried out on dental cement samples immersed in a 0.1M potassium chloride solution (KCl) in a "like-permeation" cell connected to a potentiostat and a Frequency Response Analyzer. The temperature of the solution is 37°C. From the moment of mixing of powder and liquid, the experiments lasted 2 weeks. The results obtained for each material are relevant of the setting process. For GIC, impedance values are stabilized after 5 days while at least 14 days are necessary for the calcium silicate based cement. In accordance with the literature regarding studies of cements and concrete, impedance spectroscopy can characterize ion mobility, porosity and hardening process of dental hydrogel materials. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. Oxytocin increases bias, but not accuracy, in face recognition line-ups.

    PubMed

    Bate, Sarah; Bennetts, Rachel; Parris, Benjamin A; Bindemann, Markus; Udale, Robert; Bussunt, Amanda

    2015-07-01

    Previous work indicates that intranasal inhalation of oxytocin improves face recognition skills, raising the possibility that it may be used in security settings. However, it is unclear whether oxytocin directly acts upon the core face-processing system itself or indirectly improves face recognition via affective or social salience mechanisms. In a double-blind procedure, 60 participants received either an oxytocin or placebo nasal spray before completing the One-in-Ten task-a standardized test of unfamiliar face recognition containing target-present and target-absent line-ups. Participants in the oxytocin condition outperformed those in the placebo condition on target-present trials, yet were more likely to make false-positive errors on target-absent trials. Signal detection analyses indicated that oxytocin induced a more liberal response bias, rather than increasing accuracy per se. These findings support a social salience account of the effects of oxytocin on face recognition and indicate that oxytocin may impede face recognition in certain scenarios. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  19. Multimode and multistate ladder oscillator and frequency recognition device

    NASA Technical Reports Server (NTRS)

    Aumann, Herbert M. (Inventor)

    1976-01-01

    A ladder oscillator composed of capacitive and inductive impedances connected together to form a ladder network which has a chosen number N oscillation modes at N different frequencies. Each oscillation mode is characterized by a unique standing wave voltage pattern along the nodes of the ladder oscillator, with the mode in which the ladder oscillator is oscillating being determinable from the amplitudes or phase of the oscillations at the nodes. A logic circuit may be connected to the nodes of the oscillator to compare the phases of selected nodes and thereby determine which mode the oscillator is oscillating in. A ladder oscillator composed of passive capacitive and inductive impedances can be utilized as a frequency recognition device, since the passive ladder oscillator will display the characteristic standing wave patterns if an input signal impressed upon the ladder oscillator is close to one of the mode frequencies of the oscillator. A CL ladder oscillator having series capacitive impedances and shunt inductive impedances can exhibit sustained and autonomous oscillations if active nonlinear devices are connected in parallel with the shunt inductive impedances. The active CL ladder oscillator can be synchronized to input frequencies impressed upon the oscillator, and will continue to oscillate after the input signal has been removed at a mode frequency which is, in general, nearest to the input signal frequency. Autonomous oscillations may also be obtained as desired from the active CL ladder oscillator at the mode frequencies.

  20. Method of Adjusting Acoustic Impedances for Impedance-Tunable Acoustic Segments

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H (Inventor); Nark, Douglas M. (Inventor); Jones, Michael G. (Inventor); Parrott, Tony L. (Inventor); Lodding, Kenneth N. (Inventor)

    2012-01-01

    A method is provided for making localized decisions and taking localized actions to achieve a global solution. In an embodiment of the present invention, acoustic impedances for impedance-tunable acoustic segments are adjusted. A first acoustic segment through an N-th acoustic segment are defined. To start the process, the first acoustic segment is designated as a leader and a noise-reducing impedance is determined therefor. This is accomplished using (i) one or more metrics associated with the acoustic wave at the leader, and (ii) the metric(s) associated with the acoustic wave at the N-th acoustic segment. The leader, the N-th acoustic segment, and each of the acoustic segments exclusive of the leader and the N-th acoustic segment, are tuned to the noise-reducing impedance. The current leader is then excluded from subsequent processing steps. The designation of leader is then given one of the remaining acoustic segments, and the process is repeated for each of the acoustic segments through an (N-1)-th one of the acoustic segments.

  1. Image Reconstruction Under Contact Impedance Effect in Micro Electrical Impedance Tomography Sensors.

    PubMed

    Liu, Xiayi; Yao, Jiafeng; Zhao, Tong; Obara, Hiromichi; Cui, Yahui; Takei, Masahiro

    2018-06-01

    Contact impedance has an important effect on micro electrical impedance tomography (EIT) sensors compared to conventional macro sensors. In the present work, a complex contact impedance effect ratio ξ is defined to quantitatively evaluate the effect of the contact impedance on the accuracy of the reconstructed images by micro EIT. Quality of the reconstructed image under various ξ is estimated by the phantom simulation to find the optimum algorithm. The generalized vector sampled pattern matching (GVSPM) method reveals the best image quality and the best tolerance to ξ. Moreover, the images of yeast cells sedimentary distribution in a multilayered microchannel are reconstructed by the GVSPM method under various mean magnitudes of contact impedance effect ratio |ξ|. The result shows that the best image quality that has the smallest voltage error U E = 0.581 is achieved with measurement frequency f = 1 MHz and mean magnitude |ξ| = 26. In addition, the reconstructed images of cells distribution become improper while f < 10 kHz and mean value of |ξ| > 2400.

  2. Fast and sensitive detection of foodborne pathogen using electrochemical impedance analysis, urease catalysis and microfluidics.

    PubMed

    Chen, Qi; Wang, Dan; Cai, Gaozhe; Xiong, Yonghua; Li, Yuntao; Wang, Maohua; Huo, Huiling; Lin, Jianhan

    2016-12-15

    Early screening of pathogenic bacteria is a key to prevent and control of foodborne diseases. In this study, we developed a fast and sensitive bacteria detection method integrating electrochemical impedance analysis, urease catalysis with microfluidics and using Listeria as model. The Listeria cells, the anti-Listeria monoclonal antibodies modified magnetic nanoparticles (MNPs), and the anti-Listeria polyclonal antibodies and urease modified gold nanoparticles (AuNPs) were incubated in a fluidic separation chip with active mixing to form the MNP-Listeria-AuNP-urease sandwich complexes. The complexes were captured in the separation chip by applying a high gradient magnetic field, and the urea was injected to resuspend the complexes and hydrolyzed under the catalysis of the urease on the complexes into ammonium ions and carbonate ions, which were transported into a microfluidic detection chip with an interdigitated microelectrode for impedance measurement to determine the amount of the Listeria cells. The capture efficiency of the Listeria cells in the separation chip was ∼93% with a shorter time of 30min due to the faster immuno-reaction using the active magnetic mixing. The changes on both impedance magnitude and phase angle were demonstrated to be able to detect the Listeria cells as low as 1.6×10(2)CFU/mL. The detection time was reduced from original ∼2h to current ∼1h. The recoveries of the spiked lettuce samples ranged from 82.1% to 89.6%, indicating the applicability of this proposed biosensor. This microfluidic impedance biosensor has shown the potential for online, automatic and sensitive bacteria separation and detection. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Effects of Power on Mental Rotation and Emotion Recognition in Women.

    PubMed

    Nissan, Tali; Shapira, Oren; Liberman, Nira

    2015-10-01

    Based on construal-level theory (CLT) and its view of power as an instance of social distance, we predicted that high, relative to low power would enhance women's mental-rotation performance and impede their emotion-recognition performance. The predicted effects of power emerged both when it was manipulated via a recall priming task (Study 1) and environmental cues (Studies 2 and 3). Studies 3 and 4 found evidence for mediation by construal level of the effect of power on emotion recognition but not on mental rotation. We discuss potential mediating mechanisms for these effects based on both the social distance/construal level and the approach/inhibition views of power. We also discuss implications for optimizing performance on mental rotation and emotion recognition in everyday life. © 2015 by the Society for Personality and Social Psychology, Inc.

  4. Origin of Capacity Fading in Nano-Sized Co3O4 Electrodes: Electrochemical Impedance Spectroscopy Study

    NASA Astrophysics Data System (ADS)

    Kang, Jin-Gu; Ko, Young-Dae; Park, Jae-Gwan; Kim, Dong-Wan

    2008-10-01

    Transition metal oxides have been suggested as innovative, high-energy electrode materials for lithium-ion batteries because their electrochemical conversion reactions can transfer two to six electrons. However, nano-sized transition metal oxides, especially Co3O4, exhibit drastic capacity decay during discharge/charge cycling, which hinders their practical use in lithium-ion batteries. Herein, we prepared nano-sized Co3O4 with high crystallinity using a simple citrate-gel method and used electrochemical impedance spectroscopy method to examine the origin for the drastic capacity fading observed in the nano-sized Co3O4 anode system. During cycling, AC impedance responses were collected at the first discharged state and at every subsequent tenth discharged state until the 100th cycle. By examining the separable relaxation time of each electrochemical reaction and the goodness-of-fit results, a direct relation between the charge transfer process and cycling performance was clearly observed.

  5. Innate Immunity against Cryptococcus, from Recognition to Elimination

    PubMed Central

    Wormley, Floyd L.

    2018-01-01

    Cryptococcus species, the etiological agents of cryptococcosis, are encapsulated fungal yeasts that predominantly cause disease in immunocompromised individuals, and are responsible for 15% of AIDS-related deaths worldwide. Exposure follows the inhalation of the yeast into the lung alveoli, making it incumbent upon the pattern recognition receptors (PRRs) of pulmonary phagocytes to recognize highly conserved pathogen-associated molecular patterns (PAMPS) of fungi. The main challenges impeding the ability of pulmonary phagocytes to effectively recognize Cryptococcus include the presence of the yeast’s large polysaccharide capsule, as well as other cryptococcal virulence factors that mask fungal PAMPs and help Cryptococcus evade detection and subsequent activation of the immune system. This review will highlight key phagocyte cell populations and the arsenal of PRRs present on these cells, such as the Toll-like receptors (TLRs), C-type lectin receptors, NOD-like receptors (NLRs), and soluble receptors. Additionally, we will highlight critical cryptococcal PAMPs involved in the recognition of Cryptococcus. The question remains as to which PRR–ligand interaction is necessary for the recognition, phagocytosis, and subsequent killing of Cryptococcus. PMID:29518906

  6. Impeded Dark Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopp, Joachim; Liu, Jia; Slatyer, Tracy

    Here, we consider dark matter models in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. To emphasize this modification, we dub our scenario \\Impeded Dark Matter". We also demonstrate that Impeded Dark Matter can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may evenmore » be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. Furthermore, for positive mass splitting, we show that the annihilation cross-section is suppressed by the small mass splitting, which helps light dark matter to survive increasingly stringent constraints from indirect searches. As specific realizations for Impeded Dark Matter, we introduce a model of vector dark matter from a hidden SU(2) sector, and a composite dark matter scenario based on a QCD-like dark sector.« less

  7. Impeded Dark Matter

    DOE PAGES

    Kopp, Joachim; Liu, Jia; Slatyer, Tracy; ...

    2016-12-12

    Here, we consider dark matter models in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. To emphasize this modification, we dub our scenario \\Impeded Dark Matter". We also demonstrate that Impeded Dark Matter can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may evenmore » be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. Furthermore, for positive mass splitting, we show that the annihilation cross-section is suppressed by the small mass splitting, which helps light dark matter to survive increasingly stringent constraints from indirect searches. As specific realizations for Impeded Dark Matter, we introduce a model of vector dark matter from a hidden SU(2) sector, and a composite dark matter scenario based on a QCD-like dark sector.« less

  8. Global Profiling and Novel Structure Discovery Using Multiple Neutral Loss/Precursor Ion Scanning Combined with Substructure Recognition and Statistical Analysis (MNPSS): Characterization of Terpene-Conjugated Curcuminoids in Curcuma longa as a Case Study.

    PubMed

    Qiao, Xue; Lin, Xiong-hao; Ji, Shuai; Zhang, Zheng-xiang; Bo, Tao; Guo, De-an; Ye, Min

    2016-01-05

    To fully understand the chemical diversity of an herbal medicine is challenging. In this work, we describe a new approach to globally profile and discover novel compounds from an herbal extract using multiple neutral loss/precursor ion scanning combined with substructure recognition and statistical analysis. Turmeric (the rhizomes of Curcuma longa L.) was used as an example. This approach consists of three steps: (i) multiple neutral loss/precursor ion scanning to obtain substructure information; (ii) targeted identification of new compounds by extracted ion current and substructure recognition; and (iii) untargeted identification using total ion current and multivariate statistical analysis to discover novel structures. Using this approach, 846 terpecurcumins (terpene-conjugated curcuminoids) were discovered from turmeric, including a number of potentially novel compounds. Furthermore, two unprecedented compounds (terpecurcumins X and Y) were purified, and their structures were identified by NMR spectroscopy. This study extended the application of mass spectrometry to global profiling of natural products in herbal medicines and could help chemists to rapidly discover novel compounds from a complex matrix.

  9. Electrochemical impedance spectroscopy of lithium-titanium disulfide rechargeable cells

    NASA Technical Reports Server (NTRS)

    Narayanan, S. R.; Shen, D. H.; Surampudi, S.; Attia, A. I.; Halpert, G.

    1993-01-01

    The two-terminal alternating current impedance of Li/TiS2 rechargeable cells was studied as a function of frequency, state-of-charge, and extended cycling. Analysis based on a plausible equivalent circuit model for the Li/TiS2 cell leads to evaluation of kinetic parameters for the various physicochemical processes occurring at the electrode/electrolyte interfaces. To investigate the causes of cell degradation during extended cycling, the parameters evaluated for cells cycled 5 times were compared with the parameters of cells cycled over 600 times. The findings are that the combined ohmic resistance of the electrolyte and electrodes suffers a tenfold increase after extended cycling, while the charge-transfer resistance and diffusional impedance at the TiS2/electrolyte interface are not significantIy affected. The results reflect the morphological change and increase in area of the anode due to cycling. The study also shows that overdischarge of a cathode-limited cell causes a decrease in the diffusion coefficient of the lithium ion in the cathode.

  10. Metal oxide nanosensors using polymeric membranes, enzymes and antibody receptors as ion and molecular recognition elements.

    PubMed

    Willander, Magnus; Khun, Kimleang; Ibupoto, Zafar Hussain

    2014-05-16

    The concept of recognition and biofunctionality has attracted increasing interest in the fields of chemistry and material sciences. Advances in the field of nanotechnology for the synthesis of desired metal oxide nanostructures have provided a solid platform for the integration of nanoelectronic devices. These nanoelectronics-based devices have the ability to recognize molecular species of living organisms, and they have created the possibility for advanced chemical sensing functionalities with low limits of detection in the nanomolar range. In this review, various metal oxides, such as ZnO-, CuO-, and NiO-based nanosensors, are described using different methods (receptors) of functionalization for molecular and ion recognition. These functionalized metal oxide surfaces with a specific receptor involve either a complex formation between the receptor and the analyte or an electrostatic interaction during the chemical sensing of analytes. Metal oxide nanostructures are considered revolutionary nanomaterials that have a specific surface for the immobilization of biomolecules with much needed orientation, good conformation and enhanced biological activity which further improve the sensing properties of nanosensors. Metal oxide nanostructures are associated with certain unique optical, electrical and molecular characteristics in addition to unique functionalities and surface charge features which shows attractive platforms for interfacing biorecognition elements with effective transducing properties for signal amplification. There is a great opportunity in the near future for metal oxide nanostructure-based miniaturization and the development of engineering sensor devices.

  11. Using Regression to Measure Holistic Face Processing Reveals a Strong Link with Face Recognition Ability

    ERIC Educational Resources Information Center

    DeGutis, Joseph; Wilmer, Jeremy; Mercado, Rogelio J.; Cohan, Sarah

    2013-01-01

    Although holistic processing is thought to underlie normal face recognition ability, widely discrepant reports have recently emerged about this link in an individual differences context. Progress in this domain may have been impeded by the widespread use of subtraction scores, which lack validity due to their contamination with control condition…

  12. Effects of heavy-ion irradiation on the microwave surface impedance of (Ba1-x K x )Fe2As2 single crystals

    NASA Astrophysics Data System (ADS)

    Ghigo, G.; Torsello, D.; Gerbaldo, R.; Gozzelino, L.; Laviano, F.; Tamegai, T.

    2018-07-01

    The electrodynamic response of Ba1-x K x Fe2As2 single crystals at the microwave frequencies has been investigated by means of a coplanar resonator technique, at different values of non-magnetic disorder introduced into the samples by heavy-ion irradiation. The surface impedance Z s = R s + iX s conforms to the classical skin effect above the critical temperature. Below T c, R s monotonically decreases while X s shows a peak, which evolves as a function of the irradiation fluence. The disorder-dependent Z s (T) curves are analyzed within a two-fluid model, suitably modified to account for a finite quasiparticle fraction at T = 0. The analysis gives, for the unirradiated crystal, quasiparticle relaxation times τ that are in good agreement with previous literature. Smaller τ values are deduced for the disordered crystals, both in the normal and in the superconducting states. The limits of application of the model are discussed.

  13. Overview of ion source characterization diagnostics in INTF

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, M.; Sudhir, Dass; Bhuyan, M.; Soni, J.; Tyagi, H.; Joshi, J.; Yadav, A.; Rotti, C.; Parmar, Deepak; Patel, H.; Pillai, S.; Chakraborty, A.

    2016-02-01

    INdian Test Facility (INTF) is envisaged to characterize ITER diagnostic neutral beam system and to establish the functionality of its eight inductively coupled RF plasma driver based negative hydrogen ion source and its beamline components. The beam quality mainly depends on the ion source performance and therefore, its diagnostics plays an important role for its safe and optimized operation. A number of diagnostics are planned in INTF to characterize the ion source performance. Negative ions and its cesium contents in the source will be monitored by optical emission spectroscopy (OES) and cavity ring down spectroscopy. Plasma near the extraction region will be studied using standard electrostatic probes. The beam divergence and negative ion stripping losses are planned to be measured using Doppler shift spectroscopy. During initial phase of ion beam characterization, carbon fiber composite based infrared imaging diagnostics will be used. Safe operation of the beam will be ensured by using standard thermocouples and electrical voltage-current measurement sensors. A novel concept, based on plasma density dependent plasma impedance measurement using RF electrical impedance matching parameters to characterize the RF driver plasma, will be tested in INTF and will be validated with OES data. The paper will discuss about the overview of the complete INTF diagnostics including its present status of procurement, experimentation, interface with mechanical systems in INTF, and integration with INTF data acquisition and control systems.

  14. Optically stimulated differential impedance spectroscopy

    DOEpatents

    Maxey, Lonnie C; Parks, II, James E; Lewis, Sr., Samuel A; Partridge, Jr., William P

    2014-02-18

    Methods and apparatuses for evaluating a material are described. Embodiments typically involve use of an impedance measurement sensor to measure the impedance of a sample of the material under at least two different states of illumination. The states of illumination may include (a) substantially no optical stimulation, (b) substantial optical stimulation, (c) optical stimulation at a first wavelength of light, (d) optical stimulation at a second wavelength of light, (e) a first level of light intensity, and (f) a second level of light intensity. Typically a difference in impedance between the impedance of the sample at the two states of illumination is measured to determine a characteristic of the material.

  15. Influnce of exposure with Xe radiation on heterojunction solar cell a-SiC/c-Si studied by impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Perný, M.; Šály, V.; Packa, J.; Mikolášek, M.; Váry, M.; Huran, J.; Hrubčín, L.; Skuratov, V. A.; Arbet, J.

    2017-04-01

    The photovoltaic efficiency of heterostructures a-SiC/c-Si may be the same or even better in comparison with conventional silicon structures when suitable adjustment of technological parameters is realized. The main advantage of heterojunction formed amorphous SiC thin film and crystalline silicon compared to standard crystalline solar cell lies in high build-in voltage and thus a high open-circuit voltage. Solar cells can be exposed to various influences of hard environment. A deterioration of properties of heterostructures (a-SiC/c-Si) due to irradiation is examined in our paper using impedance spectroscopy method. Xe ions induced damage is reflected in changes of proposed AC equivalent circuit elements. AC equivalent circuit was proposed and verified using numerical simulations. Impedance spectra were also measured at different DC bias voltages due to a more detailed understanding correlation between Xe ions induced damage and transport phenomenon in the heterostructure.

  16. Metal Oxide Nanosensors Using Polymeric Membranes, Enzymes and Antibody Receptors as Ion and Molecular Recognition Elements

    PubMed Central

    Willander, Magnus; Khun, Kimleang; Ibupoto, Zafar Hussain

    2014-01-01

    The concept of recognition and biofunctionality has attracted increasing interest in the fields of chemistry and material sciences. Advances in the field of nanotechnology for the synthesis of desired metal oxide nanostructures have provided a solid platform for the integration of nanoelectronic devices. These nanoelectronics-based devices have the ability to recognize molecular species of living organisms, and they have created the possibility for advanced chemical sensing functionalities with low limits of detection in the nanomolar range. In this review, various metal oxides, such as ZnO-, CuO-, and NiO-based nanosensors, are described using different methods (receptors) of functionalization for molecular and ion recognition. These functionalized metal oxide surfaces with a specific receptor involve either a complex formation between the receptor and the analyte or an electrostatic interaction during the chemical sensing of analytes. Metal oxide nanostructures are considered revolutionary nanomaterials that have a specific surface for the immobilization of biomolecules with much needed orientation, good conformation and enhanced biological activity which further improve the sensing properties of nanosensors. Metal oxide nanostructures are associated with certain unique optical, electrical and molecular characteristics in addition to unique functionalities and surface charge features which shows attractive platforms for interfacing biorecognition elements with effective transducing properties for signal amplification. There is a great opportunity in the near future for metal oxide nanostructure-based miniaturization and the development of engineering sensor devices. PMID:24841244

  17. Electromagnetic scattering by impedance structures

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Griesser, Timothy

    1987-01-01

    The scattering of electromagnetic waves from impedance structures is investigated, and current work on antenna pattern calculation is presented. A general algorithm for determining radiation patterns from antennas mounted near or on polygonal plates is presented. These plates are assumed to be of a material which satisfies the Leontovich (or surface impedance) boundary condition. Calculated patterns including reflection and diffraction terms are presented for numerious geometries, and refinements are included for antennas mounted directly on impedance surfaces. For the case of a monopole mounted on a surface impedance ground plane, computed patterns are compared with experimental measurements. This work in antenna pattern prediction forms the basis of understanding of the complex scattering mechanisms from impedance surfaces. It provides the foundation for the analysis of backscattering patterns which, in general, are more problematic than calculation of antenna patterns. Further proposed study of related topics, including surface waves, corner diffractions, and multiple diffractions, is outlined.

  18. Modeling electrical double-layer effects for microfluidic impedance spectroscopy from 100 kHz to 110 GHz.

    PubMed

    Little, Charles A E; Orloff, Nathan D; Hanemann, Isaac E; Long, Christian J; Bright, Victor M; Booth, James C

    2017-07-25

    Broadband microfluidic-based impedance spectroscopy can be used to characterize complex fluids, with applications in medical diagnostics and in chemical and pharmacological manufacturing. Many relevant fluids are ionic; during impedance measurements ions migrate to the electrodes, forming an electrical double-layer. Effects from the electrical double-layer dominate over, and reduce sensitivity to, the intrinsic impedance of the fluid below a characteristic frequency. Here we use calibrated measurements of saline solution in microfluidic coplanar waveguide devices at frequencies between 100 kHz and 110 GHz to directly measure the double-layer admittance for solutions of varying ionic conductivity. We successfully model the double-layer admittance using a combination of a Cole-Cole response with a constant phase element contribution. Our analysis yields a double-layer relaxation time that decreases linearly with solution conductivity, and allows for double-layer effects to be separated from the intrinsic fluid response and quantified for a wide range of conducting fluids.

  19. The Influence of Nanopore Dimensions on the Electrochemical Properties of Nanopore Arrays Studied by Impedance Spectroscopy

    PubMed Central

    Kant, Krishna; Priest, Craig; Shapter, Joe G.; Losic, Dusan

    2014-01-01

    The understanding of the electrochemical properties of nanopores is the key factor for better understanding their performance and applications for nanopore-based sensing devices. In this study, the influence of pore dimensions of nanoporous alumina (NPA) membranes prepared by an anodization process and their electrochemical properties as a sensing platform using impedance spectroscopy was explored. NPA with four different pore diameters (25 nm, 45 nm and 65 nm) and lengths (5 μm to 20 μm) was used and their electrochemical properties were explored using different concentration of electrolyte solution (NaCl) ranging from 1 to 100 μM. Our results show that the impedance and resistance of nanopores are influenced by the concentration and ion species of electrolytes, while the capacitance is independent of them. It was found that nanopore diameters also have a significant influence on impedance due to changes in the thickness of the double layer inside the pores. PMID:25393785

  20. 21 CFR 870.2770 - Impedance plethysmograph.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Impedance plethysmograph. 870.2770 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2770 Impedance plethysmograph. (a) Identification. An impedance plethysmograph is a device used to estimate peripheral blood...

  1. Metal cofactor modulated folding and target recognition of HIV-1 NCp7.

    PubMed

    Ren, Weitong; Ji, Dongqing; Xu, Xiulian

    2018-01-01

    The HIV-1 nucleocapsid 7 (NCp7) plays crucial roles in multiple stages of HIV-1 life cycle, and its biological functions rely on the binding of zinc ions. Understanding the molecular mechanism of how the zinc ions modulate the conformational dynamics and functions of the NCp7 is essential for the drug development and HIV-1 treatment. In this work, using a structure-based coarse-grained model, we studied the effects of zinc cofactors on the folding and target RNA(SL3) recognition of the NCp7 by molecular dynamics simulations. After reproducing some key properties of the zinc binding and folding of the NCp7 observed in previous experiments, our simulations revealed several interesting features in the metal ion modulated folding and target recognition. Firstly, we showed that the zinc binding makes the folding transition states of the two zinc fingers less structured, which is in line with the Hammond effect observed typically in mutation, temperature or denaturant induced perturbations to protein structure and stability. Secondly, We showed that there exists mutual interplay between the zinc ion binding and NCp7-target recognition. Binding of zinc ions enhances the affinity between the NCp7 and the target RNA, whereas the formation of the NCp7-RNA complex reshapes the intrinsic energy landscape of the NCp7 and increases the stability and zinc affinity of the two zinc fingers. Thirdly, by characterizing the effects of salt concentrations on the target RNA recognition, we showed that the NCp7 achieves optimal balance between the affinity and binding kinetics near the physiologically relevant salt concentrations. In addition, the effects of zinc binding on the inter-domain conformational flexibility and folding cooperativity of the NCp7 were also discussed.

  2. Superconducting fault current-limiter with variable shunt impedance

    DOEpatents

    Llambes, Juan Carlos H; Xiong, Xuming

    2013-11-19

    A superconducting fault current-limiter is provided, including a superconducting element configured to resistively or inductively limit a fault current, and one or more variable-impedance shunts electrically coupled in parallel with the superconducting element. The variable-impedance shunt(s) is configured to present a first impedance during a superconducting state of the superconducting element and a second impedance during a normal resistive state of the superconducting element. The superconducting element transitions from the superconducting state to the normal resistive state responsive to the fault current, and responsive thereto, the variable-impedance shunt(s) transitions from the first to the second impedance. The second impedance of the variable-impedance shunt(s) is a lower impedance than the first impedance, which facilitates current flow through the variable-impedance shunt(s) during a recovery transition of the superconducting element from the normal resistive state to the superconducting state, and thus, facilitates recovery of the superconducting element under load.

  3. Nanotechnology in Li-ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukaibo, Hitomi

    2010-06-04

    This is the second of three talks on nanostructures for li-ion batteries. The talks provide an up-to-date review of the issues and challenges facing Li-ion battery research with special focus on how nanostructures/ nanotechnology are being applied to this field. Novel materials reported as prospective candidates for anode, cathode and electrolyte will be summarized. The expected role of nanostructures in improving the performance of Li-ion batteries and the actual pros and cons of using such structures in this device will be addressed. Electrochemical experiments used to study Li-ion batteries will also be discussed. This includes the introduction to the standardmore » experimental set-up and how experimental data (from charge-discharge experiments, cyclic voltammetry, impedance spectroscopy, etc) are interpreted.« less

  4. New methods of subcooled water recognition in dew point hygrometers

    NASA Astrophysics Data System (ADS)

    Weremczuk, Jerzy; Jachowicz, Ryszard

    2001-08-01

    Two new methods of sub-cooled water recognition in dew point hygrometers are presented in this paper. The first one- impedance method use a new semiconductor mirror in which the dew point detector, the thermometer and the heaters were integrated all together. The second one an optical method based on a multi-section optical detector is discussed in the report. Experimental results of both methods are shown. New types of dew pont hydrometers of ability to recognized sub-cooled water were proposed.

  5. Microfabricated AC impedance sensor

    DOEpatents

    Krulevitch, Peter; Ackler, Harold D.; Becker, Frederick; Boser, Bernhard E.; Eldredge, Adam B.; Fuller, Christopher K.; Gascoyne, Peter R. C.; Hamilton, Julie K.; Swierkowski, Stefan P.; Wang, Xiao-Bo

    2002-01-01

    A microfabricated instrument for detecting and identifying cells and other particles based on alternating current (AC) impedance measurements. The microfabricated AC impedance sensor includes two critical elements: 1) a microfluidic chip, preferably of glass substrates, having at least one microchannel therein and with electrodes patterned on both substrates, and 2) electrical circuits that connect to the electrodes on the microfluidic chip and detect signals associated with particles traveling down the microchannels. These circuits enable multiple AC impedance measurements of individual particles at high throughput rates with sufficient resolution to identify different particle and cell types as appropriate for environmental detection and clinical diagnostic applications.

  6. Impedance of a nanoantenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greffet, Jean-Jacques; Laroche, Marine; Marquier, Francois

    2009-10-07

    We introduce a generalized definition of the impedance of a nanoantenna that can be applied to any system. We also introduce a definition of the impedance of a two level system. Using this framework, we establish a link between the electrical engineering and the quantum optics picture of light emission.

  7. Home environmental consequences of commute travel impedance.

    PubMed

    Novaco, R W; Kliewer, W; Broquet, A

    1991-12-01

    The physical and perceptual dimensions of commuting travel impedance were again found to have stressful consequences in a study of 99 employees of two companies. This quasi-experimental replication study, which focuses here on home environment consequences, investigated the effects of physical impedance and subjective impedance on multivariate measures of residential satisfaction and personal affect in the home. Both sets of residential outcome measures were significantly related to the two impedance dimensions. As predicted, gender was a significant moderator of physical impedance effects. Women commuting on high physical impedance routes were most negatively affected. Previously found subjective impedance effects on negative home mood, regardless of gender, were strongly replicated with several methods and were buttressed by convergent results with objective indices. The theoretical conjecture that subjective impedance mediates the stress effects of physical impedance was supported by the personal affect cluster but only for one variable in the residential satisfaction cluster. Traffic congestion has increased in metropolitan areas nationwide, and commuters, families, and organizations are absorbing associated hidden costs. The results are reviewed in terms of our ecological model, and the moderating effects of gender are discussed in terms of choice and role constraints.

  8. 21 CFR 870.2750 - Impedance phlebograph.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Impedance phlebograph. 870.2750 Section 870.2750...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2750 Impedance phlebograph. (a) Identification. An impedance phlebograph is a device used to provide a visual display of the...

  9. Overview of ion source characterization diagnostics in INTF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bandyopadhyay, M., E-mail: mainak@iter-india.org; Sudhir, Dass; Bhuyan, M.

    2016-02-15

    INdian Test Facility (INTF) is envisaged to characterize ITER diagnostic neutral beam system and to establish the functionality of its eight inductively coupled RF plasma driver based negative hydrogen ion source and its beamline components. The beam quality mainly depends on the ion source performance and therefore, its diagnostics plays an important role for its safe and optimized operation. A number of diagnostics are planned in INTF to characterize the ion source performance. Negative ions and its cesium contents in the source will be monitored by optical emission spectroscopy (OES) and cavity ring down spectroscopy. Plasma near the extraction regionmore » will be studied using standard electrostatic probes. The beam divergence and negative ion stripping losses are planned to be measured using Doppler shift spectroscopy. During initial phase of ion beam characterization, carbon fiber composite based infrared imaging diagnostics will be used. Safe operation of the beam will be ensured by using standard thermocouples and electrical voltage-current measurement sensors. A novel concept, based on plasma density dependent plasma impedance measurement using RF electrical impedance matching parameters to characterize the RF driver plasma, will be tested in INTF and will be validated with OES data. The paper will discuss about the overview of the complete INTF diagnostics including its present status of procurement, experimentation, interface with mechanical systems in INTF, and integration with INTF data acquisition and control systems.« less

  10. Ionospheric effects to antenna impedance

    NASA Technical Reports Server (NTRS)

    Bethke, K. H.

    1986-01-01

    The reciprocity between high power satellite antennas and the surrounding plasma are examined. The relevant plasma states for antenna impedance calculations are presented and plasma models, and hydrodynamic and kinetic theory, are discussed. A theory from which a variation in antenna impedance with regard to the radiated power can be calculated for a frequency range well above the plasma resonance frequency is give. The theory can include photo and secondary emission effects in antenna impedance calculations.

  11. Supramolecular recognition control of polyethylene glycol modified N-doped graphene quantum dots: tunable selectivity for alkali and alkaline-earth metal ions.

    PubMed

    Yang, Siwei; Sun, Jing; Zhu, Chong; He, Peng; Peng, Zheng; Ding, Guqiao

    2016-02-07

    The graphene quantum dot based fluorescent probe community needs unambiguous evidence about the control on the ion selectivity. In this paper, polyethylene glycol modified N-doped graphene quantum dots (PN-GQDs) were synthesized by alkylation reaction between graphene quantum dots and organic halides. We demonstrate the tunable selectivity and sensitivity by controlling the supramolecular recognition through the length and the end group size of the polyether chain on PN-GQDs. The relationship formulae between the selectivity/detection limit and polyether chains are experimentally deduced. The polyether chain length determines the interaction between the PN-GQDs and ions with different ratios of charge to radius, which in turn leads to a good selectivity control. Meanwhile the detection limit shows an exponential growth with the size of end groups of the polyether chain. The PN-GQDs can be used as ultrasensitive and selective fluorescent probes for Li(+), Na(+), K(+), Mg(2+), Ca(2+) and Sr(2+), respectively.

  12. Cosmic heavy ion tracks in mesoscopic biological test objects

    NASA Technical Reports Server (NTRS)

    Facius, R.

    1994-01-01

    Since more than 20 years ago, when the National Academy of Sciences and the National Research Council of the U.S.A. released their report on 'HZE particle effects in manned spaced flight', it has been emphasized how difficult - if not even impossible - it is to assess their radiobiological impact on man from conventional studies where biological test organisms are stochastically exposed to 'large' fluences of heavy ions. An alternative, competing approach had been realized in the BIOSTACK experiments, where the effects of single cosmic as well as accelerator - heavy ions on individual biological test organisms could be investigated. Although presented from the beginning as the preferable approach for terrestrial investigations with accelerator heavy ions too ('The BIOSTACK as an approach to high LET radiation research'), only recently this insight is gaining more widespread recognition. In space flight experiments, additional constraints imposed by the infrastructure of the vehicle or satellite further impede such investigations. Restrictions concern the physical detector systems needed for the registration of the cosmic heavy ions' trajectories as well as the biological systems eligible as test organisms. Such optimized procedures and techniques were developed for the investigations on chromosome aberrations induced by cosmic heavy ions in cells of the stem meristem of lettuce seeds (Lactuca sativa) and for the investigation of the radiobiological response of Wolffia arriza, which is the smallest flowering (water) plant. The biological effects were studied by the coworkers of the Russian Institute of Biomedical Problems (IBMP) which in cooperation with the European Space Agency ESA organized the exposure in the Biosatellites of the Cosmos series. Since biological investigations and physical measurements of particle tracks had to be performed in laboratories widely separated, the preferred fixed contact between biological test objects and the particle detectors

  13. Revisiting the electrochemical impedance spectroscopy of magnesium with online inductively coupled plasma atomic emission spectroscopy.

    PubMed

    Shkirskiy, Viacheslav; King, Andrew D; Gharbi, Oumaïma; Volovitch, Polina; Scully, John R; Ogle, Kevin; Birbilis, Nick

    2015-02-23

    The electrochemical impedance of reactive metals such as magnesium is often complicated by an obvious inductive loop with decreasing frequency of the AC polarising signal. The characterisation and ensuing explanation of this phenomenon has been lacking in the literature to date, being either ignored or speculated. Herein, we couple electrochemical impedance spectroscopy (EIS) with online atomic emission spectroelectrochemistry (AESEC) to simultaneously measure Mg-ion concentration and electrochemical impedance spectra during Mg corrosion, in real time. It is revealed that Mg dissolution occurs via Mg(2+) , and that corrosion is activated, as measured by AC frequencies less than approximately 1 Hz approaching DC conditions. The result of this is a higher rate of Mg(2+) dissolution, as the voltage excitation becomes slow enough to enable all Mg(2+) -enabling processes to adjust in real time. The manifestation of this in EIS data is an inductive loop. The rationalisation of such EIS behaviour, as it relates to Mg, is revealed for the first time by using concurrent AESEC. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Multi-frequency bioelectrical impedance: a comparison between the Cole-Cole modelling and Hanai equations with the classical impedance index approach.

    PubMed

    Deurenberg, P; Andreoli, A; de Lorenzo, A

    1996-01-01

    Total body water and extracellular water were measured by deuterium oxide and bromide dilution respectively in 23 healthy males and 25 healthy females. In addition, total body impedance was measured at 17 frequencies, ranging from 1 kHz to 1350 kHz. Modelling programs were used to extrapolate impedance values to frequency zero (extracellular resistance) and frequency infinity (total body water resistance). Impedance indexes (height2/Zf) were computed at all 17 frequencies. The estimation errors of extracellular resistance and total body water resistance were 1% and 3%, respectively. Impedance and impedance index at low frequency were correlated with extracellular water, independent of the amount of total body water. Total body water showed the greatest correlation with impedance and impedance index at high frequencies. Extrapolated impedance values did not show a higher correlation compared to measured values. Prediction formulas from the literature applied to fixed frequencies showed the best mean and individual predictions for both extracellular water and total body water. It is concluded that, at least in healthy individuals with normal body water distribution, modelling impedance data has no advantage over impedance values measured at fixed frequencies, probably due to estimation errors in the modelled data.

  15. The impact of plasma dynamics on the self-magnetic-pinch diode impedance

    DOE PAGES

    Bennett, Nichelle; Crain, M. Dale; Droemer, Darryl W.; ...

    2015-03-20

    In this study, the self-magnetic-pinch diode is being developed as an intense electron beam source for pulsed-power-driven x-ray radiography. The basic operation of this diode has long been understood in the context of pinched diodes, including the dynamic effect that the diode impedance decreases during the pulse due to electrode plasma formation and expansion. Experiments being conducted at Sandia National Laboratories' RITS-6 accelerator are helping to characterize these plasmas using time-resolved and time-integrated camera systems in the x-ray and visible. These diagnostics are analyzed in conjunction with particle-in-cell simulations of anode plasma formation and evolution. The results confirm the long-standingmore » theory of critical-current operation with the addition of a time-dependent anode-cathode gap length. Finally, the results may suggest that anomalous impedance collapse is driven by increased plasma radial drift, leading to larger-than-average ion v r × B θ acceleration into the gap.« less

  16. Physics-electrical hybrid model for real time impedance matching and remote plasma characterization in RF plasma sources.

    PubMed

    Sudhir, Dass; Bandyopadhyay, M; Chakraborty, A

    2016-02-01

    Plasma characterization and impedance matching are an integral part of any radio frequency (RF) based plasma source. In long pulse operation, particularly in high power operation where plasma load may vary due to different reasons (e.g. pressure and power), online tuning of impedance matching circuit and remote plasma density estimation are very useful. In some cases, due to remote interfaces, radio activation and, due to maintenance issues, power probes are not allowed to be incorporated in the ion source design for plasma characterization. Therefore, for characterization and impedance matching, more remote schemes are envisaged. Two such schemes by the same authors are suggested in these regards, which are based on air core transformer model of inductive coupled plasma (ICP) [M. Bandyopadhyay et al., Nucl. Fusion 55, 033017 (2015); D. Sudhir et al., Rev. Sci. Instrum. 85, 013510 (2014)]. However, the influence of the RF field interaction with the plasma to determine its impedance, a physics code HELIC [D. Arnush, Phys. Plasmas 7, 3042 (2000)] is coupled with the transformer model. This model can be useful for both types of RF sources, i.e., ICP and helicon sources.

  17. Physics-electrical hybrid model for real time impedance matching and remote plasma characterization in RF plasma sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudhir, Dass, E-mail: dass.sudhir@iter-india.org; Bandyopadhyay, M.; Chakraborty, A.

    2016-02-15

    Plasma characterization and impedance matching are an integral part of any radio frequency (RF) based plasma source. In long pulse operation, particularly in high power operation where plasma load may vary due to different reasons (e.g. pressure and power), online tuning of impedance matching circuit and remote plasma density estimation are very useful. In some cases, due to remote interfaces, radio activation and, due to maintenance issues, power probes are not allowed to be incorporated in the ion source design for plasma characterization. Therefore, for characterization and impedance matching, more remote schemes are envisaged. Two such schemes by the samemore » authors are suggested in these regards, which are based on air core transformer model of inductive coupled plasma (ICP) [M. Bandyopadhyay et al., Nucl. Fusion 55, 033017 (2015); D. Sudhir et al., Rev. Sci. Instrum. 85, 013510 (2014)]. However, the influence of the RF field interaction with the plasma to determine its impedance, a physics code HELIC [D. Arnush, Phys. Plasmas 7, 3042 (2000)] is coupled with the transformer model. This model can be useful for both types of RF sources, i.e., ICP and helicon sources.« less

  18. Non-canonical amino acids bearing thiophene and bithiophene: synthesis by an Ugi multicomponent reaction and studies on ion recognition ability.

    PubMed

    Esteves, Cátia I C; Raposo, M Manuela M; Costa, Susana P G

    2017-05-01

    Novel thienyl and bithienyl amino acids with different substituents were obtained by a multicomponent Ugi reaction between a heterocyclic aldehyde, an amine, an acid and an isocyanide. Due to the presence of the sulphur heterocycle at the side chain, these unnatural amino acids are highly emissive and bear extra electron donating atoms so they were tested for their ability to act as fluorescent probes and chemosensors in the recognition of biomedically relevant ions in acetonitrile and acetonitrile/water solutions. The results obtained from spectrophotometric/spectrofluorimetric titrations in the presence of organic and inorganic anions, and alkaline; alkaline-earth and transition metal cations indicated that the bithienyl amino acid bearing a methoxy group is a selective colorimetric chemosensor for Cu 2+ , while the other (bi)thienyl amino acids act as fluorimetric chemosensors with high sensitivity towards Fe 3+ and Cu 2+ in a metal-ligand complex with 1:2 stoichiometry. The photophysical and ion sensing properties of these amino acids confirm their potential as fluorescent probes suitable for incorporation into peptidic frameworks with chemosensory ability.

  19. Cleaning techniques for applied-B ion diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuneo, M.E.; Menge, P.R.; Hanson, D.L.

    Measurements and theoretical considerations indicate that the lithium-fluoride (LiF) lithium ion source operates by electron-assisted field-desorption, and provides a pure lithium beam for 10--20 ns. Evidence on both the SABRE (1 TW) and PBFA-II (20 TW) accelerators indicates that the lithium beam is replaced by a beam of protons, and carbon resulting from electron thermal desorption of hydrocarbon surface and bulk contamination with subsequent avalanche ionization. Appearance of contaminant ions in the beam is accompanied by rapid impedance collapse, possibly resulting from loss of magnetic insulation in the rapidly expanding and ionizing, neutral layer. Electrode surface and source substrate cleaningmore » techniques are being developed on the SABRE accelerator to reduce beam contamination, plasma formation, and impedance collapse. We have increased lithium current density a factor of 3 and lithium energy a factor of 5 through a combination of in-situ surface and substrate coatings, impermeable substrate coatings, and field profile modifications.« less

  20. Reactanceless synthesized impedance bandpass amplifier

    NASA Technical Reports Server (NTRS)

    Kleinberg, L. L. (Inventor)

    1985-01-01

    An active R bandpass filter network is formed by four operational amplifier stages interconnected by discrete resistances. One pair of stages synthesize an equivalent input impedance of an inductance (L sub eq) in parallel with a discrete resistance (R sub o) while the second pair of stages synthesizes an equivalent input impedance of a capacitance (C sub eq) serially coupled to another discrete resistance (R sub i) coupled in parallel with the first two stages. The equivalent input impedances aggregately define a tuned resonant bandpass filter in the roll-off regions of the operational amplifiers.

  1. Development of a high-brightness, applied-B lithium extraction ion diode for inertial confinement fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuneo, M.E.; Adams, R.G.; Armijo, J.

    The light ion fusion program is pursuing the development of a high brightness lithium ion beam on the SABRE accelerator at Sandia (6 MV, 0.25 MA). This will require the integration of at least three conditions: (1) an active, pre-formed, uniform lithium plasma ion source, (2) modification of the electron sheath distribution in the AK gap, and (3) mitigation of undesired electrode plasmas. These experiments represent the first attempt to combine these three conditions in a lithium ion diode. The primary goal is the production of a lithium beam with a micro-divergence at peak ion power of {le} 20 mrad,more » about half the previous value achieved on SABRE. A secondary goal is reduction of the impedance collapse rate. The primary approach is a laser-produced lithium plasma generated with 10 ns YAG laser illumination of LiAg films. Laser fluences of 0.5--1.0 J/cm{sup 2} appear to be satisfactory to generate a dense, highly ionized, low temperature plasma. An ohmically-generally, thin-film ion source is also being developed as a backup, longer term approach. Small-scale experiments are performed to study each ion source in detail, prior to fielding on the accelerator. Pre-formed anode plasmas allow the use of high magnetic fields (Vcrit/V {ge} 2) and limiters which slow the onset of a high beam divergence electromagnetic instability and slow impedance collapse. High magnetic fields will be achieved with 1.8 MJ capacitor banks. An extensive array of in-situ electrode cleaning techniques have been developed to limit parasitic ion loads and impedance collapse from electrode contaminant plasma formation. Advanced ion beam, electron sheath and spectroscopic AK gap diagnostics have also been developed.« less

  2. An Ab Initio and Kinetic Monte Carlo Simulation Study of Lithium Ion Diffusion on Graphene

    PubMed Central

    Zhong, Kehua; Yang, Yanmin; Xu, Guigui; Zhang, Jian-Min; Huang, Zhigao

    2017-01-01

    The Li+ diffusion coefficients in Li+-adsorbed graphene systems were determined by combining first-principle calculations based on density functional theory with Kinetic Monte Carlo simulations. The calculated results indicate that the interactions between Li ions have a very important influence on lithium diffusion. Based on energy barriers directly obtained from first-principle calculations for single-Li+ and two-Li+ adsorbed systems, a new equation predicting energy barriers with more than two Li ions was deduced. Furthermore, it is found that the temperature dependence of Li+ diffusion coefficients fits well to the Arrhenius equation, rather than meeting the equation from electrochemical impedance spectroscopy applied to estimate experimental diffusion coefficients. Moreover, the calculated results also reveal that Li+ concentration dependence of diffusion coefficients roughly fits to the equation from electrochemical impedance spectroscopy in a low concentration region; however, it seriously deviates from the equation in a high concentration region. So, the equation from electrochemical impedance spectroscopy technique could not be simply used to estimate the Li+ diffusion coefficient for all Li+-adsorbed graphene systems with various Li+ concentrations. Our work suggests that interactions between Li ions, and among Li ion and host atoms will influence the Li+ diffusion, which determines that the Li+ intercalation dependence of Li+ diffusion coefficient should be changed and complex. PMID:28773122

  3. Transport of Zn(OH)4(-2) ions across a polyolefin microporous membrane

    NASA Astrophysics Data System (ADS)

    Krejci, Ivan; Vanysek, Peter; Trojanek, Antonin

    1993-04-01

    Transport of ZN(OH)4(2-) ions through modified microporous polypropylene membranes (Celgard 3401, 350140) was studied using polarography and conductometry. Soluble Nafion as an ion exchange modifying agent was applied to the membrane by several techniques. The influence of Nafion and a surfactant on transport of zinc ions through the membrane was studied. A relationship between membrane impedance and the rate of Zn(OH)4(2-) transport was found. The found correlation between conductivity, ion permeability and Nafion coverage suggests a suitable technique of membrane preparation to obtain desired zinc ion barrier properties.

  4. Scattering by a groove in an impedance plane

    NASA Technical Reports Server (NTRS)

    Bindiganavale, Sunil; Volakis, John L.

    1993-01-01

    An analysis of two-dimensional scattering from a narrow groove in an impedance plane is presented. The groove is represented by a impedance surface and the problem reduces to that of scattering from an impedance strip in an otherwise uniform impedance plane. On the basis of this model, appropriate integral equations are constructed using a form of the impedance plane Green's functions involving rapidly convergent integrals. The integral equations are solved by introducing a single basis representation of the equivalent current on the narrow impedance insert. Both transverse electric (TE) and transverse magnetic (TM) polarizations are treated. The resulting solution is validated by comparison with results from the standard boundary integral method (BIM) and a high frequency solution. It is found that the presented solution for narrow impedance inserts can be used in conjunction with the high frequency solution for the characterization of impedance inserts of any given width.

  5. Multi-subject subspace alignment for non-stationary EEG-based emotion recognition.

    PubMed

    Chai, Xin; Wang, Qisong; Zhao, Yongping; Liu, Xin; Liu, Dan; Bai, Ou

    2018-01-01

    Emotion recognition based on EEG signals is a critical component in Human-Machine collaborative environments and psychiatric health diagnoses. However, EEG patterns have been found to vary across subjects due to user fatigue, different electrode placements, and varying impedances, etc. This problem renders the performance of EEG-based emotion recognition highly specific to subjects, requiring time-consuming individual calibration sessions to adapt an emotion recognition system to new subjects. Recently, domain adaptation (DA) strategies have achieved a great deal success in dealing with inter-subject adaptation. However, most of them can only adapt one subject to another subject, which limits their applicability in real-world scenarios. To alleviate this issue, a novel unsupervised DA strategy called Multi-Subject Subspace Alignment (MSSA) is proposed in this paper, which takes advantage of subspace alignment solution and multi-subject information in a unified framework to build personalized models without user-specific labeled data. Experiments on a public EEG dataset known as SEED verify the effectiveness and superiority of MSSA over other state of the art methods for dealing with multi-subject scenarios.

  6. Computational Design of Metal Ion Sequestering Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, Benjamin P.; Rapko, Brian M.

    Organic ligands that exhibit a high degree of metal ion recognition are essential precursors for developing separation processes and sensors for metal ions. Since the beginning of the nuclear era, much research has focused on discovering ligands that target specific radionuclides. Members of the Group 1A and 2A cations (e.g., Cs, Sr, Ra) and the f-block metals (actinides and lanthanides) are of primary concern to DOE. Although there has been some success in identifying ligand architectures that exhibit a degree of metal ion recognition, the ability to control binding affinity and selectivity remains a significant challenge. The traditional approach formore » discovering such ligands has involved lengthy programs of organic synthesis and testing that, in the absence of reliable methods for screening compounds before synthesis, have resulted in much wasted research effort.« less

  7. Impedance analysis of acupuncture points and pathways

    NASA Astrophysics Data System (ADS)

    Teplan, Michal; Kukučka, Marek; Ondrejkovičová, Alena

    2011-12-01

    Investigation of impedance characteristics of acupuncture points from acoustic to radio frequency range is addressed. Discernment and localization of acupuncture points in initial single subject study was unsuccessfully attempted by impedance map technique. Vector impedance analyses determined possible resonant zones in MHz region.

  8. Fundamental Investigation of Silicon Anode in Lithium-Ion Cells

    NASA Technical Reports Server (NTRS)

    Wu, James J.; Bennett, William R.

    2012-01-01

    Silicon is a promising and attractive anode material to replace graphite for high capacity lithium ion cells since its theoretical capacity is 10 times of graphite and it is an abundant element on Earth. However, there are challenges associated with using silicon as Li-ion anode due to the significant first cycle irreversible capacity loss and subsequent rapid capacity fade during cycling. Understanding solid electrolyte interphase (SEI) formation along with the lithium ion insertion/de-insertion kinetics in silicon anodes will provide greater insight into overcoming these issues, thereby lead to better cycle performance. In this paper, cyclic voltammetry and electrochemical impedance spectroscopy are used to build a fundamental understanding of silicon anodes. The results show that it is difficult to form the SEI film on the surface of a Si anode during the first cycle; the lithium ion insertion and de-insertion kinetics for Si are sluggish, and the cell internal resistance changes with the state of lithiation after electrochemical cycling. These results are compared with those for extensively studied graphite anodes. The understanding gained from this study will help to design better Si anodes, and the combination of cyclic voltammetry with impedance spectroscopy provides a useful tool to evaluate the effectiveness of the design modifications on the Si anode performance.

  9. Smartphone-based portable biosensing system using impedance measurement with printed electrodes for 2,4,6-trinitrotoluene (TNT) detection.

    PubMed

    Zhang, Diming; Jiang, Jing; Chen, Junye; Zhang, Qian; Lu, Yanli; Yao, Yao; Li, Shuang; Logan Liu, Gang; Liu, Qingjun

    2015-08-15

    Rapid, sensitive, selective and portable detection of 2,4,6-trinitrotoluene (TNT) is in high demand for public safety and environmental monitoring. In this study, we reported a smartphone-based system using impedance monitoring for TNT detection. The screen-printed electrodes modified with TNT-specific peptides were used as disposable a biosensor to produce impedance responses to TNT. The responses could be monitored by a hand-held device and send out to smartphone through Bluetooth. Then, the smartphone was used to display TNT responses in real time and report concentration finally. In the measurement, the system was demonstrated to detect TNT at concentration as low as 10(-6) M and distinguish TNT versus different chemicals in high specificity. Thus, the smartphone-based biosensing platform provided a convenient and efficient approach to design portable instruments for chemical detections such as TNT recognition. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Factors confounding impedance catheter volume measurements in vitro.

    PubMed

    Bielefeld, M R; Cabreriza, S E; Spotnitz, H M

    1993-06-01

    The impedance catheter allows continuous measurement of ventricular volume. External influences have been described as causing parallel shifts in impedance-measured volumes; however, factors affecting impedance measurements in a nonparallel manner have not been fully characterized. Accordingly, an impedance catheter was placed inside a latex balloon into which known volumes of normal saline solution were injected. Conductive and nonconductive materials were individually placed within the balloon. Impedance was measured with materials touching (T) or not touching (NT) the catheter. Impedance-measured volumes were plotted versus actual volumes. Compared with the line of identity (LID), a statistical difference (p < 0.05) was found in the slopes in the presence of metallic objects only. These included a pacing lead (T, NT) (mT = 1.32m mNT = 1.29 versus mLID = 1.00), titanium (T) (mT = 1.68 versus mLID = 1.00), and aluminum (NT) (mNT = 0.72 versus mLID = 1.00). These changes in slope indicate nonparallel effects on impedance that confound the ability of the impedance catheter to determine volumes in vitro. These observations imply that serial calibration of both the slope constant (alpha) and the intercept (parallel conductance) of impedance may be necessary for in vivo measurements of ventricular volume based on impedance in the presence of metallic objects.

  11. Electrical Impedance Spectroscopy Study of Biological Tissues

    PubMed Central

    Dean, D.A.; Ramanathan, T.; Machado, D.; Sundararajan, R.

    2008-01-01

    The objective of this study was to investigate the electrical impedance properties of rat lung and other tissues ex vivo using Electrical Impedance Spectroscopy. Rat lungs (both electroporated and naïve (untreated)), and mesenteric vessels (naïve) were harvested from male Sprague-Dawley rats; their electrical impedance were measured using a Solartron 1290 impedance analyzer. Mouse lung and heart samples (naïve) were also studied. The resistance (Real Z, ohm) and the reactance (Im Z, negative ohm)) magnitudes and hence the Cole-Cole (Real Z versus Im Z) plots are different for the electroporated lung and the naive lung. The results confirm the close relationship between the structure and the functional characteristic. These also vary for the different biological tissues studied. The impedance values were higher at low frequencies compared to those at high frequencies. This study is of practical interest for biological applications of electrical pulses, such as electroporation, whose efficacy depends on cell type and its electrical impedance characteristics. PMID:19255614

  12. Whole-body impedance--what does it measure?

    PubMed

    Foster, K R; Lukaski, H C

    1996-09-01

    Although the bioelectrical impedance technique is widely used in human nutrition and clinical research, an integrated summary of the biophysical and bioelectrical bases of this approach is lacking. We summarize the pertinent electrical phenomena relevant to the application of the impedance technique in vivo and discuss the relations between electrical measurements and biological conductor volumes. Key terms in the derivation of bioelectrical impedance analysis are described and the relation between the electrical properties of tissues and tissue structure is discussed. The relation between the impedance of an object and its geometry, scale, and intrinsic electrical properties is also discussed. Correlations between whole-body impedance measurements and various bioconductor volumes, such as total body water and fat-free mass, are experimentally well established; however, the reason for the success of the impedence technique is much less clear. The bioengineering basis for the technique is critically presented and considerations are proposed that might help to clarify the method and potentially improve its sensitivity.

  13. Dielectric relaxation behavior and impedance studies of Cu2+ ion doped Mg - Zn spinel nanoferrites

    NASA Astrophysics Data System (ADS)

    Choudhary, Pankaj; Varshney, Dinesh

    2018-03-01

    Cu2+ substituted Mg - Zn nanoferrites is synthesized by low temperature fired sol gel auto combustion method. The spinel nature of nanoferrites was confirmed by lab x-ray technique. Williamson - Hall (W-H) analysis estimate the average crystallite size (22.25-29.19 ± 3 nm) and micro strain induced Mg0.5Zn0.5-xCuxFe2O4 (0.0 ≤ x ≤ 0.5). Raman scattering measurements confirm presence of four active phonon modes. Red shift is observed with enhanced Cu concentration. Dielectric parameters exhibit a non - monotonous dispersion with Cu concentration and interpreted with the support of hopping mechanism and Maxwell-Wagner type of interfacial polarization. The ac conductivity of nanoferrites increases with raising the frequency. Complex electrical modulus reveals a non - Debye type of dielectric relaxation present in nanoferrites. Reactive impedance (Z″) detected an anomalous behavior and is related with resonance effect. Complex impedance demonstrates one semicircle corresponding to the intergrain (grain boundary) resistance and also explains conducting nature of nanoferrites. For x = 0.2, a large semicircle is observed revealing the ohmic nature (minimum potential drop at electrode surface). Dielectric properties were improved for nanoferrites with x = 0.2 and is due to high dielectric constant, conductivity and minimum loss value (∼0.009) at 1 MHz.

