Science.gov

Sample records for ion-exchanged a-type zeolite

  1. Multicomponent liquid ion exchange with chabazite zeolites

    SciTech Connect

    Robinson, S.M.; Arnold, W.D. Jr.; Byers, C.W.

    1993-10-01

    In spite of the increasing commercial use of zeolites for binary and multicomponent sorption, the understanding of the basic mass-transfer processes associated with multicomponent zeolite ion-exchange systems is quite limited. This study was undertaken to evaluate Na-Ca-Mg-Cs-Sr ion exchange from an aqueous solution using a chabazite zeolite. Mass-transfer coefficients and equilibrium equations were determined from experimental batch-reactor data for single and multicomponent systems. The Langmuir isotherm was used to represent the equilibrium relationship for binary systems, and a modified Dubinin-Polyani model was used for the multicomponent systems. The experimental data indicate that diffusion through the microporous zeolite crystals is the primary diffusional resistance. Macropore diffusion also significantly contributes to the mass-transfer resistance. Various mass-transfer models were compared to the experimental data to determine mass-transfer coefficients. Effective diffusivities were obtained which accurately predicted experimental data using a variety of models. Only the model which accounts for micropore and macropore diffusion occurring in series accurately predicted multicomponent data using single-component diffusivities. Liquid and surface diffusion both contribute to macropore diffusion. Surface and micropore diffusivities were determined to be concentration dependent.

  2. A zeolite ion exchange membrane for redox flow batteries.

    PubMed

    Xu, Zhi; Michos, Ioannis; Wang, Xuerui; Yang, Ruidong; Gu, Xuehong; Dong, Junhang

    2014-03-01

    The zeolite-T membrane was discovered to have high proton permselectivity against vanadium ions and exhibit low electrical resistance in acidic electrolyte solutions because of its enormous proton concentration and small thickness. The zeolite membrane was demonstrated to be an efficient ion exchange membrane in vanadium redox flow batteries. PMID:24396857

  3. Ion exchange in a zeolite-molten chloride system

    SciTech Connect

    Woodman, R.H.; Pereira, C.

    1997-07-01

    Electrometallurgical treatment of spent nuclear fuel results in a secondary waste stream of radioactive fission products dissolved in chloride salt. Disposal plans include a waste form that can incorporate chloride forms featuring one or more zeolites consolidated with sintered glass. A candidate method for incorporating fission products in the zeolites is passing the contaminated salt over a zeolite column for ion exchange. To date, the molten chloride ion-exchange properties of four zeolites have been investigated for this process: zeolite A, IE95{reg_sign}, clinoptilolite, and mordenite. Of these, zeolite A has been the most promising. Treating zeolite 4A, the sodium form of zeolite A , with the solvent salt for the waste stream-lithium-potassium chloride of eutectic melting composition, is expected to provide a material with favorable ion-exchange properties for the treatment of the waste salt. The authors constructed a pilot-plant system for the ion-exchange column. Initial results indicate that there is a direct relationship between the two operating variable of interest, temperature, and initial sodium concentration. Also, the mass ratio has been about 3--5 to bring the sodium concentration of the effluent below 1 mol%.

  4. Immobilization of caesium-loaded ion exchange resins in zeolite-cement blends

    SciTech Connect

    Bagosi, S.; Csetenyi, L.J.

    1999-04-01

    In several countries, low-level radioactive waste immobilization strategies are based on cementitious materials. Water leaching of caesium (Cs)-loaded cemented ion exchange resin and the mechanism of Cs immobilization were studied in the cement-resin-zeolite (mainly clinoptilolite) system. Present work focuses on the reduction of significant Cs leaching (in terms of the total Cs adsorbed on the resin) by blending natural untreated and chemically treated zeolites to the cement. Addition of natural zeolites decreased Cs release by up to 70--75% (of the quantity originally bonded in the resin) in the course of a 3-year leaching period.

  5. Intensification of ammonia removal from waste water in biologically active zeolitic ion exchange columns.

    PubMed

    Almutairi, Azel; Weatherley, Laurence R

    2015-09-01

    The use of nitrification filters for the removal of ammonium ion from waste-water is an established technology deployed extensively in municipal water treatment, in industrial water treatment and in applications such as fish farming. The process involves the development of immobilized bacterial films on a solid packing support, which is designed to provide a suitable host for the film, and allow supply of oxygen to promote aerobic action. Removal of ammonia and nitrite is increasingly necessary to meet drinking water and discharge standards being applied in the US, Europe and other places. Ion-exchange techniques are also effective for removal of ammonia (as the ammonium ion) from waste water and have the advantage of fast start-up times compared to biological filtration which in some cases may take several weeks to be fully operational. Here we explore the performance of ion exchange columns in which nitrifying bacteria are cultivated, with the goal of a "combined" process involving simultaneous ion-exchange and nitrification, intensified by in-situ aeration with a novel membrane module. There were three experimental goals. Firstly, ion exchange zeolites were characterized and prepared for comparative column breakthrough studies for ammonia removal. Secondly effective in-situ aeration for promotion of nitrifying bacterial growth was studied using a number of different membranes including polyethersulfone (PES), polypropylene (PP), nylon, and polytetra-fluoroethylene (PTFE). Thirdly the breakthrough performance of ion exchange columns filled with zeolite in the presence of aeration and in the presence of nitrifying bacteria was determined to establish the influence of biomass, and aeration upon breakthrough during ammonium ion uptake. The methodology adopted included screening of two types of the naturally occuring zeolite clinoptilolite for effective ammonia removal in continuous ion-exchange columns. Next, the performance of fixed beds of clinoptilolite in the

  6. Biomineralization of hydroxyapatite in silver ion-exchanged nanocrystalline ZSM-5 zeolite using simulated body fluid.

    PubMed

    Kaur, Balwinder; Srivastava, Rajendra; Satpati, Biswarup; Kondepudi, Kanthi Kiran; Bishnoi, Mahendra

    2015-11-01

    Silver ion-exchanged nanocrystalline zeolite (Ag-Nano-ZSM-5) and silver ion-exchanged conventional zeolite (Ag-ZSM-5) were synthesized. Zeolites were incubated in simulated body fluid at 310K for different time periods to grow hydroxyapatite in their matrixes. Significant large amount of hydroxyapatite was grown in Ag-Nano-ZSM-5 matrix after incubation in simulated body fluid when compared to Ag-ZSM-5. The resultant material was characterized using X-ray diffraction, N2-adsorption, scanning/transmission electron microscopy, energy dispersive X-ray, and inductively coupled plasma analysis. Mechanical properties such as compressive modulus, compressive strength, and strain at failure of the parent materials were evaluated. Biocompatibility assays suggested that Ag-Nano-ZSM-5 and hydroxyapatite grown in Ag-Nano-ZSM-5 were compatible and did not impose any toxicity to RAW 264.7 cells macrophase and Caco2 cells suggesting considerable potential for biomedical applications such as bone implants. PMID:26255163

  7. Use of multi-transition-metal-ion-exchanged zeolite 13X catalysts in methane emissions abatement

    SciTech Connect

    Hui, K.S.; Chao, C.Y.H.; Kwong, C.W.; Wan, M.P.

    2008-04-15

    Methane is a potent greenhouse gas. It has a global warming potential (GWP) 23 times greater than carbon dioxide. Reducing methane emissions would lead to substantial economic and environmental benefits. This study investigated the performance of multi-transition-metal-(Cu, Cr, Ni, and Co)-ion-exchanged zeolite 13X catalysts in methane emissions abatement. The catalytic activity in methane combustion using multi-ion-exchanged catalysts was studied with different parameters including the molar percentage of metal loading, the space velocity, and the inlet methane concentration under atmospheric pressure and at a relatively low reaction temperature of 500 C. The performance of the catalysts was determined in terms of the apparent activation energy, the number of active sites of the catalyst, and the BET surface area of the catalyst. This study showed that multi-ion-exchanged catalysts outperformed single-ion-exchanged and acidified 13X catalysts and that lengthening the residence time led to a higher methane conversion percentage. The enhanced catalytic activity in the multi-ion-exchanged catalysts was attributed to the presence of exchanged transition ions instead of acid sites in the catalyst. The catalytic activity of the catalysts was influenced by the metal loading amount, which played an important role in affecting the apparent activation energy for methane combustion, the active sites, and the BET surface area of the catalyst. Increasing the amount of metal loading in the catalyst decreased the apparent activation energy for methane combustion and also the BET surface area of the catalyst. An optimized metal loading amount at which the highest catalytic activity was observed due to the combined effects of the various factors was determined. (author)

  8. Vectorial electron transport at ion-exchanged zeolite-Y-modified electrodes

    SciTech Connect

    Li, Z.; Mallouk, T.E.

    1987-01-29

    Chemically modified SnO/sub 2/ electrodes were prepared, using zeolite Y which had been ion-exchanged with a metal tris(bipyridyl) complex, M(bpy)/sub 3//sup 2 +/ (M = Ru, Os), metallocene cation, M(CpR)/sub 2//sup +/ or M(Cp)(CpR)/sup +/ (M = Co, Fe; Cp = eta/sub 5/sup -// cyclopentadienyl; R = -H, -CH/sub 3/, -NH/sub 2/, -COOCH/sub 3/, -CH/sub 2/N(CH/sub 3/)/sub 3/). The rate of charge transfer between the electrode and the metallocene contained within the zeolite is enhanced at least tenfold by adsorbing M(bpy)/sub 3//sup 2 +/ onto the zeolite surface. Both oxidation and reduction of the metallocene are facile if the potentials of the M(bpy)/sub 3//sup 2 +/ and M(CpR)/sub 2//sup +/ couples are matched, but only one of these processes occurs if the potentials are dissimilar. This behavior is attributed to a rapid electron-transfer cross reaction between the two complexes. The equilibrium potentials of the zeolite-bound M(CpR)/sub 2//sup +/0/ couples were found to be 300-600-mV positive of the corresponding potentials in polar organic solvents. The charge transport diffusion coefficient for Co(CpCH/sub 3/)/sub 2//sup +/0/ in zeolite Y, from linear sweep voltammetry, was found to be ca. 2 x 10/sup -10/ cm/sup 2//s.

  9. Radium-thorium disequilibrium and zeolite-water ion exchange in a Yellowstone hydrothermal environment

    NASA Astrophysics Data System (ADS)

    Sturchio, N. C.; Bohlke, J. K.; Binz, C. M.

    1989-05-01

    Whole rock samples of hydrothermally altered Biscuit Basin rhyolite from Yellowstone drill cores Y-7 and Y-8 were analyzed for 226Ra and 230Th to determine the extent of radioactive disequilibrium and its relation to the rates and mechanisms of element transport in the shallow portion of an active hydrothermal system. The ( 226Ra/230Th) activity ratios range from 0.73 to 1.46 and are generally correlated with Th-normalized Ba concentrations (Ba N). Values of ( 226Ra/230Th) and Ba N > 1 were found in samples containing large modal fractions of clinoptilolite; whereas values of ( 226Ra/230Th) and Ba N < 1 were found in samples containing large modal fractions of mordenite. Composition clinoptilolite and mordenite in these samples are consistent with ion exchange equilibrium between zeolites and coexisting thermal waters. Average K d mineral-waterBa values are 1.0·10 5 mL/g for clinoptilolite and 1.4·10 4 mL/g for mordenite. Apparent diffustvities through matrix porosity estimated for Ra and Ba range from ˜10 -12 to ˜10 -10 cm 2s -1 in thoroughly zeolitic rhyolite; these rates of diffusion are too low to account for the observed distance scale of ( 226Ra/230Th) disequilibrium. The correlated values of ( 226Ra /230Th) disequilibrium and Ba N represent zeolite-water ion exchange equilibrium that is caused by porous flow of water through the rock matrix and by the relatively rapid diffusion of cations within the zeolite lattices. A water flux of at least ˜2.5 ( cm water3/cm rock3) yr -1 is required to produce measurable ( 226Ra/230Th) disequilibrium, whereas at least ˜23 ( cm water3/cm rock3) yr -1 is r for the sample exhibiting the most extreme ( 226Ra/230Th) disequilibrium; these fluxes are much higher than those that can be inferred from net mass transfers of stable species. The zeolite-water ion exchange process appears to have been operating for at least 8000 yr in the environment of the Y-7 and Y-8 drill holes.

  10. Radium-thorium disequilibrium and zeolite-water ion exchange in a Yellowstone hydrothermal environment

    SciTech Connect

    Sturchio, N.C.; Bohlke, J.K. ); Binz, C.M. )

    1989-05-01

    Whole rock samples of hydrothermally altered Biscuit Basin rhyolite from Yellowstone drill cores Y-7 and Y-8 were analyzed for {sup 226}Ra and {sup 230}Th to determine the extent of radioactive disequilibrium and its relation to the rates and mechanisms of element transport in the shallow portion of an active hydrothermal system. The ({sup 226}Ra/{sup 230}Th) activity ratios range from 0.73 to 1.46 and are generally correlated with Th-normalized Ba concentrations (Ba{sub N}). Compositions of clinoptilolite and mordenite in these samples are consistent with ion exchange equilibrium between zeolites and coexisting thermal waters. Average K{sup Ba}{sub d mineral-water} values are 1.0 {center dot} 10{sup 5} mL/g for clinoptilolite and 1.4 {center dot} 10{sup 4} mL/g for mordenite. Apparent diffusivities through matrix porosity estimated for R and Ba range from {approximately}10{sup {minus}12} to {approximately}10{sup {minus}10} cm{sup 2} s{sup {minus}1} in thoroughly zeolitic rhyolite; these rates of diffusion are too low to account for the observed distance scale of ({sup 226}Ra/{sup 230}Th) disequilibrium. The correlated values of ({sup 226}Ra/{sup 230}Th) disequilibrium and Ba{sub N} represent zeolite-water ion exchange equilibrium that is caused by porous flow of water through the rock matrix and by the relatively rapid diffusion of cations within the zeolite lattices. A water flux of at least {approximately}2.5 (cm{sup 3}{sub water}/cm{sup 3}{sub rock}) yr{sup {minus}1} is required to produce measurable ({sup 226}Ra/{sup 230}Th) disequilibrium, whereas at least {approximately}23 (cm{sup 3}{sub water}/cm{sup 3}{sub rock}) yr{sup {minus}1} is required for the sample exhibiting the most extreme ({sup 226}Ra/{sup 230}Th) disequilibrium; these fluxes are much higher than those that can be inferred from net mass transfers of stable species.

  11. Thermodynamics of ion-exchange between Na{sup +}/Sr{sup 2+} solutions and the zeolite mineral clinoptilolite

    SciTech Connect

    Pabalan, R.T.; Bertetti, F.P.

    1994-12-31

    Ion-exchange experiments were conducted at 25{degrees}C between the zeolite mineral clinoptilolite and aqueous solutions of varying equivalent ratios of Na{sup +} and Sr{sup 2+} and total concentrations of 0.005, 0.05, and 0.5 N. The experiments were designed to investigate the effects of changes in total solution concentration and in the relative concentrations of exchangeable cations on the following ion-exchange equilibrium: Sr{sup 2+} + 2NaZ {r_reversible} SrZ{sub 2} + 2Na{sup +}. Using the isotherm data at 0.05 N solution concentration, a thermodynamic model for the ion-exchange reaction was derived using a Margules formulation for the activity coefficients of zeolite components and the Pitzer ion-interaction approach for activity coefficients of aqueous ions. The results of the forward experiments showed that the ion-exchange isotherm strongly depends on the total solution concentration. Additional experiments demonstrated that the above ion-exchange reaction is reversible. The derived equilibrium constant, K, and Gibbs energy of ion-exchange, {Delta}G{sup 0}, are equal to 0.321{+-}0.021 and 2,820 {+-} 170 J/mol, respectively. Using thermodynamic parameters derived from the 0.05 N isotherm experiment, the model was used to predict isotherm values at 0.005 and 0.5 N, which showed excellent agreement with measured data. Because the thermodynamic model used in this study can be easily extended to ternary and more complicated mixtures, it may be useful for modeling ion-exchange equilibria in multicomponent geochemical systems.

  12. Ion exchange and dehydration experimental studies of clinoptilolite: Implications to zeolite dating

    SciTech Connect

    WoldeGabriel, G.

    1995-02-01

    Variable effects were noted on the argon (Ar) and potassium (K) contents of clinoptilolite fractions used in ion-exchange and dehydration experiments. The K contents of clinoptilolite fractions were differently affected during cation exchange with Ca-, Cs-, K-, and Na-chloride solutions. Ar was generally less affected during these experiments, except for a Na-clinoptitolite fraction exchanged for five days. Loss of Ar during organic heavy-liquid treatment and cleaning using acetone and deionized water does occur, as indicated by comparing the amounts of radiogenic Ar of treated and untreated fractions. Moreover, a regular decrease in radiogenic Ar contents was noted in clinoptilolite fractions during dehydration experiments at different temperatures for 16 hours. Comparable losses do not occur from saturated samples that were heated in 100 C for more than five months. Water appears to play a vital role in stabilizing the clinoptilolite framework structure and in the retention of Ar. The radiogenic Ar depletion pattern noted in clinoptilolite fractions dehydrated in unsaturated environment at different temperatures is similar to variations in the amount of radiogenic Ar observed in clinoptilolite samples from the unsaturated zone of an altered tuff. These results can be used to evaluate the extent of zeolitic water (and hence Ar) retention in unsaturated geologic settings. The utility of alkali zeolites (e.g., phillipsite, clinoptilolite, and mordenite) from low-temperature, open-hydrologic alteration as potential dateable minerals was evaluated using the K/Ar method as part of the Yucca Mountain Site Characterization Project, which is evaluating Yucca Mountain, Nevada, as a potential high-level radioactive waste repository site.

