Science.gov

Sample records for ion-beam assisted silicon

  1. Control of silicon oxynitrides refractive index by reactive-assisted ion beam sputter deposition

    NASA Astrophysics Data System (ADS)

    Ida, Michel; Chaton, Patrick; Rafin, B.

    1994-11-01

    This paper presents the properties of silicon oxynitrides obtained by reactive ion beam sputter deposition: Dual Ion Beam System. Control of refractive index was achieved by adjusting the process parameters as ion beam current, ion beam energy and reactive gas partial pressure of oxygen and nitrogen. The main difficulty was to achieve stoichiometric nitride, it has been shown that energetic ionized nitrogen was needed to obtain silicon nitride. The major parameter, to obtain variable compositions between silica and silicon nitride, was the oxygen partial pressure with a fixed nitrogen partial pressure. Optical constants in the visible range, refractive index and extinction coefficient, have been measured by spectrophotometry and spectroscopic ellipsometry. Stoichiometry, contamination and packing density have been measured by Rutherford Backscattering and Nuclear Reaction Analysis. The correlation between the film composition and optical constants is shown. Various test results indicate that silicon oxynitrides obtained by reactive assisted ion beam sputtering are high quality optical materials. These films are homogeneous isotropic, with a high packing density. The extinction coefficient is in the order of 10-4 after 300 degree(s)C annealing. All values of refractive index between 1.49 and 2.1 can be chosen.

  2. Mechanical properties of silicon oxynitride thin films prepared by low energy ion beam assisted deposition

    NASA Astrophysics Data System (ADS)

    Shima, Yukari; Hasuyama, Hiroki; Kondoh, Toshiharu; Imaoka, Yasuo; Watari, Takanori; Baba, Koumei; Hatada, Ruriko

    1999-01-01

    Silicon oxynitride (SiO xN y) films (0.1-0.7 μm) were produced on Si (1 0 0), glass and 316L stainless steel substrates by ion beam assisted deposition (IBAD) using Si evaporation and the concurrent bombardment with a mixture of 200 eV N 2 and Ar, or O 2 and Ar ions. Adhesion was evaluated by pull-off tests. Film hardness was measured by a nanoindentation system with AFM. The measurement of internal stress in the films was carried out by the Stoney method. The film structure was examined by GXRD. XPS was employed to measure the composition of films and to analyze the chemical bonds. The dependence of mechanical properties on the film thickness and the processing temperature during deposition was studied. Finally, the relations between the mechanical properties of the films and the correlation with corrosion-protection ability of films are discussed and summarized.

  3. Crystalline lattice phase-conversion on thin boron nitride films deposited on silicon wafers by an ion beam assisted deposition method

    NASA Astrophysics Data System (ADS)

    Yokota, Katsuhiro; Kimura, Hidekazu; Miyashita, Fumiyoshi

    2007-04-01

    Boron nitride (BN) was deposited on (1 0 0) silicon wafers by using an ion beam assisted deposition system comprised of an electron beam evaporator and a Kaufman ion source. The intensities of XRD-peaks on turbostratic-BN and IR-peaks on hexagonal-BN increased with increasing nitrogen ion beam energy, and decreased after reached a maximum value on a BN film deposited at 2 keV. On the other hand, a XRD-peak on (1 0 0) cubic-BN first was measured on a BN film deposited at 3 keV.

  4. Synthesis of silicon oxynitride by ion beam sputtering and the effects of nitrogen ion-assisted bombardment

    NASA Astrophysics Data System (ADS)

    Lambrinos, M. F.; Valizadeh, R.; Colligon, J. S.

    1997-05-01

    Thin silicon oxynitride (SiO xN y) films were synthesised without substrate heating by means of N 2+ ion-beam sputtering of a silicon nitride target at an energy of 1000 eV in a N 2 and O 2 ambient with and without 200 eV N 2+ ion assistance. Unassisted films were deposited in a controlled O 2 partial pressure ranging from ambient to 5.0 × 10 -3 Pa whereas assisted films were deposited at a fixed O 2 partial pressure of 1.0 × 10 -3 Pa. The O/(O+N) atomic fraction and the SiO xN y asymmetric stretch mode IR absorption peak wavenumber of unassisted films increased almost linearly with increasing O 2 partial pressure, from 0.2 to 1.0 and 860 cm -1 to 1050 cm -1, respectively, while their refractive indices decreased from 1.92 to 1.46. The behaviour of the SiO xN y film refractive index with the SiO 2 fraction has been compared to that predicted by Drude, Lorentz-Lorenz and Bruggeman models under the assumption that the film is a mixture of SiO 2 and Si 3N 4 phases. For a fixed O 2 partial pressure, the O content of the N 2+ ion-assisted films increased with an increase in the N + ion to Si atom arrival ratio from 0 to 3. This increase in O content correlate with changes in the film refractive index and SiO xN y asymmetric stretch mode absorption peak position, from 1.56 to 1.43 and 1014 cm -1 to 1054 cm -1, respectively, indicating that the O/N atomic ratio increases with increasing N + ion to Si atom ratio until film properties consistent with stoichiometric SiO 2 are obtained.

  5. Noble gas incorporation in sputtered and ion beam assisted grown silicon films

    SciTech Connect

    van Veen, A. . Inter-Faculty Reactor Inst.); Greuter, M.J.W.; Niesen, L. . Dept. of Physics); Nielsen, B.; Lynn, K.G. )

    1991-01-01

    Gas desorption measurements have been performed on sputter deposited silicon films. The sputter gas was argon or krypton. Parameters influencing the incorporation process e.g. bias voltage, substrate temperature and arrival rate ratio of silicon and noble gas atoms have been systematically varied. The films, a-Si and c-Si, have been characterised by various techniques for composition and defect analysis. A model has been applied to describe the composition of the growing silicon layer. Underlying mechanisms like gas-gas sputtering have been studied in separate ion implantation experiments. For a-Si concentrations as high as 6% Ar and Kr have been found. An important effect is the injection of self-interstitial atoms caused by the low energy heavy ion bombardment. It causes the layer to grow without large open volume defects.

  6. Noble gas incorporation in sputtered and ion beam assisted grown silicon films

    SciTech Connect

    van Veen, A.; Greuter, M.J.W.; Niesen, L.; Nielsen, B.; Lynn, K.G.

    1991-12-31

    Gas desorption measurements have been performed on sputter deposited silicon films. The sputter gas was argon or krypton. Parameters influencing the incorporation process e.g. bias voltage, substrate temperature and arrival rate ratio of silicon and noble gas atoms have been systematically varied. The films, a-Si and c-Si, have been characterised by various techniques for composition and defect analysis. A model has been applied to describe the composition of the growing silicon layer. Underlying mechanisms like gas-gas sputtering have been studied in separate ion implantation experiments. For a-Si concentrations as high as 6% Ar and Kr have been found. An important effect is the injection of self-interstitial atoms caused by the low energy heavy ion bombardment. It causes the layer to grow without large open volume defects.

  7. Metal assisted focused-ion beam nanopatterning

    NASA Astrophysics Data System (ADS)

    Kannegulla, Akash; Cheng, Li-Jing

    2016-09-01

    Focused-ion beam milling is a versatile technique for maskless nanofabrication. However, the nonuniform ion beam profile and material redeposition tend to disfigure the surface morphology near the milling areas and degrade the fidelity of nanoscale pattern transfer, limiting the applicability of the technique. The ion-beam induced damage can deteriorate the performance of photonic devices and hinders the precision of template fabrication for nanoimprint lithography. To solve the issue, we present a metal assisted focused-ion beam (MAFIB) process in which a removable sacrificial aluminum layer is utilized to protect the working material. The new technique ensures smooth surfaces and fine milling edges; in addition, it permits direct formation of v-shaped grooves with tunable angles on dielectric substrates or metal films, silver for instance, which are rarely achieved by using traditional nanolithography followed by anisotropic etching processes. MAFIB was successfully demonstrated to directly create nanopatterns on different types of substrates with high fidelity and reproducibility. The technique provides the capability and flexibility necessary to fabricate nanophotonic devices and nanoimprint templates.

  8. Metal assisted focused-ion beam nanopatterning.

    PubMed

    Kannegulla, Akash; Cheng, Li-Jing

    2016-09-01

    Focused-ion beam milling is a versatile technique for maskless nanofabrication. However, the nonuniform ion beam profile and material redeposition tend to disfigure the surface morphology near the milling areas and degrade the fidelity of nanoscale pattern transfer, limiting the applicability of the technique. The ion-beam induced damage can deteriorate the performance of photonic devices and hinders the precision of template fabrication for nanoimprint lithography. To solve the issue, we present a metal assisted focused-ion beam (MAFIB) process in which a removable sacrificial aluminum layer is utilized to protect the working material. The new technique ensures smooth surfaces and fine milling edges; in addition, it permits direct formation of v-shaped grooves with tunable angles on dielectric substrates or metal films, silver for instance, which are rarely achieved by using traditional nanolithography followed by anisotropic etching processes. MAFIB was successfully demonstrated to directly create nanopatterns on different types of substrates with high fidelity and reproducibility. The technique provides the capability and flexibility necessary to fabricate nanophotonic devices and nanoimprint templates. PMID:27479713

  9. Ion-beam-assisted etching of diamond

    NASA Technical Reports Server (NTRS)

    Efremow, N. N.; Geis, M. W.; Flanders, D. C.; Lincoln, G. A.; Economou, N. P.

    1985-01-01

    The high thermal conductivity, low RF loss, and inertness of diamond make it useful in traveling wave tubes operating in excess of 500 GHz. Such use requires the controlled etching of type IIA diamond to produce grating like structures tens of micrometers deep. Previous work on reactive ion etching with O2 gave etching rates on the order of 20 nm/min and poor etch selectivity between the masking material (Ni or Cr) and the diamond. An alternative approach which uses a Xe(+) beam and a reactive gas flux of NO2 in an ion-beam-assisted etching system is reported. An etching rate of 200 nm/min was obtained with an etching rate ratio of 20 between the diamond and an aluminum mask.

  10. Dual ion beam assisted deposition of biaxially textured template layers

    DOEpatents

    Groves, James R.; Arendt, Paul N.; Hammond, Robert H.

    2005-05-31

    The present invention is directed towards a process and apparatus for epitaxial deposition of a material, e.g., a layer of MgO, onto a substrate such as a flexible metal substrate, using dual ion beams for the ion beam assisted deposition whereby thick layers can be deposited without degradation of the desired properties by the material. The ability to deposit thicker layers without loss of properties provides a significantly broader deposition window for the process.

  11. Deposition of reactively ion beam sputtered silicon nitride coatings

    NASA Technical Reports Server (NTRS)

    Grill, A.

    1982-01-01

    An ion beam source was used to deposit silicon nitride films by reactively sputtering a silicon target with beams of Ar + N2 mixtures. The nitrogen fraction in the sputtering gas was 0.05 to 0.80 at a total pressure of 6 to 2 millionth torr. The ion beam current was 50 mA at 500 V. The composition of the deposited films was investigated by auger electron spectroscopy and the rate of deposition was determined by interferometry. A relatively low rate of deposition of about 2 nm. one-tenth min. was found. AES spectra of films obtained with nitrogen fractions higher than 0.50 were consistent with a silicon to nitrogen ratio corresponding to Si3N4. However the AES spectra also indicated that the sputtered silicon nitride films were contaminated with oxygen and carbon and contained significant amounts of iron, nickel, and chromium, most probably sputtered from the holder of the substrate and target.

  12. Hydrogenated amorphous silicon deposited by ion-beam sputtering

    NASA Technical Reports Server (NTRS)

    Lowe, V. E.; Henin, N.; Tu, C.-W.; Tavakolian, H.; Sites, J. R.

    1981-01-01

    Hydrogenated amorphous silicon films 1/2 to 1 micron thick were deposited on metal and glass substrates using ion-beam sputtering techniques. The 800 eV, 2 mA/sq cm beam was a mixture of argon and hydrogen ions. The argon sputtered silicon from a pure (7.6 cm) single crystal wafer, while the hydrogen combined with the sputtered material during the deposition. Hydrogen to argon pressure ratios and substrate temperatures were varied to minimize the defect state density in the amorphous silicon. Characterization was done by electrical resistivity, index of refraction and optical absorption of the films.

  13. Chemically assisted ion beam etching of polycrystalline and (100)tungsten

    NASA Technical Reports Server (NTRS)

    Garner, Charles

    1987-01-01

    A chemically assisted ion-beam etching technique is described which employs an ion beam from an electron-bombardment ion source and a directed flux of ClF3 neutrals. This technique enables the etching of tungsten foils and films in excess of 40 microns thick with good anisotropy and pattern definition over areas of 30 sq mm, and with a high degree of selectivity. (100) tungsten foils etched with this process exhibit preferred-orientation etching, while polycrystalline tungsten films exhibit high etch rates. This technique can be used to pattern the dispenser cathode surfaces serving as electron emitters in traveling-wave tubes to a controlled porosity.

  14. Ion beam figuring of CVD silicon carbide mirrors

    NASA Astrophysics Data System (ADS)

    Gailly, P.; Collette, J.-P.; Frenette, K. Fleury; Jamar, C.

    2004-06-01

    Optical and structural elements made of silicon carbide are increasingly found in space instruments. Chemical vapor deposited silicon carbide (CVD-SiC) is used as a reflective coating on SiC optics in reason of its good behavior under polishing. The advantage of applying ion beam figuring (IBF) to CVD-SiC over other surface figure-improving techniques is discussed herein. The results of an IBF sequence performed at the Centre Spatial de Liège on a 100 mm CVD-SiC mirror are reported. The process allowed to reduce the mirror surface errors from 243 nm to 13 nm rms. Beside the surface figure, roughness is another critical feature to consider in order to preserve the optical quality of CVD-SiC. Thus, experiments focusing on the evolution of roughness were performed in various ion beam etching conditions. The roughness of samples etched at different depths down to 3 μm was determined with an optical profilometer. These measurements emphasize the importance of selecting the right combination of gas and beam energy to keep roughness at a low level. Kaufman-type ion sources are generally used to perform IBF but the performance of an end-Hall ion source in figuring CVD-SiC mirrors was also evaluated in this study. In order to do so, ion beam etching profiles obtained with the end-Hall source on CVD-SiC were measured and used as a basis for IBF simulations.

  15. Area-selective formation of Si nanocrystals by assisted ion-beam irradiation during dual-ion-beam deposition

    SciTech Connect

    Kim, Jae Kwon; Cha, Kyu Man; Kang, Jung Hyun; Kim, Yong; Yi, Jae-Yel; Chung, Tae Hun; Bark, Hong Jun

    2004-08-30

    We investigate the effect of Ar-ion-beam irradiation during the deposition of SiO{sub x} films by dual-ion-beam deposition system. Ion-beam irradiation effectively increases the oxygen content, x, in SiO{sub x} films indicative of the preferential sputtering of Si phase as compared to SiO{sub 2} phase in SiO{sub x} films. We observe the intense photoluminescence from nonirradiated sample after postdeposition annealing at 1100 deg. C indicating the formation of Si nanocrystals as shown by a cross-sectional transmission electron microscope. However, the increased oxygen content in ion-beam-irradiated sample results in small optical volume of small Si nanocrystals not sufficient for yielding appreciable photoluminescence intensity after postdeposition annealing. The property is utilized for achieving the area-selective formation of Si nanocrytals by inserting a shadow mask in assist ion beam during deposition.

  16. Ion beam lithography with gold and silicon ions

    NASA Astrophysics Data System (ADS)

    Seniutinas, Gediminas; Balčytis, Armandas; Nishijima, Yoshiaki; Nadzeyka, Achim; Bauerdick, Sven; Juodkazis, Saulius

    2016-04-01

    Different ion species deliver a different material sputtering yield and implantation depth, thus enabling focused ion beam (FIB) fabrication for diverse applications. Using newly developed FIB milling with double charged hbox {Au}^{2+} and hbox {Si}^{2+} ions, fabrication has been carried out on Au-sputtered films to define arrays of densely packed nanoparticles supporting optical extinction peaks at visible-IR wavelengths determined by the size, shape, and proximity of nanoparticles. Results are qualitatively compared with hbox {Ga}+ milling. A possibility to use such ion implantation to tailor the etching rate of silicon is also demonstrated.

  17. Integrated simulations for ion beam assisted fast ignition

    NASA Astrophysics Data System (ADS)

    Sakagami, H.; Johzaki, T.; Sunahara, A.; Nagatomo, H.

    2016-03-01

    Although the energy conversion efficiency from the heating laser to fast electrons is high, the coupling efficiency from fast electrons to the core is estimated to be very low due to large divergence angle of fast electrons in fast ignition experiments at ILE, Osaka University. To mitigate this problem, a plastic thin film or low-density foam, which can generate not only proton (H+) but also carbon (C6+) beams, is combined with currently used cone-guided targets and additional core heating by ions is expected. According to integrated simulations, it is found that these ion beams can enhance the core heating by 20∼60% and it shows a possibility of ion beam assisted fast ignition.

  18. Optical absorption of ion-beam sputtered amorphous silicon coatings

    NASA Astrophysics Data System (ADS)

    Steinlechner, Jessica; Martin, Iain W.; Bassiri, Riccardo; Bell, Angus; Fejer, Martin M.; Hough, Jim; Markosyan, Ashot; Route, Roger K.; Rowan, Sheila; Tornasi, Zeno

    2016-03-01

    Low mechanical loss at low temperatures and a high index of refraction should make silicon optimally suited for thermal noise reduction in highly reflective mirror coatings for gravitational wave detectors. However, due to high optical absorption, amorphous silicon (aSi) is unsuitable for being used as a direct high-index coating material to replace tantala. A possible solution is a multimaterial design, which enables exploitation of the excellent mechanical properties of aSi in the lower coating layers. The possible number of aSi layers increases with absorption reduction. In this work, the optimum heat treatment temperature of aSi deposited via ion-beam sputtering was investigated and found to be 450 °C . For this temperature, the absorption after deposition of a single layer of aSi at 1064 nm and 1550 nm was reduced by more than 80%.

  19. Grain growth kinetics during ion beam irradiation of chemical vapor deposited amorphous silicon

    SciTech Connect

    Spinella, C.; Lombardo, S. ); Campisano, S.U. )

    1990-08-06

    The amorphous to polycrystal transition during Kr ion beam irradiation of chemical vapor deposited silicon layers has been studied in the temperature range 320--480 {degree}C. At each irradiation temperature the average grain diameter increases linearly with the Kr dose, while the grain density remains constant within the experimental accuracy. The growth rate follows a complex behavior which can be described by dynamic defect generation and annihilation. The absolute value of the grain growth rate is equal to that of the ion-assisted epitaxial layer by layer crystallization in the silicon (111) orientation. This result can be related to the crystal grain structure and morphology.

  20. DNA characterization with Ion Beam Sculpted Silicon Nitride Nanopores

    PubMed Central

    Rollings, Ryan C.; McNabb, David S.; Li, Jiali

    2013-01-01

    Solid state nanopores are emerging as robust single molecule electronic measurement devices and as platforms for confining biomolecules for further analysis. The first silicon nitride nanopore to detect individual DNA molecules were fabricated using ion beam sculpting (IBS), a method that uses broad, low energy ion beams to create nanopores with dimensions ranging from 2 to 20 nm. In this chapter, we discuss the fabrication, characterization, and use of IBS sculpted nanopores as well as efficient uses of pClamp and MATLAB software suites for data acquisition and analysis. The fabrication section will cover the repeatability and the pore size limits. The characterization discussion focuses on the geometric properties as measured by low and high resolution transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), and energy filtered TEM (EFTEM). The section on translocation experiments focuses on how to use tools commonly available to the nanopore experimenter to determine whether a pore will be useful for experimentation or if it should be abandoned. A memory efficient method of taking data using Clampex’s event-driven mode and dual channel recording will be presented, followed by an easy to implement multi-threshold event detection and classification method using MATLAB software. PMID:22528259

  1. Evaluation of collagen immobilized to silicon plates by ion beam

    NASA Astrophysics Data System (ADS)

    Yokoyama, Y.; Kobayashi, T.; Iwaki, M.

    2006-01-01

    A study has been made of immobilization of collagen coated on the substrate by ion beam in order to elucidate the effects of ion bombardment on cell adhesion strength. Substrates used were silicon plates, on which 0.3% type-I collagen solution was coated using a spin coater. The collagen-coated silicon was bombarded with 50 keV He+ ions at doses from 1 × 1013 to 1 × 1015 ions/cm2 using a RIKEN TK-100 ion implanter. The collagen-immobilized specimens were mounted on a parallel-plate flow chamber to perform the collagen adhesion tests with a flowing shear stress. Morphological observations of collagen were performed by scanning transmission electron microscopy (STEM). The chemical condition of collagen was detected by X-ray photoelectron spectroscopy (XPS). The collagen layer in the non-bombarded specimen was about 20 nm in thickness. STEM micrographs showed that collagen layer has thinned due to contraction by ion bombardment as the dose increased. After the collagen adhesion test, collagen layer surface with the non-bombarded specimen was peeled off by shear stress. As the dose increased, the detachment of collagen was suppressed. Detachment of collagen was hardly observed for the dose of 1 × 1015 ions/cm2. The XPS results of collagen structures showed that ion bombardment generated new bonds between collagen molecules in the collagen layer. It is concluded that the increase of collagen adhesion at higher doses is due to the ion-beam immobilization of collagen molecules resulting from new bond generation by displaced atoms and excited atoms between collagen molecules in the collagen layer.

  2. Synthesis of silicon nitride films by ion beam enhanced deposition

    NASA Astrophysics Data System (ADS)

    Xianghuai, Liu; Bin, Xue; Zhihong, Zheng; Zuyao, Zhou; Shichang, Zou

    1989-03-01

    Silicon nitride films with stoichiometric ratio of Si 3N 4 have been synthesized by concurrent electron beam evaporation of silicon and bombardment with nitrogen ions. The results show that the component ratio of nitrogen to silicon in IBED silicon nitride films can be controlled and predicted by the atomic arrival rate ratio of nitrogen to silicon. IR measurement shows that the characteristic absorption peak of IBED Si 3N 4 is located at a wavenumber of 840 cm -1. The refractive index ranges from 2.2 to 2.6. RBS, AES, TEM, SEM, ED and spreading resistance measurement were used for investigation of the depth profiles of composition and structure of silicon nitride films synthesized by IBED. An intermixed layer is formed at the interface by the knock on effect, and a silicon enriched layer is observed at the surface region of the film. Normally the films were found to be amorphous, but electron diffraction patterns taken from deposited layer showed a certain crystallinity. The silicon nitride films prepared by IBED have dramatically less oxygen content than that formed by non-ion-assisted deposition.

  3. Crystal-amorphous-silicon interface kinetics under ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Priolo, F.; La Ferla, A.; Spinella, C.; Rimini, E.; Campisano, S. U.; Ferla, G.

    1990-01-01

    Our recent work on ion-beam-assisted epitaxial growth of amorphous Si layers on single crystal substrates is reviewed. The crystallization was induced by a 600 keV Kr2+ beam at a dose rate of 1×1012/cm2 · s. During irradiations the samples were mounted on a resistively heated copper block whose temperature was maintained constant in the range 250-450°C. The planar motion of the crystal-amorphous interface was monitored in situ by dynamic reflectivity measurements. This technique allows the ion-induced growth rate to be measured with a very high precision. We have observed that this growth rate scales linearly with the energy deposited into elastic collisions at the crystal-amorphous interface by the impinging ions. Moreover, the rate shows an Arrhenius temperature dependence with a well defined activation energy of 0.32±0.05 eV. The dependence of this process on substrate orientation and on impurities either dissolved in the amorphous layer or present at very high concentration at the crystal-amorphous interface is also discussed.

  4. Crystal-amorphous-silicon interface kinetics under ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Priolo, F.; La Ferla, A.; Spinella, C.; Rimini, E.; Campisano, S. U.; Ferla, G.

    1989-11-01

    Our recent work on ion-beam-assisted epitaxial growth of amorphous Si layers on single crystal substrates is reviewed. The crystallization was induced by a 600 keV Kr 2+ beam at a dose rate of 1×10 12/cm 2 · s. During irradiations the samples were mounted on a resistively heated copper block whose temperature was maintained constant in the range 250-450°C. The planar motion of the crystal-amorphous interface was monitored in situ by dynamic reflectivity measurements. This technique allows the ion-induced growth rate to be measured with a very high precision. We have observed that this growth rate scales linearly with the energy deposited into elastic collisions at the crystal-amorphous interface by the impinging ions. Moreover, the rate shows an Arrhenius temperature dependence with a well defined activation energy of 0.32±0.05 eV. The dependence of this process on substrate orientation and on impurities either dissolved in the amorphous layer or present at very high concentration at the crystal-amorphous interface is also discussed.

  5. Characterization of CrBN films deposited by ion beam assisted deposition

    NASA Astrophysics Data System (ADS)

    Aouadi, S. M.; Namavar, F.; Tobin, E.; Finnegan, N.; Haasch, R. T.; Nilchiani, R.; Turner, J. A.; Rohde, S. L.

    2002-02-01

    This article reports on the growth and analysis of CrBN nanocrystalline materials using an ion beam assisted deposition process. In addition, this article addresses the utilization of spectroscopic ellipsometry for in situ analysis of ternary nitrides. Coatings, with a total thickness of 1.5±0.2 μm, were deposited at low temperatures (<200 °C) on silicon substrates using ion beam assisted deposition. These coatings were characterized postdeposition using x-ray diffraction (XRD), atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), visible-light spectroscopic ellipsometry (VIS-SE), infrared spectroscopic ellipsometry (IR-SE), and nanoindentation. The primary phases in the films were investigated using XRD. The surface morphology and nanocrystalline nature of the coatings (grain size of 5-7 nm) were deduced using AFM. The elemental composition and phase composition of the samples were determined from XPS and AES measurements and were subsequently deduced from the analysis of the VIS-SE data, and these correlated well. XPS, AES, and IR-SE revealed the crystal structure of the BN phase in the ternary compounds. The correlation of the results from these various techniques indicates that in situ SE may be a potential technique to control the growth of ternary nitride coatings in the future. The mechanical properties of the coatings were evaluated using nanohardness testing. The hardness and elastic modulus were measured to be 19-22 GPa and 250-270 GPa, respectively.

  6. Phenomenological description of ion-beam-induced epitaxial crystallization of amorphous silicon

    SciTech Connect

    Priolo, F. ); Spinella, C. ); Rimini, E. )

    1990-03-15

    In this paper we report detailed experimental measurements on the dependence of the ion-beam-induced epitaxial crystallization (IBIEC) of amorphous silicon on dopant concentration. The results show that the presence of B, P, and As dopants enhances IBIEC. In particular a logarithmic relationship between the ion-induced growth rate and dopant concentration is found for all of the impurities. In order to explain this behavior a phenomenological model of IBIEC will also be presented. The model postulates that the same defect is responsible for both thermal and ion-beam annealing. It combines the structural and electronic features of the description proposed by Williams and Elliman for conventional thermal epitaxial growth, with the intracascade approach of Jackson to the ion-assisted regrowth. Defects responsible for IBIEC are identified in kinklike steps formed onto (110) ledges at the crystalline-amorphous interface. These kinks are assumed to be generated thermally within the thermal-spike regime of each collision cascade. After defect generation, then, our approach follows Jackson's as far as the temporal evolution of defects is concerned. The model can account for all of the experimental results previously explained by the Jackson model and, moreover, can account for the doping and orientation dependences of IBIEC. This description is discussed and quantitatively compared with the experimental data.

  7. Fabrication of OSOS cells by neutral ion beam sputtering. [Oxide Semiconductor On Silicon solar cells

    NASA Technical Reports Server (NTRS)

    Burk, D. E.; Dubow, J. B.; Sites, J. R.

    1976-01-01

    Oxide semiconductor on silicon (OSOS) solar cells have been fabricated from various indium tin oxide (In2O3)x(SnO2)1-x compositions sputtered onto p-type single crystal silicon substrates with a neutralized argon ion beam. High temperature processing or annealing was not required. The highest efficiency was achieved with x = 0.91 and was 12 percent. The cells are environmentally rugged, chemically stable, and show promise for still higher efficiencies. Moreover, the ion beam sputtering fabrication technique is amenable to low cost, continuous processing.

  8. Ripple rotation, pattern transitions, and long range ordered dots on silicon by ion beam erosion

    SciTech Connect

    Ziberi, B.; Frost, F.; Tartz, M.; Neumann, H.; Rauschenbach, B.

    2008-02-11

    The importance of the ion incidence angle in self-organized pattern formation during low energy Xe{sup +} ion beam erosion of silicon is elaborated. By a small step variation of the ion incidence angle, a variety of nanostructured patterns can develop. In this context, the angular distribution of ions within the ion beam is explored as an additional parameter controlling the evolution of the surface topography. Due to a controlled variation of these two parameters, hitherto unknown phenomena are found: (i) formation of rotated ripples, (ii) continuous transitions between patterns, and (iii) long range square ordered dot patter000.

  9. Structural and composition investigations at delayered locations of low k integrated circuit device by gas-assisted focused ion beam

    SciTech Connect

    Wang, Dandan Kee Tan, Pik; Yamin Huang, Maggie; Lam, Jeffrey; Mai, Zhihong

    2014-05-15

    The authors report a new delayering technique – gas-assisted focused ion beam (FIB) method and its effects on the top layer materials of integrated circuit (IC) device. It demonstrates a highly efficient failure analysis with investigations on the precise location. After removing the dielectric layers under the bombardment of an ion beam, the chemical composition of the top layer was altered with the reduced oxygen content. Further energy-dispersive x-ray spectroscopy and Fourier transform infrared analysis revealed that the oxygen reduction lead to appreciable silicon suboxide formation. Our findings with structural and composition alteration of dielectric layer after FIB delayering open up a new insight avenue for the failure analysis in IC devices.

  10. Method for forming metallic silicide films on silicon substrates by ion beam deposition

    DOEpatents

    Zuhr, Raymond A.; Holland, Orin W.

    1990-01-01

    Metallic silicide films are formed on silicon substrates by contacting the substrates with a low-energy ion beam of metal ions while moderately heating the substrate. The heating of the substrate provides for the diffusion of silicon atoms through the film as it is being formed to the surface of the film for interaction with the metal ions as they contact the diffused silicon. The metallic silicide films provided by the present invention are contaminant free, of uniform stoichiometry, large grain size, and exhibit low resistivity values which are of particular usefulness for integrated circuit production.

  11. Surface modification of biomedical implants using ion-beam-assisted sputter deposition

    NASA Astrophysics Data System (ADS)

    Ektessabi, A. M.

    1997-05-01

    Hydroxy-apatite (Ca 10(PO 4) 6(OH) 2), owing to its good bioaffinity and enhancement of osseo-integration, is a potential material for coating on dental and orthopedic implants. At present, hydroxy-apatite is coated on metal implants by a plasma-spraying method or is used in its bulk form in reconstruction surgery. In this paper, experimental results are given for preparation of hydroxy-apatite thin films on various biomedical implant materials using ion-beam sputter deposition and ion-beam-assisted sputter deposition methods. By using the ion-beam-assisted sputter deposition method, the adhesion of hydroxy-apatite thin films to substrate has improved significantly and increased to a level comparable to Ti and Al oxide thin films. Relative atomic densities of Ca, P, O and H in hydroxy-apatite thin films were obtained using ion-beam analysis methods such as RBS, RE-RBS, ERDA, and PIXE. The relative concentrations of Ca, and P were affected by assisting-beam density, and stoichiometric films were obtained for certain assisting-beam current densities.

  12. Focused ion beam high resolution grayscale lithography for silicon-based nanostructures

    SciTech Connect

    Erdmanis, M. Tittonen, I.

    2014-02-17

    Nanofabrication techniques providing a fine control over the profile of silicon structures are of great importance for nanophotonics, plasmonics, sensing, micro- and nano fluidics, and biomedical applications. We report on the applicability of focused ion beam for the fine grayscale lithography, which yields surface profiles that are customized at nanoscale. The approach is based on a correlation between the ion beam irradiation dose of inorganic resist and the mask etching rate in the reactive ion etching. An exceptional property of this method is the number of gray tones that are not limited by the resist characteristics. We apply the process to fabricate unique periodic nanostructures with a slope angle varying across the structure and a period as small as 200 nm.

  13. Iodine enhanced focused-ion-beam etching of silicon for photonic applications

    SciTech Connect

    Schrauwen, Jonathan; Thourhout, Dries van; Baets, Roel

    2007-11-15

    Focused-ion-beam etching of silicon enables fast and versatile fabrication of micro- and nanophotonic devices. However, large optical losses due to crystal damage and ion implantation make the devices impractical when the optical mode is confined near the etched region. These losses are shown to be reduced by the local implantation and etching of silicon waveguides with iodine gas enhancement, followed by baking at 300 deg. C. The excess optical loss in the silicon waveguides drops from 3500 to 1700 dB/cm when iodine gas is used, and is further reduced to 200 dB/cm after baking at 300 deg. C. We present elemental and chemical surface analyses supporting that this is caused by the desorption of iodine from the silicon surface. Finally we present a model to extract the absorption coefficient from the measurements.

  14. Micro-contacting of single and periodically arrayed columnar silicon structures by focused ion beam techniques

    SciTech Connect

    Friedrich, F. Herfurth, N.; Teodoreanu, A.-M.; Boit, C.

    2014-06-16

    Micron-sized, periodic crystalline Silicon columns on glass substrate were electrically contacted with a transparent conductive oxide front contact and a focused ion beam processed local back contact. Individual column contacts as well as arrays of >100 contacted columns were processed. Current-voltage characteristics of the devices were determined. By comparison with characteristics obtained from adapted device simulation, the absorber defect density was reconstructed. The contacting scheme allows the fabrication of testing devices in order to evaluate the electronic potential of promising semiconductor microstructures.

  15. Features of silicon-containing coatings deposition from ablation plasma formed by a powerful ion beam

    NASA Astrophysics Data System (ADS)

    Sazonov, R.; Kholodnaya, G.; Ponomarev, D.; Remnev, G.; Khailov, I.

    2014-11-01

    This paper presents the research of features of silicon-containing coatings deposition from ablation plasma, which is formed by a powerful ion beam at the influence on a microsized pressed powder of SiO2. Experimental research have been conducted with a laboratory setup based on a TEMP-4M pulsed ion accelerator in a double-pulse forming mode; the first is negative (300-500 ns, 100-150 kV), and the second is positive (150 ns, 250-300 kV). A beam composition: C+ ions (60-70 %) and protons, the ion current density on the target is 25±5 A/cm2. An electron self-magnetically insulated diode has been used to generate the ion beam in the TEMP-4M accelerator. The properties of obtained silicon-containing films have been analyzed with the help of IR spectroscopy. A surface structure has been studied by the method of scanning electron microscopy.

  16. Ion-beam assisted deposition of thin molybdenum films studied by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Robbemond, Arie; Thijsse, Barend J.

    1997-05-01

    We report results obtained by molecular dynamics simulation of low energy argon-ion assisted growth of thin molybdenum films (≈ 20 Å). The effects of a single ion impact are discussed, but more particularly we consider film growth from a manufacturing viewpoint and examine the properties of the completed films. Results for ion-beam assisted deposition are compared with those for unassisted growth (i.e. physical vapor deposition). Surface orientation, atomic displacements, surface roughness, sputtering, point defects, and the influence of off-normal atom incidence are discussed.

  17. Ion beam assisted deposition of organic molecules: a physical way to realize OLED structures

    NASA Astrophysics Data System (ADS)

    Moliton, André; Antony, Rémi; Troadec, David; Ratier, Bernard

    2000-05-01

    We demonstrate how the quantum efficiency of an organic light-emitting diode can be improved by a physical way based on the ion beam assisted deposition: the recombination current can be increased by an enhancement of the minority carrier injection while the total current can be decreased by generation of electron traps which reduced the majority current. The quantum efficiency of fluorescence can be also improved by a layer densification with a limitation of the nonradiative centers. As a result, the quantum efficiency of the structure ITO/Helium assisted Alq3/unassisted Alq3/Ca/Al is improved (by around a factor 10) in relation with a virgin structure.

  18. The fabrication of silicon nanostructures by focused-ion-beam implantation and TMAH wet etching.

    PubMed

    Sievilä, Päivi; Chekurov, Nikolai; Tittonen, Ilkka

    2010-04-01

    Local gallium implantation of silicon by a focused ion beam (FIB) has been used to create a mask for anisotropic tetramethylammonium hydroxide (TMAH) wet etching. The dependence of the etch stop properties of gallium-doped silicon on the implanted dose has been investigated and a dose of 4 x 10(13) ions cm(- 2) has been determined to be the threshold value for achieving observable etching resistance. Only a thin, approx. 50 nm, surface layer is found to be durable enough to serve as a mask with a high selectivity of at least 2000:1 between implanted and non-implanted areas. The combined FIB-TMAH process has been used to generate various types of 3D nanostructures including nanochannels separated by thin vertical sidewalls with aspect ratios up to 1:30, ultra-narrow (approx. 25 nm) freestanding bridges and cantilevers, and gratings with a resolution of 20 lines microm(- 1). PMID:20215652

  19. The fabrication of silicon nanostructures by focused-ion-beam implantation and TMAH wet etching

    NASA Astrophysics Data System (ADS)

    Sievilä, Päivi; Chekurov, Nikolai; Tittonen, Ilkka

    2010-04-01

    Local gallium implantation of silicon by a focused ion beam (FIB) has been used to create a mask for anisotropic tetramethylammonium hydroxide (TMAH) wet etching. The dependence of the etch stop properties of gallium-doped silicon on the implanted dose has been investigated and a dose of 4 × 1013 ions cm - 2 has been determined to be the threshold value for achieving observable etching resistance. Only a thin, approx. 50 nm, surface layer is found to be durable enough to serve as a mask with a high selectivity of at least 2000:1 between implanted and non-implanted areas. The combined FIB-TMAH process has been used to generate various types of 3D nanostructures including nanochannels separated by thin vertical sidewalls with aspect ratios up to 1:30, ultra-narrow (approx. 25 nm) freestanding bridges and cantilevers, and gratings with a resolution of 20 lines µm - 1.

  20. Polycrystalline InN thin films prepared by ion-beam-assisted filtered cathodic vacuum arc technique

    NASA Astrophysics Data System (ADS)

    Ji, X. H.; Lau, S. P.

    2005-09-01

    We report on the fabrication of indium nitride (InN) thin films on silicon (1 0 0) substrates by radio frequency ion-beam-assisted filtered cathodic vacuum arc technique at low temperature. The effects of nitrogen ion energy on the structural properties of InN films have been investigated by X-ray diffraction and Raman spectroscopy. The InN films exhibit polycrystalline wurtzite structure. At nitrogen ion energy of 100 eV, the film shows preferred (0 0 0 2) orientation. The preferred orientation is changed to ( 1 0 1¯ 1) when the nitrogen ion energy is more than 100 eV. Three Raman-active optical phonons have been clearly identified and assigned to A 1(LO) at ˜588 cm -1, E22 at ˜490 cm -1 and A 1(TO) at ˜449 cm -1 of InN films, which confirmed the hexagonal structure of InN.

  1. Fabrication of Superconducting Mo/Cu Bilayers Using Ion-Beam-Assisted e-Beam Evaporation

    NASA Astrophysics Data System (ADS)

    Jaeckel, Felix T.; Kripps, Kari L.; Morgan, Kelsey M.; Zhang, Shuo; McCammon, Dan

    2016-03-01

    Superconducting/normal metal bilayers with tunable transition temperature are a critical ingredient to the fabrication of high-performance transition edge sensors. Popular material choices include Mo/Au and Mo/Cu, which exhibit good environmental stability and provide low resistivity films to achieve adequate thermal conductivity. The deposition of high-quality Mo films requires sufficient adatom mobility, which can be provided by energetic ions in sputter deposition or by heating the substrate in an e-beam evaporation process. The bilayer T_c depends sensitively on the exact deposition conditions of the Mo layer and the superconducting/normal metal interface. Because the individual contributions (strain, crystalline structure, contamination) are difficult to disentangle and control, reproducibility remains a challenge. Recently, we have demonstrated that low-energy ion-beam-assisted e-beam evaporation offers an alternative route to reliably produce high-quality Mo films without the use of substrate heating. The energy and momentum delivered by the ion beam provides an additional control knob to tune film properties such as resistivity and stress. In this report we describe modifications made to the commercial end-Hall ion source to avoid iron contamination allowing us to produce superconducting Mo films. We show that the ion beam is effective at enhancing the bilayer interface transparency and that bilayers can be further tuned towards reduced T_c and higher conductivity by vacuum annealing.

  2. Fabrication of Superconducting Mo/Cu Bilayers Using Ion-Beam-Assisted e-Beam Evaporation

    NASA Astrophysics Data System (ADS)

    Jaeckel, Felix T.; Kripps, Kari L.; Morgan, Kelsey M.; Zhang, Shuo; McCammon, Dan

    2016-08-01

    Superconducting/normal metal bilayers with tunable transition temperature are a critical ingredient to the fabrication of high-performance transition edge sensors. Popular material choices include Mo/Au and Mo/Cu, which exhibit good environmental stability and provide low resistivity films to achieve adequate thermal conductivity. The deposition of high-quality Mo films requires sufficient adatom mobility, which can be provided by energetic ions in sputter deposition or by heating the substrate in an e-beam evaporation process. The bilayer T_c depends sensitively on the exact deposition conditions of the Mo layer and the superconducting/normal metal interface. Because the individual contributions (strain, crystalline structure, contamination) are difficult to disentangle and control, reproducibility remains a challenge. Recently, we have demonstrated that low-energy ion-beam-assisted e-beam evaporation offers an alternative route to reliably produce high-quality Mo films without the use of substrate heating. The energy and momentum delivered by the ion beam provides an additional control knob to tune film properties such as resistivity and stress. In this report we describe modifications made to the commercial end-Hall ion source to avoid iron contamination allowing us to produce superconducting Mo films. We show that the ion beam is effective at enhancing the bilayer interface transparency and that bilayers can be further tuned towards reduced T_c and higher conductivity by vacuum annealing.

  3. Influence of ion beam assisted deposition parameters on the growth of MgO and CoFeB

    SciTech Connect

    Ferreira, Ricardo; Freitas, Paulo P.; Petrova, Rumyana; McVitie, Stephen

    2012-04-01

    The effect of the kinetic parameters of an assistance ion beam on the crystallization of ion beam deposited MgO was investigated. It is shown that the crystallization of MgO in the as-deposited state is strongly dependent on the assistance beam parameters. Furthermore, two deposition regimes corresponding to different ranges of the assistance beam energy are found. XRD and TEM studies of CoFeB/MgO/CoFeB with MgO deposited in the two regimes show that CoFeB crystallization is favored when low energy assist beams are used, despite no differences being found in the MgO.

  4. Ion beam modification of metals

    NASA Astrophysics Data System (ADS)

    Dearnaley, G.

    1990-04-01

    Energetic ions beams may be used in various ways to modify and so improve the tribological properties of metals. These methods include: — ion implantation of selected additive species; — ion beam mixing of thin deposited coatings; — ion-beam-assisted deposition of thicker overlay coatings. The first of these techniques has been widely used to modify the electronic properties of semiconductors, but has since been extended for the treatment of all classes of material. Tool steels can be strengthened by the ion implantation of nitrogen or titanium, to produce fine dispersions of hard second-phase precipitates. Solid solution strengthening, by combinations of substitutional and interstitial species, such as yttrium and nitrogen, has also been successful. Both ion beam mixing (IBM) and ion-beam-assisted deposition (IBAD) use a combination of coating and ion bombardment. In the first case, the objective is to intermix the coating and substrate by the aid of radiation-enhanced diffusion. In the latter case, the coating is densified and modified during deposition and the process can be continued in order to build up overlay coatings several μm in thickness. The surface can then be tailored, for instance to provide a hard and adherent ceramic such as silicon nitride, boron nitride or titanium nitride. It is an advantage that all the above processes can be applied at relatively low temperatures, below about 200° C, thereby avoiding distortion of precision components. Ion implantation is also being successfully applied for the reduction of corrosion, especially at high temperatures or in the atmosphere and to explore the mechanisms of oxidation. Ion-assisted coatings, being compact and adherent, provide a more substantial protection against corrosion: silicon nitride and boron nitride are potentially useful in this respect. Examples will be given of the successful application of these methods for the surface modification of metals and alloys, and developments in the

  5. Ion-beam mixing in silicon and germanium at low temperatures

    SciTech Connect

    Clark, G.J.; Marwick, A.D.; Poker, D.B.

    1982-01-01

    Ion-beam mixing of thin marker layers in amorphous silicon and germanium was studied using irradiations with Xe ions at temperatures of 34k and 77k. The marker species, ion energies and doses were: in silicon, markers of Ge and Pt irradiated with 200-keV Xe up to 2.7x10/sup 16/ ions cm/sup -2/; and in germanium, markers of Al and Si bombarded with 295-keV Xe up to 1.63x10/sup 16/ ions cm/sup -2/. In silicon, Pt markers were found to broaden at about the same rate at 34k and 77k; and the rate of broadening was similar to that found by other workers when expressed as an efficiency of mixing, i.e., when dependence on ion dose and deposited energy was factored out. However, a Ge marker irradiated at 34k did not broaden from its original thickness. In germanium, markers of both Al and Si were mixed by irradiation at 34k, but at 77k only the Al marker broadened; the Si marker did not. The broadening of the markers is ascribed to ballistic mixing, while the cases where no broadening occurred are explicable if diffusion by a defect mechanism transported displaced marker atoms back to traps near their original sites.

  6. Sub-micron resolution of localized ion beam induced charge reduction in silicon detectors damaged by heavy ions

    SciTech Connect

    Auden, Elizabeth C.; Pacheco, Jose L.; Bielejec, Edward; Vizkelethy, Gyorgy; Abraham, John B. S.; Doyle, Barney L.

    2015-12-01

    In this study, displacement damage reduces ion beam induced charge (IBIC) through Shockley-Read-Hall recombination. Closely spaced pulses of 200 keV Si++ ions focused in a 40 nm beam spot are used to create damage cascades within 0.25 μm2 areas. Damaged areas are detected through contrast in IBIC signals generated with focused ion beams of 200 keV Si++ ions and 60 keV Li+ ions. IBIC signal reduction can be resolved over sub-micron regions of a silicon detector damaged by as few as 1000 heavy ions.

  7. Sub-micron resolution of localized ion beam induced charge reduction in silicon detectors damaged by heavy ions

    DOE PAGESBeta

    Auden, Elizabeth C.; Pacheco, Jose L.; Bielejec, Edward; Vizkelethy, Gyorgy; Abraham, John B. S.; Doyle, Barney L.

    2015-12-01

    In this study, displacement damage reduces ion beam induced charge (IBIC) through Shockley-Read-Hall recombination. Closely spaced pulses of 200 keV Si++ ions focused in a 40 nm beam spot are used to create damage cascades within 0.25 μm2 areas. Damaged areas are detected through contrast in IBIC signals generated with focused ion beams of 200 keV Si++ ions and 60 keV Li+ ions. IBIC signal reduction can be resolved over sub-micron regions of a silicon detector damaged by as few as 1000 heavy ions.

  8. ALLIGATOR - An apparatus for ion beam assisted deposition with a broad-beam ion source

    NASA Astrophysics Data System (ADS)

    Wituschek, H.; Barth, M.; Ensinger, W.; Frech, G.; Rück, D. M.; Leible, K. D.; Wolf, G. K.

    1992-04-01

    Ion beam assisted deposition is a versatile technique for preparing thin films and coatings for various applications. Up to now a prototype setup for research purposes has been used in our laboratory. Processing of industrial standard workpieces requires a high current ion source with broad beam and high uniformity for homogeneous bombardment. In this contribution a new apparatus for large area samples will be described. It is named ALLIGATOR (German acronym of facility for ion assisted evaporation on transverse movable or rotary targets). In order to have a wide energy range available two ion sources are used. One delivers a beam energy up to 1.3 keV. The other is suitable for energies from 5 keV up to 40 keV. The ``high-energy'' ion source is a multicusp multiaperture source with 180-mA total current and a beam diameter of 280 mm at the target position.

  9. Properties of depth-profile controlled boron nitride films prepared by ion-beam assisted deposition

    NASA Astrophysics Data System (ADS)

    Kumagai, M.; Suzuki, M.; Suzuki, T.; Tanaka, Y.; Setsuhara, Y.; Miyake, S.; Ogata, K.; Kohata, M.; Higeta, K.; Einishi, T.; Suzuki, Y.; Shimoitani, Y.; Motonami, Y.

    1997-05-01

    Boron nitride films were prepared by vapor deposition of boron and simultaneous bombardment with mixed gas ions of nitrogen and argon in the energy range of 0.2 to 20 keV. The films were prepared on various kinds of substrates including silicon wafers, tungsten carbide plates and various ceramic plates at a temperature of 400°C. In the synthesis of the BN films, a boron-rich buffer layer between the substrate and the BN film was formed by energetic nitrogen ion beam bombardment, improving tribological properties such as the depth-profile controlled layer. The buffer layer improved film adhesion, and chemical stability, thermal stability at elevated temperature and corrosion resistance of the BN films also gave good results.

  10. Biaxial Texture Evolution in MgO Films Fabricated Using Ion Beam-Assisted Deposition

    NASA Astrophysics Data System (ADS)

    Xue, Yan; Zhang, Ya-Hui; Zhao, Rui-Peng; Zhang, Fei; Lu, Yu-Ming; Cai, Chuan-Bing; Xiong, Jie; Tao, Bo-Wan

    2016-04-01

    The growth of multifunctional thin films on flexible substrates is important technologically, because flexible electronics require such a platform. In this study, we examined the evolution of biaxial texture in MgO films prepared using ion beam-assisted deposition (IBAD) on a Hastelloy substrate. Texture and microstructure developments were characterized through in situ reflection high-energy electron diffraction monitoring, x-ray diffraction, and atomic force microscopy, which demonstrated that biaxial texture was developed during the nucleation stage (~2.2 nm). The best biaxial texture was obtained with a thickness of approximately 12 nm. As MgO continued to grow, the influence of surface energy was reduced, and film growth was driven by the attempt to minimize volume free-energy density. Thus the MgO grains were subsequently rotated at the (002) direction toward the ion beam. In addition, an approach was developed for accelerating in-plane texture evolution by pre-depositing an amorphous MgO layer before IBAD.

  11. Biaxial Texture Evolution in MgO Films Fabricated Using Ion Beam-Assisted Deposition

    NASA Astrophysics Data System (ADS)

    Xue, Yan; Zhang, Ya-Hui; Zhao, Rui-Peng; Zhang, Fei; Lu, Yu-Ming; Cai, Chuan-Bing; Xiong, Jie; Tao, Bo-Wan

    2016-07-01

    The growth of multifunctional thin films on flexible substrates is important technologically, because flexible electronics require such a platform. In this study, we examined the evolution of biaxial texture in MgO films prepared using ion beam-assisted deposition (IBAD) on a Hastelloy substrate. Texture and microstructure developments were characterized through in situ reflection high-energy electron diffraction monitoring, x-ray diffraction, and atomic force microscopy, which demonstrated that biaxial texture was developed during the nucleation stage (~2.2 nm). The best biaxial texture was obtained with a thickness of approximately 12 nm. As MgO continued to grow, the influence of surface energy was reduced, and film growth was driven by the attempt to minimize volume free-energy density. Thus the MgO grains were subsequently rotated at the (002) direction toward the ion beam. In addition, an approach was developed for accelerating in-plane texture evolution by pre-depositing an amorphous MgO layer before IBAD.

  12. Ion-beam sputtered amorphous silicon films for cryogenic precision measurement systems

    NASA Astrophysics Data System (ADS)

    Murray, Peter G.; Martin, Iain W.; Craig, Kieran; Hough, James; Robie, Raymond; Rowan, Sheila; Abernathy, Matt R.; Pershing, Teal; Penn, Steven

    2015-09-01

    Thermal noise resulting from the mechanical loss of multilayer dielectric coatings is expected to impose a limit to the sensitivities of precision measurement systems used in fundamental and applied science. In the case of gravitational wave astronomy, future interferometric gravitational wave detectors are likely to operate at cryogenic temperatures to reduce such thermal noise and ameliorate thermal loading effects, with the desirable thermomechanical properties of silicon making it an attractive mirror substrate choice for this purpose. For use in such a precision instrument, appropriate coatings of low thermal noise are essential. Amorphous silicon (a -Si ) deposited by e-beam and other techniques has been shown to have low mechanical loss. However, to date, the levels of mechanical and optical loss for a -Si when deposited by ion-beam sputtering (the technique required to produce amorphous mirrors of the specification for gravitational wave detector mirrors) are unknown. In this paper results from measurements of the mechanical loss of a series of IBS a -Si films are presented which show that reductions are possible in coating thermal noise of a factor of 1.5 at 120 K and 2.1 at 20 K over the current best IBS coatings (alternating stacks of silica and titania-doped tantala), with further reductions feasible under appropriate heat treatments.

  13. Silicon ion irradiation effects on the magnetic properties of ion beam synthesized CoPt phase

    SciTech Connect

    Balaji, S.; Amirthapandian, S.; Panigrahi, B. K.; Mangamma, G.; Kalavathi, S.; Gupta, Ajay; Nair, K. G. M.

    2012-06-05

    Ion beam mixing of Pt/Co bilayers using self ion (Pt{sup +}) beam results in formation of CoPt phase. Upon ion beam annealing the ion mixed samples using 4 MeV Si{sup +} ions at 300 deg. C, diffusion of Co towards the Pt/Co interface is observed. The Si{sup +} ion beam rotates the magnetization of the CoPt phase from in plane to out of plane of the film.

  14. Low leakage current gate dielectrics prepared by ion beam assisted deposition for organic thin film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Chang Su; Jo, Sung Jin; Kim, Jong Bok; Ryu, Seung Yoon; Noh, Joo Hyon; Baik, Hong Koo; Lee, Se Jong; Kim, Youn Sang

    2007-12-01

    This communication reports on the fabrication of low operating voltage pentacene thin-film transistors with high-k gate dielectrics by ion beam assisted deposition (IBAD). These densely packed dielectric layers by IBAD show a much lower level of leakage current than those created by e-beam evaporation. These results, from the fact that those thin films deposited with low adatom mobility, have an open structure, consisting of spherical grains with pores in between, that acts as a significant path for leakage current. By contrast, our results demonstrate the potential to limit this leakage. The field effect mobility, on/off current ratio, and subthreshold slope obtained from pentacene thin-film transistors (TFTs) were 1.14 cm2/V s, 105, and 0.41 V/dec, respectively. Thus, the high-k gate dielectrics obtained by IBAD show promise in realizing low leakage current, low voltage, and high mobility pentacene TFTs.

  15. Abrasion resistance of titanium nitride coatings formed on titanium by ion-beam-assisted deposition.

    PubMed

    Sawase, T; Yoshida, K; Taira, Y; Kamada, K; Atsuta, M; Baba, K

    2005-02-01

    To improve the physical properties of the pure titanium surface, thin titanium nitride (TiN) films were deposited by means of ion-beam-assisted deposition. Film structure was confirmed as TiN by X-ray diffraction analysis. Surface hardness and abrasion resistance were significantly improved on TiN-coated specimens. Five combinations of oral hygiene instruments and materials were applied to the specimens as simulations of the oral environment. Treatment with the metal scaler and ultrasonic scaler severely changed the surface features and significantly increased the surface roughness parameters on pure titanium controls, whereas only small scratches and dull undulations were seen on the TiN-coated specimens. Profilometric tracings and scanning electron micrographs demonstrated the improved abrasion resistance of the TiN-coated specimens. PMID:15641983

  16. Exchange bias in polycrystalline magnetite films made by ion-beam assisted deposition

    SciTech Connect

    Kaur, Maninder; Qiang, You; Jiang, Weilin; Burks, Edward C.; Liu, Kai; Namavar, Fereydoon; McCloy, John S.

    2014-11-07

    Iron oxide films were produced using ion-beam-assisted deposition, and Raman spectroscopy and x-ray diffraction indicate single-phase magnetite. However, incorporation of significant fractions of argon in the films from ion bombardment is evident from chemical analysis, and Fe/O ratios are lower than expected from pure magnetite, suggesting greater than normal disorder. Low temperature magnetometry and first-order reversal curve measurements show strong exchange bias, which likely arises from defects at grain boundaries, possibly amorphous, creating frustrated spins. Since these samples contain grains ∼6 nm, a large fraction of the material consists of grain boundaries, where spins are highly disordered and reverse independently with external field.

  17. Exchange bias in polycrystalline magnetite films made by ion-beam assisted deposition

    SciTech Connect

    Kaur, Maninder; Jiang, Weilin; Qiang, You; Burks, Edward; Liu, Kai; Namavar, Fereydoon; Mccloy, John S.

    2014-11-03

    Iron oxide films were deposited onto Si substrates using ion-beam-assisted deposition. The films were ~300 nm thick polycrystalline magnetite with an average crystallite size of ~6 nm. Additionally, incorporation of significant fractions of argon in the films from ion bombardment is evident from chemical analysis, and Fe/O ratios are lower than expected from pure magnetite. However, Raman spectroscopy and x-ray diffraction both indicate that the films are single-phase magnetite. Since no direct evidence of a second phase could be found, exchange bias likely arises due to defects at grain boundaries, possibly amorphous, creating frustrated spins. Since these samples have such small grains, a large fraction of the material consists of grain boundaries, where spins are highly disordered and reverse independently with external field. The high energy deposition process results in an oxygen-rich, argon-containing magnetite film with low temperature exchange bias due to defects at the high concentration of grain boundaries.

  18. Two-dimensional silicon-based detectors for ion beam therapy

    NASA Astrophysics Data System (ADS)

    Martišíková, M.; Granja, C.; Jakůbek, J.; Hartmann, B.; Telsemeyer, J.; Huber, L.; Brons, S.; Pospíšil, S.; Jäkel, O.

    2012-02-01

    Radiation therapy with ion beams is a highly precise kind of cancer treatment. As ion beams traverse material, the highest ionization density occurs at the end of their path. Due to this Bragg-peak, ion beams enable higher dose conformation to the tumor and increased sparing of the surrounding tissue, in comparison to standard radiation therapy using high energy photons. Ions heavier than protons offer in addition increased biological effectiveness and lower scattering. The Heidelberg Ion Beam Therapy Center (HIT) is a state-of-the-art ion beam therapy facility and the first hospital-based facility in Europe. It provides proton and carbon ion treatments. A synchrotron is used for ion acceleration. For dose delivery to the patient, narrow pencil-like beams are scanned over the target volume.

  19. Extremely thin silicon ΔE detectors for ion beam analysis

    NASA Astrophysics Data System (ADS)

    Whitlow, Harry J.; Winzell, Thomas; Thungström, Göran

    1998-03-01

    Recent developments in silicon nanotechnology have made feasible the fabrication of ΔE detectors with thickness of 1μm or less. The CHICSi collaboration has been developing thin ΔE detectors for study of reaction products from intermediate energy heavy ion collisions in an ultra high vacuum storage-ring environment. In this paper, we highlight these developments from an ion beam analysis (IBA) viewpoint. The initial part of the paper outlines the characteristics for these detectors for, nuclear reaction analysis (NRA), elastic recoil detection (ERD) using ΔE-E detector telescopes and accelerator mass spectrometry (AMS). Quasi-empirical estimates of the maximum ΔE detector thickness and separating power for the limit of low energy particles (down to 0.1AMeV) reveal that energy straggling is an important limiting factor. Subsequently different methods are presented for fabricating both self-supported and vertically integrated ΔE detectors including recently developed wafer bonding techniques which open up the possibility of producing ΔE-E detector telescopes where the ΔE element is in the hundreds of nm range. Ultimately consideration is given to special requirements for the readout electronics because of the high capacitance presented by the thin ΔE detectors.

  20. Focused Ion Beam Fabrication of Silicon-On Field-Effect Transistors.

    NASA Astrophysics Data System (ADS)

    Mattiussi, Greg Andrew

    N-channel metal-oxide-semiconductor field-effect transistors (MOSFET's) have been fabricated on silicon -on-insulator (SOI) substrates using a Focused Ion Beam (FIB) to pattern the gate and to dope the source and drains. Lightly -doped source (LDS) structures were implemented with the FIB to increase the drain-to-source voltage at which single transistor latch-up occurred. FIB exposure of two electron-beam resists was investigated for lithography of the transistor gate and the device mesas. Vertical resist profiles were achieved for linewidths down to 0.2 μm in width in the case of the negative-tone SAL-601 resist from Shipley Co. Openings in resist as narrow as 0.35 μm were made using the positive-tone P28 resist from OCG Microelectronic Materials. Optimal doses, pre- and post-exposure processing conditions were determined for both resists. Transistors with LDS structures showed higher latching voltages than those without. The magnitude of the increase in latching voltage due to the LDS was a function of body doping level, SOI thickness, and coded gate length. The largest increase was 5.1 V for a 0.8 μm MOSFET fabricated in a 125 nm thick SOI film with a body implant dose of 5.6times10^ {12} B cm^{-2}. Devices fabricated in SOI films of thickness 250 nm showed smaller increases in latching voltage with the LDS than those in 125 nm SOI films.

  1. Customized atomic force microscopy probe by focused-ion-beam-assisted tip transfer

    PubMed Central

    Wang, Andrew; Butte, Manish J.

    2014-01-01

    We present a technique for transferring separately fabricated tips onto tipless atomic force microscopy (AFM) cantilevers, performed using focused ion beam-assisted nanomanipulation. This method addresses the need in scanning probe microscopy for certain tip geometries that cannot be achieved by conventional lithography. For example, in probing complex layered materials or tall biological cells using AFM, a tall tip with a high-aspect-ratio is required to avoid artifacts caused by collisions of the tip's sides with the material being probed. We show experimentally that tall (18 μm) cantilever tips fabricated by this approach reduce squeeze-film damping, which fits predictions from hydrodynamic theory, and results in an increased quality factor (Q) of the fundamental flexural mode. We demonstrate that a customized tip's well-defined geometry, tall tip height, and aspect ratio enable improved measurement of elastic moduli by allowing access to low-laying portions of tall cells (T lymphocytes). This technique can be generally used to attach tips to any micromechanical device when conventional lithography of tips cannot be accomplished. PMID:25161320

  2. Customized atomic force microscopy probe by focused-ion-beam-assisted tip transfer.

    PubMed

    Wang, Andrew; Butte, Manish J

    2014-08-01

    We present a technique for transferring separately fabricated tips onto tipless atomic force microscopy (AFM) cantilevers, performed using focused ion beam-assisted nanomanipulation. This method addresses the need in scanning probe microscopy for certain tip geometries that cannot be achieved by conventional lithography. For example, in probing complex layered materials or tall biological cells using AFM, a tall tip with a high-aspect-ratio is required to avoid artifacts caused by collisions of the tip's sides with the material being probed. We show experimentally that tall (18 μm) cantilever tips fabricated by this approach reduce squeeze-film damping, which fits predictions from hydrodynamic theory, and results in an increased quality factor (Q) of the fundamental flexural mode. We demonstrate that a customized tip's well-defined geometry, tall tip height, and aspect ratio enable improved measurement of elastic moduli by allowing access to low-laying portions of tall cells (T lymphocytes). This technique can be generally used to attach tips to any micromechanical device when conventional lithography of tips cannot be accomplished. PMID:25161320

  3. Structural and magnetic studies of thin Fe57 films formed by ion beam assisted deposition

    NASA Astrophysics Data System (ADS)

    Lyadov, N. M.; Bazarov, V. V.; Vagizov, F. G.; Vakhitov, I. R.; Dulov, E. N.; Kashapov, R. N.; Noskov, A. I.; Khaibullin, R. I.; Shustov, V. A.; Faizrakhmanov, I. A.

