Science.gov

Sample records for ion scattering spectrometry

  1. Computer simulation program for medium-energy ion scattering and Rutherford backscattering spectrometry

    NASA Astrophysics Data System (ADS)

    Nishimura, Tomoaki

    2016-03-01

    A computer simulation program for ion scattering and its graphical user interface (MEISwin) has been developed. Using this program, researchers have analyzed medium-energy ion scattering and Rutherford backscattering spectrometry at Ritsumeikan University since 1998, and at Rutgers University since 2007. The main features of the program are as follows: (1) stopping power can be chosen from five datasets spanning several decades (from 1977 to 2011), (2) straggling can be chosen from two datasets, (3) spectral shape can be selected as Gaussian or exponentially modified Gaussian, (4) scattering cross sections can be selected as Coulomb or screened, (5) simulations adopt the resonant elastic scattering cross section of 16O(4He, 4He)16O, (6) pileup simulation for RBS spectra is supported, (7) natural and specific isotope abundances are supported, and (8) the charge fraction can be chosen from three patterns (fixed, energy-dependent, and ion fraction with charge-exchange parameters for medium-energy ion scattering). This study demonstrates and discusses the simulations and their results.

  2. Ion mobility-mass spectrometry.

    PubMed

    Kanu, Abu B; Dwivedi, Prabha; Tam, Maggie; Matz, Laura; Hill, Herbert H

    2008-01-01

    This review article compares and contrasts various types of ion mobility-mass spectrometers available today and describes their advantages for application to a wide range of analytes. Ion mobility spectrometry (IMS), when coupled with mass spectrometry, offers value-added data not possible from mass spectra alone. Separation of isomers, isobars, and conformers; reduction of chemical noise; and measurement of ion size are possible with the addition of ion mobility cells to mass spectrometers. In addition, structurally similar ions and ions of the same charge state can be separated into families of ions which appear along a unique mass-mobility correlation line. This review describes the four methods of ion mobility separation currently used with mass spectrometry. They are (1) drift-time ion mobility spectrometry (DTIMS), (2) aspiration ion mobility spectrometry (AIMS), (3) differential-mobility spectrometry (DMS) which is also called field-asymmetric waveform ion mobility spectrometry (FAIMS) and (4) traveling-wave ion mobility spectrometry (TWIMS). DTIMS provides the highest IMS resolving power and is the only IMS method which can directly measure collision cross-sections. AIMS is a low resolution mobility separation method but can monitor ions in a continuous manner. DMS and FAIMS offer continuous-ion monitoring capability as well as orthogonal ion mobility separation in which high-separation selectivity can be achieved. TWIMS is a novel method of IMS with a low resolving power but has good sensitivity and is well intergrated into a commercial mass spectrometer. One hundred and sixty references on ion mobility-mass spectrometry (IMMS) are provided. PMID:18200615

  3. Ion Mobility Spectrometry (IMS) and Mass Spectrometry

    SciTech Connect

    Shvartsburg, Alexandre A.

    2010-04-20

    In a media of finite viscosity, the Coulomb force of external electric field moves ions with some terminal speed. This dynamics is controlled by “mobility” - a property of the interaction potential between ions and media molecules. This fact has been used to separate and characterize gas-phase ions in various modes of ion mobility spectrometry (IMS) developed since 1970. Commercial IMS devices were introduced in 1980-s for field detection of volatile traces such as explosives and chemical warfare agents. Coupling to soft-ionization sources, mass spectrometry (MS), and chromatographic methods in 1990-s had allowed IMS to handle complex samples, enabling new applications in biological and environmental analyses, nanoscience, and other areas. Since 2003, the introduction of commercial systems by major instrument vendors started bringing the IMS/MS capability to broad user community. The other major development of last decade has been the differential IMS or “field asymmetric waveform IMS” (FAIMS) that employs asymmetric time-dependent electric field to sort ions not by mobility itself, but by the difference between its values in strong and weak electric fields. Coupling of FAIMS to conventional IMS and stacking of conventional IMS stages have enabled two-dimensional separations that dramatically expand the power of ion mobility methods.

  4. Atomistic structure of a spinel Li4Ti5O12(111) surface elucidated by scanning tunneling microscopy and medium energy ion scattering spectrometry

    NASA Astrophysics Data System (ADS)

    Kitta, Mitsunori; Matsuda, Taishi; Maeda, Yasushi; Akita, Tomoki; Tanaka, Shingo; Kido, Yoshiaki; Kohyama, Masanori

    2014-01-01

    Spinel lithium titanate (Li4Ti5O12, LTO) is one of the promising anode materials for high-performance lithium-ion batteries (LIBs). It is crucial to investigate atomistic structures of LTO surfaces to understand the phenomena at LTO/electrolyte interfaces such as CO2-gas generation which greatly affects the performance and safety of LIBs. By applying scanning tunneling microscopy (STM) and medium energy ion scattering spectrometry (MEIS) to a LTO(111) film prepared from a TiO2 wafer, we found that there exist two kinds of Li-terminated (111) terraces bounded by steps with different heights. In the major terraces, the top hexagonal Li layer is stacked above the oxygen layer, while the top Li layer is stacked above the Ti-Li layer in the minor terraces. The relative stability between the two surface structures seems to depend on the atmosphere due to different stoichiometry. For the major terraces, the LTO surface should have electronic holes due to oxygen-rich stoichiometry, which is a possible origin of CO2 generation via redox interaction with electrolyte molecules.

  5. Ion Trap Mass Spectrometry

    SciTech Connect

    Eiden, Greg C.

    2005-09-01

    This chapter describes research conducted in a few research groups in the 1990s in which RF quadrupole ion trap mass spectrometers were coupled to a powerful atomic ion source, the inductively coupled plasma used in conventional ICP-MS instruments. Major section titles for this chapter are: RF Quadrupole Ion Traps Features of RF Quadrupole Ion Trap Mass Spectrometers Selective Ion Trapping methods Inductively Coupled Plasma Source Ion Trap Mass Spectrometers

  6. Characterisation of an intrinsically disordered protein complex of Swi5-Sfr1 by ion mobility mass spectrometry and small-angle X-ray scattering.

    PubMed

    Saikusa, Kazumi; Kuwabara, Naoyuki; Kokabu, Yuichi; Inoue, Yu; Sato, Mamoru; Iwasaki, Hiroshi; Shimizu, Toshiyuki; Ikeguchi, Mitsunori; Akashi, Satoko

    2013-03-01

    It is now recognized that intrinsically disordered proteins (IDPs) play important roles as hubs in intracellular networks, and their structural characterisation is of significance. However, due to their highly dynamic features, it is challenging to investigate the structures of IDPs solely by conventional methods. In the present study, we demonstrate a novel method to characterise protein complexes using electrospray ionization ion mobility mass spectrometry (ESI-IM-MS) in combination with small-angle X-ray scattering (SAXS). This method enables structural characterisation even of proteins that have difficulties in crystallisation. With this method, we have characterised the Schizosaccharomyces pombe Swi5-Sfr1 complex, which is expected to have a long disordered region at the N-terminal portion of Sfr1. ESI-IM-MS analysis of the Swi5-Sfr1 complex revealed that its experimental collision cross-section (CCS) had a wide distribution, and the CCS values of the most dominant ions were ∼56% of the theoretically calculated value based on the SAXS low-resolution model, suggesting a significant size reduction in the gas phase. The present study demonstrates that the newly developed method for calculation of the theoretical CCSs of the SAXS low-resolution models of proteins allows accurate evaluation of the experimental CCS values of IDPs provided by ESI-IM-MS by comparing with the low-resolution solution structures. Furthermore, it was revealed that the combination of ESI-IM-MS and SAXS is a promising method for structural characterisation of protein complexes that are unable to crystallise. PMID:23324799

  7. Developments in ion mobility spectrometry-mass spectrometry.

    PubMed

    Collins, D C; Lee, M L

    2002-01-01

    Ion mobility spectrometry (IMS) has been used for over 30 years as a sensitive detector of organic compounds. The following is a brief review of IMS and its principles with an emphasis on its usage when coupled to mass spectrometry. Since its inception, IMS has been interfaced with quadrupole, time-of-flight, and Fourier-transform ion cyclotron resonance mass spectrometry. These hybrid instruments have been employed for the analysis of a variety of target analytes, including biomolecules, explosives, chemical warfare degradation products, and illicit drugs. PMID:11939214

  8. Third International Workshop on Ion Mobility Spectrometry

    NASA Technical Reports Server (NTRS)

    Cross, John H. (Editor)

    1995-01-01

    Basic research in ion mobility spectrometry has given rise to rapid advancement in hardware development and applications. The Third International Workshop on Ion Mobility Spectrometry (IMS) was held October 16-19, 1994, at Johnson Space Center to provide a forum for investigators to present the most recent results of both basic and applied IMS research. Presenters included manufacturers and various users, including military research organizations and drug enforcement agencies. Thirty papers were given in the following five sessions: Fundamental IMS Studies, Instrument Development, Hyphenated IMS Techniques, Applications, and Data Reduction and Signal Processing. Advances in hardware development, software development, and user applications are described.

  9. Coulombic Effects in Ion Mobility Spectrometry

    PubMed Central

    Tolmachev, Aleksey V.; Clowers, Brian H.; Belov, Mikhail E.; Smith, Richard D.

    2009-01-01

    Ion mobility spectrometry (IMS) has been increasingly employed in a number of applications. When coupled to mass spectrometry (MS), IMS becomes a powerful analytical tool for separating complex samples and investigating molecular structure. Therefore, improvements in IMS-MS instrumentation, e.g. IMS resolving power and sensitivity, are highly desirable. Implementation of an ion trap for accumulation and pulsed ion injection to IMS based on the ion funnel has provided considerably increased ion currents, and thus a basis for improved sensitivity and measurement throughput. However, large ion populations may manifest Coulombic effects contributing to the spatial dispersion of ions traveling in the IMS drift tube, and reduction in the IMS resolving power. In this study, we present an analysis of Coulombic effects on IMS resolution. Basic relationships have been obtained for the spatial evolution of ion packets due to Coulombic repulsion. The analytical relationships were compared with results of a computer model that simulates IMS operation based on a first principles approach. Initial experimental results reported here are consistent with the computer modeling. A noticeable decrease in the IMS resolving power was observed for ion populations of >10,000 elementary charges. The optimum IMS operation conditions which would minimize the Coulombic effects are discussed. PMID:19438247

  10. Spectrometry of the Rutherford backscattering of ions and the Raman scattering of light in GaS single crystals irradiated with 140-keV H{sub 2}{sup +} ions

    SciTech Connect

    Garibov, A. A.; Madatov, R. S.; Komarov, F. F.; Pilko, V. V.; Mustafayev, Yu. M.; Akhmedov, F. I.; Jakhangirov, M. M.

    2015-05-15

    The methods of the Raman scattering of light and Rutherford backscattering are used to study the degree of structural disorder in layered GaS crystals before and after irradiation with 140-keV H{sub 2}{sup +} ions. It is shown that the distribution of the crystal’s components over depth is homogeneous; for doses as high as 5 × 10{sup 15} cm{sup −2}, the stoichiometric composition of the compound’s components is retained. The experimental value of the critical dose for the beginning of amorphization amounts to about 5 × 10{sup 15} cm{sup −2} and is in accordance with the calculated value. The results obtained by the method of the Raman scattering of light confirm conservation of crystalline structure and the start of the amorphization process.

  11. Fundamentals of Trapped Ion Mobility Spectrometry

    NASA Astrophysics Data System (ADS)

    Michelmann, Karsten; Silveira, Joshua A.; Ridgeway, Mark E.; Park, Melvin A.

    2015-01-01

    Trapped ion mobility spectrometry (TIMS) is a relatively new gas-phase separation method that has been coupled to quadrupole orthogonal acceleration time-of-flight mass spectrometry. The TIMS analyzer is a segmented rf ion guide wherein ions are mobility-analyzed using an electric field that holds ions stationary against a moving gas, unlike conventional drift tube ion mobility spectrometry where the gas is stationary. Ions are initially trapped, and subsequently eluted from the TIMS analyzer over time according to their mobility ( K). Though TIMS has achieved a high level of performance ( R > 250) in a small device (<5 cm) using modest operating potentials (<300 V), a proper theory has yet to be produced. Here, we develop a quantitative theory for TIMS via mathematical derivation and simulations. A one-dimensional analytical model, used to predict the transit time and theoretical resolving power, is described. Theoretical trends are in agreement with experimental measurements performed as a function of K, pressure, and the axial electric field scan rate. The linear dependence of the transit time with 1/ K provides a fundamental basis for determination of reduced mobility or collision cross section values by calibration. The quantitative description of TIMS provides an operational understanding of the analyzer, outlines the current performance capabilities, and provides insight into future avenues for improvement.

  12. Accelerator mass spectrometry with heavy ions

    NASA Astrophysics Data System (ADS)

    Haberstock, Günther; Heinzl, Johann; Korschinek, Gunther; Morinaga, Haruhiko; Nolte, Eckehart; Ratzinger, Ulrich; Kato, Kazuo; Wolf, Manfred

    1986-11-01

    Accelerator mass spectrometry measurements with fully stripped 36Cl ions have been performed at the Munich accelerator laboratory in order to date groundwaters and palaeontological samples, to study anthropogenic 36Cl produced through nuclear tests and to determine the fast neutron flux of the Hiroshima A-bomb.

  13. Method and apparatuses for ion cyclotron spectrometry

    DOEpatents

    Dahl, David A.; Scott, Jill R.; McJunkin, Timothy R.

    2012-03-06

    An ion cyclotron spectrometer may include a vacuum chamber that extends at least along a z-axis and means for producing a magnetic field within the vacuum chamber so that a magnetic field vector is generally parallel to the z-axis. The ion cyclotron spectrometer may also include means for producing a trapping electric field within the vacuum chamber. The trapping electric field may comprise a field potential that, when taken in cross-section along the z-axis, includes at least one section that is concave down and at least one section that is concave up so that ions traversing the field potential experience a net magnetron effect on a cyclotron frequency of the ions that is substantially equal to zero. Other apparatuses and a method for performing ion cyclotron spectrometry are also disclosed herein.

  14. Transient ions in electron and positron scattering

    NASA Astrophysics Data System (ADS)

    d'A Sanchez, Sergio; de Oliveira, Eliane M.; dos Santos, Josué S.; da Costa, Romarly F.; Bettega, Márcio H. F.; Lima, Marco A. P.; Varella, Márcio T. do N.

    2009-11-01

    We report on recent advances in studies of transient ions formed in electron and positron scattering by molecules. We briefly discuss elastic electron collisions against pyrrole and glycine, as well as electron affinities of glycine-water clusters. Positron scattering and annihilation on small molecules is also discussed.

  15. Simulation of low-energy ion scattering

    NASA Astrophysics Data System (ADS)

    Langelaar, M. H.; Breeman, M.; Mijiritskii, A. V.; Boerma, D. O.

    A new simulation program `MATCH' has been developed for a detailed analysis of low-energy ion scattering (LEIS) and recoiling data. Instead of performing the full calculation of the three-dimensional trajectories through the sample from the ion source towards the detector, incoming trajectories as well as reversed-time outgoing trajectories are calculated, separately. Finally, these trajectories are matched to obtain the yield. The program has been tested for spectra and azimuthal scans of scattering and recoiling events of various sample species in different scattering geometries.

  16. Ion Beam Scattering by Background Helium

    NASA Astrophysics Data System (ADS)

    Grillet, Anne; Hughes, Thomas; Boerner, Jeremiah

    2015-11-01

    The presence of background gases can cause charged particle beams to become more diffuse due to scattering. Calculations for the transport of an ion beam have been performed using Aleph, a particle-in-cell plasma modeling code, and verified against a general envelop equation for charged particle beams. We have investigated the influence of background helium on the coherence and transmitted current of the ion beam. Collisions between ions and neutral particles were calculated assuming isotropic elastic scattering. Since this tends to predict larger scattering angles than are expected at high energies, these are conservative estimates for beam scattering. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration.

  17. Relative sensitivity factors for submicron secondary ion mass spectrometry with gallium primary ion beam

    NASA Astrophysics Data System (ADS)

    Satosh, Hitomi; Owari, Masanori; Nihei, Yoshimasa

    1993-08-01

    Relative sensitivity factors (RSFs) of thirteen elements in the oxide glass matrix in secondary ion mass spectrometry (SIMS) excited by a gallium focused ion beam were determined. RSFs were obtained by analyzing powder particles of standard glass samples. Whole volumes of each particles were analyzed in the 'shave-off' mode in order to avoid topographic effects. Reproducibility of RSFs was good, and sample-to-sample scattering of values was relatively small. Dependence of RSFs on the first ionization potential was shown to be reasonable. In order to with the data obtained through the bulk chemical analysis.

  18. Chemical Standards in Ion Mobility Spectrometry

    PubMed Central

    Fernández-Maestre, Roberto; Harden, Charles Steve; Ewing, Robert Gordon; Crawford, Christina Lynn; Hill, Herbert Henderson

    2010-01-01

    In ion mobility spectrometry (IMS), reduced mobility values (K0) are used as a qualitative measure of gas phase ions, and are reported in the literature as absolute values. Unfortunately, these values do not always match those collected in the field. One reason for this discrepancy is that the buffer gas may be contaminated with moisture or other volatile compounds. In this study, the effect of moisture and organic contaminants in the buffer gas on the mobility of IMS standards and analytes was investigated for the first time using IMS directly coupled to mass spectrometry. 2,4-dimethylpyridine, 2,6-di-tert-butyl pyridine (DTBP), and tetrabutylammonium, tetrapropylammonium, tetraethylammonium, and tetramethylammonium chlorides were used as chemical standards. In general, the mobility of IMS standard product ions was not affected by small amounts of contamination while the mobilities of many analytes were affected. In the presence of contaminants in the buffer gas, the mobility of analyte ions is often decreased by forming ion-molecule clusters with the contaminant. To ensure the measurement of accurate reduced mobility values, two IMS standards are required: an instrument and a mobility standard. An instrument standard is not affected by contaminants in the buffer gas, and provides an accurate measurement of the instrumental parameters, such as voltage, drift length, pressure, and temperature. The mobility standard behaves like an analyte ion in that the compound’s mobility is affected by low levels of contamination in the buffer gas. Prudent use of both of these standards can lead to improved measurement of accurate reduced mobility values. PMID:20369157

  19. Chemical standards in ion mobility spectrometry

    SciTech Connect

    Fernandez-Maestre, Robert; Harden, Charles S.; Ewing, Robert G.; Crawford, Christina L.; Hill, Jr, Herbert H.

    2010-08-01

    In ion mobility spectrometry (IMS), reduced mobility values (K0) are used as a qualitative measure of gas phase ions, and are reported in the literature as absolute values. Unfortunately, these values do not always match with those collected in the field. One reason for this discrepancy is that the buffer gas may be contaminated with moisture or other volatile compounds. In this study, the effect of moisture and organic contaminants in the buffer gas on the mobility of IMS standards and analytes was investigated for the first time using IMS directly coupled to mass spectrometry. 2,4-Dimethylpyridine, 2,6-di- tertbutylpyridine (DTBP), and tetrabutylammonium, tetrapropylammonium, tetraethylammonium, and tetramethylammonium chlorides were used as chemical standards. In general, the mobility of IMS standard product ions was not affected by small amounts of contamination while the mobilities of many analytes were affected. In the presence of contaminants in the buffer gas, the mobility of analyte ions is often decreased by forming ion–molecule clusters with the contaminant. To ensure the measurement of accurate reduced mobility values, two IMS standards are required: an instrument and a mobility standard. An instrument standard is not affected by contaminants in the buffer as, and provides an accurate measurement of the instrumental parameters, such as voltage, drift length, pressure, and temperature. The mobility standard behaves like an analyte ion in that the compound’s mobility is affected by low levels of contamination in the buffer gas. Prudent use of both of these standards can lead to improved measurement of accurate reduced mobility values.

  20. High-Sensitivity Ion Mobility Spectrometry/Mass Spectrometry Using Electrodynamic Ion Funnel Interfaces

    SciTech Connect

    Tang, Keqi; Shvartsburg, Alexandre A.; Lee, Hak-No; Prior, David C.; Buschbach, Michael A.; Li, Fumin; Tolmachev, Aleksey V.; Anderson, Gordon A.; Smith, Richard D.

    2005-05-15

    The utility of ion mobility spectrometry (IMS) for separation of mixtures and structural characterization of ions has been demonstrated extensively, including in the biological and nanoscience contexts. A major attraction of IMS is its speed, several orders of magnitude above that of condensed-phase separations. Nonetheless, IMS combined with mass spectrometry (MS) has remained a niche technique, substantially due to limited sensitivity resulting from ion losses at the IMS-MS junction. We have developed a new electrospray ionization (ESI)-IMS-QToF MS instrument that incorporates electrodynamic ion funnels at both front ESI-IMS and back IMS-QToF interfaces. The front funnel is of the novel ''hourglass'' design that efficiently accumulates ions and pulses them into the IMS drift tubes. Even for drift tubes of two meter length, ion transmission through IMS and on to QToF is essentially lossless across the range of ion masses relevant to most applications. The RF ion focusing at IMS terminus does not degrade IMS resolving power, which exceeds 100 (for singly-charged ions) and is close to the theoretical limit. The overall sensitivity of present ESI-IMS-MS system is shown to be comparable to that of commercial ESI-MS, which should make IMS-MS suitable for analyses of complex mixtures with ultra-high sensitivity and exceptional throughput.

  1. High-Sensitivity Ion Mobility Spectrometry/Mass Spectrometry Using Electrodynamic Ion Funnel Interfaces

    PubMed Central

    Tang, Keqi; Shvartsburg, Alexandre A.; Lee, Hak-No; Prior, David C.; Buschbach, Michael A.; Li, Fumin; Tolmachev, Aleksey; Anderson, Gordon A.; Smith, Richard D.

    2007-01-01

    The utility of ion mobility spectrometry (IMS) for separation of mixtures and structural characterization of ions has been demonstrated extensively, including in the biological and nanoscience contexts. A major attraction of IMS is its speed, several orders of magnitude greater than that of condensed-phase separations. Nonetheless, IMS combined with mass spectrometry (MS) has remained a niche technique, substantially because of limited sensitivity resulting from ion losses at the IMS-MS junction. We have developed a new electrospray ionization (ESI)-IMS-QToF MS instrument that incorporates electrodynamic ion funnels at both front ESI-IMS and rear IMS-QToF interfaces. The front funnel is of the novel “hourglass” design that efficiently accumulates ions and pulses them into the IMS drift tubes. Even for drift tubes of two meter length, ion transmission through IMS and on to QToF is essentially lossless across the range of ion masses relevant to most applications. The RF ion focusing at the IMS terminus does not degrade IMS resolving power, which exceeds 100 (for singly-charged ions) and is close to the theoretical limit. The overall sensitivity of present ESI-IMS-MS system is comparable to that of commercial ESI-MS, which should make IMS-MS suitable for analyses of complex mixtures with ultra-high sensitivity and exceptional throughput. PMID:15889926

  2. STRUCTURAL CHARACTERIZATION OF SULFONATED AZO DYES USING LIQUID SECONDARY ION MASS SPECTROMETRY/TANDEM MASS SPECTROMETRY

    EPA Science Inventory

    Eight monosulfonated and disulfonated azo dyes were analyzed using liquid secondary ion mass spectrometry/tandem mass spectrometry, in the negative ion mode, under low-energy conditions (110-150 eV). any structurally characteristic fragment ions were obtained, several of which ha...

  3. Process analysis using ion mobility spectrometry.

    PubMed

    Baumbach, J I

    2006-03-01

    Ion mobility spectrometry, originally used to detect chemical warfare agents, explosives and illegal drugs, is now frequently applied in the field of process analytics. The method combines both high sensitivity (detection limits down to the ng to pg per liter and ppb(v)/ppt(v) ranges) and relatively low technical expenditure with a high-speed data acquisition. In this paper, the working principles of IMS are summarized with respect to the advantages and disadvantages of the technique. Different ionization techniques, sample introduction methods and preseparation methods are considered. Proven applications of different types of ion mobility spectrometer (IMS) used at ISAS will be discussed in detail: monitoring of gas insulated substations, contamination in water, odoration of natural gas, human breath composition and metabolites of bacteria. The example applications discussed relate to purity (gas insulated substations), ecology (contamination of water resources), plants and person safety (odoration of natural gas), food quality control (molds and bacteria) and human health (breath analysis). PMID:16132133

  4. In situ secondary ion mass spectrometry analysis

    SciTech Connect

    Groenewold, G.S.; Applehans, A.D.; Ingram, J.C.; Delmore, J.E.; Dahl, D.A.

    1993-01-01

    The direct detection of tributyl phosphate (TBP) on rocks using molecular beam surface analysis [MBSA or in situ secondary ion mass spectrometry (SIMS)] is demonstrated. Quantities as low as 250 ng were detected on basalt and sandstone with little or no sample preparation. Detection of TBP on soil has proven to be more problematic and requires further study. Ethylenediaminetetraacetic acid (EDTA) is more difficult to detect because it is very reactive with surfaces of interest. Nevertheless, it is possible to detect EDTA if the acidity of the surface is controlled. The detection of EDTA-metal complexes is currently an open question, but evidence is presented for the detection of ions arising from a EDTA-lead complex. Carboxylic acids (i.e., citric, ascorbic, malic, succinic, malonic, and oxalic) give characteristic SIM spectra, but their detection on sample surfaces awaits evaluation.

  5. Environment applications for ion mobility spectrometry

    NASA Technical Reports Server (NTRS)

    Ritchie, Robert K.; Rudolph, Andreas

    1995-01-01

    The detection of environmentally important polychlorinated aromatics by ion mobility spectrometry (IMS) was investigated. Single polychlorinated biphenyl (PCB) isomers (congeners) having five or more chlorine atoms were reliably detected in isooctane solution at levels of 35 ng with a Barringer IONSCAN ion mobility spectrometer operating in negative mode; limits of detection (LOD) were extrapolated to be in the low ng region. Mixtures of up to four PCB congeners, showing characteristic multiple peaks, and complex commercial mixtures of PCBs (Aroclors) were also detected. Detection of Aroclors in transformer oil was suppressed by the presence of the antioxidant BHT (2,6-di-t-butyl4-methylphenol) in the oil. The wood preservative pentachlorophenol (PCP) was easily detected in recycled wood shavings at levels of 52 ppm with the IONSCAN; the LOD was extrapolated to be in the low ppm region.

  6. Secondary Ion Mass Spectrometry of Environmental Aerosols

    SciTech Connect

    Gaspar, Daniel J.; Cliff, John B.

    2010-08-01

    Atmospheric particles influence many aspects of climate, air quality and human health. Understanding the composition, chemistry and behavior of atmospheric aerosols is a key remaining challenge in improving climate models. Furthermore, particles may be traced back to a particular source based on composition, stable isotope ratios, or the presence of particular surface chemistries. Finally, the characterization of atmospheric particles in the workplace plays an important role in understanding the potential for exposure and environmental and human health effects to engineered and natural nanoscale particles. Secondary ion mass spectrometry (SIMS) is a useful tool in determining any of several aspects of the structure, composition and chemistry of these particles. Often used in conjunction with other surface analysis and electron microscopy methods, SIMS has been used to determine or confirm reactions on and in particles, the presence of particular organic species on the surface of atmospheric aerosols and several other interesting and relevant findings. Various versions of SIMS instruments – dynamic SIMS, time of flight secondary ion mass spectrometry or TOF-SIMS, nanoSIMS – have been used to determine specific aspects of aerosol structure and chemistry. This article describes the strengths of each type of SIMS instrument in the characterization of aerosols, along with guidance on sample preparation, specific characterization specific to the particular information sought in the analysis. Examples and guidance are given for each type of SIMS analysis.

  7. Secondary ion mass spectrometry of MCsn+molecular ion complexes

    NASA Astrophysics Data System (ADS)

    Saha, Biswajit; Chakraborty, Purushottam

    2007-05-01

    Excellent detection sensitivity, high dynamic range and good depth resolution make the SIMS technique extremely powerful for the analysis of surfaces and interfaces. However, a serious problem in SIMS analysis is its "matrix effect" that hinders the quantification of a certain species in a sample and consequently, probing the composition of surfaces or interfaces by SIMS is greatly hindered. Appropriate corrective measures are therefore, needed to calibrate the secondary ion currents into respective concentrations for accurate compositional analysis. Working in the MCs+-SIMS mode (M - element to be analyzed, Cs+ - bombarding ions) can circumvent the matrix effect. The quantitative potential of the MCs+-SIMS method is understood by assuming that an MCs+ ion is generated by the combination of a secondary neutral M0 atom with a re-sputtered Cs+ ion in the near-surface region. The emission process for the species M0 is thus decoupled from the subsequent MCs+ ion formation process, in analogy with the ion formation in secondary neutral mass spectrometry (SNMS), resulting in a drastic decrease in matrix effect. Although this technique has found its applicability in direct quantification, it generally suffers from a low useful yield. In such cases, detection of MCsn+(n = 2, 3, …) molecular ions offers a better sensitivity as the yields of such molecular ion complexes have often been found higher than that of MCs+ ions. This is true in most of the cases where the elements are strongly electronegative with respect to cesium. Several works have been reported on the emission of MCsn+molecular ions in the SIMS process, but a complete understanding on the formation mechanism of these ion complexes is still lacking. The kinetic energy distributions of secondary MCsn+molecular ion complexes has been found to be an effective approach to estimate the local instantaneous surface work function changes under various surface exposure conditions, thereby enabling one to elucidate on

  8. Secondary Ion Mass Spectrometry SIMS XI

    NASA Astrophysics Data System (ADS)

    Gillen, G.; Lareau, R.; Bennett, J.; Stevie, F.

    2003-05-01

    This volume contains 252 contributions presented as plenary, invited and contributed poster and oral presentations at the 11th International Conference on Secondary Ion Mass Spectrometry (SIMS XI) held at the Hilton Hotel, Walt Disney World Village, Orlando, Florida, 7 12 September, 1997. The book covers a diverse range of research, reflecting the rapid growth in advanced semiconductor characterization, ultra shallow depth profiling, TOF-SIMS and the new areas in which SIMS techniques are being used, for example in biological sciences and organic surface characterization. Papers are presented under the following categories: Isotopic SIMS Biological SIMS Semiconductor Characterization Techniques and Applications Ultra Shallow Depth Profiling Depth Profiling Fundamental/Modelling and Diffusion Sputter-Induced Topography Fundamentals of Molecular Desorption Organic Materials Practical TOF-SIMS Polyatomic Primary Ions Materials/Surface Analysis Postionization Instrumentation Geological SIMS Imaging Fundamentals of Sputtering Ion Formation and Cluster Formation Quantitative Analysis Environmental/Particle Characterization Related Techniques These proceedings provide an invaluable source of reference for both newcomers to the field and experienced SIMS users.

  9. New Cs sputter ion source with polyatomic ion beams for secondary ion mass spectrometry applications

    SciTech Connect

    Belykh, S. F.; Palitsin, V. V.; Veryovkin, I. V.; Kovarsky, A. P.; Chang, R. J. H.; Adriaens, A.; Dowsett, M. G.; Adams, F.

    2007-08-15

    A simple design for a cesium sputter ion source compatible with vacuum and ion-optical systems as well as with electronics of the commercially available Cameca IMS-4f instrument is reported. This ion source has been tested with the cluster primary ions of Si{sub n}{sup -} and Cu{sub n}{sup -}. Our experiments with surface characterization and depth profiling conducted to date demonstrate improvements of the analytical capabilities of the secondary ion mass spectrometry instrument due to the nonadditive enhancement of secondary ion emission and shorter ion ranges of polyatomic projectiles compared to atomic ones with the same impact energy.

  10. Field applications of ion-mobility spectrometry

    NASA Astrophysics Data System (ADS)

    Brown, Patricia A.

    1997-02-01

    Ion mobility spectrometry (IMS) is an excellent tool for detection of controlled substances under field conditions. Plasmagrams and tables showing the results of field applications will be discussed. Residues of drugs, such as cocaine and heroin, can be left anywhere including vehicles, boats, and houses. In houses, the carpets, walls, and floors are good locations for residues to adhere. Individual clothing can also be contaminated with drug residue. Vehicles that are suspected of having previously smuggled illegal substances can be vacuumed and screened. Tablets that look similar and respond the same when screened with the Marquis reagent can be differentiated by IMS. With Southern California being the 'methamphetamine capital of the world' and the resurgence of phencyclidine, IMS has proven extremely valuable in the screening of abandoned clandestine laboratory sites and vehicles in which the clandestine laboratories; chemicals and glassware were transported. IMS is very responsive to ephedrine/pseudophedrine, a precursor of methamphetamine and 1-piperidinocyclohexanecarbonitrile, an intermediate of phencyclidine. Once residues are detected, vacuum samples, and/or methanol wipes are collected and analyzed at the DEA Laboratory for confirmation of the suspected substance using GC-IRD or Mass Spectrometry.

  11. Ion Mobility Spectrometry of Heavy Metals.

    PubMed

    Ilbeigi, Vahideh; Valadbeigi, Younes; Tabrizchi, Mahmoud

    2016-07-19

    A simple, fast, and inexpensive method was developed for detecting heavy metals via the ion mobility spectrometry (IMS) in the negative mode. In this method, Cl(-) ion produced by the thermal ionization of NaCl is employed as the dopant or the ionizing reagent to ionize heavy metals. In practice, a solution of mixed heavy metals and NaCl salts was directly deposited on a Nichrome filament and electrically heated to vaporize the salts. This produced the IMS spectra of several heavy-metal salts, including CdCl2, ZnSO4, NiCl2, HgSO4, HgCl2, PbI2, and Pb(Ac)2. For each heavy metal (M), one or two major peaks were observed, which were attributed to M·Cl(-) or [M·NaCl]Cl(-)complexes. The method proved to be useful for the analysis of mixed heavy metals. The absolute detection limits measured for ZnSO4 and HgSO4 were 0.1 and 0.05 μg, respectively. PMID:27321408

  12. Relative Sensitivity Factors for Submicron Secondary Ion Mass Spectrometry with Gallium Primary Ion Beam

    NASA Astrophysics Data System (ADS)

    Satoh, Hitomi; Owari, Masanori; Nihei, Yoshimasa

    1993-08-01

    Relative sensitivity factors (RSFs) of thirteen elements in the oxide glass matrix in secondary ion mass spectrometry (SIMS) excited by a gallium focused ion beam were determined. RSFs were obtained by analyzing powder particles of standard glass samples. Whole volumes of each particles were analyzed in the “shave-off” mode in order to avoid topographic effects. Reproducibility of RSFs was good, and sample-to-sample scattering of values was relatively small. Dependence of RSFs on the first ionization potential was shown to be reasonable. In order to check the validity of the RSFs, coal fly ash particles were analyzed. The results were in reasonable agreement with the data obtained through the bulk chemical analysis.

  13. On the structural denaturation of biological analytes in trapped ion mobility spectrometry - mass spectrometry.

    PubMed

    Liu, Fanny C; Kirk, Samuel R; Bleiholder, Christian

    2016-06-01

    Key to native ion mobility/mass spectrometry is to prevent the structural denaturation of biological molecules in the gas phase. Here, we systematically assess structural changes induced in the protein ubiquitin during a trapped ion mobility spectrometry (TIMS) experiment. Our analysis shows that the extent of structural denaturation induced in ubiquitin ions is largely proportional to the amount of translational kinetic energy an ion gains from the applied electric field between two collisions with buffer gas particles. We then minimize the efficiency of the structural denaturation of ubiquitin ions in the gas phase during a TIMS experiment. The resulting "soft" TIMS spectra of ubiquitin are found largely identical to those observed on "soft" elevated-pressure ion mobility drift tubes and the corresponding calibrated cross sections are consistent with structures reported from NMR experiments for the native and A-state of ubiquitin. Thus, our analysis reveals that TIMS is useful for native ion mobility/mass spectrometry analysis. PMID:26998732

  14. Examining the Influence of Phosphorylation on Peptide Ion Structure by Ion Mobility Spectrometry-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Glover, Matthew S.; Dilger, Jonathan M.; Acton, Matthew D.; Arnold, Randy J.; Radivojac, Predrag; Clemmer, David E.