  13. Investigation of phosphate removal using sulphate-coated zeolite for ion exchange.

    PubMed

    Choi, Jae-Woo; Hong, Seok-Won; Kim, Dong-Ju; Lee, Sang-Hyup

    2012-01-01

    Sulphate-coated zeolite (SCZ) was characterized and employed for the removal of phosphate from aqueous solutions using both batch and column tests. Batch experiments were conducted to assess the sulphate dilution ratio, reaction time for coating, surface washing and calcination temperature during the synthesis of SCZ. Langmuir isotherm and pseudo-first-order models were suitable to explain the sorption characteristics of phosphate onto the SCZ. Equilibrium tests showed that SCZ was capable of removing phosphate, with a maximum binding energy beta = 30.2 mg g(-1), compared to other adsorbents, such as activated alumina and ion exchange resin. The Thomas model was applied to the adsorption of phosphate to predict the breakthrough curves and the parameters of a column test. The model was found to be suitable for describing the adsorption process of the dynamic behaviour of the SCZ column. The total adsorbed quantity and equilibrium uptake ofphosphate related to the effluent volumes were determined by evaluating the breakthrough curves obtained under the allowed conditions. The results of batch and column experiments, as well as the low cost of the adsorbent, suggested that SCZ could be used as an adsorbent for the efficient and cost-effective removal of phosphate from aqueous solution. PMID:23393974

  14. Electron and energy transfer as probes of interparticle ion-exchange reactions in zeolite Y

    SciTech Connect

    Brigham, E.S.; Snowden, P.T.; Kim, Y.I.; Mallouk, T.E. )

    1993-08-19

    Photoinduced electron transfer and energy transfer reactions of tris(2,2[prime]-bipyridyl)ruthenium(II) (Ru(bpy)[sub 3][sup 2+]) with methylviologen (MV[sup 2+]) and tris(2,2[prime]-bipyridyl)osmium(II) (Os(bpy)[sub 3][sup 2+]) ion-exchanged onto/into separate zeolite Y particles were studied by emission spectroscopy. The kinetics of interparticle exchange were probed by observing the quenching of the MLCT excited state of-Ru(bpy)[sub 3][sup 2+] by mobile MV[sup 2+] or OS(bpy)[sub 3][sup 2+] ions. The exchange reactions occur on time scales of seconds to hours, depending on the ionic strength of the surrounding medium. The time-dependent luminescence data were fitted to a dispersed kinetics model, from which average rate constants for the exchange reactions could be extracted. Time constants for interparticle exchange of MV[sup 2+] and Os(bpy)[sub 3][sup 2+] ions, in the range 10[sup 3]-10[sup 5] s at electrolyte concentrations of 0.1-3 mM, are significantly longer than the time scales (10[sup [minus]7]-10[sup 1] s) of most electrochemical and photochemical intrazeolitic reactions involving these and similar electroactive ions. These results argue for reaction mechanisms that invoke intrazeolite electron transfer, rather than exchange of electroactive ions followed by solution-phase electron transfer, in these systems. 25 refs., 6 figs., 1 tab.

  15. Ammonium Ion Exchanged Zeolite for Laser Desorption/Ionization Mass Spectrometry of Phosphorylated Peptides

    PubMed Central

    Yang, Mengrui; Fujino, Tatsuya

    2015-01-01

    α-Cyano-4-hydroxycinnamic acid (CHCA), an organic matrix molecule for matrix-assisted laser desorption/ionization mass spectrometry, was adsorbed to NH4+-type zeolite surface, and this new matrix was used for the detection of low-molecular-weight compounds. It was found that this matrix could simplify the mass spectrum in the low-molecular-weight region and prevent interference from fragments and alkali metal ion adducted species. CHCA adsorbed to NH4+-type ZSM5 zeolite (CHCA/NH4ZSM5) was used to measure atropine and aconitine, two toxic alkaloids in plants. In addition, CHCA/NH4ZSM5 enabled us to detect phosphorylated peptides; peaks of the protonated peptides had higher intensities than the peaks observed using CHCA only. PMID:26448749

  16. Perturbed angular correlation study of the ion exchange of indium into silicalite zeolites

    NASA Astrophysics Data System (ADS)

    Ramallo-López, J. M.; Requejo, F. G.; Rentería, M.; Bibiloni, A. G.; Miró, E. E.

    1999-09-01

    Two indium-containing silicalite zeolites (In/H ZSM5) catalysts prepared by wet impregnation and ionic exchange were characterized by the Perturbed Angular Correlation (PAC) technique using 111In as probe to determine the nature of the indium species. Some of these species take part in the catalytic reaction of the selective reduction (SCR) of NOx with methane. PAC experiments were performed at 500ºC in air before and after reduction reoxidation treatments on the catalysts in order to determine the origin of the different hyperfine interactions and then the degree of ionic exchange. Complementary catalytic activity characterizations were also performed. PAC experiments performed on the catalyst obtained by wet impregnation showed that all In-atoms form In2O3 crystallites while almost 70% of In-atoms form In2O3 in the catalyst obtained by ionic exchange. The PAC experiments of both catalysts performed after the reduction reoxidation treatment revealed the presence of two hyperfine interactions, different from those corresponding to indium in In2O3. These hyperfine interactions should be associated to disperse In species responsible of the catalytic activity located in the ionic exchange-sites of the zeolites.

  17. Adsorption of hydrofluorocarbons HFC-134 and HFC-134A on X and Y zeolites: Effect of ion-exchange on selectivity and heat of adsorption

    SciTech Connect

    Savitz, S.; Siperstein, F.R.; Huber, R.; Tieri, S.M.; Gorte, R.J.; Myers, A.L.; Grey, C.P.; Corbin, D.R.

    1999-09-30

    Adsorption isotherms and heats of adsorption were measured for HFC-134 (1,1,2,2-tetrafluoroethane) and HFC-134a (1,1,1,2-tetrafluoroethane) on a series of ion-exchanged (H, Li, Na, Rb, Cs) faujasites using volumetric and calorimetric techniques. The species and number of ions present in the zeolite strongly influence the heats of adsorption and the preferential adsorption of HFC-134 compared to HFC-134a. The selectivity is considerably higher in X than in Y zeolites because of the larger number of nonframework ions in X zeolites. The saturation capacity is six molecules per supercavity for both HFCs. The differences in observed heats of adsorption (except for RbX) can be explained by reasonable and consistent values of dispersion and ion-dipole electrostatic energies. The high selectivities for NaX and RbX indicate that either zeolite would be highly effective for gas separation.

  18. Equilibrium study of selected divalent d-electron metals adsorption on A-type zeolite.

    PubMed

    Majdan, Marek; Pikus, Stanisław; Kowalska-Ternes, Monika; Głdysz-Płaska, Agnieszka; Staszczuk, Piotr; Fuks, Leon; Skrzypek, Henryk

    2003-06-15

    The objective of the presented study was to investigate the adsorption of Cu, Co, Mn, Zn, Cd and Mn on A-type zeolite. The isotherms for adsorption of metals from their nitrates were registered. The following adsorption constants K of metals were found: 162,890, 124,260, 69,025, 16,035, 10,254, and 151 [M(-1)] for Cu, Co, Mn, Zn, Cd, and Ni, respectively, for the concentration range 10(-4)-10(-3) M. On the other hand, the investigation of pH influence on the distribution constants of metals showed that the adsorption of metals proceeds essentially through an ion-exchange process, surface hydrolysis, and surface complexation. The supplementary results from DRIFT, scanning electron microscopy, and X-ray diffraction methods confirmed the presumption about the possible connection between the electronic structure of divalent ions and their adsorption behavior, showing that ions with d5 and d10 configurations such as Mn2+, Zn2+, Cd2+, with much weaker hydrolytic properties than Cu2+ and Ni2+, strongly interact with the zeolite framework and therefore their affinity to the zeolite phase is much stronger when compared with that of the Ni2+ ion, but at the same time not as strong as the affinity of the Cu2+ ion, the latter forming a new phase during the interaction with zeolite framework. For Zn2+, during inspection of the correlation between the proton concentration H/Al and zinc concentration Zn/Al on the zeolite surface, the formation of the surface complex [triple bond]S-OZn(OH) was proposed. A correlation between the heterogeneity of proton concentrations H/Al on Me-zeolite surfaces and the hydrolysis constants pKh of Me2+ ions was found. PMID:16256612

  19. Adsorption behaviors of thiophene, benzene, and cyclohexene on FAU zeolites: Comparison of CeY obtained by liquid-, and solid-state ion exchange

    NASA Astrophysics Data System (ADS)

    Qin, Yucai; Mo, Zhousheng; Yu, Wenguang; Dong, Shiwei; Duan, Linhai; Gao, Xionghou; Song, Lijuan

    2014-02-01

    Cerium containing Y zeolites were prepared by liquid- (L-CeY) and solid- (S-CeY) state ion exchange from NaY and HY, respectively. The structural and textural properties were characterized by XRD and N2 adsorption, and acidity properties were characterized by NH3 temperature-programmed desorption (NH3-TPD) and in situ FTIR spectrum of chemisorbed pyridine (in situ Py-FTIR). Furthermore, the single component adsorption and multi-component competitive adsorption behavior of thiophene, benzene and cyclohexene on those zeolites have also been studied by using vapor adsorption isotherms, solution adsorption breakthrough curves, thermogravimetry and derivative thermogravimetry (TG/DTG), frequency response (FR) and in situ FTIR techniques. The results indicate that the primary adsorption mode of benzene is simply micropore filling process, but the nature of effect of aromatics on selective adsorption of thiophene is competitive adsorption. The strong chemical adsorptions and protonization reactions of thiophene and cyclohexene occur upon the Brönsted acid sites of the HY and L-CeY zeolites, and the preferable acid catalytic protonization reactions of olefins hinder the further adsorption of sulfur compounds.

  20. Physicochemical and catalytic characteristics of La-H-ZSM-5 zeolite in converting dimethyl ether to the mixtures of gasoline hydrocarbons: Effect of ion exchange conditions

    NASA Astrophysics Data System (ADS)

    Kitaev, L. E.; Bukina, Z. M.; Yushchenko, V. V.; Ionin, D. A.; Kolesnichenko, N. V.; Khadzhiev, S. N.

    2014-03-01

    The effect of the manner and conditions of introducing lanthanum cations into NH4-ZSM-5 zeolite on the properties of catalysts for the conversion of dimethyl ether into the mixtures of gasoline hydrocarbons is studied. The physicochemical properties of synthesized catalysts are studied by means of temperature-programmed ammonia desorption, the adsorption of benzene, atomic absorption spectroscopy, differential scanning calorimetry, and thermogravimetry. It is shown that the degree to which lanthanum cations are replaced by ammonium cations both depends on the conditions of ion exchange in the zeolite and affects its acidity spectrum and the selectivity of the formation of paraffin hydrocarbons with isostructure. It is concluded that an increase in the amount of introduced lanthanum leads to an increase in the content of iso-paraffins from 69 to 76 wt % and a decrease in the content of aromatic hydrocarbons from 10.5 to 5.5 wt % and that of durene from 1.5 to 0.2 wt % in the products.

  1. Atomic sites and stability of Cs+ captured within zeolitic nanocavities

    PubMed Central

    Yoshida, Kaname; Toyoura, Kazuaki; Matsunaga, Katsuyuki; Nakahira, Atsushi; Kurata, Hiroki; Ikuhara, Yumi H.; Sasaki, Yukichi

    2013-01-01

    Zeolites have potential application as ion-exchangers, catalysts and molecular sieves. Zeolites are once again drawing attention in Japan as stable adsorbents and solidification materials of fission products, such as 137Cs+ from damaged nuclear-power plants. Although there is a long history of scientific studies on the crystal structures and ion-exchange properties of zeolites for practical application, there are still open questions, at the atomic-level, on the physical and chemical origins of selective ion-exchange abilities of different cations and detailed atomic structures of exchanged cations inside the nanoscale cavities of zeolites. Here, the precise locations of Cs+ ions captured within A-type zeolite were analyzed using high-resolution electron microscopy. Together with theoretical calculations, the stable positions of absorbed Cs+ ions in the nanocavities are identified, and the bonding environment within the zeolitic framework is revealed to be a key factor that influences the locations of absorbed cations. PMID:23949184

  2. Treatment technology for transuranic waste streams: Cementation, vitrification, and incineration testing for the treatment of spent ion exchange media

    SciTech Connect

    Place, B.G.

    1992-04-01

    This document reports the results of testing of spent ion exchange media pretreatment technologies. Emphasis of the testing activities has been on screening pretreatment technologies, such as drying and emulsification, which are compatible with vitrification, cementation, and incineration. Ion exchange media tested for cementation and incineration pretreatment technologies were typical organic ion exchange resins and inorganic zeolites. The ion exchange medium tested for vitrification pretreatment technologies was inorganic zeolite. The results of testing activities are discussed in detail in this report.

  3. [Ion specificity during ion exchange equilibrium in natural clinoptilolite].

    PubMed

    He, Yun-Hua; Li, Hang; Liu, Xin-Min; Xiong, Hai-Ling

    2015-03-01

    Zeolites have been widely applied in soil improvement and environment protection. The study on ion specificity during ion exchange equilibrium is of important significance for better use of zeolites. The maximum adsorption capacities of alkali ions during ion exchange equilibrium in the clinoptilolite showed obvious specificity. For alkali metal ions with equivalent valence, the differences in adsorption capacity increased with the decrease of ionic concentration. These results cannot be well explained by the classical theories including coulomb force, ionic size, hydration, dispersion force, classic induction force and surface complexation. We found that the coupling of polarization effects resulted from the quantum fluctuation of diverse alkali metal ions and electric field near the zeolite surface should be the primary reason for specific ion effect during ion exchange in zeolite. The result of this coupling effect was that the difference in the ion dipole moment increased with the increase of surface potential, which further expanded the difference in the adsorption ability between zeolite surface and ions, resulting in different ion exchange adsorption ability at the solid/liquid interface. Due to the high surface charge density of zeolite, ionic size also played an important role in the distribution of ions in the double diffuse layer, which led to an interesting result that distinct differences in exchange adsorption ability of various alkali metal ions were only detected at high surface potential (the absolute value was greater than 0.2 V), which was different from the ion exchange equilibrium result on the surface with low charge density. PMID:25929073

  4. Material Exhibiting Efficient CO2 Adsorption at Room Temperature for Concentrations Lower Than 1000 ppm: Elucidation of the State of Barium Ion Exchanged in an MFI-Type Zeolite.

    PubMed

    Itadani, Atsushi; Oda, Akira; Torigoe, Hiroe; Ohkubo, Takahiro; Sato, Mineo; Kobayashi, Hisayoshi; Kuroda, Yasushige

    2016-04-01

    Carbon dioxide (CO2) gas is well-known as a greenhouse gas that leads to global warming. Many efforts have been made to capture CO2 from coal-fired power plants, as well as to reduce the amounts of excess CO2 in the atmosphere to around 400 ppm. However, this is not a simple task, particularly in the lower pressure region than 1000 ppm. This is because the CO2 molecule is chemically stable and has a relatively low reactivity. In the present study, the CO2 adsorption at room temperature on MFI-type zeolites exchanged with alkaline-earth-metal ions, with focus on CO2 concentrations <1000 ppm, was investigated both experimentally and by calculation. These materials exhibited a particularly efficient adsorption capability for CO2, compared with other presented samples, such as the sodium-form and transition-metal ion-exchanged MFI-type zeolites. Ethyne (C2H2) was used as a probe molecule. Analyses were carried out with IR spectroscopy and X-ray absorption, and provided significant information regarding the presence of the M(2+)-O(2-)-M(2+) (M(2+): alkaline-earth-metal ion) species formed in the samples. It was subsequently determined that this species acts as a highly efficient site for CO2 adsorption at room temperature under very low pressure, compared to a single M(2+) species. A further advantage is that this material can be easily regenerated by a treatment, e.g., through the application of the temperature swing adsorption process, at relatively low temperatures (300-473 K). PMID:26990497

  5. Ion exchange phenomena

    SciTech Connect

    Bourg, I.C.; Sposito, G.

    2011-05-01

    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).

  6. Composite ion exchange materials

    SciTech Connect

    Amarasinghe, S.; Zook, L.; Leddy, J.

    1994-12-31

    Composite ion exchange materials can be formed by sorbing ion exchange polymers on inert, high surface area substrates. In general, the flux of ions and molecules through these composites, as measured electrochemically, increases as the ratio of the surface area of the substrate increases relative to the volume of the ion exchanger. This suggests that fields and gradients established at the interface between the ion exchanger and substrate are important in determining the transport characteristics of the composites. Here, the authors will focus on composites formed with a cation exchange polymer, Nafion, and two different types of microbeads: polystyrene microspheres and polystyrene coated magnetic microbeads. For the polystyrene microbeads, scanning electron micrographs suggest the beads cluster in a self-similar manner, independent of the bead diameter. Flux of Ru(NH3)63+ through the composites was studied as a function of bead fraction, bead radii, and fixed surface area with mixed bead sizes. Flux was well modeled by surface diffusion along a fractal interface. Magnetic composites were formed with columns of magnetic microbeads normal to the electrode surface. Flux of Ru(NH3)63+ through these composites increased exponentially with bead fraction. For electrolyses, the difference in the molar magnetic susceptibility of the products and reactants, Dcm, tends to be non-zero. For seven redox reactions, the ratio of the flux through the magnetic composites to the flux through a Nafion film increases monotonically with {vert_bar}Dcm{vert_bar}, with enhancements as large as thirty-fold. For reversible species, the electrolysis potential through the magnetic composites is 35 mV positive of that for the Nafion films.

  7. ZEOLITES: EFFECTIVE WATER PURIFIERS

    EPA Science Inventory

    Zeolites are known for their adsorption, ion exchange and catalytic properties. Various natural zeolites are used as odor and moisture adsorbents and water softeners. Due to their acidic nature, synthetic zeolites are commonly employed as solid acid catalysts in petrochemical ind...

  8. Ion exchange technology assessment report

    SciTech Connect

    Duhn, E.F.

    1992-01-01

    In the execution of its charter, the SRS Ion Exchange Technology Assessment Team has determined that ion exchange (IX) technology has evolved to the point where it should now be considered as a viable alternative to the SRS reference ITP/LW/PH process. The ion exchange media available today offer the ability to design ion exchange processing systems tailored to the unique physical and chemical properties of SRS soluble HLW's. The technical assessment of IX technology and its applicability to the processing of SRS soluble HLW has demonstrated that IX is unquestionably a viable technology. A task team was chartered to evaluate the technology of ion exchange and its potential for replacing the present In-Tank Precipitation and proposed Late Wash processes to remove Cs, Sr, and Pu from soluble salt solutions at the Savannah River Site. This report documents the ion exchange technology assessment and conclusions of the task team.

  9. Ion exchange technology assessment report

    SciTech Connect

    Duhn, E.F.

    1992-12-31

    In the execution of its charter, the SRS Ion Exchange Technology Assessment Team has determined that ion exchange (IX) technology has evolved to the point where it should now be considered as a viable alternative to the SRS reference ITP/LW/PH process. The ion exchange media available today offer the ability to design ion exchange processing systems tailored to the unique physical and chemical properties of SRS soluble HLW`s. The technical assessment of IX technology and its applicability to the processing of SRS soluble HLW has demonstrated that IX is unquestionably a viable technology. A task team was chartered to evaluate the technology of ion exchange and its potential for replacing the present In-Tank Precipitation and proposed Late Wash processes to remove Cs, Sr, and Pu from soluble salt solutions at the Savannah River Site. This report documents the ion exchange technology assessment and conclusions of the task team.

  10. UTILITY OF ZEOLITES IN HAZARDOUS METAL REMOVAL FROM WATER

    EPA Science Inventory

    Zeolites are well known for their ion exchange, adsorption and acid catalysis properties. Different inorganic pollutants have been removed from water at room temperature by using synthetic zeolites. Zeolite Faujasite Y has been used to remove inorganic pollutants including arseni...

  11. Radionuclide Leaching from Organic Ion Exchange Resin

    SciTech Connect

    Delegard, C.H.; Rinehart, D.E.