  14. Improved Open-Microphone Speech Recognition

    NASA Astrophysics Data System (ADS)

    Abrash, Victor

    2002-12-01

    Many current and future NASA missions make extreme demands on mission personnel both in terms of work load and in performing under difficult environmental conditions. In situations where hands are impeded or needed for other tasks, eyes are busy attending to the environment, or tasks are sufficiently complex that ease of use of the interface becomes critical, spoken natural language dialog systems offer unique input and output modalities that can improve efficiency and safety. They also offer new capabilities that would not otherwise be available. For example, many NASA applications require astronauts to use computers in micro-gravity or while wearing space suits. Under these circumstances, command and control systems that allow users to issue commands or enter data in hands-and eyes-busy situations become critical. Speech recognition technology designed for current commercial applications limits the performance of the open-ended state-of-the-art dialog systems being developed at NASA. For example, today's recognition systems typically listen to user input only during short segments of the dialog, and user input outside of these short time windows is lost. Mistakes detecting the start and end times of user utterances can lead to mistakes in the recognition output, and the dialog system as a whole has no way to recover from this, or any other, recognition error. Systems also often require the user to signal when that user is going to speak, which is impractical in a hands-free environment, or only allow a system-initiated dialog requiring the user to speak immediately following a system prompt. In this project, SRI has developed software to enable speech recognition in a hands-free, open-microphone environment, eliminating the need for a push-to-talk button or other signaling mechanism. The software continuously captures a user's speech and makes it available to one or more recognizers. By constantly monitoring and storing the audio stream, it provides the spoken

  15. Improved Open-Microphone Speech Recognition

    NASA Technical Reports Server (NTRS)

    Abrash, Victor

    2002-01-01

    Many current and future NASA missions make extreme demands on mission personnel both in terms of work load and in performing under difficult environmental conditions. In situations where hands are impeded or needed for other tasks, eyes are busy attending to the environment, or tasks are sufficiently complex that ease of use of the interface becomes critical, spoken natural language dialog systems offer unique input and output modalities that can improve efficiency and safety. They also offer new capabilities that would not otherwise be available. For example, many NASA applications require astronauts to use computers in micro-gravity or while wearing space suits. Under these circumstances, command and control systems that allow users to issue commands or enter data in hands-and eyes-busy situations become critical. Speech recognition technology designed for current commercial applications limits the performance of the open-ended state-of-the-art dialog systems being developed at NASA. For example, today's recognition systems typically listen to user input only during short segments of the dialog, and user input outside of these short time windows is lost. Mistakes detecting the start and end times of user utterances can lead to mistakes in the recognition output, and the dialog system as a whole has no way to recover from this, or any other, recognition error. Systems also often require the user to signal when that user is going to speak, which is impractical in a hands-free environment, or only allow a system-initiated dialog requiring the user to speak immediately following a system prompt. In this project, SRI has developed software to enable speech recognition in a hands-free, open-microphone environment, eliminating the need for a push-to-talk button or other signaling mechanism. The software continuously captures a user's speech and makes it available to one or more recognizers. By constantly monitoring and storing the audio stream, it provides the spoken

  16. Bioelectrical Impedance Methods for Noninvasive Health Monitoring: A Review

    PubMed Central

    Bera, Tushar Kanti

    2014-01-01

    Under the alternating electrical excitation, biological tissues produce a complex electrical impedance which depends on tissue composition, structures, health status, and applied signal frequency, and hence the bioelectrical impedance methods can be utilized for noninvasive tissue characterization. As the impedance responses of these tissue parameters vary with frequencies of the applied signal, the impedance analysis conducted over a wide frequency band provides more information about the tissue interiors which help us to better understand the biological tissues anatomy, physiology, and pathology. Over past few decades, a number of impedance based noninvasive tissue characterization techniques such as bioelectrical impedance analysis (BIA), electrical impedance spectroscopy (EIS), electrical impedance plethysmography (IPG), impedance cardiography (ICG), and electrical impedance tomography (EIT) have been proposed and a lot of research works have been conducted on these methods for noninvasive tissue characterization and disease diagnosis. In this paper BIA, EIS, IPG, ICG, and EIT techniques and their applications in different fields have been reviewed and technical perspective of these impedance methods has been presented. The working principles, applications, merits, and demerits of these methods has been discussed in detail along with their other technical issues followed by present status and future trends. PMID:27006932

  17. Mechanical Impedance Modeling of Human Arm: A survey

    NASA Astrophysics Data System (ADS)

    Puzi, A. Ahmad; Sidek, S. N.; Sado, F.

    2017-03-01

    Human arm mechanical impedance plays a vital role in describing motion ability of the upper limb. One of the impedance parameters is stiffness which is defined as the ratio of an applied force to the measured deformation of the muscle. The arm mechanical impedance modeling is useful in order to develop a better controller for system that interacts with human as such an automated robot-assisted platform for automated rehabilitation training. The aim of the survey is to summarize the existing mechanical impedance models of human upper limb so to justify the need to have an improved version of the arm model in order to facilitate the development of better controller of such systems with ever increase in complexity. In particular, the paper will address the following issue: Human motor control and motor learning, constant and variable impedance models, methods for measuring mechanical impedance and mechanical impedance modeling techniques.

  18. The Influence of Segmental Impedance Analysis in Predicting Validity of Consumer Grade Bioelectrical Impedance Analysis Devices

    NASA Astrophysics Data System (ADS)

    Sharp, Andy; Heath, Jennifer; Peterson, Janet

    2008-05-01

    Consumer grade bioelectric impedance analysis (BIA) instruments measure the body's impedance at 50 kHz, and yield a quick estimate of percent body fat. The frequency dependence of the impedance gives more information about the current pathway and the response of different tissues. This study explores the impedance response of human tissue at a range of frequencies from 0.2 - 102 kHz using a four probe method and probe locations standard for segmental BIA research of the arm. The data at 50 kHz, for a 21 year old healthy Caucasian male (resistance of 180φ±10 and reactance of 33φ±2) is in agreement with previously reported values [1]. The frequency dependence is not consistent with simple circuit models commonly used in evaluating BIA data, and repeatability of measurements is problematic. This research will contribute to a better understanding of the inherent difficulties in estimating body fat using consumer grade BIA devices. [1] Chumlea, William C., Richard N. Baumgartner, and Alex F. Roche. ``Specific resistivity used to estimate fat-free mass from segmental body measures of bioelectrical impedance.'' Am J Clin Nutr 48 (1998): 7-15.

  19. Multi-gap high impedance plasma opening switch

    DOEpatents

    Mason, R.J.

    1996-10-22

    A high impedance plasma opening switch having an anode and a cathode and at least one additional electrode placed between the anode and cathode is disclosed. The presence of the additional electrodes leads to the creation of additional plasma gaps which are in series, increasing the net impedance of the switch. An equivalent effect can be obtained by using two or more conventional plasma switches with their plasma gaps wired in series. Higher impedance switches can provide high current and voltage to higher impedance loads such as plasma radiation sources. 12 figs.

  20. Multi-gap high impedance plasma opening switch

    DOEpatents

    Mason, Rodney J.

    1996-01-01

    A high impedance plasma opening switch having an anode and a cathode and at least one additional electrode placed between the anode and cathode. The presence of the additional electrodes leads to the creation of additional plasma gaps which are in series, increasing the net impedance of the switch. An equivalent effect can be obtained by using two or more conventional plasma switches with their plasma gaps wired in series. Higher impedance switches can provide high current and voltage to higher impedance loads such as plasma radiation sources.

  1. 21 CFR 874.1090 - Auditory impedance tester.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Auditory impedance tester. 874.1090 Section 874...) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1090 Auditory impedance tester. (a) Identification. An auditory impedance tester is a device that is intended to change the air pressure in the...

  2. 21 CFR 874.1090 - Auditory impedance tester.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Auditory impedance tester. 874.1090 Section 874...) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1090 Auditory impedance tester. (a) Identification. An auditory impedance tester is a device that is intended to change the air pressure in the...

  3. Interfacial behaviours between lithium ion conductors and electrode materials in various battery systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Bingbin; Wang, Shanyu; Evans IV, Willie J.

    In recent years room temperature Li+ ion conductors have been intensively revisited in order to develop safe lithium ion (Li-ion) batteries and beyond that can be deployed in the electrical vehicles. Through careful modification on materials synthesis, promising solid Li+ conductors with high ionic conductivity, competitve with liquid electrolytes, have been demonstrated. However, the integration of those highly conductive solid electrolytes into the whole system is still very challenging mainly due to the high impedance existing in the different interfaces throughout the entire battery structure. Herein , this review paper focuses on the overview of the interfacial behaviors between Li+more » conductors and cathode/anode materials. The origin, evolution and potential solutions to reuce these interfacial impedances are reviewed for various battery systems spanning from Li-ion, lithium sulfur (Li-S), lithium oxygen (Li-O2) batteries to lithium metal protection. The predicted gravimetric and volumetric energy densities at different scenarios are also discussed along with the prospectives for further development of solid state batteries.« less

  4. Interfacial metal and antibody recognition.

    PubMed

    Zhou, Tongqing; Hamer, Dean H; Hendrickson, Wayne A; Sattentau, Quentin J; Kwong, Peter D

    2005-10-11

    The unique ligation properties of metal ions are widely exploited by proteins, with approximately one-third of all proteins estimated to be metalloproteins. Although antibodies use various mechanisms for recognition, to our knowledge, none has ever been characterized that uses an interfacial metal. We previously described a family of CD4-reactive antibodies, the archetype being Q425. CD4:Q425 engagement does not interfere with CD4:HIV-1 gp120 envelope glycoprotein binding, but it blocks subsequent steps required for viral entry. Here, we use surface-plasmon resonance to show that Q425 requires calcium for recognition of CD4. Specifically, Q425 binding of calcium resulted in a 55,000-fold enhancement in affinity for CD4. X-ray crystallographic analyses of Q425 in the presence of Ca(2+), Ba(2+), or EDTA revealed an exposed metal-binding site, partially coordinated by five atoms contributed from four antibody complementarity-determining regions. The results suggest that Q425 recognition of CD4 involves direct ligation of antigen by the Q425-held calcium, with calcium binding each ligating atom of CD4 with approximately 1.5 kcal/mol of binding energy. This energetic contribution, which is greater than that from a typical protein atom, demonstrates how interfacial metal ligation can play a unique role in antigen recognition.

  5. Interfacial metal and antibody recognition

    PubMed Central

    Zhou, Tongqing; Hamer, Dean H.; Hendrickson, Wayne A.; Sattentau, Quentin J.; Kwong, Peter D.

    2005-01-01

    The unique ligation properties of metal ions are widely exploited by proteins, with approximately one-third of all proteins estimated to be metalloproteins. Although antibodies use various mechanisms for recognition, to our knowledge, none has ever been characterized that uses an interfacial metal. We previously described a family of CD4-reactive antibodies, the archetype being Q425. CD4:Q425 engagement does not interfere with CD4:HIV-1 gp120 envelope glycoprotein binding, but it blocks subsequent steps required for viral entry. Here, we use surface-plasmon resonance to show that Q425 requires calcium for recognition of CD4. Specifically, Q425 binding of calcium resulted in a 55,000-fold enhancement in affinity for CD4. X-ray crystallographic analyses of Q425 in the presence of Ca2+, Ba2+, or EDTA revealed an exposed metal-binding site, partially coordinated by five atoms contributed from four antibody complementarity-determining regions. The results suggest that Q425 recognition of CD4 involves direct ligation of antigen by the Q425-held calcium, with calcium binding each ligating atom of CD4 with ≈1.5 kcal/mol of binding energy. This energetic contribution, which is greater than that from a typical protein atom, demonstrates how interfacial metal ligation can play a unique role in antigen recognition. PMID:16195378

  6. The Application of the EIS in Li-ion Batteries Measurement

    NASA Astrophysics Data System (ADS)

    Zhai, N. S.; Li, M. W.; Wang, W. L.; Zhang, D. L.; Xu, D. G.

    2006-10-01

    The measurement and determination of the lithium ion battery's electrochemical impedance spectroscopy (EIS) and the application of EIS to battery classification are researched in this paper. The lithium ion battery gets extensive applications due to its inherent advantages over other batteries. For proper and sustainable performance, it is very necessary to check the uniformity of the lithium ion batteries. In this paper, the equivalent circuit of the lithium ion battery is analyzed; the design of hardware circuit based on DSP and software that calculates the EIS of the lithium ion battery is critically done and evaluated. The parameters of the lithium ion equivalent circuit are determined, the parameter values of li-ion equivalent circuit are achieved by least square method, and the application of Principal Component Analysis (CPA) to the battery classification is analyzed.

  7. Impedance in School Screening Programs.

    ERIC Educational Resources Information Center

    Robarts, John T.

    1985-01-01

    This paper examines the controversy over use of impedance screening in public schools to identify students with hearing problems, including otitis media, a common ear condition in infants and young children. It cites research that questions the value of pure tone screening as a single test and raises critics' objections to the use of impedance,…

  8. A novel broadband impedance method for detection of cell-derived microparticles

    PubMed Central

    Lvovich, Vadim; Srikanthan, Sowmya; Silverstein, Roy L.

    2010-01-01

    A novel label-free method is presented to detect and quantify cell-derived microparticles (MPs) by the electrochemical potential-modulated electrochemical impedance spectroscopy (EIS). MPs are present in elevated concentrations during pathological conditions and play a major role in the establishment and pathogenesis of many diseases. Considering this, accurate detection and quantification of MPs is very important in clinical diagnostics and therapeutics. A combination of bulk solution electrokinetic sorting and interfacial impedance responses allows achieving detection limits as low as several MPs per µL. By fitting resulting EIS spectra with an equivalent electrical circuit, the bulk solution electrokinetic and interfacial impedance responses were characterized. In the bulk solution two major relaxations were prominent - β-relaxation in low MHz region due to the MP capacitive membrane bridging, and α-relaxation at ∼ 10 kHz due to counter ions diffusion. At low frequencies (10-0.1 Hz) at electrochemical potentials exceeding −100 mV, a facile interfacial Faradaic process of oxidation in MPs coupled with diffusion and non Faradaic double layer charging dominate, probably due to oxidation of phospholipids and/or proteins on the MP surface and MP lysis. Buffer influence on the MP detection demonstrated that that a relatively low conductivity Tyrode’s buffer background solution is preferential for the MP electrokinetic separation and characterization. This study also demonstrated that standard laboratory methods such as flow cytometry underestimate MP concentrations, especially those with smaller average sizes, by as much as a factor of 2 to 40. PMID:20729061

  9. A novel broadband impedance method for detection of cell-derived microparticles.

    PubMed

    Lvovich, Vadim; Srikanthan, Sowmya; Silverstein, Roy L

    2010-10-15

    A novel label-free method is presented to detect and quantify cell-derived microparticles (MPs) by the electrochemical potential-modulated electrochemical impedance spectroscopy (EIS). MPs are present in elevated concentrations during pathological conditions and play a major role in the establishment and pathogenesis of many diseases. Considering this, accurate detection and quantification of MPs is very important in clinical diagnostics and therapeutics. A combination of bulk solution electrokinetic sorting and interfacial impedance responses allows achieving detection limits as low as several MPs per μL. By fitting resulting EIS spectra with an equivalent electrical circuit, the bulk solution electrokinetic and interfacial impedance responses were characterized. In the bulk solution two major relaxations were prominent-β-relaxation in low MHz region due to the MP capacitive membrane bridging, and α-relaxation at ∼10 kHz due to counter ions diffusion. At low frequencies (10-0.1 Hz) at electrochemical potentials exceeding -100 mV, a facile interfacial Faradaic process of oxidation in MPs coupled with diffusion and non-Faradaic double layer charging dominate, probably due to oxidation of phospholipids and/or proteins on the MP surface and MP lysis. Buffer influence on the MP detection demonstrated that a relatively low conductivity Tyrode's buffer background solution is preferential for the MP electrokinetic separation and characterization. This study also demonstrated that standard laboratory methods such as flow cytometry underestimate MP concentrations, especially those with smaller average sizes, by as much as a factor of 2-40. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Acoustic ground impedance meter

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.

    1981-01-01

    A compact, portable instrument was developed to measure the acoustic impedance of the ground, or other surfaces, by direct pressure-volume velocity measurement. A Helmholz resonator, constructed of heavy-walled stainless steel but open at the bottom, is positioned over the surface having the unknown impedance. The sound source, a cam-driven piston of known stroke and thus known volume velocity, is located in the neck of the resonator. The cam speed is a variable up to a maximum 3600 rpm. The sound pressure at the test surface is measured by means of a microphone flush-mounted in the wall of the chamber. An optical monitor of the piston displacement permits measurement of the phase angle between the volume velocity and the sound pressure, from which the real and imaginary parts of the impedance can be evaluated. Measurements using a 5-lobed cam can be made up to 300 Hz. Detailed design criteria and results on a soil sample are presented.

  11. Impedance Measurement Box

    ScienceCinema

    Christophersen, Jon; Morrison, Bill

    2018-02-14

    Energy storage devices, primarily batteries, are now more important to consumers, industries and the military. With increasing technical complexity and higher user expectations, there is also a demand for highly accurate state-of-health battery assessment techniques. IMB incorporates patented, proprietary, and tested capabilities using control software and hardware that can be part of an embedded monitoring system. IMB directly measures the wideband impedance spectrum in seconds during battery operation with no significant impact on service life. It also can be applied to batteries prior to installation, confirming health before entering active service, as well as during regular maintenance. For more information about this project, visit http://www.inl.gov/rd100/2011/impedance-measurement-box/

  12. Changes in transthoracic electrical impedance at high altitude.

    PubMed

    Hoon, R S; Balasubramanian, V; Tiwari, S C; Mathew, O P; Behl, A; Sharma, S C; Chadha, K S

    1977-01-01

    Mean transthoracic electrical impedance (impedance) which is inversely related to intrathoracic extravascular fluid volume was measured in 121 normal healthy volunteers at sea-level and at 3658 metres altitude. Fifty (group A) reached the high altitude location after an hour's journey in a pressurised aircraft. Twenty-five (group D) underwent slow road ascent including acclimatisation en route. Thirty permanent residents (group B) and 16 temporary residents at high altitude (group C) were also studied. Serial studies in the 30 subjects of group A who developed symptoms of high altidue sickness showed a significant decrease of impedance up to the fourth day of exposure to high altitude which later returned to normal. The 4 volunteers who developed severe symptoms showed the largest drop in impedance. A case of acute pulmonary oedema developing at 4300 metres showed an impedance value of 24-1 ohms on admission. After effective treatment the impedance increased by 11-9 to 36-0 ohms. Twenty asymptomatic subjects of group A and 25 of group D showed a small average increase in impedance values at high altitude. These obstructions suggest that measurement of transthoracic electrical impedance may be a valuable means of detecting incipient high altitude pulmonary oedema.

  13. Geometric beam coupling impedance of LHC secondary collimators

    NASA Astrophysics Data System (ADS)

    Frasciello, Oscar; Tomassini, Sandro; Zobov, Mikhail; Salvant, Benoit; Grudiev, Alexej; Mounet, Nicolas

    2016-02-01

    The High Luminosity LHC project is aimed at increasing the LHC luminosity by an order of magnitude. One of the key ingredients to achieve the luminosity goal is the beam intensity increase. In order to keep beam instabilities under control and to avoid excessive power losses a careful design of new vacuum chamber components and an improvement of the present LHC impedance model are required. Collimators are among the major impedance contributors. Measurements with beam have revealed that the betatron coherent tune shifts were higher by about a factor of 2 with respect to the theoretical predictions based on the LHC impedance model up to 2012. In that model the resistive wall impedance has been considered as the dominating impedance contribution for collimators. By carefully simulating also their geometric impedance we have contributed to the update of the LHC impedance model, reaching also a better agreement between the measured and simulated betatron tune shifts. During the just ended LHC Long Shutdown I (LSI), TCS/TCT collimators were replaced by new devices embedding BPMs and TT2-111R ferrite blocks. We present here preliminary estimations of their broad-band impedance, showing that an increase of about 20% is expected in the kick factors with respect to previous collimators without BPMs.

  14. Development of a compact permanent magnet helicon plasma source for ion beam bioengineering.

    PubMed

    Kerdtongmee, P; Srinoum, D; Nisoa, M

    2011-10-01

    A compact helicon plasma source was developed as a millimeter-sized ion source for ion beam bioengineering. By employing a stacked arrangement of annular-shaped permanent magnets, a uniform axial magnetic flux density up to 2.8 kG was obtained. A cost effective 118 MHz RF generator was built for adjusting forward output power from 0 to 40 W. The load impedance and matching network were then analyzed. A single loop antenna and circuit matching elements were placed on a compact printed circuit board for 50 Ω impedance matching. A plasma density up to 1.1 × 10(12) cm(-3) in the 10 mm diameter tube under the magnetic flux density was achieved with 35 W applied RF power.

  15. Development of a compact permanent magnet helicon plasma source for ion beam bioengineering

    NASA Astrophysics Data System (ADS)

    Kerdtongmee, P.; Srinoum, D.; Nisoa, M.

    2011-10-01

    A compact helicon plasma source was developed as a millimeter-sized ion source for ion beam bioengineering. By employing a stacked arrangement of annular-shaped permanent magnets, a uniform axial magnetic flux density up to 2.8 kG was obtained. A cost effective 118 MHz RF generator was built for adjusting forward output power from 0 to 40 W. The load impedance and matching network were then analyzed. A single loop antenna and circuit matching elements were placed on a compact printed circuit board for 50 Ω impedance matching. A plasma density up to 1.1 × 1012 cm-3 in the 10 mm diameter tube under the magnetic flux density was achieved with 35 W applied RF power.

  16. FDTD modeling of thin impedance sheets

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond; Kunz, Karl

    1991-01-01

    Thin sheets of resistive or dielectric material are commonly encountered in radar cross section calculations. Analysis of such sheets is simplified by using sheet impedances. It is shown that sheet impedances can be modeled easily and accurately using Finite Difference Time Domain (FDTD) methods. These sheets are characterized by a discontinuity in the tangential magnetic field on either side of the sheet but no discontinuity in tangential electric field. This continuity, or single valued behavior of the electric field, allows the sheet current to be expressed in terms of an impedance multiplying this electric field.

  17. Broadband electrical impedance matching for piezoelectric ultrasound transducers.

    PubMed

    Huang, Haiying; Paramo, Daniel

    2011-12-01

    This paper presents a systematic method for designing broadband electrical impedance matching networks for piezoelectric ultrasound transducers. The design process involves three steps: 1) determine the equivalent circuit of the unmatched piezoelectric transducer based on its measured admittance; 2) design a set of impedance matching networks using a computerized Smith chart; and 3) establish the simulation model of the matched transducer to evaluate the gain and bandwidth of the impedance matching networks. The effectiveness of the presented approach is demonstrated through the design, implementation, and characterization of impedance matching networks for a broadband acoustic emission sensor. The impedance matching network improved the power of the acquired signal by 9 times.

  18. Rotor damage detection by using piezoelectric impedance

    NASA Astrophysics Data System (ADS)

    Qin, Y.; Tao, Y.; Mao, Y. F.

    2016-04-01

    Rotor is a core component of rotary machinery. Once the rotor has the damage, it may lead to a major accident. Thus the quantitative rotor damage detection method based on piezoelectric impedance is studied in this paper. With the governing equation of piezoelectric transducer (PZT) in a cylindrical coordinate, the displacement along the radius direction is derived. The charge of PZT is calculated by the electric displacement. Then, by the use of the obtained displacement and charge, an analytic piezoelectric impedance model of the rotor is built. Given the circular boundary condition of a rotor, annular elements are used as the analyzed objects and spectral element method is used to set up the damage detection model. The Electro-Mechanical (E/M) coupled impedance expression of an undamaged rotor is deduced with the application of a low-cost impedance test circuit. A Taylor expansion method is used to obtain the approximate E/M coupled impedance expression for the damaged rotor. After obtaining the difference between the undamaged and damaged rotor impedance, a rotor damage detection method is proposed. This method can directly calculate the change of bending stiffness of the structural elements, it follows that the rotor damage can be effectively detected. Finally, a preset damage configuration is used for the numerical simulation. The result shows that the quantitative damage detection algorithm based on spectral element method and piezoelectric impedance proposed in this paper can identify the location and the severity of the damaged rotor accurately.

  19. Negative ion treatment increases positive emotional processing in seasonal affective disorder.

    PubMed

    Harmer, C J; Charles, M; McTavish, S; Favaron, E; Cowen, P J

    2012-08-01

    Antidepressant drug treatments increase the processing of positive compared to negative affective information early in treatment. Such effects have been hypothesized to play a key role in the development of later therapeutic responses to treatment. However, it is unknown whether these effects are a common mechanism of action for different treatment modalities. High-density negative ion (HDNI) treatment is an environmental manipulation that has efficacy in randomized clinical trials in seasonal affective disorder (SAD). The current study investigated whether a single session of HDNI treatment could reverse negative affective biases seen in seasonal depression using a battery of emotional processing tasks in a double-blind, placebo-controlled randomized study. Under placebo conditions, participants with seasonal mood disturbance showed reduced recognition of happy facial expressions, increased recognition memory for negative personality characteristics and increased vigilance to masked presentation of negative words in a dot-probe task compared to matched healthy controls. Negative ion treatment increased the recognition of positive compared to negative facial expression and improved vigilance to unmasked stimuli across participants with seasonal depression and healthy controls. Negative ion treatment also improved recognition memory for positive information in the SAD group alone. These effects were seen in the absence of changes in subjective state or mood. These results are consistent with the hypothesis that early change in emotional processing may be an important mechanism for treatment action in depression and suggest that these effects are also apparent with negative ion treatment in seasonal depression.

  20. Study directed at development of an implantable biotelemetry ion detector

    NASA Technical Reports Server (NTRS)

    Hanley, L. D.; Kress, D.

    1971-01-01

    A literature search was conducted to currently update known information in the field of ion-selective electrodes. The review attempts to identify present trends in cation and anions selective electrodes pertinent to the area of bioimplantable units. An electronic circuit was designed to provide the high impedance interface between the ion-selective sensors and signal-processing equipment. The resulting design emphasized the need for low power and miniaturization. Many of the circuits were constructed and used to evaluate the ion-selective electrodes. A cuvette capable of holding the ion-selective and the reference electrodes was designed and constructed. This equipment was used to evaluate commercially available ion-selective electrodes and the electrodes designed and constructed in the study. The results of the electrode tests are included.

  1. Radio-frequency response of single pores and artificial ion channels

    NASA Astrophysics Data System (ADS)

    Kim, H. S.; Ramachandran, S.; Stava, E.; van der Weide, D. W.; Blick, R. H.

    2011-09-01

    Intercellular communication relies on ion channels and pores in cell membranes. These protein-formed channels enable the exchange of ions and small molecules to electrically and/or chemically interact with the cells. Traditionally, recordings on single-ion channels and pores are performed in the dc regime, due to the extremely high impedance of these molecular junctions. This paper is intended as an introduction to radio-frequency (RF) recordings of single-molecule junctions in bilipid membranes. First, we demonstrate how early approaches to using microwave circuitry as readout devices for ion channel formation were realized. The second step will then focus on how to engineer microwave coupling into the high-impedance channel by making use of bio-compatible micro-coaxial lines. We then demonstrate integration of an ultra-broadband microwave circuit for the direct sampling of single α-hemolysin pores in a suspended bilipid membrane. Simultaneous direct current recordings reveal that we can monitor and correlate the RF transmission signal. This enables us to relate the open-close states of the direct current to the RF signal. Altogether, our experiments lay the ground for an RF-readout technique to perform real-time in vitro recordings of pores. The technique thus holds great promise for research and drug screening applications. The possible enhancement of sampling rates of single channels and pores by the large recording bandwidth will allow us to track the passage of single ions.

  2. 21 CFR 870.2750 - Impedance phlebograph.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Impedance phlebograph. 870.2750 Section 870.2750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2750 Impedance phlebograph...

  3. 21 CFR 870.2770 - Impedance plethysmograph.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Impedance plethysmograph. 870.2770 Section 870.2770 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2770 Impedance...

  4. An improved water-filled impedance tube.

    PubMed

    Wilson, Preston S; Roy, Ronald A; Carey, William M

    2003-06-01

    A water-filled impedance tube capable of improved measurement accuracy and precision is reported. The measurement instrument employs a variation of the standardized two-sensor transfer function technique. Performance improvements were achieved through minimization of elastic waveguide effects and through the use of sound-hard wall-mounted acoustic pressure sensors. Acoustic propagation inside the water-filled impedance tube was found to be well described by a plane wave model, which is a necessary condition for the technique. Measurements of the impedance of a pressure-release terminated transmission line, and the reflection coefficient from a water/air interface, were used to verify the system.

  5. Recognition intent and visual word recognition.

    PubMed

    Wang, Man-Ying; Ching, Chi-Le

    2009-03-01

    This study adopted a change detection task to investigate whether and how recognition intent affects the construction of orthographic representation in visual word recognition. Chinese readers (Experiment 1-1) and nonreaders (Experiment 1-2) detected color changes in radical components of Chinese characters. Explicit recognition demand was imposed in Experiment 2 by an additional recognition task. When the recognition was implicit, a bias favoring the radical location informative of character identity was found in Chinese readers (Experiment 1-1), but not nonreaders (Experiment 1-2). With explicit recognition demands, the effect of radical location interacted with radical function and word frequency (Experiment 2). An estimate of identification performance under implicit recognition was derived in Experiment 3. These findings reflect the joint influence of recognition intent and orthographic regularity in shaping readers' orthographic representation. The implication for the role of visual attention in word recognition was also discussed.

  6. Positional dependence of particles in microfludic impedance cytometry.

    PubMed

    Spencer, Daniel; Morgan, Hywel

    2011-04-07

    Single cell impedance cytometry is a label-free electrical analysis method that requires minimal sample preparation and has been used to count and discriminate cells on the basis of their impedance properties. This paper shows experimental and numerically simulated impedance signals for test particles (6 μm diameter polystyrene) flowing through a microfluidic channel. The variation of impedance signal with particle position is mapped using numerical simulation and these results match closely with experimental data. We demonstrate that for a nominal 40 μm × 40 μm channel, the impedance signal is independent of position over the majority of the channel area, but shows large experimentally verifiable variation at extreme positions. The parabolic flow profile in the channel ensures that most of the sample flows through the area of uniform signal. At high flow rates inertial focusing is observed; the particles flow in equal numbers through two equilibrium positions reducing the coefficient of variance (CV) in the impedance signals to negligible values.

  7. LONGITUDINAL IMPEDANCE OF THE SQUID GIANT AXON

    PubMed Central

    Cole, Kenneth S.; Baker, Richard F.

    1941-01-01

    Longitudinal alternating current impedance measurements have been made on the squid giant axon over the frequency range from 30 cycles per second to 200 kc. per second. Large sea water electrodes were used and the inter-electrode length was immersed in oil. The impedance at high frequency was approximately as predicted theoretically on the basis of the poorly conducting dielectric characteristics of the membrane previously determined. For the large majority of the axons, the impedance reached a maximum at a low frequency and the reactance then vanished at a frequency between 150 and 300 cycles per second. Below this frequency, the reactance was inductive, reaching a maximum and then approaching zero as the frequency was decreased. The inductive reactance is a property of the axon and requires that it contain an inductive structure. The variation of the impedance with interpolar distance indicates that the inductance is in the membrane. The impedance characteristics of the membrane as calculated from the measured longitudinal impedance of the axon may be expressed by an equivalent membrane circuit containing inductance, capacity, and resistance. For a square centimeter of membrane the capacity of 1 µf with dielectric loss is shunted by the series combination of a resistance of 400 ohms and an inductance of one-fifth henry. PMID:19873252

  8. Carbon-Based Materials for Lithium-Ion Batteries, Electrochemical Capacitors, and Their Hybrid Devices.

    PubMed

    Yao, Fei; Pham, Duy Tho; Lee, Young Hee

    2015-07-20

    A rapidly developing market for portable electronic devices and hybrid electrical vehicles requires an urgent supply of mature energy-storage systems. As a result, lithium-ion batteries and electrochemical capacitors have lately attracted broad attention. Nevertheless, it is well known that both devices have their own drawbacks. With the fast development of nanoscience and nanotechnology, various structures and materials have been proposed to overcome the deficiencies of both devices to improve their electrochemical performance further. In this Review, electrochemical storage mechanisms based on carbon materials for both lithium-ion batteries and electrochemical capacitors are introduced. Non-faradic processes (electric double-layer capacitance) and faradic reactions (pseudocapacitance and intercalation) are generally explained. Electrochemical performance based on different types of electrolytes is briefly reviewed. Furthermore, impedance behavior based on Nyquist plots is discussed. We demonstrate the influence of cell conductivity, electrode/electrolyte interface, and ion diffusion on impedance performance. We illustrate that relaxation time, which is closely related to ion diffusion, can be extracted from Nyquist plots and compared between lithium-ion batteries and electrochemical capacitors. Finally, recent progress in the design of anodes for lithium-ion batteries, electrochemical capacitors, and their hybrid devices based on carbonaceous materials are reviewed. Challenges and future perspectives are further discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Equivalent circuit model parameters of a high-power Li-ion battery: Thermal and state of charge effects

    NASA Astrophysics Data System (ADS)

    Gomez, Jamie; Nelson, Ruben; Kalu, Egwu E.; Weatherspoon, Mark H.; Zheng, Jim P.

    2011-05-01

    Equivalent circuit model (EMC) of a high-power Li-ion battery that accounts for both temperature and state of charge (SOC) effects known to influence battery performance is presented. Electrochemical impedance measurements of a commercial high power Li-ion battery obtained in the temperature range 20 to 50 °C at various SOC values was used to develop a simple EMC which was used in combination with a non-linear least squares fitting procedure that used thirteen parameters for the analysis of the Li-ion cell. The experimental results show that the solution and charge transfer resistances decreased with increase in cell operating temperature and decreasing SOC. On the other hand, the Warburg admittance increased with increasing temperature and decreasing SOC. The developed model correlations that are capable of being used in process control algorithms are presented for the observed impedance behavior with respect to temperature and SOC effects. The predicted model parameters for the impedance elements Rs, Rct and Y013 show low variance of 5% when compared to the experimental data and therefore indicates a good statistical agreement of correlation model to the actual experimental values.

  10. High input impedance amplifier

    NASA Technical Reports Server (NTRS)

    Kleinberg, Leonard L.

    1995-01-01

    High input impedance amplifiers are provided which reduce the input impedance solely to a capacitive reactance, or, in a somewhat more complex design, provide an extremely high essentially infinite, capacitive reactance. In one embodiment, where the input impedance is reduced in essence, to solely a capacitive reactance, an operational amplifier in a follower configuration is driven at its non-inverting input and a resistor with a predetermined magnitude is connected between the inverting and non-inverting inputs. A second embodiment eliminates the capacitance from the input by adding a second stage to the first embodiment. The second stage is a second operational amplifier in a non-inverting gain-stage configuration where the output of the first follower stage drives the non-inverting input of the second stage and the output of the second stage is fed back to the non-inverting input of the first stage through a capacitor of a predetermined magnitude. These amplifiers, while generally useful, are very useful as sensor buffer amplifiers that may eliminate significant sources of error.

  11. FDTD modeling of thin impedance sheets

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond J.; Kunz, Karl S.

    1991-01-01

    Thin sheets of resistive or dielectric material are commonly encountered in radar cross section calculations. Analysis of such sheets is simplified by using sheet impedances. In this paper it is shown that sheet impedances can be modeled easily and accurately using Finite Difference Time Domain (FDTD) methods.

  12. Acoustic metamaterials with broadband and wide-angle impedance matching

    NASA Astrophysics Data System (ADS)

    Liu, Chenkai; Luo, Jie; Lai, Yun

    2018-04-01

    We propose a general approach to design broadband and wide-angle impedance-matched acoustic metamaterials. Such an unusual acoustic impedance matching characteristic can be well explained by using a spatially dispersive effective medium theory. For demonstrations, we used silicone rubber, which has a huge impedance contrast with water, to design one- and two-dimensional acoustic structures which are almost perfectly impedance matched to water for a wide range of incident angles and in a broad frequency band. Our work opens up an approach to realize extraordinary acoustic impedance matching properties via metamaterial-design techniques.

  13. Effect of iron doping at Mn-site on complex impedance spectroscopy properties of Nd0.67Ba0.33MnO3 perovskite

    NASA Astrophysics Data System (ADS)

    Hsini, Mohamed; Hamdaoui, Nejeh; Hcini, Sobhi; Bouazizi, Mohamed Lamjed; Zemni, Sadok; Beji, Lotfi

    2018-03-01

    The effect of Fe-doping at Mn-site on the structural and electrical properties of Nd0.67Ba0.33Mn1-xFexO3 (0 ≤ x ≤ 0.05) perovskites has been investigated. X-ray diffraction patterns show that the structural parameters change slightly due to the fact that the Fe3+ ions replacing the Mn3+ have similar ionic radius. The electrical properties of these samples have been investigated using complex impedance spectroscopy technique. a function of the frequency at different temperatures. When increasing the Fe-content, a decrease of dc conductivity was observed throughout the whole explored temperature range and the deduced activation energy values are found to increase from 128 meV for x = 0 to 166 meV for x = 0.05. The curves of the imaginary part of impedance (Z″) show the presence of relaxation phenomenon in our samples. The complex impedance spectra show semicircle arcs at different temperatures and an equivalent circuit of the type of Rg + (Rgb//Cgb) has been proposed to explain the impedance results.

  14. Sensitivity analyses of acoustic impedance inversion with full-waveform inversion

    NASA Astrophysics Data System (ADS)

    Yao, Gang; da Silva, Nuno V.; Wu, Di

    2018-04-01

    Acoustic impedance estimation has a significant importance to seismic exploration. In this paper, we use full-waveform inversion to recover the impedance from seismic data, and analyze the sensitivity of the acoustic impedance with respect to the source-receiver offset of seismic data and to the initial velocity model. We parameterize the acoustic wave equation with velocity and impedance, and demonstrate three key aspects of acoustic impedance inversion. First, short-offset data are most suitable for acoustic impedance inversion. Second, acoustic impedance inversion is more compatible with the data generated by density contrasts than velocity contrasts. Finally, acoustic impedance inversion requires the starting velocity model to be very accurate for achieving a high-quality inversion. Based upon these observations, we propose a workflow for acoustic impedance inversion as: (1) building a background velocity model with travel-time tomography or reflection waveform inversion; (2) recovering the intermediate wavelength components of the velocity model with full-waveform inversion constrained by Gardner’s relation; (3) inverting the high-resolution acoustic impedance model with short-offset data through full-waveform inversion. We verify this workflow by the synthetic tests based on the Marmousi model.

  15. Location of coating defects and assessment of level of cathodic protection on underground pipelines using AC impedance, deterministic and non-deterministic models

    NASA Astrophysics Data System (ADS)

    Castaneda-Lopez, Homero

    A methodology for detecting and locating defects or discontinuities on the outside covering of coated metal underground pipelines subjected to cathodic protection has been addressed. On the basis of wide range AC impedance signals for various frequencies applied to a steel-coated pipeline system and by measuring its corresponding transfer function under several laboratory simulation scenarios, a physical laboratory setup of an underground cathodic-protected, coated pipeline was built. This model included different variables and elements that exist under real conditions, such as soil resistivity, soil chemical composition, defect (holiday) location in the pipeline covering, defect area and geometry, and level of cathodic protection. The AC impedance data obtained under different working conditions were used to fit an electrical transmission line model. This model was then used as a tool to fit the impedance signal for different experimental conditions and to establish trends in the impedance behavior without the necessity of further experimental work. However, due to the chaotic nature of the transfer function response of this system under several conditions, it is believed that non-deterministic models based on pattern recognition algorithms are suitable for field condition analysis. A non-deterministic approach was used for experimental analysis by applying an artificial neural network (ANN) algorithm based on classification analysis capable of studying the pipeline system and differentiating the variables that can change impedance conditions. These variables include level of cathodic protection, location of discontinuities (holidays), and severity of corrosion. This work demonstrated a proof-of-concept for a well-known technique and a novel algorithm capable of classifying impedance data for experimental results to predict the exact location of the active holidays and defects on the buried pipelines. Laboratory findings from this procedure are promising, and

  16. Impedance Biosensing to detect food allergens, endocrine disrupting chemicals, and food pathogens

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Rajeswaran

    Electrochemical impedance biosensors can be viewed as an AC electroanalytical method for the analyte detection in the fields of biomedicine, environmental monitoring, and food and agriculture, amongst others. The most common format for AC impedance biosensing involves surface immobilization of an antibody, receptor protein, DNA strand, or other species capable of bio-recognition, and AC impedance detection of the binding event. Technological application of AC impedance biosensors has been hindered by several obstacles, including the more complex circuitry required for AC relative to DC electrochemistry, chemical and physical interference arising from non-specific adsorption, and the stability and reproducibility of protein immobilization. One focus of these PhD studies is on methods to reduce or compensate for non-specific adsorption, including sample dilution, site blocking with BSA, and the use of control electrodes onto which reference antibodies are immobilized. Examples that will be presented include impedance detection of food pathogens, such as Listeria monocytogenes, using a mouse monoclonal antibody immobilized onto an Au electrode. This yields detection limits of 5 CFU/ml and 4 CFU/ml for ideal solutions and filtered tomato extract, respectively. Control experiments with an Au electrode onto which a mouse monoclonal antibody to GAPDH is immobilized demonstrate that non-specific adsorption is insignificant for the system and methodology studied here. Control experiments with Salmonella enterica demonstrate no cross-reactivity to this food pathogen. In addition, Detection of two endocrine-disrupting chemicals (EDC), norfluoxetine and BDE-47, is reported here by impedance biosensing, with a detection limit of 8.5 and 1.3 ng/ml for norfluoxetine and BDE-47, respectively. Additional research has focused on alternative substrates and linker chemistries for protein immobilization, including the use of degenerate (highly doped) Si and bidendate thiol monolayer

  17. A fluorescein-based chemosensor for relay fluorescence recognition of Cu(ii) ions and biothiols in water and its applications to a molecular logic gate and living cell imaging.

    PubMed

    Fu, Zhen-Hai; Yan, Lu-Bin; Zhang, Xiaolong; Zhu, Fan-Fan; Han, Xin-Long; Fang, Jianguo; Wang, Ya-Wen; Peng, Yu

    2017-05-16

    Relay recognition of copper(ii) ions and biothiols via a fluorescence "on-off-on" cascade was designed and realized as a new sequential combination of cations and small molecules. Probe 1 bearing a fluorescein skeleton was thus synthesized, which performed well in 100% HEPES buffer (pH = 7.0) solution, as a highly sensitive, selective fluorescence sensor for Cu 2+ . The limit of detection (LOD, 0.017 ppm) was obtained, and this value is much lower than 1.3 ppm, allowed by US EPA. The 1 : 1 complex generated from fast sensing of Cu 2+ when excited at 491 nm, showed good relay recognition for biothiols (i.e., Cys, Hcy and GSH with low detection limits of 0.12 μM, 0.036 μM and 0.024 μM, respectively) via remarkable fluorescence enhancement. The origin of this relay process was disclosed through ESI-MS and corresponding density functional theory (DFT) computations. Notably, probe 1 can be utilized for the construction of a molecular logic gate with the IMPLICATION function by using the above fluorescence changes. Moreover, this relay recognition was also applied to HepG2 cell imaging successfully.

  18. Formation, Structure and Electrochemical Impedance Analysis of Microporous Polyelectrolyte Multilayers

    NASA Astrophysics Data System (ADS)

    Lutkenhaus, Jodie; McEnnis, Kathleen; Hammond, Paula

    2007-03-01

    Microporous networks are of interest as electrolyte materials, gas separation membranes and catalytic nanoparticle templates. Here, we create microporous polyelectrolyte networks of tunable pore size and connectivity using the layer-by-layer (LBL) technique. In this method, a film is formed from the alternate adsorption of oppositely charged polyelectrolytes from aqueous solution to create a cohesive thin film. Using poly(ethylene imine) (PEI) and poly(acrylic acid) (PAA), LBL thin films of variable composition and charge density were assembled; then, the films were treated in an acidic bath, which ionizes PEI and de-ionizes PAA. This shift in charge density induces morphological rearrangement realized by a microporous network. Depending on the assembly pH and acidic bath pH, we are able to precisely tune the morphology, which is characterized by atomic force microscopy and scanning electron microscopy. To demonstrate the porous nature of the polyelectrolyte multilayer, the pores were filled with non-aqueous electrolyte (i.e. ethylene carbonate, dimethyl carbonate and lithium hexafluorophosphate) and probed with electrochemical impedance spectroscopy. These microporous networks exhibited two time constants, indicative of ions traveling through the liquid-filled pores and ions traveling through the polyelectrolyte matrix.

  19. Impedance measurements for detecting pathogens attached to antibodies

    DOEpatents

    Miles, Robin R.; Venkateswaran, Kodumudi S.; Fuller, Christopher K.

    2004-12-28

    The use of impedance measurements to detect the presence of pathogens attached to antibody-coated beads. In a fluidic device antibodies are immobilized on a surface of a patterned interdigitated electrode. Pathogens in a sample fluid streaming past the electrode attach to the immobilized antibodies, which produces a change in impedance between two adjacent electrodes, which impedance change is measured and used to detect the presence of a pathogen. To amplify the signal, beads coated with antibodies are introduced and the beads would stick to the pathogen causing a greater change in impedance between the two adjacent electrodes.

  20. Impedance of Barrier-Type Oxide Layer on Aluminum

    NASA Astrophysics Data System (ADS)

    Oh, Han-Jun; Kim, Jung-Gu; Jeong, Yong-Soo; Chi, Choong-Soo

    2000-12-01

    The impedance characteristics of barrier-type oxide layers on aluminum was studied using impedance spectroscopy. Since anodic films on Al have a variable stoichiometry with a gradual reduction of oxygen deficiency towards the oxide-electrolyte interface, the interpretation of impedance spectra for oxide layers is complex and the impedance of surface layers differs from those of ideal capacitors. This frequency response of the layer with conductance gradients cannot be described by a single resistance-capacitance (RC) element. The oxide layers of Al are properly described by the Young model of dielectric constant with a vertical decay of conductivity.

  1. Molecular recognition on a cavitand-functionalized silicon surface.

    PubMed

    Biavardi, Elisa; Favazza, Maria; Motta, Alessandro; Fragalà, Ignazio L; Massera, Chiara; Prodi, Luca; Montalti, Marco; Melegari, Monica; Condorelli, Guglielmo G; Dalcanale, Enrico

    2009-06-03

    A Si(100) surface featuring molecular recognition properties was obtained by covalent functionalization with a tetraphosphonate cavitand (Tiiii), able to complex positively charged species. Tiiii cavitand was grafted onto the Si by photochemical hydrosilylation together with 1-octene as a spatial spectator. The recognition properties of the Si-Tiiii surface were demonstrated through two independent analytical techniques, namely XPS and fluorescence spectroscopy, during the course of reversible complexation-guest exchange-decomplexation cycles with specifically designed ammonium and pyridinium salts. Control experiments employing a Si(100) surface functionalized with a structurally similar, but complexation inactive, tetrathiophosphonate cavitand (TSiiii) demonstrated no recognition events. This provides evidence for the complexation properties of the Si-Tiiii surface, ruling out the possibility of nonspecific interactions between the substrate and the guests. The residual Si-O(-) terminations on the surface replace the guests' original counterions, thus stabilizing the complex ion pairs. These results represent a further step toward the control of self-assembly of complex supramolecular architectures on surfaces.

  2. Impedance-matched Marx generators

    NASA Astrophysics Data System (ADS)

    Stygar, W. A.; LeChien, K. R.; Mazarakis, M. G.; Savage, M. E.; Stoltzfus, B. S.; Austin, K. N.; Breden, E. W.; Cuneo, M. E.; Hutsel, B. T.; Lewis, S. A.; McKee, G. R.; Moore, J. K.; Mulville, T. D.; Muron, D. J.; Reisman, D. B.; Sceiford, M. E.; Wisher, M. L.

    2017-04-01

    We have conceived a new class of prime-power sources for pulsed-power accelerators: impedance-matched Marx generators (IMGs). The fundamental building block of an IMG is a brick, which consists of two capacitors connected electrically in series with a single switch. An IMG comprises a single stage or several stages distributed axially and connected in series. Each stage is powered by a single brick or several bricks distributed azimuthally within the stage and connected in parallel. The stages of a multistage IMG drive an impedance-matched coaxial transmission line with a conical center conductor. When the stages are triggered sequentially to launch a coherent traveling wave along the coaxial line, the IMG achieves electromagnetic-power amplification by triggered emission of radiation. Hence a multistage IMG is a pulsed-power analogue of a laser. To illustrate the IMG approach to prime power, we have developed conceptual designs of two ten-stage IMGs with L C time constants on the order of 100 ns. One design includes 20 bricks per stage, and delivers a peak electrical power of 1.05 TW to a matched-impedance 1.22 -Ω load. The design generates 113 kV per stage and has a maximum energy efficiency of 89%. The other design includes a single brick per stage, delivers 68 GW to a matched-impedance 19 -Ω load, generates 113 kV per stage, and has a maximum energy efficiency of 90%. For a given electrical-power-output time history, an IMG is less expensive and slightly more efficient than a linear transformer driver, since an IMG does not use ferromagnetic cores.

  3. Gynecologic electrical impedance tomograph

    NASA Astrophysics Data System (ADS)

    Korjenevsky, A.; Cherepenin, V.; Trokhanova, O.; Tuykin, T.

    2010-04-01

    Electrical impedance tomography extends to the new and new areas of the medical diagnostics: lungs, breast, prostate, etc. The feedback from the doctors who use our breast EIT diagnostic system has induced us to develop the 3D electrical impedance imaging device for diagnostics of the cervix of the uterus - gynecologic impedance tomograph (GIT). The device uses the same measuring approach as the breast imaging system: 2D flat array of the electrodes arranged on the probe with handle is placed against the body. Each of the 32 electrodes of the array is connected in turn to the current source while the rest electrodes acquire the potentials on the surface. The current flows through the electrode of the array and returns through the remote electrode placed on the patient's limb. The voltages are measured relative to another remote electrode. The 3D backprojection along equipotential surfaces is used to reconstruct conductivity distribution up to approximately 1 cm in depth. Small number of electrodes enables us to implement real time imaging with a few frames per sec. rate. The device is under initial testing and evaluation of the imaging capabilities and suitability of usage.

  4. Prediction of lamb carcass composition by impedance spectroscopy.

    PubMed

    Altmann, M; Pliquett, U; Suess, R; von Borell, E

    2004-03-01

    The objective of this study was to compare impedance spectroscopy with resistance measurements at a single frequency (50 kHz) for the prediction of lamb carcass composition. The impedance spectrum is usually recorded by measuring the complex impedance at various frequencies (frequency domain); however, in this study, we also applied the faster and simpler measurement in the time domain (application of a current step and measurement of the voltage response). The study was carried out on 24 male, German Black-headed Mutton lambs with an average BW of 45 kg. Frequency- and time domain-based impedance measurements were collected at 20 min and 24 h postmortem with different electrode placements. Real and imaginary parts at various frequencies were calculated from the locus diagram. Left sides were dissected into lean, fat, and bone, and right sides were ground to determine actual carcass composition. Crude fat, crude protein, and moisture were chemically analyzed on ground samples. Frequency- and time domain-based measurements did not provide the same absolute impedance values; however, the high correlations (P < 0.001) between these methods for the "real parts" showed that they ranked individuals in the same order. Most of the time domain data correlated higher to carcass composition than did the frequency domain data. The real parts of impedance showed correlations between -0.37 (P > 0.05) and -0.74 (P < 0.001) to water, crude fat, lean, and fatty tissue, whereas the relations to CP were much lower (from 0.00 to -0.47, P < 0.05). Electrode placements at different locations did not substantially improve the correlations with carcass composition. The "imaginary parts" of impedance were not suitable for the prediction of carcass composition. The highest accuracy (R2 = 0.66) was reached for the estimation of crude fat percentage by a regression equation with the time domain-based impedance measured at 24 h postmortem. Furthermore, there was not a clear superiority of

  5. Superconducting active impedance converter

    DOEpatents

    Ginley, D.S.; Hietala, V.M.; Martens, J.S.

    1993-11-16

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductors allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology. 12 figures.

  6. Superconducting active impedance converter

    DOEpatents

    Ginley, David S.; Hietala, Vincent M.; Martens, Jon S.

    1993-01-01

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductor allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology.

  7. Incongruence Between Observers’ and Observed Facial Muscle Activation Reduces Recognition of Emotional Facial Expressions From Video Stimuli

    PubMed Central

    Wingenbach, Tanja S. H.; Brosnan, Mark; Pfaltz, Monique C.; Plichta, Michael M.; Ashwin, Chris

    2018-01-01

    According to embodied cognition accounts, viewing others’ facial emotion can elicit the respective emotion representation in observers which entails simulations of sensory, motor, and contextual experiences. In line with that, published research found viewing others’ facial emotion to elicit automatic matched facial muscle activation, which was further found to facilitate emotion recognition. Perhaps making congruent facial muscle activity explicit produces an even greater recognition advantage. If there is conflicting sensory information, i.e., incongruent facial muscle activity, this might impede recognition. The effects of actively manipulating facial muscle activity on facial emotion recognition from videos were investigated across three experimental conditions: (a) explicit imitation of viewed facial emotional expressions (stimulus-congruent condition), (b) pen-holding with the lips (stimulus-incongruent condition), and (c) passive viewing (control condition). It was hypothesised that (1) experimental condition (a) and (b) result in greater facial muscle activity than (c), (2) experimental condition (a) increases emotion recognition accuracy from others’ faces compared to (c), (3) experimental condition (b) lowers recognition accuracy for expressions with a salient facial feature in the lower, but not the upper face area, compared to (c). Participants (42 males, 42 females) underwent a facial emotion recognition experiment (ADFES-BIV) while electromyography (EMG) was recorded from five facial muscle sites. The experimental conditions’ order was counter-balanced. Pen-holding caused stimulus-incongruent facial muscle activity for expressions with facial feature saliency in the lower face region, which reduced recognition of lower face region emotions. Explicit imitation caused stimulus-congruent facial muscle activity without modulating recognition. Methodological implications are discussed. PMID:29928240

  8. Incongruence Between Observers' and Observed Facial Muscle Activation Reduces Recognition of Emotional Facial Expressions From Video Stimuli.

    PubMed

    Wingenbach, Tanja S H; Brosnan, Mark; Pfaltz, Monique C; Plichta, Michael M; Ashwin, Chris

    2018-01-01

    According to embodied cognition accounts, viewing others' facial emotion can elicit the respective emotion representation in observers which entails simulations of sensory, motor, and contextual experiences. In line with that, published research found viewing others' facial emotion to elicit automatic matched facial muscle activation, which was further found to facilitate emotion recognition. Perhaps making congruent facial muscle activity explicit produces an even greater recognition advantage. If there is conflicting sensory information, i.e., incongruent facial muscle activity, this might impede recognition. The effects of actively manipulating facial muscle activity on facial emotion recognition from videos were investigated across three experimental conditions: (a) explicit imitation of viewed facial emotional expressions (stimulus-congruent condition), (b) pen-holding with the lips (stimulus-incongruent condition), and (c) passive viewing (control condition). It was hypothesised that (1) experimental condition (a) and (b) result in greater facial muscle activity than (c), (2) experimental condition (a) increases emotion recognition accuracy from others' faces compared to (c), (3) experimental condition (b) lowers recognition accuracy for expressions with a salient facial feature in the lower, but not the upper face area, compared to (c). Participants (42 males, 42 females) underwent a facial emotion recognition experiment (ADFES-BIV) while electromyography (EMG) was recorded from five facial muscle sites. The experimental conditions' order was counter-balanced. Pen-holding caused stimulus-incongruent facial muscle activity for expressions with facial feature saliency in the lower face region, which reduced recognition of lower face region emotions. Explicit imitation caused stimulus-congruent facial muscle activity without modulating recognition. Methodological implications are discussed.

  9. Implementation and Validation of an Impedance Eduction Technique

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Jones, Michael G.; Gerhold, Carl H.

    2011-01-01

    Implementation of a pressure gradient method of impedance eduction in two NASA Langley flow ducts is described. The Grazing Flow Impedance Tube only supports plane-wave sources, while the Curved Duct Test Rig supports sources that contain higher-order modes. Multiple exercises are used to validate this new impedance eduction method. First, synthesized data for a hard wall insert and a conventional liner mounted in the Grazing Flow Impedance Tube are used as input to the two impedance eduction methods, the pressure gradient method and a previously validated wall pressure method. Comparisons between the two results are excellent. Next, data measured in the Grazing Flow Impedance Tube are used as input to both methods. Results from the two methods compare quite favorably for sufficiently low Mach numbers but this comparison degrades at Mach 0.5, especially when the hard wall insert is used. Finally, data measured with a hard wall insert mounted in the Curved Duct Test Rig are used as input to the pressure gradient method. Significant deviation from the known solution is observed, which is believed to be largely due to 3-D effects in this flow duct. Potential solutions to this issue are currently being explored.

  10. Development on electromagnetic impedance function modeling and its estimation

    NASA Astrophysics Data System (ADS)

    Sutarno, D.

    2015-09-01

    Today the Electromagnetic methods such as magnetotellurics (MT) and controlled sources audio MT (CSAMT) is used in a broad variety of applications. Its usefulness in poor seismic areas and its negligible environmental impact are integral parts of effective exploration at minimum cost. As exploration was forced into more difficult areas, the importance of MT and CSAMT, in conjunction with other techniques, has tended to grow continuously. However, there are obviously important and difficult problems remaining to be solved concerning our ability to collect process and interpret MT as well as CSAMT in complex 3D structural environments. This talk aim at reviewing and discussing the recent development on MT as well as CSAMT impedance functions modeling, and also some improvements on estimation procedures for the corresponding impedance functions. In MT impedance modeling, research efforts focus on developing numerical method for computing the impedance functions of three dimensionally (3-D) earth resistivity models. On that reason, 3-D finite elements numerical modeling for the impedances is developed based on edge element method. Whereas, in the CSAMT case, the efforts were focused to accomplish the non-plane wave problem in the corresponding impedance functions. Concerning estimation of MT and CSAMT impedance functions, researches were focused on improving quality of the estimates. On that objective, non-linear regression approach based on the robust M-estimators and the Hilbert transform operating on the causal transfer functions, were used to dealing with outliers (abnormal data) which are frequently superimposed on a normal ambient MT as well as CSAMT noise fields. As validated, the proposed MT impedance modeling method gives acceptable results for standard three dimensional resistivity models. Whilst, the full solution based modeling that accommodate the non-plane wave effect for CSAMT impedances is applied for all measurement zones, including near-, transition

  11. Development on electromagnetic impedance function modeling and its estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutarno, D., E-mail: Sutarno@fi.itb.ac.id

    2015-09-30

    Today the Electromagnetic methods such as magnetotellurics (MT) and controlled sources audio MT (CSAMT) is used in a broad variety of applications. Its usefulness in poor seismic areas and its negligible environmental impact are integral parts of effective exploration at minimum cost. As exploration was forced into more difficult areas, the importance of MT and CSAMT, in conjunction with other techniques, has tended to grow continuously. However, there are obviously important and difficult problems remaining to be solved concerning our ability to collect process and interpret MT as well as CSAMT in complex 3D structural environments. This talk aim atmore » reviewing and discussing the recent development on MT as well as CSAMT impedance functions modeling, and also some improvements on estimation procedures for the corresponding impedance functions. In MT impedance modeling, research efforts focus on developing numerical method for computing the impedance functions of three dimensionally (3-D) earth resistivity models. On that reason, 3-D finite elements numerical modeling for the impedances is developed based on edge element method. Whereas, in the CSAMT case, the efforts were focused to accomplish the non-plane wave problem in the corresponding impedance functions. Concerning estimation of MT and CSAMT impedance functions, researches were focused on improving quality of the estimates. On that objective, non-linear regression approach based on the robust M-estimators and the Hilbert transform operating on the causal transfer functions, were used to dealing with outliers (abnormal data) which are frequently superimposed on a normal ambient MT as well as CSAMT noise fields. As validated, the proposed MT impedance modeling method gives acceptable results for standard three dimensional resistivity models. Whilst, the full solution based modeling that accommodate the non-plane wave effect for CSAMT impedances is applied for all measurement zones, including near

  12. Time-Domain Impedance Boundary Conditions for Computational Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Auriault, Laurent

    1996-01-01

    It is an accepted practice in aeroacoustics to characterize the properties of an acoustically treated surface by a quantity known as impedance. Impedance is a complex quantity. As such, it is designed primarily for frequency-domain analysis. Time-domain boundary conditions that are the equivalent of the frequency-domain impedance boundary condition are proposed. Both single frequency and model broadband time-domain impedance boundary conditions are provided. It is shown that the proposed boundary conditions, together with the linearized Euler equations, form well-posed initial boundary value problems. Unlike ill-posed problems, they are free from spurious instabilities that would render time-marching computational solutions impossible.