    2016-02-01

    Ion mobility spectrometry-mass spectrometry (IMS-MS) techniques are used to study the general effects of phosphorylation on peptide structure. Cross sections for a library of 66 singly phosphorylated peptide ions from 33 pairs of positional isomers, and unmodified analogues were measured. Intrinsic size parameters (ISPs) derived from these measurements yield calculated collision cross sections for 85% of these phosphopeptide sequences that are within ±2.5% of experimental values. The average ISP for the phosphoryl group (0.64 ± 0.05) suggests that in general this moiety forms intramolecular interactions with the neighboring residues and peptide backbone, resulting in relatively compact structures. We assess the capability of ion mobility to separate positional isomers (i.e., peptide sequences that differ only in the location of the modification) and find that more than half of the isomeric pairs have >1% difference in collision cross section. Phosphorylation is also found to influence populations of structures that differ in the cis/trans orientation of Xaa-Pro peptide bonds. Several sequences with phosphorylated Ser or Thr residues located N-terminally adjacent to Pro residues show fewer conformations compared to the unmodified sequences.

  15. Examining the Influence of Phosphorylation on Peptide Ion Structure by Ion Mobility Spectrometry-Mass Spectrometry.

    PubMed

    Glover, Matthew S; Dilger, Jonathan M; Acton, Matthew D; Arnold, Randy J; Radivojac, Predrag; Clemmer, David E

    2016-05-01

    Ion mobility spectrometry-mass spectrometry (IMS-MS) techniques are used to study the general effects of phosphorylation on peptide structure. Cross sections for a library of 66 singly phosphorylated peptide ions from 33 pairs of positional isomers, and unmodified analogues were measured. Intrinsic size parameters (ISPs) derived from these measurements yield calculated collision cross sections for 85% of these phosphopeptide sequences that are within ±2.5% of experimental values. The average ISP for the phosphoryl group (0.64 ± 0.05) suggests that in general this moiety forms intramolecular interactions with the neighboring residues and peptide backbone, resulting in relatively compact structures. We assess the capability of ion mobility to separate positional isomers (i.e., peptide sequences that differ only in the location of the modification) and find that more than half of the isomeric pairs have >1% difference in collision cross section. Phosphorylation is also found to influence populations of structures that differ in the cis/trans orientation of Xaa-Pro peptide bonds. Several sequences with phosphorylated Ser or Thr residues located N-terminally adjacent to Pro residues show fewer conformations compared to the unmodified sequences. Graphical Abstract ᅟ. PMID:26860087

  16. Examining the Influence of Phosphorylation on Peptide Ion Structure by Ion Mobility Spectrometry-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Glover, Matthew S.; Dilger, Jonathan M.; Acton, Matthew D.; Arnold, Randy J.; Radivojac, Predrag; Clemmer, David E.

    2016-05-01

    Ion mobility spectrometry-mass spectrometry (IMS-MS) techniques are used to study the general effects of phosphorylation on peptide structure. Cross sections for a library of 66 singly phosphorylated peptide ions from 33 pairs of positional isomers, and unmodified analogues were measured. Intrinsic size parameters (ISPs) derived from these measurements yield calculated collision cross sections for 85% of these phosphopeptide sequences that are within ±2.5% of experimental values. The average ISP for the phosphoryl group (0.64 ± 0.05) suggests that in general this moiety forms intramolecular interactions with the neighboring residues and peptide backbone, resulting in relatively compact structures. We assess the capability of ion mobility to separate positional isomers (i.e., peptide sequences that differ only in the location of the modification) and find that more than half of the isomeric pairs have >1% difference in collision cross section. Phosphorylation is also found to influence populations of structures that differ in the cis/ trans orientation of Xaa-Pro peptide bonds. Several sequences with phosphorylated Ser or Thr residues located N-terminally adjacent to Pro residues show fewer conformations compared to the unmodified sequences.

  17. Positron scattering and annihilation in hydrogenlike ions

    NASA Astrophysics Data System (ADS)

    Green, D. G.; Gribakin, G. F.

    2013-09-01

    Diagrammatic many-body theory is used to calculate the scattering phase shifts, normalized annihilation rates Zeff, and annihilation γ spectra for positron collisions with the hydrogenlike ions He+, Li2+, B4+, and F8+. Short-range electron-positron correlations and longer-range positron-ion correlations are accounted for by evaluating nonlocal corrections to the annihilation vertex and the exact positron self-energy. The numerical calculation of the many-body theory diagrams is performed using B-spline basis sets. To elucidate the role of the positron-ion repulsion, the annihilation rate is also estimated analytically in the Coulomb-Born approximation. It is found that the energy dependence and magnitude of Zeff are governed by the Gamow factor that characterizes the suppression of the positron wave function near the ion. For all of the H-like ions, the correlation enhancement of the annihilation rate is found to be predominantly due to corrections to the annihilation vertex, while the corrections to the positron wave function play only a minor role. Results of the calculations for s-, p-, and d-wave incident positrons of energies up to the positronium-formation threshold are presented. Where comparison is possible, our values are in excellent agreement with the results obtained using other, e.g., variational, methods. The annihilation-vertex enhancement factors obtained in the present calculations are found to scale approximately as 1+(1.6+0.46ℓ)/Zi, where Zi is the net charge of the ion and ℓ is the positron orbital angular momentum. Our results for positron annihilation in H-like ions provide insights into the problem of positron annihilation with core electrons in atoms and condensed matter systems, which have similar binding energies.

  18. Positron scattering and annihilation from hydrogenlike ions

    SciTech Connect

    Novikov, S.A.; Bromley, M.W.J.; Mitroy, J.

    2004-05-01

    The Kohn variational method is used with a configuration-interaction-type wave function to determine the J=0 and J=1 phase shifts and annihilation parameter Z{sub eff} for positron-hydrogenic ion scattering. The phase shifts are within 1-2% of the best previous calculations. The values of Z{sub eff} are small and do not exceed unity for any of the momenta considered. At thermal energies Z{sub eff} is minute with a value of order 10{sup -50} occurring for He{sup +} at k=0.05a{sub 0}{sup -1}. In addition to the variational calculations, analytic expressions for the phase shift and annihilation parameters within the Coulomb wave Born approximation are derived and used to help elucidate the dynamics of positron collisions with positive ions.

  19. Nonlinear ion acoustic waves scattered by vortexes

    NASA Astrophysics Data System (ADS)

    Ohno, Yuji; Yoshida, Zensho

    2016-09-01

    The Kadomtsev-Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here, we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes 'scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are 'ambient' because they do not receive reciprocal reactions from the waves (i.e., the vortex equation is independent of the wave fields). This model describes a minimal departure from the integrable KP system. By the Painlevé test, we delineate how the vorticity term violates integrability, bringing about an essential three-dimensionality to the solutions. By numerical simulation, we show how the solitons are scattered by vortexes and become chaotic.

  20. Total hydrocarbon analysis by ion mobility spectrometry

    NASA Technical Reports Server (NTRS)

    Cross, John H.; Limero, Thomas F.; James, John T.

    1994-01-01

    Astronauts must be alerted quickly to chemical leaks that compromise their health and the success of their missions. An ideal leak detector would be equally sensitive to all compounds that might constitute a hazard and insensitive to nontoxic compounds. No ideal sensor exists; thus, selection of a methodology is a series of compromises. The commonly used methods are either insensitive at the low exposure levels set by OSHA, NASA, and other organizations or are selectively insensitive to important classes of chemicals such as Freons. After extensive study and experience, the Toxicology Group at JSC has selected ion mobility spectrometry (IMS) for development into a broad range, sensitive detector. In addition to the sensing method, signal processing is important leak detection because a background signal can be expected at all times. The leak-detecting instrument must be programmed to discriminate between authentic leaks and background fluctuations caused by routine operations. The results of an evaluation of the prototype THA is presented in terms related to spacecraft operations. The evaluation included determination of instrumental parameters such as stability and response times. We also included responses to some common components of spacecraft atmospheres in pure form and in binary and ternary mixtures. The output of the four algorithms to the mixtures was found to be noticeably different. These responses are compared on the basis of their utility for signaling a chemical leak. As a means of evaluating its resistance to a falsely positive response, the THA was challenged with carbon dioxide and methane, compounds whose concentrations normally increase in spacecraft air during human habitation. The instrument showed virtually no response to these interferences. Although the prototype THA is designed for space flight, this detector is expected to be useful for field screening at chemical waste dumps and other environmentally sensitive locations.

  1. Secondary Ion Mass Spectrometry Imaging of Dictyostelium discoideum Aggregation Streams

    SciTech Connect

    Debord, J. Daniel; Smith, Donald F.; Anderton, Christopher R.; Heeren, Ronald M.; Pasa-Tolic, Ljiljana; Gomer, Richard H.; Fernandez-Lima, Francisco A.

    2014-06-09

    High resolution imaging mass spectrometry could become a valuable tool for cell and developmental biology, but both, high spatial and mass spectral resolution are needed to enable this. In this report, we employed Bi3 bombardment time-of-flight (Bi3 ToF-SIMS) and C60 bombardment Fourier transform ion cyclotron resonance secondary ion mass spectrometry (C60 FTICR-SIMS) to image Dictyostelium discoideum aggregation streams. Nearly 300 lipid species were identified from the aggregation streams. High resolution mass spectrometry imaging (FTICR-SIMS) enabled the generation of multiple molecular ion maps at the nominal mass level and provided good coverage for fatty acyls, prenol lipids, and sterol lipids. The comparison of Bi3 ToF-SIMS and C60 FTICR-SIMS suggested that while the first provides fast, high spatial resolution molecular ion images, the chemical complexity of biological samples warrants the use of high resolution analyzers for accurate ion identification.

  2. Universal collisional activation ion trap mass spectrometry

    DOEpatents

    McLuckey, S.A.; Goeringer, D.E.; Glish, G.L.

    1993-04-27

    A universal collisional activation ion trap comprises an ion trapping means containing a bath gas and having connected thereto a noise signal generator. A method of operating a universal collisional activation ion trap comprises the steps of: providing an ion trapping means; introducing into the ion trapping means a bath gas; and, generating a noise signal within the ion trapping means; introducing into the ion trapping means a substance that, when acted upon by the noise signal, undergoes collisional activation to form product ions.

  3. Universal collisional activation ion trap mass spectrometry

    DOEpatents

    McLuckey, Scott A.; Goeringer, Douglas E.; Glish, Gary L.

    1993-01-01

    A universal collisional activation ion trap comprises an ion trapping means containing a bath gas and having connected thereto a noise signal generator. A method of operating a universal collisional activation ion trap comprises the steps of: providing an ion trapping means; introducing into the ion trapping means a bath gas; and, generating a noise signal within the ion trapping means; introducing into the ion trapping means a substance that, when acted upon by the noise signal, undergoes collisional activation to form product ions.

  4. NEGATIVE-ION MASS SPECTROMETRY OF SULFONYLUREA HERBICIDES

    EPA Science Inventory

    Sulfonylurea herbicides have been studied using neg-ion desorption chem.-ionization (DCI) mass spectrometry (MS) and DCI-MS/MS techniques. Both {M-H]- and M.- ions were obsd. in the DCI mass spectra. The collisonally activated dissocn. (CAD) spectra were characteristic of the str...

  5. Advances in imaging secondary ion mass spectrometry for biological samples

    SciTech Connect

    Boxer, Steven G.; Kraft, Mary L.; Weber, Peter K.

    2008-12-16

    Imaging mass spectrometry combines the power of mass spectrometry to identify complex molecules based on mass with sample imaging. Recent advances in secondary ion mass spectrometry have improved sensitivity and spatial resolution, so that these methods have the potential to bridge between high-resolution structures obtained by X-ray crystallography and cyro-electron microscopy and ultrastructure visualized by conventional light microscopy. Following background information on the method and instrumentation, we address the key issue of sample preparation. Because mass spectrometry is performed in high vacuum, it is essential to preserve the lateral organization of the sample while removing bulk water, and this has been a major barrier for applications to biological systems. Furthermore, recent applications of imaging mass spectrometry to cell biology, microbial communities, and biosynthetic pathways are summarized briefly, and studies of biological membrane organization are described in greater depth.

  6. Advances in imaging secondary ion mass spectrometry for biological samples

    DOE PAGESBeta

    Boxer, Steven G.; Kraft, Mary L.; Weber, Peter K.

    2008-12-16

    Imaging mass spectrometry combines the power of mass spectrometry to identify complex molecules based on mass with sample imaging. Recent advances in secondary ion mass spectrometry have improved sensitivity and spatial resolution, so that these methods have the potential to bridge between high-resolution structures obtained by X-ray crystallography and cyro-electron microscopy and ultrastructure visualized by conventional light microscopy. Following background information on the method and instrumentation, we address the key issue of sample preparation. Because mass spectrometry is performed in high vacuum, it is essential to preserve the lateral organization of the sample while removing bulk water, and this hasmore » been a major barrier for applications to biological systems. Furthermore, recent applications of imaging mass spectrometry to cell biology, microbial communities, and biosynthetic pathways are summarized briefly, and studies of biological membrane organization are described in greater depth.« less

  7. Ion mobility–mass spectrometry for structural proteomics

    PubMed Central

    Zhong, Yueyang; Hyung, Suk-Joon; Ruotolo, Brandon T

    2012-01-01

    Ion mobility coupled to mass spectrometry has been an important tool in the fields of chemical physics and analytical chemistry for decades, but its potential for interrogating the structure of proteins and multiprotein complexes has only recently begun to be realized. Today, ion mobility– mass spectrometry is often applied to the structural elucidation of protein assemblies that have failed high-throughput crystallization or NMR spectroscopy screens. Here, we highlight the technology, approaches and data that have led to this dramatic shift in use, including emerging trends such as the integration of ion mobility–mass spectrometry data with more classical (e.g., ‘bottom-up’) proteomics approaches for the rapid structural characterization of protein networks. PMID:22292823

  8. Scattering of Ions beyond the Single Scattering Critical Angle in HIERDA

    SciTech Connect

    Johnston, P.N.; Bubb, I.F.; Franich, R.; Cohen, D.D.; Dytlewski, N.; Arstila, K.; Sajavaara, T.

    2003-08-26

    In Heavy Ion Elastic Recoil Detection Analysis (HIERDA), Rutherford scattering determines the number of scattered and recoiled ions that reach the detector. Because plural scattering is a major contributor to the spectrum and can mask important features and otherwise distort the spectrum it needs to be described correctly. Scattering more than once is a frequent occurrence so many ions scatter beyond the maximum scattering angle possible by a single scattering event. In this work we have chosen projectile/target combinations which enable the exploitation of the scattering critical angle to obtain spectra which are from ions which have all been scattered more than once. Monte Carlo simulation of the ion transport is used to study the plural scattering using a fast FORTRAN version of TRIM. The results of the simulations are compared with experimental measurements on samples of Si, V and Co performed with 20-100 MeV beams of Br, I and Au ions using ToF-E HIERDA facilities at Lucas Heights and Helsinki.

  9. Coulomb Repulsion in Miniature Ion Mobility Spectrometry

    SciTech Connect

    Xu, J.; Whitten, W.B.; Ramsey, J.M.

    1999-08-08

    We have undertaken a study of ion mobility resolution in a miniature ion mobility spectrometer with a drift channel 1.7 mm in diameter and 35 mm in length. The device attained a maximum resolution of 14 in separating ions of NO, O{sub 2}, and methyl iodine. The ions were generated by pulses from a frequency-quadrupled Nd:YAG laser. Broadening due to Coulomb repulsion was modeled theoretically and shown experimentally to have a major effect on the resolution of the miniature device.

  10. Time-of-flight direct recoil ion scattering spectrometer

    DOEpatents

    Krauss, A.R.; Gruen, D.M.; Lamich, G.J.

    1994-09-13

    A time-of-flight direct recoil and ion scattering spectrometer beam line is disclosed. The beam line includes an ion source which injects ions into pulse deflection regions and separated by a drift space. A final optics stage includes an ion lens and deflection plate assembly. The ion pulse length and pulse interval are determined by computerized adjustment of the timing between the voltage pulses applied to the pulsed deflection regions. 23 figs.

  11. Time-of-flight direct recoil ion scattering spectrometer

    DOEpatents

    Krauss, Alan R.; Gruen, Dieter M.; Lamich, George J.

    1994-01-01

    A time of flight direct recoil and ion scattering spectrometer beam line (10). The beam line (10) includes an ion source (12) which injects ions into pulse deflection regions (14) and (16) separated by a drift space (18). A final optics stage includes an ion lens and deflection plate assembly (22). The ion pulse length and pulse interval are determined by computerized adjustment of the timing between the voltage pulses applied to the pulsed deflection regions (14) and (16).

  12. Negative ion spectrometry for detecting nitrated explosives

    NASA Technical Reports Server (NTRS)

    Boettger, H. G.; Yinon, J.

    1975-01-01

    Ionization procedure is modified to produce mainly negative ions by electron capture. Peaks of negative ions are monitored conventionally. Nitrated organic materials could be identified directly from sample sniff inlet stream by suitably modified mass spectrometer because of unique electronegativity which nitro group imparts to organic material.

  13. Method and apparatus for ion cyclotron spectrometry

    DOEpatents

    Dahl, David A [Idaho Falls, ID; Scott, Jill R [Idaho Falls, ID; McJunkin, Timothy R [Idaho Falls, ID

    2010-08-17

    An ion cyclotron spectrometer may include a vacuum chamber that extends at least along a z-axis and means for producing a magnetic field within the vacuum chamber so that a magnetic field vector is generally parallel to the z-axis. The ion cyclotron spectrometer may also include means for producing a trapping electric field within the vacuum chamber that includes at least a first section that induces a first magnetron effect that increases a cyclotron frequency of an ion and at least a second section that induces a second magnetron effect that decreases the cyclotron frequency of an ion. The cyclotron frequency changes induced by the first and second magnetron effects substantially cancel one another so that an ion traversing the at least first and second sections will experience no net change in cyclotron frequency.

  14. Mass spectrometry and inhomogeneous ion optics

    NASA Technical Reports Server (NTRS)

    White, F. A.

    1973-01-01

    Work done in several areas to advance the state of the art of magnetic mass spectrometers is described. The calculations and data necessary for the design of inhomogeneous field mass spectrometers, and the calculation of ion trajectories through such fields are presented. The development and testing of solid state ion detection devices providing the capability of counting single ions is discussed. New techniques in the preparation and operation of thermal-ionization ion sources are described. Data obtained on the concentrations of copper in rainfall and uranium in air samples using the improved thermal ionization techniques are presented. The design of a closed system static mass spectrometer for isotopic analyses is discussed. A summary of instrumental aspects of a four-stage mass spectrometer comprising two electrostatic and two 90 deg. magnetic lenses with a 122-cm radius used to study the interaction of ions with solids is presented.

  15. Ion microprobe mass spectrometry using sputtering atomization and resonance ionization

    SciTech Connect

    Donohue, D.L.; Christie, W.H.; Goeringer, D.E.

    1985-01-01

    Resonance ionization mass spectrometry (RIMS) has recently been developed into a useful technique for isotope ratio measurements. Studies performed in our laboratory (1-6) have been reported for a variety of elements using thermal vaporization sources to produce the atom reservoir for laser-induced resonance ionization. A commercial ion microprobe mass analyzer (IMMA) has been interfaced with a tunable pulsed dye laser for carrying out resonance ionization mass spectrometry of sputtered atoms. The IMMA instrument has many advantages for this work, including a micro-focused primary ion beam (2 ..mu..m in diameter) of selected mass, complete sample manipulation and viewing capability, and a double-focusing mass spectrometer for separation and detection of the secondary or laser-generated ions. Data were obtained demonstrating the number and type of ions formed along with optical spectral information showing the wavelengths at which resonance ionization occurs. 7 refs.

  16. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 1. Peptides to Proteins

    NASA Astrophysics Data System (ADS)

    Donohoe, Gregory C.; Khakinejad, Mahdiar; Valentine, Stephen J.

    2015-04-01

    Ion mobility spectrometry (IMS) coupled with hydrogen deuterium exchange (HDX)-mass spectrometry (MS) has been used to study the conformations of negatively-charged peptide and protein ions. Results are presented for ion conformers of angiotensin 1, a synthetic peptide (SP), bovine insulin, ubiquitin, and equine cytochrome c. In general, the SP ion conformers demonstrate a greater level of HDX efficiency as a greater proportion of the sites undergo HDX. Additionally, these ions exhibit the fastest rates of exchange. Comparatively, the angiotensin 1 ions exhibit a lower rate of exchange and HDX level presumably because of decreased accessibility of exchange sites by charge sites. The latter are likely confined to the peptide termini. Insulin ions show dramatically reduced HDX levels and exchange rates, which can be attributed to decreased conformational flexibility resulting from the disulfide bonds. For the larger ubiquitin and protein ions, increased HDX is observed for larger ions of higher charge state. For ubiquitin, a conformational transition from compact to more elongated species (from lower to higher charge states) is reflected by an increase in HDX levels. These results can be explained by a combination of interior site protection by compact conformers as well as decreased access by charge sites. The elongated cytochrome c ions provide the largest HDX levels where higher values correlate with charge state. These results are consistent with increased exchange site accessibility by additional charge sites. The data from these enhanced IMS-HDX experiments are described in terms of charge site location, conformer rigidity, and interior site protection.

  17. Modeling vapor uptake induced mobility shifts in peptide ions observed with transversal modulation ion mobility spectrometry-mass spectrometry.

    PubMed

    Rawat, Vivek K; Vidal-de-Miguel, Guillermo; Hogan, Christopher J

    2015-10-21

    Low field ion mobility spectrometry-mass spectrometry (IMS-MS) techniques exhibit low orthogonality, as inverse mobility often scales with mass to charge ratio. This inadequacy can be mitigated by adding vapor dopants, which may cluster with analyte ions and shift their mobilities by amounts independent of both mass and mobility of the ion. It is therefore important to understand the interactions of vapor dopants with ions, to better quantify the extent of dopant facilitated mobility shifts. Here, we develop predictive models of vapor dopant facilitated mobility shifts, and compare model calculations to measurements of mobility shifts for peptide ions exposed to variable gas phase concentrations of isopropanol. Mobility measurements were made at atmospheric pressure and room temperature using a recently developed transversal modulation ion mobility spectrometer (TMIMS). Results are compared to three separate models, wherein mobility shifts due to vapor dopants are attributed to changes in gas composition and (I) no vapor dopant uptake is assumed, (II) site-specific dopant uptake by the ion is assumed (approximated via a Langmuir adsorption model), and (III) site-unspecific dopant uptake by the ion is assumed (approximated via a classical nucleation model). We find that mobility shifts in peptide ions are in excellent agreement with model II, site-specific binding predictions. Conversely, mobility shifts of tetraalkylammonium ions from previous measurements were compared with these models and best agreement was found with model III predictions, i.e. site-unspecific dopant uptake. PMID:26051323

  18. LABORATORY DETECTION OF PLASTICS IN SEEDCOTTON WITH ION MOBILITY SPECTROMETRY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The US cotton industry wants to increase market share and value by supplying pure cotton. Removing contamination requires developing a means to detect plastics in seedcotton. This study was conducted to determine if Ion Mobility Spectrometry (IMS) could be used to find small amounts of plastic in ...

  19. C60 Secondary Ion Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    SciTech Connect

    Smith, Donald F.; Robinson, Errol W.; Tolmachev, Aleksey V.; Heeren, Ronald M.; Pasa-Tolic, Ljiljana

    2011-12-15

    Secondary ion mass spectrometry (SIMS) has seen increased application for high spatial chemical imaging of complex biological surfaces. The advent and commercial availability of cluster and polyatomic primary ion sources (e.g. Au and Bi cluster and buckminsterfullerene (C60)) provide improved secondary ion yield and decreased fragmentation of surface species, thus accessibility to intact molecular ions. Despite developments in primary ion sources, development of mass spectrometers to fully exploit their advantages has been limited. Tandem mass spectrometry for identification of secondary ions is highly desirable, but implementation has proven to be difficult. Similarly, high mass resolution and high mass measurement accuracy would greatly improve the chemical specificity of SIMS. Here we combine, for the first time, the advantages of a C60 primary ion source with the ultra-high mass resolving power and high mass measurement accuracy of Fourier transform ion cyclotron resonance mass spectrometry. Mass resolving power in excess of 100,000 (m/Δm50%) is demonstrated, with mass measurement accuracies below 3 parts-per-million. Imaging of mouse brain tissue at 40 μm pixel size is shown. Tandem mass spectrometry of ions from biological tissue is demonstrated and molecular formulae can be assigned to fragment ions.

  20. Resonating Rays in Light Ion Scattering from AN Optical Potential.

    NASA Astrophysics Data System (ADS)

    Stoyanov, Basil John

    Recent experimental investigations reveal that resonances of composite ion-ion systems are a general phenomenon in light- and heavy-ion scattering. The experimentally observed phenomenon known as the anomalous large-angle scattering (ALAS) of alpha-particle from certain isotopes, such as (alpha)-('40)Ca, manifests itself in the form of successive peaks in the back-scattering excitation function. Earlier theoretical studies were mainly concentrated either on the surface-wave or geometrical-wave description of these phenomena, whereas the pont of view taken here, which is based on the results of physical acoustics, is that the ion-ion scattering amplitude contains both the surface-wave and the geometrical-wave contributions. Therefore a comprehensive approach would be to investigate both of these contributions simultaneously. This is achieved in the present work through a decomposition, by applying the Sommerfeld-Watson and Imai transformations, of the scattering amplitude into its ingredients and by analyzing both the resulting geometrical rays and the surface waves in terms of resonances. This procedure generates a precise mathematical description of resonance processes in ion scattering (via the S-function poles) and at the same time leads in a semi -classical framework to their thorough physical interpretation (via the generalized Bohr-Sommerfeld quantization condition). The existence of resonances in both the geometrical and surface waves emerges from such a description, and is exemplified by numerical calculations for (alpha)-('40)Ca elastic scattering.

  1. Detection of gaseous organophosphorus compounds using secondary ion mass spectrometry

    SciTech Connect

    Groenewold, G.S.; Todd, P.J.

    1985-04-01

    Molecular secondary ion mass spectrometry (SIMS) has been investigated for sensitivity and selectivity in the analysis of gaseous organophosphorus compounds. Abundant analyte ions were observed when the gaseous organophosphorus compounds were admitted into the secondary ion source, where a matrix was under primary ion bombardment. The best matrix for the detection of dimethyl methylphosphonate (DMMP), trimethyl phosphate (TMP), and diisopropyl methylphosphonate (DIMP) was determined to be polyphosphoric acid. The abundance of secondary analyte ions was observed to be linear with the introduction rate of gaseous analyte. The introduction rate necessary to produce a 3:1 signal-to-noise ratio in the intensity of secondary protonated molecular ions from DMMP was estimated to be 4 x 10/sup -11/ mols/sup -1/. Substantially more analyte fragmentation is observed by using SIMS than by using methane chemical ionization mass spectrometry. Ten compounds representative of other compound classes were investigated in the same manner as the organic phosphonates; characteristic secondary protonated molecular ions were detected from amines only.

  2. Crystal effects in the neutralization of He+ ions in the low energy ion scattering regime.

    PubMed

    Primetzhofer, D; Markin, S N; Juaristi, J I; Taglauer, E; Bauer, P

    2008-05-30

    Investigating possible crystal effects in ion scattering from elemental surfaces, measurements of the positive ion fraction P+ are reported for He+ ions scattered from single and polycrystalline Cu surfaces. In the Auger neutralization regime, the ion yield is determined by scattering from the outermost atomic layer. For Cu(110) P+ exceeds that for polycrystalline Cu by up to a factor of 2.5, thus exhibiting a strong crystal effect. It is much less pronounced at higher energies, i.e., in the reionization regime. However, there a completely different angular dependence of the ion yield is observed for poly- and single crystals, due to massive subsurface contributions in nonchanneling directions. PMID:18518602

  3. Ion mobility spectrometers and methods for ion mobility spectrometry

    SciTech Connect

    Dahl, David A; Scott, Jill R; Appelhans, Anthony D; McJunkin, Timothy R; Olson, John E

    2009-04-14

    An ion mobility spectrometer may include an inner electrode and an outer electrode arranged so that at least a portion of the outer electrode surrounds at least a portion of the inner electrode and defines a drift space therebetween. The inner and outer electrodes are electrically insulated from one another so that a non-linear electric field is created in the drift space when an electric potential is placed on the inner and outer electrodes. An ion source operatively associated with the ion mobility spectrometer releases ions to the drift space defined between the inner and outer electrodes. A detector operatively associated with at least a portion of the outer electrode detects ions from the drift space.

  4. Thomson scattering diagnostic for the measurement of ion species fraction

    SciTech Connect

    Ross, J S; Park, H S; Amendt, A; Divol, L; Kugland, N L; Rozmus, W; Glenzer, S H

    2012-05-01

    Simultaneous Thomson scattering measurements of collective electron-plasma and ion-acoustic fluctuations have been utilized to determine ion species fraction from laser produced CH plasmas. The CH{sub 2} foil is heated with 10 laser beams, 500 J per beam, at the Omega Laser facility. Thomson scattering measurements are made 4 mm from the foil surface using a 30 J 2{omega} probe laser with a 1 ns pulse length. Using a series of target shots the plasma evolution is measured from 2.5 ns to 9 ns after the rise of the heater beams. Measuring the electron density and temperature from the electron-plasma fluctuations constrains the fit of the two-ion species theoretical form factor for the ion feature such that the ion temperature, plasma flow velocity and ion species fraction are determined. The ion species fraction is determined to an accuracy of {+-}0.06 in species fraction.

  5. Thomson scattering diagnostic for the measurement of ion species fraction

    SciTech Connect

    Ross, J. S.; Park, H.-S.; Amendt, P.; Divol, L.; Kugland, N. L.; Glenzer, S. H.; Rozmus, W.

    2012-10-15

    Simultaneous Thomson scattering measurements of collective electron-plasma and ion-acoustic fluctuations have been utilized to determine ion species fraction from laser produced CH plasmas. The CH{sub 2} foil is heated with 10 laser beams, 500 J per beam, at the Omega Laser facility. Thomson scattering measurements are made 4 mm from the foil surface using a 30 J 2{omega} probe laser with a 1 ns pulse length. Using a series of target shots the plasma evolution is measured from 2.5 ns to 9 ns after the rise of the heater beams. Measuring the electron density and temperature from the electron-plasma fluctuations constrains the fit of the two-ion species theoretical form factor for the ion feature such that the ion temperature, plasma flow velocity and ion species fraction are determined. The ion species fraction is determined to an accuracy of {+-}0.06 in species fraction.

  6. Effective Ion Mobility Calculations for Macromolecules by Scattering off Electron Clouds

    SciTech Connect

    Alexeev, Yuri; Fedorov, Dmitri; Shvartsburg, Alexandre A.

    2014-08-19

    Broad commercialization and increasing resolving power of ion mobility spectrometry/mass spectrometry (IMS/MS) platforms has engendered an explosion of IMS applications to structural characterization of gas-phase biomolecules. That has renewed interest in more accurate and rapid ion mobility calculations needed to elicit ion geometries from the measurements. An approach based on scattering off electron density isosurfaces (SEDI) that mirrors the physics of molecular collisions was proven superior to the common methods involving atomic coordinates a decade ago, but has remained impractical for large ions because of extreme computational demands. Here, we accelerate SEDI by up to ~500 times using the fragment molecular orbital (FMO) approach for surface generation and the multiplexed scattering algorithm in conjunction with the new grid extrapolation procedure for cross section evaluations. Parallelization of the code on a supercomputer has produced major further speed gains, allowing SEDI calculations for proteins (defined by over a million surface points) with the precision of <0.1% in one minute. Initial tests reveal the anticipated dependences of mobility on the ion charge state and lower cross sections in view of reduced surface roughness. Present developments are expected to lead to broad application of SEDI in IMS studies of macromolecules, enabling more accurate and reliable structural assignments.

  7. Characterization of protonated phospholipids as fragile ions in quadrupole ion trap mass spectrometry

    PubMed Central

    Garrett, Timothy J.; Merves, Matthew; Yost, Richard A.

    2011-01-01

    Some ions exhibit “ion fragility” in quadrupole ion trap mass spectrometry (QIT-MS) during mass analysis with resonance ejection. In many cases, different ions generated from the same compound exhibit different degrees of ion fragility, with some ions (e.g., the [M+H]+ ion) stable and other ions (e.g., the [M+Na]+ ion) fragile. The ion fragility for quadrupole ion trap (QIT) mass spectrometry (MS) for protonated and sodiated ions of three phospholipids, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, PC (16:0/16:0), 1,2-dipalmitoyl-sn-glycero-3-phophoethanolamine, PE (16:0/16:0), and N-palmitoyl-D-erythro-sphingosylphosphorylcholine, SM (d18:1/16:0), was determined using three previously developed experiments: 1) the peak width using a slow scan speed, 2) the width of the isolation window for efficient isolation, and 3) the energy required for collision-induced dissociation. In addition, ion fragility studies were designed and performed to explore a correlation between ion fragility in QIT mass analysis and ion fragility during transport between the ion source and the ion trap. These experiments were: 1) evaluating the amount of thermal-induced dissociation as a function of heated capillary temperature, and 2) determining the extent of fragmentation occurring with increasing tube lens voltage. All phospholipid species studied exhibited greater ion fragility as protonated species in ion trap mass analysis than as sodiated species. In addition, the protonated species of both SM (d18:0/16:0) and PC (16:0/16:0) exhibited greater tendencies to fragment at higher heated capillary temperatures and high tube lens voltages, whereas the PE (16:0/16:0) ions did not appear to exhibit fragility during ion transport. PMID:22247650

  8. Mass spectrometry. [in organic ion and biorganic chemistry and medicine

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Cox, R. E.; Derrick, P. J.

    1974-01-01

    Review of the present status of mass spectrometry in the light of pertinent recent publications spanning the period from December 1971 to January 1974. Following an initial survey of techniques, instruments, and computer applications, a sharp distinction is made between the chemistry of organic (radical-)ions and analytical applications in biorganic chemistry and medicine. The emphasis is on the chemistry of organic (radical-)ions at the expense of inorganic, organometallic, and surface ion chemistry. Biochemistry and medicine are chosen because of their contemporary importance and because of the stupendous contributions of mass spectroscopy to these fields in the past two years. In the review of gas-phase organic ion chemistry, special attention is given to studies making significant contributions to the understanding of ion chemistry.

  9. Ion mobility spectrometry after supercritical fluid chromatography

    SciTech Connect

    Morrissey, M.A.

    1988-01-01

    In this work, a Fourier transform ion mobility spectrometer (FT-IMS) was constructed and evaluated as a detector for supercritical fluid chromatography (SFC). The FT-IMS provides both quantitative and qualitative data of a wide range of compounds, selective and nonselective modes of chromatographic detection, and it is compatible with a wide range of SFC mobile phases. Drift spectra are presented for a number of samples, including polymers, lipids, herbicides, antibiotics, and pharmaceuticals. The unique properties of supercritical fluids made it possible to introduce these compounds into the spectrometer. While the drift spectra presented are generally simple, showing only a quasi-molecular ion, a few are surprising complex. Examples of selective and non-selective detection demonstrate the usefulness of the detector. Examples are presented for fish oil concentrate, bacon grease extract, soil extract, and polymer mixtures. In the case of Triton X-100, a non-ionic surfactant, the FT-IMS was able to selectively detect individual oligomers in the polymer mixture. In the case of a polydimethylsilicone mixture the detector isolated a contaminant in the mixture.

  10. Ion Mobility Mass Spectrometry Analysis of Isomeric Disaccharide Precursor, Product and Cluster Ions

    PubMed Central

    Li, Hongli; Bendiak, Brad; Siems, William F.; Gang, David R.; Hill, Herbert H.