    2016-08-01

    Thin Fe57 films with the thickness of 120 nm have been prepared on glass substrates by using the ion-beam-assisted deposition technique. X-ray diffraction, electron microdiffraction and Mössbauer spectroscopy studies have shown that as-deposited films are in a stressful nanostructured state containing the nanoscaled inclusions of α-phase iron with the size of ∼10 nm. Room temperature in-plane and out-of-plane magnetization measurements confirmed the presence of the magnetic α-phase in the iron film and indicated the strong effect of residual stresses on magnetic properties of the film as well. Subsequent thermal annealing of iron films in vacuum at the temperature of 450 °C stimulates the growth of α-phase Fe crystallites with the size of up to 20 nm. However, electron microdiffraction and Mössbauer spectroscopic data have shown the partial oxidation and carbonization of the iron film during annealing. The stress disappeared after annealing of the film. The magnetic behaviour of the annealed samples was characterized by the magnetic hysteresis loop with the coercive field of ∼10 mT and the saturation magnetization decreased slightly in comparison with the α-phase Fe magnetization due to small oxidation of the film.

  4. Physical properties of nitrogenated amorphous carbon films produced by ion-beam-assisted deposition

    NASA Astrophysics Data System (ADS)

    Rossi, Francois; Andre, Bernard; Veen, A. Van; Mijnarends, P. E.; Schut, H.; Labohm, F.; Delplancke, Marie Paule; Dunlop, Hugh; Anger, Eric

    1994-12-01

    Carbon films with up to 32 at.% N (a-C:N) have been prepared using an ion-beam-assisted magnetron, with an N2(+) beam at energies between 50 and 300 eV. The composition and density of the films vary strongly with the deposition parameters. Electron energy loss spectroscopy shows that these a-C:N films are mostly graphitic with up to 20% C Sp3 bonding. Rutherford backscattering spectroscopy and neutron depth profiling show that the density goes through a maximum as the average deposited energy per unit depth increases. X-ray photoelectron spectroscopy shows that nitrogen is mostly combined with carbon in triple (C(triple bond)N and double (C=N) bonds. Positron annihilation spectroscopy shows that the void concentration in the films goes through a minimum with deposited energy. These results are consistent with a densification induced by the collisions at low deposited energy, and damage-induced graphitization at high deposited energy values.

  5. Bactericidal and biocompatible properties of TiN/Ag multilayered films by ion beam assisted deposition.

    PubMed

    Zhao, J; Cai, X M; Tang, H Q; Liu, T; Gu, H Q; Cui, R Z

    2009-12-01

    Nanoscale TiN/Ag multilayered films of thickness 500 nm were synthesized on AISI317 stainless steel by ion beam assisted deposition (IBAD) with the modulation period of 4, 5, 6, 7.5, and 12 nm. The bactericidal and biocompatible properties of TiN/Ag multilayered films were investigated through Gram negative E. coli bacteria and L929 cells (mice fibroblast) as well as human umbilical vein endothelial cells (HUVEC). The results show that the TiN/Ag multilayered films with the modulation period of 7.5 nm possess the strongest bactericidal property. The cytotoxicity grade of TiN/Ag multilayered coating with the modulation periods of 7.5 nm, 12 nm is in 0-1 scope, which indicates this film has no cytotoxicity to L929. HUVEC on TiN/Ag multilayered film grows well and shows good cellularity. Auger electronic spectroscopy reveals the relationship between the structure of TiN/Ag multilayered film and the biomedical properties. PMID:18553178

  6. Customized atomic force microscopy probe by focused-ion-beam-assisted tip transfer

    SciTech Connect

    Wang, Andrew; Butte, Manish J.

    2014-08-04

    We present a technique for transferring separately fabricated tips onto tipless atomic force microscopy (AFM) cantilevers, performed using focused ion beam-assisted nanomanipulation. This method addresses the need in scanning probe microscopy for certain tip geometries that cannot be achieved by conventional lithography. For example, in probing complex layered materials or tall biological cells using AFM, a tall tip with a high-aspect-ratio is required to avoid artifacts caused by collisions of the tip's sides with the material being probed. We show experimentally that tall (18 μm) cantilever tips fabricated by this approach reduce squeeze-film damping, which fits predictions from hydrodynamic theory, and results in an increased quality factor (Q) of the fundamental flexural mode. We demonstrate that a customized tip's well-defined geometry, tall tip height, and aspect ratio enable improved measurement of elastic moduli by allowing access to low-laying portions of tall cells (T lymphocytes). This technique can be generally used to attach tips to any micromechanical device when conventional lithography of tips cannot be accomplished.

  7. Nonpropulsive applications of ion beams

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.

    1976-01-01

    Eight centimeter ion beam sources utilizing xenon and argon have been developed that operate over a wide range of beam energies and currents. Three types of processes have been studied: sputter deposition, ion beam machining, and ion beam surface texturing. The broad range of source operating conditions allows optimum sputter deposition of various materials. An ion beam source was used to ion mill laser reflection holograms using photoresist patterns on silicon. Ion beam texturing was tried with many materials and has a multitude of potential applications.

  8. Physical properties of a-C:N films produced by ion beam assisted deposition

    SciTech Connect

    Rossi, F. ); Andre, B. ); van Veen, A.; Mijnarends, P.E.; Schut, H.; Labohm, F. ); Dunlop, H. ); Delplancke, M.P. ); Hubbard, K. )

    1994-09-01

    Carbon films with up to 32 at. % of nitrogen have been prepared with ion beam assisted magnetron, using a N[sup +][sub 2]/N[sup +] beam at energies between 50 and 300 eV. The composition and density of the films vary strongly with the deposition parameters. EELS, SXS, XPS, and IR studies show that these a-C:N films are mostly graphitic and have up to 20% [ital sp][sup 3] bonding. Nitrogen is mostly combined with carbon in nitrile (C[equivalent to]N) and imine (C=N) groups. RBS and NDP show that density goes through a maximum as the average damage energy per incoming ion increases. Positron annihilation spectroscopy shows that the void concentration in the films goes through a minimum with average damage energy. These results are consistent with a densification induced by the collisions at low average damage energy values and induced graphitization at higher damage energy values. These results are similar to what is observed for Ar ion assisted deposition of a-C films. The mechanical properties of these films have been studied with a nanoindenter, and it was found that the hardness and Young's modulus go through a maximum as the average damage energy is increased. The maximum of mechanical properties corresponds to the minimum in the void concentration in the film. Tribological studies of the a-C:N show that the friction coefficient obtained against diamond under dynamic loading decreases strongly as the nitrogen composition increases, this effect being more pronounced at low loads.

  9. Tilting of carbon encapsulated metallic nanocolumns in carbon-nickel nanocomposite films by ion beam assisted deposition

    SciTech Connect

    Krause, Matthias; Muecklich, Arndt; Zschornak, Matthias; Wintz, Sebastian; Gemming, Sibylle; Abrasonis, Gintautas; Oates, Thomas W. H.; Luis Endrino, Jose

    2012-07-30

    The influence of assisting low-energy ({approx}50-100 eV) ion irradiation effects on the morphology of C:Ni ({approx}15 at. %) nanocomposite films during ion beam assisted deposition (IBAD) is investigated. It is shown that IBAD promotes the columnar growth of carbon encapsulated metallic nanoparticles. The momentum transfer from assisting ions results in tilting of the columns in relation to the growing film surface. Complex secondary structures are obtained, in which a significant part of the columns grows under local epitaxy via the junction of sequentially deposited thin film fractions. The influence of such anisotropic film morphology on the optical properties is highlighted.

  10. Interfacial electrical properties of ion-beam sputter deposited amorphous carbon on silicon

    NASA Technical Reports Server (NTRS)

    Khan, A. A.; Woollam, J. A.; Chung, Y.; Banks, B.

    1983-01-01

    Amorphous, 'diamond-like' carbon films have been deposited on Si substrates, using ion-beam sputtering. The interfacial properties are studied using capacitance and conductance measurements. Data are analyzed using existing theories for interfacial electrical properties. The density of electronic states at the interface, along with corresponding time constants are determined.

  11. Characterization and growth mechanisms of boron nitride films synthesized by ion-beam-assisted deposition

    NASA Astrophysics Data System (ADS)

    Burat, O.; Bouchier, D.; Stambouli, V.; Gautherin, G.

    1990-09-01

    We have studied boron nitride films deposited at room temperature by ion-beam-assisted deposition in an ultrahigh vacuum apparatus, with ion accelerating voltages ranging between 0.25 and 2 kV. By using complementarily in situ Auger electron spectrometry and ex situ nuclear analyses to determine the respective surface and bulk N concentrations in the deposited films, we were able to identify the different phases of the mechanism leading to the nitridation of evaporated boron by nitrogen ions. For low nitrogen/boron flux ratios, the incorporation of nitrogen seems to be only governed by ion implantation, and, with respect to the depth of the deposit, the surface is found largely depleted in nitrogen, while the N-incorporation yield remains close to one whatever the ion energy. Such a behavior is well verified as long as a critical bulk nitrogen concentration close to 5.5×1022 cm-3 has not been achieved. For concentrations greater than this, superstoichiometric material is obtained up to a saturation which corresponds to a bulk N incorporation ranging from 6 to 7×1022 cm-3. Further increase of the N/B flux ratio induces a strong diffusion process from N-rich bulk to N-depleted surface, which results in the nitridation of surface boron atoms and a loss of nitrogen by sputtering or desorption. The density measurements seem to indicate that the synthesized phase is close to h-BN. However, the density of B-rich layers ([N]/[B]≊0.2-0.3) is found to be very close to that calculated for a mixture of pure boron and c-BN. The transparency and microhardness of the synthesized BN have satisfying values for its application as a wear-resistant optical coating, but it is not c-BN.

  12. Cluster ion beam assisted fabrication of metallic nanostructures for plasmonic applications

    NASA Astrophysics Data System (ADS)

    Saleem, Iram; Tilakaratne, Buddhi P.; Li, Yang; Bao, Jiming; Wijesundera, Dharshana N.; Chu, Wei-Kan

    2016-08-01

    We report a high-throughput, single-step method for fabricating rippled plasmonic nanostructure arrays via self-assembly induced by oblique angle cluster ion beam irradiation of metal surfaces. This approach does not require lithographic or chemical processes and has the prominent advantage of possible large surface area coverage and applicability to different starting materials. The polarization dependent plasmonic property of the gold nano-ripple is due to their one dimension structure. The localized plasmon resonance frequency of synthesized nano-ripple arrays is tunable by changing nano-ripple dimensions that can be engineered by changing the cluster ion beam irradiation parameters. In this specific case presented, using 30 keV Ar-gas cluster ion beam, we fabricate gold nano-ripple arrays that show localized plasmon resonance in the visible range through near IR range, tunable by varying cluster ion irradiation fluence.

  13. Study of the growth of biaxially textured CeO2 films during ion-beam-assisted deposition

    NASA Astrophysics Data System (ADS)

    Kim, Chang Su; Jo, Sung Jin; Jeong, Soon Moon; Kim, Woo Jin; Baik, Hong Koo; Lee, Se Jong; Song, Kie Moon

    2005-03-01

    Biaxially textured CeO2 films were deposited on Hastelloy C276 substrates at room temperature using ion-beam-assisted e-beam evaporation with the ion beam directed at 55° to the normal of the film plane. The crystalline structure and in-plane orientation of films were investigated by x-ray diffraction 2θ-scan and phgr-scan. The orientation of the films was studied as a function of ion-to-atom ratio and film thickness. The ion-to-atom ratio was varied by independently adjusting the deposition rate and the ion current density. Under optimum condition, (200) textured CeO2 films have been successfully grown on Hastelloy C276.

  14. Corrosion properties of aluminium coatings deposited on sintered NdFeB by ion-beam-assisted deposition

    NASA Astrophysics Data System (ADS)

    Mao, Shoudong; Yang, Hengxiu; Li, Jinlong; Huang, Feng; Song, Zhenlun

    2011-04-01

    Pure Al coatings were deposited by direct current (DC) magnetron sputtering to protect sintered NdFeB magnets. The effects of Ar+ ion-beam-assisted deposition (IBAD) on the structure and the corrosion behaviour of Al coatings were investigated. The Al coating prepared by DC magnetron sputtering with IBAD (IBAD-Al-coating) had fewer voids than the coating without IBAD (Al-coating). The corrosion behaviour of the Al-coated NdFeB specimens was investigated by potentiodynamic polarisation, a neutral salt spray (NSS) test, and electrochemical impedance spectroscopy (EIS). The pitting corrosion of the Al coatings always began at the voids of the grain boundaries. Bombardment by the Ar+ ion-beams effectively improved the corrosion resistance of the IBAD-Al-coating.

  15. Formation of aluminum films on silicon by ion beam deposition: A comparison with ionized cluster beam deposition

    SciTech Connect

    Zuhr, R.A.; Haynes, T.E.; Galloway, M.D. ); Tanaka, S.; Yamada, A.; Yamada, I. . Ion Beam Engineering Lab.)

    1990-01-01

    The direct ion beam deposition (IBD) technique has been used to study the formation of oriented aluminum films on single crystal silicon substrates. In the IBD process, thin film growth is accomplished by decelerating a magnetically-analyzed ion beam to low energies (10--200 eV) for direct deposition onto the substrate under UHV conditions. The energy of the incident ions can be selected to provide the desired growth conditions, and the mass analysis ensures good beam purity. The aluminum on silicon system is one which has been studied extensively by ionized cluster beam (ICB) deposition. In this work, we have studied the formation of such films by IBD with emphasis on the effects of ion energy, substrate temperature, and surface cleanliness. Oriented films have been grown on Si(111) at temperatures from 40{degree} to 300{degree}C and with ion energies from 30 to 120 eV per ion. Completed films were analyzed by ion scattering, x-ray diffraction, scanning electron microscopy, and optical microscopy. Results achieved for thin films grown by IBD are compared with results for similar films grown by ICB deposition. 15 refs., 3 figs.

  16. Ion-beam-induced epitaxial crystallization of implanted and chemical vapor deposited amorphous silicon

    NASA Astrophysics Data System (ADS)

    La Ferla, A.; Priolo, F.; Spinella, C.; Rimini, E.; Baroetto, F.; Ferla, G.

    1989-03-01

    The dependence of ion-beam enhanced epitaxial growth of amorphous Si layers on impurities either dissolved in the film or present at the film-substrate interface is considered. In the case of ion implanted layers, electrically active dopants, like B, P, As at concentrations above 1 × 10 20/cm 3, enhance the rate by a factor of 2 with respect to the undoped layer. The enhancement shows also a weak dependence on the dopant concentration. Inert impurities, like Ar, which prevent pure thermal regrowth, do not show any appreciable influence on the ion-beam-induced growth rate. Chemical vapor deposited Si layers with a thin native interfacial oxide layer can also be epitaxially regrown under ion irradiation. A critical fluence is needed before the interfacial oxide breaks down and broadens, allowing the epitaxial crystallization to take place. This process is characterized by an activation energy of 0.44 eV. The complex phenomenon of ion-beam-induced crystallization involves a dynamical interaction between production and annealing of point defects. The presence of electrically active dopants probably influences the lifetime of point defects. Impurities which prevent thermal regrowth are instead dissolved by ballistic effects and/or radiation-enhanced mixing.

  17. Influence of gallium ion beam acceleration voltage on the bend angle of amorphous silicon cantilevers

    NASA Astrophysics Data System (ADS)

    Kozeki, Takahiro; Phan, Hoang-Phuong; Viet Dao, Dzung; Inoue, Shozo; Namazu, Takahiro

    2016-06-01

    This paper describes a plastic reshaping technique for Si thin membranes by using focused ion beam (FIB) processing. FIB is used to locally pattern and implant Ga ions into the membranes. The combination of Ga ion doping and alkali wet etching enables us to fabricate nanometer-thick Ga-ion-doped amorphous Si membranes, which can be bent upward at arbitrary angle by controlling the FIB beam irradiation condition. The bending mechanism is discussed in the light of Ga ions implanted depth from the membrane surface. By using this technique, a micrometer-sized chute structure with several different angles is produced.

  18. Ion beam-assisted deposition of boron nitride from a condensed layer of diborane and ammonia at 78 K

    SciTech Connect

    Kroczynski, R.J.; Strongin, D.R.; Ruckman, M.W.; Strongin, M.

    1993-12-31

    This paper examines the ion beam-assisted deposition (IBAD) of thin boron nitride films using cryogenically condensed precursors. Low energy (1100 eV) argon ad (2000 eV) deuterated ammonia beams with currents of 600--850 nA were used to mix and initiate reactions in frozen (90 K) layers of diborane (B{sub 2}H{sub 6} and ammonia (NH{sub 3}) or only B{sub 2}H{sub 6}, respectively. The resulting film is shown to be an amorphous BN coating approximately 30 {Angstrom} thick.

  19. Full characterization of laser-accelerated ion beams using Faraday cup, silicon carbide, and single-crystal diamond detectors

    SciTech Connect

    Margarone, D.; Prokupek, J.; Rus, B.; Krasa, J.; Velyhan, A.; Laska, L.; Giuffrida, L.; Torrisi, L.; Picciotto, A.; Nowak, T.; Musumeci, P.; Mocek, T.; Ullschmied, J.

    2011-05-15

    Multi-MeV beams of light ions have been produced using the 300 picosecond, kJ-class iodine laser, operating at the Prague Asterix Laser System facility in Prague. Real-time ion diagnostics have been performed by the use of various time-of-flight (TOF) detectors: ion collectors (ICs) with and without absorber thin films, new prototypes of single-crystal diamond and silicon carbide detectors, and an electrostatic ion mass spectrometer (IEA). In order to suppress the long photopeak induced by soft X-rays and to avoid the overlap with the signal from ultrafast particles, the ICs have been shielded with Al foil filters. The application of large-bandgap semiconductor detectors (>3 eV) ensured cutting of the plasma-emitted visible and soft-UV radiation and enhancing the sensitivity to the very fast proton/ion beams. Employing the IEA spectrometer, various ion species and charge states in the expanding laser-plasma have been determined. Processing of the experimental data based on the TOF technique, including estimation of the plasma fast proton maximum and peak energy, ion beam currents and total charge, total number of fast protons, as well as deconvolution processes, ion stopping power, and ion/photon transmission calculations for the different metallic filters used, are reported.

  20. Recrystallization of silicon-on-sapphire structures at various amorphization-ion-beam energies

    SciTech Connect

    Alexandrov, P. A. Demakov, K. D.; Shemardov, S. G.; Kuznetsov, Yu. Yu.

    2013-02-15

    Silicon films on sapphire substrates are grown via recrystallization from the silicon-sapphire interface. An amorphous layer is formed using ion implantation with silicon ion energies of 90-150 keV. An X-ray rocking curve is used to estimate the crystalline perfection of the silicon films. After recrystallization, the silicon layer consists of two parts with different crystalline quality. The recrystallized silicon-on-sapphire structures have a highly perfect upper layer (for fabricating microelectronic devices) and a lower layer adjacent to the sapphire substrate containing a large number of defects.

  1. Concentration dependence and interfacial instabilities during ion beam annealing of arsenic-doped silicon

    SciTech Connect

    Priolo, F.; Rimini, E. ); Spinella, C. ); Ferla, G. )

    1990-01-01

    Ion beam induced epitaxy of amorphous Si layers onto {l angle}100{r angle} substrates has been investigated by varying the As concentration. At As concentrations below 4{times}10{sup 18}/cm{sup 3} no rate effect is observed. In the intermediate regime, between 4{times}10{sup 18}/cm{sup 3} and 2{times}10{sup 21}/cm{sup 3}, the growth rate increases linearly with the logarithm of As concentration and reaches a value about a factor of 2 higher than that of intrinsic Si. At concentrations above 2{times}10{sup 21}/cm{sup 3}, the epitaxy experiences a sudden, severe retardation. Finally, at a concentration of {similar to}6{times}10{sup 21}/cm{sup 3}, twins are observed to form.

  2. Gas cluster ion beam assisted NiPt germano-silicide formation on SiGe

    NASA Astrophysics Data System (ADS)

    Ozcan, Ahmet S.; Lavoie, Christian; Alptekin, Emre; Jordan-Sweet, Jean; Zhu, Frank; Leith, Allen; Pfeifer, Brian D.; LaRose, J. D.; Russell, N. M.

    2016-04-01

    We report the formation of very uniform and smooth Ni(Pt)Si on epitaxially grown SiGe using Si gas cluster ion beam treatment after metal-rich silicide formation. The gas cluster ion implantation process was optimized to infuse Si into the metal-rich silicide layer and lowered the NiSi nucleation temperature significantly according to in situ X-ray diffraction measurements. This novel method which leads to more uniform films can also be used to control silicide depth in ultra-shallow junctions, especially for high Ge containing devices, where silicidation is problematic as it leads to much rougher interfaces.

  3. Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice.

    PubMed

    Ishikawa, Satoru; Ishimaru, Yasuhiro; Igura, Masato; Kuramata, Masato; Abe, Tadashi; Senoura, Takeshi; Hase, Yoshihiro; Arao, Tomohito; Nishizawa, Naoko K; Nakanishi, Hiromi

    2012-11-20

    Rice (Oryza sativa L.) grain is a major dietary source of cadmium (Cd), which is toxic to humans, but no practical technique exists to substantially reduce Cd contamination. Carbon ion-beam irradiation produced three rice mutants with <0.05 mg Cd⋅kg(-1) in the grain compared with a mean of 1.73 mg Cd⋅kg(-1) in the parent, Koshihikari. We identified the gene responsible for reduced Cd uptake and developed a strategy for marker-assisted selection of low-Cd cultivars. Sequence analysis revealed that these mutants have different mutations of the same gene (OsNRAMP5), which encodes a natural resistance-associated macrophage protein. Functional analysis revealed that the defective transporter protein encoded by the mutant osnramp5 greatly decreases Cd uptake by roots, resulting in decreased Cd in the straw and grain. In addition, we developed DNA markers to facilitate marker-assisted selection of cultivars carrying osnramp5. When grown in Cd-contaminated paddy fields, the mutants have nearly undetectable Cd in their grains and exhibit no agriculturally or economically adverse traits. Because mutants produced by ion-beam radiation are not transgenic plants, they are likely to be accepted by consumers and thus represent a practical choice for rice production worldwide. PMID:23132948

  4. Ion-beam nanopatterning of silicon surfaces under codeposition of non-silicide-forming impurities

    NASA Astrophysics Data System (ADS)

    Moon, B.; Yoo, S.; Kim, J.-S.; Kang, S. J.; Muñoz-García, J.; Cuerno, R.

    2016-03-01

    We report experiments on surface nanopatterning of Si targets which are irradiated with 2-keV Ar+ ions impinging at near-glancing incidence, under concurrent codeposition of Au impurities simultaneously extracted from a gold target by the same ion beam. Previous recent experiments by a number of groups suggest that silicide formation is a prerequisite for pattern formation in the presence of metallic impurities. In spite of the fact that Au is known not to form stable compounds with the Si atoms, ripples nonetheless emerge in our experiments with nanometric wavelengths and small amplitudes, and with an orientation that changes with distance to the Au source. We provide results of sample analysis through Auger electron and energy-dispersive x-ray spectroscopies for their space-resolved chemical composition, and through atomic force, scanning transmission electron, and high-resolution transmission microscopies for their morphological properties. We discuss these findings in the light of current continuum models for this class of systems. The composition of and the dynamics within the near-surface amorphized layer that ensues is expected to play a relevant role to account for the unexpected formation of these surface structures.

  5. Al/Al-N/AlN compositional gradient film synthesized by ion-beam assisted deposition method

    SciTech Connect

    Amamoto, Yoshiki; Uchiyama, Shingo; Watanabe, Yoshihisa; Nakamura, Yoshikazu

    1997-12-01

    Al/Al-N-AlN compositional gradient thin film was deposited on a Si(100) substrate at room temperature by ion-beam assisted deposition method, with a diminishing ion beam current from 1.4 to 0 mA at increments of 0.3 mA in order to gradually decrease the nitrogen to aluminum ratio at the substrate. The gradual Al and AlN variation in composition was shown by the change of the Al/N atomic ratio analyzed by the energy dispersive X-ray spectroscopy (EDX) and the X-ray photoelectron spectroscopy (XPS) in the cross section of the film. The formation of crystalline Al metal and AlN ceramic layer on the Si substrate was revealed by X-ray diffraction (XRD). The cross sectional image taken by high resolution transmission electron microscope (HRTEM) showed a nano-sized crystalline Al-N ceramic material and the flat interface between the Si substrate and the AlN film.

  6. Investigation of electrochemical etch differences in AlGaAs heterostructures using Cl{sub 2} ion beam assisted etching

    SciTech Connect

    Anglin, Kevin Goodhue, William D.; Swint, Reuel B.; Porter, Jeanne

    2015-03-15

    A deeply etched, anisotropic 45° and 90° mirror technology is developed for Al{sub x}Ga{sub 1−x}As heterostructures using a Cl{sub 2} ion beam assisted etching system. When etching vertically, using a conductive low-erosion Ni mask, electrochemical etch differences between layers with various Al mole fractions caused nonuniform sidewall profiles not seen in semi-insulating GaAs test samples. These variations, based on alloy composition, were found to be negligible when etching at a 45°. A Si{sub 3}N{sub 4}-Ni etch mask is designed in order to electrically isolate charge buildup caused by the incoming Ar{sup +} ion beam to the Ni layer, preventing conduction to the underlying epitaxial layers. This modification produced smoothly etched facets, up to 8 μm in depth, enabling fabrication of substrate–surface-emitting slab-coupled optical waveguide lasers and other optoelectronic devices.

  7. Focused ion beam assisted three-dimensional rock imaging at submicron scale

    SciTech Connect

    Tomutsa, Liviu; Radmilovic, Velimir

    2003-05-09

    Computation of effective flow properties of fluids in porous media based on three dimensional (3D) pore structure information has become more successful in the last few years, due to both improvements in the input data and the network models. Computed X-ray microtomography has been successful in 3D pore imaging at micron scale, which is adequate for many sandstones. For other rocks of economic interest, such as chalk and diatomite, submicron resolution is needed in order to resolve the 3D-pore structure. To achieve submicron resolution, a new method of sample serial sectioning and imaging using Focused Ion Beam (FIB) technology has been developed and 3D pore images of the pore system for diatomite and chalk have been obtained. FIB was used in the milling of layers as wide as 50 micrometers and as thin as 100 nanometers by sputtering of atoms from the sample surface. The focused ion beam, consisting of gallium ions (Ga+) accelerated by potentials of up to 30 kV and currents up to 20,000 pA, yields very clean, flat surfaces in which the pore-grain boundaries appear in high contrast. No distortion of the pore boundaries due to the ion milling is apparent. After each milling step, as a new surface is exposed, an image of the surface is generated. Using secondary electrons or ions, resolutions as high as 10 nm can be obtained. Afterwards, the series of 2D images can be stacked in the computer and, using appropriate interpolation and surface rendering algorithms, the 3D pore structure is reconstructed.

  8. Ferroelectric polarization and resistive switching characteristics of ion beam assisted sputter deposited BaTiO3 thin films

    NASA Astrophysics Data System (ADS)

    Silva, J. P. B.; Kamakshi, Koppole; Sekhar, K. C.; Moreira, J. Agostinho; Almeida, A.; Pereira, M.; Gomes, M. J. M.

    2016-05-01

    In this work, 150 nm thick polycrystalline BaTiO3 (BTO) films were deposited on Pt/TiO2/SiO2/Si substrate by ion beam assisted sputter deposition technique. The bias voltage dependent resistive switching (RS) and ferroelectric polarization characteristics of Au/BTO/Pt devices are investigated. The devices display the stable bipolar RS characteristics without an initial electroforming process. Fittings to current-voltage (I-V) curves suggest that low and high resistance states are governed, respectively, by filamentary model and trap controlled space charge limited conduction mechanism, where the oxygen vacancies act as traps. Presence of oxygen vacancies is evidenced from the photoluminescence spectrum. The devices also display P-V loops with remnant polarization (Pr) of 5.7 μC/cm2 and a coercive electric field (Ec) of 173.0 kV/cm. The coupling between the ferroelectric polarization and RS effect in BTO films is demonstrated.

  9. Optical properties of ion beam textured metals. [using copper, silicon, aluminum, titanium and stainless steels

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.; Weigand, A. J.; Mirtich, M. J.

    1977-01-01

    Copper, silicon, aluminum, titanium and 316 stainless steel were textured by 1000 eV xenon ions from an 8 cm diameter electron bombardment ion source. Simultaneously sputter-deposited tantalum was used to facilitate the development of the surface microstructure. Scanning electron microscopy of the ion textured surfaces revealed two types of microstructure. Copper, silicon, and aluminum developed a cone structure with an average peak-to-peak distance ranging from 1 micron for silicon to 6 microns for aluminum. Titanium and 316 stainless steel developed a serpentine ridge structure. The average peak-to-peak distance for both of these materials was 0.5 micron. Spectral reflectance was measured using an integrating sphere and a holraum reflectometer. Total reflectance for air mass 0 and 2, solar absorptance and total emittance normalized for a 425 K black body were calculated from the reflectance measurements.

  10. Biocompatibility and charge injection property of iridium film formed by ion beam assisted deposition.

    PubMed

    Lee, In-Seop; Whang, Chung-Nam; Park, Jong-Chul; Lee, Dong-Hee; Seo, Won-Sun

    2003-06-01

    Iridium thin film formed by electron-beam evaporation with simultaneous bombardment of Ar ion beam was evaluated for a stimulating neural electrode. The electrochemical behavior of as-deposited Ir film on Ni-Ti sample was almost identical to bulk Ir by producing much higher open-circuit corrosion potential and much lower anodic current density than the uncoated Ni-Ti in both 1N sulfuric acid and saline solution. The charge injection capability of Ir film was compared with that of Pt electrode currently used mostly as a stimulating neural electrode. The charge density of Pt was small and unchanged with increasing number of activating cycles in 0.1M H(2)SO(4), whilst the Ir film continuously produced increases in charge density. The charge injection density of Ir film in physiological solution was higher for the more activated sample under the identical stimulating condition. Attachment and proliferation with PC12 cells on Ir-coated CP Ti without applying electrical stimulation was similar to the polished CP Ti. A network of neurons and extending axons were formed on Ir film. PMID:12699658

  11. Ion Beam Analysis Of Silicon-Based Surfaces And Correlation With Surface Energy Measurements

    NASA Astrophysics Data System (ADS)

    Xing, Qian; Herbots, N.; Hart, M.; Bradley, J. D.; Wilkens, B. J.; Sell, D. A.; Sell, Clive H.; Kwong, Henry Mark; Culbertson, R. J.; Whaley, S. D.

    2011-06-01

    The water affinity of Si-based surfaces is quantified by contact angle measurement and surface free energy to explain hydrophobic or hydrophilic behavior of silicone, silicates, and silicon surfaces. Surface defects such as dangling bonds, surface free energy including Lewis acid-base and Lifshitz-van der Waals components are discussed. Water nucleation and condensation is further explained by surface topography. Tapping mode atomic force microscopy (TMAFM) provides statistical analysis of the topography of these Si-based surfaces. The correlation of the above two characteristics describes the behavior of water condensation at Si-based surfaces. Surface root mean square roughness increasing from several Å to several nm is found to provide nucleation sites that expedite water condensation visibly for silica and silicone. Hydrophilic surfaces have a condensation pattern that forms puddles of water while hydrophobic surfaces form water beads. Polymer adsorption on these surfaces alters the water affinity as well as the surface topography, and therefore controls condensation on Si-based surfaces including silicone intraocular lens (IOL). The polymer film is characterized by Rutherford backscattering spectrometry (RBS) in conjunction with 4.265 MeV 12C(α, α)12C, 3.045 MeV 16O(α,α)16O nuclear resonance scattering (NRS), and 2.8 MeV elastic recoil detection (ERD) of hydrogen for high resolution composition and areal density measurements. The areal density of hydroxypropyl methylcellulose (HPMC) film ranges from 1018 atom/cm2 to 1019 atom/cm2 gives the silica or silicone surface a roughness of several Å and a wavelength of 0.16±0.02 μm, and prevents fogging by forming a complete wetting layer during water condensation.

  12. Ion Beam Analysis Of Silicon-Based Surfaces And Correlation With Surface Energy Measurements

    SciTech Connect

    Xing Qian; Herbots, N.; Hart, M.; Bradley, J. D.; Wilkens, B. J.; Sell, D. A.; Culbertson, R. J.; Whaley, S. D.; Sell, Clive H.; Kwong, Henry Mark Jr.

    2011-06-01

    The water affinity of Si-based surfaces is quantified by contact angle measurement and surface free energy to explain hydrophobic or hydrophilic behavior of silicone, silicates, and silicon surfaces. Surface defects such as dangling bonds, surface free energy including Lewis acid-base and Lifshitz-van der Waals components are discussed. Water nucleation and condensation is further explained by surface topography. Tapping mode atomic force microscopy (TMAFM) provides statistical analysis of the topography of these Si-based surfaces. The correlation of the above two characteristics describes the behavior of water condensation at Si-based surfaces. Surface root mean square roughness increasing from several A ring to several nm is found to provide nucleation sites that expedite water condensation visibly for silica and silicone. Hydrophilic surfaces have a condensation pattern that forms puddles of water while hydrophobic surfaces form water beads. Polymer adsorption on these surfaces alters the water affinity as well as the surface topography, and therefore controls condensation on Si-based surfaces including silicone intraocular lens (IOL). The polymer film is characterized by Rutherford backscattering spectrometry (RBS) in conjunction with 4.265 MeV {sup 12}C({alpha}, {alpha}){sup 12}C, 3.045 MeV {sup 16}O({alpha},{alpha}){sup 16}O nuclear resonance scattering (NRS), and 2.8 MeV elastic recoil detection (ERD) of hydrogen for high resolution composition and areal density measurements. The areal density of hydroxypropyl methylcellulose (HPMC) film ranges from 10{sup 18} atom/cm{sup 2} to 10{sup 19} atom/cm{sup 2} gives the silica or silicone surface a roughness of several A ring and a wavelength of 0.16{+-}0.02 {mu}m, and prevents fogging by forming a complete wetting layer during water condensation.

  13. Tailoring the Optical Properties of Silicon with Ion Beam Created Nanostructures for Advanced Photonics Applications

    NASA Astrophysics Data System (ADS)

    Akhter, Perveen

    In today's fast life, energy consumption has increased more than ever and with that the demand for a renewable and cleaner energy source as a substitute for the fossil fuels has also increased. Solar radiations are the ultimate source of energy but harvesting this energy in a cost effective way is a challenging task. Si is the dominating material for microelectronics and photovoltaics. But owing to its indirect band gap, Si is an inefficient light absorber, thus requiring a thickness of solar cells beyond tens of microns which increases the cost of solar energy. Therefore, techniques to increase light absorption in thin film Si solar cells are of great importance and have been the focus of research for a few decades now. Another big issue of technology in this fast-paced world is the computing rate or data transfer rate between components of a chip in ultra-fast processors. Existing electronic interconnects suffering from the signal delays and heat generation issues are unable to handle high data rates. A possible solution to this problem is in replacing the electronic interconnects with optical interconnects which have large data carrying capacity. However, optical components are limited in size by the fundamental laws of diffraction to about half a wavelength of light and cannot be combined with nanoscale electronic components. Tremendous research efforts have been directed in search of an advanced technology which can bridge the size gap between electronic and photonic worlds. An emerging technology of "plasmonics'' which exploits the extraordinary optical properties of metal nanostructures to tailor the light at nanoscale has been considered a potential solution to both of the above-mentioned problems. Research conducted for this dissertation has an overall goal to investigate the optical properties of silicon with metal nanostructures for photovoltaics and advanced silicon photonics applications. The first part of the research focuses on achieving enhanced

  14. Low temperature Ti-Si-C thin film deposition by ion beam assisted methods

    NASA Astrophysics Data System (ADS)

    Twardowska, Agnieszka; Rajchel, Boguslaw; Jaworska, Lucyna

    2010-11-01

    Thin, multiphase Ti-Si-C coatings were formed by IBSD or by IBAD methods on AISI 316L steel substrates in room temperature, using single Ti3SiC2 target. In those methods the TiXSiCY coatings were formed from the flux of energetic atoms and ions obtained by ion sputtering of the Ti3SiC2 compound sample. As sputtering beam the beam of Ar+ ions at energy of 15keV was applied. In the IBAD method the dynamically formed coatings were additionally bombarded by beam of Ar+ ions at energy of 15keV. The ion beams parameters were obtained by using Monte Carlo computer simulations. The morphology (SEM, TEM), chemical (EDS/EDX) and phase composition (XRD) examinations of formed coatings were provided as well as confocal Raman microspectroscopy. Analyzed coatings were relatively thin (150nm-1μm), flat and dense. XRD analysis indicated in amorphous TiSi, the traces of Ti5Si3 and other phases from Ti-Si-C system (TiSi, TiSi2,Ti3SiC2). For chemical bonds investigation, the laser beam with length of 532nm was used. Those analyses were performed in the low (LR) or in high (HR) resolution modes in room temperature and in 4000C. In the HR mode the spectral resolution was close to 2 cm-1. In Raman spectra peaks at: 152cm-1, 216cm-1, 278cm-1, 311 cm-1, 608cm-1, 691cm-1 were recorded. Nanoindentation tests were done on coated and uncoated substrates with diamond, Berkovich-type indenter. Vickers hardness HIT and reduced elastic modulus EIT were calculated using Olivier& Pharr method. HIT for coated substrates was in the range 2.7 to 5.3 GPa, EIT was 160 GPa.

  15. Integration of scanning probes and ion beams

    SciTech Connect

    Persaud, A.; Park, S.J.; Liddle, J.A.; Schenkel, T.; Bokor, J.; Rangelow, I.

    2005-03-30

    We report the integration of a scanning force microscope with ion beams. The scanning probe images surface structures non-invasively and aligns the ion beam to regions of interest. The ion beam is transported through a hole in the scanning probe tip. Piezoresistive force sensors allow placement of micromachined cantilevers close to the ion beam lens. Scanning probe imaging and alignment is demonstrated in a vacuum chamber coupled to the ion beam line. Dot arrays are formed by ion implantation in resist layers on silicon samples with dot diameters limited by the hole size in the probe tips of a few hundred nm.

  16. An ultra-low energy (30-200 eV) ion-atomic beam source for ion-beam-assisted deposition in ultrahigh vacuum.

    PubMed

    Mach, Jindrich; Samoril, Tomás; Voborný, Stanislav; Kolíbal, Miroslav; Zlámal, Jakub; Spousta, Jirí; Dittrichová, Libuse; Sikola, Tomás

    2011-08-01

    The paper describes the design and construction of an ion-atomic beam source with an optimized generation of ions for ion-beam-assisted deposition under ultrahigh vacuum (UHV) conditions. The source combines an effusion cell and an electron impact ion source and produces ion beams with ultra-low energies in the range from 30 eV to 200 eV. Decreasing ion beam energy to hyperthermal values (≈10(1) eV) without loosing optimum ionization conditions has been mainly achieved by the incorporation of an ionization chamber with a grid transparent enough for electron and ion beams. In this way the energy and current density of nitrogen ion beams in the order of 10(1) eV and 10(1) nA/cm(2), respectively, have been achieved. The source is capable of growing ultrathin layers or nanostructures at ultra-low energies with a growth rate of several MLs/h. The ion-atomic beam source will be preferentially applied for the synthesis of GaN under UHV conditions. PMID:21895238

  17. Hierarchical titania nanostructures prepared with focused ion beam-assisted anodisation of titanium in an aqueous electrolyte

    NASA Astrophysics Data System (ADS)

    Yadav, Pradeep K.; Lemoine, Patrick; Dale, Graham; Hamilton, Jeremy W. J.; Dunlop, Patrick S. M.; Byrne, John A.; Mailley, Pascal; Boxall, Colin

    2015-04-01

    Titania nanostructures have been prepared by anodisation in aqueous solution assisted by focused ion beam (FIB) milling. The structures formed are bi-periodic, a disordered "native" nanotube array, with characteristics similar to those formed by the standard anodisation process and an ordered array of tubes with larger diameters, guided by the positioning of the FIB concave pits. Low kV EDX analysis shows implanted Ga in FIB-treated titanium which is efficiently removed by the anodisation process. Following thermal annealing, the FIB-treated regions also crystallise to the same anatase phase as the native regions. This result is in stark contrast to previous FIB-assisted anodisation studies which only produced nanostructured arrays of native dimensions. This singularity is discussed in terms of the stable FIB-induced crystalline defects which, in an aqueous electrolyte, can result in the growth of a weaker barrier layer and larger tubes. This novel process gave hexagonal and square arrays with tailored cross-sectional dimensions and therefore has potential for the synthesis of novel meta-materials.

  18. Fabrication of single TiO2 nanotube devices with Pt interconnections using electron- and ion-beam-assisted deposition

    NASA Astrophysics Data System (ADS)

    Lee, Mingun; Cha, Dongkyu; Huang, Jie; Ha, Min-Woo; Kim, Jiyoung

    2016-06-01

    Device fabrication using nanostructured materials, such as nanotubes, requires appropriate metal interconnections between nanotubes and electrical probing pads. Here, electron-beam-assisted deposition (EBAD) and ion-beam-assisted deposition (IBAD) techniques for fabrication of Pt interconnections for single TiO2 nanotube devices are investigated. IBAD conditions were optimized to reduce the leakage current as a result of Pt spreading. The resistivity of the IBAD-Pt was about three orders of magnitude less than that of the EBAD-Pt, due to low carbon concentration and Ga doping, as indicated by X-ray photoelectron spectroscopy analysis. The total resistances of single TiO2 nanotube devices with EBAD- or IBAD-Pt interconnections were 3.82 × 1010 and 4.76 × 108 Ω, respectively. When the resistivity of a single nanotube is low, the high series resistance of EBAD-Pt cannot be ignored. IBAD is a suitable method for nanotechnology applications, such as photocatalysis and biosensors.

  19. Ion beam evaluation of silicon carbide membrane structures intended for particle detectors

    NASA Astrophysics Data System (ADS)

    Pallon, J.; Syväjärvi, M.; Wang, Q.; Yakimova, R.; Iakimov, T.; Elfman, M.; Kristiansson, P.; Nilsson, E. J. C.; Ros, L.

    2016-03-01

    Thin ion transmission detectors can be used as a part of a telescope detector for mass and energy identification but also as a pre-cell detector in a microbeam system for studies of biological effects from single ion hits on individual living cells. We investigated a structure of graphene on silicon carbide (SiC) with the purpose to explore a thin transmission detector with a very low noise level and having mechanical strength to act as a vacuum window. In order to reach very deep cavities in the SiC wafers for the preparation of the membrane in the detector, we have studied the Inductive Coupled Plasma technique to etch deep circular cavities in 325 μm prototype samples. By a special high temperature process the outermost layers of the etched SiC wafers were converted into a highly conductive graphitic layer. The produced cavities were characterized by electron microscopy, optical microscopy and proton energy loss measurements. The average membrane thickness was found to be less than 40 μm, however, with a slightly curved profile. Small spots representing much thinner membrane were also observed and might have an origin in crystal defects or impurities. Proton energy loss measurement (also called Scanning Transmission Ion Microscopy, STIM) is a well suited technique for this thickness range. This work presents the first steps of fabricating a membrane structure of SiC and graphene which may be an attractive approach as a detector due to the combined properties of SiC and graphene in a monolithic materials structure.

  20. Effect of high-energy electron-beam irradiation on the optical properties of ion-beam-sputtered silicon oxynitride thin films.

    PubMed

    Karanth, Shivaprasad; Shanbhogue, Ganesh H; Nagendra, C L

    2005-10-10

    Silicon oxynitride thin films are prepared by ion-beam sputtering, and the optical properties and surface chemical composition are studied by spectrophotometric and x-ray photoelectron spectroscopy, respectively. It is seen that the films sputtered by use of nitrogen alone as the sputtering species from a silicon nitride target are completely transparent (k < 0.005) and have a refractive-index dispersion from 1.85 to 1.71 over the visible and near-infrared spectral regions, and the films show distinct spectral lines that are due to silicon, Si(2s), nitrogen, N(1s), and oxygen, O(1s). Sputter deposition of argon and of argon and nitrogen produces silicon-rich silicon oxynitride films that are absorbent and have high refractive indices. These films have a direct electronic transition, with a threshold energy of 1.75 eV. Electron irradiation transforms optically transparent silicon oxynitride films into silicon-rich silicon oxynitride films that have higher refractive indices and are optically absorbing owing to the presence of nonsaturated silicon in the irradiated films. The degradation in current responsivity of silicon photodetectors, under electron irradiation, is within 3% over the wavelength region from 450 to 750 nm, which is entirely due to the degradation of optical properties of silicon oxynitride antireflection coatings. PMID:16237933

  1. Much simplified ion-beam assisted deposition-TiN template for high-performance coated conductors

    NASA Astrophysics Data System (ADS)

    Xiong, J.; Matias, V.; Wang, H.; Zhai, J. Y.; Maiorov, B.; Trugman, D.; Tao, B. W.; Li, Y. R.; Jia, Q. X.

    2010-10-01

    A much simplified template, i.e., two nonsuperconducting layers between the superconducting YBa2Cu3O7-δ (YBCO) and the polycrystalline metal substrate, has been developed for high-performance coated conductors by using biaxially aligned TiN as a seed layer. A combination of a thin TiN (˜10 nm by ion-beam assisted deposition) layer and an epitaxial buffer LaMnO3 layer (˜120 nm) allows us to grow epitaxial YBCO films with values of full width at half-maximum around 3.5° and 1.7° for the ϕ-scan of (103) and rocking curve of (005) YBCO, respectively. The YBCO films grown on electropolished polycrystalline Hastelloy using this two-layer template exhibited a superconducting transition temperature of 89.5 K, a critical current density of 1.2 MA/cm2 at 75.5 K, and an α value (proportional factor of critical current density Jc˜H-α) of around 0.33, indicating a high density of pinning centers and an absence of weak links.

  2. Ion-beam-assisted deposition of Au nanocluster/Nb 2O 5 thin films with nonlinear optical properties

    NASA Astrophysics Data System (ADS)

    Cotell, C. M.; Schiestel, S.; Carosella, C. A.; Flom, S.; Hubler, G. K.; Knies, D. L.

    1997-05-01

    Gold nanocluster thin films (˜ 200 nm thickness) consisting of metal clusters ˜ 5 nm in size embedded in a matrix of Nb 2O 5 were deposited by ion beam-assisted deposition (IBAD) by coevaporation of Au and Nb with O 2+ ion bombardment. The microstructure and optical characteristics of these films were examined as-deposited and after annealing at 600°C. Annealing crystallized the amorphous oxide matrix and ripened the nanoclusters. A strong linear absorption at the wavelength of the surface plasmon resonance for Au developed as a result of annealing. The linear optical behavior was modeled using Mie scattering theory. Good agreement was found between the nanocluster sizes predicted by the theory and the particle sizes observed experimentally using transmission electron microscopy (TEM). The nonlinear optical (NLO) properties of the nanocluster films were probed experimentally using degenerate four wave mixing and nonlinear transmission. The wavelength was near the peak of the surface plasmon resonance as measured by VIS/UV spectroscopy. Values of | χxxxx(3)| were 7.3 × 10 -8 and 3.0 × 10 -10 esu for annealed and unannealed samples, respe The dominant mechanism for the nonlinear response was change in dielectric constant due to the generation of a distribution of hot, photoexcited electrons.

  3. High-temperature tribological characteristics of silver and gold coatings on ceramics prepared by ion-beam-assisted deposition

    SciTech Connect

    Erdemir, A.; Erck, R.A.; Fenske, G.R.; Nichols, F.A.

    1992-04-01

    An ion-beam-assisted deposition (IBAD) system was used to deposit silver and gold coatings on polycrystalline {alpha}-alumina (Al{sub 2}O{sub 3}) substrates for tribological studies at temperatures to 400{degrees}C. The wear tests were performed with an oscillating ball-on-flat type of test apparatus as a partial simulation of ring/liner motion and contact geometry in actual engine systems. The test results showed that without a surface coating, both the wear rates and the friction coefficients of Al{sub 2}O{sub 3}/Al{sub 2}O{sub 3} test pairs were quite high, and increased substantially with temperature. In contract, the wear of flats coated with silver and gold was at unmeasurable levels, even after sliding tests of 110,000 passes. The wear of balls (uncoated) sliding against the Ag- and Au-coated flats was reduced by factors of 45 to more than 500 depending on coating type and ambient temperature. The friction coefficients of pairs with an IBAD-Ag or Au coating were in the range of 0.32--0.5.

  4. Chemically assisted ion beam etching of laser diode facets on nonpolar and semipolar orientations of GaN

    NASA Astrophysics Data System (ADS)

    Kuritzky, L. Y.; Becerra, D. L.; Saud Abbas, A.; Nedy, J.; Nakamura, S.; DenBaars, S. P.; Cohen, D. A.

    2016-07-01

    We demonstrate a vertical (<1° departure) and smooth (2.0 nm root mean square line-edge roughness (LER)) etch by chemically assisted Ar ion beam etching (CAIBE) in Cl2 chemistry that is suitable for forming laser diode (LD) facets on nonpolar and semipolar oriented III-nitride devices. The etch profiles were achieved with photoresist masks and optimized CAIBE chamber conditions including the platen tilt angle and Cl2 flow rate. Co-loaded studies showed similar etch rates of ∼60 nm min‑1 for (20\\bar{2}\\bar{1}),(20\\bar{2}1), and m-plane orientations. The etched surfaces of LD facets on these orientations are chemically dissimilar (Ga-rich versus N-rich), but were visually indistinguishable, thus confirming the negligible orientation dependence of the etch. Continuous-wave blue LDs were fabricated on the semipolar (20\\bar{2}\\bar{1}) plane to compare CAIBE and reactive ion etch (RIE) facet processes. The CAIBE process resulted in LDs with lower threshold current densities due to reduced parasitic mirror loss compared with the RIE process. The LER, degree of verticality, and model of the 1D vertical laser mode were used to calculate a maximum uncoated facet reflection of 17% (94% of the nominal) for the CAIBE facet. The results demonstrate the suitability of CAIBE for forming high quality facets for high performance nonpolar and semipolar III-N LDs.

  5. Optical and structural properties of YF3 thin films prepared by ion-assisted deposition or ion beam sputtering techniques

    NASA Astrophysics Data System (ADS)

    Robic, Jean-Yves; Muffato, Viviane; Chaton, Patrick; Ida, Michel; Berger, M.

    1994-11-01

    The properties of materials in thin films are strongly dependent on the coating techniques and on the technological parameters. We have investigated about some optical and structural properties of YF3 thin films prepared using different energetic techniques: ion assisted deposition (IAD) and ion beam sputtering (IBS). The properties of the thin films obtained by these energetic processes are compared to the properties obtained by classical electron beam evaporation. In classical evaporation, the optical properties in the visible range depend on the temperature of the deposition and on the incidence of the vapor flux. The optical properties are correlated with the density of the films measured by Rutherford backscattering. In the case of IAD, the influence on optical properties, both in the visible and in the infrared range, of some technological parameters (pressure, ion energy and ion density) are illustrated. The refractive index and the extinction coefficient have been obtained by spectrophotometry. Furthermore, we show that IBS may lead to YF3 layers of high density.

  6. Much simplified ion-beam assisted deposition-TiN template for high-performance coated conductors

    SciTech Connect

    Xiong, J.; Matias, V.; Zhai, J. Y.; Maiorov, B.; Trugman, D.; Jia, Q. X.; Wang, H.; Tao, B. W.; Li, Y. R.

    2010-10-15

    A much simplified template, i.e., two nonsuperconducting layers between the superconducting YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO) and the polycrystalline metal substrate, has been developed for high-performance coated conductors by using biaxially aligned TiN as a seed layer. A combination of a thin TiN ({approx}10 nm by ion-beam assisted deposition) layer and an epitaxial buffer LaMnO{sub 3} layer ({approx}120 nm) allows us to grow epitaxial YBCO films with values of full width at half-maximum around 3.5 deg. and 1.7 deg. for the {phi}-scan of (103) and rocking curve of (005) YBCO, respectively. The YBCO films grown on electropolished polycrystalline Hastelloy using this two-layer template exhibited a superconducting transition temperature of 89.5 K, a critical current density of 1.2 MA/cm{sup 2} at 75.5 K, and an {alpha} value (proportional factor of critical current density J{sub c}{approx}H{sup -}{alpha}) of around 0.33, indicating a high density of pinning centers and an absence of weak links.

  7. Visualisation of the ingress of water and dispersion of drugs in a modified hydrosilanised silicone polymer using combined ion beam analysis techniques

    NASA Astrophysics Data System (ADS)

    Jenneson, P. M.; Clough, A. S.; Riggs, P. D.; Sample, I. R.

    1998-08-01

    A combination of the ion beam analysis techniques Nuclear Reaction Analysis (NRA) and Particle Induced X-ray Emission (PIXE) were used to image the ingress of heavy water into a modified hydrosilanised silicone polymer doped with the drug chlorhexidine diacetate. In the drug release system studied chlorine was a unique component of the drug, the polymeric matrix was identified by its silicon component and the diffusing water labelled with deuterium. Areal distribution plots are shown for differing exposure times of the polymer to D 2O. The plots are also statistically analysed to show trends of increasing chlorine/deuterium correlation, silicon/deuterium anti-correlation and a constant silicon/chlorine anti-correlation with respect to time.

  8. Ion-beam sputtering increases solar-cell efficiency

    NASA Technical Reports Server (NTRS)

    Burk, D. E.; Dubow, J. B.; Sites, R. R.

    1977-01-01

    Ion-beam sputtering, fabrication of oxide-semiconductor-on-silicon (OSOS) solar cells, results in cells of 12% efficiency. Ion-beam sputtering technique is compatible with low-cost continuous fabrication and requires no high-temperature processing.

  9. Fast prototyping of high-aspect ratio, high-resolution x-ray masks by gas-assisted focused ion beam

    NASA Technical Reports Server (NTRS)

    Hartley, F.; Malek, C.; Neogi, J.

    2001-01-01

    The capacity of chemically-assisted focused ion beam (fib) etching systems to undertake direct and highly anisotropic erosion of thin and thick gold (or other high atomic number [Z])coatings on x-ray mask membranes/substrates provides new levels of precision, flexibility, simplification and rapidity in the manufacture of mask absorber patterns, allowing the fast prototyping of high aspect ratio, high-resolution masks for deep x-ray lithography.

  10. Neutralization of space charge on high-current low-energy ion beam by low-energy electrons supplied from silicon based field emitter arrays

    SciTech Connect

    Gotoh, Yasuhito; Tsuji, Hiroshi; Taguchi, Shuhei; Ikeda, Keita; Kitagawa, Takayuki; Ishikawa, Junzo; Sakai, Shigeki

    2012-11-06

    Neutralization of space charge on a high-current and low-energy ion beam was attempted to reduce the divergence with an aid of low-energy electrons supplied from silicon based field emitter arrays (Si-FEAs). An argon ion beam with the energy of 500 eV and the current of 0.25 mA was produced by a microwave ion source. The initial beam divergence and the emittance were measured at the entrance of the analysis chamber in order to estimate the intrinsic factors for beam divergence. The current density distribution of the beam after transport of 730 mm was measured by a movable Faraday cup, with and without electron supply from Si-FEAs. A similar experiment was performed with tungsten filaments as an electron source. The results indicated that the electron supply from FEA had almost the same effect as the thermionic filament, and it was confirmed that both electron sources can neutralize the ion beam.

  11. Focused ion beam and electron microscopy characterization of nanosharp tips and microbumps on silicon and metal thin films formed via localized single-pulse laser irradiation

    SciTech Connect

    Moening, Joseph P.; Georgiev, Daniel G.; Lawrence, Joseph G.

    2011-01-01

    Cross-sections of laser fabricated nanosharp tips and microbumps on silicon and metal thin films are produced and examined in this work. These structures are formed with a Q-switched neodymium doped yttrium aluminum garnet nanosecond-pulse laser, emitting at its fourth harmonic of 266 nm, using a mask projection technique to generate circular laser spots, several microns in diameter. Cross-section of selected structures were produced using a focused ion beam and were characterized via electron microscopy. The diffraction patterns of the silicon samples indicate that the laser formed tip maintains the same single crystal structure as the original silicon film. Examinations of the laser formed structures in metal films confirm that the microbumps are hollow, while revealing that the vertical protrusions are solid.

  12. Real time x-ray studies during nanostructure formation on silicon via low energy ion beam irradiation using ultrathin iron films

    SciTech Connect

    El-Atwani, Osman; Suslova, Anastassiya; Gonderman, Sean; Fowler, Justin; El-Atwani, Mohamad; DeMasi, Alexander; Ludwig, Karl; Paul Allain, Jean

    2012-12-24

    Real time grazing incidence small angle x-ray scattering and x-ray fluorescence (XRF) are used to elucidate nanodot formation on silicon surfaces during low energy ion beam irradiation of ultrathin iron-coated silicon substrates. Four surface modification stages were identified: (1) surface roughening due to film erosion, (2) surface smoothing and silicon-iron mixing, (3) structure formation, and (4) structure smoothing. The results conclude that 2.5 Multiplication-Sign 10{sup 15} iron atoms in a 50 nm depth triggers surface nanopatterning with a correlated nanodots distance of 25 nm. Moreover, there is a wide window in time where the surface can have correlated nanostructures even after the removal of all the iron atoms from the sample as confirmed by XRF and ex-situ x-ray photoelectron spectroscopy (XPS). In addition, in-situ XPS results indicated silicide formation, which plays a role in the structure formation mechanism.

  13. Oxygen ion-beam microlithography

    DOEpatents

    Tsuo, Y.S.

    1991-08-20

    A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used. 5 figures.

  14. Oxygen ion-beam microlithography

    DOEpatents

    Tsuo, Y. Simon

    1991-01-01

    A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used.

  15. Influence of the Ion-to-Atom Ratio on the Structure of CeO2 Buffer Layer by Ion Beam Assisted E-Beam Evaporation

    NASA Astrophysics Data System (ADS)

    Kim, Chang Su; Jo, Sung Jin; Kim, Woo Jin; Koo, Won Hoe; Baik, Hong Koo; Lee, Se Jong

    2005-09-01

    Using ion-beam assisted e-beam evaporation with the ion beam directed at 55° to the normal of the film plane, (200) oriented CeO2 films with biaxial texture were deposited on Hastelloy C276 substrates at room temperature. The crystalline quality and in-plane orientation of films was investigated by X-ray diffraction 2θ-scan and Φ-scan, atomic force microscopy (AFM). It was shown that the in-plane and out-of-plane textures of the CeO2 films were controlled by the deposition parameters. The orientation of the films was studied as a function of ion-to-atom ratio and film thickness. The ion-to-atom ratio was varied by independently adjusting the deposition rate and the ion current density. Under optimum condition, (200) textured CeO2 films have been successfully grown on Hastelloy C276.

  16. Enhanced Etching, Surface Damage Recovery, and Submicron Patterning of Hybrid Perovskites using a Chemically Gas-Assisted Focused-Ion Beam for Subwavelength Grating Photonic Applications.

    PubMed

    Alias, Mohd S; Yang, Yang; Ng, Tien K; Dursun, Ibrahim; Shi, Dong; Saidaminov, Makhsud I; Priante, Davide; Bakr, Osman M; Ooi, Boon S

    2016-01-01

    The high optical gain and absorption of organic-inorganic hybrid perovskites have attracted attention for photonic device applications. However, owing to the sensitivity of organic moieties to solvents and temperature, device processing is challenging, particularly for patterning. Here, we report the direct patterning of perovskites using chemically gas-assisted focused-ion beam (GAFIB) etching with XeF2 and I2 precursors. We demonstrate etching enhancement in addition to controllability and marginal surface damage compared to focused-ion beam (FIB) etching without precursors. Utilizing the GAFIB etching, we fabricated a uniform and periodic submicron perovskite subwavelength grating (SWG) absorber with broadband absorption and nanoscale precision. Our results demonstrate the use of FIB as a submicron patterning tool and a means of providing surface treatment (after FIB patterning to minimize optical loss) for perovskite photonic nanostructures. The SWG absorber can be patterned on perovskite solar cells to enhance the device efficiency through increasing light trapping and absorption. PMID:26688008

  17. Ion Beams: In Situ Mitigation of Subsurface and Peripheral Focused Ion Beam Damage via Simultaneous Pulsed Laser Heating (Small 13/2016).

    PubMed

    Stanford, Michael G; Lewis, Brett B; Iberi, Vighter; Fowlkes, Jason D; Tan, Shida; Livengood, Rick; Rack, Philip D

    2016-04-01

    Focused ion beam (FIB) processing is an important direct-write nanoscale synthesis technique; however it generates subsurface defects that can preclude its use for many applications. On page 1779 P.D. Rack and co-workers demonstrate an in situ laser assisted focused ion beam synthesis approach, which photothermally mitigates the defects generated in silicon during focused He(+) and Ne(+) exposures. Finally, the group shows that laser assisted FIB reduces the damage generated in graphene nanochannels fabricated via the He(+) FIB. PMID:27038178

  18. Ion-beam-assisted deposition of MoS2 and other low-friction films. Interim report, Jun 88-Jun 92

    SciTech Connect

    Bolster, R.N.

    1992-09-11

    Vacuum-deposited films of molybdenum disulfide (MoS2) are effective as solid lubricants. Ion-beam-assisted deposition, which employs ion beam sputtering with an assist beam impinging on the growing film, has been investigated as a means of preparing low-friction high endurance coatings. The apparatus used and some of the techniques involved are described. Ion source operating parameters were optimized and the assist beam ion flux was quantified and found to follow a power-law relationship with beam power. The best way to produce MoS2 films was found to be cosputtering from separate Mo and S targets with deposition rates adjusted to obtain the desired stoichiometry. Deposition rates were found to also follow a power-law relationship with beam power, and formulae are given for predicting them, the ratio of assist ions to film atoms, and the effect of assist beam sputtering on film thickness. Inverse formulae are given for determining process parameters needed to achieve a selected film thickness and composition. A composite target for simultaneous Mo and S sputtering was developed. Deposition rates were determined for other metals: W, N1, Co, Cu, and Pb. Formulae relating target-to-substrate distance to deposition rate are given.

  19. A New Approach of Polycrystalline Silicon Film on Plastic Substrate Prepared by Ion Beam Deposition Followed by Excimer Laser Crystallization at Room Temperature

    NASA Astrophysics Data System (ADS)

    Kwon, Jang Yeon; Lim, Hyuck; Park, Kyung Bae; Jung, Ji Sim; Kim, Do Young; Cho, Hans S.; Kim, Seok Pil; Park, Young Soo; Kim, Jong Man; Noguchi, Takashi

    2006-05-01

    In this work, we propose a new polycrystalline silicon (poly-Si) film of large grain for thin film transistor on flexible substrate. Thin films of amorphous silicon were deposited on plastic substrate by using ion beam deposition (IBD) and crystallized by excimer laser annealing. The entire process was carried out at room temperature. Si film formed by IBD has much lower impurity such as Ar, O, and H than that deposited by conventional sputtering method. This high purity of Si film makes large grain size (0.5 μm) and shows high endurance of excimer laser energy both on quartz and plastic substrate for flexible active matrix organic light emitting diode (AMOLED).