  13. Impedance measurement using a two-microphone, random-excitation method

    NASA Technical Reports Server (NTRS)

    Seybert, A. F.; Parrott, T. L.

    1978-01-01

    The feasibility of using a two-microphone, random-excitation technique for the measurement of acoustic impedance was studied. Equations were developed, including the effect of mean flow, which show that acoustic impedance is related to the pressure ratio and phase difference between two points in a duct carrying plane waves only. The impedances of a honeycomb ceramic specimen and a Helmholtz resonator were measured and compared with impedances obtained using the conventional standing-wave method. Agreement between the two methods was generally good. A sensitivity analysis was performed to pinpoint possible error sources and recommendations were made for future study. The two-microphone approach evaluated in this study appears to have some advantages over other impedance measuring techniques.

  14. Plasma Diagnostics by Antenna Impedance Measurements

    NASA Technical Reports Server (NTRS)

    Swenson, C. M.; Baker, K. D.; Pound, E.; Jensen, M. D.

    1993-01-01

    The impedance of an electrically short antenna immersed in a plasma provides an excellent in situ diagnostic tool for electron density and other plasma parameters. By electrically short we mean that the wavelength of the free-space electromagnetic wave that would be excited at the driving frequency is much longer than the physical size of the antenna. Probes using this impedance technique have had a long history with sounding rockets and satellites, stretching back to the early 1960s. This active technique could provide information on composition and temperature of plasmas for comet or planetary missions. Advantages of the impedance probe technique are discussed and two classes of instruments built and flown by SDL-USU for determining electron density (the capacitance and plasma frequency probes) are described.

  15. Impedance properties of circular microstrip antenna

    NASA Technical Reports Server (NTRS)

    Deshpande, M. D.; Bailey, M. C.

    1983-01-01

    A moment method solution to the input impedance of a circular microstrip antenna excited by either a microstrip feed or a coaxial probe is presented. Using the exact dyadic Green's function and the Fourier transform the problem is formulated in terms of Richmond's reaction integral equation from which the unknown patch current can be solved for. The patch current is expanded in terms of regular surface patch modes and an attachment mode (for probe excited case) which insures continuity of the current at probe/patch junction, proper polarization and p-dependance of patch current in the vicinity of the probe. The input impedance of a circular microstrip antenna is computed and compared with earlier results. Effect of attachment mode on the input impedance is also discussed.

  16. Monitoring and Characterizing Crop Root Systems Using Electrical Impedance Tomography (EIT)

    NASA Astrophysics Data System (ADS)

    Weigand, M.; Kemna, A.

    2016-12-01

    A better understanding of root-soil interactions and associated processes is essential to achieve progress in crop breeding and management, prompting the need for high-resolution and non-destructive characterization methods. Such methods are still lacking, in particular for characterizing root growth and function in the field. A promising technique in this respect is electrical impedance tomography (EIT), which provides images of the low-frequency electrical conduction and polarization properties and thus can be used to investigate polarization processes occurring within and in the direct vicinity of roots under the influence of an external alternating electric field. This approach takes advantage of the well-known polarization properties associated with electrical double layers forming at membranes of cells and cell clusters. However, upscaling these processes to the scale of an impedance, or complex conductivity, spectrum of the whole root system is not trivial given the lack of electrical root models, the complexity of root systems, and the occurrence of additional larger-scale, ion-selective, and therefore polarizable, structures such as the Casparian strip. We here present results from several EIT laboratory studies on rhizotrons with crop root systems in aqueous solutions. Based on optimized experimental and data analysis procedures, enabling the imaging of the weak signals encountered in our studies, we found systematic spatial and temporal changes of both the magnitude and the shape of the spectral polarization signatures during nutrient deprivation and in response to the decapitation of plants. Consistent, but relatively weak, spectral impedance changes were also observed over diurnal cycles. Our results provide evidence for the capability of EIT to non-invasively image and monitor root systems at the rhizotron scale. They further suggest that EIT is a promising tool for imaging, characterizing, and monitoring crop roots at the field scale.

  17. Application of plant impedance for diagnosing plant disease

    NASA Astrophysics Data System (ADS)

    Xu, Huirong; Jiang, Xuesong; Zhu, Shengpan; Ying, Yibin

    2006-10-01

    Biological cells have components acting as electrical elements that maintain the health of the cell by regulation of the electrical charge content. Plant impedance is decided by the state of plant physiology and pathology. Plant physiology and pathology can be studies by measuring plant impedance. The effect of Cucumber Mosaic Virus red bean isolate (CMV-RB) on electrical resistance of tomato leaves was studied by the method of impedance measurement. It was found that the value of resistance of tomato leaves infected with CMV-RB was smaller than that in sound plant leaves. This decrease of impedances in leaf tissue was occurred with increased severity of disease. The decrease of resistance of tomato leaves infected with CMV-RB could be detected by electrical resistance detecting within 4 days after inoculation even though significant visible differences between the control and the infected plants were not noted, so that the technique for measurement of tomato leaf tissue impedance is a rapid, clever, simple method on diagnosis of plant disease.

  18. Possibilities of electrical impedance tomography in gynecology

    NASA Astrophysics Data System (ADS)

    V, Trokhanova O.; A, Chijova Y.; B, Okhapkin M.; V, Korjenevsky A.; S, Tuykin T.

    2013-04-01

    The paper describes results of comprehensive EIT diagnostics of mammary glands and cervix. The data were obtained from examinations of 170 patients by EIT system MEM (multi-frequency electrical impedance mammograph) and EIT system GIT (gynecological impedance tomograph). Mutual dependence is discussed.

  19. Microelectrical Impedance Spectroscopy for the Differentiation between Normal and Cancerous Human Urothelial Cell Lines: Real-Time Electrical Impedance Measurement at an Optimal Frequency

    PubMed Central

    Park, Yangkyu; Kim, Hyeon Woo; Yun, Joho; Seo, Seungwan; Park, Chang-Ju; Lee, Jeong Zoo; Lee, Jong-Hyun

    2016-01-01

    Purpose. To distinguish between normal (SV-HUC-1) and cancerous (TCCSUP) human urothelial cell lines using microelectrical impedance spectroscopy (μEIS). Materials and Methods. Two types of μEIS devices were designed and used in combination to measure the impedance of SV-HUC-1 and TCCSUP cells flowing through the channels of the devices. The first device (μEIS-OF) was designed to determine the optimal frequency at which the impedance of two cell lines is most distinguishable. The μEIS-OF trapped the flowing cells and measured their impedance at a frequency ranging from 5 kHz to 1 MHz. The second device (μEIS-RT) was designed for real-time impedance measurement of the cells at the optimal frequency. The impedance was measured instantaneously as the cells passed the sensing electrodes of μEIS-RT. Results. The optimal frequency, which maximized the average difference of the amplitude and phase angle between the two cell lines (p < 0.001), was determined to be 119 kHz. The real-time impedance of the cell lines was measured at 119 kHz; the two cell lines differed significantly in terms of amplitude and phase angle (p < 0.001). Conclusion. The μEIS-RT can discriminate SV-HUC-1 and TCCSUP cells by measuring the impedance at the optimal frequency determined by the μEIS-OF. PMID:26998490

  20. [The functional assessment of the upper urinary tract by the methods of 2-frequency impedance measurement and multichannel impedance ureterography].

    PubMed

    Mudraia, I S; Kirpatovskiĭ, V I

    1993-01-01

    The paper describes impedance methods of investigating upper urinary tracts (UUT) which may serve adjuvants in the diagnosis of the urinary tract wall disturbances due to diseases caused by impaired urine evacuation from the kidney and which may prove helpful in the choice of therapeutic policy, evaluation of the postoperative period and outcomes prognosis. UUT impedance tests can be performed during endoscopic manipulations or under open operative interventions. Two-frequency impedancemetry allows rapid detection of non-functioning UUT parts or sclerosal sites of the UUT wall, relevant criteria being the ratio of basic impedances of the site under low and high scanning current. This value is computed by an urological two-frequency impedancemeter IDU-M. To assess the UUT wall functionally, use should be made of 6-channel urological rheograph REUR-6 providing multichannel registration of immediate impedance ureterograms. In this manner one can obtain qualitative and quantitative assessment of the ureteral peristalsis through its all length, the criteria being the amplitude of impedance ureterographic complexes, their shape, duration, frequency, rhythm, sequence and rate of distribution. Loading tests increase the accuracy of UUT impedance measurements, are able to define compensatory reserves of the wall contractility. The introduction of rheological methods in urological practice makes broader the armory of diagnostic techniques in urology, upgrade pathogenetic validity of surgical and therapeutic measures.

  1. Copper Ion Detection in Drinking Water via a Fabric Nanocomposite Sensor

    NASA Astrophysics Data System (ADS)

    Yu, Guoqiang

    Excessive Cu(II) ions in drinking water are always a big threat to people's health. In this work, we developed a flexible amperometric sensor by a simple dip-coating method, which was able to rapidly, sensitively, and selectively detect the Cu(II) ions in the range of 0.65 to 39 ppm in real time. The prepared Cu(II) sensor consisted of three layers that were electrospun nylon-6 nanofibers, multiwalled carbon nanotubes (MWCNTs), and 2,2':5',2''-terthiophene molecules, respectively. When a voltage was applied to the Cu(II) sensor, the current was obviously impeded in the presence of Cu(II) ions. Interfering metal ions, including Cd(II), Fe(II), Pb(II), Hg(II), and Ag(I) ions, had almost no influence on the responsiveness of the Cu(II) sensor.

  2. MnO2 prepared by hydrothermal method and electrochemical performance as anode for lithium-ion battery.

    PubMed

    Feng, Lili; Xuan, Zhewen; Zhao, Hongbo; Bai, Yang; Guo, Junming; Su, Chang-Wei; Chen, Xiaokai

    2014-01-01

    Two α-MnO2 crystals with caddice-clew-like and urchin-like morphologies are prepared by the hydrothermal method, and their structure and electrochemical performance are characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), galvanostatic cell cycling, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS). The morphology of the MnO2 prepared under acidic condition is urchin-like, while the one prepared under neutral condition is caddice-clew-like. The identical crystalline phase of MnO2 crystals is essential to evaluate the relationship between electrochemical performances and morphologies for lithium-ion battery application. In this study, urchin-like α-MnO2 crystals with compact structure have better electrochemical performance due to the higher specific capacity and lower impedance. We find that the relationship between electrochemical performance and morphology is different when MnO2 material used as electrochemical supercapacitor or as anode of lithium-ion battery. For lithium-ion battery application, urchin-like MnO2 material has better electrochemical performance.

  3. Clinical implementation of electrical impedance tomography with hyperthermia.

    PubMed

    Moskowitz, M J; Ryan, T P; Paulsen, K D; Mitchell, S E

    1995-01-01

    We describe the use of electrical impedance tomography (EIT) for non-invasive thermal imaging in conjunction with a clinical treatment of a superficial scalp lesion utilizing a spiral microstrip antenna. This is our first reported use of EIT with a clinical hyperthermia treatment and perhaps the first world-wide. The thermal measurements recorded during treatment compare favourably with the images reconstructed from impedance data gathered during heating. A linear relation, measured in phantom material, between the change in temperature with the change in reconstructed impedance was assumed. The average discrepancy between the measured temperature changes with the temperatures reconstructed from the impedance changes was 1.4 degrees C, with the maximum being 8.9 degrees C. These preliminary data suggest that impedance changes can be measured during hyperthermia delivery and temperature estimates based on these observed changes are possible in the clinical setting. These findings also point to the complex, yet critical nature of the impedance versus temperature relationship for tissue in vivo. The reconstructed thermal images may provide complementary information about the overall thermal damage imposed during heating. Based on this initial clinical experience we feel that EIT has great potential as a viable clinical aid in imaging the temperature changes imposed during hyperthermia.

  4. Study of electrical properties of Sc doped BaFe12O19 ceramic using dielectric, impedance, modulus spectroscopy and AC conductivity

    NASA Astrophysics Data System (ADS)

    Gupta, Surbhi; Deshpande, S. K.; Sathe, V. G.; Siruguri, V.

    2018-04-01

    We present dielectric, complex impedance, modulus spectroscopy and AC conductivity studies of the compound BaFe10Sc2O19 as a function of temperature and frequency to understand the conduction mechanism. The variation in complex dielectric constant with frequency and temperature were analyzed on the basis of Maxwell-Wagner-Koop's theory and charge hopping between ferrous and ferric ions. The complex impedance spectroscopy study shows only grain contribution whereas complex modulus plot shows two semicircular arcs which indicate both grain and grain boundary contributions in conduction mechanism. AC conductivity has also been evaluated which follows the Jonscher's law. The activation energy calculated from temperature dependence of DC conductivity comes out to be Ea˜ 0.31eV.

  5. Impedance dispersion analysis of drug-membrane interactions

    NASA Astrophysics Data System (ADS)

    Tacheva, Bilyana; Paarvanova, Boyana; Ivanov, Ivan T.; Karabaliev, Miroslav

    2017-11-01

    Thin lipid films modified glassy carbon electrodes (GCE) were used in this work as model system for studying the interactions between two antipsychotic phenothiazine drugs, chlorpromazine and thioridazine, and the lipid fraction of the biomembranes. The lipid films on the electrode surface were obtained through the thinning of film-forming lipid solution deposited between an electrolyte phase and the working GC electrode. The effects of the drugs on the lipid film structure were investigated by electrochemical impedance spectroscopy (EIS). To characterize the electric properties of the lipid film the impedance of the working GCE is modeled with an equivalent circuit consisting of parallel capacitance Cp and resistance Rp. These capacitance and resistance are not frequency independent but could be calculated as equivalent Cp and Rp for each measured frequency of the impedance spectrum and presented as functions of the frequency f, Cp = Cp(f) and Rp= Rp(f). For the lipid films used in this work, it is demonstrated that both Cp(f) and Rp(f) are well approximated with power-law functions. This behavior implies that the impedance Z of the films could be analysed in terms of the well-known constant-phase angle element (CPE), which is often used to describe the interfacial impedance of solid working electrodes.

  6. Heavy Ion Microbeam- and Broadbeam-Induced Current Transients in SiGe HBTs

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.; Reed, R. A.; McMorrow, D.; Vizkelethy, G.; Ferlet-Cavrois, V.; Baggio, J.; Duhamel, O.; Moen, K. A.; Phillips, S. D.; Diestelhorst, R. M.; hide

    2009-01-01

    IBM 5AM SiGe HBT is device-under-test. High-speed measurement setup. Low-impedance current transient measurements. SNL, JYFL, GANIL. Microbeam to broadbeam position inference. Improvement to state-of-the-art. Microbeam (SNL) transients reveal position dependent heavy ion response, Unique response for different device regions Unique response for different bias schemes. Similarities to TPA pulsed-laser data. Broadbeam transients (JYFL and GANIL) provide realistic heavy ion response. Feedback using microbeam data. Overcome issues of LET and ion range with microbeam. **Angled Ar-40 data in full paper. Data sets yield first-order results, suitable for TCAD calibration feedback.

  7. PREFACE: XV International Conference on Electrical Bio-Impedance (ICEBI) & XIV Conference on Electrical Impedance Tomography (EIT)

    NASA Astrophysics Data System (ADS)

    Pliquett, Uwe

    2013-04-01

    Over recent years advanced measurement methods have facilitated outstanding achievements not only in medical instrumentation but also in biotechnology. Impedance measurement is a simple and innocuous way to characterize materials. For more than 40 years biological materials, most of them based on cells, have been characterized by means of electrical impedance for quality control of agricultural products, monitoring of biotechnological or food processes or in health care. Although the list of possible applications is long, very few applications successfully entered the market before the turn of the century. This was, on the one hand, due to the low specificity of electrical impedance with respect to other material properties because it is influenced by multiple factors. On the other hand, equipment and methods for many potential applications were not available. With the appearance of microcontrollers that could be easily integrated in applications at the beginning of the 1980s, impedance measurement advanced as a valuable tool in process optimization and lab automation. However, established methods and data processing were mostly used in a new environment. This has changed significantly during the last 10 years with a dramatic growth of the market for medical instrumentation and also for biotechnological applications. Today, advanced process monitoring and control require fast and highly parallel electrical characterization which in turn yields incredible data volumes that must be handled in real time. Many newer developments require miniaturized but precise sensing methods which is one of the main parts of Lab-on-Chip technology. Moreover, biosensors increasingly use impedometric transducers, which are not compatible with the large expensive measurement devices that are common in the laboratory environment. Following the achievements in the field of bioimpedance measurement, we will now witness a dramatic development of new electrode structures and electronics

  8. Ultrasonic velocimetry studies on different salts of chitosan: Effect of ion size.

    PubMed

    Mohan, C Raja; Sathya, R; Nithiananthi, P; Jayakumar, K

    2017-11-01

    In the present investigation, the effect of ion size on the thermodynamical properties such as ultrasonic velocity (U), adiabatic compressibility (β), acoustic impedance (Z), adiabatic bulk modulus (K s ), relaxation strength (r s ) have been obtained for the different salts of chitosan viz., formate (3.5Å), acetate (4.5Å), Succinate (5Å) and Adipate (6Å). To find the effect of ion size, the effect due to water has been removed by calculating the change in ultrasonic velocity (dU), change in adiabatic compressibility (dβ), in acoustic impedance (dZ), in adiabatic bulk modulus (dK s ), and in relaxation strength (dr s ). Space filling factor and polarizability has been obtained from the refractive index data through Lorentz-Lorentz relation. FTIR studies confirm the formation of different quaternary salts of chitosan and their size (mass) effects which has been verified with Hooke's law. All the said properties vary both with ion size and concentration of different salts of chitosan. This investigation may throw some light on better usage of chitosan in biomedical applications. The detailed results are presented and discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. AC impedance investigations of proton conduction in Nafion(sup TM)

    NASA Astrophysics Data System (ADS)

    Cahan, B. D.; Wainright, J. S.

    1993-12-01

    AC impedance spectroscopy has been employed to study the conduction of protons in Nafion 117 polymer electrolyte membrane. Both two- and four-electrode geometries have been used to uniquely distinguish between the membrane impedance and the interfacial impedances. The results show that the impedance of Nafion for frequencies up to 100 kHz is characterized by a pure resistance, similar to conventional liquid electrolytes. The frequency dependent features observed using a two-electrode geometry are shown to be consistent will well-characterized interfacial impedances and do not arise from ionic conduction in the membrane. These results show that previous two-electrode studies reported in the literature have misinterpreted the impedance of the electrode interfaces as belonging to the conduction process in the electrolyte.

  10. An expert panel-based study on recognition of gastro-esophageal reflux in difficult esophageal pH-impedance tracings.

    PubMed

    Smits, M J; Loots, C M; van Wijk, M P; Bredenoord, A J; Benninga, M A; Smout, A J P M

    2015-05-01

    Despite existing criteria for scoring gastro-esophageal reflux (GER) in esophageal multichannel pH-impedance measurement (pH-I) tracings, inter- and intra-rater variability is large and agreement with automated analysis is poor. To identify parameters of difficult to analyze pH-I patterns and combine these into a statistical model that can identify GER episodes with an international consensus as gold standard. Twenty-one experts from 10 countries were asked to mark GER presence for adult and pediatric pH-I patterns in an online pre-assessment. During a consensus meeting, experts voted on patterns not reaching majority consensus (>70% agreement). Agreement was calculated between raters, between consensus and individual raters, and between consensus and software generated automated analysis. With eight selected parameters, multiple logistic regression analysis was performed to describe an algorithm sensitive and specific for detection of GER. Majority consensus was reached for 35/79 episodes in the online pre-assessment (interrater κ = 0.332). Mean agreement between pre-assessment scores and final consensus was moderate (κ = 0.466). Combining eight pH-I parameters did not result in a statistically significant model able to identify presence of GER. Recognizing a pattern as retrograde is the best indicator of GER, with 100% sensitivity and 81% specificity with expert consensus as gold standard. Agreement between experts scoring difficult impedance patterns for presence or absence of GER is poor. Combining several characteristics into a statistical model did not improve diagnostic accuracy. Only the parameter 'retrograde propagation pattern' is an indicator of GER in difficult pH-I patterns. © 2015 John Wiley & Sons Ltd.

  11. Association of auditory-verbal and visual hallucinations with impaired and improved recognition of colored pictures.

    PubMed

    Brébion, Gildas; Stephan-Otto, Christian; Usall, Judith; Huerta-Ramos, Elena; Perez del Olmo, Mireia; Cuevas-Esteban, Jorge; Haro, Josep Maria; Ochoa, Susana

    2015-09-01

    A number of cognitive underpinnings of auditory hallucinations have been established in schizophrenia patients, but few have, as yet, been uncovered for visual hallucinations. In previous research, we unexpectedly observed that auditory hallucinations were associated with poor recognition of color, but not black-and-white (b/w), pictures. In this study, we attempted to replicate and explain this finding. Potential associations with visual hallucinations were explored. B/w and color pictures were presented to 50 schizophrenia patients and 45 healthy individuals under 2 conditions of visual context presentation corresponding to 2 levels of visual encoding complexity. Then, participants had to recognize the target pictures among distractors. Auditory-verbal hallucinations were inversely associated with the recognition of the color pictures presented under the most effortful encoding condition. This association was fully mediated by working-memory span. Visual hallucinations were associated with improved recognition of the color pictures presented under the less effortful condition. Patients suffering from visual hallucinations were not impaired, relative to the healthy participants, in the recognition of these pictures. Decreased working-memory span in patients with auditory-verbal hallucinations might impede the effortful encoding of stimuli. Visual hallucinations might be associated with facilitation in the visual encoding of natural scenes, or with enhanced color perception abilities. (c) 2015 APA, all rights reserved).

  12. Electrical impedance tomography

    PubMed Central

    Lobo, Beatriz; Hermosa, Cecilia; Abella, Ana

    2018-01-01

    Continuous assessment of respiratory status is one of the cornerstones of modern intensive care unit (ICU) monitoring systems. Electrical impedance tomography (EIT), although with some constraints, may play the lead as a new diagnostic and guiding tool for an adequate optimization of mechanical ventilation in critically ill patients. EIT may assist in defining mechanical ventilation settings, assess distribution of tidal volume and of end-expiratory lung volume (EELV) and contribute to titrate positive end-expiratory pressure (PEEP)/tidal volume combinations. It may also quantify gains (recruitment) and losses (overdistention or derecruitment), granting a more realistic evaluation of different ventilator modes or recruitment maneuvers, and helping in the identification of responders and non-responders to such maneuvers. Moreover, EIT also contributes to the management of life-threatening lung diseases such as pneumothorax, and aids in guiding fluid management in the critical care setting. Lastly, assessment of cardiac function and lung perfusion through electrical impedance is on the way. PMID:29430443

  13. Travelling-wave ion mobility and negative ion fragmentation of high mannose N-glycans

    PubMed Central

    Harvey, David J.; Scarff, Charlotte A.; Edgeworth, Matthew; Struwe, Weston B.; Pagel, Kevin; Thalassinos, Konstantinos; Crispin, Max; Scrivens, Jim

    2016-01-01

    The isomeric structure of high-mannose N-glycans can significantly impact biological recognition events. Here, the utility of travelling-wave ion mobility-mass spectrometry (TW IM-MS)for isomer separation of high-mannose N-glycans is investigated. Negative ion fragmentation using collision-induced dissociation (CID) gave more informative spectra than positive ion spectra with mass-different fragment ions characterizing many of the isomers. Isomer separation by ion mobility in both ionization modes was generally limited, with the arrival time distributions (ATD) often showing little sign of isomers. However, isomers could be partially resolved by plotting extracted fragment ATDs of the diagnostic fragment ions from the negative ion spectra and the fragmentation spectra of the isomers could be extracted by using ions from limited areas of the ATD peak. In some cases, asymmetric ATDs were observed but no isomers could be detected by fragmentation. In these cases, it was assumed that conformers were being separated. Collision cross sections (CCSs) of the isomers in positive and negative fragmentation mode were estimated from TW IM-MS data using dextran glycans as calibrant. More complete CCS data were achieved in negative ion mode by utilizing the diagnostic fragment ions. Examples of isomer separations are shown for N-glycans released from the well-characterized glycoproteins chicken ovalbumin, porcine thyroglobulin and gp120 from the human immunodeficiency virus. In addition to the cross sectional data, details of the negative ion collision-induced dissociation (CID) spectra of all resolved isomers are discussed. PMID:26956389

  14. Entrance and Exit CSR Impedance for Non-Ultrarelativistic Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Rui; Tsai, Cheng Ying

    2017-05-01

    For a high-brightness electron beam being transported through beamlines involving bending systems, the coherent synchrotron radiation (CSR) and longitudinal space charge (LSC) interaction could often cause microbunching instability. The semi-analytical Vlasov solver for microbunching gain* depends on the impedances for the relevant collective effects. The existing results for CSR impedances are usually obtained for the ultrarelativistic limit. To extend the microbunching analysis to cases of low energies, such as the case of an ERL merger, or to density modulations at extremely small wavelength, it is necessary to extend the impedance analysis to the non-ultrarelativistic regime. In this study, we presentmore » the impedance analysis for the transient CSR interaction in the non-ultrarelativistic regime, for transients including both entrance to and exit from a magnetic dipole. These impedance results will be compared to their ultra-relativistic counterparts**, and the corresponding wakefield obtained from the impedance for low-energy beams will be compared with the existing results of transient CSR wakefield for general beam energies***.« less

  15. Using surface impedance for calculating wakefields in flat geometry

    DOE PAGES

    Bane, Karl; Stupakov, Gennady

    2015-03-18

    Beginning with Maxwell's equations and assuming only that the wall interaction can be approximated by a surface impedance, we derive formulas for the generalized longitudinal and transverse impedance in flat geometry, from which the wakefields can also be obtained. From the generalized impedances, by taking the proper limits, we obtain the normal longitudinal, dipole, and quad impedances in flat geometry. These equations can be applied to any surface impedance, such as the known dc, ac, and anomalous skin models of wall resistance, a model of wall roughness, or one for a pipe with small, periodic corrugations. We show that, formore » the particular case of dc wall resistance, the longitudinal impedance obtained here agrees with a known result in the literature, a result that was derived from a very general formula by Henke and Napoly. As an example, we apply our results to representative beam and machine parameters in the undulator region of LCLS-II and estimate the impact of the transverse wakes on the machine performance.« less

  16. Uncertainty Analysis of the Grazing Flow Impedance Tube

    NASA Technical Reports Server (NTRS)

    Brown, Martha C.; Jones, Michael G.; Watson, Willie R.

    2012-01-01

    This paper outlines a methodology to identify the measurement uncertainty of NASA Langley s Grazing Flow Impedance Tube (GFIT) over its operating range, and to identify the parameters that most significantly contribute to the acoustic impedance prediction. Two acoustic liners are used for this study. The first is a single-layer, perforate-over-honeycomb liner that is nonlinear with respect to sound pressure level. The second consists of a wire-mesh facesheet and a honeycomb core, and is linear with respect to sound pressure level. These liners allow for evaluation of the effects of measurement uncertainty on impedances educed with linear and nonlinear liners. In general, the measurement uncertainty is observed to be larger for the nonlinear liners, with the largest uncertainty occurring near anti-resonance. A sensitivity analysis of the aerodynamic parameters (Mach number, static temperature, and static pressure) used in the impedance eduction process is also conducted using a Monte-Carlo approach. This sensitivity analysis demonstrates that the impedance eduction process is virtually insensitive to each of these parameters.

  17. Photo-Patterned Ion Gel Electrolyte-Gated Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Choi, Jae-Hong; Gu, Yuanyan; Hong, Kihyun; Frisbie, C. Daniel; Lodge, Timothy P.

    2014-03-01

    We have developed a novel fabrication route to pattern electrolyte thin films in electrolyte-gated transistors (EGTs) using a chemically crosslinkable ABA-triblock copolymer ion gel. In the self-assembly of poly[(styrene-r-vinylbenzylazide)-b-ethylene oxide-b-(styrene-r-vinylbenzylazide)] (SOS-N3) triblock copolymer and the ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMI][TFSI]), the azide groups of poly(styrene-r-vinylbenzylazide) (PS-N3) end-blocks in the cores can be chemically cross-linked via UV irradiation (λ = 254 nm). Impedance spectroscopy and small-angle X-ray scattering confirmed that ion transport and microstructure of the ion gel are not affected by UV cross-linking. Using this chemical cross-linking strategy, we demonstrate a photo-patterning of ion gels through a patterned mask and the fabricated electrolyte-gated thin film transistors with photo-patterned ion gels as high-capacitance gate insulators exhibited high device performance (low operation voltages and high on/off current ratios).

  18. 8 CFR 1292.2 - Organizations qualified for recognition; requests for recognition; withdrawal of recognition...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...; requests for recognition; withdrawal of recognition; accreditation of representatives; roster. 1292.2...; requests for recognition; withdrawal of recognition; accreditation of representatives; roster. (a) Qualifications of organizations. A non-profit religious, charitable, social service, or similar organization...

  19. ELECTRIC IMPEDANCE OF NITELLA DURING ACTIVITY

    PubMed Central

    Cole, Kenneth S.; Curtis, Howard J.

    1938-01-01

    The changes in the alternating current impedance which occur during activity of cells of the fresh water plant Nitella have been measured with the current flow normal to the cell axis, at eight frequencies from 0.05 to 20 kilocycles per second, and with simultaneous records of the action potential under the impedance electrodes. At each frequency the resting cell was balanced in a Wheatstone bridge with a cathode ray oscillograph, and after electrical stimulation at one end of the cell, the changes in the complex impedance were determined from the bridge unbalance recorded by motion pictures of the oscillograph figure. An extension of the previous technique of interpretation of the transverse impedance shows that the normal membrane capacity of 0.9 µf./cm.2 decreases about 15 per cent without change of phase angle, while the membrane resistance decreases from 105 ohm cm.2 to about 500 ohm cm.2 during the passage of the excitation wave. This membrane change occurs during the latter part of the rising phase of the action potential, and it is shown that the membrane electromotive force remains unchanged until nearly the same time. The part of the action potential preceding these membrane changes is probably a passive fall of potential ahead of a partial short circuit. PMID:19873091

  20. Combined experimental and theoretical studies on selective sensing of zinc and pyrophosphate ions by rational design of compartmental chemosensor probe: Dual sensing behaviour via secondary recognition approach and cell imaging studies.

    PubMed

    Mawai, Kiran; Nathani, Sandip; Roy, Partha; Singh, U P; Ghosh, Kaushik

    2018-05-08

    A compartmental chemosensor probe HL has been designed and synthesized for the selective recognition of zinc ions over other transition metal ions via fluorescence "ON" strategy. The chemosensing behaviour of HL was demonstrated through fluorescence, absorption and NMR spectroscopic techniques. The molecular structure of the zinc complex derived from HL was determined by X-ray crystallography. A probable mechanism of this selective sensing behavior was described on the basis of spectroscopic results and theoretical studies by density functional theory (DFT). The biological applicability of the chemosensor HL was examined via cell imaging on HeLa cells. The HL-zinc complex served as a secondary fluorescent probe responding to the pyrophosphate anion specifically over other anions. The fluorescence enhancement of HL in association with Zn2+ ions was quenched in the presence of pyrophosphate (PPi). Thus, a dual response was established based on "OFF-ON-OFF" strategy for detection of both cation and anion. This phenomenon was utilized in the construction of a "INHIBIT" logic gate.

  1. Time-domain representation of frequency-dependent foundation impedance functions

    USGS Publications Warehouse

    Safak, E.

    2006-01-01

    Foundation impedance functions provide a simple means to account for soil-structure interaction (SSI) when studying seismic response of structures. Impedance functions represent the dynamic stiffness of the soil media surrounding the foundation. The fact that impedance functions are frequency dependent makes it difficult to incorporate SSI in standard time-history analysis software. This paper introduces a simple method to convert frequency-dependent impedance functions into time-domain filters. The method is based on the least-squares approximation of impedance functions by ratios of two complex polynomials. Such ratios are equivalent, in the time-domain, to discrete-time recursive filters, which are simple finite-difference equations giving the relationship between foundation forces and displacements. These filters can easily be incorporated into standard time-history analysis programs. Three examples are presented to show the applications of the method.

  2. Mechanical Impedance of the Human Body in the Horizontal Direction

    NASA Astrophysics Data System (ADS)

    Holmlund, P.; Lundström, R.

    1998-08-01

    The mechanical impedance of the seated human body in horizontal directions (fore-and-aft and lateral) was measured during different experimental conditions, such as vibration level (0·25-1·4 m/s2r.m.s.), frequency (1·13-80 Hz), body weight (54-93 kg), upper body posture (relaxed and erect) and gender. The outcome showed that impedance, normalized by the sitting weight, varies with direction, level, posture and gender. Generally the impedance spectra show one peak for the fore-and-aft (X) direction while two peaks are found in the lateral (Y) direction. Males showed a lower normalized impedance than females. Increasing fore-and-aft vibration decreases the frequency at which maximum impedance occurs but also reduces the overall magnitude. For the lateral direction a more complex pattern was found. The frequency of impedance peaks are constant with increasing vibration level. The magnitude of the second peak decreases when changing posture from erect to relaxed. Males showed a higher impedance magnitude than females and a greater dip between the two peaks. The impedance spectra for the two horizontal directions have different shapes. This supports the idea of treating them differently; such as with respect to risk assessments and development of preventative measures.

  3. Analyses of radiation impedances of finite cylindrical ducts

    NASA Astrophysics Data System (ADS)

    Shao, W.; Mechefske, C. K.

    2005-08-01

    To aid in understanding the characteristics of acoustic radiation from finite cylindrical ducts with infinite flanges, mathematical expressions of generalized radiation impedances at the open ends have been developed. Newton's method is used to find the complex wavenumbers of radial modes for the absorption boundary condition. The self-radiation impedances and mutual impedances for some acoustic modes are calculated for the ducts with rigid and absorption walls. The results show that the acoustical conditions of the duct walls have a significant influence on the radiation impedance. The acoustical interaction between the two open ends of the ducts cannot be neglected, especially for plane waves. To increase the wall admittance will reduce this interference effect. This study creates the possibility for simulating the sound field inside finite ducts in future work.

  4. Pyrite (FeS2) nanocrystals as inexpensive high-performance lithium-ion cathode and sodium-ion anode materials

    NASA Astrophysics Data System (ADS)

    Walter, Marc; Zünd, Tanja; Kovalenko, Maksym V.

    2015-05-01

    In light of the impeding depletion of fossil fuels and necessity to lower carbon dioxide emissions, economically viable high-performance batteries are urgently needed for numerous applications ranging from electric cars to stationary large-scale electricity storage. Due to its low raw material cost, non-toxicity and potentially high charge-storage capacity pyrite (FeS2) is a highly promising material for such next-generation batteries. In this work we present the electrochemical performance of FeS2 nanocrystals (NCs) as lithium-ion and sodium-ion storage materials. First, we show that nanoscopic FeS2 is a promising lithium-ion cathode material, delivering a capacity of 715 mA h g-1 and average energy density of 1237 Wh kg-1 for 100 cycles, twice higher than for commonly used LiCoO2 cathodes. Then we demonstrate, for the first time, that FeS2 NCs can serve as highly reversible sodium-ion anode material with long cycling life. As sodium-ion anode material, FeS2 NCs provide capacities above 500 mA h g-1 for 400 cycles at a current rate of 1000 mA g-1. In all our tests and control experiments, the performance of chemically synthesized nanoscale FeS2 clearly surpasses bulk FeS2 as well as large number of other nanostructured metal sulfides.In light of the impeding depletion of fossil fuels and necessity to lower carbon dioxide emissions, economically viable high-performance batteries are urgently needed for numerous applications ranging from electric cars to stationary large-scale electricity storage. Due to its low raw material cost, non-toxicity and potentially high charge-storage capacity pyrite (FeS2) is a highly promising material for such next-generation batteries. In this work we present the electrochemical performance of FeS2 nanocrystals (NCs) as lithium-ion and sodium-ion storage materials. First, we show that nanoscopic FeS2 is a promising lithium-ion cathode material, delivering a capacity of 715 mA h g-1 and average energy density of 1237 Wh kg-1 for 100

  5. Unexpected surface implanted layer in static random access memory devices observed by microwave impedance microscope

    NASA Astrophysics Data System (ADS)

    Kundhikanjana, W.; Yang, Y.; Tanga, Q.; Zhang, K.; Lai, K.; Ma, Y.; Kelly, M. A.; Li, X. X.; Shen, Z.-X.

    2013-02-01

    Real-space mapping of doping concentration in semiconductor devices is of great importance for the microelectronics industry. In this work, a scanning microwave impedance microscope (MIM) is employed to resolve the local conductivity distribution of a static random access memory sample. The MIM electronics can also be adjusted to the scanning capacitance microscopy (SCM) mode, allowing both measurements on the same region. Interestingly, while the conventional SCM images match the nominal device structure, the MIM results display certain unexpected features, which originate from a thin layer of the dopant ions penetrating through the protective layers during the heavy implantation steps.

  6. Characteristics of a large vacuum wave precursor on the SABRE voltage adder MITL and extraction ion diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuneo, M.E.; Hanson, D.L.; Menge, P.R.

    SABRE (Sandia Accelerator and Beam Research Experiment) is a ten-cavity linear induction magnetically insulated voltage adder (6 MV, 300 kA) operated in positive polarity to investigate issues relevant to ion beam production and propagation for inertial confinement fusion. The voltage adder section is coupled to an applied-B extraction ion diode via a long coaxial output transmission line. Observations indicate that the power propagates in a vacuum wave prior to electron emission. After the electron emission threshold is reached, power propagates in a magnetically insulated wave. The precursor is observed to have a dominant impact on he turn-on, impedance history, andmore » beam characteristics of applied-B ion diodes since the precursor voltage is large enough to cause electron emission at the diode from both the cathode feed and cathode tips. The amplitude of the precursor at the load (3--4.5 MV) is a significant fraction of the maximum load voltage (5--6 MV) because (1) the transmission line gaps ( {approx} 9 cm at output) and therefore impedances are relatively large, and hence the electric field threshold for electron emission (200 to 300 kV/cm) is not reached until well into the power pulse rise time; and (2) the rapidly falling forward wave and diode impedance reduces the ratio of main pulse voltage to precursor voltage. Experimental voltage and current data from the transmission line and the ion diode will be presented and compared with TWOQUICK (2-D electromagnetic PIC code) simulations and analytic models.« less

  7. Physics-based parametrization of the surface impedance for radio frequency sheaths

    DOE PAGES

    Myra, J. R.

    2017-07-07

    The properties of sheaths near conducting surfaces are studied for the case where both magnetized plasma and intense radio frequency (rf) waves coexist. The work is motivated primarily by the need to understand, predict and control ion cyclotron range of frequency (ICRF) interactions with tokamak scrape-off layer plasmas, and is expected to be useful in modeling rf sheath interactions in global ICRF codes. Here, employing a previously developed model for oblique angle magnetized rf sheaths [J. R. Myra and D. A. D’Ippolito, Phys. Plasmas 22, 062507 (2015)], an investigation of the four-dimensional parameter space governing these sheath is carried out.more » By combining numerical and analytical results, a parametrization of the surface impedance and voltage rectification for rf sheaths in the entire four-dimensional space is obtained.« less

  8. Physics-based parametrization of the surface impedance for radio frequency sheaths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myra, J. R.

    The properties of sheaths near conducting surfaces are studied for the case where both magnetized plasma and intense radio frequency (rf) waves coexist. The work is motivated primarily by the need to understand, predict and control ion cyclotron range of frequency (ICRF) interactions with tokamak scrape-off layer plasmas, and is expected to be useful in modeling rf sheath interactions in global ICRF codes. Here, employing a previously developed model for oblique angle magnetized rf sheaths [J. R. Myra and D. A. D’Ippolito, Phys. Plasmas 22, 062507 (2015)], an investigation of the four-dimensional parameter space governing these sheath is carried out.more » By combining numerical and analytical results, a parametrization of the surface impedance and voltage rectification for rf sheaths in the entire four-dimensional space is obtained.« less

  9. Self-Assembled Core-Satellite Gold Nanoparticle Networks for Ultrasensitive Detection of Chiral Molecules by Recognition Tunneling Current.

    PubMed

    Zhang, Yuanchao; Liu, Jingquan; Li, Da; Dai, Xing; Yan, Fuhua; Conlan, Xavier A; Zhou, Ruhong; Barrow, Colin J; He, Jin; Wang, Xin; Yang, Wenrong

    2016-05-24

    Chirality sensing is a very challenging task. Here, we report a method for ultrasensitive detection of chiral molecule l/d-carnitine based on changes in the recognition tunneling current across self-assembled core-satellite gold nanoparticle (GNP) networks. The recognition tunneling technique has been demonstrated to work at the single molecule level where the binding between the reader molecules and the analytes in a nanojunction. This process was observed to generate a unique and sensitive change in tunneling current, which can be used to identify the analytes of interest. The molecular recognition mechanism between amino acid l-cysteine and l/d-carnitine has been studied with the aid of SERS. The different binding strength between homo- or heterochiral pairs can be effectively probed by the copper ion replacement fracture. The device resistance was measured before and after the sequential exposures to l/d-carnitine and copper ions. The normalized resistance change was found to be extremely sensitive to the chirality of carnitine molecule. The results suggested that a GNP networks device optimized for recognition tunneling was successfully built and that such a device can be used for ultrasensitive detection of chiral molecules.

  10. Computational Design of Metal Ion Sequestering Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, Benjamin P.; Rapko, Brian M.

    Organic ligands that exhibit a high degree of metal ion recognition are essential precursors for developing separation processes and sensors for metal ions. Since the beginning of the nuclear era, much research has focused on discovering ligands that target specific radionuclides. Members of the Group 1A and 2A cations (e.g., Cs, Sr, Ra) and the f-block metals (actinides and lanthanides) are of primary concern to DOE. Although there has been some success in identifying ligand architectures that exhibit a degree of metal ion recognition, the ability to control binding affinity and selectivity remains a significant challenge. The traditional approach formore » discovering such ligands has involved lengthy programs of organic synthesis and testing that, in the absence of reliable methods for screening compounds before synthesis, have resulted in much wasted research effort. This project seeks to enhance and strengthen the traditional approach through computer-aided design of new and improved host molecules. Accurate electronic structure calculations are coupled with experimental data to provide fundamental information about ligand structure and the nature of metal-donor group interactions (design criteria). This fundamental information then is used in a molecular mechanics model (MM) that helps us rapidly screen proposed ligand architectures and select the best members from a set of potential candidates. By using combinatorial methods, molecule building software has been developed that generates large numbers of candidate architectures for a given set of donor groups. The specific goals of this project are: • further understand the structural and energetic aspects of individual donor group- metal ion interactions and incorporate this information within the MM framework • further develop and evaluate approaches for correlating ligand structure with reactivity toward metal ions, in other words, screening capability • use molecule structure building software to

  11. Method to tune electrical impedance of LSMO/PMN-PT by nanocontact

    NASA Astrophysics Data System (ADS)

    Zhou, Hao; Pei, Yongmao; Wang, Yaobing; Lei, Hongshuai

    2018-01-01

    Electromagnetic composites have wide application in the functional devices. For the best performance of devices, the regulation of the electrical impedance has been being desired for the impedance matching in service. However, the keeping of impedance matching in service is quite challenging. In the present work, a mechanical method for tuning the electrical impedance of La0.7Sr0.3MnO3/0.72Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 (LSMO/PMN-PT) based on the nanocontact technique is proposed. It is found that the electrical impedance reduces with the increase of the nanocontact load. A linear relationship is found between the square of impedance magnitude and the inverse of nanocontact depth. Furthermore, a method for predicting the contact-depth-dependent impedance magnitude of LSMO/PMN-PT is proposed.

  12. RHIC ABORT KICKER WITH REDUCED COUPLING IMPEDANCE.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HAHN,H.; DAVINO,D.

    2002-06-02

    Kicker magnets typically represent the most important contributors to the transverse impedance budget of accelerators and storage rings. Methods of reducing the impedance value of the SNS extraction kicker presently under construction and, in view of a future performance upgrade, that of the RHIC abort kicker have been thoroughly studied at this laboratory. In this paper, the investigation of a potential improvement from using ferrite different from the BNL standard CMD5005 is reported. Permeability measurements of several ferrite types have been performed. Measurements on two kicker magnets using CMD5005 and C2050 suggest that the impedance of a magnet without externalmore » resistive damping, such as the RHIC abort kicker, would benefit.« less

  13. Impedance computations and beam-based measurements: A problem of discrepancy

    DOE PAGES

    Smaluk, Victor

    2018-04-21

    High intensity of particle beams is crucial for high-performance operation of modern electron-positron storage rings, both colliders and light sources. The beam intensity is limited by the interaction of the beam with self-induced electromagnetic fields (wake fields) proportional to the vacuum chamber impedance. For a new accelerator project, the total broadband impedance is computed by element-wise wake-field simulations using computer codes. For a machine in operation, the impedance can be measured experimentally using beam-based techniques. In this article, a comparative analysis of impedance computations and beam-based measurements is presented for 15 electron-positron storage rings. The measured data and the predictionsmore » based on the computed impedance budgets show a significant discrepancy. For this article, three possible reasons for the discrepancy are discussed: interference of the wake fields excited by a beam in adjacent components of the vacuum chamber, effect of computation mesh size, and effect of insufficient bandwidth of the computed impedance.« less

  14. Impedance computations and beam-based measurements: A problem of discrepancy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smaluk, Victor

    High intensity of particle beams is crucial for high-performance operation of modern electron-positron storage rings, both colliders and light sources. The beam intensity is limited by the interaction of the beam with self-induced electromagnetic fields (wake fields) proportional to the vacuum chamber impedance. For a new accelerator project, the total broadband impedance is computed by element-wise wake-field simulations using computer codes. For a machine in operation, the impedance can be measured experimentally using beam-based techniques. In this article, a comparative analysis of impedance computations and beam-based measurements is presented for 15 electron-positron storage rings. The measured data and the predictionsmore » based on the computed impedance budgets show a significant discrepancy. For this article, three possible reasons for the discrepancy are discussed: interference of the wake fields excited by a beam in adjacent components of the vacuum chamber, effect of computation mesh size, and effect of insufficient bandwidth of the computed impedance.« less

  15. Dependence of Impedance of Embedded Single Cells on Cellular Behaviour.

    PubMed

    Cho, Sungbo; Castellarnau, Marc; Samitier, Josep; Thielecke, Hagen

    2008-02-21

    Non-invasive single cell analyses are increasingly required for the medicaldiagnostics of test substances or the development of drugs and therapies on the single celllevel. For the non-invasive characterisation of cells, impedance spectroscopy whichprovides the frequency dependent electrical properties has been used. Recently,microfludic systems have been investigated to manipulate the single cells and tocharacterise the electrical properties of embedded cells. In this article, the impedance ofpartially embedded single cells dependent on the cellular behaviour was investigated byusing the microcapillary. An analytical equation was derived to relate the impedance ofembedded cells with respect to the morphological and physiological change ofextracellular interface. The capillary system with impedance measurement showed afeasibility to monitor the impedance change of embedded single cells caused bymorphological and physiological change of cell during the addition of DMSO. By fittingthe derived equation to the measured impedance of cell embedded at different negativepressure levels, it was able to extrapolate the equivalent gap and gap conductivity betweenthe cell and capillary wall representing the cellular behaviour.

  16. Impedance computations and beam-based measurements: A problem of discrepancy

    NASA Astrophysics Data System (ADS)

    Smaluk, Victor

    2018-04-01

    High intensity of particle beams is crucial for high-performance operation of modern electron-positron storage rings, both colliders and light sources. The beam intensity is limited by the interaction of the beam with self-induced electromagnetic fields (wake fields) proportional to the vacuum chamber impedance. For a new accelerator project, the total broadband impedance is computed by element-wise wake-field simulations using computer codes. For a machine in operation, the impedance can be measured experimentally using beam-based techniques. In this article, a comparative analysis of impedance computations and beam-based measurements is presented for 15 electron-positron storage rings. The measured data and the predictions based on the computed impedance budgets show a significant discrepancy. Three possible reasons for the discrepancy are discussed: interference of the wake fields excited by a beam in adjacent components of the vacuum chamber, effect of computation mesh size, and effect of insufficient bandwidth of the computed impedance.

  17. Ion transport in the microporous titanosilicate ETS-10.

    PubMed

    Wei, Ta-Chen; Hillhouse, Hugh W

    2006-07-20

    Impedance spectroscopy was used to investigate ion transport in the microporous crystalline framework titanosilicate ETS-10 in the frequency range from 1 Hz to 10 MHz. These data were compared to measured data from the microporous aluminosilicate zeolite X. Na-ETS-10 was found to have a lower activation energy for ion conduction than that of NaX, 58.5 kJ/mol compared to 66.8 kJ/mol. However, the dc conductivity and ion hopping rate for Na-ETS-10 were also lower than NaX. This was found to be due to the smaller entropy contribution in Na-ETS-10 because of its high cation site occupancy. This was verified by ion exchanging Na(+) with Cu(2+) in both microporous frameworks. This exchange decreases the cation site occupancy and reduces correlation effects. The exchanged Cu-ETS-10 was found to have both lower activation energy and higher ionic conductivity than CuX. Zeolite X has the highest ion conductivity among the zeolites, and thus the data shown here indicate that ETS-10 has more facile transport of higher valence cations which may be important for ion-exchange, environmental remediation of radionucleotides, and nanofabrication.

  18. The formation and dissipation of electrostatic shock waves: the role of ion–ion acoustic instabilities

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-shuai; Cai, Hong-bo; Zhu, Shao-ping

    2018-05-01

    The role of ion–ion acoustic instabilities in the formation and dissipation of collisionless electrostatic shock waves driven by counter-streaming supersonic plasma flows has been investigated via two-dimensional particle-in-cell simulations. The nonlinear evolution of unstable waves and ion velocity distributions has been analyzed in detail. It is found that for electrostatic shocks driven by moderate-velocity flows, longitudinal and oblique ion–ion acoustic instabilities can be excited in the downstream and upstream regions, which lead to thermalization of the transmitted and reflected ions, respectively. For high-velocity flows, oblique ion–ion acoustic instabilities can develop in the overlap layer during the shock formation process and impede the shock formation.

  19. Method of estimating pulse response using an impedance spectrum

    DOEpatents

    Morrison, John L; Morrison, William H; Christophersen, Jon P; Motloch, Chester G

    2014-10-21

    Electrochemical Impedance Spectrum data are used to predict pulse performance of an energy storage device. The impedance spectrum may be obtained in-situ. A simulation waveform includes a pulse wave with a period greater than or equal to the lowest frequency used in the impedance measurement. Fourier series coefficients of the pulse train can be obtained. The number of harmonic constituents in the Fourier series are selected so as to appropriately resolve the response, but the maximum frequency should be less than or equal to the highest frequency used in the impedance measurement. Using a current pulse as an example, the Fourier coefficients of the pulse are multiplied by the impedance spectrum at corresponding frequencies to obtain Fourier coefficients of the voltage response to the desired pulse. The Fourier coefficients of the response are then summed and reassembled to obtain the overall time domain estimate of the voltage using the Fourier series analysis.

  20. Wave impedance selection for passivity-based bilateral teleoperation

    NASA Astrophysics Data System (ADS)

    D'Amore, Nicholas John

    When a task must be executed in a remote or dangerous environment, teleoperation systems may be employed to extend the influence of the human operator. In the case of manipulation tasks, haptic feedback of the forces experienced by the remote (slave) system is often highly useful in improving an operator's ability to perform effectively. In many of these cases (especially teleoperation over the internet and ground-to-space teleoperation), substantial communication latency exists in the control loop and has the strong tendency to cause instability of the system. The first viable solution to this problem in the literature was based on a scattering/wave transformation from transmission line theory. This wave transformation requires the designer to select a wave impedance parameter appropriate to the teleoperation system. It is widely recognized that a small value of wave impedance is well suited to free motion and a large value is preferable for contact tasks. Beyond this basic observation, however, very little guidance exists in the literature regarding the selection of an appropriate value. Moreover, prior research on impedance selection generally fails to account for the fact that in any realistic contact task there will simultaneously exist contact considerations (perpendicular to the surface of contact) and quasi-free-motion considerations (parallel to the surface of contact). The primary contribution of the present work is to introduce an approximate linearized optimum for the choice of wave impedance and to apply this quasi-optimal choice to the Cartesian reality of such a contact task, in which it cannot be expected that a given joint will be either perfectly normal to or perfectly parallel to the motion constraint. The proposed scheme selects a wave impedance matrix that is appropriate to the conditions encountered by the manipulator. This choice may be implemented as a static wave impedance value or as a time-varying choice updated according to the

  1. Digital synthetic impedance for application in vibration damping.

    PubMed

    Nečásek, J; Václavík, J; Marton, P

    2016-02-01

    In this work we present construction details of a precision, standalone, and compact digital synthetic impedance for application in the field of vibration damping. The presented device is based on an embedded ARM microcontroller with external AD and DA converters and a special analog front-end. The performance of the device is tested by comparing the actually synthesized impedance with several prescribed impedances and shows very good match. Fine-tuning ability of the device, which is crucial for the considered application, is also demonstrated and reaches as small step as 0.1% for the most complicated impedance structure and drops below the level of direct measurability with less complex structures. The real application in vibration damping is demonstrated on a simple and well understood case of a one-dimensional vibrating spring-mass system with piezoelectric actuator embedded as the interface between source of vibrations and vibrating mass.

  2. Smart mug to measure hand's geometrical mechanical impedance.

    PubMed

    Hondori, Hossein Mousavi; Tech, Ang Wei

    2011-01-01

    A novel device, which looks like a mug, has been proposed for measuring the impedance of human hand. The device is designed to have convenient size and light weight similar to an ordinary coffee mug. It contains a 2-axis inertia sensor to monitor vibration and a small motor to carry an eccentric mass (m=100 gr, r=2 cm, rpm=600). The centrifugal force due to the rotating mass applies a dynamic force to the hand that holds the mug. Correlation of the acceleration signals with the perturbing force gives the geometrical mechanical impedance. Experimental results on a healthy subject shows that impedance is posture dependant while it changes with the direction of the applied perturbing force. For nine postures the geometrical impedance is obtained all of which have elliptical shapes. The method can be used for assessment of spasticity and monitoring stability in patients with stroke or similar problems.

  3. Digital synthetic impedance for application in vibration damping

    NASA Astrophysics Data System (ADS)

    Nečásek, J.; Václavík, J.; Marton, P.

    2016-02-01

    In this work we present construction details of a precision, standalone, and compact digital synthetic impedance for application in the field of vibration damping. The presented device is based on an embedded ARM microcontroller with external AD and DA converters and a special analog front-end. The performance of the device is tested by comparing the actually synthesized impedance with several prescribed impedances and shows very good match. Fine-tuning ability of the device, which is crucial for the considered application, is also demonstrated and reaches as small step as 0.1% for the most complicated impedance structure and drops below the level of direct measurability with less complex structures. The real application in vibration damping is demonstrated on a simple and well understood case of a one-dimensional vibrating spring-mass system with piezoelectric actuator embedded as the interface between source of vibrations and vibrating mass.

  4. Cleaning techniques for intense ion beam sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menge, P.R.; Cuneo, M.E.; Bailey, J.E.

    Generation of high power lithium ion beams on the SABRE (1TW) and PBFA-X (20 TW) accelerators have been limited by the parallel acceleration of contaminant ions. during the beam pulse lithium is replaced by protons and carbon ions. This replacement is accompanied by rapid impedance decay of the diode. The contaminant hydrogen and carbon is believed to originate from impurity molecules on the surface and in the bulk of the lithium ion source and its substrate material. Cleaning techniques designed to remove hydrocarbons from the ion source have been employed with some success in test stand experiments and on SABRE.more » The test stand experiments have shown that a lithium fluoride (LiF) ion source film can accrue dozens of hydrocarbon monolayers on its surface while sitting in vacuum. Application of 13.5 MHz RF discharge cleaning with 90% Ar/10% O{sub 2} can significantly reduce the surface hydrocarbon layers on the LiF film. On SABRE, combinations of RF discharge cleaning, anode heating, layering gold between the source film (LiF) and its substrate, and cryogenic cathode cooling produced an increase by a factor of 1.5--2 in the quantity of high energy lithium in the ion beam. A corresponding decrease in protons and carbon ions was also observed. Cleaning experiments on PBFA-X are underway. New designs of contamination resistant films and Li ion sources are currently being investigated.« less

  5. MnO2 prepared by hydrothermal method and electrochemical performance as anode for lithium-ion battery

    PubMed Central

    2014-01-01

    Two α-MnO2 crystals with caddice-clew-like and urchin-like morphologies are prepared by the hydrothermal method, and their structure and electrochemical performance are characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), galvanostatic cell cycling, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS). The morphology of the MnO2 prepared under acidic condition is urchin-like, while the one prepared under neutral condition is caddice-clew-like. The identical crystalline phase of MnO2 crystals is essential to evaluate the relationship between electrochemical performances and morphologies for lithium-ion battery application. In this study, urchin-like α-MnO2 crystals with compact structure have better electrochemical performance due to the higher specific capacity and lower impedance. We find that the relationship between electrochemical performance and morphology is different when MnO2 material used as electrochemical supercapacitor or as anode of lithium-ion battery. For lithium-ion battery application, urchin-like MnO2 material has better electrochemical performance. PMID:24982603

  6. Robust Magnetotelluric Impedance Estimation

    NASA Astrophysics Data System (ADS)

    Sutarno, D.