    2015-01-01

    RATIONALE Carbohydrates are highly variable in structure owing to differences in their anomeric configurations, monomer stereochemistry, inter-residue linkage positions and general branching features. The separation of carbohydrate isomers poses a great challenge for current analytical techniques. METHODS The isomeric heterogeneity of disaccharide ions and monosaccharideglycolaldehyde product ions evaluated using electrospray traveling wave ion mobility mass spectrometry (Synapt G2 high definition mass spectrometer) in both positive and negative ion modes investigation. RESULTS The separation of isomeric disaccharide ions was observed but not fully achieved based on their mobility profiles. The mobilities of isomeric product ions, the monosaccharide-glycolaldehydes, derived from different disaccharide isomers were measured. Multiple mobility peaks were observed for both monosaccharide-glycolaldehyde cations and anions, indicating that there was more than one structural configuration in the gas phase as verified by NMR in solution. More importantly, the mobility patterns for isomeric monosaccharide-glycolaldehyde product ions were different, which enabled partial characterization of their respective disaccharide ions. Abundant disaccharide cluster ions were also observed. The Results showed that a majority of isomeric cluster ions had different drift times and, moreover, more than one mobility peak was detected for a number of specific cluster ions. CONCLUSIONS It is demonstrated that ion mobility mass spectrometry is an advantageous method to assess the isomeric heterogeneity of carbohydrate compounds. It is capable of differentiating different types of carbohydrate ions having identical m/z values as well as multiple structural configurations of single compounds. PMID:24591031

  11. Tandem ion mobility spectrometry coupled to laser excitation

    SciTech Connect

    Simon, Anne-Laure; Choi, Chang Min; Clavier, Christian; Barbaire, Marc; Maurelli, Jacques; Dagany, Xavier; MacAleese, Luke; Dugourd, Philippe; Chirot, Fabien

    2015-09-15

    This manuscript describes a new experimental setup that allows to perform tandem ion mobility spectrometry (IMS) measurements and which is coupled to a high resolution time-of-flight mass spectrometer. It consists of two 79 cm long drift tubes connected by a dual ion funnel assembly. The setup was built to permit laser irradiation of the ions in the transfer region between the two drift tubes. This geometry allows selecting ions according to their ion mobility in the first drift tube, to irradiate selected ions, and examine the ion mobility of the product ions in the second drift tube. Activation by collision is possible in the same region (between the two tubes) and between the second tube and the time-of-flight. IMS-IMS experiments on Ubiquitin are reported. We selected a given isomer of charge state +7 and explored its structural rearrangement following collisional activation between the two drift tubes. An example of IMS-laser-IMS experiment is reported on eosin Y, where laser irradiation was used to produce radical ions by electron photodetachment starting from doubly deprotonated species. This allowed measuring the collision cross section of the radical photo-product, which cannot be directly produced with an electrospray source.

  12. Shower approach in the simulation of ion scattering from solids

    NASA Astrophysics Data System (ADS)

    Khodyrev, V. A.; Andrzejewski, R.; Rivera, A.; Boerma, D. O.; Prieto, J. E.

    2011-05-01

    An efficient approach for the simulation of ion scattering from solids is proposed. For every encountered atom, we take multiple samples of its thermal displacements among those which result in scattering with high probability to finally reach the detector. As a result, the detector is illuminated by intensive “showers,” where each event of detection must be weighted according to the actual probability of the atom displacement. The computational cost of such simulation is orders of magnitude lower than in the direct approach, and a comprehensive analysis of multiple and plural scattering effects becomes possible. We use this method for two purposes. First, the accuracy of the approximate approaches, developed mainly for ion-beam structural analysis, is verified. Second, the possibility to reproduce a wide class of experimental conditions is used to analyze some basic features of ion-solid collisions: the role of double violent collisions in low-energy ion scattering; the origin of the “surface peak” in scattering from amorphous samples; the low-energy tail in the energy spectra of scattered medium-energy ions due to plural scattering; and the degradation of blocking patterns in two-dimensional angular distributions with increasing depth of scattering. As an example of simulation for ions of MeV energies, we verify the time reversibility for channeling and blocking of 1-MeV protons in a W crystal. The possibilities of analysis that our approach offers may be very useful for various applications, in particular, for structural analysis with atomic resolution.

  13. Combining ion mobility spectrometry, mass spectrometry, and photoelectron spectroscopy in a high-transmission instrument.

    PubMed

    Vonderach, Matthias; Ehrler, Oli T; Weis, Patrick; Kappes, Manfred M

    2011-02-01

    We have developed a novel instrument that combines ion mobility spectrometry, mass spectro-metry, and photoelectron spectroscopy. The instrument couples an electrospray ion source, a high-transmission ion mobility cell based on ion funnels, a quadrupole mass filter, and a time-of-flight (magnetic bottle) photoelectron spectrometer operated with a pulsed detachment laser. We show that the instrument can resolve highly structured anion arrival time distributions and at the same time provide corresponding photoelectron spectra-using the DNA oligonucleotide ion [dC(6) - 5H](5-) as a test case. For this multianion we find at least four different, noninterconverting isomers (conformers) simultaneously present in the gas phase at room temperature. For each of these we record well-resolved and remarkably different photoelectron spectra at each of three different detachment laser wavelengths. Two-dimensional ion mobility/electron binding energy plots can be acquired with an automated data collection procedure. We expect that this kind of instrument will significantly improve the capabilities for structure determination of (bio)molecular anions in the gas phase. PMID:21214198

  14. Proton-bound cluster ions in ion mobility spectrometry

    NASA Technical Reports Server (NTRS)

    Ewing, R. G.; Eiceman, G. A.; Stone, J. A.

    1999-01-01

    Gaseous oxygen and nitrogen bases, both singly and as binary mixtures, have been introduced into ion mobility spectrometers to study the appearance of protonated molecules, and proton-bound dimers and trimers. At ambient temperature it was possible to simultaneously observe, following the introduction of molecule A, comparable intensities of peaks ascribable to the reactant ion (H2O)nH+, the protonated molecule AH+ and AH+ H2O, and the symmetrical proton bound dimer A2H+. Mass spectral identification confirmed the identifications and also showed that the majority of the protonated molecules were hydrated and that the proton-bound dimers were hydrated to a much lesser extent. No significant peaks ascribable to proton-bound trimers were obtained no matter how high the sample concentration. Binary mixtures containing molecules A and B, in some cases gave not only the peaks unique to the individual compounds but also peaks due to asymmetrical proton bound dimers AHB+. Such ions were always present in the spectra of mixtures of oxygen bases but were not observed for several mixtures of oxygen and nitrogen bases. The dimers, which were not observable, notable for their low hydrogen bond strengths, must have decomposed in their passage from the ion source to the detector, i.e. in a time less than approximately 5 ms. When the temperature was lowered to -20 degrees C, trimers, both homogeneous and mixed, were observed with mixtures of alcohols. The importance of hydrogen bond energy, and hence operating temperature, in determining the degree of solvation of the ions that will be observed in an ion mobility spectrometer is stressed. The possibility is discussed that a displacement reaction involving ambient water plays a role in the dissociation.

  15. Direct Liquid Sampling for Corona Discharge Ion Mobility Spectrometry.

    PubMed

    Sabo, Martin; Malásková, Michaela; Harmathová, Olga; Hradski, Jasna; Masár, Marián; Radjenovic, Branislav; Matejčík, Štefan

    2015-07-21

    We present a new technique suitable for direct liquid sampling and analysis by ion mobility spectrometry (IMS). The technique is based on introduction of a droplet stream to the IMS reaction region. The technique was successfully used to detect explosives dissolved in methanol and oil as well as to analyze amino acids and dipeptides. One of the main advantages of this technique is its ability to analyze liquid samples without the requirement of any special solution. PMID:26154532

  16. Conditioning of ion sources for mass spectrometry of plasmas

    SciTech Connect

    Dylla, H.F.; Blanchard, W.R.

    1983-02-01

    Mass spectrometry is a useful diagnostic technique for monitoring plasma species and plasma-surface interactions. In order to maximize the sensitivity of measurements of hydrogen-fueled fusion plasmas or hydrogen-based discharge cleaning and etching plasmas, the ion sources of mass spectrometers are operated at or near the high pressure limit of 10/sup -4/ Torr (10/sup -2/ Pa). Such high ambient pressures of hydrogen give rise to high background levels of residual gases such as H/sub 2/O, CO, and CH/sub 4/, due to surface reactions on the ion source electrodes. For a commonly used ion source configuration, the residual gas production is a linear function of the ambient H/sub 2/ pressure. Hydrogen conditioning can reduce the absolute residual gas levels. Steady-state residual gas production is observed in a conditioned ion source, which is related to a balance of diffusion and sorption on the electrode surfaces.

  17. Detection of gunpowder stabilizers with ion mobility spectrometry.

    PubMed

    West, C; Baron, G; Minet, J-J

    2007-03-01

    This study is the first reported ion mobility detection of ethyl centralite and diphenylamine (DPA) smokeless gunpowder stabilizers, together with the nitroso and nitro derivatives of diphenylamine. First, the applicability of the ion mobility spectrometry (IMS) for the substances of interest was determined. The existence of numerous peaks, both in positive and negative modes, clearly demonstrates the success of these experiments. All mono and di-nitro derivatives of DPA tested were detected with this method. Unfortunately, many of the ions generated were not accurately identified. However, reduced mobility constants representative of each ion generated under defined operating conditions could be used for purpose of compound identification. The method was then successfully tested on real gunpowder samples. By the use of IMS, we managed to establish a rapid, simple and sensitive screening method for the detection and identification of smokeless gunpowder organic components. PMID:16828537

  18. Review on ion mobility spectrometry. Part 1: current instrumentation.

    PubMed

    Cumeras, R; Figueras, E; Davis, C E; Baumbach, J I; Gràcia, I

    2015-03-01

    Ion Mobility Spectrometry (IMS) is a widely used and 'well-known' technique of ion separation in the gaseous phase based on the differences in ion mobilities under an electric field. All IMS instruments operate with an electric field that provides space separation, but some IMS instruments also operate with a drift gas flow that provides also a temporal separation. In this review we will summarize the current IMS instrumentation. IMS techniques have received an increased interest as new instrumentation and have become available to be coupled with mass spectrometry (MS). For each of the eight types of IMS instruments reviewed it is mentioned whether they can be hyphenated with MS and whether they are commercially available. Finally, out of the described devices, the six most-consolidated ones are compared. The current review article is followed by a companion review article which details the IMS hyphenated techniques (mainly gas chromatography and mass spectrometry) and the factors that make the data from an IMS device change as a function of device parameters and sampling conditions. These reviews will provide the reader with an insightful view of the main characteristics and aspects of the IMS technique. PMID:25465076

  19. Review on Ion Mobility Spectrometry. Part 1: Current Instrumentation

    PubMed Central

    Cumeras, R.; Figueras, E.; Davis, C.E.; Baumbach, J.I.; Gràcia, I.

    2014-01-01

    Ion Mobility Spectrometry (IMS) is a widely used and ‘well-known’ technique of ion separation in gaseous phase based on the differences of ion mobilities under an electric field. All IMS instruments operate with an electric field that provides space separation, but some IMS instruments also operate with a drift gas flow which provides also a temporal separation. In this review we will summarize the current IMS instrumentation. IMS techniques have received an increased interest as new instrumentation has become available to be coupled with mass spectrometry (MS). For each of the eight types of IMS instruments reviewed it is mentioned whether they can be hyphenated with MS and whether they are commercially available. Finally, out of the described devices, the six most-consolidated ones are compared. The current review article is followed by a companion review article which details the IMS hyphenated techniques (mainly gas chromatography and mass spectrometry) and the factors that make the data from an IMS device change as function of device parameters and sampling conditions. These reviews will provide the reader with an insightful view of the main characteristics and aspects of the IMS technique. PMID:25465076

  20. Cluster Ion Spectrometry (CIS) Data Archiving in the CAA

    NASA Astrophysics Data System (ADS)

    Dandouras, I. S.; Barthe, A.; Penou, E.; Brunato, S.; Reme, H.; Kistler, L. M.; Blagau, A.; Facsko, G.; Kronberg, E.; Laakso, H. E.

    2009-12-01

    The Cluster Active Archive (CAA) aims at preserving the four Cluster spacecraft data, so that they are usable in the long-term by the scientific community as well as by the instrument team PIs and Co-Is. This implies that the data are filed together with the descriptive and documentary elements making it possible to select and interpret them. The CIS (Cluster Ion Spectrometry) experiment is a comprehensive ionic plasma spectrometry package onboard the four Cluster spacecraft, capable of obtaining full three-dimensional ion distributions (about 0 to 40 keV/e) with a time resolution of one spacecraft spin (4 sec) and with mass-per-charge composition determination. The CIS package consists of two different instruments, a Hot Ion Analyser (HIA) and a time-of-flight ion Composition Distribution Function (CODIF) analyser. For the archival of the CIS data a multi-level approach has been adopted. The CAA archival includes processed raw data (Level 1 data), moments of the ion distribution functions (Level 2 data), and calibrated high-resolution data in a variety of physical units (Level 3 data). The latter are 3-D ion distribution functions and 2-D pitch-angle distributions. In addition, a software package has been developed to allow the CAA user to interactively calculate partial or total moments of the ion distributions. Instrument cross-calibration has been an important activity in preparing the data for archival. The CIS data archive includes also experiment documentation, graphical products for browsing through the data, and data caveats. In addition, data quality indexes are under preparation, to help the user. Given the complexity of an ion spectrometer, and the variety of its operational modes, each one being optimised for a different magnetospheric region or measurement objective, consultation of the data caveats by the end user will always be a necessary step in the data analysis.

  1. Analysis of explosives using corona discharge ionization combined with ion mobility spectrometry-mass spectrometry.

    PubMed

    Lee, Jihyeon; Park, Sehwan; Cho, Soo Gyeong; Goh, Eun Mee; Lee, Sungman; Koh, Sung-Suk; Kim, Jeongkwon

    2014-03-01

    Corona discharge ionization combined with ion mobility spectrometry-mass spectrometry (IMS-MS) was utilized to investigate five common explosives: cyclonite (RDX), trinitrotoluene (TNT), pentaerythritol tetranitrate (PETN), cyclotetramethylenetetranitramine (HMX), and 2,4-dinitrotoluene (DNT). The MS scan and the selected ion IMS analyses confirmed the identities of the existing ion species and their drift times. The ions observed were RDX·NO3(-), TNT(-), PETN·NO3(-), HMX·NO3(-), and DNT(-), with average drift times of 6.93 ms, 10.20 ms, 9.15 ms, 12.24 ms, 11.30 ms, and 8.89 ms, respectively. The reduced ion mobility values, determined from a standard curve calculated by linear regression of (normalized drift times)(-1) versus literature K0 values, were 2.09, 1.38, 1.55, 1.15, 1.25, and 1.60 cm(2) V(-1) s(-1), respectively. The detection limits were found to be 0.1 ng for RDX, 10 ng for TNT, 0.5 ng for PETN, 5.0 ng for HMX, and 10 ng for DNT. Simplified chromatograms were observed when nitrogen, as opposed to air, was used as the drift gas, but the detection limits were approximately 10 times worse (i.e., less sensitivity of detection). PMID:24468343

  2. Online deuterium hydrogen exchange and protein digestion coupled with ion mobility spectrometry and tandem mass spectrometry.

    PubMed

    Donohoe, Gregory C; Arndt, James R; Valentine, Stephen J

    2015-05-19

    Online deuterium hydrogen exchange (DHX) and pepsin digestion (PD) is demonstrated using drift tube ion mobility spectrometry (DTIMS) coupled with linear ion trap (LTQ) mass spectrometry (MS) with electron transfer dissociation (ETD) capabilities. DHX of deuterated ubiquitin, followed by subsequent quenching and digestion, is performed within ∼60 s, yielding 100% peptide sequence coverage. The high reproducibility of the IMS separation allows spectral feature matching between two-dimensional IMS-MS datasets (undeuterated and deuterated) without the need for dataset alignment. Extracted ion drift time distributions (XIDTDs) of deuterated peptic peptides are mobility-matched to corresponding XIDTDs of undeuterated peptic peptides that were identified using collision-induced dissociation (CID). Matching XIDTDs allows a straightforward identification and deuterium retention evaluation for labeled peptides. Aside from the mobility separation, the ion trapping capabilities of the LTQ, combined with ETD, are demonstrated to provide single-residue resolution. Deuterium retention for the c- series ions across residues M(1)-L(15) and N(25)-R(42) are in good agreement with the known secondary structural elements within ubiquitin. PMID:25893550

  3. Characterization of triacetone triperoxide by ion mobility spectrometry and mass spectrometry following atmospheric pressure chemical ionization

    SciTech Connect

    Ewing, Robert G.; Waltman, Melanie J.; Atkinson, David A.

    2011-04-28

    The atmospheric pressure chemical ionization of triacetone triperoxide (TATP) with subsequent separation and detection by ion mobility spectrometry has been studied. Positive ionization with hydronium reactant ions produced only fragments of the TATP molecule, with m/z 91 ion being the most predominant species. Ionization with ammonium reactant ions produced a molecular adduct at m/z 240. The reduced mobility value of this ion was constant at 1.36 cm{sup 2}V{sup -1}s{sup -1} across the temperature range from 60 to 140 C. The stability of this ion was temperature dependent and did not exist at temperatures above 140 C, where only fragment ions were observed. The introduction of ammonia vapors with TATP resulted in the formation of m/z 58 ion. As the concentration of ammonia increased, this smaller ion appeared to dominate the spectra and the TATP-ammonium adduct decreased in intensity. The ion at m/z 58 has been noted by several research groups upon using ammonia reagents in chemical ionization, but the identity was unknown. Evidence presented here supports the formation of protonated 2-propanimine. A proposed mechanism involves the addition of ammonia to the TATP-ammonium adduct followed by an elimination reaction. A similar mechanism involving the chemical ionization of acetone with excess ammonia also showed the formation of m/z 58 ion. TATP vapors from a solid sample were detected with a hand-held ion mobility spectrometer operated at room temperature. The TATP-ammonium molecular adduct was observed in the presence of ammonia and TATP vapors with this spectrometer.

  4. Ion scattering experiment on Ni(110) surface

    SciTech Connect

    Nicholas, B.; Rambabu, B.; Collins, W.E.

    1986-01-01

    Light emission from excited neutral scattered Ne and sputtered Ni were investigated using the LEIS method. A 5-keV Ne/sup +/ beam was used to bombard a Ni(110) surface. Results of the light emission data is presented and compared with neutral production of Ne. 4 refs., 3 figs.

  5. High Performance Ion Mobility Spectrometry Using Hourglass Electrodynamic Funnel And Internal Ion Funnel

    DOEpatents

    Smith, Richard D.; Tang, Keqi; Shvartsburg, Alexandre A.

    2005-11-22

    A method and apparatus enabling increased sensitivity in ion mobility spectrometry/mass spectrometry instruments which substantially reduces or eliminates the loss of ions in ion mobility spectrometer drift tubes utilizing a device for transmitting ions from an ion source which allows the transmission of ions without significant delay to an hourglass electrodynamic ion funnel at the entrance to the drift tube and/or an internal ion funnel at the exit of the drift tube. An hourglass electrodynamic funnel is formed of at least an entry element, a center element, and an exit element, wherein the aperture of the center element is smaller than the aperture of the entry element and the aperture of the exit elements. Ions generated in a relatively high pressure region by an ion source at the exterior of the hourglass electrodynamic funnel are transmitted to a relatively low pressure region at the entrance of the hourglass funnel through a conductance limiting orifice. Alternating and direct electrical potentials are applied to the elements of the hourglass electrodynamic funnel thereby drawing ions into and through the hourglass electrodynamic funnel thereby introducing relatively large quantities of ions into the drift tube while maintaining the gas pressure and composition at the interior of the drift tube as distinct from those at the entrance of the electrodynamic funnel and allowing a positive gas pressure to be maintained within the drift tube, if desired. An internal ion funnel is provided within the drift tube and is positioned at the exit of said drift tube. The advantage of the internal ion funnel is that ions that are dispersed away from the exit aperture within the drift tube, such as those that are typically lost in conventional drift tubes to any subsequent analysis or measurement, are instead directed through the exit of the drift tube, vastly increasing the amount of ions exiting the drift tube.

  6. Electron Attachment Studies for CHCl3 Using Ion Mobility Spectrometry

    NASA Astrophysics Data System (ADS)

    Han, Hai-yan; Feng, Hong-tao; Li, Hu; Wang, Hong-mei; Jiang, Hai-he; Chu, Yan-nan

    2011-04-01

    The dissociative electron attachment process for CHCl3 at different electric field have been studied with nitrogen as drift and carrier gas using corona discharge ionization source ion mobility spectrometry (CD-IMS). The corresponding electron attachment rate constants varied from 1.26×10-8 cm3/(molecules s) to 8.24×10-9 cm3/(molecules s) as the electric field changed from 200 V/cm to 500 V/cm. At a fixed electric field in the drift region, the attachment rate constants are also detected at different sample concentration. The ion-molecule reaction rate constants for the further reaction between Cl- and CHCl3 are also detected, which indicates that the technique maybe becomes a new method to research the rate constants between ions and neural molecules. And the reaction rate constants between Cl- and CHCl3 are the first time detected using CD-IMS.

  7. Determination of ammonia in ethylene using ion mobility spectrometry

    NASA Technical Reports Server (NTRS)

    Cross, J. H.; Limero, T. F.; Lane, J. L.; Wang, F.

    1997-01-01

    A simple procedure to analyze ammonia in ethylene by ion mobility spectrometry is described. The spectrometer is operated with a silane polymer membrane., 63Ni ion source, H+ (H2O)n reactant ion, and nitrogen drift and source gas. Ethylene containing parts per billion (ppb) (v/v) concentrations of ammonia is pulled across the membrane and diffuses into the spectrometer. Preconcentration or preseparation is unnecessary, because the ethylene in the spectrometer has no noticeable effect on the analytical results. Ethylene does not polymerize in the radioactive source. Ethylene's flammability is negated by the nitrogen inside the spectrometer. Response to ammonia concentrations between 200 ppb and 1.5 ppm is near linear, and a detection limit of 25 ppb is calculated.

  8. Identification of carbohydrate anomers using ion mobility-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hofmann, J.; Hahm, H. S.; Seeberger, P. H.; Pagel, K.

    2015-10-01

    Carbohydrates are ubiquitous biological polymers that are important in a broad range of biological processes. However, owing to their branched structures and the presence of stereogenic centres at each glycosidic linkage between monomers, carbohydrates are harder to characterize than are peptides and oligonucleotides. Methods such as nuclear magnetic resonance spectroscopy can be used to characterize glycosidic linkages, but this technique requires milligram amounts of material and cannot detect small amounts of coexisting isomers. Mass spectrometry, on the other hand, can provide information on carbohydrate composition and connectivity for even small amounts of sample, but it cannot be used to distinguish between stereoisomers. Here, we demonstrate that ion mobility-mass spectrometry--a method that separates molecules according to their mass, charge, size, and shape--can unambiguously identify carbohydrate linkage-isomers and stereoisomers. We analysed six synthetic carbohydrate isomers that differ in composition, connectivity, or configuration. Our data show that coexisting carbohydrate isomers can be identified, and relative concentrations of the minor isomer as low as 0.1 per cent can be detected. In addition, the analysis is rapid, and requires no derivatization and only small amounts of sample. These results indicate that ion mobility-mass spectrometry is an effective tool for the analysis of complex carbohydrates. This method could have an impact on the field of carbohydrate synthesis similar to that of the advent of high-performance liquid chromatography on the field of peptide assembly in the late 1970s.

  9. Depth resolution improvement in secondary ion mass spectrometry analysis using metal cluster complex ion bombardment

    SciTech Connect

    Tomita, M.; Kinno, T.; Koike, M.; Tanaka, H.; Takeno, S.; Fujiwara, Y.; Kondou, K.; Teranishi, Y.; Nonaka, H.; Fujimoto, T.; Kurokawa, A.; Ichimura, S.

    2006-07-31

    Secondary ion mass spectrometry analyses were carried out using a metal cluster complex ion of Ir{sub 4}(CO){sub 7}{sup +} as a primary ion beam. Depth resolution was evaluated as a function of primary ion species, energy, and incident angle. The depth resolution obtained using cluster ion bombardment was considerably better than that obtained by oxygen ion bombardment under the same experimental condition due to reduction of atomic mixing in the depth. The authors obtained a depth resolution of {approx}1 nm under 5 keV, 45 deg. condition. Depth resolution was degraded by ion-bombardment-induced surface roughness at 5 keV with higher incident angles.

  10. Inclusive inelastic scattering of heavy ions and nuclear correlations

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Townsend, Lawrence W.; Wilson, John W.; Khandelwal, Govind S.

    1990-01-01

    Calculations of inclusive inelastic scattering distributions for heavy ion collisions are considered within the high energy optical model. Using ground state sum rules, the inclusive projectile and complete projectile-target inelastic angular distributions are treated in both independent particle and correlated nuclear models. Comparisons between the models introduced are made for alpha particles colliding with He-4, C-12, and O-16 targets and protons colliding with O-16. Results indicate that correlations contribute significantly, at small momentum transfers, to the inelastic sum. Correlation effects are hidden, however, when total scattering distributions are considered because of the dominance of elastic scattering at small momentum transfers.

  11. Transient Ion-Pair Separations for Electrospray Mass Spectrometry.

    PubMed

    Liu, Hanghui; Lam, Lily; Chi, Bert; Kadjo, Akinde F; Dasgupta, Purnendu K

    2016-02-16

    We report a novel ion-pair chromatography (IPC) approach for liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS), where the eluent does not contain any ion-pairing reagent (IPR). The IPR is injected on the column, much like the sample, and moves down the column. Significant amounts of a high retention factor IPR is injected, resulting in a transient but reproducible regional coating that progresses along the column. The sample is injected after a brief interval. The sample components interact with the IPR coated region during their passage; the chosen eluent gradient elutes the analytes of interest into the mass spectrometer before the IPR. Following analyte elution, the gradient is steeply raised, the IPR is washed out, and the effluent is sent to waste via a diverter valve until it is fully removed. As the nature of the analyte retention continuously changes along the column and with time, we call this transient ion-pair separation (TIPS). As the IPR never enters the MS, TIPS addresses two major drawbacks of IPC for ESI-MS: it avoids both ion suppression and ion source contamination. The potential of the generic approach for other modes of separation is discussed. An illustrative separation of two small inorganic ions, iodate and nitrate, is demonstrated on a reverse phase column by a transient prior injection of hexadecyltrimethylammonium chloride as IPR. PMID:26765166

  12. Supercharging with Trivalent Metal Ions in Native Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Flick, Tawnya G.; Williams, Evan R.

    2012-11-01

    Addition of 1.0 mM LaCl3 to aqueous ammonium acetate solutions containing proteins in their folded native forms can result in a significant increase in the molecular ion charging obtained with electrospray ionization as a result of cation adduction. In combination with m-nitrobenzyl alcohol, molecular ion charge states that are greater than the number of basic sites in the protein can be produced from these native solutions, even for lysozyme, which is conformationally constrained by four intramolecular disulfide bonds. Circular dichroism spectroscopy indicates that the conformation of ubiquitin is not measurably affected with up to 1.0 M LaCl3, but ion mobility data indicate that the high charge states that are formed when 1.0 mM LaCl3 is present are more unfolded than the low charge states formed without this reagent. These and other results indicate that the increased charging is a result of La3+ preferentially adducting onto compact or more native-like conformers during ESI and the gas-phase ions subsequently unfolding as a result of increased Coulomb repulsion. Electron capture dissociation of these high charge-state ions formed from these native solutions results in comparable sequence coverage to that obtained for ions formed from denaturing solutions without supercharging reagents, making this method a potentially powerful tool for obtaining structural information in native mass spectrometry.

  13. Ion-molecule adduct formation in tandem mass spectrometry.

    PubMed

    Alechaga, Élida; Moyano, Encarnación; Galceran, Maria Teresa

    2016-02-01

    Nowadays most LC-MS methods rely on tandem mass spectrometry not only for quantitation and confirmation of compounds by multiple reaction monitoring (MRM), but also for the identification of unknowns from their product ion spectra. However, gas-phase reactions between charged and neutral species inside the mass analyzer can occur, yielding product ions at m/z values higher than that of the precursor ion, or at m/z values difficult to explain by logical losses, which complicate mass spectral interpretation. In this work, the formation of adduct ions in the mass analyzer was studied using several mass spectrometers with different mass analyzers (ion trap, triple quadrupole, and quadrupole-Orbitrap). Heterocyclic amines (AαC, MeAαC, Trp-P-1, and Trp-P-2), photo-initiators (BP and THBP), and pharmaceuticals (phenacetin and levamisole) were selected as model compounds and infused in LCQ Classic, TSQ Quantum Ultra AM, and Q-Exactive Orbitrap (ThermoFisher Scientific) mass spectrometers using electrospray as ionization method. The generation of ion-molecule adducts depended on the compound and also on the instrument employed. Adducts with neutral organic solvents (methanol and acetonitrile) were only observed in the ion trap instrument (LCQ Classic), because of the ionization source on-axis configuration and the lack of gas-phase barriers, which allowed inertial entrance of the neutrals into the analyzer. Adduct formation (only with water) in the triple quadrupole instruments was less abundant than in the ion trap and quadrupole-Orbitrap mass spectrometers, because of the lower residence time of the reactive product ions in the mass analyzer. The moisture level of the CID and/or damper gas had a great effect in beam-like mass analyzers such as triple quadrupole, but not in trap-like mass analyzers, probably because of the long residence time that allowed adduct formation even with very low concentrations of water inside the mass spectrometer. PMID:26700446

  14. Ring Current Ion Losses by Pitch Angle Scattering

    NASA Astrophysics Data System (ADS)

    Walt, M.; Voss, H. D.

    2001-12-01

    The Source/Loss Cone Energetic Particle Spectrometer (SEPS) on the Polar Satellite observes ions above 155 keV with an angular resolution of about 1.5 degrees. When the axis of SEPS is pointing within 10 degrees of the magnetic field direction, the detector measures particles in both the downward and upward loss cones. Measurements of the loss cone fluxes during the magnetic storms of August 6, 1998, August 27, 1998, September 25, 1998, October 19, 1998, and November 13, 1998 often show large fluxes of ring current ions moving downward inside the loss cone. At times these fluxes are comparable to the trapped ion population, indicating that strong pitch angle scattering is taking place at least locally. Although Polar encounters the ring current region at only two magnetic local times during any given storm, the frequent observation of precipitation suggests that pitch angle scattering is an important loss mechanism for ring current ions.

  15. Ion mobility spectrometry for pharmacokinetic studies – exemplary application

    PubMed Central

    Ruzsanyi, V.

    2013-01-01

    Breath analysis is an attractive non-invasive method for diagnosis and therapeutic monitoring. It uses endogenously produced compounds and metabolites of isotopically labelled precursors. In order to make such tests clinically useful, it is important to have relatively small portable instruments detecting volatile compounds within short time. A particularly promising analytical technique is ion mobility spectrometry (IMS) coupled to a multicapillary column (MCC). The present paper focuses on demonstrating the suitability of breath analysis for pharmacokinetic applications using MCC-IMS with respect to practicability and reproducibility testing the model substrate eucalyptol. Validation of the MCC-IMS measurements were performed using proton transfer reaction mass spectrometry (PTR-MS) and resulted in an excellent correspondence of the time-dependent concentrations presented by the two different analytical techniques. Moreover, the good accordance in variance of kinetic parameters with repeated measures, and the determined inter-subject differences indicate the eligibility of the analysis method. PMID:24287589

  16. External Second Gate-Fourier Transform Ion Mobility Spectrometry.

    SciTech Connect

    Tarver, Edward E., III

    2005-01-01

    Ion mobility spectrometry (IMS) is recognized as one of the most sensitive and versatile techniques for the detection of trace levels of organic vapors. IMS is widely used for detecting contraband narcotics, explosives, toxic industrial compounds and chemical warfare agents. Increasing threat of terrorist attacks, the proliferation of narcotics, Chemical Weapons Convention treaty verification as well as humanitarian de-mining efforts has mandated that equal importance be placed on the analysis time as well as the quality of the analytical data. (1) IMS is unrivaled when both speed of response and sensitivity has to be considered. (2) With conventional (signal averaging) IMS systems the number of available ions contributing to the measured signal to less than 1%. Furthermore, the signal averaging process incorporates scan-to-scan variations decreasing resolution. With external second gate Fourier Transform ion mobility spectrometry (FT-IMS), the entrance gate frequency is variable and can be altered in conjunction with other data acquisition parameters to increase the spectral resolution. The FT-IMS entrance gate operates with a 50% duty cycle and so affords a 7 to 10-fold increase in sensitivity. Recent data on high explosives are presented to demonstrate the parametric optimization in sensitivity and resolution of our system.

  17. Study of coal structure using secondary ion mass spectrometry

    SciTech Connect

    Tingey, G.L.; Lytle, J.M.; Baer, D.R.; Thomas, M.T.

    1980-12-01

    Secondary-ion Mass Spectrometry (SIMS) is examined as a tool for studying the chemical structure of coal. SIMS has potential for analysis of coal because of the following characteristics: sensitivity to chemical structure; high sensitivity to all masses; application to solids; excellent depth resolution; and reasonable spatial resolution. SIMS spectra of solid coals show differences with respect to coal rank, the spectra of high rank coal being similar to that of graphite, and the spectra of low rank coal being similar to that of wood. Some functional group analysis is also possible using SIMS. Low rank coals show a larger peak at 15 amu indicating more methyl groups than found in the higher rank coals. Fragments with two and three carbon atoms have also been examined; much larger fragments are undoubtedly present but were not evaluated in this study. Examination of these groups, which are expected to contain valuable information on coal structure, is planned for future work. It has been observed that mineral atoms present in the coal have large secondary ion yields which complicate the interpretation of the spectra. Studies on mineral-free coals and model compounds are therefore recommended to facilitate determination of organic coal structure. In addition, mass spectrometry with much greater mass resolution will aid in distinguishing between various ion species.

  18. Gas phase ion chemistry of an ion mobility spectrometry based explosive trace detector elucidated by tandem mass spectrometry.

    PubMed

    Kozole, Joseph; Levine, Lauren A; Tomlinson-Phillips, Jill; Stairs, Jason R

    2015-08-01

    The gas phase ion chemistry for an ion mobility spectrometer (IMS) based explosive detector has been elucidated using tandem mass spectrometry. The IMS system, which is operated with hexachloroethane and isobutyramide reagent gases and an ion shutter type gating scheme, is connected to the atmospheric pressure interface of a triple quadrupole mass spectrometer (MS/MS). Product ion masses, daughter ion masses, and reduced mobility values for a collection of nitro, nitrate, and peroxide explosives measured with the IMS/MS/MS instrument are reported. The mass and mobility data together with targeted isotopic labeling experiments and information about sample composition and reaction environment are leveraged to propose molecular formulas, structures, and ionization pathways for the various product ions. The major product ions are identified as [DNT-H](-) for DNT, [TNT-H](-) for TNT, [RDX+Cl](-) and [RDX+NO2](-) for RDX, [HMX+Cl](-) and [HMX+NO2](-) for HMX, [NO3](-) for EGDN, [NG+Cl](-) and [NG+NO3](-) for NG, [PETN+Cl](-) and [PETN+NO3](-) for PETN, [HNO3+NO3](-) for NH4NO3, [NO2](-) for DMNB, [HMTD-NC3H6O3+H+Cl](-) and [HMTD+H-CH2O-H2O2](+) for HMTD, and [(CH3)3CO2](+) for TATP. In general, the product ions identified for the IMS system studied here are consistent with the product ions reported previously for an ion trap mobility spectrometer (ITMS) based explosive trace detector, which is operated with dichloromethane and ammonia reagent gases and an ion trap type gating scheme. Differences between the explosive trace detectors include the [NG+Cl](-) and [PETN+Cl](-) product ions being major ions in the IMS system compared to minor ions in the ITMS system as well as the major product ion for TATP being [(CH3)3CO2](+) for the IMS system and [(CH3)2CNH2](+) for the ITMS system. PMID:26048817

  19. High-Performance Ion Mobility Spectrometry Using Hourglass Electrodynamic Funnel And Internal Ion Funnel

    DOEpatents

    Smith, Richard D.; Tang, Keqi; Shvartsburg, Alexandre A.