  20. A study of the thin film battery electrolyte lithium phosphorus oxynitride deposited by an ion beam assisted process

    NASA Astrophysics Data System (ADS)

    Vereda-Moratilla, Fernando

    Thin film Li-ion batteries are currently the subject of a world-wide research effort because of their many potential applications as portable energy sources. One of the key elements of these batteries is the electrolyte. Since it was first produced in the early 1990's, the preferred solid state thin film Li-ion electrolyte is lithium phosphorus oxynitride (LiPON), which is normally grown by means of reactive rf sputtering of a Li3PO 4 target in an N2 atmosphere. Solid electrolytes such as LiPON have several advantages compared to the liquid electrolytes normally used in bulk batteries. Solid electrolytes avoid leakage and have excellent charge-discharge cycling properties. Furthermore, sputtered-deposited LiPON proved to be stable versus Li+/Li from 0 to +5.5 V, which exceeded the stability window of any of the liquid electrolytes. In this work we present a general study of the properties of LiPON thin films deposited by an alternative process: ion beam assisted deposition (IBAD). In this process Li3PO4 is vacuum thermally evaporated and the condensing film is simultaneously bombarded with nitrogen ions which incorporate to form LiPON. Because of its application as an electrolyte and because of a previous study in which we showed that tensile stress led to cracking of the LiPON films and subsequently to shorting of the battery devices, the emphasis of the study was placed on improving the electrochemical properties of the films and on reducing their residual stress. Additional effort was aimed at learning about the structure and the composition of our films. It has been shown that IBAD LiPON thin films are undoubtedly capable of high quality performance as the electrolyte in Li-ion thin film batteries. Their ionic conductivity is almost as high, and their electronic conductivity as low, as those of the sputtered films. Their major advantages when compared to sputtered LiPON films are: (i) a higher deposition rate; (ii) a lower concentration of reduced-phosphorus in

  1. Composition and Bonding in Amorphous Carbon Films Grown by Ion Beam Assisted Deposition: Influence of the Assistance Voltage

    SciTech Connect

    Albella, J.M.; Banks, J.C.; Climent-Font, A.; Doyle, B.L.; Gago, R.; Jimenez, I.; Terminello, L.J.

    1998-11-12

    Amorphous carbon films have been grown by evaporation of graphite with concurrent Ar+ ions bombardment assistance. The ion energy has been varied between 0-800 V while keeping a constant ion to carbon atom arrival ratio. Film composition and density were determined by ion scattering techniques (RBS and ERDA), indicating a negligible hydrogen content and a density dependence with the assistance voltage. The bonding structure of the films has been studied by Raman and X-ray Absorption Near-Edge (XANES) spectroscopy. Different qualitative effects have been found depending on the ion energy range. For ion energies below 300 eV, there is a densification of the carbon layer due to the increase in the sp3 content. For ion energies above 300 eV sputtering phenomena dominate over densification, and thinner films are found with increasing assistance voltage until no film is grown over 600 V. The films with the highest SP3 content are grown with intermediate energies between 200-300 V.

  2. Investigation of the mechanism of impurity assisted nanoripple formation on Si induced by low energy ion beam erosion

    SciTech Connect

    Koyiloth Vayalil, Sarathlal; Gupta, Ajay; Roth, Stephan V.; Ganesan, V.

    2015-01-14

    A detailed mechanism of the nanoripple pattern formation on Si substrates generated by the simultaneous incorporation of pure Fe impurities at low energy (1 keV) ion beam erosion has been studied. To understand and clarify the mechanism of the pattern formation, a comparative analysis of the samples prepared for various ion fluence values using two complimentary methods for nanostructure analysis, atomic force microscopy, and grazing incidence small angle x-ray scattering has been done. We observed that phase separation of the metal silicide formed during the erosion does not precede the ripple formation. It rather concurrently develops along with the ripple structure. Our work is able to differentiate among various models existing in the literature and provides an insight into the mechanism of pattern formation under ion beam erosion with impurity incorporation.

  3. The optimization of incident angles of low-energy oxygen ion beams for increasing sputtering rate on silicon samples

    NASA Astrophysics Data System (ADS)

    Sasaki, T.; Yoshida, N.; Takahashi, M.; Tomita, M.

    2008-12-01

    In order to determine an appropriate incident angle of low-energy (350-eV) oxygen ion beam for achieving the highest sputtering rate without degradation of depth resolution in SIMS analysis, a delta-doped sample was analyzed with incident angles from 0° to 60° without oxygen bleeding. As a result, 45° incidence was found to be the best analytical condition, and it was confirmed that surface roughness did not occur on the sputtered surface at 100-nm depth by using AFM. By applying the optimized incident angle, sputtering rate becomes more than twice as high as that of the normal incident condition.

  4. In-plane aligned YBCO film on textured YSZ buffer layer deposited on NiCr alloy tape by laser ablation with only O+ ion beam assistance

    NASA Astrophysics Data System (ADS)

    Tang Huang, Xin; Qing Wang, You; Wang, Qiu Liang; Chen, Qing Ming

    2000-02-01

    High critical current density and in-plane aligned YBa2 Cu3 O7-x (YBCO) film on a textured yttria-stabilized zirconia (YSZ) buffer layer deposited on NiCr alloy (Hastelloy c-275) tape by laser ablation with only O+ ion beam assistance was fabricated. The values of the x-ray phi-scan full width at half-maximum (FWHM) for YSZ(202) and YBCO(103) are 18° and 11°, respectively. The critical current density of YBCO film is 7.9 × 105 A cm-2 at liquid nitrogen temperature and zero field, and its critical temperature is 90 K.

  5. Nanopatterning of silicon surfaces by low-energy ion-beam sputtering: dependence on the angle of ion incidence

    NASA Astrophysics Data System (ADS)

    Gago, R.; Vázquez, L.; Cuerno, R.; Varela, M.; Ballesteros, C.; Albella, J. M.

    2002-06-01

    We report on the production of nanoscale patterning on Si substrates by low-energy ion-beam sputtering. The surface morphology and structure of the irradiated surface were studied by atomic force microscopy (AFM) and high-resolution transmission electron microscopy (HRTEM). Under ion irradiation at off-normal incidence angle (~50°), AFM images show the formation of both nanoripple and sawtooth-like structures for sputtering times longer than 20 min. The latter feature coarsens appreciably after 60 min of sputtering, inducing a large increase in the surface roughness. This behaviour is attributed to the preferential direction determined on the substrate by the ion beam for this incidence angle, leading to shadowing effects among surface features in the sputtering process. Under irradiation at normal incidence, the formation of an hexagonal array of nanodots is induced for irradiation times longer than 2 min. The shape and crystallinity of the nanodots were determined by HRTEM. At this incidence angle, the surface roughness is very low and remains largely unchanged even after 16 h of sputtering. For the two angle conditions studied, the formation of the corresponding surface structures can be understood as the interplay between an instability due to the sputtering yield dependence on the local surface curvature and surface smoothing processes such as surface diffusion.

  6. Influence of 700 °C vacuum annealing on fracture behavior of micro/nanoscale focused ion beam fabricated silicon structures

    NASA Astrophysics Data System (ADS)

    Goshima, Yoshiharu; Fujii, Tatsuya; Inoue, Shozo; Namazu, Takahiro

    2016-06-01

    In this paper, we describe the influence of 700 °C vacuum annealing on strength and fracture behavior of micro- and nano-scale Si structures fabricated by focused ion beam (FIB). Si nanowires (NWs) made from silicon-on-nothing (SON) membrane are fabricated using FIB. Microscale Si specimens are fabricated by conventional micromachining technologies and FIB. These specimens are tensioned to failure using specially developed microelectromechanical systems (MEMS) device and thin-film tensile tester, respectively. The mean fracture strengths of the nano- and microscale specimens are 5.6 and 1.6 GPa, respectively, which decrease to 2.9 and 0.9 GPa after vacuum annealing at 700 °C for only 10 s. These strength values do not vary with increasing annealing time. Fracture origin and its behavior are discussed in the light of fracture surface and FIB damage layer observations.

  7. Surface roughness of MgO thin film and its critical thickness for optimal biaxial texturing by ion-beam-assisted deposition

    SciTech Connect

    Miyata, S.; Ibi, A.; Izumi, T.; Shiohara, Y.

    2011-06-01

    We investigated the deposition time dependences of the in-plane grain alignment ({Delta}{phi}) and the surface roughness (w) of biaxially textured MgO thin films fabricated by ion-beam-assisted deposition (IBAD) and found a strong correlation between them. The time evolution of the surface roughness of IBAD-MgO showed an abrupt increase at the same time corresponding to the beginning of the deterioration in {Delta}{phi}. The roughness versus thickness profiles obtained under different deposition conditions with different assisting ion-beam currents collapsed to a single curve, even though the deposition rates were significantly different in each condition. This implies that the abrupt increase in roughness occurred at the same thickness--of about 4 nm--irrespective of the deposition rate. The result also indicated that the {Delta}{phi} deterioration began with the same thickness of about 4 nm. This ''critical'' thickness of about 4 nm might be related to the completion of the crystallization of the film. Further, deposition beyond the critical thickness, therefore, became merely a homoepitaxial deposition under the ''IBAD'' condition, which was far from optimal because of the ion bombardment and low temperature (no-heating), and thus {Delta}{phi} deteriorated. Based on these considerations, we propose an approach to attain a sharp texture in a IBAD-MgO-based biaxial substrate; moreover, we demonstrated this approach using a two-step deposition process.

  8. On the mechanisms of the formation of nanocrystalline Cr-N and V-N coatings upon ion-beam-assisted deposition

    NASA Astrophysics Data System (ADS)

    Guglya, A. G.

    2010-01-01

    The paper generalizes the results of investigations performed at the Kharkov Institute of Physics and Technology, National Scientific Center, aimed at the development and analysis of nanocrystalline Cr-N and V-N coatings produced by the method of ion-beam-assisted deposition (IBAD method). The effect of temperature of the process and the ratio between its ionic and atomic components (N+/Cr, V) on the resistivity of the coatings has been studied. It has been found that the ion-assisted irradiation leads to the formation of nanocrystalline nitride structures, whose phase composition depends not only on the concentration of nitrogen implanted by the ion beam, but also on the amount of the physical adsorption of nitrogen, including its adsorption from the residual atmosphere. It has been shown that the IBAD method can be used for both production of dense nanocrystalline composites and creation of nanoporous structures. It has been found that the grain size, the internal porosity, and the electrophysical characteristics of the coatings are intimately connected with the Gibbs energy of the nitride phases. The mechanisms responsible for the formation of such coatings have been discussed in terms of the thermodynamics of the nitride-formation process.

  9. Tunneling behavior in ion-assist ion-beam sputtered CoFe/MgO/NiFe magnetic tunnel junctions

    SciTech Connect

    Singh, Braj Bhusan; Chaudhary, Sujeet; Pandya, Dinesh K.

    2012-11-15

    Graphical abstract: Display Omitted Highlights: ► Dual ion beam sputtered MgO barrier for MTJs. ► ∼12% TMR at 60 K. ► Glazman and Matveev model fitted for quantification of elastic and inelastic tunneling conductance through barrier. -- Abstract: Magnetic tunnel junctions (MTJs) consisting of CoFe and NiFe as ferromagnetic electrodes and MgO as insulating barrier fabricated through in situ shadow masking employing ion beam sputtering are studied for their tunneling magnetoresistance (TMR) and temperature dependence of the tunneling conductance behavior. The tunneling characteristics of these MTJs exhibited barrier height of 0.7 eV and width of 3.3 nm. These MTJs possessed ∼12% TMR at 60 K. The temperature dependence of conductance behavior of these junctions have revealed finite contributions from inelastic tunneling through the barrier via hopping conduction via present localized states which arise due to the presence of ionic interstitial defects in the MgO oxide barrier. The fitting of the data reveals that thirteenth order of hopping conduction is operative through MgO barrier.

  10. Influence of Ag thickness on structural, optical, and electrical properties of ZnS/Ag/ZnS multilayers prepared by ion beam assisted deposition

    SciTech Connect

    Leng Jian; Yu Zhinong; Xue Wei; Zhang Ting; Jiang Yurong; Zhang Jie; Zhang Dongpu

    2010-10-15

    The structural, optical, and electrical characteristics of zinc sulfide (ZnS)/Ag/ZnS (ZAZ) multilayer films prepared by ion beam assisted deposition on k9 glass have been investigated as a function of Ag layer thickness. The characteristics of ZAZ multilayer are significantly improved up insertion of optimal Ag thickness between ZnS layers. The results show that due to bombardment of Ar ion beam, distinct Ag islands evolve into continuous Ag films at a thin Ag thickness of about 4 nm. The thinner Ag film as a thickness of 2 nm leads to high sheet resistance and low transmittance for the interface scattering induced by the Ag islands or noncontinuous films; and when the Ag thickness is over 4 nm, the ZAZ multilayer exhibits a remarkably reduced sheet resistance between 7-80 {Omega}/sq for the increase in carrier concentration and mobility of Ag layer, and a high transmittance over 90% for the interference phenomena of multilayers and low absorption and surface scattering of Ag layer. The ZAZ multilayer with 14 nm Ag film has a figure of merit up to 6.32x10{sup -2} {Omega}{sup -1}, an average transmittance over 92% and a sheet resistance of 7.1 {Omega}/sq. The results suggest that ZAZ film has better optoelectrical properties than conditional indium tin oxide single layer.

  11. Influence of the ion irradiation on the properties of β-FeSi 2 layers prepared by ion beam assisted deposition

    NASA Astrophysics Data System (ADS)

    Barradas, N. P.; Panknin, D.; Wieser, E.; Schmidt, B.; Betzl, M.; Mücklich, A.; Skorupa, W.

    1997-05-01

    β-FeSi 2 layers on Si substrates were produced by ion beam assisted deposition (IBAD). The influence of the deposition parameters on the structure was studied by Rutherford backscattering, X-ray diffraction, cross-section transmission electron microscopy, and scanning electron microscopy. The layers grow in a columnar way with pin-holes and their surface is rough. An IBAD process with low Ar energy ( EAr = 200 eV) and low Ar ion to Fe atom ratio ( {I Ar}/{A Fe} = 0.15 ) improves the layer structure in comparison to samples prepared without Ar irradiation. Less pin-holes are formed, and the roughness shows a minimum. The roughness increases for larger values of EAr or {I Ar}/{A Fe}. All samples are polycrystalline but with a pronounced texture. The preferential orientation FeSi 2(110,101)∥Si(001), with a few degrees misorientation, is found. This preferred grain orientation is also enhanced by the IBAD process. Hall effect measurements were done and the I-V characteristics of the samples were measured. The results are discussed in relation with the influence of the ion beam.

  12. Ion Beam Propulsion Study

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Ion Beam Propulsion Study was a joint high-level study between the Applied Physics Laboratory operated by NASA and ASRC Aerospace at Kennedy Space Center, Florida, and Berkeley Scientific, Berkeley, California. The results were promising and suggested that work should continue if future funding becomes available. The application of ion thrusters for spacecraft propulsion is limited to quite modest ion sources with similarly modest ion beam parameters because of the mass penalty associated with the ion source and its power supply system. Also, the ion source technology has not been able to provide very high-power ion beams. Small ion beam propulsion systems were used with considerable success. Ion propulsion systems brought into practice use an onboard ion source to form an energetic ion beam, typically Xe+ ions, as the propellant. Such systems were used for steering and correction of telecommunication satellites and as the main thruster for the Deep Space 1 demonstration mission. In recent years, "giant" ion sources were developed for the controlled-fusion research effort worldwide, with beam parameters many orders of magnitude greater than the tiny ones of conventional space thruster application. The advent of such huge ion beam sources and the need for advanced propulsion systems for exploration of the solar system suggest a fresh look at ion beam propulsion, now with the giant fusion sources in mind.

  13. Ion beam texturing

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.

    1976-01-01

    A microscopic surface texture is created by sputter etching a surface while simultaneously sputter depositing a lower sputter yield material onto the surface. A xenon ion beam source has been used to perform this texturing process on samples as large as three centimeters in diameter. Ion beam textured surface structures have been characterized with SEM photomicrographs for a large number of materials including Cu, Al, Si, Ti, Ni, Fe, Stainless steel, Au, and Ag. Surfaces have been textured using a variety of low sputter yield materials - Ta, Mo, Nb, and Ti. The initial stages of the texture creation have been documented, and the technique of ion beam sputter removal of any remaining deposited material has been studied. A number of other texturing parameters have been studied such as the variation of the texture with ion beam power, surface temperature, and the rate of texture growth with sputter etching time.

  14. Pulsed ion beam source

    DOEpatents

    Greenly, John B.

    1997-01-01

    An improved pulsed ion beam source having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center.

  15. The Influence of High-Power Ion Beams and High-Intensity Short-Pulse Implantation of Ions on the Properties of Ceramic Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Kabyshev, A. V.; Konusov, F. V.; Pavlov, S. K.; Remnev, G. E.

    2016-02-01

    The paper is focused on the study of the structural, electrical and optical characteristics of the ceramic silicon carbide before and after irradiation in the regimes of the high-power ion beams (HPIB) and high-intensity short-pulse implantation (HISPI) of carbon ions. The dominant mechanism of transport of charge carriers, their type and the energy spectrum of localized states (LS) of defects determining the properties of SiC were established. Electrical and optical characteristics of ceramic before and after irradiation are determined by the biographical and radiation defects whose band gap (BG) energy levels have a continuous energetic distribution. A dominant p-type activation component of conduction with participation of shallow acceptor levels 0.05-0.16 eV is complemented by hopping mechanism of conduction involving the defects LS with a density of 1.2T017-2.4T018 eV-Am-3 distributed near the Fermi level.The effect of radiation defects with deep levels in the BG on properties change dominates after HISPI. A new material with the changed electronic structure and properties is formed in the near surface layer of SiC after the impact of the HPIB.

  16. Amorphous silicon carbonitride diaphragm for environmental-cell transmission electron microscope fabricated by low-energy ion beam induced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Matsutani, Takaomi; Yamasaki, Kayo; Imaeda, Norihiro; Kawasaki, Tadahiro

    2015-12-01

    An amorphous silicon carbonitride (a-SiCN) diaphragm for an environmental-cell transmission electron microscope (E-TEM) was fabricated by low-energy ion beam induced chemical vapor deposition (LEIBICVD) with hexamethyldisilazane (HMDSN). The films were prepared by using gaseous HMDSN and N2+ ions with energies ranging from 300 to 600 eV. The diaphragms were applied to Si (1 0 0) and a Cu grid with 100-μm-diameter holes. With increasing ion energy, these diaphragms became perfectly smooth surfaces (RMS = 0.43 nm at 600 eV), as confirmed by atomic force microscopy and TEM. The diaphragms were amorphous and transparent to 200 kV electrons, and no charge-up was observed. Fourier transform infrared spectra and X-ray photoelectron spectra revealed that the elimination of organic compounds and formation of Si-N and C-N bonds can be promoted in diaphragms by increasing the ion impact energy. The resistance to electron beams and reaction gases in the E-cell was improved when the diaphragm was formed with high ion energy.

  17. MEV ion beam induced epitaxial crystallization of Si0.99C0.01 layers on silicon

    NASA Astrophysics Data System (ADS)

    Rey, S.; Muller, D.; Grob, J. J.; Grob, A.; Stoquert, J. P.

    1997-02-01

    Multiple energy carbon ion implantation was used to form a 150 nm thick uniformly 1 at. %-doped layers in preamorphized silicon. Unlike conventional furnace annealing, inefficient up to 700 °C, a 1.5 MeV 84Kr+ bombardment is shown to induce the crystallization of such layers at temperatures ranging between 400 and 500 °C. RBS-channeling measurements have been used to estimate the crystallization velocity which is in the order of 10 nm per 1015cm-2. After complete recrystallization, the films have been characterized by Fourier Transform Infra-Red spectroscopy showing that the carbon atoms are neither located in substitutional position nor precipitated in SiC clusters. However, the carbon profile, measured by Secondary Ion Mass Spectroscopy is not modified by the process and oblique incidence channeling angular scans demonstrate that the layers are strained.

  18. Vertically Free-Standing Ordered Pb(Zr0.52Ti0.48)O3 Nanocup Arrays by Template-Assisted Ion Beam Etching.

    PubMed

    Zhang, Xiaoyan; Tang, Dan; Huang, Kangrong; Hu, Die; Zhang, Fengyuan; Gao, Xingsen; Lu, Xubing; Zhou, Guofu; Zhang, Zhang; Liu, Junming

    2016-12-01

    In this report, vertically free-standing lead zirconate titanate Pb(Zr0.52Ti0.48)O3 (PZT) nanocup arrays with good ordering and high density (1.3 × 10(10) cm(-2)) were demonstrated. By a template-assisted ion beam etching (IBE) strategy, the PZT formed in the pore-through anodic aluminum oxide (AAO) membrane on the Pt/Si substrate was with a cup-like nanostructure. The mean diameter and height of the PZT nanocups (NCs) was about 80 and 100 nm, respectively, and the wall thickness of NCs was about 20 nm with a hole depth of about 80 nm. Uppermost, the nanocup structure with low aspect ratio realized vertically free-standing arrays when losing the mechanical support from templates, avoiding the collapse or bundling when compared to the typical nanotube arrays. X-ray diffraction (XRD) and Raman spectrum revealed that the as-prepared PZT NCs were in a perovskite phase. By the vertical piezoresponse force microscopy (VPFM) measurements, the vertically free-standing ordered ferroelectric PZT NCs showed well-defined ring-like piezoresponse phase and hysteresis loops, which indicated that the high-density PZT nanocup arrays could have potential applications in ultra-high non-volatile ferroelectric memories (NV-FRAM) or other nanoelectronic devices. PMID:27117635

  19. Vertically Free-Standing Ordered Pb(Zr0.52Ti0.48)O3 Nanocup Arrays by Template-Assisted Ion Beam Etching

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyan; Tang, Dan; Huang, Kangrong; Hu, Die; Zhang, Fengyuan; Gao, Xingsen; Lu, Xubing; Zhou, Guofu; Zhang, Zhang; Liu, Junming

    2016-04-01

    In this report, vertically free-standing lead zirconate titanate Pb(Zr0.52Ti0.48)O3 (PZT) nanocup arrays with good ordering and high density (1.3 × 1010 cm-2) were demonstrated. By a template-assisted ion beam etching (IBE) strategy, the PZT formed in the pore-through anodic aluminum oxide (AAO) membrane on the Pt/Si substrate was with a cup-like nanostructure. The mean diameter and height of the PZT nanocups (NCs) was about 80 and 100 nm, respectively, and the wall thickness of NCs was about 20 nm with a hole depth of about 80 nm. Uppermost, the nanocup structure with low aspect ratio realized vertically free-standing arrays when losing the mechanical support from templates, avoiding the collapse or bundling when compared to the typical nanotube arrays. X-ray diffraction (XRD) and Raman spectrum revealed that the as-prepared PZT NCs were in a perovskite phase. By the vertical piezoresponse force microscopy (VPFM) measurements, the vertically free-standing ordered ferroelectric PZT NCs showed well-defined ring-like piezoresponse phase and hysteresis loops, which indicated that the high-density PZT nanocup arrays could have potential applications in ultra-high non-volatile ferroelectric memories (NV-FRAM) or other nanoelectronic devices.

  20. Bone apposition on implants coated with calcium phosphate by ion beam assisted deposition in oversized drilled sockets: a histologic and histometric analysis in dogs

    PubMed Central

    Kim, Min-Soo; Jung, Ui-Won; Kim, Sungtae; Lee, Jung-Seok; Lee, In-Seop

    2013-01-01

    Purpose The purpose of this study was to evaluate the osseointegration of calcium phosphate (CaP)-coated implants by ion beam assisted deposition with a lack of primary stability. Methods A total of 20 CaP-coated implants were bilaterally placed in the mandible of five dogs. In the rotational implant group, the implants were inserted in oversized drilled sockets without mechanical engagement, while the conventional surgical protocol was followed in the control group. Each group was allowed to heal for 4 and 8 weeks. The bone-to-implant contact (BIC, %) was measured by a histometric analysis. Results All of the implants were well-maintained and healing was uneventful. In the histologic observation, all of the implants tested were successfully osseointegrated with a high level of BIC at both observation intervals. There was no significant difference in BIC among any of the groups. Conclusions Within the limitation of this study, successful osseointegration of CaP-coated implants could be achieved in unfavorable conditions without primary stability. PMID:23507657

  1. Ion-beam-assisted deposition of biaxially aligned yttria-stabilized zirconia template films on metallic substrates for YBCO-coated conductors

    NASA Astrophysics Data System (ADS)

    Ma, B.; Li, M.; Fisher, B. L.; Balachandran, U.

    2002-07-01

    Biaxially textured yttria-stabilized zirconia (YSZ) films were grown on mechanically polished Hastelloy C276 (HC) substrates by ion-beam-assisted deposition and electron-beam evaporation. The surface root-mean-square (RMS) roughness of the polished HC substrates was ≈3 nm, as measured by atomic force microscopy (AFM). A water-cooled sample stage was used to hold the substrate temperature below 100 °C during deposition. RMS roughness of ≈3.3 nm was measured on the deposited YSZ films by AFM. X-ray pole figures were conducted for texture analysis; in-plane texture measured from YSZ (111) φ-scan FWHM was 13.2° and out-of-plane texture from the YSZ (002) ω-scan FWHM was 7.7°. An ≈10 nm thick CeO2 buffer layer was deposited on the YSZ film at 800 °C before YBCO films were ablated by pulsed laser deposition at 780 °C in a 250 mTorr flowing oxygen environment. Good in-plane texture with FWHM ≈ 7° was observed in YBCO films. Tc = 90 K, with sharp transition, and transport Jc of ≈2.2 × 106 A cm-2 were observed in a 0.5 μm thick, 5 mm wide, and 1 cm long sample at 77 K in self-field.

  2. Improvement and characterization of high-reflective and anti-reflective nanostructured mirrors by ion beam assisted deposition for 944 nm high power diode laser

    NASA Astrophysics Data System (ADS)

    Ghadimi-Mahani, A.; Farsad, E.; Goodarzi, A.; Tahamtan, S.; Abbasi, S. P.; Zabihi, M. S.

    2015-11-01

    Single-layer and multi-layer coatings were applied on the surface of diode laser facets as mirrors. This thin film mirrors were designed, deposited, optimized and characterized. The effects of mirrors on facet passivation and optical properties of InGaAs/AlGaAs/GaAs diode lasers were investigated. High-Reflective (HR) and Anti-Reflective (AR) mirrors comprising of four double-layers of Al2O3/Si and a single layer of Al2O3, respectively, were designed and optimized by Macleod software for 944 nm diode lasers. Optimization of Argon flow rate was studied through Alumina thin film deposition by Ion Beam Assisted Deposition (IBAD) for mirror improvement. The nanostructured HR and AR mirrors were deposited on the front and back facet of the laser respectively, by IBAD system under optimum condition. Atomic Force Microscope (AFM), Vis-IR Spectrophotometer, Field Emission Scanning Electron Microscopy (FESEM) and laser characterization Test (P-I) were used to characterize various properties of mirrors and lasers. AFM images show mirror's root mean square roughness is nearly 1 nm. The Spectrophotometer results of the front facet transmission and the back facet reflection are in good agreement with the simulation results. Optical output power (P) versus driving current (I) characteristics, measured before and after coating the facet, revealed a significant output power enhancement due to optimized AR and HR optical coatings on facets.

  3. Growth modes and epitaxy of FeAl thin films on a-cut sapphire prepared by pulsed laser and ion beam assisted deposition

    SciTech Connect

    Yao, Xiang; Trautvetter, Moritz; Ziemann, Paul; Wiedwald, Ulf

    2014-01-14

    FeAl films around equiatomic composition are grown on a-cut (112{sup ¯}0) sapphire substrates by ion beam assisted deposition (IBAD) and pulsed laser deposition (PLD) at ambient temperature. Subsequent successive annealing is used to establish chemical order and crystallographic orientation of the films with respect to the substrate. We find a strongly [110]-textured growth for both deposition techniques. Pole figures prove the successful preparation of high quality epitaxial films by PLD with a single in-plane orientation. IBAD-grown films, however, exhibit three in-plane orientations, all of them with broad angular distributions. The difference of the two growth modes is attributed to the existence of a metastable intermediate crystalline orientation as concluded from nonassisted sputter depositions at different substrate temperatures. The formation of the chemically ordered crystalline B2 phase is accompanied by the expected transition from ferromagnetic to paramagnetic behavior of the films. In accordance with the different thermally induced structural recovery, we find a step-like magnetic transition to paramagnetic behavior after annealing for 1 h at T{sub A} = 300 °C for IBAD deposition, while PLD-grown films show a gradual decrease of ferromagnetic signals with rising annealing temperatures.

  4. Low temperature growth of Co{sub 2}MnSi films on diamond semiconductors by ion-beam assisted sputtering

    SciTech Connect

    Nishiwaki, M.; Ueda, K. Asano, H.

    2015-05-07

    High quality Schottky junctions using Co{sub 2}MnSi/diamond heterostructures were fabricated. Low temperature growth at ∼300–400 °C by using ion-beam assisted sputtering (IBAS) was necessary to obtain abrupt Co{sub 2}MnSi/diamond interfaces. Only the Co{sub 2}MnSi films formed at ∼300–400 °C showed both saturation magnetization comparable to the bulk values and large negative anisotropic magnetoresistance, which suggests half-metallic nature of the Co{sub 2}MnSi films, of ∼0.3% at 10 K. Schottky junctions formed using the Co{sub 2}MnSi films showed clear rectification properties with rectification ratio of more than 10{sup 7} with Schottky barrier heights of ∼0.8 eV and ideality factors (n) of ∼1.2. These results indicate that Co{sub 2}MnSi films formed at ∼300–400 °C by IBAS are a promising spin source for spin injection into diamond semiconductors.

  5. Pulsed ion beam source

    DOEpatents

    Greenly, J.B.

    1997-08-12

    An improved pulsed ion beam source is disclosed having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center. 12 figs.

  6. Ion-beam technologies

    SciTech Connect

    Fenske, G.R.

    1993-01-01

    This compilation of figures and diagrams reviews processes for depositing diamond/diamond-like carbon films. Processes addressed are chemical vapor deposition (HFCVD, PACVD, etc.), plasma vapor deposition (plasma sputtering, ion beam sputtering, evaporation, etc.), low-energy ion implantation, and hybrid processes (biased sputtering, IBAD, biased HFCVD, etc.). The tribological performance of coatings produced by different means is discussed.

  7. Maskless, resistless ion beam lithography

    SciTech Connect

    Ji, Qing

    2003-03-10

    are presented. The formation of shallow pn-junctions in bulk silicon wafers by scanning focused P{sup +} beam implantation at 5 keV is also presented. With implantation dose of around 10{sup 16} cm{sup -2}, the electron concentration is about 2.5 x 10{sup 18} cm{sup -3} and electron mobility is around 200 cm{sup 2}/V{center_dot}s. To demonstrate the suitability of scanning FIB lithography for the manufacture of integrated circuit devices, SOI MOSFET fabrication using the maskless, resistless ion beam lithography is demonstrated. An array of microcolumns can be built by stacking multi-aperture electrode and insulator layers. Because the multicusp plasma source can achieve uniform ion density over a large area, it can be used in conjunction with the array of microcolumns, for massively parallel FIB processing to achieve reasonable exposure throughput.

  8. Ion Beam Energy Dependant Study of Nanopore Sculpting

    NASA Astrophysics Data System (ADS)

    Ledden, Brad

    2005-03-01

    Experiments show that ion beams of various energies (1keV, 3keV, and 5keV) can be used to controllably ``sculpt'' nanoscale features in silicon nitride films using a feedback controlled ion beam sculpting apparatus. We report on nanopore ion beam sculpting effects that depend on inert gas ion beam energy. We show that: (1) all ion beam energies enable single nanometer control of structural dimensions in nanopores; (2) the ion beam energies above show similar ion beam flux dependence of nanopore formation; (3) the thickness of nanopores differs depending on ion beam energy. Computer simulations (with SRIM and TRIM) and an ``adatom'' surface diffusion model are employed to explain the dynamics of nanoscale dimension change by competing sputtering and surface mass transport processes induced by different ion beam irradiation. These experiments and theoretical work reveal the surface atomic transport phenomena in a quantitative way that allows the extraction of parameters such as the adatom surface diffusion coefficients and average travel distances.

  9. Ion-assisted recrystallization of amorphous silicon

    NASA Astrophysics Data System (ADS)

    Priolo, F.; Spinella, C.; La Ferla, A.; Rimini, E.; Ferla, G.

    1989-12-01

    Our recent work on ion-beam-assisted epitaxial growth of amorphous Si layers on single crystal substrates is reviewed. The planar motion of the crystal-amorphous interface was monitored in situ, during irradiations, by transient reflectivity measurements. This technique allows the measurement of the ion-induced growth rate with a very high precision. We have observed that this growth rate scales linearly with the number of displacements produced at the crystal-amorphous interface by the impinging ions. Moreover the regrowth onto <100> oriented substrates is a factor of ≈ 4 faster with respect to that on <111> substrates. Impurities dissolved in the amorphous layer influence the kinetics of recrystallization. For instance, dopants such as As, B and P enhance the ion-induced growth rate while oxygen has the opposite effect. The dependence of the rate on impurity concentration is however less strong with respect to pure thermal annealing. For instance, an oxygen concentration of 1 × 1021 / cm3 decreases the ion-induced growth rate by a factor of ≈ 3; this same concentration would have decreased the rate of pure thermal annealing by more than 4 orders of magnitude. The reduced effects of oxygen during ion-beam crystallization allow the regrowth of deposited Si layers despite the presence of a high interfacial oxygen content. The process is investigated in detail and its possible application to the microelectronic technology is discussed.

  10. Ion beam mixing by focused ion beam

    SciTech Connect

    Barna, Arpad; Kotis, Laszlo; Labar, Janos L.; Osvath, Zoltan; Toth, Attila L.; Menyhard, Miklos; Zalar, Anton; Panjan, Peter

    2007-09-01

    Si amorphous (41 nm)/Cr polycrystalline (46 nm) multilayer structure was irradiated by 30 keV Ga{sup +} ions with fluences in the range of 25-820 ions/nm{sup 2} using a focused ion beam. The effect of irradiation on the concentration distribution was studied by Auger electron spectroscopy depth profiling, cross-sectional transmission electron microscopy, and atomic force microscopy. The ion irradiation did not result in roughening on the free surface. On the other hand, the Ga{sup +} irradiation produced a strongly mixed region around the first Si/Cr interface. The thickness of mixed region depends on the Ga{sup +} fluence and it is joined to the pure Cr matrix with an unusual sharp interface. With increasing fluence the width of the mixed region increases but the interface between the mixed layer and pure Cr remains sharp. TRIDYN simulation failed to reproduce this behavior. Assuming that the Ga{sup +} irradiation induces asymmetric mixing, that is during the mixing process the Cr can enter the Si layer, but the Si cannot enter the Cr layer, the experimental findings can qualitatively be explained.

  11. Ion beam surface modification

    NASA Technical Reports Server (NTRS)

    Dwight, D. W.

    1982-01-01

    The essential details of a study on the practical applications and mechanisms of polymer sputtering via Argon ion impact are summarized. The potential to modify the properties of polymer surfaces to improve their adherence, durability, biocompatibility, or other desirable properties by ion beam sputtering was emphasized. Ion beam milling can be of benefit as an analytical tool to obtain composition versus depth information. Ion impact from a directed ion gun source specifically etches polymer structures according to their morphologies, therefore this technique may be useful to study unknown or new morphological features. Factors addressed were related to: (1) the texture that arises on a polymer target after ion impact; (2) the chemistry of the top surface after ion impact; (3) the chemistry of sputtered films of polymeric material deposited on substrates placed adjacent to targets during ion impact; and (4) practical properties of textured polymer targets, specifically the wettability and adhesive bonding properties.

  12. Focused ion beam system

    DOEpatents

    Leung, K.; Gough, R.A.; Ji, Q.; Lee, Y.Y.

    1999-08-31

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 {mu}m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 m or less. 13 figs.

  13. Focused ion beam system

    DOEpatents

    Leung, Ka-Ngo; Gough, Richard A.; Ji, Qing; Lee, Yung-Hee Yvette

    1999-01-01

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 .mu.m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 .mu.m or less.

  14. Ion beam generating apparatus

    DOEpatents

    Brown, Ian G.; Galvin, James

    1987-01-01

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam.

  15. Intense ion beam generator

    DOEpatents

    Humphries, Jr., Stanley; Sudan, Ravindra N.

    1977-08-30

    Methods and apparatus for producing intense megavolt ion beams are disclosed. In one embodiment, a reflex triode-type pulsed ion accelerator is described which produces ion pulses of more than 5 kiloamperes current with a peak energy of 3 MeV. In other embodiments, the device is constructed so as to focus the beam of ions for high concentration and ease of extraction, and magnetic insulation is provided to increase the efficiency of operation.

  16. Ion Beam Simulator

    Energy Science and Technology Software Center (ESTSC)

    2005-11-08

    IBSimu(Ion Beam Simulator) is a computer program for making two and three dimensional ion optical simulations. The program can solve electrostatic field in a rectangular mesh using Poisson equation using Finite Difference method (FDM). The mesh can consist of a coarse and a fine part so that the calculation accuracy can be increased in critical areas of the geometry, while most of the calculation is done quickly using the coarse mesh. IBSimu can launch ionmore » beam trajectories into the simulation from an injection surface or fomo plasma. Ion beam space charge of time independent simulations can be taken in account using Viasov iteration. Plasma is calculated by compensating space charge with electrons having Boltzmann energy distribution. The simulation software can also be used to calculate time dependent cases if the space charge is not calculated. Software includes diagnostic tools for plotting the geometry, electric field, space charge map, ion beam trajectories, emittance data and beam profiles.« less

  17. Results of a pilot study and a proposal to build a high current pulsed nanosecond low energy Si ion beam for the detection of trace amounts of heavy impurities in silicon

    SciTech Connect

    Jacobsen, F.M.; Zarcone, M.J.; Steski, D.; Smith, K.; Thieberger, P.; Lynn, K.G.; Throwe, J.; Cholewa, M. |

    1996-01-01

    Next generations of Very Large Scale Integrated circuits will require impurity contamination below 10{sup 8} atoms/cm. To detect such small quantities at or near the surface, new techniques have to be developed. The authors propose to build a high current nanosecond pulsed Si ion beam which can detect such small quantities of heavy impurities with a high mass resolution. A pilot study shows that the approach can be used to detect impurities in silicon below the 10{sup 7} atoms/cm{sup 2} level.

  18. Ion beam sputter etching

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.

    1986-01-01

    An ion beam etching process which forms extremely high aspect ratio surface microstructures using thin sputter masks is utilized in the fabrication of integrated circuits. A carbon rich sputter mask together with unmasked portions of a substrate is bombarded with inert gas ions while simultaneous carbon deposition occurs. The arrival of the carbon deposit is adjusted to enable the sputter mask to have a near zero or even slightly positive increase in thickness with time while the unmasked portions have a high net sputter etch rate.

  19. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, Graeme (Inventor)

    1984-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids (16, 18) with multiple pairs of aligned holes positioned to direct a group of beamlets (20) along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam (14). An accelerator electrode device (22) downstream from the extraction grids, is at a much lower potential than the grids to accelerate the combined beam.

  20. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, G. (Inventor)

    1981-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids with multiple pairs of aligned holes positioned to direct a group of beamlets along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam. An accelerator electrode device downstream from the extraction grids is at a much lower potential than the grids to accelerate the combined beam. The application of the system to ion implantation is mentioned.

  1. Ion beam lithography system

    DOEpatents

    Leung, Ka-Ngo

    2005-08-02

    A maskless plasma-formed ion beam lithography tool provides for patterning of sub-50 nm features on large area flat or curved substrate surfaces. The system is very compact and does not require an accelerator column and electrostatic beam scanning components. The patterns are formed by switching beamlets on or off from a two electrode blanking system with the substrate being scanned mechanically in one dimension. This arrangement can provide a maskless nano-beam lithography tool for economic and high throughput processing.

  2. ITEP MEVVA ion beam for rhenium silicide production

    SciTech Connect

    Kulevoy, T.; Seleznev, D.; Kropachev, G.; Kozlov, A.; Kuibeda, R.; Yakushin, P.; Petrenko, S.; Gerasimenko, N.; Medetov, N.; Zaporozhan, O.

    2010-02-15

    The rhenium silicides are very attractive materials for semiconductor industry. In the Institute for Theoretical and Experimental Physics (ITEP) at the ion source test bench the research program of rhenium silicide production by ion beam implantation are going on. The investigation of silicon wafer after implantation of rhenium ion beam with different energy and with different total dose were carried out by secondary ions mass spectrometry, energy-dispersive x-ray microanalysis, and x-ray diffraction analysis. The first promising results of rhenium silicide film production by high intensity ion beam implantation are presented.

  3. Heavy ion beam probing

    SciTech Connect

    Hickok, R L

    1980-07-01

    This report consists of the notes distributed to the participants at the IEEE Mini-Course on Modern Plasma Diagnostics that was held in Madison, Wisconsin in May 1980. It presents an overview of Heavy Ion Beam Probing that briefly describes the principles and discuss the types of measurements that can be made. The problems associated with implementing beam probes are noted, possible variations are described, estimated costs of present day systems, and the scaling requirements for large plasma devices are presented. The final chapter illustrates typical results that have been obtained on a variety of plasma devices. No detailed calculations are included in the report, but a list of references that will provide more detailed information is included.

  4. Introduction to Ion Beam Therapy

    SciTech Connect

    Martisikova, Maria

    2010-01-05

    Presently, ion beam therapy reaches an increasing interest within the field of radiation therapy, which is caused by the promising clinical results obtained in the last decades. Ion beams enable higher dose conformation to the tumor and increased sparing of the surrounding tissue in comparison to the standard therapy using high energy photons. Heavy ions, like carbon, offer in addition increased biological effectiveness, which makes them suitable for treatment of radioresistant tumors. This contribution gives an overview over the physical and biological properties of ion beams. Common fundamental principles of ion beam therapy are summarized and differences between standard therapy with high energy photons, proton and carbon ion therapy are discussed. The technologies used for the beam production and delivery are introduced, with emphasis to the differences between passive and active beam delivery systems. The last part concentrates on the quality assurance in ion therapy. Specialties of dosimetry in medical ion beams are discussed.

  5. Nanopore Sculpting with Low Energy Ion Beam of Noble Gases

    NASA Astrophysics Data System (ADS)

    Cai, Qun; Ledden, Brad; Krueger, Eric; Golovchenko, Jene; Li, Jiali

    2005-03-01

    Experiments show that 3keV Helium, Neon, Argon, Krypton, and Xenon ion beams can be used to controllably ``sculpt'' nanoscale features in silicon nitride films using a feedback controlled ion beam sculpting apparatus. Here we report nanopore ion beam sculpting effects that depend on the inert gas ion species. We demonstrate that: (1) all the noble gas ion beams enable single nanometer control of structural dimensions in nanopores; (2) every ion species above shows similar ion beam flux dependence of nanopore formation, (3) the thickness of nanopores sculpted with different inert gas ion beam is deferent. Computer simulations (with SRIM and TRIM) and an ``adatom'' surface diffusion model are employed to explain the dynamics of nanoscale dimension change by competing sputtering and surface mass transport processes induced by different ion beam irradiation. These experiments and theoretical work reveal the surface atomic transport phenomena in a quantitative way that allows the extraction of parameters such as the adatom surface diffusion coefficients and average travel distances.

  6. Status of radioactive ion beams at the HRIBF

    NASA Astrophysics Data System (ADS)

    Stracener, D. W.

    2003-05-01

    Radioactive Ion Beams (RIBs) at the Holifield Radioactive Ion Beam Facility (HRIBF) are produced using the isotope separation on-line technique and are subsequently accelerated up to a few MeV per nucleon for use in nuclear physics experiments. The first RIB experiments at the HRIBF were completed at the end of 1998 using 17F beams. Since then other proton-rich ion beams have been developed and a large number of neutron-rich ion beams are now available. The neutron-rich radioactive nuclei are produced via proton-induced fission of uranium in a low-density matrix of uranium carbide. Recently developed RIBs include 25Al from a silicon carbide target and isobarically pure beams of neutron-rich Ge, Sn, Br and I isotopes from a uranium carbide target.

  7. Ion beam sputtering of fluoropolymers

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.

    1978-01-01

    Etching and deposition of fluoropolymers are of considerable industrial interest for applications dealing with adhesion, chemical inertness, hydrophobicity, and dielectric properties. This paper describes ion beam sputter processing rates as well as pertinent characteristics of etched targets and films. An argon ion beam source was used to sputter etch and deposit the fluoropolymers PTFE, FEP, and CTFE. Ion beam energy, current density, and target temperature were varied to examine effects on etch and deposition rates. The ion etched fluoropolymers yield cone or spire-like surface structures which vary depending upon the type of polymer, ion beam power density, etch time, and target temperature. Also presented are sputter target and film characteristics which were documented by spectral transmittance measurements, X-ray diffraction, ESCA, and SEM photomicrographs.

  8. Applications of ion beam technology

    NASA Technical Reports Server (NTRS)

    Gelerinter, E.; Spielberg, N.

    1980-01-01

    Wire adhesion in steel belted radial tires; carbon fibers and composite; cold welding, brazing, and fabrication; hydrogen production, separation, and storage; membrane use; catalysis; sputtering and texture; and ion beam implantation are discussed.

  9. Ion Beam Modification of Materials

    SciTech Connect

    Averback, B; de la Rubia, T D; Felter, T E; Hamza, A V; Rehn, L E

    2005-10-10

    This volume contains the proceedings of the 14th International Conference on Ion Beam Modification of Materials, IBMM 2004, and is published by Elsevier-Science Publishers as a special issue of Nuclear Instruments and Methods B. The conference series is the major international forum to present and discuss recent research results and future directions in the field of ion beam modification, synthesis and characterization of materials. The first conference in the series was held in Budapest, Hungary, 1978, and subsequent conferences were held every two years at locations around the Globe, most recently in Japan, Brazil, and the Netherlands. The series brings together physicists, materials scientists, and ion beam specialists from all over the world. The official conference language is English. IBMM 2004 was held on September 5-10, 2004. The focus was on materials science involving both basic ion-solid interaction processes and property changes occurring either during or subsequent to ion bombardment and ion beam processing in relation to materials and device applications. Areas of research included Nanostructures, Multiscale Modeling, Patterning of Surfaces, Focused Ion Beams, Defects in Semiconductors, Insulators and Metals, Cluster Beams, Radiation Effects in Materials, Photonic Devices, Ion Implantation, Ion Beams in Biology and Medicine including New Materials, Imaging, and Treatment.

  10. Nanopatterning of metal-coated silicon surfaces via ion beam irradiation: Real time x-ray studies reveal the effect of silicide bonding

    SciTech Connect

    El-Atwani, Osman; Gonderman, Sean; Suslova, Anastassiya; Fowler, Justin; El-Atwani, Mohamad; DeMasi, Alexander; Ludwig, Karl; Paul Allain, Jean

    2013-03-28

    We investigated the effect of silicide formation on ion-induced nanopatterning of silicon with various ultrathin metal coatings. Silicon substrates coated with 10 nm Ni, Fe, and Cu were irradiated with 200 eV argon ions at normal incidence. Real time grazing incidence small angle x-ray scattering (GISAXS) and x-ray fluorescence (XRF) were performed during the irradiation process and real time measurements revealed threshold conditions for nanopatterning of silicon at normal incidence irradiation. Three main stages of the nanopatterning process were identified. The real time GISAXS intensity of the correlated peaks in conjunction with XRF revealed that the nanostructures remain for a time period after the removal of the all the metal atoms from the sample depending on the binding energy of the metal silicides formed. Ex-situ XPS confirmed the removal of all metal impurities. In-situ XPS during the irradiation of Ni, Fe, and Cu coated silicon substrates at normal incidence demonstrated phase separation and the formation of different silicide phases that occur upon metal-silicon mixing. Silicide formation leads to nanostructure formation due the preferential erosion of the non-silicide regions and the weakening of the ion induced mass redistribution.

  11. Influence of ion/atom arrival ratio on structure and optical properties of AlN films by ion beam assisted deposition

    NASA Astrophysics Data System (ADS)

    Meng, Jian-ping; Fu, Zhi-qiang; Liu, Xiao-peng; Yue, Wen; Wang, Cheng-biao

    2014-10-01

    In order to improve the optical properties of AlN films, the influence of the ion/atom arrival ratio on the structure and optical characteristics of AlN films deposited by dual ion beam sputtering was studied by using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, spectroscopic ellipsometry and UV-vis spectroscopy. The films prepared at the ion/atom arrival ratio of 1.4 are amorphous while the crystalline quality is improved with the increase of the ion/atom arrival ratio. The films deposited at the ion/atom arrival ratio of no less than 1.8 have an approximately stoichiometric ratio and mainly consist of aluminum nitride with little aluminum oxynitride, while metallic aluminum component appears in the films deposited at the ion/atom arrival ratio of 1.4. When the ion/atom arrival ratio is not less than 1.8, films are smooth, high transmitting and dense. The films prepared with high ion/atom arrival ratio (≥1.8) display the characteristic of a dielectric. The films deposited at the ion/atom arrival ratio of 1.4 are coarse, opaque and show characteristic of cermet.

  12. Synthesis and characterization of titanium carbide, titanium boron carbonitride, titanium boride/titanium carbide and titanium carbide/chromium carbide multilayer coatings by reactive and ion beam assisted, electron beam-physical vapor deposition (EB-PVD)

    NASA Astrophysics Data System (ADS)

    Wolfe, Douglas Edward

    The purpose of the present work was to investigate the synthesis of titanium carbide, TiBCN, TiB2/TiC and TiC/Cr23C6 multilayer coatings by several methods of electron beam-physical vapor deposition (EB-PVD) and examine the affects of various processing parameters on the properties and microstructures of the coatings. TiC was successfully deposited by reactive ion beam assisted (RIBA), EB-PVD and the results were compared to various titanium carbide coatings deposited by a variety of techniques. The affects of substrate temperature and ion beam current density were correlated with composition, hardness, changes in the lattice parameter, degree of crystallographic texture, residual stress, surface morphology, and microstructure. The average Vicker's hardness number was found to increase with increasing ion beam current density and increase over the substrate temperature range of 250°C to 650°C. The average Vicker's hardness number decreased at a substrate temperature of 750°C as a result of texturing and microstructure. The present investigation shows that the average Vicker's hardness number is not only a function of the composition, but also the microstructure including the degree of crystallographic texture. TiB2/TiC multilayer coatings were deposited by argon ion beam assisted, EB-PVD with varying number of total layers to two different film thicknesses under slightly different deposition conditions. In both cases, the hardness of the coatings increased with increasing number of total layers. The adhesion of the coatings ranged from 30 N to 50 N, with the better adhesion values obtained with the thinner coatings. The crystallographic texture coefficients of both the TiC and TiB2 layers were found to change with increasing number of total layers. The multilayer design was found to significantly affect the microstructure and grain size of the deposited coatings. The fracture toughness was found to decrease with increasing number of total layers and was

  13. Production and characterization of ion beams from magnetically insulated diodes

    SciTech Connect

    Neri, J.M.

    1982-01-01

    The operation of magnetically insulated diodes and the characteristics of the resulting ion beams have been investigated using two pulsed power generators, LYNX at the 10/sup 9/W power level, and Neptune at the 10/sup 11/W power level. LYNX is a small magnetically insulated diode driven directly by a Marx bank. By changing the material used as the surface flashover ion source, the majority ion species generated by the diode could be chosen. Ion beams produced so far by this device are: protons, lithium, boron, carbon, sodium, strontium, and barium. Typical beam parameters for the ion beams are peak energies of 300 keV, current densities of 40 to 60 A/cm/sup 2/, and pulse durations of 300 to 400 nsec. The ion beam uniformity, divergence, and reproducibility were shown to be a function of the surface flashover source geometry. Finally, the LYNX ion beam was also used to anneal silicon crystals and other materials science experiments. The diode used on the Neptune generator was designed to study virtual cathode formation in a high power magnetically insulated diode. The physical cathode was replaced by electrons that ExB drift on the applied magnetic field lines. It was found that the best electrode configuration is one in which the electrons are required to only undergo the Hall drift to form the cathode. The divergence of the ion beam was examined with time-dependent and time-integrated shadowbox diagnostics. It was found that the intrinsic divergence of the ion beam does not have a strong directional dependence.

  14. Focused ion beams in biology.

    PubMed

    Narayan, Kedar; Subramaniam, Sriram

    2015-11-01

    A quiet revolution is under way in technologies used for nanoscale cellular imaging. Focused ion beams, previously restricted to the materials sciences and semiconductor fields, are rapidly becoming powerful tools for ultrastructural imaging of biological samples. Cell and tissue architecture, as preserved in plastic-embedded resin or in plunge-frozen form, can be investigated in three dimensions by scanning electron microscopy imaging of freshly created surfaces that result from the progressive removal of material using a focused ion beam. The focused ion beam can also be used as a sculpting tool to create specific specimen shapes such as lamellae or needles that can be analyzed further by transmission electron microscopy or by methods that probe chemical composition. Here we provide an in-depth primer to the application of focused ion beams in biology, including a guide to the practical aspects of using the technology, as well as selected examples of its contribution to the generation of new insights into subcellular architecture and mechanisms underlying host-pathogen interactions. PMID:26513553

  15. ION BEAM COLLIMATOR

    DOEpatents

    Langsdorf, A.S. Jr.

    1957-11-26

    A device is described for defining a beam of high energy particles wherein the means for defining the beam in the horizontal and vertical dimension are separately adjustable and the defining members are internally cooled. In general, the device comprises a mounting block having a central opening through which the beam is projected, means for rotatably supporting two pairs of beam- forming members, passages in each member for the flow of coolant; the beam- forming members being insulated from each other and the block, and each having an end projecting into the opening. The beam-forming members are adjustable and may be cooperatively positioned to define the beam passing between the end of the members. To assist in projecting and defining the beam, the member ends have individual means connected thereto for indicating the amount of charge collected thereon due to beam interception.

  16. Metal assisted anodic etching of silicon

    NASA Astrophysics Data System (ADS)

    Lai, Chang Quan; Zheng, Wen; Choi, W. K.; Thompson, Carl V.

    2015-06-01

    Metal assisted anodic etching (MAAE) of Si in HF, without H2O2, is demonstrated. Si wafers were coated with Au films, and the Au films were patterned with an array of holes. A Pt mesh was used as the cathode while the anodic contact was made through either the patterned Au film or the back side of the Si wafer. Experiments were carried out on P-type, N-type, P+-type and N+-type Si wafers and a wide range of nanostructure morphologies were observed, including solid Si nanowires, porous Si nanowires, a porous Si layer without Si nanowires, and porous Si nanowires on a thick porous Si layer. Formation of wires was the result of selective etching at the Au-Si interface. It was found that when the anodic contact was made through P-type or P+-type Si, regular anodic etching due to electronic hole injection leads to formation of porous silicon simultaneously with metal assisted anodic etching. When the anodic contact was made through N-type or N+-type Si, generation of electronic holes through processes such as impact ionization and tunnelling-assisted surface generation were required for etching. In addition, it was found that metal assisted anodic etching of Si with the anodic contact made through the patterned Au film essentially reproduces the phenomenology of metal assisted chemical etching (MACE), in which holes are generated through metal assisted reduction of H2O2 rather than current flow. These results clarify the linked roles of electrical and chemical processes that occur during electrochemical etching of Si.Metal assisted anodic etching (MAAE) of Si in HF, without H2O2, is demonstrated. Si wafers were coated with Au films, and the Au films were patterned with an array of holes. A Pt mesh was used as the cathode while the anodic contact was made through either the patterned Au film or the back side of the Si wafer. Experiments were carried out on P-type, N-type, P+-type and N+-type Si wafers and a wide range of nanostructure morphologies were observed

  17. Metal assisted anodic etching of silicon.

    PubMed

    Lai, Chang Quan; Zheng, Wen; Choi, W K; Thompson, Carl V

    2015-07-01

    Metal assisted anodic etching (MAAE) of Si in HF, without H2O2, is demonstrated. Si wafers were coated with Au films, and the Au films were patterned with an array of holes. A Pt mesh was used as the cathode while the anodic contact was made through either the patterned Au film or the back side of the Si wafer. Experiments were carried out on P-type, N-type, P(+)-type and N(+)-type Si wafers and a wide range of nanostructure morphologies were observed, including solid Si nanowires, porous Si nanowires, a porous Si layer without Si nanowires, and porous Si nanowires on a thick porous Si layer. Formation of wires was the result of selective etching at the Au-Si interface. It was found that when the anodic contact was made through P-type or P(+)-type Si, regular anodic etching due to electronic hole injection leads to formation of porous silicon simultaneously with metal assisted anodic etching. When the anodic contact was made through N-type or N(+)-type Si, generation of electronic holes through processes such as impact ionization and tunnelling-assisted surface generation were required for etching. In addition, it was found that metal assisted anodic etching of Si with the anodic contact made through the patterned Au film essentially reproduces the phenomenology of metal assisted chemical etching (MACE), in which holes are generated through metal assisted reduction of H2O2 rather than current flow. These results clarify the linked roles of electrical and chemical processes that occur during electrochemical etching of Si. PMID:26059556

  18. Ion-beam Plasma Neutralization Interaction Images

    SciTech Connect

    Igor D. Kaganovich; Edward Startsev; S. Klasky; Ronald C. Davidson

    2002-04-09

    Neutralization of the ion beam charge and current is an important scientific issue for many practical applications. The process of ion beam charge and current neutralization is complex because the excitation of nonlinear plasma waves may occur. Computer simulation images of plasma neutralization of the ion beam pulse are presented.

  19. MeV-ion beam analysis of the interface between filtered cathodic arc-deposited a-carbon and single crystalline silicon

    SciTech Connect

    Kamwanna, T.; Pasaja, N.; Yu, L.D.; Vilaithong, T.; Anders, A.; Singkarat, S.

    2008-08-01

    Amorphous carbon (a-C) films were deposited on Si(100) wafers by a filtered cathodicvacuum arc (FCVA) plasma source. A negative electrical bias was applied tothe silicon substrate in order to control the incident energy of carbon ions. Effects ofthe electrical bias on the a-C/Si interface characteristics were investigated by usingstandard Rutherford backscattering spectrometry (RBS) in the channeling modewith 2.1-MeV He2+ ions. The shape of the Si surface peaks of the RBS/channelingspectra reflects the degree of interface disorder due to atomic displacement fromthe bulk position of the Si crystal. Details of the analysis method developed aredescribed. It was found that the width of the a-C/Si interface increases linearlywith the substrate bias voltage but not the thickness of the a-C film.

  20. Obliquely incident ion beam figuring

    NASA Astrophysics Data System (ADS)

    Zhou, Lin; Dai, Yifan; Xie, Xuhui; Li, Shengyi

    2015-10-01

    A new ion beam figuring (IBF) technique, obliquely incident IBF (OI-IBF), is proposed. In OI-IBF, the ion beam bombards the optical surface obliquely with an invariable incident angle instead of perpendicularly as in the normal IBF. Due to the higher removal rate in oblique incidence, the process time in OI-IBF can be significantly shortened. The removal rates at different incident angles were first tested, and then a test mirror was processed by OI-IBF. Comparison shows that in the OI-IBF technique with a 30 deg incident angle, the process time was reduced by 56.8%, while keeping the same figure correcting ability. The experimental results indicate that the OI-IBF technique is feasible and effective to improve the surface correction process efficiency.

  1. Ion beam microtexturing of surfaces

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.

    1981-01-01

    Some recent work in surface microtecturing by ion beam sputtering is described. The texturing is accomplished by deposition of an impurity onto a substrate while simultaneously bombarding it with an ion beam. A summary of the theory regarding surface diffusion of impurities and the initiation of cone formation is provided. A detailed experimental study of the time-development of individual sputter cones is described. A quasi-liquid coating was observed that apparently reduces the sputter rate of the body of a cone compared to the bulk material. Experimental measurements of surface diffusion activation energies are presented for a variety of substrate-seed combinations and range from about 0.3 eV to 1.2 eV. Observations of apparent crystal structure in sputter cones are discussed. Measurements of the critical temperature for cone formation are also given along with a correlation of critical temperature with substrate sputter rate.

  2. Ion beam inertial confinement target

    DOEpatents

    Bangerter, Roger O.; Meeker, Donald J.

    1985-01-01

    A target for implosion by ion beams composed of a spherical shell of frozen DT surrounded by a low-density, low-Z pusher shell seeded with high-Z material, and a high-density tamper shell. The target has various applications in the inertial confinement technology. For certain applications, if desired, a low-density absorber shell may be positioned intermediate the pusher and tamper shells.

  3. High temperature coefficient of resistance achieved by ion beam assisted sputtering with no heat treatment in V{sub y}M{sub 1−y}O{sub x} (M = Nb, Hf)

    SciTech Connect

    Vardi, Naor; Sharoni, Amos

    2015-11-15

    Thermal imaging based on room temperature bolometer sensors is a growing market, constantly searching for improved sensitivity. One important factor is the temperature coefficient of resistance (TCR), i.e., the sensitivity of the active material. Herein, the authors report the improved TCR properties attainable by the “ion beam assisted deposition” method for room temperature deposition. V{sub y}M{sub 1−y}O{sub x} (M = Nb, Hf) thin-film alloys were fabricated on 1 μm thermal SiO{sub 2} atop Si (100) substrates by reactive magnetron cosputtering at room temperature using a low energy ion source, aimed at the film, to insert dissociated oxygen species and increase film density. The authors studied the influence of deposition parameters such as oxygen partial pressure, V to M ratio, and power of the plasma source, on resistance and TCR. The authors show high TCR (up to −3.7% K{sup −1}) at 300 K, and excellent uniformity, but also an increase in resistance. The authors emphasize that samples were prepared at room temperature with no heat treatment, much simpler than common processes that require annealing at high temperatures. So, this is a promising fabrication route for uncooled microbolometers.

  4. The microstructure of continuously processed YBa{sub 2}Cu{sub 3}O{sub y} coated conductors with underlying CeO{sub 2} and ion-beam-assisted yttria-stabilized zirconia buffer layers

    SciTech Connect

    Holesinger, T. G.; Foltyn, S. R.; Arendt, P. N.; Kung, H.; Jia, Q. X.; Dickerson, R. M.; Dowden, P. C.; DePaula, R. F.; Groves, J. R.; Coulter, J. Y.

    2000-05-01

    The microstructural development of YBa{sub 2}Cu{sub 3}O{sub y} (Y-123) coated conductors based on the ion-beam-assisted deposition (IBAD) of yttria-stabilized zirconia (YSZ) to produce a biaxially textured template is presented. The architecture of the conductors was Y-123/CeO{sub 2}/IBAD YSZ/Inconel 625. A continuous and passivating Cr{sub 2}O{sub 3} layer forms between the YSZ layer and the Inconel substrate. CeO{sub 2} and Y-123 are closely lattice-matched, and misfit strain is accommodated at the YSZ/CeO{sub 2} interface. Localized reactions between the Y-123 film and the CeO{sub 2} buffer layer result in the formation of BaCeO{sub 3}, YCuO{sub 2}, and CuO. The positive volume change that occurs from the interfacial reaction may act as a kinetic barrier that limits the extent of the reaction. Excess copper and yttrium generated by the interfacial reaction appear to diffuse along grain boundaries and intercalate into Y-123 grains as single layers of the Y-247, Y-248, or Y-224 phases. The interfacial reactions do not preclude the attainment of high critical currents (I{sub c}) and current densities (J{sub c}) in these films nor do they affect to any appreciable extent the nucleation and alignment of the Y-123 film. (c) 2000 Materials Research Society.

  5. Ferroelectric and ferromagnetic properties of epitaxial BiFeO{sub 3}-BiMnO{sub 3} films on ion-beam-assisted deposited TiN buffered flexible Hastelloy

    SciTech Connect

    Xiong, J.; Matias, V.; Jia, Q. X.; Tao, B. W.; Li, Y. R.