    2010-12-01

    Robust magnetotelluric (MT) response function estimators are now in standard use by the induction community. Properly devised and applied, these have ability to reduce the influence of unusual data (outliers). The estimators always yield impedance estimates which are better than the conventional least square (LS) estimation because the `real' MT data almost never satisfy the statistical assumptions of Gaussian distribution and stationary upon which normal spectral analysis is based. This paper discuses the development and application of robust estimation procedures which can be classified as M-estimators to MT data. Starting with the description of the estimators, special attention is addressed to the recent development of a bounded-influence robust estimation, including utilization of the Hilbert Transform (HT) operation on causal MT impedance functions. The resulting robust performances are illustrated using synthetic as well as real MT data.

  7. Structural Studies of Fucosylated N-Glycans by Ion Mobility Mass Spectrometry and Collision-Induced Fragmentation of Negative Ions

    NASA Astrophysics Data System (ADS)

    Harvey, David J.; Struwe, Weston B.

    2018-05-01

    There is considerable potential for the use of ion mobility mass spectrometry in structural glycobiology due in large part to the gas-phase separation attributes not typically observed by orthogonal methods. Here, we evaluate the capability of traveling wave ion mobility combined with negative ion collision-induced dissociation to provide structural information on N-linked glycans containing multiple fucose residues forming the Lewisx and Lewisy epitopes. These epitopes are involved in processes such as cell-cell recognition and are important as cancer biomarkers. Specific information that could be obtained from the intact N-glycans by negative ion CID included the general topology of the glycan such as the presence or absence of a bisecting GlcNAc residue and the branching pattern of the triantennary glycans. Information on the location of the fucose residues was also readily obtainable from ions specific to each antenna. Some isobaric fragment ions produced prior to ion mobility could subsequently be separated and, in some cases, provided additional valuable structural information that was missing from the CID spectra alone.

  8. Impedance Matched to Vacuum, Invisible Edge, Diffraction Suppressed Mirror

    NASA Technical Reports Server (NTRS)

    Hagopian, John G. (Inventor); Roman, Patrick A. (Inventor); Shiri, Sharham (Inventor); Wollack, Edward J. (Inventor)

    2015-01-01

    Diffraction suppressed mirrors having an invisible edge are disclosed for incident light at both targeted wavelengths and broadband incident light. The mirrors have a first having at least one discontiguous portion having a plurality of nanostructured apertures. The discontiguous mirror portion impedance matches a relatively high impedance portion of the mirror to a relatively low impedance portion of the mirror, thereby reducing the diffraction edge effect otherwise present in a conventional mirror.

  9. Impedance Discontinuity Reduction Between High-Speed Differential Connectors and PCB Interfaces

    NASA Technical Reports Server (NTRS)

    Navidi, Sal; Agdinaoay, Rodell; Walter, Keith

    2013-01-01

    High-speed serial communication (i.e., Gigabit Ethernet) requires differential transmission and controlled impedances. Impedance control is essential throughout cabling, connector, and circuit board construction. An impedance discontinuity arises at the interface of a high-speed quadrax and twinax connectors and the attached printed circuit board (PCB). This discontinuity usually is lower impedance since the relative dielectric constant of the board is higher (i.e., polyimide approx. = 4) than the connector (Teflon approx. = 2.25). The discontinuity can be observed in transmit or receive eye diagrams, and can reduce the effective link margin of serial data networks. High-speed serial data network transmission improvements can be made at the connector-to-board interfaces as well as improving differential via hole impedances. The impedance discontinuity was improved by 10 percent by drilling a 20-mil (approx. = 0.5-mm) hole in between the pin of a differential connector spaced 55 mils (approx. = 1.4 mm) apart as it is attached to the PCB. The effective dielectric constant of the board can be lowered by drilling holes into the board material between the differential lines in a quadrax or twinax connector attachment points. The differential impedance is inversely proportional to the square root of the relative dielectric constant. This increases the differential impedance and thus reduces the above described impedance discontinuity. The differential via hole impedance can also be increased in the same manner. This technique can be extended to multiple smaller drilled holes as well as tapered holes (i.e., big in the middle followed by smaller ones diagonally).

  10. Oblique impacts into low impedance layers

    NASA Astrophysics Data System (ADS)

    Stickle, A. M.; Schultz, P. H.

    2009-12-01

    Planetary impacts occur indiscriminately, in all locations and materials. Varied geologic settings can have significant effects on the impact process, including the coupling between the projectile and target, the final damage patterns and modes of deformation that occur. For example, marine impact craters are not identical to impacts directly into bedrock or into sedimentary materials, though many of the same fundamental processes occur. It is therefore important, especially when considering terrestrial impacts, to understand how a low impedance sedimentary layer over bedrock affects the deformation process during and after a hypervelocity impact. As a first step, detailed comparisons between impacts and hydrocode models were performed. Experiments performed at the NASA Ames Vertical Gun Range of oblique impacts into polymethylmethacrylate (PMMA) targets with low impedance layers were performed and compared to experiments of targets without low impedance layers, as well as to hydrocode models under identical conditions. Impact velocities ranged from 5 km/s to 5.6 km/s, with trajectories from 30 degrees to 90 degrees above the horizontal. High-speed imaging provided documentation of the sequence and location of failure due to impact, which was compared to theoretical models. Plasticine and ice were used to construct the low impedance layers. The combination of experiments and models reveals the modes of failure due to a hypervelocity impact. How such failure is manifested at large scales can present a challenge for hydrocodes. CTH models tend to overestimate the amount of damage occurring within the targets and have difficulties perfectly reproducing morphologies; nevertheless, they provide significant and useful information about the failure modes and style within the material. CTH models corresponding to the experiments allow interpretation of the underlying processes involved as well as provide a benchmark for the experimental analysis. The transparency of PMMA

  11. Measurement and simulation of the RHIC abort kicker longitudinal impedence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abreu,N.P.; Hahn,H.; Choi, E.

    2009-09-01

    In face of the new upgrades for RHIC the longitudinal impedance of the machine plays an important role in setting the threshold for instabilities and the efficacy of some systems. In this paper we describe the measurement of the longitudinal impedance of the abort kicker for RHIC as well as computer simulations of the structure. The impedance measurement was done by the S{sub 21} wire method covering the frequency range from 9 kHz to 2.5 GHz. We observed a sharp resonance peak around 10 MHz and a broader peak around 20 MHz in both, the real and imaginary part, ofmore » the Z/n. These two peaks account for a maximum imaginary longitudinal impedance of j15 {Omega}, a value an order of magnitude larger than the estimated value of j0.2 {Omega}, which indicates that the kicker is one of the main sources of longitudinal impedance in the machine. A computer model was constructed for simulations in the CST MWS program. Results for the magnet input and the also the beam impedance are compared to the measurements. A more detail study of the system properties and possible changes to reduce the coupling impedance are presented.« less

  12. Interaction of anions with lipid cubic phase membranes, an electrochemical impedance study.

    PubMed

    Meynaq, Mohammad Yaser Khani; Lindholm-Sethson, Britta; Tesfalidet, Solomon

    2018-05-29

    Electrochemical impedance spectroscopy is useful to monitor anionic interactions with a Lipid Cubic Phase, as previously demonstrated for cationic interaction (Khani Meynaq et al., 2016). It was expected that the smaller hydrophilic anions, acetate and chloride, would interact differently than the large tryptophan anion with its hydrophobic tail. The impedance measurements enabled estimation of resistances and capacitances of a freestanding lipid cubic phase membrane at exposure to 4 and 40 mM solutions of NaCl, NaOAc and NaTrp. Small-angle X-ray scattering was used for cubic phase identification and to track structural changes within the cubic phase when exposed to the different electrolytes. The membrane resistance increases at exposure to the electrolytes in the order Cl -  < OAc -  < Trp - . The membrane resistance decreases with time at exposure to the hydrophilic anions and increases with time at Trp - exposure. The membrane capacitances were lower for NaTrp compared to NaCl and NaOAc at the corresponding concentrations which is consistent with the results from SAXRD. It is concluded that Trp - ions do not enter the aqueous channels of the cubic phase but are strongly adsorbed to the membrane/electrolyte interface leading to large alteration of the lipid phase structure and a high membrane resistance. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Hole-Impeded-Doping-Superlattice LWIR Detectors

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph

    1991-01-01

    Hole-Impeded-Doping-Superlattice (HIDS) InAs devices proposed for use as photoconductive or photovoltaic detectors of radiation in long-wavelength infrared (LWIR) range of 8 to 17 micrometers. Array of HIDS devices fabricated on substrates GaAs or Si. Radiation incident on black surface, metal contacts for picture elements serve as reactors, effectively doubling optical path and thereby increasing absorption of photons. Photoconductive detector offers advantages of high gain and high impedance; photovoltaic detector offers lower noise and better interface to multiplexer readouts.

  14. Exploring a recognition-induced recognition decrement

    PubMed Central

    Dopkins, Stephen; Ngo, Catherine Trinh; Sargent, Jesse

    2007-01-01

    Four experiments explored a recognition decrement that is associated with the recognition of a word from a short list. The stimulus material for demonstrating the phenomenon was a list of words of different syntactic types. A word from the list was recognized less well following a decision that a word of the same type had occurred in the list than following a decision that such a word had not occurred in the list. A recognition decrement did not occur for a word of a given type following a positive recognition decision to a word of a different type. A recognition decrement did not occur when the list consisted exclusively of nouns. It was concluded that the phenomenon may reflect a criterion shift but probably does not reflect a list strength effect, suppression, or familiarity attribution consequent to a perceived discrepancy between actual and expected fluency. PMID:17063915

  15. Storage Characteristics of Lithium Ion Cells

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.; Smart, M. C.; Blosiu, J. O.; Surampudi, S.

    2000-01-01

    Lithium ion cells are being developed under the NASA/Air Force Consortium for the upcoming aerospace missions. First among these missions are the Mars 2001 Lander and Mars 2003 Lander and Rover missions. Apart from the usual needs of high specific energy, energy density and long cycle life, a critical performance characteristic for the Mars missions is low temperature performance. The batteries need to perform well at -20 C, with at least 70% of the rated capacity realizable at moderate discharge rates (C/5). Several modifications have been made to the lithium ion chemistry, mainly with respect to the electrolyte, both at JPL' and elsewhere to achieve this. Another key requirement for the battery is its storageability during pre-cruise and cruise periods. For the Mars programs, the cruise period is relatively short, about 12 months, compared to the Outer Planets missions (3-8 years). Yet, the initial results of our storage studies reveal that the cells do sustain noticeable permanent degradation under certain storage conditions, typically of 10% over two months duration at ambient temperatures, attributed to impedance buildup. The build up of the cell impedance or the decay in the cell capacity is affected by various storage parameters, i.e., storage temperature, storage duration, storage mode (open circuit, on buss or cycling at low rates) and state of charge. Our preliminary studies indicate that low storage temperatures and states of charge are preferable. In some cases, we have observed permanent capacity losses of approx. 10% over eight-week storage at 40 C, compared to approx. 0-2% at O C. Also, we are attempting to determine the impact of cell chemistry and design upon the storageability of Li ion cells.

  16. [Impedance between modiolus and different walls of scala tympani].

    PubMed

    Du, Qiang; Wang, Zhengmin

    2008-10-01

    To compare the impedance between the modiolus and the inner wall of scala tympani with that between the modiolus and the outer wall of scala tympani. The impedances between the modiolus and the inner wall of scala tympani and the impedance between the modiolus and the outer wall of scala tympani were measured, calculated and compared under different stimulating rates 0.1, 1.0, 10.0 kHz. The impedance between the modiolus and the inner wall of scala tympani is less than that between the modiolus and the outer wall of scala tympani (P < 0.05). To effectively stimulate the residual neurons in the spiral ganglion, the electrodes should be kept close to the inner wall of scale tympani.

  17. Interdigitated electrodes as impedance and capacitance biosensors: A review

    NASA Astrophysics Data System (ADS)

    Mazlan, N. S.; Ramli, M. M.; Abdullah, M. M. A. B.; Halin, D. S. C.; Isa, S. S. M.; Talip, L. F. A.; Danial, N. S.; Murad, S. A. Z.

    2017-09-01

    Interdigitated electrodes (IDEs) are made of two individually addressable interdigitated comb-like electrode structures. IDEs are one of the most favored transducers, widely utilized in technological applications especially in the field of biological and chemical sensors due to their inexpensive, ease of fabrication process and high sensitivity. In order to detect and analyze a biochemical molecule or analyte, the impedance and capacitance signal need to be obtained. This paper investigates the working principle and influencer of the impedance and capacitance biosensors. The impedance biosensor depends on the resistance and capacitance while the capacitance biosensor influenced by the dielectric permittivity. However, the geometry and structures of the interdigitated electrodes affect both impedance and capacitance biosensor. The details have been discussed in this paper.

  18. Dependence of Impedance of Embedded Single Cells on Cellular Behaviour

    PubMed Central

    Cho, Sungbo; Castellarnau, Marc; Samitier, Josep; Thielecke, Hagen

    2008-01-01

    Non-invasive single cell analyses are increasingly required for the medical diagnostics of test substances or the development of drugs and therapies on the single cell level. For the non-invasive characterisation of cells, impedance spectroscopy which provides the frequency dependent electrical properties has been used. Recently, microfludic systems have been investigated to manipulate the single cells and to characterise the electrical properties of embedded cells. In this article, the impedance of partially embedded single cells dependent on the cellular behaviour was investigated by using the microcapillary. An analytical equation was derived to relate the impedance of embedded cells with respect to the morphological and physiological change of extracellular interface. The capillary system with impedance measurement showed a feasibility to monitor the impedance change of embedded single cells caused by morphological and physiological change of cell during the addition of DMSO. By fitting the derived equation to the measured impedance of cell embedded at different negative pressure levels, it was able to extrapolate the equivalent gap and gap conductivity between the cell and capillary wall representing the cellular behaviour. PMID:27879760

  19. Optimization and Control of Acoustic Liner Impedance with Bias Flow

    NASA Technical Reports Server (NTRS)

    Wood, Houston; Follet, Jesse

    2000-01-01

    Because communities are impacted by steady increases in aircraft traffic, aircraft noise continues to be a growing problem for the growth of commercial aviation. Research has focused on improving the design of specific high noise source areas of aircraft and on noise control measures to alleviate noise radiated from aircraft to the surrounding environment. Engine duct liners have long been a principal means of attenuating engine noise. The ability to control in-situ the acoustic impedance of a liner would provide a valuable tool to improve the performance of liners. The acoustic impedance of a liner is directly related to the sound absorption qualities of that liner. Increased attenuation rates, the ability to change liner acoustic impedance to match various operating conditions, or the ability to tune a liner to more precisely match design impedance represent some ways that in-situ impedance control could be useful. With this in mind, the research to be investigated will focus on improvements in the ability to control liner impedance using a mean flow through the liner which is referred to as bias flow.

  20. Bioelectrical impedance analysis for bovine milk: Preliminary results

    NASA Astrophysics Data System (ADS)

    Bertemes-Filho, P.; Valicheski, R.; Pereira, R. M.; Paterno, A. S.

    2010-04-01

    This work reports the investigation and analysis of bovine milk quality by using biological impedance measurements using electrical impedance spectroscopy (EIS). The samples were distinguished by a first chemical analysis using Fourier transform midinfrared spectroscopy (FTIR) and flow citometry. A set of milk samples (100ml each) obtained from 17 different cows in lactation with and without mastitis were analyzed with the proposed technique using EIS. The samples were adulterated by adding distilled water and hydrogen peroxide in a controlled manner. FTIR spectroscopy and flow cytometry were performed, and impedance measurements were made in a frequency range from 500Hz up to 1MHz with an implemented EIS system. The system's phase shift was compensated by measuring saline solutions. It was possible to show that the results obtained with the Bioelectrical Impedance Analysis (BIA) technique may detect changes in the milk caused by mastitis and the presence of water and hydrogen peroxide in the bovine milk.

  1. A new hybrid active/passive sound absorber with variable surface impedance

    NASA Astrophysics Data System (ADS)

    Betgen, Benjamin; Galland, Marie-Annick

    2011-07-01

    The context of the present paper is the wall treatment of flow ducts, notably aero-engine nacelle intakes and outlets. For this purpose, hybrid active/passive absorbers have been developed at the LMFA for about 15 years. A hybrid cell combines passive absorbent properties of a porous layer and active control at its rear face. Active control is mainly used to increase absorption at low frequencies by cancelling the imaginary part of the surface impedance presented by the absorber. However, the optimal impedance (i.e. the one that produces the highest noise reduction) of an absorber for flow duct applications is generally complex and frequency dependent. A new hybrid absorber intended to realise any of impedance has therefore been developed. The new cell uses one microphone on each side of a resistive cloth. Normal velocity can then be deduced by a simple pressure difference, which allows an estimation of the surface impedance of the absorber. In order to obtain an error signal related to a target impedance, the target impedance has to be reproduced in time domain. The design of a stable and causal filter is a difficult task, considering the kind of frequency response we seek. An alternative way of representing the impedance in time domain is therefore given. The new error signal is integrated into a feedback control structure. Fast convergence and good stability are observed for a wide range of target impedances. Typical optimal impedances with a positive increasing real part and a negative decreasing imaginary part have been successfully realised. Measurements in a grazing-incidence tube show that the new complex impedance absorber clearly outperforms the former active absorber.

  2. Surface degradation of Li1-xNi0.80Co0.15Al0.05O2 cathodes: Correlating charge transfer impedance with surface phase transformations

    NASA Astrophysics Data System (ADS)

    Sallis, S.; Pereira, N.; Mukherjee, P.; Quackenbush, N. F.; Faenza, N.; Schlueter, C.; Lee, T.-L.; Yang, W. L.; Cosandey, F.; Amatucci, G. G.; Piper, L. F. J.

    2016-06-01

    The pronounced capacity fade in Ni-rich layered oxide lithium ion battery cathodes observed when cycling above 4.1 V (versus Li/Li+) is associated with a rise in impedance, which is thought to be due to either bulk structural fatigue or surface reactions with the electrolyte (or combination of both). Here, we examine the surface reactions at electrochemically stressed Li1-xNi0.8Co0.15Al0.05O2 binder-free powder electrodes with a combination of electrochemical impedance spectroscopy, spatially resolving electron microscopy, and spatially averaging X-ray spectroscopy techniques. We circumvent issues associated with cycling by holding our electrodes at high states of charge (4.1 V, 4.5 V, and 4.75 V) for extended periods and correlate charge-transfer impedance rises observed at high voltages with surface modifications retained in the discharged state (2.7 V). The surface modifications involve significant cation migration (and disorder) along with Ni and Co reduction, and can occur even in the absence of significant Li2CO3 and LiF. These data provide evidence that surface oxygen loss at the highest levels of Li+ extraction is driving the rise in impedance.

  3. Smart Multi-Frequency Bioelectrical Impedance Spectrometer for BIA and BIVA Applications.

    PubMed

    Harder, Rene; Diedrich, Andre; Whitfield, Jonathan S; Buchowski, Macie S; Pietsch, John B; Baudenbacher, Franz J

    2016-08-01

    Bioelectrical impedance analysis (BIA) is a noninvasive and commonly used method for the assessment of body composition including body water. We designed a small, portable and wireless multi-frequency impedance spectrometer based on the 12 bit impedance network analyzer AD5933 and a precision wide-band constant current source for tetrapolar whole body impedance measurements. The impedance spectrometer communicates via Bluetooth with mobile devices (smart phone or tablet computer) that provide user interface for patient management and data visualization. The export of patient measurement results into a clinical research database facilitates the aggregation of bioelectrical impedance analysis and biolectrical impedance vector analysis (BIVA) data across multiple subjects and/or studies. The performance of the spectrometer was evaluated using a passive tissue equivalent circuit model as well as a comparison of body composition changes assessed with bioelectrical impedance and dual-energy X-ray absorptiometry (DXA) in healthy volunteers. Our results show an absolute error of 1% for resistance and 5% for reactance measurements in the frequency range of 3 kHz to 150 kHz. A linear regression of BIA and DXA fat mass estimations showed a strong correlation (r(2)=0.985) between measures with a maximum absolute error of 6.5%. The simplicity of BIA measurements, a cost effective design and the simple visual representation of impedance data enables patients to compare and determine body composition during the time course of a specific treatment plan in a clinical or home environment.

  4. Damage Assessment of Aerospace Structural Components by Impedance Based Health Monitoring

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, Andrew L.; Martin, Richard E.; Sawicki, Jerzy T.; Baaklini, George Y.

    2005-01-01

    This paper addresses recent efforts at the NASA Glenn Research Center at Lewis Field relating to the set-up and assessment of electro-mechanical (E/M) impedance based structural health monitoring. The overall aim is the application of the impedance based technique to aeronautic and space based structural components. As initial steps, a laboratory was created, software written, and experiments conducted on aluminum plates in undamaged and damaged states. A simulated crack, in the form of a narrow notch at various locations, was analyzed using piezoelectric-ceramic (PZT: lead, zirconate, titarate) patches as impedance measuring transducers. Descriptions of the impedance quantifying hardware and software are provided as well as experimental results. In summary, an impedance based health monitoring system was assembled and tested. The preliminary data showed that the impedance based technique was successful in recognizing the damage state of notched aluminum plates.

  5. Microfluidic Impedance Flow Cytometry Enabling High-Throughput Single-Cell Electrical Property Characterization

    PubMed Central

    Chen, Jian; Xue, Chengcheng; Zhao, Yang; Chen, Deyong; Wu, Min-Hsien; Wang, Junbo

    2015-01-01

    This article reviews recent developments in microfluidic impedance flow cytometry for high-throughput electrical property characterization of single cells. Four major perspectives of microfluidic impedance flow cytometry for single-cell characterization are included in this review: (1) early developments of microfluidic impedance flow cytometry for single-cell electrical property characterization; (2) microfluidic impedance flow cytometry with enhanced sensitivity; (3) microfluidic impedance and optical flow cytometry for single-cell analysis and (4) integrated point of care system based on microfluidic impedance flow cytometry. We examine the advantages and limitations of each technique and discuss future research opportunities from the perspectives of both technical innovation and clinical applications. PMID:25938973

  6. Impedance hand controllers for increasing efficiency in teleoperations

    NASA Technical Reports Server (NTRS)

    Carignan, C.; Tarrant, J.

    1989-01-01

    An impedance hand controller with direct force feedback is examined as an alternative to bilateral force reflection in teleoperations involving force contact. Experimentation revealed an operator preference for direct force feedback which provided a better feel of contact with the environment. The advantages of variable arm impedance were also made clear in tracking tests where subjects preferred the larger hand controller inertias made possible by the acceleration feedback loop in the master arm. The ability to decouple the hand controller impedance from the slave arm dynamics is expected to be even more significant when the inertial properties of various payloads in the slave arm are considered.

  7. Bayesian identification of acoustic impedance in treated ducts.

    PubMed

    Buot de l'Épine, Y; Chazot, J-D; Ville, J-M

    2015-07-01

    The noise reduction of a liner placed in the nacelle of a turbofan engine is still difficult to predict due to the lack of knowledge of its acoustic impedance that depends on grazing flow profile, mode order, and sound pressure level. An eduction method, based on a Bayesian approach, is presented here to adjust an impedance model of the liner from sound pressures measured in a rectangular treated duct under multimodal propagation and flow. The cost function is regularized with prior information provided by Guess's [J. Sound Vib. 40, 119-137 (1975)] impedance of a perforated plate. The multi-parameter optimization is achieved with an Evolutionary-Markov-Chain-Monte-Carlo algorithm.

  8. Impedance spectroscopy for the detection and identification of unknown toxins

    NASA Astrophysics Data System (ADS)

    Riggs, B. C.; Plopper, G. E.; Paluh, J. L.; Phamduy, T. B.; Corr, D. T.; Chrisey, D. B.

    2012-06-01

    Advancements in biological and chemical warfare has allowed for the creation of novel toxins necessitating a universal, real-time sensor. We have used a function-based biosensor employing impedance spectroscopy using a low current density AC signal over a range of frequencies (62.5 Hz-64 kHz) to measure the electrical impedance of a confluent epithelial cell monolayer at 120 sec intervals. Madin Darby canine kidney (MDCK) epithelial cells were grown to confluence on thin film interdigitated gold electrodes. A stable impedance measurement of 2200 Ω was found after 24 hrs of growth. After exposure to cytotoxins anthrax lethal toxin and etoposide, the impedance decreased in a linear fashion resulting in a 50% drop in impedance over 50hrs showing significant difference from the control sample (~20% decrease). Immunofluorescent imaging showed that apoptosis was induced through the addition of toxins. Similarities of the impedance signal shows that the mechanism of cellular death was the same between ALT and etoposide. A revised equivalent circuit model was employed in order to quantify morphological changes in the cell monolayer such as tight junction integrity and cell surface area coverage. This model showed a faster response to cytotoxin (2 hrs) compared to raw measurements (20 hrs). We demonstrate that herein that impedance spectroscopy of epithelial monolayers serves as a real-time non-destructive sensor for unknown pathogens.

  9. 8 CFR 292.2 - Organizations qualified for recognition; requests for recognition; withdrawal of recognition...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...; requests for recognition; withdrawal of recognition; accreditation of representatives; roster. 292.2...; withdrawal of recognition; accreditation of representatives; roster. (a) Qualifications of organizations. A non-profit religious, charitable, social service, or similar organization established in the United...

  10. Novel screening techniques for ion channel targeting drugs

    PubMed Central

    Obergrussberger, Alison; Stölzle-Feix, Sonja; Becker, Nadine; Brüggemann, Andrea; Fertig, Niels; Möller, Clemens

    2015-01-01

    Ion channels are integral membrane proteins that regulate the flux of ions across the cell membrane. They are involved in nearly all physiological processes, and malfunction of ion channels has been linked to many diseases. Until recently, high-throughput screening of ion channels was limited to indirect, e.g. fluorescence-based, readout technologies. In the past years, direct label-free biophysical readout technologies by means of electrophysiology have been developed. Planar patch-clamp electrophysiology provides a direct functional label-free readout of ion channel function in medium to high throughput. Further electrophysiology features, including temperature control and higher-throughput instruments, are continually being developed. Electrophysiological screening in a 384-well format has recently become possible. Advances in chip and microfluidic design, as well as in cell preparation and handling, have allowed challenging cell types to be studied by automated patch clamp. Assays measuring action potentials in stem cell-derived cardiomyocytes, relevant for cardiac safety screening, and neuronal cells, as well as a large number of different ion channels, including fast ligand-gated ion channels, have successfully been established by automated patch clamp. Impedance and multi-electrode array measurements are particularly suitable for studying cardiomyocytes and neuronal cells within their physiological network, and to address more complex physiological questions. This article discusses recent advances in electrophysiological technologies available for screening ion channel function and regulation. PMID:26556400

  11. Novel screening techniques for ion channel targeting drugs.

    PubMed

    Obergrussberger, Alison; Stölzle-Feix, Sonja; Becker, Nadine; Brüggemann, Andrea; Fertig, Niels; Möller, Clemens

    2015-01-01

    Ion channels are integral membrane proteins that regulate the flux of ions across the cell membrane. They are involved in nearly all physiological processes, and malfunction of ion channels has been linked to many diseases. Until recently, high-throughput screening of ion channels was limited to indirect, e.g. fluorescence-based, readout technologies. In the past years, direct label-free biophysical readout technologies by means of electrophysiology have been developed. Planar patch-clamp electrophysiology provides a direct functional label-free readout of ion channel function in medium to high throughput. Further electrophysiology features, including temperature control and higher-throughput instruments, are continually being developed. Electrophysiological screening in a 384-well format has recently become possible. Advances in chip and microfluidic design, as well as in cell preparation and handling, have allowed challenging cell types to be studied by automated patch clamp. Assays measuring action potentials in stem cell-derived cardiomyocytes, relevant for cardiac safety screening, and neuronal cells, as well as a large number of different ion channels, including fast ligand-gated ion channels, have successfully been established by automated patch clamp. Impedance and multi-electrode array measurements are particularly suitable for studying cardiomyocytes and neuronal cells within their physiological network, and to address more complex physiological questions. This article discusses recent advances in electrophysiological technologies available for screening ion channel function and regulation.

  12. A revolutionary concept to improve the efficiency of ion cyclotron antennas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milanesio, D., E-mail: daniele.milanesio@polito.it; Maggiora, R., E-mail: riccardo.maggiora@polito.it

    2014-06-15

    The successful design of an ion cyclotron (IC) antenna mainly relies on the capability of coupling high power to the plasma (MW), feature that is currently reached by allowing rather high voltages (tens of kV) on the unavoidable unmatched part of the feeding lines. This requirement is often responsible of arcs along the transmission lines and other unwanted phenomena, such as rectification discharges or hotspots, that considerably limit the usage of IC launchers. In this work, we suggest and describe a revolutionary approach based on high impedance surfaces, which allows to increase the antenna radiation efficiency and, hence, to highlymore » reduce the imposed voltages to couple the same level of power to the plasma. High-impedance surfaces are periodic metallic structures (patches) displaced usually on top of a dielectric substrate and grounded by means of vertical posts usually embedded inside a dielectric, in a mushroom-like shape. In terms of working properties, high impedance surfaces are electrically thin in-phase reflectors, i.e., they present a high impedance, within a given frequency band, such that the image currents are in-phase with the currents of the antenna itself, thus determining a significant efficiency increase. While the usual design of a high impedance surface requires the presence of a dielectric layer, some alternative solutions can be realised in vacuum, taking advantage of double layers of metallic patches. After an introductory part on the properties of high impedance surfaces, this work documents both their design by means of numerical codes and their implementation on a scaled mock-up.« less

  13. Impedance simulation for LEReC booster cavity transformed from ERL gun cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chuyu

    2015-11-24

    Wake impedance induced energy spread is a concern for the low energy cooling electron beam. The impedance simulation of the booster cavity for the LEReC projection is presented in this report. The simulation is done for both non-relativistic and ultra-relativistic cases. The space charge impedance in the first case is discussed. For impedance budget consideration of the electron machine, only simulation of the geometrical impedance in the latter case is necessary since space charge is considered separately.

  14. Study of carbon nanotube-rich impedimetric recognition electrode for ultra-low determination of polycyclic aromatic hydrocarbons in water.

    PubMed

    Muñoz, Jose; Navarro-Senent, Cristina; Crivillers, Nuria; Mas-Torrent, Marta

    2018-04-14

    Carbon nanotubes (CNTs) have been studied as an electrochemical recognition element for the impedimetric determination of priority polycyclic aromatic hydrocarbons (PAHs) in water, using hexocyanoferrate as a redox probe. For this goal, an indium tin oxide (ITO) electrode functionalized with a silane-based self-assembled monolayer carrying CNTs has been engineered. The electroanalytical method, which is similar to an antibody-antigen assay, is straightforward and exploits the high CNT-PAH affinity obtained via π-interactions. After optimizing the experimental conditions, the resulting CNT-based impedimetric recognition platform exhibits ultra-low detection limits (1.75 ± 0.04 ng·L -1 ) for the sum of PAHs tested, which was also validated by using a certified reference PAH mixture. Graphical abstract Schematic of an indium-tin-oxide (ITO) electrode functionalized with a silane-based self-assembled monolayer carrying carbon nanotubes (CNTs) as a recognition platform for the ultra-low determination of total polycyclic aromatic hydrocarbons (PAHs) in water via π-interactions using Electrochemical Impedance Spectroscopy (EIS).

  15. Finger impedance evaluation by means of hand exoskeleton.

    PubMed

    Fiorilla, Angelo Emanuele; Nori, Francesco; Masia, Lorenzo; Sandini, Giulio

    2011-12-01

    Modulation of arm mechanical impedance is a fundamental aspect for interaction with the external environment and its regulation is essential for stability preservation during manipulation. Even though past research on human arm movements has suggested that models of human finger impedance would benefit the study of neural control mechanisms and the design of novel hand prostheses, relatively few studies have focused on finger and hand impedance. This article touches on the two main aspects of this research topic: first it introduces a mechanical refinement of a device that can be used to effectively measure finger impedance during manipulation tasks; then, it describes a pilot study aimed at identifying the inertia of the finger and the viscous and elastic properties of finger muscles. The proposed wearable exoskeleton, which has been designed to measure finger posture and impedance modulation while leaving the palm free, is capable of applying fast displacements while monitoring the interaction forces between the human finger and the robotic links. Moreover, due to the relatively small inertia of the fingers, it allows us to meet some stringent specifications, performing relatively large displacements (~45°) before the stretch reflex intervenes (~25 ms). The results of measurements on five subjects show that inertia, damping, and stiffness can be effectively identified and that the parameters obtained are comparable with values from previous studies.

  16. Stochastic Modeling as a Means of Automatic Speech Recognition

    DTIC Science & Technology

    1975-04-01

    companng ihc features of different speech recognition systems, attention is often focused on thc control structures and the methods o’ communication...with no need to use secondary storage . Note that we go from a group of separate knowledge sources to an integrated network representation in...exhaust the available lime or storage . - - - . . 1- .-.-.. mmm^~ i — ■ ■ ’ ■ C haplcr I - IN I ROÜliCl ION Page 13 On the other hand

  17. Novel calix[4]pyrrole assembly: Punctilious recognition of F- and Cu+2 ions

    NASA Astrophysics Data System (ADS)

    Bhatt, Keyur D.; Shah, Hemangini; Modi, Krunal M.; Kongor, Anita; Panchal, Manthan; Jain, Vinod K.

    2017-12-01

    A new tetra hydroxyl methoxy substituted calix[4]pyrrole (HMCP) has been synthesized and found to form stable complex with F- ions and Cu+2 ions. The red-shift in absorption band of HMCP was observed due to the presence of both cation (Cu+2) and anion (F-). These results displayed that formation of the complex is mainly attributed to the charge-transfer interactions between HMCP with electron deficient pyrrole rings and the electron-rich guest ions. Molecular dynamics simulation predicts intermolecular H-bonds and van der Waals types of interaction for the complex formation of HMCP-Cu+2 and HMCP-F-.

  18. Impedance measurements of the human cochlear partition

    NASA Astrophysics Data System (ADS)

    Raufer, Stefan; Nakajima, Hideko H.

    2018-05-01

    The cochlea is a mechanical frequency analyzer, owing its characteristics to the impedance of the cochlear partition. In humans, the impedance of the partition has not been measured directly, and estimates of the stiffness (a principal component of the impedance) are based on loose assumptions. In this study, we examine not only the stiffness of the basilar membrane (BM), but also the osseous spiral lamina (OSL), which, in human, vibrates substantially. We hypothesize that the OSL contributes significantly to the volume stiffness of the cochlear partition (CP). We measured velocities of the BM and OSL at different radial locations 1 mm from the base of the cochlea in a fresh human cadaveric specimen. Simultaneously, we measured intracochlear pressures on the other side of the partition, in scala vestibuli. With the velocity and pressure measurements we can estimate the specific acoustic impedance of the BM and OSL (Z = p/v). At frequencies well below the resonant frequency, the stiffness of these structures can be extracted by multiplying the impedance by the radian frequency. The specific acoustic stiffness was found to be 1.2 GPa/m on the BM, 6 GPa/m at the juncture where the BM attaches to the OSL, and 10 GPa/m at the midpoint of the OSL. A beam model, appropriate to model the radial motion of the BM in guinea pig or gerbil, cannot describe the displacement of the human CP in the base. Instead, we find that the OSL is hinged near the modiolus and vibrates significantly near the connection to the more compliant BM, contributing greatly the volume compliance of the CP.

  19. Efficient Simultaneous Reconstruction of Time-Varying Images and Electrode Contact Impedances in Electrical Impedance Tomography.

    PubMed

    Boverman, Gregory; Isaacson, David; Newell, Jonathan C; Saulnier, Gary J; Kao, Tzu-Jen; Amm, Bruce C; Wang, Xin; Davenport, David M; Chong, David H; Sahni, Rakesh; Ashe, Jeffrey M

    2017-04-01

    In electrical impedance tomography (EIT), we apply patterns of currents on a set of electrodes at the external boundary of an object, measure the resulting potentials at the electrodes, and, given the aggregate dataset, reconstruct the complex conductivity and permittivity within the object. It is possible to maximize sensitivity to internal conductivity changes by simultaneously applying currents and measuring potentials on all electrodes but this approach also maximizes sensitivity to changes in impedance at the interface. We have, therefore, developed algorithms to assess contact impedance changes at the interface as well as to efficiently and simultaneously reconstruct internal conductivity/permittivity changes within the body. We use simple linear algebraic manipulations, the generalized singular value decomposition, and a dual-mesh finite-element-based framework to reconstruct images in real time. We are also able to efficiently compute the linearized reconstruction for a wide range of regularization parameters and to compute both the generalized cross-validation parameter as well as the L-curve, objective approaches to determining the optimal regularization parameter, in a similarly efficient manner. Results are shown using data from a normal subject and from a clinical intensive care unit patient, both acquired with the GE GENESIS prototype EIT system, demonstrating significantly reduced boundary artifacts due to electrode drift and motion artifact.

  20. Stable, high-order computation of impedance-impedance operators for three-dimensional layered medium simulations.

    PubMed

    Nicholls, David P

    2018-04-01

    The faithful modelling of the propagation of linear waves in a layered, periodic structure is of paramount importance in many branches of the applied sciences. In this paper, we present a novel numerical algorithm for the simulation of such problems which is free of the artificial singularities present in related approaches. We advocate for a surface integral formulation which is phrased in terms of impedance-impedance operators that are immune to the Dirichlet eigenvalues which plague the Dirichlet-Neumann operators that appear in classical formulations. We demonstrate a high-order spectral algorithm to simulate these latter operators based upon a high-order perturbation of surfaces methodology which is rapid, robust and highly accurate. We demonstrate the validity and utility of our approach with a sequence of numerical simulations.

  1. Stable, high-order computation of impedance-impedance operators for three-dimensional layered medium simulations

    NASA Astrophysics Data System (ADS)

    Nicholls, David P.

    2018-04-01

    The faithful modelling of the propagation of linear waves in a layered, periodic structure is of paramount importance in many branches of the applied sciences. In this paper, we present a novel numerical algorithm for the simulation of such problems which is free of the artificial singularities present in related approaches. We advocate for a surface integral formulation which is phrased in terms of impedance-impedance operators that are immune to the Dirichlet eigenvalues which plague the Dirichlet-Neumann operators that appear in classical formulations. We demonstrate a high-order spectral algorithm to simulate these latter operators based upon a high-order perturbation of surfaces methodology which is rapid, robust and highly accurate. We demonstrate the validity and utility of our approach with a sequence of numerical simulations.

  2. Antenna pattern control using impedance surfaces

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Liu, Kefeng

    1992-01-01

    During this research period, we have effectively transferred existing computer codes from CRAY supercomputer to work station based systems. The work station based version of our code preserved the accuracy of the numerical computations while giving a much better turn-around time than the CRAY supercomputer. Such a task relieved us of the heavy dependence of the supercomputer account budget and made codes developed in this research project more feasible for applications. The analysis of pyramidal horns with impedance surfaces was our major focus during this research period. Three different modeling algorithms in analyzing lossy impedance surfaces were investigated and compared with measured data. Through this investigation, we discovered that a hybrid Fourier transform technique, which uses the eigen mode in the stepped waveguide section and the Fourier transformed field distributions across the stepped discontinuities for lossy impedances coating, gives a better accuracy in analyzing lossy coatings. After a further refinement of the present technique, we will perform an accurate radiation pattern synthesis in the coming reporting period.

  3. Bounded diffusion impedance characterization of battery electrodes using fractional modeling

    NASA Astrophysics Data System (ADS)

    Gabano, Jean-Denis; Poinot, Thierry; Huard, Benoît

    2017-06-01

    This article deals with the ability of fractional modeling to describe the bounded diffusion behavior encountered in modern thin film and nanoparticles lithium battery electrodes. Indeed, the diffusion impedance of such batteries behaves as a half order integrator characterized by the Warburg impedance at high frequencies and becomes a classical integrator described by a capacitor at low frequencies. The transition between these two behaviors depends on the particles geometry. Three of them will be considered in this paper: planar, cylindrical and spherical ones. The fractional representation proposed is a gray box model able to perfectly fit the low and high frequency diffusive impedance behaviors while optimizing the frequency response transition. Identification results are provided using frequential simulation data considering the three electrochemical diffusion models based on the particles geometry. Furthermore, knowing this geometry allows to estimate the diffusion ionic resistance and time constant using the relationships linking these physical parameters to the structural fractional model parameters. Finally, other simulations using Randles impedance models including the charge transfer impedance and the external resistance demonstrate the interest of fractional modeling in order to identify properly not only the charge transfer impedance but also the diffusion physical parameters whatever the particles geometry.

  4. Facile and efficient electrochemical enantiomer recognition of phenylalanine using β-Cyclodextrin immobilized on reduced graphene oxide.

    PubMed

    Zaidi, Shabi Abbas

    2017-08-15

    This work demonstrates the facile and efficient preparation protocol of β-Cyclodextrin-reduced graphene oxide modified glassy carbon electrode (β-CD/RGO/GCE) sensor for an impressive chiral selectivity analysis for phenylalanine enantiomers. In this work, the immobilization of β-CD over graphene sheets allows the excellent enantiomer recognition due to the large surface area and high conductivity of graphene sheets and extraordinary supramolecular (host-guest interaction) property of β-CD. The proposed sensor was well characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and electrochemical impedance spectroscopy (EIS) techniques. The analytical studies demonstrated that the β-CD/RGO/GCE exhibit superior chiral recognition toward L-phenylalanine as compared to D-phenylalanine. Under optimum conditions, the developed sensor displayed a good linear range from 0.4 to 40µM with the limit of detection (LOD) values of 0.10µM and 0.15µM for l- and D-phenylalanine, respectively. Furthermore, the proposed sensor exhibits good stability and regeneration capacity. Thus, the as-synthesized material can be exploited for electrochemical enantiomer recognition successfully. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. A Hexahomotrioxacalix[3]arene-Based Ditopic Receptor for Alkylammonium Ions Controlled by Ag + Ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Xue-Kai; Ikejiri, Yusuke; Wu, Chong

    A receptor cone-1 based on a hexahomotrioxacalix[3]arene bearing three pyridyl groups was successfully synthesized, which has a C 3-symmetric conformation and is capable of binding alkylammonium and metal ions simultaneously in a cooperative fashion. It can bind alkylammonium ions through the π-cavity formed by three aryl rings. This behaviour is consistent with the cone-in/cone-out conformational rearrangement needed to reorganize the cavity for endo-complexation. As a C 3-symmetrical pyridyl-substituted calixarene, receptor cone-1 can also bind an Ag + ion, and the nitrogen atoms are turned towards the inside of the cavity and interact with Ag +. After complexation of tris(2-pyridylamide) derivativemore » receptor cone-1 with Ag +, the original C 3-symmetry was retained and higher complexation selectivity for n-BuNH 3 + versus t-BuNH 3 + was observed. Thus, it is believed that this receptor will have a role to play in the sensing, detection, and recognition of Ag + and n-BuNH 3 + ions.« less

  6. A Hexahomotrioxacalix[3]arene-Based Ditopic Receptor for Alkylammonium Ions Controlled by Ag + Ions

    DOE PAGES

    Jiang, Xue-Kai; Ikejiri, Yusuke; Wu, Chong; ...

    2018-02-21

    A receptor cone-1 based on a hexahomotrioxacalix[3]arene bearing three pyridyl groups was successfully synthesized, which has a C 3-symmetric conformation and is capable of binding alkylammonium and metal ions simultaneously in a cooperative fashion. It can bind alkylammonium ions through the π-cavity formed by three aryl rings. This behaviour is consistent with the cone-in/cone-out conformational rearrangement needed to reorganize the cavity for endo-complexation. As a C 3-symmetrical pyridyl-substituted calixarene, receptor cone-1 can also bind an Ag + ion, and the nitrogen atoms are turned towards the inside of the cavity and interact with Ag +. After complexation of tris(2-pyridylamide) derivativemore » receptor cone-1 with Ag +, the original C 3-symmetry was retained and higher complexation selectivity for n-BuNH 3 + versus t-BuNH 3 + was observed. Thus, it is believed that this receptor will have a role to play in the sensing, detection, and recognition of Ag + and n-BuNH 3 + ions.« less

  7. Effects of Liner Length and Attenuation on NASA Langley Impedance Eduction

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Watson, W. R.

    2016-01-01

    This study explores the effects of liner length and attenuation on the CHE (convected Helmholtz equation) impedance eduction method, in which the surface impedance of an acoustic liner is inferred through an iterative process based on repeated solutions to the convected Helmholtz equation. Wire mesh-over-honeycomb and perforate-over-honeycomb acoustic liners are tested in the NASA Langley Grazing Flow Impedance Tube, and the resultant data are processed using two impedance eduction methods. The first is the CHE method, and the second is a direct method (labeled the KT method) that uses the Kumaresan and Tufts algorithm to compute the impedance directly. The CHE method has been extensively used for acoustic liner evaluation, but experiences anomalous behavior under some test conditions. It is postulated that the anomalies are related to the liner length and/or attenuation. Since the KT method only employs data measured over the length of the liner, it is expected to be unaffected by liner length. A comparison of results achieved with the two impedance eduction methods is used to explore the interactive effects of liner length and attenuation on the CHE impedance eduction method.

  8. Quantitative impedance measurements for eddy current model validation

    NASA Astrophysics Data System (ADS)

    Khan, T. A.; Nakagawa, N.

    2000-05-01

    This paper reports on a series of laboratory-based impedance measurement data, collected by the use of a quantitatively accurate, mechanically controlled measurement station. The purpose of the measurement is to validate a BEM-based eddy current model against experiment. We have therefore selected two "validation probes," which are both split-D differential probes. Their internal structures and dimensions are extracted from x-ray CT scan data, and thus known within the measurement tolerance. A series of measurements was carried out, using the validation probes and two Ti-6Al-4V block specimens, one containing two 1-mm long fatigue cracks, and the other containing six EDM notches of a range of sizes. Motor-controlled XY scanner performed raster scans over the cracks, with the probe riding on the surface with a spring-loaded mechanism to maintain the lift off. Both an impedance analyzer and a commercial EC instrument were used in the measurement. The probes were driven in both differential and single-coil modes for the specific purpose of model validation. The differential measurements were done exclusively by the eddyscope, while the single-coil data were taken with both the impedance analyzer and the eddyscope. From the single-coil measurements, we obtained the transfer function to translate the voltage output of the eddyscope into impedance values, and then used it to translate the differential measurement data into impedance results. The presentation will highlight the schematics of the measurement procedure, a representative of raw data, explanation of the post data-processing procedure, and then a series of resulting 2D flaw impedance results. A noise estimation will be given also, in order to quantify the accuracy of these measurements, and to be used in probability-of-detection estimation.—This work was supported by the NSF Industry/University Cooperative Research Program.

  9. Vertical electrical impedance evaluation of asphalt overlays on concrete bridge decks

    NASA Astrophysics Data System (ADS)

    Baxter, Jared S.; Guthrie, W. Spencer; Waters, Tenli; Barton, Jeffrey D.; Mazzeo, Brian A.

    2018-04-01

    Vertical electrical impedance scanning of concrete bridge decks is a non-destructive method for quantifying the degree of protection provided to steel reinforcement against the ingress of corrosive agents. Four concrete bridge decks with asphalt overlays in northern Utah were evaluated using scanning vertical electrical impedance measurements in this study. At the time of testing, the bridges ranged in age from 21 to 34 years, and asphalt overlays had been in place for 7 to 22 years, depending on the bridge. Electrical impedance measurements were collected using a previously constructed apparatus that consisted of six probes spanning a transverse distance of 12 ft. The impedance measurements were compared to surface cracking observations and cores obtained from the same four bridge decks. The results presented in this paper demonstrate the utility of scanning vertical electrical impedance measurements for detecting cracks in asphalt overlays and quantifying their severity. In addition, the results demonstrate the sensitivity of impedance measurements to the presence of an intact membrane beneath the asphalt overlay.

  10. Ventilation mapping of chest using Focused Impedance Method (FIM)

    NASA Astrophysics Data System (ADS)

    Kadir, M. Abdul; Ferdous, Humayra; Baig, Tanvir Noor; Siddique-e-Rabbani, K.

    2010-04-01

    Focused Impedance Method (FIM) provides an opportunity for localized impedance measurement down to reasonable depths within the body using surface electrodes, and has a potential application in localized lung ventilation study. This however needs assessment of normal values for healthy individuals. In this study, localized ventilation maps in terms of electrical impedance in a matrix formation around the thorax, both from the front and the back, were obtained from two normal male subjects using a modified configuration of FIM. For this the focused impedance values at full inspiration and full expiration were measured and the percentage difference with respect to the latter was used. Some of the measured values would have artefacts due to movements of the heart and the diaphragm in the relevant anatomical positions which needs to be considered with due care in any interpretation.

  11. Ultracold collisions between Rb atoms and a Sr+ ion

    NASA Astrophysics Data System (ADS)

    Meir, Ziv; Sikorsky, Tomas; Ben-Shlomi, Ruti; Dallal, Yehonatan; Ozeri, Roee

    2015-05-01

    In last decade, a novel field emerged, in which ultracold atoms and ions in overlapping traps are brought into interaction. In contrast to the short ranged atom-atom interaction which scales as r-6, atom-ion potential persists for hundreds of μm's due to its lower power-law scaling - r-4. Inelastic collisions between the consistuents lead to spin and charge transfer and also to molecule formation. Elastic collisions control the energy transfer between the ion and the atoms. The study of collisions at the μK range has thus far been impeded by the effect of the ion's micromotion which limited collision energy to mK scale. Unraveling this limit will allow to investigate few partial wave and even S-wave collisions. Our system is capable of trapping Sr+ ions and Rb and Sr atoms and cooling them to their quantum ground state. Atoms and ions are trapped and cooled in separate chambers. Then, the atoms are transported using an optical conveyer belt to overlap the ions. In contrast to other experiments in this field where the atoms are used to sympathetic cool the ion, our system is also capable of ground state cooling the ion before immersing it into the atom cloud. By this method, we would be able to explore heating and cooling dynamics in the ultracold regime.

  12. Multichannel intraluminal impedance: general principles and technical issues.

    PubMed

    Tutuian, Radu; Castell, Donald O

    2005-04-01

    Multichannel intraluminal impedance (MII) is a new technology that allows detection of bolus movement without the use of external radiation or radiolabeled substances. The principles of MII are based on changes in resistance to alternating electrical current (impedance) induced by the presence of various boluses within the esophagus. The timing of changes in multiple impedance-measuring segments in the esophagus allows determination of the direction of bolus movement. Combined MII and manometry (MII-EM) provides simultaneous information on intraesophageal pressures and bolus transit, offers the ability to monitor all types of reflux, and allows the detection of the physical (liquid, gas, or mixed) and chemical (acid, nonacid) characteristics of the gastroesophageal refluxate.

  13. Low-frequency quadrupole impedance of undulators and wigglers

    DOE PAGES

    Blednykh, A.; Bassi, G.; Hidaka, Y.; ...

    2016-10-25

    An analytical expression of the low-frequency quadrupole impedance for undulators and wigglers is derived and benchmarked against beam-based impedance measurements done at the 3 GeV NSLS-II storage ring. The adopted theoretical model, valid for an arbitrary number of electromagnetic layers with parallel geometry, allows to calculate the quadrupole impedance for arbitrary values of the magnetic permeability μ r. Here, in the comparison of the analytical results with the measurements for variable magnet gaps, two limit cases of the permeability have been studied: the case of perfect magnets (μ r → ∞), and the case in which the magnets are fullymore » saturated (μ r = 1).« less

  14. Impedance-based overcharging and gassing model for VRLA/AGM batteries

    NASA Astrophysics Data System (ADS)

    Thele, M.; Karden, E.; Surewaard, E.; Sauer, D. U.

    This paper presents for the first time an impedance-based non-linear model for lead-acid batteries that is applicable in all operational modes. An overcharging model describes the accumulation and depletion of the dissolved Pb 2+ ions. This physical model has been added to the earlier presented model to expand the model validity. To properly represent the charge acceptance during dynamic operation, a concept of "hardening crystals" has been introduced in the model. Moreover, a detailed gassing and oxygen recombination model has been integrated. A realistic simulation of the overcharging behavior is now possible. The mathematical description is given in the paper. Simplifications are introduced that allow for an efficient implementation and for model parameterization in the time domain. A comparison between experimental data and simulation results demonstrates the achieved accuracy. The model enhancement is of major importance to analyze charging strategies especially in partial-cycling operation with limited charging time, e.g. in electrically assisted or hybrid cars and autonomous power supply systems.

  15. Imaging ion and molecular transport at subcellular resolution by secondary ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Chandra, Subhash; Morrison, George H.

    1995-05-01

    The transport of K+, Na+, and Ca2+ were imaged in individual cells with a Cameca IMS-3f ion microscope. Strict cryogenic frozen freeze-dry sample preparations were employed. Ion redistribution artifacts in conventional chemical preparations are discussed. Cryogenically prepared freeze-fractured freeze-dried cultured cells allowed the three-dimensional ion microscopic imaging of elements. As smaller structures in calcium images can be resolved with the 0.5 [mu]m spatial resolution, correlative techniques are needed to confirm their identity. The potentials of reflected light microscopy, scanning electron microscopy and laser scanning confocal microscopy are discussed for microfeature recognition in freeze-fractured freeze-dried cells. The feasibility of using frozen freeze-dried cells for imaging molecular transport at subcellular resolution was tested. Ion microscopy successfully imaged the transport of the isotopically tagged (13C, 15N) amino acid, -arginine. The labeled amino acid was imaged at mass 28 with a Cs+ primary ion beam as the 28(13C15N)- species. After a 4 h exposure of LLC-PK1 kidney cells to 4 mM labeled arginine, the amino acid was localized throughout the cell with a preferential incorporation into the nucleus and nucleolus. An example is also shown of the ion microscopic imaging of sodium borocaptate, an experimental therapeutic drug for brain tumors, in cryogenically prepared frozen freeze-dried Swiss 3T3 cells.

  16. Electrochemical Impedance Spectroscopy Of Metal Alloys

    NASA Technical Reports Server (NTRS)

    Macdowell, L. G.; Calle, L. M.

    1993-01-01

    Report describes use of electrochemical impedance spectroscopy (EIS) to investigate resistances of 19 alloys to corrosion under conditions similar to those of corrosive, chloride-laden seaside environment of Space Transportation System launch site. Alloys investigated: Hastelloy C-4, C-22, C-276, and B-2; Inconel(R) 600, 625, and 825; Inco(R) G-3; Monel 400; Zirconium 702; Stainless Steel 304L, 304LN, 316L, 317L, and 904L; 20Cb-3; 7Mo+N; ES2205; and Ferralium 255. Results suggest electrochemical impedance spectroscopy used to predict corrosion performances of metal alloys.

  17. Biomimetic supercontainers for size-selective electrochemical sensing of molecular ions

    NASA Astrophysics Data System (ADS)

    Netzer, Nathan L.; Must, Indrek; Qiao, Yupu; Zhang, Shi-Li; Wang, Zhenqiang; Zhang, Zhen

    2017-04-01

    New ionophores are essential for advancing the art of selective ion sensing. Metal-organic supercontainers (MOSCs), a new family of biomimetic coordination capsules designed using sulfonylcalix[4]arenes as container precursors, are known for their tunable molecular recognition capabilities towards an array of guests. Herein, we demonstrate the use of MOSCs as a new class of size-selective ionophores dedicated to electrochemical sensing of molecular ions. Specifically, a MOSC molecule with its cavities matching the size of methylene blue (MB+), a versatile organic molecule used for bio-recognition, was incorporated into a polymeric mixed-matrix membrane and used as an ion-selective electrode. This MOSC-incorporated electrode showed a near-Nernstian potentiometric response to MB+ in the nano- to micro-molar range. The exceptional size-selectivity was also evident through contrast studies. To demonstrate the practical utility of our approach, a simulated wastewater experiment was conducted using water from the Fyris River (Sweden). It not only showed a near-Nernstian response to MB+ but also revealed a possible method for potentiometric titration of the redox indicator. Our study thus represents a new paradigm for the rational design of ionophores that can rapidly and precisely monitor molecular ions relevant to environmental, biomedical, and other related areas.

  18. (abstract) Scaling Nominal Solar Cell Impedances for Array Design

    NASA Technical Reports Server (NTRS)

    Mueller, Robert L; Wallace, Matthew T.; Iles, Peter

    1994-01-01

    This paper discusses a task the objective of which is to characterize solar cell array AC impedance and develop scaling rules for impedance characterization of large arrays by testing single solar cells and small arrays. This effort is aimed at formulating a methodology for estimating the AC impedance of the Mars Pathfinder (MPF) cruise and lander solar arrays based upon testing single cells and small solar cell arrays and to create a basis for design of a single shunt limiter for MPF power control of flight solar arrays having very different inpedances.

  19. Power supply and impedance matching to drive technological radio-frequency plasmas with customized voltage waveforms.

    PubMed

    Franek, James; Brandt, Steven; Berger, Birk; Liese, Martin; Barthel, Matthias; Schüngel, Edmund; Schulze, Julian

    2015-05-01

    We present a novel radio-frequency (RF) power supply and impedance matching to drive technological plasmas with customized voltage waveforms. It is based on a system of phase-locked RF generators that output single frequency voltage waveforms corresponding to multiple consecutive harmonics of a fundamental frequency. These signals are matched individually and combined to drive a RF plasma. Electrical filters are used to prevent parasitic interactions between the matching branches. By adjusting the harmonics' phases and voltage amplitudes individually, any voltage waveform can be approximated as a customized finite Fourier series. This RF supply system is easily adaptable to any technological plasma for industrial applications and allows the commercial utilization of process optimization based on voltage waveform tailoring for the first time. Here, this system is tested on a capacitive discharge based on three consecutive harmonics of 13.56 MHz. According to the Electrical Asymmetry Effect, tuning the phases between the applied harmonics results in an electrical control of the DC self-bias and the mean ion energy at almost constant ion flux. A comparison with the reference case of an electrically asymmetric dual-frequency discharge reveals that the control range of the mean ion energy can be significantly enlarged by using more than two consecutive harmonics.

  20. Metal ion interaction with phosphorylated tyrosine analogue monolayers on gold.

    PubMed

    Petoral, Rodrigo M; Björefors, Fredrik; Uvdal, Kajsa

    2006-11-23

    Phosphorylated tyrosine analogue molecules (pTyr-PT) were assembled onto gold substrates, and the resulting monolayers were used for metal ion interaction studies. The monolayers were characterized by X-ray photoelectron spectroscopy (XPS), infrared reflection-absorption spectroscopy (IRAS), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS), both prior to and after exposure to metal ions. XPS verified the elemental composition of the molecular adsorbate and the presence of metal ions coordinated to the phosphate groups. Both the angle-dependent XPS and IRAS results were consistent with the change in the structural orientation of the pTyr-PT monolayer upon exposure to metal ions. The differential capacitance of the monolayers upon coordination of the metal ions was evaluated using EIS. These metal ions were found to significantly change the capacitance of the pTyr-PT monolayers in contrast to the nonphosphorylated tyrosine analogue (TPT). CV results showed reduced electrochemical blocking capabilities of the phosphorylated analogue monolayer when exposed to metal ions, supporting the change in the structure of the monolayer observed by XPS and IRAS. The largest change in the structure and interfacial capacitance was observed for aluminum ions, compared to calcium, magnesium, and chromium ions. This type of monolayer shows an excellent capability to coordinate metal ions and has a high potential for use as sensing layers in biochip applications to monitor the presence of metal ions.