    1999-04-02

    Laboratory tests were performed to examine the efficacy of leach treatments for decontaminating organic ion exchange resins (OIER), which have been found in a number of samples retrieved from K East Basin sludge. Based on process records, the OIER found in the K Basins is a mixed-bet strong acid/strong base material marketed as Purolite{trademark} NRW-037. Radionuclides sorbed or associated with the OIER can restrict its disposal to the Environmental Restoration Disposal Facility (ERDF). The need for testing to support development of a treatment process for K Basin sludge has been described in Section 4.2 of ''Testing Strategy to Support the Development of K Basins Sludge Treatment Process'' (Flament 1998). To help understand the effects of anticipated OIER elutriation and washing, tests were performed with well-rinsed OIER material from K East Basin floor sludge (sample H-08 BEAD G) and with well-rinsed OIER having approximately 5% added K East canister composite sludge (sample KECOMP). The rinsed resin-bearing material also contained the inorganic ion exchanger Zeolon-900{trademark}, a zeolite primarily composed of the mineral mordenite. The zeolite was estimated to comprise 27 weight percent of the dry H-08 BEAD G material.

  12. Ion-exchange hollow fibers

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Yen, S. P. S.; Klein, E. (Inventor)

    1976-01-01

    An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, crosslinked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.

  13. Ion-exchange hollow fibers

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Klein, Elias (Inventor)

    1980-01-01

    An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, cross-linked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.

  14. Ion-exchange hollow fibers

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Klein, Elias (Inventor)

    1977-01-01

    An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, cross-linked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.

  15. Biological Ion Exchanger Resins

    PubMed Central

    Damadian, Raymond; Goldsmith, Michael; Zaner, K. S.

    1971-01-01

    Biological selectivity is shown to vary with medium osmotic strength and temperature. Selectivity reversals occur at 4°C and at an external osmolality of 0.800 indicating that intracellular hydration and endosolvent (intracellular water) structure are important determinants in selectivity. Magnetic resonance measurements of line width by steady-state nuclear magnetic resonance (NMR) indicate a difference in the intracellular water signal of 16 Hz between the K form and Na form of Escherichia coli, providing additional evidence that changes in the ionic composition of cells are accompanied by changes in endosolvent structure. The changes were found to be consistent with the thermodynamic and magnetic resonance properties of aqueous electrolyte solutions. Calculation of the dependence of ion-pairing forces on medium dielectric reinforces the role of endosolvent structure in determining ion exchange selectivity. PMID:4943653

  16. Electrically switched ion exchange

    SciTech Connect

    Lilga, M.A.; Schwartz, D.T.; Genders, D.

    1997-10-01

    A variety of waste types containing radioactive {sup 137}Cs are found throughout the DOE complex. These waste types include water in reactor cooling basins, radioactive high-level waste (HLW) in underground storage tanks, and groundwater. Safety and regulatory requirements and economics require the removal of radiocesium before these wastes can be permanently disposed of. Electrically Switched Ion Exchange (ESIX) is an approach for radioactive cesium separation that combines IX and electrochemistry to provide a selective, reversible, and economic separation method that also produces little or no secondary waste. In the ESIX process, an electroactive IX film is deposited electrochemically onto a high-surface area electrode, and ion uptake and elution are controlled directly by modulating the potential of the film. For cesium, the electroactive films under investigation are ferrocyanides, which are well known to have high selectivities for cesium in concentrated sodium solutions. When a cathode potential is applied to the film, Fe{sup +3} is reduced to the Fe{sup +2} state, and a cation must be intercalated into the film to maintain charge neutrality (i.e., Cs{sup +} is loaded). Conversely, if an anodic potential is applied, a cation must be released from the film (i.e., Cs{sup +} is unloaded). Therefore, to load the film with cesium, the film is simply reduced; to unload cesium, the film is oxidized.

  17. Vitrification of ion exchange resins

    DOEpatents

    Cicero-Herman, Connie A.; Workman, Rhonda Jackson

    2001-01-01

    The present invention relates to vitrification of ion exchange resins that have become loaded with hazardous or radioactive wastes, in a way that produces a homogenous and durable waste form and reduces the disposal volume of the resin. The methods of the present invention involve directly adding borosilicate glass formers and an oxidizer to the ion exchange resin and heating the mixture at sufficient temperature to produce homogeneous glass.

  18. Ion exchange - Simulation and experiment

    NASA Technical Reports Server (NTRS)

    Herrmann, Cal C.; Finn, John E.

    1991-01-01

    A FORTRAN program for simulating multicomponent adsorption by ion-exchange resins was adapted for use as both an ASPEN-callable module and as a free-standing simulator of the ion-exchange bed. Four polystyrene-divinylbenzene sulfonic acid resins have been characterized for three principal ions. It is concluded that a chelating resin appears appropriate as a heavy-metal trap. The same ASPEN-callable module is used to model this resin when Wilson parameters can be obtained.

  19. UTILITY OF ZEOLITES IN REMOVAL OF INORGANIC AND ORGANIC WATER POLLUTANTS

    EPA Science Inventory

    Zeolites are well known for their ion exchange, adsorption and acid catalysis properties. Different inorganic and organic pollutants have been removed from water at room temperature using various zeolites. Synthetic zeolite Faujasite Y has been used to remove inorganic pollutants...

  20. Electrically Switched Cesium Ion Exchange

    SciTech Connect

    JPH Sukamto; ML Lilga; RK Orth

    1998-10-23

    This report discusses the results of work to develop Electrically Switched Ion Exchange (ESIX) for separations of ions from waste streams relevant to DOE site clean-up. ESIX combines ion exchange and electrochemistry to provide a selective, reversible method for radionuclide separation that lowers costs and minimizes secondary waste generation typically associated with conventional ion exchange. In the ESIX process, an electroactive ion exchange film is deposited onto. a high surface area electrode, and ion uptake and elution are controlled directly by modulating the potential of the film. As a result, the production of secondary waste is minimized, since the large volumes of solution associated with elution, wash, and regeneration cycles typical of standard ion exchange are not needed for the ESIX process. The document is presented in two parts: Part I, the Summary Report, discusses the objectives of the project, describes the ESIX concept and the approach taken, and summarizes the major results; Part II, the Technology Description, provides a technical description of the experimental procedures and in-depth discussions on modeling, case studies, and cost comparisons between ESIX and currently used technologies.

  1. Grafted methylenediphosphonate ion exchange resins

    DOEpatents

    Trochimcznk, A.W.; Gatrone, R.C.; Alexandratos, S.; Horwitz, E.P.

    1997-04-08

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorus. The pendent groups have the formula as shown in the patent wherein R is hydrogen, a cation or mixtures thereof; and R{sup 1} is hydrogen or an C{sub 1}-C{sub 2} alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange resin are also disclosed.

  2. Grafted methylenediphosphonate ion exchange resins

    DOEpatents

    Trochimcznk, Andrzej W.; Gatrone, Ralph C.; Alexandratos, Spiro; Horwitz, E. Philip

    1997-01-01

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorous. The pendent groups have the formula ##STR1## wherein R is hydrogen, a cation or mixtures thereof; and R.sup.1 is hydrogen or an C.sub.1 -C.sub.2 alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange resin are also disclosed.

  3. Grafted methylenediphosphonate ion exchange resins

    DOEpatents

    Trochimcznk, Andrzej W.; Gatrone, Ralph C.; Alexandratos, Spiro; Horwitz, E. Philip

    1998-01-27

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorous. The pendent groups have the formula ##STR1## wherein R is hydrogen, a cation or mixtures thereof; and R.sup.1 is hydrogen or an C.sub.1 -C.sub.2 alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange-resin are also disclosed.

  4. A Colorful Ion Exchange Experiment

    NASA Astrophysics Data System (ADS)

    Mendes, Adélio

    1999-11-01

    A colorful ion-exchange experiment is described. The use of a resin with an adsorbed acid-base indicator allows students to follow the progress of the ion-exchange front along the column. In parallel, students can follow the ion-exchange breakthrough curve using a continuous conductometric cell at the column outlet. In the present example, K+ (KCl) exchanges with H+ (HCl) in a strong cationic resin (Amberlite IR 120). The adsorbed indicator is methyl violet. Sorption equilibrium is favorable to the K+ ions. Monovalent ions, used in this experiment, have the disadvantage of usually being colorless (except perhaps permanganate, but this is an extremely strong oxidant which attacks the resin). On the other hand, many divalent ions are colorful but the shape of the concentration front is hard to explain qualitatively as well as quantitatively. That is because the shape of the front depends on the total ionic concentration. However, color can be introduced in a monovalent ion-exchange system by adding an appropriate acid-base indicator to the resin. The text describes this experiment qualitatively. A simplified quantitative description, using the solute movement theory, can be found online.

  5. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1996-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  6. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1994-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene disphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  7. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1994-01-25

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 9 figures.

  8. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1996-07-23

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.

  9. Pharmaceutical Applications of Ion-Exchange Resins

    ERIC Educational Resources Information Center

    Elder, David

    2005-01-01

    The historical uses of ion-exchanged resins and a summary of the basic chemical principles involved in the ion-exchanged process are discussed. Specific applications of ion-exchange are provided that include drug stabilization, pharmaceutical excipients, taste-masking agents, oral sustained-release products, topical products for local application…

  10. Radiation Studies with Argentine Ion Exchange Material

    SciTech Connect

    Crawford, C.L.

    2002-06-28

    A recent technology exchange between Argentina Nuclear Energy Commission (CNEA) and the US Department of Energy involved vitrification studies of ion exchange resins. Details of the spent ion exchange resins currently stored at two Argentine nuclear power plants, Atucha I and Embalse, have been presented in earlier reports. The present study examines irradiation of simulant samples of ion exchange resins.

  11. Electrically controlled cesium ion exchange

    SciTech Connect

    Lilga, M.

    1996-10-01

    Several sites within the DOE complex (Savannah River, Idaho, Oak Ridge and Hanford) have underground storage tanks containing high-level waste resulting from nuclear engineering activities. To facilitate final disposal of the tank waste, it is advantageous to separate and concentrate the radionuclides for final immobilization in a vitrified glass matrix. This task proposes a new approach for radionuclide separation by combining ion exchange (IX) and electrochemistry to provide a selective and economic separation method.

  12. PRTR ion exchange vault column sampling

    SciTech Connect

    Cornwell, B.C.

    1995-03-14

    This report documents ion exchange column sampling and Non Destructive Assay (NDA) results from activities in 1994, for the Plutonium Recycle Test Reactor (PRTR) ion exchange vault. The objective was to obtain sufficient information to prepare disposal documentation for the ion exchange columns found in the PRTR Ion exchange vault. This activity also allowed for the monitoring of the liquid level in the lower vault. The sampling activity contained five separate activities: (1) Sampling an ion exchange column and analyzing the ion exchange media for purpose of waste disposal; (2) Gamma and neutron NDA testing on ion exchange columns located in the upper vault; (3) Lower vault liquid level measurement; (4) Radiological survey of the upper vault; and (5) Secure the vault pending waste disposal.

  13. UTILITY OF ZEOLITES IN ARSENIC REMOVAL FROM WATER

    EPA Science Inventory

    Zeolites are well known for their ion exchange and adsorption properties. So far the cation exchanger properties of zeolites have been extensively studied and utilized. The anion exchanger properties of zeolites are less studied. Zeolite Faujasite Y has been used to remove arseni...

  14. Ion exchange purification of scandium

    DOEpatents

    Herchenroeder, Laurie A.; Burkholder, Harvey R.

    1990-10-23

    An improvement in purification of scandium through ion exchange chromatography is disclosed in which the oxidation potential of the eluting solution is altered by the addition of potassium chlorate or ammonium chloride so that removal of contaminants is encouraged. The temperature, pH and concentration of the eluent HEDTA are controlled in order to maintain the scandium in the column while minimizing dilution of the scandium band. Recovery of scandium is improved by pumping dilute scandium over the column prior to stripping the scandium and precipitation. This eliminates the HEDTA ion and other monovalent cations contaminating the scandium band. This method maximizes recovery of scandium while maintaining purity.

  15. Ion exchange purification of scandium

    DOEpatents

    Herchenroeder, L.A.; Burkholder, H.R.

    1990-10-23

    An improvement in purification of scandium through ion exchange chromatography is disclosed in which the oxidation potential of the eluting solution is altered by the addition of potassium chlorate or ammonium chloride so that removal of contaminants is encouraged. The temperature, pH and concentration of the eluent HEDTA are controlled in order to maintain the scandium in the column while minimizing dilution of the scandium band. Recovery of scandium is improved by pumping dilute scandium over the column prior to stripping the scandium and precipitation. This eliminates the HEDTA ion and other monovalent cations contaminating the scandium band. This method maximizes recovery of scandium while maintaining purity. 2 figs.

  16. Inorganic ion exchange evaluation and design: Silicotitanate ion exchange waste conversion

    SciTech Connect

    Balmer, M.L.; Bunker, B.C.

    1995-03-01

    Ion exchange materials are being evaluated for removing Cs, SR from tank waste. Thermal conversion of a variety of compositions within the Cs{sub 2}O-TiO{sub 2}-SiO{sub 2} phase diagram yielded both glass and crystalline materials, some of which show low leach rates and negligible Cs losses during heat treatment. A new material, CsTiSi{sub 2}0{sub 6}, with a structure isomorphous to pollucite (CsAlSi{sub 2}0{sub 6}) has been identified. This material represents a new class of crystalline zeolite materials which contain large amounts of titanium. Direct conversion of Cs loaded silicotitanate ion exchangers to CsTiSi{sub 2}O{sub 6} is an excellent alternative to dissolving the Cs-loaded or Cs-eluted exchangers in borosilicate glass because: CsTiSi{sub 2}O{sub 6} is formed using a simple, one step heat treatment. The unique crystalline pollucite-like structure of CsTiSi{sub 2}O{sub 6} traps Cs, and exhibits extremely low Cs leach rates. CsTiSi{sub 2}O{sub 6} is converted to solid waste at a low processing temperature of 700 to 800 C (nominal melter operating temperatures are 1150 C). CsTiSi{sub 2}0{sub 6} concentrates the waste, thus generating lower volumes of expensive HLW. Cs losses due to volatilization during processing of CsTiSi{sub 2}O{sub 6} are extremely low.

  17. Design and characterization of chitosan/zeolite composite films--Effect of zeolite type and zeolite dose on the film properties.

    PubMed

    Barbosa, Gustavo P; Debone, Henrique S; Severino, Patrícia; Souto, Eliana B; da Silva, Classius F

    2016-03-01

    Chitosan films can be used as wound dressings for the treatment of chronic wounds and severe burns. The antimicrobial properties of these films may be enhanced by the addition of silver. Despite the antimicrobial activity of silver, several studies have reported the cytotoxicity as a factor limiting its biomedical applications. This problem may, however, be circumvented by the provision of sustained release of silver. Silver zeolites can be used as drug delivery platforms to extend the release of silver. The objective of this study was to evaluate the addition of clinoptilolite and A-type zeolites in chitosan films. Sodium zeolites were initially subjected to ion-exchange in a batch reactor. Films were prepared by casting technique using a 2% w/w chitosan solution and two zeolite doses (0.1 or 0.2% w/w). Films were characterized by thermal analysis, color analysis, scanning electron microscopy, X-ray diffraction, and water vapor permeation. The results showed that films present potential for application as dressing. The water vapor permeability is one of the main properties in wound dressings, the best results were obtained for A-type zeolite/chitosan films, which presented a brief reduction of this property in relation to zeolite-free chitosan film. On the other hand, the films containing clinoptilolite showed lower water vapor permeation, which may be also explained by the best distribution of the particles into the polymer which also promoted greater thermal resistance. PMID:26706528

  18. Pharmaceutical Applications of Ion-Exchange Resins

    NASA Astrophysics Data System (ADS)

    Elder, David P.

    2005-04-01

    The historical uses of ion-exchange resins and a summary of the basic chemical principles involved in the ion-exchange process are discussed. Specific applications of ion-exchange resins are provided. The utility of these agents to stabilize drugs are evaluated. Commonly occurring chemical and physical incompatibilities are reviewed. Ion-exchange resins have found applicability as inactive pharmaceutical constituents, particularly as disintegrants (inactive tablet ingredient whose function is to rapidly disrupt the tablet matrix on contact with gastric fluid). One of the more elegant approaches to improving palatability of ionizable drugs is the use of ion-exchange resins as taste-masking agents. The selection, optimization of drug:resin ratio and particle size, together with a review of scaleup of typical manufacturing processes for taste-masked products are provided. Ion-exchange resins have been extensively utilized in oral sustained-release products. The selection, optimization of drug:resin ratio and particle size, together with a summary of commonly occurring commercial sustained-release products are discussed. Ion-exchange resins have also been used in topical products for local application to the skin, including those where drug flux is controlled by a differential electrical current (ionotophoretic delivery). General applicability of ion-exchange resins, including ophthalmic delivery, nasal delivery, use as drugs in their own right (e.g., colestyramine, formerly referred to as cholestyramine), as well as measuring gastrointestinal transit times, are discussed. Finally, pharmaceutical monographs for ion-exchange resins are reviewed.

  19. Ion Exchange and Liquid Column Chromatography.

    ERIC Educational Resources Information Center

    Walton, Harold F.

    1980-01-01

    Emphasizes recent advances in principles and methodology in ion exchange and chromatography. Two tables list representative examples for inorganic ions and organic compounds. Cites 544 references. (CS)

  20. Ion exchange in the nuclear industry

    SciTech Connect

    Bibler, J.P.

    1990-12-31

    Ion exchange is used in nearly every part of the nuclear fuel cycle -- from the purification of uranium from its ore to the final recovery of uranium and transmutation products. Ion exchange also plays a valuable role in the management of nuclear wastes generated in the fuel cycle.

  1. Ion exchange in the nuclear industry

    SciTech Connect

    Bibler, J.P.

    1990-01-01

    Ion exchange is used in nearly every part of the nuclear fuel cycle -- from the purification of uranium from its ore to the final recovery of uranium and transmutation products. Ion exchange also plays a valuable role in the management of nuclear wastes generated in the fuel cycle.

  2. Ion Exchange and Adsorption of Inorganic Contaminants

    EPA Science Inventory

    In the first part of the chapter, the fundamentals of ion exchange and adsorption processes are explained, with the goal of demonstrating how these principles influence process design for inorganic contaminant removal. In the second part, ion exchange and adsorption processes th...

  3. Titania bound sodium titanate ion exchanger

    DOEpatents

    DeFilippi, Irene C. G.; Yates, Stephen Frederic; Shen, Jian-Kun; Gaita, Romulus; Sedath, Robert Henry; Seminara, Gary Joseph; Straszewski, Michael Peter; Anderson, David Joseph

    1999-03-23

    This invention is method for preparing a titania bound ion exchange composition comprising admixing crystalline sodium titanate and a hydrolyzable titanium compound and, thereafter drying the titania bound crystalline sodium titanate and subjecting the dried titania bound ion exchange composition to optional compaction and calcination steps to improve the physical strength of the titania bound composition.

  4. Ion Exchange Formation via Sulfonated Bicomponent Nonwovens

    NASA Astrophysics Data System (ADS)

    Stoughton, Hannah L.