    2004-11-16

    A method and apparatus enabling increased sensitivity in ion mobility spectrometry/mass spectrometry instruments which substantially reduces or eliminates the loss of ions in ion mobility spectrometer drift tubes utilizing an hourglass electrodynamic ion funnel at the entrance to the drift tube and/or an internal ion funnel at the exit of the drift tube. An hourglass electrodynamic funnel is formed of at least an entry element, a center element, and an exit element, wherein the aperture of the center element is smaller than the aperture of the entry element and the aperture of the exit elements. Ions generated in a relatively high pressure region by an ion source at the exterior of the hourglass electrodynamic funnel are transmitted to a relatively low pressure region at the entrance of the hourglass funnel through a conductance limiting orifice. Alternating and direct electrical potentials are applied to the elements of the hourglass electrodynamic funnel thereby drawing ions into and through the hourglass electrodynamic funnel thereby introducing relatively large quantities of ions into the drift tube while maintaining the gas pressure and composition at the interior of the drift tube as distinct from those at the entrance of the electrodynamic funnel and allowing a positive gas pressure to be maintained within the drift tube, if desired. An internal ion funnel is provided within the drift tube and is positioned at the exit of said drift tube. The advantage of the internal ion funnel is that ions that are dispersed away from the exit aperture within the drift tube, such as those that are typically lost in conventional drift tubes to any subsequent analysis or measurement, are instead directed through the exit of the drift tube, vastly increasing the amount of ions exiting the drift tube.

  20. Dynamically multiplexed ion mobility time-of-flight mass spectrometry.

    PubMed

    Belov, Mikhail E; Clowers, Brian H; Prior, David C; Danielson, William F; Liyu, Andrei V; Petritis, Brianne O; Smith, Richard D

    2008-08-01

    Ion mobility spectrometry-time-of-flight mass spectrometry (IMS-TOFMS) has been increasingly used in analysis of complex biological samples. A major challenge is to transform IMS-TOFMS to a high-sensitivity, high-throughput platform, for example, for proteomics applications. In this work, we have developed and integrated three advanced technologies, including efficient ion accumulation in an ion funnel trap prior to IMS separation, multiplexing (MP) of ion packet introduction into the IMS drift tube, and signal detection with an analog-to-digital converter, into the IMS-TOFMS system for the high-throughput analysis of highly complex proteolytic digests of, for example, blood plasma. To better address variable sample complexity, we have developed and rigorously evaluated a novel dynamic MP approach that ensures correlation of the analyzer performance with an ion source function and provides the improved dynamic range and sensitivity throughout the experiment. The MP IMS-TOFMS instrument has been shown to reliably detect peptides at a concentration of 1 nM in the presence of a highly complex matrix, as well as to provide a 3 orders of magnitude dynamic range and a mass measurement accuracy of better than 5 ppm. When matched against human blood plasma database, the detected IMS-TOF features were found to yield approximately 700 unique peptide identifications at a false discovery rate (FDR) of approximately 7.5%. Accounting for IMS information gave rise to a projected FDR of approximately 4%. Signal reproducibility was found to be greater than 80%, while the variations in the number of unique peptide identifications were <15%. A single sample analysis was completed in 15 min that constitutes almost 1 order of magnitude improvement compared to a more conventional LC-MS approach. PMID:18582088

  1. Negative thermal ion mass spectrometry of oxygen in phosphates

    NASA Astrophysics Data System (ADS)

    Holmden, C.; Papanastassiou, D. A.; Wasserburg, G. J.

    1997-06-01

    A novel technique for the precise measurement of oxygen isotopes by negative thermal ion mass spectrometry (NTIMS) is presented. The technique is ideally suited to the analysis of oxygen isotopes in phosphates which form intense P03 ion beams. Since P is monoisotopic, the mass spectrum for P0 3- at 79, 80, and 81 corresponds to 1660, 170, and 180. Natural and synthetic phosphates are converted and loaded on the mass spectrometer filament as Ag 3PO 4 precipitated directly from ammoniacal solution. To lower the work function of the filament, BaCl, is added in a 1:1 molar ratio of PO 4:Ba. Using these procedures, Br - mass interference (at 79 and 81 amu) is eliminated for typical analyses. Experiments with 180-enriched water show less than 1 % O-exchange between sample PO 4 and adsorbed water, and there is no O-exchange with trace OZ present in the mass spectrometer source chamber. The ionization efficiency of PO 4, as P0 3- is >10% compared to 0.01% for both conventional dual inlet Gas Isotope Ratio Mass Spectrometry (GIRMS) and secondary ion mass spectrometry (SIMS). Therefore, NTIMS offers exceptional sensitivity enabling routine and precise oxygen isotope analysis of sub-microgram samples of PO 4, (<21 nmoles equivalent CO 2 gas) without need for lengthy chemical pre-treatment reproducibility of the sample. Overall external precision is ±1%c (2σ) for 18O/16 O and 170/15O with of instrumental isotope fractionation (calculated from 18O/16O of ±0.5%c amu -1. Small phosphate samples including single mineral grains from meteorites, or apatite microfossils, can be analyzed by this technique.

  2. Uncovering biologically significant lipid isomers with liquid chromatography, ion mobility spectrometry and mass spectrometry.

    PubMed

    Kyle, Jennifer E; Zhang, Xing; Weitz, Karl K; Monroe, Matthew E; Ibrahim, Yehia M; Moore, Ronald J; Cha, Jeeyeon; Sun, Xiaofei; Lovelace, Erica S; Wagoner, Jessica; Polyak, Stephen J; Metz, Thomas O; Dey, Sudhansu K; Smith, Richard D; Burnum-Johnson, Kristin E; Baker, Erin S

    2016-02-15

    Understanding how biological molecules are generated, metabolized and eliminated in living systems is important for interpreting processes such as immune response and disease pathology. While genomic and proteomic studies have provided vast amounts of information over the last several decades, interest in lipidomics has also grown due to improved analytical technologies revealing altered lipid metabolism in type 2 diabetes, cancer, and lipid storage disease. Mass spectrometry (MS) measurements are currently the dominant approach for characterizing the lipidome by providing detailed information on the spatial and temporal composition of lipids. However, interpreting lipids' biological roles is challenging due to the existence of numerous structural and stereoisomers (i.e. distinct acyl chain and double-bond positions), which are often unresolvable using present approaches. Here we show that combining liquid chromatography (LC) and structurally-based ion mobility spectrometry (IMS) measurement with MS analyses distinguishes lipid isomers and allows insight into biological and disease processes. PMID:26734689

  3. Uncovering biologically significant lipid isomers with liquid chromatography, ion mobility spectrometry and mass spectrometry

    SciTech Connect

    Kyle, Jennifer E.; Zhang, Xing; Weitz, Karl K.; Monroe, Matthew E.; Ibrahim, Yehia M.; Moore, Ronald J.; Cha, Jeeyeon; Sun, Xiaofei; Lovelace, Erica S.; Wagoner, Jessica; Polyak, Stephen J.; Metz, Thomas O.; Dey, Sudhansu K.; Smith, Richard D.; Burnum-Johnson, Kristin E.; Baker, Erin S.

    2016-01-01

    Understanding how biological molecules are generated, metabolized and eliminated in living systems is important for interpreting processes such as immune response and disease pathology. While genomic and proteomic studies have provided vast amounts of information over the last several decades, interest in lipidomics has also grown due to improved analytical technologies revealing altered lipid metabolism in type 2 diabetes, cancer, and lipid storage disease. Liquid chromatography and mass spectrometry (LC-MS) measurements are currently the dominant approach for characterizing the lipidome by providing detailed information on the spatial and temporal composition of lipids. However, interpreting lipids’ biological roles is challenging due to the existence of numerous structural and stereoisomers (i.e. distinct acyl chain and double-bond positions), which are unresolvable using present LC-MS approaches. Here we show that combining structurally-based ion mobility spectrometry (IMS) with LC-MS measurements distinguishes lipid isomers and allows insight into biological and disease processes.

  4. Separation of steroid isomers by ion mobility mass spectrometry.

    PubMed

    Ahonen, Linda; Fasciotti, Maíra; Gennäs, Gustav Boije Af; Kotiaho, Tapio; Daroda, Romeu J; Eberlin, Marcos; Kostiainen, Risto

    2013-10-01

    Ion mobility mass spectrometry performed in a compact traveling wave cell (TWIM-MS) is shown to provide a reliable, fast and repeatable method to separate derivatized steroid isomers. Three steroid isomer pairs were analyzed in their native form and as their p-toluenesulfonyl isocyanate derivatives. The native steroids were separated from each other, but no separation could be attained for the isomers. The derivatized steroid isomers were, however, properly separated by TWIM-MS with peak-to-peak resolutions close to or as high as baseline resolution (Rp-p=0.77-1.08). PMID:23992881

  5. Ion mobility spectrometry for detection of skin volatiles

    PubMed Central

    Ruzsanyi, Veronika; Mochalski, Pawel; Schmid, Alex; Wiesenhofer, Helmut; Klieber, Martin; Hinterhuber, Hartmann; Amann, Anton

    2012-01-01

    Volatile organic compounds (VOCs) released by humans through their skin were investigated in near real time using ion mobility spectrometry after gas chromatographic separation with a short multi-capillary column. VOCs typically found in a small nitrogen flow covering the skin are 3-methyl-2-butenal, 6-methylhept-5-en-2-one, sec-butyl acetate, benzaldehyde, octanal, 2-ethylhexanol, nonanal and decanal at volume fractions in the low part per billion-(ppb) range. The technique presented here may contribute to elucidating some physiological processes occurring in the human skin. PMID:23217311

  6. Cryogenic Ion Mobility-Mass Spectrometry: Tracking Ion Structure from Solution to the Gas Phase.

    PubMed

    Servage, Kelly A; Silveira, Joshua A; Fort, Kyle L; Russell, David H

    2016-07-19

    Electrospray ionization (ESI) combined with ion mobility-mass spectrometry (IM-MS) is adding new dimensions, that is, structure and dynamics, to the field of biological mass spectrometry. There is increasing evidence that gas-phase ions produced by ESI can closely resemble their solution-phase structures, but correlating these structures can be complicated owing to the number of competing effects contributing to structural preferences, including both inter- and intramolecular interactions. Ions encounter unique hydration environments during the transition from solution to the gas phase that will likely affect their structure(s), but many of these structural changes will go undetected because ESI-IM-MS analysis is typically performed on solvent-free ions. Cryogenic ion mobility-mass spectrometry (cryo-IM-MS) takes advantage of the freeze-drying capabilities of ESI and a cryogenically cooled IM drift cell (80 K) to preserve extensively solvated ions of the type [M + xH](x+)(H2O)n, where n can vary from zero to several hundred. This affords an experimental approach for tracking the structural evolution of hydrated biomolecules en route to forming solvent-free gas-phase ions. The studies highlighted in this Account illustrate the varying extent to which dehydration can alter ion structure and the overall impact of cryo-IM-MS on structural studies of hydrated biomolecules. Studies of small ions, including protonated water clusters and alkyl diammonium cations, reveal structural transitions associated with the development of the H-bond network of water molecules surrounding the charge carrier(s). For peptide ions, results show that water networks are highly dependent on the charge-carrying species within the cluster. Specifically, hydrated peptide ions containing lysine display specific hydration behavior around the ammonium ion, that is, magic number clusters with enhanced stability, whereas peptides containing arginine do not display specific hydration around the

  7. Dynamic Reactive Ionization with Cluster Secondary Ion Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Tian, Hua; Wucher, Andreas; Winograd, Nicholas

    2016-02-01

    Gas cluster ion beams (GCIB) have been tuned to enhance secondary ion yields by doping small gas molecules such as CH4, CO2, and O2 into an Ar cluster projectile, Arn + ( n = 1000-10,000) to form a mixed cluster. The `tailored beam' has the potential to expand the application of secondary ion mass spectrometry for two- and three-dimensional molecular specific imaging. Here, we examine the possibility of further enhancing the ionization by doping HCl into the Ar cluster. Water deposited on the target surface facilitates the dissociation of HCl. This concerted effect, occurring only at the impact site of the cluster, arises since the HCl is chemically induced to ionize to H+ and Cl- , allowing improved protonation of neutral molecular species. This hypothesis is confirmed by depth profiling through a trehalose thin film exposed to D2O vapor, resulting in ~20-fold increase in protonated molecules. The results show that it is possible to dynamically maintain optimum ionization conditions during depth profiling by proper adjustment of the water vapor pressure. H-D exchange in the trehalose molecule M was monitored upon deposition of D2O on the target surface, leading to the observation of [Mn* + H]+ or [Mn* + D]+ ions, where n = 1-8 hydrogen atoms in the trehalose molecule M have been replaced by deuterium. In general, we discuss the role of surface chemistry and dynamic reactive ionization of organic molecules in increasing the secondary ion yield.

  8. Profiling of phospholipids and related lipid structures using multidimensional ion mobility spectrometry-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Trimpin, Sarah; Tan, Bo; Bohrer, Brian C.; O'Dell, David K.; Merenbloom, Samuel I.; Pazos, Mauricio X.; Clemmer, David E.; Walker, J. Michael

    2009-10-01

    Increasingly comprehensive questions related to the biosynthesis of lipids relevant to understanding new signaling pathways have created daunting tasks for their chemical analysis. Here, ion mobility spectrometry (IMS) and mass spectrometry (MS) techniques combined with electrospray ionization have been used to examine mixtures of closely related lipid structures. The drift time distributions of sphingomyelins show baseline separations for ethylene chain length differences ([Delta] ~ 1.2 ms) and partial separations in single unsaturation differences ([Delta] ~ 0.3 ms) revealing that the most compact structures are observed with shorter chains and increasing unsaturation. Drift time distributions of different ionizations frequently fall into families with the same drift times (isodrifts) indicating that the ion attached to the lipid has little structural influence. The present data show that phospholipids, especially phosphatidylinositol, aggregate to form inverted micelles. Phospholipids (phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, sphingomyelin, and phosphatidylinositol) are effectively separated according to their polar head groups. This method also provides information about the mixture composition of the chemically different lipids N-palmitoyl glycine, N-arachidonoyl ethanolamide, and phosphatidylcholine existing over an array of charge states and sizes (inverted micelles) depending on mixture concentration. Multidimensional IMS3-MS introduces an additional dimension to fragmentation analysis by separating the fragmented ions into groups related to size, shape and charge and allows determination of sn-1 and sn-2 substitution as is shown for phosphatidylglycerols. This contribution provides evidence for extending the targeted approach to global lipidomics analysis using the high-efficiency gas-phase separation afforded by multidimensional IMS-MS.

  9. Formation of negative ions in grazing scattering from insulator surfaces

    SciTech Connect

    Auth, C.; Mertens, A.; Winter, H.; Borisov, A.G.; Sidis, V.

    1998-01-01

    Substantial fractions of fast atoms or ions are converted to negative ions during grazing scattering from a clean and flat monocrystalline surface of alkali-metal halides. We interpret the experimental data by a model of local electron capture from the halogen sites of the crystal in binary-type collision events. Due to the band gap of the insulator, the probability for subsequent electron loss is low, resulting in large fractions of negative ions that survive from the collisional formation. {copyright} {ital 1998} {ital The American Physical Society}

  10. Trace level perchlorate analysis by ion chromatography-mass spectrometry.

    PubMed

    Mathew, Johnson; Gandhi, Jay; Hedrick, Joe

    2005-08-26

    Perchlorate is commonly used as an oxidant in solid fuel propellant for rockets and missiles. Recently perchlorate contamination was found in many aquifers associated with Colorado River and other sites. Perchlorate was also found at elevated level in crops that use contaminated water for irrigation. Ion chromatography with conductivity detection could be used to measure perchlorate levels in drinking and wastewaters as per United States Environmental Protection Agency method 314, but at lower levels and with complexity of the matrix there could be false positive and/or false negative. This study was done to demonstrate the detection of perchlorate with lower detection limit with high ionic matrix by ion chromatography-mass spectrometry. PMID:16106848

  11. In situ secondary ion mass spectrometry analysis. 1992 Summary report

    SciTech Connect

    Groenewold, G.S.; Applehans, A.D.; Ingram, J.C.; Delmore, J.E.; Dahl, D.A.

    1993-01-01

    The direct detection of tributyl phosphate (TBP) on rocks using molecular beam surface analysis [MBSA or in situ secondary ion mass spectrometry (SIMS)] is demonstrated. Quantities as low as 250 ng were detected on basalt and sandstone with little or no sample preparation. Detection of TBP on soil has proven to be more problematic and requires further study. Ethylenediaminetetraacetic acid (EDTA) is more difficult to detect because it is very reactive with surfaces of interest. Nevertheless, it is possible to detect EDTA if the acidity of the surface is controlled. The detection of EDTA-metal complexes is currently an open question, but evidence is presented for the detection of ions arising from a EDTA-lead complex. Carboxylic acids (i.e., citric, ascorbic, malic, succinic, malonic, and oxalic) give characteristic SIM spectra, but their detection on sample surfaces awaits evaluation.

  12. Electrospray Ionization Ion Mobility Mass Spectrometry of Human Brain Gangliosides.

    PubMed

    Sarbu, Mirela; Robu, Adrian C; Ghiulai, Roxana M; Vukelić, Željka; Clemmer, David E; Zamfir, Alina D

    2016-05-17

    The progress of ion mobility spectrometry (IMS), together with its association to mass spectrometry (MS), opened new directions for the identification of various metabolites in complex biological matrices. However, glycolipidomics of the human brain by IMS MS represents an area untouched up to now, because of the difficulties encountered in brain sampling, analyte extraction, and IMS MS method optimization. In this study, IMS MS was introduced in human brain ganglioside (GG) research. The efficiency of the method in clinical glycolipidomics was demonstrated on a highly complex mixture extracted from a normal fetal frontal lobe (FL37). Using this approach, a remarkably rich molecular ion pattern was discovered, which proved the presence of a large number of glycoforms and an unpredicted diversity of the ceramide chains. Moreover, the results showed for the first time the occurrence of GGs in the human brain with a much higher degree of sialylation than previously reported. Using IMS MS, the entire series starting from mono- up to octasialylated GGs was detected in FL37. These findings substantiate early clinical reports on the direct correlation between GG sialylation degree and brain developmental stage. Using IMS CID MS/MS, applied here for the first time to gangliosides, a novel, tetrasialylated O-GalNAc modified species with a potential biomarker role in brain development was structurally characterized. Under variable collision energy, a high number of sequence ions was generated for the investigated GalNAc-GQ1(d18:1/18:0) species. Several fragment ions documented the presence of the tetrasialo element attached to the inner Gal, indicating that GalNAc-GQ1(d18:1/18:0) belongs to the d series. PMID:27088833

  13. Combined electron and focused ion beam system for improvement of secondary ion yield in secondary ion mass spectrometry instrument

    SciTech Connect

    Ji, L.; Ji, Q.; Leung, K.-N.; Gough, R. A.

    2006-10-16

    Using a combined electron and focused ion beam system to improve performance of secondary ion mass spectrometry instruments has been investigated experimentally. The secondary ion yield for an Al target has been enhanced to about one order of magnitude higher with the postionization induced by the low energy electrons in the combined beam. It can be further improved with the increase of electron beam current. When the combined beam is applied to insulating targets, sample charging is also eliminated. For Teflon targets, the secondary ion signal is increased by more than a factor of 20.

  14. Time-of-flight secondary ion mass spectrometry with transmission of energetic primary cluster ions through foil targets

    SciTech Connect

    Hirata, K.; Saitoh, Y.; Chiba, A.; Yamada, K.; Matoba, S.; Narumi, K.

    2014-03-15

    We developed time-of-flight (TOF) secondary ion (SI) mass spectrometry that provides informative SI ion mass spectra without needing a sophisticated ion beam pulsing system. In the newly developed spectrometry, energetic large cluster ions with energies of the order of sub MeV or greater are used as primary ions. Because their impacts on the target surface produce high yields of SIs, the resulting SI mass spectra are informative. In addition, the start signals necessary for timing information on primary ion incidence are provided by the detection signals of particles emitted from the rear surface of foil targets upon transmission of the primary ions. This configuration allows us to obtain positive and negative TOF SI mass spectra without pulsing system, which requires precise control of the primary ions to give the spectra with good mass resolution. We also successfully applied the TOF SI mass spectrometry with energetic cluster ion impacts to the chemical structure characterization of organic thin film targets.

  15. Separation and Classification of Lipids Using Differential Ion Mobility Spectrometry

    NASA Astrophysics Data System (ADS)

    Shvartsburg, Alexandre A.; Isaac, Giorgis; Leveque, Nathalie; Smith, Richard D.; Metz, Thomas O.

    2011-07-01

    Correlations between the dimensions of a 2-D separation create trend lines that depend on structural or chemical characteristics of the compound class and thus facilitate classification of unknowns. This broadly applies to conventional ion mobility spectrometry (IMS)/mass spectrometry (MS), where the major biomolecular classes (e.g., lipids, peptides, nucleotides) occupy different trend line domains. However, strong correlation between the IMS and MS separations for ions of same charge has impeded finer distinctions. Differential IMS (or FAIMS) is generally less correlated to MS and thus could separate those domains better. We report the first observation of chemical class separation by trend lines using FAIMS, here for lipids. For lipids, FAIMS is indeed more independent of MS than conventional IMS, and subclasses (such as phospho-, glycero-, or sphingolipids) form distinct, often non-overlapping domains. Even finer categories with different functional groups or degrees of unsaturation are often separated. As expected, resolution improves in He-rich gases: at 70% He, glycerolipid isomers with different fatty acid positions can be resolved. These results open the door for application of FAIMS to lipids, particularly in shotgun lipidomics and targeted analyses of bioactive lipids.

  16. Separation and Classification of Lipids Using Differential Ion Mobility Spectrometry

    PubMed Central

    Shvartsburg, Alexandre A.; Isaac, Giorgis; Leveque, Nathalie; Smith, Richard D.; Metz, Thomas O.

    2011-01-01

    Correlations between the dimensions of a 2-D separation create trend lines that depend on structural or chemical characteristics of the compound class and thus facilitate classification of unknowns. This broadly applies to conventional ion mobility spectrometry (IMS)/mass spectrometry (MS), where the major biomolecular classes (e.g., lipids, peptides, nucleotides) occupy different trend line domains. However, strong correlation between the IMS and MS separations for ions of same charge has impeded finer distinctions. Differential IMS (or FAIMS) is generally less correlated to MS and thus could separate those domains better. We report the first observation of chemical class separation by trend lines using FAIMS, here for lipids. For lipids, FAIMS is indeed more independent of MS than conventional IMS, and subclasses (such as phospho-, glycero-, or sphingolipids) form distinct, often non-overlapping domains. Even finer categories with different functional groups or degrees of unsaturation are often separated. As expected, resolution improves in He-rich gases: at 70% He, glycerolipid isomers with different fatty acid positions can be resolved. These results open the door for application of FAIMS to lipids, particularly in shotgun lipidomics and targeted analyses of bioactive lipids. PMID:21953096

  17. On-site analysis of old deposited chemical warfare agents by combined use of ion mobility spectrometry and mass spectrometry

    SciTech Connect

    Stach, J.; Adler, J.; Brodacki, M.; Doering, H.R.; Flachowsky, J.; Loudon, A.

    1995-12-31

    The factory site of an old mustard gas plant was investigated with on-site analysis methods. Using ion mobility spectrometry and mass spectrometry a lot of degradation products of mustard gas could be detected. Sulfur mustard was found in one soil sample and in ceramic material of a bunker used for storage of the produced warfare agents. Concentrations of the mustard gas are in the sub ppb level. The results of ion mobility and mass spectrometry agreed in 95 % of the investigated samples.

  18. Monitoring Trace Contaminants in Air Via Ion Trap Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Palmer, Peter T.; Karr, Dane; Pearson, Richard; Valero, Gustavo; Wong, Carla

    1995-01-01

    Recent passage of the Clean Air Act with its stricter regulation of toxic gas emissions, and the ever-growing number of applications which require faster turnaround times between sampling and analysis are two major factors which are helping to drive the development of new instrument technologies for in-situ, on-line, real-time monitoring. The ion trap, with its small size, excellent sensitivity, and tandem mass spectrometry capability is a rapidly evolving technology which is well-suited for these applications. In this paper, we describe the use of a commercial ion trap instrument for monitoring trace levels of chlorofluorocarbons (CFCs) and volatile organic compounds (VOCs) in air. A number of sample introduction devices including a direct transfer line interface, short column GC, and a cryotrapping interface are employed to achieve increasing levels of sensitivity. MS, MS/MS, and MS/MS/MS methods are compared to illustrate trade-offs between sensitivity and selectivity. Filtered Noise Field (FNF) technology is found to be an excellent means for achieving lower detection limits through selective storage of the ion(s) of interest during ionization. Figures of merit including typical sample sizes, detection limits, and response times are provided. The results indicate the potential of these techniques for atmospheric assessments, the High Speed Research Program, and advanced life support monitoring applications for NASA.

  19. Analysis of biogenic amines using corona discharge ion mobility spectrometry.

    PubMed

    Hashemian, Z; Mardihallaj, A; Khayamian, T

    2010-05-15

    A new method based on corona discharge ion mobility spectrometry (CD-IMS) was developed for the analysis of biogenic amines including spermidine, spermine, putrescine, and cadaverine. The ion mobility spectra of the compounds were obtained with and without n-Nonylamine used as the reagent gas. The high proton affinity of n-Nonylamine prevented ion formation from compounds with a proton affinity lower than that of n-Nonylamine and, therefore, enhanced its selectivity. It was also realized that the ion mobility spectrum of n-Nonylamine varied with its concentration. A sample injection port of a gas chromatograph was modified and used as the sample introduction system into the CD-IMS. The detection limits, dynamic ranges, and analytical parameters of the compounds with and without using the reagent gas were obtained. The detection limits and dynamic ranges of the compounds were about 2ng and 2 orders of magnitude, respectively. The wide dynamic range of CD-IMS originates from the high current of the corona discharge. The results revealed the high capability of the CD-IMS for the analysis of biogenic amines. PMID:20298897

  20. Laser desorption lamp ionization source for ion trap mass spectrometry.

    PubMed

    Wu, Qinghao; Zare, Richard N

    2015-01-01

    A two-step laser desorption lamp ionization source coupled to an ion trap mass spectrometer (LDLI-ITMS) has been constructed and characterized. The pulsed infrared (IR) output of an Nd:YAG laser (1064 nm) is directed to a target inside a chamber evacuated to ~15 Pa causing desorption of molecules from the target's surface. The desorbed molecules are ionized by a vacuum ultraviolet (VUV) lamp (filled with xenon, major wavelength at 148 nm). The resulting ions are stored and detected in a three-dimensional quadrupole ion trap modified from a Finnigan Mat LCQ mass spectrometer operated at a pressure of ≥ 0.004 Pa. The limit of detection for desorbed coronene molecules is 1.5 pmol, which is about two orders of magnitude more sensitive than laser desorption laser ionization mass spectrometry using a fluorine excimer laser (157 nm) as the ionization source. The mass spectrum of four standard aromatic compounds (pyrene, coronene, rubrene and 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine (OPC)) shows that parent ions dominate. By increasing the infrared laser power, this instrument is capable of detecting inorganic compounds. PMID:25601688

  1. Ion mobility spectrometry for food quality and safety.

    PubMed

    Vautz, W; Zimmermann, D; Hartmann, M; Baumbach, J I; Nolte, J; Jung, J

    2006-11-01

    Ion mobility spectrometry is known to be a fast and sensitive technique for the detection of trace substances, and it is increasingly in demand not only for protection against explosives and chemical warfare agents, but also for new applications in medical diagnosis or process control. Generally, a gas phase sample is ionized by help of ultraviolet light, ss-radiation or partial discharges. The ions move in a weak electrical field towards a detector. During their drift they collide with a drift gas flowing in the opposite direction and, therefore, are slowed down depending on their size, shape and charge. As a result, different ions reach the detector at different drift times, which are characteristic for the ions considered. The number of ions reaching the detector are a measure of the concentration of the analyte. The method enables the identification and quantification of analytes with high sensitivity (ng l(-1) range). The selectivity can even be increased - as necessary for the analyses of complex mixtures - using pre-separation techniques such as gas chromatography or multi-capillary columns. No pre-concentration of the sample is necessary. Those characteristics of the method are preserved even in air with up to a 100% relative humidity rate. The suitability of the method for application in the field of food quality and safety - including storage, process and quality control as well as the characterization of food stuffs - was investigated in recent years for a number of representative examples, which are summarized in the following, including new studies as well: (1) the detection of metabolites from bacteria for the identification and control of their growth; (2) process control in food production - beer fermentation being an example; (3) the detection of the metabolites of mould for process control during cheese production, for quality control of raw materials or for the control of storage conditions; (4) the quality control of packaging materials during

  2. Structures of Metallosupramolecular Coordination Assemblies Can Be Obtained by Ion Mobility Spectrometry-Mass Spectrometry

    PubMed Central

    Brocker, Erin R.; Anderson, Stanley E.; Northrop, Brian H.; Stang, Peter J.; Bowers, Michael T.

    2010-01-01

    Rigid rectangular, cyclobis[(2,9-bis[trans-Pt(PEt3)2(PF6)]anthracene)(4,4′-dipyridyl)], triangular, cyclotris[(2,9-bis[trans-Pt(PEt3)2(PF6)]phenanthrene)(4,4′-dipyridyl)], and prismatic, cyclotris[bis-[cis-Pt(PEt3)2)(CF3SO3)2](tetrakis(4-pyridyl)cyclobutadienecyclopentadienylcobalt(I))] supramolecular assemblies, based on dipyridyl ligands and square planar platinum coordination, have been investigated by ion mobility spectrometry-mass spectrometry (IMS-MS). ESI-quadrupole and TOF spectra have been obtained and fragmentation pathways assigned. Ion mobility studies give cross sections that compare very well with cross sections of the supramolecular rectangle and triangle species based on X-ray bond distances. For the larger prism structures, agreement of experimental and calculated cross sections from molecular modeling is very good, indicating IMS-MS methods can be used to characterize complex self-assembled structures where X-ray or other spectroscopic structures are not available. PMID:20815390

  3. Ion Mobility Spectrometry Reveals Duplex DNA Dissociation Intermediates

    NASA Astrophysics Data System (ADS)

    Burmistrova, Anastasia; Gabelica, Valérie; Duwez, Anne-Sophie; De Pauw, Edwin

    2013-11-01

    Electrospray ionization (ESI) soft desolvation is widely used to investigate fragile species such as nucleic acids. Tandem mass spectrometry (MS/MS) gives access to the gas phase energetics of the intermolecular interactions in the absence of solvent, by following the dissociation of mass-selected ions. Ion mobility mass spectrometry (IMS) provides indications on the tridimensional oligonucleotide structure by attributing a collision cross section (CCS) to the studied ion. Electrosprayed duplexes longer than eight bases pairs retain their helical structure in a solvent-free environment. However, the question of conformational changes under activation in MS/MS studies remains open. The objective of this study is to probe binding energetics and characterize the unfolding steps occurring prior to oligonucleotide duplex dissociation. Comparing the evolution of CCS with collision energy and breakdown curves, we characterize dissociation pathways involved in CID-activated DNA duplex separation into single strands, and we demonstrate here the existence of stable dissociation intermediates. At fixed duplex length, dissociation pathways were found to depend on the percentage of GC base pairs and on their position in the duplex. Our results show that pure GC sequences undergo a gradual compaction until reaching the dissociation intermediate: A-helix. Mixed AT-GC sequences were found to present at least two conformers: a classic B-helix and an extended structure where the GC tract is a B-helix and the AT tract(s) fray. The dissociation in single strands takes place from both conformers when the AT base pairs are enclosed between two GC tracts or only from the extended conformer when the AT tract is situated at the end(s) of the sequence.

  4. Losses of ring current ions by strong pitch angle scattering

    NASA Astrophysics Data System (ADS)

    Walt, M.; Voss, H. D.

    High angular resolution measurements of 155 keV ions in the ring current during the magnetic storm of August 6, 1998 show filled loss cones indicating that very rapid pitch angle scattering is taking place above the satellite location. The measurements were made with the SEPS detector on the Polar satellite during its passages through the ring current regions, usually at magnetic latitudes near ±45° and at magnetic local times of about 04:00 and 16:00 hrs. The observed strong pitch angle scattering implies a trapping lifetime of less than an hour and may explain the early rapid recovery of Dst during magnetic storms.

  5. Dynamically Multiplexed Ion Mobility Time-of-Flight Mass Spectrometry

    PubMed Central

    Belov, Mikhail E.; Clowers, Brian H.; Prior, David C.; Danielson, William F.; Liyu, Andrei V.; Petritis, Brianne O.; Smith, Richard D.

    2010-01-01

    Ion Mobility Spectrometry–Time-of-Flight Mass Spectrometry (IMS-TOFMS) has been increasingly used in analysis of complex biological samples. A major challenge is to transform IMS-TOFMS to a high-sensitivity high-throughput platform for e.g. proteomics applications. In this work, we have developed and integrated three advanced technologies, including efficient ion accumulation in the ion funnel trap prior to IMS separation, multiplexing (MP) of ion packet introduction into the IMS drift tube and signal detection with an analog-to-digital converter (ADC), into the IMS-TOFMS system for the high-throughput analysis of highly complex proteolytic digests of e.g. blood plasma. To better address variable sample complexity, we have developed and rigorously evaluated a novel dynamic MP approach that ensures correlation of the analyzer performance with an ion source function, and provides the improved dynamic range and sensitivity throughout the experiment. The MP IMS-TOF MS instrument has been shown to reliably detect peptides at a concentration of 1 nM in the presence of highly complex matrix, as well as to provide a three orders of magnitude dynamic range and a mass measurement accuracy of better than 5 ppm. When matched against human blood plasma database, the detected IMS-TOF features were found to yield ~ 700 unique peptide identifications at a false discovery rate (FDR) of ~ 7.5 %. Accounting for IMS information gave rise to a projected FDR of ~ 4 %. Signal reproducibility was found to be greater than 80 %, while the variations in the number of unique peptide identifications were < 15 %. A single sample analysis was completed in 15 min that constitutes almost an order of magnitude improvement compared to a more conventional LC-MS approach. PMID:18582088

  6. Fundamentals of Trapped Ion Mobility Spectrometry Part II: Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Silveira, Joshua A.; Michelmann, Karsten; Ridgeway, Mark E.; Park, Melvin A.

    2016-04-01

    Trapped ion mobility spectrometry (TIMS) is a new high resolution (R up to ~300) separation technique that utilizes an electric field to hold ions stationary against a moving gas. Recently, an analytical model for TIMS was derived and, in part, experimentally verified. A central, but not yet fully explored, component of the model involves the fluid dynamics at work. The present study characterizes the fluid dynamics in TIMS using simulations and ion mobility experiments. Results indicate that subsonic laminar flow develops in the analyzer, with pressure-dependent gas velocities between ~120 and 170 m/s measured at the position of ion elution. One of the key philosophical questions addressed is: how can mobility be measured in a dynamic system wherein the gas is expanding and its velocity is changing? We noted previously that the analytically useful work is primarily done on ions as they traverse the electric field gradient plateau in the analyzer. In the present work, we show that the position-dependent change in gas velocity on the plateau is balanced by a change in pressure and temperature, ultimately resulting in near position-independent drag force. That the drag force, and related variables, are nearly constant allows for the use of relatively simple equations to describe TIMS behavior. Nonetheless, we derive a more comprehensive model, which accounts for the spatial dependence of the flow variables. Experimental resolving power trends were found to be in close agreement with the theoretical dependence of the drag force, thus validating another principal component of TIMS theory.

  7. Fundamentals of Trapped Ion Mobility Spectrometry Part II: Fluid Dynamics.

    PubMed

    Silveira, Joshua A; Michelmann, Karsten; Ridgeway, Mark E; Park, Melvin A

    2016-04-01

    Trapped ion mobility spectrometry (TIMS) is a new high resolution (R up to ~300) separation technique that utilizes an electric field to hold ions stationary against a moving gas. Recently, an analytical model for TIMS was derived and, in part, experimentally verified. A central, but not yet fully explored, component of the model involves the fluid dynamics at work. The present study characterizes the fluid dynamics in TIMS using simulations and ion mobility experiments. Results indicate that subsonic laminar flow develops in the analyzer, with pressure-dependent gas velocities between ~120 and 170 m/s measured at the position of ion elution. One of the key philosophical questions addressed is: how can mobility be measured in a dynamic system wherein the gas is expanding and its velocity is changing? We noted previously that the analytically useful work is primarily done on ions as they traverse the electric field gradient plateau in the analyzer. In the present work, we show that the position-dependent change in gas velocity on the plateau is balanced by a change in pressure and temperature, ultimately resulting in near position-independent drag force. That the drag force, and related variables, are nearly constant allows for the use of relatively simple equations to describe TIMS behavior. Nonetheless, we derive a more comprehensive model, which accounts for the spatial dependence of the flow variables. Experimental resolving power trends were found to be in close agreement with the theoretical dependence of the drag force, thus validating another principal component of TIMS theory. Graphical Abstract ᅟ. PMID:26864793

  8. Dynamically Multiplexed Ion Mobility Time-of-Flight Mass Spectrometry

    SciTech Connect

    Belov, Mikhail E.; Clowers, Brian H.; Prior, David C.; Danielson, William F.; Liyu, Andrei V.; Petritis, Brianne O.; Smith, Richard D.