    2014-05-07

    Growth of multifunctional thin films on flexible substrates is of great technological significance since such a platform is needed for flexible electronics. In this study, we report the growth of biaxially aligned (BiFeO{sub 3}){sub 0.5}:(BiMnO{sub 3}){sub 0.5} [BFO-BMO] films on polycrystalline Hastelloy by using a biaxially aligned TiN as a seed layer deposited by ion-beam-assisted deposited and a La{sub 0.7}Sr{sub 0.3}MnO{sub 3} (LSMO) as a buffer layer deposited by pulsed laser deposition. The LSMO is used not only as a buffer layer but also as the bottom electrode of the BFO-BMO films. X-ray diffraction showed that the BFO-BMO films are biaxially oriented along both in-plane and out-of-plane directions. The BFO-BMO films on flexible metal substrates showed a polarization of 22.9 μC/cm{sup 2}. The magnetization of the BFO-BMO/LSMO is 62 emu/cc at room temperature.

  6. The visualization of current-limiting defects in YBa2Cu3O7 films on ion-beam assisted deposition buffer layers of yttrium-stabilized ZrO2 and Gd2Zr2O7

    NASA Astrophysics Data System (ADS)

    Born, V.; Hoffmann, J.; Sievers, S.; Thiele, Ch; Guth, K.; Freyhardt, H. C.; Jooss, Ch

    2004-11-01

    For the production of high-current-carrying, long-length superconducting wires or tapes, it is necessary to use biaxially textured metallic substrates or buffer layers. Though being highly textured, the deposited superconducting film exhibits a complex defect structure which (locally) suppresses the critical current and alternates characteristically the magnetic flux distribution seen in magneto-optical imaging. In this paper, we report on pulsed laser deposited YBaCuO films on biaxially textured yttrium-stabilized ZrO2 (YSZ) and Gd2Zr2O7 (GZO) buffers which were grown by ion beam assisted deposition (IBAD) on polycrystalline substrates. The current-limiting defect structure turns out to resemble closely a combination of a dense distribution of pinhole-like induced growth distortions and a fine grain boundary network. The current suppression is caused on the one hand by the dense packing of pinhole-like defects. On the other hand, we observe a substantial current anisotropy being related to the surface morphology of the buffer layers and the direction of the IBAD-beam.

  7. Measurement and analysis of internal loss and injection efficiency for continuous-wave blue semipolar ( 20 2 ¯ 1 ¯ ) III-nitride laser diodes with chemically assisted ion beam etched facets

    NASA Astrophysics Data System (ADS)

    Becerra, Daniel L.; Kuritzky, Leah Y.; Nedy, Joseph; Saud Abbas, Arwa; Pourhashemi, Arash; Farrell, Robert M.; Cohen, Daniel A.; DenBaars, Steven P.; Speck, James S.; Nakamura, Shuji

    2016-02-01

    Continuous-wave blue semipolar ( 20 2 ¯ 1 ¯ ) III-nitride laser diodes were fabricated with highly vertical, smooth, and uniform mirror facets produced by chemically assisted ion beam etching. Uniform mirror facets are a requirement for accurate experimental determination of internal laser parameters, including internal loss and injection efficiency, which were determined to be 9 cm-1 and 73%, respectively, using the cavity length dependent method. The cavity length of the uncoated devices was varied from 900 μm to 1800 μm, with threshold current densities ranging from 3 kA/cm2 to 9 kA/cm2 and threshold voltages ranging from 5.5 V to 7 V. The experimentally determined internal loss was found to be in good agreement with a calculated value of 9.5 cm-1 using a 1D mode solver. The loss in each layer was calculated and in light of the analysis several modifications to the laser design are proposed.

  8. Neon Ion Beam Lithography (NIBL).

    PubMed

    Winston, Donald; Manfrinato, Vitor R; Nicaise, Samuel M; Cheong, Lin Lee; Duan, Huigao; Ferranti, David; Marshman, Jeff; McVey, Shawn; Stern, Lewis; Notte, John; Berggren, Karl K

    2011-10-12

    Existing techniques for electron- and ion-beam lithography, routinely employed for nanoscale device fabrication and mask/mold prototyping, do not simultaneously achieve efficient (low fluence) exposure and high resolution. We report lithography using neon ions with fluence <1 ion/nm(2), ∼1000× more efficient than using 30 keV electrons, and resolution down to 7 nm half-pitch. This combination of resolution and exposure efficiency is expected to impact a wide array of fields that are dependent on beam-based lithography. PMID:21899279

  9. Influence of ion beam parameters on the electrical and optical properties of ion-assisted reactively evaporated vanadium dioxide thin films

    SciTech Connect

    Case, F.C.

    1987-07-01

    Large reductions in the phase transition temperature of vanadium dioxide thin films have been achieved in the past by doping with elements such as tungsten or niobium; however, considerable degradation of electrical and optical properties are routinely observed. In this investigation, a technique is described which significantly reduces the transition temperature to doped values, without sacrificing film quality. Vanadium oxide films were deposited at room temperature by ion-assisted reactive evaporation and subsequently annealed in flowing oxygen. Deposition parameters include a range of argon-to-oxygen ion ratios, ion energies and fluxes, and background oxygen pressures. The impact of these parameters on microstructural, electrical, and optical properties, as well as on transition temperature, will be discussed.

  10. ION BEAM FOCUSING MEANS FOR CALUTRON

    DOEpatents

    Backus, J.G.

    1959-06-01

    An ion beam focusing arrangement for calutrons is described. It provides a virtual focus of origin for the ion beam so that the ions may be withdrawn from an arc plasma of considerable width providing greater beam current and accuracy. (T.R.H.)

  11. Ion beam deposited protective films

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.

    1981-01-01

    Sputter deposition of adherent thin films on complex geometric surfaces by ion beam sources is examined in order to evaluate three different types of protective coatings for die materials. In the first experiment, a 30 cm diameter argon ion source was used to sputter deposit adherent metallic films up to eight microns thick on H-13 steel, and a thermal fatigue test specimen sputter deposited with metallic coatings one micron thick was immersed in liquid aluminum and cooled by water for 15,000 cycles to simulate operational environments. Results show that these materials do protect the steel by reducing thermal fatigue and thereby increasing die lifetime. The second experiment generated diamond-like carbon films using a dual beam ion source system that directed an eight cm argon ion source beam at the substrates. These films are still in the process of being evaluated for crystallinity, hardness and infrared absorption. The third experiment coated a fiber glass beam shield incorporated in the eight-cm diameter mercury ion thruster with molybdenum to ensure proper electrical and thermal properties. The coating maintained its integrity even under acceleration tests.

  12. Focused Ion Beam Technology for Optoelectronic Devices

    NASA Astrophysics Data System (ADS)

    Reithmaier, J. P.; Bach, L.; Forchel, A.

    2003-08-01

    High-resolution proximity free lithography was developed using InP as anorganic resist for ion beam exposure. InP is very sensitive on ion beam irradiation and show a highly nonlinear dose dependence with a contrast function comparable to organic electron beam resists. In combination with implantation induced quantum well intermixing this new lithographic technique based on focused ion beams is used to realize high performance nano patterned optoelectronic devices like complex coupled distributed feedback (DFB) and distributed Bragg reflector (DBR) lasers.

  13. Kinetic Simulations of Ion Beam Neutralization

    SciTech Connect

    Wang, Joseph

    2010-05-21

    Ion beam emission/neutralization is one of the most fundamental problems in spacecraft plasma interactions and electric propulsion. Although ion beam neutralization is readily achieved in experiments, the understanding of the underlying physical process remains at a rather primitive level. No theoretical or simulation models have convincingly explained the detailed neutralization mechanism, and no conclusions have been reached. This paper presents a fully kinetic simulation of ion beam neutralization and plasma beam propagation and discusses the physics of electron-ion coupling and the resulting propagation of a neutralized mesothermal plasma.

  14. Nanopillar growth by focused helium ion-beam-induced deposition.

    PubMed

    Chen, Ping; van Veldhoven, Emile; Sanford, Colin A; Salemink, Huub W M; Maas, Diederik J; Smith, Daryl A; Rack, Philip D; Alkemade, Paul F A

    2010-11-12

    A 25 keV focused helium ion beam has been used to grow PtC nanopillars on a silicon substrate by beam-induced decomposition of a (CH(3))(3)Pt(C(P)CH(3)) precursor gas. The ion beam diameter was about 1 nm. The observed relatively high growth rates suggest that electronic excitation is the dominant mechanism in helium ion-beam-induced deposition. Pillars grown at low beam currents are narrow and have sharp tips. For a constant dose, the pillar height decreases with increasing current, pointing to depletion of precursor molecules at the beam impact site. Furthermore, the diameter increases rapidly and the total pillar volume decreases slowly with increasing current. Monte Carlo simulations have been performed with realistic values for the fundamental deposition processes. The simulation results are in good agreement with experimental observations. In particular, they reproduce the current dependences of the vertical and lateral growth rates and of the volumetric deposition efficiency. Furthermore, the simulations reveal that the vertical pillar growth is due to type-1 secondary electrons and primary ions, while the lateral outgrowth is due to type-2 secondary electrons and scattered ions. PMID:20947951

  15. Development of polyatomic ion beam system using liquid organic materials

    NASA Astrophysics Data System (ADS)

    Takaoka, G. H.; Nishida, Y.; Yamamoto, T.; Kawashita, M.

    2005-08-01

    We have developed a new type of polyatomic ion beam system using liquid organic materials such as octane and ethanol, which consists of a capillary type of nozzle, an ionizer, a mass-separator and a substrate holder. Ion current extracted after ionization was 430 μA for octane and 200 μA for ethanol, respectively. The mass-analysis was realized using a compact E × B mass filter, and the mass-analyzed ion beams were transferred toward the substrate. The ion current density at the substrate was a few μA/cm2 for the mass-separated ion species. Interactions of polyatomic ion beams with silicon (Si) surfaces were investigated by utilizing the ellipsometry measurement. It was found that the damaged layer thickness irradiated by the polyatomic ions with a mass number of about 40 was smaller than that by Ar ion irradiation at the same incident energy and ion fluence. The result indicated that the rupture of polyatomic ions occurred upon its impact on the Si surface with an incident energy larger than a few keV. In addition, the chemical modification of Si surfaces such as wettability could be achieved by adjusting the incident energy for the ethanol ions, which included all the fragment ions.

  16. Metal-assisted chemical etch porous silicon formation method

    DOEpatents

    Li, Xiuling; Bohn, Paul W.; Sweedler, Jonathan V.

    2004-09-14

    A thin discontinuous layer of metal such as Au, Pt, or Au/Pd is deposited on a silicon surface. The surface is then etched in a solution including HF and an oxidant for a brief period, as little as a couple seconds to one hour. A preferred oxidant is H.sub.2 O.sub.2. Morphology and light emitting properties of porous silicon can be selectively controlled as a function of the type of metal deposited, Si doping type, silicon doping level, and/or etch time. Electrical assistance is unnecessary during the chemical etching of the invention, which may be conducted in the presence or absence of illumination.

  17. Ion Beam Therapy in Europe

    NASA Astrophysics Data System (ADS)

    Kraft, Gerhard

    2009-03-01

    At present, seven facilities in Europe treat deep-seated tumors with particle beams, six with proton beams and one with carbon ions. Three of these facilities are in Moscow, St. Petersburg and Dubna, Russia. Other facilities include the TSL Uppsala, Sweden, CPO Orsay, France, and PSI Villigen, Switzerland, all for proton therapy, and GSI, Darmstadt, Germany, which utilizes carbon ions only. But only two of these facilities irradiate with scanned ion beams: the Paul Scherer Institute (PSI), Villigen (protons) and the Gesellschaft für Schwerionenforschung (GSI), Darmstadt. These two facilities are experimental units within physics laboratories and have developed the technique of intensity-modulated beam scanning in order to produce irradiation conforming to a 3-D target. There are three proton centers presently under construction in Munich, Essen and Orsay, and the proton facility at PSI has added a superconducting accelerator connected to an isocentric gantry in order to become independent of the accelerator shared with the physics research program. The excellent clinical results using carbon ions at National Institute of Radiological Science (NIRS) in Chiba and GSI have triggered the construction of four new heavy-ion therapy projects (carbon ions and protons), located in Heidelberg, Pavia, Marburg and Kiel. The projects in Heidelberg and Pavia will begin patient treatment in 2009, and the Marburg and Kiel projects will begin in 2010 and 2011, respectively. These centers use different accelerator designs but have the same kind of treatment planning system and use the same approach for the calculation of the biological effectiveness of the carbon ions as developed at GSI [1]. There are many other planned projects in the works. Do not replace the word "abstract," but do replace the rest of this text. If you must insert a hard line break, please use Shift+Enter rather than just tapping your "Enter" key. You may want to print this page and refer to it as a style

  18. Neurosurgical applications of ion beams

    NASA Astrophysics Data System (ADS)

    Fabrikant, Jacob I.; Levy, Richard P.; Phillips, Mark H.; Frankel, Kenneth A.; Lyman, John T.

    1989-04-01

    The program at Donner Pavilion has applied nuclear medicine research to the diagnosis and radiosurgical treatment of life-threatening intracranial vascular disorders that affect more than half a million Americans. Stereotactic heavy-charged-particle Bragg peak radiosurgery, using narrow beams of heavy ions, demonstrates superior biological and physical characteristics in brain over X-and γ-rays, viz., improved dose distribution in the Bragg peak and sharp lateral and distal borders and less scattering of the beam. Examination of CNS tissue response and alteration of cerebral blood-flow dynamics related to heavy-ion Bragg peak radiosurgery is carried out using three-dimensional treatment planning and quantitative imaging utilizing cerebral angiography, computerized tomography (CT), magnetic resonance imaging (MRI), cine-CT, xenon X-ray CT and positron emission tomography (PET). Also under examination are the physical properties of narrow heavy-ion beams for improving methods of dose delivery and dose distribution and for establishing clinical RBE/LET and dose-response relationships for human CNS tissues. Based on the evaluation and treatment with stereotactically directed narrow beams of heavy charged particles of over 300 patients, with cerebral angiography, CT scanning and MRI and PET scanning of selected patients, plus extensive clinical and neuroradiological followup, it appears that Stereotactic charged-particle Bragg peak radiosurgery obliterates intracranial arteriovenous malformations or protects against rebleeding with reduced morbidity and no mortality. Discussion will include the method of evaluation, the clinical research protocol, the Stereotactic neuroradiological preparation, treatment planning, the radiosurgery procedure and the protocol for followup. Emphasis will be placed on the neurological results, including the neuroradiological and clinical response and early and late delayed injury in brain leading to complications (including vasogenic edema

  19. ION BEAM ETCHING EFFECTS IN BIOLOGICAL MICROANALYSIS

    EPA Science Inventory

    Oxygen ion beam sputter etching used in SIMS has been shown to produce morphologic effects which have similarities and differences in comparison to rf plasma etching of biological specimens. Sputter yield variations resulting from structural microheterogeneity are illustrated (e....

  20. Biomedical applications of ion-beam technology

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Weigand, A. J.; Gibbons, D. F.; Vankampen, C. L.; Babbush, C. A.

    1979-01-01

    Microscopically-rough surface texture of various biocompatible alloys and polymers produced by ion-beam sputtering may result in improvements in response of hard or soft tissue to various surgical implants.

  1. Negative Ion Beam Extraction and Emittance

    SciTech Connect

    Holmes, Andrew J. T.

    2007-08-10

    The use of magnetic fields to both aid the production of negative ions and suppress the co-extracted electrons causes the emittance and hence the divergence of the negative ion beam to increase significantly due to the plasma non-uniformity from jxB drift. This drift distorts the beam-plasma meniscus and experimental results of the beam emittance are presented, which show that non-uniformity causes the square of the emittance to be proportional to the 2/3 power of the extracted current density. This can cause the divergence of the negative ion beam to be significantly larger than its positive ion counterpart. By comparing results from positive and negative ion beam emittances from the same source, it is also possible to draw conclusions about their vulnerability to magnetic effects. Finally emittances of caesiated and un-caesiated negative ion beams are compared to show how the surface and volume modes of production interact.

  2. Focused ion beam induced deflections of freestanding thin films

    NASA Astrophysics Data System (ADS)

    Kim, Y.-R.; Chen, P.; Aziz, M. J.; Branton, D.; Vlassak, J. J.

    2006-11-01

    Prominent deflections are shown to occur in freestanding silicon nitride thin membranes when exposed to a 50keV gallium focused ion beam for ion doses between 1014 and 1017ions/cm2. Atomic force microscope topographs were used to quantify elevations on the irradiated side and corresponding depressions of comparable magnitude on the back side, thus indicating that what at first appeared to be protrusions are actually the result of membrane deflections. The shape in high-stress silicon nitride is remarkably flat-topped and differs from that in low-stress silicon nitride. Ion beam induced biaxial compressive stress generation, which is a known deformation mechanism for other amorphous materials at higher ion energies, is hypothesized to be the origin of the deflection. A continuum mechanical model based on this assumption convincingly reproduces the profiles for both low-stress and high-stress membranes and provides a family of unusual shapes that can be created by deflection of freestanding thin films under beam irradiation.

  3. Computer simulation of ion beam analysis of laterally inhomogeneous materials

    NASA Astrophysics Data System (ADS)

    Mayer, M.

    2016-03-01

    The program STRUCTNRA for the simulation of ion beam analysis charged particle spectra from arbitrary two-dimensional distributions of materials is described. The code is validated by comparison to experimental backscattering data from a silicon grating on tantalum at different orientations and incident angles. Simulated spectra for several types of rough thin layers and a chessboard-like arrangement of materials as example for a multi-phase agglomerate material are presented. Ambiguities between back-scattering spectra from two-dimensional and one-dimensional sample structures are discussed.

  4. Ion beam processing of advanced electronic materials

    SciTech Connect

    Cheung, N.W.; Marwick, A.D.; Roberto, J.B.; International Business Machines Corp., Yorktown Heights, NY . Thomas J. Watson Research Center; Oak Ridge National Lab., TN )

    1989-01-01

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases. (CBS)

  5. Ion beam microtexturing and enhanced surface diffusion

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.

    1982-01-01

    Ion beam interactions with solid surfaces are discussed with particular emphasis on microtexturing induced by the deliberate deposition of controllable amounts of an impurity material onto a solid surface while simultaneously sputtering the surface with an ion beam. Experimental study of the optical properties of microtextured surfaces is described. Measurements of both absorptance as a function of wavelength and emissivity are presented. A computer code is described that models the sputtering and ion reflection processes involved in microtexture formation.

  6. Biaxial texturing of inorganic photovoltaic thin films using low energy ion beam irradiation during growth

    SciTech Connect

    Groves, James R; De Paula, Raymond F; Hayes, Garrett H; Li, Joel B; Hammond, Robert H; Salleo, Alberto; Clemens, Bruce M

    2010-05-07

    We describe our efforts to control the grain boundary alignment in polycrystalline thin films of silicon by using a biaxially textured template layer of CaF{sub 2} for photovoltaic device applications. We have chosen CaF{sub 2} as a candidate material due to its close lattice match with silicon and its suitability as an ion beam assisted deposition (mAD) material. We show that the CaF{sub 2} aligns biaxially at a thickness of {approx}10 nm and, with the addition of an epitaxial CaF{sub 2} layer, has an in-plane texture of {approx}15{sup o}. Deposition of a subsequent layer of Si aligns on the template layer with an in-plane texture of 10.8{sup o}. The additional improvement of in-plane texture is similar to the behavior observed in more fully characterized IBAD materials systems. A germanium buffer layer is used to assist in the epitaxial deposition of Si on CaF{sub 2} template layers and single crystal substrates. These experiments confirm that an mAD template can be used to biaxially orient polycrystalline Si.

  7. Mass spectrometer and methods of increasing dispersion between ion beams

    DOEpatents

    Appelhans, Anthony D.; Olson, John E.; Delmore, James E.

    2006-01-10

    A mass spectrometer includes a magnetic sector configured to separate a plurality of ion beams, and an electrostatic sector configured to receive the plurality of ion beams from the magnetic sector and increase separation between the ion beams, the electrostatic sector being used as a dispersive element following magnetic separation of the plurality of ion beams. Other apparatus and methods are provided.

  8. In Situ Mitigation of Subsurface and Peripheral Focused Ion Beam Damage via Simultaneous Pulsed Laser Heating.

    PubMed

    Stanford, Michael G; Lewis, Brett B; Iberi, Vighter; Fowlkes, Jason D; Tan, Shida; Livengood, Rick; Rack, Philip D

    2016-04-01

    Focused helium and neon ion (He(+)/Ne(+)) beam processing has recently been used to push resolution limits of direct-write nanoscale synthesis. The ubiquitous insertion of focused He(+)/Ne(+) beams as the next-generation nanofabrication tool-of-choice is currently limited by deleterious subsurface and peripheral damage induced by the energetic ions in the underlying substrate. The in situ mitigation of subsurface damage induced by He(+)/Ne(+) ion exposures in silicon via a synchronized infrared pulsed laser-assisted process is demonstrated. The pulsed laser assist provides highly localized in situ photothermal energy which reduces the implantation and defect concentration by greater than 90%. The laser-assisted exposure process is also shown to reduce peripheral defects in He(+) patterned graphene, which makes this process an attractive candidate for direct-write patterning of 2D materials. These results offer a necessary solution for the applicability of high-resolution direct-write nanoscale material processing via focused ion beams. PMID:26864147

  9. In situ mitigation of subsurface and peripheral focused ion beam damage via simultaneous pulsed laser heating

    SciTech Connect

    Stanford, Michael G.; Lewis, Brett B.; Iberi, Vighter O.; Fowlkes, Jason Davidson; Tan, Shida; Livengood, Rick; Rack, Philip D.

    2016-01-01

    Focused helium and neon ion (He(+)/Ne(+) ) beam processing has recently been used to push resolution limits of direct-write nanoscale synthesis. The ubiquitous insertion of focused He(+) /Ne(+) beams as the next-generation nanofabrication tool-of-choice is currently limited by deleterious subsurface and peripheral damage induced by the energetic ions in the underlying substrate. The in situ mitigation of subsurface damage induced by He(+)/Ne(+) ion exposures in silicon via a synchronized infrared pulsed laser-assisted process is demonstrated. The pulsed laser assist provides highly localized in situ photothermal energy which reduces the implantation and defect concentration by greater than 90%. The laser-assisted exposure process is also shown to reduce peripheral defects in He(+) patterned graphene, which makes this process an attractive candidate for direct-write patterning of 2D materials. In conclusion, these results offer a necessary solution for the applicability of high-resolution direct-write nanoscale material processing via focused ion beams.

  10. In situ mitigation of subsurface and peripheral focused ion beam damage via simultaneous pulsed laser heating

    DOE PAGESBeta

    Stanford, Michael G.; Lewis, Brett B.; Iberi, Vighter O.; Fowlkes, Jason Davidson; Tan, Shida; Livengood, Rick; Rack, Philip D.

    2016-02-16

    Focused helium and neon ion (He(+)/Ne(+) ) beam processing has recently been used to push resolution limits of direct-write nanoscale synthesis. The ubiquitous insertion of focused He(+) /Ne(+) beams as the next-generation nanofabrication tool-of-choice is currently limited by deleterious subsurface and peripheral damage induced by the energetic ions in the underlying substrate. The in situ mitigation of subsurface damage induced by He(+)/Ne(+) ion exposures in silicon via a synchronized infrared pulsed laser-assisted process is demonstrated. The pulsed laser assist provides highly localized in situ photothermal energy which reduces the implantation and defect concentration by greater than 90%. The laser-assisted exposuremore » process is also shown to reduce peripheral defects in He(+) patterned graphene, which makes this process an attractive candidate for direct-write patterning of 2D materials. In conclusion, these results offer a necessary solution for the applicability of high-resolution direct-write nanoscale material processing via focused ion beams.« less

  11. Imaging Nanophotonic Modes of Microresonators using a Focused Ion Beam

    PubMed Central

    Twedt, Kevin A.; Zou, Jie; Davanco, Marcelo; Srinivasan, Kartik; McClelland, Jabez J.; Aksyuk, Vladimir A.

    2016-01-01

    Optical microresonators have proven powerful in a wide range of applications, including cavity quantum electrodynamics1–3, biosensing4, microfludics5, and cavity optomechanics6–8. Their performance depends critically on the exact distribution of optical energy, confined and shaped by the nanoscale device geometry. Near-field optical probes9 can image this distribution, but the physical probe necessarily perturbs the near field, which is particularly problematic for sensitive high quality factor resonances10,11. We present a new approach to mapping nanophotonic modes that uses a controllably small and local optomechanical perturbation introduced by a focused lithium ion beam12. An ion beam (radius ≈50 nm) induces a picometer-scale dynamic deformation of the resonator surface, which we detect through a shift in the optical resonance wavelength. We map five modes of a silicon microdisk resonator (Q≥20,000) with both high spatial and spectral resolution. Our technique also enables in-situ observation of ion implantation damage and relaxation dynamics in a silicon lattice13,14. PMID:27087832

  12. Intense non-relativistic cesium ion beam

    SciTech Connect

    Lampel, M.C.

    1984-02-01

    The Heavy Ion Fusion group at Lawrence Berkeley Laboratory has constructed the One Ampere Cesium Injector as a proof of principle source to supply an induction linac with a high charge density and high brightness ion beam. This is studied here. An electron beam probe was developed as the major diagnostic tool for characterizing ion beam space charge. Electron beam probe data inversion is accomplished with the EBEAM code and a parametrically adjusted model radial charge distribution. The longitudinal charge distribution was not derived, although it is possible to do so. The radial charge distribution that is derived reveals an unexpected halo of trapped electrons surrounding the ion beam. A charge fluid theory of the effect of finite electron temperature on the focusing of neutralized ion beams (Nucl. Fus. 21, 529 (1981)) is applied to the problem of the Cesium beam final focus at the end of the injector. It is shown that the theory's predictions and assumptions are consistent with the experimental data, and that it accounts for the observed ion beam radius of approx. 5 cm, and the electron halo, including the determination of an electron Debye length of approx. 10 cm.

  13. Ion beam sputtering in electric propulsion facilities

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Patterson, Michael J.

    1991-01-01

    Experiments were undertaken to determine sputter yields of potential ion beam target materials, to assess the impact of charge exchange on beam diagnostics in large facilities, and to examine material erosion and deposition after a 957-hour test of a 5 kW-class ion thruster. The xenon ion sputter yield of flexible graphite was lower than other graphite forms especialy at high angles of incidence. Ion beam charge exchange effects were found to hamper beam probe current collection diagnostics even at pressures from 0.7 to 1.7 mPa. Estimates of the xenon ion beam envelope were made and predictions of the thickness of sputter deposited coatings in the facility were compared with measurements.

  14. Variable-spot ion beam figuring

    NASA Astrophysics Data System (ADS)

    Wu, Lixiang; Qiu, Keqiang; Fu, Shaojun

    2016-03-01

    This paper introduces a new scheme of ion beam figuring (IBF), or rather variable-spot IBF, which is conducted at a constant scanning velocity with variable-spot ion beam collimated by a variable diaphragm. It aims at improving the reachability and adaptation of the figuring process within the limits of machine dynamics by varying the ion beam spot size instead of the scanning velocity. In contrast to the dwell time algorithm in the conventional IBF, the variable-spot IBF adopts a new algorithm, which consists of the scan path programming and the trajectory optimization using pattern search. In this algorithm, instead of the dwell time, a new concept, integral etching time, is proposed to interpret the process of variable-spot IBF. We conducted simulations to verify its feasibility and practicality. The simulation results indicate the variable-spot IBF is a promising alternative to the conventional approach.

  15. Pseudo ribbon metal ion beam source

    SciTech Connect

    Stepanov, Igor B. Ryabchikov, Alexander I.; Sivin, Denis O.; Verigin, Dan A.

    2014-02-15

    The paper describes high broad metal ion source based on dc macroparticle filtered vacuum arc plasma generation with the dc ion-beam extraction. The possibility of formation of pseudo ribbon beam of metal ions with the parameters: ion beam length 0.6 m, ion current up to 0.2 A, accelerating voltage 40 kV, and ion energy up to 160 kV has been demonstrated. The pseudo ribbon ion beam is formed from dc vacuum arc plasma. The results of investigation of the vacuum arc evaporator ion-emission properties are presented. The influence of magnetic field strength near the cathode surface on the arc spot movement and ion-emission properties of vacuum-arc discharge for different cathode materials are determined. It was shown that vacuum-arc discharge stability can be reached when the magnetic field strength ranges from 40 to 70 G on the cathode surface.

  16. Confined ion beam sputtering device and method

    DOEpatents

    Sharp, Donald J.

    1988-01-01

    A hollow cylindrical target, lined internally with a sputter deposit material and open at both ends, surrounds a substrate on which sputtered deposition is to be obtained. An ion beam received through either one or both ends of the open cylindrical target is forced by a negative bias applied to the target to diverge so that ions impinge at acute angles at different points of the cylindrical target surface. The ion impingement results in a radially inward and downstream directed flux of sputter deposit particles that are received by the substrate. A positive bias applied to the substrate enhances divergence of the approaching ion beams to generate a higher sputtered deposition flux rate. Alternatively, a negative bias applied to the substrate induces the core portion of the ion beams to reach the substrate and provide ion polishing of the sputtered deposit thereon.

  17. Confined ion beam sputtering device and method

    DOEpatents

    Sharp, D.J.

    1986-03-25

    A hollow cylindrical target, lined internally with a sputter deposit material and open at both ends, surrounds a substrate on which sputtered deposition is to be obtained. An ion beam received through either one or both ends of the open cylindrical target is forced by a negative bias applied to the target to diverge so that ions impinge at acute angles at different points of the cylindrical target surface. The ion impingement results in a radially inward and downstream directed flux of sputter deposit particles that are received by the substrate. A positive bias applied to the substrate enhances divergence of the approaching ion beams to generate a higher sputtered deposition flux rate. Alternatively, a negative bias applied to the substrate induces the core portion of the ion beams to reach the substrate and provide ion polishing of the sputtered deposit thereon.

  18. Ion beam sputtering in electric propulsion facilities

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Patterson, Michael J.

    1991-01-01

    Experiments were undertaken to determine sputter yields of potential ion beam target materials, to assess the impact of charge exchange on beam diagnostics in large facilities, and to examine material erosion and deposition after a 957 hr test of a 5 kW-class ion thruster. The xenon ion sputter yield of flexible graphite was lower than other graphite forms especially at high angles of incidence. Ion beam charge exchange effects were found to hamper beam probe current collection diagnostics even at pressures from 0.7 to 1.7 mPa. Estimates of the xenon ion beam envelope were made and predictions of the thickness of sputter deposited coatings in the facility were compared with measurements.

  19. TOPICAL REVIEW Dosimetry for ion beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Karger, Christian P.; Jäkel, Oliver; Palmans, Hugo; Kanai, Tatsuaki

    2010-11-01

    Recently, ion beam radiotherapy (including protons as well as heavier ions) gained considerable interest. Although ion beam radiotherapy requires dose prescription in terms of iso-effective dose (referring to an iso-effective photon dose), absorbed dose is still required as an operative quantity to control beam delivery, to characterize the beam dosimetrically and to verify dose delivery. This paper reviews current methods and standards to determine absorbed dose to water in ion beam radiotherapy, including (i) the detectors used to measure absorbed dose, (ii) dosimetry under reference conditions and (iii) dosimetry under non-reference conditions. Due to the LET dependence of the response of films and solid-state detectors, dosimetric measurements are mostly based on ion chambers. While a primary standard for ion beam radiotherapy still remains to be established, ion chamber dosimetry under reference conditions is based on similar protocols as for photons and electrons although the involved uncertainty is larger than for photon beams. For non-reference conditions, dose measurements in tissue-equivalent materials may also be necessary. Regarding the atomic numbers of the composites of tissue-equivalent phantoms, special requirements have to be fulfilled for ion beams. Methods for calibrating the beam monitor depend on whether passive or active beam delivery techniques are used. QA measurements are comparable to conventional radiotherapy; however, dose verification is usually single field rather than treatment plan based. Dose verification for active beam delivery techniques requires the use of multi-channel dosimetry systems to check the compliance of measured and calculated dose for a representative sample of measurement points. Although methods for ion beam dosimetry have been established, there is still room for developments. This includes improvement of the dosimetric accuracy as well as development of more efficient measurement techniques.

  20. Potential biomedical applications of ion beam technology

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Weigand, A. J.; Babbush, C. A.; Vankampen, C. L.

    1976-01-01

    Electron bombardment ion thrusters used as ion sources have demonstrated a unique capability to vary the surface morphology of surgical implant materials. The microscopically rough surface texture produced by ion beam sputtering of these materials may result in improvements in the biological response and/or performance of implanted devices. Control of surface roughness may result in improved attachment of the implant to soft tissue, hard tissue, bone cement, or components deposited from blood. Potential biomedical applications of ion beam texturing discussed include: vascular prostheses, artificial heart pump diaphragms, pacemaker fixation, percutaneous connectors, orthopedic pros-thesis fixtion, and dental implants.

  1. Potential biomedical applications of ion beam technology

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Weigand, A. J.; Van Kampen, C. L.; Babbush, C. A.

    1976-01-01

    Electron bombardment ion thrusters used as ion sources have demonstrated a unique capability to vary the surface morphology of surgical implant materials. The microscopically rough surface texture produced by ion beam sputtering of these materials may result in improvements in the biological response and/or performance of implanted devices. Control of surface roughness may result in improved attachment of the implant to soft tissue, hard tissue, bone cement, or components deposited from blood. Potential biomedical applications of ion beam texturing discussed include: vascular prostheses, artificial heart pump diaphragms, pacemaker fixation, percutaneous connectors, orthopedic prosthesis fixation, and dental implants.

  2. Focused ion beam source method and apparatus

    DOEpatents

    Pellin, Michael J.; Lykke, Keith R.; Lill, Thorsten B.

    2000-01-01

    A focused ion beam having a cross section of submicron diameter, a high ion current, and a narrow energy range is generated from a target comprised of particle source material by laser ablation. The method involves directing a laser beam having a cross section of critical diameter onto the target, producing a cloud of laser ablated particles having unique characteristics, and extracting and focusing a charged particle beam from the laser ablated cloud. The method is especially suited for producing focused ion beams for semiconductor device analysis and modification.

  3. Ion-beam technology and applications

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.; Robson, R. R.; Sovey, J. S.

    1977-01-01

    Ion propulsion research and development yields a mature technology that is transferable to a wide range of nonpropulsive applications, including terrestrial and space manufacturing. A xenon ion source was used for an investigation into potential ion-beam applications. The results of cathode tests and discharge-chamber experiments are presented. A series of experiments encompassing a wide range of potential applications is discussed. Two types of processes, sputter deposition, and erosion were studied. Some of the potential applications are thin-film Teflon capacitor fabrication, lubrication applications, ion-beam cleaning and polishing, and surface texturing.

  4. (abstract) Optical Scattering and Surface Microroughness of Ion Beam Deposited Au and Pt Thin Films

    NASA Technical Reports Server (NTRS)

    Al-Jumaily, Ghanim A.; Raouf, Nasrat A.; Edlou, Samad M.; Simons, John C.

    1994-01-01

    Thin films of gold and platinum have been deposited onto superpolished fused silica substrates using thermal evaporation, ion assisted deposition (IAD), and ion assisted sputtering. The influence of ion beam flux, thin film material, and deposition rate on the films microroughness have been investigated. Short range surface microroughness of the films has been examined using scanning tunneling microscopy (STM) and atomic force microscopy (AFM). Long range surface microroughness has been characterized using an angle resolved optical scatterometer. Results indicate that ion beam deposited coatings have improved microstructure over thermally evaporated films.

  5. Oxide-assisted growth of silicon nanowires by carbothermal evaporation

    NASA Astrophysics Data System (ADS)

    Hutagalung, Sabar D.; Yaacob, Khatijah A.; Aziz, Azma F. Abdul

    2007-11-01

    Silicon nanowires (SiNWs) have successfully been synthesized by carbothermal evaporation method. By ramping-up the furnace system at 20 °C min -1 to 1100 °C for 6 h, the vertically aligned coexist with crooked SiNWs were achieved on the silicon substrate located at 12 cm from source material. The processing parameters such as temperature, heating rate, duration, substrate position and location are very important to produce SiNWs. Morphology and chemical composition of deposited products were investigated by field-emission scanning electron microscopy (FESEM) equipped with energy dispersive X-ray analysis (EDX). The existence of small sphere silicon oxide capped nanowires suggested that the formation of SiNWs was governed by oxide-assisted growth (OAG) mechanism.

  6. The measurement results of carbon ion beam structure extracted by bent crystal from U-70 accelerator

    NASA Astrophysics Data System (ADS)

    Afonin, A. G.; Barnov, E. V.; Britvich, G. I.; Chesnokov, Yu A.; Chirkov, P. N.; Durum, A. A.; Kostin, M. Yu; Maisheev, V. A.; Pitalev, V. I.; Reshetnikov, S. F.; Yanovich, A. A.; Nazhmudinov, R. M.; Kubankin, A. S.; Shchagin, A. V.

    2016-07-01

    The carbon ion +6C beam with energy 25 GeV/nucleon was extracted by bent crystal from the U-70 ring. The bent angle of silicon crystal was 85 mrad. About 2×105 particles for 109 circulated ions in the ring were observed in beam line 4a after bent crystal. Geometrical parameters, time structure and ion beam structure were measured. The ability of the bent monocrystal to extract and generate ion beam with necessary parameters for regular usage in physical experiments is shown in the first time.

  7. Adaptation of ion beam technology to microfabrication of solid state devices and transducers

    NASA Technical Reports Server (NTRS)

    Topich, J. A.

    1978-01-01

    A number of areas were investigated to determine the potential uses of ion beam techniques in the construction of solid state devices and transducers and the packaging of implantable electronics for biomedical applications. The five areas investigated during the past year were: (1) diode-like devices fabricated on textured silicon; (2) a photolithographic technique for patterning ion beam sputtered PVC (polyvinyl chloride); (3) use of sputtered Teflon as a protective coating for implantable pressure sensors; (4) the sputtering of Macor to seal implantable hybrid circuits; and (5) the use of sputtered Teflon to immobilize enzymes.

  8. Adaptation of ion beam technology to microfabrication of solid state devices and transducers

    NASA Technical Reports Server (NTRS)

    Topich, J. A.

    1977-01-01

    It was found that ion beam texturing of silicon surfaces can be used to increase the effective surface area of MOS capacitors. There is, however, a problem with low dielectric breakdown. Preliminary work was begun on the fabrication of ion implanted resistors on textured surfaces and the potential improvement of wire bond strength by bonding to a textured surface. In the area of ion beam sputtering, the techniques for sputtering PVC were developed. A PVC target containing valinomycin was used to sputter an ion selective membrane on a field effect transistor to form a potassium ion sensor.

  9. The role of space charge compensation for ion beam extraction and ion beam transport (invited)

    SciTech Connect

    Spädtke, Peter

    2014-02-15

    Depending on the specific type of ion source, the ion beam is extracted either from an electrode surface or from a plasma. There is always an interface between the (almost) space charge compensated ion source plasma, and the extraction region in which the full space charge is influencing the ion beam itself. After extraction, the ion beam is to be transported towards an accelerating structure in most cases. For lower intensities, this transport can be done without space charge compensation. However, if space charge is not negligible, the positive charge of the ion beam will attract electrons, which will compensate the space charge, at least partially. The final degree of Space Charge Compensation (SCC) will depend on different properties, like the ratio of generation rate of secondary particles and their loss rate, or the fact whether the ion beam is pulsed or continuous. In sections of the beam line, where the ion beam is drifting, a pure electrostatic plasma will develop, whereas in magnetic elements, these space charge compensating electrons become magnetized. The transport section will provide a series of different plasma conditions with different properties. Different measurement tools to investigate the degree of space charge compensation will be described, as well as computational methods for the simulation of ion beams with partial space charge compensation.

  10. Photon assisted tunneling in pairs of silicon donors

    NASA Astrophysics Data System (ADS)

    Litvinenko, K. L.; Pavlov, S. G.; Hübers, H.-W.; Abrosimov, N. V.; Pidgeon, C. R.; Murdin, B. N.

    2014-06-01

    Shallow donors in silicon are favorable candidates for the implementation of solid-state quantum computer architectures because of the promising combination of atomiclike coherence properties and scalability from the semiconductor manufacturing industry. Quantum processing schemes require (among other things) controlled information transfer for readout. Here we demonstrate controlled electron tunneling at 10 K from P to Sb impurities and vice versa with the assistance of resonant terahertz photons.

  11. Metal Ion Sources for Ion Beam Implantation

    SciTech Connect

    Zhao, W. J.; Zhao, Z. Q.; Ren, X. T.

    2008-11-03

    In this paper a theme touched upon the progress of metal ion sources devoted to metal ion beam implantation (MIBI) will be reviewed. A special emphasis will be given to some kinds of ion sources such as ECR, MEVVA and Cluster ion sources. A novel dual hollow cathode metal ion source named DUHOCAMIS will be introduced and discussed.

  12. Focused ion beam micromilling and articles therefrom

    DOEpatents

    Lamartine, Bruce C.; Stutz, Roger A.

    1998-01-01

    An ultrahigh vacuum focused ion beam micromilling apparatus and process are isclosed. Additionally, a durable data storage medium using the micromilling process is disclosed, the durable data storage medium capable of storing, e.g., digital or alphanumeric characters as well as graphical shapes or characters.

  13. Upgoing ion beams. I - Microscopic analysis

    NASA Astrophysics Data System (ADS)

    Kaufmann, R. L.; Kintner, P. M.

    1982-12-01

    The stability of electrostatic waves with frequencies near the hydrogen cyclotron frequency is investigated for an auroral plasma containing an ion beam by studying the relationship between low-frequency waves (0-1 kHz) and particles seen by the S3-3 satellite. It is concluded that only electrostatic hydrogen ion cyclotron (EHC) waves can be generated at the observed frequencies by the observed energetic particles, with the waves being produced either by drifting electrons or by the ion beam. In the model developed, ion beams are seen with their observed temperatures because they have evolved to a weakly unstable configuration in which the wave growth length is comparable to the width of the beam region. Waves are well confined to the beams because they are damped rapidly in the adjacent plasma, and the mirror effect can maintain a weak instability over a considerable altitude range. It is proposed that this effect is a source for strong pitch angle scattering, as well as an explanation for the nonexistence of downgoing ion beams.

  14. Heavy ion beams for inertial fusion

    SciTech Connect

    Godlove, T.F.; Herrmannsfeldt, W.B.

    1980-05-01

    The United States' program in inertial confinement fusion (ICF) is described in this paper, with emphasis on the studies of the use of intense high energy beams of heavy ions to provide the power and energy needed to initiate thermonuclear burn. Preliminary calculations of the transport of intense ion beams in an electrostatic quadrupole focussing structure are discussed.

  15. Focused ion beam micromilling and articles therefrom

    DOEpatents

    Lamartine, B.C.; Stutz, R.A.

    1998-06-30

    An ultrahigh vacuum focused ion beam micromilling apparatus and process are disclosed. Additionally, a durable data storage medium using the micromilling process is disclosed, the durable data storage medium capable of storing, e.g., digital or alphanumeric characters as well as graphical shapes or characters. 6 figs.

  16. Applications of the Lithium Focused Ion Beam: Nanoscale Electrochemistry and Microdisk Mode Imaging

    NASA Astrophysics Data System (ADS)

    McGehee, William; Takeuchi, Saya; Michels, Thomas; Oleshko, Vladimir; Aksyuk, Vladimir; Soles, Christopher; McClelland, Jabez; Center for Nanoscale Science; Technology at NIST Collaboration; Materials Measurement Laboratory at NIST Collaboration

    2016-05-01

    The NIST-developed lithium Focused-Ion-Beam (LiFIB) system creates a low-energy, picoampere-scale ion beam from a photoionized gas of laser-cooled atoms. The ion beam can be focused to a <30 nm spot and scanned across a sample. This enables imaging through collection of ion-induced secondary electrons (similar to SEM) as well as the ability to selectively deposit lithium-ions into nanoscale volumes in a material. We exploit this second ability of the LiFIB to selectively ''titrate'' lithium ions as a means of probing the optical modes in microdisk resonators as well as for exploring nanoscale, Li-ion electrochemistry in battery-relevant materials. We present an overview of both measurements, including imaging of the optical mode in a silicon microdisk and a comparison of FIB and electrochemical lithiation of tin.

  17. Intense Pulsed Heavy Ion Beam Technology

    NASA Astrophysics Data System (ADS)

    Masugata, Katsumi; Ito, Hiroaki

    Development of intense pulsed heavy ion beam accelerator technology is described for the application of materials processing. Gas puff plasma gun and vacuum arc discharge plasma gun were developed as an active ion source for magnetically insulated pulsed ion diode. Source plasma of nitrogen and aluminum were successfully produced with the gas puff plasma gun and the vacuum arc plasma gun, respectively. The ion diode was successfully operated with gas puff plasma gun at diode voltage 190 kV, diode current 2.2 kA and nitrogen ion beam of ion current density 27 A/cm2 was obtained. The ion composition was evaluated by a Thomson parabola spectrometer and the purity of the nitrogen ion beam was estimated to be 86%. The diode also operated with aluminum ion source of vacuum arc plasma gun. The ion diode was operated at 200 kV, 12 kA, and aluminum ion beam of current density 230 A/cm2 was obtained. The beam consists of aluminum ions (Al(1-3)+) of energy 60-400 keV, and protons (90-130 keV), and the purity was estimated to be 89 %. The development of the bipolar pulse accelerator (BPA) was reported. A double coaxial type bipolar pulse generator was developed as the power supply of the BPA. The generator was tested with dummy load of 7.5 ohm, bipolar pulses of -138 kV, 72 ns (1st pulse) and +130 kV, 70 ns (2nd pulse) were succesively generated. By applying the bipolar pulse to the drift tube of the BPA, nitrogen ion beam of 2 A/cm2 was observed in the cathode, which suggests the bipolar pulse acceleration.

  18. Epitaxial pentacene films grown on the surface of ion-beam-processed gate dielectric layer

    NASA Astrophysics Data System (ADS)

    Chou, W. Y.; Kuo, C. W.; Cheng, H. L.; Mai, Y. S.; Tang, F. C.; Lin, S. T.; Yeh, C. Y.; Horng, J. B.; Chia, C. T.; Liao, C. C.; Shu, D. Y.

    2006-06-01

    The following research describes the process of fabrication of pentacene films with submicron thickness, deposited by thermal evaporation in high vacuum. The films were fabricated with the aforementioned conditions and their characteristics were analyzed using x-ray diffraction, scanning electron microscopy, polarized Raman spectroscopy, and photoluminescence. Organic thin-film transistors (OTFTs) were fabricated on an indium tin oxide coated glass substrate, using an active layer of ordered pentacene molecules, which were grown at room temperature. Pentacene film was aligned using the ion-beam aligned method, which is typically employed to align liquid crystals. Electrical measurements taken on a thin-film transistor indicated an increase in the saturation current by a factor of 15. Pentacene-based OTFTs with argon ion-beam-processed gate dielectric layers of silicon dioxide, in which the direction of the ion beam was perpendicular to the current flow, exhibited a mobility that was up to an order of magnitude greater than that of the controlled device without ion-beam process; current on/off ratios of approximately 106 were obtained. Polarized Raman spectroscopy investigation indicated that the surface of the gate dielectric layer, treated with argon ion beam, enhanced the intermolecular coupling of pentacene molecules. The study also proposes the explanation for the mechanism of carrier transportation in pentacene films.

  19. Surface morphology and resistivity of aluminum oxide films prepared by plasma CVD combined with ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Nakai, H.; Shinohara, J.; Sassa, T.; Ikegami, Y.

    1997-01-01

    Plasma CVD combined with simultaneous ion beams has been developed in order to prepare ceramic insulating films which have strong force of adhesion and higher electric resistivity at high temperatures. Aluminum oxide (Al 2O 3) films were deposited on nickel based superalloy (Inconel 718) by thermal CVD, plasma CVD and ion beam assisted plasma CVD at the several substrate temperatures. The surface morphology of these films was analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was confirmed that, by ion beam irradiation, the extent of crystallization was enhanced at lower substrate temperature and grain size became smaller. The electric resistivity was measured in the temperature range of RT to 800°C. The film, deposited by ion beam assisted plasma CVD at 800°C, had higher electric resistivity than the films by conventional CVD.

  20. Ion beam sputter etching and deposition of fluoropolymers

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Sovey, J. S.; Miller, T. B.; Crandall, K. S.

    1978-01-01

    Fluoropolymer etching and deposition techniques including thermal evaporation, RF sputtering, plasma polymerization, and ion beam sputtering are reviewed. Etching and deposition mechanisms and material characteristics are discussed. Ion beam sputter etch rates for polytetrafluoroethylene (PTFE) were determined as a function of ion energy, current density and ion beam power density. Peel strengths were measured for epoxy bonds to various ion beam sputtered fluoropolymers. Coefficients of static and dynamic friction were measured for fluoropolymers deposited from ion bombarded PTFE.

  1. Ion beam sputter etching and deposition of fluoropolymers

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Sovey, J. S.; Miller, T. B.; Crandall, K. S.

    1978-01-01

    Fluoropolymer etching and deposition techniques including thermal evaporation, RF sputtering, plasma polymerization, and ion beam sputtering are reviewed. Etching and deposition mechanism and material characteristics are discussed. Ion beam sputter etch rates for polytetrafluoroethylene (PTFE) were determined as a function of ion energy, current density and ion beam power density. Peel strengths were measured for epoxy bonds to various ion beam sputtered fluoropolymers. Coefficients of static and dynamic friction were measured for fluoropolymers deposited from ion bombarded PTFE.

  2. Effect of hydrogen ion beam treatment on Si nanocrystal/SiO2 superlattice-based memory devices

    NASA Astrophysics Data System (ADS)

    Fu, Sheng-Wen; Chen, Hui-Ju; Wu, Hsuan-Ta; Chuang, Bing-Ru; Shih, Chuan-Feng

    2016-03-01

    This study presents a novel route for synthesizing silicon-rich oxide (SRO)/SiO2 superlattice-based memory devices with an improved memory window and retention properties. The SiO2 and SRO superlattices are deposited by reactive sputtering. Specifically, the hydrogen ion beam is used to irradiate the SRO layer immediately after its deposition in the vacuum chamber. The use of the hydrogen ion beam was determined to increase oxygen content and the density of the Si nanocrystals. The memory window increased from 16 to 25.6 V, and the leakage current decreased significantly by two orders, to under ±20 V, for the hydrogen ion beam-prepared devices. This study investigates the mechanism into how hydrogen ion beam treatment alters SRO films and influences memory properties.

  3. High-powered pulsed-ion-beam acceleration and transport

    SciTech Connect

    Humphries, S. Jr.; Lockner, T.R.

    1981-11-01

    The state of research on intense ion beam acceleration and transport is reviewed. The limitations imposed on ion beam transport by space charge effects and methods available for neutralization are summarized. The general problem of ion beam neutralization in regions free of applied electric fields is treated. The physics of acceleration gaps is described. Finally, experiments on multi-stage ion acceleration are summarized.

  4. Photo-induced trimming of chalcogenide-assisted silicon waveguides.

    PubMed

    Canciamilla, Antonio; Morichetti, Francesco; Grillanda, Stefano; Velha, Philippe; Sorel, Marc; Singh, Vivek; Agarwal, Anu; Kimerling, Lionel C; Melloni, Andrea

    2012-07-01

    A chalcogenide-assisted silicon waveguide is realized by depositing a thin layer of A(2)S(3) glass onto a conventional silicon on insulator optical waveguide. The photosensitivity of the chalcogenide is exploited to locally change the optical properties of the waveguide through exposure to visible light radiation. Waveguide trimming is experimentally demonstrated by permanently shifting the resonant wavelength of a microring resonator by 6.7 nm, corresponding to an effective index increase of 1.6·10(-2). Saturation effects, trimming range, velocity and temporal stability of the process are discussed in details. Results demonstrate that photo-induced treatments can be exploited for a post-fabrication compensation of fabrication tolerances, as well as to set and reconfigure the circuit response. PMID:22772270

  5. Accessing defect dynamics using intense, nanosecond pulsed ion beams

    SciTech Connect

    Persaud, A.; Barnard, J. J.; Guo, H.; Hosemann, P.; Lidia, S.; Minor, A. M.; Seidl, P. A.; Schenkel, T.

    2015-06-18

    Gaining in-situ access to relaxation dynamics of radiation induced defects will lead to a better understanding of materials and is important for the verification of theoretical models and simulations. We show preliminary results from experiments at the new Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley National Laboratory that will enable in-situ access to defect dynamics through pump-probe experiments. Here, the unique capabilities of the NDCX-II accelerator to generate intense, nanosecond pulsed ion beams are utilized. Preliminary data of channeling experiments using lithium and potassium ions and silicon membranes are shown. We compare these data to simulation results using Crystal Trim. Furthermore, we discuss the improvements to the accelerator to higher performance levels and the new diagnostics tools that are being incorporated.

  6. Accessing defect dynamics using intense, nanosecond pulsed ion beams

    DOE PAGESBeta

    Persaud, A.; Barnard, J. J.; Guo, H.; Hosemann, P.; Lidia, S.; Minor, A. M.; Seidl, P. A.; Schenkel, T.

    2015-06-18

    Gaining in-situ access to relaxation dynamics of radiation induced defects will lead to a better understanding of materials and is important for the verification of theoretical models and simulations. We show preliminary results from experiments at the new Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley National Laboratory that will enable in-situ access to defect dynamics through pump-probe experiments. Here, the unique capabilities of the NDCX-II accelerator to generate intense, nanosecond pulsed ion beams are utilized. Preliminary data of channeling experiments using lithium and potassium ions and silicon membranes are shown. We compare these data to simulation results using Crystalmore » Trim. Furthermore, we discuss the improvements to the accelerator to higher performance levels and the new diagnostics tools that are being incorporated.« less

  7. Atomic-scale thermocapillary flow in focused ion beam milling

    SciTech Connect

    Das, K.; Johnson, H. T.; Freund, J. B.

    2015-05-15

    Focused ion beams provide a means of nanometer-scale manufacturing and material processing, which is used for applications such as forming nanometer-scale pores in thin films for DNA sequencing. We investigate such a configuration with Ga{sup +} bombardment of a Si thin-film target using molecular dynamics simulation. For a range of ion intensities in a realistic configuration, a recirculating melt region develops, which is seen to flow with a symmetrical pattern, counter to how it would flow were it driven by the ion momentum flux. Such flow is potentially important for the shape and composition of the formed structures. Relevant stress scales and estimated physical properties of silicon under these extreme conditions support the importance thermocapillary effects. A flow model with Marangoni forcing, based upon the temperature gradient and geometry from the atomistic simulation, indeed reproduces the flow and thus could be used to anticipate such flows and their influence in applications.

  8. Formation of cobalt silicide by ion beam mixing

    NASA Astrophysics Data System (ADS)

    Min, Ye; Burte, Edmund P.; Ryssel, Heiner

    1991-07-01

    The formation of cobalt silicides by arsenic ion implantation through a cobalt film which causes a mixing of the metal with the silicon substrate was investigated. Furthermore, cobalt suicides were formed by rapid thermal annealing (RTA). Sheet resistance and silicide phases of implanted Co/Si samples depend on the As dose. Ion beam mixing at doses higher than 5 × 10 15 cm -2 and RTA at temperatures T ⩾ 900° C result in almost equal values of Rs. RBS and XRD spectra of these samples illustrate the formation of a homogeneous CoSi 2 layer. Significant lateral growth of cobalt silicide beyond the edge of patterned SiO 2 was observed in samples which were only subjected to an RTA process ( T ⩾ 900 ° C), while this lateral suicide growth could be reduced efficiently by As implantation prior to RTA.

  9. Ion beam driven warm dense matter experiments

    NASA Astrophysics Data System (ADS)

    Bieniosek, F. M.; Ni, P. A.; Leitner, M.; Roy, P. K.; More, R.; Barnard, J. J.; Kireeff Covo, M.; Molvik, A. W.; Yoneda, H.

    2007-11-01

    We report plans and experimental results in ion beam-driven warm dense matter (WDM) experiments. Initial experiments at LBNL are at 0.3-1 MeV K+ beam (below the Bragg peak), increasing toward the Bragg peak in future versions of the accelerator. The WDM conditions are envisioned to be achieved by combined longitudinal and transverse neutralized drift compression to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. Initial experiments include an experiment to study transient darkening at LBNL; and a porous target experiment at GSI heated by intense heavy-ion beams from the SIS 18 storage ring. Further experiments will explore target temperature and other properties such as electrical conductivity to investigate phase transitions and the critical point.

  10. Rhenium ion beam for implantation into semiconductors

    SciTech Connect

    Kulevoy, T. V.; Seleznev, D. N.; Alyoshin, M. E.; Kraevsky, S. V.; Yakushin, P. E.; Khoroshilov, V. V.; Gerasimenko, N. N.; Smirnov, D. I.; Fedorov, P. A.; Temirov, A. A.

    2012-02-15

    At the ion source test bench in Institute for Theoretical and Experimental Physics the program of ion source development for semiconductor industry is in progress. In framework of the program the Metal Vapor Vacuum Arc ion source for germanium and rhenium ion beam generation was developed and investigated. It was shown that at special conditions of ion beam implantation it is possible to fabricate not only homogenous layers of rhenium silicides solid solutions but also clusters of this compound with properties of quantum dots. At the present moment the compound is very interesting for semiconductor industry, especially for nanoelectronics and nanophotonics, but there is no very developed technology for production of nanostructures (for example quantum sized structures) with required parameters. The results of materials synthesis and exploration are presented.

  11. Optical Faraday Cup for Heavy Ion Beams

    SciTech Connect

    Bieniosek, Frank; Bieniosek, F.M.; Eylon, S.; Roy, P.K.; Yu, S.S.

    2007-06-25

    We have been using alumina scintillators for imaging beams in heavy-ion beam fusion experiments in 2 to 4 transverse dimensions [1]. The scintillator has a limited lifetime under bombardment by the heavy ion beams. As a possible replacement for the scintillator, we are studying the technique of imaging the beam on a gas cloud. A gas cloud for imaging the beam may be created on a solid hole plate placed in the path of the beam, or by a localized gas jet. It is possible to image the beam using certain fast-quenching optical lines that closely follow beam current density and are independent of gas density. We describe this technique and show preliminary experimental data. This approach has promise to be a new fast beam current diagnostic on a nanosecond time scale.

  12. Ion Beam Scattering by Background Helium

    NASA Astrophysics Data System (ADS)

    Grillet, Anne; Hughes, Thomas; Boerner, Jeremiah

    2015-11-01

    The presence of background gases can cause charged particle beams to become more diffuse due to scattering. Calculations for the transport of an ion beam have been performed using Aleph, a particle-in-cell plasma modeling code, and verified against a general envelop equation for charged particle beams. We have investigated the influence of background helium on the coherence and transmitted current of the ion beam. Collisions between ions and neutral particles were calculated assuming isotropic elastic scattering. Since this tends to predict larger scattering angles than are expected at high energies, these are conservative estimates for beam scattering. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration.

  13. Scanning He+ Ion Beam Microscopy and Metrology

    SciTech Connect

    Joy, David C.

    2011-11-10

    The CD-SEM has been the tool of choice for the imaging and metrology of semiconductor devices for the past three decades but now, with critical dimensions at the nanometer scale, electron beam instruments can no longer deliver adequate performance. A scanning microscope using a He+ ion beam offers superior resolution and depth of field, and provides enhanced imaging contrast. Device metrology performed using ion beam imaging produces data which is comparable to or better than that from a conventional CD-SEM although there are significant differences in the experimental conditions required and in the details of image formation. The charging generated by a He+ beam, and the sample damage that it can cause, require care in operation but are not major problems.

  14. Treatment Planning for Ion Beam Therapy

    NASA Astrophysics Data System (ADS)

    Greilich, Steffen; Jäkel, Oliver

    2010-01-01

    Beams of charged particles offer an improved dose conformation to the target volume as compared to photon radiotherapy, with better sparing of normal tissue structures close to the target. In addition, beams of ions heavier than helium exhibit a strong increase of the Linear Energy Transfer (LET) in the Bragg peak as compared to the entrance region, resulting in a higher biological efficiency in the target region. These physical and biological properties make ion beams more favorable for radiation therapy of cancer than photon beams. As a consequence, particle therapy with heavy ions has gained increasing interest worldwide. To fully benefit from the advantages of ion radiotherapy, appropriate treatment planning has to be done—taking into account the specific characteristics of ion beams, e.g. the inverted depth-dose profile, nuclear fragmentation, and increase radiobiological effectiveness. This paper describes in brief the approach taken at GSI Darmstadt and HIT Heidelberg for an active 3D beam scanning system.

  15. Laser-cooled continuous ion beams

    SciTech Connect

    Schiffer, J.P.; Hangst, J.S.; Nielsen, J.S.

    1995-08-01

    A collaboration with a group in Arhus, Denmark, using their storage ring ASTRID, brought about better understanding of ion beams cooled to very low temperatures. The longitudinal Schottky fluctuation noise signals from a cooled beam were studied. The fluctuation signals are distorted by the effects of space charge as was observed in earlier measurements at other facilities. However, the signal also exhibits previously unobserved coherent components. The ions` velocity distribution, measured by a laser fluorescence technique suggests that the coherence is due to suppression of Landau damping. The observed behavior has important implications for the eventual attainment of a crystalline ion beam in a storage ring. A significant issue is the transverse temperature of the beam -- where no direct diagnostics are available and where molecular dynamics simulations raise interesting questions about equilibrium.

  16. Ion-beam nitriding of steels

    NASA Technical Reports Server (NTRS)

    Salik, J.

    1985-01-01

    The application of the ion beam technique to the nitriding of steels is described. It is indicated that the technique can be successfully applied to nitriding. Some of the structural changes obtained by this technique are similar to those obtained by ion nitriding. The main difference is the absence of the iron nitride diffraction lines. It is found that the dependence of the resultant microhardness on beam voltage for super nitralloy is different from that of 304 stainless steel.

  17. Ion-beam nitriding of steels

    NASA Technical Reports Server (NTRS)

    Salik, J.

    1984-01-01

    The application of the ion beam technique to the nitriding of steels is described. It is indicated that the technique can be successfully applied to nitriding. Some of the structural changes obtained by this technique are similar to those obtained by ion nitriding. The main difference is the absence of the iron nitride diffraction lines. It is found that the dependence of the resultant microhardness on beam voltage for super nitralloy is different from that of 304 stainless steel.

  18. Medical applications of ion beam processes

    NASA Astrophysics Data System (ADS)

    Sioshansi, P.

    The use of ions beams for treatment of surfaces in medical prostheses has gained increasing interest in the past few years. The application of ion beams has taken different forms: (1) ion implantation has been used for increasing the hardness and wear resistance of the new generation titanium based alloys, as well as reducing the wear of the mating polyethylene component used in orthopedic total joint replacement. Spire Corporation has been successful in commercializing ion implantation technology and is processing several thousand artificial knees and hips per year. (Spire uses the tradename IONGUARD™ for this application.) (2) Similarly, ion implantation has proven to be very effective for increasing the corrosion resistance of the Co-Cr based alloys that have traditionally been used in orthopedic prostheses. This application should be of particular interest in resolving the issues surrounding ion release problems associated with these alloys. (3) Ion beam etching/milling has been used for producing a highly textured surface for tissue ingrowth in applications ranging from porous orthopedic implants and percutaneous devices to artificial skin and the process should have a significant impact in this application. (4) There are indications that ion implantation is a useful process for increasing biocompatibility and tissue attachment on metallic samples. This subject deserves considerable attention in the coming years.