    For many years ion exchange resins were used to: remove heavy metals from water, recover materials from wastewater, and eliminate harmful gases from the air. While use of these resin beads dominates the ion exchange industry, the beads have limitations that should be considered when decisions are made to employ them. For instance, officials must balance the inherent zero sum surface area and porosity of the materials. This series of studies investigates the use of bicomponent nonwovens as a base substrate for producing high surface area ion exchange materials for the removal of heavy metal ions. Functionalized materials were produced in a two-step process: (1) PET/PE spunbond bicomponent fibers were fractured completely, producing the high surface area nonwoven to be used as the base ion exchange material, and (2) the conditions for functionalizing the PET fibers of the nonwoven webs were investigated where an epoxy containing monomer was grafted to the surface followed by sulfonation of the monomer. The functionalization reactions of the PET fibers were monitored based on: weight gain, FTIR, TOF-SIMS, and SEM. Ion exchange properties were evaluated using titration and copper ion removal capacity from test solutions. The relationship between web structure and removal efficiency of the metal ions was defined through a comparison of the bicomponent and homocomponent nonwovens for copper ion removal efficiency. The investigation revealed that utilizing the high surface area, fractured bicomponent nonwoven ion exchange materials with capacities comparable to commercially available ion exchange resins could be produced.

  5. Distribution of Components in Ion Exchange Materials Taken from the K East Basin and Leaching of Ion Exchange Materials by Nitric/Hydrofluoric Acid and Nitric/Oxalic Acid

    SciTech Connect

    Delegard, C.H.; Rinehart, D.E.; Hoopes, F.V.

    1999-04-02

    Laboratory tests were performed to examine the efficacy of mixed nitric/hydrofluoric acid followed by mixed nitric/oxalic acid leach treatments to decontaminate ion exchange materials that have been found in a number of samples retrieved from K East (KE)Basin sludge. The ion exchange materials contain organic ion exchange resins and zeolite inorganic ion exchange material. Based on process records, the ion exchange resins found in the K Basins is a mixed-bed, strong acid/strong base material marketed as Purolite NRW-037. The zeolite material is Zeolon-900, a granular material composed of the mineral mordenite. Radionuclides sorbed or associated with the ion exchange material can restrict its disposal to the Environmental Restoration Disposal Facility (ERDF). The need for testing to support development of a treatment process for K Basin sludge has been described in Section 4.2 of ''Testing Strategy to Support the Development of K Basins Sludge Treatment Process'' (Flament 1998). Elutriation and washing steps are designed to remove the organic resins from the K Basin sludge. To help understand the effects of the anticipated separation steps, tests were performed with well-rinsed ion exchange (IX) material from KE Basin floor sludge (sample H-08 BEAD G) and with well-rinsed IX having small quantities of added KE canister composite sludge (sample KECOMP). Tests also were performed to determine the relative quantities of organic and inorganic IX materials present in the H-08 K Basin sludge material. Based on chemical analyses of the separated fractions, the rinsed and dry IX material H-08 BEAD G was found to contain 36 weight percent inorganic material (primarily zeolite). The as-received (unrinsed) and dried H-08 material was estimated to contain 45 weight percent inorganic material.

  6. Porous Ceramic Spheres from Ion Exchange Resin

    NASA Technical Reports Server (NTRS)

    Dynys, Fred

    2005-01-01

    A commercial cation ion exchange resin, cross-linked polystyrene, has been successfully used as a template to fabricate 20 to 50 micron porous ceramic spheres. Ion exchange resins have dual template capabilities. Pore architecture of the ceramic spheres can be altered by changing the template pattern. Templating can be achieved by utilizing the internal porous structure or the external surface of the resin beads. Synthesis methods and chemical/physical characteristics of the ceramic spheres will be reported.

  7. 21 CFR 173.20 - Ion-exchange membranes.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ion-exchange membranes. 173.20 Section 173.20 Food... for Food Treatment § 173.20 Ion-exchange membranes. Ion-exchange membranes may be safely used in the processing of food under the following prescribed conditions: (a) The ion-exchange membrane is prepared...

  8. 21 CFR 173.20 - Ion-exchange membranes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ion-exchange membranes. 173.20 Section 173.20 Food... Polymer Substances and Polymer Adjuvants for Food Treatment § 173.20 Ion-exchange membranes. Ion-exchange... ion-exchange membrane is prepared by subjecting a polyethylene base conforming to § 177.1520 of...

  9. 21 CFR 173.20 - Ion-exchange membranes.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ion-exchange membranes. 173.20 Section 173.20 Food... Polymer Substances and Polymer Adjuvants for Food Treatment § 173.20 Ion-exchange membranes. Ion-exchange... ion-exchange membrane is prepared by subjecting a polyethylene base conforming to § 177.1520 of...

  10. 21 CFR 173.20 - Ion-exchange membranes.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ion-exchange membranes. 173.20 Section 173.20 Food... Polymer Substances and Polymer Adjuvants for Food Treatment § 173.20 Ion-exchange membranes. Ion-exchange... ion-exchange membrane is prepared by subjecting a polyethylene base conforming to § 177.1520 of...

  11. 21 CFR 173.20 - Ion-exchange membranes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ion-exchange membranes. 173.20 Section 173.20 Food... Polymer Substances and Polymer Adjuvants for Food Treatment § 173.20 Ion-exchange membranes. Ion-exchange... ion-exchange membrane is prepared by subjecting a polyethylene base conforming to § 177.1520 of...

  12. Solvent Extraction and Ion Exchange in Radiochemistry

    NASA Astrophysics Data System (ADS)

    Skarnemark, G.

    In 1805, Bucholz extracted uranium from a nitric acid solution into ether and back-extracted it into pure water. This is probably the first reported solvent-extraction investigation. During the following decades, the distribution of neutral compounds between aqueous phases and pure solvents was studied, e.g., by Peligot, Berthelot and Jungfleisch, and Nernst. Selective extractants for analytical purposes became available during the first decades of the twentieth century. From about 1940, extractants such as organophosphorous esters and amines were developed for use in the nuclear fuel cycle. This connection between radiochemistry and solvent-extraction chemistry made radiochemists heavily involved in the development of new solvent extraction processes, and eventually solvent extraction became a major separation technique in radiochemistry. About 160 years ago, Thompson and Way observed that soil can remove potassium and ammonium ions from an aqueous solution and release calcium ions. This is probably the first scientific report on an ion-exchange separation. The first synthesis of the type of organic ion exchangers that are used today was performed by Adams and Holmes in 1935. Since then, ion-exchange techniques have been used extensively for separations of various radionuclides in trace as well as macro amounts. During the last 4 decades, inorganic ion exchangers have also found a variety of applications. Today, solvent extraction as well as ion exchange are used extensively in the nuclear industry and for nuclear, chemical, and medical research. Some of these applications are discussed in the chapter.

  13. Modeling of Crystalline Silicotitanate Ion Exchange Columns

    SciTech Connect

    Walker, D.D.

    1999-03-09

    Non-elutable ion exchange is being considered as a potential replacement for the In-Tank Precipitation process for removing cesium from Savannah River Site (SRS) radioactive waste. Crystalline silicotitanate (CST) particles are the reference ion exchange medium for the process. A major factor in the construction cost of this process is the size of the ion exchange column required to meet product specifications for decontaminated waste. To validate SRS column sizing calculations, SRS subcontracted two reknowned experts in this field to perform similar calculations: Professor R. G. Anthony, Department of Chemical Engineering, Texas A&038;M University, and Professor S. W. Wang, Department of Chemical Engineering, Purdue University. The appendices of this document contain reports from the two subcontractors. Definition of the design problem came through several meetings and conference calls between the participants and SRS personnel over the past few months. This document summarizes the problem definition and results from the two reports.

  14. Organic ion exchange resin separation methods evaluation

    SciTech Connect

    Witwer, K.S.

    1998-05-27

    This document describes testing to find effective methods to separate Organic Ion Exchange Resin (OIER) from a sludge simulant. This task supports a comprehensive strategy for treatment and processing of K-Basin sludge. The simulant to be used resembles sludge that has accumulated in the 105KE and 105KW Basins in the 1OOK area of the Hanford Site. The sludge is an accumulation of fuel element corrosion products, organic and inorganic ion exchange materials, canister gasket materials, iron and aluminum corrosion products, sand, dirt, and other minor amounts of organic matter.

  15. Commercial Ion Exchange Resin Vitrification Studies

    SciTech Connect

    Cicero-Herman, C.A

    2002-06-28

    In the nuclear industry, ion exchange resins are used for purification of aqueous streams. The major contaminants of the resins are usually the radioactive materials that are removed from the aqueous streams. The use of the ion exchange resins creates a waste stream that can be very high in both organic and radioactive constituents. Therefore, disposal of the spent resin often becomes an economic problem because of the large volumes of resin produced and the relatively few technologies that are capable of economically stabilizing this waste. Vitrification of this waste stream presents a reasonable disposal alternative because of its inherent destruction capabilities, the volume reductions obtainable, and the durable product that it produces.

  16. Thermal Analysis of LANL Ion Exchange Column

    SciTech Connect

    Laurinat, J.E.

    1999-06-16

    This document reports results from an ion exchange column heat transfer analysis requested by Los Alamos National Laboratory (LANL). The object of the analysis is to demonstrate that the decay heat from the Pu-238 will not cause resin bed temperatures to increase to a level where the resin significantly degrades.

  17. Ion Exchange Membrane Influence on Ohmic Resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selection of the proper ion exchange membrane can have a significant influence on bioelectrochemical system (BES) power densities. Because ions move across the membrane to achieve electroneutrality, the ion transport resistance (ohmic loss) needs to be minimized to increase power densities. Ohmic ...

  18. ION EXCHANGE SOFTENING: EFFECTS ON METAL CONCENTRATIONS

    EPA Science Inventory

    A corrosion control pipe loop study to evaluate the effect of ion exchange water softening on metal leaching from household plumbing materials was conducted on two different water qualities having different pH's and hardness levels. The results showed that removing hardness ions ...

  19. Cesium Separation Using Electrically Switched Ion Exchange

    SciTech Connect

    Lilga, Michael A.); Orth, Rick J.); Sukamto, Johanes H.); Rassat, Scot D.); Genders, J D.; Gopal, R

    2001-09-01

    Electrically Switched Ion Exchange (ESIX) is a separation technology being developed at Pacific Northwest National Laboratory as an alternative to conventional ion exchange for removing metal ions from wastewater. In ESIX, which combines ion exchange and electro-chemistry, ion uptake and elution can be controlled directly by modulating the potential of an ion exchange film that has been electrochemically deposited onto an electrode. This paper presents the results of experiments on high surface area electrodes and the development of a flow system for cesium ion separation. Bench-scale flow system studies showed no change in capacity or performance of the ESIX films at a flow rate up to 113 BV/h, the maxi-mum flow rate tested, and breakthrough curves supported once-through waste processing. A comparison of results for a stacked 5-electrode cell versus a single-electrode cell showed enhanced breakthrough performance. In the stacked configuration, break-through began at about 120 BV for a feed containing 0.2 ppm cesium at a flow rate of 13 BV/h. A case study for the KE Basin (a spent nuclear fuel storage basin) on the Hanford Site demonstrated that KE Basin wastewater could be processed continuously with minimal waste generation, reduced disposal costs, and lower capital expenditures.

  20. Development and testing of ion exchangers for treatment of liquid wastes at Oak Ridge National Laboratory

    SciTech Connect

    Collins, J.L.; Davidson, D.J.; Chase, C.W.; Egan, B.Z.; Ensor, D.D.; Bright, R.M.; Glasgow, D.C.

    1993-03-01

    This report addresses three areas of waste treatment: (1) treatment of newly generated low-level liquid waste and Melton Valley Storage Tank (MVST) supernate using inorganic ion exchangers; (2) treatment of processing streams at the Radiochemical Engineering Development Center (REDC); and (3) removal of radionuclides from organic solutions. Distribution of various radionuclides between simulated waste solutions and several sorbents was determined in batch tests. Inorganic ion exchangers were prepared in the form of microspheres by an intemal gelation process. Microspheres of hydrous titania, hydrous zirconia, hydrous titania containing embedded sodium cobalt hexacyanoferrate, and the corresponding phosphate forms of these materials were prepared. Several zeolites (PDZ-140, PDZ-300, EE-96, CBV-10A) and inorganic ion exchangers (hydrous titania, hydrous zirconia, polyantimanic acid, sodium cobalt hexacyanoferrate) were tested for the removal of cesium and strontium from the acidic simulated Cleanex raffinate generated at REDC. A resorcinol-based ion-exchange resin and three types of sodium titanate were tested for removal of cesium and strontium from the REDC caustic dissolver solution. Hydrous titania, hydrous zirconia, and their corresponding phosphates were tested for the removal of Eu{sup 3+} from various solutions of di-2-ethylbexyl phosphoric acid (HDEHP) in toluene or dodecane.

  1. Conceptual study of in-tank cesium removal using an inorganic ion exchange material

    SciTech Connect

    Goheen, R.S.; Kurath, D.E.

    1996-04-01

    Presently, the Hanford Site contains approximately 230,000 m{sup 3} of mixed waste stored in 177 underground tanks. Approximately 55,000 m{sup 3} of this waste is sludge, 90,000 m{sup 3} is salt cake, and 80,000 m{sup 3} is supernate. Although the pretreatment and final disposal requirements for the waste have not been entirely defined, it is likely that some supernatant pretreatment will be required to remove {sup 137}Cs and possibly {sup 90}Sr and the transuranic components. The objective of this study was to estimate the number of HLW glass canisters resulting from the use of inorganic ion exchanger materials as in-tank pretreatment technology. The variables in the study were: number of contacts between waste and ion exchange material; ion exchange material; and decontamination requirement. This conceptual study investigates a generic in-tank Cs removal flowsheet using crystalline silico-titanates and IE-96 zeolites, and the impact of each ion exchanger on the number of glass canisters produced. In determining glass formulation, data based on current reference technology was used. Sample calculations from the worksheets and summaries of final calculated results are included at the end of this report.

  2. Development and testing of ion exchangers for treatment of liquid wastes at Oak Ridge National Laboratory

    SciTech Connect

    Collins, J.L.; Davidson, D.J.; Chase, C.W.; Egan, B.Z. ); Ensor, D.D.; Bright, R.M.; Glasgow, D.C. )

    1993-03-01

    This report addresses three areas of waste treatment: (1) treatment of newly generated low-level liquid waste and Melton Valley Storage Tank (MVST) supernate using inorganic ion exchangers; (2) treatment of processing streams at the Radiochemical Engineering Development Center (REDC); and (3) removal of radionuclides from organic solutions. Distribution of various radionuclides between simulated waste solutions and several sorbents was determined in batch tests. Inorganic ion exchangers were prepared in the form of microspheres by an intemal gelation process. Microspheres of hydrous titania, hydrous zirconia, hydrous titania containing embedded sodium cobalt hexacyanoferrate, and the corresponding phosphate forms of these materials were prepared. Several zeolites (PDZ-140, PDZ-300, EE-96, CBV-10A) and inorganic ion exchangers (hydrous titania, hydrous zirconia, polyantimanic acid, sodium cobalt hexacyanoferrate) were tested for the removal of cesium and strontium from the acidic simulated Cleanex raffinate generated at REDC. A resorcinol-based ion-exchange resin and three types of sodium titanate were tested for removal of cesium and strontium from the REDC caustic dissolver solution. Hydrous titania, hydrous zirconia, and their corresponding phosphates were tested for the removal of Eu[sup 3+] from various solutions of di-2-ethylbexyl phosphoric acid (HDEHP) in toluene or dodecane.

  3. An Empirical Formula From Ion Exchange Chromatography and Colorimetry.

    ERIC Educational Resources Information Center

    Johnson, Steven D.

    1996-01-01

    Presents a detailed procedure for finding an empirical formula from ion exchange chromatography and colorimetry. Introduces students to more varied techniques including volumetric manipulation, titration, ion-exchange, preparation of a calibration curve, and the use of colorimetry. (JRH)

  4. Modeling ion exchange in clinoptilolite using the EQ3/6 geochemical modeling code

    SciTech Connect

    Viani, B.E.; Bruton, C.J.

    1992-06-01

    Assessing the suitability of Yucca Mtn., NV as a potential repository for high-level nuclear waste requires the means to simulate ion-exchange behavior of zeolites. Vanselow and Gapon convention cation-exchange models have been added to geochemical modeling codes EQ3NR/EQ6, allowing exchange to be modeled for up to three exchangers or a single exchanger with three independent sites. Solid-solution models that are numerically equivalent to the ion-exchange models were derived and also implemented in the code. The Gapon model is inconsistent with experimental adsorption isotherms of trace components in clinoptilolite. A one-site Vanselow model can describe adsorption of Cs or Sr on clinoptilolite, but a two-site Vanselow exchange model is necessary to describe K contents of natural clinoptilolites.

  5. Porous solid ion exchange wafer for immobilizing biomolecules

    DOEpatents

    Arora, Michelle B.; Hestekin, Jamie A.; Lin, YuPo J.; St. Martin, Edward J.; Snyder, Seth W.

    2007-12-11

    A porous solid ion exchange wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within said wafer. Also disclosed is a porous solid ion exchange wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within said wafer containing a biomolecule with a tag. A separate bioreactor is also disclosed incorporating the wafer described above.

  6. 21 CFR 173.21 - Perfluorinated ion exchange membranes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Perfluorinated ion exchange membranes. 173.21... ion exchange membranes. Substances identified in paragraph (a) of this section may be safely used as ion exchange membranes intended for use in the treatment of bulk quantities of liquid food under...

  7. 21 CFR 173.21 - Perfluorinated ion exchange membranes.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Perfluorinated ion exchange membranes. 173.21... ion exchange membranes. Substances identified in paragraph (a) of this section may be safely used as ion exchange membranes intended for use in the treatment of bulk quantities of liquid food under...

  8. 21 CFR 173.21 - Perfluorinated ion exchange membranes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Perfluorinated ion exchange membranes. 173.21... ion exchange membranes. Substances identified in paragraph (a) of this section may be safely used as ion exchange membranes intended for use in the treatment of bulk quantities of liquid food under...

  9. 21 CFR 173.21 - Perfluorinated ion exchange membranes.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Perfluorinated ion exchange membranes. 173.21... ion exchange membranes. Substances identified in paragraph (a) of this section may be safely used as ion exchange membranes intended for use in the treatment of bulk quantities of liquid food under...

  10. 21 CFR 173.21 - Perfluorinated ion exchange membranes.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Perfluorinated ion exchange membranes. 173.21... Polymer Adjuvants for Food Treatment § 173.21 Perfluorinated ion exchange membranes. Substances identified in paragraph (a) of this section may be safely used as ion exchange membranes intended for use in...

  11. ZEOLITE PERFORMANCE AS AN ANION EXCHANGER FOR ARSENIC SEQUESTRATION IN WATER

    EPA Science Inventory

    Zeolites are well known for their use in ion exchange and acid catalysis reactions. The use of zeolites in anion or ligand exchange reactions is less studied. The NH4+ form of zeolite Y (NY6, Faujasite) has been tested in this work to evaluate its performance for arsenic removal...