    2008-08-01

    Ion Mobility Spectrometry–Time-of-Flight Mass Spectrometry (IMS-TOFMS) has been increasingly used in analysis of complex biological samples. A major challenge is to transform IMS-TOFMS to a high-sensitivity high-throughput platform for e.g. proteomics applications. In this work, we have developed and integrated three advanced technologies, enabling (1) efficient ion accumulation in the ion funnel trap prior to IMS separation, (2) multiplexing (MP) of ion packet introduction into the IMS drift tube and (3) signal detection with an analog-to-digital converter (ADC), into the IMS-TOFMS system for the high-throughput analysis of highly complex proteolytic digests of e.g. blood plasma. To better address variable sample complexity, we have additionally developed and rigorously evaluated a new dynamic MP approach that ensures correlation of the analyzer performance with an ion source function, and provides the improved dynamic range and sensitivity. The MP IMS-TOF MS instrument has been shown to reliably detect peptides at a concentration of 1 nM in a highly complex matrix, as well as to provide a four orders of magnitude dynamic range and a mass measurement accuracy of better than 5 ppm. When matched against human blood plasma database, the detected IMS-TOF features yielded ~ 700 unique peptide identifications at a false discovery rate (FDR) of ~ 7.5 %. Accounting for IMS information gave rise to a projected FDR of ~ 4 %. Signal reproducibility was found to be greater than 80 %, while the variations in the number of unique peptide identifications were < 15 %. A single sample analysis was completed in 15 min, corresponding to approximately an order of magnitude improvement compared to a more conventional LC-MS approach.

  9. Nanowire dopant measurement using secondary ion mass spectrometry

    SciTech Connect

    Chia, A. C. E.; Boulanger, J. P.; Wood, B. A.; LaPierre, R. R.; Dhindsa, N.; Saini, S. S.

    2015-09-21

    A method is presented to improve the quantitative determination of dopant concentration in semiconductor nanowire (NW) arrays using secondary ion mass spectrometry (SIMS). SIMS measurements were used to determine Be dopant concentrations in a Be-doped GaAs thin film and NW arrays of various pitches that were dry-etched from the same film. A comparison of these measurements revealed a factor of 3 to 12 difference, depending on the NW array pitch, between the secondary Be ion yields of the film and the NW arrays, despite being identically doped. This was due to matrix effects and ion beam mixing of Be from the NWs into the surrounding benzocyclobutene that was used to fill the space between the NWs. This indicates the need for etched NWs to be used as doping standards instead of 2D films when evaluating NWs of unknown doping by SIMS. Using the etched NWs as doping standards, NW arrays of various pitches grown by the vapour-liquid-solid mechanism were characterized by SIMS to yield valuable insights into doping mechanisms.

  10. Nanowire dopant measurement using secondary ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Chia, A. C. E.; Dhindsa, N.; Boulanger, J. P.; Wood, B. A.; Saini, S. S.; LaPierre, R. R.

    2015-09-01

    A method is presented to improve the quantitative determination of dopant concentration in semiconductor nanowire (NW) arrays using secondary ion mass spectrometry (SIMS). SIMS measurements were used to determine Be dopant concentrations in a Be-doped GaAs thin film and NW arrays of various pitches that were dry-etched from the same film. A comparison of these measurements revealed a factor of 3 to 12 difference, depending on the NW array pitch, between the secondary Be ion yields of the film and the NW arrays, despite being identically doped. This was due to matrix effects and ion beam mixing of Be from the NWs into the surrounding benzocyclobutene that was used to fill the space between the NWs. This indicates the need for etched NWs to be used as doping standards instead of 2D films when evaluating NWs of unknown doping by SIMS. Using the etched NWs as doping standards, NW arrays of various pitches grown by the vapour-liquid-solid mechanism were characterized by SIMS to yield valuable insights into doping mechanisms.

  11. Resolving Interferences in Negative Mode Ion Mobility Spectrometry Using Selective Reactant Ion Chemistry

    SciTech Connect

    Daum, Keith Alvin; Atkinson, David Alan; Ewing, Robert Gordon; Knighton, W. B.; Grimsrud, E. P

    2001-04-01

    During the investigation of the degradation products of 2,4,6-trinitrotoluene (TNT) using ion mobility spectrometry (IMS), 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4-dichlorophenol (DCP) were found to have IMS responses which overlapped those of the TNT degradation products. It was observed that the Cl- reactant ion chemistry, often used for explosives analysis, was not always successful in resolving peak overlap of analytes and interferents. It is shown here that resolution of the analytes and interferences can sometimes be achieved using only air for the formation of reactant ions, at other times through the use of Br- as an alternative to Cl- for producing reactant ions, and also through the promotion of adduct stability by lowering the IMS temperature.

  12. Spatial Ion Peak Compression and its Utility in Ion Mobility Spectrometry

    NASA Astrophysics Data System (ADS)

    Garimella, Sandilya V. B.; Ibrahim, Yehia M.; Tang, Keqi; Webb, Ian K.; Baker, Erin S.; Tolmachev, Aleksey V.; Chen, Tsung-Chi; Anderson, Gordon A.; Smith, Richard D.

    2016-06-01

    A novel concept for ion spatial peak compression is described, and discussed primarily in the context of ion mobility spectrometry (IMS). Using theoretical and numerical methods, the effects of using non-constant (e.g., linearly varying) electric fields on ion distributions (e.g., an ion mobility peak) is evaluated both in the physical and temporal domains. The application of a linearly decreasing electric field in conjunction with conventional drift field arrangements is shown to lead to a reduction in IMS physical peak width. When multiple ion packets (i.e., peaks) in a selected mobility window are simultaneously subjected to such fields, there is ion packet compression (i.e., a reduction in peak widths for all species). This peak compression occurs with only a modest reduction of resolution, which can be quickly recovered as ions drift in a constant field after the compression event. Compression also yields a significant increase in peak intensities. Ion mobility peak compression can be particularly useful for mitigating diffusion-driven peak broadening over very long path length separations (e.g., in cyclic multi-pass arrangements), and for achieving higher S/N and IMS resolution over a selected mobility range.

  13. Spatial Ion Peak Compression and its Utility in Ion Mobility Spectrometry.

    PubMed

    Garimella, Sandilya V B; Ibrahim, Yehia M; Tang, Keqi; Webb, Ian K; Baker, Erin S; Tolmachev, Aleksey V; Chen, Tsung-Chi; Anderson, Gordon A; Smith, Richard D

    2016-06-01

    A novel concept for ion spatial peak compression is described, and discussed primarily in the context of ion mobility spectrometry (IMS). Using theoretical and numerical methods, the effects of using non-constant (e.g., linearly varying) electric fields on ion distributions (e.g., an ion mobility peak) is evaluated both in the physical and temporal domains. The application of a linearly decreasing electric field in conjunction with conventional drift field arrangements is shown to lead to a reduction in IMS physical peak width. When multiple ion packets (i.e., peaks) in a selected mobility window are simultaneously subjected to such fields, there is ion packet compression (i.e., a reduction in peak widths for all species). This peak compression occurs with only a modest reduction of resolution, which can be quickly recovered as ions drift in a constant field after the compression event. Compression also yields a significant increase in peak intensities. Ion mobility peak compression can be particularly useful for mitigating diffusion-driven peak broadening over very long path length separations (e.g., in cyclic multi-pass arrangements), and for achieving higher S/N and IMS resolution over a selected mobility range. Graphical Abstract ᅟ. PMID:27052738

  14. Spatial Ion Peak Compression and its Utility in Ion Mobility Spectrometry

    PubMed Central

    Garimella, Sandilya V. B.; Ibrahim, Yehia M.; Tang, Keqi; Webb, Ian K.; Baker, Erin S.; Tolmachev, Aleksey V.; Chen, Tsung-Chi; Anderson, Gordon A.; Smith, Richard D.

    2016-01-01

    A novel concept for ion spatial peak compression is described, and discussed primarily in the context of ion mobility spectrometry (IMS). Using theoretical and numerical methods, the effects of using non-constant (e.g., linearly varying) electric fields on ion distributions (e.g., an ion mobility peak) is evaluated both in the physical and temporal domains. The application of linearly decreasing electric field in conjunction with conventional drift field arrangements is shown to lead to a reduction in IMS physical peak width. When multiple ion packets (i.e. peaks) in a selected mobility window are simultaneously subjected to such fields, there is ion packet compression, i.e., a reduction in peak widths for all species. This peak compression occurs with only a modest reduction of resolution, and which can be quickly recovered as ions drift in a constant field after the compression event. Compression also yields a significant increase in peak intensities. Ion mobility peak compression can be particularly useful for mitigating diffusion driven peak spreading over very long path length separations (e.g., in cyclic multi-pass arrangements), and for achieving higher S/N and IMS resolution over a selected mobility range. PMID:27052738

  15. Spatial Ion Peak Compression and its Utility in Ion Mobility Spectrometry

    NASA Astrophysics Data System (ADS)

    Garimella, Sandilya V. B.; Ibrahim, Yehia M.; Tang, Keqi; Webb, Ian K.; Baker, Erin S.; Tolmachev, Aleksey V.; Chen, Tsung-Chi; Anderson, Gordon A.; Smith, Richard D.

    2016-04-01

    A novel concept for ion spatial peak compression is described, and discussed primarily in the context of ion mobility spectrometry (IMS). Using theoretical and numerical methods, the effects of using non-constant (e.g., linearly varying) electric fields on ion distributions (e.g., an ion mobility peak) is evaluated both in the physical and temporal domains. The application of a linearly decreasing electric field in conjunction with conventional drift field arrangements is shown to lead to a reduction in IMS physical peak width. When multiple ion packets (i.e., peaks) in a selected mobility window are simultaneously subjected to such fields, there is ion packet compression (i.e., a reduction in peak widths for all species). This peak compression occurs with only a modest reduction of resolution, which can be quickly recovered as ions drift in a constant field after the compression event. Compression also yields a significant increase in peak intensities. Ion mobility peak compression can be particularly useful for mitigating diffusion-driven peak broadening over very long path length separations (e.g., in cyclic multi-pass arrangements), and for achieving higher S/N and IMS resolution over a selected mobility range.

  16. Development of Ion Mobility Spectrometry for Exobiology Flight Experiments

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel R.; Carle, Glenn C.; Humphry, Donald E.; Shao, Maxine; Takeuchi, Nori; Chang, Sherwood (Technical Monitor)

    1996-01-01

    Ion Mobility Spectrometry (IMS) can provide gas chromatography with sample identification independent of sample retention time, with minimal interface. Initial commercial methods of IMS however, did not possess sufficient analytical capabilities and presented operational parameters which were unsuitable for exobiology missions. Subsequent development of IMS technology, with the focus on exobiology analytical requirements and mission imposed operational limitations, has produced an IMS interfaced with a GC capable of fulfilling the analytical requirements of several exobiology missions. Future exobiology missions will require further development of the IMS, particularly in the areas of overall instrument miniaturization and complex sample identification. The evolution of the exobiology focused IMS will be presented up to the current prototype design, which is a component of several proposed exobiology instruments. Areas of future development will also be discussed.

  17. Interrogating viral capsid assembly with ion mobility-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Uetrecht, Charlotte; Barbu, Ioana M.; Shoemaker, Glen K.; van Duijn, Esther; Heck, Albert J. R.

    2011-02-01

    Most proteins fulfil their function as part of large protein complexes. Surprisingly, little is known about the pathways and regulation of protein assembly. Several viral coat proteins can spontaneously assemble into capsids in vitro with morphologies identical to the native virion and thus resemble ideal model systems for studying protein complex formation. Even for these systems, the mechanism for self-assembly is still poorly understood, although it is generally thought that smaller oligomeric structures form key intermediates. This assembly nucleus and larger viral assembly intermediates are typically low abundant and difficult to monitor. Here, we characterised small oligomers of Hepatitis B virus (HBV) and norovirus under equilibrium conditions using native ion mobility mass spectrometry. This data in conjunction with computational modelling enabled us to elucidate structural features of these oligomers. Instead of more globular shapes, the intermediates exhibit sheet-like structures suggesting that they are assembly competent. We propose pathways for the formation of both capsids.

  18. Secondary-ion mass spectrometry of genetically encoded targets.

    PubMed

    Vreja, Ingrid C; Kabatas, Selda; Saka, Sinem K; Kröhnert, Katharina; Höschen, Carmen; Opazo, Felipe; Diederichsen, Ulf; Rizzoli, Silvio O

    2015-05-01

    Secondary ion mass spectrometry (SIMS) is generally used in imaging the isotopic composition of various materials. It is becoming increasingly popular in biology, especially for investigations of cellular metabolism. However, individual proteins are difficult to identify in SIMS, which limits the ability of this technology to study individual compartments or protein complexes. We present a method for specific protein isotopic and fluorescence labeling (SPILL), based on a novel click reaction with isotopic probes. Using this method, we added (19) F-enriched labels to different proteins, and visualized them by NanoSIMS and fluorescence microscopy. The (19) F signal allowed the precise visualization of the protein of interest, with minimal background, and enabled correlative studies of protein distribution and cellular metabolism or composition. SPILL can be applied to biological systems suitable for click chemistry, which include most cell-culture systems, as well as small model organisms. PMID:25783034

  19. Secondary-Ion Mass Spectrometry of Genetically Encoded Targets**

    PubMed Central

    Vreja, Ingrid C; Kabatas, Selda; Saka, Sinem K; Kröhnert, Katharina; Höschen, Carmen; Opazo, Felipe; Diederichsen, Ulf; Rizzoli, Silvio O

    2015-01-01

    Secondary ion mass spectrometry (SIMS) is generally used in imaging the isotopic composition of various materials. It is becoming increasingly popular in biology, especially for investigations of cellular metabolism. However, individual proteins are difficult to identify in SIMS, which limits the ability of this technology to study individual compartments or protein complexes. We present a method for specific protein isotopic and fluorescence labeling (SPILL), based on a novel click reaction with isotopic probes. Using this method, we added 19F-enriched labels to different proteins, and visualized them by NanoSIMS and fluorescence microscopy. The 19F signal allowed the precise visualization of the protein of interest, with minimal background, and enabled correlative studies of protein distribution and cellular metabolism or composition. SPILL can be applied to biological systems suitable for click chemistry, which include most cell-culture systems, as well as small model organisms. PMID:25783034

  20. Surface diagnostics by ion scattering spectroscopy in gaseous environment

    NASA Astrophysics Data System (ADS)

    Mamedov, N. V.; Kurnaev, V. A.; Sinelnikov, D. N.; Kolodko, D. V.

    2016-01-01

    Nowadays, it is important to perform in-situ analysis of composition and thickness of ultra-thin (∼5-50 Å) surface layers in the course of the surface exposure to plasma or its components. For this aim, a new experimental facility based on the MEPhI Mass Monochromator is being developed, where low and medium energy ion spectroscopy of samples is used just after or during plasma exposure/ion treatment. A differentially pumped energy analyzer is used for recoil ion spectroscopy under grazing incidence conditions in the automated ion mass monochromator. A built-in Penning plasma source is used for plasma/ion treatment of samples. In this paper, the influence of the working gas (during the plasma source operation) on the energy spectra of reflected and recoil ions is studied. It is shown that the peak shape of the energy spectrum of scattered H+ ions increases during gas injection, and, at the same time, the signal intensity of the ionized recoils from the sample decreases. Nevertheless, analysis of the surface composition and thickness of the outer layer could be done at pressures ranging up to 10-4 Torr.

  1. Anomerization of Acrylated Glucose During Traveling Wave Ion Mobility Spectrometry

    NASA Astrophysics Data System (ADS)

    Chendo, Christophe; Moreira, Guillaume; Tintaru, Aura; Posocco, Paola; Laurini, Erik; Lefay, Catherine; Gigmes, Didier; Viel, Stéphane; Pricl, Sabrina; Charles, Laurence

    2015-09-01

    Anomerization of simple sugars in the liquid phase is known as an acid- and base-catalyzed process, which highly depends on solvent polarity. This reaction is reported here to occur in the gas phase, during traveling wave ion mobility spectrometry (TWIMS) experiments aimed at separating α- and β-anomers of penta-acrylated glucose generated as ammonium adducts in electrospray ionization. This compound was available in two samples prepared from glucose dissolved in solvents of different polarity, namely tetrahydrofuran (THF) and N,N-dimethylacetamide (DMAC), and analyzed by electrospray tandem mass spectrometry (ESI-MS/MS) as well as traveling wave ion mobility (ESI-TWIMS-MS). In MS/MS, an anchimerically-assisted process was found to be unique to the electrosprayed α-anomer, and was only observed for the THF sample. In ESI-TWIMS-MS, a signal was measured at the drift time expected for the α-anomer for both the THF and DMAC samples, in apparent contradiction to the MS/MS results, which indicated that the α-anomer was not present in the DMAC sample. However, MS/MS experiments performed after TWIMS separation revealed that ammonium adducts of the α-anomer produced from each sample, although exhibiting the same collision cross section, were clearly different. Indeed, while the α-anomer actually present in the THF sample was electrosprayed with the ammonium adducted at the C2 acrylate, its homologue only observed when the DMAC sample was subjected to TWIMS hold the adducted ammonium at the C1 acrylate. These findings were explained by a β/α inter-conversion upon injection in the TWIMS cell, as supported by theoretical calculation and dynamic molecular modeling.

  2. Structurally selective imaging mass spectrometry by imaging ion mobility-mass spectrometry.

    PubMed

    McLean, John A; Fenn, Larissa S; Enders, Jeffrey R

    2010-01-01

    This chapter describes the utility of structurally based separations combined with imaging mass spectrometry (MS) by ion mobility-MS (IM-MS) approaches. The unique capabilities of combining rapid (mus-ms) IM separations with imaging MS are detailed for an audience ranging from new to potential practitioners in IM-MS technology. Importantly, imaging IM-MS provides the ability to rapidly separate and elucidate various types of endogenous and exogenous biomolecules (e.g., nucleotides, carbohydrates, peptides, and lipids), including isobaric species. Drift tube and traveling wave IM-MS instrumentation are described and specific protocols are presented for calculating ion-neutral collision cross sections (i.e., apparent ion surface area or structure) from experimentally obtained IM-MS data. Special emphasis is placed on the use of imaging IM-MS for the analysis of samples in life sciences research (e.g., thin tissue sections), including selective imaging for peptide/protein and lipid distributions. Future directions for rapid and multiplexed imaging IM-MS/MS are detailed. PMID:20680602

  3. Simulation of ion beam scattering in a gas stripper

    NASA Astrophysics Data System (ADS)

    Maxeiner, Sascha; Suter, Martin; Christl, Marcus; Synal, Hans-Arno

    2015-10-01

    Ion beam scattering in the gas stripper of an accelerator mass spectrometer (AMS) enlarges the beam phase space and broadens its energy distribution. As the size of the injected beam depends on the acceleration voltage through phase space compression, the stripper becomes a limiting factor of the overall system transmission especially for low energy AMS system in the sub MV region. The spatial beam broadening and collisions with the accelerator tube walls are a possible source for machine background and energy loss fluctuations influence the mass resolution and thus isotope separation. To investigate the physical processes responsible for these effects, a computer simulation approach was chosen. Monte Carlo simulation methods are applied to simulate elastic two body scattering processes in screened Coulomb potentials in a (gas) stripper and formulas are derived to correctly determine random collision parameters and free path lengths for arbitrary (and non-homogeneous) gas densities. A simple parametric form for the underlying scattering cross sections is discussed which features important scaling behaviors. An implementation of the simulation was able to correctly model the data gained with the TANDY AMS system at ETH Zurich. The experiment covered transmission measurements of uranium ions in helium and beam profile measurements after the ion beam passed through the He-stripper. Beam profiles measured up to very high stripper densities could be understood in full system simulations including the relevant ion optics. The presented model therefore simulates the fundamental physics of the interaction between an ion beam and a gas stripper reliably. It provides a powerful and flexible tool for optimizing existing AMS stripper geometries and for designing new, state of the art low energy AMS systems.

  4. Ion trap simulation program, ITSIM: A powerful heuristic and predictive tool in ion trap mass spectrometry

    NASA Astrophysics Data System (ADS)

    Bui, Huy Anh

    The multi-particle simulation program, ITSIM version 4.0, takes advantage of the enhanced performance of the Windows 95 and NT operating systems in areas such as memory management, user friendliness, flexibility of graphics and speed, to investigate the motion of ions in the quadrupole ion trap. The objective of this program is to use computer simulations based on mathematical models to improve the performance of the ion trap mass spectrometer. The simulation program can provide assistance in understanding fundamental aspects of ion trap mass spectrometry, precede and help to direct the course of experiments, as well as having didactic value in elucidating and allowing visualization of ion behavior under different experimental conditions. The program uses the improved Euler method to calculate ion trajectories as numerical solutions to the Mathieu differential equation. This Windows version can simultaneously simulate the trajectories of ions with a virtually unlimited number of different mass-to-charge ratios and hence allows realistic mass spectra, ion kinetic energy distributions and other experimentally measurable properties to be simulated. The large number of simulated ions allows examination of (i) the offsetting effects of mutual ion repulsion and collisional cooling in an ion trap and (ii) the effects of higher order fields. Field inhomogeneities arising from exit holes, electrode misalignment, imperfect electrode surfaces or new trap geometries can be simulated with the program. The simulated data are used to obtain mass spectra from mass-selective instability scans as well as by Fourier transformation of image currents induced by coherently moving ion clouds. Complete instruments, from an ion source through the ion trap mass analyzer to a detector, can now be simulated. Applications of the simulation program are presented and discussed. Comparisons are made between the simulations and experimental data. Fourier transformed experiments and a novel six

  5. Stimulated Brillouin scatter and stimulated ion Bernstein scatter during electron gyroharmonic heating experiments

    NASA Astrophysics Data System (ADS)

    Fu, H.; Scales, W. A.; Bernhardt, P. A.; Samimi, A.; Mahmoudian, A.; Briczinski, S. J.; McCarrick, M. J.

    2013-09-01

    Results of secondary radiation, Stimulated Electromagnetic Emission (SEE), produced during ionospheric modification experiments using ground-based high-power radio waves are reported. These results obtained at the High Frequency Active Auroral Research Program (HAARP) facility specifically considered the generation of Magnetized Stimulated Brillouin Scatter (MSBS) and Stimulated Ion Bernstein Scatter (SIBS) lines in the SEE spectrum when the transmitter frequency is near harmonics of the electron gyrofrequency. The heater antenna beam angle effect was investigated on MSBS in detail and shows a new spectral line postulated to be generated near the upper hybrid resonance region due to ion acoustic wave interaction. Frequency sweeping experiments near the electron gyroharmonics show for the first time the transition from MSBS to SIBS lines as the heater pump frequency approaches the gyroharmonic. Significantly far from the gyroharmonic, MSBS lines dominate, while close to the gyroharmonic, SIBS lines strengthen while MSBS lines weaken. New possibilities for diagnostic information are discussed in light of these new observations.

  6. Trying to detect gas-phase ions? Understanding Ion Mobility Spectrometry

    PubMed Central

    Cumeras, R.; Figueras, E.; Davis, C.E.; Baumbach, J.I.; Gràcia, I.

    2014-01-01

    Ion Mobility Spectrometry (IMS) is a widely used and ‘well-known’ technique of ion separation in gaseous phase based on the differences of ion mobilities under an electric field. This technique has received increased interest over the last several decades as evidenced by the pace and advances of new IMS devices available. In this review we explore the hyphenated techniques that are used with IMS, especially mass spectrometry as identification approach and multi-capillary column as pre-separation approach. Also, we will pay special attention to the key figures of merit of the ion mobility spectrum and how data is treated, and the influences of the experimental parameters in both a conventional drift time IMS (DTIMS) and a miniaturized IMS also known as high Field Asymmetric IMS (FAIMS) in the planar configuration. The current review article is preceded by a companion review article which details the current instrumentation and to the sections that configures both a conventional DTIMS and FAIMS devices. Those reviews will give the reader an insightful view of the main characteristics and aspects of the IMS technique. PMID:25465248

  7. Low-temperature plasma ionization differential ion mobility spectrometry.

    PubMed

    Kuklya, Andriy; Engelhard, Carsten; Uteschil, Florian; Kerpen, Klaus; Marks, Robert; Telgheder, Ursula

    2015-09-01

    A low-temperature plasma (LTP) was used as an ionization source for differential ion mobility spectrometry (DMS) for the first time. This ionization source enhances the potential of DMS as a miniaturized system for on-site rapid monitoring. The effects of experimental parameters (e.g., discharge/carrier gas composition and flow rate, applied voltage) on the analysis of model aromatic compounds were investigated and discussed. It was found that the nature of reactant ion positive (RIP) is dependent on the discharge/carrier gas composition. The best response to the analyte was achieved when pure nitrogen was used as the discharge/carrier gas. The ability to perform analysis with zero helium consumption is especially attractive in view of the potential application of LTP-DMS for online (and on-site) monitoring. Analytical performance was determined with six environmentally relevant model compounds (benzene, toluene, ethylbenzene, p-xylene, 1,2,4-trimethylbenzene, and naphthalene) using LTP and directly compared to APPI and APCI ((63)Ni) ionization sources. When LTP was coupled to DMS, calculated LOD values were found to be in the range of 35-257 ng L(-1) (concentration in the carrier gas). These values are competitive with those calculated for two DMS equipped with traditional ionization sources (APPI, (63)Ni). The obtained results are promising enough to ensure the potential of LTP as ionization source for DMS. PMID:26266836

  8. Total residue analysis of swabs by ion mobility spectrometry.

    PubMed

    Strege, Mark A

    2009-06-01

    Ion mobility spectrometry (IMS) is a technique attractive for use within the pharmaceutical industry for at-line determination of residues on swabs taken from the surfaces of manufacturing equipment for the purposes of cleaning validation or verification. In this study, the development of a novel IMS method to provide a measurement of total residue present on a swab is described. The technique is based upon quantitation of charged atmospheric gas reactant ion consumption (RIC) within the instrument as a direct measure of the mass of total ionizable residue. Coupled with the conventional analysis of the active pharmaceutical ingredient within a single 2 min analysis, RIC determination provided the benefit of a single measure representative of the presence of multiple residue components or unknown components. To account for differences in response between components of a model drug product (Cymbalta) and its associated cleaning agents, a strategy was proposed to determine a "worst case" total residue test result based on RIC. A limitation of the IMS method was its incompatibility with cleaners containing a high concentration of inorganic components. The methodology provided a range from 5-50 microg per 25 cm(2) surface area and acceptable analyte recovery (50-100%). PMID:19476393

  9. Liquid extraction surface analysis field asymmetric waveform ion mobility spectrometry mass spectrometry for the analysis of dried blood spots.

    PubMed

    Griffiths, Rian L; Dexter, Alex; Creese, Andrew J; Cooper, Helen J

    2015-10-21

    Liquid extraction surface analysis (LESA) is a surface sampling technique that allows electrospray mass spectrometry analysis of a wide range of analytes directly from biological substrates. Here, we present LESA mass spectrometry coupled with high field asymmetric waveform ion mobility spectrometry (FAIMS) for the analysis of dried blood spots on filter paper. Incorporation of FAIMS in the workflow enables gas-phase separation of lipid and protein molecular classes, enabling analysis of both haemoglobin and a range of lipids (phosphatidylcholine or phosphatidylethanolamine, and sphingomyelin species) from a single extraction sample. The work has implications for multiplexed clinical assays of multiple analytes. PMID:26198596

  10. Ion Trap with Narrow Aperture Detection Electrodes for Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Nagornov, Konstantin O.; Kozhinov, Anton N.; Tsybin, Oleg Y.; Tsybin, Yury O.

    2015-05-01

    The current paradigm in ion trap (cell) design for Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) is the ion detection with wide aperture detection electrodes. Specifically, excitation and detection electrodes are typically 90° wide and positioned radially at a similar distance from the ICR cell axis. Here, we demonstrate that ion detection with narrow aperture detection electrodes (NADEL) positioned radially inward of the cell's axis is feasible and advantageous for FT-ICR MS. We describe design details and performance characteristics of a 10 T FT-ICR MS equipped with a NADEL ICR cell having a pair of narrow aperture (flat) detection electrodes and a pair of standard 90° excitation electrodes. Despite a smaller surface area of the detection electrodes, the sensitivity of the NADEL ICR cell is not reduced attributable to improved excite field distribution, reduced capacitance of the detection electrodes, and their closer positioning to the orbits of excited ions. The performance characteristics of the NADEL ICR cell are comparable with the state-of-the-art FT-ICR MS implementations for small molecule, peptide, protein, and petroleomics analyses. In addition, the NADEL ICR cell's design improves the flexibility of ICR cells and facilitates implementation of advanced capabilities (e.g., quadrupolar ion detection for improved mainstream applications). It also creates an intriguing opportunity for addressing the major bottleneck in FTMS—increasing its throughput via simultaneous acquisition of multiple transients or via generation of periodic non-sinusoidal transient signals.

  11. The combined use of a singly charged ion beam and undulator radiation for photoelectron spectrometry studies on atomic ions

    NASA Astrophysics Data System (ADS)

    Bizau, J. M.; Cubaynes, D.; Richter, M.; Wuilleumier, F.; Obert, J.; Putaux, J. C.

    1992-01-01

    We present the first photoelectron spectrometry experiment on a singly charged ion beam. Taking advantage of the high photon flux emitted in the undulator SU6 of Super-ACO, we have measured photoelectron spectra produced in the resonant photoionization of Ca+ ions at 33.2-eV photon energy. The success of this experiment depended strongly on the photon flux available. We demonstrate the capability of photoelectron spectrometry to precisely calibrate the photon spectrum emitted in the undulator.

  12. Gas phase studies on terpenes by ion mobility spectrometry using different atmospheric pressure chemical ionization techniques

    NASA Astrophysics Data System (ADS)

    Borsdorf, H.; Stone, J. A.; Eiceman, G. A.

    2005-11-01

    The ionization pathways and drift behavior were determined for sets of constitutional isomeric and stereoisomeric non-polar hydrocarbons (unsaturated monocyclic terpenes, unsaturated and saturated bicyclic terpenes) using ion mobility spectrometry (IMS) with different techniques of atmospheric pressure chemical ionization (APCI) to assess how structural and stereochemical differences influence ion formation. Depending on the structural features, different ions were observed for constitutional isomers using ion mobility spectrometry with photoionization (PI) and corona discharge (CD) ionization. Photoionization provides ion mobility spectra containing one major peak for saturated compounds while at two peaks were observed for unsaturated compounds, which can be assigned to product ions related to monomer and dimer ions. However, differences in relative abundance of product ions were found depending on the position of the double bond. Although IMS using corona discharge ionization permits the most sensitive detection of non-polar hydrocarbons, the spectra are complex and differ from those obtained using photoionization. Additional cluster ions and fragment ions were detected. Only small differences in ion mobility spectra were observed for the diastereomers while the enantiomers provide identical spectra. The structure of the product ions formed was checked by investigations using the coupling of ion mobility spectrometry with mass spectrometry (IMS-MS).

  13. Electron Flood Charge Compensation Device for Ion Trap Secondary Ion Mass Spectrometry

    SciTech Connect

    Appelhans, Anthony David; Ward, Michael Blair; Olson, John Eric

    2002-11-01

    During secondary ion mass spectrometry (SIMS) analyses of organophosphorous compounds adsorbed onto soils, the measured anion signals were lower than expected and it was hypothesized that the low signals could be due to sample charging. An electron flood gun was designed, constructed and used to investigate sample charging of these and other sample types. The flood gun was integrated into one end cap of an ion trap secondary ion mass spectrometer and the design maintained the geometry of the self-stabilizing extraction optics used in this instrument. The SIMION ion optics program was used to design the flood gun, and experimental results agreed with the predicted performance. Results showed the low anion signals from the soils were not due to sample charging. Other insulating and conducting samples were tested using both a ReO4- and a Cs+ primary ion beam. The proximity of the sample and electron source to the ion trap aperture resulted in generation of background ions in the ion trap via electron impact (EI) ionization during the period the electron gun was flooding the sample region. When using the electron gun with the ReO4- primary beam, the required electron current was low enough that the EI background was negligible; however, the high electron flood current required with the Cs+ beam produced background EI ions that degraded the quality of the mass spectra. The consequences of the EI produced cations will have to be evaluated on a sample-by-sample basis when using electron flood. It was shown that the electron flood gun could be intentionally operated to produce EI spectra in this instrument. This offers the opportunity to measure, nearly simultaneously, species evaporating from a sample, via EI, and species bound to the surface, via SIMS.

  14. A voltage control unit for ion scattering spectroscopy analyzers

    NASA Astrophysics Data System (ADS)

    Roos, W. D.; Henson, R. P.; van Wyk, G. N.

    1993-04-01

    A voltage control unit for a spherical sector analyzer used in the energy analysis of scattered ions is described. Three modes of operation, namely, automatic, manual, and computer control is possible. The unit is directly calibrated in terms of the scattered energies which is displayed on a liquid crystal unit. The scanning time in the auto mode is adjustable from 1 to 999 s in 1-s steps for any selected energy range. A 0-10-V recorder output is available regardless of the energy window selected. The basic operation and the functioning of the various components are explained with the help of block diagrams and a final evaluation of the system is given. Complete circuit diagrams are available from the Physics Auxiliary Publication Service (PAPS) of the American Institute of Physics.

  15. Design and performance of an instrument for electron impact tandem mass spectrometry and action spectroscopy of mass/charge selected macromolecular ions stored in RF ion trap*

    NASA Astrophysics Data System (ADS)

    Ranković, Milos Lj.; Giuliani, Alexandre; Milosavljević, Aleksandar R.

    2016-05-01

    A new apparatus was designed, coupling an electron gun with a linear quadrupole ion trap mass spectrometer, to perform m/z (mass over charge) selected ion activation by electron impact for tandem mass spectrometry and action spectroscopy. We present in detail electron tracing simulations of a 300 eV electron beam inside the ion trap, design of the mechanical parts, electron optics and electronic circuits used in the experiment. We also report examples of electron impact activation tandem mass spectra for Ubiquitin protein, Substance P and Melittin peptides, at incident electron energies in the range from 280 eV to 300 eV. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  16. Analytical Chemistry of Surfaces: Part III. Ion Spectroscopy.

    ERIC Educational Resources Information Center

    Hercules, David M.; Hercules, Shirley H.