  19. Ion beam figuring system in NUDT

    NASA Astrophysics Data System (ADS)

    Zhou, Lin; Xie, Xuhui; Dai, Yifan; Jiao, Changjun; Li, Shengyi

    2007-12-01

    Ion beam figuring (IBF) is an optical fabrication technique that provides highly deterministic process to correct surface figure error of previously polished surfaces by using a directed, inert and neutralized ion beam to physically sputter material from the optic surface. Recently, an ion beam figuring system KDIFS-500 has been designed and built in National University of Defense Technology (NUDT) of the P.R. China. KDIFS-500 is capable of processing workpiece up to Φ500mm. Line scanning process was discussed in detail for estimating the parameters of the beam removal function (BRF) in process. Experiments were conducted to demonstrate that the BRF increases gradually in process and by employing a stability control, the BRF can be kept stable in process. Finally, a Φ95 mm plano optical sample of CVD coated SiC substrate has been figured in two process iterations for demonstrating the correction capability of the KDIFS-500. Their figure convergence ratios reached 5.8 and 2.1 respectively. The actual figure residual errors were basically consistent with the predicted error. These consistencies indicated that the IBF processes on KDIFS-500 are predictable deterministic processes.

  20. 20 Years History of Fundamental Research on Gas Cluster Ion Beams, and Current Status of the Applications to Industry

    NASA Astrophysics Data System (ADS)

    Yamada, Isao

    2006-11-01

    This paper reviews the development of gas cluster ion beam (GCIB) technology, including the generation of cluster beams, fundamental characteristics of cluster ion to solid surface interactions, emerging industrial applications, and identification of some of the significant events which occurred as the technology has evolved into what it is today. More than 20 years have passed since the author first began to explore feasibility of processing by gas cluster ion beams at the Ion Beam Engineering Experimental Laboratory of Kyoto University. Processes employing ions of gaseous material clusters comprised of a few hundred to many thousand atoms are now being developed into a new field of ion beam technology. Cluster-surface collisions produce important non-linear effects which are being applied to shallow junction formation, to etching and smoothing of semiconductors, metals, and dielectrics, to assisted formation of thin films with nano-scale accuracy, and to other surface modification applications.

  1. Ion beam deposition of amorphous carbon films with diamond like properties

    NASA Technical Reports Server (NTRS)

    Angus, John C.; Mirtich, Michael J.; Wintucky, Edwin G.

    1982-01-01

    Carbon films were deposited on silicon, quartz, and potassium bromide substrates from an ion beam. Growth rates were approximately 0.3 micron/hour. The films were featureless and amorphous and contained only carbon and hydrogen in significant amounts. The density and carbon/hydrogen ratio indicate the film is a hydrogen deficient polymer. One possible structure, consistent with the data, is a random network of methylene linkages and tetrahedrally coordinated carbon atoms.

  2. Plasma focus ion beam-scaling laws

    NASA Astrophysics Data System (ADS)

    Saw, S. H.

    2014-08-01

    Measurements on plasma focus ion beams include various advanced techniques producing a variety of data which has yet to produce benchmark numbers. Recent numerical experiments using an extended version of the Lee Code has produced reference numbers and scaling trends for number and energy fluence of deuteron beams as functions of stored energy E0. At the pinch exit the ion number fluence (ions m-2) and energy fluence (J m-2) computed as 2.4-7.8×1020 and 2.2-33×106 respectively were found to be independent of E0 from 0.4 - 486 kJ. This work was extended to the ion beams for various gases. The results show that, for a given plasma focus, the fluence, flux, ion number and ion current decrease from the lightest to the heaviest gas except for trend-breaking higher values for Ar fluence and flux. The energy fluence, energy flux, power flow and damage factors are relatively constant from H2 to N2 but increase for Ne, Ar, Kr and Xe due to radiative cooling and collapse effects. This paper reviews this work and in a concluding section attempts to put the accumulating large amounts of data into the form of a scaling law of beam energy Ebeam versus storage energy E0 taking the form for deuteron as: {Ebeam} = 18.2{E}01.23; where Ebeam is in J and E0 is in kJ. It is hoped that the establishment of such scaling laws places on a firm footing the reference quantitative ideas for plasma focus ion beams.

  3. Thermoacoustic imaging using heavy ion beams

    SciTech Connect

    Claytor, T.N.; Tesmer, J.R.; Deemer, B.C.; Murphy, J.C.

    1995-10-01

    Ion beams have been used for surface modification, semiconductor device fabrication and for material analysis, which makes ion-material interactions of significant importance. Ion implantation will produce new compositions near the surface by ion mixing or directly by implanting desired ions. Ions exchange their energy to the host material as they travel into the material by several different processes. High energy ions ionize the host atoms before atomic collisions transfer the remaining momentum and stop the incident ion. As they penetrate the surface, the low energy ions ionize the host atoms, but also have a significantly large momentum transfer mechanism near the surface of the material. This leads to atoms, groups of atoms and electrons being ejected from the surface, which is the momentum transfer process of sputtering. This talk addresses the acoustic waves generated during ion implantation using modulated heavy ion beams. The mechanisms for elastic wave generation during ion implantation, in the regimes where sputtering is significant and where implantation is dominant and sputtering is negligible, has been studied. The role of momentum transfer and thermal energy production during ion implantation was compared to laser generated elastic waves in an opaque solid as a reference, since laser generated ultrasound has been extensively studied and is fairly well understood. The thermoelastic response dominated in both high and low ion energy regimes since, apparently, more energy is lost to thermal heat producing mechanisms than momentum transfer processes. The signal magnitude was found to vary almost linearly with incident energy as in the laser thermoelastic regime. The time delays for longitudinal and shear waves-were characteristic of those expected for a purely thermal heating source. The ion beams are intrinsically less sensitive to the albedo of the surface.

  4. Plasma formed ion beam projection lithography system

    SciTech Connect

    Leung, Ka-Ngo; Lee, Yung-Hee Yvette; Ngo, Vinh; Zahir, Nastaran

    2002-01-01

    A plasma-formed ion-beam projection lithography (IPL) system eliminates the acceleration stage between the ion source and stencil mask of a conventional IPL system. Instead a much thicker mask is used as a beam forming or extraction electrode, positioned next to the plasma in the ion source. Thus the entire beam forming electrode or mask is illuminated uniformly with the source plasma. The extracted beam passes through an acceleration and reduction stage onto the resist coated wafer. Low energy ions, about 30 eV, pass through the mask, minimizing heating, scattering, and sputtering.

  5. High current ion beam transport using solenoids

    SciTech Connect

    Hollinger, R.; Spaedtke, P.

    2008-02-15

    In the framework of the future project FAIR several upgrade programs and construction of new facilities are in progress such as the U{sup 4+} upgrade for the existing high current injector and the new 70 MeV proton injector. For both injectors solenoids in the low energy beam transport section are foreseen to inject the beam into the following rf accelerator. The paper presents beam quality measurements of high current ion beams behind a solenoid using a slit-grid emittance measurement device, viewing targets, and a pepper pot measurement device at the high current test bench at GSI.

  6. Physics with fast molecular-ion beams

    SciTech Connect

    Kanter, E.P.

    1980-01-01

    Fast (MeV) molecular-ion beams provide a unique source of energetic projectile nuclei which are correlated in space and time. The recognition of this property has prompted several recent investigations of various aspects of the interactions of these ions with matter. High-resolution measurements on the fragments resulting from these interactions have already yielded a wealth of new information on such diverse topics as plasma oscillations in solids and stereochemical structures of molecular ions as well as a variety of atomic collision phenomena. The general features of several such experiments will be discussed and recent results will be presented.

  7. Ion-beam cleaning for cold welds

    NASA Technical Reports Server (NTRS)

    Slater, B. L.

    1980-01-01

    1000 eV beam bombarding metal surfaces to be joined removes oxides and contaminants at rate of several atomic layers per second for current density of 1 mA/squ. cm. Clean surfaces can then be joined by squeezing them together. With ion-beam cleaning, mating force for strong bond is low enough to cause only 1% deformation. Conventional cold-welding requires about 70% deformation for bonding. Technique was tested successfully on aluminum to aluminum welds, copper to copper, copper to aluminum, copper to nickel, and silver to iron. Base metals failed before welds in tear test.

  8. Electron Cooling of Intense Ion Beam

    SciTech Connect

    Dietrich, J.; Kamerdjiev, V.; Maier, R.; Prasuhn, D.; Stein, J.; Stockhorst, H.; Korotaev, Yu.; Meshkov, I.; Sidorin, A.; Smirnov, A.

    2006-03-20

    Results of experimental studies of the electron cooling of a proton beam at COSY (Juelich, Germany) are presented. Intensity of the proton beam is limited by two general effects: particle loss directly after the injection and development of instability in a deep cooled ion beam. Results of the instability investigations performed at COSY during last years are presented in this report in comparison with previous results from HIMAC (Chiba, Japan) CELSIUS (Uppsala, Sweden) and LEAR (CERN). Methods of the instability suppression, which allow increasing the cooled beam intensity, are described. This work is supported by RFBR grant no. 05-02-16320 and INTAS grant no. 03-54-5584.

  9. Spectrometer for cluster ion beam induced luminescence

    SciTech Connect

    Ryuto, H. Sakata, A.; Takeuchi, M.; Takaoka, G. H.; Musumeci, F.

    2015-02-15

    A spectrometer to detect the ultra-weak luminescence originated by the collision of cluster ions on the surfaces of solid materials was constructed. This spectrometer consists of 11 photomultipliers with band-pass interference filters that can detect the luminescence within the wavelength ranging from 300 to 700 nm and of a photomultiplier without filter. The calibration of the detection system was performed using the photons emitted from a strontium aluminate fluorescent tape and from a high temperature tungsten filament. Preliminary measurements show the ability of this spectrometer to detect the cluster ion beam induced luminescence.

  10. Epitaxial growth and heterostructure synthesis by ion beam deposition (IBD)

    SciTech Connect

    Herbots, N.; Appleton, B.R.; Noggle, T.S.; Pennycook, S.J.; Zuhr, R.A.; Zehner, D.M.

    1986-01-01

    The synthesis of heterostructures and the possibility of low-temperature epitaxy by direct ion beam deposition at low energies (10 to 200 eV) were investigated both theoretically and experimentally. Monte-Carlo simulations of ion-solid interactions were used to study collision processes during IBD and have led to a qualitative understanding of the physical parameters involved in the deposition process. /sup 30/Si and /sup 74/Ge were deposited on Si(100) and Ge(100) directly from mass- and energy-analyzed ion beams. Ge/Si multilayers with interfaces as sharp as 0.35 nm were formed by IBD at 65 eV. Reactive ion etching with 20 eV /sup 37/Cl was used to clean Si surfaces in-situ at 625 and 870/sup 0/K. IBD epitaxy was then observed between 625 and 870/sup 0/K with ion energies ranging from 10 to 65 eV. /sup 30/Si films on Si(100) grown at 700/sup 0/K exhibited an ion channeling minimum yield of 4.8%. The dopant species in the substrate affected the occurrence of silicon epitaxy below 870/sup 0/K. Cross-section transmission electron microscopy (TEM) showed that dislocation loops were formed within the substrate during heated deposition, at a depth larger than 40 nm below the bombarded region. A uniaxial lattice expansion normal to the surface was measured in IBD crystals by x-ray Bragg reflection profiling and ion channeling. It is concluded that epitaxial layers and heterostructures can be formed at low temperature by IBD.

  11. Formation of Mosaic Silicon Oxide Structure during Metal-Assisted Electrochemical Etching of Silicon at High Current Density

    NASA Astrophysics Data System (ADS)

    Cao, Dao Tran; Anh, Cao Tuan; Ngan, Luong Truc Quynh

    2016-05-01

    We have used constant-current, metal-assisted electrochemical etching of silicon in HF/H2O2/ethanol electrolyte to fabricate porous silicon. We found that, at large enough current density, the sponge-like porous silicon structure is replaced by a mosaic structure, which includes islands of various shapes emerging between trenches that have been etched downward. Energy-dispersive x-ray analysis showed that the surface of the mosaic pieces was covered with silicon oxide, while little silicon oxide developed on the surface of trenches. We suggest that the appearance of the mosaic structure can be explained by the increase in the oxidation rate of silicon when the anodic current density increases, combined with no change in the dissolution rate of silicon oxide into the solution. Consequently, above a certain value of anodic current density, there is sufficient residual silicon oxide on the etched surface to create a continuous thin film. However, if the silicon oxide layer is too thick (e.g., due to too high anodic current density or too long etching time), it will become cracked (formation of mosaic pieces), likely due to differences in thermal expansion coefficient between the amorphous silicon oxide layer and crystalline silicon substrate. The oxide is cracked at locations with many defects, and the cracks reveal the silicon substrate. Therefore, at the locations where cracks occur, etching will go sideways and downward, creating trenches.

  12. Catalytic activity of noble metals for metal-assisted chemical etching of silicon

    NASA Astrophysics Data System (ADS)

    Yae, Shinji; Morii, Yuma; Fukumuro, Naoki; Matsuda, Hitoshi

    2012-06-01

    Metal-assisted chemical etching of silicon is an electroless method that can produce porous silicon by immersing metal-modified silicon in a hydrofluoric acid solution without electrical bias. We have been studying the metal-assisted hydrofluoric acid etching of silicon using dissolved oxygen as an oxidizing agent. Three major factors control the etching reaction and the porous silicon structure: photoillumination during etching, oxidizing agents, and metal particles. In this study, the influence of noble metal particles, silver, gold, platinum, and rhodium, on this etching is investigated under dark conditions: the absence of photogenerated charges in the silicon. The silicon dissolution is localized under the particles, and nanopores are formed whose diameters resemble the size of the metal nanoparticles. The etching rate of the silicon and the catalytic activity of the metals for the cathodic reduction of oxygen in the hydrofluoric acid solution increase in the order of silver, gold, platinum, and rhodium.

  13. Catalytic activity of noble metals for metal-assisted chemical etching of silicon

    PubMed Central

    2012-01-01

    Metal-assisted chemical etching of silicon is an electroless method that can produce porous silicon by immersing metal-modified silicon in a hydrofluoric acid solution without electrical bias. We have been studying the metal-assisted hydrofluoric acid etching of silicon using dissolved oxygen as an oxidizing agent. Three major factors control the etching reaction and the porous silicon structure: photoillumination during etching, oxidizing agents, and metal particles. In this study, the influence of noble metal particles, silver, gold, platinum, and rhodium, on this etching is investigated under dark conditions: the absence of photogenerated charges in the silicon. The silicon dissolution is localized under the particles, and nanopores are formed whose diameters resemble the size of the metal nanoparticles. The etching rate of the silicon and the catalytic activity of the metals for the cathodic reduction of oxygen in the hydrofluoric acid solution increase in the order of silver, gold, platinum, and rhodium. PMID:22738277

  14. Graphene engineering by neon ion beams

    DOE PAGESBeta

    Iberi, Vighter; Ievlev, Anton V.; Vlassiouk, Ivan; Jesse, Stephen; Kalinin, Sergei V.; Joy, David C.; Rondinone, Adam J.; Belianinov, Alex; Ovchinnikova, Olga S.

    2016-02-18

    Achieving the ultimate limits of materials and device performance necessitates the engineering of matter with atomic, molecular, and mesoscale fidelity. While common for organic and macromolecular chemistry, these capabilities are virtually absent for 2D materials. In contrast to the undesired effect of ion implantation from focused ion beam (FIB) lithography with gallium ions, and proximity effects in standard e-beam lithography techniques, the shorter mean free path and interaction volumes of helium and neon ions offer a new route for clean, resist free nanofabrication. Furthermore, with the advent of scanning helium ion microscopy, maskless He+ and Ne+ beam lithography of graphenemore » based nanoelectronics is coming to the forefront. Here, we will discuss the use of energetic Ne ions in engineering graphene devices and explore the mechanical, electromechanical and chemical properties of the ion-milled devices using scanning probe microscopy (SPM). By using SPM-based techniques such as band excitation (BE) force modulation microscopy, Kelvin probe force microscopy (KPFM) and Raman spectroscopy, we demonstrate that the mechanical, electrical and optical properties of the exact same devices can be quantitatively extracted. Additionally, the effect of defects inherent in ion beam direct-write lithography, on the overall performance of the fabricated devices is elucidated.« less

  15. Time resolved ion beam induced charge collection

    SciTech Connect

    SEXTON,FREDERICK W.; WALSH,DAVID S.; DOYLE,BARNEY L.; DODD,PAUL E.

    2000-04-01

    Under this effort, a new method for studying the single event upset (SEU) in microelectronics has been developed and demonstrated. Called TRIBICC, for Time Resolved Ion Beam Induced Charge Collection, this technique measures the transient charge-collection waveform from a single heavy-ion strike with a {minus}.03db bandwidth of 5 GHz. Bandwidth can be expanded up to 15 GHz (with 5 ps sampling windows) by using an FFT-based off-line waveform renormalization technique developed at Sandia. The theoretical time resolution of the digitized waveform is 24 ps with data re-normalization and 70 ps without re-normalization. To preserve the high bandwidth from IC to the digitizing oscilloscope, individual test structures are assembled in custom high-frequency fixtures. A leading-edge digitized waveform is stored with the corresponding ion beam position at each point in a two-dimensional raster scan. The resulting data cube contains a spatial charge distribution map of up to 4,096 traces of charge (Q) collected as a function of time. These two dimensional traces of Q(t) can cover a period as short as 5 ns with up to 1,024 points per trace. This tool overcomes limitations observed in previous multi-shot techniques due to the displacement damage effects of multiple ion strikes that changed the signal of interest during its measurement. This system is the first demonstration of a single-ion transient measurement capability coupled with spatial mapping of fast transients.

  16. Superintense ion beam with high energy density

    NASA Astrophysics Data System (ADS)

    Dudnikov, Vadim; Dudnikova, Galina

    2008-04-01

    The energy density of ion beam accumulated in a storage ring can be increased dramatically with using of space charge compensation as was demonstrated in experiments [1]. The intensity of said superintense beam can be far greater than a space charge limit without space charge compensation. The model of secondary plasma build up with secondary ion-electron emission as a source of delayed electrons has been presented and discussed. This model can be used for explanation of bunched beam instability with electron surviving after gap, for prediction of e-cloud generation in coasting and long bunches beam, and can be important for pressure rise in worm and cold sections of storage rings. A fast desorption by ion of physically adsorbed molecules can explain a ``first pulse Instability''. Application of this model for e-p instability selfstabilization and superintense circulating beam accumulation is considered. Importance of secondary plasma for high perveance ion beam stabilization in ion implantation will be considered. Preliminary results of simulation of electron and ion accumulation will be presented. [1]. Belchenko et al., Xth International Particle Accelerator Conference, Protvino, 1977, Vol. 2, p. 287.

  17. Multiple Electron Stripping of Heavy Ion Beams

    SciTech Connect

    D. Mueller; L. Grisham; I. Kaganovich; R. L. Watson; V. Horvat; K. E. Zaharakis; Y. Peng

    2002-06-25

    One approach being explored as a route to practical fusion energy uses heavy ion beams focused on an indirect drive target. Such beams will lose electrons while passing through background gas in the target chamber, and therefore it is necessary to assess the rate at which the charge state of the incident beam evolves on the way to the target. Accelerators designed primarily for nuclear physics or high energy physics experiments utilize ion sources that generate highly stripped ions in order to achieve high energies economically. As a result, accelerators capable of producing heavy ion beams of 10 to 40 Mev/amu with charge state 1 currently do not exist. Hence, the stripping cross-sections used to model the performance of heavy ion fusion driver beams have, up to now, been based upon theoretical calculations. We have investigated experimentally the stripping of 3.4 Mev/amu Kr 7+ and Xe +11 in N2; 10.2 MeV/amu Ar +6 in He, N2, Ar and Xe; 19 MeV/amu Ar +8 in He, N2, Ar and Xe; 30 MeV He 1 + in He, N2, Ar and Xe; and 38 MeV/amu N +6 in He, N2, Ar and Xe. The results of these measurements are compared with the theoretical calculations to assess their applicability over a wide range of parameters.

  18. Post-acceleration of laser-induced ion beams

    NASA Astrophysics Data System (ADS)

    Nassisi, V.; Delle Side, D.

    2015-04-01

    A complete review of the essential and recent developments in the field of post-acceleration of laser-induced ion beams is presented. After a brief introduction to the physics of low-intensity nanosecond laser-matter interaction, the details of ions extraction and acceleration are critically analyzed and the key parameters to obtain good-quality ion beams are illustrated. A description of the most common ion beam diagnosis system is given, together with the associated analytical techniques.

  19. Persistent ion beam induced conductivity in zinc oxide nanowires

    SciTech Connect

    Johannes, Andreas; Niepelt, Raphael; Gnauck, Martin; Ronning, Carsten

    2011-12-19

    We report persistently increased conduction in ZnO nanowires irradiated by ion beam with various ion energies and species. This effect is shown to be related to the already known persistent photo conduction in ZnO and dubbed persistent ion beam induced conduction. Both effects show similar excitation efficiency, decay rates, and chemical sensitivity. Persistent ion beam induced conduction will potentially allow countable (i.e., single dopant) implantation in ZnO nanostructures and other materials showing persistent photo conduction.

  20. Nanostructured porous silicon by laser assisted electrochemical etching

    NASA Astrophysics Data System (ADS)

    Li, J.; Lu, C.; Hu, X. K.; Yang, Xiujuan; Loboda, A. V.; Lipson, R. H.

    2009-08-01

    Nanostructured porous silicon (pSi) was fabricated by combining electrochemical etching with 355 nm laser processing. pSi prepared in this way proves to be an excellent substrate for desorption/ionization on silicon (DIOS) mass spectrometry (MS). Surfaces prepared by electrochemical etching and laser irradiation exhibit strong quantum confinement as evidenced by the observation of a red shift in the Si Raman band at ~520-500 cm-1. The height of the nanostructured columns produced by electrochemical etching and laser processing is on the order of microns compared with tens of nanometers obtained without laser irradiation. The threshold for laser desorption and ionization of 12 mJ/cm2 using the pSi substrates prepared in this work is lower than that obtained for conventional matrix assisted laser desorption ionization (MALDI)-MS using a standard matrix compound such as [alpha]-cyano-4-hydroxycinnamic acid (CHCA; 30 mJ/cm2). Furthermore, the substrates prepared by etching and laser irradiation appear to resist laser damage better than those prepared by etching alone. These results enhance the capability of pSi for the detection of small molecular weight analytes by DIOS-MS.

  1. Performance and Controllability of Pulsed Ion Beam Ablation Propulsion

    SciTech Connect

    Yazawa, Masaru; Buttapeng, Chainarong; Harada, Nobuhiro; Suematsu, Hisayuki; Jiang Weihua; Yatsui, Kiyoshi

    2006-05-02

    We propose novel propulsion driven by ablation plasma pressures produced by the irradiation of pulsed ion beams onto a propellant. The ion beam ablation propulsion demonstrates by a thin foil (50 {mu}mt), and the flyer velocity of 7.7 km/s at the ion beam energy density of 2 kJ/cm2 adopted by using the Time-of-flight method is observed numerically and experimentally. We estimate the performance of the ion beam ablation propulsion as specific impulse of 3600 s and impulse bit density of 1700 Ns/m2 obtained from the demonstration results. In the numerical analysis, a one-dimensional hydrodynamic model with ion beam energy depositions is used. The control of the ion beam kinetic energy is only improvement of the performance but also propellant consumption. The spacecraft driven by the ion beam ablation provides high performance efficiency with short-pulsed ion beam irradiation. The numerical results of the advanced model explained latent heat and real gas equation of state agreed well with experimental ones over a wide range of the incident ion beam energy density.

  2. High sensitivity charge amplifier for ion beam uniformity monitor

    DOEpatents

    Johnson, Gary W.

    2001-01-01

    An ion beam uniformity monitor for very low beam currents using a high-sensitivity charge amplifier with bias compensation. The ion beam monitor is used to assess the uniformity of a raster-scanned ion beam, such as used in an ion implanter, and utilizes four Faraday cups placed in the geometric corners of the target area. Current from each cup is integrated with respect to time, thus measuring accumulated dose, or charge, in Coulombs. By comparing the dose at each corner, a qualitative assessment of ion beam uniformity is made possible. With knowledge of the relative area of the Faraday cups, the ion flux and areal dose can also be obtained.

  3. Spacecraft charging during ion beam emissions in sunlight

    NASA Technical Reports Server (NTRS)

    Lai, S. T.; Mcneil, W. J.; Aggson, T. L.

    1990-01-01

    During ion beam emissions from the SCATHA satellite, the potential of the negatively charged satellite body shows a sinusoidal oscillation frequency of once-per-spin of the satellite. The minimum occurs when the ion beam is sunward. The processes that may be responsible for the voltage modulation are considered. Neutralization of ion beam space charge by photoelectrons is examined. The photoelectrons are accelerated by the negative potential of the satellite. Effects of electron impact ionization, excitation of metastable states, and photoionization of xenon neutral atoms in the ion beam are studied in detail. Critical ionization velocity interaction is unlikely under the condition considered.

  4. Proteome Changes in Maize Embryo (Zea mays L) Induced by Ion Beam Implantation Treatment

    NASA Astrophysics Data System (ADS)

    Li, Yongliang; Tang, Jihua; Qin, Guangyong; Huo, Yuping; Tian, Shuangqi

    2009-08-01

    Low energy ion beam implantation was applied to the maize (Zea mays L) embryo proteome using two-dimensional gel electrophoresis. Protein profile analysis detected more than 1100 protein spots, 72 of which were determined to be expressed differently in the treated and control (not exposed to ion beam implantation) embryos. Of the 72 protein spots, 53 were up-regulated in the control and 19 were more abundantly expressed in the ion beam-treated embryos. The spots of up- or down-regulated proteins were identified by matrix assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS). Among the identified proteins, 11 were up-regulated in the treated embryos. Four of these up-regulated proteins were antioxidant molecules, three were related to stress response, two to sugar metabolism and two were associated with heat shock response. Of the five proteins up-regulated in the control embryos, three were functionally related to carbohydrate metabolism; the functions of the remaining two proteins were unknown. The data collected during this study indicate that treatment of maize embryos with low energy ion beam implantation induces changes in stress tolerance enzymes/proteins, possibly as a result of alterations in metabolism.

  5. Studies on PAN-based carbon fibers irradiated by Ar+ ion beams.

    PubMed

    Park, Soo-Jin; Seo, Min-Kang; Kim, Hak-Yong; Lee, Douk-Rae

    2003-05-15

    In this work, the effects of Ar+ ion beam irradiation on carbon fibers were studied using tensile and surface analytical techniques. The single-fiber pull-out test was executed in order to characterize the fiber/epoxy matrix interfacial adhesion. The Ar+ ion beam was irradiated using an ion-assisted reaction (IAR) method in reactive gas conditions under an oxygen environment with 1 x 10(16) ions/cm(2) Ar+ ion dose (ID), 6 sccm blown gas flow rate, and different ion beam energy intensities. From the experimental results, both the interfacial shear strength (IFSS) and fracture toughness (Gi) were found to increase with increasing Ar+ ion irradiation intensity. This was probably due to the fact that Ar+ ion beam irradiation on carbon fibers was effective in altering their surface physical chemistry and structural morphology, resulting in improved interfacial adhesion in the fiber/epoxy matrix. The reliability of single-fiber pull-out test data could be improved by statistical analysis using the Weibull distribution, which served to predict the variation of the mechanical interfacial properties in a composite system. PMID:16256547

  6. Ion beam sputter deposited diamond like films

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Rutledge, S. K.

    1982-01-01

    A single argon ion beam source was used to sputter deposit carbon films on fused silica, copper, and tantalum substrates under conditions of sputter deposition alone and sputter deposition combined with simultaneous argon ion bombardment. Simultaneously deposited and ion bombarded carbon films were prepared under conditions of carbon atom removal to arrival ratios of 0, 0.036, and 0.71. Deposition and etch rates were measured for films on fused silica substrates. Resulting characteristics of the deposited films are: electrical resistivity of densities of 2.1 gm/cu cm for sputter deposited films and 2.2 gm/cu cm for simultaneously sputter deposited and Ar ion bombarded films. For films approximately 1700 A thick deposited by either process and at 5550 A wavelength light the reflectance was 0.2, the absorptance was 0.7, the absorption coefficient was 67,000 cm to the -1 and the transmittance was 0.1.

  7. Dispensing targets for ion beam particle generators

    NASA Technical Reports Server (NTRS)

    Miller, C. G. (Inventor)

    1974-01-01

    A target for dispensing high energy protons or neutrons or ionized atoms or ionized molecules is provided which comprises a container for the target gas, which is at atmospheric or higher pressure. The container material can release the target gas in the spot where the container is heated above a predetermined temperature by the impact of an ion beam where protons or neutrons are desired, or by electrons where ionized atoms or molecules are desired. On the outside of the container, except for the region where the beam is to impact, there is deposited a layer of a metal which is imperious to gaseous diffusion. A further protective coating of a material is placed over the layer of metal, except at the region of the ion impact area in order to adsorb any unreacted gas in the vacuum in which the target is placed, to thereby prevent reduction of the high vacuum, as well as contamination of the interior of the vacuum chamber.

  8. Kinetic Simulations of Ion Beam Neutralization

    SciTech Connect

    Chang, O.; Wang, J.

    2011-05-20

    Full particle PIC simulations are performed to study the neutralization of an ion beam in the cohesionless, mesothermal regime. Simulations further confirmed that neutralization is achieved through interactions between the trapped electrons and the potential well established by the propagation of the beam front along the beam direction and is not through plasma instabilities as previous studies suggested. In the transverse direction, the process is similar to that of the expansion of mesothermal plasma into vacuum. Parametric simulations are also performed to investigate the effects of beam radius and domain boundary condition on the neutralization process. The results suggests that, while the qualitative behavior may be similar in ground tests, quantitative parameters such as the beam potential will be affected significantly by the vacuum chamber because of the limits imposed on the expansion process by the finite chamber space.

  9. Ion beams from laser-generated plasmas

    NASA Technical Reports Server (NTRS)

    Hughes, R. H.; Anderson, R. J.; Gray, L. G.; Rosenfeld, J. P.; Manka, C. K.; Carruth, M. R.

    1980-01-01

    The paper describes the space-charge-limited beams produced by the plasma blowoffs generated by 20-MW bursts of 1.06-micron radiation from an active Q-switched Nd:YAG laser. Laser power densities near 10 to the 11th/sq cm on solid targets generate thermalized plasma plumes which drift to a 15-kV gridded extraction gap where the ions are extracted, accelerated, and electrostatically focused; the spatially defined ion beams are then magnetically analyzed to determine the charge state content in the beams formed from carbon, aluminum, copper, and lead targets. This technique preserves time-of-flight (TOF) information in the plasma drift region, which permits plasma ion temperatures and mass flow velocities to be determined from the Maxwellian ion curve TOF shapes for the individual charge species.

  10. Focused ion beam in dental research.

    PubMed

    Ngo, H; Cairney, J; Munroe, P; Vargas, M; Mount, G

    2000-11-01

    Focused ion beam (FIB) has been available for over 10 yrs but until recently its usage has been confined to the semiconductor industry. It has been developed as an important tool in defect analysis, circuit modification and recently transmission electron microscope sample preparation. This paper introduces FIB and demonstrates its application in dental research. Its ion and electron imaging modes complement the SEM while its ability to prepare TEM samples from a wide range of material will allow the study of new types of adhesive interface. As an example, its use is described in the characterization of the interface of resin to a tribochemically treated surface of an experimental fiber-reinforced resin-based composite. As with all new techniques, the initial learning curve was difficult to manage. This new instrument offers opportunities to expand research in dental materials to areas not possible before. PMID:11763915

  11. Ion Beam Sputtered Coatings of Bioglass

    NASA Technical Reports Server (NTRS)

    Hench, Larry L.; Wilson, J.; Ruzakowski, Patricia Henrietta Anne

    1982-01-01

    The ion beam sputtering technique available at the NASA-Lewis was used to apply coatings of bioglass to ceramic, metallic, and polymeric substrates. Experiments in vivo and in vitro described investigate these coatings. Some degree of substrate masking was obtained in all samples although stability and reactivity equivalent to bulk bioglass was not observed in all coated samples. Some degree of stability was seen in all coated samples that were reacted in vitro. Both metallic and ceramic substrates coated in this manner failed to show significantly improved coatings over those obtained with existing techniques. Implantation of the coated ceramic substrate samples in bone gave no definite bonding as seen with bulk glass; however, partial and patchy bonding was seen. Polymeric substrates in these studies showed promise of success. The coatings applied were sufficient to mask the underlying reactive test surface and tissue adhesion of collagen to bioglass was seen. Hydrophilic, hydrophobic, charged, and uncharged polymeric surfaces were successfully coated.

  12. Probe measurements in ion-beam plasma

    SciTech Connect

    Dudin, S.V.

    1994-12-31

    The particularities of the electric probe measurements in the ion-beam plasma (IBP) have been investigated. To find the electron density n{sub e} and temperature T{sub c} as well as electron energy distribution it is necessary to separate electron current from full probe current, because ion part of this current is often large enough to mask the electron part. According to collisionless probe theory, radius of ion layer in strongly non-isothermal plasma (as in their case) and consequently the ion current are determined by Child`s law. However, at presence of ion beam with high enough energy {var_epsilon}{sub b} >> e{var_phi}{sub p}, this law is broken. The author has found the dependence of Langmuir probe ion current I{sub i} on probe potential {var_phi}{sub p} at presence of IB. The constant ion density approach was used in cylindrical and spherical geometry of the probe layer. Dependence of ion current founded experimentally accords with Child`s law when the probe is placed outside the beam and linear--within the beam. Application of only the chemical Langmuir probe is insufficient for energoanalysis of IBP electrons because of ion current interference. To solve this problem combination of the techniques of cylindrical probe, large plate probe (5 x 5mm) and two-grid energoanalyzer was used. Design and parameters of the two-grid analyzer are presented. Measuring system is described for determination of electron energy distribution function in low temperature plasma by double differentiation of the electric probe volt-ampere characteristic by modulation method.

  13. Simulation of ion beam transport through the 400 Kv ion implanter at Michigan Ion Beam Laboratory

    SciTech Connect

    Naab, F. U.; Toader, O. F.; Was, G. S.

    2013-04-19

    The Michigan Ion Beam Laboratory houses a 400 kV ion implanter. An application that simulates the ion beam trajectories through the implanter from the ion source to the target was developed using the SIMION Registered-Sign code. The goals were to have a tool to develop an intuitive understanding of abstract physics phenomena and diagnose ion trajectories. Using this application, new implanter users of different fields in science quickly understand how the machine works and quickly learn to operate it. In this article we describe the implanter simulation application and compare the parameters of the implanter components obtained from the simulations with the measured ones. The overall agreement between the simulated and measured values of magnetic fields and electric potentials is {approx}10%.

  14. Funnel cone for focusing intense ion beams on a target

    SciTech Connect

    Bieniosek, F.M.; Henestroza, E.; Ni, P.

    2009-10-05

    We describe a funnel cone for concentrating an ion beam on a target. The cone utilizes the reflection characteristic of ion beams on solid walls to focus the incident beam andincrease beam intensity on target. The cone has been modeled with the TRIM code. A prototype has been tested and installed for use in the 350-keV K+ NDCX target chamber.

  15. Development of a focused ion beam micromachining system

    SciTech Connect

    Pellerin, J.G.; Griffis, D.; Russell, P.E.

    1988-12-01

    Focused ion beams are currently being investigated for many submicron fabrication and analytical purposes. An FIB micromachining system consisting of a UHV vacuum system, a liquid metal ion gun, and a control and data acquisition computer has been constructed. This system is being used to develop nanofabrication and nanomachining techniques involving focused ion beams and scanning tunneling microscopes.

  16. Mapping of ion beam induced current changes in FinFETs

    SciTech Connect

    Weis, C. D.; Schuh, A.; Batra, A.; Persaud, A.; Rangelow, I. W.; Bokor, J.; Lo, C. C.; Cabrini, S.; Olynick, D.; Duhey, S.; Schenkel, T.

    2008-09-30

    We report on progress in ion placement into silicon devices with scanning probealignment. The device is imaged with a scanning force microscope (SFM) and an aligned argon beam (20 keV, 36 keV) is scanned over the transistor surface. Holes in the lever of the SFM tip collimate the argon beam to sizes of 1.6 mu m and 100 nm in diameter. Ion impacts upset the channel current due to formation of positive charges in the oxide areas. The induced changes in the source-drain current are recorded in dependence of the ion beam position in respect to the FinFET. Maps of local areas responding to the ion beam are obtained.

  17. Low-energy ion beam-based deposition of gallium nitride

    NASA Astrophysics Data System (ADS)

    Vasquez, M. R.; Wada, M.

    2016-02-01

    An ion source with a remote plasma chamber excited by a 13.56 MHz radio frequency power was used for low-energy broad ion beam extraction. Optical emission spectral analyses showed the sputtering and postionization of a liquid gallium (Ga) target placed in a chamber separated from the source bombarded by argon (Ar) plasma guided by a bent magnetic field. In addition, an E × B probe successfully showed the extraction of low-energy Ga and Ar ion beams using a dual-electrode extractor configuration. By introducing dilute amounts of nitrogen gas into the system, formation of thin Ga-based films on a silicon substrate was demonstrated as determined from X-ray diffraction and X-ray reflectivity studies.

  18. Low-energy ion beam-based deposition of gallium nitride.

    PubMed

    Vasquez, M R; Wada, M

    2016-02-01

    An ion source with a remote plasma chamber excited by a 13.56 MHz radio frequency power was used for low-energy broad ion beam extraction. Optical emission spectral analyses showed the sputtering and postionization of a liquid gallium (Ga) target placed in a chamber separated from the source bombarded by argon (Ar) plasma guided by a bent magnetic field. In addition, an E × B probe successfully showed the extraction of low-energy Ga and Ar ion beams using a dual-electrode extractor configuration. By introducing dilute amounts of nitrogen gas into the system, formation of thin Ga-based films on a silicon substrate was demonstrated as determined from X-ray diffraction and X-ray reflectivity studies. PMID:26932113

  19. University of Wisconsin Ion Beam Laboratory: A facility for irradiated materials and ion beam analysis

    SciTech Connect

    Field, K. G.; Wetteland, C. J.; Cao, G.; Maier, B. R.; Gerczak, T. J.; Kriewaldt, K.; Sridharan, K.; Allen, T. R.; Dickerson, C.; Field, C. R.

    2013-04-19

    The University of Wisconsin Ion Beam Laboratory (UW-IBL) has recently undergone significant infrastructure upgrades to facilitate graduate level research in irradiated materials phenomena and ion beam analysis. A National Electrostatics Corp. (NEC) Torodial Volume Ion Source (TORVIS), the keystone upgrade for the facility, can produce currents of hydrogen ions and helium ions up to {approx}200 {mu}A and {approx}5 {mu}A, respectively. Recent upgrades also include RBS analysis packages, end station developments for irradiation of relevant material systems, and the development of an in-house touch screen based graphical user interface for ion beam monitoring. Key research facilitated by these upgrades includes irradiation of nuclear fuels, studies of interfacial phenomena under irradiation, and clustering dynamics of irradiated oxide dispersion strengthened steels. The UW-IBL has also partnered with the Advanced Test Reactor National Scientific User Facility (ATR-NSUF) to provide access to the irradiation facilities housed at the UW-IBL as well as access to post irradiation facilities housed at the UW Characterization Laboratory for Irradiated Materials (CLIM) and other ATR-NSUF partner facilities. Partnering allows for rapid turnaround from proposed research to finalized results through the ATR-NSUF rapid turnaround proposal system. An overview of the UW-IBL including CLIM and relevant research is summarized.

  20. Dual ion beam deposition of carbon films with diamondlike properties

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.; Swec, D. M.; Angus, J. C.

    1984-01-01

    A single and dual ion beam system was used to generate amorphous carbon films with diamond like properties. A methane/argon mixture at a molar ratio of 0.28 was ionized in the low pressure discharge chamber of a 30-cm-diameter ion source. A second ion source, 8 cm in diameter was used to direct a beam of 600 eV Argon ions on the substrates (fused silica or silicon) while the deposition from the 30-cm ion source was taking place. Nuclear reaction and combustion analysis indicate H/C ratios for the films to be 1.00. This high value of H/C, it is felt, allowed the films to have good transmittance. The films were impervious to reagents which dissolve graphitic and polymeric carbon structures. Although the measured density of the films was approximately 1.8 gm/cu cm, a value lower than diamond, the films exhibited other properties that were relatively close to diamond. These films were compared with diamondlike films generated by sputtering a graphite target.

  1. A gas jet target for radioactive ion beam experiments

    SciTech Connect

    Chipps, K. A.; Greife, U.; Hager, U.; Sarazin, F.; Bardayan, D. W.; Pain, S. D.; Schmitt, K. T.; Smith, M. S.; Blackmon, J. C.; Linhardt, L. E.; Browne, J.; Kontos, A.; Meisel, Z.; Montes, F.; Schatz, H.; Erikson, L. E.; Lemut, A.; and others

    2013-04-19

    New radioactive ion beam (RIB) facilities, like FRIB in the US or FAIR in Europe, will push further away from stability and enable the next generation of nuclear physics experiments. Thus, the need for improved RIB targets is more crucial than ever: developments in exotic beams should coincide with developments in targets for use with those beams, in order for nuclear physics to remain on the cutting edge. Of great importance to the future of RIB physics are scattering, transfer and capture reaction measurements of rare, exotic, and unstable nuclei on light targets such as hydrogen and helium. These measurements require targets that are dense, highly localized, and pure, and conventional targets often suffer too many drawbacks to allow for such experimental designs. Targets must also accommodate the use of large area, highly-segmented silicon detector arrays, high-efficiency gamma arrays, and novel heavy ion detectors to efficiently measure the reaction products. To address this issue, the Jet Experiments in Nuclear Structure and Astrophysics (JENSA) Collaboration led by the Colorado School of Mines (CSM) is in the process of designing, building and testing a supersonic gas jet target for use at existing and future RIB facilities. The gas jet target provides a high density and high purity of target nuclei within a tightly confined region, without the use of windows or backing materials. The design also enables the use of multiple state-of-the-art detection systems.

  2. A gas jet target for radioactive ion beam experiments

    NASA Astrophysics Data System (ADS)

    Chipps, K. A.; Bardayan, D. W.; Blackmon, J. C.; Browne, J.; Couder, M.; Erikson, L. E.; Greife, U.; Hager, U.; Kontos, A.; Lemut, A.; Linhardt, L. E.; Meisel, Z.; Montes, F.; Pain, S. D.; Robertson, D.; Sarazin, F.; Schatz, H.; Schmitt, K. T.; Smith, M. S.; Vetter, P.; Wiescher, M.

    2013-04-01

    New radioactive ion beam (RIB) facilities, like FRIB in the US or FAIR in Europe, will push further away from stability and enable the next generation of nuclear physics experiments. Thus, the need for improved RIB targets is more crucial than ever: developments in exotic beams should coincide with developments in targets for use with those beams, in order for nuclear physics to remain on the cutting edge. Of great importance to the future of RIB physics are scattering, transfer and capture reaction measurements of rare, exotic, and unstable nuclei on light targets such as hydrogen and helium. These measurements require targets that are dense, highly localized, and pure, and conventional targets often suffer too many drawbacks to allow for such experimental designs. Targets must also accommodate the use of large area, highly-segmented silicon detector arrays, high-efficiency gamma arrays, and novel heavy ion detectors to efficiently measure the reaction products. To address this issue, the Jet Experiments in Nuclear Structure and Astrophysics (JENSA) Collaboration led by the Colorado School of Mines (CSM) is in the process of designing, building and testing a supersonic gas jet target for use at existing and future RIB facilities. The gas jet target provides a high density and high purity of target nuclei within a tightly confined region, without the use of windows or backing materials. The design also enables the use of multiple state-of-the-art detection systems.

  3. Roughness evolution of optical materials induced by ion-beam milling

    NASA Astrophysics Data System (ADS)

    Egert, Charles M.

    1992-12-01

    Ion beam milling is an emerging advanced optical fabrication technology capable of deterministic figuring of optical surfaces. Much of the work in ion milling to data has emphasized figuring of glass-like materials, such as fused silica, which do not significantly roughen during ion milling. However, for ion milling to reach its full potential as an advanced optical fabrication technique it must be applicable to a broad range of materials to interest in optical fabrication including polycrystalline metals, semiconductors, and ceramics. In order to assess the feasibility of ion milling, the effect of ion dose on roughness evolution was investigated for a variety of materials including: silicon, germanium, sapphire, silicon carbide, fused silica, aluminum, and copper. Single crystal silicon, germanium and sapphire as well as polycrystalline CVD silicon carbide did not significantly roughen during ion milling. The roughness evolution of aluminum, copper and gold thin films were also studied; fine grained gold films were found to remain smooth during ion milling.

  4. Structure of the near-surface layer of NiTi on the meso- and microscale levels after ion-beam surface treatment

    SciTech Connect

    Meisner, L. L. Meisner, S. N.; Poletika, T. M. Girsova, S. L.; Tverdichlebova, A. V.; Shulepov, I. A.

    2014-11-14

    Using the EBSD, SEM and TEM methods, the structure of surface layer of polycrystalline NiTi alloy samples was examined after the modification of material surface by the pulsed action of mean-energy silicon ion beam. It was found that the ion beam treatment would cause grain fragmentation of the near-surface layer to a depth 5÷50 μm; a higher extent of fragmentation was observed in grains whose close-packed planes were oriented approximately in the same direction as the ion beam was. The effect of high-intensity ion beam treatment on the anisotropic behavior of polycrystalline NiTi alloy and the mechanisms involved were also examined.

  5. Graphene engineering by neon ion beams

    NASA Astrophysics Data System (ADS)

    Iberi, Vighter; Ievlev, Anton V.; Vlassiouk, Ivan; Jesse, Stephen; Kalinin, Sergei V.; Joy, David C.; Rondinone, Adam J.; Belianinov, Alex; Ovchinnikova, Olga S.

    2016-03-01

    Achieving the ultimate limits of lithographic resolution and material performance necessitates engineering of matter with atomic, molecular, and mesoscale fidelity. With the advent of scanning helium ion microscopy, maskless He+ and Ne+ beam lithography of 2D materials, such as graphene-based nanoelectronics, is coming to the forefront as a tool for fabrication and surface manipulation. However, the effects of using a Ne focused-ion-beam on the fidelity of structures created out of 2D materials have yet to be explored. Here, we will discuss the use of energetic Ne ions in engineering graphene nanostructures and explore their mechanical, electromechanical and chemical properties using scanning probe microscopy (SPM). By using SPM-based techniques such as band excitation (BE) force modulation microscopy, Kelvin probe force microscopy (KPFM) and Raman spectroscopy, we are able to ascertain changes in the mechanical, electrical and optical properties of Ne+ beam milled graphene nanostructures and surrounding regions. Additionally, we are able to link localized defects around the milled graphene to ion milling parameters such as dwell time and number of beam passes in order to characterize the induced changes in mechanical and electromechanical properties of the graphene surface.

  6. Infrared imaging diagnostics for INTF ion beam

    NASA Astrophysics Data System (ADS)

    Sudhir, D.; Bandyopadhyay, M.; Pandey, R.; Joshi, J.; Yadav, A.; Rotti, C.; Bhuyan, M.; Bansal, G.; Soni, J.; Tyagi, H.; Pandya, K.; Chakraborty, A.

    2015-04-01

    In India, testing facility named INTF [1] (Indian test facility) is being built in Institute for Plasma Research to characterize ITER-Diagnostic Neutral Beam (DNB). INTF is expected to deliver 60A negative hydrogen ion beam current of energy 100keV. The beam will be operated with 5Hz modulation having 3s ON/20s OFF duty cycle. To characterize the beam parameters several diagnostics are at different stages of design and development. One of them will be a beam dump, made of carbon fiber composite (CFC) plates placed perpendicular to the beam direction at a distance lm approximately. The beam dump needs to handle ˜ 6MW of beam power with peak power density ˜ 38.5MW/m2. The diagnostic is based on thermal (infra-red - IR) imaging of the footprint of the 1280 beamlets falling on the beam dump using four IR cameras from the rear side of the dump. The beam dump will be able to measure beam uniformity, beamlet divergence. It may give information on relative variation of negative ion stripping losses for different beam pulses. The design of this CFC based beam dump needs to address several physics and engineering issues, including some specific inputs from manufacturers. The manuscript will describe an overview of the diagnostic system and its design methodology highlighting those issues and the present status of its development.

  7. Graphene engineering by neon ion beams.

    PubMed

    Iberi, Vighter; Ievlev, Anton V; Vlassiouk, Ivan; Jesse, Stephen; Kalinin, Sergei V; Joy, David C; Rondinone, Adam J; Belianinov, Alex; Ovchinnikova, Olga S

    2016-03-29

    Achieving the ultimate limits of lithographic resolution and material performance necessitates engineering of matter with atomic, molecular, and mesoscale fidelity. With the advent of scanning helium ion microscopy, maskless He(+) and Ne(+) beam lithography of 2D materials, such as graphene-based nanoelectronics, is coming to the forefront as a tool for fabrication and surface manipulation. However, the effects of using a Ne focused-ion-beam on the fidelity of structures created out of 2D materials have yet to be explored. Here, we will discuss the use of energetic Ne ions in engineering graphene nanostructures and explore their mechanical, electromechanical and chemical properties using scanning probe microscopy (SPM). By using SPM-based techniques such as band excitation (BE) force modulation microscopy, Kelvin probe force microscopy (KPFM) and Raman spectroscopy, we are able to ascertain changes in the mechanical, electrical and optical properties of Ne(+) beam milled graphene nanostructures and surrounding regions. Additionally, we are able to link localized defects around the milled graphene to ion milling parameters such as dwell time and number of beam passes in order to characterize the induced changes in mechanical and electromechanical properties of the graphene surface. PMID:26890062

  8. Radially uniform circular sweep of ion beam

    SciTech Connect

    Akhmetov, T.D.; Davydenko, V.I.; Ivanov, A.A.; Kobets, V.V.; Medvedko, A.S.; Skorobogatov, D.N.; Tiunov, M.A.

    2006-03-15

    A spiral sweep of the ion beam was suggested to provide sufficiently uniform irradiation of a circular target. It is shown that if the beam radius is small enough, the radius of the beam center should increase as a square root of time to provide uniform radial irradiation of the target. In the complex for Boron Neutron Capture Therapy developed at the Budker Institute of Nuclear Physics, the proton beam sweep will be performed by a sweeper with uniform magnetic field with strength up to 500 G and axial length {approx}20 cm, rotating at 100-2000 Hz, and scanning over the radius at a 1-10 Hz frequency. The sweeper field is produced by four longitudinal flat current windings placed near the inner walls of a box-shaped yoke with the inner opening of a square cross section. A similar sweeping technique can be used in a 200 keV oxygen implanter, which is also under development at the Budker Institute.

  9. Ion beam figuring of small optical components

    NASA Astrophysics Data System (ADS)

    Drueding, Thomas W.; Fawcett, Steven C.; Wilson, Scott R.; Bifano, Thomas G.

    1995-12-01

    Ion beam figuring provides a highly deterministic method for the final precision figuring of optical components with advantages over conventional methods. The process involves bombarding a component with a stable beam of accelerated particles that selectively removes material from the surface. Figure corrections are achieved by rastering the fixed-current beam across the workplace at appropriate, time-varying velocities. Unlike conventional methods, ion figuring is a noncontact technique and thus avoids such problems as edge rolloff effects, tool wear, and force loading of the workpiece. This work is directed toward the development of the precision ion machining system at NASA's Marshall Space Flight Center. This system is designed for processing small (approximately equals 10-cm diam) optical components. Initial experiments were successful in figuring 8-cm-diam fused silica and chemical-vapor-deposited SiC samples. The experiments, procedures, and results of figuring the sample workpieces to shallow spherical, parabolic (concave and convex), and non-axially-symmetric shapes are discussed. Several difficulties and limitations encountered with the current system are discussed. The use of a 1-cm aperture for making finer corrections on optical components is also reported.

  10. Storage rings for radioactive ion beams

    NASA Astrophysics Data System (ADS)

    Nolden, F.; Dimopoulou, C.; Dolinskii, A.; Steck, M.

    2008-10-01

    Storage rings for radioactive heavy ions can be applied for a wide range of experiments in atomic and nuclear physics. The rare isotope beams are produced in flight via fragmentation or fission of high-intensity primary ions and they circulate in the storage ring at moderately relativistic energies (typically between 0.1 GeV/u up to 1 GeV/u). Due to their production mechanism they are usually highly charged or even fully stripped. The circulating radioactive heavy ion beams can be used to measure nuclear properties such as masses and decay times, which, in turn, can depend strongly on the ionic charge state. The storage rings must have large acceptances and dynamic apertures. The subsequent application of stochastic precooling of the secondary ions which are injected with large transverse and longitudinal emittances, and electron cooling to reach very high phase space densities has turned out to be a helpful tool for experiments with short-lived ions having lifetimes down to a few seconds. Some of these experiments have already been performed at the experimental storage ring ESR at GSI. The storage ring complex of the FAIR project is intended to enhance significantly the range of experimental possibilities. It is planned to extend the scope of experimental possibilities to collisions with electron or antiproton beams.

  11. BEARS: Radioactive ion beams at LBNL

    SciTech Connect

    Powell, J.; Guo, F.Q.; Haustein, P.E.

    1998-07-01

    BEARS (Berkeley Experiments with Accelerated Radioactive Species) is an initiative to develop a radioactive ion-beam capability at Lawrence Berkeley National Laboratory. The aim is to produce isotopes at an existing medical cyclotron and to accelerate them at the 88 inch Cyclotron. To overcome the 300-meter physical separation of these two accelerators, a carrier-gas transport system will be used. At the terminus of the capillary, the carrier gas will be separated and the isotopes will be injected into the 88 inch Cyclotron`s Electron Cyclotron Resonance (ECR) ion source. The first radioactive beams to be developed will include 20-min {sup 11}C and 70-sec {sup 14}O, produced by (p,n) and (p,{alpha}) reactions on low-Z targets. A test program is currently being conducted at the 88 inch Cyclotron to develop the parts of the BEARS system. Preliminary results of these tests lead to projections of initial {sup 11}C beams of up to 2.5 {times} 10{sup 7} ions/sec and {sup 14}O beams of 3 {times} 10{sup 5} ions/sec.

  12. Ion beam sputter deposited zinc telluride films

    NASA Technical Reports Server (NTRS)

    Gulino, D. A.

    1985-01-01

    Zinc telluride is of interest as a potential electronic device material, particularly as one component in an amorphous superlattice, which is a new class of interesting and potentially useful materials. Some structural and electronic properties of ZnTe films deposited by argon ion beam sputter depoairion are described. Films (up to 3000 angstroms thick) were deposited from a ZnTe target. A beam energy of 1000 eV and a current density of 4 mA/sq. cm. resulted in deposition rates of approximately 70 angstroms/min. The optical band gap was found to be approximately 1.1 eV, indicating an amorphous structure, as compared to a literature value of 2.26 eV for crystalline material. Intrinsic stress measurements showed a thickness dependence, varying from tensile for thicknesses below 850 angstroms to compressive for larger thicknesses. Room temperature conductivity measurement also showed a thickness dependence, with values ranging from 1.86 x to to the -6/ohm. cm. for 300 angstrom film to 2.56 x 10 to the -1/ohm. cm. for a 2600 angstrom film. Measurement of the temperature dependence of the conductivity for these films showed complicated behavior which was thickness dependent. Thinner films showed at least two distinct temperature dependent conductivity mechanisms, as described by a Mott-type model. Thicker films showed only one principal conductivity mechanism, similar to what might be expected for a material with more crystalline character.

  13. Ion beam sputter deposited zinc telluride films

    NASA Technical Reports Server (NTRS)

    Gulino, D. A.

    1986-01-01

    Zinc telluride is of interest as a potential electronic device material, particularly as one component in an amorphous superlattice, which is a new class of interesting and potentially useful materials. Some structural and electronic properties of ZnTe films deposited by argon ion beam sputter deposition are described. Films (up to 3000 angstroms thick) were deposited from a ZnTe target. A beam energy of 1000 eV and a current density of 4 mA/sq cm resulted in deposition rates of approximately 70 angstroms/min. The optical band gap was found to be approximately 1.1 eV, indicating an amorphous structure, as compared to a literature value of 2.26 eV for crystalline material. Intrinsic stress measurements showed a thickness dependence, varying from tensile for thicknesses below 850 angstroms to compressive for larger thicknesses. Room temperature conductivity measurement also showed a thickness dependence, with values ranging from 1.86 x 10 to the -6th/ohm cm for 300 angstrom film to 2.56 x 10 to the -1/ohm cm for a 2600 angstrom film. Measurement of the temperature dependence of the conductivity for these films showed complicated behavior which was thickness dependent. Thinner films showed at least two distinct temperature dependent conductivity mechanisms, as described by a Mott-type model. Thicker films showed only one principal conductivity mechanism, similar to what might be expected for a material with more crystalline character.

  14. Microdosimetry in ion-beam therapy

    NASA Astrophysics Data System (ADS)

    Magrin, Giulio; Mayer, Ramona

    2015-05-01

    The information of the dose is not sufficiently describing the biological effects of ions on tissue since it does not express the radiation quality, i.e. the heterogeneity of the processes due to the slowing-down and the fragmentation of the particles when crossing a target. Depending on different circumstances, the radiation quality can be determined using measurements, calculations, or simulations. Microdosimeters are the primary tools used to provide the experimental information of the radiation quality and their role is becoming crucial for the recent clinical developments in particular with carbon ion therapy. Microdosimetry is strongly linked to the biological effectiveness of the radiation since it provides the physical parameters which explicitly distinguish the radiation for its capability of damaging cells. In the framework of ion-beam therapy microdosimetry can be used in the preparation of the treatment to complement radiobiological experiments and to analyze the modification of the radiation quality in phantoms. A more ambitious goal is to perform the measurements during the irradiation procedure to determine the non-targeted radiation and, more importantly, to monitor the modification of the radiation quality inside the patient. These procedures provide the feedback of the treatment directly beneficial for the single patient but also for the characterization of the biological effectiveness in general with advantages for all future treatment. Traditional and innovative tools are currently under study and an outlook of present experience and future development is presented here.

  15. Ion beam emittance from an ECRIS

    NASA Astrophysics Data System (ADS)

    Spädtke, P.; Lang, R.; Mäder, J.; Maimone, F.; Schlei, B. R.; Tinschert, K.; Biri, S.; Rácz, R.

    2016-02-01

    Simulation of ion beam extraction from an Electron Cyclotron Resonance Ion Source (ECRIS) is a fully 3 dimensional problem, even if the extraction geometry has cylindrical symmetry. Because of the strong magnetic flux density, not only the electrons are magnetized but also the Larmor radius of ions is much smaller than the geometrical dimension of the plasma chamber (Ø 64 × 179 mm). If we assume that the influence of collisions is small on the path of particles, we can do particle tracking through the plasma if the initial coordinates of particles are known. We generated starting coordinates of plasma ions by simulation of the plasma electrons, accelerated stochastically by the 14.5 GHz radio frequency power fed to the plasma. With that we were able to investigate the influence of different electron energies on the extracted beam. Using these assumptions, we can reproduce the experimental results obtained 10 years ago, where we monitored the beam profile with the help of viewing targets. Additionally, methods have been developed to investigate arbitrary 2D cuts of the 6D phase space. To this date, we are able to discuss full 4D information. Currently, we extend our analysis tool towards 5D and 6D, respectively.

  16. Modified betatron for ion beam fusion

    SciTech Connect

    Rostoker, N.; Fisher, A.

    1986-01-01

    An intense neutralized ion beam can be injected and trapped in magnetic mirror or tokamak geometry. The details of the process involve beam polarization so that the beam crosses the fringing fields without deflection and draining the polarization when the beam reaches the plasma. Equilibrium requires that a large betatron field be added in tokamak geometry. In mirror geometry a toroidal field must be added by means of a current along the mirror axis. In either case, the geometry becomes that of the modified betatron which has been studied experimentally and theoretically in recent years. We consider beams of d and t ions with a mean energy of 500 kev and a temperature of about 50 kev. The plasma may be a proton plasma with cold ions. It is only necessary for beam trapping or to carry currents. The ion energy for slowing down is initially 500 kev and thermonuclear reactions depend only on the beam temperature of 50 kev which changes very slowly. This new configuration for magnetic confinement fusion leads to an energy gain of 10--20 for d-t reactions whereas previous studies of beam target interaction predicted a maximum energy gain of 3--4. The high beam energy available with pulsed ion diode technology is also essential for advanced fuels. 16 refs., 3 figs.

  17. Materials processing with intense pulsed ion beams

    SciTech Connect

    Rej, D.J.; Davis, H.A.; Olson, J.C.

    1996-12-31

    We review research investigating the application of intense pulsed ion beams (IPIBs) for the surface treatment and coating of materials. The short range (0.1-10 {mu}m) and high-energy density (1-50 J/cm{sup 2}) of these short-pulsed ({le} 1 {mu}s) beams (with ion currents I = 5 - 50 kA, and energies E = 100 - 1000 keV) make them ideal to flash-heat a target surface, similar to the more familiar pulsed laser processes. IPIB surface treatment induces rapid melt and solidification at up to 10{sup 10} K/s to cause amorphous layer formation and the production of non-equilibrium microstructures. At higher energy density the target surface is vaporized, and the ablated vapor is condensed as coatings onto adjacent substrates or as nanophase powders. Progress towards the development of robust, high-repetition rate IPIB accelerators is presented along with economic estimates for the cost of ownership of this technology.

  18. Heavy ion beam transport and interaction with ICF targets

    NASA Astrophysics Data System (ADS)

    Velarde, G.; Aragonés, J. M.; Gago, J. A.; Gámez, L.; González, M. C.; Honrubia, J. J.; Martínez-Val, J. M.; Mínguez, E.; Ocaña, J. L.; Otero, R.; Perlado, J. M.; Santolaya, J. M.; Serrano, J. F.; Velarde, P. M.

    1986-01-01

    Numerical simulation codes provide an essential tool for analyzing the very broad range of concepts and variables considered in ICF targets. In this paper, the relevant processes embodied in the NORCLA code, needed to simulate ICF targets driven by heavy ion beams will be presented. Atomic physic models developed at DENIM to improve the atomic data needed for ion beam plasma interaction will be explained. Concerning the stopping power, the average ionization potential following a Thomas-Fermi model has been calculated, and results are compared with full quantum calculations. Finally, a parametric study of multilayered single shell targets driven by heavy ion beams will be shown.

  19. Intense ion beams accelerated by relativistic laser plasmas

    NASA Astrophysics Data System (ADS)

    Roth, Markus; Cowan, Thomas E.; Gauthier, Jean-Claude J.; Allen, Matthew; Audebert, Patrick; Blazevic, Abel; Fuchs, Julien; Geissel, Matthias; Hegelich, Manuel; Karsch, S.; Meyer-ter-Vehn, Jurgen; Pukhov, Alexander; Schlegel, Theodor

    2001-12-01

    We have studied the influence of the target properties on laser-accelerated proton and ion beams generated by the LULI multi-terawatt laser. A strong dependence of the ion emission on the surface conditions, conductivity, shape and material of the thin foil targets were observed. We have performed a full characterization of the ion beam using magnetic spectrometers, Thompson parabolas, radiochromic film and nuclear activation techniques. The strong dependence of the ion beam acceleration on the conditions on the target back surface was found in agreement with theoretical predictions based on the target normal sheath acceleration (TNSA) mechanism. Proton kinetic energies up to 25 MeV have been observed.