  12. Properties of Zeolite A Obtained from Powdered Laundry Detergent: An Undergraduate Experiment.

    ERIC Educational Resources Information Center

    Smoot, Alison L.; Lindquist, David A.

    1997-01-01

    Presents experiments that introduce students to the myriad properties of zeolites using the sodium form of zeolite A (Na-A) from laundry detergent. Experiments include extracting Na-A from detergent, water softening properties, desiccant properties, ion-exchange properties, and Zeolite HA as a dehydration catalyst. (JRH)

  13. PRTR ion exchange vault water removal

    SciTech Connect

    Ham, J.E.

    1995-11-01

    This report documents the removal of radiologically contaminated water from the Plutonium Recycle Test Reactor (PRTR) ion exchange vault. Approximately 57,000 liters (15,000 gallons) of water had accumulated in the vault due to the absence of a rain cover. The water was removed and the vault inspected for signs of leakage. No evidence of leakage was found. The removal and disposal of the radiologically contaminated water decreased the risk of environmental contamination.

  14. Ion Exchange Temperature Testing with SRF Resin

    SciTech Connect

    Russell, Renee L.; Rinehart, Donald E.; Brown, Garrett N.; Peterson, Reid A.

    2012-03-01

    Ion exchange using the Spherical Resorcinol-Formaldehyde (SRF) resin has been selected by the U.S. Department of Energy’s Office of River Protection for use in the Pretreatment Facility of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and for potential application in an at-tank deployment for removing 137Cs. Recent proposed changes to the WTP ion exchange process baseline indicate that higher temperatures (50°C) to alleviate post-filtration precipitation issues prior to reaching the ion exchange columns may be required. Therefore, it is important to understand the behavior of SRF resin performance under the conditions expected with the new equipment and process changes. This research examined the impact of elevated temperature on resin loading and resin degradation during extended solution flow using elevated temperature (45°, 50°, 55°, 60°, 65°, 75°C). Testing for extended times at elevated temperatures showed that the resin does degrade and loading capacity is reduced at and above 45°C. Above 60°C the resin appears to not load at all.

  15. SPEEDUP{trademark} ion exchange column model

    SciTech Connect

    Hang, T.

    2000-03-06

    A transient model to describe the process of loading a solute onto the granular fixed bed in an ion exchange (IX) column has been developed using the SpeedUp{trademark} software package. SpeedUp offers the advantage of smooth integration into other existing SpeedUp flowsheet models. The mathematical algorithm of a porous particle diffusion model was adopted to account for convection, axial dispersion, film mass transfer, and pore diffusion. The method of orthogonal collocation on finite elements was employed to solve the governing transport equations. The model allows the use of a non-linear Langmuir isotherm based on an effective binary ionic exchange process. The SpeedUp column model was tested by comparing to the analytical solutions of three transport problems from the ion exchange literature. In addition, a sample calculation of a train of three crystalline silicotitanate (CST) IX columns in series was made using both the SpeedUp model and Purdue University's VERSE-LC code. All test cases showed excellent agreement between the SpeedUp model results and the test data. The model can be readily used for SuperLig{trademark} ion exchange resins, once the experimental data are complete.

  16. Solidification of ion exchange resin wastes

    SciTech Connect

    Not Available

    1982-08-01

    Solidification media investigated included portland type I, portland type III and high alumina cements, a proprietary gypsum-based polymer modified cement, and a vinyl ester-styrene thermosetting plastic. Samples formulated with hydraulic cement were analyzed to investigate the effects of resin type, resin loading, waste-to-cement ratio, and water-to-cement ratio. The solidification of cation resin wastes with portland cement was characterized by excessive swelling and cracking of waste forms, both after curing and during immersion testing. Mixed bed resin waste formulations were limited by their cation component. Additives to improve the mechanical properties of portland cement-ion exchange resin waste forms were evaluated. High alumina cement formulations dislayed a resistance to deterioration of mechanical integrity during immersion testing, thus providing a significant advantage over portland cements for the solidification of resin wastes. Properties of cement-ion exchange resin waste forms were examined. An experiment was conducted to study the leachability of /sup 137/Cs, /sup 85/Sr, and /sup 60/Co from resins modified in portland type III and high alumina cements. The cumulative /sup 137/Cs fraction release was at least an order of magnitude greater than that of either /sup 85/Sr or /sup 60/Co. Release rates of /sup 137/Cs in high alumina cement were greater than those in portland III cement by a factor of two.Compressive strength and leach testing were conducted for resin wastes solidified with polymer-modified gypsum based cement. /sup 137/Cs, /sup 85/Sr, and /sup 60/Co fraction releases were about one, two and three orders of magnitude higher, respectively, than in equivalent portland type III cement formulations. As much as 28.6 wt % dry ion exchange resin was successfully solidified using vinyl ester-styrene compared with a maximum of 25 wt % in both portland and gypsum-based cement.

  17. Biodegradation of ion-exchange media

    SciTech Connect

    Bowerman, B.S.; Clinton, J.H.; Cowdery, S.R.

    1988-01-01

    The purpose of this study was to investigate further the potential for ion-exchange media (resin beads or powdered filter media) to support biological growth. A mixed microbial culture was grown from resin wastes obtained from the BNL HFBR by mixing the resin with a nutrient salt solution containing peptone and yeast extract. Bacterial and fungal growths appeared in the solution and on the resins after 7 to 10 days incubation at 337)degree)C. The mixed microbial cultures were used to inoculate several resin types, both irradiated and unirradiated. 12 refs., 5 tabs.

  18. Ion exchange polymers and method for making

    NASA Technical Reports Server (NTRS)

    Philipp, Warren H. (Inventor); Street, Kenneth W., Jr. (Inventor)

    1994-01-01

    An ion exchange polymer comprised of an alkali metal or alkaline earth metal salt of a poly(carboxylic acid) in a poly(vinyl acetal) matrix is described. The polymer is made by treating a mixture made of poly(vinyl alcohol) and poly(acrylic acid) with a suitable aldehyde and an acid catalyst to cause acetalization with some cross-linking. The material is then subjected to an alkaline aqueous solution of an alkali metal salt or an alkali earth metal salt. All of the film forming and cross-linking steps can be carried out simultaneously, if desired.

  19. ION EXCHANGE ADSORPTION PROCESS FOR PLUTONIUM SEPARATION

    DOEpatents

    Boyd, G.E.; Russell, E.R.; Taylor, M.D.

    1961-07-11

    Ion exchange processes for the separation of plutonium from fission products are described. In accordance with these processes an aqueous solution containing plutonium and fission products is contacted with a cation exchange resin under conditions favoring adsorption of plutonium and fission products on the resin. A portion of the fission product is then eluted with a solution containing 0.05 to 1% by weight of a carboxylic acid. Plutonium is next eluted with a solution containing 2 to 8 per cent by weight of the same carboxylic acid, and the remaining fission products on the resin are eluted with an aqueous solution containing over 10 per cent by weight of sodium bisulfate.

  20. Novel silica-based ion exchange resin

    SciTech Connect

    1997-11-01

    Eichrom`s highly successful Diphonixo resin resembles a conventional ion exchange resin in its use of sulfonic acid ligands on a styrene- divinylbenzene matrix. Diphonix resin exhibits rapid exchange kinetics that allow economical operation of ion exchange systems. Unlike conventional resins, Diphonix resin contains chelating ligands that are diphosphonic acid groups that recognize and remove the targeted metals and reject the more common elements such as sodium, calcium and magnesium. This latter property makes Diphonix ideal for many industrial scale applications, including those involving waste treatment. For treatment of low-level, transuranic (TRU) and high- level radioactive wastes, Diphonix`s polystyrene backbone hinders its application due to radiolytic stability of the carbon-hydrogen bonds and lack of compatibility with expected vitrification schemes. Polystyrene-based Diphonix is approximately 60% carbon- hydrogen. In response to an identified need within the Department of Energy for a resin with the positive attributes of Diphonix that also exhibits greater radiolytic stability and final waste form compatibility, Eichrom has successfully developed a new, silica-based resin version of Diphonix. Target application for this new resin is for use in environmental restoration and waste management situations involving the processing of low-level, transuranic and high-level radioactive wastes. The resin can also be used for processing liquid mixed waste (waste that contains low level radioactivity and hazardous constituents) including mixed wastes contaminated with organic compounds. Silica-based Diphonix is only 10% carbon-hydrogen, with the bulk of the matrix silica.

  1. Ion exchange properties of humus acids

    NASA Astrophysics Data System (ADS)

    Shoba, V. N.; Chudnenko, K. V.

    2014-08-01

    Ion exchange equilibriums in a complex of brown humic acids (HAs) and related fulvic acids (FAs) with cations (H+, K+, Na+, Ca2+, Mg2+, Zn2+, Mn2+, Cu2+, Fe3+, and Al3+) have been studied, and the activity coefficients of the acid monoionic forms have been determined. The composition of the stoichiometric cell in the system of black and brown HAs and related FAs in a leached chernozem of the Ob' region has been calculated with consideration for the earlier studies of the ion exchange properties of black HAs and related FAs. It has been shown that hydrogen, calcium, magnesium, aluminum, and iron are the major components in the exchange complex of humus acids in the leached chernozem with the other cations being of subordinate importance. In spite of some differences between the analytical and calculated compositions of the humus acids, the results of the calculations can be considered satisfactory. They indicate that calculations are feasible for such complex objects as soils, and their accuracy will improve with the expansion of the experimental studies. The physicochemical simulation of the transformation of the humus acid composition under different acid-base conditions shows that the contents of most cations decrease under alkalization, and hydroxides or carbonates become the most stable forms of these cations. Under the acidification of solutions, the binding of alkaline and alkaline-earth elements by humus acids decreases and the adsorption of iron and aluminum by humus acids increases.

  2. Inorganic ion exchangers for nuclear waste remediation

    SciTech Connect

    Clearfield, A.; Bortun, A.; Bortun, L.; Behrens, E.

    1997-10-01

    The objective of this work is to provide a broad spectrum of inorganic ion exchangers that can be used for a range of applications and separations involving remediation of groundwater and tank wastes. The authors intend to scale-up the most promising exchangers, through partnership with AlliedSignal Inc., to provide samples for testing at various DOE sites. While much of the focus is on exchangers for removal of Cs{sup +} and Sr{sup 2+} from highly alkaline tank wastes, especially at Hanford, the authors have also synthesized exchangers for acid wastes, alkaline wastes, groundwater, and mercury, cobalt, and chromium removal. These exchangers are now available for use at DOE sites. Many of the ion exchangers described here are new, and others are improved versions of previously known exchangers. They are generally one of three types: (1) layered compounds, (2) framework or tunnel compounds, and (3) amorphous exchangers in which a gel exchanger is used to bind a fine powder into a bead for column use. Most of these exchangers can be regenerated and used again.

  3. Liquid membrane coated ion-exchange column solids

    DOEpatents

    Barkey, Dale P.

    1989-01-01

    This invention relates to a method for improving the performance of liquid embrane separations by coating a liquid membrane onto solid ion-exchange resin beads in a fixed bed. Ion-exchange beads fabricated from an ion-exchange resin are swelled with water and are coated with a liquid membrane material that forms a film over the beads. The beads constitute a fixed bed ion-exchange column. Fluid being treated that contains the desired ion to be trapped by the ion-exchange particle is passed through the column. A carrier molecule, contained in the liquid membrane ion-exchange material, is selected for the desired ion in the fluid. The carrier molecule forms a complex with the desired ion, transporting it through the membrane and thus separating it from the other ions. The solution is fed continuously until breakthrough occurs at which time the ion is recovered, and the bed is regenerated.

  4. Liquid membrane coated ion-exchange column solids

    DOEpatents

    Barkey, Dale P.

    1988-01-01

    This invention relates to a method for improving the performance of liquid membrane separations by coating a liquid membrane onto solid ion-exchange resin beads in a fixed bed. Ion-exchange beads fabricated from an ion-exchange resin are swelled with water and are coated with a liquid membrane material that forms a film over the beads. The beads constitute a fixed bed ion-exchange column. Fluid being treated that contains the desired ion to be trapped by the ion-exchange particle is passed through the column. A carrier molecule, contained in the liquid membrane ion-exchange material, is selective for the desired ion in the fluid. The carrier molecule forms a complex with the desired ion, transporting it through the membrane and thus separating it from the other ions. The solution is fed continuously until breakthrough occurs at which time the ion is recovered, and the bed is regenerated.

  5. Antimicrobial Activity of Silver Ions Released from Zeolites Immobilized on Cellulose Nanofiber Mats.

    PubMed

    Rieger, Katrina A; Cho, Hong Je; Yeung, Hiu Fai; Fan, Wei; Schiffman, Jessica D

    2016-02-10

    In this study, we exploit the high silver ion exchange capability of Linde Type A (LTA) zeolites and present, for the first time, electrospun nanofiber mats decorated with in-house synthesized silver (Ag(+)) ion exchanged zeolites that function as molecular delivery vehicles. LTA-Large zeolites with a particle size of 6.0 μm were grown on the surface of the cellulose nanofiber mats, whereas LTA-Small zeolites (0.2 μm) and three-dimensionally ordered mesoporous-imprinted (LTA-Meso) zeolites (0.5 μm) were attached to the surface of the cellulose nanofiber mats postsynthesis. After the three zeolite/nanofiber mat assemblies were ion-exchanged with Ag(+) ions, their ion release profiles and ability to inactivate Escherichia coli (E. coli) K12 were evaluated as a function of time. LTA-Large zeolites immobilized on the nanofiber mats displayed more than an 11 times greater E. coli K12 inactivation than the Ag-LTA-Large zeolites that were not immobilized on the nanofiber mats. This study demonstrates that by decorating nanometer to micrometer scale Ag(+) ion-exchanged zeolites on the surface of high porosity, hydrophilic cellulose nanofiber mats, we can achieve a tunable release of Ag(+) ions that inactivate bacteria faster and are more practical to use in applications over powder zeolites. PMID:26788882

  6. 21 CFR 173.25 - Ion-exchange resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...,” February 4, 1998, which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ion-exchange resins. 173.25 Section 173.25 Food and... Substances and Polymer Adjuvants for Food Treatment § 173.25 Ion-exchange resins. Ion-exchange resins may...

  7. 21 CFR 173.25 - Ion-exchange resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...,” February 4, 1998, which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ion-exchange resins. 173.25 Section 173.25 Food... for Food Treatment § 173.25 Ion-exchange resins. Ion-exchange resins may be safely used in...

  8. Thermodynamics of ion exchange between clinoptilolite and aqueous solutions of Na{sup +}/K{sup +} and Na{sup +}/Ca{sup 2+}

    SciTech Connect

    Pabalan, R.T.

    1994-11-01

    Because of their ion-exchange, adsorption, and molecular sieve properties, zeolite minerals have generated worldwide interest for use in a broad range of applications such as nuclear and municipal waste water treatment, stack-gas cleanup, natural gas purification, petroleum production, and in agriculture and aquaculture. To provide a thermodynamic basis for understanding zeolite-water interactions in geologic systems, ion-exchange experiments were conducted at 25{degrees}C between clinoptilolite, which is the predominant zeolite mineral in altered pyroclastic and volcaniclastic rocks, and aqueous mixtures of Na{sup +}/K{sup +} and Na{sup +}/Ca{sup 2+}. Isotherm points were obtained by equilibrating Na-clinoptilolite, which was prepared from clinoptilolite-rich tuff from Death Valley Junction, California, USA, and Na{sup +}/K{sup +} and Na{sup +}/Ca{sup 2+} chloride solutions having different ionic concentration ratios, but constant total normalities of 0.5, 0.05, or 0.005 N. The experimental data were interpreted using a Margules thermodynamic formulation for zeolite solid solutions, coupled with the Pitzer model for aqueous activity coefficients. The isotherm data for 0.5 N Na{sup +}/K{sup +} and Na{sup +}/Ca{sup 2+} solutions were used to derive equilibrium constants and Gibbs free energies for the ion-exchange reactions, as well as parameters for the Margules model. Using the same parameters derived from the 0.5 N data, isotherms were calculated for the 0.05 and 0.005 N solutions. The predicted values agree very well with experimental data. The results of this study indicate that a Margules solid solution model for zeolites, coupled with an activity coefficient model for aqueous solutions (e.g., Pitzer model), can successfully describe and predict binary ion-exchange equilibria between aqueous solutions and the zeolite mineral clinoptilolite over a wide range of solution composition and concentration.

  9. Synthesis and testing of nanosized zeolite Y

    NASA Astrophysics Data System (ADS)

    Karami, Davood

    kept constant. The extent to which the nanosized zeolite Y was formed depended on the types and amount of the organic templates as well as the ageing duration. The activity testing of four FCC catalysts prepared by using CREY (Calcined Rare Earth ion-exchanged) zeolites with different particle sizes was carried out in a fluidized bench-scale batch riser simulator reactor. The starting zeolites NaY of different particle sizes were subjected to two cycles of ion exchange treatment. The particle size of the supported zeolites was varied between 150 and 1800 nm. The preparation of FCC catalysts was conducted by mixing the CREY zeolite with silica-alumina matrix and silica sol binder. Each catalyst contained 25% zeolite. The results of catalytic cracking demonstrated the significant effect of size reduction of the starting zeolite Y on catalytic performance of FCC catalyst. Keywords. Zeolite NaY, Faujasite, Nanosized particles, Nanozeolite, Nanotechnology, Synthesis, Crystallization, Seeding, Ageing, Precipitated silica, Sylopol silica, Fumed silica, Silica sol, Soluble silicates, Alumina, SAR or SiO2/Al2O3 Ratios, Sodium hydroxide, Sodium aluminate, Organic templates, TMAOH, Surfactant (CTAB), Ammonium Sulfate, BET surface area, BJH Pore Size Distribution, Zetasizer Particle Size Distribution, Powder XRD, 27Al Solid-State NMR, Catalytic Impregnation, CREY Zeolite, Silica-Alumina Matrix, Ion Exchange, FCC Catalyst, Catalytic cracking, Riser SimulatorRTM, Steaming, Zeolite HY, Utrastable Zeolite Y (USY)

  10. Scintillating 99Tc Selective Ion Exchange Resins

    SciTech Connect

    Mitchell Greenhalgh; Richard D. Tillotson

    2012-07-01

    Scintillating technetium (99Tc) selective ion exchange resins have been developed and evaluated for equilibrium capacities and detection efficiencies. These resins can be utilized for the in-situ concentration and detection of low levels of pertechnetate anions (99TcO4-) in natural waters. Three different polystyrene type resin support materials were impregnated with varying amounts of tricaprylmethylammonium chloride (Aliquat 336) extractant, several different scintillating fluors and wavelength shifters. The prepared resins were contacted batch-wise to equilibrium over a wide range of 99TcO4- concentrations in natural water. The measured capacities were used to develop Langmuir adsorption isotherms for each resin. 99Tc detection efficiencies were determined and up to 71.4 ± 2.6% was achieved with some resins. The results demonstrate that a low level detection limit for 99TcO4- in natural waters can be realized.