  1. Twelve years evolution of skin as seen by electrical impedance

    NASA Astrophysics Data System (ADS)

    Nicander, Ingrid; Emtestam, Lennart; Åberg, Peter; Ollmar, Stig

    2010-04-01

    Twelve years ago we reported an electrical impedance baseline study related to age, sex and body locations. The results showed significant differences between different anatomical locations and ages. In this study, the same participants were recalled to explore how the skin had evolved at the individual level over time. A total of 50 subjects, divided into an older and a younger group, were recalled for measurements of electrical impedance at eight anatomical locations. Readings were taken with an electrical impedance spectrometer. Information was extracted from the impedance spectra using indices based on magnitude and phase at two frequencies as in the earlier study. All included body sites had undergone alterations over time, and the size of the changes varied at different locations. The results also showed that changes in the younger group were different over time compared with the older group. In conclusion: Electrical impedance can be used to monitor skin evolution over time and baseline characteristics differ between various locations.

  2. AC impedance study of degradation of porous nickel battery electrodes

    NASA Technical Reports Server (NTRS)

    Lenhart, Stephen J.; Macdonald, D. D.; Pound, B. G.

    1987-01-01

    AC impedance spectra of porous nickel battery electrodes were recorded periodically during charge/discharge cycling in concentrated KOH solution at various temperatures. A transmission line model (TLM) was adopted to represent the impedance of the porous electrodes, and various model parameters were adjusted in a curve fitting routine to reproduce the experimental impedances. Degradation processes were deduced from changes in model parameters with electrode cycling time. In developing the TLM, impedance spectra of planar (nonporous) electrodes were used to represent the pore wall and backing plate interfacial impedances. These data were measured over a range of potentials and temperatures, and an equivalent circuit model was adopted to represent the planar electrode data. Cyclic voltammetry was used to study the characteristics of the oxygen evolution reaction on planar nickel electrodes during charging, since oxygen evolution can affect battery electrode charging efficiency and ultimately electrode cycle life if the overpotential for oxygen evolution is sufficiently low.

  3. Finite difference time domain implementation of surface impedance boundary conditions

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Luebbers, Raymond J.; Yee, Kane S.; Kunz, Karl S.

    1991-01-01

    Surface impedance boundary conditions are employed to reduce the solution volume during the analysis of scattering from lossy dielectric objects. In the finite difference solution, they also can be utilized to avoid using small cells, made necessary by shorter wavelengths in conducting media throughout the solution volume. The standard approach is to approximate the surface impedance over a very small bandwidth by its value at the center frequency, and then use that result in the boundary condition. Here, two implementations of the surface impedance boundary condition are presented. One implementation is a constant surface impedance boundary condition and the other is a dispersive surface impedance boundary condition that is applicable over a very large frequency bandwidth and over a large range of conductivities. Frequency domain results are presented in one dimension for two conductivity values and are compared with exact results. Scattering width results from an infinite square cylinder are presented as a two dimensional demonstration. Extensions to three dimensions should be straightforward.

  4. Finite difference time domain implementation of surface impedance boundary conditions

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Luebbers, Raymond J.; Yee, Kane S.; Kunz, Karl S.

    1991-01-01

    Surface impedance boundary conditions are employed to reduce the solution volume during the analysis of scattering from lossy dielectric objects. In a finite difference solution, they also can be utilized to avoid using small cells, made necessary by shorter wavelengths in conducting media throughout the solution volume. The standard approach is to approximate the surface impedance over a very small bandwidth by its value at the center frequency, and then use that result in the boundary condition. Two implementations of the surface impedance boundary condition are presented. One implementation is a constant surface impedance boundary condition and the other is a dispersive surface impedance boundary condition that is applicable over a very large frequency bandwidth and over a large range of conductivities. Frequency domain results are presented in one dimension for two conductivity values and are compared with exact results. Scattering width results from an infinite square cylinder are presented as a 2-D demonstration. Extensions to 3-D should be straightforward.

  5. Utilization of bone impedance for age estimation in postmortem cases.

    PubMed

    Ishikawa, Noboru; Suganami, Hideki; Nishida, Atsushi; Miyamori, Daisuke; Kakiuchi, Yasuhiro; Yamada, Naotake; Wook-Cheol, Kim; Kubo, Toshikazu; Ikegaya, Hiroshi

    2015-11-01

    In the field of Forensic Medicine the number of unidentified cadavers has increased due to natural disasters and international terrorism. The age estimation is very important for identification of the victims. The degree of sagittal closure is one of such age estimation methods. However it is not widely accepted as a reliable method for age estimation. In this study, we have examined whether measuring impedance value (z-values) of the sagittal suture of the skull is related to the age in men and women and discussed the possibility to use bone impedance for age estimation. Bone impedance values increased with aging and decreased after the age of 64.5. Then we compared age estimation through the conventional visual method and the proposed bone impedance measurement technique. It is suggested that the bone impedance measuring technique may be of value to forensic science as a method of age estimation. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  6. Comparison of Two Acoustic Waveguide Methods for Determining Liner Impedance

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Watson, Willie R.; Tracy, Maureen B.; Parrott, Tony L.

    2001-01-01

    Acoustic measurements taken in a flow impedance tube are used to assess the relative accuracy of two waveguide methods for impedance eduction in the presence of grazing flow. The aeroacoustic environment is assumed to contain forward and backward-traveling acoustic waves, consisting of multiple modes, and uniform mean flow. Both methods require a measurement of the complex acoustic pressure profile over the length of the test liner. The Single Mode Method assumes that the sound pressure level and phase decay-rates of a single progressive mode can be extracted from this measured complex acoustic pressure profile. No a priori assumptions are made in the Finite Element. Method regarding the modal or reflection content in the measured acoustic pressure profile. The integrity of each method is initially demonstrated by how well their no-flow impedances match those acquired in a normal incidence impedance tube. These tests were conducted using ceramic tubular and conventional perforate liners. Ceramic tubular liners were included because of their impedance insensitivity to mean flow effects. Conversely, the conventional perforate liner was included because its impedance is known to be sensitive to mean flow velocity effects. Excellent comparisons between impedance values educed with the two waveguide methods in the absence of mean flow and the corresponding values educed with the normal incident impedance tube were observed. The two methods are then compared for mean flow Mach numbers up to 0.5, and are shown to give consistent results for both types of test liners. The quality of the results indicates that the Single Mode Method should be used when the measured acoustic pressure profile is clearly dominated by a single progressive mode, and the Finite Element Method should be used for all other cases.

  7. Wavelet analysis of the impedance cardiogram waveforms

    NASA Astrophysics Data System (ADS)

    Podtaev, S.; Stepanov, R.; Dumler, A.; Chugainov, S.; Tziberkin, K.

    2012-12-01

    Impedance cardiography has been used for diagnosing atrial and ventricular dysfunctions, valve disorders, aortic stenosis, and vascular diseases. Almost all the applications of impedance cardiography require determination of some of the characteristic points of the ICG waveform. The ICG waveform has a set of characteristic points known as A, B, E ((dZ/dt)max) X, Y, O and Z. These points are related to distinct physiological events in the cardiac cycle. Objective of this work is an approbation of a new method of processing and interpretation of the impedance cardiogram waveforms using wavelet analysis. A method of computer thoracic tetrapolar polyrheocardiography is used for hemodynamic registrations. Use of original wavelet differentiation algorithm allows combining filtration and calculation of the derivatives of rheocardiogram. The proposed approach can be used in clinical practice for early diagnostics of cardiovascular system remodelling in the course of different pathologies.

  8. Magnetic and electric deflector spectrometers for ion emission analysis from laser generated plasma

    NASA Astrophysics Data System (ADS)

    Torrisi, Lorenzo; Costa, Giuseppe; Ceccio, Giovanni; Cannavò, Antonino; Restuccia, Nancy; Cutroneo, Mariapompea

    2018-01-01

    The pulsed laser-generated plasma in vacuum and at low and high intensities can be characterized using different physical diagnostics. The charge particles emission can be characterized using magnetic, electric and magnet-electrical spectrometers. Such on-line techniques are often based on time-of-flight (TOF) measurements. A 90° electric deflection system is employed as ion energy analyzer (IEA) acting as a filter of the mass-to-charge ratio of emitted ions towards a secondary electron multiplier. It determines the ion energy and charge state distributions. The measure of the ion and electron currents as a function of the mass-to-charge ratio can be also determined by a magnetic deflector spectrometer, using a magnetic field of the order of 0.35 T, orthogonal to the ion incident direction, and an array of little ion collectors (IC) at different angles. A Thomson parabola spectrometer, employing gaf-chromix as detector, permits to be employed for ion mass, energy and charge state recognition. Mass quadrupole spectrometry, based on radiofrequency electric field oscillations, can be employed to characterize the plasma ion emission. Measurements performed on plasma produced by different lasers, irradiation conditions and targets are presented and discussed. Complementary measurements, based on mass and optical spectroscopy, semiconductor detectors, fast CCD camera and Langmuir probes are also employed for the full plasma characterization. Simulation programs, such as SRIM, SREM, and COMSOL are employed for the charge particle recognition.

  9. Characterisation of CFRP adhesive bonds by electromechanical impedance

    NASA Astrophysics Data System (ADS)

    Malinowski, Pawel H.; Wandowski, Tomasz; Ostachowicz, Wieslaw M.

    2014-03-01

    In aircraft industry the Carbon Fiber Reinforced Polymer (CFRP) elements are joint using rivets and adhesive bonding. The reliability of the bonding limits the use of adhesive bonding for primary aircraft structures, therefore it is important to assess the bond quality. The performance of adhesive bonds depends on the physico-chemical properties of the adhered surfaces. The contamination leading to weak bonds may have various origin and be caused by moisture, release agent, hydraulic fluid, fuel, poor curing of adhesive and so on. In this research three different causes of possible weak bonds were selected for the investigation: 1. Weak bond due to release agent contamination, 2. Weak bond due to moisture contamination, 3. Weak bond due to poor curing of the adhesive. In order to assess the bond quality electromechanical impedance (EMI) technique was selected and investigation was focused on the influence of bond quality on electrical impedance of piezoelectric transducer. The piezoelectric transducer was mounted at the middle of each sample surface. Measurements were conducted using HIOKI Impedance Analyzer IM3570. Using the impedance analyzer the electrical parameters were measured for wide frequency band. Due to piezoelectric effect the electrical response of a piezoelectric transducer is related to mechanical response of the sample to which the transducers is attached. The impedance spectra were investigated in order to find indication of the weak bonds. These spectra were compared with measurements for reference sample using indexes proposed in order to assess the bond quality.

  10. Improved Estimation of Electron Temperature from Rocket-borne Impedance Probes

    NASA Astrophysics Data System (ADS)

    Rowland, D. E.; Wolfinger, K.; Stamm, J. D.

    2017-12-01

    The impedance probe technique is a well known method for determining high accuracy measurements of electron number density in the Earth's ionosphere. We present analysis of impedance probe data from several sounding rockets at low, mid-, and auroral latitudes, including high cadence estimates of the electron temperature, derived from analytical fits to the antenna impedance curves. These estimates compare favorably with independent estimates from Langmuir Probes, but at much higher temporal and spatial resolution, providing a capability to resolve small-scale temperature fluctuations. We also present some considerations for the design of impedance probes, including assessment of the effects of resonance damping due to rocket motion, effects of wake and spin modulation, and aspect angle to the magnetic field.

  11. Ambulatory Monitoring of Congestive Heart Failure by Multiple Bioelectric Impedance Vectors

    PubMed Central

    Khoury, Dirar S.; Naware, Mihir; Siou, Jeff; Blomqvist, Andreas; Mathuria, Nilesh S.; Wang, Jianwen; Shih, Hue-Teh; Nagueh, Sherif F.; Panescu, Dorin

    2009-01-01

    Objectives To investigate properties of multiple bioelectric impedance signals recorded during congestive heart failure (CHF) by utilizing various electrode configurations of an implanted cardiac resynchronization therapy (CRT) system. Background Monitoring of CHF has relied mainly on right-heart sensors. Methods Fifteen normal dogs underwent implantation of CRT systems using standard leads. An additional left atrial (LA) pressure lead-sensor was implanted in 5 dogs. Continuous rapid right ventricular (RV) pacing was applied over several weeks. Left ventricular (LV) catheterization and echocardiography were performed biweekly. Six steady-state impedance signals, utilizing intrathorcaic and intracardiac vectors, were measured via ring (r), coil (c), and device Can electrodes. Results All animals developed CHF after 2–4 weeks of pacing. Impedance diminished gradually during CHF induction, but at varying rates for different vectors. Impedance during CHF decreased significantly in all measured vectors: LVr-Can, −17%; LVr-RVr, −15%; LVr-RAr, −11%; RVr-Can, −12%; RVc-Can, −7%; RAr-Can, −5%. The LVr-Can vector reflected both the fastest and largest change in impedance in comparison to vectors employing only right-heart electrodes, and was highly reflective of changes in LV end-diastolic volume and LA pressure. Conclusions Impedance, acquired via different lead-electrodes, have variable responses to CHF. Impedance vectors employing a LV lead are highly responsive to physiologic changes during CHF. Measuring multiple impedance signals could be useful for optimizing ambulatory monitoring in heart failure patients. PMID:19298923

  12. Development of a Multifidelity Approach to Acoustic Liner Impedance Eduction

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Jones, Michael G.

    2017-01-01

    The use of acoustic liners has proven to be extremely effective in reducing aircraft engine fan noise transmission/radiation. However, the introduction of advanced fan designs and shorter engine nacelles has highlighted a need for novel acoustic liner designs that provide increased fan noise reduction over a broader frequency range. To achieve aggressive noise reduction goals, advanced broadband liner designs, such as zone liners and variable impedance liners, will likely depart from conventional uniform impedance configurations. Therefore, educing the impedance of these axial- and/or spanwise-variable impedance liners will require models that account for three-dimensional effects, thereby increasing computational expense. Thus, it would seem advantageous to investigate the use of multifidelity modeling approaches to impedance eduction for these advanced designs. This paper describes an extension of the use of the CDUCT-LaRC code to acoustic liner impedance eduction. The proposed approach is applied to a hardwall insert and conventional liner using simulated data. Educed values compare well with those educed using two extensively tested and validated approaches. The results are very promising and provide justification to further pursue the complementary use of CDUCT-LaRC with the currently used finite element codes to increase the efficiency of the eduction process for configurations involving three-dimensional effects.

  13. Using electrical impedance to predict catheter-endocardial contact during RF cardiac ablation.

    PubMed

    Cao, Hong; Tungjitkusolmun, Supan; Choy, Young Bin; Tsai, Jang-Zern; Vorperian, Vicken R; Webster, John G

    2002-03-01

    During radio-frequency (RF) cardiac catheter ablation, there is little information to estimate the contact between the catheter tip electrode and endocardium because only the metal electrode shows up under fluoroscopy. We present a method that utilizes the electrical impedance between the catheter electrode and the dispersive electrode to predict the catheter tip electrode insertion depth into the endocardium. Since the resistivity of blood differs from the resistivity of the endocardium, the impedance increases as the catheter tip lodges deeper in the endocardium. In vitro measurements yielded the impedance-depth relations at 1, 10, 100, and 500 kHz. We predict the depth by spline curve interpolation using the obtained calibration curve. This impedance method gives reasonably accurate predicted depth. We also evaluated alternative methods, such as impedance difference and impedance ratio.

  14. A Finite Length Cylinder Model for Mixed Oxide-Ion and Electron Conducting Cathodes Suited for Intermediate-Temperature Solid Oxide Fuel Cells

    DOE PAGES

    Jin, Xinfang; Wang, Jie; Jiang, Long; ...

    2016-03-25

    A physics-based model is presented to simulate the electrochemical behavior of mixed ion and electron conducting (MIEC) cathodes for intermediate-temperature solid oxide fuel cells. Analytic solutions for both transient and impedance models based on a finite length cylinder are derived. These solutions are compared to their infinite length counterparts. The impedance solution is also compared to experimental electrochemical impedance spectroscopy data obtained from both a traditional well-established La 0.6Sr 0.4Co 0.2Fe 0.8O 3-δ (LSCF) cathode and a new SrCo 0.9Nb 0.1O 3-δ (SCN) porous cathode. Lastly, the impedance simulations agree well with the experimental values, demonstrating that the new modelsmore » can be used to extract electro-kinetic parameters of MIEC SOFC cathodes.« less

  15. Analysis of a disk-type piezoelectric ultrasonic motor using impedance matrices.

    PubMed

    Kim, Young H; Ha, Sung K

    2003-12-01

    The dynamic behavior and the performance characteristics of the disk-type traveling wave piezoelectric ultrasonic motors (USM) are analyzed using impedance matrices. The stator is divided into three coupled subsystems: an inner metal disk, a piezoelectric annular actuator with segmented electrodes, and an outer metal disk with teeth. The effects of both shear deformation and rotary inertia are taken into account in deriving an impedance matrix for the piezoelectric actuator. The impedance matrices for each subsystem then are combined into a global impedance matrix using continuity conditions at the interfaces. A comparison is made between the impedance matrix model and the three-dimensional finite element model of the piezoelectric stator, obtaining the resonance and antiresonance frequencies and the effective electromechanical coupling factors versus circumferential mode numbers. Using the calculated resonance frequency and the vibration modes for the stator and a brush model with the Coulomb friction for the stator and rotor contact, stall torque, and no-load speed versus excitation frequencies are calculated at different preloads. Performance characteristics such as speed-torque curve and the output efficiency of the USM also are estimated using the current impedance matrix and the contact model. The present impedance model can be shown to be very effective in the design of the USM.

  16. Hydrogen substituted graphdiyne as carbon-rich flexible electrode for lithium and sodium ion batteries.

    PubMed

    He, Jianjiang; Wang, Ning; Cui, Zili; Du, Huiping; Fu, Lin; Huang, Changshui; Yang, Ze; Shen, Xiangyan; Yi, Yuanping; Tu, Zeyi; Li, Yuliang

    2017-10-27

    Organic electrodes are potential alternatives to current inorganic electrode materials for lithium ion and sodium ion batteries powering portable and wearable electronics, in terms of their mechanical flexibility, function tunability and low cost. However, the low capacity, poor rate performance and rapid capacity degradation impede their practical application. Here, we concentrate on the molecular design for improved conductivity and capacity, and favorable bulk ion transport. Through an in situ cross-coupling reaction of triethynylbenzene on copper foil, the carbon-rich frame hydrogen substituted graphdiyne film is fabricated. The organic film can act as free-standing flexible electrode for both lithium ion and sodium ion batteries, and large reversible capacities of 1050 mAh g -1 for lithium ion batteries and 650 mAh g -1 for sodium ion batteries are achieved. The electrode also shows a superior rate and cycle performances owing to the extended π-conjugated system, and the hierarchical pore bulk with large surface area.

  17. Analysis of different device-based intrathoracic impedance vectors for detection of heart failure events (from the Detect Fluid Early from Intrathoracic Impedance Monitoring study).

    PubMed

    Heist, E Kevin; Herre, John M; Binkley, Philip F; Van Bakel, Adrian B; Porterfield, James G; Porterfield, Linda M; Qu, Fujian; Turkel, Melanie; Pavri, Behzad B

    2014-10-15

    Detect Fluid Early from Intrathoracic Impedance Monitoring (DEFEAT-PE) is a prospective, multicenter study of multiple intrathoracic impedance vectors to detect pulmonary congestion (PC) events. Changes in intrathoracic impedance between the right ventricular (RV) coil and device can (RVcoil→Can) of implantable cardioverter-defibrillators (ICDs) and cardiac resynchronization therapy ICDs (CRT-Ds) are used clinically for the detection of PC events, but other impedance vectors and algorithms have not been studied prospectively. An initial 75-patient study was used to derive optimal impedance vectors to detect PC events, with 2 vector combinations selected for prospective analysis in DEFEAT-PE (ICD vectors: RVring→Can + RVcoil→Can, detection threshold 13 days; CRT-D vectors: left ventricular ring→Can + RVcoil→Can, detection threshold 14 days). Impedance changes were considered true positive if detected <30 days before an adjudicated PC event. One hundred sixty-two patients were enrolled (80 with ICDs and 82 with CRT-Ds), all with ≥1 previous PC event. One hundred forty-four patients provided study data, with 214 patient-years of follow-up and 139 PC events. Sensitivity for PC events of the prespecified algorithms was as follows: ICD: sensitivity 32.3%, false-positive rate 1.28 per patient-year; CRT-D: sensitivity 32.4%, false-positive rate 1.66 per patient-year. An alternative algorithm, ultimately approved by the US Food and Drug Administration (RVring→Can + RVcoil→Can, detection threshold 14 days), resulted in (for all patients) sensitivity of 21.6% and a false-positive rate of 0.9 per patient-year. The CRT-D thoracic impedance vector algorithm selected in the derivation study was not superior to the ICD algorithm RVring→Can + RVcoil→Can when studied prospectively. In conclusion, to achieve an acceptably low false-positive rate, the intrathoracic impedance algorithms studied in DEFEAT-PE resulted in low sensitivity for the prediction of heart

  18. Preliminary Results on Different Impedance Contrast Agents for Pulmonary Perfusion Imaging with Electrical Impedance Tomography

    NASA Astrophysics Data System (ADS)

    Nguyen, D. T.; Kosobrodov, R.; Barry, M. A.; Chik, W.; Pouliopoulos, J.; Oh, T. I.; Thiagalingam, A.; McEwan, A.

    2013-04-01

    Recent studies in animal models suggest that the use of small volume boluses of NaCl as an impedance contrast agent can significantly improve pulmonary perfusion imaging by Electrical Impedance Tomography (EIT). However, these studies used highly concentrated NaCl solution (20%) which may have adverse effects on the patients. In a pilot experiment, we address this problem by comparing a number of different Impedance Contrast Boluses (ICBs). Conductivity changes in the lungs of a sheep after the injection of four different ICBs were compared, including three NaCl-based ICBs and one glucose-based ICB. The following procedure was followed for each ICB. Firstly, ventilation was turned off to provide an apneic window of approximately 40s to image the conductivity changes due to the ICB. Each ICB was then injected through a pig-tail catheter directly into the right atrium. EIT images were acquired throughout the apnea to capture the conductivity change. For each ICB, the experiment was repeated three times. The three NaCl-based ICB exhibited similar behaviour in which following the injection of each of these ICBs, the conductivity of each lung predictably increased. The effect of the ICB of 5% glucose solution was inconclusive. A small decrease in conductivity in the left lung was observed in two out of three cases and none was discernible in the right lung.

  19. Effect of driver impedance on dense plasma focus Z-pinch neutron yield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sears, Jason, E-mail: sears8@llnl.gov, E-mail: schmidt36@llnl.gov; Link, Anthony, E-mail: sears8@llnl.gov, E-mail: schmidt36@llnl.gov; Schmidt, Andrea, E-mail: sears8@llnl.gov, E-mail: schmidt36@llnl.gov

    2014-12-15

    The Z-pinch phase of a dense plasma focus (DPF) heats the plasma by rapid compression and accelerates ions across its intense electric fields, producing neutrons through both thermonuclear and beam-target fusion. Driver characteristics have empirically been shown to affect performance, as measured by neutron yield per unit of stored energy. We are exploring the effect of driver characteristics on DPF performance using particle-in-cell (PIC) simulations of a kJ scale DPF. In this work, our PIC simulations are fluid for the run-down phase and transition to fully kinetic for the pinch phase, capturing kinetic instabilities, anomalous resistivity, and beam formation duringmore » the pinch. The anode-cathode boundary is driven by a circuit model of the capacitive driver, including system inductance, the load of the railgap switches, the guard resistors, and the coaxial transmission line parameters. It is known that the driver impedance plays an important role in the neutron yield: first, it sets the peak current achieved at pinch time; and second, it affects how much current continues to flow through the pinch when the pinch inductance and resistance suddenly increase. Here we show from fully kinetic simulations how total neutron yield depends on the impedance of the driver and the distributed parameters of the transmission circuit. Direct comparisons between the experiment and simulations enhance our understanding of these plasmas and provide predictive design capability for neutron source applications.« less

  20. A Hexahomotrioxacalix[3]arene-Based Ditopic Receptor for Alkylammonium Ions Controlled by Ag⁺ Ions.

    PubMed

    Jiang, Xue-Kai; Ikejiri, Yusuke; Wu, Chong; Rahman, Shofiur; Georghiou, Paris E; Zeng, Xi; Elsegood, Mark R J; Redshaw, Carl; Teat, Simon J; Yamato, Takehiko

    2018-02-21

    A receptor cone-1 based on a hexahomotrioxacalix[3]arene bearing three pyridyl groups was successfully synthesized, which has a C₃-symmetric conformation and is capable of binding alkylammonium and metal ions simultaneously in a cooperative fashion. It can bind alkylammonium ions through the -cavity formed by three aryl rings. This behaviour is consistent with the cone-in/cone-out conformational rearrangement needed to reorganize the cavity for endo-complexation. As a C₃-symmetrical pyridyl-substituted calixarene, receptor cone-1 can also bind an Ag⁺ ion, and the nitrogen atoms are turned towards the inside of the cavity and interact with Ag⁺. After complexation of tris(2-pyridylamide) derivative receptor cone-1 with Ag⁺, the original C₃-symmetry was retained and higher complexation selectivity for n-BuNH₃⁺ versus t-BuNH₃⁺ was observed. Thus, it is believed that this receptor will have a role to play in the sensing, detection, and recognition of Ag⁺ and n-BuNH₃ + ions.

  1. Model Parameterization and P-wave AVA Direct Inversion for Young's Impedance

    NASA Astrophysics Data System (ADS)

    Zong, Zhaoyun; Yin, Xingyao

    2017-05-01

    AVA inversion is an important tool for elastic parameters estimation to guide the lithology prediction and "sweet spot" identification of hydrocarbon reservoirs. The product of the Young's modulus and density (named as Young's impedance in this study) is known as an effective lithology and brittleness indicator of unconventional hydrocarbon reservoirs. Density is difficult to predict from seismic data, which renders the estimation of the Young's impedance inaccurate in conventional approaches. In this study, a pragmatic seismic AVA inversion approach with only P-wave pre-stack seismic data is proposed to estimate the Young's impedance to avoid the uncertainty brought by density. First, based on the linearized P-wave approximate reflectivity equation in terms of P-wave and S-wave moduli, the P-wave approximate reflectivity equation in terms of the Young's impedance is derived according to the relationship between P-wave modulus, S-wave modulus, Young's modulus and Poisson ratio. This equation is further compared to the exact Zoeppritz equation and the linearized P-wave approximate reflectivity equation in terms of P- and S-wave velocities and density, which illustrates that this equation is accurate enough to be used for AVA inversion when the incident angle is within the critical angle. Parameter sensitivity analysis illustrates that the high correlation between the Young's impedance and density render the estimation of the Young's impedance difficult. Therefore, a de-correlation scheme is used in the pragmatic AVA inversion with Bayesian inference to estimate Young's impedance only with pre-stack P-wave seismic data. Synthetic examples demonstrate that the proposed approach is able to predict the Young's impedance stably even with moderate noise and the field data examples verify the effectiveness of the proposed approach in Young's impedance estimation and "sweet spots" evaluation.

  2. Exponential current pulse generation for efficient very high-impedance multisite stimulation.

    PubMed

    Ethier, S; Sawan, M

    2011-02-01

    We describe in this paper an intracortical current-pulse generator for high-impedance microstimulation. This dual-chip system features a stimuli generator and a high-voltage electrode driver. The stimuli generator produces flexible rising exponential pulses in addition to standard rectangular stimuli. This novel stimulation waveform is expected to provide superior energy efficiency for action potential triggering while releasing less toxic reduced ions in the cortical tissues. The proposed fully integrated electrode driver is used as the output stage where high-voltage supplies are generated on-chip to significantly increase the voltage compliance for stimulation through high-impedance electrode-tissue interfaces. The stimuli generator has been implemented in 0.18-μm CMOS technology while a 0.8-μm CMOS/DMOS process has been used to integrate the high-voltage output stage. Experimental results show that the rectangular pulses cover a range of 1.6 to 167.2 μA with a DNL and an INL of 0.098 and 0.163 least-significant bit, respectively. The maximal dynamic range of the generated exponential reaches 34.36 dB at full scale within an error of ± 0.5 dB while all of its parameters (amplitude, duration, and time constant) are independently programmable over wide ranges. This chip consumes a maximum of 88.3 μ W in the exponential mode. High-voltage supplies of 8.95 and -8.46 V are generated by the output stage, boosting the voltage swing up to 13.6 V for a load as high as 100 kΩ.

  3. Single cell array impedance analysis in a microfluidic device

    NASA Astrophysics Data System (ADS)

    Altinagac, Emre; Taskin, Selen; Kizil, Huseyin

    2016-10-01

    Impedance analysis of single cells is presented in this paper. Following the separation of a target cell type by dielectrophoresis in our previous work, this paper focuses on capturing the cells as a single array and performing impedance analysis to point out the signature difference between each cell type. Lab-on-a-chip devices having a titanium interdigitated electrode layer on a glass substrate and a PDMS microchannel are fabricated to capture each cell in a single form and perform impedance analysis. HCT116 (homosapiens colon colorectal carcin) and HEK293 (human embryonic kidney) cells are used in our experiments.

  4. Electrochemical and thermal studies of lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Lu, Wenquan

    The structural, electrochemical, and thermal characteristics of carbonaceous anodes and LiNi0.8Co0.2O2 cathode in Li-ion cells were investigated using various electrochemical and calorimetric techniques. The electrode-electrolyte interface was investigated for various carbonaceous materials such as graphite with different shapes, surface modified graphite with copper, and novel carbon material derived from sepiolite template. The structural and morphological properties were determined using XRD, TGA, SEM, BET techniques. The electrochemical characteristics were studied using conventional electrochemical techniques such as galvanostatic charge/discharge cycling, cyclic voltammetry, and impedance (AC and DC) methods. It was observed that the electrochemical active surface area instead of the BET area plays a critical role in the irreversible capacity loss associated with the carbonaceous anodes. It was also found that the exfoliation of carbon anodes especially in PC based electrolyte could be significantly reduced by protective copper coating of the natural graphite. LiNi0.8Co0.2O2 cathode material was found to possess high energy density and excellent cycling characteristics. The structural and electrochemical properties of LiNi0.8Co 0.2O2 synthesized by sol-gel and solid-state methods were studied. Results of the AC impedance spectroscopy carried out on LiNi 0.8Co0.2O2 cathodes revealed that the charge transfer resistance is a function of the state of charge. The solid state Li + diffusion was calculated to be around 10-13 cm2/s in the oxide particle by Warburg impedance method. In addition, the cell fabricated with LiNi0.8Co0.2O 2 cathode showed excellent energy and power performance under static and dynamic load conditions that prevail in Electric and Hybrid Vehicles. Thermal properties of the LiNi0.8Co0.2O2 cathode, carbonaceous anodes, and Li-ion cells fabricated with these electrodes were also investigated using isothermal microcalorimetry (IMC), differential

  5. Reversible cobalt ion binding to imidazole-modified nanopipettes

    PubMed Central

    Sa, Niya; Fu, Yaqin; Baker, Lane A.

    2010-01-01

    In this report, we demonstrate that quartz nanopipettes modified with an imidazole-terminated silane respond to metal ions (Co2+) in solution. The response of nanopipettes is evaluated through examination of the ion current rectification response. By cycling nanopipettes between solutions of different pH, adsorbed Co2+ can be released from the nanopipette surface, to regenerate binding sites of the nanopipette. These results demonstrate that rectification-based sensing strategies for nanopore sensors can benefit from selection of recognition elements with intermediate binding affinities, such that reversible responses to be attained. PMID:21090777

  6. Reversible cobalt ion binding to imidazole-modified nanopipettes.

    PubMed

    Sa, Niya; Fu, Yaqin; Baker, Lane A

    2010-12-15

    In this report, we demonstrate that quartz nanopipettes modified with an imidazole-terminated silane respond to metal ions (Co(2+)) in solution. The response of nanopipettes is evaluated through examination of the ion current rectification ratio. When nanopipettes are cycled between solutions of different pH, adsorbed Co(2+) can be released from the nanopipette surface, to regenerate binding sites of the nanopipette. These results demonstrate that rectification-based sensing strategies for nanopore sensors can benefit from selection of recognition elements with intermediate binding affinities, such that reversible responses can be attained.

  7. Temperature dependence of acoustic impedance for specific fluorocarbon liquids

    NASA Astrophysics Data System (ADS)

    Marsh, Jon N.; Hall, Christopher S.; Wickline, Samuel A.; Lanza, Gregory M.

    2002-12-01

    Recent studies by our group have demonstrated the efficacy of perfluorocarbon liquid nanoparticles for enhancing the reflectivity of tissuelike surfaces to which they are bound. The magnitude of this enhancement depends in large part on the difference in impedances of the perfluorocarbon, the bound substrate, and the propagating medium. The impedance varies directly with temperature because both the speed of sound and the mass density of perfluorocarbon liquids are highly temperature dependent. However, there are relatively little data in the literature pertaining to the temperature dependence of the acoustic impedance of these compounds. In this study, the speed of sound and density of seven different fluorocarbon liquids were measured at specific temperatures between 20 °C and 45 °C. All of the samples demonstrated negative, linear dependencies on temperature for both speed of sound and density and, consequently, for the acoustic impedance. The slope of sound speed was greatest for perfluorohexane (-278+/-1.5 cm/s-°C) and lowest for perfluorodichlorooctane (-222+/-0.9 cm/s-°C). Of the compounds measured, perfluorohexane exhibited the lowest acoustic impedance at all temperatures, and perfluorodecalin the highest at all temperatures. Computations from a simple transmission-line model used to predict reflectivity enhancement from surface-bound nanoparticles are discussed in light of these results.

  8. A systematic uncertainty analysis for liner impedance eduction technology

    NASA Astrophysics Data System (ADS)

    Zhou, Lin; Bodén, Hans

    2015-11-01

    The so-called impedance eduction technology is widely used for obtaining acoustic properties of liners used in aircraft engines. The measurement uncertainties for this technology are still not well understood though it is essential for data quality assessment and model validation. A systematic framework based on multivariate analysis is presented in this paper to provide 95 percent confidence interval uncertainty estimates in the process of impedance eduction. The analysis is made using a single mode straightforward method based on transmission coefficients involving the classic Ingard-Myers boundary condition. The multivariate technique makes it possible to obtain an uncertainty analysis for the possibly correlated real and imaginary parts of the complex quantities. The results show that the errors in impedance results at low frequency mainly depend on the variability of transmission coefficients, while the mean Mach number accuracy is the most important source of error at high frequencies. The effect of Mach numbers used in the wave dispersion equation and in the Ingard-Myers boundary condition has been separated for comparison of the outcome of impedance eduction. A local Mach number based on friction velocity is suggested as a way to reduce the inconsistencies found when estimating impedance using upstream and downstream acoustic excitation.

  9. Development of a wearable multi-frequency impedance cardiography device.

    PubMed

    Weyer, Sören; Menden, Tobias; Leicht, Lennart; Leonhardt, Steffen; Wartzek, Tobias

    2015-02-01

    Cardiovascular diseases as well as pulmonary oedema can be early diagnosed using vital signs and thoracic bio-impedance. By recording the electrocardiogram (ECG) and the impedance cardiogram (ICG), vital parameters are captured continuously. The aim of this study is the continuous monitoring of ECG and multi-frequency ICG by a mobile system. A mobile measuring system, based on 'low-power' ECG, ICG and an included radio transmission is described. Due to the high component integration, a board size of only 6.5 cm×5 cm could be realized. The measured data can be transmitted via Bluetooth and visualized on a portable monitor. By using energy-efficient hardware, the system can operate for up to 18 hs with a 3 V battery, continuously sending data via Bluetooth. Longer operating times can be realized by decreased transfer rates. The relative error of the impedance measurement was less than 1%. The ECG and ICG measurements allow an approximate calculation of the heart stroke volume. The ECG and the measured impedance showed a high correlation to commercial devices (r=0.83, p<0.05). In addition to commercial devices, the developed system allows a multi-frequency measurement of the thoracic impedance between 5-150 kHz.

  10. Accelerometer's position independent physical activity recognition system for long-term activity monitoring in the elderly.

    PubMed

    Khan, Adil Mehmood; Lee, Young-Koo; Lee, Sungyoung; Kim, Tae-Seong

    2010-12-01

    Mobility is a good indicator of health status and thus objective mobility data could be used to assess the health status of elderly patients. Accelerometry has emerged as an effective means for long-term physical activity monitoring in the elderly. However, the output of an accelerometer varies at different positions on a subject's body, even for the same activity, resulting in high within-class variance. Existing accelerometer-based activity recognition systems thus require firm attachment of the sensor to a subject's body. This requirement makes them impractical for long-term activity monitoring during unsupervised free-living as it forces subjects into a fixed life pattern and impede their daily activities. Therefore, we introduce a novel single-triaxial-accelerometer-based activity recognition system that reduces the high within-class variance significantly and allows subjects to carry the sensor freely in any pocket without its firm attachment. We validated our system using seven activities: resting (lying/sitting/standing), walking, walking-upstairs, walking-downstairs, running, cycling, and vacuuming, recorded from five positions: chest pocket, front left trousers pocket, front right trousers pocket, rear trousers pocket, and inner jacket pocket. Its simplicity, ability to perform activities unimpeded, and an average recognition accuracy of 94% make our system a practical solution for continuous long-term activity monitoring in the elderly.

  11. Li-ion cells for terrestrial robots

    NASA Technical Reports Server (NTRS)

    Chin, Keith B.; Smart, M. C.; Narayanan, S. R.; Ratnakumar, B. V.; Whitcanack, L. D.; Davies, E. D.; Surampudi, S.; Raman, N. S.

    2003-01-01

    SAFT prismatic wound 5 Ahr MP series cells were evaluated for potential application in a lithium ion battery designed for Tactical Mobile Robots (TMR). In order to satisfy battery design requirements, a 10 Ahr battery containing two parallel 8-cell strings was proposed. The proposed battery has a weight and volume of approximately 3.2kg and 1.6 liters, respectively. Cell qualification procedures include initial characterization, followed by charge/discharge cycling at 100% DOD with intermittent EIS measurements at various state of charge. Certain cells were also subjected to extreme operational temperatures for worst-case analysis. Excellent specific energy (>130 Whr/kg) was obtained with initial characterization cycles. Even at abusive thermal conditions, the cell capacity fade was less than Ahr after 300 cycles. Rate characterization showed good cell discharge behavior with minimal decrease in capacity. At various state of charge, impedance measurements suggest that the cathode play a more significant role in capacity. At various state of charge impedance measurements suggest that the cathode play a more significant role in capacity fade than the anode.

  12. Interdigitated microelectrode (IME) impedance sensor for the detection of viable Salmonella typhimurium.

    PubMed

    Yang, Liju; Li, Yanbin; Griffis, Carl L; Johnson, Michael G

    2004-05-15

    Interdigitated microelectrodes (IMEs) were used as impedance sensors for rapid detection of viable Salmonella typhimurium in a selective medium and milk samples. The impedance growth curves, impedance against bacterial growth time, were recorded at four frequencies (10Hz, 100Hz, 1kHz, and 10kHz) during the growth of S. typhimurium. The impedance did not change until the cell number reached 10(5)-10(6) CFUml(-1). The greatest change in impedance was observed at 10Hz. To better understand the mechanism of the IME impedance sensor, an equivalent electrical circuit, consisting of double layer capacitors, a dielectric capacitor, and a medium resistor, was introduced and used for interpreting the change in impedance during bacterial growth. Bacterial attachment to the electrode surface was observed with scanning electron microscopy, and it had effect on the impedance measurement. The detection time, t(D), defined as the time for the impedance to start change, was obtained from the impedance growth curve at 10Hz and had a linear relationship with the logarithmic value of the initial cell number of S. typhimurium in the medium and milk samples. The regression equations for the cell numbers between 4.8 and 5.4 x 10(5) CFUml(-1) were t(D) = -1.38 log N + 10.18 with R(2) = 0.99 in the pure medium and t(D) = -1.54 log N + 11.33 with R(2) = 0.98 in milk samples, respectively. The detection times for 4.8 and 5.4 x 10(5) CFUml(-1) initial cell numbers were 9.3 and 2.2 h, respectively, and the detection limit could be as low as 1 cell in a sample.

  13. Electrical stimulation causes rapid changes in electrode impedance of cell-covered electrodes

    NASA Astrophysics Data System (ADS)

    Newbold, Carrie; Richardson, Rachael; Millard, Rodney; Seligman, Peter; Cowan, Robert; Shepherd, Robert

    2011-06-01

    Animal and clinical observations of a reduction in electrode impedance following electrical stimulation encouraged the development of an in vitro model of the electrode-tissue interface. This model was used previously to show an increase in impedance with cell and protein cover over electrodes. In this paper, the model was used to assess the changes in electrode impedance and cell cover following application of a charge-balanced biphasic current pulse train. Following stimulation, a large and rapid drop in total impedance (Zt) and access resistance (Ra) occurred. The magnitude of this impedance change was dependent on the current amplitude used, with a linear relationship determined between Ra and the resulting cell cover over the electrodes. The changes in impedance due to stimulation were shown to be transitory, with impedance returning to pre-stimulation levels several hours after cessation of stimulation. A loss of cells over the electrode surface was observed immediately after stimulation, suggesting that the level of stimulation applied was creating localized changes to cell adhesion. Similar changes in electrode impedance were observed for in vivo and in vitro work, thus helping to verify the in vitro model, although the underlying mechanisms may differ. A change in the porosity of the cellular layer was proposed to explain the alterations in electrode impedance in vitro. These in vitro studies provide insight into the possible mechanisms occurring at the electrode-tissue interface in association with electrical stimulation.

  14. ELECTRIC IMPEDANCE OF THE FROG EGG

    PubMed Central

    Cole, Kenneth S.; Guttman, Rita M.

    1942-01-01

    Electrical impedance measurements were made upon unfertilized and fertilized eggs of the leopard frog, Rana pipiens, over a frequency range of 0.05 to 10 kc. Average values of 170 ohm cm.2 were obtained for the plasma membrane resistance of the egg, 2.0 µf/cm.2 for the plasma membrane capacity, 86° for the phase angle of the membrane, and 570 ohm cm. for the specific resistance of the interior. These values did not change upon fertilization. No spontaneous rhythmical impedance changes such as have been found by Hubbard and Rothschild in the trout egg were found in frog eggs. PMID:19873312

  15. Manipulating Acoustic Wavefront by Inhomogeneous Impedance and Steerable Extraordinary Reflection

    PubMed Central

    Zhao, Jiajun; Li, Baowen; Chen, Zhining; Qiu, Cheng-Wei

    2013-01-01

    We unveil the connection between the acoustic impedance along a flat surface and the reflected acoustic wavefront, in order to empower a wide wariety of novel applications in acoustic community. Our designed flat surface can generate double reflections: the ordinary reflection and the extraordinary one whose wavefront is manipulated by the proposed impedance-governed generalized Snell's law of reflection (IGSL). IGSL is based on Green's function and integral equation, instead of Fermat's principle for optical wavefront manipulation. Remarkably, via the adjustment of the designed specific acoustic impedance, extraordinary reflection can be steered for unprecedented acoustic wavefront while that ordinary reflection can be surprisingly switched on or off. The realization of the complex discontinuity of the impedance surface has been proposed using Helmholtz resonators. PMID:23985717

  16. The radiation impedance of an electrodynamic tether with end connectors

    NASA Technical Reports Server (NTRS)

    Hastings, Daniel E.; Wang, J.

    1987-01-01

    Electrodynamic tethers are wires deployed across the earth's geomagnetic field through which a current is flowing. The radiation impedance of a tether with end connectors carrying an ac current is computed from classical antenna theory. This simulates the use of a tether on a space structure. It is shown that the current flow pattern at the tether connector is critical to determining the overall radiation impedance. If the tether makes direct electrical contact with the ionosphere then radiation impedances of the order of several thousand Ohms can be expected. If the only electrical contact is through the end connectors then the impedance is only a few Ohms for a dc current rising to several tens of Ohms for an ac current with frequencies in the whistler range.

  17. In situ measurement of tissue impedance using an inductive coupling interface circuit.

    PubMed

    Chiu, Hung-Wei; Chuang, Jia-min; Lu, Chien-Chi; Lin, Wei-Tso; Lin, Chii-Wann; Lin, Mu-Lien

    2013-06-01

    In this work, a method of an inductive coupling impedance measurement (ICIM) is proposed for measuring the nerve impedance of a dorsal root ganglion (DRG) under PRF stimulation. ICIM provides a contactless interface for measuring the reflected impedance by an impedance analyzer with a low excitation voltage of 7 mV. The paper develops a calibration procedure involving a 50-Ω reference resistor to calibrate the reflected resistance for measuring resistance of the nerve in the test. A de-embedding technique to build the equivalent transformer circuit model for the ICIM circuit is also presented. A batteryless PRF stimulator with ICIM circuit demonstrated good accuracy for the acute measurement of DRG impedance both in situ and in vivo. Besides, an in vivo animal experiment was conducted to show that the effectiveness of pulsed radiofrequency (PRF) stimulation in relieving pain gradually declined as the impedance of the stimulated nerve increased. The experiment also revealed that the excitation voltage for measuring impedance below 25 mV can prevent the excitation of a nonlinear response of DRG.

  18. Quantum optics in a high impedance environment

    NASA Astrophysics Data System (ADS)

    Puertas, Javier; Gheeraert, Nicolas; Krupko, Yuriy; Dassonneville, Remy; Planat, Luca; Foroughui, Farshad; Naud, Cecile; Guichard, Wiebke; Buisson, Olivier; Florens, Serge; Roch, Nicolas; Snyman, Izak

    Understanding light matter interaction remains a key topic in fundamental physics. Its strength is imposed by the fine structure constant, α. For most atomic and molecular systems α =e2/ℏc 4 πɛo = 1 / 137 << 1 , giving weak interactions. When dealing with superconducting artificial atoms, α is either proportional to 1 /Zc (magnetic coupling) or Zc (electric coupling), where Zc is the characteristic impedance of the environment. Recent experiments followed the first approach, coupling a flux qubit to a low impedance environment, demonstrating strong interaction (α 1). In our work, we reached the large α regime, following a complementary approach: we couple electrically a transmon qubit to an array of 5000 SQUIDs. This metamaterial provides high characteristic impedance ( 3 kΩ), in-situ flux tunability and full control over its dispersion relation. In this new regime, all usual approximations break down and new phenomena such as frequency conversion at the single photon level are expected.

  19. Bioelectrical impedance analysis of bovine milk fat

    NASA Astrophysics Data System (ADS)

    Veiga, E. A.; Bertemes-Filho, P.

    2012-12-01

    Three samples of 250ml at home temperature of 20°C were obtained from whole, low fat and fat free bovine UHT milk. They were analysed by measuring both impedance spectra and dc conductivity in order to establish the relationship between samples related to fat content. An impedance measuring system was developed, which is based on digital oscilloscope, a current source and a FPGA. Data was measured by the oscilloscope in the frequency 1 kHz to 100 kHz. It was showed that there is approximately 7.9% difference in the conductivity between whole and low fat milk whereas 15.9% between low fat and free fat one. The change of fatness in the milk can be significantly sensed by both impedance spectra measurements and dc conductivity. This result might be useful for detecting fat content of milk in a very simple way and also may help the development of sensors for measuring milk quality, as for example the detection of mastitis.

  20. Organic electrochemical transistors for cell-based impedance sensing

    NASA Astrophysics Data System (ADS)

    Rivnay, Jonathan; Ramuz, Marc; Leleux, Pierre; Hama, Adel; Huerta, Miriam; Owens, Roisin M.

    2015-01-01

    Electrical impedance sensing of biological systems, especially cultured epithelial cell layers, is now a common technique to monitor cell motion, morphology, and cell layer/tissue integrity for high throughput toxicology screening. Existing methods to measure electrical impedance most often rely on a two electrode configuration, where low frequency signals are challenging to obtain for small devices and for tissues with high resistance, due to low current. Organic electrochemical transistors (OECTs) are conducting polymer-based devices, which have been shown to efficiently transduce and amplify low-level ionic fluxes in biological systems into electronic output signals. In this work, we combine OECT-based drain current measurements with simultaneous measurement of more traditional impedance sensing using the gate current to produce complex impedance traces, which show low error at both low and high frequencies. We apply this technique in vitro to a model epithelial tissue layer and show that the data can be fit to an equivalent circuit model yielding trans-epithelial resistance and cell layer capacitance values in agreement with literature. Importantly, the combined measurement allows for low biases across the cell layer, while still maintaining good broadband signal.

  1. Organic electrochemical transistors for cell-based impedance sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivnay, Jonathan, E-mail: rivnay@emse.fr, E-mail: owens@emse.fr; Ramuz, Marc; Hama, Adel

    2015-01-26

    Electrical impedance sensing of biological systems, especially cultured epithelial cell layers, is now a common technique to monitor cell motion, morphology, and cell layer/tissue integrity for high throughput toxicology screening. Existing methods to measure electrical impedance most often rely on a two electrode configuration, where low frequency signals are challenging to obtain for small devices and for tissues with high resistance, due to low current. Organic electrochemical transistors (OECTs) are conducting polymer-based devices, which have been shown to efficiently transduce and amplify low-level ionic fluxes in biological systems into electronic output signals. In this work, we combine OECT-based drain currentmore » measurements with simultaneous measurement of more traditional impedance sensing using the gate current to produce complex impedance traces, which show low error at both low and high frequencies. We apply this technique in vitro to a model epithelial tissue layer and show that the data can be fit to an equivalent circuit model yielding trans-epithelial resistance and cell layer capacitance values in agreement with literature. Importantly, the combined measurement allows for low biases across the cell layer, while still maintaining good broadband signal.« less

  2. The Impedance Response of Semiconductors: An Electrochemical Engineering Perspective.

    ERIC Educational Resources Information Center

    Orazem, Mark E.

    1990-01-01

    Shows that the principles learned in the study of mass transport, thermodynamics, and kinetics associated with electrochemical systems can be applied to the transport and reaction processes taking place within a semiconductor. Describes impedance techniques and provides several graphs illustrating impedance data for diverse circuit systems. (YP)

  3. A High Performance Impedance-based Platform for Evaporation Rate Detection.

    PubMed

    Chou, Wei-Lung; Lee, Pee-Yew; Chen, Cheng-You; Lin, Yu-Hsin; Lin, Yung-Sheng

    2016-10-17

    This paper describes the method of a novel impedance-based platform for the detection of the evaporation rate. The model compound hyaluronic acid was employed here for demonstration purposes. Multiple evaporation tests on the model compound as a humectant with various concentrations in solutions were conducted for comparison purposes. A conventional weight loss approach is known as the most straightforward, but time-consuming, measurement technique for evaporation rate detection. Yet, a clear disadvantage is that a large volume of sample is required and multiple sample tests cannot be conducted at the same time. For the first time in literature, an electrical impedance sensing chip is successfully applied to a real-time evaporation investigation in a time sharing, continuous and automatic manner. Moreover, as little as 0.5 ml of test samples is required in this impedance-based apparatus, and a large impedance variation is demonstrated among various dilute solutions. The proposed high-sensitivity and fast-response impedance sensing system is found to outperform a conventional weight loss approach in terms of evaporation rate detection.

  4. Diagnostic criteria for mass lesions differentiating in electrical impedance mammography

    NASA Astrophysics Data System (ADS)

    A, Karpov; M, Korotkova

    2013-04-01

    The purpose of this research was to determine the diagnostic criteria for differentiating volumetric lesions in the mammary gland in electrical impedance mammography. The research was carried out utilizing the electrical impedance computer mammograph llMEIK v.5.6gg®, which enables to acquire images of 3-D conductivity distribution layers within mamma's tissues up to 5 cm depth. The weighted reciprocal projection method was employed to reconstruct the 3-D electric conductivity distribution of the examined organ. The results of 3,710 electrical impedance examinations were analyzed. The analysis of a volumetric lesion included assessment of its shape, contour, internal electrical structure and changes of the surrounding tissues. Moreover, mammary gland status was evaluated with the help of comparative and age-related electrical conductivity curves. The diagnostic chart is provided. Each criterion is measured in points. Using the numerical score for evaluation of mass and non-volumetric lesions within the mammary gland in electrical impedance mammography allowed comparing this information to BI-RADS categories developed by American College of Radiology experts. The article is illustrated with electrical impedance mammograms and tables.

  5. Contact Activation of Blood Plasma and Factor XII by Ion-exchange Resins

    PubMed Central

    Yeh, Chyi-Huey Josh; Dimachkie, Ziad O.; Golas, Avantika; Cheng, Alice; Parhi, Purnendu; Vogler, Erwin A.

    2011-01-01

    Sepharose ion-exchange particles bearing strong Lewis acid/base functional groups (sulfopropyl, carboxymethyl, quarternary ammonium, dimethyl aminoethyl, and iminodiacetic acid) exhibiting high plasma protein adsorbent capacities are shown to be more efficient activators of blood factor XII in neat-buffer solution than either hydrophilic clean-glass particles or hydrophobic octyl sepharose particles ( FXII→surfaceactivatorFXIIa; a.k.a autoactivation, where FXII is the zymogen and FXIIa is a procoagulant protease). In sharp contrast to the clean-glass standard of comparison, ion-exchange activators are shown to be inefficient activators of blood plasma coagulation. These contrasting activation properties are proposed to be due to the moderating effect of plasma-protein adsorption on plasma coagulation. Efficient adsorption of blood plasma proteins unrelated to the coagulation cascade impedes FXII contacts with ion-exchange particles immersed in plasma, reducing autoactivation, and causing sluggish plasma coagulation. By contrast, plasma proteins do not adsorb to hydrophilic clean glass and efficient autoactivation leads directly to efficient activation of plasma coagulation. It is also shown that competitive-protein adsorption can displace FXIIa adsorbed to the surface of ion-exchange resins. As a consequence of highly-efficient autoactivation and FXIIa displacement by plasma proteins, ion-exchange particles are slightly more efficient activators of plasma coagulation than hydrophobic octyl sepharose particles that do not bear strong Lewis acid/base surface functionalities but to which plasma proteins adsorb efficiently. Plasma proteins thus play a dual role in moderating contact activation of the plasma coagulation cascade. The principal role is impeding FXII contact with activating surfaces but this same effect can displace FXIIa from an activating surface into solution where the protease can potentiate subsequent steps of the plasma coagulation cascade. PMID

  6. Characterization of thermal cut-off mechanisms in prismatic lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Venugopal, Ganesh

    Lithium-ion (Li-ion) cells that are subjected to electrical abuse, overcharge and external short-circuit in particular, exhibit a rapid increase in cell temperature that could potentially lead to catastrophic disassembly of the cell. For this reason these cells are integrated or combined with one or more safety components that are designed to restrict or even prevent current flow through the cell under abusive conditions. In this work, the characteristics of these components in several prismatic Li-ion cells are studied by monitoring the impedance ( Z) at 1 kHz and the open circuit voltage (OCV) of the discharged cells as a function of temperature. All the cells studied were found to use polyethylene-based shutdown (SD) separators that were irreversibly activated within a narrow temperature range between 130 and 135°C. In some cells irreversible cut-off was also provided by a current interrupt device (CID) or a thermal fuse. Both these devices had a circuit-breaker effect, causing the impedance of the cell to rise infinitely and the OCV to drop to zero. In addition to these irreversible cut-off mechanisms, some cells also contained internal or external positive-temperature-coefficient (PTC) devices that could provide current-limiting capability over a very wide temperature range. The interdependence of the thermal behavior of these components on each other and on other thermally dependant processes like cell venting, separator meltdown and weld joint failure are also discussed.

  7. Impedance testing on cochlear implants after electroconvulsive therapy.

    PubMed

    McRackan, Theodore R; Rivas, Alejandro; Hedley-Williams, Andrea; Raj, Vidya; Dietrich, Mary S; Clark, Nathaniel K; Labadie, Robert F

    2014-12-01

    Cochlear implants (CI) are neural prostheses that restore hearing to individuals with profound sensorineural hearing loss. The surgically implanted component consists of an electrode array, which is threaded into the cochlea, and an electronic processor, which is buried under the skin behind the ear. The Food and Drug Administration and CI manufacturers contend that electroconvulsive therapy (ECT) is contraindicated in CI recipients owing to risk of damage to the implant and/or the patient. We hypothesized that ECT does no electrical damage to CIs. Ten functional CIs were implanted in 5 fresh cadaveric human heads. Each head then received a consecutive series of 12 unilateral ECT sessions applying maximum full pulse-width energy settings. Electroconvulsive therapy was delivered contralaterally to 5 CIs and ipsilaterally to 5 CIs. Electrical integrity testing (impedance testing) of the electrode array was performed before and after CI insertion, and after the first, third, fifth, seventh, ninth, and 12th ECT sessions. Electroconvulsive therapy was performed by a staff psychiatrist experienced with the technique. Explanted CIs were sent back to the manufacturer for further integrity testing. No electrical damage was identified during impedance testing. Overall, there were statistically significant decreases in impedances (consistent with no electrical damage) when comparing pre-ECT impedance values to those after 12 sessions. There was no statistically significant difference (P > 0.05) in impedance values comparing ipsilateral to contralateral ECT. Manufacturer testing revealed no other electrical damage to the CIs. Electroconvulsive therapy does not seem to cause any detectable electrical injury to CIs.

  8. Multivariable dynamic ankle mechanical impedance with relaxed muscles.

    PubMed

    Lee, Hyunglae; Krebs, Hermano Igo; Hogan, Neville

    2014-11-01

    Neurological or biomechanical disorders may distort ankle mechanical impedance and thereby impair locomotor function. This paper presents a quantitative characterization of multivariable ankle mechanical impedance of young healthy subjects when their muscles were relaxed, to serve as a baseline to compare with pathophysiological ankle properties of biomechanically and/or neurologically impaired patients. Measurements using a highly backdrivable wearable ankle robot combined with multi-input multi-output stochastic system identification methods enabled reliable characterization of ankle mechanical impedance in two degrees-of-freedom (DOFs) simultaneously, the sagittal and frontal planes. The characterization included important ankle properties unavailable from single DOF studies: coupling between DOFs and anisotropy as a function of frequency. Ankle impedance in joint coordinates showed responses largely consistent with a second-order system consisting of inertia, viscosity, and stiffness in both seated (knee flexed) and standing (knee straightened) postures. Stiffness in the sagittal plane was greater than in the frontal plane and furthermore, was greater when standing than when seated, most likely due to the stretch of bi-articular muscles (medial and lateral gastrocnemius). Very low off-diagonal partial coherences implied negligible coupling between dorsiflexion-plantarflexion and inversion-eversion. The directions of principal axes were tilted slightly counterclockwise from the original joint coordinates. The directional variation (anisotropy) of ankle impedance in the 2-D space formed by rotations in the sagittal and frontal planes exhibited a characteristic "peanut" shape, weak in inversion-eversion over a wide range of frequencies from the stiffness dominated region up to the inertia dominated region. Implications for the assessment of neurological and biomechanical impairments are discussed.