  20. Radioactive Ion Beam Production Capabilities At The Holifield Radioactive Ion Beam Facility

    NASA Astrophysics Data System (ADS)

    Beene, J. R.; Dowling, D. T.; Gross, C. J.; Juras, R. C.; Liu, Y.; Meigs, M. J.; Mendez, A. J.; Nazarewicz, W.; Sinclair, J. W.; Stracener, D. W.; Tatum, B. A.

    2011-06-01

    The Holifield Radioactive Ion Beam Facility (HRIBF) is a national user facility for research with radioactive ion beams (RIBs) that has been in routine operation since 1996. It is located at Oak Ridge National Laboratory (ORNL) and operated by the ORNL Physics Division. The principal mission of the HRIBF is the production of high quality beams of shortlived radioactive isotopes to support research in nuclear structure physics and nuclear astrophysics. HRIBF is currently unique worldwide in its ability to provide neutron-rich fission fragment beams post-accelerated to energies above the Coulomb barrier for nuclear reactions. HRIBF produces RIBs by the isotope separator on-line (ISOL) technique using a particle accelerator system that consists of the Oak Ridge Isochronous Cyclotron (ORIC) driver accelerator, one of the two Injectors for Radioactive Ion Species (IRIS1 or IRIS2) production systems, and the 25-MV tandem electrostatic accelerator that is used for RIB post-acceleration. ORIC provides a light ion beam (proton, deuteron, or alpha) which is directed onto a thick target mounted in a target-ion source (TIS) assembly located on IRIS1 or IRIS2. Radioactive atoms that diffuse from the target material are ionized, accelerated, mass selected, and transported to the tandem accelerator where they are further accelerated to energies suitable for nuclear physics research. RIBs are transported through a beam line system to various experimental end stations including the Recoil Mass Spectrometer (RMS) for nuclear structure research, and the Daresbury Recoil Separator (DRS) for nuclear astrophysics research. HRIBF also includes two off-line ion source test facilities, one low-power on-line ISOL test facility (OLTF), and one high-power on-line ISOL test facility (HPTL). This paper provides an overview and status update of HRIBF, describes the recently completed 4.7M IRIS2 addition and incorporation of laser systems for beam production and purification, and discusses a

  1. Copper-assisted, anti-reflection etching of silicon surfaces

    DOEpatents

    Toor, Fatima; Branz, Howard

    2014-08-26

    A method (300) for etching a silicon surface (116) to reduce reflectivity. The method (300) includes electroless deposition of copper nanoparticles about 20 nanometers in size on the silicon surface (116), with a particle-to-particle spacing of 3 to 8 nanometers. The method (300) includes positioning (310) the substrate (112) with a silicon surface (116) into a vessel (122). The vessel (122) is filled (340) with a volume of an etching solution (124) so as to cover the silicon surface (116). The etching solution (124) includes an oxidant-etchant solution (146), e.g., an aqueous solution of hydrofluoric acid and hydrogen peroxide. The silicon surface (116) is etched (350) by agitating the etching solution (124) with, for example, ultrasonic agitation, and the etching may include heating (360) the etching solution (124) and directing light (365) onto the silicon surface (116). During the etching, copper nanoparticles enhance or drive the etching process.

  2. Energetic Ion Beam Production by a Low-Pressure Plasma Focus Discharge

    SciTech Connect

    Lim, L. K.; Yap, S. L.; Wong, C. S.

    2011-03-30

    Energetic ion beam emissions in a 3 kJ Mather type plasma focus operating at low-pressure regime are investigated. Deuterium gas is used and the discharge is operated in a low-pressure regime of below 1 mbar. Formation of the current sheath during the breakdown phase at the back wall is assisted by a set delayed trigger pulse. Energetic and intense ion beams with good reproducibility have been obtained for the operating pressure ranging from 0.05 mbar to 0.5 mbar. Deuteron beam is determined by time resolved measurement by making use of three biased ion collectors placed at the end on direction. The average energies of deuteron beams are resolved by using time-of flight method. Correlation between the ion emissions and the current sheath dynamics is also discussed.

  3. In situ nanomechanical testing in focused ion beam and scanning electron microscopes

    SciTech Connect

    Gianola, D. S.; Sedlmayr, A.; Moenig, R.; Kraft, O.; Volkert, C. A.; Major, R. C.; Cyrankowski, E.; Asif, S. A. S.; Warren, O. L.

    2011-06-15

    The recent interest in size-dependent deformation of micro- and nanoscale materials has paralleled both technological miniaturization and advancements in imaging and small-scale mechanical testing methods. Here we describe a quantitative in situ nanomechanical testing approach adapted to a dual-beam focused ion beam and scanning electron microscope. A transducer based on a three-plate capacitor system is used for high-fidelity force and displacement measurements. Specimen manipulation, transfer, and alignment are performed using a manipulator, independently controlled positioners, and the focused ion beam. Gripping of specimens is achieved using electron-beam assisted Pt-organic deposition. Local strain measurements are obtained using digital image correlation of electron images taken during testing. Examples showing results for tensile testing of single-crystalline metallic nanowires and compression of nanoporous Au pillars will be presented in the context of size effects on mechanical behavior and highlight some of the challenges of conducting nanomechanical testing in vacuum environments.

  4. Ion-beam mixing in crystalline and amorphous germanium isotope multilayers

    SciTech Connect

    Bracht, H.; Radek, M.; Kube, R.; Knebel, S.; Posselt, M.; Schmidt, B.; Haller, E. E.; Bougeard, D.

    2011-11-01

    Gallium (Ga) implantation induced self-atom mixing in crystalline and amorphous germanium (Ge) is investigated utilizing isotopically controlled Ge multilayer structures grown by molecular beam epitaxy. The distribution of the Ga ions and the ion-beam induced depth-dependent mixing of the isotope structure was determined by means of secondary ion mass spectrometry. Whereas the distribution of Ga in the crystalline and amorphous Ge is very similar and accurately reproduced by computer simulations based on binary collision approximation (BCA), the ion-beam induced self-atom mixing is found to depend strongly on the state of the Ge structure. The experiments reveal stronger self-atom mixing in crystalline than in amorphous Ge. Atomistic simulations based on BCA reproduce the experimental results only when unphysically low Ge displacement energies are assumed. Analysis of the self-atom mixing induced by silicon implantation confirms the low displacement energy deduced within the BCA approach. This demonstrates that thermal spike mixing contributes significantly to the overall mixing of the Ge isotope structures. The disparity observed in the ion-beam mixing efficiency of crystalline and amorphous Ge indicates different dominant mixing mechanisms. We propose that self-atom mixing in crystalline Ge is mainly controlled by radiation enhanced diffusion during the early stage of mixing before the crystalline structure turns amorphous, whereas in an already amorphous state self-atom mixing is mediated by cooperative diffusion events.

  5. Perspectives of the Pixel Detector Timepix for Needs of Ion Beam Therapy

    NASA Astrophysics Data System (ADS)

    Martišíková, M.; Hartmann, B.; Jäkel, O.; Granja, C.; Jakubek, J.

    2012-08-01

    Radiation therapy with ion beams is a highly precise kind of cancer treatment. In ion beam therapy the finite range of the ion beams in tissue and the increase of ionization density at the end of their path, the Bragg-peak, are exploited. Ions heavier than protons offer in addition increased biological effectiveness and decreased scattering. In this contribution we discuss the potential of a quantum counting and position sensitive semiconductor detector Timepix for its applications in ion beam therapy measurements. It provides high sensitivity and high spatial resolution (pixel pitch 55 μm). The detector, developed by the Medipix Collaboration, consists of a silicon sensor bump bonded to a pixelated readout chip (256 × 256 pixels with 55 μm pitch). An integrated USB-based readout interface together with the Pixelman software enable registering single particles online with 2D-track visualization. The experiments were performed at the Heidelberg Ion Beam Therapy Center (HIT), which is a modern ion beam therapy facility. Patient treatments are performed with proton and carbon ions, which are accelerated by a synchrotron. For dose delivery to the patient an active technique is used: narrow pencil-like beams are scanned over the target volume. The possibility to use the detector for two different applications was investigated: ion spectroscopy and beam delivery monitoring by measurement of secondary charged particles around the patient. During carbon ion therapy, a variety of ion species is created by nuclear fragmentation processes of the primary beam. Since they differ in their biological effectiveness, it is of large interest to measure the ion spectra created under different conditions and to visualize their spatial distribution. The possibility of measurements of ion energy loss in silicon makes Timepix a promising detector for ion-spectroscopic studies in patient-like phantoms. Unpredictable changes in the patient can alter the range of the ion beam in the body

  6. Improving the laser damage resistance of oxide thin films and multilayers via tailoring ion beam sputtering parameters

    NASA Astrophysics Data System (ADS)

    Cosar, M. B.; Ozhan, A. E. S.; Aydogdu, G. H.

    2015-05-01

    Ion beam sputtering is one of the widely used methods for manufacturing laser optical components due to its advantages such as uniformity, reproducibility, suitability for multilayer coatings and growth of dielectric materials with high packing densities. In this study, single Ta2O5 layers and Ta2O5/SiO2 heterostructures were deposited on optical quality glass substrates by dual ion beam sputtering. We focused on the effect of deposition conditions like substrate cleaning, assistance by 12 cm diameter ion beam source and oxygen partial pressure on the laser-induced damage threshold of Ta2O5 single layers. Afterwards, the obtained information is employed to a sample design and produces a Ta2O5/SiO2 multilayer structure demonstrating low laser-induced damage without a post treatment procedure.

  7. Friction of self-lubricating surfaces by ion beam techniques. Final technical report

    SciTech Connect

    Bhattacharya, R.S.; Rai, A.K.

    1992-05-01

    UES, Inc. conducted a research and development program designed to establish conditions for ion implantation/mixing of suitable additives into the surfaces of bulk ceramics and metals for obtaining self-lubricating low friction and wear characteristics. The substrates considered were ZrO{sub 2}, Al{sub 2}O{sub 3}, Si{sub 3}N{sub 4}, steel and Ni-base superalloy. The lubricant additives chosen were BaF{sub 2}/CaF{sub 2}Ag, MoS{sub 2}, WS{sub 2}and B{sub 2}O{sub 3}. The initial tasks of the program were to synthesis these lubricant compounds by co-implantation of constituent elements if sufficient beams of desired elements were obtained. The final tasks were to investigate high energy (MeV) ion mixing of deposited coatings as well as to investigate ion beam assisted deposition using low energy ion beams. It was shown that MoS{sub 2} can be synthesized by co-implantation of Mo{sup +} and S{sup +} in ceramic materials with appropriate choice of energies to obtain nearly overlapping depth profiles. The sliding life of DC magnetron sputtered MoS{sub 2} films of thicknesses {approximately}7500{Angstrom} on ceramic materials such as sapphire, Si{sub 3}N{sub 4} and ZrO{sub 3} were improved by ten to thousand fold after 2 Mev Ag{sup +} ion mixing. Ion beam assisted deposition (IBAD) and ion beam mixing were utilized to fabricate self-lubricating coatings of CaF{sub 2}/Ag and BaF/CaF{sub 2}/Ag composites.

  8. Biophysical models in ion beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Scholz, Michael; Elsässer, Thilo

    One major rationale for the application of heavy ion beams in tumor therapy is their increased relative biological effectiveness (RBE) in the Bragg peak region. For dose prescription, the increased effectiveness has to be taken into account in treatment planning. Hence, the complex dependencies of RBE on the dose level, biological endpoint, position in the field etc. require biophysical models, which have to fulfill two important criteria: simplicity and quantitative precision. Simplicity means that the number of free parameters should be kept at a minimum. Due to the lack of precise quantitative data, at least at present, this requirement is incompatible with approaches aiming at the molecular modeling of the whole chain of production, processing and repair of biological damages. Quantitative precision is required since steep gradients in the dose response curves are observed for most tumor and normal tissues; thus, even small uncertainties in the estimation of the biologically effective dose can transform into large uncertainties in the clinical outcome. The paper will give a general introduction into the field, followed by a description of a specific model, the so called 'Local Effect Model' (LEM). This model has been successfully applied within treatment planning in the GSI pilot project for carbon ion tumor therapy over almost 10 years now. The model is based on the knowledge of charged particle track structure in combination with the response of the cells or tissues under consideration to conventional photon radiation. The model is compared to other approaches developed for the calculation of the biological effects of high-LET radiation. Furthermore, recent improvements of the model are described. Due to the quantitative precision, besides applications in tumor therapy the LEM seems to be adequate for the calculation of stochastic radiation effects, i.e. in the framework of radiation protection. Examples for the calculation of cell transformation are

  9. High-Speed Nano-Processing with Cluster Ion Beams

    NASA Astrophysics Data System (ADS)

    Seki, T.; Matsuo, J.

    2006-11-01

    The gas cluster ion beam process has a high potential for material processing in nano-technology devices, such as photonic crystals, thin film transistors (TFTs) and micro-electromechanical systems (MEMS). In order to fabricate the devices, one needs to etch target materials with a high-speed, low-damage and ultra-smooth process. Extremely high rate sputtering was realized by high-energy cluster ion beam. We have been using this technique for poly-Si TFTs. There are many hillocks on poly-Si films formed by using a laser anneal technique, and they cause degradation of devices. When the laser crystallized poly-Si film was irradiated with cluster ion beam, the higher hillocks could be etched selectively and the surfaces of poly-Si films could be processed with low ion dose. High-speed nano-processing was realized by cluster ion beam.

  10. Historical milestones and future prospects of cluster ion beam technology

    NASA Astrophysics Data System (ADS)

    Yamada, Isao

    2014-08-01

    Development of technology for processing of surfaces by means of gas cluster ion beams began only about a quarter century ago even though fundamental research related to generation of gas clusters began much earlier. Industrial applications of cluster ion beams did not start to be explored until commercial equipment was first introduced to the ion beam community in around 2000. The technology is now evolving rapidly with industrial equipment being engineered for many diverse surface processing applications which are made possible by the unique characteristics of cluster-ion/solid-surface interactions. In this paper, important historical milestones in cluster ion beam development are described. Present activities related to a wide range of industrial applications in semiconductors, magnetic and optical devices, and bio-medical devices are reviewed. Several emerging new advances in cluster beam applications for the future are also discussed.

  11. Focused Ion Beam Microscopy of ALH84001 Carbonate Disks

    NASA Astrophysics Data System (ADS)

    Thomas-Keprta, K. L.; Clemett, S. J.; Bazylinski, D. A.; Kirschvink, J. L.; McKay, D. S.; Vali, H.; Gibson, E. K., Jr.; Romanek, C. S.

    2005-03-01

    Our aim is to understand the mechanism(s) of formation of carbonate assemblages in ALH84001. We present here analyses by transmission electron microscopy (TEM) of carbonate thin sections produced by both focused ion beam (FIB) sectioning and ultramicrotomy.

  12. Ion beam requirements for fast ignition of inertial fusion targets

    SciTech Connect

    Honrubia, J. J.; Murakami, M.

    2015-01-15

    Ion beam requirements for fast ignition are investigated by numerical simulation taking into account new effects, such as ion beam divergence, not included before. We assume that ions are generated by the TNSA scheme in a curved foil placed inside a re-entrant cone and focused on the cone apex or beyond. From the focusing point to the compressed core, ions propagate with a given divergence angle. Ignition energies are obtained for two compressed fuel configurations heated by proton and carbon ion beams. The dependence of the ignition energies on the beam divergence angle and on the position of the ion beam focusing point has been analyzed. Comparison between TNSA and quasi-monoenergetic ions is also shown.

  13. Use of energetic ion beams in materials synthesis and processing

    SciTech Connect

    Appleton, B R

    1991-01-01

    A brief review of the use energetic ion beams and related techniques for the synthesis, processing, and characterization of materials is presented. Selected opportunity areas are emphasized with examples, and references are provided for more extensive coverage.

  14. Molecular Ion Beam Transportation for Low Energy Ion Implantation

    SciTech Connect

    Kulevoy, T. V.; Kropachev, G. N.; Seleznev, D. N.; Yakushin, P. E.; Kuibeda, R. P.; Kozlov, A. V.; Koshelev, V. A.; Hershcovitch, A.; Johnson, B. M.; Gushenets, V. I.; Oks, E. M.; Polozov, S. M.; Poole, H. J.

    2011-01-07

    A joint research and development of steady state intense boron ion sources for 100's of electron-volt ion implanters has been in progress for the past five years. Current density limitation associated with extracting and transporting low energy ion beams result in lower beam currents that in turn adversely affects the process throughput. The transport channel with electrostatic lenses for decaborane (B{sub 10}H{sub 14}) and carborane (C{sub 2}B{sub 10}H{sub 12}) ion beams transportation was developed and investigated. The significant increase of ion beam intensity at the beam transport channel output is demonstrated. The transport channel simulation, construction and experimental results of ion beam transportation are presented.

  15. Development of the Holifield Radioactive Ion Beam Facility

    SciTech Connect

    Tatum, B.A.

    1997-08-01

    The Holifield Radioactive Ion Beam Facility (HRIBF) construction project has been completed and the first radioactive ion beam has been successfully accelerated. The project, which began in 1992, has involved numerous facility modifications. The Oak Ridge Isochronous Cyclotron has been converted from an energy booster for heavy ion beams to a light ion accelerator with internal ion source. A target-ion source and mass analysis system have been commissioned as key components of the facility`s radioactive ion beam injector to the 25MV tandem electrostatic accelerator. Beam transport lines have been completed, and new diagnostics for very low intensity beams have been developed. Work continues on a unified control system. Development of research quality radioactive beams for the nuclear structure and nuclear astrophysics communities continues. This paper details facility development to date.

  16. Modeling of a multicharged ion beam line using SIMION

    NASA Astrophysics Data System (ADS)

    Korwin-Pawlowski, Michael L.; Amiz, Karima; Elsayed-Ali, Hani

    2009-06-01

    Multicharged ion beams (MCI) are promising tools to probe or modify the surface of materials with applications in microelectronics and nanotechnology. Ion beam lines are parts of the MCI systems connecting the ion source with the processing chamber and they perform the function of extracting, accelerating, decelerating, focusing and scanning the ion beam on the surface of the target. In our work we present results of modeling of an MCI beam line using the SIMION code to simulate the flight of ions, with the purpose of optimizing the yield of the line and avoiding spurious effects due to interaction of the ions with the metallic elements of the line, such as heating, outgassing and excessive Xray emission. We show that a two stage ion extractor could significantly reduce ion beam losses.

  17. Neutralization of a fast negative-ion beam

    SciTech Connect

    Schlachter, A.S.; Mowat, J.R.; Stearns, J.W.; Gohil, P.; Pyle, R.V.

    1986-01-01

    Neutralization of a fast negative-ion beam, primarily H/sup -/, is discussed in terms of competing one- and two-electron detachment processes in a variety of media: gas (vapor), plasma, liquid sheet, solid foil.

  18. Si + ion beam mixing of tin layers on crystalline silicon

    NASA Astrophysics Data System (ADS)

    Massouras, G.; Roger, J. A.; Romana, L.; Fuchs, G.

    1989-02-01

    Sn layers 64 nm thick deposited onto crystalline Si were irradiated at room temperature using 100 keV Si + ions, with fluences φ ranging from 1 × 10 15 to 9 × 10 16 ions cm -2. RBS analyses show that Si atoms move from the bulk towards the surface as the fluence increases, and are found at the very surface for φ = 4 × 10 16 Si + cm -2. Then a saturation is reached. Sn and Si profiles determined using a Fortran programme, and the calibration of depth scale is obtained from cross-sectional TEM observations. The average composition of the intermixed layer is given as a function of φ. Different layers of various crystallinity are found below the surface and their nature is discussed.

  19. Tamped, split fuel-layer ion-beam target

    SciTech Connect

    Meeker, D.J.; Bangerter, R.O.

    1981-01-01

    A double shelled, split fuel layer target with an outer hydro tamper surrounding the low Z absorber has been designed for ion beam drivers. Results from 1-D computer calculations predict a 5 GeV heavy ion beam could produce gains in excess of 200. The behavior of this target as a function of ion range, tamper thickness and spot size has been studied.

  20. Rapid Coarsening of Ion Beam Ripple Patterns by Defect Annihilation

    SciTech Connect

    Hansen, Henri; Messlinger, Sebastian; Stoian, Georgiana; Redinger, Alex; Krug, Joachim; Michely, Thomas

    2009-04-10

    Ripple patterns formed on Pt(111) through grazing incidence ion beam erosion coarsen rapidly. At and below 450 K coarsening of the patterns is athermal and kinetic, unrelated to diffusion and surface free energy. Similar to the situation for sand dunes, coarsening takes place through annihilation reactions of mobile defects in the pattern. The defect velocity derived on the basis of a simple model agrees quantitatively with the velocity of monatomic steps illuminated by the ion beam.

  1. A preliminary model of ion beam neutralization. [in thruster plasmas

    NASA Technical Reports Server (NTRS)

    Parks, D. E.; Katz, I.

    1979-01-01

    A theoretical model of neutralized thruster ion beam plasmas has been developed. The basic premise is that the beam forms an electrostatic trap for the neutralizing electrons. A Maxwellian spectrum of electron energies is maintained by collisions between trapped electrons and by collective randomization of velocities of electrons injected from the neutralizer into the surrounding plasma. The theory contains the observed barometric law relationship between electron density and electron temperatures and ion beam spreading in good agreement with measured results.

  2. Transfer Casting From Ion-Beam-Textured Surfaces

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Weigand, A. J.; Sovey, J. S.

    1986-01-01

    Textured surfaces created on metals, ceramics, and polymers. Electron-bombardment ion thrustor used as neutralized-ion-beam source. Beam of directed, energetic ions alter surface chemistry and/or morphology of many materials. By adjusting ion energy and ion-beam current density impinging upon target, precise surface modifications obtained without risk of targetmaterial melting or bulk decomposition. Technique developed to generate precise, controllable, surface microstructures on metals, ceramics, and polymers.

  3. Laser cooling of relativistic heavy-ion beams for FAIR

    NASA Astrophysics Data System (ADS)

    Winters, D.; Beck, T.; Birkl, G.; Dimopoulou, C.; Hannen, V.; Kühl, Th; Lochmann, M.; Loeser, M.; Ma, X.; Nolden, F.; Nörtershäuser, W.; Rein, B.; Sánchez, R.; Schramm, U.; Siebold, M.; Spiller, P.; Steck, M.; Stöhlker, Th; Ullmann, J.; Walther, Th; Wen, W.; Yang, J.; Zhang, D.; Bussmann, M.

    2015-11-01

    Laser cooling is a powerful technique to reduce the longitudinal momentum spread of stored relativistic ion beams. Based on successful experiments at the experimental storage ring at GSI in Darmstadt, of which we show some important results in this paper, we present our plans for laser cooling of relativistic ion beams in the future heavy-ion synchrotron SIS100 at the Facility for Antiproton and Ion Research in Darmstadt.

  4. Stress reduction in ion beam sputtered mixed oxide films.

    PubMed

    Pond, B J; Debar, J I; Carniglia, C K; Raj, T

    1989-07-15

    Thin films deposited by ion beam sputtering typically have a high compressive stress. This paper demonstrates that this stress can be reduced by cosputtering two materials. Thin film mixtures of zirconia (ZrO(2)) and silica (SiO(2)) were prepared with a range of compositions using ion beam sputtering. The refractive index was found to vary almost linearly with composition. The large stress observed in zirconia films was found to be reduced significantly by the addition of silica. PMID:20555602

  5. Stress reduction in ion beam sputtered mixed oxide films

    SciTech Connect

    Pond, B. J.; DeBar, J. I.; Carniglia, C. K.; Raj, T.

    1989-07-15

    Thin films deposited by ion beam sputtering typically have a high compressive stress. This paper demonstrates that this stress can be reduced by cosputtering two materials. Thin film mixtures of zirconia (ZrO/sub 2/) and silica (SiO/sub 2/) were prepared with a range of compositions using ion beam sputtering. The refractive index was found to vary almost linearly with composition. The large stress observed in zirconia films was found to be reduced significantly by the addition of silica.

  6. Rapid thermal annealing of ion beam synthesized {beta}-FeSi{sub 2} nanoparticles in Si

    SciTech Connect

    Sun, C. M.; Tsang, H. K.; Wong, S. P.; Cheung, W. Y.; Ke, N.; Hark, S. K.

    2008-05-26

    High crystal-quality {beta}-FeSi{sub 2} nanoparticles in silicon, prepared by ion beam synthesis and subjected to rapid thermal annealing (RTA), are investigated. Completely amorphous Fe-Si layers are formed by Fe implantation at cryogenic temperature, with a dosage of 5x10{sup 15} cm{sup -2}, into float-zone silicon. After RTA at 900 deg. C for 60 s, {beta}-FeSi{sub 2} precipitates are aggregated in the Si matrix and give {approx}1.5 {mu}m photoluminescence. High-resolution plan-view transmission electron microscopy revealed that some strain is present in the RTA treated FeSi{sub 2} particles. Silicon dislocations, coming from the strain relaxation during the additional long-term annealing, are observed around {beta}-FeSi{sub 2} particles.

  7. High intensity ion beam injection into the 88-inch cyclotron

    SciTech Connect

    Wutte, Daniela; Clark, Dave J.; Laune, Bernard; Leitner,Matthaeus A.; Lyneis, Claude M.

    2000-05-31

    Low cross section experiments to produce super-heavyelements have increased the demand for high intensity heavy ion beams atenergies of about 5 MeV/nucleon at the 88-Inch Cyclotron at the LawrenceBerkeley National Laboratory. Therefore, efforts are underway to increasethe overall ion beam transmission through the axial injection line andthe cyclotron. The ion beam emittance has been measured for various ionmasses and charge states. Beam transport simulations including spacecharge effects were performed for both of the injection line and the ionsource extraction. The relatively low nominal injection voltage of 10 kVwas found to be the main factor for ion beam losses, because of beam blowup due to space charge forces at higher intensities. Consequently,experiments and simulations have been performed at higherinjectionenergies, and it was demonstrated that the ion beams could still becentered in the cyclotron at these energies. Therefore, the new injectorion source VENUS and its ion beam transport system (currently underconstruction at the 88-Inch Cyclotron) are designed for extractionvoltages up to 30 kV.

  8. Mechanical and tribological properties of ion beam-processed surfaces

    SciTech Connect

    Kodali, P.

    1998-01-01

    The intent of this work was to broaden the applications of well-established surface modification techniques and to elucidate the various wear mechanisms that occur in sliding contact of ion-beam processed surfaces. The investigation included characterization and evaluation of coatings and modified surfaces synthesized by three surface engineering methods; namely, beam-line ion implantation, plasma-source ion implantation, and DC magnetron sputtering. Correlation among measured properties such as surface hardness, fracture toughness, and wear behavior was also examined. This dissertation focused on the following areas of research: (1) investigating the mechanical and tribological properties of mixed implantation of carbon and nitrogen into single crystal silicon by beam-line implantation; (2) characterizing the mechanical and tribological properties of diamond-like carbon (DLC) coatings processed by plasma source ion implantation; and (3) developing and evaluating metastable boron-carbon-nitrogen (BCN) compound coatings for mechanical and tribological properties. The surface hardness of a mixed carbon-nitrogen implant sample improved significantly compared to the unimplanted sample. However, the enhancement in the wear factor of this sample was found to be less significant than carbon-implanted samples. The presence of nitrogen might be responsible for the degraded wear behavior since nitrogen-implantation alone resulted in no improvement in the wear factor. DLC coatings have low friction, low wear factor, and high hardness. The fracture toughness of DLC coatings has been estimated for the first time. The wear mechanism in DLC coatings investigated with a ruby slider under a contact stress of 1 GPa was determined to be plastic deformation. The preliminary data on metastable BCN compound coatings indicated high friction, low wear factor, and high hardness.

  9. Improve the corrosion and cytotoxic behavior of NiTi implants with use of the ion beam technologies

    SciTech Connect

    Meisner, L. L. Meisner, S. N.; Matveeva, V. A.; Matveev, A. L.

    2015-11-17

    The corrosion resistance behavior and cytotoxicity of binary NiTi-base alloy specimens subjected to surface modification by silicon ion beams and the proliferative ability of mesenchymal stem cells (MSC) of rat marrow on an ion-implanted surface of the alloy have been studied. The silicon ion beam processing of specimen surfaces is shown to bring about a nearly two-fold improvement in the corrosion resistance of the material to attack by acqueous solutions of NaCl and human plasma and a drastic decrease in the nickel concentration after immersion of the specimens into the solutions for ∼3400 and ∼6000 h, respectively. It is found that MSC proliferation strongly depends on the surface structure, roughness and chemical condition of NiTi implants.

  10. Improve the corrosion and cytotoxic behavior of NiTi implants with use of the ion beam technologies

    NASA Astrophysics Data System (ADS)

    Meisner, L. L.; Matveeva, V. A.; Meisner, S. N.; Matveev, A. L.

    2015-11-01

    The corrosion resistance behavior and cytotoxicity of binary NiTi-base alloy specimens subjected to surface modification by silicon ion beams and the proliferative ability of mesenchymal stem cells (MSC) of rat marrow on an ion-implanted surface of the alloy have been studied. The silicon ion beam processing of specimen surfaces is shown to bring about a nearly two-fold improvement in the corrosion resistance of the material to attack by acqueous solutions of NaCl and human plasma and a drastic decrease in the nickel concentration after immersion of the specimens into the solutions for ˜3400 and ˜6000 h, respectively. It is found that MSC proliferation strongly depends on the surface structure, roughness and chemical condition of NiTi implants.

  11. Fast Ion Beam Microscopy of Whole Cells

    NASA Astrophysics Data System (ADS)

    Watt, Frank; Chen, Xiao; Chen, Ce-Belle; Udalagama, Chammika Nb; Ren, Minqin; Pastorin, G.; Bettiol, Andrew

    2013-08-01

    The way in which biological cells function is of prime importance, and the determination of such knowledge is highly dependent on probes that can extract information from within the cell. Probing deep inside the cell at high resolutions however is not easy: optical microscopy is limited by fundamental diffraction limits, electron microscopy is not able to maintain spatial resolutions inside a whole cell without slicing the cell into thin sections, and many other new and novel high resolution techniques such as atomic force microscopy (AFM) and near field scanning optical microscopy (NSOM) are essentially surface probes. In this paper we show that microscopy using fast ions has the potential to extract information from inside whole cells in a unique way. This novel fast ion probe utilises the unique characteristic of MeV ion beams, which is the ability to pass through a whole cell while maintaining high spatial resolutions. This paper first addresses the fundamental difference between several types of charged particle probes, more specifically focused beams of electrons and fast ions, as they penetrate organic material. Simulations show that whereas electrons scatter as they penetrate the sample, ions travel in a straight path and therefore maintain spatial resolutions. Also described is a preliminary experiment in which a whole cell is scanned using a low energy (45 keV) helium ion microscope, and the results compared to images obtained using a focused beam of fast (1.2 MeV) helium ions. The results demonstrate the complementarity between imaging using low energy ions, which essentially produce a high resolution image of the cell surface, and high energy ions, which produce an image of the cell interior. The characteristics of the fast ion probe appear to be ideally suited for imaging gold nanoparticles in whole cells. Using scanning transmission ion microscopy (STIM) to image the cell interior, forward scattering transmission ion microscopy (FSTIM) to improve the

  12. Summary of Industry-Academia Collaboration Projects on Cluster Ion Beam Process Technology

    NASA Astrophysics Data System (ADS)

    Yamada, Isao; Matsuo, Jiro; Toyoda, Noriaki

    2008-11-01

    Processes employing clusters of ions comprised of a few hundred to many thousand atoms are now being developed into a new field of ion beam technology. Cluster-surface collisions produce important non-linear effects which are being applied to shallow junction formation, to etching and smoothing of semiconductors, metals, and dielectrics, to assisted formation of thin films with nano-scale accuracy, and to other surface modification applications. In 2000, a four year R&D project for development of industrial technology began in Japan under funding from the New Energy and Industrial Technology Development Organization (NEDO). Subjects of the projects are in areas of equipment development, semiconductor surface processing, high accuracy surface processing and high-quality film formation. In 2002, another major cluster ion beam project which emphasized nano-technology applications has started under a contract from the Ministry of Economy and Technology for Industry (METI). This METI project involved development related to size-selected cluster ion beam equipment and processes, and development of GCIB processes for very high rate etching and for zero damage etching of magnetic materials and compound semiconductor materials. This paper describes summery of the results.

  13. Bright focused ion beam sources based on laser-cooled atoms

    NASA Astrophysics Data System (ADS)

    McClelland, J. J.; Steele, A. V.; Knuffman, B.; Twedt, K. A.; Schwarzkopf, A.; Wilson, T. M.

    2016-03-01

    Nanoscale focused ion beams (FIBs) represent one of the most useful tools in nanotechnology, enabling nanofabrication via milling and gas-assisted deposition, microscopy and microanalysis, and selective, spatially resolved doping of materials. Recently, a new type of FIB source has emerged, which uses ionization of laser cooled neutral atoms to produce the ion beam. The extremely cold temperatures attainable with laser cooling (in the range of 100 μK or below) result in a beam of ions with a very small transverse velocity distribution. This corresponds to a source with extremely high brightness that rivals or may even exceed the brightness of the industry standard Ga+ liquid metal ion source. In this review, we discuss the context of ion beam technology in which these new ion sources can play a role, their principles of operation, and some examples of recent demonstrations. The field is relatively new, so only a few applications have been demonstrated, most notably low energy ion microscopy with Li ions. Nevertheless, a number of promising new approaches have been proposed and/or demonstrated, suggesting that a rapid evolution of this type of source is likely in the near future.

  14. Bright focused ion beam sources based on laser-cooled atoms

    PubMed Central

    McClelland, J. J.; Steele, A. V.; Knuffman, B.; Twedt, K. A.; Schwarzkopf, A.; Wilson, T. M.

    2016-01-01

    Nanoscale focused ion beams (FIBs) represent one of the most useful tools in nanotechnology, enabling nanofabrication via milling and gas-assisted deposition, microscopy and microanalysis, and selective, spatially resolved doping of materials. Recently, a new type of FIB source has emerged, which uses ionization of laser cooled neutral atoms to produce the ion beam. The extremely cold temperatures attainable with laser cooling (in the range of 100 μK or below) result in a beam of ions with a very small transverse velocity distribution. This corresponds to a source with extremely high brightness that rivals or may even exceed the brightness of the industry standard Ga+ liquid metal ion source. In this review we discuss the context of ion beam technology in which these new ion sources can play a role, their principles of operation, and some examples of recent demonstrations. The field is relatively new, so only a few applications have been demonstrated, most notably low energy ion microscopy with Li ions. Nevertheless, a number of promising new approaches have been proposed and/or demonstrated, suggesting that a rapid evolution of this type of source is likely in the near future. PMID:27239245

  15. Laser cooling of a stored ion beam: A first step towards crystalline beams

    SciTech Connect

    Hangst, J.S.

    1992-09-01

    This report discusses: a brief introduction to storage rings; crystalline beams; laser cooling of ion beams; description of astrid-the experimental setup; first experiments with lithium 7 ion beam; experiments with erbium 166 ion beams; further experiments with lithium 7 ion beams; beam dynamics, laser cooling,and crystalline beams in astrid; possibilities for further study in astrid.

  16. Ion-beam assisted laser fabrication of sensing plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Kuchmizhak, Aleksandr; Gurbatov, Stanislav; Vitrik, Oleg; Kulchin, Yuri; Milichko, Valentin; Makarov, Sergey; Kudryashov, Sergey

    2016-01-01

    Simple high-performance, two-stage hybrid technique was developed for fabrication of different plasmonic nanostructures, including nanorods, nanorings, as well as more complex structures on glass substrates. In this technique, a thin noble-metal film on a dielectric substrate is irradiated by a single tightly focused nanosecond laser pulse and then the modified region is slowly polished by an accelerated argon ion (Ar+) beam. As a result, each nanosecond laser pulse locally modifies the initial metal film through initiation of fast melting and subsequent hydrodynamic processes, while the following Ar+-ion polishing removes the rest of the film, revealing the hidden topography features and fabricating separate plasmonic structures on the glass substrate. We demonstrate that the shape and lateral size of the resulting functional plasmonic nanostructures depend on the laser pulse energy and metal film thickness, while subsequent Ar+-ion polishing enables to vary height of the resulting nanostructures. Plasmonic properties of the fabricated nanostructures were characterized by dark-field micro-spectroscopy, Raman and photoluminescence measurements performed on single nanofeatures, as well as by supporting numerical calculations of the related electromagnetic near-fields and Purcell factors. The developed simple two-stage technique represents a new step towards direct large-scale laser-induced fabrication of highly ordered arrays of complex plasmonic nanostructures.

  17. Ion-beam assisted laser fabrication of sensing plasmonic nanostructures.

    PubMed

    Kuchmizhak, Aleksandr; Gurbatov, Stanislav; Vitrik, Oleg; Kulchin, Yuri; Milichko, Valentin; Makarov, Sergey; Kudryashov, Sergey

    2016-01-01

    Simple high-performance, two-stage hybrid technique was developed for fabrication of different plasmonic nanostructures, including nanorods, nanorings, as well as more complex structures on glass substrates. In this technique, a thin noble-metal film on a dielectric substrate is irradiated by a single tightly focused nanosecond laser pulse and then the modified region is slowly polished by an accelerated argon ion (Ar(+)) beam. As a result, each nanosecond laser pulse locally modifies the initial metal film through initiation of fast melting and subsequent hydrodynamic processes, while the following Ar(+)-ion polishing removes the rest of the film, revealing the hidden topography features and fabricating separate plasmonic structures on the glass substrate. We demonstrate that the shape and lateral size of the resulting functional plasmonic nanostructures depend on the laser pulse energy and metal film thickness, while subsequent Ar(+)-ion polishing enables to vary height of the resulting nanostructures. Plasmonic properties of the fabricated nanostructures were characterized by dark-field micro-spectroscopy, Raman and photoluminescence measurements performed on single nanofeatures, as well as by supporting numerical calculations of the related electromagnetic near-fields and Purcell factors. The developed simple two-stage technique represents a new step towards direct large-scale laser-induced fabrication of highly ordered arrays of complex plasmonic nanostructures. PMID:26776569

  18. Ion-beam assisted laser fabrication of sensing plasmonic nanostructures

    PubMed Central

    Kuchmizhak, Aleksandr; Gurbatov, Stanislav; Vitrik, Oleg; Kulchin, Yuri; Milichko, Valentin; Makarov, Sergey; Kudryashov, Sergey

    2016-01-01

    Simple high-performance, two-stage hybrid technique was developed for fabrication of different plasmonic nanostructures, including nanorods, nanorings, as well as more complex structures on glass substrates. In this technique, a thin noble-metal film on a dielectric substrate is irradiated by a single tightly focused nanosecond laser pulse and then the modified region is slowly polished by an accelerated argon ion (Ar+) beam. As a result, each nanosecond laser pulse locally modifies the initial metal film through initiation of fast melting and subsequent hydrodynamic processes, while the following Ar+-ion polishing removes the rest of the film, revealing the hidden topography features and fabricating separate plasmonic structures on the glass substrate. We demonstrate that the shape and lateral size of the resulting functional plasmonic nanostructures depend on the laser pulse energy and metal film thickness, while subsequent Ar+-ion polishing enables to vary height of the resulting nanostructures. Plasmonic properties of the fabricated nanostructures were characterized by dark-field micro-spectroscopy, Raman and photoluminescence measurements performed on single nanofeatures, as well as by supporting numerical calculations of the related electromagnetic near-fields and Purcell factors. The developed simple two-stage technique represents a new step towards direct large-scale laser-induced fabrication of highly ordered arrays of complex plasmonic nanostructures. PMID:26776569

  19. Facile fabrication of nanogap electrodes for suspended graphene characterization using direct ion beam patterning

    NASA Astrophysics Data System (ADS)

    Qi, Zhengqing John; Johnson, A. T. Charlie

    2014-03-01

    Graphene is a two-dimensional sheet of carbon atoms with exceptional electronic and mechanical properties, giving it tremendous potential in nanoelectromechanical system devices. Here, we present a method to easily and reproducibly fabricate suspended graphene nanoribbons across nanogap electrodes of various separation lengths, demonstrating a technique with aggressive gap scalability and device geometry control. Fabrication is based on using a focused gallium ion beam to create a slit between joined electrodes prepatterened on a 100 nm thick silicon nitride membrane. The transparency of the nitride membrane provides reduced ion backscattering and adds milling resolution. Large-area monolayer graphene grown by atmospheric pressure chemical vapor deposition was transferred onto the silicon nitride chip and patterned into a free-standing ribbon geometry via electron beam lithography on organic ebeam resist followed by an O2 plasma etch. We find that commonly used inorganic negative tone resist that requires a buffered oxide etch for resist removal will attack the adhesion layer (Cr2O3) between the electrode and nitride membrane, which is exposed immediately after milling, so an organic resist was selected to avoid this. Using this technique, we fabricate freestanding graphene devices contacted by electrodes of sub-100 nm separation length and preform a comparative study on the effects of current annealing on device resistance. The gap resolution of this technique is limited by the gallium ion beam, which allows for sub-100 nm gaps. Sub-10 nm gaps are feasible with He ion beams, proving direct applications in probing the high field transport properties of graphene nanoribbons at post-CMOS length scales.

  20. Patient position verification in ion-beam therapy using ion-beam radiography and fiducial markers

    NASA Astrophysics Data System (ADS)

    Huber, Lucas; Telsemeyer, Julia; Martišíková, Mária; Jäkel, Oliver

    2011-11-01

    The basic rationale for radiation therapy using ion-beams is its high local precision of dose deposition. Therefore accurate patient positioning prior to and during beam application is a crucial part of the therapy. The current standard position verification procedure uses X-ray based imaging before each beam application. The patient is assumed to remain in his position throughout irradiation. Currently there is no monitoring of the patient position or organ movement during treatment. The aim of this study is to investigate the possibility of verifying the position of a fiducial marker during therapy using ion radiography. Some modern ion therapy facilities like the Heidelberg Ion-Beam Therapy Center (HIT), where our measurements were carried out, use scanning pencil beams to apply dose. Exploiting them for imaging allows to solely irradiate regions of interest in the patient's body, e.g. tissue containing medical markers. The advantage of this technique is that it can be performed quickly in turn with therapeutic beam application and irradiates only very little tissue. For our measurements we used conventional medical metal markers embedded in phantom material mimicking body tissue. To image the residual beam we use a Perkin Elmer RID256-L flat panel detector. In an idealized setup the marker contrast was measured to be as high as 60%, which was reduced by a factor of 2-2.5 when the marker was placed at distances to the detector in the phantom material larger than 10 cm. It was shown that applying 2ṡ105 carbon ions suffices to make the markers' position visible in a setup of realistic material thickness and marker depth. While the dose is comparable to X-ray imaging, the irradiated volume and, consequently, also the integral dose is considerably reduced. However, in realistic geometries there are large particle range differences in lateral direction yielding steep signal gradients in the radiography. Thus, the useful image area with unambiguous signal

  1. Ion Beam Induced Surface Modulations from Nano to Pico: Optimizing Deposition During Erosion and Erosion During Deposition.

    SciTech Connect

    MoberlyChan, W J; Schalek, R

    2007-11-08

    Ion beams of sufficient energy to erode a surface can lead to surface modulations that depend on the ion beam, the material surface it impinges, and extrinsic parameters such as temperature and geometric boundary conditions. Focused Ion Beam technology both enables site-specific placement of these modulations and expedites research through fast, high dose and small efficient use of material. The DualBeam (FIB/SEM) enables in situ metrology, with movies observing ripple formation, wave motion, and the influence of line defects. Nanostructures (ripples of >400nm wavelength to dots spaced <40nm) naturally grow from atomically flat surfaces during erosion, however, a steady state size may or may not be achieved as a consequence of numerous controlled parameters: temperature, angle, energy, crystallography. Geometric factors, which can be easily invoked using a FIB, enable a controlled component of deposition (and/or redeposition) to occur during erosion, and conversely allow a component of etching to be incurred during (ion-beam assisted) deposition. High angles of ion beam inclination commonly lead to 'rougher' surfaces, however, the extreme case of 90.0{sup o} etching enables deposition of organized structures 1000 times smaller than the aforementioned, video-recorded nanostructures. Orientation and position of these picostructures (naturally quantized by their atomic spacings) may be controlled by the same parameters as for nanostructures (e.g. ion inclination and imposed boundary conditions, which are flexibly regulated by FIB). Judicious control of angles during FIB-CVD growth stimulates erosion with directionality that produces surface modulations akin to those observed for sputtering. Just as a diamond surface roughens from 1-D ripples to 2-D steps with increasing angle of ion sputtering, so do ripples and steps appear on carbon-grown surfaces with increase in angle of FIB-CVD. Ion beam processing has been a stalwart of the microelectronics industry, is now a

  2. Aerosol-assisted extraction of silicon nanoparticles from wafer slicing waste for lithium ion batteries.

    PubMed

    Jang, Hee Dong; Kim, Hyekyoung; Chang, Hankwon; Kim, Jiwoong; Roh, Kee Min; Choi, Ji-Hyuk; Cho, Bong-Gyoo; Park, Eunjun; Kim, Hansu; Luo, Jiayan; Huang, Jiaxing

    2015-01-01

    A large amount of silicon debris particles are generated during the slicing of silicon ingots into thin wafers for the fabrication of integrated-circuit chips and solar cells. This results in a significant loss of valuable materials at about 40% of the mass of ingots. In addition, a hazardous silicon sludge waste is produced containing largely debris of silicon, and silicon carbide, which is a common cutting material on the slicing saw. Efforts in material recovery from the sludge and recycling have been largely directed towards converting silicon or silicon carbide into other chemicals. Here, we report an aerosol-assisted method to extract silicon nanoparticles from such sludge wastes and their use in lithium ion battery applications. Using an ultrasonic spray-drying method, silicon nanoparticles can be directly recovered from the mixture with high efficiency and high purity for making lithium ion battery anode. The work here demonstrated a relatively low cost approach to turn wafer slicing wastes into much higher value-added materials for energy applications, which also helps to increase the sustainability of semiconductor material and device manufacturing. PMID:25819285

  3. Aerosol-Assisted Extraction of Silicon Nanoparticles from Wafer Slicing Waste for Lithium Ion Batteries

    PubMed Central

    Jang, Hee Dong; Kim, Hyekyoung; Chang, Hankwon; Kim, Jiwoong; Roh, Kee Min; Choi, Ji-Hyuk; Cho, Bong-Gyoo; Park, Eunjun; Kim, Hansu; Luo, Jiayan; Huang, Jiaxing

    2015-01-01

    A large amount of silicon debris particles are generated during the slicing of silicon ingots into thin wafers for the fabrication of integrated-circuit chips and solar cells. This results in a significant loss of valuable materials at about 40% of the mass of ingots. In addition, a hazardous silicon sludge waste is produced containing largely debris of silicon, and silicon carbide, which is a common cutting material on the slicing saw. Efforts in material recovery from the sludge and recycling have been largely directed towards converting silicon or silicon carbide into other chemicals. Here, we report an aerosol-assisted method to extract silicon nanoparticles from such sludge wastes and their use in lithium ion battery applications. Using an ultrasonic spray-drying method, silicon nanoparticles can be directly recovered from the mixture with high efficiency and high purity for making lithium ion battery anode. The work here demonstrated a relatively low cost approach to turn wafer slicing wastes into much higher value-added materials for energy applications, which also helps to increase the sustainability of semiconductor material and device manufacturing. PMID:25819285

  4. Aerosol-Assisted Extraction of Silicon Nanoparticles from Wafer Slicing Waste for Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Jang, Hee Dong; Kim, Hyekyoung; Chang, Hankwon; Kim, Jiwoong; Roh, Kee Min; Choi, Ji-Hyuk; Cho, Bong-Gyoo; Park, Eunjun; Kim, Hansu; Luo, Jiayan; Huang, Jiaxing

    2015-03-01

    A large amount of silicon debris particles are generated during the slicing of silicon ingots into thin wafers for the fabrication of integrated-circuit chips and solar cells. This results in a significant loss of valuable materials at about 40% of the mass of ingots. In addition, a hazardous silicon sludge waste is produced containing largely debris of silicon, and silicon carbide, which is a common cutting material on the slicing saw. Efforts in material recovery from the sludge and recycling have been largely directed towards converting silicon or silicon carbide into other chemicals. Here, we report an aerosol-assisted method to extract silicon nanoparticles from such sludge wastes and their use in lithium ion battery applications. Using an ultrasonic spray-drying method, silicon nanoparticles can be directly recovered from the mixture with high efficiency and high purity for making lithium ion battery anode. The work here demonstrated a relatively low cost approach to turn wafer slicing wastes into much higher value-added materials for energy applications, which also helps to increase the sustainability of semiconductor material and device manufacturing.

  5. Graphene-Assisted Chemical Etching of Silicon Using Anodic Aluminum Oxides as Patterning Templates.

    PubMed

    Kim, Jungkil; Lee, Dae Hun; Kim, Ju Hwan; Choi, Suk-Ho

    2015-11-01

    We first report graphene-assisted chemical etching (GaCE) of silicon by using patterned graphene as an etching catalyst. Chemical-vapor-deposition-grown graphene transferred on a silicon substrate is patterned to a mesh with nanohole arrays by oxygen plasma etching using an anodic- aluminum-oxide etching mask. The prepared graphene mesh/silicon is immersed in a mixture solution of hydrofluoric acid and hydro peroxide with various molecular fractions at optimized temperatures. The silicon underneath graphene mesh is then selectively etched to form aligned nanopillar arrays. The morphology of the nanostructured silicon can be controlled to be smooth or porous depending on the etching conditions. The experimental results are systematically discussed based on possible mechanisms for GaCE of Si. PMID:26473800

  6. Schottky Barrier Catalysis Mechanism in Metal-Assisted Chemical Etching of Silicon.

    PubMed

    Lai, Ruby A; Hymel, Thomas M; Narasimhan, Vijay K; Cui, Yi

    2016-04-13

    Metal-assisted chemical etching (MACE) is a versatile anisotropic etch for silicon although its mechanism is not well understood. Here we propose that the Schottky junction formed between metal and silicon plays an essential role on the distribution of holes in silicon injected from hydrogen peroxide. The proposed mechanism can be used to explain the dependence of the etching kinetics on the doping level, doping type, crystallographic surface direction, and etchant solution composition. We used the doping dependence of the reaction to fabricate a novel etch stop for the reaction. PMID:27018712

  7. Semiconductor-based heterostructure formation using low energy ion beams: Ion beam deposition (IBD) and combined ion and molecular beam deposition (CIMD)

    SciTech Connect

    Herbots, N.; Hellman, O.C.; Cullen, P.A.; Vancauwenberghe, O.

    1988-09-15

    In our previous work, we investigated the use of ion beam deposition (IBD) to grow epitaxial films at temperatures lower than those used in thermal processing (less than 500/sup 0/C). Presently, we have applied IBD to the growth of dense (6.4 x 10/sup 22/ atom/cm/sup 3/) silicon dioxide thin films at 400/sup 0/C. Through these experiments we have found several clues to the microscopic processes leading to the formation of thin film phases by low energy ions. Using Monte-Carlo simulations, we have found that low energy collision cascades in silicon have unique features such as a high probability of relocation events that refill vacancies as they are created. Our results show that the combination of a low defect density in low energy collision cascades with the high mobility of interstitials in covalent materials can be used to athermally generate atomic displacements tha can lead to ordering. These displacements can lead to epitaxial ordering at substrate temperatures below the minimum temperature necessary for molecular beam epitaxy (550/sup 0/C). It can also lead to the formation of high quality silicon dioxide at temperatures well below that of thermal oxidation in silicon (i.e. <850/sup 0/C). A growth model which we derive from these observations provides a fundamental understanding of how atomic collisions can be used to induce epitaxy or compound formation at low temperatures.

  8. Combining focused ion beam and atomic layer deposition in nanostructure fabrication

    NASA Astrophysics Data System (ADS)

    Han, Zhongmei; Vehkamäki, Marko; Leskelä, Markku; Ritala, Mikko

    2014-03-01

    Combining the strengths of atomic layer deposition (ALD) with focused ion beam (FIB) milling provides new opportunities for making 3D nanostructures with flexible choice of materials. Such structures are of interest in prototyping microelectronic and MEMS devices which utilize ALD grown thin films. As-milled silicon structures suffer from segregation and roughening upon heating, however. ALD processes are typically performed at 200-500 °C, which makes thermal stability of the milled structures a critical issue. In this work Si substrates were milled with different gallium ion beam incident angles and then annealed at 250 °C. The amount of implanted gallium was found to rapidly decrease with increasing incident angle with respect of surface normal, which therefore improves the thermal stability of the milled features. 60° incident angle was found as the best compromise with respect to thermal stability and ease of milling. ALD Al2O3 growth at 250 °C on the gallium FIB milled silicon was possible in all cases, even when segregation was taking place. ALD Al2O3 could be used both for creating a chemically uniform surface and for controlled narrowing of FIB milled trenches.

  9. Electron-Cloud Effects on Heavy-Ion Beams

    SciTech Connect

    Azevedo, T; Friedman, A; Cohen, R; Vay, J

    2004-03-29

    Stray electrons can be introduced in positive-charge accelerators for heavy ion fusion (or other applications) as a result of ionization of ambient gas or gas released from walls due to halo-ion impact, or as a result of secondary-electron emission. We are developing a capability for self-consistent simulation of ion beams with the electron clouds they produce. We report on an ingredient in this capability, the effect of specified electron cloud distributions on the dynamics of a coasting ion beam. We consider here electron distributions with axially varying density, centroid location, or radial shape, and examine both random and sinusoidally varying perturbations. We find that amplitude variations are most effective in spoiling ion beam quality, though for sinusoidal variations which match the natural ion beam centroid oscillation or breathing mode frequencies, the centroid and shape perturbations can also be effective. We identify a possible instability associated with resonance with the beam-envelope ''breathing'' mode. One conclusion from this study is that heavy-ion beams are surprisingly robust to electron clouds, compared to a priori expectations.

  10. DEVELOPMENT OF EMITTANCE ANALYSIS SOFTWARE FOR ION BEAM CHARACTERIZATION

    SciTech Connect

    Padilla, M. J.; Liu, Y.

    2007-01-01

    Transverse beam emittance is a crucial property of charged particle beams that describes their angular and spatial spread. It is a fi gure of merit frequently used to determine the quality of ion beams, the compatibility of an ion beam with a given beam transport system, and the ability to suppress neighboring isotopes at on-line mass separator facilities. Generally a high quality beam is characterized by a small emittance. In order to determine and improve the quality of ion beams used at the Holifi eld Radioactive Ion beam Facility (HRIBF) for nuclear physics and nuclear astrophysics research, the emittances of the ion beams are measured at the off-line Ion Source Test Facilities. In this project, emittance analysis software was developed to perform various data processing tasks for noise reduction, to evaluate root-mean-square emittance, Twiss parameters, and area emittance of different beam fractions. The software also provides 2D and 3D graphical views of the emittance data, beam profi les, emittance contours, and RMS. Noise exclusion is essential for accurate determination of beam emittance values. A Self-Consistent, Unbiased Elliptical Exclusion (SCUBEEx) method is employed. Numerical data analysis techniques such as interpolation and nonlinear fi tting are also incorporated into the software. The software will provide a simplifi ed, fast tool for comprehensive emittance analysis. The main functions of the software package have been completed. In preliminary tests with experimental emittance data, the analysis results using the software were shown to be accurate.

  11. Intense ion beams accelerated by ultra-intense laser pulses

    NASA Astrophysics Data System (ADS)

    Roth, Markus; Cowan, T. E.; Gauthier, J. C.; Vehn, J. Meyer-Ter; Allen, M.; Audebert, P.; Blazevic, A.; Fuchs, J.; Geissel, M.; Hegelich, M.; Karsch, S.; Pukhov, A.; Schlegel, T.

    2002-04-01

    The discovery of intense ion beams off solid targets irradiated by ultra-intense laser pulses has become the subject of extensive international interest. These highly collimated, energetic beams of protons and heavy ions are strongly depending on the laser parameters as well as on the properties of the irradiated targets. Therefore we have studied the influence of the target conditions on laser-accelerated ion beams generated by multi-terawatt lasers. The experiments were performed using the 100 TW laser facility at Laboratoire pour l'Utilisation des Laser Intense (LULI). The targets were irradiated by pulses up to 5×1019 W/cm2 (~300 fs,λ=1.05 μm) at normal incidence. A strong dependence on the surface conditions, conductivity, shape and purity was observed. The plasma density on the front and rear surface was determined by laser interferometry. We characterized the ion beam by means of magnetic spectrometers, radiochromic film, nuclear activation and Thompson parabolas. The strong dependence of the ion beam acceleration on the conditions on the target back surface was confirmed in agreement with predictions based on the target normal sheath acceleration (TNSA) mechanism. Finally shaping of the ion beam has been demonstrated by the appropriate tailoring of the target. .

  12. Understanding the ion beam in EUV mask blank production

    NASA Astrophysics Data System (ADS)

    Kearney, Patrick; Jindal, Vibhu; Weaver, Alfred; Teora, Pat; Sporre, John; Ruzic, David; Goodwin, Frank

    2012-03-01

    One of the major technical hurdles to be overcome before EUV lithography can enter high volume manufacturing is the amount of defects in EUV mask blanks, many of which occur during the EUV reflector deposition process. The technology currently used to deposit this reflector is ion beam sputter deposition. Understanding the properties of the ion beam and the nature of the plasma in the deposition chamber is therefore critical to understanding defect production mechanisms and subsequently eliminating them. In this work, we have studied how the source parameters influence ion beam divergence, its footprint on the target, and the amount of beam that misses the target and hits the shielding. By optimizing the source parameters, we can modulate certain target- and shield-specific defect types. We have compared our data with models of source performance and found general agreement, enabling the theory to be fine-tuned based on the results of the measurements. Models are being developed to better describe actual source performance. We have also investigated the plasma conditions the ion beam creates in the tool, which is crucial to understanding the transport of defects from their source to the mask. A well characterized ion beam and plasma will lead to process and tool changes that will ultimately reduce defect levels in EUV mask blanks.

  13. Annealing of TiO2 Films Deposited on Si by Irradiating Nitrogen Ion Beams

    SciTech Connect

    Yokota, Katsuhiro; Yano, Yoshinori; Miyashita, Fumiyoshi

    2006-11-13

    Thin TiO2 films were deposited on Si at a temperature of 600 deg. C by an ion beam assisted deposition (IBAD) method. The TiO2 films were annealed for 30 min in Ar at temperatures below 700 deg. C. The as-deposited TiO2 films had high permittivities such 200 {epsilon}o and consisted of crystallites that were not preferentially oriented to the c-axis but had an expanded c-axis. On the annealed TiO2 films, permittivities became lower with increasing annealing temperature, and crystallites were oriented preferentially to the (110) plane.

  14. Mutation induced with ion beam irradiation in rose

    NASA Astrophysics Data System (ADS)

    Yamaguchi, H.; Nagatomi, S.; Morishita, T.; Degi, K.; Tanaka, A.; Shikazono, N.; Hase, Y.

    2003-05-01

    The effects of mutation induction by ion beam irradiation on axillary buds in rose were investigated. Axillary buds were irradiated with carbon and helium ion beams, and the solid mutants emerged after irradiation by repeated cutting back. In helium ion irradiation, mutations were observed in plants derived from 9 buds among 56 irradiated buds in 'Orange Rosamini' and in plants derived from 10 buds among 61 irradiated buds in 'Red Minimo'. In carbon ion, mutations were observed in plants derived from 12 buds among 88 irradiated buds in 'Orange Rosamini'. Mutations were induced not only in higher doses but also in lower doses, with which physiological effect by irradiation was hardly observed. Irradiation with both ion beams induced mutants in the number of petals, in flower size, in flower shape and in flower color in each cultivar.

  15. Fast ion beam chopping system for neutron generators

    NASA Astrophysics Data System (ADS)

    Hahto, S. K.; Hahto, S. T.; Leung, K. N.; Reijonen, J.; Miller, T. G.; Van Staagen, P. K.

    2005-02-01

    Fast deuterium (D+) and tritium (T+) ion beam pulses are needed in some neutron-based imaging systems. A compact, integrated fast ion beam extraction and chopping system has been developed and tested at the Lawrence Berkeley National Laboratory for these applications, and beam pulses with 15ns full width at half maximum have been achieved. Computer simulations together with experimental tests indicate that even faster pulses are achievable by shortening the chopper voltage rise time. This chopper arrangement will be implemented in a coaxial neutron generator, in which a small point-like neutron source is created by multiple 120keV D+ ion beams hitting a titanium target at the center of the source.

  16. Fast ion beam chopping system for neutron generators

    SciTech Connect

    Hahto, S.K.; Hahto, S.T.; Leung, K.N.; Reijonen, J.; Miller, T.G.; Van Staagen, P.K.

    2005-02-01

    Fast deuterium (D{sup +}) and tritium (T{sup +}) ion beam pulses are needed in some neutron-based imaging systems. A compact, integrated fast ion beam extraction and chopping system has been developed and tested at the Lawrence Berkeley National Laboratory for these applications, and beam pulses with 15 ns full width at half maximum have been achieved. Computer simulations together with experimental tests indicate that even faster pulses are achievable by shortening the chopper voltage rise time. This chopper arrangement will be implemented in a coaxial neutron generator, in which a small point-like neutron source is created by multiple 120 keV D{sup +} ion beams hitting a titanium target at the center of the source.

  17. Lithium ion beam driven hohlraums for PBFA II

    SciTech Connect

    Dukart, R.J.

    1994-05-06

    In our light ion inertial confinement fusion (ICF) program, fusion capsules are driven with an intense x-ray radiation field produced when an intense beam of ions penetrates a radiation case and deposits energy in a foam x-ray conversion region. A first step in the program is to generate and measure these intense fields on the Particle Beam Fusion Accelerator II (PBFA II). Our goal is to generate a 100-eV radiation temperature in lithium ion beam driven hohlraums, the radiation environment which will provide the initial drive temperature for ion beam driven implosion systems designed to achieve high gain. In this paper, we describe the design of such hohlraum targets and their predicted performance on PBFA II as we provide increasing ion beam intensities.

  18. Dust particle diffusion in ion beam transport region.

    PubMed

    Miyamoto, N; Okajima, Y; Romero, C F; Kuwata, Y; Kasuya, T; Wada, M

    2016-02-01

    Dust particles of μm size produced by a monoplasmatron ion source are observed by a laser light scattering. The scattered light signal from an incident laser at 532 nm wavelength indicates when and where a particle passes through the ion beam transport region. As the result, dusts with the size more than 10 μm are found to be distributed in the center of the ion beam, while dusts with the size less than 10 μm size are distributed along the edge of the ion beam. Floating potential and electron temperature at beam transport region are measured by an electrostatic probe. This observation can be explained by a charge up model of the dust in the plasma boundary region. PMID:26932116

  19. Dust particle diffusion in ion beam transport region

    NASA Astrophysics Data System (ADS)

    Miyamoto, N.; Okajima, Y.; Romero, C. F.; Kuwata, Y.; Kasuya, T.; Wada, M.

    2016-02-01

    Dust particles of μm size produced by a monoplasmatron ion source are observed by a laser light scattering. The scattered light signal from an incident laser at 532 nm wavelength indicates when and where a particle passes through the ion beam transport region. As the result, dusts with the size more than 10 μm are found to be distributed in the center of the ion beam, while dusts with the size less than 10 μm size are distributed along the edge of the ion beam. Floating potential and electron temperature at beam transport region are measured by an electrostatic probe. This observation can be explained by a charge up model of the dust in the plasma boundary region.

  20. Ohmic heated sheet for the Ca ion beam production

    SciTech Connect

    Efremov, A.; Bogomolov, S.; Kazarinov, N.; Kochagov, O.; Loginov, V.