    1984-01-01

    The fundamentals of two surface techniques--secondary-ion mass spectrometry (SIMS) and ion-scattering spectrometry (ISS)--are discussed. Examples of how these techniques have been applied to surface problems are provided. (JN)

  17. Fast ion dynamics measured by collective Thomson scattering

    NASA Astrophysics Data System (ADS)

    Bindslev, Henrik

    2001-10-01

    In magnetically confined fusion plasmas, fast ions, from fusion reactions and auxiliary heating, typically carry a third of the total plasma kinetic energy, and even more of the free energy. This free energy must be channelled into heating the bulk plasma, but is also available for driving waves in the plasma, affecting confinement of bulk and fast ions. We know that fast ions can drive Alfvén waves, affect sawteeth and fishbones. In turn all three can redistribute or ejects the fast ions. Wave particle interaction, also the basis of Ion Cyclotron Resonance Heating (ICRH), depends crucially on the phase space distribution of the fast ions. Conversely the effect waves and instabilities have of fast ions will manifest itself in the detail of the fast ion phase space distribution. To explore the dynamics of fast ions and their interaction with the plasma thus begs for measurements of the fast ion distribution resolved in space, time and velocity. This has long been the promise of Collective Thomson Scattering (CTS) [1]. First demonstrated at JET [2]and subsequently at TEXTOR [3], CTS is living up to its promise and is now contributing to the understanding of fast ion dynamics. With the TEXTOR CTS, temporal behaviours of fast ion velocity distributions have been uncovered. The fast ion populations are produced by ICRH and Neutral Beam Injection (NBI). At sawteeth, we see clear variations in the fast ion population, which depend on ion energy, pitch angle and spatial location. Investigating the region just inside the inversion radius, we find that ions with small parallel energy, and with perpendicular energies up to a soft threshold well above thermal, are lost from the high field side near the inversion radius, while more energetic ions in the same pitch angle range remain insensitive to the sawteeth. The sensitive population could include the potato and stagnation orbit particles identified theoretically as being sensitive the sawteeth [4]. Under the same conditions

  18. Modular calibrant sets for the structural analysis of nucleic acids by ion mobility spectrometry mass spectrometry.

    PubMed

    Lippens, Jennifer L; Ranganathan, Srivathsan V; D'Esposito, Rebecca J; Fabris, Daniele

    2016-06-20

    This study explored the use of modular nucleic acid (NA) standards to generate calibration curves capable of translating primary ion mobility readouts into corresponding collision cross section (CCS) data. Putative calibrants consisted of single- (ss) and double-stranded (ds) oligo-deoxynucleotides reaching up to ∼40 kDa in size (i.e., 64 bp) and ∼5700 Å(2) in CCS. To ensure self-consistency among reference CCS values, computational data obtained in house were preferred to any experimental or computational data from disparate sources. Such values were obtained by molecular dynamics (MD) simulations and either the exact hard sphere scattering (EHSS) or the projection superposition approximation (PSA) methods, and then plotted against the corresponding experimental values to generate separate calibration curves. Their performance was evaluated on the basis of their correlation coefficients and ability to provide values that matched the CCS of selected test samples mimicking typical unknowns. The results indicated that the predictive power benefited from the exclusion of higher charged species that were more susceptible to the destabilizing effects of Coulombic repulsion. The results revealed discrepancies between EHSS and PSA data that were ascribable to the different approximations used to describe the ion mobility process. Within the boundaries defined by these approximations and the challenges of modeling NA structure in a solvent-free environment, the calibrant sets enabled the experimental determination of CCS with excellent reproducibility (precision) and error (accuracy), which will support the analysis of progressively larger NA samples of biological significance. PMID:27152369

  19. Towards metals analysis using corona discharge ionization ion mobility spectrometry.

    PubMed

    Jafari, Mohammad T; Saraji, Mohammad; Sherafatmand, Hossein

    2016-02-25

    For the first time, the capability of corona discharge ionization ion mobility spectrometry (CD-IMS) in the determination of metal complex was evaluated. The extreme simplicity of dispersive liquid-liquid microextraction (DLLME) coupled to the high sensitivity of CD-IMS measurement could make this combination really useful for simple, rapid, and sensitive determination of metals in different samples. In this regard, mercury, as a model metal, was complexed with diethyldithiocarbamate (DEDTC), and then extracted into the carbon tetrachloride using DLLME. Some parameters affecting the extraction efficiency, including the type and volume of the extraction solvent, the type and volume of the disperser solvent, the concentration of the chelating agent, salt addition and, pH were exhaustively investigated. Under the optimized condition, the enrichment factor was obtained to be 142. The linear range of 0.035-10.0 μg mL(-1) with r(2) = 0.997 and the detection limit of 0.010 μg mL(-1) were obtained. The relative standard deviation values were calculated to be lower than 4% and 8% for intra-day and inter-day, respectively. Finally, the developed method was successfully applied for the extraction and determination of mercury in various real samples. The satisfactory results revealed the capability of the proposed method in trace analysis without tedious derivatization or hydride generation. PMID:26851088

  20. Detection and characterization of smokeless powders with ion mobility spectrometry

    NASA Astrophysics Data System (ADS)

    Hernandez, Neiza M.; Rosario, Santa V.; Hernandez, Samuel P.; Mina, Nairmen

    2005-05-01

    Smokeless Powders are a class of propellants that were developed in the late 19th century to replace black powder; it has been used as an explosive in shotguns, rifles, firearms and many other larger caliber weapons. These propellants can be placed into one of three different classes according to the chemical composition of their primary energetic ingredients. Advance equipment have been designed and used for the detection of explosives devices and compounds potentially energetic. In this research we are developing an analytical methodology to detect different formulation of smokeless powders: Alliant-American Select, Alliant-Bullseye, and Alliant-Red Dot using the ion mobility spectrometry (IMS) technique. We used different surfaces like computer diskettes, CD"s, book covers and plastics to study their adsorption/desorption process. Using micropipettes, we delivered solutions with different amounts of Smokeless Powders from a 1000 ppm solution and deposit it on various types of filters to make a calibration curve. Several amounts of Smokeless Powder were deposited to the different surfaces and collected with filter paper. The samples were desorbed directly from the filter to the instrument inlet port. Subsequently, the percentage of explosive recovered was calculated.

  1. Improving Secondary Ion Mass Spectrometry Image Quality with Image Fusion

    PubMed Central

    Tarolli, Jay G.; Jackson, Lauren M.; Winograd, Nicholas

    2014-01-01

    The spatial resolution of chemical images acquired with cluster secondary ion mass spectrometry (SIMS) is limited not only by the size of the probe utilized to create the images, but also by detection sensitivity. As the probe size is reduced to below 1 µm, for example, a low signal in each pixel limits lateral resolution due to counting statistics considerations. Although it can be useful to implement numerical methods to mitigate this problem, here we investigate the use of image fusion to combine information from scanning electron microscope (SEM) data with chemically resolved SIMS images. The advantage of this approach is that the higher intensity and, hence, spatial resolution of the electron images can help to improve the quality of the SIMS images without sacrificing chemical specificity. Using a pan-sharpening algorithm, the method is illustrated using synthetic data, experimental data acquired from a metallic grid sample, and experimental data acquired from a lawn of algae cells. The results show that up to an order of magnitude increase in spatial resolution is possible to achieve. A cross-correlation metric is utilized for evaluating the reliability of the procedure. PMID:24912432

  2. Fundamentals of ambient metastable-induced chemical ionization mass spectrometry and atmospheric pressure ion mobility spectrometry

    NASA Astrophysics Data System (ADS)

    Harris, Glenn A.

    Molecular ionization is owed much of its development from the early implementation of electron ionization (EI). Although dramatically increasing the library of compounds discovered, an inherent problem with EI was the low abundance of molecular ions detected due to high fragmentation leading to the difficult task of the correct chemical identification after mass spectrometry (MS). These problems stimulated the research into new ionization methods which sought to "soften" the ionization process. In the late 1980s the advancements of ionization techniques was thought to have reached its pinnacle with both electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI). Both ionization techniques allowed for "soft" ionization of large molecular weight and/or labile compounds for intact characterization by MS. Albeit pervasive, neither ESI nor MALDI can be viewed as "magic bullet" ionization techniques. Both techniques require sample preparation which often included native sample destruction, and operation of these techniques took place in sealed enclosures and often, reduced pressure conditions. New open-air ionization techniques termed "ambient MS" enable direct analysis of samples of various physical states, sizes and shapes. One particular technique named Direct Analysis In Real Time (DART) has been steadily growing as one of the ambient tools of choice to ionize small molecular weight (< 1000 Da) molecules with a wide range of polarities. Although there is a large list of reported applications using DART as an ionization source, there have not been many studies investigating the fundamental properties of DART desorption and ionization mechanisms. The work presented in this thesis is aimed to provide in depth findings on the physicochemical phenomena during open-air DART desorption and ionization MS and current application developments. A review of recent ambient plasma-based desorption/ionization techniques for analytical MS is presented in

  3. Ion Mobility Mass Spectrometry Direct Isotope Abundance Analysis

    SciTech Connect

    Manuel J. Manard, Stephan Weeks, Kevin Kyle

    2010-05-27

    The nuclear forensics community is currently engaged in the analysis of illicit nuclear or radioactive material for the purposes of non-proliferations and attribution. One technique commonly employed for gathering nuclear forensics information is isotope analysis. At present, the state-of-the-art methodology for obtaining isotopic distributions is thermal ionization mass spectrometry (TIMS). Although TIMS is highly accurate at determining isotope distributions, the technique requires an elementally pure sample to perform the measurement. The required radiochemical separations give rise to sample preparation times that can be in excess of one to two weeks. Clearly, the nuclear forensics community is in need of instrumentation and methods that can expedite their decision making process in the event of a radiological release or nuclear detonation. Accordingly, we are developing instrumentation that couples a high resolution IM drift cell to the front end of a MS. The IM cell provides a means of separating ions based upon their collision cross-section and mass-to-charge ratio (m/z). Two analytes with the same m/z, but with different collision cross-sections (shapes) would exit the cell at different times, essentially enabling the cell to function in a similar manner to a gas chromatography (GC) column. Thus, molecular and atomic isobaric interferences can be effectively removed from the ion beam. The mobility selected chemical species could then be introduced to a MS for high-resolution mass analysis to generate isotopic distributions of the target analytes. The outcome would be an IM/MS system capable of accurately measuring isotopic distributions while concurrently eliminating isobaric interferences and laboratory radiochemical sample preparation. The overall objective of this project is developing instrumentation and methods to produce near real-time isotope distributions with a modular mass spectrometric system that performs the required gas-phase chemistry and

  4. Determination of N-linked glycosylation in viral glycoproteins by negative ion mass spectrometry and ion mobility

    PubMed Central

    Bitto, David; Harvey, David J.; Halldorsson, Steinar; Doores, Katie J.; Pritchard, Laura K.; Huiskonen, Juha T.; Bowden, Thomas A.; Crispin, Max

    2016-01-01

    Summary Glycan analysis of virion-derived glycoproteins is challenging due to the difficulties in glycoprotein isolation and low sample abundance. Here, we describe how ion mobility mass spectrometry can be used to obtain spectra from virion samples. We also describe how negative ion fragmentation of glycans can be used to probe structural features of virion glycans. PMID:26169737

  5. Atmospheric pressure chemical ionization of fluorinated phenols in atmospheric pressure chemical ionization mass spectrometry, tandem mass spectrometry, and ion mobility spectrometry

    NASA Technical Reports Server (NTRS)

    Eiceman, G. A.; Bergloff, J. F.; Rodriguez, J. E.; Munro, W.; Karpas, Z.

    1999-01-01

    Atmospheric pressure chemical ionization (APCI)-mass spectrometry (MS) for fluorinated phenols (C6H5-xFxOH Where x = 0-5) in nitrogen with Cl- as the reagent ion yielded product ions of M Cl- through ion associations or (M-H)- through proton abstractions. Proton abstraction was controllable by potentials on the orifice and first lens, suggesting that some proton abstraction occurs through collision induced dissociation (CID) in the interface region. This was proven using CID of adduct ions (M Cl-) with Q2 studies where adduct ions were dissociated to Cl- or proton abstracted to (M-H)-. The extent of proton abstraction depended upon ion energy and structure in order of calculated acidities: pentafluorophenol > tetrafluorophenol > trifluorophenol > difluorophenol. Little or no proton abstraction occurred for fluorophenol, phenol, or benzyl alcohol analogs. Ion mobility spectrometry was used to determine if proton abstraction reactions passed through an adduct intermediate with thermalized ions and mobility spectra for all chemicals were obtained from 25 to 200 degrees C. Proton abstraction from M Cl- was not observed at any temperature for phenol, monofluorophenol, or difluorophenol. Mobility spectra for trifluorophenol revealed the kinetic transformations to (M-H)- either from M Cl- or from M2 Cl- directly. Proton abstraction was the predominant reaction for tetra- and penta-fluorophenols. Consequently, the evidence suggests that proton abstraction occurs from an adduct ion where the reaction barrier is reduced with increasing acidity of the O-H bond in C6H5-xFxOH.

  6. Evolution of instrumentation for the study of gas-phase ion/ion chemistry via mass spectrometry.

    PubMed

    Xia, Yu; McLuckey, Scott A

    2008-02-01

    The scope of gas-phase ion/ion chemistry accessible to mass spectrometry is largely defined by the available tools. Due to the development of novel instrumentation, a wide range of reaction phenomenologies has been noted, many of which have been studied extensively and exploited for analytical applications. This perspective presents the development of mass spectrometry-based instrumentation for the study of the gas-phase ion/ion chemistry in which at least one of the reactants is multiply charged. The instrument evolution is presented within the context of three essential elements required for any ion/ion reaction study: the ionization source(s), the reaction vessel or environment, and the mass analyzer. Ionization source arrangements have included source combinations that allow for reactions between multiply charged ions of one polarity and singly charged ions of opposite polarity, arrangements that enable the study of reactions of multiply charged ions of opposite polarity and, most recently, arrangements that allow for ion formation from more than two ion sources. Gas-phase ion/ion reaction studies have been performed at near atmospheric pressure in flow reactor designs and within electrodynamic ion traps operated in the mTorr range. With ion trap as a reaction vessel, ionization and reaction processes can be independently optimized and ion/ion reactions can be implemented within the context of MSn experiments. Spatial separation of the reaction vessel from the mass analyzer allows for the use of any form of mass analysis in conjunction with ion/ion reactions. Time-of-flight mass analysis, for example, has provided significant improvements in mass analysis figures of merit relative to mass filters and ion traps. PMID:18083527

  7. Evolution of Instrumentation for the Study of Gas-Phase Ion/Ion Chemistry via Mass Spectrometry

    PubMed Central

    Xia, Yu; McLuckey, Scott A.

    2008-01-01

    The scope of gas phase ion/ion chemistry accessible to mass spectrometry is largely defined by the available tools. Due to the development of novel instrumentation, a wide range of reaction phenomenologies have been noted, many of which have been studied extensively and exploited for analytical applications. This perspective presents the development of mass spectrometry-based instrumentation for the study of the gas phase ion/ion chemistry in which at least one of the reactants is multiply-charged. The instrument evolution is presented within the context of three essential elements required for any ion/ion reaction study: the ionization source(s), the reaction vessel or environment, and the mass analyzer. Ionization source arrangements have included source combinations that allow for reactions between multiply charged ions of one polarity and singly charged ions of opposite polarity, arrangements that enable the study of reactions of multiply charged ions of opposite polarity, and most recently, arrangements that allow for ion formation from more than two ion sources. Gas phase ion/ion reaction studies have been performed at near atmospheric pressure in flow reactor designs and within electrodynamic ion traps operated in the mTorr range. With ion trap as a reaction vessel, ionization and reaction processes can be independently optimized and ion/ion reactions can be implemented within the context of MSn experiments. Spatial separation of the reaction vessel from the mass analyzer allows for the use of any form of mass analysis in conjunction with ion/ion reactions. Time-of-flight mass analysis, for example, has provided significant improvements in mass analysis figures of merit relative to mass filters and ion traps. PMID:18083527

  8. Developing Fieldable Systems for Chemical Sensing Using Field Asymmetric Ion Mobility Spectrometry and Mass Spectrometry

    SciTech Connect

    Kevin Kyle, Stephan Weeks, R. Trainham

    2008-03-01

    Currently, there is an urgent need for field-rugged and field-programmable sensor systems that provide highly selective, universal monitoring of vapors and aerosols at detectable levels from persons or areas involved with illicit chemical/biological/explosives (CBE) production. These devices must be portable, low cost, robust, and provide accurate measurements to avoid both false positive and negative results. Furthermore, the information provided by the devices must be received in a timely manner so that informed decisions can be immediately made and the appropriate actions taken. Two technologies that are unparalleled in their sensitivity, selectivity, and trace-level detection capabilities are field asymmetric ion mobility spectrometry (FAIMS) and mass spectrometry. Here, we will show progress that has been made toward developing fieldable FAIMS systems and mass spectrometers. Working in collaboration with Sionex Corporation, the microDMx detector was equipped with a continuous air sampling system to develop selective methods for the analysis of compounds of interest. A microdiaphragm pump (KNF Neuberger, Inc.) is used to pull in gas-phase analytes directly from the air for separation and detection with the FAIMS system. The FAIMS evaluation platform (SVAC) unit currently measures 9.8-inch x 4.6-inch x 3.2-inch, weighs 3.1 lb, and utilizes a {sup 63}Ni source to ionize incoming compounds. Analytes entering the unit are separated and identified by their characteristic response to the compensation voltage (V{sub c}) at a given rf field strength (V{sub rf}). This response has been observed to be unique for a wide range of substances studied. If additional verification were required or a targeted analyte present in a complex chemical matrix, a FAIMS unit equipped with a fast gas chromatography column has been evaluated. The unit combines the separation capabilities of gas chromatography with the selectivity of FAIMS. It measures 9.5-inch x 5.25-inch x 3.5-inch

  9. Decomposition of cyclohexane ion induced by intense femtosecond laser fields by ion-trap time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Yamazaki, Takao; Watanabe, Yusuke; Kanya, Reika; Yamanouchi, Kaoru

    2016-01-01

    Decomposition of cyclohexane cations induced by intense femtosecond laser fields at the wavelength of 800 nm is investigated by ion-trap time-of-flight mass spectrometry in which cyclohexane cations C6H12+ stored in an ion trap are irradiated with intense femtosecond laser pulses and the generated fragment ions are recorded by time-of-flight mass spectrometry. The various fragment ion species, C5Hn+ (n = 7, 9), C4Hn+ (n = 5-8), C3Hn+ (n = 3-7), C2Hn+ (n = 2-6), and CH3+, identified in the mass spectra show that decomposition of C6H12+ proceeds efficiently by the photo-irradiation. From the laser intensity dependences of the yields of the fragment ion species, the numbers of photons required for producing the respective fragment ions are estimated.

  10. Low-Energy Grazing Ion-Scattering from Alkali-Halide Surfaces: A Novel Approach to C-14 Detection

    SciTech Connect

    Meyer, Fred W; Galutschek, Ernst; Hotchkis, Michael

    2009-01-01

    Carbon-14 labeled compounds are widely used in the pharmaceutical industry, e.g., as tracers to determine the fate of these compounds in vivo. Conventional accelerator mass spectrometry (AMS) is one approach that offers sufficiently high sensitivity to avoid radiological waste and contamination issues in such studies, but requires large, expensive facilities that are usually not solely dedicated to this task. At the ORNL Multicharged Ion Research Facility (MIRF) we are exploring a small size, low cost alternative to AMS for biomedical 14C tracer studies that utilizes ECR-ion-source-generated keV-energy-range multicharged C beams grazingly incident on an alkali halide target, where efficient negative ion production by multiple electron capture takes place. By using C ion charge states of +3 or higher, the molecular isobar interference at mass 14, e.g. 12CH2 and 13CH, is eliminated. The negatively charged ions in the beam scattered from the alkali halide surface are separated from other scattered charge states by two large acceptance ({approx}15 msr) stages of electrostatic analysis. The N-14 isobar interference is thus removed, since N does not support a stable negative ion. Initial results for C-14 detection obtained using C-14 enriched CO2 from ANSTO will be described.

  11. An overview of resid characterization by mass spectrometry and small angle scattering techniques.

    SciTech Connect

    Hunt, J. E.; Winans, R. E.

    1999-07-14

    The purpose of this presentation is to discuss what is known about the molecular structures found in petroleum resid from mass spectrometry and small angle neutron and X-ray scattering methods. The question about molecular size distributions and the occurrence of aggregation in the asphaltene fraction will be examined. Our understanding of this problem has evolved with the application of new analytical methods. Also, correlations with results from other approaches will be discussed. In addition, the issue of the nature of the heteroatom-containing molecules will be examined and the challenges that remain in this area.

  12. Advances in ion trap mass spectrometry: Photodissociation as a tool for structural elucidation

    SciTech Connect

    Stephenson, J.L. Jr.; Booth, M.M.; Eyler, J.R.; Yost, R.A.

    1995-12-01

    Photo-induced dissociation (PID) is the next most frequently used method (after collisional activation) for activation of Polyatomic ions in tandem mass spectrometry. The range of internal energies present after the photon absorption process are much narrower than those obtained with collisional energy transfer. Therefore, the usefulness of PID for the study of ion structures is greatly enhanced. The long storage times and instrumental configuration of the ion trap mass spectrometer are ideally suited for photodissociation experiments. This presentation will focus on both the fundamental and analytical applications of CO{sub 2} lasers in conjunction with ion trap mass spectrometry. The first portion of this talk will examine the fundamental issues of wavelength dependence, chemical kinetics, photoabsorption cross section, and collisional effects on photodissociation efficiency. The second half of this presentation will look at novel instrumentation for electrospray/ion trap mass spectrometry, with the concurrent development of photodissociation as a tool for structural elucidation of organic compounds and antibiotics.

  13. Ion-Surface Collisions in Mass Spectrometry: Where Analytical Chemistry Meets Surface Science

    SciTech Connect

    Laskin, Julia

    2015-02-01

    This article presents a personal perspective regarding the development of key concepts in understanding hyperthermal collisions of polyatomic ions with surfaces as a unique tool for mass spectrometry applications. In particular, this article provides a historic overview of studies focused on understanding the phenomena underlying surface-induced dissociation (SID) and mass-selected deposition of complex ions on surfaces. Fast energy transfer in ion-surface collisions makes SID especially advantageous for structural characterization of large complex molecules, such as peptides, proteins, and protein complexes. Soft, dissociative, and reactive landing of mass-selected ions provide the basis for preparatory mass spectrometry. These techniques enable precisely controlled deposition of ions on surfaces for a variety of applications. This perspective article shows how basic concepts developed in the 1920s and 1970s have evolved to advance promising mass-spectrometry-based applications.

  14. Mass spectrometry on the nanoscale with ion sputtering based techniques: What is feasible

    NASA Astrophysics Data System (ADS)

    Veryovkin, Igor V.; Calaway, Wallis F.; Tripa, C. Emil; Pellin, Michael J.

    2007-08-01

    The potential of ion sputtering based mass spectrometry applied to materials characterization on the nanometer scale is discussed. Analytical approaches and required instrumental capabilities are outlined, and the current state-of-the-art is summarized. A new generation of analytical instruments specifically optimized for laser post-ionization secondary neutral mass spectrometry has been developed at Argonne National Laboratory (ANL). Experimentally verified (or anticipated after near-future upgrades) analytical capabilities of these instruments, capable of quantitative analysis at the nanometer-scale, are reported and compared to secondary ion mass spectrometry.

  15. The Influence of Drift Gas Composition on the Separation Mechanism in Traveling Wave Ion Mobility Spectrometry: Insight from Electrodynamic Simulations

    PubMed Central

    May, Jody C.; McLean, John A.

    2013-01-01

    The influence of three different drift gases (helium, nitrogen, and argon) on the separation mechanism in traveling wave ion mobility spectrometry is explored through ion trajectory simulations which include considerations for ion diffusion based on kinetic theory and the electrodynamic traveling wave potential. The model developed for this work is an accurate depiction of a second-generation commercial traveling wave instrument. Three ion systems (cocaine, MDMA, and amphetamine) whose reduced mobility values have previously been measured in different drift gases are represented in the simulation model. The simulation results presented here provide a fundamental understanding of the separation mechanism in traveling wave, which is characterized by three regions of ion motion: (1) ions surfing on a single wave, (2) ions exhibiting intermittent roll-over onto subsequent waves, and (3) ions experiencing a steady state roll-over which repeats every few wave cycles. These regions of ion motion are accessed through changes in the gas pressure, wave amplitude, and wave velocity. Resolving power values extracted from simulated arrival times suggest that momentum transfer in helium gas is generally insufficient to access regions (2) and (3) where ion mobility separations occur. Ion mobility separations by traveling wave are predicted to be effectual for both nitrogen and argon, with slightly lower resolving power values observed for argon as a result of band-broadening due to collisional scattering. For the simulation conditions studied here, the resolving power in traveling wave plateaus between regions (2) and (3), with further increases in wave velocity contributing only minor improvements in separations. PMID:23888124

  16. Field ion spectrometry: a new technology for cocaine and heroin detection

    NASA Astrophysics Data System (ADS)

    Carnahan, Byron L.; Day, Stephen; Kouznetsov, Viktor; Tarassov, Alexandre

    1997-02-01

    Field ion spectrometry, also known as transverse field compensation ion mobility spectrometry, is a new technique for trace gas analysis that can be applied to the detection of cocaine and heroin. Its principle is based on filtering ion species according to the functional dependence of their mobilities with electric field strength. Field ion spectrometry eliminates the gating electrodes needed in conventional IMS to pulse ions into the spectrometer; instead, ions are injected in to the spectrometer and reach the detector continuously, resulting in improved sensitivity. The technique enables analyses that are difficult with conventional constant field strength ion mobility spectrometers. We have shown that a filed ion spectrometer can selectively detect the vapors from cocaine and heroin emitted from both their base and hydrochloride forms. The estimated volumetric limits of detection are in the low pptv range, based on testing with standardized drug vapor generation systems. The spectrometer can detect cocaine base in the vapor phase, at concentrations well below its estimated 100 pptv vapor pressure equivalent at 20 degrees C. This paper describes the underlying principles of field ion spectrometry in relation to narcotic drug detection, and recent results obtained for cocaine and heroin. The work has been sponsored in part by the United States Advanced Research Projects Agency under contract DAAB10-95C-0004, for the DOD Counterdrug Technology Development Program.

  17. Noise reduction in negative-ion quadrupole mass spectrometry

    DOEpatents

    Chastagner, Philippe

    1993-01-01

    A quadrupole mass spectrometer (QMS) system having an ion source, quadrupole mass filter, and ion collector/recorder system. A weak, transverse magnetic field and an electron collector are disposed between the quadrupole and ion collector. When operated in negative ion mode, the ion source produces a beam of primarily negatively-charged particles from a sample, including electrons as well as ions. The beam passes through the quadrupole and enters the magnetic field, where the electrons are deflected away from the beam path to the electron collector. The negative ions pass undeflected to the ion collector where they are detected and recorded as a mass spectrum.

  18. Noise reduction in negative-ion quadrupole mass spectrometry

    DOEpatents

    Chastagner, P.

    1993-04-20

    A quadrupole mass spectrometer (QMS) system is described having an ion source, quadrupole mass filter, and ion collector/recorder system. A weak, transverse magnetic field and an electron collector are disposed between the quadrupole and ion collector. When operated in negative ion mode, the ion source produces a beam of primarily negatively-charged particles from a sample, including electrons as well as ions. The beam passes through the quadrupole and enters the magnetic field, where the electrons are deflected away from the beam path to the electron collector. The negative ions pass undeflected to the ion collector where they are detected and recorded as a mass spectrum.

  19. Fast-ion dynamics in the TEXTOR tokamak measured by collective Thomson scattering.

    PubMed

    Bindslev, H; Nielsen, S K; Porte, L; Hoekzema, J A; Korsholm, S B; Meo, F; Michelsen, P K; Michelsen, S; Oosterbeek, J W; Tsakadze, E L; Westerhof, E; Woskov, P

    2006-11-17

    Here we present the first measurements by collective Thomson scattering of the evolution of fast-ion populations in a magnetically confined fusion plasma. 150 kW and 110 Ghz radiation from a gyrotron were scattered in the TEXTOR tokamak plasma with energetic ions generated by neutral beam injection and ion cyclotron resonance heating. The temporal behavior of the spatially resolved fast-ion velocity distribution is inferred from the received scattered radiation. The fast-ion dynamics at sawteeth and the slowdown after switch off of auxiliary heating is resolved in time. The latter is shown to be in close agreement with modeling results. PMID:17155690

  20. Ion and electron bombardment-related ion emission during the analysis of diamond using secondary ion mass spectrometry

    SciTech Connect

    Guzman de la Mata, Berta; Dowsett, Mark G.

    2007-02-01

    In recent years, the ability to grow single crystal layers of both doped and pure diamonds has improved, and devices for applications in high power electronics and microelectronics are being developed, most of them based on boron doped diamond. In this work, convoluted angular and energy spectra (so-called secondary ion mass spectrometry energy spectra) have been measured for {sup 11}B{sup +}, {sup 12}C{sup +}, {sup 16}O{sup +}, CO{sup +} and CO{sub 2}{sup +} ions ejected from a single crystal boron doped diamond layer under ultralow energy oxygen and electron beam bombardment. A low energy tail was observed in the {sup 12}C{sup +}, CO{sup +}, and CO{sub 2}{sup +} signals, corresponding to ions produced in the gas phase. Changing the bombardment conditions, we have identified interaction with the electron beam as the main ionization mechanism. In the case of {sup 12}C{sup +} it appears that the gas phase ions are produced by electron stimulated desorption and postionization of surface species created by the oxygen beam. We have detected high signals for CO{sup +} and CO{sub 2}{sup +} ionized in the gas phase, which supports a mechanism previously suggested to explain the anomalously fast diamond erosion under oxygen ion beam bombardment. We also observe that some species appearing in the mass spectrum are produced by electron stimulated desorption and this needs to be remembered when analyzing these on insulating diamond with charge compensation.

  1. Enhancement of mass spectrometry performance for proteomic analyses using high-field asymmetric waveform ion mobility spectrometry (FAIMS).

    PubMed

    Bonneil, Eric; Pfammatter, Sibylle; Thibault, Pierre

    2015-11-01

    Remarkable advances in mass spectrometry sensitivity and resolution have been accomplished over the past two decades to enhance the depth and coverage of proteome analyses. As these technological developments expanded the detection capability of mass spectrometers, they also revealed an increasing complexity of low abundance peptides, solvent clusters and sample contaminants that can confound protein identification. Separation techniques that are complementary and can be used in combination with liquid chromatography are often sought to improve mass spectrometry sensitivity for proteomics applications. In this context, high-field asymmetric waveform ion mobility spectrometry (FAIMS), a form of ion mobility that exploits ion separation at low and high electric fields, has shown significant advantages by focusing and separating multiply charged peptide ions from singly charged interferences. This paper examines the analytical benefits of FAIMS in proteomics to separate co-eluting peptide isomers and to enhance peptide detection and quantitative measurements of protein digests via native peptides (label-free) or isotopically labeled peptides from metabolic labeling or chemical tagging experiments. PMID:26505763

  2. Increasing Confidence of LC-MS Identifications by Utilizing Ion Mobility Spectrometry

    SciTech Connect

    Crowell, Kevin L.; Baker, Erin Shammel; Payne, Samuel H.; Ibrahim, Yehia M.; Monroe, Matthew E.; Slysz, Gordon W.; Lamarche, Brian L.; Petyuk, Vladislav A.; Piehowski, Paul D.; Danielson, William F.; Anderson, Gordon A.; Smith, Richard D.

    2013-09-05

    Ion mobility spectrometry in conjunction with liquid chromatography separations and mass spectrometry offers a range of new possibilities for analyzing complex biological samples. To fully utilize the information obtained from these three measurement dimensions, informatics tools based on the accurate mass and time tag methodology were modified to incorporate ion mobility spectrometry drift times for peptides observed in human serum. A reference human serum database was created using 12,139 peptides, tracking the monoisotopic mass, liquid chromatography normalized elution time, and ion mobility spectrometry drift time(s) for each peptide. We demonstrate that the use of three dimensions for peak matching during the peptide identification process resulted in increased numbers of identifications and lower false discovery rates relative to the use of only the mass and normalized elution time dimensions.

  3. Electrospray Ionization Mass Spectrometry: From Cluster Ions to Toxic metal Ions in Biology

    SciTech Connect

    Lentz, Nicholas B.

    2007-01-01

    This dissertation focused on using electrospray ionization mass spectrometry to study cluster ions and toxic metal ions in biology. In Chapter 2, it was shown that primary, secondary and quarternary amines exhibit different clustering characteristics under identical instrument conditions. Carbon chain length also played a role in cluster ion formation. In Chapters 3 and 4, the effects of solvent types/ratios and various instrumental parameters on cluster ion formation were examined. It was found that instrument interface design also plays a critical role in the cluster ion distribution seen in the mass spectrum. In Chapter 5, ESI-MS was used to investigate toxic metal binding to the [Gln11]-amyloid β-protein fragment (1-16). Pb and Cd bound stronger than Zn, even in the presence of excess Zn. Hg bound weaker than Zn. There are endless options for future work on cluster ions. Any molecule that is poorly ionized in positive ion mode can potentially show an increase in ionization efficiency if an appropriate anion is used to produce a net negative charge. It is possible that drug protein or drug/DNA complexes can also be stabilized by adding counter-ions. This would preserve the solution characteristics of the complex in the gas phase. Once in the gas phase, CID could determine the drug binding location on the biomolecule. There are many research projects regarding toxic metals in biology that have yet to be investigated or even discovered. This is an area of research with an almost endless future because of the changing dynamics of biological systems. What is deemed safe today may show toxic effects in the future. Evolutionary changes in protein structures may render them more susceptible to toxic metal binding. As the understanding of toxicity evolves, so does the demand for new toxic metal research. New instrumentation designs and software make it possible to perform research that could not be done in the past. What was undetectable yesterday will

  4. Ion scattering analysis of alumina supported model catalysts

    NASA Astrophysics Data System (ADS)

    Josek, K.; Linsmeier, Ch.; Knözinger, H.; Taglaucr, E.

    1992-02-01

    The surface of supported oxide and metal catalysts, namely MoO 3/Al 2O 3 or Rh/Al 2O 3, is systematically studied using model systems. For this purpose, plane Al samples were oxidized in different ways and this support material was impregnated from the liquid phase or by evaporation. The elemental depth distribution was examined by low energy ion scattering and sputter etching (ISS) at different primary energies. By fitting Gaussian- or Lorentzian-type functions to the spectra, the use of peak heights or integrals for the interpretation is discussed. The dependence of the peak width on the chemical character is related to inelastic energy losses during scattering. ISS results from model systems are compared with those from real powder catalysts. The surface coverage with the active component was studied by additionally using Auger electron spectroscopy (AES) and Rutherford backscattering spectroscopy (RBS). These methods, combined with energy-dispersive X-ray microanalysis (EDX), lead to an explanation of the adsorption kinetics of molybdate on alumina from aqueous solution by pore-filling.

  5. Ion trajectories in an electrostatic ion guide for external ion source fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Marto, J A; Marshall, A G; May, M A; Limbach, P A

    1995-10-01

    An electrostatic ion guide (EIG) that consists of concentric cylinder and central wire electrodes can transport ions efficiently from an external ion source to an ion cyclotron resonance (ICR) ion trap for mass analysis, with several advantages over current injection methods. Because the electrostatic force of the EIG captures ions in a stable orbit about the wire electrode, ions with initially divergent trajectories may be redirected toward the ICR ion trap for improved ion transmission efficiency. SIMION trajectory calculations (ion kinetic energy, 1-200 eV; elevation angle, 0.30 °; azimuthal angle, 0.360°) predict that ions of m/z 1000 may be transmitted through a strong (0.01 → 3.0-T) magnetic field gradient. Judicious choice of ion source position and EIG potential minimizes the spread in ion axial kinetic energy at the ICR ion trap. Advantages of the EIG include large acceptance angle, even for ions that have large initial kinetic energy and large radial displacement with respect to the central z-axis, low ion extraction voltage (5-20 V), and efficient trapping because ions need not be accelerated to high velocity to pass through the magnetic field gradient. PMID:24214038

  6. Neutron scattering effects on fusion ion temperature measurements.

    SciTech Connect

    Ziegler, Lee; Starner, Jason R.; Cooper, Gary Wayne; Ruiz, Carlos L.; Franklin, James Kenneth; Casey, Daniel T.

    2006-06-01

    To support the nuclear fusion program at Sandia National Laboratories (SNL), a consistent and verifiable method to determine fusion ion temperatures needs to be developed. Since the fusion temperature directly affects the width in the spread of neutron energies produced, a measurement of the neutron energy width can yield the fusion temperature. Traditionally, the spread in neutron energies is measured by using time-of-flight to convert a spread in neutron energies at the source to a spread in time at detector. One potential obstacle to using this technique at the Z facility at SNL is the need to shield the neutron detectors from the intense bremsstrahlung produced. The shielding consists of eight inches of lead and the concern is that neutrons will scatter in the lead, artificially broaden the neutron pulse width and lead to an erroneous measurement. To address this issue, experiments were performed at the University of Rochester's Laboratory for Laser Energetics, which demonstrated that a reliable ion temperature measurement can be achieved behind eight inches of lead shielding. To further expand upon this finding, Monte Carlo N-Particle eXtended (MCNPX) was used to simulate the experimental geometric conditions and perform the neutron transport. MCNPX was able to confidently estimate results observed at the University of Rochester.