  9. Electrochemical Impedance Of Inorganic-Zinc-Coated Steel

    NASA Technical Reports Server (NTRS)

    Macdowell, Louis G.

    1992-01-01

    Report describes preliminary experiments to evaluate both direct-current and alternating-current electrochemical impedance measurements as candidate techniques for use in accelerated corrosion testing of mild-steel panels coated with inorganic zinc-rich primers and exposed to seaside air. Basic idea behind experiments to compare electrochemical impedance measurements with anticorrosion performances of coating materials to determine whether measurements can be used to predict performances. Part of continuing program to identify anticorrosion coating materials protecting steel panels adequately for as long as 5 years and beyond.

  10. Feasibility of Bioelectrical Impedance Spectroscopy Measurement before and after Thoracentesis

    PubMed Central

    Weyer, Sören; Pauly, Karolin; Napp, Andreas; Dreher, Michael; Leonhardt, Steffen; Marx, Nikolaus; Schauerte, Patrick; Mischke, Karl

    2015-01-01

    Background. Bioelectrical impedance spectroscopy is applied to measure changes in tissue composition. The aim of this study was to evaluate its feasibility in measuring the fluid shift after thoracentesis in patients with pleural effusion. Methods. 45 participants (21 with pleural effusion and 24 healthy subjects) were included. Bioelectrical impedance was analyzed for “Transthoracic,” “Foot to Foot,” “Foot to Hand,” and “Hand to Hand” vectors in low and high frequency domain before and after thoracentesis. Healthy subjects were measured at a single time point. Results. The mean volume of removed pleural effusion was 1169 ± 513 mL. The “Foot to Foot,” “Hand to Hand,” and “Foot to Hand” vector indicated a trend for increased bioelectrical impedance after thoracentesis. Values for the low frequency domain in the “Transthoracic” vector increased significantly (P < 0.001). A moderate correlation was observed between the amount of removed fluid and impedance change in the low frequency domain using the “Foot to Hand” vector (r = −0.7). Conclusion. Bioelectrical impedance changes in correlation with the thoracic fluid level. It was feasible to monitor significant fluid shifts and loss after thoracentesis in the “Transthoracic” vector by means of bioelectrical impedance spectroscopy. The trial is registered with Registration Numbers IRB EK206/11 and NCT01778270. PMID:25861647

  11. Quantification of temperature effect on impedance monitoring via PZT interface for prestressed tendon anchorage

    NASA Astrophysics Data System (ADS)

    Huynh, Thanh-Canh; Kim, Jeong-Tae

    2017-12-01

    In this study, the quantification of temperature effect on impedance monitoring via a PZT interface for prestressed tendon-anchorage is presented. Firstly, a PZT interface-based impedance monitoring technique is selected to monitor impedance signatures by predetermining sensitive frequency bands. An analytical model is designed to represent coupled dynamic responses of the PZT interface-tendon anchorage system. Secondly, experiments on a lab-scaled tendon anchorage are described. Impedance signatures are measured via the PZT interface for a series of temperature and prestress-force changes. Thirdly, temperature effects on measured impedance responses of the tendon anchorage are estimated by quantifying relative changes in impedance features (such as RMSD and CCD indices) induced by temperature variation and prestress-force change. Finally, finite element analyses are conducted to investigate the mechanism of temperature variation and prestress-loss effects on the impedance responses of prestressed tendon anchorage. Temperature effects on impedance monitoring are filtered by effective frequency shift-based algorithm for distinguishing prestress-loss effects on impedance signatures.

  12. Diagnosis of power fade mechanisms in high-power lithium-ion cells

    NASA Astrophysics Data System (ADS)

    Abraham, D. P.; Liu, J.; Chen, C. H.; Hyung, Y. E.; Stoll, M.; Elsen, N.; MacLaren, S.; Twesten, R.; Haasch, R.; Sammann, E.; Petrov, I.; Amine, K.; Henriksen, G.

    Hybrid electric vehicles (HEV) need long-lived high-power batteries as energy storage devices. Batteries based on lithium-ion technology can meet the high-power goals but have been unable to meet HEV calendar-life requirements. As part of the US Department of Energy's Advanced Technology Development (ATD) Program, diagnostic studies are being conducted on 18650-type lithium-ion cells that were subjected to accelerated aging tests at temperatures ranging from 40 to 70 °C. This article summarizes data obtained by gas chromatography, liquid chromatography, electron microscopy, X-ray spectroscopy and electrochemical techniques, and identifies cell components that are responsible for the observed impedance rise and power fade.

  13. Electrical impedance tomography spectroscopy method for characterising particles in solid-liquid phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Yanlin; Wang, Mi; Yao, Jun

    2014-04-11

    Electrical impedance tomography (EIT) is one of the process tomography techniques to provide an on-line non-invasive imaging for multiphase flow measurement. With EIT measurements, the images of impedance real part, impedance imaginary part, phase angle, and magnitude can be obtained. However, most of the applications of EIT in the process industries rely on the conductivity difference between two phases in fluids to obtain the concentration profiles. It is not common to use the imaginary part or phase angle due to the dominant change in conductivity or complication in the use of other impedance information. In a solid-liquid two phases systemmore » involving nano- or submicro-particles, characterisation of particles (e.g. particle size and concentration) have to rely on the measurement of impedance phase angle or imaginary part. Particles in a solution usually have an electrical double layer associated with their surfaces and can form an induced electrical dipole moment due to the polarization of the electrical double layer under the influence of an alternating electric field. Similar to EIT, electrical impedance spectroscopy (EIS) measurement can record the electrical impedance data, including impedance real part, imaginary part and phase angle (θ), which are caused by the polarization of the electrical double layer. These impedance data are related to the particle characteristics e.g. particle size, particle and ionic concentrations in the aqueous medium, therefore EIS method provides a capability for characterising the particles in suspensions. Electrical impedance tomography based on EIS measurement or namely, electrical impedance tomography spectroscopy (EITS) could image the spatial distribution of particle characteristics. In this paper, a new method, including test set-up and data analysis, for characterisation of particles in suspensions are developed through the experimental approach. The experimental results on tomographic imaging of colloidal

  14. Creating low-impedance tetrodes by electroplating with additives

    PubMed Central

    Ferguson, John E.; Boldt, Chris; Redish, A. David

    2011-01-01

    A tetrode is a bundle of four microwires that can record from multiple neurons simultaneously in the brain of a freely moving animal. Tetrodes are usually electroplated to reduce impedances from 2-3 MΩ to 200-500 kΩ (measured at 1 kHz), which increases the signal-to-noise ratio and allows for the recording of small amplitude signals. Tetrodes with even lower impedances could improve neural recordings but cannot be made using standard electroplating methods without shorting. We were able to electroplate tetrodes to 30-70 kΩ by adding polyethylene glycol (PEG) or multi-walled carbon nanotube (MWCNT) solutions to a commercial gold-plating solution. The MWCNTs and PEG acted as inhibitors in the electroplating process and created large-surface-area, low-impedance coatings on the tetrode tips. PMID:21379404

  15. Parallel plate radiofrequency ion thruster

    NASA Technical Reports Server (NTRS)

    Nakanishi, S.

    1982-01-01

    An 8-cm-diam. argon ion thruster is described. It is operated by applying 100 to 160 Mhz rf power across a thin plasma volume in a strongly divergent static magnetic field. No cathode or electron emitter is required to sustain a continuous wave plasma discharge over a broad range of propellant gas flow. Preliminary results indicate that a large fraction of the incident power is being reflected by impedance mismatching in the coupling structure. Resonance effects due to plasma thickness, magnetic field strength, and distribution are presented. Typical discharge losses obtained to date are 500 to 600 W per beam ampere at extracted beam currents up to 60 mA.

  16. Modified coaxial wire method for measurement of transfer impedance of beam position monitors

    NASA Astrophysics Data System (ADS)

    Kumar, Mukesh; Babbar, L. K.; Deo, R. K.; Puntambekar, T. A.; Senecha, V. K.

    2018-05-01

    The transfer impedance is a very important parameter of a beam position monitor (BPM) which relates its output signal with the beam current. The coaxial wire method is a standard technique to measure transfer impedance of the BPM. The conventional coaxial wire method requires impedance matching between coaxial wire and external circuits (vector network analyzer and associated cables). This paper presents a modified coaxial wire method for bench measurement of the transfer impedance of capacitive pickups like button electrodes and shoe box BPMs. Unlike the conventional coaxial wire method, in the modified coaxial wire method no impedance matching elements have been used between the device under test and the external circuit. The effect of impedance mismatch has been solved mathematically and a new expression of transfer impedance has been derived. The proposed method is verified through simulation of a button electrode BPM using cst studio suite. The new method is also applied to measure transfer impedance of a button electrode BPM developed for insertion devices of Indus-2 and the results are also compared with its simulations. Close agreement between measured and simulation results suggests that the modified coaxial wire setup can be exploited for the measurement of transfer impedance of capacitive BPMs like button electrodes and shoe box BPM.

  17. Electrochemical impedance spectroscopy system and methods for determining spatial locations of defects

    DOEpatents

    Glenn, David F.; Matthern, Gretchen E.; Propp, W. Alan; Glenn, Anne W.; Shaw, Peter G.

    2006-08-08

    A method and apparatus for determining spatial locations of defects in a material are described. The method includes providing a plurality of electrodes in contact with a material, applying a sinusoidal voltage to a select number of the electrodes at a predetermined frequency, determining gain and phase angle measurements at other of the electrodes in response to applying the sinusoidal voltage to the select number of electrodes, determining impedance values from the gain and phase angle measurements, computing an impedance spectrum for an area of the material from the determined impedance values, and comparing the computed impedance spectrum with a known impedance spectrum to identify spatial locations of defects in the material.

  18. A Portable Impedance Immunosensing System for Rapid Detection of Salmonella Typhimurium

    PubMed Central

    Wen, Tao; Wang, Ronghui; Sotero, America; Li, Yanbin

    2017-01-01

    Salmonella Typhimurium is one of the most dangerous foodborne pathogens and poses a significant threat to human health. The objective of this study was to develop a portable impedance immunosensing system for rapid and sensitive detection of S. Typhimurium in poultry. The developed portable impedance immunosensing system consisted of a gold interdigitated array microelectrode (IDAM), a signal acquisitive interface and a laptop computer with LabVIEW software. The IDAM was first functionalized with 16-Mercaptohexadecanoic acid, and streptavidin was immobilized onto the electrode surface through covalent bonding. Then, biotin-labelled S. Typhimurium-antibody was immobilized onto the IDAM surface. Samples were dropped on the surface of the IDAM and the S. Typhimurium cells in the samples were captured by the antibody on the IDAM. This resulted in impedance changes that were measured and displayed with the LabVIEW software. An equivalent circuit of the immunosensor demonstrated that the largest change in impedance was due to the electron-transfer resistance. The equivalent circuit showed an increase of 35% for the electron-transfer resistance value compared to the negative control. The calibration result indicated that the portable impedance immunosensing system could be used to measure the standard impedance elements, and it had a maximum error of measurement of approximately 13%. For pure culture detection, the system had a linear relationship between the impedance change and the logarithmic value of S. Typhimurium cells ranging from 76 to 7.6 × 106 CFU (colony-forming unit) (50 μL)−1. The immunosensor also had a correlation coefficient of 0.98, and a high specificity for detection of S. Typhimurium cells with a limit of detection (LOD) of 102 CFU (50 μL)−1. The detection time from the moment a sample was introduced to the display of the results was 1 h. To conclude, the portable impedance immunosensing system for detection of S. Typhimurium achieved an LOD

  19. A Portable Impedance Immunosensing System for Rapid Detection of Salmonella Typhimurium.

    PubMed

    Wen, Tao; Wang, Ronghui; Sotero, America; Li, Yanbin

    2017-08-28

    Salmonella Typhimurium is one of the most dangerous foodborne pathogens and poses a significant threat to human health. The objective of this study was to develop a portable impedance immunosensing system for rapid and sensitive detection of S . Typhimurium in poultry. The developed portable impedance immunosensing system consisted of a gold interdigitated array microelectrode (IDAM), a signal acquisitive interface and a laptop computer with LabVIEW software. The IDAM was first functionalized with 16-Mercaptohexadecanoic acid, and streptavidin was immobilized onto the electrode surface through covalent bonding. Then, biotin-labelled S . Typhimurium -antibody was immobilized onto the IDAM surface. Samples were dropped on the surface of the IDAM and the S . Typhimurium cells in the samples were captured by the antibody on the IDAM. This resulted in impedance changes that were measured and displayed with the LabVIEW software. An equivalent circuit of the immunosensor demonstrated that the largest change in impedance was due to the electron-transfer resistance. The equivalent circuit showed an increase of 35% for the electron-transfer resistance value compared to the negative control. The calibration result indicated that the portable impedance immunosensing system could be used to measure the standard impedance elements, and it had a maximum error of measurement of approximately 13%. For pure culture detection, the system had a linear relationship between the impedance change and the logarithmic value of S . Typhimurium cells ranging from 76 to 7.6 × 10⁶ CFU (colony-forming unit) (50 μL) -1 . The immunosensor also had a correlation coefficient of 0.98, and a high specificity for detection of S . Typhimurium cells with a limit of detection (LOD) of 10² CFU (50 μL) -1 . The detection time from the moment a sample was introduced to the display of the results was 1 h. To conclude, the portable impedance immunosensing system for detection of S . Typhimurium achieved

  20. Effects of tissue impedance on heat generation during RF delivery with the Thermage system

    NASA Astrophysics Data System (ADS)

    Tomkoria, Sara; Pope, Karl

    2005-04-01

    The Thermage ThermaCool TC system is a non-ablative RF device designed to promote tissue tightening and contouring. The system delivers RF energy to a target area under the skin, with volumetric tissue heating in that area. While the amount of energy delivered to a patient can be controlled by ThermaCool system settings, the distribution of energy to the treatment area and underlying layers is variable from individual to individual due to differences in body composition. The present study investigated how local tissue impedance affects the amount of discomfort experienced by patients during RF energy delivery. Discomfort results from heat generation in the treatment area. By using features of the ThermaCool TC System, local impedance (impedance of the treatment area), bulk impedance (impedance of the underlying tissue layers), and total impedance (the sum of local and bulk impedance) were measured for 35 patients. For each patient, impedance measurements were compared to discomfort levels expressed during treatment. Analysis of whole body, local, and bulk impedance values indicate that the percent of total body impedance in the local treatment area contributes to discomfort levels expressed by patients during treatment.

  1. Optical Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Yu, Francis T. S.; Jutamulia, Suganda

    2008-10-01

    Contributors; Preface; 1. Pattern recognition with optics Francis T. S. Yu and Don A. Gregory; 2. Hybrid neural networks for nonlinear pattern recognition Taiwei Lu; 3. Wavelets, optics, and pattern recognition Yao Li and Yunglong Sheng; 4. Applications of the fractional Fourier transform to optical pattern recognition David Mendlovic, Zeev Zalesky and Haldum M. Oxaktas; 5. Optical implementation of mathematical morphology Tien-Hsin Chao; 6. Nonlinear optical correlators with improved discrimination capability for object location and recognition Leonid P. Yaroslavsky; 7. Distortion-invariant quadratic filters Gregory Gheen; 8. Composite filter synthesis as applied to pattern recognition Shizhou Yin and Guowen Lu; 9. Iterative procedures in electro-optical pattern recognition Joseph Shamir; 10. Optoelectronic hybrid system for three-dimensional object pattern recognition Guoguang Mu, Mingzhe Lu and Ying Sun; 11. Applications of photrefractive devices in optical pattern recognition Ziangyang Yang; 12. Optical pattern recognition with microlasers Eung-Gi Paek; 13. Optical properties and applications of bacteriorhodopsin Q. Wang Song and Yu-He Zhang; 14. Liquid-crystal spatial light modulators Aris Tanone and Suganda Jutamulia; 15. Representations of fully complex functions on real-time spatial light modulators Robert W. Cohn and Laurence G. Hassbrook; Index.

  2. Alkali-Metal-Ion-Functionalized Graphene Oxide as a Superior Anode Material for Sodium-Ion Batteries.

    PubMed

    Wan, Fang; Li, Yu-Han; Liu, Dai-Huo; Guo, Jin-Zhi; Sun, Hai-Zhu; Zhang, Jing-Ping; Wu, Xing-Long

    2016-06-06

    Although graphene oxide (GO) has large interlayer spacing, it is still inappropriate to use it as an anode for sodium-ion batteries (SIBs) because of the existence of H-bonding between the layers and ultralow electrical conductivity which impedes the Na(+) and e(-) transformation. To solve these issues, chemical, thermal, and electrochemical procedures are traditionally employed to reduce GO nanosheets. However, these strategies are still unscalable, consume high amounts of energy, and are expensive for practical application. Here, for the first time, we describe the superior Na storage of unreduced GO by a simple and scalable alkali-metal-ion (Li(+) , Na(+) , K(+) )-functionalized process. The various alkali metals ions, connecting with the oxygen on GO, have played different effects on morphology, porosity, degree of disorder, and electrical conductivity, which are crucial for Na-storage capabilities. Electrochemical tests demonstrated that sodium-ion-functionalized GO (GNa) has shown outstanding Na-storage performance in terms of excellent rate capability and long-term cycle life (110 mAh g(-1) after 600 cycles at 1 A g(-1) ) owing to its high BET area, appropriate mesopore, high degree of disorder, and improved electrical conductivity. Theoretical calculations were performed using the generalized gradient approximation (GGA) to further study the Na-storage capabilities of functionalized GO. These calculations have indicated that the Na-O bond has the lowest binding energy, which is beneficial to insertion/extraction of the sodium ion, hence the GNa has shown the best Na-storage properties among all comparatives functionalized by other alkali metal ions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A new selective developmental deficit: Impaired object recognition with normal face recognition.

    PubMed

    Germine, Laura; Cashdollar, Nathan; Düzel, Emrah; Duchaine, Bradley

    2011-05-01

    Studies of developmental deficits in face recognition, or developmental prosopagnosia, have shown that individuals who have not suffered brain damage can show face recognition impairments coupled with normal object recognition (Duchaine and Nakayama, 2005; Duchaine et al., 2006; Nunn et al., 2001). However, no developmental cases with the opposite dissociation - normal face recognition with impaired object recognition - have been reported. The existence of a case of non-face developmental visual agnosia would indicate that the development of normal face recognition mechanisms does not rely on the development of normal object recognition mechanisms. To see whether a developmental variant of non-face visual object agnosia exists, we conducted a series of web-based object and face recognition tests to screen for individuals showing object recognition memory impairments but not face recognition impairments. Through this screening process, we identified AW, an otherwise normal 19-year-old female, who was then tested in the lab on face and object recognition tests. AW's performance was impaired in within-class visual recognition memory across six different visual categories (guns, horses, scenes, tools, doors, and cars). In contrast, she scored normally on seven tests of face recognition, tests of memory for two other object categories (houses and glasses), and tests of recall memory for visual shapes. Testing confirmed that her impairment was not related to a general deficit in lower-level perception, object perception, basic-level recognition, or memory. AW's results provide the first neuropsychological evidence that recognition memory for non-face visual object categories can be selectively impaired in individuals without brain damage or other memory impairment. These results indicate that the development of recognition memory for faces does not depend on intact object recognition memory and provide further evidence for category-specific dissociations in visual

  4. Complex Impedance of Fast Optical Transition Edge Sensors up to 30 MHz

    NASA Astrophysics Data System (ADS)

    Hattori, K.; Kobayashi, R.; Numata, T.; Inoue, S.; Fukuda, D.

    2018-03-01

    Optical transition edge sensors (TESs) are characterized by a very fast response, of the order of μs, which is 10^3 times faster than TESs for X-ray and gamma-ray. To extract important parameters associated with the optical TES, complex impedances at high frequencies (> 1 MHz) need to be measured, where the parasitic impedance in the circuit and reflections of electrical signals due to discontinuities in the characteristic impedance of the readout circuits become significant. This prevents the measurements of the current sensitivity β , which can be extracted from the complex impedance. In usual setups, it is hard to build a circuit model taking into account the parasitic impedances and reflections. In this study, we present an alternative method to estimate a transfer function without investigating the details of the entire circuit. Based on this method, the complex impedance up to 30 MHz was measured. The parameters were extracted from the impedance and were compared with other measurements. Using these parameters, we calculated the theoretical limit on an energy resolution and compared it with the measured energy resolution. In this paper, the reasons for the deviation of the measured value from theoretically predicted values will be discussed.

  5. Noninvasive electrical impedance sensor for in vivo tissue discrimination at radio frequencies.

    PubMed

    Dai, Yu; Du, Jun; Yang, Qing; Zhang, Jianxun

    2014-09-01

    Compared to traditional open surgery, minimally invasive surgery (MIS) allows for a more rapid and less painful recovery. However, the lack of significant haptic feedback in MIS can make tissue discrimination difficult. This paper tests a noninvasive electrical impedance sensor for in vivo discrimination of tissue types in MIS. The sensor consists of two stainless steel spherical electrodes used to measure the impedance spectra over the frequency range of 200 kHz to 5 MHz. The sensor helps ensure free movement on an organ surface and prevents soft tissues from being injured during impedance measurement. Since the recorded electrical impedance is correlated with the force pressed on the electrode and the mechanical property of the tissue, the electrode-tissue contact impedance is calculated theoretically. We show that the standard deviation of the impedance ratio at each frequency point is sufficient to distinguish different tissue types. Both in vitro experiment in a pig kidney and in vivo experiment in rabbit organs were performed to demonstrate the feasibility of the electrical impedance sensor. The experimental results indicated that the sensor, used with the proposed data-processing method, provides accurate and reliable biological tissue discrimination. © 2014 Wiley Periodicals, Inc.

  6. Broadband spectroscopy of dynamic impedances with short chirp pulses.

    PubMed

    Min, M; Land, R; Paavle, T; Parve, T; Annus, P; Trebbels, D

    2011-07-01

    An impedance spectrum of dynamic systems is time dependent. Fast impedance changes take place, for example, in high throughput microfluidic devices and in operating cardiovascular systems. Measurements must be as short as possible to avoid significant impedance changes during the spectrum analysis, and as long as possible for enlarging the excitation energy and obtaining a better signal-to-noise ratio (SNR). The authors propose to use specific short chirp pulses for excitation. Thanks to the specific properties of the chirp function, it is possible to meet the needs for a spectrum bandwidth, measurement time and SNR so that the most accurate impedance spectrogram can be obtained. The chirp wave excitation can include thousands of cycles when the impedance changes slowly, but in the case of very high speed changes it can be shorter than a single cycle, preserving the same excitation bandwidth. For example, a 100 kHz bandwidth can be covered by the chirp pulse with durations from 10 µs to 1 s; only its excitation energy differs also 10(5) times. After discussing theoretical short chirp properties in detail, the authors show how to generate short chirps in the microsecond range with a bandwidth up to a few MHz by using digital synthesis architectures developed inside a low-cost standard field programmable gate array.

  7. Measuring impedance in congestive heart failure: Current options and clinical applications

    PubMed Central

    Tang, W. H. Wilson; Tong, Wilson

    2011-01-01

    Measurement of impedance is becoming increasingly available in the clinical setting as a tool for assessing hemodynamics and volume status in patients with heart failure. The 2 major categories of impedance assessment are the band electrode method and the implanted device lead method. The exact sources of the impedance signal are complex and can be influenced by physiologic effects such as blood volume, fluid, and positioning. This article provides a critical review of our current understanding and promises of impedance measurements, the techniques that have evolved, as well as the evidence and limitations regarding their clinical applications in the setting of heart failure management. PMID:19249408

  8. Fabrication of spinel Li4-xTi5O12 via ion exchange for high-rate lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Cheng, Chongling; Liu, Hongjiang; Li, Jun; Xue, Xin; Cao, Hui; Wang, Dayang; Shi, Liyi

    2015-06-01

    The present work demonstrates that lithium ions can be stepwise substituted by protons from spinel Li4Ti5O12 crystalline particles though simple ion-exchange in aqueous HCl solution with the aid of heat treatment. This enables us to continuously tune the Li-to-Ti stoichiometric ratios from 0.80 to 0.59, 0.41, 0.21, 0.15, and 0.09, thus transforming Li4Ti5O12 to Li4-xTi5O12 nanocrystals. The resulting nanocrystals maintain the spinel crystal structure when x becomes smaller than 3. Among as-prepared the Li4-xTi5O12 crystalline particles, Li1Ti5O12 shows the highest capacity of 193 mAh g-1 at 1C and 148 mAh g-1 at 20C, lower current impedance (47 Ω), significantly improved rate capability and fairly long cycle life. This excellent electrochemical performance makes spinel Li4-xTi5O12 particles as a promising anode candidate for lithium ion batteries superior.

  9. Understanding the initial irreversibility of metal sulfides for sodium-ion batteries via operando techniques

    DOE PAGES

    Wang, Liguang; Wang, Jiajun; Guo, Fangmin; ...

    2018-11-13

    Transition metal sulfides are promising high capacity anodes for sodium-ion batteries in terms of the conversion reaction with multiple alkali metal ions. Nonetheless, some inherent challenges such as sluggish sodium ion diffusion kinetics, large volume change, and poor cycle stability limit their implementation. Addressing these issues necessitates a comprehensive understanding the complex sodium ion storage mechanism particularly at the initial cycle. Here, taking nickel subsulfide as a model material, we reveal the complicated conversion reaction mechanism upon the first cycle by combining in operando 2D transmission X-ray microscopy with X-ray absorption spectroscopy, ex-situ 3D nano-tomography, high-energy X-ray diffraction and electrochemicalmore » impedance spectroscopy. This study demonstrates that the microstructure evolution, inherent slow sodium ions diffusion kinetics, and slow ion mobility at the two-phase interface contribute to the high irreversible capacity upon the first cycle. Finally, such understandings are critical for developing the conversion reaction materials with the desired electrochemical activity and stability.« less

  10. Understanding the initial irreversibility of metal sulfides for sodium-ion batteries via operando techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Liguang; Wang, Jiajun; Guo, Fangmin

    Transition metal sulfides are promising high capacity anodes for sodium-ion batteries in terms of the conversion reaction with multiple alkali metal ions. Nonetheless, some inherent challenges such as sluggish sodium ion diffusion kinetics, large volume change, and poor cycle stability limit their implementation. Addressing these issues necessitates a comprehensive understanding the complex sodium ion storage mechanism particularly at the initial cycle. Here, taking nickel subsulfide as a model material, we reveal the complicated conversion reaction mechanism upon the first cycle by combining in operando 2D transmission X-ray microscopy with X-ray absorption spectroscopy, ex-situ 3D nano-tomography, high-energy X-ray diffraction and electrochemicalmore » impedance spectroscopy. This study demonstrates that the microstructure evolution, inherent slow sodium ions diffusion kinetics, and slow ion mobility at the two-phase interface contribute to the high irreversible capacity upon the first cycle. Finally, such understandings are critical for developing the conversion reaction materials with the desired electrochemical activity and stability.« less

  11. Time-implicit fluid/particle hybrid simulations of the anode plasma dynamics in ion diodes

    NASA Astrophysics Data System (ADS)

    Pointon, T. D.; Boine-Frankenheim, O.; Mehlhorn, T. A.

    1997-04-01

    Applied-B ion diode experiments with Li+1 ion sources on the PBFA II and SABRE ion accelerators show that early in the pulse the beam is essentially pure Li+1, but is rapidly overwhelmed by impurity ions, called the `parasitic load'. Furthermore, the increasing parasitic current rapidly drops the diode voltage, limiting the accelerator power that can be coupled into the beam. This `impedance collapse' is believed to arise from the desorption of impurity neutrals from the anode surface. These neutrals charge-exchange with the ions, rapidly expanding into the anode-cathode gap where they are ionized by beam ions or secondary electrons. In order to model these processes we are developing a 1 1/2 D electrostatic multifluid/PIC (hybrid) code, designed to self-consistently simulate collisional plasma/neutral systems with an arbitrary number of interacting species, over greatly varying density regimes and together with applied electric and magnetic fields.

  12. Skin-electrode impedance measurement during ECG acquisition: method’s validation

    NASA Astrophysics Data System (ADS)

    Casal, Leonardo; La Mura, Guillermo

    2016-04-01

    Skm-electrode impedance measurement can provide valuable information prior. dunng and post electrocardiographic (ECG) or electroencephalographs (EEG) acquisitions. In this work we validate a method for skm-electrode impedance measurement using test circuits with known resistance and capacitor values, at different frequencies for injected excitation current. Finally the method is successfully used for impedance measurement during ECG acquisition on a subject usmg 125 Hz and 6 nA square wave excitation signal at instrumentation amplifier mput. The method can be used for many electrodes configuration.

  13. A Numerical Theory for Impedance Education in Three-Dimensional Normal Incidence Tubes

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Jones, Michael G.

    2016-01-01

    A method for educing the locally-reacting acoustic impedance of a test sample mounted in a 3-D normal incidence impedance tube is presented and validated. The unique feature of the method is that the excitation frequency (or duct geometry) may be such that high-order duct modes may exist. The method educes the impedance, iteratively, by minimizing an objective function consisting of the difference between the measured and numerically computed acoustic pressure at preselected measurement points in the duct. The method is validated on planar and high-order mode sources with data synthesized from exact mode theory. These data are then subjected to random jitter to simulate the effects of measurement uncertainties on the educed impedance spectrum. The primary conclusions of the study are 1) Without random jitter the method is in excellent agreement with that for known impedance samples, and 2) Random jitter that is compatible to that found in a typical experiment has minimal impact on the accuracy of the educed impedance.

  14. Giant magneto-impedance and stress-impedance effects of microwire composites for sensing applications

    NASA Astrophysics Data System (ADS)

    Qin, F. X.; Peng, H. X.; Popov, V. V.; Phan, M. H.

    2011-02-01

    Composites consisting of glass-coated amorphous microwire Co 68.59Fe 4.84Si 12.41B 14.16 and 913 E-glass prepregs were designed and fabricated. The influences of tensile stress, annealing and number of composite layers on the giant magneto-impedance (GMI) and giant stress-impedance (GSI) effects in these composites were investigated systematically. It was found that the application of tensile stress along the microwire axis or an increase in the number of composite layers reduced the GMI effect and increased the circular anisotropy field, while the annealing treatment had a reverse effect. The value of matrix-wire interfacial stress calculated via the GMI profiles coincided with the value of the applied effective tensile stress to yield similar GMI profiles. Enhancement of the GSI effect was achieved in the composites relative to their single microwire inclusion. These findings are important for the development of functional microwire-based composites for magnetic- and stress-sensing applications. They also open up a new route for probing the interfacial stress in fibre-reinforced polymer (FRP) composites.

  15. a Compact, Rf-Driven Pulsed Ion Source for Intense Neutron Generation

    NASA Astrophysics Data System (ADS)

    Perkins, L. T.; Celata, C. M.; Lee, Y.; Leung, K. N.; Picard, D. S.; Vilaithong, R.; Williams, M. D.; Wutte, D.

    1997-05-01

    Lawrence Berkeley National Laboratory is currently developing a compact, sealed-accelerator-tube neutron generator capable of producing a neutron flux in the range of 109 to 1010 D-T neutrons per second. The ion source, a miniaturized variation of earlier 2 MHz radio-frequency (rf)-driven multicusp ion sources, is designed to fit within a #197# 5 cm diameter borehole. Typical operating parameters include repetition rates up to 100 pps, with pulse widths between 10 and 80 us and source pressures as low as #197# 5 mTorr. In this configuration, peak extractable hydrogen current exceeding 35 mA from a 2 mm diameter aperture together with H1+ yields over 94% have been achieved. The required rf impedance matching network has been miniaturized to #197# 5 cm diameter. The accelerator column is a triode design using the IGUN ion optics codes and allows for electron suppression. Results from the testing of the integrated matching network-ion source-accelerator system will be presented.

  16. Multivariable Dynamic Ankle Mechanical Impedance With Relaxed Muscles

    PubMed Central

    Lee, Hyunglae; Krebs, Hermano Igo; Hogan, Neville

    2015-01-01

    Neurological or biomechanical disorders may distort ankle mechanical impedance and thereby impair locomotor function. This paper presents a quantitative characterization of multivariable ankle mechanical impedance of young healthy subjects when their muscles were relaxed, to serve as a baseline to compare with pathophysiological ankle properties of biomechanically and/or neurologically impaired patients. Measurements using a highly backdrivable wearable ankle robot combined with multi-input multi-output stochastic system identification methods enabled reliable characterization of ankle mechanical impedance in two degrees-of-freedom (DOFs) simultaneously, the sagittal and frontal planes. The characterization included important ankle properties unavailable from single DOF studies: coupling between DOFs and anisotropy as a function of frequency. Ankle impedance in joint coordinates showed responses largely consistent with a second-order system consisting of inertia, viscosity, and stiffness in both seated (knee flexed) and standing (knee straightened) postures. Stiffness in the sagittal plane was greater than in the frontal plane and furthermore, was greater when standing than when seated, most likely due to the stretch of bi-articular muscles (medial and lateral gastrocnemius). Very low off-diagonal partial coherences implied negligible coupling between dorsiflexion-plantarflexion and inversion-eversion. The directions of principal axes were tilted slightly counterclockwise from the original joint coordinates. The directional variation (anisotropy) of ankle impedance in the 2-D space formed by rotations in the sagittal and frontal planes exhibited a characteristic “peanut” shape, weak in inversion-eversion over a wide range of frequencies from the stiffness dominated region up to the inertia dominated region. Implications for the assessment of neurological and biomechanical impairments are discussed. PMID:24686292

  17. Impedance Eduction in Sound Fields With Peripherally Varying Liners and Flow

    NASA Technical Reports Server (NTRS)

    Watson, W. R.; Jones, M. G.

    2015-01-01

    A two-dimensional impedance eduction theory is extended to three-dimensional sound fields and peripherally varying duct liners. The approach is to first measure the acoustic pressure field at a series of flush-mounted wall microphones located around the periphery of the flow duct. The numerical solution for the acoustic pressure field at these microphones is also obtained by solving the three-dimensional convected Helmholtz equation using the finite element method. A quadratic objective function based on the difference between the measured and finite element solution is constructed and the unknown impedance function is obtained by minimizing this objective function. Impedance spectra educed for two uniform-structure liners (a wire-mesh and a conventional liner) and a hard-soft-hard peripherally varying liner (for which the soft segment is that of the conventional liner) are presented. Results are presented at three mean flow Mach numbers and fourteen sound source frequencies. The impedance spectra of the uniform-structure liners are also computed using a two-dimensional impedance eduction theory. The primary conclusions of the study are: 1) when measured data is used with the uniform-structure liners, the three-dimensional theory reproduces the same impedance spectra as the two-dimensional theory except for frequencies corresponding to very low or very high liner attenuation; and 2) good agreement between the educed impedance spectra of the uniform structure conventional liner and the soft segment of the peripherally varying liner is obtained.

  18. Determination of Complex Microcalorimeter Parameters with Impedance Measurements

    NASA Technical Reports Server (NTRS)

    Saab, T.; Bandler, S. R.; Chervenak, J.; Figueroa-Feliciano, E.; Finkbeiner, F.; Iyomoto, N.; Kelley, R.; Kilbourne, C. A.; Lindeman, M. A.; Porter, F. S.; hide

    2005-01-01

    The proper understanding and modeling of a microcalorimeter s response requires the accurate knowledge of a handful of parameters, such as C, G, alpha, . . . . While a few of these, such 8s the normal state resistance and the total thermal conductance to the heat bath (G) are directly determined from the DC IV characteristics, some others, notoriously the heat capacity (C) and alpha, appear in degenerate combinations in most measurable quantities. The case of a complex microcalorimeter, i.e. one in which the absorber s heat capacity is connected by a finite thermal impedance to the sensor, and subsequently by another thermal impedance to the heat bath, results in an added ambiguity in the determination of the individual C's and G's. In general, the dependence of the microcalorimeter s complex impedance on these parameters varies with frequency. This variation allows us to determine the individual parameters by fitting the prediction of the microcalorimeter model to the impedance data. We describe in this paper our efforts at characterizing the Goddard X-ray microcalorimeters. Using the parameters determined with this method we them compare the pulse shape and noise spectra predicted by the microcalorimeter model to data taken with the same devices.

  19. Multivariable Dynamic Ankle Mechanical Impedance With Active Muscles

    PubMed Central

    Lee, Hyunglae; Krebs, Hermano Igo; Hogan, Neville

    2015-01-01

    Multivariable dynamic ankle mechanical impedance in two coupled degrees-of-freedom (DOFs) was quantified when muscles were active. Measurements were performed at five different target activation levels of tibialis anterior and soleus, from 10% to 30% of maximum voluntary contraction (MVC) with increments of 5% MVC. Interestingly, several ankle behaviors characterized in our previous study of the relaxed ankle were observed with muscles active: ankle mechanical impedance in joint coordinates showed responses largely consistent with a second-order system consisting of inertia, viscosity, and stiffness; stiffness was greater in the sagittal plane than in the frontal plane at all activation conditions for all subjects; and the coupling between dorsiflexion–plantarflexion and inversion–eversion was small—the two DOF measurements were well explained by a strictly diagonal impedance matrix. In general, ankle stiffness increased linearly with muscle activation in all directions in the 2-D space formed by the sagittal and frontal planes, but more in the sagittal than in the frontal plane, resulting in an accentuated “peanut shape.” This characterization of young healthy subjects’ ankle mechanical impedance with active muscles will serve as a baseline to investigate pathophysiological ankle behaviors of biomechanically and/or neurologically impaired patients. PMID:25203497

  20. Evaluation of a multi-point method for determining acoustic impedance

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Parrott, Tony L.

    1988-01-01

    An investigation was conducted to explore potential improvements provided by a Multi-Point Method (MPM) over the Standing Wave Method (SWM) and Two-Microphone Method (TMM) for determining acoustic impedance. A wave propagation model was developed to model the standing wave pattern in an impedance tube. The acoustic impedance of a test specimen was calculated from a best fit of this standing wave pattern to pressure measurements obtained along the impedance tube centerline. Three measurement spacing distributions were examined: uniform, random, and selective. Calculated standing wave patterns match the point pressure measurement distributions with good agreement for a reflection factor magnitude range of 0.004 to 0.999. Comparisons of results using 2, 3, 6, and 18 measurement points showed that the most consistent results are obtained when using at least 6 evenly spaced pressure measurements per half-wavelength. Also, data were acquired with broadband noise added to the discrete frequency noise and impedances were calculated using the MPM and TMM algorithms. The results indicate that the MPM will be superior to the TMM in the presence of significant broadband noise levels associated with mean flow.

  1. TRANSVERSE ELECTRIC IMPEDANCE OF THE SQUID GIANT AXON

    PubMed Central

    Curtis, Howard J.; Cole, Kenneth S.

    1938-01-01

    The impedance of the excised giant axon from hindmost stellar nerve of Loligo pealii has been measured over the frequency range from 1 to 2500 kilocycles per second. The measurements have been made with the current flow perpendicular to the axis of the axon to permit a relatively simple analysis of the data. It has been found that the axon membrane has a polarization impedance with an average phase angle of 76° and an average capacity of 1.1µf./cm2 at 1 kilocycle. The direct current resistance of the membrane could not be measured, but was greater than 3 ohm cm.2 and the average internal specific resistance was four times that of sea water. There was no detectable change in the membrane impedance when the axon lost excitability, but some time later it decreased to zero. PMID:19873081

  2. Using impedance cardiography with postural change to stratify patients with hypertension.

    PubMed

    DeMarzo, Arthur P

    2011-06-01

    Early detection of cardiovascular disease in patients with hypertension could initiate appropriate treatment to control blood pressure and prevent the progression of cardiovascular disease. The goal of this study was to show how impedance cardiography waveform analysis with postural change can be used to detect subclinical cardiovascular disease in patients with high blood pressure. Patients with high blood pressure had impedance cardiography data obtained in two positions, standing upright and supine. In 50 adults, impedance cardiography indicated that all patients had abnormal data, with 44 (88%) having multiple abnormalities. Impedance cardiography showed 32 (64%) had ventricular dysfunction, 48 (96%) had vascular load abnormalities, 34 (68%) had hemodynamic abnormalities, 2 (4%) had hypovolemia, and 3 (6%) had hypervolemia. Hypertensive patients have diverse cardiovascular abnormalities that can be quantified by impedance cardiography. By stratifying patients with ventricular, vascular, and hemodynamic abnormalities, treatment could be customized based on the abnormal underlying mechanisms with the potential to rapidly control blood pressure, prevent progression of cardiovascular disease, and possibly reverse remodeling.

  3. A Quasi-3-D Theory for Impedance Eduction in Uniform Grazing Flow

    NASA Technical Reports Server (NTRS)

    Watson, W. R.; Jones, M. G.; Parrott, T. L.

    2005-01-01

    A 2-D impedance eduction methodology is extended to quasi-3-D sound fields in uniform or shearing mean flow. We introduce a nonlocal, nonreflecting boundary condition to terminate the duct and then educe the impedance by minimizing an objective function. The introduction of a parallel, sparse, equation solver significantly reduces the wall clock time for educing the impedance when compared to that of the sequential band solver used in the 2-D methodology. The accuracy, efficiency, and robustness of the methodology is demonstrated using two examples. In the first example, we show that the method reproduces the known impedance of a ceramic tubular test liner. In the second example, we illustrate that the approach educes the impedance of a four-segment liner where the first, second, and fourth segments consist of a perforated face sheet bonded to honeycomb, and the third segment is a cut from the ceramic tubular test liner. The ability of the method to educe the impedances of multisegmented liners has the potential to significantly reduce the amount of time and cost required to determine the impedance of several uniform liners by allowing them to be placed in series in the test section and to educe the impedance of each segment using a single numerical experiment. Finally, we probe the objective function in great detail and show that it contains a single minimum. Thus, our objective function is ideal for use with local, inexpensive, gradient-based optimizers.

  4. Electrolyte Structure near Electrode Interfaces in Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Lordi, Vincenzo; Ong, Mitchell; Verners, Osvalds; van Duin, Adri; Draeger, Erik; Pask, John

    2014-03-01

    The performance of lithium-ion secondary batteries (LIBs) is strongly tied to electrochemistry and ionic transport near the electrode-electrolyte interface. Changes in ion solvation near the interface affect ion conductivity and also are associated with the formation and evolution of solid-electrolyte interphase (SEI) layers, which impede transport but also passivate the interface. Thus, understanding these effects is critical to optimizing battery performance. Here we present molecular dynamics (MD) simulations of typical organic liquid LIB electrolytes in contact with graphite electrodes to understand differences in molecular structure and solvation near the interface compared to the bulk electrolyte. Results for different graphite terminations are presented. We compare the results of density-functional based MD to the empirical reactive forcefield ReaxFF and the non-reactive, non-polarizable COMPASS forcefield. Notable differences in the predictive power of each of these techniques are discussed. Prepared by LLNL under Contract DE-AC52-07NA27344.

  5. Fundamental Investigation of Si Anode in Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Wu, James J.; Bennett, William R.

    2012-01-01

    Silicon is a promising and attractive anode material to replace graphite for high capacity lithium ion cells since its theoretical capacity is approximately 10 times of graphite and it is an abundant element on earth. However, there are challenges associated with using silicon as Li-ion anode due to the significant first cycle irreversible capacity loss and subsequent rapid capacity fade during cycling. In this paper, cyclic voltammetry and electrochemical impedance spectroscopy are used to build a fundamental understanding of silicon anodes. The results show that it is difficult to form the SEI film on the surface of Si anode during the first cycle, the lithium ion insertion and de-insertion kinetics for Si are sluggish, and the cell internal resistance changes with the state of lithiation after electrochemical cycling. These results are compared with those for extensively studied graphite anodes. The understanding gained from this study will help to design better Si anodes.

  6. Sensitivity of diamond-capped impedance transducer to Tröger's base derivative.

    PubMed

    Stehlik, Stepan; Izak, Tibor; Kromka, Alexander; Dolenský, Bohumil; Havlík, Martin; Rezek, Bohuslav

    2012-08-01

    Sensitivity of an intrinsic nanocrystalline diamond (NCD) layer to naphthalene Tröger's base derivative decorated with pyrrole groups (TBPyr) was characterized by impedance spectroscopy. The transducer was made of Au interdigitated electrodes (IDE) with 50 μm spacing on alumina substrate which were capped with the NCD layer. The NCD-capped transducer with H-termination was able to electrically distinguish TBPyr molecules (the change of surface resistance within 30-60 kΩ) adsorbed from methanol in concentrations of 0.04 mg/mL to 40 mg/mL. An exponential decay of the surface resistance with time was observed and attributed to the readsorption of air moisture after methanol evaporation. After surface oxidation the NCD cap layer did not show any leakage due to NCD grain boundaries. We analyzed electronic transport in the transducer and propose a model for the sensing mechanism based on surface ion replacement.

  7. Selective recognition of dysprosium(III) ions by enhanced chemiluminescence CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Hosseini, Morteza; Ganjali, Mohammad R.; Vaezi, Zahra; Faridbod, Farnoush; Arabsorkhi, Batool; Sheikhha, Mohammad H.

    2014-03-01

    The intensity of emitted light from CdSe quantum dots (QDs)-H2O2 is described as a novel chemiluminescence (CL) reaction for determination of dysprosium. This reaction is based on the catalytic effect of Dy3+ ions, causing a significant increase in the light emission, as a result of the reaction of quantum dots (QDs) with hydrogen peroxide. In the optimum conditions, this method was satisfactorily described by linear calibration curve in the range of 8.3 × 10-7-5.0 × 10-6 M, the detection limit of 6.0 × 10-8 M, and the relative standard deviation for five determinations of 2.5 × 10-6 M Dy3+ 3.2%. The main experimental advantage of the proposed method is its selective to Dy3+ ions compared with common coexisting cations, therefore, it was successfully applied for the determination of dysprosium ions in water samples.

  8. Improved corrosion resistance on biodegradable magnesium by zinc and aluminum ion implantation

    NASA Astrophysics Data System (ADS)

    Xu, Ruizhen; Yang, Xiongbo; Suen, Kai Wong; Wu, Guosong; Li, Penghui; Chu, Paul K.

    2012-12-01

    Magnesium and its alloys have promising applications as biodegradable materials, and plasma ion implantation can enhance the corrosion resistance by modifying the surface composition. In this study, suitable amounts of zinc and aluminum are plasma-implanted into pure magnesium. The surface composition, phases, and chemical states are determined, and electrochemical tests and electrochemical impedance spectroscopy (EIS) are conducted to investigate the surface corrosion behavior and elucidate the mechanism. The corrosion resistance enhancement after ion implantation is believed to stem from the more compact oxide film composed of magnesium oxide and aluminum oxide as well as the appearance of the β-Mg17Al12 phase.

  9. Acute evaluation of transthoracic impedance vectors using ICD leads.

    PubMed

    Gottfridsson, Christer; Daum, Douglas; Kennergren, Charles; Ramuzat, Agnès; Willems, Roger; Edvardsson, Nils

    2009-06-01

    Minute ventilation (MV) has been proven to be very useful in rate responsive pacing. The aim of this study was to evaluate the feasibility of using implantable cardioverter-defibrillator (ICD) leads as part of the MV detection system. At implant in 10 patients, the transthoracic impedance was measured from tripolar ICD, tetrapolar ICD, and atrial lead vectors during normal, deep, and shallow voluntary respiration. MV and respiration rate (RespR) were simultaneously measured through a facemask with a pneumotachometer (Korr), and the correlations with impedance-based measurements were calculated. Air sensitivity was the change in impedance per change in respiratory tidal volume, ohms (Omega)/liter (L), and the signal-to-noise ratio (SNR) was the ratio of the respiratory and cardiac contraction components. The air sensitivity and SNR in tripolar ICD vector were 2.70 +/- 2.73 ohm/L and 2.19 +/- 1.31, respectively, and were not different from tetrapolar. The difference in RespR between tripolar ICD and Korr was 0.2 +/- 1.91 breaths/minute. The regressed correlation coefficient between impedance MV and Korr MV was 0.86 +/- 0.07 in tripolar ICD. The air sensitivity and SNR in tripolar and tetrapolar ICD lead vectors did not differ significantly and were in the range of the values in pacemaker leads currently used as MV sensors. The good correlations between impedance-based and Korr-based RespR and MV measurements imply that ICD leads may be used in MV sensor systems.

  10. An Alternative to Impedance Screening: Unoccluded Frontal Bone Conduction Screening.

    ERIC Educational Resources Information Center

    Square, Regina; And Others

    1985-01-01

    A bone conduction hearing screening test using frontal bone oscillator placement was compared with pure-tone air-conduction screening and impedance audiometry with 114 preschoolers. Unoccluded frontal bone conduction testing produced screening results not significantly different from results obtained by impedance audiometry. (CL)!

  11. Evaluation of Wall Boundary Conditions for Impedance Eduction Using a Dual-Source Method

    NASA Technical Reports Server (NTRS)

    Watson, W. R.; Jones, M. G.

    2012-01-01

    The accuracy of the Ingard-Myers boundary condition and a recently proposed modified Ingard-Myers boundary condition is evaluated for use in impedance eduction under the assumption of uniform mean flow. The evaluation is performed at three centerline Mach numbers, using data acquired in a grazing flow impedance tube, using both upstream and downstream propagating sound sources, and on a database of test liners for which the expected behavior of the impedance spectra is known. The test liners are a hard-wall insert consisting of 12.6 mm thick aluminum, a linear liner without a facesheet consisting of a number of small diameter but long cylindrical channels embedded in a ceramic material, and two conventional nonlinear liners consisting of a perforated facesheet bonded to a honeycomb core. The study is restricted to a frequency range for which only plane waves are cut on in the hard-wall sections of the flow impedance tube. The metrics used to evaluate each boundary condition are 1) how well it educes the same impedance for upstream and downstream propagating sources, and 2) how well it predicts the expected behavior of the impedance spectra over the Mach number range. The primary conclusions of the study are that the same impedance is educed for upstream and downstream propagating sources except at the highest Mach number, that an effective impedance based on both the upstream and downstream measurements is more accurate than an impedance based on the upstream or downstream data alone, and that the Ingard-Myers boundary condition with an effective impedance produces results similar to that achieved with the modified Ingard-Myers boundary condition.

  12. Reduction of turbulent boundary layer induced interior noise through active impedance control.

    PubMed

    Remington, Paul J; Curtis, Alan R D; Coleman, Ronald B; Knight, J Scott

    2008-03-01

    The use of a single actuator tuned to an optimum impedance to control the sound power radiated from a turbulent boundary layer (TBL) excited aircraft panel into the aircraft interior is examined. An approach to calculating the optimum impedance is defined and the limitations on the reduction in radiated power by a single actuator tuned to that impedance are examined. It is shown that there are too many degrees of freedom in the TBL and in the radiation modes of the panel to allow a single actuator to control the radiated power. However, if the panel modes are lightly damped and well separated in frequency, significant reductions are possible. The implementation of a controller that presents a desired impedance to a structure is demonstrated in a laboratory experiment, in which the structure is a mass. The performance of such a controller on an aircraft panel is shown to be effective, if the actuator impedance is similar to but not the same as the desired impedance, provided the panel resonances are well separated in frequency and lightly damped.

  13. Cable Overheating Risk Warning Method Based on Impedance Parameter Estimation in Distribution Network

    NASA Astrophysics Data System (ADS)

    Yu, Zhang; Xiaohui, Song; Jianfang, Li; Fei, Gao

    2017-05-01

    Cable overheating will lead to the cable insulation level reducing, speed up the cable insulation aging, even easy to cause short circuit faults. Cable overheating risk identification and warning is nessesary for distribution network operators. Cable overheating risk warning method based on impedance parameter estimation is proposed in the paper to improve the safty and reliability operation of distribution network. Firstly, cable impedance estimation model is established by using least square method based on the data from distribiton SCADA system to improve the impedance parameter estimation accuracy. Secondly, calculate the threshold value of cable impedance based on the historical data and the forecast value of cable impedance based on the forecasting data in future from distribiton SCADA system. Thirdly, establish risks warning rules library of cable overheating, calculate the cable impedance forecast value and analysis the change rate of impedance, and then warn the overheating risk of cable line based on the overheating risk warning rules library according to the variation relationship between impedance and line temperature rise. Overheating risk warning method is simulated in the paper. The simulation results shows that the method can identify the imedance and forecast the temperature rise of cable line in distribution network accurately. The result of overheating risk warning can provide decision basis for operation maintenance and repair.

  14. A Wireless Multi-Sensor Dielectric Impedance Spectroscopy Platform

    PubMed Central

    Ghaffari, Seyed Alireza; Caron, William-O.; Loubier, Mathilde; Rioux, Maxime; Viens, Jeff; Gosselin, Benoit; Messaddeq, Younes

    2015-01-01

    This paper describes the development of a low-cost, miniaturized, multiplexed, and connected platform for dielectric impedance spectroscopy (DIS), designed for in situ measurements and adapted to wireless network architectures. The platform has been tested and used as a DIS sensor node on ZigBee mesh and was able to interface up to three DIS sensors at the same time and relay the information through the network for data analysis and storage. The system is built from low-cost commercial microelectronics components, performs dielectric spectroscopy ranging from 5 kHz to 100 kHz, and benefits from an on-the-fly calibration system that makes sensor calibration easy. The paper describes the microelectronics design, the Nyquist impedance response, the measurement sensitivity and accuracy, and the testing of the platform for in situ dielectric impedance spectroscopy applications pertaining to fertilizer sensing, water quality sensing, and touch sensing. PMID:26393587

  15. Gastrointestinal Impedance Spectroscopy to Detect Hypoperfusion During Hemorrhage.

    PubMed

    Bloch, Andreas; Kohler, Andreas; Posthaus, Horst; Berger, David; Santos, Laura; Jakob, Stephan; Takala, Jukka; Haenggi, Matthias

    2017-08-01

    Changes in tissue impedance (Ω) have been proposed as early signs of impaired tissue perfusion. We hypothesized that hemorrhage may induce early changes in alimentary tract tissue impedance and that these can be detected by impedance spectroscopy. We evaluated impedance spectroscopy in an acute hemorrhage model in pigs. Twenty anesthetized pigs were randomized to stepwise hemorrhage to mean arterial blood pressure (MAP) targets of 60 mm Hg, 50 mm Hg, 45 mm Hg, and 40 mm Hg, followed by retransfusion in two steps, or control (n = 10 each). In the end, 500 mL of enteral nutrition was administered in both groups. Ω in four sites (sublingually, esophagus, stomach, proximal jejunum) and cardiac output (Qtot thermodilution), superior mesenteric artery blood flow (QSMA; Doppler ultrasound), and jejunal mucosal blood flow (LDF; laser Doppler) were measured. The bleeding (total volume 838 ± 185 mL; mean ± SD) resulted in progressive hypotension (actual MAP 65 ± 3 mm Hg, 59 ± 4 mm Hg, 55 ± 5 mm Hg, and 46 ± 6 mm Hg) and decrease in Qtot, QSMA, and mucosal LDF. Bleeding did not change Ω in any of the monitoring sites. Retransfusion restored the blood flows to at least baseline levels, again without change in Ω. Enteral nutrition did not alter Ω or any of the blood flows.Five animals (three in the hemorrhage group, two in the control group) had histologically proven acute gastric focal necrosis at the site of It transducer. Gastrointestinal impedance spectroscopy does not detect early changes in tissue perfusion during progressive hemorrhage or retransfusion. Ω spectroscopy is unlikely to provide any additional information of hypovolemia-induced early changes in gastrointestinal perfusion.

  16. Imaging and characterizing root systems using electrical impedance tomography

    NASA Astrophysics Data System (ADS)

    Kemna, A.; Weigand, M.; Kelter, M.; Pfeifer, J.; Zimmermann, E.; Walter, A.

    2011-12-01

    Root architecture, growth, and activity play an essential role regarding the nutrient uptake of roots in soils. While in recent years advances could be achieved concerning the modeling of root systems, measurement methods capable of imaging, characterizing, and monitoring root structure and dynamics in a non-destructive manner are still lacking, in particular at the field scale. We here propose electrical impedance tomography (EIT) for the imaging of root systems. The approach takes advantage of the low-frequency capacitive electrical properties of the soil-root interface and the root tissue. These properties are based on the induced migration of ions in an externally applied electric field and give rise to characteristic impedance spectra which can be measured by means of electrical impedance spectroscopy. The latter technique was already successfully applied in the 10 Hz to 1 MHz range by Ozier-Lafontaine and Bajazet (2005) to monitor root growth of tomato. We here apply the method in the 1 mHz to 45 kHz range, requiring four-electrode measurements, and demonstrate its implementation and potential in an imaging framework. Images of real and imaginary components of complex electrical conductivity are computed using a finite-element based inversion algorithm with smoothness-constraint regularization. Results from laboratory measurements on rhizotrons with different root systems (barley, rape) show that images of imaginary conductivity delineate the spatial extent of the root system under investigation, while images of real conductivity show a less clear response. As confirmed by numerical simulations, the latter could be explained by the partly compensating electrical conduction properties of epidermis (resistive) and inner root cells (conductive), indicating the limitations of conventional electrical resistivity tomography. The captured spectral behavior exhibits two distinct relaxation processes with Cole-Cole type signatures, which we interpret as the responses

  17. Impedance study of undoped, polycrystalline diamond layers obtained by HF CVD

    NASA Astrophysics Data System (ADS)

    Paprocki, Kazimierz; Fabisiak, Kazimerz; Dychalska, Anna; Szybowicz, Mirosław; Dudkowiak, Alina; Iskaliyeva, Aizhan

    2017-04-01

    In this paper, we report results of impedance measurements in polycrystalline diamond films deposited on n-Si using HF CVD method. The temperature was changed from 170 K up to RT and the scan frequency from 42 Hz to 5 MHz. The results of impedance measurement of the real and imaginary parts were presented in the form of a Cole-Cole plot in the complex plane. In the temperatures below RT, the observed impedance response of polycrystalline diamond was in the form of a single semicircular form. In order to interpret the observed response, a double resistor-capacitor parallel circuit model was used which allow for interpretation physical mechanisms responsible for such behavior. The impedance results were correlated with Raman spectroscopy measurements.

  18. Earth impedance model for through-the-earth communication applications with electrodes

    NASA Astrophysics Data System (ADS)

    Bataller, Vanessa; MuñOz, Antonio; Gaudó, Pilar Molina; Mediano, Arturo; Cuchí, José A.; Villarroel, José L.

    2010-12-01

    Through-the-earth (TTE) communications are relevant in applications such as caving, tunnel and cave rescue, mining, and subsurface radiolocation. The majority of the TTE communication systems use ground electrodes as load antenna. Wires, electrode contact, and earth impedances are the major contributors to the impedance observed by the transmitter. In this paper, state-of-art models found in the literature are reviewed, and an improved method to measure the earth impedance is presented. The paper also proposes an optimal circuit model for earth impedance between electrodes as a function of frequency, as a consequence of the particular conditions of the application. The model is validated with measurements for different soil conditions, showing a good agreement between empirical data and the simulation results.

  19. "Off-On"switching electrochemiluminescence biosensor for mercury(II) detection based on molecular recognition technology.