    2008-02-15

    The production of intense accelerated {sup 48}Ca ion beams is the key problem in the experiments on the synthesis of new superheavy nuclei. For this purpose in the FLNR (JINR), an electron cyclotron resonance ion source is used at the U-400 cyclotron. The combination of a micro oven with a hot tantalum sheet inside the discharge chamber allowed the production of the intense {sup 48}Ca{sup 5+} ion beam at the {sup 48}Ca consumption of about 0.5 mg/h. In this case, the tantalum sheet is heated by microwaves and plasma electrons. The microwave power of up to 500 W is required to heat the sheet to the temperature of about 500 deg. C. To decrease the required microwave power, a new sheet with a direct Ohmic heating was designed. The present paper describes the method, technique, and preliminary experimental results on the production of the Ca ion beam.

  1. Ohmic heated sheet for the Ca ion beam production.

    PubMed

    Efremov, A; Bogomolov, S; Kazarinov, N; Kochagov, O; Loginov, V

    2008-02-01

    The production of intense accelerated (48)Ca ion beams is the key problem in the experiments on the synthesis of new superheavy nuclei. For this purpose in the FLNR (JINR), an electron cyclotron resonance ion source is used at the U-400 cyclotron. The combination of a micro oven with a hot tantalum sheet inside the discharge chamber allowed the production of the intense (48)Ca(5+) ion beam at the (48)Ca consumption of about 0.5 mg/h. In this case, the tantalum sheet is heated by microwaves and plasma electrons. The microwave power of up to 500 W is required to heat the sheet to the temperature of about 500 degrees C. To decrease the required microwave power, a new sheet with a direct Ohmic heating was designed. The present paper describes the method, technique, and preliminary experimental results on the production of the Ca ion beam. PMID:18315097

  2. Ion Beam Neutralization Using FEAs and Mirror Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Nicolaescu, Dan; Sakai, Shigeki; Gotoh, Yasuhito; Ishikawa, Junzo

    2011-01-01

    Advanced implantation systems used for semiconductor processing require transportation of ion beams which are quasi-parallel and have low energy, such as (11B+,31P+,75As+) with energy in the range Eion = 200-1000 eV. Compensation of ion beam divergence may be obtained through electron injection and confinement in regions of non-uniform magnetic fields. Field emitter arrays with special properties are used as electron sources. The present study shows that electron confinement takes place in regions of gradient magnetic field, such as nearby analyzing, collimator and final energy magnets of the ion beam line. Modeling results have been obtained using Opera3D/Tosca/Scala. In regions of gradient magnetic field, electrons have helical trajectories which are confined like a cloud inside curved "magnetic bottles". An optimal range of positions with respect to the magnet for placing electron sources in gradient magnetic field has been shown to exist.

  3. Surface modification using low energy ground state ion beams

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)

    1990-01-01

    A method of effecting modifications at the surfaces of materials using low energy ion beams of known quantum state, purity, flux, and energy is presented. The ion beam is obtained by bombarding ion-generating molecules with electrons which are also at low energy. The electrons used to bombard the ion generating molecules are separated from the ions thus obtained and the ion beam is directed at the material surface to be modified. Depending on the type of ion generating molecules used, different ions can be obtained for different types of surface modifications such as oxidation and diamond film formation. One area of application is in the manufacture of semiconductor devices from semiconductor wafers.

  4. Neutralization tests on the SERT II spacecraft. [of ion beams

    NASA Technical Reports Server (NTRS)

    Kerslake, W. R.; Domitz, S.

    1979-01-01

    Orbit precession returned the SERT II spacecraft to continuous sunlight in January 1979 for the first time since early 1972, and new experiments were planned and conducted. Neutralization of an ion beam was accomplished by a second neutralizer cathode located 1 meter away. Plasma potential measurements were made of the plasma surrounding the ion beam and connecting the beam to the second neutralizer. When the density of the connecting plasma was increased by turning on the main discharge of a neighboring ion thruster, the neutralization of the ion beam occurred with improved (lower) coupling voltage. These and other tests reported should aid in the future design of spacecraft using electric thruster systems. Data taken indicate that cross neutralization of ion thrusters in a multiple thruster array should occur readily.

  5. Heavy ion beams in extended materials - Computational methods and experiment

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Schimmerling, W.; Wong, M.; Townsend, L. W.

    1987-01-01

    The transport of heavy ion beams in extended materials is a problem of interest in accelerator and space shielding, radiation therapy, and astrophysical and radiobiological studies. The beam particles change their energy and direction of motion through atomic/molecular collisions and undergo occasional radical transformation in nuclear collision. In health physics applications, a heavy ion beam of initially well defined radiation quality is transformed into a complex mixture of diverse quality components after passing through a modest amount of material. This transformation of radiation quality must be understood to adequately explain the biological response of tissue to heavy ion radiation. A theoretical/experimental program to define an ion beam and its products in extended matter is described.

  6. Ion beam textured and coated surfaces experiment (IBEX)

    NASA Technical Reports Server (NTRS)

    Mirtich, Michael J.; Stevens, Nicholas; Merrow, James

    1991-01-01

    The IBEX, with 36 samples of various materials, was placed aboard the LDEF. Twenty-seven of the samples had surfaces modified using ion beam technology, and nine were made up of commercially available materials. The materials are in some way useful in space power systems. The various types of materials tested included six categories: (1) ion beam structured surfaces suitable for solar thermal (concentrator) or space radiators; (2) ion beam sputtered conductive coatings for thermal and space charge control; (3) solar reflector surfaces; (4) flexible thin film coatings and solar array blanket material for protection of spacecraft polymers; (5) painted and/or state-of-the-art solar thermal materials; and (6) micrometeoroid sensitive detector. Data analysis presented include the optical properties of each surface before and after exposure to the space environment and the respective backup surfaces.

  7. Low energy ion beam dynamics of NANOGAN ECR ion source

    NASA Astrophysics Data System (ADS)

    Kumar, Sarvesh; Mandal, A.

    2016-04-01

    A new low energy ion beam facility (LEIBF) has been developed for providing the mass analyzed highly charged intense ion beams of energy ranging from a few tens of keV to a few MeV for atomic, molecular and materials sciences research. The new facility consists of an all permanent magnet 10 GHz electron cyclotron resonance (ECR) ion source (NANOGAN) installed on a high voltage platform (400 kV) which provides large currents of multiply charged ion beams. Higher emittance at low energy of intense ion beam puts a tremendous challenge to the beam optical design of this facility. The beam line consists of mainly the electrostatic quadrupoles, an accelerating section, analyzing cum switching magnet and suitable beam diagnostics including vacuum components. The accelerated ion beam is analyzed for a particular mass to charge (m/q) ratio as well as guided to three different lines along 75°, 90° and 105° using a large acceptance analyzing cum switching magnet. The details of transverse beam optics to all the beam lines with TRANSPORT and GICOSY beam optics codes are being described. Field computation code, OPERA 3D has been utilized to design the magnets and electrostatic quadrupoles. A theoretical estimation of emittance for optimized geometry of ion source is given so as to form the basis of beam optics calculations. The method of quadrupole scan of the beam is used to characterize the emittance of the final beam on the target. The measured beam emittance increases with m/q ratios of various ion beams similar to the trend observed theoretically.

  8. Effect of O{sub 2}{sup +}, H{sub 2}{sup +}+ O{sub 2}{sup +}, and N{sub 2}{sup +}+ O{sub 2}{sup +} ion-beam irradiation on the field emission properties of carbon nanotubes

    SciTech Connect

    Acuna, J. J. S.; Alvarez, F.; Escobar, M.; Goyanes, S. N.; Candal, R. J.; Zanatta, A. R.

    2011-06-01

    The effect of O{sub 2}{sup +}, H{sub 2}{sup +}+ O{sub 2}{sup +}, and N{sub 2}{sup +}+ O{sub 2}{sup +} ion-beam irradiation of carbon nanotubes (CNTs) films on the chemical and electronic properties of the material is reported. The CNTs were grown by the chemical vapor deposition technique (CVD) on silicon TiN coated substrates previously decorated with Ni particles. The Ni decoration and TiN coating were successively deposited by ion-beam assisted deposition (IBAD) and afterwards the nanotubes were grown. The whole deposition procedure was performed in situ as well as the study of the effect of ion-beam irradiation on the CNTs by x-ray photoelectron spectroscopy (XPS). Raman scattering, field-effect emission gun scanning electron microscopy (FEG-SEM), and field emission (FE) measurements were performed ex situ. The experimental data show that: (a) the presence of either H{sub 2}{sup +} or N{sub 2}{sup +} ions in the irradiation beam determines the oxygen concentration remaining in the samples as well as the studied structural characteristics; (b) due to the experimental conditions used in the study, no morphological changes have been observed after irradiation of the CNTs; (c) the FE experiments indicate that the electron emission from the CNTs follows the Fowler-Nordheim model, and it is dependent on the oxygen concentration remaining in the samples; and (d) in association with FE results, the XPS data suggest that the formation of terminal quinone groups decreases the CNTs work function of the material.

  9. Overview of Light-Ion Beam Therapy

    SciTech Connect

    Chu, William T.

    2006-03-16

    compared to those in conventional (photon) treatments. Wilson wrote his personal account of this pioneering work in 1997. In 1954 Cornelius Tobias and John Lawrence at the Radiation Laboratory (former E.O. Lawrence Berkeley National Laboratory) of the University of California, Berkeley performed the first therapeutic exposure of human patients to hadron (deuteron and helium ion) beams at the 184-Inch Synchrocyclotron. By 1984, or 30 years after the first proton treatment at Berkeley, programs of proton radiation treatments had opened at: University of Uppsala, Sweden, 1957; the Massachusetts General Hospital-Harvard Cyclotron Laboratory (MGH/HCL), USA, 1961; Dubna (1967), Moscow (1969) and St Petersburg (1975) in Russia; Chiba (1979) and Tsukuba (1983) in Japan; and Villigen, Switzerland, 1984. These centers used the accelerators originally constructed for nuclear physics research. The experience at these centers has confirmed the efficacy of protons and light ions in increasing the tumor dose relative to normal tissue dose, with significant improvements in local control and patient survival for several tumor sites. M.R. Raju reviewed the early clinical studies. In 1990, the Loma Linda University Medical Center in California heralded in the age of dedicated medical accelerators when it commissioned its proton therapy facility with a 250-MeV synchrotron. Since then there has been a relatively rapid increase in the number of hospital-based proton treatment centers around the world, and by 2006 there are more than a dozen commercially-built facilities in use, five new facilities under construction, and more in planning stages. In the 1950s larger synchrotrons were built in the GeV region at Brookhaven (3-GeV Cosmotron) and at Berkeley (6-GeV Bevatron), and today most of the world's largest accelerators are synchrotrons. With advances in accelerator design in the early 1970s, synchrotrons at Berkeley and Princeton accelerated ions with atomic numbers between 6 and 18, at

  10. Surface modification using MeV ion beams

    NASA Technical Reports Server (NTRS)

    Tombrello, T. A.

    1983-01-01

    Electronic excitation induced by MeV/amu ion beams in a variety of materials has been employed successfully for a number of applications. The examples that will be presented are: modification of the surface reflectivities of optical materials; sputter-erosion of dielectrics; and enhancement of the adhesion of thin film coatings. All of these effects arise from the loss of energy by the ion beam to electrons in the target material; the mechanisms involved are at best qualitatively understood. This paper will stress not only the exploitation of such high energy bombardment techniques but will also briefly review attempts to expose the underlying causes.

  11. Shunting arc plasma source for pure carbon ion beam.

    PubMed

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA∕mm(2) at the peak of the pulse. PMID:22380206

  12. Experimental Studies of Ion Beam Neutralization: Preliminary Results

    SciTech Connect

    Ding, N.; Polansky, J.; Downey, R.; Wang, J.

    2011-05-20

    A testing platform is designed to study ion beam neutralization in the mesothermal, collisionless region. In the experimental setup, argon neutrals were ionized in a microwave cavity and accelerated by a plasma lens system which was biased to 2500 V above the system ground. Electrons were boiled off from two hot tungsten filaments to neutralize the ion beam. The plasma is diagnosed using Langmuir probe and Faraday probe. A 3-D traversing system and a complete data acquisition loop were developed to efficiently measure 3-D beam profile. Preliminary measurements of beam profiles are presented for different operating conditions.

  13. Polarization Studies in Fast-Ion Beam Spectroscopy

    SciTech Connect

    Trabert, E

    2001-12-20

    In a historical review, the observations and the insight gained from polarization studies of fast ions interacting with solid targets are presented. These began with J. Macek's recognition of zero-field quantum beats in beam-foil spectroscopy as indicating alignment, and D.G. Ellis' density operator analysis that suggested the observability of orientation when using tilted foils. Lastly H. Winter's studies of the ion-beam surface interaction at grazing incidence yielded the means to produce a high degree of nuclear orientation in ion beams.

  14. Investigation of physical parameters in ion-beam-heated converters

    NASA Astrophysics Data System (ADS)

    Ghasemizad, Abbas; Masoumi, Mahboubeh; Gholamzadeh, Leila

    2015-09-01

    The conversion of ion beam energy into thermal X-ray radiation by means of stretched cylindrical volumes is discussed. Converting the kinetic energy of heavy ion beam into radiation energy at high efficiency is important for heavy ion fusion. The conversion efficiency between different materials, low-Z and high-Z material, is compared and simulations have been performed by SRIM code. Our results show high-z materials are superior converters. It is found to achieve a high conversion efficiency, a deposition power higher than 1016 W/cm2 is required.

  15. Surface Modification Energized by Focused Ion Beam: The Influence of Etch Rates & Aspect Ratio on Ripple Wavelengths.

    SciTech Connect

    MoberlyChan, W J

    2006-11-15

    Ion beams have been used to modify surface topography, producing nanometer-scale modulations (and even subnanometer ripples in this work) that have potential uses ranging from designing self-assembly structures, to controlling stiction of micromachined surfaces, to providing imprint templates for patterned media. Modern computer-controlled Focused Ion Beam tools enable alternating submicron patterned zones of such ion-eroded surfaces, as well as dramatically increasing the rate of ion beam processing. The DualBeam FIB/SEM also expedites process development while minimizing the use of materials that may be precious (Diamond) and/or produce hazardous byproducts (Beryllium). A FIB engineer can prototype a 3-by-3-by-3 matrix of variables in tens of minutes and consume as little as zeptoliters of material; whereas traditional ion beam processing would require tens of days and tens of precious wafers. Saturation wavelengths have been reported for ripples on materials such as single crystal silicon or diamond ({approx}200nm); however this work achieves wavelengths >400nm on natural diamond. Conversely, Be can provide a stable and ordered 2-dimensional array of <40nm periodicity; and ripples <0.4nm are also fabricated on carbon surfaces and quantified by HR-TEM and electron diffraction. Rippling is a function of material, ion beam, and angle; but is also controlled by chemical environment, redeposition, and aspect ratio. Ideally a material exhibits a constant yield (atoms sputtered off per incident ion); however, pragmatic FIB processes, coupled with the direct metrological feedback in a DualBeam tool, reveal etch rates do not remain constant for nanometer-scale processing. Control of rippling requires controlled metrology, and robust software tools are developed to enhance metrology. In situ monitoring of the influence of aspect ratio and redeposition at the micron scale correlates to the rippling fundamentals that occur at the nanometer scale and are controlled by the

  16. Electron Cyclotron Resonance Based Chemically Assisted Plasma Etching Of Silicon in CF4/Ar Plasma

    SciTech Connect

    Bhardwaj, R.K.; Angra, S.K.; Bajpai, R.P.; Lal, Madan; Bharadwaj, Lalit M.

    2005-09-09

    Etching of silicon in Chemical Assisted Plasma Etching mode with CF4 gas being sprayed on the surface of wafer in process chamber and Ar fed to ECR cavity in Electron Cyclotron Resonance (ECR) source was carried out. The plasma source was 2.45 GHz microwave source superimposed with mirror type magnetic field configuration to have resonance. Effect of CF4/Ar ratio and substrate bias on etching rate of silicon and anisotropy of etched profile has been investigated. The variation of etch rate and anisotropy has been correlated to the availability of fluorine atoms and other radicals available for etching. Optimum parameters required for etching of silicon in chemical assisted plasma etching with self-assembled ECR plasma source has been established.

  17. Electron Cyclotron Resonance Based Chemically Assisted Plasma Etching Of Silicon in CF4/Ar Plasma

    NASA Astrophysics Data System (ADS)

    Bhardwaj, R. K.; Angra, S. K.; Bajpai, R. P.; Lal, Madan; Bharadwaj, Lalit M.

    2005-09-01

    Etching of silicon in Chemical Assisted Plasma Etching mode with CF4 gas being sprayed on the surface of wafer in process chamber and Ar fed to ECR cavity in Electron Cyclotron Resonance (ECR) source was carried out. The plasma source was 2.45 GHz microwave source superimposed with mirror type magnetic field configuration to have resonance. Effect of CF4/Ar ratio and substrate bias on etching rate of silicon and anisotropy of etched profile has been investigated. The variation of etch rate and anisotropy has been correlated to the availability of fluorine atoms and other radicals available for etching. Optimum parameters required for etching of silicon in chemical assisted plasma etching with self-assembled ECR plasma source has been established.

  18. Mechanical and tribological properties of ion beam-processed surfaces

    NASA Astrophysics Data System (ADS)

    Kodali, Padma

    A variety of surface modification and surface coating techniques are currently used in industry to modify the near-surface mechanical properties that influence the friction and wear behavior of metals, metallic alloys, ceramics, and polymers. Near-surface mechanical properties such as hardness and fracture toughness of a coating-substrate system can be tailored economically without changing the bulk properties of the system. The intent of this work was to broaden the applications of well-established surface modification techniques and to elucidate the various wear mechanisms that occur in sliding contact of ion-beam processed surfaces. The investigation included characterization and evaluation of coatings and modified surfaces synthesized by three surface engineering methods; namely, beam-line ion implantation, plasma-source ion implantation, and DC magnetron sputtering. Correlation among measured properties such as surface hardness, fracture toughness, and wear behavior was also examined. This dissertation focused on the following areas of research: (1) Investigating the mechanical and tribological properties of mixed implantation of carbon and nitrogen into single crystal silicon by beam-line implantation. (2) Characterizing the mechanical and tribological properties of diamond-like carbon (DLC) coatings processed by plasma source ion implantation. (3) Developing and evaluating metastable boron-carbon-nitrogen (BCN) compound coatings for mechanical and tribological properties. The surface hardness of a mixed carbon-nitrogen implant sample improved significantly compared to the unimplanted sample. However, the enhancement in the wear factor of this sample was found to be less significant than carbon-implanted samples. The presence of nitrogen might be responsible for the degraded wear behavior since nitrogen-implantation alone resulted in no improvement in the wear factor. Wear mechanisms that occurred in implanted and unimplanted surfaces tested against AIS152100

  19. Inactivation of Human Cells by Heavy-ion Beams and Microdosimetric Estimates

    NASA Astrophysics Data System (ADS)

    Kase, Y.; Kanai, T.; Matsumoto, Y.; Furusawa, Y.; Sakama, M.; Asaba, T.

    In the field of heavy-ion therapy and space radiation protection the prediction of biological effects of heavy charged particles is an important problem In microdosimetry tissue-equivalent proportional counter TEPC has been often used to estimate the biological effect of ionizing radiations We measured the radiation quality of various ion beams using a spherical TEPC while the inactivation of in vitro human cells was investigated by colony assay The ion beams were provided by the Heavy-ion Medical Accelerator HIMAC in Chiba NIRS Japan The microdosimetric spectra of photon and proton- helium- carbon- neon- silicon- and iron-ions LET range from 0 5 to 880 keV micron were measured using a spherical walled TEPC with a tissue-equivalent diameter of 1 micron at various depths in a plastic phantom In the measurement of cell surviving curves human salivary grand HSG tumor cells were used as a human tumor cell line and GM05389 cells were used as a normal human fibroblast cell line The linear terms of linear quadratic model with a fixed quadratic term for surviving curves of each cell types were plotted as a function of the dose-mean lineal energy measured by the TEPC We found that these plots agreed with the microdosimetric kinetic MK model R B Hawkins 1994 for ion beams with a LET value of less than 450 keV micron as long as the saturation-corrected dose-mean lineal energy was used instead of dose-mean lineal energy with non-Poisson correction in the MK model Therefore in heavy ion therapy this microdosimetric estimate of the revised MK

  20. Spherical silicon-shell photonic band gap structures fabricated by laser-assisted chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Wang, H.; Yang, Z. Y.; Lu, Y. F.

    2007-02-01

    Laser-assisted chemical vapor deposition was applied in fabricating three-dimensional (3D) spherical-shell photonic band gap (PBG) structures by depositing silicon shells covering silica particles, which had been self-assembled into 3D colloidal crystals. The colloidal crystals of self-assembled silica particles were formed on silicon substrates using the isothermal heating evaporation approach. A continuous wave Nd:YAG laser (1064nm wavelength) was used to deposit silicon shells by thermally decomposing disilane gas. Periodic silicon-shell/silica-particle PBG structures were obtained. By removing the silica particles enclosed in the silicon shells using hydrofluoric acid, hollow spherical silicon-shell arrays were produced. This technique is capable of fabricating structures with complete photonic band gaps, which is predicted by simulations with the plane wave method. The techniques developed in this study have the potential to flexibly engineer the positions of the PBGs by varying both the silica particle size and the silicon-shell thickness. Ellipsometry was used to investigate the specific photonic band gaps for both structures.

  1. Polyelectrolyte multilayer-assisted fabrication of non-periodic silicon nanocolumn substrates for cellular interface applications

    NASA Astrophysics Data System (ADS)

    Lee, Seyeong; Kim, Dongyoon; Kim, Seong-Min; Kim, Jeong-Ah; Kim, Taesoo; Kim, Dong-Yu; Yoon, Myung-Han

    2015-08-01

    Recent advances in nanostructure-based biotechnology have resulted in a growing demand for vertical nanostructure substrates with elaborate control over the nanoscale geometry and a high-throughput preparation. In this work, we report the fabrication of non-periodic vertical silicon nanocolumn substrates via polyelectrolyte multilayer-enabled randomized nanosphere lithography. Owing to layer-by-layer deposited polyelectrolyte adhesives, uniformly-separated polystyrene nanospheres were securely attached on large silicon substrates and utilized as masks for the subsequent metal-assisted silicon etching in solution. Consequently, non-periodic vertical silicon nanocolumn arrays were successfully fabricated on a wafer scale, while each nanocolumn geometric factor, such as the diameter, height, density, and spatial patterning, could be fully controlled in an independent manner. Finally, we demonstrate that our vertical silicon nanocolumn substrates support viable cell culture with minimal cell penetration and unhindered cell motility due to the blunt nanocolumn morphology. These results suggest that vertical silicon nanocolumn substrates may serve as a useful cellular interface platform for performing a statistically meaningful number of cellular experiments in the fields of biomolecular delivery, stem cell research, etc.Recent advances in nanostructure-based biotechnology have resulted in a growing demand for vertical nanostructure substrates with elaborate control over the nanoscale geometry and a high-throughput preparation. In this work, we report the fabrication of non-periodic vertical silicon nanocolumn substrates via polyelectrolyte multilayer-enabled randomized nanosphere lithography. Owing to layer-by-layer deposited polyelectrolyte adhesives, uniformly-separated polystyrene nanospheres were securely attached on large silicon substrates and utilized as masks for the subsequent metal-assisted silicon etching in solution. Consequently, non-periodic vertical

  2. The mechanism of galvanic/metal-assisted etching of silicon

    PubMed Central

    2014-01-01

    Metal-assisted etching is initiated by hole injection from an oxidant catalyzed by a metal nanoparticle or film on a Si surface. It is shown that the electronic structure of the metal/Si interface, i.e., band bending, is not conducive to diffusion of the injected hole away from the metal in the case of Ag or away from the metal/Si interface in the cases of Au, Pd, and Pt. Since holes do not diffuse away from the metals, the electric field resulting from charging of the metal after hole injection must instead be the cause of metal-assisted etching. PMID:25221459

  3. First atomic physics experiments with cooled stored ion beams at the Heidelberg heavy-ion ring TSR

    SciTech Connect

    Wolf, A.; Balykin, V.; Baumann, W.; Berger, J.; Bisoffi, G.; Blatt, P.; Blum, M.; Faulstich, A.; Friedrich, A.; Gerhard, M.; Geyer, C.; Grieser, M.; Grieser, R.; Habs, D.; Heyng, H.W.; Hochadel, B.; Holzer, B.; Huber, G.; Jaeschke, E.; Jung, M.; Karafillidis, A.; Kilgus, G.; Klein, R.; Kraemer, D.; Krause, P.; Krieg, M.; Kuehl, T.; Matl, K.; Mueller, A.; Music, M.; Neumann, R.; Neureither, G.; Ott, W.; Petrich, W.; Povh, B.; Repnow, R.; Schroeder, S.; Schuch, R.; Schwalm, D.; Sigray, P.; Steck, M.; Stokstad, R.; Szmola, E.; Wagner, M.; Wanner, B.; Welti, K.; Zwickler, S. Max-Planck-Institut fuer Kernphysik, Heidelberg Manne Siegbahn Institute , Stockholm Institut fuer Kernphysik, Universitaet Giessen, Institut fuer Physik, Universitaet Mainz Gesellschaft fuer Schwerionenforschung , Darmstadt (Fed

    1990-06-01

    An overview of atomic physics experiments at the heavy ion Test Storage Ring (TSR) is given. Highly charged ions up to fully stripped silicon have been stored at energies between 4 and 12 MeV/u. The enhancement of the beam intensity by stacking, the beam lifetime, and electron cooling of these ion beams are discussed. Radiative and state-selective dielectronic recombination rates of hydrogen-like oxygen ions with free electrons from the electron cooler were measured. Beam noise spectra are being investigated with regard to collective effects caused by the Coulomb interaction in the cold ion beams. Resonance fluorescence from stored single-charged ions was observed using tunable narrow-band lasers. First indications of laser cooling in a storage ring were seen.

  4. Masking Technique for Ion-Beam Sputter Etching

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Rutledge, S. K.

    1986-01-01

    Improved process for fabrication of integrated circuits developed. Technique utilizes simultaneous ion-beam sputter etching and carbon sputter deposition in conjunction with carbon sputter mask or organic mask decomposed to produce carbon-rich sputter-mask surface. Sputter etching process replenishes sputter mask with carbon to prevent premature mask loss.

  5. Ion beam and plasma methods of producing diamondlike carbon films

    NASA Technical Reports Server (NTRS)

    Swec, Diane M.; Mirtich, Michael J.; Banks, Bruce A.

    1988-01-01

    A variety of plasma and ion beam techniques was employed to generate diamondlike carbon films. These methods included the use of RF sputtering, dc glow discharge, vacuum arc, plasma gun, ion beam sputtering, and both single and dual ion beam deposition. Since films were generated using a wide variety of techniques, the physico-chemical properties of these films varied considerably. In general, these films had characteristics that were desirable in a number of applications. For example, the films generated using both single and dual ion beam systems were evaluated for applications including power electronics as insulated gates and protective coatings on transmitting windows. These films were impervious to reagents which dissolve graphitic and polymeric carbon structures. Nuclear reaction and combustion analysis indicated hydrogen to carbon ratios to be 1.00, which allowed the films to have good transmittance not only in the infrared, but also in the visible. Other evaluated properties of these films include band gap, resistivity, adherence, density, microhardness, and intrinsic stress. The results of these studies and those of the other techniques for depositing diamondlike carbon films are presented.

  6. Spin Observables in Reactions with Radioactive Ion Beams

    SciTech Connect

    Galindo-Uribarri, Alfredo {nmn}; Urrego Blanco, Juan Pablo

    2007-01-01

    Polarization observables in nuclear reactions with exotic nuclei will provide important information concerning structural properties of nuclei and reaction mechanisms. We are currently engaged in exploring the use of polarization observables with radioactive ion beams and in the development of a polarized cryogenic target.

  7. NRL light ion beam research for inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Cooperstein, G.; Goldstein, S. A.; Mosher, D.; Barker, R. J.; Boller, J. R.; Colombant, D. G.; Drobot, A.; Meger, R. A.; Oliphant, W. F.; Ottinger, P. F.

    1980-11-01

    There is presently great interest in using light ions beams to drive thermonuclear pellets. Terrawatt-level ion beams have been efficiently produced using conventional pulsed power generators at Sandia Laboratory with magnetically-insulated ion diodes and at the Naval Research Laboratory with pinch-reflex ion diodes. Both laboratories have recently focused ion beams to pellet dimensions. This paper reviews recent advances made at NRL in the area of ion production with pinch-reflex diodes, and in the areas of beam focusing and transport. In addition, modulator generator and beam requirements for pellet ignition systems are reviewed and compared with the latest experimental results. These results include the following: (1) production of = or - 100,100 kj proton and deuteron beams with peak ion powers approaching 2 TW on the PITHON generator in collaboration with Physics International Co., (2) focusing of 0.5 TW deuteron beams produced on the NRL Gamble 2 generator to current densities of about 300 kA/sq cm, and (3) efficient transport of 100 kA level ion beams over 1 meter distances using Z-discharge plasma channels.

  8. Hydrodynamic Efficiency of Ablation Propulsion with Pulsed Ion Beam

    SciTech Connect

    Buttapeng, Chainarong; Yazawa, Masaru; Harada, Nobuhiro; Suematsu, Hisayuki; Jiang Weihua; Yatsui, Kiyoshi

    2006-05-02

    This paper presents the hydrodynamic efficiency of ablation plasma produced by pulsed ion beam on the basis of the ion beam-target interaction. We used a one-dimensional hydrodynamic fluid compressible to study the physics involved namely an ablation acceleration behavior and analyzed it as a rocketlike model in order to investigate its hydrodynamic variables for propulsion applications. These variables were estimated by the concept of ablation driven implosion in terms of ablated mass fraction, implosion efficiency, and hydrodynamic energy conversion. Herein, the energy conversion efficiency of 17.5% was achieved. In addition, the results show maximum energy efficiency of the ablation process (ablation efficiency) of 67% meaning the efficiency with which pulsed ion beam energy-ablation plasma conversion. The effects of ion beam energy deposition depth to hydrodynamic efficiency were briefly discussed. Further, an evaluation of propulsive force with high specific impulse of 4000s, total impulse of 34mN and momentum to energy ratio in the range of {mu}N/W was also analyzed.

  9. Surface microroughness of ion-beam etched optical surfaces

    SciTech Connect

    Savvides, N.

    2005-03-01

    Ion-beam etching (IBE) and ion-beam figuring techniques using low-energy ion-beam sources have been applied for more than ten years in the fabrication and finishing of extremely smooth high-performance optics. We used optical interferometric techniques and atomic force microscopy to study the evolution of the surface root-mean-square (rms) microroughness, Rq, as a function of depth of a material removed (0-3000 nm) by a broad ion-beam source (Ar{sup +} ions of energy 600 eV and ion current density of 1 mA cm{sup -2}). Highly polished samples of fused silica and Zerodur (Rq{approx}3.5 A) showed a small decrease in microroughness (to 2.5 A) after 3000-nm IBE removal while an ultrapolished single-crystal sapphire sample (Rq{approx}1 A rms) retained its very low microroughness during IBE. Power spectral density functions over the spatial frequency interval of measurement (f=5x10{sup -3}-25 {mu}m{sup -1}) indicate that the IBE surfaces have minimal subsurface damage and low optical scatter.

  10. Surface microroughness of ion-beam etched optical surfaces

    NASA Astrophysics Data System (ADS)

    Savvides, N.

    2005-03-01

    Ion-beam etching (IBE) and ion-beam figuring techniques using low-energy ion-beam sources have been applied for more than ten years in the fabrication and finishing of extremely smooth high-performance optics. We used optical interferometric techniques and atomic force microscopy to study the evolution of the surface root-mean-square (rms) microroughness, Rq, as a function of depth of a material removed (0-3000nm ) by a broad ion-beam source (Ar+ ions of energy 600eV and ion current density of 1mAcm-2). Highly polished samples of fused silica and Zerodur (Rq˜3.5Å) showed a small decrease in microroughness (to 2.5Å) after 3000-nm IBE removal while an ultrapolished single-crystal sapphire sample (Rq˜1Årms) retained its very low microroughness during IBE. Power spectral density functions over the spatial frequency interval of measurement (f=5×10-3-25μm-1) indicate that the IBE surfaces have minimal subsurface damage and low optical scatter.

  11. Ultrahigh vacuum focused ion beam micromill and articles therefrom

    DOEpatents

    Lamartine, Bruce C.; Stutz, Roger A.

    1998-01-01

    An ultrahigh vacuum focused ion beam micromilling apparatus and process are isclosed. Additionally, a durable data storage medium using the micromilling process is disclosed, the durable data storage medium capable of storing, e.g., digital or alphanumeric characters as well as graphical shapes or characters.

  12. Ultrahigh vacuum focused ion beam micromill and articles therefrom

    DOEpatents

    Lamartine, B.C.; Stutz, R.A.

    1998-02-24

    An ultrahigh vacuum focused ion beam micromilling apparatus and process are disclosed. Additionally, a durable data storage medium using the micromilling process is disclosed, the durable data storage medium capable of storing, e.g., digital or alphanumeric characters as well as graphical shapes or characters. 6 figs.

  13. Drag of ballistic electrons by an ion beam

    SciTech Connect

    Gurevich, V. L.; Muradov, M. I.

    2015-12-15

    Drag of electrons of a one-dimensional ballistic nanowire by a nearby one-dimensional beam of ions is considered. We assume that the ion beam is represented by an ensemble of heavy ions of the same velocity V. The ratio of the drag current to the primary current carried by the ion beam is calculated. The drag current turns out to be a nonmonotonic function of velocity V. It has a sharp maximum for V near v{sub nF}/2, where n is the number of the uppermost electron miniband (channel) taking part in conduction and v{sub nF} is the corresponding Fermi velocity. This means that the phenomenon of ion beam drag can be used for investigation of the electron spectra of ballistic nanostructures. We note that whereas observation of the Coulomb drag between two parallel quantum wires may in general be complicated by phenomena such as tunneling and phonon drag, the Coulomb drag of electrons of a one-dimensional ballistic nanowire by an ion beam is free of such spurious effects.

  14. Microfabricated Ion Beam Drivers for Magnetized Target Fusion

    NASA Astrophysics Data System (ADS)

    Persaud, Arun; Seidl, Peter; Ji, Qing; Ardanuc, Serhan; Miller, Joseph; Lal, Amit; Schenkel, Thomas

    2015-11-01

    Efficient, low-cost drivers are important for Magnetized Target Fusion (MTF). Ion beams offer a high degree of control to deliver the required mega joules of driver energy for MTF and they can be matched to several types of magnetized fuel targets, including compact toroids and solid targets. We describe an ion beam driver approach based on the MEQALAC concept (Multiple Electrostatic Quadrupole Array Linear Accelerator) with many beamlets in an array of micro-fabricated channels. The channels consist of a lattice of electrostatic quadrupoles (ESQ) for focusing and of radio-frequency (RF) electrodes for ion acceleration. Simulations with particle-in-cell and beam envelope codes predict >10x higher current densities compared to state-of-the-art ion accelerators. This increase results from dividing the total ion beam current up into many beamlets to control space charge forces. Focusing elements can be biased taking advantage of high breakdown electric fields in sub-mm structures formed using MEMS techniques (Micro-Electro-Mechanical Systems). We will present results on ion beam transport and acceleration in MEMS based beamlets. Acknowledgments: This work is supported by the U.S. DOE under Contract No. DE-AC02-05CH11231.

  15. 21st International Conference on Ion Beam Analysis

    SciTech Connect

    Thevuthasan, Suntharampillai; Shutthanandan, V.; Wang, Yongqiang; Vizkelethy, Gyorgy; Rout, Bibhudutta

    2014-08-01

    This special issue of Nuclear Instruments and Methods in Physics Research B contains the proceedings of the 21st International Conference on Ion Beam Analysis (IBA – 2013). This conference was held in Marriott Waterfront in Seattle, Washington, USA during June 23–28, 2013.

  16. Applications of focused ion beam systems in gunshot residue investigation.

    PubMed

    Niewöhner, L; Wenz, H W

    1999-01-01

    Scanning ion microscopy technology has opened a new door to forensic scientists, allowing the GSR investigator to see inside a particle's core. Using a focused ion beam, particles can be cross-sectioned, revealing interior morphology and character that can be utilized for identification of the ammunition manufacturer. PMID:9987878

  17. Laser ion source for low charge heavy ion beams

    SciTech Connect

    Okamura,M.; Pikin, A.; Zajic, V.; Kanesue, T.; Tamura, J.

    2008-08-03

    For heavy ion inertial fusion application, a combination of a laser ion source and direct plasma injection scheme into an RFQ is proposed. The combination might provide more than 100 mA of singly charged heavy ion beam from a single laser shot. A planned feasibility test with moderate current is also discussed.

  18. Plasma ion sources and ion beam technology inmicrofabrications

    SciTech Connect

    Ji, Lili

    2007-01-01

    For over decades, focused ion beam (FIB) has been playing a very important role in microscale technology and research, among which, semiconductor microfabrication is one of its biggest application area. As the dimensions of IC devices are scaled down, it has shown the need for new ion beam tools and new approaches to the fabrication of small-scale devices. In the meanwhile, nanotechnology has also deeply involved in material science research and bioresearch in recent years. The conventional FIB systems which utilize liquid gallium ion sources to achieve nanometer scale resolution can no longer meet the various requirements raised from such a wide application area such as low contamination, high throughput and so on. The drive towards controlling materials properties at nanometer length scales relies on the availability of efficient tools. In this thesis, three novel ion beam tools have been developed and investigated as the alternatives for the conventional FIB systems in some particular applications. An integrated focused ion beam (FIB) and scanning electron microscope (SEM) system has been developed for direct doping or surface modification. This new instrument employs a mini-RF driven plasma source to generate focused ion beam with various ion species, a FEI two-lens electron (2LE) column for SEM imaging, and a five-axis manipulator system for sample positioning. An all-electrostatic two-lens column has been designed to focus the ion beam extracted from the source. Based on the Munro ion optics simulation, beam spot sizes as small as 100 nm can be achieved at beam energies between 5 to 35 keV if a 5 μm-diameter extraction aperture is used. Smaller beam spot sizes can be obtained with smaller apertures at sacrifice of some beam current. The FEI 2LE column, which utilizes Schottky emission, electrostatic focusing optics, and stacked-disk column construction, can provide high-resolution (as small as 20 nm) imaging capability, with fairly long working distance (25

  19. Friction and Wear of Ion-Beam-Deposited Diamondlike Carbon on Chemical-Vapor-Deposited, Fine-Grain Diamond

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Wu, Richard L. C.; Lanter, William C.

    1996-01-01

    Friction and wear behavior of ion-beam-deposited diamondlike carbon (DLC) films coated on chemical-vapor-deposited (CVD), fine-grain diamond coatings were examined in ultrahigh vacuum, dry nitrogen, and humid air environments. The DLC films were produced by the direct impact of an ion beam (composed of a 3:17 mixture of Ar and CH4) at ion energies of 1500 and 700 eV and an RF power of 99 W. Sliding friction experiments were conducted with hemispherical CVD diamond pins sliding on four different carbon-base coating systems: DLC films on CVD diamond; DLC films on silicon; as-deposited, fine-grain CVD diamond; and carbon-ion-implanted, fine-grain CVD diamond on silicon. Results indicate that in ultrahigh vacuum the ion-beam-deposited DLC films on fine-grain CVD diamond (similar to the ion-implanted CVD diamond) greatly decrease both the friction and wear of fine-grain CVD diamond films and provide solid lubrication. In dry nitrogen and in humid air, ion-beam-deposited DLC films on fine-grain CVD diamond films also had a low steady-state coefficient of friction and a low wear rate. These tribological performance benefits, coupled with a wider range of coating thicknesses, led to longer endurance life and improved wear resistance for the DLC deposited on fine-grain CVD diamond in comparison to the ion-implanted diamond films. Thus, DLC deposited on fine-grain CVD diamond films can be an effective wear-resistant, lubricating coating regardless of environment.

  20. Bilayer-metal assisted chemical etching of silicon microwire arrays for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Wu, R. W.; Yuan, G. D.; Wang, K. C.; Wei, T. B.; Liu, Z. Q.; Wang, G. H.; Wang, J. X.; Li, J. M.

    2016-02-01

    Silicon microwires with lateral dimension from 5 μm to 20 μm and depth as long as 20 μm are prepared by bilayer metal assisted chemical etching (MaCE). A bilayer metal configuration (Metal 1 / Metal 2) was applied to assist etching of Si where metal 1 acts as direct catalyst and metal 2 provides mechanical support. Different metal types were investigated to figure out the influence of metal catalyst on morphology of etched silicon. We find that silicon microwires with vertical side wall are produced when we use Ag/Au bilayer, while cone-like and porous microwires formed when Pt/Au is applied. The different micro-/nano-structures in as-etched silicon are demonstrated to be due to the discrepancy of work function of metal catalyst relative to Si. Further, we constructed a silicon microwire arrays solar cells in a radial p-n junction configurations in a screen printed aluminum paste p-doping process.

  1. Ion-Beam-Induced Chemical Mixing at a Nanocrystalline CeO2 Si Interface

    SciTech Connect

    Edmondson, Dr. Philip; Young, Neil P.; Parish, Chad M; Moll, Sandra; Namavar, Fereydoon; Weber, William J; Zhang, Yanwen

    2013-01-01

    Thin films of nanocrystalline ceria deposited onto a silicon substrate have been irradiated with 3 MeV Au+ ions to a total dose of 34 displacements per atom to examine the film/substrate interfacial response upon displacement damage. Under irradiation, a band of contrast is observed to form that grows under further irradiation. Scanning and high-resolution transmission electron microscopy imaging and analysis suggest that this band of contrast is a cerium silicate phase with an approximate Ce:Si:O composition ratio of 1:1:3 in an amorphous nature. The slightly nonstoichiometric composition arises due to the loss of mobile oxygen within the cerium silicate phase under the current irradiation condition. This nonequilibrium phase is formed as a direct result of ion-beam-induced chemical mixing caused by ballistic collisions between the incoming ion and the lattice atoms. This may hold promise in ion beam engineering of cerium silicates for microelectronic applications e.g., the fabrication of blue LEDs.

  2. Thermal effects on the Ga+ ion beam induced structural modification of a-SiC:H

    NASA Astrophysics Data System (ADS)

    Tsvetkova, T.; Wright, C. D.; Craciun, M. F.; Bischoff, L.; Angelov, O.; Dimova-Malinovska, D.

    2012-12-01

    The effects of implantation temperature and post-implantation thermal annealing on the Ga+ ion beam induced optical contrast formation in hydrogenated silicon-carbon alloy (a-SiC:H) films and underlying structural modifications have been studied. The optical contrast formed (between implanted and unimplanted regions of the film material) has been made use of in the form of optical pattern formation by computer-operated Ga+-focused ion beam. Possible applications of this effect in the area of submicron lithography and high-density optical data storage have been suggested with regard to the most widely spread focused micro-beam systems based on Ga+ liquid metal ion sources. The implanted samples were structurally analysed using vibrational spectroscopies, like Raman and infra-red (IR) spectroscopy, to define optimum implantation conditions. The precise role of implantation temperature effects, i.e. the target temperature during Ga+ ion irradiation, on the structural modification obtainable has been therefore a key part of this study. Appropriate post-implantation annealing treatments were also studied, since these are expected to offer further benefits in reducing the required ion dose and enhancing the optical contrast, thus increasing the cost-effectiveness of the method.

  3. Performance of MACACO Compton telescope for ion-beam therapy monitoring: first test with proton beams.

    PubMed

    Solevi, Paola; Muñoz, Enrique; Solaz, Carles; Trovato, Marco; Dendooven, Peter; Gillam, John E; Lacasta, Carlos; Oliver, Josep F; Rafecas, Magdalena; Torres-Espallardo, Irene; Llosá, Gabriela

    2016-07-21

    In order to exploit the advantages of ion-beam therapy in a clinical setting, delivery verification techniques are necessary to detect deviations from the planned treatment. Efforts are currently oriented towards the development of devices for real-time range monitoring. Among the different detector concepts proposed, Compton cameras are employed to detect prompt gammas and represent a valid candidate for real-time range verification. We present the first on-beam test of MACACO, a Compton telescope (multi-layer Compton camera) based on lanthanum bromide crystals and silicon photo-multipliers. The Compton telescope was first characterized through measurements and Monte Carlo simulations. The detector linearity was measured employing (22)Na and Am-Be sources, obtaining about 10% deviation from linearity at 3.44 MeV. A spectral image reconstruction algorithm was tested on synthetic data. Point-like sources emitting gamma rays with energy between 2 and 7 MeV were reconstructed with 3-5 mm resolution. The two-layer Compton telescope was employed to measure radiation emitted from a beam of 150 MeV protons impinging on a cylindrical PMMA target. Bragg-peak shifts were achieved via adjustment of the PMMA target location and the resulting measurements used during image reconstruction. Reconstructed Bragg peak profiles proved sufficient to observe peak-location differences within 10 mm demonstrating the potential of the MACACO Compton Telescope as a monitoring device for ion-beam therapy. PMID:27352107

  4. Performance of MACACO Compton telescope for ion-beam therapy monitoring: first test with proton beams

    NASA Astrophysics Data System (ADS)

    Solevi, Paola; Muñoz, Enrique; Solaz, Carles; Trovato, Marco; Dendooven, Peter; Gillam, John E.; Lacasta, Carlos; Oliver, Josep F.; Rafecas, Magdalena; Torres-Espallardo, Irene; Llosá, Gabriela

    2016-07-01

    In order to exploit the advantages of ion-beam therapy in a clinical setting, delivery verification techniques are necessary to detect deviations from the planned treatment. Efforts are currently oriented towards the development of devices for real-time range monitoring. Among the different detector concepts proposed, Compton cameras are employed to detect prompt gammas and represent a valid candidate for real-time range verification. We present the first on-beam test of MACACO, a Compton telescope (multi-layer Compton camera) based on lanthanum bromide crystals and silicon photo-multipliers. The Compton telescope was first characterized through measurements and Monte Carlo simulations. The detector linearity was measured employing 22Na and Am-Be sources, obtaining about 10% deviation from linearity at 3.44 MeV. A spectral image reconstruction algorithm was tested on synthetic data. Point-like sources emitting gamma rays with energy between 2 and 7 MeV were reconstructed with 3–5 mm resolution. The two-layer Compton telescope was employed to measure radiation emitted from a beam of 150 MeV protons impinging on a cylindrical PMMA target. Bragg-peak shifts were achieved via adjustment of the PMMA target location and the resulting measurements used during image reconstruction. Reconstructed Bragg peak profiles proved sufficient to observe peak-location differences within 10 mm demonstrating the potential of the MACACO Compton Telescope as a monitoring device for ion-beam therapy.

  5. Development and Commissioning of an External Beam Facility in the Union College Ion Beam Analysis Laboratory

    NASA Astrophysics Data System (ADS)

    Yoskowitz, Joshua; Clark, Morgan; Labrake, Scott; Vineyard, Michael

    2015-10-01

    We have developed an external beam facility for the 1.1-MV tandem Pelletron accelerator in the Union College Ion Beam Analysis Laboratory. The beam is extracted from an aluminum pipe through a 1 / 4 ' ' diameter window with a 7.5- μm thick Kapton foil. This external beam facility allows us to perform ion beam analysis on samples that cannot be put under vacuum, including wet samples and samples too large to fit into the scattering chamber. We have commissioned the new facility by performing proton induced X-ray emission (PIXE) analysis of several samples of environmental interest. These include samples of artificial turf, running tracks, and a human tooth with an amalgam filling. A 1.7-MeV external proton beam was incident on the samples positioned 2 cm from the window. The resulting X-rays were measured using a silicon drift detector and were analyzed using GUPIX software to determine the concentrations of elements in the samples. The results on the human tooth indicate that while significant concentrations of Hg, Ag, and Sn are present in the amalgam filling, only trace amounts of Hg appear to have leached into the tooth. The artificial turf and running tracks show rather large concentrations of a broad range of elements and trace amounts of Pb in the turf infill.

  6. MeV ion beam lithography of biocompatible halogenated Parylenes using aperture masks

    NASA Astrophysics Data System (ADS)

    Whitlow, Harry J.; Norarat, Rattanaporn; Roccio, Marta; Jeanneret, Patrick; Guibert, Edouard; Bergamin, Maxime; Fiorucci, Gianni; Homsy, Alexandra; Laux, Edith; Keppner, Herbert; Senn, Pascal

    2015-07-01

    Parylenes are poly(p-xylylene) polymers that are widely used as moisture barriers and in biomedicine because of their good biocompatibility. We have investigated MeV ion beam lithography using 16O+ ions for writing defined patterns in Parylene-C, which is evaluated as a coating material for the Cochlear Implant (CI) electrode array, a neuroprosthesis to treat some forms of deafness. Parylene-C and -F on silicon and glass substrates as well as 50 μm thick PTFE were irradiated to different fluences (1 ×1013 - 1 ×1016 1 MeV 16O+ ions cm-2) through aperture masks under high vacuum and a low pressure (<10-3 mbar) oxygen atmosphere. Biocompatibility of the irradiated and unirradiated surfaces was tested by cell-counting to determine the proliferation of murine spiral ganglion cells. The results reveal that an oxygen ion beam can be used to pattern Parylene-C and -F without using a liquid solvent developer in a similar manner to PTFE but with a ∼25× smaller removal rate. Biocompatibility tests showed no difference in cell adhesion between irradiated and unirradiated areas or ion fluence dependence. Coating the Parylene surface with an adhesion-promoting protein mixture had a much greater effect on cell proliferation.

  7. Copper nanorod array assisted silicon waveguide polarization beam splitter.

    PubMed

    Kim, Sangsik; Qi, Minghao

    2014-04-21

    We present the design of a three-dimensional (3D) polarization beam splitter (PBS) with a copper nanorod array placed between two silicon waveguides. The localized surface plasmon resonance (LSPR) of a metal nanorod array selectively cross-couples transverse electric (TE) mode to the coupler waveguide, while transverse magnetic (TM) mode passes through the original input waveguide without coupling. An ultra-compact and broadband PBS compared to all-dielectric devices is achieved with the LSPR. The output ports of waveguides are designed to support either TM or TE mode only to enhance the extinction ratios. Compared to silver, copper is fully compatible with complementary metal-oxide-semiconductor (CMOS) technology. PMID:24787839

  8. Progress in bright ion beams for industry, medicine and fusion at LBNL

    SciTech Connect

    Kwan, Joe W.

    2002-05-31

    Recent progresses at LBNL in developing ion beams for industry, radiation therapy and inertial fusion applications were discussed. The highlights include ion beam lithography, boron neutron capture therapy (BNCT), and heavy ion fusion (HIF) drivers using multiple linacs.

  9. Sub-100-nm ordered silicon hole arrays by metal-assisted chemical etching

    PubMed Central

    2013-01-01

    Sub-100-nm silicon nanohole arrays were fabricated by a combination of the site-selective electroless deposition of noble metals through anodic porous alumina and the subsequent metal-assisted chemical etching. Under optimum conditions, the formation of deep straight holes with an ordered periodicity (e.g., 100 nm interval, 40 nm diameter, and high aspect ratio of 50) was successfully achieved. By using the present method, the fabrication of silicon nanohole arrays with 60-nm periodicity was also achieved. PMID:24090268

  10. Formation of silicon nanowire packed films from metallurgical-grade silicon powder using a two-step metal-assisted chemical etching method.

    PubMed

    Ouertani, Rachid; Hamdi, Abderrahmen; Amri, Chohdi; Khalifa, Marouan; Ezzaouia, Hatem

    2014-01-01

    In this work, we use a two-step metal-assisted chemical etching method to produce films of silicon nanowires shaped in micrograins from metallurgical-grade polycrystalline silicon powder. The first step is an electroless plating process where the powder was dipped for few minutes in an aqueous solution of silver nitrite and hydrofluoric acid to permit Ag plating of the Si micrograins. During the second step, corresponding to silicon dissolution, we add a small quantity of hydrogen peroxide to the plating solution and we leave the samples to be etched for three various duration (30, 60, and 90 min). We try elucidating the mechanisms leading to the formation of silver clusters and silicon nanowires obtained at the end of the silver plating step and the silver-assisted silicon dissolution step, respectively. Scanning electron microscopy (SEM) micrographs revealed that the processed Si micrograins were covered with densely packed films of self-organized silicon nanowires. Some of these nanowires stand vertically, and some others tilt to the silicon micrograin facets. The thickness of the nanowire films increases from 0.2 to 10 μm with increasing etching time. Based on SEM characterizations, laser scattering estimations, X-ray diffraction (XRD) patterns, and Raman spectroscopy, we present a correlative study dealing with the effect of the silver-assisted etching process on the morphological and structural properties of the processed silicon nanowire films. PMID:25349554

  11. Formation of silicon nanowire packed films from metallurgical-grade silicon powder using a two-step metal-assisted chemical etching method

    NASA Astrophysics Data System (ADS)

    Ouertani, Rachid; Hamdi, Abderrahmen; Amri, Chohdi; Khalifa, Marouan; Ezzaouia, Hatem

    2014-10-01

    In this work, we use a two-step metal-assisted chemical etching method to produce films of silicon nanowires shaped in micrograins from metallurgical-grade polycrystalline silicon powder. The first step is an electroless plating process where the powder was dipped for few minutes in an aqueous solution of silver nitrite and hydrofluoric acid to permit Ag plating of the Si micrograins. During the second step, corresponding to silicon dissolution, we add a small quantity of hydrogen peroxide to the plating solution and we leave the samples to be etched for three various duration (30, 60, and 90 min). We try elucidating the mechanisms leading to the formation of silver clusters and silicon nanowires obtained at the end of the silver plating step and the silver-assisted silicon dissolution step, respectively. Scanning electron microscopy (SEM) micrographs revealed that the processed Si micrograins were covered with densely packed films of self-organized silicon nanowires. Some of these nanowires stand vertically, and some others tilt to the silicon micrograin facets. The thickness of the nanowire films increases from 0.2 to 10 μm with increasing etching time. Based on SEM characterizations, laser scattering estimations, X-ray diffraction (XRD) patterns, and Raman spectroscopy, we present a correlative study dealing with the effect of the silver-assisted etching process on the morphological and structural properties of the processed silicon nanowire films.

  12. Formation of silicon nanowire packed films from metallurgical-grade silicon powder using a two-step metal-assisted chemical etching method

    PubMed Central

    2014-01-01

    In this work, we use a two-step metal-assisted chemical etching method to produce films of silicon nanowires shaped in micrograins from metallurgical-grade polycrystalline silicon powder. The first step is an electroless plating process where the powder was dipped for few minutes in an aqueous solution of silver nitrite and hydrofluoric acid to permit Ag plating of the Si micrograins. During the second step, corresponding to silicon dissolution, we add a small quantity of hydrogen peroxide to the plating solution and we leave the samples to be etched for three various duration (30, 60, and 90 min). We try elucidating the mechanisms leading to the formation of silver clusters and silicon nanowires obtained at the end of the silver plating step and the silver-assisted silicon dissolution step, respectively. Scanning electron microscopy (SEM) micrographs revealed that the processed Si micrograins were covered with densely packed films of self-organized silicon nanowires. Some of these nanowires stand vertically, and some others tilt to the silicon micrograin facets. The thickness of the nanowire films increases from 0.2 to 10 μm with increasing etching time. Based on SEM characterizations, laser scattering estimations, X-ray diffraction (XRD) patterns, and Raman spectroscopy, we present a correlative study dealing with the effect of the silver-assisted etching process on the morphological and structural properties of the processed silicon nanowire films. PMID:25349554

  13. X-ray assisted chemical modification of silicon surfaces

    NASA Astrophysics Data System (ADS)

    Pinhero, Patrick Joseph

    Interest in surface photochemistry induced by x-irradiation has received a renaissance with the construction of new synchrotron radiation facilities worldwide. There are three general pathways that a x-ray excited gas-surface system can follow that will lead to reaction. These are: (1) direct excitation, (2) excitation by emitted secondary electrons, and (3) reactions induced by hot electrons at the surface. Two chemical systems are studied in a modified x-ray photoelectron spectrometer (XPS) that allows for reactions to be studied in situ. The systems studied were (1) Nsb2/Si(100) and (2) the SFsb6/Si system. The motivation for studying these two compounds is: they are both relatively inert, i.e. no spontaneous reactions; they both are technologically interesting, possible silicon nitride formation in the case of Nsb2, and SFsb6 is a popular etchant gas in the semiconductor industry; and these two compounds have the potential to exhibit contrasting behavior. Besides its etching qualities, SFsb6 possesses a large x-ray absorption cross section and it has a large electron capture cross section. Both systems are primarily studied by XPS. XPS has the quality of providing quantifiable information about the composition of the surface and details about the chemical environment of each constituent element present. Atomic force microscopy (AFM) is used with the SFsb6 system to observe any structural changes that may occur after reaction. In the Nsb2/Si(100) system, a silicon nitride is formed at very long exposures. This is first observed after 24 hours of simultaneous exposure to Nsb2 and x-irradiation. In the SFsb6 experiments, several subsystems are examined: (1) simultaneous exposure of a Si(100) surface to SFsb6 and x-irradiation at 298K; (2) x-irradiation of a SFsb6 film adsorbed on Si(100) at 100K; (3) simultaneous exposure of a natively oxidized Si surface to SFsb6 and x-rays at 298K; and (4) x-irradiation of a SFsb6 film adsorbed on natively oxidized Si at 100K

  14. Images of Complex Interactions of an Intense Ion Beam with Plasma Electrons

    SciTech Connect

    Igor D. Kaganovich; Edward Startsev; Ronald C. Davidson

    2004-08-03

    Ion beam propagation in a background plasma is an important scientific issue for many practical applications. The process of ion beam charge and current neutralization is complex because plasma electrons move in strong electric and magnetic fields of the beam. Computer simulation images of plasma interaction with an intense ion beam pulse are presented.

  15. Experimental and theoretical evaluation of the laser-assisted machining of silicon nitride

    NASA Astrophysics Data System (ADS)

    Rozzi, Jay Christopher

    This study focused on the experimental and theoretical evaluation of the laser assisted machining (LAM) of silicon nitride ceramics. A laser assisted machining facility was constructed whose main components consist of a COsb2 laser and a CNC lathe. Surface temperature histories were first measured and compared to a transient, three-dimensional numerical simulation for a rotating silicon nitride workpiece heated by a translating laser for ranges of the workpiece rotational and laser-translation speeds, as well as the laser beam diameter and power. Excellent agreement was obtained between the experimental and predicted temperature histories. Laser assisted machining experiments on silicon nitride ceramic workpieces were completed for a wide range of operating conditions. Data for cutting forces and surface temperature histories illustrated that the lower bound for the avoidance of cutting tool and/or workpiece fracture for LAM is defined by the YSiAlON glass transition temperature (920-970sp°C). As temperatures near the cutting tool increase to values above the glass transition temperature range, the glassy phase softened, facilitating plastic deformation and, correspondingly, the production of semi-continuous or continuous chips. The silicon nitride machined workpiece surface roughness (Rsb{a}=0.39\\ mum) for LAM at the nominal operating condition was nearly equivalent to a value associated with the grinding of silicon nitride using a diamond wheel (Rsb{a}=0.2\\ mum). By examining the machined surfaces and chips, it was shown that LAM does not produce detectable sub-surface cracking or significant silicon nitride microstructure alteration, respectively. A transient, three-dimensional numerical heat transfer model of laser assisted machining was constructed, which includes a preheat phase and material removal, with the associated changes in the workplace geometry. Excellent agreement was obtained between the measured and predicted temperature histories. The strong

  16. Ion assisted deposition of SiO2 film from silicon

    NASA Astrophysics Data System (ADS)

    Pham, Tuan. H.; Dang, Cu. X.

    2005-09-01

    Silicon dioxide, SiO2, is one of the preferred low index materials for optical thin film technology. It is often deposited by electron beam evaporation source with less porosity and scattering, relatively durable and can have a good laser damage threshold. Beside these advantages the deposition of critical optical thin film stacks with silicon dioxide from an E-gun was severely limited by the stability of the evaporation pattern or angular distribution of the material. The even surface of SiO2 granules in crucible will tend to develop into groove and become deeper with the evaporation process. As the results, angular distribution of the evaporation vapor changes in non-predicted manner. This report presents our experiments to apply Ion Assisted Deposition process to evaporate silicon in a molten liquid form. By choosing appropriate process parameters we can get SiO2 film with good and stable property.

  17. Etching anisotropy mechanisms lead to morphology-controlled silicon nanoporous structures by metal assisted chemical etching.

    PubMed

    Jiang, Bing; Li, Meicheng; Liang, Yu; Bai, Yang; Song, Dandan; Li, Yingfeng; Luo, Jian

    2016-02-01

    The etching anisotropy induced by the morphology and rotation of silver particles controls the morphology of silicon nanoporous structures, through various underlying complex etching mechanisms. The level of etching anisotropy can be modulated by controlling the morphology of the silver catalyst to obtain silicon nanoporous structures with straight pores, cone-shaped pores and pyramid-shaped pores. In addition, the structures with helical pores are obtained by taking advantage of the special anisotropic etching, which is induced by the rotation and revolution of silver particles during the etching process. An investigation of the etching anisotropy during metal assisted chemical etching will promote a deep understanding of the chemical etching mechanism of silicon, and provide a feasible approach to fabricate Si nanoporous structures with special morphologies. PMID:26785718

  18. Optical assessment of silicon nanowire arrays fabricated by metal-assisted chemical etching

    PubMed Central

    2013-01-01

    Silicon nanowire (SiNW) arrays were prepared on silicon substrates by metal-assisted chemical etching and peeled from the substrates, and their optical properties were measured. The absorption coefficient of the SiNW arrays was higher than that for the bulk silicon over the entire region. The absorption coefficient of a SiNW array composed of 10-μm-long nanowires was much higher than the theoretical absorptance of a 10-μm-thick flat Si wafer, suggesting that SiNW arrays exhibit strong optical confinement. To reveal the reason for this strong optical confinement demonstrated by SiNW arrays, angular distribution functions of their transmittance were experimentally determined. The results suggest that Mie-related scattering plays a significant role in the strong optical confinement of SiNW arrays. PMID:23651912

  19. Mechanical Modulation of Phonon-Assisted Field Emission in a Silicon Nanomembrane Detector for Time-of-Flight Mass Spectrometry

    PubMed Central

    Park, Jonghoo; Blick, Robert H.

    2016-01-01

    We demonstrate mechanical modulation of phonon-assisted field emission in a free-standing silicon nanomembrane detector for time-of-flight mass spectrometry of proteins. The impacts of ion bombardment on the silicon nanomembrane have been explored in both mechanical and electrical points of view. Locally elevated lattice temperature in the silicon nanomembrane, resulting from the transduction of ion kinetic energy into thermal energy through the ion bombardment, induces not only phonon-assisted field emission but also a mechanical vibration in the silicon nanomembrane. The coupling of these mechanical and electrical phenomenon leads to mechanical modulation of phonon-assisted field emission. The thermal energy relaxation through mechanical vibration in addition to the lateral heat conduction and field emission in the silicon nanomembrane offers effective cooling of the nanomembrane, thereby allowing high resolution mass analysis. PMID:26861329

  20. Mechanical Modulation of Phonon-Assisted Field Emission in a Silicon Nanomembrane Detector for Time-of-Flight Mass Spectrometry.