  11. Pyrolysis of Spent Ion Exchange Resins - 12210

    SciTech Connect

    Braehler, Georg; Slametschka, Rainer

    2012-07-01

    Organic ion exchangers (IEX) play a major and increasing role in the reactor coolant and other water purification processes. During their operation time they receive significant amounts of radioactivity, making their disposal, together with their organic nature, as medium active waste challenging. Processes applied so far do not eliminate the organic matter, which is unwanted in disposal facilities, or, if high temperatures are applied, raise problems with volatile radionuclides. NUKEM Technologies offers their well introduces process for the destruction of spent solvent (TBP), the pebble bed pyrolysis, now for the treatment of spent IEX (and other problematic waste), with the following benefits: the pyrolysis product is free of organic matter, and the operation temperature with approx. 500 deg. C keeps Cs radionuclides completely in the solid residue. (authors)

  12. TECHNICAL COMPARISON OF CANDIDATE ION EXCHANGE MEDIA FOR SMALL COLUMN ION EXCHANGE (SCIX) APPLICATIONS IN SUPPORT OF SUPPLEMENTAL LAW PRETREATMENT

    SciTech Connect

    RAMSEY AA; THORSON MR

    2010-12-28

    At-tank supplemental pretreatment including both filtration and small column ion exchange is currently under evaluation to facilitate salt waste retrieval and processing in the Hanford tank farms. Spherical resorcinol formaldehyde (sRF) resin is the baseline ion exchange resin for use in the Waste Treatment and Immobilization Plant (WTP). This document provides background and technical rationale to assist in determining whether spherical resorcinol formaldehyde (sRF) is also the appropriate ion exchange resin for supplemental LAW pretreatment processes and compares sRF with crystalline silicotitanate (CST) as potential supplemental pretreatment ion exchange media.

  13. Ion exchange materials, method of forming ion exchange materials, and methods of treating liquids

    DOEpatents

    Wertsching, Alan K.; Peterson, Eric S.; Wey, John E.

    2007-12-25

    The invention includes an ion affinity material having an organic component which is sulfonated and which is chemically bonded to an inorganic substrate component. The invention includes a method of forming a metal binding material. A solid support material comprising surface oxide groups is provided and an organic component having at least one alkyl halide is covalently linked to at least some of the surface oxide groups to form a modified support material. The at least one alkyl halide is subsequently converted into an alkyl sulfonate. The invention further includes a method and system for extracting ions from a liquid. An ion exchange material having a sulfonated alkyl silane component covalently bonded to a metal oxide support material is provided and a liquid is exposed to the ion exchange material.

  14. Using Ion Exchange Chromatography to Separate and Quantify Complex Ions

    ERIC Educational Resources Information Center

    Johnson, Brian J.

    2014-01-01

    Ion exchange chromatography is an important technique in the separation of charged species, particularly in biological, inorganic, and environmental samples. In this experiment, students are supplied with a mixture of two substitution-inert complex ions. They separate the complexes by ion exchange chromatography using a "flash"…

  15. Rupture Loop Annex (RLA) ion exchange vault entry and characterization

    SciTech Connect

    Ham, J.E.

    1996-01-04

    This engineering report documents the entry and characterization of the Rupture Loop Annex Ion Exchange (RLAIX) Vault located near the 309 Building`s Plutonium Recycle Test Reactor (PRTR). Twelve ion exchange columns were found in the vault. Some of which contained transuranics, Cs 137, and Co 60. The characterization information is necessary for future vault cleanout and column disposal.

  16. Anisotropic microporous supports impregnated with polymeric ion-exchange materials

    DOEpatents

    Friesen, Dwayne; Babcock, Walter C.; Tuttle, Mark

    1985-05-07

    Novel ion-exchange media are disclosed, the media comprising polymeric anisotropic microporous supports containing polymeric ion-exchange or ion-complexing materials. The supports are anisotropic, having small exterior pores and larger interior pores, and are preferably in the form of beads, fibers and sheets.

  17. Ion Exchange Chromatography and Spectrophotometry: An Introductory Undergraduate Laboratory Experiment.

    ERIC Educational Resources Information Center

    Foster, N.; And Others

    1985-01-01

    Describes an experiment in which students use ion exchange chromatography to separate a mixture of chloro complexes of transition metal ions and then use spectrophotometry to define qualitatively the efficiency of the ion exchange columns. Background information, materials needed, and procedures used are included. (JN)

  18. Anisotropic microporous supports impregnated with polymeric ion-exchange materials

    DOEpatents

    Friesen, D.; Babcock, W.C.; Tuttle, M.

    1985-05-07

    Novel ion-exchange media are disclosed, the media comprising polymeric anisotropic microporous supports containing polymeric ion-exchange or ion-complexing materials. The supports are anisotropic, having small exterior pores and larger interior pores, and are preferably in the form of beads, fibers and sheets. 5 figs.

  19. Radiation testing of organic ion exchange resins

    SciTech Connect

    Carlson, C.D.; Bray, L.A.; Bryan, S.A.

    1995-09-01

    A number of ion exchange materials are being evaluated as part of the Tank Waste Remediation System (TWRS) Pacific Northwest Laboratory (PNL) Pretreatment Project for the removal of {sup 137}Cs from aqueous tank wastes. Two of these materials are organic resins; a phenol-formaldehyde resin (Duolite CS-100) produced by Rohm and Haas Co. (Philadelphia, Pennsylvania) and a resorcinol-formaldehyde (RF) resin produced by Boulder Scientific Co. (Mead, Colorado). One of the key parameters in the assessment of the organic based ion exchange materials is its useful lifetime in the radioactive and chemical environment that will be encountered during waste processing. The focus of the work presented in this report is the radiation stability of the CS-100 and the RF resins. The scope of the testing included one test with a sample of the CS-100 resin and testing of two batches of the RF resin (BSC-187 and BSC-210). Samples of the exchangers were irradiated with a {sup 60}Co source to a total absorbed dose of 10{sup 9} R over a period of 5 months in a static (no flow) and a flowing configuration with neutralized current acid waste (NCAW) simulant as a feed. Based on a maximum concentration of {sup 137}Cs on the resin that would result from processing NCAW, this dose represents an operational period of at least 150 days for the RF resin and at least 1260 days for the CS-100 resin. Gas generation in the static experiment was continuously monitored and G values (molecules of gas per 100 eV) were determined for each species. Resin samples were obtained periodically and the equilibrium behavior of the resins was assessed by determining the distribution coefficients (K{sub d}s). Structural information was also obtained by {sup 13}C cross polarization magic angle (CPMAS) nuclear magnetic resonance (NMR) spectrometry and Fourier Transform Infrared (FTIR) spectroscopy so that changes to the chemical structure could be correlated with changes in K{sub d}.

  20. Waste treatment by selective mineral ion exchanger

    SciTech Connect

    Polito, Aurelie

    2007-07-01

    STMI, subsidiary company of the AREVA Group with over 40 years in the D and D business, has been continuously innovating and developing new decontamination techniques, with the objectives of achieving more efficient decontaminations on a growing spectrum of media. In the field of liquid waste treatment, STMI manufactures uses and commercialises selective inorganic ion exchangers (RAN). These are hydrated synthetic inorganic compounds prepared from very pure raw materials. Different types of RANs (POLYAN, OXTAIN, Fe-Cu, Fe-CoK, Si-Fe-CoK) can be used to trap a large number of radioactive elements in contaminated effluents. Different implementations could be applied depending on technical conditions. STMI's offers consist in building global solution and preliminary design of installation either in dispersed form (batch) or in column (cartridge filtration). Those products are used all over the world not only in the nuclear business (Canada, US, Belgium, France...) but also in other fields. Indeed, it provides competitive solutions to many domains of application especially water pollution control, liquid waste treatment in the nuclear business by decreasing the activity level of waste. The following paper will focus on the theoretical principle of the mineral exchanger, its implementation and the feed back collected by STMI. (author)

  1. Tc-99 Ion Exchange Resin Testing

    SciTech Connect

    Valenta, Michelle M.; Parker, Kent E.; Pierce, Eric M.

    2010-08-01

    Pacific Northwest National Laboratory was contracted by CHPRC to evaluate the release of 99Tc from spent resin used to treat water from well 299-W15-765 and stored for several years. The key questions to be answered are: 1) does 99Tc readily release from the spent ion exchange resin after being in storage for several years; 2) if hot water stripping is used to remove the co-contaminant carbon tetrachloride, will 99Tc that has been sequestered by the resin be released; and 3) can spent resin be encapsulated into a cementitious waste form; if so, how much 99Tc would be released from the weathering of the monolith waste form? The results from the long term stability leach test results confirm that the resin is not releasing a significant amount of the sequestered 99Tc, evident by the less than 0.02% of the total 99Tc loaded being identified in the solution. Furthermore, it is possible that the measured 99Tc concentration is the result of 99Tc contained in the pore spaces of the resin. In addition to these results, analyses conducted to examine the impact of hot water on the release of 99Tc suggest that only a small percentage of the total is being released. This suggest that hot water stripping to remove carbon tetrachloride will not have a significant affect on the resin’s ability to hold-on to sequestered 99Tc. Finally, encapsulation of spent resin in a cementitious material may be a viable disposal option, but additional tests are needed to examine the extent of physical degradation caused by moisture loss and the effect this degradation process can have on the release of 99Tc.

  2. Zeolite thin films: from computer chips to space stations.

    PubMed

    Lew, Christopher M; Cai, Rui; Yan, Yushan

    2010-02-16

    Zeolites are a class of crystalline oxides that have uniform and molecular-sized pores (3-12 A in diameter). Although natural zeolites were first discovered in 1756, significant commercial development did not begin until the 1950s when synthetic zeolites with high purity and controlled chemical composition became available. Since then, major commercial applications of zeolites have been limited to catalysis, adsorption, and ion exchange, all using zeolites in powder form. Although researchers have widely investigated zeolite thin films within the last 15 years, most of these studies were motivated by the potential application of these materials as separation membranes and membrane reactors. In the last decade, we have recognized and demonstrated that zeolite thin films can have new, diverse, and economically significant applications that others had not previously considered. In this Account, we highlight our work on the development of zeolite thin films as low-dielectric constant (low-k) insulators for future generation computer chips, environmentally benign corrosion-resistant coatings for aerospace alloys, and hydrophilic and microbiocidal coatings for gravity-independent water separation in space stations. Although these three applications might not seem directly related, they all rely on the ability to fine-tune important macroscopic properties of zeolites by changing their ratio of silicon to aluminum. For example, pure-silica zeolites (PSZs, Si/Al = infinity) are hydrophobic, acid stable, and have no ion exchange capacity, while low-silica zeolites (LSZs, Si/Al < 2) are hydrophilic, acid soluble, and have a high ion exchange capacity. These new thin films also take advantage of some unique properties of zeolites that have not been exploited before, such as a higher elastic modulus, hardness, and heat conductivity than those of amorphous porous silicas, and microbiocidal capabilities derived from their ion exchange capacities. Finally, we briefly discuss our

  3. FRACTIONATION OF COMPLEX MIXTURES USING AND ION-EXCHANGE METHODOLOGY

    EPA Science Inventory

    Fractionation of particle emission extracts captured from complex combustion mixtures gas performed upon environmental samples using an ion-exchange technique. aptured emissions from hazardous waste, municipal and medical/pathological incinerators along with urban air imputed by ...

  4. Hydrolyzed Poly(acrylonitrile) Electrospun Ion-Exchange Fibers

    PubMed Central

    Jassal, Manisha; Bhowmick, Sankha; Sengupta, Sukalyan; Patra, Prabir K.; Walker, Douglas I.

    2014-01-01

    Abstract A potential ion-exchange material was developed from poly(acrylonitrile) fibers that were prepared by electrospinning followed by alkaline hydrolysis (to convert the nitrile group to the carboxylate functional group). Characterization studies performed on this material using X-ray photoelectron spectroscopy, scanning electron microscopy, Fourier-Transform infra-red spectroscopy, and ion chromatography confirmed the presence of ion-exchange functional group (carboxylate). Optimum hydrolysis conditions resulted in an ion-exchange capacity of 2.39 meq/g. Ion-exchange fibers were used in a packed-bed column to selectively remove heavy-metal cation from the background of a benign, competing cation at a much higher concentration. The material can be efficiently regenerated and used for multiple cycles of exhaustion and regeneration. PMID:24963270

  5. WASTEWATER DEMINERALIZATION BY CONTINUOUS COUNTER-CURRENT ION EXCHANGE PROCESS

    EPA Science Inventory

    A wastewater demineralization study employing a 38 lpm (10 gpm) continuous counter-current ion exchange pilot plant, manufactured by the Chemical Separations Corporation, Oak Ridge, Tennessee, has been conducted at the County Sanitation Districts, Pomona Research Facility, Pomona...

  6. Ion Exchange Separation of the Oxidation State of Vanadium.

    ERIC Educational Resources Information Center

    Cornelius, Richard

    1980-01-01

    Describes an experiment that emphasizes the discrete nature of the different oxidation states of vanadium by the separation of ammonium metavanadate into all four species by ion exchange chromatography. (CS)

  7. 21 CFR 173.25 - Ion-exchange resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...,” February 4, 1998, which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ion-exchange resins. 173.25 Section 173.25 Food... Polymer Substances and Polymer Adjuvants for Food Treatment § 173.25 Ion-exchange resins....

  8. 21 CFR 173.25 - Ion-exchange resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...,” February 4, 1998, which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ion-exchange resins. 173.25 Section 173.25 Food... Polymer Substances and Polymer Adjuvants for Food Treatment § 173.25 Ion-exchange resins....

  9. 21 CFR 173.25 - Ion-exchange resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...,” February 4, 1998, which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ion-exchange resins. 173.25 Section 173.25 Food... Polymer Substances and Polymer Adjuvants for Food Treatment § 173.25 Ion-exchange resins....

  10. Mineral Separation in a CELSS by Ion-exchange Chromatography

    NASA Technical Reports Server (NTRS)

    Ballou, E. V.; Spitze, L. A.; Wong, F. W.; Wydeven, T.; Johnson, C. C.

    1982-01-01

    Operational parameters pertinent to ion exchange chromatography separation were identified. The experiments were performed with 9 mm diameter ion exchange columns and conventional column accessories. The cation separation beds were packed with AG 50W-X2 strong acid cation exchange resin in H(+) form and 200-400 dry mesh particle size. The stripper beds used in some experiments were packed with AG 1-XB strong base cation exchange resin in OH(-) form and 200-400 dry mesh particle size.

  11. Gadolinium-hydrogen ion exchange of zirconium phosphate

    NASA Technical Reports Server (NTRS)

    Liu, D. C.; Power, J. L.

    1972-01-01

    The Gd(+3)/H(+) ion exchange on a commercial zirconium phosphate ion exchanger was investigated in chloride, sulfate, and phosphate solutions of Gd(+3) at gadolinium concentrations of 0.001 to 1 millimole per cc and in the pH range of 0 to 3.5. Relatively low Gd(+3) capacities, in the range of 0.01 to 0.1 millimole per g of ion exchanger were found at room temperature. A significant difference in Gd(+3) sorption was observed, depending on whether the ion exchanger was converted from initial conditions of greater or lesser Gd(+3) sorption than the specific final conditions. Correlations were found between decrease in Gd(+3) capacity and loss of exchanger phosphate groups due to hydrolysis during washing and between increase in capacity and treatment with H3PO4. Fitting of the experimental data to ideal ion exchange equilibrium expressions indicated that each Gd(+3) ion is sorbed on only one site of the ion exchanger. The selectivity quotient was determined to be 2.5 + or - 0.4 at room temperature on gadolinium desorption in chloride solutions.

  12. MODELING RESULTS FROM CESIUM ION EXCHANGE PROCESSING WITH SPHERICAL RESINS

    SciTech Connect

    Nash, C.; Hang, T.; Aleman, S.

    2011-01-03

    Ion exchange modeling was conducted at the Savannah River National Laboratory to compare the performance of two organic resins in support of Small Column Ion Exchange (SCIX). In-tank ion exchange (IX) columns are being considered for cesium removal at Hanford and the Savannah River Site (SRS). The spherical forms of resorcinol formaldehyde ion exchange resin (sRF) as well as a hypothetical spherical SuperLig{reg_sign} 644 (SL644) are evaluated for decontamination of dissolved saltcake wastes (supernates). Both SuperLig{reg_sign} and resorcinol formaldehyde resin beds can exhibit hydraulic problems in their granular (nonspherical) forms. SRS waste is generally lower in potassium and organic components than Hanford waste. Using VERSE-LC Version 7.8 along with the cesium Freundlich/Langmuir isotherms to simulate the waste decontamination in ion exchange columns, spherical SL644 was found to reduce column cycling by 50% for high-potassium supernates, but sRF performed equally well for the lowest-potassium feeds. Reduced cycling results in reduction of nitric acid (resin elution) and sodium addition (resin regeneration), therefore, significantly reducing life-cycle operational costs. These findings motivate the development of a spherical form of SL644. This work demonstrates the versatility of the ion exchange modeling to study the effects of resin characteristics on processing cycles, rates, and cold chemical consumption. The value of a resin with increased selectivity for cesium over potassium can be assessed for further development.