    PubMed

    Cheng, Lin; Wei, BingGuo; He, Ling Ling; Mao, Ling; Zhang, Jie; Ceng, JinXiang; Kong, DeRong; Chen, ChaDan; Cui, HanFeng; Hong, Nian; Fan, Hao

    2017-02-01

    A novel "off-On" electrogenerated chemiluminescence (ECL) biosensor has been developed for the detection of mercury(II) based on molecular recognition technology. The ECL mercury(II) biosensor comprises two main parts: an ECL substrate and an ECL intensity switch. The ECL substrate was made by modifying the complex of Ruthenium(II) tris-(bipyridine)(Ru(bpy) 3 2+ )/Cyclodextrins-Au nanoparticles(CD-AuNps)/Nafion on the surface of glass carbon electrode (GCE), and the ECL intensity switch is the single hairpin DNA probe designed according to the "molecular recognition" strategy which was functionalized with ferrocene tag at one end and attached to Cyclodextrins (CD) on modified GCE through supramolecular noncovalent interaction. We demonstrated that, in the absence of Hg(II) ion, the probe keeps single hairpin structure and resulted in a quenching of ECL of Ru(bpy) 3 2+ . Whereas, in the presence of Hg(II) ion, the probe prefers to form the T-Hg(II)-T complex and lead to an obvious recovery of ECL of Ru(bpy) 3 2+ , which provided a sensing platform for the detection of Hg(II) ion. Using this sensing platform, a simple, rapid and selective "off-On" ECL biosensor for the detection of mercury(II) with a detection limit of 0.1 nM has been developed. Copyright © 2016. Published by Elsevier Inc.

  20. Highly efficient all-dielectric optical tensor impedance metasurfaces for chiral polarization control.

    PubMed

    Kim, Minseok; Eleftheriades, George V

    2016-10-15

    We propose a highly efficient (nearly lossless and impedance-matched) all-dielectric optical tensor impedance metasurface that mimics chiral effects at optical wavelengths. By cascading an array of rotated crossed silicon nanoblocks, we realize chiral optical tensor impedance metasurfaces that operate as circular polarization selective surfaces. Their efficiencies are maximized through a nonlinear numerical optimization process in which the tensor impedance metasurfaces are modeled via multi-conductor transmission line theory. From rigorous full-wave simulations that include all material losses, we show field transmission efficiencies of 94% for right- and left-handed circular polarization selective surfaces at 800 nm.

  1. Using impedance measurements for detecting pathogens trapped in an electric field

    DOEpatents

    Miles, Robin R.

    2004-07-20

    Impedance measurements between the electrodes in an electric field is utilized to detect the presence of pathogens trapped in the electric field. Since particles trapped in a field using the dielectiphoretic force changes the impedance between the electrodes by changing the dielectric material between the electrodes, the degree of particle trapping can be determined by measuring the impedance. This measurement is used to determine if sufficient pathogen have been collected to analyze further or potentially to identify the pathogen.

  2. Ion imprinted polymeric nanoparticles for selective separation and sensitive determination of zinc ions in different matrices

    NASA Astrophysics Data System (ADS)

    Shamsipur, Mojtaba; Rajabi, Hamid Reza; Pourmortazavi, Seied Mahdi; Roushani, Mahmoud

    2014-01-01

    Preparation of Zn2+ ion-imprinted polymer (Zn-IIP) nanoparticles is presented in this report. The Zn-IIP nanoparticles are prepared by dissolving stoichiometric amounts of zinc nitrate and selected chelating ligand, 3,5,7,20,40-pentahydroxyflavone, in 15 mL ethanol-acetonitrile (2:1; v/v) mixture as a porogen solvent in the presence of ethylene glycol-dimethacrylate (EGDMA) as cross-linking, methacrylic acid (MAA) as functional monomer, and 2,2-azobisisobutyronitrile (AIBN) as initiator. After polymerization, Cavities in the polymer particles corresponding to the Zn2+ ions were created by leaching the polymer in HCl aqueous solution. The synthesized IIPs were characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, fluorescence spectroscopy and thermal analysis techniques. Also, the pH range for rebinding of Zn2+ ion on the IIP and equilibrium binding time were optimized, using flame atomic absorption spectrometry. In selectivity study, it was found that imprinting results increased affinity of the material toward Zn2+ ion over other competitor metal ions with the same charge and close ionic radius. The prepared IIPs were repeatedly used and regenerated for six times without any significant decrease in polymer binding affinities. Finally, the prepared sorbent was successfully applied to the selective recognition and determination of zinc ion in different real samples.

  3. Evaluation of electrical impedance ratio measurements in accuracy of electronic apex locators.

    PubMed

    Kim, Pil-Jong; Kim, Hong-Gee; Cho, Byeong-Hoon

    2015-05-01

    The aim of this paper was evaluating the ratios of electrical impedance measurements reported in previous studies through a correlation analysis in order to explicit it as the contributing factor to the accuracy of electronic apex locator (EAL). The literature regarding electrical property measurements of EALs was screened using Medline and Embase. All data acquired were plotted to identify correlations between impedance and log-scaled frequency. The accuracy of the impedance ratio method used to detect the apical constriction (APC) in most EALs was evaluated using linear ramp function fitting. Changes of impedance ratios for various frequencies were evaluated for a variety of file positions. Among the ten papers selected in the search process, the first-order equations between log-scaled frequency and impedance were in the negative direction. When the model for the ratios was assumed to be a linear ramp function, the ratio values decreased if the file went deeper and the average ratio values of the left and right horizontal zones were significantly different in 8 out of 9 studies. The APC was located within the interval of linear relation between the left and right horizontal zones of the linear ramp model. Using the ratio method, the APC was located within a linear interval. Therefore, using the impedance ratio between electrical impedance measurements at different frequencies was a robust method for detection of the APC.

  4. A Comparative Study of Four Impedance Eduction Methodologies Using Several Test Liners

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Jones, Michael G.

    2013-01-01

    A comparative study of four commonly used impedance eduction methods is presented for a range of liner structures and test conditions. Two of the methods are restricted to uniform flow while the other two accommodate both uniform and boundary layer flows. Measurements on five liner structures (a rigid-wall insert, a ceramic tubular liner, a wire mesh liner, a low porosity conventional liner, and a high porosity conventional liner) are obtained using the NASA Langley Grazing Flow Impedance Tube. The educed impedance of each liner is presented for forty-two test conditions (three Mach numbers and fourteen frequencies). In addition, the effects of moving the acoustic source from upstream to downstream and the refractive effects of the mean boundary layer on the wire mesh liner are investigated. The primary conclusions of the study are that: (1) more accurate results are obtained for the upstream source, (2) the uniform flow methods produce nearly identical impedance spectra at and below Mach 0.3 but significant scatter in the educed impedance occurs at the higher Mach number, (3) there is better agreement in educed impedance among the methods for the conventional liners than for the rigid-wall insert, ceramic, or wire mesh liner, and (4) the refractive effects of the mean boundary layer on the educed impedance of the wire mesh liner are generally small except at Mach 0.5.

  5. Drilling electrode for real-time measurement of electrical impedance in bone tissues.

    PubMed

    Dai, Yu; Xue, Yuan; Zhang, Jianxun

    2014-03-01

    In order to prevent possible damages to soft tissues, reliable monitoring methods are required to provide valuable information on the condition of the bone being cut. This paper describes the design of an electrical impedance sensing drill developed to estimate the relative position between the drill and the bone being drilled. The two-electrode method is applied to continuously measure the electrical impedance during a drill feeding movement: two copper wire brushes are used to conduct electricity in the rotating drill and then the drill is one electrode; a needle is inserted into the soft tissues adjacent to the bone being drilled and acts as another electrode. Considering that the recorded electrical impedance is correlated with the insertion depth of the drill, we theoretically calculate the electrode-tissue contact impedance and prove that the rate of impedance change varies considerably when the drill bit crosses the boundary between two different bone tissues. Therefore, the rate of impedance change is used to determine whether the tip of the drill is located in one of cortical bone, cancellous bone, and cortical bone near a boundary with soft tissue. In vitro experiments in porcine thoracic spines were performed to demonstrate the feasibility of the impedance sensing drill. The experimental results indicate that the drill, used with the proposed data-processing method, can provide accurate and reliable breakthrough detection in the bone-drilling process.

  6. Impedance Matching of Tapered Slot Antenna using a Dielectric Transformer

    NASA Technical Reports Server (NTRS)

    Simons, R. N.; Lee, R. Q.

    1998-01-01

    A new impedance matching technique for tapered slot antennas using a dielectric transformer is presented. The technique is demonstrated by measuring the input impedance, Voltage Standing Wave Ratio (VSWR) and the gain of a Vivaldi antenna (VA). Measured results at Ka-Band frequencies are presented and discussed.

  7. Stimulation of eryptosis by aluminium ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niemoeller, Olivier M.; Kiedaisch, Valentin; Dreischer, Peter

    2006-12-01

    Aluminium salts are utilized to impede intestinal phosphate absorption in chronic renal failure. Toxic side effects include anemia, which could result from impaired formation or accelerated clearance of circulating erythrocytes. Erythrocytes may be cleared secondary to suicidal erythrocyte death or eryptosis, which is characterized by cell shrinkage and exposure of phosphatidylserine (PS) at the erythrocyte surface. As macrophages are equipped with PS receptors, they bind, engulf and degrade PS-exposing cells. The present experiments have been performed to explore whether Al{sup 3+} ions trigger eryptosis. The PS exposure was estimated from annexin binding and cell volume from forward scatter in FACSmore » analysis. Exposure to Al{sup 3+} ions ({>=} 10 {mu}M Al{sup 3+} for 24 h) indeed significantly increased annexin binding, an effect paralleled by decrease of forward scatter at higher concentrations ({>=} 30 {mu}M Al{sup 3+}). According to Fluo3 fluorescence Al{sup 3+} ions ({>=} 30 {mu}M for 3 h) increased cytosolic Ca{sup 2+} activity. Al{sup 3+} ions ({>=} 10 {mu}M for 24 h) further decreased cytosolic ATP concentrations. Energy depletion by removal of glucose similarly triggered annexin binding, an effect not further enhanced by Al{sup 3+} ions. The eryptosis was paralleled by release of hemoglobin, pointing to loss of cell membrane integrity. In conclusion, Al{sup 3+} ions decrease cytosolic ATP leading to activation of Ca{sup 2+}-permeable cation channels, Ca{sup 2+} entry, stimulation of cell membrane scrambling and cell shrinkage. Moreover, Al{sup 3+} ions lead to loss of cellular hemoglobin, a feature of hemolysis. Both effects are expected to decrease the life span of circulating erythrocytes and presumably contribute to the development of anemia during Al{sup 3+} intoxication.« less

  8. Three-dimensional electrical impedance tomography: a topology optimization approach.

    PubMed

    Mello, Luís Augusto Motta; de Lima, Cícero Ribeiro; Amato, Marcelo Britto Passos; Lima, Raul Gonzalez; Silva, Emílio Carlos Nelli

    2008-02-01

    Electrical impedance tomography is a technique to estimate the impedance distribution within a domain, based on measurements on its boundary. In other words, given the mathematical model of the domain, its geometry and boundary conditions, a nonlinear inverse problem of estimating the electric impedance distribution can be solved. Several impedance estimation algorithms have been proposed to solve this problem. In this paper, we present a three-dimensional algorithm, based on the topology optimization method, as an alternative. A sequence of linear programming problems, allowing for constraints, is solved utilizing this method. In each iteration, the finite element method provides the electric potential field within the model of the domain. An electrode model is also proposed (thus, increasing the accuracy of the finite element results). The algorithm is tested using numerically simulated data and also experimental data, and absolute resistivity values are obtained. These results, corresponding to phantoms with two different conductive materials, exhibit relatively well-defined boundaries between them, and show that this is a practical and potentially useful technique to be applied to monitor lung aeration, including the possibility of imaging a pneumothorax.

  9. Electrical impedance spectroscopy of neutron-irradiated nanocrystalline silicon carbide (3C-SiC)

    NASA Astrophysics Data System (ADS)

    Huseynov, Elchin M.

    2018-01-01

    It the present work, impedance spectra of nanocrystalline 3C-SiC particles have been comparatively analyzed before and after neutron irradiation. Resonance states and shifts were observed at the impedance spectra of nanocrystalline 3C-SiC particles after neutron irradiation. Relaxation time has been calculated from interdependence of real and imaginary parts of impedance of nanocrystalline 3C-SiC particles. Calculated relaxation times have been investigated as a function of neutron irradiation period. Neutron transmutation (31P isotopes production) effects on the impedance spectra and relaxation times have been studied. Moreover, influence of agglomeration and amorphous transformation to the impedance spectra and relaxation times of nanocrystalline 3C-SiC particles have been investigated.

  10. Multi-channel electrical impedance tomography for regional tissue hydration monitoring.

    PubMed

    Chen, Xiaohui; Kao, Tzu-Jen; Ashe, Jeffrey M; Boverman, Gregory; Sabatini, James E; Davenport, David M

    2014-06-01

    Poor assessment of hydration status during hemodialysis can lead to under- or over-hydration in patients with consequences of increased morbidity and mortality. In current practice, fluid management is largely based on clinical assessments to estimate dry weight (normal hydration body weight). However, hemodialysis patients usually have co-morbidities that can make the signs of fluid status ambiguous. Therefore, achieving normal hydration status remains a major challenge for hemodialysis therapy. Electrical impedance technology has emerged as a promising method for hydration monitoring due to its non-invasive nature, low cost and ease-of-use. Conventional electrical impedance-based hydration monitoring systems employ single-channel current excitation (either 2-electrode or 4-electrode methods) to perturb and extract averaged impedance from bulk tissue and use generalized models from large populations to derive hydration estimates. In the present study, a prototype, single-frequency electrical impedance tomography (EIT) system with simultaneous multi-channel current excitation was used to enable regional hydration change detection. We demonstrated the capability to detect a difference in daily impedance change between left leg and right leg in healthy human subjects, who wore a compression sock only on one leg to reduce daily gravitational fluid accumulation. The impedance difference corresponded well with the difference of lower leg volume change between left leg and right leg measured by volumetry, which on average is ~35 ml, accounting for 0.7% of the lower leg volume. We have demonstrated the feasibility of using multi-channel EIT to extract hydration information in different tissue layers with minimal skin interference. Our simultaneous, multi-channel current excitation approach provides an effective method to separate electrode contact impedance and skin condition artifacts from hydration signals. The prototype system has the potential to be used in clinical

  11. Body Fat Measurement: Weighing the Pros and Cons of Electrical Impedance.

    ERIC Educational Resources Information Center

    Nash, Heyward L.

    1985-01-01

    Research technologists have developed electrical impedance units in response to demand for a convenient and reliable method of measuring body fat. Accuracy of impedance measures versus calipers and underwater weighing are discussed. (MT)

  12. Impedance changes during setting of amorphous calcium phosphate composites.

    PubMed

    Par, Matej; Šantić, Ana; Gamulin, Ozren; Marovic, Danijela; Moguš-Milanković, Andrea; Tarle, Zrinka

    2016-11-01

    To investigate the electrical properties of experimental light-curable composite materials based on amorphous calcium phosphate (ACP) with the admixture of silanized barium glass and silica fillers. Short-term setting was investigated by impedance measurements at a frequency of 1kHz, while for the long-term setting the impedance spectra were measured consecutively over a frequency range of 0.05Hz to 1MHz for 24h. The analysis of electrical resistivity changes during curing allowed the extraction of relevant kinetic parameters. The impedance results were correlated to the degree of conversion assessed by Raman spectroscopy, water content determined by gravimetry, light transmittance measured by CCD spectrometer and microstructural features observed by scanning electron microscopy. ACP-based composites have shown higher immediate degree of conversion and less post-cure polymerization than the control composites, but lower polymerization rate. The polymerization rate assessed by impedance measurements correlated well with the light transmittance. The differences in the electrical conductivity values observed among the materials were correlated to the amount of water introduced into composites by the ACP filler. High correlation was found between the degree of conversion and electrical resistivity. Equivalent circuit modeling revealed two electrical contributions for the ACP-based composites and a single contribution for the control composites. The impedance spectroscopy has proven a valuable method for gaining insight into various features of ACP-based composites. Better understanding of the properties of ACP-based composites should further the development of these promising bioactive materials. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Equivalent circuit models for interpreting impedance perturbation spectroscopy data

    NASA Astrophysics Data System (ADS)

    Smith, R. Lowell

    2004-07-01

    As in-situ structural integrity monitoring disciplines mature, there is a growing need to process sensor/actuator data efficiently in real time. Although smaller, faster embedded processors will contribute to this, it is also important to develop straightforward, robust methods to reduce the overall computational burden for practical applications of interest. This paper addresses the use of equivalent circuit modeling techniques for inferring structure attributes monitored using impedance perturbation spectroscopy. In pioneering work about ten years ago significant progress was associated with the development of simple impedance models derived from the piezoelectric equations. Using mathematical modeling tools currently available from research in ultrasonics and impedance spectroscopy is expected to provide additional synergistic benefits. For purposes of structural health monitoring the objective is to use impedance spectroscopy data to infer the physical condition of structures to which small piezoelectric actuators are bonded. Features of interest include stiffness changes, mass loading, and damping or mechanical losses. Equivalent circuit models are typically simple enough to facilitate the development of practical analytical models of the actuator-structure interaction. This type of parametric structure model allows raw impedance/admittance data to be interpreted optimally using standard multiple, nonlinear regression analysis. One potential long-term outcome is the possibility of cataloging measured viscoelastic properties of the mechanical subsystems of interest as simple lists of attributes and their statistical uncertainties, whose evolution can be followed in time. Equivalent circuit models are well suited for addressing calibration and self-consistency issues such as temperature corrections, Poisson mode coupling, and distributed relaxation processes.

  14. Development and Validation of an Interactive Liner Design and Impedance Modeling Tool

    NASA Technical Reports Server (NTRS)

    Howerton, Brian M.; Jones, Michael G.; Buckley, James L.

    2012-01-01

    The Interactive Liner Impedance Analysis and Design (ILIAD) tool is a LabVIEW-based software package used to design the composite surface impedance of a series of small-diameter quarter-wavelength resonators incorporating variable depth and sharp bends. Such structures are useful for packaging broadband acoustic liners into constrained spaces for turbofan engine noise control applications. ILIAD s graphical user interface allows the acoustic channel geometry to be drawn in the liner volume while the surface impedance and absorption coefficient calculations are updated in real-time. A one-dimensional transmission line model serves as the basis for the impedance calculation and can be applied to many liner configurations. Experimentally, tonal and broadband acoustic data were acquired in the NASA Langley Normal Incidence Tube over the frequency range of 500 to 3000 Hz at 120 and 140 dB SPL. Normalized impedance spectra were measured using the Two-Microphone Method for the various combinations of channel configurations. Comparisons between the computed and measured impedances show excellent agreement for broadband liners comprised of multiple, variable-depth channels. The software can be used to design arrays of resonators that can be packaged into complex geometries heretofore unsuitable for effective acoustic treatment.

  15. Thermal behaviors of Ni-MH batteries using a novel impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Xiao, Pu; Gao, Wenying; Qiu, Xinping; Zhu, Wentao; Sun, Jie; Chen, Liquan

    In this paper, a novel impedance spectroscopy was used to describe the thermal behaviors of Ni-MH batteries. The impedance functions were derived similarly to electric impedance functions. The square of current was treated as a current equivalent and heat-flow as a voltage equivalent. The impedance spectra of batteries during charge showed that the combination of hydrogen and oxygen increased rapidly when charge rate was higher than 0.5 C. Thermal runaway might happen when battery was charged at temperature above 348 K even at a low charge rate. The cycling test showed that the charge efficiency of battery was the highest after cycling at high-rate for 10-100 cycles and decreased after more cycles. Different batteries showed different thermal behaviors which may be caused by the different structures of batteries.

  16. Mathematical simulation of sound propagation in a flow channel with impedance walls

    NASA Astrophysics Data System (ADS)

    Osipov, A. A.; Reent, K. S.

    2012-07-01

    The paper considers the specifics of calculating tonal sound propagating in a flow channel with an installed sound-absorbing device. The calculation is performed on the basis of numerical integrating on linearized nonstationary Euler equations using a code developed by the authors based on the so-called discontinuous Galerkin method. Using the linear theory of small perturbations, the effect of the sound-absorbing lining of the channel walls is described with the modified value of acoustic impedance proposed by the authors, for which, under flow channel conditions, the traditional classification of the active and reactive types of lining in terms of the real and imaginary impedance values, respectively, remains valid. To stabilize the computation process, a generalized impedance boundary condition is proposed in which, in addition to the impedance value itself, some additional parameters are introduced characterizing certain fictitious properties of inertia and elasticity of the impedance surface.

  17. Protein Aggregation Measurement through Electrical Impedance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Affanni, A.; Corazza, A.; Esposito, G.; Fogolari, F.; Polano, M.

    2013-09-01

    The paper presents a novel methodology to measure the fibril formation in protein solutions. We designed a bench consisting of a sensor having interdigitated electrodes, a PDMS hermetic reservoir and an impedance meter automatically driven by calculator. The impedance data are interpolated with a lumped elements model and their change over time can provide information on the aggregation process. Encouraging results have been obtained by testing the methodology on K-casein, a protein of milk, with and without the addition of a drug inhibiting the aggregation. The amount of sample needed to perform this measurement is by far lower than the amount needed by fluorescence analysis.

  18. Primary Multi-frequency Data Analyze in Electrical Impedance Scanning.

    PubMed

    Liu, Ruigang; Dong, Xiuzhen; Fu, Feng; Shi, Xuetao; You, Fusheng; Ji, Zhenyu

    2005-01-01

    This paper deduced the Cole-Cole arc equation in form of admittance by the traditional Cole-Cole equation in form of impedance. Comparing to the latter, the former is more adaptive to the electrical impedance scanning which using lower frequency region. When using our own electrical impedance scanning device at 50-5000Hz, the measurement data separated on the arc of the former, while collected near the direct current resistor on the arc of the latter. The four parameters of the former can be evaluated by the least square method. The frequency of the imaginary part of admittance reaching maximum can be calculated by the Cole-Cole parameters. In conclusion, the Cole-Cole arc in form of admittance is more effective to multi-frequency data analyze at lower frequency region, like EIS.

  19. Impedance-matching system for a flexible surface-coil-type resonator

    NASA Astrophysics Data System (ADS)

    Hirata, Hiroshi; Ono, Mitsuhiro

    1997-09-01

    This article describes an impedance-matching system for a flexible surface-coil-type resonator (FSCR) used in electron paramagnetic resonance (EPR) experiments. To design the matching system, the input impedance of the FSCR was formulated using transmission line theory, and then the parameters of a matching circuit using varicap diodes were calculated. Experimental measurements of input impedance showed the validity of the formulation and the usefulness of the matching system. The matching circuit made by the varicap diodes 1SV186 offered the tunable bandwidth of 50 MHz for the prototype FSCR. Such a matching system also offers the possibility of remotely tuning EPR resonators electronically.

  20. Atomistic characterisation of Li+ mobility and conductivity in Li(7-x)PS(6-x)Ix argyrodites from molecular dynamics simulations, solid-state NMR, and impedance spectroscopy.

    PubMed

    Pecher, Oliver; Kong, Shiao-Tong; Goebel, Thorsten; Nickel, Vera; Weichert, Katja; Reiner, Christof; Deiseroth, Hans-Jörg; Maier, Joachim; Haarmann, Frank; Zahn, Dirk

    2010-07-26

    The atomistic mechanisms of Li(+) ion mobility/conductivity in Li(7-x)PS(6-x)I(x) argyrodites are explored from both experimental and theoretical viewpoints. Ionic conductivity in the title compound is associated with a solid-solid phase transition, which was characterised by low-temperature differential scanning calorimetry, (7)Li and (127)I NMR investigations, impedance measurements and molecular dynamics simulations. The NMR signals of both isotopes are dominated by anisotropic interactions at low temperatures. A significant narrowing of the NMR signal indicates a motional averaging of the anisotropic interactions above 177+/-2 K. The activation energy to ionic conductivity was assessed from both impedance spectroscopy and molecular dynamics simulations. The latter revealed that a series of interstitial sites become accessible to the Li(+) ions, whilst the remaining ions stay at their respective sites in the argyrodite lattice. The interstitial positions each correspond to the centres of tetrahedra of S/I atoms, and differ only in terms of their common corners, edges, or faces with adjacent PS(4) tetrahedra. From connectivity analyses and free-energy rankings, a specific tetrahedron is identified as the key restriction to ionic conductivity, and is clearly differentiated from local mobility, which follows a different mechanism with much lower activation energy. Interpolation of the lattice parameters as derived from X-ray diffraction experiments indicates a homogeneity range for Li(7-x)PS(6-x)I(x) with 0.97 < or = x < or = 1.00. Within this range, molecular dynamics simulations predict Li(+) conductivity at ambient conditions to vary considerably.

  1. Discounting the duration of bolus exposure in impedance testing underestimates acid reflux.

    PubMed

    Vikneswaran, Namasivayam; Murray, Joseph A

    2016-06-08

    Combined impedance-pH testing (MII) allows for detection of reflux episodes regardless of pH. However impedance-based diagnosis of reflux may not routinely account for duration of the reflux episode. We hypothesize that impedance testing may be less sensitive than pH-testing in detecting acid reflux off therapy as a result of discounting duration of exposure. Baseline characteristics and reflux parameters of MII studies performed off-anti-secretory medications were analyzed. Studies on acid suppressive medication and those with recording times less than 20 h or low baseline impedance were excluded. A total of 73 consecutive MII studies were analyzed of which 31 MII studies had elevated acid exposure while 16 were abnormal by impedance criteria. MII testing off-therapy was more likely to be abnormal by pH criteria (percent time pH < 4) than impedance criteria (total reflux):[42 vs 22 % (p =0.02)]. Acid exposure (percent time pH < 4) identified more studies as abnormal than MII-detected acid reflux episodes [42 vs 34 % (p < 0.01)]. Mean acid clearance time (pH-detected) was significantly longer than median bolus clearance time (impedance-detected) in the total [98.7 s vs 12.6 s (p < 0.01)], upright [58.6 s vs 13.1 s (p < 0.01)], and recumbent positions [136.7 s vs 14.2 s (p < 0.01)] with the greatest difference seen in the recumbent position. The mean ratio of mean acid clearance time (pH-detected) and the median bolus clearance time (impedance-detected) was significantly higher in the recumbent position compared to the upright position [11. vs 5.3 (p = 0.01)]. Ambulatory impedance testing underestimates acid reflux compared to esophageal acid exposure by discounting the prolonged period of mucosal contact with each acid reflux episode, particularly in the recumbent position.

  2. Reversible Redox Chemistry of Azo Compounds for Sodium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Chao; Xu, Gui-Liang; Ji, Xiao

    Sustainable sodium-ion batteries (SSIBs) using renewable organic electrodes are promising alternatives to lithium-ion batteries for the large-scale renewable energy storage. However, the lack of high-performance anode material impedes the development of SSIBs. Herein, we report a new type of organic anode material based on azo group for SSIBs. Azobenzene-4,4'-dicarboxylic acid sodium salt is used as a model to investigate the electrochemical behaviors and reaction mechanism of azo compound. It exhibits a reversible capacity of 170 mAhg -1 at 0.2C. When current density is increased to 20C, the reversible capacities of 98 mAhg -1 can be retained for 2000 cycles, demonstratingmore » excellent cycling stability and high rate capability. The detailed characterizations reveal that azo group acts as an electrochemical active site to reversibly bond with Na +. The reversible redox chemistry between azo compound and Na ions offer opportunities for developing longcycle-life and high-rate SSIBs.« less

  3. Reversible Redox Chemistry of Azo Compounds for Sodium-Ion Batteries

    DOE PAGES

    Luo, Chao; Xu, Gui-Liang; Ji, Xiao; ...

    2018-01-29

    Sustainable sodium-ion batteries (SSIBs) using renewable organic electrodes are promising alternatives to lithium-ion batteries for the large-scale renewable energy storage. However, the lack of high-performance anode material impedes the development of SSIBs. Herein, we report a new type of organic anode material based on azo group for SSIBs. Azobenzene-4,4'-dicarboxylic acid sodium salt is used as a model to investigate the electrochemical behaviors and reaction mechanism of azo compound. It exhibits a reversible capacity of 170 mAhg -1 at 0.2C. When current density is increased to 20C, the reversible capacities of 98 mAhg -1 can be retained for 2000 cycles, demonstratingmore » excellent cycling stability and high rate capability. The detailed characterizations reveal that azo group acts as an electrochemical active site to reversibly bond with Na +. The reversible redox chemistry between azo compound and Na ions offer opportunities for developing longcycle-life and high-rate SSIBs.« less

  4. Specific metal recognition in nickel trafficking

    PubMed Central

    Higgins, Khadine A.; Carr, Carolyn E.; Maroney, Michael J.

    2012-01-01

    Nickel is an essential metal for a number of bacterial species that have developed systems for acquiring, delivering and incorporating the metal into target enzymes, and controlling the levels of nickel in cells to avoid toxic effects. As with other transition metals, these trafficking systems must be able to distinguish between the desired metal and other transition metal ions with similar physical and chemical properties. Because there are few enzymes (targets) that require nickel for activity (e.g., E. coli traffics nickel for hydrogenases made under anaerobic conditions and H. pylori requires nickel for hydrogenase and urease that are essential for acid viability), the ‘traffic pattern’ for nickel is relatively simple, and nickel trafficking therefore presents an opportunity to examine a system for the mechanisms that are used to distinguish nickel from other metals. In this review, we describe the details known for examples of uptake permeases, metallochaperones and proteins involved in metallocenter assembly, and nickel metalloregulators. We also illustrate the variety of mechanisms, including molecular recognition in the case of NikA protein and examples of allosteric regulation for HypA, NikR and RcnR, employed to generate specific biological responses to nickel ions. PMID:22970729

  5. An intelligent signal processing and pattern recognition technique for defect identification using an active sensor network

    NASA Astrophysics Data System (ADS)

    Su, Zhongqing; Ye, Lin

    2004-08-01

    The practical utilization of elastic waves, e.g. Rayleigh-Lamb waves, in high-performance structural health monitoring techniques is somewhat impeded due to the complicated wave dispersion phenomena, the existence of multiple wave modes, the high susceptibility to diverse interferences, the bulky sampled data and the difficulty in signal interpretation. An intelligent signal processing and pattern recognition (ISPPR) approach using the wavelet transform and artificial neural network algorithms was developed; this was actualized in a signal processing package (SPP). The ISPPR technique comprehensively functions as signal filtration, data compression, characteristic extraction, information mapping and pattern recognition, capable of extracting essential yet concise features from acquired raw wave signals and further assisting in structural health evaluation. For validation, the SPP was applied to the prediction of crack growth in an alloy structural beam and construction of a damage parameter database for defect identification in CF/EP composite structures. It was clearly apparent that the elastic wave propagation-based damage assessment could be dramatically streamlined by introduction of the ISPPR technique.

  6. Giant magneto-impedance and magneto-inductive effects in amorphous alloys

    NASA Astrophysics Data System (ADS)

    Panina, L. V.; Mohri, K.; Bushida, K.; Noda, M.

    1994-11-01

    Recent experiments have discovered giant and sensitive magneto-impedance and magneto-inductive effects in FeCoSiB amorphous wires. These effects include a sensitive change in an ac wire voltage with the application of a small dc longitudinal magnetic field. At low frequencies (1-10 kHz) the inductive voltage drops by 50% for a field of 2 Oe (25%/Oe) reflecting a strong field dependence of the circumferential permeability. At higher frequencies (0.1-10 MHz) when the skin effect is essential, the amplitude of the total wire voltage decreases by 40%-60% for fields of 3-10 Oe (about 10%/Oe). These effects exhibit no hysteresis for the variation of an applied field and can be obtained even in wires of 1 mm length and a few micrometer diameter. These characteristics are very useful to constitute a highly sensitive microsensor head to detect local fields of the order of 10(exp -5) Oe. In this paper, we review recently obtained experimental results on magneto-inductive and magneto-impedance effects and present a detailed discussion for their mechanism, developing a general approach in terms of ac complex impedance in a magnetic conductor. In the case of a strong skin effect the total wire impedance depends on the circumferential permeability through the penetration depth, resulting in the giant magneto-impedance effect.

  7. Impedance Eduction in Ducts with Higher-Order Modes and Flow

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Jones, Michael G.

    2009-01-01

    An impedance eduction technique, previously validated for ducts with plane waves at the source and duct termination planes, has been extended to support higher-order modes at these locations. Inputs for this method are the acoustic pressures along the source and duct termination planes, and along a microphone array located in a wall either adjacent or opposite to the test liner. A second impedance eduction technique is then presented that eliminates the need for the microphone array. The integrity of both methods is tested using three sound sources, six Mach numbers, and six selected frequencies. Results are presented for both a hardwall and a test liner (with known impedance) consisting of a perforated plate bonded to a honeycomb core. The primary conclusion of the study is that the second method performs well in the presence of higher-order modes and flow. However, the first method performs poorly when most of the microphones are located near acoustic pressure nulls. The negative effects of the acoustic pressure nulls can be mitigated by a judicious choice of the mode structure in the sound source. The paper closes by using the first impedance eduction method to design a rectangular array of 32 microphones for accurate impedance eduction in the NASA LaRC Curved Duct Test Rig in the presence of expected measurement uncertainties, higher order modes, and mean flow.

  8. Use of the recognition heuristic depends on the domain's recognition validity, not on the recognition validity of selected sets of objects.

    PubMed

    Pohl, Rüdiger F; Michalkiewicz, Martha; Erdfelder, Edgar; Hilbig, Benjamin E

    2017-07-01

    According to the recognition-heuristic theory, decision makers solve paired comparisons in which one object is recognized and the other not by recognition alone, inferring that recognized objects have higher criterion values than unrecognized ones. However, success-and thus usefulness-of this heuristic depends on the validity of recognition as a cue, and adaptive decision making, in turn, requires that decision makers are sensitive to it. To this end, decision makers could base their evaluation of the recognition validity either on the selected set of objects (the set's recognition validity), or on the underlying domain from which the objects were drawn (the domain's recognition validity). In two experiments, we manipulated the recognition validity both in the selected set of objects and between domains from which the sets were drawn. The results clearly show that use of the recognition heuristic depends on the domain's recognition validity, not on the set's recognition validity. In other words, participants treat all sets as roughly representative of the underlying domain and adjust their decision strategy adaptively (only) with respect to the more general environment rather than the specific items they are faced with.

  9. Broadband Impedance Microscopy for Research on Complex Quantum Materials

    DTIC Science & Technology

    2016-02-08

    function in various materials. Figure 2. Sensitivity limit of the broadband impedance microscope (BIM). Figure 3. Preliminary BIM data on YMnO3...2 Statement of the Problem The objective of this DURIP award is to construct a broadband impedance microscope (BIM) for frequency-dependent...platforms and specialized cantilever probes [1] in the PI’s lab, the BIM can now simultaneously obtain microscopic (10 – 100 nm) and quasi- spectroscopic

  10. Changes in biphasic electrode impedance with protein adsorption and cell growth

    PubMed Central

    Newbold, Carrie; Richardson, Rachael; Millard, Rodney; Huang, Christie; Milojevic, Dusan; Shepherd, Robert; Cowan, Robert

    2012-01-01

    This study was undertaken to assess the contribution of protein adsorption and cell growth to increases in electrode impedance that occur immediately following implantation of cochlear implant electrodes and other neural stimulation devices. An in vitro model of the electrode-tissue interface was used. Radiolabelled albumin in phosphate buffered saline was added to planar gold electrodes and electrode impedance measured using a charge-balanced biphasic current pulse. The polarisation impedance component increased with protein adsorption, while no change to access resistance was observed. The maximum level of protein adsorbed was measured at 0.5 μg/cm2, indicating a tightly packed monolayer of albumin molecules on the gold electrode and resin substrate. Three cell types were grown over the electrodes, macrophage cell line J774, dissociated fibroblasts and epithelial cell line MDCK, all of which created a significant increase in electrode impedance. As cell cover over electrodes increased, there was a corresponding increase in the initial rise in voltage, suggesting cell cover mainly contributes to the access resistance of the electrodes. Only a small increase in the polarisation component of impedance was seen with cell cover. PMID:20841637

  11. Impedance-matched drilling telemetry system

    DOEpatents

    Normann, Randy A [Edgewood, NM; Mansure, Arthur J [Albuquerque, NM

    2008-04-22

    A downhole telemetry system that uses inductance or capacitance as a mode through which signal is communicated across joints between assembled lengths of pipe wherein efficiency of signal propagation through a drill string, for example, over multiple successive pipe segments is enhanced through matching impedances associated with the various telemetry system components.

  12. Imposed Power of Breathing Associated With Use of an Impedance Threshold Device

    DTIC Science & Technology

    2007-02-01

    threshold device and a sham impedance threshold device. DESIGN: Prospective randomized blinded protocol. SETTING: University medical center. PATIENTS...for males). METHODS: The volunteers completed 2 trials of breathing through a face mask fitted with an active impedance threshold device set to open...at -7cmH 2 O pressure, or with a sham impedance threshold device, which was identical to the active device except that it did not contain an

  13. Skin impedance is not a factor in transcutaneous electrical nerve stimulation effectiveness

    PubMed Central

    Vance, Carol GT; Rakel, Barbara A; Dailey, Dana L; Sluka, Kathleen A

    2015-01-01

    Objective Transcutaneous electrical nerve stimulation (TENS) is a nonpharmacological intervention used to manage pain using skin surface electrodes. Optimal electrode placement is unclear. We hypothesized that better analgesia would occur if electrodes were placed over sites with lower skin impedance. Optimal site selection (OSS) and sham site selection (SSS) electrode sites on the forearm were identified using a standard clinical technique. Methods Experiment 1 measured skin impedance in the forearm at OSS and SSS. Experiment 2 was a crossover design double-blind randomized controlled trial comparing OSS-TENS, SSS-TENS, and placebo TENS (P-TENS) to confirm differences in skin impedance between OSS and SSS, and measure change in pressure pain threshold (PPT) following a 30-minute TENS treatment. Healthy volunteers were recruited (ten for Experiment 1 [five male, five female] and 24 for Experiment 2 [12 male, 12 female]). TENS was applied for 30 minutes at 100 Hz frequency, 100 µs pulse duration, and “strong but nonpainful” amplitude. Results Experiment 1 results demonstrate significantly higher impedance at SSS (17.69±1.24 Ω) compared to OSS (13.53±0.57 Ω) (P=0.007). For Experiment 2, electrode site impedance was significantly higher over SSS, with both the impedance meter (P=0.001) and the TENS unit (P=0.012) compared to OSS. PPT change was significantly greater for both OSS-TENS (P=0.024) and SSS-TENS (P=0.025) when compared to P-TENS. PPT did not differ between the two active TENS treatments (P=0.81). Conclusion Skin impedance is lower at sites characterized as optimal using the described technique of electrode site selection. When TENS is applied at adequate intensities, skin impedance is not a factor in attainment of hypoalgesia of the forearm in healthy subjects. Further investigation should include testing in patients presenting with painful conditions. PMID:26316808

  14. Capnography and chest wall impedance algorithms for ventilation detection during cardiopulmonary resuscitation

    PubMed Central

    Edelson, Dana P.; Eilevstjønn, Joar; Weidman, Elizabeth K.; Retzer, Elizabeth; Vanden Hoek, Terry L.; Abella, Benjamin S.

    2009-01-01

    Objective Hyperventilation is both common and detrimental during cardiopulmonary resuscitation (CPR). Chest wall impedance algorithms have been developed to detect ventilations during CPR. However, impedance signals are challenged by noise artifact from multiple sources, including chest compressions. Capnography has been proposed as an alternate method to measure ventilations. We sought to assess and compare the adequacy of these two approaches. Methods Continuous chest wall impedance and capnography were recorded during consecutive in-hospital cardiac arrests. Algorithms utilizing each of these data sources were compared to a manually determined “gold standard” reference ventilation rate. In addition, a combination algorithm, which utilized the highest of the impedance or capnography values in any given minute, was similarly evaluated. Results Data were collected from 37 cardiac arrests, yielding 438 min of data with continuous chest compressions and concurrent recording of impedance and capnography. The manually calculated mean ventilation rate was 13.3±4.3/min. In comparison, the defibrillator’s impedance-based algorithm yielded an average rate of 11.3±4.4/min (p=0.0001) while the capnography rate was 11.7±3.7/min (p=0.0009). There was no significant difference in sensitivity and positive predictive value between the two methods. The combination algorithm rate was 12.4±3.5/min (p=0.02), which yielded the highest fraction of minutes with respiratory rates within 2/min of the reference. The impedance signal was uninterpretable 19.5% of the time, compared with 9.7% for capnography. However, the signals were only simultaneously non-interpretable 0.8% of the time. Conclusions Both the impedance and capnography-based algorithms underestimated the ventilation rate. Reliable ventilation rate determination may require a novel combination of multiple algorithms during resuscitation. PMID:20036047

  15. Impedance learning for robotic contact tasks using natural actor-critic algorithm.

    PubMed

    Kim, Byungchan; Park, Jooyoung; Park, Shinsuk; Kang, Sungchul

    2010-04-01

    Compared with their robotic counterparts, humans excel at various tasks by using their ability to adaptively modulate arm impedance parameters. This ability allows us to successfully perform contact tasks even in uncertain environments. This paper considers a learning strategy of motor skill for robotic contact tasks based on a human motor control theory and machine learning schemes. Our robot learning method employs impedance control based on the equilibrium point control theory and reinforcement learning to determine the impedance parameters for contact tasks. A recursive least-square filter-based episodic natural actor-critic algorithm is used to find the optimal impedance parameters. The effectiveness of the proposed method was tested through dynamic simulations of various contact tasks. The simulation results demonstrated that the proposed method optimizes the performance of the contact tasks in uncertain conditions of the environment.

  16. Outdoor ground impedance models.

    PubMed

    Attenborough, Keith; Bashir, Imran; Taherzadeh, Shahram

    2011-05-01

    Many models for the acoustical properties of rigid-porous media require knowledge of parameter values that are not available for outdoor ground surfaces. The relationship used between tortuosity and porosity for stacked spheres results in five characteristic impedance models that require not more than two adjustable parameters. These models and hard-backed-layer versions are considered further through numerical fitting of 42 short range level difference spectra measured over various ground surfaces. For all but eight sites, slit-pore, phenomenological and variable porosity models yield lower fitting errors than those given by the widely used one-parameter semi-empirical model. Data for 12 of 26 grassland sites and for three beech wood sites are fitted better by hard-backed-layer models. Parameter values obtained by fitting slit-pore and phenomenological models to data for relatively low flow resistivity grounds, such as forest floors, porous asphalt, and gravel, are consistent with values that have been obtained non-acoustically. Three impedance models yield reasonable fits to a narrow band excess attenuation spectrum measured at short range over railway ballast but, if extended reaction is taken into account, the hard-backed-layer version of the slit-pore model gives the most reasonable parameter values.

  17. Experimental impedance investigation of an ultracapacitor at different conditions for electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Hu, Xiaosong; Wang, Zhenpo; Sun, Fengchun; Dorrell, David G.

    2015-08-01

    Ultracapacitors (UCs) are being increasingly deployed as a short-term energy storage device in various energy systems including uninterruptable power supplies, electrified vehicles, renewable energy systems, and wireless communication. They exhibit excellent power density and energy efficiency. The dynamic behavior of a UC, however, strongly depends on its impedance characteristics. In this paper, the impedance characteristics of a commercial UC are experimentally investigated through the well-adopted Electrochemical Impedance Spectroscopy (EIS) technique. The implications of the UC operating conditions (i.e., temperature and state of charge (SOC)) to the impedance are systematically examined. The results show that the impedance is highly sensitive to the temperature and SOC; and the temperature effect is more significant. In particular, the coupling effect between the temperature and SOC is illustrated, as well as the high-efficiency SOC window, which is highlighted. To further verify the reliability of the EIS-based investigation and to probe the sensitivity of UC parameters to the operating conditions, a dynamic model is characterized by fitting the collected impedance data. The interdependence of UC parameters (i.e., capacitance and resistance elements) on the temperature and SOC is quantitatively revealed. The impedance-based model is demonstrated to be accurate in two driving-cycle tests.

  18. Validation of a New Procedure for Impedance Eduction in Flow

    NASA Technical Reports Server (NTRS)

    Watson, W. R.; Jones, M. G.

    2010-01-01

    A new impedance eduction procedure is validated by comparing the educed impedance spectrum to that of an older but well-tested eduction procedure. The older procedure requires the installation of a microphone array in the liner test section but the new procedure removes this requirement. A 12.7-mm stainless steel plate and a conventional liner consisting of a perforated plate bonded to a honeycomb core are tested. Test data is acquired from a grazing flow, impedance tube facility for a range of source frequencies and mean flow Mach numbers for which only plane waves are cut on. For the stainless steel plate, the educed admittance spectrum using the new procedure shows an improvement over that of the old procedure. This improvement shows up primarily in the educed conductance spectrum. Both eduction procedures show discrepancies in educed admittance in the mid-frequency range. Indications are that this discrepancy is triggered by an inconsistency between the measured eduction data (that contains boundary layer effects) and the two eduction models (for which the boundary layer is neglected). For the conventional liner, both eduction procedures are in very good agreement with each other. Small discrepancies occur for one or two frequencies in the mid-frequency range and for frequencies beyond the cut on frequency of higher-order duct modes. This discrepancy in the midfrequency range occurs because an automated optimizer is used to educe the impedance and the objective function used by the optimizer is extremely flat and therefore sensitive to initial starting values. The discrepancies at frequencies beyond the cut on frequency of higher order duct modes are due to the assumption of only plane waves in the impedance eduction model, although higher order modes are propagating in the impedance tube facility.

  19. Impedance Changes Indicate Proximal Ventriculoperitoneal Shunt Obstruction In Vitro.

    PubMed

    Basati, Sukhraaj; Tangen, Kevin; Hsu, Ying; Lin, Hanna; Frim, David; Linninger, Andreas

    2015-12-01

    Extracranial cerebrospinal fluid (CSF) shunt obstruction is one of the most important problems in hydrocephalus patient management. Despite ongoing research into better shunt design, robust and reliable detection of shunt malfunction remains elusive. The authors present a novel method of correlating degree of tissue ingrowth into ventricular CSF drainage catheters with internal electrical impedance. The impedance based sensor is able to continuously monitor shunt patency using intraluminal electrodes. Prototype obstruction sensors were fabricated for in-vitro analysis of cellular ingrowth into a shunt under static and dynamic flow conditions. Primary astrocyte cell lines and C6 glioma cells were allowed to proliferate up to 7 days within a shunt catheter and the impedance waveform was observed. During cell ingrowth a significant change in the peak-to-peak voltage signal as well as the root-mean-square voltage level was observed, allowing the impedance sensor to potentially anticipate shunt malfunction long before it affects fluid drainage. Finite element modeling was employed to demonstrate that the electrical signal used to monitor tissue ingrowth is contained inside the catheter lumen and does not endanger tissue surrounding the shunt. These results may herald the development of "next generation" shunt technology that allows prediction of malfunction before it affects patient outcome.

  20. Effect of Intravenous Infusion Solutions on Bioelectrical Impedance Spectroscopy.

    PubMed

    Yap, Jason; Rafii, Mahroukh; Azcue, Maria; Pencharz, Paul

    2017-05-01

    Bioelectrical impedance (BIA) is often used to measure body fluid spaces and thereby body composition. However, in acute animal studies, we found that impedance was driven by the saline content of intravenous (IV) fluids and not by the volume. The aim of the study was to investigate the effect of 3 different fluids acutely administered on the change in impedance, specifically resistance (R). Nine healthy adults participated in 3 treatment (0.9% saline, 5% dextrose, and a mixture of 0.3% saline + 3.3% dextrose) experiments on nonconsecutive days. They all received 1 L of one of the treatments intravenously over a 1-hour period. Repeated BIA measurements were performed prior to IV infusion and then every 5 minutes for the 1-hour infusion period, plus 3 more measurements up to 15 minutes after the completion of the infusion. The change in R in the 0.9% saline infusion experiment was significantly lower than that of the glucose and mixture treatment ( P < .001). Bioelectrical impedance spectroscopy and BIA measure salt rather than the volume changes over the infusion period. Hence, in patients receiving IV fluids, BIA of any kind (single frequency or multifrequency) cannot be used to measure body fluid spaces or body composition.

  1. Impedance Eduction in Large Ducts Containing Higher-Order Modes and Grazing Flow

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Jones, Michael G.

    2017-01-01

    Impedance eduction test data are acquired in ducts with small and large cross-sectional areas at the NASA Langley Research Center. An improved data acquisition system in the large duct has resulted in increased control of the acoustic energy in source modes and more accurate resolution of higher-order duct modes compared to previous tests. Two impedance eduction methods that take advantage of the improved data acquisition to educe the liner impedance in grazing flow are presented. One method measures the axial propagation constant of a dominant mode in the liner test section (by implementing the Kumarsean and Tufts algorithm) and educes the impedance from an exact analytical expression. The second method solves numerically the convected Helmholtz equation and minimizes an objective function to obtain the liner impedance. The two methods are tested first on data synthesized from an exact mode solution and then on measured data. Results show that when the methods are applied to data acquired in the larger duct with a dominant higher-order mode, the same impedance spectra are educed as that obtained in the small duct where only the plane wave mode propagates. This result holds for each higher-order mode in the large duct provided that the higher-order mode is sufficiently attenuated by the liner.

  2. Investigation of an Anomaly Observed in Impedance Eduction Techniques

    NASA Technical Reports Server (NTRS)

    Watson, W. R.; Jones, M. G.; Parrott, T. L.

    2008-01-01

    An intensive investigation into the cause of anomalous behavior commonly observed in impedance eduction techniques is performed. The investigation consists of grid refinement studies, detailed evaluation of results at and near anti-resonance frequencies, comparisons of different model results with synthesized and measured data, assessment or optimization techniques, and evaluation or boundary condition effects. Results show that the root cause of the anomalous behavior is the sensitivity of the educed impedance to small errors in the measured termination resistance at frequencies near anti-resonance or cut-on of a higher-order mode. Evidence is presented to show that the common usage of an anechoic, plane wave termination boundary condition in ducts where the "true" termination is reflective may act as a trigger for these anomalies. Replacing the exit impedance boundary condition by an exit pressure condition is shown to reduce the anomalous results.

  3. MEASURED TRANSVERSE COUPLING IMPEDANCE OF RHIC INJECTION AND ABORT KICKERS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HAHN,H.; DAVINO,D.

    2001-06-18

    Concerns regarding possible transverse instabilities in RHIC and the SNS pointed to the need for measurements of the transverse coupling impedance of ring components. The impedance of the RHIC injection and abort kicker was measured using the conventional method based on the S{sub 21} forward transmission coefficient. A commercial 450 {Omega} twin-wire Lecher line were used and the data was interpreted via the log-formula. All measurements, were performed in test stands fully representing operational conditions including pulsed power supplies and connecting cables. The measured values for the transverse coupling impedance in kick direction and perpendicular to it are comparable inmore » magnitude, but differ from Handbook predictions.« less

  4. Nuclear radiation-warning detector that measures impedance

    DOEpatents

    Savignac, Noel Felix; Gomez, Leo S; Yelton, William Graham; Robinson, Alex; Limmer, Steven

    2013-06-04

    This invention is a nuclear radiation-warning detector that measures impedance of silver-silver halide on an interdigitated electrode to detect light or radiation comprised of alpha particles, beta particles, gamma rays, X rays, and/or neutrons. The detector is comprised of an interdigitated electrode covered by a layer of silver halide. After exposure to alpha particles, beta particles, X rays, gamma rays, neutron radiation, or light, the silver halide is reduced to silver in the presence of a reducing solution. The change from the high electrical resistance (impedance) of silver halide to the low resistance of silver provides the radiation warning that detected radiation levels exceed a predetermined radiation dose threshold.

  5. A power saving protocol for impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Bîrlea, Nicolae Marius

    2017-12-01

    Because power saving is a main concern of wearable devices we present here a transient method with a low power demand for impedance spectroscopy of the skin, but the idea is valid for other test materials. The used signal is an electrical pulse (the ON period) followed by a pause (the OFF period) when the electrodes do not consume current from the power supply. The method has the advantage of being able to measure at once the frequency characteristics of the impedance and is well suited for the time varying bioimpedance. In addition, this kind of measurement creates a more direct and explicit relationship between the lumped elements of the electrical model and the measured signal.

  6. Kinetic Modulation of Pulsed Chrono-potentiometric Polymeric Membrane Ion Sensors by Polyelectrolyte Multilayers

    PubMed Central

    Xu, Yida; Xu, Chao; Shvarev, Alexey; Becker, Thomas; De Marco, Roland

    2010-01-01

    Polymeric membrane ion selective electrodes are normally interrogated by zero current potentiometry, and their selectivity is understood to be primarily dependent on an extraction/ion-exchange equilibrium between the aqueous sample and polymeric membrane. If concentration gradients in the contacting diffusion layers are insubstantial, the membrane response is thought to be rather independent of kinetic processes such as surface blocking effects. In this work, the surface of calcium-selective polymeric ion-selective electrodes is coated with polyelectrolyte multilayers as evidenced by zeta potential measurements, atomic force microscopy and electrochemical impedance spectroscopy. Indeed, such multilayers have no effect on their potentiometric response if the membranes are formulated in a traditional manner, containing a lipophilic ion-exchanger and a calcium-selective ionophore. However, drastic changes in the potential response are observed if the membranes are operated in a recently introduced kinetic mode using pulsed chronopotentiometry. The results suggest that the assembled nanostructured multilayers drastically alter the kinetics of ion transport to the sensing membrane, making use of the effect that polyelectrolyte multilayers have different permeabilities toward ions with different valences. The results have implications to the design of chemically selective ion sensors since surface localized kinetic limitations can now be used as an additional dimension to tune the operational ion selectivity. PMID:17711298

  7. Electrochemical impedance spectroscopy of supercapacitors: A novel analysis approach using evolutionary programming

    NASA Astrophysics Data System (ADS)

    Oz, Alon; Hershkovitz, Shany; Tsur, Yoed

    2014-11-01

    In this contribution we present a novel approach to analyze impedance spectroscopy measurements of supercapacitors. Transforming the impedance data into frequency-dependent capacitance allows us to use Impedance Spectroscopy Genetic Programming (ISGP) in order to find the distribution function of relaxation times (DFRT) of the processes taking place in the tested device. Synthetic data was generated in order to demonstrate this technique and a model for supercapacitor ageing process has been obtained.

  8. An Inexpensive, Very High Impedance Digital Voltmeter for Selective Electrodes.

    ERIC Educational Resources Information Center

    Caceci, Marco S.

    1984-01-01

    Describes a compact, digital voltmeter which exceeds, both in accuracy and input impedance, most commercial pH meters and potentiometers. The instrument consists of two parts: a very high impedance hybrid operational amplifier used as a voltage follower (ICH8500/A, Intersil) and a four and one-half digits LED display panel meter (RP-4500,…

  9. Electrode-Skin contact impedance: In vivo measurements on an ovine model

    NASA Astrophysics Data System (ADS)

    Nguyen, D. T.; Kosobrodov, R.; Barry, M. A.; Chik, W.; Jin, C.; Oh, T. I.; Thiagalingam, A.; McEwan, A.

    2013-04-01

    The problem of electrical impedance between the skin and the electrode is an on-going challenge in bio-electronics. This is particularly true in the case of Electrical Impedance Tomography (EIT), which uses a large number of skin-contact electrodes and is very sensitive to noise. In the present article, contact impedance is measured and compared for a range of electrodes placed on the thorax of an ovine model. The study has been approved by the Westmead Hospital Animal Ethics Committee. The electrode models that were employed in the research are Ag/AgCl electrodes (E1), commonly used for ECG and EIT measurements in both humans and animal models, stainless steel crocodile clips (E2), typically used on animal models, and novel multi-point dry electrodes in two modifications: bronze plated (E3) and nickel plated (E4). Further, since the contact impedance is mostly attributed to the acellular outer layer of the skin, in our experiment, we attempted to study the effect of this layer by comparing the results when the skin is intact and when electrodes are introduced underneath the skin through small cuts. This boundary effect was assessed by comparison of measurements obtained during E2 skin surface contact, and sub-cutaneous contact (E5). Twelve gauge intradermal needles were also tested as an electrode (E6). The full impedance spectrum, from 500 Hz to 300 kHz, was recorded, analysed and compared. As expected, the contact impedance in the more invasive cases, i.e the electrodes under the skin, is significantly lower than in the non-invasive cases. At the frequency of 50 kHz which is commonly used in lung EIT acquisition, electrodes E3, E4 and E6 demonstrated contact impedance of less than 200 Ω, compared to more than 400 Ω measured for electrodes E1, E2 and E5. In conclusion, the novel multipoint electrodes proved to be best suited for EIT purposes, because they are non-invasive and have lower contact impedance than Ag/AgCl and crocodile clips, in both invasive and

  10. Interphase Evolution of a Lithium-Ion/Oxygen Battery.

    PubMed

    Elia, Giuseppe Antonio; Bresser, Dominic; Reiter, Jakub; Oberhumer, Philipp; Sun, Yang-Kook; Scrosati, Bruno; Passerini, Stefano; Hassoun, Jusef

    2015-10-14

    A novel lithium-ion/oxygen battery employing Pyr14TFSI-LiTFSI as the electrolyte and nanostructured LixSn-C as the anode is reported. The remarkable energy content of the oxygen cathode, the replacement of the lithium metal anode by a nanostructured stable lithium-alloying composite, and the concomitant use of nonflammable ionic liquid-based electrolyte result in a new and intrinsically safer energy storage system. The lithium-ion/oxygen battery delivers a stable capacity of 500 mAh g(-1) at a working voltage of 2.4 V with a low charge-discharge polarization. However, further characterization of this new system by electrochemical impedance spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy reveals the progressive decrease of the battery working voltage, because of the crossover of oxygen through the electrolyte and its direct reaction with the LixSn-C anode.

  11. Quantum dot nanocrystals having guanosine imprinted nanoshell for DNA recognition.

    PubMed

    Diltemiz, Sibel Emir; Say, Ridvan; Büyüktiryaki, Sibel; Hür, Deniz; Denizli, Adil; Ersöz, Arzu

    2008-05-30

    Molecular imprinted polymers (MIPs) as a recognition element for sensors are increasingly of interest and MIP nanoparticles have started to appear in the literature. In this study, we have proposed a novel thiol ligand-capping method with polymerizable methacryloylamido-cysteine (MAC) attached to CdS quantum dots (QDs), reminiscent of a self-assembled monolayer and have reconstructed surface shell by synthetic host polymers based on molecular imprinting method for DNA recognition. In this method, methacryloylamidohistidine-platinium (MAH-Pt(II)) is used as a new metal-chelating monomer via metal coordination-chelation interactions and guanosine templates of DNA. Nanoshell sensors with guanosine templates give a cavity that is selective for guanosine and its analogues. The guanosine can simultaneously chelate to Pt(II) metal ion and fit into the shape-selective cavity. Thus, the interaction between Pt(II) ion and free coordination spheres has an effect on the binding ability of the CdS QD nanosensor. The binding affinity of the guanosine imprinted nanocrystals has investigated by using the Langmuir and Scatchard methods, and experiments have shown the shape-selective cavity formation with O6 and N7 of a guanosine nucleotide (K(a) = 4.841x10(6) mol L(-1)) and a free guanine base (K(a) = 0.894x10(6) mol L(-1)). Additionally, the guanosine template of the nanocrystals is more favored for single stranded DNA compared to double stranded DNA.