  7. Effects of Select Anions from the Hofmeister Series on the Gas-Phase Conformations of Protein Ions Measured with Traveling-Wave Ion Mobility Spectrometry/Mass Spectrometry

    PubMed Central

    Merenbloom, Samuel I.; Flick, Tawnya G.; Daly, Michael P.; Williams, Evan R.

    2011-01-01

    The gas-phase conformations of ubiquitin, cytochrome c, lysozyme, and ↦-lactalbumin ions, formed by electrospray ionization (ESI) from aqueous solutions containing 5 mM ammonium perchlorate, ammonium iodide, ammonium sulfate, ammonium chloride, ammonium thiocyanate, or guanidinium chloride, are examined using traveling-wave ion mobility spectrometry (TWIMS) coupled to time-of-flight (TOF) mass spectrometry (MS). For ubiquitin, cytochrome c, and ↦-lactalbumin, adduction of multiple acid molecules results in no significant conformational changes to the highest and lowest charge states formed from aqueous solutions, whereas the intermediate charge states become more compact. The transition to more compact conformers for the intermediate charge states occurs with fewer bound H2SO4 molecules than HClO4 or HI molecules, suggesting ion-ion or salt-bridge interactions are stabilizing more compact forms of the gaseous protein. However, the drift time distributions for protein ions of the same net charge with the highest levels of adduction of each acid are comparable, indicating that these protein ions all adopt similarly compact conformations or families of conformers. No change in conformation is observed upon the adduction of multiple acid molecules to charge states of lysozyme. These results show that the attachment of HClO4, HI, or H2SO4 to multiply protonated proteins can induce compact conformations in the resulting gas-phase protein ions. In contrast, differing Hofmeister effects are observed for the corresponding anions in solution at higher concentrations. PMID:21952780

  8. Solution-phase secondary-ion mass spectrometry of protonated amino acids.

    PubMed

    Pettit, G R; Cragg, G M; Holzapfel, C W; Tuinman, A A; Gieschen, D P

    1987-04-01

    Although sulfolane proved unexpectedly to be a poor solvent for solution-phase secondary-ion mass spectrometry of underivatized amino acids in the presence of thallium(I) salts, glycerol was somewhat more effective. Also, the addition of trifluoromethanesulfonic acid proved more effective than addition of the metal in generating molecular ion complexes. A convenient and reliable method for rapidly determining amino acid molecular ions is based on these observations. PMID:3037939

  9. Ion source for high-precision mass spectrometry

    DOEpatents

    Todd, Peter J.; McKown, Henry S.; Smith, David H.

    1984-01-01

    The invention is directed to a method for increasing the precision of positive-ion relative abundance measurements conducted in a sector mass spectrometer having an ion source for directing a beam of positive ions onto a collimating slit. The method comprises incorporating in the source an electrostatic lens assembly for providing a positive-ion beam of circular cross section for collimation by the slit.

  10. Ion source for high-precision mass spectrometry

    DOEpatents

    Todd, P.J.; McKown, H.S.; Smith, D.H.

    1982-04-26

    The invention is directed to a method for increasing the precision of positive-ion relative abundance measurements conducted in a sector mass spectrometer having an ion source for directing a beam of positive ions onto a collimating slit. The method comprises incorporating in the source an electrostatic lens assembly for providing a positive-ion beam of circular cross section for collimation by the slit. 2 figures, 3 tables.

  11. Evaluation of Ion Mobility-Mass Spectrometry for Comparative Analysis of Monoclonal Antibodies

    NASA Astrophysics Data System (ADS)

    Ferguson, Carly N.; Gucinski-Ruth, Ashley C.

    2016-05-01

    Analytical techniques capable of detecting changes in structure are necessary to monitor the quality of monoclonal antibody drug products. Ion mobility mass spectrometry offers an advanced mode of characterization of protein higher order structure. In this work, we evaluated the reproducibility of ion mobility mass spectrometry measurements and mobiligrams, as well as the suitability of this approach to differentiate between and/or characterize different monoclonal antibody drug products. Four mobiligram-derived metrics were identified to be reproducible across a multi-day window of analysis. These metrics were further applied to comparative studies of monoclonal antibody drug products representing different IgG subclasses, manufacturers, and lots. These comparisons resulted in some differences, based on the four metrics derived from ion mobility mass spectrometry mobiligrams. The use of collision-induced unfolding resulted in more observed differences. Use of summed charge state datasets and the analysis of metrics beyond drift time allowed for a more comprehensive comparative study between different monoclonal antibody drug products. Ion mobility mass spectrometry enabled detection of differences between monoclonal antibodies with the same target protein but different production techniques, as well as products with different targets. These differences were not always detectable by traditional collision cross section studies. Ion mobility mass spectrometry, and the added separation capability of collision-induced unfolding, was highly reproducible and remains a promising technique for advanced analytical characterization of protein therapeutics.

  12. Evaluation of Ion Mobility-Mass Spectrometry for Comparative Analysis of Monoclonal Antibodies.

    PubMed

    Ferguson, Carly N; Gucinski-Ruth, Ashley C

    2016-05-01

    Analytical techniques capable of detecting changes in structure are necessary to monitor the quality of monoclonal antibody drug products. Ion mobility mass spectrometry offers an advanced mode of characterization of protein higher order structure. In this work, we evaluated the reproducibility of ion mobility mass spectrometry measurements and mobiligrams, as well as the suitability of this approach to differentiate between and/or characterize different monoclonal antibody drug products. Four mobiligram-derived metrics were identified to be reproducible across a multi-day window of analysis. These metrics were further applied to comparative studies of monoclonal antibody drug products representing different IgG subclasses, manufacturers, and lots. These comparisons resulted in some differences, based on the four metrics derived from ion mobility mass spectrometry mobiligrams. The use of collision-induced unfolding resulted in more observed differences. Use of summed charge state datasets and the analysis of metrics beyond drift time allowed for a more comprehensive comparative study between different monoclonal antibody drug products. Ion mobility mass spectrometry enabled detection of differences between monoclonal antibodies with the same target protein but different production techniques, as well as products with different targets. These differences were not always detectable by traditional collision cross section studies. Ion mobility mass spectrometry, and the added separation capability of collision-induced unfolding, was highly reproducible and remains a promising technique for advanced analytical characterization of protein therapeutics. Graphical Abstract ᅟ. PMID:26988372

  13. U/Th dating by SHRIMP RG ion-microprobe mass spectrometry using single ion-exchange beads

    USGS Publications Warehouse

    Bischoff, J.L.; Wooden, J.; Murphy, F.; Williams, Ross W.

    2005-01-01

    We present a new analytical method for U-series isotopes using the SHRIMP RG (Sensitive High mass Resolution Ion MicroProbe) mass spectrometer that utilizes the preconcentration of the U-series isotopes from a sample onto a single ion-exchange bead. Ion-microprobe mass spectrometry is capable of producing Th ionization efficiencies in excess of 2%. Analytical precision is typically better than alpha spectroscopy, but not as good as thermal ionization mass spectroscopy (TIMS) and inductively coupled plasma multicollector mass spectrometry (ICP-MS). Like TIMS and ICP-MS the method allows analysis of small samples sizes, but also adds the advantage of rapidity of analysis. A major advantage of ion-microprobe analysis is that U and Th isotopes are analyzed in the same bead, simplifying the process of chemical separation. Analytical time on the instrument is ???60 min per sample, and a single instrument-loading can accommodate 15-20 samples to be analyzed in a 24-h day. An additional advantage is that the method allows multiple reanalyses of the same bead and that samples can be archived for reanalysis at a later time. Because the ion beam excavates a pit only a few ??m deep, the mount can later be repolished and reanalyzed numerous times. The method described of preconcentrating a low concentration sample onto a small conductive substrate to allow ion-microprobe mass spectrometry is potentially applicable to many other systems. Copyright ?? 2005 Elsevier Ltd.

  14. Incoherent scatter radar measurement of the average ion mass and temperature of a nighttime sporadic layer

    SciTech Connect

    Tepley, C.A.; Mathews, J.D.

    1985-04-01

    We report the results of incoherent scatter radar, total power, and ion line observations of a nighttime sporadic layer centered at 92-km altitude. The height variation of the absolute widths of the ion line yields a layer temperature of 210/sup 0/ +- 5 /sup 0/K and a mean ion mass of 50 +- 10 amu. This ion mass, when compared with average meteor composition, indicates that the layer is composed totally of metallic ions.

  15. Multidimensional Separation of Natural Products Using Liquid Chromatography Coupled to Hadamard Transform Ion Mobility Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Liu, Wenjie; Zhang, Xing; Knochenmuss, Richard; Siems, William F.; Hill, Herbert H.

    2016-02-01

    A high performance liquid chromatograph (HPLC)was interfaced to an atmospheric drift tube ion mobility time of flight mass spectrometry. The power of multidimensional separation was demonstrated using chili pepper extracts. The ambient pressure drift tube ion mobility provided high resolving powers up to 166 for the HPLC eluent. With implementation of Hadamard transform (HT), the duty cycle for the ion mobility drift tube was increased from less than 1% to 50%, and the ion transmission efficiency was improved by over 200 times compared with pulsed mode, improving signal to noise ratio 10 times. HT ion mobility and TOF mass spectrometry provide an additional dimension of separation for complex samples without increasing the analysis time compared with conventional HPLC.

  16. Ion mobility tandem mass spectrometry enhances performance of bottom-up proteomics.

    PubMed

    Helm, Dominic; Vissers, Johannes P C; Hughes, Christopher J; Hahne, Hannes; Ruprecht, Benjamin; Pachl, Fiona; Grzyb, Arkadiusz; Richardson, Keith; Wildgoose, Jason; Maier, Stefan K; Marx, Harald; Wilhelm, Mathias; Becher, Isabelle; Lemeer, Simone; Bantscheff, Marcus; Langridge, James I; Kuster, Bernhard

    2014-12-01

    One of the limiting factors in determining the sensitivity of tandem mass spectrometry using hybrid quadrupole orthogonal acceleration time-of-flight instruments is the duty cycle of the orthogonal ion injection system. As a consequence, only a fraction of the generated fragment ion beam is collected by the time-of-flight analyzer. Here we describe a method utilizing postfragmentation ion mobility spectrometry of peptide fragment ions in conjunction with mobility time synchronized orthogonal ion injection leading to a substantially improved duty cycle and a concomitant improvement in sensitivity of up to 10-fold for bottom-up proteomic experiments. This enabled the identification of 7500 human proteins within 1 day and 8600 phosphorylation sites within 5 h of LC-MS/MS time. The method also proved powerful for multiplexed quantification experiments using tandem mass tags exemplified by the chemoproteomic interaction analysis of histone deacetylases with Trichostatin A. PMID:25106551

  17. Ion Mobility Tandem Mass Spectrometry Enhances Performance of Bottom-up Proteomics

    PubMed Central

    Helm, Dominic; Vissers, Johannes P. C.; Hughes, Christopher J.; Hahne, Hannes; Ruprecht, Benjamin; Pachl, Fiona; Grzyb, Arkadiusz; Richardson, Keith; Wildgoose, Jason; Maier, Stefan K.; Marx, Harald; Wilhelm, Mathias; Becher, Isabelle; Lemeer, Simone; Bantscheff, Marcus; Langridge, James I.; Kuster, Bernhard

    2014-01-01

    One of the limiting factors in determining the sensitivity of tandem mass spectrometry using hybrid quadrupole orthogonal acceleration time-of-flight instruments is the duty cycle of the orthogonal ion injection system. As a consequence, only a fraction of the generated fragment ion beam is collected by the time-of-flight analyzer. Here we describe a method utilizing postfragmentation ion mobility spectrometry of peptide fragment ions in conjunction with mobility time synchronized orthogonal ion injection leading to a substantially improved duty cycle and a concomitant improvement in sensitivity of up to 10-fold for bottom-up proteomic experiments. This enabled the identification of 7500 human proteins within 1 day and 8600 phosphorylation sites within 5 h of LC-MS/MS time. The method also proved powerful for multiplexed quantification experiments using tandem mass tags exemplified by the chemoproteomic interaction analysis of histone deacetylases with Trichostatin A. PMID:25106551

  18. Multidimensional Separation of Natural Products Using Liquid Chromatography Coupled to Hadamard Transform Ion Mobility Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Liu, Wenjie; Zhang, Xing; Knochenmuss, Richard; Siems, William F.; Hill, Herbert H.

    2016-05-01

    A high performance liquid chromatograph (HPLC)was interfaced to an atmospheric drift tube ion mobility time of flight mass spectrometry. The power of multidimensional separation was demonstrated using chili pepper extracts. The ambient pressure drift tube ion mobility provided high resolving powers up to 166 for the HPLC eluent. With implementation of Hadamard transform (HT), the duty cycle for the ion mobility drift tube was increased from less than 1% to 50%, and the ion transmission efficiency was improved by over 200 times compared with pulsed mode, improving signal to noise ratio 10 times. HT ion mobility and TOF mass spectrometry provide an additional dimension of separation for complex samples without increasing the analysis time compared with conventional HPLC.

  19. Multidimensional Separation of Natural Products Using Liquid Chromatography Coupled to Hadamard Transform Ion Mobility Mass Spectrometry.

    PubMed

    Liu, Wenjie; Zhang, Xing; Knochenmuss, Richard; Siems, William F; Hill, Herbert H

    2016-05-01

    A high performance liquid chromatograph (HPLC)was interfaced to an atmospheric drift tube ion mobility time of flight mass spectrometry. The power of multidimensional separation was demonstrated using chili pepper extracts. The ambient pressure drift tube ion mobility provided high resolving powers up to 166 for the HPLC eluent. With implementation of Hadamard transform (HT), the duty cycle for the ion mobility drift tube was increased from less than 1% to 50%, and the ion transmission efficiency was improved by over 200 times compared with pulsed mode, improving signal to noise ratio 10 times. HT ion mobility and TOF mass spectrometry provide an additional dimension of separation for complex samples without increasing the analysis time compared with conventional HPLC. Graphical Abstract ᅟ. PMID:26914233

  20. Negative thermal ion mass spectrometry of osmium, rhenium, and iridium

    NASA Technical Reports Server (NTRS)

    Creaser, R. A.; Papanastassiou, D. A.; Wasserburg, G. J.

    1991-01-01

    This paper describes a technique for obtaining, in a conventional surface ionization mass spectrometer, intense ion beams of negatively charged oxides of Os, Re, and Ir by thermal ionization. It is shown that the principal ion species of these ions are OsO3(-), ReO4(-), and IrO2(-), respectively. For Re-187/Os-187 studies, this technique offers the advantage of isotopic analyses without prior chemical separation of Re from Os.

  1. Collisional activation with random noise in ion trap mass spectrometry

    SciTech Connect

    McLuckey, S.A.; Goeringer, D.E.; Glish, G.L.

    1992-07-01

    Random noise applied to the end caps of a quadrupole ion trap is shown to be an effective means for the collisional activation of trapped ions independent of mass/charge ratio and number of ions. This technique is compared and contrasted with conventional single-frequency collisional activation for the molecular ion of N,N-dimethylaniline, protonated cocaine, the molecular anion of 2,4,6-trinitrotoluene, and doubly protonated neuromedin U-8. Collisional activation with noise tends to produce more extensive fragmentation than the conventional approach due to the fact that product ions are also kinetically excited in the noise experiment. The efficiency of the noise experiment in producing detectable product ions relative to the conventional approach ranges from being equivalent to being a factor of 3 less efficient. Furthermore, discrimination against low mass/charge product ions is apparent in the data from multiply charged biomolecules. Nevertheless, collisional activation with random noise provides a very simple means for overcoming problems associated with the dependence of single-frequency collisional activation on mass/charge ratio and the number of ions in the ion trap. 45 refs., 7 figs.

  2. Resonance enhanced multiphoton ionization/secondary neutral mass spectrometry and cesium attachment secondary ion mass spectrometry of bronze : a comparison.

    SciTech Connect

    McCann, M. P.; Calaway, W. F.; Pellin, M. J.; Veryovkin, I. V.; Constantinides, I.; Adriaens, A.; Adams, F.; Materials Science Division; Sam Houston State Univ.; Univ. of Antwerp

    2002-05-01

    Archaeologists have considerable interests in ancient bronzes. They want to know how these alloys were produced and how they corroded with time. Modern bronzes, with compositions very close to that of some ancient bronzes, have been produced and two methods were examined to characterize one of these modern bronzes. Analysis of this modern bronze using resonance enhanced multiphoton ionization/secondary neutral mass spectrometry (REMPI/SNMS) is examined in detail and compared to cesium attachment secondary ion mass spectrometry (CsAMS) results. Both REMPI/SNMS and CsAMS were used to quantify the composition of Fe, Ni and Mn in a modern quaternary bronze designed to serve as a certified reference material for an ancient bronze. Both methods exhibit reduced matrix effects when compared to secondary ion mass spectrometry (SIMS) and thus quantification should be simplified. It was found that when relative sensitivity factors obtained from a standard bronze material are used to calibrate the instruments, the REMPI/SNMS measurements yield results that were more sensitive and more accurate.

  3. Structural insights into interactions between ubiquitin specific protease 5 and its polyubiquitin substrates by mass spectrometry and ion mobility spectrometry

    PubMed Central

    Scott, Daniel; Layfield, Robert; Oldham, Neil J

    2015-01-01

    Nanoelectrospray ionization-mass spectrometry and ion mobility-mass spectrometry have been used to study the interactions of the large, multidomain, and conformationally flexible deubiquitinating enzyme ubiquitin specific protease 5 (USP5) with mono- and poly-ubiquitin (Ub) substrates. Employing a C335A active site mutant, mass spectrometry was able to detect the stable and cooperative binding of two mono-Ub molecules at the Zinc-finger ubiquitin binding protein (ZnF-UBP) and catalytic site domains of USP5. Tetra-ubiquitin, in contrast, bound to USP5 with a stoichiometry of 1 : 1, and formed additional interactions with USP5's two ubiquitin associated domains (UBAs). Charge-state distribution and ion mobility analysis revealed that both mono- and tetra-ubiquitin bound to the compact conformation of USP5 only, and that tetra-ubiquitin binding was able to shift the conformational distribution of USP5 from a mixture of extended and compact forms to a completely compact conformation. PMID:25970461

  4. Extracting p Λ scattering lengths from heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Shapoval, V. M.; Erazmus, B.; Lednicky, R.; Sinyukov, Yu. M.

    2015-09-01

    The source radii previously extracted by the STAR Collaboration from the p -Λ ⊕p ¯-Λ ¯ and p ¯-Λ ⊕p -Λ ¯ correlation functions measured in 10% most central Au+Au collisions at top Relativistic Heavy Ion Collider (RHIC) energy, √{sN N}=200 GeV, differ by a factor of 2. The probable reason for this is the neglect of residual correlation effect in the STAR analysis. In the present paper we analyze baryon correlation functions within the Lednický and Lyuboshitz analytical model, extended to effectively account for the residual correlation contribution. Different analytical approximations for such a contribution are considered. We also use the averaged source radii extracted from hydrokinetic model (HKM) simulations to fit the experimental data. In contrast to the STAR experimental study, the calculations in HKM show both p Λ and p Λ ¯ radii to be quite close, as expected from theoretical considerations. Using the effective Gaussian parametrization of residual correlations we obtain a satisfactory fit to the measured baryon-antibaryon correlation function with the HKM source radius value 3.28 fm. The baryon-antibaryon spin-averaged strong interaction scattering length is also extracted from the fit to the experimental correlation function.

  5. Submicron mass spectrometry imaging of single cells by combined use of mega electron volt time-of-flight secondary ion mass spectrometry and scanning transmission ion microscopy

    SciTech Connect

    Siketić, Zdravko; Bogdanović Radović, Ivančica; Jakšić, Milko; Popović Hadžija, Marijana; Hadžija, Mirko

    2015-08-31

    In order to better understand biochemical processes inside an individual cell, it is important to measure the molecular composition at the submicron level. One of the promising mass spectrometry imaging techniques that may be used to accomplish this is Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS), using MeV energy heavy ions for excitation. MeV ions have the ability to desorb large intact molecules with a yield that is several orders of magnitude higher than conventional SIMS using keV ions. In order to increase the spatial resolution of the MeV TOF-SIMS system, we propose an independent TOF trigger using a STIM (scanning transmission ion microscopy) detector that is placed just behind the thin transmission target. This arrangement is suitable for biological samples in which the STIM detector simultaneously measures the mass distribution in scanned samples. The capability of the MeV TOF-SIMS setup was demonstrated by imaging the chemical composition of CaCo-2 cells.

  6. Analysis of Ultra-Pure Gases by Ion Mobility Spectrometry

    NASA Technical Reports Server (NTRS)

    Stimac, Robert M.; Wernlund, Roger F.; Cohen, Martin J.

    1995-01-01

    Work has continued with the evaluation of the Ion Mobility Spectrometer (IMS) for the analysis of gases having low parts-per-billion (10(exp -9)) water concentration. A modified PCP, inc. MMS-160 Mobility Mass Spectrometer System was used for the analysis of ultra-pure argon and nitrogen. The MMS-160 system permits the mass-identification of unique reactant and product ions observed in the reduced-water host gases. When the water is removed to low ppb levels, higher energy reactant ions are observed. In nitrogen, distinct odd- and even-numbered nitrogen cluster ion mobility peaks are observed, as well as adduct ion peaks from the trace contaminants in the gas. Argon also produces a cluster ion mobility peak and adduct ion peaks from trace components in the gas. Levels of contaminants in these ultra-pure gases can be determined from the ion mobility spectra. A calibrated source was used to provide variable known quantities of water to the pure gas supply of the IMS.

  7. Searching For A Suitable Gas Ion Source For 14C Accelerator Mass Spectrometry

    SciTech Connect

    Reden, Karl von; Roberts, Mark; Han, Baoxi; Schneider, Robert; Wills, John

    2007-08-10

    This paper describes the challenges facing 14C Accelerator Mass Spectrometry (AMS) in the effort to directly analyze the combusted effluent of a chromatograph (or any other continuous source of sample material). An efficient, low-memory negative gas ion source would greatly simplify the task to make this a reality. We discuss our tests of a microwave ion source charge exchange canal combination, present an improved design, and hope to generate more interest in the negative ion source community to develop a direct-extraction negative carbon gas ion source for AMS.

  8. Temporal evolution of confined fast-ion velocity distributions measured by collective Thomson scattering in TEXTOR.

    PubMed

    Nielsen, S K; Bindslev, H; Porte, L; Hoekzema, J A; Korsholm, S B; Leipold, F; Meo, F; Michelsen, P K; Michelsen, S; Oosterbeek, J W; Tsakadze, E L; Van Wassenhove, G; Westerhof, E; Woskov, P

    2008-01-01

    Fast ions created in the fusion processes will provide up to 70% of the heating in ITER. To optimize heating and current drive in magnetically confined plasmas insight into fast-ion dynamics is important. First measurements of such dynamics by collective Thomson scattering (CTS) were recently reported [Bindslev, Phys. Rev. Lett. 97, 205005 2006]. Here we extend the discussion of these results which were obtained at the TEXTOR tokamak. The fast ions are generated by neutral-beam injection and ion-cyclotron resonance heating. The CTS system uses 100-150kW of 110-GHz gyrotron probing radiation which scatters off the collective plasma fluctuations driven by the fast-ion motion. The technique measures the projected one-dimensional velocity distribution of confined fast ions in the scattering volume where the probe and receiver beams cross. By shifting the scattering volume a number of scattering locations and different resolved velocity components can be measured. The temporal resolution is 4ms while the spatial resolution is approximately 10cm depending on the scattering geometry. Fast-ion velocity distributions in a variety of scenarios are measured, including the evolution of the velocity distribution after turnoff of the ion heating. These results are in close agreement with numerical simulations. PMID:18351944

  9. Ion mobility mass spectrometry of peptide, protein, and protein complex ions using a radio-frequency confining drift cell.

    PubMed

    Allen, Samuel J; Giles, Kevin; Gilbert, Tony; Bush, Matthew F

    2016-02-01

    Ion mobility mass spectrometry experiments enable the characterization of mass, assembly, and shape of biological molecules and assemblies. Here, a new radio-frequency confining drift cell is characterized and used to measure the mobilities of peptide, protein, and protein complex ions. The new drift cell replaced the traveling-wave ion mobility cell in a Waters Synapt G2 HDMS. Methods for operating the drift cell and determining collision cross section values using this experimental set up are presented within the context of the original instrument control software. Collision cross sections for 349 cations and anions are reported, 155 of which are for ions that have not been characterized previously using ion mobility. The values for the remaining ions are similar to those determined using a previous radio-frequency confining drift cell and drift tubes without radial confinement. Using this device under 2 Torr of helium gas and an optimized drift voltage, denatured and native-like ions exhibited average apparent resolving powers of 14.2 and 16.5, respectively. For ions with high mobility, which are also low in mass, the apparent resolving power is limited by contributions from ion gating. In contrast, the arrival-time distributions of low-mobility, native-like ions are not well explained using only contributions from ion gating and diffusion. For those species, the widths of arrival-time distributions are most consistent with the presence of multiple structures in the gas phase. PMID:26739109

  10. Laser desorption mass spectrometry and small angle neutron scattering of heavy fossil materials

    SciTech Connect

    Hunt, J.E.; Winans, R.E.; Thiyagarajan, P.

    1997-09-01

    The determination of the structural building blocks and the molecular weight range of heavy hydrocarbon materials is of crucial importance in research on their reactivity and for their processing. The chemically and physically heterogenous nature of heavy hydrocarbon materials, such as coals, heavy petroleum fractions, and residues, dictates that their structure and reactivity patterns be complicated. The problem is further complicated by the fact that the molecular structure and molecular weight distribution of these materials is not dependent on a single molecule, but on a complex mixture of molecules which vary among coals and heavy petroleum samples. Laser Desorption mass spectrometry (LDMS) is emerging as a technique for molecular weight determination having found widespread use in biological polymer research, but is still a relatively new technique in the fossil fuel area. Small angle neutron scattering (SANS) provides information on the size and shape of heavy fossil materials. SANS offers the advantages of high penetration power even in thick cells at high temperatures and high contrast for hydrocarbon systems dispersed in deuterated solvents. LDMS coupled with time of flight has the advantages of high sensitivity and transmission and high mass range. We have used LDMS to examine various heavy fossil-derived materials including: long chain hydrocarbons, asphaltenes from petroleum vacuum resids, and coals. This paper describes the application of laser desorption and small angle neutron scattering techniques to the analysis of components in coals, petroleum resids and unsaturated polymers.

  11. Analysis of Supramolecular Complexes of 3-Methylxanthine with Field Asymmetric Waveform Ion Mobility Spectrometry Combined with Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Arthur, Kayleigh L.; Eiceman, Gary A.; Reynolds, James C.; Creaser, Colin S.

    2016-05-01

    Miniaturised field asymmetric waveform ion mobility spectrometry (FAIMS), combined with mass spectrometry (MS), has been applied to the study of self-assembling, noncovalent supramolecular complexes of 3-methylxanthine (3-MX) in the gas phase. 3-MX forms stable tetrameric complexes around an alkali metal (Na+, K+) or ammonium cation, to generate a diverse array of complexes with single and multiple charge states. Complexes of (3-MX)n observed include: singly charged complexes where n = 1-8 and 12 and doubly charged complexes where n = 12-24. The most intense ions are those associated with multiples of tetrameric units, where n = 4, 8, 12, 16, 20, 24. The effect of dispersion field on the ion intensities of the self-assembled complexes indicates some fragmentation of higher order complexes within the FAIMS electrodes (in-FAIMS dissociation), as well as in-source collision induced dissociation within the mass spectrometer. FAIMS-MS enables charge state separation of supramolecular complexes of 3-MX and is shown to be capable of separating species with overlapping mass-to-charge ratios. FAIMS selected transmission also results in an improvement in signal-to-noise ratio for low intensity complexes and enables the visualization of species undetectable without FAIMS.

  12. Analysis of Supramolecular Complexes of 3-Methylxanthine with Field Asymmetric Waveform Ion Mobility Spectrometry Combined with Mass Spectrometry.

    PubMed

    Arthur, Kayleigh L; Eiceman, Gary A; Reynolds, James C; Creaser, Colin S

    2016-05-01

    Miniaturised field asymmetric waveform ion mobility spectrometry (FAIMS), combined with mass spectrometry (MS), has been applied to the study of self-assembling, noncovalent supramolecular complexes of 3-methylxanthine (3-MX) in the gas phase. 3-MX forms stable tetrameric complexes around an alkali metal (Na(+), K(+)) or ammonium cation, to generate a diverse array of complexes with single and multiple charge states. Complexes of (3-MX)n observed include: singly charged complexes where n = 1-8 and 12 and doubly charged complexes where n = 12-24. The most intense ions are those associated with multiples of tetrameric units, where n = 4, 8, 12, 16, 20, 24. The effect of dispersion field on the ion intensities of the self-assembled complexes indicates some fragmentation of higher order complexes within the FAIMS electrodes (in-FAIMS dissociation), as well as in-source collision induced dissociation within the mass spectrometer. FAIMS-MS enables charge state separation of supramolecular complexes of 3-MX and is shown to be capable of separating species with overlapping mass-to-charge ratios. FAIMS selected transmission also results in an improvement in signal-to-noise ratio for low intensity complexes and enables the visualization of species undetectable without FAIMS. Graphical Abstract ᅟ. PMID:26914231

  13. Analysis of Supramolecular Complexes of 3-Methylxanthine with Field Asymmetric Waveform Ion Mobility Spectrometry Combined with Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Arthur, Kayleigh L.; Eiceman, Gary A.; Reynolds, James C.; Creaser, Colin S.

    2016-02-01

    Miniaturised field asymmetric waveform ion mobility spectrometry (FAIMS), combined with mass spectrometry (MS), has been applied to the study of self-assembling, noncovalent supramolecular complexes of 3-methylxanthine (3-MX) in the gas phase. 3-MX forms stable tetrameric complexes around an alkali metal (Na+, K+) or ammonium cation, to generate a diverse array of complexes with single and multiple charge states. Complexes of (3-MX)n observed include: singly charged complexes where n = 1-8 and 12 and doubly charged complexes where n = 12-24. The most intense ions are those associated with multiples of tetrameric units, where n = 4, 8, 12, 16, 20, 24. The effect of dispersion field on the ion intensities of the self-assembled complexes indicates some fragmentation of higher order complexes within the FAIMS electrodes (in-FAIMS dissociation), as well as in-source collision induced dissociation within the mass spectrometer. FAIMS-MS enables charge state separation of supramolecular complexes of 3-MX and is shown to be capable of separating species with overlapping mass-to-charge ratios. FAIMS selected transmission also results in an improvement in signal-to-noise ratio for low intensity complexes and enables the visualization of species undetectable without FAIMS.

  14. Fragmentation of HCN in optically selected mass spectrometry: Nonthermal ion cooling in helium nanodroplets

    SciTech Connect

    Lewis, William K.; Bemish, Raymond J.; Miller, Roger E.

    2005-10-08

    A technique that combines infrared laser spectroscopy and helium nanodroplet mass spectrometry, which we refer to as optically selected mass spectrometry, is used to study the efficiency of ion cooling in helium. Electron-impact ionization is used to form He{sup +} ions within the droplets, which go on to transfer their charge to the HCN dopant molecules. Depending upon the droplet size, the newly formed ion either fragments or is cooled by the helium before fragmentation can occur. Comparisons with gas-phase fragmentation data suggest that the cooling provided by the helium is highly nonthermal. An 'explosive' model is proposed for the cooling process, given that the initially hot ion is embedded in such a cold solvent.

  15. Rapid profiling and identification of anthocyanins in fruits with Hadamard transform ion mobility mass spectrometry.

    PubMed

    Liu, Wenjie; Zhang, Xing; Siems, William F; Hill, Herbert H; Yin, Dulin

    2015-06-15

    The use of Hadamard transform ion mobility mass spectrometry (HT-IMMS) in the profiling of anthocyanins from different fruits is presented. Samples extracted with acidic methanol and purified with solid phase extraction were analyzed with direct IMMS infusion. The separation of various anthocyanins was achieved within 30s with resolving powers up to 110. The ion mobility drift times correlated with their mass-to-charge ratios with a correlation coefficient of 0.979 to produce a trend line that was characteristic for anthocyanins. Isomers with the same anthocyanidin but different hexoses were differentiated by ion mobility spectrometry. Furthermore, mobility separated ions underwent collision induced dissociation at the IMMS interface to provide MS/MS spectra. These fragmentation spectra aided in the identification of anthocyanidins via the loss of the saccharide groups. IMMS appears to be a rapid and efficient approach for profiling and identifying anthocyanins. PMID:25660880

  16. Ion deposition by inductively coupled plasma mass spectrometry

    SciTech Connect

    Hu, K.; Houk, R.S.

    1996-03-01

    An atmospheric pressure inductively coupled plasma (ICP) is used with a quadrupole mass spectrometer (MS) for ion deposition. The deposited element is introduced as a nebulized aqueous solution. Modifications to the ICP-MS device allow generation and deposition of a mass-resolved beam of {sup 165}Ho{sup +} at 5{times}10{sup 12} ions s{sup {minus}1}. The ICP is a universal, multielement ion source that can potentially be used for applications such as deposition of mixtures of widely varying stoichiometry or of alternating layers of different elements. {copyright} {ital 1996 American Vacuum Society}

  17. Ion mobility spectrometry-mass spectrometry (IMS-MS) for on- and offline analysis of atmospheric gas and aerosol species

    NASA Astrophysics Data System (ADS)

    Krechmer, Jordan E.; Groessl, Michael; Zhang, Xuan; Junninen, Heikki; Massoli, Paola; Lambe, Andrew T.; Kimmel, Joel R.; Cubison, Michael J.; Graf, Stephan; Lin, Ying-Hsuan; Budisulistiorini, Sri H.; Zhang, Haofei; Surratt, Jason D.; Knochenmuss, Richard; Jayne, John T.; Worsnop, Douglas R.; Jimenez, Jose-Luis; Canagaratna, Manjula R.

    2016-07-01

    Measurement techniques that provide molecular-level information are needed to elucidate the multiphase processes that produce secondary organic aerosol (SOA) species in the atmosphere. Here we demonstrate the application of ion mobility spectrometry-mass spectrometry (IMS-MS) to the simultaneous characterization of the elemental composition and molecular structures of organic species in the gas and particulate phases. Molecular ions of gas-phase organic species are measured online with IMS-MS after ionization with a custom-built nitrate chemical ionization (CI) source. This CI-IMS-MS technique is used to obtain time-resolved measurements (5 min) of highly oxidized organic molecules during the 2013 Southern Oxidant and Aerosol Study (SOAS) ambient field campaign in the forested SE US. The ambient IMS-MS signals are consistent with laboratory IMS-MS spectra obtained from single-component carboxylic acids and multicomponent mixtures of isoprene and monoterpene oxidation products. Mass-mobility correlations in the 2-D IMS-MS space provide a means of identifying ions with similar molecular structures within complex mass spectra and are used to separate and identify monoterpene oxidation products in the ambient data that are produced from different chemical pathways. Water-soluble organic carbon (WSOC) constituents of fine aerosol particles that are not resolvable with standard analytical separation methods, such as liquid chromatography (LC), are shown to be separable with IMS-MS coupled to an electrospray ionization (ESI) source. The capability to use ion mobility to differentiate between isomers is demonstrated for organosulfates derived from the reactive uptake of isomers of isoprene epoxydiols (IEPOX) onto wet acidic sulfate aerosol. Controlled fragmentation of precursor ions by collisionally induced dissociation (CID) in the transfer region between the IMS and the MS is used to validate MS peak assignments, elucidate structures of oligomers, and confirm the

  18. Analysis of paralytic shellfish toxins using high-field asymmetric waveform ion mobility spectrometry with liquid chromatography-mass spectrometry.