  13. Ion exchange defines the biological activity of titanate nanotubes.

    PubMed

    Rónavári, Andrea; Kovács, Dávid; Vágvölgyi, Csaba; Kónya, Zoltán; Kiricsi, Mónika; Pfeiffer, Ilona

    2016-05-01

    One-dimensional titanate nanotubes (TiONTs) were subjected to systematic ion exchange to determine the impact of these modifications on biological activities. Ion exchanged TiONTs (with Ag, Mg, Bi, Sb, Ca, K, Sr, Fe, and Cu ions) were successfully synthesized and the presence of the substituted ions was verified by energy dispersive X-ray spectroscopy (EDS). A complex screening was carried out to reveal differences in toxicity to human cells, as well as in antibacterial, antifungal, and antiviral activities between the various modified nanotubes. Our results demonstrated that Ag ion exchanged TiONTs exerted potent antibacterial and antifungal effects against all examined microbial species but were ineffective on viruses. Surprisingly, the antibacterial activity of Cu/TiONTs was restricted to Micrococcus luteus. Most ion exchanged TiONTs did not show antimicrobial activity against the tested bacterial and fungal species. Incorporation of various ions into nanotube architectures lead to mild, moderate, or even to a massive loss of human cell viability; therefore, this type of biological effect exerted by TiONTs can be greatly modulated by ion exchange. These findings further emphasize the contribution of ion exchange in determining not only the physical and chemical characteristics but also the bioactivity of TiONT against different types of living cells. PMID:26972521

  14. Modification of commercial NaY zeolite to give high water diffusivity and adsorb a large amount of water.

    PubMed

    Katoh, Masahiro; Kimura, Michisato; Sugino, Mao; Horikawa, Toshihide; Nakagawa, Keizo; Sugiyama, Shigeru

    2015-10-01

    By using NaY zeolites as desiccant materials, commercial NaY zeolite was alkali treated with 1 M NaOH aqueous solution and then Mg(2+) ion-exchanged by 0.5 M Mg(NO3)2 aqueous solution. Alkali treatment (AT) of NaY zeolite removed silicon atoms selectivity from the framework of Y-type zeolite and enhanced water diffusivity of Y-type zeolite. On the other hand, Mg(2+) ion-exchange of NaY zeolite increased the amount of water adsorbed. Prepared Y-AT-Mg zeolite had both water adsorption velocity and a large difference of water adsorbed amount between adsorption at 30 °C and desorption at 100 °C. PMID:26072446

  15. Concept of advanced spent fuel reprocessing based on ion exchange

    SciTech Connect

    Suzuki, Tatsuya; Takahashi, Kazuyuki; Nogami, Masanobu; Nomura, Masao; Fujii, Yasuhiko; Ozawa, Masaki |; Koyama, Shinichi; Mimura, Hitosi; Fujita, Reiko

    2007-07-01

    Reprocessing based on ion exchange separation is proposed as a safe, proliferation-resistant technology. Tertiary pyridine resin was developed for ion exchange reprocessing. Working medium of the separation system is not nitric acid but hydrochloric acid aqueous solution. The system does not involve strong oxidizing reagent, such as nitric acid but involve chloride ions which works as the week neutron absorbers. The system can be operated at ambient temperatures and pressure. Thus the HCl-ion-exchange reprocessing is regarded as an inherently safe technology. Another advantage of HCl ion-exchange reprocessing is the proliferation-resistant nature. Both U(VI) and Pu(IV) ions are adsorbed in the pyridine type anion exchange resin at relatively high HCl concentration of 6 M. At this condition, the adsorption distribution coefficient of Pu(IV) is smaller than that of U(VI). When uranium is eluted from the resin in the column, plutonium is simultaneously eluted from the column; Pu is recovered with uranium in the front part of uranium adsorption band. Pu(IV) can not be left in the resin after elution of uranium. The use of HCl in the ion-exchange reprocessing causes the problem of the plant materials. Sophisticated material technology is necessary to realize the ion exchange reprocessing using HCl. The technology is so sophisticated that only highly developed countries can hold the technology, thus the technology holding countries will be limited. The plant, therefore, cannot be built under hidden state. In addition, another merit of the process would be the simplicity in operation. One phase, i.e., ion exchange resin is immobile, and the aqueous solution is the only mobile phase. Plant operation is made by the control of one aqueous solution phase. The plant simplicity would ease the international safeguard inspection efforts to be applicable to this kind of reprocessing plant. The present work shows the basic concept of ion exchange reprocessing using HCl medium

  16. Interpenetrating polymer network ion exchange membranes and method for preparing same

    DOEpatents

    Alexandratos, Spiro D.; Danesi, Pier R.; Horwitz, E. Philip

    1989-01-01

    Interpenetrating polymer network ion exchange membranes include a microporous polymeric support film interpenetrated by an ion exchange polymer and are produced by absorbing and polymerizing monomers within the support film. The ion exchange polymer provides ion exchange ligands at the surface of and throughout the support film which have sufficient ligand mobility to extract and transport ions across the membrane.

  17. Development of a Waste Water Regenerative System - Using Sphagnum Moss Ion-exchange

    NASA Astrophysics Data System (ADS)

    McKeon, M.; Wheeler, R.; Leahy, Jj

    The use of inexpensive, light weight and regenerative systems in an enclosed environment is of great importance to sustained existence in such habitats as the International Space Station, Moon or even Mars. Many systems exist which utilise various synthetic ion exchangers to complete the process of waste water clean-up. These systems do have a very good exchange rate for cations but a very low exchange rate for anions. They also have a maximum capacity before they need regeneration. This research proposes a natural alternative to these synthetic ion-exchangers that utilises one of natures greatest ion-exchangers, that of Sphagnum Moss. Sphagna can be predominantly found in the nutrient poor environment of Raised Bogs, a type of isolated wetland with characteristic low pH and little interaction with the surrounding water table. All nutrients come from precipitation. The sphagna have developed as the bog's sponges, soaking up all available nutrients (both cation & anion) from the precipitation and eventually distributing them to the surrounding flora and fauna, through the water. The goal of this research is to use this ability in the processing of waste water from systems similar to isolated microgravity environments, to produce clean water for reuse in these environments. The nutrients taken up by the sphagna will also be utilised as a growth medium for cultivar growth, such as those selected for hydroponics' systems.

  18. Bend stresses arising from ion-exchange diffusion in glasses

    SciTech Connect

    Babukova, M.V.; Glebov, L.B.; Nikonorov, N.V.; Petrovskii, G.T.

    1985-11-01

    This paper demonstrates experimental confirmation of the presence of gigastresses arising under ion exchange, for the purpose of providing data relating to the magnitudes of stress greater than 1 GPa in these ion-exchange layers. To determine the stresses, a bend method was used on a specimen under nonuniform load. Small values of bend were determined on an IT-70 inferometer. With larger values of bend the radius of curvature of the surface was determined by measuring the focal distance in the beam of a He-Ne laser reflected from the specimen. Bending is observed in silicate glass subjected to unilateral ion-exchange diffusion of K/sup +/. It is shown that the bending of the specimens is caused by compressive stresses arising in the diffusion layer and having a value of greater than 1.5 GPa. The changes in the refractive index (RI) in the diffusion layer are determined primarily by the photoelastic effect.

  19. Evaluation of electrochemical ion exchange for cesium elution

    SciTech Connect

    Bontha, J.D.; Kurath, D.E.; Surma, J.E.; Buehler, M.F.

    1996-04-01

    Electrochemical elution was investigated as an alternative method to acid elution for the desorption of cesium from loaded ion exchange resins. The approach was found to have several potential advantages over existing technologies, in particular, electrochemical elution eliminates the need for addition of chemicals to elute cesium from the ion exchange resin. Also, since, in the electrochemical elution process the eluting solution is not in direct contact with the ion exchange material, very small volumes of the eluting solution can be used in a complete recycle mode in order to minimize the total volume of the cesium elute. In addition, the cesium is eluted as an alkaline solution that does not require neutralization with caustic to meet the tank farm specifications. Other advantages include easy incorporation of the electrochemical elution process into the present cesium recovery schemes.

  20. Ion exchange properties of novel hydrous metal oxide materials

    SciTech Connect

    Gardner, T.J.; McLaughlin, L.I.

    1996-12-31

    Hydrous metal oxide (HMO) materials are inorganic ion exchangers which have many desirable characteristics for catalyst support applications, including high cation exchange capacity, anion exchange capability, high surface area, ease of adjustment of acidity and basicity, bulk or thin film preparation, and similar chemistry for preparation of various transition metal oxides. Cation exchange capacity is engineered into these materials through the uniform incorporation of alkali cations via manipulation of alkoxide chemistry. Specific examples of the effects of Na stoichiometry and the addition of SiO{sub 2} to hydrous titanium oxide (HTO) on ion exchange behavior will be given. Acid titration and cationic metal precursor complex exchange will be used to characterize the ion exchange behavior of these novel materials.

  1. Silicon Removal from Waste Simulants via Ion Exchange

    SciTech Connect

    Wilmarth, W.R.

    2002-09-23

    examine a number of silica removal technologies to assist the processing of DWPF recycle water. Ion exchange is used commercially to remove soluble silicate ions and colloidal silica from various process waters. Three candidate ion exchange resins were selected after a literature search showed a potential applicability for DWPF Recycle. The results of these scouting tests showed the resins to be chemically stable in the alkaline environment of DWPF recycle. However, the resins were not effective at removing silicon. Additionally, results of silica analyses showed the silicon solubility in these feed solutions for ion exchange were still high after further acidification with respect to the goal of silicon removal. This suggests very strongly that pH adjustment (from 14 to 9), as a silicon removal technology is not viable.

  2. ION EXCHANGE PERFORMANCE OF TITANOSILICATES, GERMANATES AND CARBON NANOTUBES

    SciTech Connect

    Alsobrook, A. N.; Hobbs, D. T.

    2013-04-24

    This report presents a summary of testing the affinity of titanosilicates (TSP), germanium-substituted titanosilicates (Ge-TSP) and multiwall carbon nanotubes (MWCNT) for lanthanide ions in dilute nitric acid solution. The K-TSP ion exchanger exhibited the highest affinity for lanthanides in dilute nitric acid solutions. The Ge-TSP ion exchanger shows promise as a material with high affinity, but additional tests are needed to confirm the preliminary results. The MWCNT exhibited much lower affinities than the K-TSP in dilute nitric acid solutions. However, the MWCNT are much more chemically stable to concentrated nitric acid solutions and, therefore, may candidates for ion exchange in more concentrated nitric acid solutions. This technical report serves as the deliverable documenting completion of the FY13 research milestone, M4FT-13SR0303061 – measure actinide and lanthanide distribution values in nitric acid solutions with sodium and potassium titanosilicate materials.

  3. Ion-exchange properties of strontium hydroxyapatite under acidic conditions

    SciTech Connect

    Sugiyama, Shigeru; Nishioka, Hitoshi; Moriga, Toshihiro; Hayashi, Hiromu; Moffat, J.B.

    1998-09-01

    The ion exchange of strontium hydroxyapatite (SrHAp) with Pb{sup 2+} has been investigated under acidic conditions at 293 K. The addition of various acids to the exchanging solution enhanced the exchange capacity in the order HCl > HBr > HF > HNO{sub 3} > no acid, corresponding to the formation of halogen apatites with the former three acids or hydrogen phosphate with HNO{sub 3}. Since the ion-exchange capacity of SrHAp under nonacidic conditions is higher than that of chlorapatite, the aforementioned observations can be attributed to the participation of the protons introduced by the acids.z

  4. Rupture loop annex ion exchange RLAIX vault deactivation

    SciTech Connect

    Ham, J.E.; Harris, D.L., Westinghouse Hanford

    1996-08-01

    This engineering report documents the deactivation, stabilization and final conditions of the Rupture Loop Annex Ion Exchange (RLAIX) Vault located northwest of the 309 Building`s Plutonium Recycle Test Reactor (PRTR). Twelve ion exchange columns, piping debris, and column liquid were removed from the vault, packaged and shipped for disposal. The vault walls and floor were decontaminated, and portions of the vault were painted to fix loose contamination. Process piping and drains were plugged, and the cover blocks and rain cover were installed. Upon closure,the vault was empty, stabilized, isolated.

  5. Direct measurement of birefringence in ion-exchanged planar waveguides

    NASA Astrophysics Data System (ADS)

    Fazio, E.; Ramadan, W. A.; Bertolotti, M.; Righini, G. C.

    1996-08-01

    A direct measurement of the birefringence of a planar waveguide obtained by Na+ - K + ion exchange was performed with a double Lloyd interferometer. The results are compared with those obtained by a round-robin test involving the same sample. Birefringence of as much as Delta n=(2.0+/-0.2) \\times 10-3 was measured.

  6. Copper Removal from A-01 Outfall by Ion Exchange

    SciTech Connect

    Oji, L.N.

    1999-02-17

    Chelex100, a commercially available ion exchange resin, has been identified in this study as having a significant affinity for copper and zinc in the A-01 outfall water. Removal of copper and zinc from A-01 outfall water will ensure that the outfall meets the state of South Carolina's limit on these heavy metals.

  7. Cesium Ion Exchange Using Tank 241-AN-104 Supernate

    SciTech Connect

    Adu-Wusu, K.

    2003-12-22

    The River Protection Project is to design and build a high level nuclear waste treatment facility. The waste treatment plant is to process millions of gallons of radioactive waste stored in tanks at the Hanford Site. The high level nuclear waste treatment process includes various unit operations, such as ultrafiltration, precipitation, evaporation, ion exchange, and vitrification. Ion exchange is identified as the optimal treatment method for removal of cesium-137 and Tc-99 from the waste. Extensive ion exchange testing was performed using small-scale columns with actual waste samples. The objectives of this study were to: demonstrate SuperLig 644 ion exchange performance and process steps for the removal of cesium from actual AN-104 tank waste; pretreat actual AN-104 tank waste to reduce the concentration of cesium-137 in the waste below LAW vitrification limit; produce and characterize cesium eluate solutions for use in eluate evaporation tests. The experiments consisted of batch contact and small-scale column tests. The batch contact tests measured sorption partition coefficients Kds. The Kds were used to predict the effective resin capacity. The small-scale column tests, which closely mimic plant conditions, generated loading and elution profile data used to determine whether removal targets and design requirements were met.

  8. The many faces of ion-exchange resins

    SciTech Connect

    McNutty, J.T.

    1997-06-01

    Ion-exchange resins have been used commercially for over 60 years. Softening and demineralization of water for boiler feed and process use were then, and continue to be, the most familiar and widespread applications of ion-exchange resins throughout the chemical process industries (CPI). Several types of membrane-based technologies, such as electrodialysis, reverse osmosis and, more recently, electrodeionization are recognized as alternative methods for water treatment. Yet, modern versions of ion-exchange resins remain a major player in water treatment. In addition, these versatile materials can be found performing a wide range of tasks in both aqueous and nonaqueous environments. Some of these diverse applications include: acid or base catalysis; manufacture of high-purity solvents and reagent chemicals; separation of by-products of fermentation processes; deacidification of organic solvents; high-purity water production for semiconductor manufacture; recovery of valuable waste from dilute process effluents; controlled release of pharmaceutical products; and chromatography, both on the analytical and the industrial scale. The key to understanding the potential of ion-exchange resins is to look beyond their exchange and adsorptive characteristics, and to see their fundamental nature. In other words, it`s necessary to first consider them as spherical, particulate reactive polymers that perform chemical reactions.

  9. ELUTION OF URANIUM VALUES FROM ION EXCHANGE RESINS

    DOEpatents

    Kennedy, R.H.

    1959-11-24

    A process is described for eluting complex uranium ions absorbed on ion exchange resins. The resin is subjected to the action of an aqueous eluting solution contuining sulfuric acid and an alkali metal, ammonium, or magnesium chloride or nitrate, the elution being carried out until the desired amount of the uranium is removed from the resin.

  10. Desalination of brackish waters using ion-exchange media

    SciTech Connect

    Pless, J.D.; Philips, M.L.F.; Voigt, J.A.; Moore, D.; Axness, M.; Krumhansl, J.L.; Nenoff, T.M.

    2006-06-21

    An environmentally friendly method and materials study for desalinating inland brackish waters (i.e., coal bed methane produced waters) using a set of ion-exchange materials is presented. This desalination process effectively removes anions and cations in separate steps with minimal caustic waste generation. The anion-exchange material, hydrotalcite (HTC), exhibits an ion-exchange capacity (IEC) of around 3 mequiv g{sup -1}. The cation-exchange material, an amorphous aluminosilicate permutite-like material, (Na{sub x}+2yAl{sub x}Si{sub 1}-xO{sub 2+y}), has an IEC of around to 2.5 mequiv g{sup -1}. These ion-exchange materials were studied and optimized because of their specific ion-exchange capacity for the ions of interest and their ability to function in the temperature and pH regions necessary for cost and energy effectiveness. Room temperature, minimum pressure column studies (once-pass through) on simulant brackish water (total dissolved solids (TDS) = 2222 ppm) resulted in water containing TDS = 25 ppm. A second once-pass through column study on actual produced water (TDS = similar to 11 000) with a high carbonate concentration used an additional lime softening step and resulted in a decreased TDS of 600 ppm.

  11. Desalination of brackish waters using ion exchange media.

    SciTech Connect

    Pless, Jason D.; Krumhansl, James Lee; Nenoff, Tina Maria; Voigt, James A.; Phillips, Mark L. F.; Axness, Marlene; Moore, Diana Lynn

    2005-01-01

    An environmentally friendly method and materials study for desalinating inland brackish waters (i.e., coal bed methane produced waters) using a set of ion-exchange materials is presented. This desalination process effectively removes anions and cations in separate steps with minimal caustic waste generation. The anion-exchange material, hydrotalcite (HTC), exhibits an ion-exchange capacity (IEC) of {approx} 3 mequiv g{sup -1}. The cation-exchange material, an amorphous aluminosilicate permutite-like material, (Na{sub x+2y}Al{sub x}Si{sub 1-x}O{sub 2+y}), has an IEC of {approx}2.5 mequiv g{sup -1}. These ion-exchange materials were studied and optimized because of their specific ion-exchange capacity for the ions of interest and their ability to function in the temperature and pH regions necessary for cost and energy effectiveness. Room temperature, minimum pressure column studies (once-pass through) on simulant brackish water (total dissolved solids (TDS) = 2222 ppm) resulted in water containing TDS = 25 ppm. A second once-pass through column study on actual produced water (TDS = {approx}11,000) with a high carbonate concentration used an additional lime softening step and resulted in a decreased TDS of 600 ppm.

  12. Determination of boron in silicates after ion exchange separation

    USGS Publications Warehouse

    Kramer, H.

    1955-01-01

    Existing methods for the determination of boron in silicates are not entirely satisfactory. Separation as the methyl ester is lengthy and frequently erratic. An accurate and rapid method applicable to glass, mineral, ore, and water samples uses ion exchange to remove interfering cations, and boron is determined titrimetrically in the presence of mannitol, using a pH meter to indicate the end point.

  13. Pyrolysis of ion exchange resins for volume reduction and inertisation

    SciTech Connect

    Holst, L.; Hesboel, R.

    1995-12-31

    Radioactive ion exchange resins are produced in water cleaning systems in nuclear power plants. Studsvik RadWaste AB and GNS have developed a pyrolysis process for the treatment of resins with the goal of an optimal volume reduction and a transformation of the ion exchange resins into a biological and chemical inert state. The degradation products arising from the pyrolysis are char, tar and gas. In the pyrolysis process used by Studsvik RadWaste and GNS about 1/3 char, 1/3 water and tar and 1/3 gas are produced. The char is supercompacted in order to receive a volume reduction of about 10:1 and a better product for final storage. Ion exchange resins with a specific {beta}/{gamma} activity of 1E12 Bq/m{sup 3} with 50% of Co-60 can be handled. The retention of the activity has been 0.5E6:1. By processing a total of 100 kg ion exchange resins with a total activity of IE9 Bq only some hundred becquerel have been monitored outside the pyrolyzing unit. This means that the products leaving the pyrolyzing unit, in this case tar, water and gas could be handled as non radioactive material in a conventional waste treatment facility.

  14. DEVELOPMENT OF INORGANIC ION EXCHANGERS FOR NUCLEAR WASTE REMEDIATION

    EPA Science Inventory

    This research is concerned with the development of highly selective inorganic ion exchangers for the removal of primarily Cs+ and Sr2+ from nuclear tank waste and from groundwater. In this study, we will probe the, origins of selectivity through detailed structural studies and th...

  15. Thermal Analysis for Ion-Exchange Column System

    SciTech Connect

    Lee, Si Y.; King, William D.