  12. Design of current source for multi-frequency simultaneous electrical impedance tomography

    NASA Astrophysics Data System (ADS)

    Han, Bing; Xu, Yanbin; Dong, Feng

    2017-09-01

    Multi-frequency electrical impedance tomography has been evolving from the frequency-sweep approach to the multi-frequency simultaneous measurement technique which can reduce measuring time and will be increasingly attractive for time-varying biological applications. The accuracy and stability of the current source are the key factors determining the quality of the image reconstruction. This article presents a field programmable gate array-based current source for a multi-frequency simultaneous electrical impedance tomography system. A novel current source circuit was realized by combining the classic current mirror based on the feedback amplifier AD844 with a differential topology. The optimal phase offsets of harmonic sinusoids were obtained through the crest factor analysis. The output characteristics of this current source were evaluated by simulation and actual measurement. The results include the following: (1) the output impedance was compared with one of the Howland pump circuit in simulation, showing comparable performance at low frequencies. However, the proposed current source makes lower demands for resistor tolerance but performs even better at high frequencies. (2) The output impedance in actual measurement below 200 kHz is above 1.3 MΩ and can reach 250 KΩ up to 1 MHz. (3) An experiment based on a biological RC model has been implemented. The mean error for the demodulated impedance amplitude and phase are 0.192% and 0.139°, respectively. Therefore, the proposed current source is wideband, biocompatible, and high precision, which demonstrates great potential to work as a sub-system in the multi-frequency electrical impedance tomography system.

  13. Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid-electrolyte-electrode interface.

    PubMed

    Yu, Chuang; Ganapathy, Swapna; Eck, Ernst R H van; Wang, Heng; Basak, Shibabrata; Li, Zhaolong; Wagemaker, Marnix

    2017-10-20

    Solid-state batteries potentially offer increased lithium-ion battery energy density and safety as required for large-scale production of electrical vehicles. One of the key challenges toward high-performance solid-state batteries is the large impedance posed by the electrode-electrolyte interface. However, direct assessment of the lithium-ion transport across realistic electrode-electrolyte interfaces is tedious. Here we report two-dimensional lithium-ion exchange NMR accessing the spontaneous lithium-ion transport, providing insight on the influence of electrode preparation and battery cycling on the lithium-ion transport over the interface between an argyrodite solid-electrolyte and a sulfide electrode. Interfacial conductivity is shown to depend strongly on the preparation method and demonstrated to drop dramatically after a few electrochemical (dis)charge cycles due to both losses in interfacial contact and increased diffusional barriers. The reported exchange NMR facilitates non-invasive and selective measurement of lithium-ion interfacial transport, providing insight that can guide the electrolyte-electrode interface design for future all-solid-state batteries.

  14. [Monitoring of extra- and intra-cellular compartment through total body impedance (author's transl)].

    PubMed

    Raggueneau, J L; Gambini, D; Levante, A; Riche, F; de Vernejoul, P; Echter, E

    1979-01-01

    To evaluate the extra-cellular space, we measure the impedance (or resistance) of the extra-cellular electrolyte compartment with an alternating current at a fixed frequency of 5 kHz that can't pass through the cellular membrane. Total water is measured by the impedance to a current of 1 MHz which is conducted by extra and intra cellular hydro-electrolytic space. There is a good correlation between electrical impedance measurements and distribution of isotopic markers. The extra-cellular compartment was evaluated by diffusion of D.T.P.A. marked with 99mTc or with 111In and the total water by the diffusion of Antipyrin marked with 1,311 or 1,231. The findings indicate that there is not a significant difference between the results of the size of extra-cellular water measured by electrical impedance and D.T.P.A. diffusion (r = 0.75). Comparable results have been obtained in the determination of total water by electrical impedance measure and diffusion of Antipyrin (r = 0.90). We have also studied by method of electric impedance:--The state of hydratation in head injured patients and after pituitary surgery.--The lean body mass and hydro-electrolyte compartments in pregnancy. Electrical impedance measure seems to be a simple and reliable method to assess the hydric state of patients.

  15. Impedance microflow cytometry for viability studies of microorganisms

    NASA Astrophysics Data System (ADS)

    Di Berardino, Marco; Hebeisen, Monika; Hessler, Thomas; Ziswiler, Adrian; Largiadèr, Stephanie; Schade, Grit

    2011-02-01

    Impedance-based Coulter counters and its derivatives are widely used cell analysis tools in many laboratories and use normally DC or low frequency AC to perform these electrical analyses. The emergence of micro-fabrication technologies in the last decade, however, provides a new means of measuring electrical properties of cells. Microfluidic approaches combined with impedance spectroscopy measurements in the radio frequency (RF) range increase sensitivity and information content and thus push single cell analyses beyond simple cell counting and sizing applications towards multiparametric cell characterization. Promising results have been shown already in the fields of cell differentiation and blood analysis. Here we emphasize the potential of this technology by presenting new data obtained from viability studies on microorganisms. Impedance measurements of several yeast and bacteria strains performed at frequencies around 10 MHz enable an easy discrimination between dead and viable cells. Moreover, cytotoxic effects of antibiotics and other reagents, as well as cell starvation can also be monitored easily. Control analyses performed with conventional flow cytometers using various fluorescent dyes (propidium iodide, oxonol) indicate a good correlation and further highlight the capability of this device. The label-free approach makes on the one hand the use of usually expensive fluorochromes obsolete, on the other hand practically eliminates laborious sample preparation procedures. Until now, online cell monitoring was limited to the determination of viable biomass, which provides rather poor information of a cell culture. Impedance microflow cytometry, besides other aspects, proposes a simple solution to these limitations and might become an important tool for bioprocess monitoring applications in the biotech industry.

  16. Childbearing impeded education more than education impeded childbearing among Norwegian women.

    PubMed

    Cohen, Joel E; Kravdal, Øystein; Keilman, Nico

    2011-07-19

    In most societies, women at age 39 with higher levels of education have fewer children. To understand this association, we investigated the effects of childbearing on educational attainment and the effects of education on fertility in the 1964 birth cohort of Norwegian women. Using detailed annual data from ages 17 to 39, we estimated the probabilities of an additional birth, a change in educational level, and enrollment in the coming year, conditional on fertility history, educational level, and enrollment history at the beginning of each year. A simple model reproduced a declining gradient of children ever born with increasing educational level at age 39. When a counterfactual simulation assumed no effects of childbearing on educational progression or enrollment (without changing the estimated effects of education on childbearing), the simulated number of children ever born decreased very little with increasing completed educational level, contrary to data. However, when another counterfactual simulation assumed no effects of current educational level and enrollment on childbearing (without changing the estimated effects of childbearing on education), the simulated number of children ever born decreased with increasing completed educational level nearly as much as the decrease in the data. In summary, in these Norwegian data, childbearing impeded education much more than education impeded childbearing. These results suggest that women with advanced degrees have lower completed fertility on the average principally because women who have one or more children early are more likely to leave or not enter long educational tracks and never attain a high educational level.

  17. Childbearing impeded education more than education impeded childbearing among Norwegian women

    PubMed Central

    Cohen, Joel E.; Kravdal, Øystein; Keilman, Nico

    2011-01-01

    In most societies, women at age 39 with higher levels of education have fewer children. To understand this association, we investigated the effects of childbearing on educational attainment and the effects of education on fertility in the 1964 birth cohort of Norwegian women. Using detailed annual data from ages 17 to 39, we estimated the probabilities of an additional birth, a change in educational level, and enrollment in the coming year, conditional on fertility history, educational level, and enrollment history at the beginning of each year. A simple model reproduced a declining gradient of children ever born with increasing educational level at age 39. When a counterfactual simulation assumed no effects of childbearing on educational progression or enrollment (without changing the estimated effects of education on childbearing), the simulated number of children ever born decreased very little with increasing completed educational level, contrary to data. However, when another counterfactual simulation assumed no effects of current educational level and enrollment on childbearing (without changing the estimated effects of childbearing on education), the simulated number of children ever born decreased with increasing completed educational level nearly as much as the decrease in the data. In summary, in these Norwegian data, childbearing impeded education much more than education impeded childbearing. These results suggest that women with advanced degrees have lower completed fertility on the average principally because women who have one or more children early are more likely to leave or not enter long educational tracks and never attain a high educational level. PMID:21730138

  18. An efficient signal processing tool for impedance-based structural health monitoring

    NASA Astrophysics Data System (ADS)

    O'Brien, Megan K.; Taylor, Stuart G.; Farinholt, Kevin M.; Park, Gyuhae; Farrar, Charles R.

    2009-03-01

    Various experimental studies have demonstrated that an impedance-based approach to structural health monitoring can be an effective means of damage detection. Using the self-sensing and active-sensing capabilities of piezoelectric materials, the electromechanical impedance response can be monitored to provide a qualitative indication of the overall health of a structure. Although impedance analyzers are commonly used to collect such data, they are bulky and impractical for long-term field implementation, so a smaller and more portable device is desired. However, impedance measurements often contain a sizeable number of data points, and a smaller device may not possess enough memory to store the required information, particularly for real-time analysis. Therefore, the amount of data used to assess the integrity of a structure must be significantly reduced. A new type of cross correlation analysis, for which impedance data is instantaneously correlated between different sensor sets and different frequency ranges, as opposed to be correlated to pre-stored baseline data, is proposed to drastically reduce the amount of data to a single correlation coefficient and provide a quantitative means of detecting damage relative to the sensor positions. The proposed analysis is carried out on a 3-story representative structure and its efficiency is demonstrated.

  19. Impedance analysis of a disk-type SOFC using doped lanthanum gallate under power generation

    NASA Astrophysics Data System (ADS)

    Kato, Tohru; Nozaki, Ken; Negishi, Akira; Kato, Ken; Monma, Akihiko; Kaga, Yasuo; Nagata, Susumu; Takano, Kiyonami; Inagaki, Toru; Yoshida, Hiroyuki; Hosoi, Kei; Hoshino, Koji; Akbay, Taner; Akikusa, Jun

    Impedance measurements were carried out under practical power generation conditions in a disk-type SOFC, which may be utilized as a small-scale power generator. The tested cell was composed of doped lanthanum gallate (La 0.8Sr 0.2Ga 0.8Mg 0.15Co 0.05O 3- δ) as the electrolyte, Sm 0.5Sr 0.5CoO 3 as the cathode electrode and Ni/Ce 0.8Sm 0.2O 2 cermet as the anode electrode. The cell impedance was measured between 10 mHz and 10 kHz by varying the fuel utilization and gas flow rate and plotted in complex impedance diagrams. The observed impedance shows a large semi-circular pattern on the low frequency side. The semi-circular impedance, having a noticeably low characteristic frequency between 0.13 and 0.4 Hz, comes from the change in gas composition, originally caused by the cell reaction. The change in impedance with the fuel utilization (load current) and the gas flow rate agreed qualitatively well with the theoretical predictions from a simulation. This impedance was dominant under high fuel-utilization power-generation conditions. The impedance, which described the activation polarizations in the electrode reactions, was comparatively small and scarcely changed with the change in fuel utilization (load current) and gas flow rate.

  20. Automated real-time structure health monitoring via signature pattern recognition

    NASA Astrophysics Data System (ADS)

    Sun, Fanping P.; Chaudhry, Zaffir A.; Rogers, Craig A.; Majmundar, M.; Liang, Chen

    1995-05-01

    Described in this paper are the details of an automated real-time structure health monitoring system. The system is based on structural signature pattern recognition. It uses an array of piezoceramic patches bonded to the structure as integrated sensor-actuators, an electric impedance analyzer for structural frequency response function acquisition and a PC for control and graphic display. An assembled 3-bay truss structure is employed as a test bed. Two issues, the localization of sensing area and the sensor temperature drift, which are critical for the success of this technique are addressed and a novel approach of providing temperature compensation using probability correlation function is presented. Due to the negligible weight and size of the solid-state sensor array and its ability to sense incipient-type damage, the system can eventually be implemented on many types of structures such as aircraft, spacecraft, large-span dome roof and steel bridges requiring multilocation and real-time health monitoring.

  1. High sensitive detection of copper II ions using D-penicillamine-coated gold nanorods based on localized surface plasmon resonance.

    PubMed

    Hong, Yoochan; Jo, Seongjae; Park, Joohyung; Park, Jinsung; Yang, Jaemoon

    2018-05-25

    In this paper, we describe the development of a nanoplasmonic biosensor based on the localized surface plasmon resonance (LSPR) effect that enables a sensitive and selective recognition of copper II ions. First, we fabricated the nanoplasmonics as LSPR substrates using gold nanorods (GNR) and the nano-adsorption method. The LSPR sensitivity of the nanoplasmonics was evaluated using various solvents with different refractive indexes. Subsequently, D-penicillamine (DPA)-a chelating agent of copper II ions-was conjugated to the surface of the GNR. The limit of detection (LOD) for the DPA-conjugated nanoplasmonics was 100 pM. Furthermore, selectivity tests were conducted using various divalent cations, and sensitivity tests were conducted on the nanoplasmonics under blood-like environments. Finally, the developed nanoplasmonic biosensor based on GNR shows great potential for the effective recognition of copper II ions, even in human blood conditions.

  2. Electrical Impedance Tomography Technology (EITT) Project

    NASA Technical Reports Server (NTRS)

    Oliva-Buisson, Yvette J.

    2014-01-01

    Development of a portable, lightweight device providing two-dimensional tomographic imaging of the human body using impedance mapping. This technology can be developed to evaluate health risks and provide appropriate medical care on the ISS, during space travel and on the ground.

  3. A finite element procedure for radio-frequency sheath–plasma interactions based on a sheath impedance model

    DOE PAGES

    Kohno, H.; Myra, J. R.

    2017-07-24

    A finite element code that solves self-consistent radio-frequency (RF) sheath-plasma interaction problems is improved by incorporating a generalized sheath boundary condition in the macroscopic solution scheme. This sheath boundary condition makes use of a complex sheath impedance including both the sheath capacitance and resistance, which enables evaluation of not only the RF voltage across the sheath but also the power dissipation in the sheath. The newly developed finite element procedure is applied to cases where the background magnetic field is perpendicular to the sheath surface in one- and two-dimensional domains filled by uniform low- and high-density plasmas. The numerical resultsmore » are compared with those obtained by employing the previous capacitive sheath model at a typical frequency for ion cyclotron heating used in fusion experiments. It is shown that for sheaths on the order of 100 V in a high-density plasma, localized RF power deposition can reach a level which causes material damage. It is also shown that the sheath-plasma wave resonances predicted by the capacitive sheath model do not occur when parameters are such that the generalized sheath impedance model substantially modifies the capacitive character of the sheath. Here, possible explanations for the difference in the maximum RF sheath voltage depending on the plasma density are also discussed.« less

  4. A finite element procedure for radio-frequency sheath–plasma interactions based on a sheath impedance model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohno, H.; Myra, J. R.

    A finite element code that solves self-consistent radio-frequency (RF) sheath-plasma interaction problems is improved by incorporating a generalized sheath boundary condition in the macroscopic solution scheme. This sheath boundary condition makes use of a complex sheath impedance including both the sheath capacitance and resistance, which enables evaluation of not only the RF voltage across the sheath but also the power dissipation in the sheath. The newly developed finite element procedure is applied to cases where the background magnetic field is perpendicular to the sheath surface in one- and two-dimensional domains filled by uniform low- and high-density plasmas. The numerical resultsmore » are compared with those obtained by employing the previous capacitive sheath model at a typical frequency for ion cyclotron heating used in fusion experiments. It is shown that for sheaths on the order of 100 V in a high-density plasma, localized RF power deposition can reach a level which causes material damage. It is also shown that the sheath-plasma wave resonances predicted by the capacitive sheath model do not occur when parameters are such that the generalized sheath impedance model substantially modifies the capacitive character of the sheath. Here, possible explanations for the difference in the maximum RF sheath voltage depending on the plasma density are also discussed.« less

  5. A Comparison between Electrochemical Impedance Spectroscopy and Incremental Capacity-Differential Voltage as Li-ion Diagnostic Techniques to Identify and Quantify the Effects of Degradation Modes within Battery Management Systems

    NASA Astrophysics Data System (ADS)

    Pastor-Fernández, Carlos; Uddin, Kotub; Chouchelamane, Gael H.; Widanage, W. Dhammika; Marco, James

    2017-08-01

    Degradation of Lithium-ion batteries is a complex process that is caused by a variety of mechanisms. For simplicity, ageing mechanisms are often grouped into three degradation modes (DMs): conductivity loss (CL), loss of active material (LAM) and loss of lithium inventory (LLI). State of Health (SoH) is typically the parameter used by the Battery Management System (BMS) to quantify battery degradation based on the decrease in capacity and the increase in resistance. However, the definition of SoH within a BMS does not currently include an indication of the underlying DMs causing the degradation. Previous studies have analysed the effects of the DMs using incremental capacity and differential voltage (IC-DV) and electrochemical impedance spectroscopy (EIS). The aim of this study is to compare IC-DV and EIS on the same data set to evaluate if both techniques provide similar insights into the causes of battery degradation. For an experimental case of parallelized cells aged differently, the effects due to LAM and LLI were found to be the most pertinent, outlining that both techniques are correlated. This approach can be further implemented within a BMS to quantify the causes of battery ageing which would support battery lifetime control strategies and future battery designs.

  6. Anisotropic bioelectrical impedance determination of subcutaneous fat thickness

    NASA Astrophysics Data System (ADS)

    Hernández-Becerra, P. A. I.; Delgadillo-Holtfort, I.; Balleza-Ordaz, M.; Huerta-Franco, M. R.; Vargas-Luna, M.

    2014-11-01

    Preliminary results have shown that bioelectrical impedance measurements performed on different parts of the human body strongly depend upon the subcutaneous fat of the considered region. In this work, a method for the determination of subcutaneous fat thickness is explored. Within this method the measurement of the bioelectrical impedance response of the fat-muscle system, both along the direction defined by the muscle fibers and along the corresponding perpendicular direction, are performed. Measurements have been carried out on human female and male subjects of ages around 25 years old at the region of the biceps. Correlation has been performed with skinfold caliper measurements.

  7. Analytical solutions with Generalized Impedance Boundary Conditions (GIBC)

    NASA Technical Reports Server (NTRS)

    Syed, H. H.; Volakis, John L.

    1991-01-01

    Rigorous uniform geometrical theory of diffraction (UTD) diffraction coefficients are presented for a coated convex cylinder simulated with generalized impedance boundary conditions. In particular, ray solutions are obtained which remain valid in the transition region and reduce uniformly to those in the deep lit and shadow regions. These involve new transition functions in place of the usual Fock-type integrals, characteristics to the impedance cylinder. A uniform asymptotic solution is also presented for observations in the close vicinity of the cylinder. The diffraction coefficients for the convex cylinder are obtained via a generalization of the corresponding ones for the circular cylinder.

  8. Leveraging Disturbance Observer Based Torque Control for Improved Impedance Rendering with Series Elastic Actuators

    NASA Technical Reports Server (NTRS)

    Mehling, Joshua S.; Holley, James; O'Malley, Marcia K.

    2015-01-01

    The fidelity with which series elastic actuators (SEAs) render desired impedances is important. Numerous approaches to SEA impedance control have been developed under the premise that high-precision actuator torque control is a prerequisite. Indeed, the design of an inner torque compensator has a significant impact on actuator impedance rendering. The disturbance observer (DOB) based torque control implemented in NASA's Valkyrie robot is considered here and a mathematical model of this torque control, cascaded with an outer impedance compensator, is constructed. While previous work has examined the impact a disturbance observer has on torque control performance, little has been done regarding DOBs and impedance rendering accuracy. Both simulation and a series of experiments are used to demonstrate the significant improvements possible in an SEA's ability to render desired dynamic behaviors when utilizing a DOB. Actuator transparency at low impedances is improved, closed loop hysteresis is reduced, and the actuator's dynamic response to both commands and interaction torques more faithfully matches that of the desired model. All of this is achieved by leveraging DOB based control rather than increasing compensator gains, thus making improved SEA impedance control easier to achieve in practice.

  9. Structural, dielectric and impedance spectroscopic studies of Ni0.5Zn0.5-xLixFe2O4 nanocrystalline ferrites

    NASA Astrophysics Data System (ADS)

    Venkatesh, Davuluri; Ramesh, K. V.

    2017-09-01

    Nanocrystalline lithium substituted Ni-Zn ferrites with composition Ni0.5Zn0.5-xLixFe2O4 (x = 0.00-0.25 in steps of 0.05) were synthesized by the citrate gel auto-combustion method and were sintered at 1000∘C for 4 h in air atmosphere. The structural, dielectric, impedance spectroscopic and magnetic properties were studied by using X-ray diffraction, impedance analyzer and vibrating sample magnetometer respectively. The X-ray diffraction patterns confirm that all samples exhibit a single phase cubic spinel structure. Suitable cation distribution for all compositions has been proposed by using the X-ray diffraction line intensity calculations and the theoretical lattice parameter for each composition was observed in close agreement with the experimental ones and thereby supporting the proposed distribution. An increase in the saturation magnetization was observed up to x = 0.10 level of Li+ substitution and thereafter magnetization reduced for higher concentrations to the highest level of Li+ substitution. The dielectric constant and the DC resistivity of Ni-Zn-Li ferrites were noticed to decrease with increase in the Li+ ion concentration. The impedance spectroscopic studies by using the Cole-Cole plots were studied in order to obtain the relaxation time, grain resistance and grain capacitance. AC conductivity initially remained almost independent of frequency for lower frequencies and thereafter for higher frequencies the AC conductivity increased with increase of Lithium concentration.

  10. Adaptive Filtering to Enhance Noise Immunity of Impedance and Admittance Spectroscopy: Comparison with Fourier Transformation

    NASA Astrophysics Data System (ADS)

    Stupin, Daniil D.; Koniakhin, Sergei V.; Verlov, Nikolay A.; Dubina, Michael V.

    2017-05-01

    The time-domain technique for impedance spectroscopy consists of computing the excitation voltage and current response Fourier images by fast or discrete Fourier transformation and calculating their relation. Here we propose an alternative method for excitation voltage and current response processing for deriving a system impedance spectrum based on a fast and flexible adaptive filtering method. We show the equivalence between the problem of adaptive filter learning and deriving the system impedance spectrum. To be specific, we express the impedance via the adaptive filter weight coefficients. The noise-canceling property of adaptive filtering is also justified. Using the RLC circuit as a model system, we experimentally show that adaptive filtering yields correct admittance spectra and elements ratings in the high-noise conditions when the Fourier-transform technique fails. Providing the additional sensitivity of impedance spectroscopy, adaptive filtering can be applied to otherwise impossible-to-interpret time-domain impedance data. The advantages of adaptive filtering are justified with practical living-cell impedance measurements.

  11. Portable bioimpedance monitor evaluation for continuous impedance measurements. Towards wearable plethysmography applications.

    PubMed

    Ferreira, J; Seoane, F; Lindecrantz, K

    2013-01-01

    Personalised Health Systems (PHS) that could benefit the life quality of the patients as well as decreasing the health care costs for society among other factors are arisen. The purpose of this paper is to study the capabilities of the System-on-Chip Impedance Network Analyser AD5933 performing high speed single frequency continuous bioimpedance measurements. From a theoretical analysis, the minimum continuous impedance estimation time was determined, and the AD5933 with a custom 4-Electrode Analog Front-End (AFE) was used to experimentally determine the maximum continuous impedance estimation frequency as well as the system impedance estimation error when measuring a 2R1C electrical circuit model. Transthoracic Electrical Bioimpedance (TEB) measurements in a healthy subject were obtained using 3M gel electrodes in a tetrapolar lateral spot electrode configuration. The obtained TEB raw signal was filtered in MATLAB to obtain the respiration and cardiogenic signals, and from the cardiogenic signal the impedance derivative signal (dZ/dt) was also calculated. The results have shown that the maximum continuous impedance estimation rate was approximately 550 measurements per second with a magnitude estimation error below 1% on 2R1C-parallel bridge measurements. The displayed respiration and cardiac signals exhibited good performance, and they could be used to obtain valuable information in some plethysmography monitoring applications. The obtained results suggest that the AD5933-based monitor could be used for the implementation of a portable and wearable Bioimpedance plethysmograph that could be used in applications such as Impedance Cardiography. These results combined with the research done in functional garments and textile electrodes might enable the implementation of PHS applications in a relatively short time from now.

  12. Steric Shielding of Surface Epitopes and Impaired Immune Recognition Induced by the Ebola Virus Glycoprotein

    PubMed Central

    Francica, Joseph R.; Varela-Rohena, Angel; Medvec, Andrew; Plesa, Gabriela; Riley, James L.; Bates, Paul

    2010-01-01

    Many viruses alter expression of proteins on the surface of infected cells including molecules important for immune recognition, such as the major histocompatibility complex (MHC) class I and II molecules. Virus-induced downregulation of surface proteins has been observed to occur by a variety of mechanisms including impaired transcription, blocks to synthesis, and increased turnover. Viral infection or transient expression of the Ebola virus (EBOV) glycoprotein (GP) was previously shown to result in loss of staining of various host cell surface proteins including MHC1 and β1 integrin; however, the mechanism responsible for this effect has not been delineated. In the present study we demonstrate that EBOV GP does not decrease surface levels of β1 integrin or MHC1, but rather impedes recognition by steric occlusion of these proteins on the cell surface. Furthermore, steric occlusion also occurs for epitopes on the EBOV glycoprotein itself. The occluded epitopes in host proteins and EBOV GP can be revealed by removal of the surface subunit of GP or by removal of surface N- and O- linked glycans, resulting in increased surface staining by flow cytometry. Importantly, expression of EBOV GP impairs CD8 T-cell recognition of MHC1 on antigen presenting cells. Glycan-mediated steric shielding of host cell surface proteins by EBOV GP represents a novel mechanism for a virus to affect host cell function, thereby escaping immune detection. PMID:20844579

  13. Toxicity of graphene nanoflakes evaluated by cell-based electrochemical impedance biosensing.

    PubMed

    Yoon, Ok Ja; Kim, Insu; Sohn, Il Yung; Kieu, Truong Thuy; Lee, Nae-Eung

    2014-07-01

    Graphene nanoflake toxicity was analyzed using cell-based electrochemical impedance biosensing with interdigitated indium tin oxide (ITO) electrodes installed in a custom-built mini-incubator positioned on an inverted optical microscope. Sensing with electrochemical measurements from interdigitated ITO electrodes was highly linear (R(2) = 0.93 and 0.96 for anodic peak current (Ipa) and cathodic peak current (Ipc), respectively). Size-dependent analysis of Graphene nanoflake toxicity was carried out in a mini-incubator system with cultured HeLa cells treated with Graphene nanoflakes having an average size of 80 or 30 nm for one day. Biological assays of cell proliferation and viability complemented electrochemical impedance measurements. The increased toxicity of smaller Graphene nanoflakes (30 nm) as measured by electrochemical impedance sensing and optical monitoring of treated cells was consistent with the biological assay results. Cell-based electrochemical impedance biosensing can be used to assess the toxicity of nanomaterials with different biomedical and environmental applications. © 2013 Wiley Periodicals, Inc.

  14. Study of the dopamine effect into cell solutions by impedance analysis

    NASA Astrophysics Data System (ADS)

    Paivana, G.; Apostolou, T.; Kaltsas, G.; Kintzios, S.

    2017-11-01

    Electrochemical Impedance Spectroscopy (EIS) has become a technique that is frequently used for biological assays. Impedance is defined as a complex - valued generalization of resistance and varies depending on its use per application field. In health sciences, bioimpedance is widely used as non-invasive and low cost alternative in many medical areas that provides valuable information about health status. This work focuses on assessing the effects of a bioactive substance applied to immobilized cells. Dopamine was used as a stimulant in order to implement impedance analysis with a specific type of cells. Dopamine constitutes one of the most important catecholamine neurotransmitters in both the mammalian central and peripheral nervous systems. The main purpose is to extract calibration curves at different frequencies with known dopamine concentrations in order to describe the behavior of cells applied to dopamine using an impedance measurement device. For comparison purposes, non-immobilized cells were tested for the same dopamine concentrations.

  15. Printed circuit board impedance matching step for microwave (millimeter wave) devices

    DOEpatents

    Pao, Hsueh-Yuan; Aguirre, Jerardo; Sargis, Paul

    2013-10-01

    An impedance matching ground plane step, in conjunction with a quarter wave transformer section, in a printed circuit board provides a broadband microwave matching transition from board connectors or other elements that require thin substrates to thick substrate (>quarter wavelength) broadband microwave (millimeter wave) devices. A method of constructing microwave and other high frequency electrical circuits on a substrate of uniform thickness, where the circuit is formed of a plurality of interconnected elements of different impedances that individually require substrates of different thicknesses, by providing a substrate of uniform thickness that is a composite or multilayered substrate; and forming a pattern of intermediate ground planes or impedance matching steps interconnected by vias located under various parts of the circuit where components of different impedances are located so that each part of the circuit has a ground plane substrate thickness that is optimum while the entire circuit is formed on a substrate of uniform thickness.

  16. Single Mode Theory for Impedance Eduction in Large-Scale Ducts with Grazing Flow

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Gerhold, Carl H.; Jones, Michael G.; June, Jason C.

    2014-01-01

    An impedance eduction theory for a rigid wall duct containing an acoustic liner with an unknown impedance and uniform grazing flow is presented. The unique features of the theory are: 1) non-planar waves propagate in the hard wall sections of the duct, 2) input data consist solely of complex acoustic pressures acquired on a wall adjacent to the liner, and 3) multiple higher-order modes may exist in the direction perpendicular to the liner and the opposite rigid wall. The approach is to first measure the axial propagation constant of a dominant higher-order mode in the liner sample section. This axial propagation constant is then used in conjunction with a closed-form solution to a reduced form of the convected Helmholtz equation and the wall impedance boundary condition to educe the liner impedance. The theory is validated on a conventional liner whose impedance spectrum is educed in two flow ducts with different cross sections. For the frequencies and Mach numbers of interest, no higher-order modes propagate in the hard wall sections of the smaller duct. A benchmark method is used to educe the impedance spectrum in this duct. A dominant higher-order vertical mode propagates in the larger duct for similar test conditions, and the current theory is applied to educe the impedance spectrum. Results show that when the theory is applied to data acquired in the larger duct with a dominant higher-order vertical mode, the same impedance spectra is educed as that obtained in the small duct where only the plane wave mode is present and the benchmark method is used. This result holds for each higher-order vertical mode that is considered.

  17. Kinetic modeling of auroral ion outflows observed by the VISIONS sounding rocket

    NASA Astrophysics Data System (ADS)

    Albarran, R. M.; Zettergren, M. D.

    2017-12-01

    The VISIONS (VISualizing Ion Outflow via Neutral atom imaging during a Substorm) sounding rocket was launched on Feb. 7, 2013 at 8:21 UTC from Poker Flat, Alaska, into an auroral substorm with the objective of identifying the drivers and dynamics of the ion outflow below 1000km. Energetic ion data from the VISIONS polar cap boundary crossing show evidence of an ion "pressure cooker" effect whereby ions energized via transverse heating in the topside ionosphere travel upward and are impeded by a parallel potential structure at higher altitudes. VISIONS was also instrumented with an energetic neutral atom (ENA) detector which measured neutral particles ( 50-100 eV energy) presumably produced by charge-exchange with the energized outflowing ions. Hence, inferences about ion outflow may be made via remotely-sensing measurements of ENAs. This investigation focuses on modeling energetic outflowing ion distributions observed by VISIONS using a kinetic model. This kinetic model traces large numbers of individual particles, using a guiding-center approximation, in order to allow calculation of ion distribution functions and moments. For the present study we include mirror and parallel electric field forces, and a source of ion cyclotron resonance (ICR) wave heating, thought to be central to the transverse energization of ions. The model is initiated with a steady-state ion density altitude profile and Maxwellian velocity distribution characterizing the initial phase-space conditions for multiple particle trajectories. This project serves to advance our understanding of the drivers and particle dynamics in the auroral ionosphere and to improve data analysis methods for future sounding rocket and satellite missions.

  18. Kinetic modeling of auroral ion Outflows observed by the VISIONS sounding rocket

    NASA Astrophysics Data System (ADS)

    Albarran, R. M.; Zettergren, M. D.; Rowland, D. E.; Klenzing, J.; Clemmons, J. H.

    2016-12-01

    The VISIONS (VISualizing Ion Outflow via Neutral atom imaging during a Substorm) sounding rocket was launched on Feb. 7, 2013 at 8:21 UTC from Poker Flat, Alaska, into an auroral substorm with the objective of identifying the drivers and dynamics of the ion outflow below 1000km. Energetic ion data from the VISIONS polar cap boundary crossing show evidence of an ion "pressure cooker" effect whereby ions energized via transverse heating in the topside ionosphere travel upward and are impeded by a parallel potential structure at higher altitudes. VISIONS was also instrumented with an energetic neutral atom (ENA) detector which measured neutral particles ( 50-100 eV energy) presumably produced by charge-exchange with the energized outflowing ions. Hence, inferences about ion outflow may be made via remotely-sensing measurements of ENAs. This investigation focuses on modeling energetic outflowing ion distributions observed by VISIONS using a kinetic model. This kinetic model traces large numbers of individual particles, using a guiding-center approximation, in order to allow calculation of ion distribution functions and moments. For the present study we include mirror and parallel electric field forces, and a source of ion cyclotron resonance (ICR) wave heating, thought to be central to the transverse energization of ions. The model is initiated with a steady-state ion density altitude profile and Maxwellian velocity distribution characterizing the initial phase-space conditions for multiple particle trajectories. This project serves to advance our understanding of the drivers and particle dynamics in the auroral ionosphere and to improve data analysis methods for future sounding rocket and satellite missions.

  19. Fluorescent Binary Ensemble Based on Pyrene Derivative and Sodium Dodecyl Sulfate Assemblies as a Chemical Tongue for Discriminating Metal Ions and Brand Water.

    PubMed

    Zhang, Lijun; Huang, Xinyan; Cao, Yuan; Xin, Yunhong; Ding, Liping

    2017-12-22

    Enormous effort has been put to the detection and recognition of various heavy metal ions due to their involvement in serious environmental pollution and many major diseases. The present work has developed a single fluorescent sensor ensemble that can distinguish and identify a variety of heavy metal ions. A pyrene-based fluorophore (PB) containing a metal ion receptor group was specially designed and synthesized. Anionic surfactant sodium dodecyl sulfate (SDS) assemblies can effectively adjust its fluorescence behavior. The selected binary ensemble based on PB/SDS assemblies can exhibit multiple emission bands and provide wavelength-based cross-reactive responses to a series of metal ions to realize pattern recognition ability. The combination of surfactant assembly modulation and the receptor for metal ions empowers the present sensor ensemble with strong discrimination power, which could well differentiate 13 metal ions, including Cu 2+ , Co 2+ , Ni 2+ , Cr 3+ , Hg 2+ , Fe 3+ , Zn 2+ , Cd 2+ , Al 3+ , Pb 2+ , Ca 2+ , Mg 2+ , and Ba 2+ . Moreover, this single sensing ensemble could be further applied for identifying different brands of drinking water.

  20. Rotation-invariant neural pattern recognition system with application to coin recognition.

    PubMed

    Fukumi, M; Omatu, S; Takeda, F; Kosaka, T

    1992-01-01

    In pattern recognition, it is often necessary to deal with problems to classify a transformed pattern. A neural pattern recognition system which is insensitive to rotation of input pattern by various degrees is proposed. The system consists of a fixed invariance network with many slabs and a trainable multilayered network. The system was used in a rotation-invariant coin recognition problem to distinguish between a 500 yen coin and a 500 won coin. The results show that the approach works well for variable rotation pattern recognition.

  1. BPM Design and Impedance Considerations for a Rotatable Collimator for the LHC Collimation Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Jeffrey Claiborne; /SLAC; Keller, Lewis

    2010-08-26

    The Phase II upgrade to the LHC collimation system calls for complementing the 30 high robust Phase I graphite secondary collimators with 30 high Z Phase II collimators. This paper reports on BPM and impedance considerations and measurements of the integrated BPMs in the prototype rotatable collimator to be installed in the Super Proton Synchrotron (SPS) at CERN. The BPMs are necessary to align the jaws with the beam. Without careful design the beam impedance can result in unacceptable heating of the chamber wall or beam instabilities. The impedance measurements involve utilizing both a single displaced wire and two wiresmore » excited in opposite phase to disentangle the driving and detuning transverse impedances. Trapped mode resonances and longitudinal impedance are to also be measured and compared with simulations. These measurements, when completed, will demonstrate the device is fully operational and has the impedance characteristics and BPM performance acceptable for installation in the SPS.« less

  2. Fuzzy variable impedance control based on stiffness identification for human-robot cooperation

    NASA Astrophysics Data System (ADS)

    Mao, Dachao; Yang, Wenlong; Du, Zhijiang

    2017-06-01

    This paper presents a dynamic fuzzy variable impedance control algorithm for human-robot cooperation. In order to estimate the intention of human for co-manipulation, a fuzzy inference system is set up to adjust the impedance parameter. Aiming at regulating the output fuzzy universe based on the human arm’s stiffness, an online stiffness identification method is developed. A drag interaction task is conducted on a 5-DOF robot with variable impedance control. Experimental results demonstrate that the proposed algorithm is superior.

  3. Nocturnal Gastroesophageal Reflux Revisited by Impedance-pH Monitoring

    PubMed Central

    Blondeau, Kathleen; Mertens, Veerle; Tack, Jan; Sifrim, Daniel

    2011-01-01

    Background/Aims Impedance-pH monitoring allows detailed characterization of gastroesophageal reflux and esophageal activity associated with reflux. We assessed the characteristics of nocturnal reflux and esophageal activity preceding and following reflux. Methods Impedance-pH tracings from 11 healthy subjects and 76 patients with gastroesophageal reflux disease off acid-suppressive therapy were analyzed. Characteristics of nocturnal supine reflux, time distribution and esophageal activity seen on impedance at 2 minute intervals preceding and following reflux were described. Results Patients had more nocturnal reflux events than healthy subjects (8 [4-12] vs 2 [1-5], P = 0.002), with lower proportion of weakly acidic reflux (57% [35-78] vs 80% [60-100], P = 0.044). Nocturnal reflux was mainly liquid (80%) and reached the proximal esophagus more often in patients (6% vs 0%, P = 0.047). Acid reflux predominated in the first 2 hours (66%) and weakly acidic reflux in the last 3 hours (70%) of the night. Most nocturnal reflux was preceded by aboral flows and cleared by short lasting volume clearance. In patients, prolonged chemical clearance was associated with less esophageal activity. Conclusions Nocturnal weakly acidic reflux is as common as acid reflux in patients with gastroesophageal reflux disease, and predominates later in the night. Impedance-pH can predict prolonged chemical clearance after nocturnal acid reflux. PMID:21602991

  4. An approximate solution to improve computational efficiency of impedance-type payload load prediction

    NASA Technical Reports Server (NTRS)

    White, C. W.

    1981-01-01

    The computational efficiency of the impedance type loads prediction method was studied. Three goals were addressed: devise a method to make the impedance method operate more efficiently in the computer; assess the accuracy and convenience of the method for determining the effect of design changes; and investigate the use of the method to identify design changes for reduction of payload loads. The method is suitable for calculation of dynamic response in either the frequency or time domain. It is concluded that: the choice of an orthogonal coordinate system will allow the impedance method to operate more efficiently in the computer; the approximate mode impedance technique is adequate for determining the effect of design changes, and is applicable for both statically determinate and statically indeterminate payload attachments; and beneficial design changes to reduce payload loads can be identified by the combined application of impedance techniques and energy distribution review techniques.

  5. Oxygen ion irradiation effect on corrosion behavior of titanium in nitric acid medium

    NASA Astrophysics Data System (ADS)

    Ningshen, S.; Kamachi Mudali, U.; Mukherjee, P.; Barat, P.; Raj, Baldev

    2011-01-01

    The corrosion assessment and surface layer properties after O 5+ ion irradiation of commercially pure titanium (CP-Ti) has been studied in 11.5 N HNO 3. CP-Ti specimen was irradiated at different fluences of 1 × 10 13, 1 × 10 14 and 1 × 10 15 ions/cm 2 below 313 K, using 116 MeV O 5+ ions source. The corrosion resistance and surface layer were evaluated by using potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and glancing-angle X-ray diffraction (GXRD) methods. The potentiodynamic anodic polarization results of CP-Ti revealed that increased in ion fluence (1 × 10 13-1 × 10 15 ions/cm 2) resulted in increased passive current density due to higher anodic dissolution. SEM micrographs and GXRD analysis corroborated these results showing irradiation damage after corrosion test and modified oxide layer by O 5+ ion irradiation was observed. The EIS studies revealed that the stability and passive film resistance varied depending on the fluence of ion irradiation. The GXRD patterns of O 5+ ion irradiated CP-Ti revealed the oxides formed are mostly TiO 2, Ti 2O 3 and TiO. In this paper, the effects of O 5+ ion irradiation on material integrity and corrosion behavior of CP-Ti in nitric acid are described.

  6. Using pattern recognition entropy to select mass chromatograms to prepare total ion current chromatograms from raw liquid chromatography-mass spectrometry data.

    PubMed

    Chatterjee, Shiladitya; Major, George H; Paull, Brett; Rodriguez, Estrella Sanz; Kaykhaii, Massoud; Linford, Matthew R

    2018-04-21

    The total ion current chromatogram (TICC) obtained by liquid-chromatography-mass spectrometry (LC-MS) is often extremely complex and 'noisy' in appearance, particularly when an electrospray ionization source is used. Accordingly, meaningful qualitative and quantitative information can be obtained in LC-MS by data mining processes. Here, one or more higher-quality mass chromatograms can be identified/extracted/isolated and combined to form a TICC, wherein much of the background mass noise is eliminated, and quantitative data for chromatographic peaks can be obtained. Pattern Recognition Entropy (PRE) is a new application of Shannon's statistical concept of entropy. PRE is both a pattern recognition tool and a summary statistic that can be used to identify information-containing mass chromatograms, where higher quality data (higher signal-to-noise mass chromatograms) usually have lower PRE values. Reduced TICCs are obtained by first calculating the PRE values of the component mass chromatograms. A plot of PRE value vs. m/z for the mass chromatograms is then generated, and the resulting band of PRE values is fit to a piecewise spline polynomial. The distribution of the differences between the individual PRE values and the spline fit is then used to select 'good' mass chromatograms. For the data set considered herein, best results were obtained with a threshold of 0.5 standard deviations below the average value (value of the spline). PRE reduces the number of component mass chromatograms significantly (by an order of magnitude) and at the same time preserves most of the chemical information that is collectively in them. It can also distinguish between mass chromatograms of chemically similar species. PRE is arguably a less computationally intensive alternative to the widely used CODA algorithm for variable reduction. It produces reduced TICCs of comparable if not higher quality, and it requires only a single user input for variable selection. Reduced TICCs generated by

  7. An Impedance-Based Mold Sensor with on-Chip Optical Reference

    PubMed Central

    Papireddy Vinayaka, Poornachandra; van den Driesche, Sander; Blank, Roland; Tahir, Muhammad Waseem; Frodl, Mathias; Lang, Walter; Vellekoop, Michael J.

    2016-01-01

    A new miniaturized sensor system with an internal optical reference for the detection of mold growth is presented. The sensor chip comprises a reaction chamber provided with a culture medium that promotes the growth of mold species from mold spores. The mold detection is performed by measuring impedance changes with integrated electrodes fabricated inside the reaction chamber. The impedance change in the culture medium is caused by shifts in the pH (i.e., from 5.5 to 8) as the mold grows. In order to determine the absolute pH value without the need for calibration, a methyl red indicator dye has been added to the culture medium. It changes the color of the medium as the pH passes specific values. This colorimetric principle now acts as a reference measurement. It also allows the sensitivity of the impedance sensor to be established in terms of impedance change per pH unit. Major mold species that are involved in the contamination of food, paper and indoor environments, like Fusarium oxysporum, Fusarium incarnatum, Eurotium amstelodami, Aspergillus penicillioides and Aspergillus restrictus, have been successfully analyzed on-chip. PMID:27690039

  8. Computer code for scattering from impedance bodies of revolution. Part 3: Surface impedance with s and phi variation. Analytical and numerical results

    NASA Technical Reports Server (NTRS)

    Uslenghi, Piergiorgio L. E.; Laxpati, Sharad R.; Kawalko, Stephen F.

    1993-01-01

    The third phase of the development of the computer codes for scattering by coated bodies that has been part of an ongoing effort in the Electromagnetics Laboratory of the Electrical Engineering and Computer Science Department at the University of Illinois at Chicago is described. The work reported discusses the analytical and numerical results for the scattering of an obliquely incident plane wave by impedance bodies of revolution with phi variation of the surface impedance. Integral equation formulation of the problem is considered. All three types of integral equations, electric field, magnetic field, and combined field, are considered. These equations are solved numerically via the method of moments with parametric elements. Both TE and TM polarization of the incident plane wave are considered. The surface impedance is allowed to vary along both the profile of the scatterer and in the phi direction. Computer code developed for this purpose determines the electric surface current as well as the bistatic radar cross section. The results obtained with this code were validated by comparing the results with available results for specific scatterers such as the perfectly conducting sphere. Results for the cone-sphere and cone-cylinder-sphere for the case of an axially incident plane were validated by comparing the results with the results with those obtained in the first phase of this project. Results for body of revolution scatterers with an abrupt change in the surface impedance along both the profile of the scatterer and the phi direction are presented.

  9. Electrochemical behavior and biological response of Mesenchymal Stem Cells on cp-Ti after N-ions implantation

    NASA Astrophysics Data System (ADS)

    Rizwan, M.; Ahmad, A.; Deen, K. M.; Haider, W.

    2014-11-01

    Titanium and its alloys are most widely used as implant materials due to their excellent biocompatibility, mechanical properties and chemical stability. In this study Nitrogen ions of known dosage were implanted over cp-Ti by Pelletron accelerator with beam energy of 0.25 MeV.The atomic force microscopy of bare and nitrogen implanted specimens confirmed increase in surface roughness with increase in nitrogen ions concentration. X-ray diffraction patterns of ions implanted surfaces validated the formation of TiN0.3 and Ti3N2-xnitride phases. The tendency to form passive film and electrochemical behavior of these surfaces in ringer lactate (RL) solution was evaluated by Potentiodynamic polarization and electrochemical impedance spectroscopy respectively. It is proved that nitrogen ions implantation was beneficial to reduce corrosion rate and stabilizing passive film by increasing charge transfer resistance in RL. It was concluded that morphology and proliferation of Mesenchymal Stem Cells on nitrogen ions implanted surfaces strongly depends on surface roughness and nitride phases.

  10. Simulating Reflex Induced Changes in the Acoustic Impedance of the Ear.

    ERIC Educational Resources Information Center

    Sirlin, Mindy W.; Levitt, Harry

    1991-01-01

    A simple procedure for measuring changes in the acoustic impedance of the ear is described. The technique has several applications, including simulation using a standard coupler of changes in real ear impedance produced by the acoustic reflex, and calibration of response time of an otoadmittance meter. (Author/DB)

  11. A novel method for real-time skin impedance measurement during radiofrequency skin tightening treatments.

    PubMed

    Harth, Yoram; Lischinsky, Daniel

    2011-03-01

    The thermal effects of monopolar and bipolar radiofrequency (RF) have been proven to be beneficial in skin tightening. Nevertheless, these effects were frequently partial or unpredictable because of the uncontrolled nature of monopolar or unipolar RF and the superficial nature of energy flow for bipolar or tripolar configurations. One of the hypotheses for lack or predictability of efficacy of the first-generation RF therapy skin tightening systems is lack of adaptation of delivered power to differences in individual skin impedance. A novel multisource phase-controlled system was used (1 MHz, power range 0-65 W) for treatment and real-time skin impedance measurements in 24 patients (EndyMed PRO™; EndyMed, Cesarea, Israel). This system allows continuous real-time measurement of skin impedance delivering constant energy to the patient skin independent of changes in its impedance. More than 6000 unique skin impedance measurements on 22 patients showed an average session impedance range was 215-584 Ohm with an average of 369 Ohm (standard deviation of 49 Ohm). Analyzing individual pulses (total of 600 readings) showed a significant decrease in impedance during the pulse. These findings validate the expected differences in skin impedance between individual patients and in the same patients during the treatment pulse. Clinical study on 30 patients with facial skin aging using the device has shown high predictability of efficacy (86.7% of patients had good results or better at 3 months' follow-up [decrease of 2 or more grades in Fitzpatrick's wrinkle scale]). The real-time customization of energy according to skin impedance allows a significantly more accurate and safe method of nonablative skin tightening with more consistent and predictable results. © 2011 Wiley Periodicals, Inc.

  12. Enhanced autonomic shutdown of Li-ion batteries by polydopamine coated polyethylene microspheres

    DOE PAGES

    Baginska, Marta; Blaiszik, Benjamin J.; Rajh, Tijana; ...

    2014-07-17

    Thermally triggered autonomic shutdown of a Lithium-ion (Li-ion) battery is demonstrated using polydopamine (PDA)-coated polyethylene microspheres applied onto a battery anode. The microspheres are dispersed in a buffered 10 mM dopamine salt solution and the pH is raised to initiate the polymerization and coat the microspheres. Coated microspheres are then mixed with an aqueous binder, applied onto a battery anode surface, dried, and incorporated into Li-ion coin cells. FTIR and Raman spectroscopy are used to verify the presence of the polydopamine on the surface of the microspheres. Scanning electron microscopy is used to examine microsphere surface morphology and resulting anodemore » coating quality. Charge and discharge capacity, as well as impedance, are measured for Li-ion coin cells as a function of microsphere content. Autonomous shutdown is achieved by applying 1.7 mg cm –2 of PDA-coated microspheres to the electrode. Furthermore, the PDA coating significantly reduces the mass of microspheres for effective shutdown compared to our prior work with uncoated microspheres.« less

  13. Ultrathin and Ion-Selective Janus Membranes for High-Performance Osmotic Energy Conversion.

    PubMed

    Zhang, Zhen; Sui, Xin; Li, Pei; Xie, Ganhua; Kong, Xiang-Yu; Xiao, Kai; Gao, Longcheng; Wen, Liping; Jiang, Lei

    2017-07-05

    The osmotic energy existing in fluids is recognized as a promising "blue" energy source that can help solve the global issues of energy shortage and environmental pollution. Recently, nanofluidic channels have shown great potential for capturing this worldwide energy because of their novel transport properties contributed by nanoconfinement. However, with respect to membrane-scale porous systems, high resistance and undesirable ion selectivity remain bottlenecks, impeding their applications. The development of thinner, low-resistance membranes, meanwhile promoting their ion selectivity, is a necessity. Here, we engineered ultrathin and ion-selective Janus membranes prepared via the phase separation of two block copolymers, which enable osmotic energy conversion with power densities of approximately 2.04 W/m 2 by mixing natural seawater and river water. Both experiments and continuum simulation help us to understand the mechanism for how membrane thickness and channel structure dominate the ion transport process and overall device performance, which can serve as a general guiding principle for the future design of nanochannel membranes for high-energy concentration cells.

  14. Characterization of microporous separators for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Venugopal, Ganesh; Moore, John; Howard, Jason; Pendalwar, Shekhar

    Several properties including porosity, pore-size distribution, thickness value, electrochemical stability and mechanical properties have to be optimized before a membrane can qualify as a separator for a lithium-ion battery. In this paper we present results of characterization studies carried out on some commercially available lithium-ion battery separators. The relevance of these results to battery performance and safety are also discussed. Porosity values were measured using a simple liquid absorption test and gas permeabilities were measured using a novel pressure drop technique that is similar in principle to the Gurley test. For separators from one particular manufacturer, the trend observed in the pressure drop times was found to be in agreement with the Gurley numbers reported by the separator manufacturer. Shutdown characteristics of the separators were studied by measuring the impedance of batteries containing the separators as a function of temperature. Overcharge tests were also performed to confirm that separator shutdown is indeed a useful mechanism for preventing thermal runaway situations. Polyethylene containing separators, in particular trilayer laminates of polypropylene, polyethylene and polypropylene, appear to have the most attractive properties for preventing thermal runaway in lithium ion cells.

  15. On the structural and impedance characteristics of Li- doped PEO, using n-butyl lithium in hexane as dopant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anand, P. B., E-mail: anandputhirath@gmail.com, E-mail: jayalekshmi@cusat.ac.in; Jayalekshmi, S., E-mail: anandputhirath@gmail.com, E-mail: jayalekshmi@cusat.ac.in

    2014-01-28

    Nowadays polymer based solid state electrolytes for applications in rechargeable battery systems are highly sought after materials, pursued extensively by various research groups worldwide. Numerous methods are discussed in literature to improve the fundamental properties like electrical conductivity, mechanical stability and interfacial stability of polymer based electrolytes. The application of these electrolytes in Li-ion cells is still in the amateur state, due to low ionic conductivity, low lithium transport number and the processing difficulties. The present work is an attempt to study the effects of Li doping on the structural and transport properties of the polymer electrolyte, poly-ethelene oxide (PEO)more » (Molecular weight: 200,000). Li doped PEO was obtained by treating PEO with n-Butyllithium in hexane for different doping concentrations. Structural characterization of the samples was done by XRD and FTIR techniques. Impedance measurements were carried out to estimate the ionic conductivity of Li doped PEO samples. It is seen that, the crystallinity of the doped PEO decreases on increasing the doping concentration. XRD and FTIR studies support this observation. It is inferred that, ionic conductivity of the sample is increasing on increasing the doping concentration since less crystallinity permits more ionic transport. Impedance measurements confirm the results quantitatively.« less

  16. Impedance spectroscopy of the electrode-tissue interface of living heart with isoösmotic conductivity perturbation

    NASA Astrophysics Data System (ADS)

    Ovadia, Marc; Zavitz, Daniel H.

    2004-06-01

    Impedance spectroscopy was used to solve the Pt electrode interface with metabolically active perfused living heart. Three impedance spectra were observed: the Warburg impedance ( ZW∞), a single high angle constant-phase-element, and a thin-film impedance ( ZD). When characterized again after cyclic change of ionic strength (and hence conductivity κ) each interface had one of only two spectra, with exclusion of ZW∞. The in vivo interfacial impedance spectrum is thus neither single-valued nor stable in time. Because metal|living tissue interfaces are obligatory circuit elements in biosensors and electrodes in heart and brain, the multiple-valued and thin-film character of its impedance are significant.

  17. Electrochemical and impedance investigation of the effect of lithium malonate on the performance of natural graphite electrodes in lithium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiao-Guang; Dai, Sheng

    2010-01-01

    Lithium malonate (LM) was coated on the surface of a natural graphite (NG) electrode, which was then tested as the negative electrode in the electrolytes of 0.9 M LiPF6/EC-PC-DMC (1/1/3, by weight) and 1.0 M LiBF4/EC-PC-DMC (1/1/3, by weight) under a current density of 0.075 mA cm-2. LM was also used as an additive to the electrolyte of 1.0 M LiPF6/EC-DMC-DEC (1/1/1, by volume) and tested on a bare graphite electrode. It was found that both the surface coating and the additive approach were effective in improving first charge discharge capacity and coulomb efficiency. Electrochemical impedance spectra showed that themore » decreased interfacial impedance was coupled with improved coulomb efficiency of the cells using coated graphite electrodes. Cyclic voltammograms (CVs) on fresh bare and coated natural graphite electrodes confirmed that all the improvement in the half-cell performance was due to the suppression of the solvent decomposition through the surface modification with LM. The CV data also showed that the carbonate electrolyte with LM as the additive was not stable against oxidation, which resulted in lower capacity of the full cell with commercial graphite and LiCoO2 electrodes.« less

  18. From impedance theory to needle electrode guidance in tissue

    NASA Astrophysics Data System (ADS)

    Kalvøy, Håvard; Høyum, Per; Grimnes, Sverre; Martinsen, Ørjan G.

    2010-04-01

    Fast access to blood vessels or other tissues/organs can be crucial in clinical or acute medical treatment. We have developed a method for needle guidance for use in different types of applications. The feasibility of an automatic application for fast access to blood vessels during acute cardiac arrest, based on this method, has been evaluated. Suited electrode setups were found by development of needle electrode models used in simulation and sensitivity analyses. In vitro measurements were done both to determine the fundamental properties of the electrodes for use in the models and to confirm the simulation results. Development of algorithms for tissue characterization and differentiation was based on in vivo impedance measurement in porcine models and confirmed in human tissue in vivo. Feasibility was proven by application prototyping and impedance data presented as invasive Electrical Impedance Tomography (iEIT). Our conclusion is that this method can be utilized in a wide range of clinical applications.

  19. Impedance cardiography: What is the source of the signal?

    NASA Astrophysics Data System (ADS)

    Patterson, R. P.

    2010-04-01

    Impedance cardiography continues to be investigated for various applications. Instruments for its use are available commercially. Almost all of the recent presentations and articles along with commercial advertisements have assumed that aortic volume pulsation is the source of the signal. A review of the literature will reveal that there is no clear evidence for this assumption. Starting with the first paper on impedance cardiography in 1964, which assumed the lung was the source of the signal, the presentation will review many studies in the 60's, 70's and 80's, which suggest the aorta and other vessels as well as atria and again the lung as possible sources. Current studies based on high resolution thoracic models will be presented that show the aorta as contributing only approximately 1% of the total impedance measurement, making it an unlikely candidate for the major contributor to the signal. Combining the results of past studies along with recent work based on models, suggest other vessels and regions as possible sources.

  20. Impedance-based cellular assays for regenerative medicine.

    PubMed

    Gamal, W; Wu, H; Underwood, I; Jia, J; Smith, S; Bagnaninchi, P O

    2018-07-05

    Therapies based on regenerative techniques have the potential to radically improve healthcare in the coming years. As a result, there is an emerging need for non-destructive and label-free technologies to assess the quality of engineered tissues and cell-based products prior to their use in the clinic. In parallel, the emerging regenerative medicine industry that aims to produce stem cells and their progeny on a large scale will benefit from moving away from existing destructive biochemical assays towards data-driven automation and control at the industrial scale. Impedance-based cellular assays (IBCA) have emerged as an alternative approach to study stem-cell properties and cumulative studies, reviewed here, have shown their potential to monitor stem-cell renewal, differentiation and maturation. They offer a novel method to non-destructively assess and quality-control stem-cell cultures. In addition, when combined with in vitro disease models they provide complementary insights as label-free phenotypic assays. IBCA provide quantitative and very sensitive results that can easily be automated and up-scaled in multi-well format. When facing the emerging challenge of real-time monitoring of three-dimensional cell culture dielectric spectroscopy and electrical impedance tomography represent viable alternatives to two-dimensional impedance sensing.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'. © 2018 The Author(s).