    PubMed

    Beach, Daniel G; Melanson, Jeremy E; Purves, Randy W

    2015-03-01

    The analysis of paralytic shellfish toxins (PSTs) by liquid chromatography-mass spectrometry remains a challenge because of their high polarity, large number of analogues and the complex matrix in which they occur. Here we investigate the potential utility of high-field asymmetric waveform ion mobility spectrometry (FAIMS) as a gas-phase ion separation tool for analysis of PSTs by mass spectrometry. We investigate the separation of PSTs using FAIMS with two divergent goals: using FAIMS as a primary separation tool for rapid screening by electrospray ionization (ESI)-FAIMS-MS or combined with LC in a multidimensional LC-ESI-FAIMS-MS separation. First, a survey of the parameters that affect the sensitivity and selectivity of PST analysis by FAIMS was carried out using ESI-FAIMS-MS. In particular, the use of acetonitrile as a gas additive in the carrier gas flow offered good separation of all PST epimeric pairs. A second set of FAIMS conditions was also identified, which focussed PSTs to a relatively narrow CV range allowing development of an LC-ESI-FAIMS-MS method for analysis of PST toxins in complex mussel tissue extracts. The quantitative capabilities of this method were evaluated by analysing a PST containing mussel tissue matrix material. Results compared favourably with analysis by an established LC-post-column oxidation-fluorescence method with recoveries ranging from 70 to 106%, although sensitivity was somewhat reduced. The current work represents the first successful separation of PST isomers using ion mobility and shows the promise of FAIMS as a tool for analysis of algal biotoxins in complex samples and outlines some critical requirements for its future improvement. PMID:25619987

  19. Hydrogen Attachment/Abstraction Dissociation (HAD) of Gas-Phase Peptide Ions for Tandem Mass Spectrometry.

    PubMed

    Takahashi, Hidenori; Sekiya, Sadanori; Nishikaze, Takashi; Kodera, Kei; Iwamoto, Shinichi; Wada, Motoi; Tanaka, Koichi

    2016-04-01

    Dissociation of gas-phase peptide ions through interaction with low-energy hydrogen (H) radical (∼0.15 eV) was observed with a quadrupole ion trap mass spectrometry. The H radical generated by thermal dissociation of H2 molecules passing through a heated tungsten capillary (∼2000 °C) was injected into the ion trap containing target peptide ions. The fragmentation spectrum showed abundant c-/z- and a-/x-type ions, attributable to H attachment/abstraction to/from peptide ion. Because the low-energy neutral H radical initiated the fragmentation, the charge state of the precursor ion was maintained during the dissociation. As a result, precursor ions of any charge state, including singly charged positive and negative ions, could be analyzed for amino acid sequence. The sequence coverage exceeding 90% was obtained for both singly protonated and singly deprotonated substance P peptide. This mass spectrometry also preserved labile post-translational modification bonds. The modification sites of triply phosphorylated peptide (kinase domain of insulin receptor) were identified with the sequence coverage exceeding 80%. PMID:27002918

  20. Determination of electron affinity of carbonyl radicals by means of negative ion mass spectrometry.

    PubMed

    Muftakhov; Vasil'ev; Mazunov

    1999-06-01

    Appearance energies of [M-H](-) ions from carbonyl compounds R-CO-R' (R,R' = H, CH(3), NH(2), OH) have been measured by means of negative ion mass spectrometry in resonant electron capture mode. Values of electron affinity of the corresponding radicals, CH(2)&dbond;C(X)O, NH&dbond;C(X)O and O&dbond;C(X)O, have been determined. Copyright 1999 John Wiley & Sons, Ltd. PMID:10407285

  1. Rutherford Backscattering Spectrometry Channeling Study of Ion-Irradiated 6H-SiC

    SciTech Connect

    Jiang, Weilin; Weber, William J.; Thevuthasan, Suntharampillai; McCready, David E.

    1999-04-01

    Studies damage accumulation and defect annealing (up to 1170 K) using in-situ 2.0 MeV He Rutherford Backscattering Spectrometry combined with ion channeling methods. Observes that the defect concentration at the damage peak increases sigmoidally with increasing ion fluence during irradiation at low temperatures and that the isochronal recovery of the damage induced at low temperatures follows an exponential dependence on temperature.

  2. Atmospheric pressure chemical ionization studies of non-polar isomeric hydrocarbons using ion mobility spectrometry and mass spectrometry with different ionization techniques

    NASA Technical Reports Server (NTRS)

    Borsdorf, H.; Nazarov, E. G.; Eiceman, G. A.

    2002-01-01

    The ionization pathways were determined for sets of isomeric non-polar hydrocarbons (structural isomers, cis/trans isomers) using ion mobility spectrometry and mass spectrometry with different techniques of atmospheric pressure chemical ionization to assess the influence of structural features on ion formation. Depending on the structural features, different ions were observed using mass spectrometry. Unsaturated hydrocarbons formed mostly [M - 1]+ and [(M - 1)2H]+ ions while mainly [M - 3]+ and [(M - 3)H2O]+ ions were found for saturated cis/trans isomers using photoionization and 63Ni ionization. These ionization methods and corona discharge ionization were used for ion mobility measurements of these compounds. Different ions were detected for compounds with different structural features. 63Ni ionization and photoionization provide comparable ions for every set of isomers. The product ions formed can be clearly attributed to the structures identified. However, differences in relative abundance of product ions were found. Although corona discharge ionization permits the most sensitive detection of non-polar hydrocarbons, the spectra detected are complex and differ from those obtained with 63Ni ionization and photoionization. c. 2002 American Society for Mass Spectrometry.

  3. Enhancing Secondary Ion Yields in Time of Flight-Secondary Ion Mass Spectrometry Using Water Cluster Primary Beams

    PubMed Central

    2013-01-01

    Low secondary ion yields from organic and biological molecules are the principal limitation on the future exploitation of time of flight-secondary ion mass spectrometry (TOF-SIMS) as a surface and materials analysis technique. On the basis of the hypothesis that increasing the density of water related fragments in the ion impact zone would enhance proton mediated reactions, a prototype water cluster ion beam has been developed using supersonic jet expansion methodologies that enable ion yields using a 10 keV (H2O)1000+ beam to be compared with those obtained using a 10 keV Ar1000+ beam. The ion yields from four standard compounds, arginine, haloperidol, DPPC, and angiotensin II, have been measured under static+ and high ion dose conditions. Ion yield enhancements relative to the argon beam on the order of 10 or more have been observed for all the compounds such that the molecular ion yield per a 1 μm pixel can be as high as 20, relative to 0.05 under an argon beam. The water beam has also been shown to partially lift the matrix effect in a 1:10 mixture of haloperidol and dipalmitoylphosphatidylcholine (DPPC) that suppresses the haloperidol signal. These results provide encouragement that further developments of the water cluster beam to higher energies and larger cluster sizes will provide the ion yield enhancements necessary for the future development of TOF-SIMS. PMID:23718847

  4. Measurements of Intrinsic Ion Bernstein Waves in a Tokamak by Collective Thomson Scattering

    NASA Astrophysics Data System (ADS)

    Korsholm, S. B.; Stejner, M.; Bindslev, H.; Furtula, V.; Leipold, F.; Meo, F.; Michelsen, P. K.; Moseev, D.; Nielsen, S. K.; Salewski, M.; de Baar, M.; Delabie, E.; Kantor, M.; Bürger, A.

    2011-04-01

    In this Letter we report measurements of collective Thomson scattering (CTS) spectra with clear signatures of ion Bernstein waves and ion cyclotron motion in tokamak plasmas. The measured spectra are in accordance with theoretical predictions and show clear sensitivity to variation in the density ratio of the main ion species in the plasma. Measurements with this novel diagnostic demonstrate that CTS can be used as a fuel ion ratio diagnostic in burning fusion plasma devices.

  5. Measurements of ion temperature and plasma hydrogenic composition by collective Thomson scattering in neutral beam heated discharges at TEXTOR

    NASA Astrophysics Data System (ADS)

    Stejner, M.; Salewski, M.; Korsholm, S. B.; Bindslev, H.; Delabie, E.; Leipold, F.; Meo, F.; Michelsen, P. K.; Moseev, D.; Nielsen, S. K.; Bürger, A.; de Baar, M.; the TEXTOR Team

    2013-08-01

    A method is developed to perform plasma composition and ion temperature measurements across the plasma minor radius in TEXTOR based on ion cyclotron structures in collective Thomson scattering spectra. By gradually moving the scattering volume, we obtain measurements across the outer midplane of the plasma. Results for the ion temperature are compared with ion temperatures measured by active charge-exchange recombination spectroscopy.

  6. Energy and charge transfer for Na+ ions scattered from a Ag(001) surface

    NASA Astrophysics Data System (ADS)

    Ray, M. P.; Lake, R. E.; Marston, J. B.; Sosolik, C. E.

    2015-05-01

    We present energy- and charge-resolved measurements of low and hyperthermal energy Na+ ions scattered from a Ag(001) surface. With the primary ion beam oriented along the [110] crystal direction, distinct peaks in the energy distributions of the scattered beam flux that correspond to single or multiple collisions with target atoms are observed. A classical trajectory simulation reveals that these collisions can occur either at the surface or within the [110] channels, depending on incident beam energy. Within the simulation we probe the role of finite temperature and thermally displaced atoms on specific scattering events and show that contributions to the scattered distributions from single and double collisions dominate within the [110] channels. We also report velocity dependent measurements of the neutral/ion ratio of the scattered beam flux. A deviation between the data and simulated charge transfer results is observed for Na trajectories which penetrate the surface.

  7. ANALYSIS OF POLYCYCLIC AROMATIC HYDROCARBONS BY ION TRAP TANDEM MASS SPECTROMETRY

    EPA Science Inventory

    An ion-trap mass spectrometer with a wave board and tandem mass spectrometry software was used to analyze gas chromatographically separated polycyclic aromatic hydrocarbons (PAHs) by using collision-induced dissociation (CID). The nonresonant (multiple collision) mode was used to...

  8. Coulomb crystal mass spectrometry in a digital ion trap

    NASA Astrophysics Data System (ADS)

    Deb, Nabanita; Pollum, Laura L.; Smith, Alexander D.; Keller, Matthias; Rennick, Christopher J.; Heazlewood, Brianna R.; Softley, Timothy P.

    2015-03-01

    We present a mass spectrometric technique for identifying the masses and relative abundances of Coulomb-crystallized ions held in a linear Paul trap. A digital radio-frequency wave form is employed to generate the trapping potential, as this can be cleanly switched off, and static dipolar fields are subsequently applied to the trap electrodes for ion ejection. Close to 100% detection efficiency is demonstrated for Ca+ and CaF+ ions from bicomponent Ca+-CaF+ Coulomb crystals prepared by the reaction of Ca+ with CH3F . A quantitative linear relationship is observed between ion number and the corresponding integrated time-of-flight (TOF) peak, independent of the ionic species. The technique is applicable to a diverse range of multicomponent Coulomb crystals—demonstrated here for Ca+-NH 3+ -NH 4+ and Ca+-CaOH +-CaOD + crystals—and will facilitate the measurement of ion-molecule reaction rates and branching ratios in complicated reaction systems.

  9. Atmospheric pressure ionization of chlorinated ethanes in ion mobility spectrometry and mass spectrometry

    SciTech Connect

    Ewing, Robert G.; Atkinson, David A.; Benson, Michael T.

    2015-05-16

    This study investigates the APCI mechanisms associated with chlorinated ethanes in an attempt to define conditions under which unique pseudo-molecular adducts, in addition to chloride ion, can be produced for analytical measurements using IMS and MS. The ionization chemistry of chlorinated compounds typically leads to the detection of only the halide ions. Using molecular modeling, which provides insights into the ion formation and relative binding energies, predictions for the formation of pseudo-molecular adducts are postulated. Predicted structures of the chloride ion with multiple hydrogens on the ethane backbone was supported by the observation of specific pseudo-molecular adducts in IMS and MS spectra. With the proper instrumental conditions, such as short reaction times and low temp.

  10. Ion chromatography/mass spectrometry for the determination of organic ammonium and sulfate compounds

    SciTech Connect

    Conboy, J.J.; Henion, J.D. ); Martin, M.W.; Zweigenbaum, J.A. )

    1990-04-15

    The ion spray liquid chromatography/mass spectrometry (LC/MS) interface is coupled via a postsuppressor split with an ion chromatography (IC) system. The micromembrane suppressor selectively removes over 99.9% of the ion-pair agents required for ion chromatography from the eluent. The resulting solution consists of analyte, organic modifier, and water, which is compatible with ion evaporation mass spectrometry. A flow rate of 0.8 or 1.0 mL/min from the column was split after suppression such that approximately 10-20 {mu}L/min was directed to the ion spray LC/MS interface, which was coupled to an atmospheric pressure ionization (API) mass spectrometer. This system provided a convenient way to effect isocratic and gradient separations of organic ions under chromatographic conditions incompatible with most forms of mass spectrometric ionization. This work describes the separation and positive ion detection of quaternary ammonium drugs and tetraalkylammonium compounds of industrial importance using both single and tandem mass spectrometric detection (e.g., IC/MS and IC/MS/MS).

  11. Atmospheric Pressure Chemical Ionization Sources Used in The Detection of Explosives by Ion Mobility Spectrometry

    SciTech Connect

    Waltman, Melanie J.

    2010-05-01

    Explosives detection is a necessary and wide spread field of research. From large shipping containers to airline luggage, numerous items are tested for explosives every day. In the area of trace explosives detection, ion mobility spectrometry (IMS) is the technique employed most often because it is a quick, simple, and accurate way to test many items in a short amount of time. Detection by IMS is based on the difference in drift times of product ions through the drift region of an IMS instrument. The product ions are created when the explosive compounds, introduced to the instrument, are chemically ionized through interactions with the reactant ions. The identity of the reactant ions determines the outcomes of the ionization process. This research investigated the reactant ions created by various ionization sources and looked into ways to manipulate the chemistry occurring in the sources.

  12. Liquid Nebulization-Ion Mobility Spectrometry Based Quantification of Nanoparticle-Protein Conjugate Formation.

    PubMed

    Jeon, Seongho; Oberreit, Derek R; Van Schooneveld, Gary; Hogan, Christopher J

    2016-08-01

    Despite the importance of examining the formation of nanoparticle-protein conjugates, there is a dearth of routine techniques for nanoparticle-protein conjugate characterization. The most prominent change to a nanoparticle population upon conjugate formation is a shift in the nanoparticle size distribution function. However, commonly employed dynamic light scattering based approaches for size distribution characterization are ineffective for nonmonodisperse samples, and further they are relatively insensitive to size shifts of only several nanometers, which are common during conjugate formation. Conversely, gas phase ion mobility spectrometry (IMS) techniques can be used to reliably examine polydisperse samples, and are sensitive to ∼1 nm size distribution function shifts; the challenge with IMS is to convert nanoparticle-protein conjugates to aerosol particles without bringing about nonspecific aggregation or conjugate formation. Except in limited circumstances, electrospray based aerosolization has proven difficult to apply for this purpose. Here we show that via liquid nebulization (LN) with online, high-flow-rate dilution (with dilution factors up to 10 000) it is possible to aerosolize nanoparticle-protein conjugates, enabling IMS measurements of their conjugate size distribution functions. We specifically employ the LN-IMS system to examine bovine serum albumin binding to gold nanoparticles. Inferred maximum protein surface coverages (∼0.025 nm(-2)) from measurements are shown to be in excellent agreement with reported values for gold from quartz crystal microbalance measurements. It is also shown that LN-IMS measurements can be used to detect size distribution function shifts on the order of 1 nm, even in circumstances where the size distribution function itself has a standard deviation of ∼5 nm. In total, the reported measurements suggest that LN-IMS is a potentially simple and robust technique for nanoparticle-protein conjugate characterization

  13. Plasma Ion Sources for Atmospheric Pressure Ionization Mass Spectrometry.

    NASA Astrophysics Data System (ADS)

    Zhao, Jian-Guo

    1994-01-01

    Atmospheric pressure ionization (API) sources using direct-current (DC) and radio-frequency (RF) plasma have been developed in this thesis work. These ion sources can provide stable discharge currents of ~ 1 mA, 2-3 orders of magnitude larger than that of the corona discharge, a widely used API source. The plasmas can be generated and maintained in 1 atm of various buffer gases by applying -500 to -1000 V (DC plasma) or 1-15 W with a frequency of 165 kHz (RF plasma) on the needle electrode. These ion sources have been used with liquid injection to detect various organic compounds of pharmaceutical, biotechnological and environmental interest. Key features of these ion sources include soft ionization with the protonated molecule as the largest peak, and superb sensitivity with detection limits in the low picogram or femtomole range and a linear dynamic range over ~4 orders of magnitude. The RF plasma has advantages over the DC plasma in its ability to operate in various buffer gases and to produce a more stable plasma. Factors influencing the performance of the ion sources have been studied, including RF power level, liquid flow rate, chamber temperature, solvent composition, and voltage affecting the collision induced dissociation (CID). Ionization of hydrocarbons by the RF plasma API source was also studied. Soft ionization is generally produced. To obtain high sensitivity, the ion source must be very dry and the needle-to-orifice distance must be small. Nitric oxide was used to enhance the sensitivity. The RF plasma source was then used for the analysis of hydrocarbons in auto emissions. Comparisons between the corona discharge and the RF plasma have been made in terms of discharge current, ion residence time, and the ion source model. The RF plasma source provides larger linear dynamic range and higher sensitivity than the corona discharge, due to its much larger discharge current. The RF plasma was also observed to provide longer ion residence times and was not

  14. Dual mode ion mobility spectrometer and method for ion mobility spectrometry

    DOEpatents

    Scott, Jill R [Idaho Falls, ID; Dahl, David A [Idaho Falls, ID; Miller, Carla J [Idaho Falls, ID; Tremblay, Paul L [Idaho Falls, ID; McJunkin, Timothy R [Idaho Falls, ID

    2007-08-21

    Ion mobility spectrometer apparatus may include an ion interface that is operable to hold positive and negative ions and to simultaneously release positive and negative ions through respective positive and negative ion ports. A first drift chamber is operatively associated with the positive ion port of the ion interface and encloses an electric field therein. A first ion detector operatively associated with the first drift chamber detects positive ions from the first drift chamber. A second drift chamber is operatively associated with the negative ion port of the ion interface and encloses an electric field therein. A second ion detector operatively associated with the second drift chamber detects negative ions from said second drift chamber.

  15. Ion beam sputtering of Ag - Angular and energetic distributions of sputtered and scattered particles

    NASA Astrophysics Data System (ADS)

    Feder, René; Bundesmann, Carsten; Neumann, Horst; Rauschenbach, Bernd

    2013-12-01

    Ion beam sputter deposition (IBD) provides intrinsic features which influence the properties of the growing film, because ion properties and geometrical process conditions generate different energy and spatial distribution of the sputtered and scattered particles. A vacuum deposition chamber is set up to measure the energy and spatial distribution of secondary particles produced by ion beam sputtering of different target materials under variation of geometrical parameters (incidence angle of primary ions and emission angle of secondary particles) and of primary ion beam parameters (ion species and energies).

  16. Predicting reaction observables from back-scattering measurements in low-energy heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Diaz-Torres, A.; Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V.; Gomes, P. R. S.; Lenske, H.

    2016-01-01

    A simplified, reliable and useful method, based on reaction theory, for calculating a number of integrated and differential cross sections in low-energy heavy-ion collisions is presented. Simplified formulae provide predictions of reaction, capture and elastic-scattering differential cross sections, using experimental information about elastic and quasi-elastic back-scattering excitation functions.

  17. Control of Ion Distortion in Field Asymmetric Waveform Ion Mobility Spectrometry via Variation of Dispersion Field and Gas Temperature

    SciTech Connect

    Robinson, Errol W.; Shvartsburg, Alexandre A.; Tang, Keqi; Smith, Richard D.

    2008-10-01

    Field asymmetric waveform ion mobility spectrometry (FAIMS) has emerged as an analytical tool of broad utility, especially in conjunction with mass spectrometry. Of particular promise is the use of FAIMS and 2-D ion mobility methods that combine it with conventional IMS to resolve and characterize protein and other macromolecular conformers. However, FAIMS operation requires high electric fields and ions are inevitably heated by above-thermal collisions with buffer gas molecules. This may induce ion isomerization and dissociation that distort separation properties determined by FAIMS and subsequent stages and/or reduce instrumental sensitivity. As FAIMS employs a periodic waveform, the ion temperature can be characterized at the maximum or average field intensity (E). Which method is most applicable to temperature sensitive ions, such as protein ions, has been debated. Here we address this issue by measuring the unfolding of compact ubiquitin ion geometries as a function of waveform amplitude (dispersion field, ED) and gas temperature, T. The field heating is quantified by matching the dependences of structural transitions on ED and T. Increasing ED from 12 to 16 or from 16 to 20 kV/cm is equivalent to heating the (N2) gas by ~15 - 25 oC. The magnitude of field heating for any E can be calculated using the two-temperature theory, and raising ED by 4 kV/cm augments heating by ~15 - 30 oC for maximum and ~4 - 8 oC for average E in the FAIMS cycle. Hence, isomerization of ions in FAIMS appears to be governed by the maximum internal temperature at waveform peaks.

  18. Characterization of methyl methacrylate oligomers using secondary ion mass spectrometry, APCI mass spectrometry and molecular orbital theory

    NASA Astrophysics Data System (ADS)

    Takeuchi, T.; Iwai, K.; Momoji, K.; Miyamoto, I.; Saiki, K.; Hashimoto, K.

    2003-01-01

    The ionization efficiency and fragmentation mechanism of methyl methacrylate (MMA) oligomers (3-mer˜8-mer) were investigated by using secondary ion mass spectrometry (SIMS) and APCI mass spectrometry (APCI-MS). Protonation and fragmentation mechanisms of MMA oligomers were clarified by using molecular orbital (MO) methods. MMA oligomers were synthesized in anionic polymerization, and the oligomers were fractionated into 3-mer˜8-mer using gel permeation chromatography (GPC). In SIMS of MMA oligomers (3-mer˜8-mer), [MH] +, [MH-CH 3OH] +, [MH-methyl formate] + and [MH-2CH 3OH-methyl formate] + appeared. The peak intensities of adduct ions [M+Li] +, [M+Na] + and [M+K] + increased with the increase of the polymerization degree. The optimized geometries and H +, Li +, Na + and K + affinities of MMA monomer (1-mer), dimer (2-mer), and trimer (3-mer) were calculated using the PM3 and ab initio MO methods. The calculated H +, Li +, Na + and K + affinities increased in order of 1-mer, 2-mer and 3-mer of MMA.

  19. Corona discharge ion mobility spectrometry with orthogonal acceleration time of flight mass spectrometry for monitoring of volatile organic compounds.

    PubMed

    Sabo, Martin; Matejčík, Štefan

    2012-06-19

    We demonstrate the application of corona discharge ion mobility spectrometry with orthogonal acceleration time of flight mass spectrometry (CD IMS-oaTOF) for volatile organic compounds (VOCs) monitoring. Two-dimensional (2D) IMS-oaTOF spectra of VOCs were recorded in nearly real time. The corona discharge atmospheric pressure chemical ionization (APCI) source was operated in positive mode in nitrogen and air. The CD ion source generates in air H(3)O(+)(H(2)O)(n) and NO(+). The NO(+) offers additional possibility for selective ionization and for an increase of the sensitivity of monoaromatic compounds. In addition to H(3)O(+)(H(2)O)(n) and NO(+), we have carried out ionization of VOCs using acetone as dopant gas ((CH(3))(2)COH(+)). Sixteen model VOCs (tetrahydrofuran, butanol, n-propanol, iso-propano, acetone, methanol, ethanol, toluene, benzene, amomnia, dioxan, triethylamine, acetonitrile, formaldehyde, m-xylene, 2,2,2-trifluoroethylamine) were tested using these ionization techniques. PMID:22594852

  20. Resolving the bulk ion region of millimeter-wave collective Thomson scattering spectra at ASDEX Upgrade.

    PubMed

    Stejner, M; Nielsen, S; Jacobsen, A S; Korsholm, S B; Leipold, F; Meo, F; Michelsen, P K; Moseev, D; Rasmussen, J; Salewski, M; Schubert, M; Stober, J; Wagner, D H

    2014-09-01

    Collective Thomson scattering (CTS) measurements provide information about the composition and velocity distribution of confined ion populations in fusion plasmas. The bulk ion part of the CTS spectrum is dominated by scattering off fluctuations driven by the motion of thermalized ion populations. It thus contains information about the ion temperature, rotation velocity, and plasma composition. To resolve the bulk ion region and access this information, we installed a fast acquisition system capable of sampling rates up to 12.5 GS/s in the CTS system at ASDEX Upgrade. CTS spectra with frequency resolution in the range of 1 MHz are then obtained through direct digitization and Fourier analysis of the CTS signal. We here describe the design, calibration, and operation of the fast receiver system and give examples of measured bulk ion CTS spectra showing the effects of changing ion temperature, rotation velocity, and plasma composition. PMID:25273723

  1. Resolving the bulk ion region of millimeter-wave collective Thomson scattering spectra at ASDEX Upgrade

    SciTech Connect

    Stejner, M. Nielsen, S.; Jacobsen, A. S.; Korsholm, S. B.; Leipold, F.; Meo, F.; Michelsen, P. K.; Rasmussen, J.; Salewski, M.; Moseev, D.; Schubert, M.; Stober, J.; Wagner, D. H.

    2014-09-15

    Collective Thomson scattering (CTS) measurements provide information about the composition and velocity distribution of confined ion populations in fusion plasmas. The bulk ion part of the CTS spectrum is dominated by scattering off fluctuations driven by the motion of thermalized ion populations. It thus contains information about the ion temperature, rotation velocity, and plasma composition. To resolve the bulk ion region and access this information, we installed a fast acquisition system capable of sampling rates up to 12.5 GS/s in the CTS system at ASDEX Upgrade. CTS spectra with frequency resolution in the range of 1 MHz are then obtained through direct digitization and Fourier analysis of the CTS signal. We here describe the design, calibration, and operation of the fast receiver system and give examples of measured bulk ion CTS spectra showing the effects of changing ion temperature, rotation velocity, and plasma composition.

  2. Ab initio calculation of the ion feature in x-ray Thomson scattering.

    PubMed

    Plagemann, Kai-Uwe; Rüter, Hannes R; Bornath, Thomas; Shihab, Mohammed; Desjarlais, Michael P; Fortmann, Carsten; Glenzer, Siegfried H; Redmer, Ronald

    2015-07-01

    The spectrum of x-ray Thomson scattering is proportional to the dynamic structure factor. An important contribution is the ion feature which describes elastic scattering of x rays off electrons. We apply an ab initio method for the calculation of the form factor of bound electrons, the slope of the screening cloud of free electrons, and the ion-ion structure factor in warm dense beryllium. With the presented method we can calculate the ion feature from first principles. These results will facilitate a better understanding of x-ray scattering in warm dense matter and an accurate measurement of ion temperatures which would allow determining nonequilibrium conditions, e.g., along shock propagation. PMID:26274290

  3. Experimental investigations of trimer ion contributions in the low resolution mass spectrometry of hydrogen isotope mixtures.

    PubMed

    Bidica, Nicolae

    2012-01-01

    This paper reports on some preliminary experimental results of a work in progress regarding a problem involving the quantitative analysis of hydrogen isotopes by mass spectrometry of low resolution: the triatomic (trimer) ions interferences with the isotopic hydrogen species having the same mass/charge. These results indicate that, in complex mixtures of hydrogen isotopes, trimer ions are strongly affected by the presence of other species, and a new approach that takes into account the destruction mechanism of trimer ions is necessary for a proper determination of their contributions. PMID:23149602

  4. Tandem mass spectrometry and ion mobility mass spectrometry for the analysis of molecular sequence and architecture of hyperbranched glycopolymers

    PubMed Central

    Liu, Xiumin; Cool, Lydia R.; Lin, Kenneth; Kasko, Andrea M.; Wesdemiotis, Chrys

    2015-01-01

    Multidimensional mass spectrometry techniques, combining matrix-assisted laser desorption/ionization (MALDI) or electrospray ionization (ESI) with tandem mass spectrometry (MS2), multistage mass spectrometry (MSn) or ion mobility mass spectrometry (IM-MS), have been employed to gain precise structural insight on the compositions, sequences and architectures of small oligomers of a hyperbranched glycopolymer, prepared by atom transfer radical copolymerization of an acrylate monomer (A) and an acrylate inimer (B), both carrying mannose ester pendants. The MS data confirmed the incorporation of multiple inimer repeat units, which ultimately lead to the hyperbranched material. The various possible structures of n-mers with the same composition were subsequently elucidated based on MS2 and MSn studies. The characteristic elimination of bromomethane molecule provided definitive information about the comonomer connectivity in the copolymeric AB2 trimer and A2B2 tetramer, identifying as present only one of the three possible trimeric isomers (viz. sequence BBA) and only two of the six possible tetrameric isomers (viz. sequences BBA2 and BABA). Complementary IM-MS studies confirmed that only one of the tetrameric structures is formed. Comparison of the experimentally determined collision cross-section of the detected isomer with those predicted by molecular simulations for the two possible sequences ascertained BBA2 as the predominant tetrameric architecture. The multidimensional MS approaches presented provide connectivity information at the atomic level without requiring high product purity (due to the dispersive nature of MS) and, hence, should be particularly useful for the microstructure characterization of novel glycopolymers and other types of complex copolymers. PMID:25519163

  5. Pendular Proteins in Gases and New Avenues for Characterization of Macromolecules by Ion Mobility Spectrometry

    SciTech Connect

    Shvartsburg, Alexandre A.; Noskov, Sergei; Purves, Randy; Smith, Richard D.

    2009-04-21

    Polar molecules align in electric fields when the dipole energy (proportional to field intensity E × dipole moment p) exceeds the thermal rotational energy. Small molecules have low p and align only at inordinately high E or upon extreme cooling. Many biomacromolecules and ions are strong permanent dipoles and may align at E achievable in gases and room temperature. The collision cross sections of aligned ions with gas molecules generally differ from orientationally averaged quantities, affecting ion mobilities measured in ion mobility spectrometry (IMS). Field asymmetric waveform IMS (FAIMS) separates ions by the difference between mobilities at high and low E and hence can resolve and identify macroion conformers based on the mobility difference between pendular and free rotor states. An exceptional sensitivity of that difference to the ion geometry and charge distribution holds the potential for a powerful new method for separation and characterization of macromolecular species. Theory predicts that the pendular alignment of ions in gases at any E requires a minimum p depending on the ion mobility, gas pressure, and temperature. At ambient conditions used in current FAIMS systems, the p for realistic ions must exceed ~300 - 400 Debye. The dipole moments of proteins statistically increase with increasing mass, and such values are typical above ~30 kDa. FAIMS analyses of protein ions and complexes of ~30 - 130 kDa show an order-of-magnitude expansion of separation space compared to smaller proteins and other ions, consistent with expectations for the dipole-aligned regime.

  6. Pendular proteins in gases and new avenues for characterization of macromolecules by ion mobility spectrometry

    PubMed Central

    Shvartsburg, Alexandre A.; Noskov, Sergei Y.; Purves, Randy W.; Smith, Richard D.

    2009-01-01

    Polar molecules align in electric fields when the dipole energy (proportional to field intensity E × dipole moment p) exceeds the thermal rotational energy. Small molecules have low p and align only at inordinately high E or upon extreme cooling. Many biomacromolecules and ions are strong permanent dipoles that align at E achievable in gases and room temperature. The collision cross-sections of aligned ions with gas molecules generally differ from orientationally averaged quantities, affecting ion mobilities measured in ion mobility spectrometry (IMS). Field asymmetric waveform IMS (FAIMS) separates ions by the difference between mobilities at high and low E and hence can resolve and identify macroion conformers based on the mobility difference between pendular and free rotor states. The exceptional sensitivity of that difference to ion geometry and charge distribution holds the potential for a powerful method for separation and characterization of macromolecular species. Theory predicts that the pendular alignment of ions in gases at any E requires a minimum p that depends on the ion mobility, gas pressure, and temperature. At ambient conditions used in current FAIMS systems, p for realistic ions must exceed ≈300–400 Debye. The dipole moments of proteins statistically increase with increasing mass, and such values are typical above ≈30 kDa. As expected for the dipole-aligned regime, FAIMS analyses of protein ions and complexes of ≈30–130 kDa show an order-of-magnitude expansion of separation space compared with smaller proteins and other ions. PMID:19351899

  7. Rhodium Oxide Cluster Ions Studied by Thermal Desorption Spectrometry.

    PubMed

    Mafuné, Fumitaka; Takenouchi, Masato; Miyajima, Ken; Kudoh, Satoshi

    2016-01-28

    Gas-phase rhodium oxide clusters, RhnOm(+), were investigated by measuring the rate constants of oxidation and thermal desorption spectrometry. RhnOm(+) was suggested to be categorized into different states as m/n ≤ 1, 1 < m/n ≤ 1.5, and 1.5 < m/n in terms of energy and kinetics. For m/n ≤ 1, the O atoms readily adsorbed on the cluster with a large binding energy until RhO was formed. Under the O2-rich environment, oxidation proceeded until Rh2O3 was formed with a moderate binding energy. In addition, O2 molecules attached weakly to the cluster, and Rh2O3 formed RhnOm(+) (1.5 < m/n). The energetics and geometries of Rh6Om(+) (m = 6-12) were obtained using density functional theory calculations and were found to be consistent with the experimental results. PMID:26730616

  8. Fast detection of narcotics by single photon ionization mass spectrometry and laser ion mobility spectrometry

    NASA Astrophysics Data System (ADS)

    Laudien, Robert; Schultze, Rainer; Wieser, Jochen

    2010-10-01

    In this contribution two analytical devices for the fast detection of security-relevant substances like narcotics and explosives are presented. One system is based on an ion trap mass spectrometer (ITMS) with single photon ionization (SPI). This soft ionization technique, unlike electron impact ionization (EI), reduces unwanted fragment ions in the mass spectra allowing the clear determination of characteristic (usually molecular) ions. Their enrichment in the ion trap and identification by tandem MS investigations (MS/MS) enables the detection of the target substances in complex matrices at low concentrations without time-consuming sample preparation. For SPI an electron beam pumped excimer light source of own fabrication (E-Lux) is used. The SPI-ITMS system was characterized by the analytical study of different drugs like cannabis, heroin, cocaine, amphetamines, and some precursors. Additionally, it was successfully tested on-site in a closed illegal drug laboratory, where low quantities of MDMA could be directly detected in samples from floors, walls and lab equipments. The second analytical system is based on an ion mobility (IM) spectrometer with resonant multiphoton ionization (REMPI). With the frequency quadrupled Nd:YAG laser (266 nm), used for ionization, a selective and sensitive detection of aromatic compounds is possible. By application of suited aromatic dopants, in addition, also non-aromatic polar compounds are accessible by ion molecule reactions like proton transfer or complex formation. Selected drug precursors could be successfully detected with this device as well, qualifying it to a lower-priced alternative or useful supplement of the SPI-ITMS system for security analysis.

  9. Reduced matrix effects for anionic compounds with paired ion electrospray ionization mass spectrometry.

    PubMed

    Guo, Hongyue; Breitbach, Zachary S; Armstrong, Daniel W

    2016-03-17

    It is well-known that matrix effects in high performance liquid chromatography coupled to electrospray ionization mass spectrometry (HPLC-ESI-MS) can seriously compromise quantitative analysis and affect method reproducibility. Paired ion electrospray ionization (PIESI) mass spectrometry is an approach for analyzing ultra-low levels of anions in the positive ion mode. This approach uses a structurally optimized ion pairing reagent to post-column associate with the anionic analyte, subsequently forming positively charged complexes. These newly formed complex ions are often more surface-active as compared to either the native anion or the ion pairing reagent. No studies have examined whether or not the PIESI approach mitigates matrix effects. Consequently, a controlled study was done using five analytes in highly controlled and reproducible synthetic groundwater and urine matrices. In addition, two different mass spectrometers (linear ion trap and triple quadrupole) were used. Compared to the negative ion mode, the PIESI-MS approach was less susceptible to matrix effects when performed on two different MS platforms. Using PIESI-MS, less dilution of the sample is needed to eliminate ionization suppression which, in turn, permits lower limits of detection and quantitation. PMID:26920775

  10. Servo-amplifiers for ion current measurement in mass spectrometry

    USGS Publications Warehouse

    Stacey, J.S.; Russell, R.D.; Kollar, F.

    1965-01-01

    A servo-voltmeter can provide a useful alternative to the d.c. amplifier or vibrating reed electrometer for the accurate measurement of mass spectrometer ion currents, and has some advantages which recommend its use in certain applications. A generalized analysis based on servomechanism theory is presented as an aid for understanding the design criteria for this type of device. Two existing systems are described and their operation and performance are examined.