    PubMed

    Park, Jonghoo; Blick, Robert H

    2016-01-01

    We demonstrate mechanical modulation of phonon-assisted field emission in a free-standing silicon nanomembrane detector for time-of-flight mass spectrometry of proteins. The impacts of ion bombardment on the silicon nanomembrane have been explored in both mechanical and electrical points of view. Locally elevated lattice temperature in the silicon nanomembrane, resulting from the transduction of ion kinetic energy into thermal energy through the ion bombardment, induces not only phonon-assisted field emission but also a mechanical vibration in the silicon nanomembrane. The coupling of these mechanical and electrical phenomenon leads to mechanical modulation of phonon-assisted field emission. The thermal energy relaxation through mechanical vibration in addition to the lateral heat conduction and field emission in the silicon nanomembrane offers effective cooling of the nanomembrane, thereby allowing high resolution mass analysis. PMID:26861329

  1. Fracture Tests of Etched Components Using a Focused Ion Beam Machine

    NASA Technical Reports Server (NTRS)

    Kuhn, Jonathan, L.; Fettig, Rainer K.; Moseley, S. Harvey; Kutyrev, Alexander S.; Orloff, Jon; Powers, Edward I. (Technical Monitor)

    2000-01-01

    Many optical MEMS device designs involve large arrays of thin (0.5 to 1 micron components subjected to high stresses due to cyclic loading. These devices are fabricated from a variety of materials, and the properties strongly depend on size and processing. Our objective is to develop standard and convenient test methods that can be used to measure the properties of large numbers of witness samples, for every device we build. In this work we explore a variety of fracture test configurations for 0.5 micron thick silicon nitride membranes machined using the Reactive Ion Etching (RIE) process. Testing was completed using an FEI 620 dual focused ion beam milling machine. Static loads were applied using a probe. and dynamic loads were applied through a piezo-electric stack mounted at the base of the probe. Results from the tests are presented and compared, and application for predicting fracture probability of large arrays of devices are considered.

  2. The Fabrication of Sub-5-nm Nanochannels in Insulating Substrates using Focused Ion Beam Milling

    PubMed Central

    Menard, Laurent D.; Ramsey, J. Michael

    2011-01-01

    The use of focused ion beam (FIB) milling to fabricate nanochannels with critical dimensions extending below 5 nm is described. FIB milled lines have narrowing widths as they are milled deeper into a substrate. This focusing characteristic is coupled with a two-layered architecture consisting of a relatively thick (>100 nm) metal film deposited onto a substrate. A channel is milled through the metal layer until it penetrates a prescribed depth into the substrate material. The metal is then removed, leaving a nanochannel with smooth surfaces and lateral dimensions as small as sub-5 nm. These open nanochannels can be sealed with a cover plate and the resulting devices are well-suited for single-molecule DNA transport studies. This methodology is used with quartz, single-crystal silicon, and polydimethylsiloxane substrates to demonstrate its general utility. PMID:21171628

  3. First demonstration of X-ray mirrors using focused ion beam

    NASA Astrophysics Data System (ADS)

    Numazawa, Masaki; Ezoe, Yuichiro; Ishikawa, Kumi; Ogawa, Tomohiro; Sato, Mayu; Nakamura, Kasumi; Takeuchi, Kazuma; Terada, Masaru; Ohashi, Takaya; Mitsuda, Kazuhisa; Kelley, Ron; Murata, Kaoru

    2016-06-01

    We report on novel X-ray mirrors fabricated with a focused ion beam for future astronomical missions. We fabricated a test sample from a silicon wafer by forming six slits whose sidewalls were used as X-ray reflection surfaces. The six slits were designed with a size of 25 × 300 × 170 µm3 and with different inclination angles of 0 and ±1°. We examined X-ray reflection using three slits with different inclination angles at Al Kα 1.49 keV. Consequently, we demonstrated X-ray reflection from all the three slits. All the sidewalls have multiangular components with a microroughness of ∼1 nm rms. ∼30–45% of the total surface area is effective for X-ray reflection. We confirmed that the inclination angles are consistent with the designed values.

  4. Electrical biasing and voltage contrast imaging in a focused ion beam system

    SciTech Connect

    Campbell, A.N.; Soden, J.M.; Rife, J.L.; Lee, R.G.

    1995-09-01

    We present two new techniques that enhance conventional focused ion beam (FIB) system capabilities for integrated circuit (IC) analysis: in situ electrical biasing and voltage contrast imaging. We have used in situ electrical biasing to enable a number of advanced failure analysis applications including (1) real time evaluation of device electrical behavior during milling and deposition, (2) verification of IC functional modifications without removal from the FIB system, and (3) ultraprecision control for cross sectioning of deep submicron structures, such as programmed amorphous silicon antifuses. We have also developed FIB system voltage contrast imaging that can be used for a variety of failure analysis applications. The use of passive voltage contrast imaging for defect localization and for navigation on planarized devices will be illustrated. In addition, we describe new, biased voltage contrast imaging techniques and provide examples of their application to the failure analysis of complex ICs. We discuss the necessary changes in system operating parameters to perform biased voltage contrast imaging.

  5. Understanding the role of silicon oxide shell in oxide-assisted SiNWs growth

    SciTech Connect

    Wu, Shunqing; Wang, Cai-Zhuang Z; Zhu, Z Z; Ho, Kai-Ming

    2014-12-01

    The role of silicon oxide shell in oxide-assisted SiNWs growth is studied by performing ab initio molecular dynamics simulations on the structural and dynamical properties of the interface between crystalline Si(111) surface and disorder SiO thin film. Si atoms in the SiO film tends to aggregate into the vicinity of the Si(111)/SiO interface. In addition, the diffusion of Si atoms at the interface is anisotropic - the diffusion along the interface is several times faster than that perpendicular to the interface. The segregation and anisotropic diffusion of Si atoms at the Si(111)/SiO interface shed interesting light into the mechanism of oxide-assisted silicon nanowire growth.

  6. Heavy ion beam-ionosphere interactions - Electron acceleration

    NASA Technical Reports Server (NTRS)

    Kaufmann, R. L.; Arnoldy, R. L.; Moore, T. E.; Kintner, P. M.; Cahill, L. J., Jr.

    1985-01-01

    Moore et al. (1982) described a number of unexpected effects which were observed during the first Argon Release Controlled Study (ARCS 1, or rocket flight 29:014). The present paper provides a description of detailed analyses of the interaction of the argon beam with the ionosphere. An important feature of the considered test was that all detectors and the Ar(+) gun remained attached to the rocket throughout the flight. It is pointed out that the most dramatic effect of ion gun operation on ARCS 1 involved large changes in the fluxes of electrons with energies below about 600 eV. The observations are discussed, taking into account the distribution functions, azimuth dependence, and electron and ion trajectories. Attention is given to the perpendicular ion beam, the parallel ion beam, the acceleration of downgoing and upgoing electrons, and aspects of wave generation.

  7. Enabling Nanotechnology with Focused Ion Beams from Laser Cooled Atoms

    NASA Astrophysics Data System (ADS)

    Steele, A. V.; Knuffman, B.; Orloff, J.; Maazouz, M.; McClelland, J. J.

    2011-05-01

    The Magneto-Optical Trap Ion Source (MOTIS) being developed at NIST has the potential to enable numerous advances in nanoscale science. In a MOTIS, atoms are captured into a MOT, photoionized, and accelerated to an energy of a few hundred eV to a few tens of kV. A beam formed in this way can be brought to a tight focus, competitive with the commercial focused ion beam machines deployed widely today. Additionally, the unique characteristics of this source, coupled with the user's choice of ion from the long and growing list of laser-coolable atomic species suggest that the MOTIS has the potential to advance the state of the art in applications such as imaging, nanofabrication, secondary ion mass spectrometry, and others. I will present high-resolution images from our lithium and chromium MOTIS-based focused ion beams and discuss applications which we will pursue with these new tools.

  8. Ion Beam Analysis of Targets Used in Controlatron Neutron Generators

    SciTech Connect

    Banks, James C.; Doyle, Barney L.; Walla, Lisa A.; Walsh, David S.

    2009-03-10

    Controlatron neutron generators are used for testing neutron detection systems at Sandia National Laboratories. To provide for increased tube lifetimes for the moderate neutron flux output of these generators, metal hydride (ZrT{sub 2}) target fabrication processes have been developed. To provide for manufacturing quality control of these targets, ion beam analysis techniques are used to determine film composition. The load ratios (i.e. T/Zr concentration ratios) of ZrT{sub 2} Controlatron neutron generator targets have been successfully measured by simultaneously acquiring RBS and ERD data using a He{sup ++} beam energy of 10 MeV. Several targets were measured and the film thicknesses obtained from RBS measurements agreed within {+-}2% with Dektak profilometer measurements. The target fabrication process and ion beam analysis techniques will be presented.

  9. Heavy ion beam-ionosphere interactions - Electron acceleration

    NASA Astrophysics Data System (ADS)

    Kaufmann, R. L.; Arnoldy, R. L.; Moore, T. E.; Kintner, P. M.; Cahill, L. J., Jr.

    1985-10-01

    Moore et al. (1982) described a number of unexpected effects which were observed during the first Argon Release Controlled Study (ARCS 1, or rocket flight 29:014). The present paper provides a description of detailed analyses of the interaction of the argon beam with the ionosphere. An important feature of the considered test was that all detectors and the Ar(+) gun remained attached to the rocket throughout the flight. It is pointed out that the most dramatic effect of ion gun operation on ARCS 1 involved large changes in the fluxes of electrons with energies below about 600 eV. The observations are discussed, taking into account the distribution functions, azimuth dependence, and electron and ion trajectories. Attention is given to the perpendicular ion beam, the parallel ion beam, the acceleration of downgoing and upgoing electrons, and aspects of wave generation.

  10. Bipolar pulse generator for intense pulsed ion beam accelerator

    SciTech Connect

    Ito, H.; Igawa, K.; Kitamura, I.; Masugata, K.

    2007-01-15

    A new type of pulsed ion beam accelerator named ''bipolar pulse accelerator'' (BPA) has been proposed in order to improve the purity of intense pulsed ion beams. To confirm the principle of the BPA, we developed a bipolar pulse generator for the bipolar pulse experiment, which consists of a Marx generator and a pulse forming line (PFL) with a rail gap switch on its end. In this article, we report the first experimental result of the bipolar pulse and evaluate the electrical characteristics of the bipolar pulse generator. When the bipolar pulse generator was operated at 70% of the full charge condition of the PFL, the bipolar pulse with the first (-138 kV, 72 ns) and the second pulse (+130 kV, 70 ns) was successfully obtained. The evaluation of the electrical characteristics indicates that the developed generator can produce the bipolar pulse with fast rise time and sharp reversing time.

  11. Bipolar pulse generator for intense pulsed ion beam accelerator.

    PubMed

    Ito, H; Igawa, K; Kitamura, I; Masugata, K

    2007-01-01

    A new type of pulsed ion beam accelerator named "bipolar pulse accelerator" (BPA) has been proposed in order to improve the purity of intense pulsed ion beams. To confirm the principle of the BPA, we developed a bipolar pulse generator for the bipolar pulse experiment, which consists of a Marx generator and a pulse forming line (PFL) with a rail gap switch on its end. In this article, we report the first experimental result of the bipolar pulse and evaluate the electrical characteristics of the bipolar pulse generator. When the bipolar pulse generator was operated at 70% of the full charge condition of the PFL, the bipolar pulse with the first (-138 kV, 72 ns) and the second pulse (+130 kV, 70 ns) was successfully obtained. The evaluation of the electrical characteristics indicates that the developed generator can produce the bipolar pulse with fast rise time and sharp reversing time. PMID:17503918

  12. Simulation of ion beam injection and extraction in an EBIS

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Kim, J. S.

    2016-02-01

    An example simulation of Au+ charge breeding using FAR-TECH's integrated EBIS (electron beam ion source) modeling toolset is presented with the emphasis on ion beam injection and extraction. The trajectories of injected ions are calculated with PBGUNS (particle beam gun simulation) self-consistently by including the space charges from both ions and electrons. The ion beam, starting with initial conditions within the 100% acceptance of the electron beam, is then tracked by EBIS-PIC (particle-in-cell EBIS simulation code). In the trap, the evolution of the ion charge state distribution is estimated by charge state estimator. The extraction of charge bred ions is simulated with PBGUNS. The simulations of the ion injections show significant ion space charge effects on beam capture efficiency and the ionization efficiency.

  13. Recent advances for ion beam therapy accelerators using synchrotrons

    NASA Astrophysics Data System (ADS)

    Weinrich, U.

    2011-12-01

    Ion beam therapy has evolved a lot during the last years. After more than a decade of successful clinical studies and first treatment in hospital environment, the carbon beam treatment, which always relies on a synchrotron as main accelerator, has clearly shown its own potential. The clinical success of carbon beam treatment is indicated by the growing number of new fully clinical based facilities. There is a lot of improvement potential for these facilities in order to increase their treatment quality, functionality and capacity as well as the cost effectiveness of the patient treatment. This article focuses on the currently ongoing investigations to fully explore this potential. It can be concluded that synchrotron based ion beam facilities are improving into many directions. This will further improve their impact on the cancer treatment and consequently their benefit to the whole society.

  14. Nonlinear transient neutralization theory of ion beams with dissipation

    NASA Technical Reports Server (NTRS)

    Wilhelm, H. E.

    1975-01-01

    An analytical theory of nonlinear neutralization waves generated by injection of electrons from a grid in the direction of a homogeneous ion beam of uniform velocity and infinite extension is presented. The electrons are assumed to interact with the ions through the self-consistent space charge field and by strong collective interactions. The associated nonlinear boundary-value problem is solved in closed form by means of a von Mises transformation. It is shown that the electron gas moves into the ion space in the form of a discontinuous neutralization wave. This periodic wave structure is damped out by intercomponent momentum transfer, i.e., after a few relaxation lengths a quasi-neutral beam results. The relaxation scale in space agrees with neutralization experiments of rarefied ion beams, if the collective momentum transfer between the electron and ion streams is assumed to be of the Buneman type.

  15. The influence of stray magnetic fields on ion beam neutralization

    NASA Technical Reports Server (NTRS)

    Feng, Y.-C.; Wilbur, P. J.

    1982-01-01

    An experimental investigation is described of a comparison between the ion beam neutralization characteristics of a local neutralizer (within approximately 5 cm of the beam edge) and those associated with a distant one (approximately 1 meter away from the thruster). The influence of magnetic fields in the vicinity of the neutralizer cathode orifice which are either parallel or normal to the neutralizer axis is assessed. The plasma property profiles which reflect the influence of the magnetic fields are measured. The results suggest that magnetic fields at the region of a neutralizer cathode orifice influence its ability to couple to the ion beam. They reveal that there is a potential jump from the neutralizer cathode orifice to the plasma which exists close to the orifice. This potential drop is found to increase as the axial component of magnetic flux density increases. A magnetic field perpendicular to the neutralizer axis induces a potential rise a few centimeters downstream from the neutralizer cathode.

  16. Space Charge Neutralization in the ITER Negative Ion Beams

    SciTech Connect

    Surrey, Elizabeth

    2007-08-10

    A model of the space charge neutralization of negative ion beams, developed from the model due to Holmes, is applied to the ITER heating and diagnostic beams. The Holmes model assumed that the plasma electron temperature was derived from the stripped electrons. This is shown to be incorrect for the ITER beams and the plasma electron temperature is obtained from the average creation energy upon ionization. The model shows that both ITER beams will be fully space charge compensated in the drift distance between the accelerator and the neutralizer. Inside the neutralizer, the plasma over compensates the space charge to the extent that a significant focusing force is predicted. At a certain position in the neutraliser this force balances the defocusing force due to the ions' transverse energy. Under these conditions the beam distribution function can change from Gaussian to Bennett and evidence of such a distribution observed in a multi-aperture, neutralized negative ion beam is presented.

  17. Focused Ion Beam Induced Effects on MOS Transistor Parameters

    SciTech Connect

    Abramo, Marsha T.; Antoniou, Nicholas; Campbell, Ann N.; Fleetwood, Daniel M.; Hembree, Charles E.; Jessing, Jeffrey R.; Soden, Jerry M.; Swanson, Scot E.; Tangyunyong, Paiboon; Vanderlinde, William E.

    1999-07-28

    We report on recent studies of the effects of 50 keV focused ion beam (FIB) exposure on MOS transistors. We demonstrate that the changes in value of transistor parameters (such as threshold voltage, V{sub t}) are essentially the same for exposure to a Ga+ ion beam at 30 and 50 keV under the same exposure conditions. We characterize the effects of FIB exposure on test transistors fabricated in both 0.5 {micro}m and 0.225 {micro}m technologies from two different vendors. We report on the effectiveness of overlying metal layers in screening MOS transistors from FIB-induced damage and examine the importance of ion dose rate and the physical dimensions of the exposed area.

  18. Internal energy deposition with silicon nanoparticle-assisted laser desorption/ionization (SPALDI) mass spectrometry

    NASA Astrophysics Data System (ADS)

    Dagan, Shai; Hua, Yimin; Boday, Dylan J.; Somogyi, Arpad; Wysocki, Ronald J.; Wysocki, Vicki H.

    2009-06-01

    The use of silicon nanoparticles for laser desorption/ionization (LDI) is a new appealing matrix-less approach for the selective and sensitive mass spectrometry of small molecules in MALDI instruments. Chemically modified silicon nanoparticles (30 nm) were previously found to require very low laser fluence in order to induce efficient LDI, which raised the question of internal energy deposition processes in that system. Here we report a comparative study of internal energy deposition from silicon nanoparticles to previously explored benzylpyridinium (BP) model compounds during LDI experiments. The internal energy deposition in silicon nanoparticle-assisted laser desorption/ionization (SPALDI) with different fluorinated linear chain modifiers (decyl, hexyl and propyl) was compared to LDI from untreated silicon nanoparticles and from the organic matrix, [alpha]-cyano-4-hydroxycinnamic acid (CHCA). The energy deposition to internal vibrational modes was evaluated by molecular ion survival curves and indicated that the ions produced by SPALDI have an internal energy threshold of 2.8-3.7 eV. This is slightly lower than the internal energy induced using the organic CHCA matrix, with similar molecular survival curves as previously reported for LDI off silicon nanowires. However, the internal energy associated with desorption/ionization from the silicon nanoparticles is significantly lower than that reported for desorption/ionization on silicon (DIOS). The measured survival yields in SPALDI gradually decrease with increasing laser fluence, contrary to reported results for silicon nanowires. The effect of modification of the silicon particle surface with semifluorinated linear chain silanes, including fluorinated decyl (C10), fluorinated hexyl (C6) and fluorinated propyl (C3) was explored too. The internal energy deposited increased with a decrease in the length of the modifier alkyl chain. Unmodified silicon particles exhibited the highest analyte internal energy

  19. Electric-field assisted growth and self-assembly of intrinsic silicon nanowires.

    PubMed

    Englander, Ongi; Christensen, Dane; Kim, Jongbaeg; Lin, Liwei; Morris, Stephen J S

    2005-04-01

    Electric-field assisted growth and self-assembly of intrinsic silicon nanowires, in-situ, is demonstrated. The nanowires are seen to respond to the presence of a localized DC electric field set up between adjacent MEMS structures. The response is expressed in the form of improved nanowire order, alignment, and organization while transcending a gap. This process provides a simple yet reliable method for enhanced control over intrinsic one-dimensional nanostructure placement and handling. PMID:15826112

  20. The influence of the ion beam on the structure and optical properties of titanium nitride nano-scale thin films

    NASA Astrophysics Data System (ADS)

    Odeh, Ibrahim; Elian, Rajaa

    2015-12-01

    Titanium nitride nano-scale thin films have been prepared by ion beam assisted reactive DC magnetron sputtering. The films are characterized by XRD, SEM and TEM. The films are found to be amorphous. The effect of the ion beam during deposition was evident from smoothness of film surface (SEM and TEM images) and modifications in optical properties. Investigation of the optical constants shows stable refractive index dominating most of the visible range. The films are not highly absorptive in the visible range. An energy gap of 2.9 ± 0.1 eV is estimated for the IBAD amorphous titanium nitride nano-thin films. The stability of the films at normal room environment in addition to the golden color makes the nano-thin films suitable for hard and decorative coatings.

  1. Maskless micro-ion-beam reduction lithography system

    DOEpatents

    Leung, Ka-Ngo; Barletta, William A.; Patterson, David O.; Gough, Richard A.

    2005-05-03

    A maskless micro-ion-beam reduction lithography system is a system for projecting patterns onto a resist layer on a wafer with feature size down to below 100 nm. The MMRL system operates without a stencil mask. The patterns are generated by switching beamlets on and off from a two electrode blanking system or pattern generator. The pattern generator controllably extracts the beamlet pattern from an ion source and is followed by a beam reduction and acceleration column.

  2. Production of highly charged ion beams with SECRALa)

    NASA Astrophysics Data System (ADS)

    Sun, L. T.; Zhao, H. W.; Lu, W.; Zhang, X. Z.; Feng, Y. C.; Li, J. Y.; Cao, Y.; Guo, X. H.; Ma, H. Y.; Zhao, H. Y.; Shang, Y.; Ma, B. H.; Wang, H.; Li, X. X.; Jin, T.; Xie, D. Z.

    2010-02-01

    Superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is an all-superconducting-magnet electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged ion beams to meet the requirements of the Heavy Ion Research Facility in Lanzhou (HIRFL). To further enhance the performance of SECRAL, an aluminum chamber has been installed inside a 1.5 mm thick Ta liner used for the reduction of x-ray irradiation at the high voltage insulator. With double-frequency (18+14.5 GHz) heating and at maximum total microwave power of 2.0 kW, SECRAL has successfully produced quite a few very highly charged Xe ion beams, such as 10 e μA of Xe37+, 1 e μA of Xe43+, and 0.16 e μA of Ne-like Xe44+. To further explore the capability of the SECRAL in the production of highly charged heavy metal ion beams, a first test run on bismuth has been carried out recently. The main goal is to produce an intense Bi31+ beam for HIRFL accelerator and to have a feel how well the SECRAL can do in the production of very highly charged Bi beams. During the test, though at microwave power less than 3 kW, more than 150 e μA of Bi31+, 22 e μA of Bi41+, and 1.5 e μA of Bi50+ have been produced. All of these results have again demonstrated the great capability of the SECRAL source. This article will present the detailed results and brief discussions to the production of highly charged ion beams with SECRAL.

  3. Ion-beam-driven electrostatic ion cyclotron instabilities

    SciTech Connect

    Miura, A.; Okuda, H.; Ashour-Abdalla, M.

    1982-10-01

    We present results of numerical simulations on the electrostatic ion cyclotron instabilities driven by the ion beam parallel to the magnetic field. For the beam speed exceeding the thermal speed of background ions and the beam temperature much lower than the background ion temperature, it is found that the instability results in strong perpendicular heating and slowing down of parallel drift of the beam ions, leading to the saturation of the instability. Applications to plasma heating and space plasma physics are discussed.

  4. Production of highly charged ion beams with SECRAL.

    PubMed

    Sun, L T; Zhao, H W; Lu, W; Zhang, X Z; Feng, Y C; Li, J Y; Cao, Y; Guo, X H; Ma, H Y; Zhao, H Y; Shang, Y; Ma, B H; Wang, H; Li, X X; Jin, T; Xie, D Z

    2010-02-01

    Superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is an all-superconducting-magnet electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged ion beams to meet the requirements of the Heavy Ion Research Facility in Lanzhou (HIRFL). To further enhance the performance of SECRAL, an aluminum chamber has been installed inside a 1.5 mm thick Ta liner used for the reduction of x-ray irradiation at the high voltage insulator. With double-frequency (18+14.5 GHz) heating and at maximum total microwave power of 2.0 kW, SECRAL has successfully produced quite a few very highly charged Xe ion beams, such as 10 e microA of Xe(37+), 1 e microA of Xe(43+), and 0.16 e microA of Ne-like Xe(44+). To further explore the capability of the SECRAL in the production of highly charged heavy metal ion beams, a first test run on bismuth has been carried out recently. The main goal is to produce an intense Bi(31+) beam for HIRFL accelerator and to have a feel how well the SECRAL can do in the production of very highly charged Bi beams. During the test, though at microwave power less than 3 kW, more than 150 e microA of Bi(31+), 22 e microA of Bi(41+), and 1.5 e microA of Bi(50+) have been produced. All of these results have again demonstrated the great capability of the SECRAL source. This article will present the detailed results and brief discussions to the production of highly charged ion beams with SECRAL. PMID:20192339

  5. Ion beam analysis of diffusion in heterogeneous materials

    NASA Astrophysics Data System (ADS)

    Clough, A. S.; Jenneson, P. M.

    1998-04-01

    Ion-beam analysis has been applied to a variety of problems involving diffusion in heterogeneous materials. An energy loss technique has been used to study both the diffusion of water and the surface segregation of fluoropolymers in polymeric matrices. A scanning micro-beam technique has been developed to allow water concentrations in hydrophilic polymers and cements to be measured together with associated solute elements. It has also been applied to the diffusion of shampoo into hair.

  6. Theory of Nanocluster Size Distributions from Ion Beam Synthesis

    SciTech Connect

    Yuan, C.W.; Yi, D.O.; Sharp, I.D.; Shin, S.J.; Liao, C.Y.; Guzman, J.; Ager III, J.W.; Haller, E.E.; Chrzan, D.C.

    2008-06-13

    Ion beam synthesis of nanoclusters is studied via both kinetic Monte Carlo simulations and the self-consistent mean-field solution to a set of coupled rate equations. Both approaches predict the existence of a steady state shape for the cluster size distribution that depends only on a characteristic length determined by the ratio of the effective diffusion coefficient to the ion flux. The average cluster size in the steady state regime is determined by the implanted species/matrix interface energy.

  7. Drift compression of an intense neutralized ion beam

    SciTech Connect

    Roy, P.K.; Yu, S.S.; Henestroza, E.; Anders, A.; Bieniosek, F.M.; Coleman, J.; Eylon, S.; Greenway, W.G.; Leitner, M.; Logan, B.G.; Waldron, W.L.; Welch, D.R.; Thoma, C.; Sefkow, A.B.; Gilson, E.P.; Efthimion, P.C.; Davidson, R.C.

    2004-10-25

    Longitudinal compression of a tailored-velocity, intense neutralized ion beam has been demonstrated. The compression takes place in a 1-2 m drift section filled with plasma to provide space-charge neutralization. An induction cell produces a head-to-tail velocity ramp that longitudinally compresses the neutralized beam, enhancing the beam peak current by a factor of 50 and producing a pulse duration of about 3 ns. this measurement has been confirmed independently with two different diagnostic systems.

  8. Ion beam analysis based on cellular nonlinear networks

    NASA Astrophysics Data System (ADS)

    Senger, V.; Tetzlaff, R.; Reichau, H.; Ratzinger, U.

    2011-07-01

    The development of a non- destructive measurement method for ion beam parameters has been treated in various projects. Although results are promising, the high complexity of beam dynamics has made it impossible to implement a real time process control up to now. In this paper we will propose analysing methods based on the dynamics of Cellular Nonlinear Networks (CNN) that can be implemented on pixel parallel CNN based architectures and yield satisfying results even at low resolutions.

  9. Effects of evolving surface morphology on yield during focused ion beam milling of carbon.

    SciTech Connect

    Mayer, Thomas Michael; Adams, David Price; Archuleta, Kim M.; Vasile, Michael J.

    2005-07-01

    We investigate evolving surface morphology during focused ion beam bombardment of C and determine its effects on sputter yield over a large range of ion dose (10{sup 17}-10{sup 19} ions/cm{sup 2}) and incidence angles ({Theta} = 0-80{sup o}). Carbon bombarded by 20 keV Ga{sup +} either retains a smooth sputtered surface or develops one of two rough surface morphologies (sinusoidal ripples or steps/terraces) depending on the angle of ion incidence. For conditions that lead to smooth sputter-eroded surfaces there is no change in yield with ion dose after erosion of the solid commences. However, for all conditions that lead to surface roughening we observe coarsening of morphology with increased ion dose and a concomitant decrease in yield. A decrease in yield occurs as surface ripples increase wavelength and, for large {Theta}, as step/terrace morphologies evolve. The yield also decreases with dose as rippled surfaces transition to have steps and terraces at {Theta} = 75{sup o}. Similar trends of decreasing yield are found for H{sub 2}O-assisted focused ion beam milling. The effects of changing surface morphology on yield are explained by the varying incidence angles exposed to the high-energy beam.

  10. Solution deposition planarization for ion beam texturing of long-length flexible substrates

    SciTech Connect

    Sheehan, Chris J; Jung, Yehyun; Holesinger, Terry G; Matias, Vladimir

    2010-12-01

    We present the results of a study of solution deposition planarization (SDP) for preparing smooth flexible substrates in long lengths. Roll to roll fabrication of electronic and power devices with single-crystal properties are desired for inexpensive production. Using the SDP process we have achieved 0.5 nm RMS roughness from a starting roughness of over 20 nm on 5 {micro}m areas. We model the surface roughness reduction as governed by the amount of film shrinkage during solution deposition, number of coatings, solution composition and a residual roughness based on film thickness. This process is extremely well suited for ion-beam texturing of MgO. By utilizing solution deposition of a-Y{sub 2}O{sub 3} to planarize the substrate we create the required surface for in-plane MgO texturing using assisted ion-beam deposition. We have achieved in-plane texture FWHM of 4{sup o} on the SDP substrates. Using an appropriate simple layer architecture for superconducting coated conductors we attained critical currents in excess of 3 MA/cm{sup 2} at 75 K for 1-1.2 {micro}m thick YBa{sub 2}Cu{sub 3}O{sub y} films.

  11. Studies of Ion Beam Charge Neutralization by Ferroelectric Plasma Sources

    NASA Astrophysics Data System (ADS)

    Stepanov, A.; Gilson, E. P.; Grisham, L.; Davidson, R. C.

    2013-10-01

    Space-charge forces limit the possible transverse compression of high perveance ion beams that are used in ion-beam-driven high energy density physics applications; the minimum radius to which a beam can be focused is an increasing function of perveance. The limit can be overcome if a plasma is introduced in the beam path between the focusing element and the target in order to neutralize the space charge of the beam. This concept has been implemented on the Neutralized Drift Compression eXperiment (NDCX) at LBNL using Ferroelectric Plasma Sources (FEPS). In our experiment at PPPL, we propagate a perveance-dominated ion beam through a FEPS to study the effect of the neutralizing plasma on the beam envelope and its evolution in time. A 30-60 keV space-charge-dominated Argon beam is focused with an Einzel lens into a FEPS located at the beam waist. The beam is intercepted downstream from the FEPS by a movable Faraday cup that provides time-resolved 2D current density profiles of the beam spot on target. We report results on: (a) dependence of charge neutralization on FEPS plasma density; (b) effects on beam emittance, and (c) time evolution of the beam envelope after the FEPS pulse. Research supported by the U.S. Department of Energy.

  12. Ferroelectric Plasma Source for Heavy Ion Beam ChargeNeutralization

    SciTech Connect

    Efthimion, Philip C.; Gilson, Erik P.; Grisham, Larry; Davidson,Ronald C.; Yu, Simon; Waldron, William; Logan, B. Grant

    2005-10-01

    Plasmas are employed as a source of unbound electrons for charge neutralizing heavy ion beams to allow them to focus to a small spot size. Calculations suggest that plasma at a density of 1-100 times the ion beam density and at a length {approx} 0.1-1 m would be suitable. To produce one-meter plasma, large-volume plasma sources based upon ferroelectric ceramics are being developed. These sources have the advantage of being able to increase the length of the plasma and operate at low neutral pressures. The source utilizes the ferroelectric ceramic BaTiO{sub 3} to form metal plasma. The drift tube inner surface of the Neutralized Drift Compression Experiment (NDCX) will be covered with ceramic, and high voltage ({approx} 1-5 kV) applied between the drift tube and the front surface of the ceramic by placing a wire grid on the front surface. A prototype ferroelectric source 20 cm long has produced plasma densities of 5 x 10{sup 11} cm{sup -3}. The source was integrated into the previous Neutralized Transport Experiment (NTX), and successfully charge neutralized the K{sup +} ion beam. Presently, the one-meter source is being fabricated. The source is being characterized and will be integrated into NDCX for charge neutralization experiments.

  13. Nano-scale processes behind ion-beam cancer therapy

    NASA Astrophysics Data System (ADS)

    Surdutovich, Eugene; Garcia, Gustavo; Mason, Nigel; Solov'yov, Andrey V.

    2016-04-01

    This topical issue collates a series of papers based on new data reported at the third Nano-IBCT Conference of the COST Action MP1002: Nanoscale Insights into Ion Beam Cancer Therapy, held in Boppard, Germany, from October 27th to October 31st, 2014. The Nano-IBCT COST Action was launched in December 2010 and brought together more than 300 experts from different disciplines (physics, chemistry, biology) with specialists in radiation damage of biological matter from hadron-therapy centres, and medical institutions. This meeting followed the first and the second conferences of the Action held in October 2011 in Caen, France and in May 2013 in Sopot, Poland respectively. This conference series provided a focus for the European research community and has highlighted the pioneering research into the fundamental processes underpinning ion beam cancer therapy. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey V. Solov'yov, Nigel Mason, Gustavo Garcia and Eugene Surdutovich.

  14. Prospects of ion beam extraction and transport simulations (invited)

    SciTech Connect

    Spaedtke, Peter; Tinschert, K.; Lang, R.; Maeder, J.; Rossbach, J.; Stetson, J. W.; Celona, L.

    2008-02-15

    Beam profile measurements using viewing targets and emittance measurements with pepper pot devices have established new insights about the ion beam extracted from an electron cyclotron resonance ion source (ECRIS). In our measurements we have compared two different ECRISs of CAPRICE type, one source was equipped with a standard 1.0 T hexapole magnet, whereas for the other ion source a stronger hexapole magnet with a flux density of 1.2 T has been installed. The resulting ion beam profile for each individual charge state produced by different focal strengths of an optical element can be used to estimate the emittance, but it also shows the negative influence of the hexapole on the extracted ion beam. A hexapole correction would be desirable to improve further beam transport. A possible correction scheme will be discussed. All experimental observations can be reproduced by computer simulation if a magnetic plasma is assumed. When the Larmor radius for ions becomes small, collisions are negligible for the path of ions within the plasma. Low energy electrons are highly movable along the magnetic field lines and can compensate the ion space charge within the plasma chamber.

  15. Depth-dose relations for heavy ion beams

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.

    1977-01-01

    Radiation transport of heavy ions in matter is of interest to radiological protection in space and high-altitude aircraft. In addition, heavy ion beams are expected to be of advantage in radiotherapy since their characteristic Bragg curve allows a relative reduction of the dose in reaching a tumor site and the near elimination of exposure beyond the tumor region as the beam exits the body. Furthermore, the radioresistance of tumorous cells due to their hypoxic state may be reduced or eliminated by the high specific ionization of heavy ion beams. The depth-dose distribution of heavy ion beams consists of energy deposited by the attenuated primary beam with its characteristic Bragg curve and a relatively unstructured background due to secondary radiations produced in nuclear reactions. As the ion mass increases, the secondary contribution becomes more structured and may add significantly to the Bragg peak of the primary ions. The result for heavy ions (z greater than 20) is a greatly broadened Bragg peak region, especially in comparison to straggling effects, which may prove to be of importance in radiotherapy and biomedical research.

  16. Temperature measurements during high flux ion beam irradiations.

    PubMed

    Crespillo, M L; Graham, J T; Zhang, Y; Weber, W J

    2016-02-01

    A systematic study of the ion beam heating effect was performed in a temperature range of -170 to 900 °C using a 10 MeV Au(3+) ion beam and a Yttria stabilized Zirconia (YSZ) sample at a flux of 5.5 × 10(12) cm(-2) s(-1). Different geometric configurations of beam, sample, thermocouple positioning, and sample holder were compared to understand the heat/charge transport mechanisms responsible for the observed temperature increase. The beam heating exhibited a strong dependence on the background (initial) sample temperature with the largest temperature increases occurring at cryogenic temperatures and decreasing with increasing temperature. Comparison with numerical calculations suggests that the observed heating effect is, in reality, a predominantly electronic effect and the true temperature rise is small. A simple model was developed to explain this electronic effect in terms of an electrostatic potential that forms during ion irradiation. Such an artificial beam heating effect is potentially problematic in thermostated ion irradiation and ion beam analysis apparatus, as the operation of temperature feedback systems can be significantly distorted by this effect. PMID:26931879

  17. The generation and application of intense pulsed ion beams

    NASA Astrophysics Data System (ADS)

    Golden, J.; Kapetanakos, C. A.; Pasour, J. A.; Mahaffey, R. A.

    1981-04-01

    Means for the generation of pulsed, ultrahigh power beams of low-atomic-mass ions are considered, and potential applications of the beams in thermonuclear fusion and other applications are discussed. The intense ion beam sources represent an extension of the pulsed-power technology of relativistic electron beams, employing transmission lines powered by Marx generators to produce pulses of 25-100 nsec duration, energies of 0.1-2 MV, currents of 1 kA to 1 MA, and power levels above 1 GW. The most successful approach to intense pulsed beam generation is based on the acceleration of plasma ions within vacuum-diode-like sources involving the processes of plasma generation, ion extraction, and the suppression of the electron current, which may be accomplished by reflexing, pinching or magnetic insulation. Ion beams thus generated have been used to form transient, field-reversed ion layers and to excite high-power gas lasers. Intense ion beams are also under investigation as drivers of inertial confinement in thermonuclear reactors.

  18. Plasma opening switch for long-pulse intense ion beam

    SciTech Connect

    Davis, H.A.; Mason, R.J.; Bartsch, R.R.; Greenly, J.B.; Rej, D.J.

    1992-01-01

    A Plasma Opening Switch (POS) is being developed at Los Alamos, as part of an intense ion beam experiment with special application to materials processing. The switch must conduct up to 100 kA for 600 ns, and open quickly to avoid premature gap closure in the ion beam diode load. Power multiplication is not a necessity, but prepulse suppression is. A positive central polarity is desirable, since with it an ion beam can be conveniently launched beyond the switch from the central anode toward a negatively charged target. Thus, otherwise by virtue of traditional scaling rules, a POS was designed with a 1.25 cm radius inner anode, and a 4.75 cm radius outer cathode. This has been constructed, and subjected to circuit, and simulational analysis. The computations are being performed with the 2D ANTHEM implicit code. Preliminary results show a marked difference in switching dynamics, when the central positive polarity is used in place of the more conventional opposite choice. Opening goes by the fast development of a central anode magnetic layer, rather than by the more conventional slow evolution of a cathode gap. With the central anode, higher fill densities are needed to achieve desired conduction times. This has suggested switch design improvements, which are discussed.

  19. Plasma opening switch for long-pulse intense ion beam

    SciTech Connect

    Davis, H.A.; Mason, R.J.; Bartsch, R.R.; Greenly, J.B.; Rej, D.J.

    1992-08-01

    A Plasma Opening Switch (POS) is being developed at Los Alamos, as part of an intense ion beam experiment with special application to materials processing. The switch must conduct up to 100 kA for 600 ns, and open quickly to avoid premature gap closure in the ion beam diode load. Power multiplication is not a necessity, but prepulse suppression is. A positive central polarity is desirable, since with it an ion beam can be conveniently launched beyond the switch from the central anode toward a negatively charged target. Thus, otherwise by virtue of traditional scaling rules, a POS was designed with a 1.25 cm radius inner anode, and a 4.75 cm radius outer cathode. This has been constructed, and subjected to circuit, and simulational analysis. The computations are being performed with the 2D ANTHEM implicit code. Preliminary results show a marked difference in switching dynamics, when the central positive polarity is used in place of the more conventional opposite choice. Opening goes by the fast development of a central anode magnetic layer, rather than by the more conventional slow evolution of a cathode gap. With the central anode, higher fill densities are needed to achieve desired conduction times. This has suggested switch design improvements, which are discussed.

  20. RF plasma source for heavy ion beam charge neutralization

    SciTech Connect

    Efthimion, Philip C.; Gilson, Erik; Grisham, Larry; Davidson, Ronald C.; Yu, Simon S.; Logan, B. Grant

    2003-05-01

    Highly ionized plasmas are being used as a medium for charge neutralizing heavy ion beams in order to focus the ion beam to a small spot size. A radio frequency (RF) plasma source has been built at the Princeton Plasma Physics Laboratory (PPPL) in support of the joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization with plasma. The goal is to operate the source at pressures {approx} 10{sup -5} Torr at full ionization. The initial operation of the source has been at pressures of 10{sup -4}-10{sup -1} Torr and electron densities in the range of 10{sup 8}-10{sup 11} cm{sup -3}. Recently, pulsed operation of the source has enabled operation at pressures in the 10{sup -6} Torr range with densities of 10{sup 11} cm{sup -3}. Near 100% ionization has been achieved. The source has been integrated with the NTX facility and experiments have begun.

  1. Dense Metal Plasma in a Solenoid for Ion Beam Neutralization

    SciTech Connect

    Anders, Andre; Kauffeldt, Marina; Oks, Efim M.; Roy, Prabir K.

    2010-10-30

    Space-charge neutralization is required to compress and focus a pulsed, high-current ion beam on a target for warm dense matter physics or heavy ion fusion experiments. We described approaches to produce dense plasma in and near the final focusing solenoid through which the ion beam travels, thereby providing an opportunity for the beam to acquire the necessary space-charge compensating electrons. Among the options are plasma injection from pulsed vacuum arc sources located outside the solenoid, and using a high current (> 4 kA) pulsed vacuum arc plasma from a ring cathode near the edge of the solenoid. The plasma distribution is characterized by photographic means, by an array of movable Langmuir probes, by a small single probe, and by evaluating Stark broadening of the Balmer H beta spectral line. In the main approach described here, the plasma is produced at several cathode spots distributed azimuthally on the ring cathode. It is shown that the plasma is essentially hollow, as determined by the structure of the magnetic field, though the plasma density exceeds 1014 cm-3 in practically all zones of the solenoid volume if the ring electrode is placed a few centimeters off the center of the solenoid. The plasma is non-uniform and fluctuating, however, since its density exceeds the ion beam density it is believed that this approach could provide a practical solution to the space charge neutralization challenge.

  2. Intense ion beam neutralization using underdense background plasma

    SciTech Connect

    Berdanier, William; Roy, Prabir K.; Kaganovich, Igor

    2015-01-15

    Producing an overdense background plasma for neutralization purposes with a density that is high compared to the beam density is not always experimentally possible. We show that even an underdense background plasma with a small relative density can achieve high neutralization of intense ion beam pulses. Using particle-in-cell simulations, we show that if the total plasma electron charge is not sufficient to neutralize the beam charge, electron emitters are necessary for effective neutralization but are not needed if the plasma volume is so large that the total available charge in the electrons exceeds that of the ion beam. Several regimes of possible underdense/tenuous neutralization plasma densities are investigated with and without electron emitters or dense plasma at periphery regions, including the case of electron emitters without plasma, which does not effectively neutralize the beam. Over 95% neutralization is achieved for even very underdense background plasma with plasma density 1/15th the beam density. We compare results of particle-in-cell simulations with an analytic model of neutralization and find close agreement with the particle-in-cell simulations. Further, we show experimental data from the National Drift Compression experiment-II group that verifies the result that underdense plasma can neutralize intense heavy ion beams effectively.

  3. Study on space charge compensation in negative hydrogen ion beam

    NASA Astrophysics Data System (ADS)

    Zhang, A. L.; Peng, S. X.; Ren, H. T.; Zhang, T.; Zhang, J. F.; Xu, Y.; Guo, Z. Y.; Chen, J. E.

    2016-02-01

    Negative hydrogen ion beam can be compensated by the trapping of ions into the beam potential. When the beam propagates through a neutral gas, these ions arise due to gas ionization by the beam ions. However, the high neutral gas pressure may cause serious negative hydrogen ion beam loss, while low neutral gas pressure may lead to ion-ion instability and decompensation. To better understand the space charge compensation processes within a negative hydrogen beam, experimental study and numerical simulation were carried out at Peking University (PKU). The simulation code for negative hydrogen ion beam is improved from a 2D particle-in-cell-Monte Carlo collision code which has been successfully applied to H+ beam compensated with Ar gas. Impacts among ions, electrons, and neutral gases in negative hydrogen beam compensation processes are carefully treated. The results of the beam simulations were compared with current and emittance measurements of an H- beam from a 2.45 GHz microwave driven H- ion source in PKU. Compensation gas was injected directly into the beam transport region to modify the space charge compensation degree. The experimental results were in good agreement with the simulation results.

  4. The production and use of ultralow energy ion beams

    NASA Astrophysics Data System (ADS)

    Goldberg, R. D.; Armour, D. G.; van den Berg, J. A.; Cook, C. E. A.; Whelan, S.; Zhang, S.; Knorr, N.; Foad, M. A.; Ohno, H.

    2000-02-01

    An ion accelerator, purpose built to produce beams at energies down to 10 eV with current densities in the 10-100 μA cm-2 range, is described. Fitted with dual ion source assemblies, the machine enables ultralow energy ion implantation and the growth of films and multilayers to be carried out under highly controlled conditions. The accelerator delivers ion beams into an ultrahigh vacuum chamber, containing a temperature controlled target stage (range -120 to +1350 °C), where they are used to study the fundamental physics relating to the interaction of ultralow energy ions with surfaces. This knowledge underlies a wide range of ion-beam and plasma-based technologies and, to illustrate its importance, results are presented from investigations designed to determine the optimum conditions for the growth of diamond-like and aluminum films by ion-beam deposition and the formation of ultrashallow junctions in semiconductors by 2.5 keV As+ implantation. The later investigation shows how transient arsenic diffusion, which occurs during post-implant thermal processing, can be controlled by manipulating the substrate temperature during implantation.

  5. Study on space charge compensation in negative hydrogen ion beam.

    PubMed

    Zhang, A L; Peng, S X; Ren, H T; Zhang, T; Zhang, J F; Xu, Y; Guo, Z Y; Chen, J E

    2016-02-01

    Negative hydrogen ion beam can be compensated by the trapping of ions into the beam potential. When the beam propagates through a neutral gas, these ions arise due to gas ionization by the beam ions. However, the high neutral gas pressure may cause serious negative hydrogen ion beam loss, while low neutral gas pressure may lead to ion-ion instability and decompensation. To better understand the space charge compensation processes within a negative hydrogen beam, experimental study and numerical simulation were carried out at Peking University (PKU). The simulation code for negative hydrogen ion beam is improved from a 2D particle-in-cell-Monte Carlo collision code which has been successfully applied to H(+) beam compensated with Ar gas. Impacts among ions, electrons, and neutral gases in negative hydrogen beam compensation processes are carefully treated. The results of the beam simulations were compared with current and emittance measurements of an H(-) beam from a 2.45 GHz microwave driven H(-) ion source in PKU. Compensation gas was injected directly into the beam transport region to modify the space charge compensation degree. The experimental results were in good agreement with the simulation results. PMID:26932087

  6. The LICPA accelerator of dense plasma and ion beams

    NASA Astrophysics Data System (ADS)

    Badziak, J.; Jabloński, S.; Pisarczyk, T.; Chodukowski, T.; Parys, P.; Raczka, P.; Rosiński, M.; Krousky, E.; Ullschmied, J.; Liska, R.; Kucharik, M.; Torrisi, L.

    2014-04-01

    Laser-induced cavity pressure acceleration (LICPA) is a novel scheme of acceleration of dense matter having a potential to accelerate plasma projectiles with the energetic efficiency much higher than the achieved so far with other methods. In this scheme, a projectile placed in a cavity is irradiated by a laser beam introduced into the cavity through a hole and accelerated along a guiding channel by the thermal pressure created in the cavity by the laser-produced plasma or by the photon pressure of the ultraintense laser radiation trapped in the cavity. This paper summarizes briefly the main results of our recent LICPA studies, in particular, experimental investigations of ion beam generation and heavy macroparticle acceleration in the hydrodynamic LICPA regime (at moderate laser intensities ~ 1015W/cm2) and numerical, particle-in-cell (PIC) studies of production of ultraintense ion beams and fast macroparticles using the photon pressure LICPA regime (at high laser intensities > 1020 W/cm2). It is shown that in both LICPA regimes the macroparticles and ion beams can be accelerated much more efficiently than in other laser-based acceleration scheme commonly used and the accelerated plasma/ion bunches can have a wide variety of parameters. It creates a prospect for a broad range of applications of the LICPA accelerator, in particular in such domains as high energy density physics, ICF research (ion fast ignition, impact ignition) or nuclear physics.

  7. Temperature measurements during high flux ion beam irradiations

    NASA Astrophysics Data System (ADS)

    Crespillo, M. L.; Graham, J. T.; Zhang, Y.; Weber, W. J.

    2016-02-01

    A systematic study of the ion beam heating effect was performed in a temperature range of -170 to 900 °C using a 10 MeV Au3+ ion beam and a Yttria stabilized Zirconia (YSZ) sample at a flux of 5.5 × 1012 cm-2 s-1. Different geometric configurations of beam, sample, thermocouple positioning, and sample holder were compared to understand the heat/charge transport mechanisms responsible for the observed temperature increase. The beam heating exhibited a strong dependence on the background (initial) sample temperature with the largest temperature increases occurring at cryogenic temperatures and decreasing with increasing temperature. Comparison with numerical calculations suggests that the observed heating effect is, in reality, a predominantly electronic effect and the true temperature rise is small. A simple model was developed to explain this electronic effect in terms of an electrostatic potential that forms during ion irradiation. Such an artificial beam heating effect is potentially problematic in thermostated ion irradiation and ion beam analysis apparatus, as the operation of temperature feedback systems can be significantly distorted by this effect.

  8. Method and apparatus for efficient photodetachment and purification of negative ion beams

    DOEpatents

    Beene, James R.; Liu, Yuan; Havener, Charles C.

    2008-02-26

    Methods and apparatus are described for efficient photodetachment and purification of negative ion beams. A method of purifying an ion beam includes: inputting the ion beam into a gas-filled multipole ion guide, the ion beam including a plurality of ions; increasing a laser-ion interaction time by collisional cooling the plurality of ions using the gas-filled multipole ion guide, the plurality of ions including at least one contaminant; and suppressing the at least one contaminant by selectively removing the at least one contaminant from the ion beam by electron photodetaching at least a portion of the at least one contaminant using a laser beam.

  9. Rapid Covalent Modification of Silicon Oxide Surfaces through Microwave-Assisted Reactions with Alcohols.

    PubMed

    Lee, Austin W H; Gates, Byron D

    2016-07-26

    We demonstrate the method of a rapid covalent modification of silicon oxide surfaces with alcohol-containing compounds with assistance by microwave reactions. Alcohol-containing compounds are prevalent reagents in the laboratory, which are also relatively easy to handle because of their stability against exposure to atmospheric moisture. The condensation of these alcohols with the surfaces of silicon oxides is often hindered by slow reaction kinetics. Microwave radiation effectively accelerates this condensation reaction by heating the substrates and/or solvents. A variety of substrates were modified in this demonstration, such as silicon oxide films of various thicknesses, glass substrates such as microscope slides (soda lime), and quartz. The monolayers prepared through this strategy demonstrated the successful formation of covalent surface modifications of silicon oxides with water contact angles of up to 110° and typical hysteresis values of 2° or less. An evaluation of the hydrolytic stability of these monolayers demonstrated their excellent stability under acidic conditions. The techniques introduced in this article were successfully applied to tune the surface chemistry of silicon oxides to achieve hydrophobic, oleophobic, and/or charged surfaces. PMID:27396288

  10. Reaction dynamics induced by the radioactive ion beam 7Be on medium-mass and heavy targets

    NASA Astrophysics Data System (ADS)

    Mazzocco, M.; Boiano, A.; Boiano, C.; La Commara, M.; Manea, C.; Parascandolo, C.; Pierroutsakou, D.; Stefanini, C.; Strano, E.; Torresi, D.; Acosta, L.; Di Meo, P.; Fernandez-Garcia, J. P.; Glodariu, T.; Grebosz, J.; Guglielmetti, A.; Keeley, N.; Lay, J. A.; Marquinez-Duran, G.; Martel, I.; Mazzocchi, C.; Molini, P.; Nicoletto, M.; Pakou, A.; Parkar, V. V.; Rusek, K.; Sánchez-Benítez, A. M.; Sandoli, M.; Sava, T.; Sgouros, O.; Signorini, C.; Silvestri, R.; Soramel, F.; Soukeras, V.; Stiliaris, E.; Stroe, L.; Toniolo, N.; Zerva, K.

    2015-10-01

    We studied the reaction dynamics induced at Coulomb barrier energies by the weakly-bound Radioactive Ion Beam 7Be (Sα = 1.586 MeV) on medium-mass (58Ni) and heavy (208Pb) targets. The experiments were performed at INFN-LNL (Italy), where a 2-3×105 pps 7Be secondary beam was produced with the RIB in-flight facility EXOTIC. Charged reaction products were detected by means of high-granularity silicon detectors in rather wide angular ranges. The contribution presents an up-to-date status of the data analysis and theoretical interpretation for both systems.

  11. Measurement of ultra-low ion energy of decelerated ion beam using a deflecting electric field

    NASA Astrophysics Data System (ADS)

    Thopan, P.; Suwannakachorn, D.; Tippawan, U.; Yu, L. D.

    2015-12-01

    In investigation on ultra-low-energy ion bombardment effect on DNA, an ion beam deceleration lens was developed for high-quality ultra-low-energy ion beam. Measurement of the ion energy after deceleration was necessary to confirm the ion beam really decelerated as theoretically predicted. In contrast to conventional methods, this work used a simple deflecting electrostatic field after the deceleration lens to bend the ion beam. The beam bending distance depended on the ion energy and was described and simulated. A system for the measurement of the ion beam energy was constructed. It consisted of a pair of parallel electrode plates to generate the deflecting electrical field, a copper rod measurement piece to detect ion beam current, a vernier caliper to mark the beam position, a stepping motor to translate the measurement rod, and a webcam-camera to read the beam bending distance. The entire system was installed after the ion-beam deceleration lens inside the large chamber of the bioengineering vertical ion beam line. Moving the measurement rod across the decelerated ion beam enabled to obtain beam profiles, from which the beam bending distance could be known and the ion beam energy could be calculated. The measurement results were in good agreement with theoretical and simulated results.

  12. Arc-based smoothing of ion beam intensity on targets

    NASA Astrophysics Data System (ADS)

    Friedman, Alex

    2012-06-01

    By manipulating a set of ion beams upstream of a target, it is possible to arrange for a smoother deposition pattern, so as to achieve more uniform illumination of the target. A uniform energy deposition pattern is important for applications including ion-beam-driven high energy density physics and heavy-ion beam-driven inertial fusion energy ("heavy-ion fusion"). Here, we consider an approach to such smoothing that is based on rapidly "wobbling" each of the beams back and forth along a short arc-shaped path, via oscillating fields applied upstream of the final pulse compression. In this technique, uniformity is achieved in the time-averaged sense; this is sufficient provided the beam oscillation timescale is short relative to the hydrodynamic timescale of the target implosion. This work builds on two earlier concepts: elliptical beams applied to a distributed-radiator target [D. A. Callahan and M. Tabak, Phys. Plasmas 7, 2083 (2000)] and beams that are wobbled so as to trace a number of full rotations around a circular or elliptical path [R. C. Arnold et al., Nucl. Instrum. Methods 199, 557 (1982)]. Here, we describe the arc-based smoothing approach and compare it to results obtainable using an elliptical-beam prescription. In particular, we assess the potential of these approaches for minimization of azimuthal asymmetry, for the case of a ring of beams arranged on a cone. It is found that, for small numbers of beams on the ring, the arc-based smoothing approach offers superior uniformity. In contrast with the full-rotation approach, arc-based smoothing remains usable when the geometry precludes wobbling the beams around a full circle, e.g., for the X-target [E. Henestroza, B. G. Logan, and L. J. Perkins, Phys. Plasmas 18, 032702 (2011)] and some classes of distributed-radiator targets.

  13. Arc-based smoothing of ion beam intensity on targets

    SciTech Connect

    Friedman, Alex

    2012-06-20

    Manipulating a set of ion beams upstream of a target, makes it possible to arrange a smoother deposition pattern, so as to achieve more uniform illumination of the target. A uniform energy deposition pattern is important for applications including ion-beam-driven high energy density physics and heavy-ion beam-driven inertial fusion energy (“heavy-ion fusion”). Here, we consider an approach to such smoothing that is based on rapidly “wobbling” each of the beams back and forth along a short arc-shaped path, via oscillating fields applied upstream of the final pulse compression. In this technique, uniformity is achieved in the time-averaged sense; this is sufficient provided the beam oscillation timescale is short relative to the hydrodynamic timescale of the target implosion. This work builds on two earlier concepts: elliptical beams applied to a distributed-radiator target [D. A. Callahan and M. Tabak, Phys. Plasmas 7, 2083 (2000)] and beams that are wobbled so as to trace a number of full rotations around a circular or elliptical path [R. C. Arnold et al., Nucl. Instrum. Methods 199, 557 (1982)]. Here, we describe the arc-based smoothing approach and compare it to results obtainable using an elliptical-beam prescription. In particular, we assess the potential of these approaches for minimization of azimuthal asymmetry, for the case of a ring of beams arranged on a cone. We also found that, for small numbers of beams on the ring, the arc-based smoothing approach offers superior uniformity. In contrast with the full-rotation approach, arc-based smoothing remains usable when the geometry precludes wobbling the beams around a full circle, e.g., for the X-target [E. Henestroza, B. G. Logan, and L. J. Perkins, Phys. Plasmas 18, 032702 (2011)] and some classes of distributed-radiator targets.

  14. Arc-based smoothing of ion beam intensity on targets

    SciTech Connect

    Friedman, Alex

    2012-06-15

    By manipulating a set of ion beams upstream of a target, it is possible to arrange for a smoother deposition pattern, so as to achieve more uniform illumination of the target. A uniform energy deposition pattern is important for applications including ion-beam-driven high energy density physics and heavy-ion beam-driven inertial fusion energy ('heavy-ion fusion'). Here, we consider an approach to such smoothing that is based on rapidly 'wobbling' each of the beams back and forth along a short arc-shaped path, via oscillating fields applied upstream of the final pulse compression. In this technique, uniformity is achieved in the time-averaged sense; this is sufficient provided the beam oscillation timescale is short relative to the hydrodynamic timescale of the target implosion. This work builds on two earlier concepts: elliptical beams applied to a distributed-radiator target [D. A. Callahan and M. Tabak, Phys. Plasmas 7, 2083 (2000)] and beams that are wobbled so as to trace a number of full rotations around a circular or elliptical path [R. C. Arnold et al., Nucl. Instrum. Methods 199, 557 (1982)]. Here, we describe the arc-based smoothing approach and compare it to results obtainable using an elliptical-beam prescription. In particular, we assess the potential of these approaches for minimization of azimuthal asymmetry, for the case of a ring of beams arranged on a cone. It is found that, for small numbers of beams on the ring, the arc-based smoothing approach offers superior uniformity. In contrast with the full-rotation approach, arc-based smoothing remains usable when the geometry precludes wobbling the beams around a full circle, e.g., for the X-target [E. Henestroza, B. G. Logan, and L. J. Perkins, Phys. Plasmas 18, 032702 (2011)] and some classes of distributed-radiator targets.

  15. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    SciTech Connect

    Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2010-03-16

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  16. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    SciTech Connect

    Bieniosek, F.M.; Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2008-08-01

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  17. Simulation of ion beam scattering in a gas stripper

    NASA Astrophysics Data System (ADS)

    Maxeiner, Sascha; Suter, Martin; Christl, Marcus; Synal, Hans-Arno

    2015-10-01

    Ion beam scattering in the gas stripper of an accelerator mass spectrometer (AMS) enlarges the beam phase space and broadens its energy distribution. As the size of the injected beam depends on the acceleration voltage through phase space compression, the stripper becomes a limiting factor of the overall system transmission especially for low energy AMS system in the sub MV region. The spatial beam broadening and collisions with the accelerator tube walls are a possible source for machine background and energy loss fluctuations influence the mass resolution and thus isotope separation. To investigate the physical processes responsible for these effects, a computer simulation approach was chosen. Monte Carlo simulation methods are applied to simulate elastic two body scattering processes in screened Coulomb potentials in a (gas) stripper and formulas are derived to correctly determine random collision parameters and free path lengths for arbitrary (and non-homogeneous) gas densities. A simple parametric form for the underlying scattering cross sections is discussed which features important scaling behaviors. An implementation of the simulation was able to correctly model the data gained with the TANDY AMS system at ETH Zurich. The experiment covered transmission measurements of uranium ions in helium and beam profile measurements after the ion beam passed through the He-stripper. Beam profiles measured up to very high stripper densities could be understood in full system simulations including the relevant ion optics. The presented model therefore simulates the fundamental physics of the interaction between an ion beam and a gas stripper reliably. It provides a powerful and flexible tool for optimizing existing AMS stripper geometries and for designing new, state of the art low energy AMS systems.

  18. Arc-based smoothing of ion beam intensity on targets

    DOE PAGESBeta

    Friedman, Alex

    2012-06-20

    Manipulating a set of ion beams upstream of a target, makes it possible to arrange a smoother deposition pattern, so as to achieve more uniform illumination of the target. A uniform energy deposition pattern is important for applications including ion-beam-driven high energy density physics and heavy-ion beam-driven inertial fusion energy (“heavy-ion fusion”). Here, we consider an approach to such smoothing that is based on rapidly “wobbling” each of the beams back and forth along a short arc-shaped path, via oscillating fields applied upstream of the final pulse compression. In this technique, uniformity is achieved in the time-averaged sense; this ismore » sufficient provided the beam oscillation timescale is short relative to the hydrodynamic timescale of the target implosion. This work builds on two earlier concepts: elliptical beams applied to a distributed-radiator target [D. A. Callahan and M. Tabak, Phys. Plasmas 7, 2083 (2000)] and beams that are wobbled so as to trace a number of full rotations around a circular or elliptical path [R. C. Arnold et al., Nucl. Instrum. Methods 199, 557 (1982)]. Here, we describe the arc-based smoothing approach and compare it to results obtainable using an elliptical-beam prescription. In particular, we assess the potential of these approaches for minimization of azimuthal asymmetry, for the case of a ring of beams arranged on a cone. We also found that, for small numbers of beams on the ring, the arc-based smoothing approach offers superior uniformity. In contrast with the full-rotation approach, arc-based smoothing remains usable when the geometry precludes wobbling the beams around a full circle, e.g., for the X-target [E. Henestroza, B. G. Logan, and L. J. Perkins, Phys. Plasmas 18, 032702 (2011)] and some classes of distributed-radiator targets.« less

  19. Xenon ion beam characterization in a helicon double layer thruster

    SciTech Connect

    Charles, C.; Boswell, R. W.; Lieberman, M. A.

    2006-12-25

    A current-free electric double layer is created in a helicon double layer thruster operating with xenon and compared to a recently developed theory. The Xe{sup +} ion beam formed by acceleration through the potential drop of the double layer is characterized radially using an electrostatic ion energy analyzer. For operating conditions of 500 W rf power, 0.07 mTorr gas pressure, and a maximum magnetic field of 125 G, the measured beam velocity is about 6 km s{sup -1}, the beam area is about 150 cm{sup 2}, and the measured beam divergence is less than 6 deg.

  20. Xenon ion beam characterization in a helicon double layer thruster

    NASA Astrophysics Data System (ADS)

    Charles, C.; Boswell, R. W.; Lieberman, M. A.

    2006-12-01

    A current-free electric double layer is created in a helicon double layer thruster operating with xenon and compared to a recently developed theory. The Xe+ ion beam formed by acceleration through the potential drop of the double layer is characterized radially using an electrostatic ion energy analyzer. For operating conditions of 500W rf power, 0.07mTorr gas pressure, and a maximum magnetic field of 125G, the measured beam velocity is about 6kms-1, the beam area is about 150cm2, and the measured beam divergence is less than 6°.