    2012-12-20

    Models have been developed to simulate the thermal characteristics of crystalline silicotitanate ion exchange media fully loaded with radioactive cesium either in a column configuration or distributed within a waste storage tank. This work was conducted to support the design and operation of a waste treatment process focused on treating dissolved, high-sodium salt waste solutions for the removal of specific radionuclides. The ion exchange column will be installed inside a high level waste storage tank at the Savannah River Site. After cesium loading, the ion exchange media may be transferred to the waste tank floor for interim storage. Models were used to predict temperature profiles in these areas of the system where the cesium-loaded media is expected to lead to localized regions of elevated temperature due to radiolytic decay. Normal operating conditions and accident scenarios (including loss of solution flow, inadvertent drainage, and loss of active cooling) were evaluated for the ion exchange column using bounding conditions to establish the design safety basis. The modeling results demonstrate that the baseline design using one central and four outer cooling tubes provides a highly efficient cooling mechanism for reducing the maximum column temperature. In-tank modeling results revealed that an idealized hemispherical mound shape leads to the highest tank floor temperatures. In contrast, even large volumes of CST distributed in a flat layer with a cylindrical shape do not result in significant floor heating.

  16. EVALUATING ION EXCHANGE FOR REMOVING RADIUM FROM GROUNDWATER

    EPA Science Inventory

    This article focuses on the results of bench and pilot-scale studies of ion exchange processes for radium removal from groundwater in Lemont, Ill. atch and column studies indicated a very high resin selectivity for radium compared with common cations. xhaustion-regeneration studi...

  17. EVALUATING ION EXCHANGE FOR REMOVING RADIUM FROM GROUNDWATER

    EPA Science Inventory

    This article, the second in a series, focuses on the results of bench- and pilot-scale studies of ion exchange processes for radium removal from groundwater in Lemont, Ill. Batch and column studies indicated a very high resin selectivity for radium compared with common cations. E...

  18. Method and solvent composition for regenerating an ion exchange resin

    DOEpatents

    Even, William R.; Irvin, David J.; Irvin, Jennifer A.; Tarver, Edward E.; Brown, Gilbert M.; Wang, James C. F.

    2002-01-01

    A method and composition for removing perchlorate from a highly selective ion exchange resin is disclosed. The disclosed approach comprises treating the resin in a solution of super critical or liquid carbon dioxide and one or more quaternary ammonium chloride surfactant compounds.

  19. Waste separation and pretreatment using crystalline silicotitanate ion exchangers

    SciTech Connect

    Tadros, M.E.; Miller, J.E.; Anthony, R.G.

    1997-10-01

    A new class of inorganic ion exchangers called crystalline silicotitanates (CSTs) has been developed jointly by Sandia National Laboratories and Texas A&M University to selectively remove Cs and other radionuclides from a wide spectrum of radioactive defense wastes. The CST exhibits high selectivity and affinity for Cs and Sr under a wide range of conditions. Tests show it can remove part-per-million concentrations of Cs{sup +} from highly alkaline, high-sodium simulated radioactive waste solutions modeled after those at Hanford, Oak Ridge, and Savannah River. The materials exhibit ion exchange properties based on ionic size selectivity. Specifically, crystalline lattice spacing is controlled to be highly selective for Cs ions even in waste streams containing very high (5 to 10 M) concentrations of sodium. The CST technology is being demonstrated with actual waste at several DOE facilities. The use of inorganic ion exchangers. The inorganics are more resistant to chemical, thermal, and radiation degradation. Their high selectivities result in more efficient operations offering the possibility of a simple single-pass operation. In contrast, regenerable organic ion exchangers require additional processing equipment to handle the regeneration liquids and the eluant with the dissolved Cs.

  20. ION-EXCHANGE PROCESSES AND MECHANISMS IN GLASSES

    EPA Science Inventory

    Recent performance assessment calculations of a disposal system at Hanford, Washington for low activity waste glass show that a Na ion-exchange reaction can effectively increase the radionuclide release rate by over a factor of 1000 and so is a major factor that currently limits ...

  1. MINOR ACTINIDE SEPARATIONS USING ION EXCHANGERS OR IONIC LIQUIDS

    SciTech Connect

    Hobbs, D.; Visser, A.; Bridges, N.

    2011-09-20

    This project seeks to determine if (1) inorganic-based ion exchange materials or (2) electrochemical methods in ionic liquids can be exploited to provide effective Am and Cm separations. Specifically, we seek to understand the fundamental structural and chemical factors responsible for the selectivity of inorganic-based ion-exchange materials for actinide and lanthanide ions. Furthermore, we seek to determine whether ionic liquids can serve as the electrolyte that would enable formation of higher oxidation states of Am and other actinides. Experiments indicated that pH, presence of complexants and Am oxidation state exhibit significant influence on the uptake of actinides and lanthanides by layered sodium titanate and hybrid zirconium and tin phosphonate ion exchangers. The affinity of the ion exchangers increased with increasing pH. Greater selectivity among Ln(III) ions with sodium titanate materials occurs at a pH close to the isoelectric potential of the ion exchanger. The addition of DTPA decreased uptake of Am and Ln, whereas the addition of TPEN generally increases uptake of Am and Ln ions by sodium titanate. Testing confirmed two different methods for producing Am(IV) by oxidation of Am(III) in ionic liquids (ILs). Experimental results suggest that the unique coordination environment of ionic liquids inhibits the direct electrochemical oxidation of Am(III). The non-coordinating environment increases the oxidation potential to a higher value, while making it difficult to remove the inner coordination of water. Both confirmed cases of Am(IV) were from the in-situ formation of strong chemical oxidizers.

  2. Fly ash based zeolitic pigments for application in anticorrosive paints

    NASA Astrophysics Data System (ADS)

    Shaw, Ruchi; Tiwari, Sangeeta

    2016-04-01

    The purpose of this work is to evaluate the utilization of waste fly ash in anticorrosive paints. Zeolite NaY was synthesized from waste fly ash and subsequently modified by exchanging its nominal cation Na+ with Mg2+ and Ca2+ ions. The metal ion exchanged zeolite was then used as anticorrosive zeolitic pigments in paints. The prepared zeolite NaY was characterized using X-Ray diffraction technique and Scanning electron microscopy. The size, shape and density of the prepared fly ash based pigments were determined by various techniques. The paints were prepared by using fly ash based zeolitic pigments in epoxy resin and the percentages of pigments used in paints were 2% and 5%. These paints were applied to the mild steel panels and the anticorrosive properties of the pigments were assessed by the electrochemical spectroscopy technique (EIS).

  3. Demonstration of an Ion Exchange Resin Addition/Removal System with Superlig 659

    SciTech Connect

    Norato, M.A.

    2000-12-19

    A pilot facility was designed and built in the Thermal Fluids Laboratory at the Savannah River Technology Center to demonstrate the slurry transport of ion exchange resins in and out of ion exchange columns.

  4. Membrane consisting of polyquaternary amine ion exchange polymer network interpenetrating the chains of thermoplastic matrix polymer

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Wallace, C. J. (Inventor)

    1978-01-01

    An ion exchange membrane was formed from a solution containing dissolved matrix polymer and a set of monomers which are capable of reacting to form a polyquaternary ion exchange material; for example vinyl pyride and a dihalo hydrocarbon. After casting solution and evaporation of the volatile component's, a relatively strong ion exchange membrane was obtained which is capable of removing anions, such as nitrate or chromate from water. The ion exchange polymer forms an interpenetrating network with the chains of the matrix polymer.

  5. RECENT ADVANCES IN ION EXCHANGE MATERIALS AND PROCESSES FOR POLLUTION PREVENTION

    EPA Science Inventory

    The goal of this article was to summarize the recent advances in ion exchange technology for the metal finishing industry. Even though the ion exchange technology is mature and is widely employed in the industry, new applications, approaches and ion exchange materials are emergi...

  6. Sorption properties of radiation-cross-linked polymer hydrogels containing ion-exchange fibers

    NASA Astrophysics Data System (ADS)

    Rezvova, M. A.; Zhevnyk, V. D.; Pak, V.; Borodin, Y. V.; Kachina, E. V.

    2016-02-01

    Polymer hydrogel modification for soft contact lenses by ion-exchange fibers was studied in this work. The obtained results showed that the ion-exchange fiber modifiers have a number of advantages as compared with ion-exchange resin modifiers.

  7. Effects of ionizing radiation on modern ion exchange materials

    SciTech Connect

    Marsh, S.F.; Pillay, K.K.S.

    1993-10-01

    We review published studies of the effects of ionizing radiation on ion exchange materials, emphasizing those published in recent years. A brief overview is followed by a more detailed examination of recent developments. Our review includes styrene/divinylbenzene copolymers with cation-exchange or anion-exchange functional groups, polyvinylpyridine anion exchangers, chelating resins, multifunctional resins, and inorganic exchangers. In general, strong-acid cation exchange resins are more resistant to radiation than are strong-base anion exchange resins, and polyvinylpyridine resins are more resistant than polystyrene resins. Cross-linkage, salt form, moisture content, and the surrounding medium all affect the radiation stability of a specific exchanger. Inorganic exchangers usually, but not always, exhibit high radiation resistance. Liquid ion exchangers, which have been used so extensively in nuclear processing applications, also are included.

  8. Solidification of ion exchange resin wastes in hydraulic cement

    SciTech Connect

    Neilson, R.M. Jr.; Kalb, P.; Fuhrmann, M.; Colombo, P.

    1982-01-01

    Work has been conducted to investigate the solidification of ion exchange resin wastes with portland cements. These efforts have been directed toward the development of acceptable formulations for the solidification of ion exchange resin wastes and the characterization of the resultant waste forms. This paper describes formulation development work and defines acceptable formulations in terms of ternary phase compositional diagrams. The effects of cement type, resin type, resin loading, waste/cement ratio and water/cement ratio are described. The leachability of unsolidified and solidified resin waste forms and its relationship to full-scale waste form behavior is discussed. Gamma irradiation was found to improve waste form integrity, apparently as a result of increased resin crosslinking. Modifications to improve waste form integrity are described. 3 tables.

  9. Ion exchange capacity of Nafion and Nafion composites

    SciTech Connect

    Chen, T.Y.; Leddy, J.

    2000-03-21

    The ion exchange capacity of recast Nafion films and composites of Nafion and polystyrene microbeads is determined by titration. Composite formation enhances exchange capacity; exchange capacity increases with the surface area microbeads in the composite. For recast films, an equivalent weight of 996 {+-} 24 is found, whereas the lowest equivalent weight (highest exchange capacity) found for composite is 878 {+-} 8. This suggests that {approx_gt} 13% of the exchange sites within recast films are inaccessible for ion exchange; for 1,100 equivalent weight material, {approx_gt} 25% of the sulfonates are inaccessible. Equivalent weight results are consistent with an ordered interfacial domain between Nafion and the microbeads. A fractal model based on microbead radii, microbead fraction, and interfacial domain thickness provides a predictive model for designing composites with increased exchange capacity and cation transport.

  10. Separation of americium from curium by oxidation and ion exchange.

    PubMed

    Burns, Jonathan D; Shehee, Thomas C; Clearfield, Abraham; Hobbs, David T

    2012-08-21

    Nuclear energy has the potential to be a clean alternative to fossil fuels, but in order for it to play a major role in the US, many questions about the back end of the fuel cycle must be addressed. One of these questions is the difficult separation of americium from curium. Here, we report the oxidation of Am in two systems, perchloric acid and nitric acid and the affect of changing the acid has on the oxidation. K(d) values were observed and a direct separation factor was calculated and was seen to be as high as 20 for four metal(IV) pillared phosphate phosphonate inorganic organic hybrid ion exchange materials. These ion exchangers are characterized by very low selectivity for cations with low charge but extremely high uptake of ions of high charge. PMID:22827724

  11. Design software for ion-exchanged glass waveguide devices

    NASA Astrophysics Data System (ADS)

    Tervonen, Ari; Honkanen, Seppo; Poyhonen, Pekka; Tahkokorpi, Markku T.

    1993-04-01

    Software tools for design of passive integrated optical components based on ion-exchanged glass waveguides have been developed. All design programs have been implemented on personal computers. A general simulation program for ion exchange processes is used for optimization of waveguide fabrication. The optical propagation in the calculated channel waveguide profiles is modelled with various methods. A user-friendly user's interface has been included in this modelling software. On the basis of the calculated propagation properties, performance of channel waveguide circuits can be modelled and thus devices for different applications may be designed. From the design parameters, the lithography mask pattern to be used is generated for a commercial CAD program for final mask design. Examples of designed and manufactured guided-wave devices are described. These include 1- to-n splitters and asymmetric Mach-Zehnder interferometers for wavelength division multiplexing.

  12. Graphene/Ionic liquid composite films and ion exchange.

    PubMed

    Mo, Yufei; Wan, Yunfang; Chau, Alicia; Huang, Fuchuan

    2014-01-01

    Wettability of graphene is adjusted by the formation of various ionic surfaces combining ionic liquid (IL) self-assembly with ion exchange. The functionalized ILs were designed and synthesized with the goal of obtaining adjustable wettability. The wettability of the graphene surface bearing various anions was measured systematically. The effect of solvent systems on ion exchange ratios on the graphene surface has also been investigated. Meanwhile, the mechanical properties of the graphene/IL composite films were investigated on a nanometer scale. The elasticity and adhesion behavior of the thin film was determined with respected to the indentation deformation by colloid probe nanoindentation method. The results indicate that anions played an important role in determining graphene/IL composite film properties. In addition, surface wetting and mechanics can be quantitatively determined according to the counter-anions on the surface. This study might suggest an alternate way for quantity detection of surface ions by surface force. PMID:24970602

  13. Graphene/Ionic Liquid Composite Films and Ion Exchange

    NASA Astrophysics Data System (ADS)

    Mo, Yufei; Wan, Yunfang; Chau, Alicia; Huang, Fuchuan

    2014-06-01

    Wettability of graphene is adjusted by the formation of various ionic surfaces combining ionic liquid (IL) self-assembly with ion exchange. The functionalized ILs were designed and synthesized with the goal of obtaining adjustable wettability. The wettability of the graphene surface bearing various anions was measured systematically. The effect of solvent systems on ion exchange ratios on the graphene surface has also been investigated. Meanwhile, the mechanical properties of the graphene/IL composite films were investigated on a nanometer scale. The elasticity and adhesion behavior of the thin film was determined with respected to the indentation deformation by colloid probe nanoindentation method. The results indicate that anions played an important role in determining graphene/IL composite film properties. In addition, surface wetting and mechanics can be quantitatively determined according to the counter-anions on the surface. This study might suggest an alternate way for quantity detection of surface ions by surface force.

  14. Hybrid metallic ion-exchanged waveguides for SPR biological sensing

    NASA Astrophysics Data System (ADS)

    de Bonnault, S.; Bucci, D.; Zermatten, P.. J.; Charette, P. G.; Broquin, J. E.

    2015-02-01

    Glass substrates have been used for decades to create biosensors due to their biocompatibility, low thermal conductivity, and limited fluorescence. Among the different types of sensors, those based on surface plasmon resonance (SPR) allow exploitation of the sensing lightwave at the vicinity of the sensor surface where small entities such as DNA or proteins are located. In this paper, ion-exchanged waveguides and SPR are combined to create a multianalyte optical sensor integrated onto glass. First the principle of operation is introduced, then the theoretical analysis and design of the sensing element. Simulations have been carried out using the Aperiodic Fourier Modal Method (AFMM) and a custom software that handles ion-exchange index-profiles. Fabrication and characterization processes are also presented. Finally the first experimental spectra are displayed and discussed. The sensor presents a bulk sensibility of 5000nm/RIU.

  15. Radiation degradation in EPICOR-2 ion exchange resins

    SciTech Connect

    McConnell, J.W. Jr.; Johnson, D.A.; Sanders, R.D. Sr.

    1990-09-01

    The Low-Level Waste Data base Development -- EPICOR-II Resin/Liner Investigation Program funded by the US Nuclear Regulatory Commission is investigating chemical and physical conditions for organic ion exchange resins contained in several EPICOR-II prefilters. Those prefilters were used during cleanup of contaminated water from the Three Mile Island Nuclear Power Station after the March 1979 accident. The work was performed by EG G Idaho, Inc. at the Idaho Engineering Laboratory. This is the final report of this task and summarizes results and analyses of three samplings of ion exchange resins from prefilters PF-8 and -20. Results are compared with baseline data from tests performed on unirradiated resins supplied by Epicor, Inc. to determine the extent of degradation due to the high internal radiation dose received by the organic resins. Results also are compared with those of other researchers. 18 refs., 23 figs., 7 tabs.

  16. Quantitative ion-exchange separation of plutonium from impurities

    SciTech Connect

    Pietri, C.E.; Freeman, B.P.; Weiss, J.R.

    1981-09-01

    The methods used at the New Brunswick Laboratory for the quantitative ion exchange separation of plutonium from impurities prior to plutonium assay are described. Other ion exchange separation procedures for impurity determination and for isotopic abundance measurements are given. The primary technique used consists of sorption of plutonium(IV) in 8N HNO/sub 3/ on Dowex-1 anion exchange resin and elution of the purified plutonium with 0.3N HCl-0.01N HF. Other methods consist of the anion exchange separation of plutonium(IV) in 12N HCl and the cation exchange separation of plutonium(III) in 0.2 N HNO/sub 3/. The application of these procedures to the subsequent assay of plutonium, isotopic analysis, and impurity determination is described.

  17. Electrical and magnetic properties of ion-exchangeable layered ruthenates

    SciTech Connect

    Sugimoto, Wataru . E-mail: wsugi@shinshu-u.ac.jp; Omoto, Masashi; Yokoshima, Katsunori; Murakami, Yasushi; Takasu, Yoshio

    2004-12-01

    An ion-exchangeable ruthenate with a layered structure, K{sub 0.2}RuO{sub 2.1}, was prepared by solid-state reactions. The interlayer cation was exchanged with H{sup +}, C{sub 2}H{sub 5}NH{sub 3}{sup +}, and ((C{sub 4}H{sub 9}){sub 4}N{sup +}) through proton-exchange, ion-exchange, and guest-exchange reactions. The electrical and magnetic properties of the products were characterized by DC resistivity and susceptibility measurements. Layered K{sub 0.2}RuO{sub 2.1} exhibited metallic conduction between 300 and 13K. The products exhibited similar magnetic behavior despite the differences in the type of interlayer cation, suggesting that the ruthenate sheet in the protonated form and the intercalation compounds possesses metallic nature.

  18. Development and evaluation of ion exchange hollow fibers. [vinyl copolymers

    NASA Technical Reports Server (NTRS)

    Smith, J. K.

    1975-01-01

    An ion exchange hollow fiber impregnated with a vinylpyridine base was developed. The basic exchange resin used to impart the necessary permselectivity to the hollow fiber is a copolymer of vinylpyridine and dibromoethane prepared according to Rembaum. A slight pressure was used to impregnate the exchange monomer mixture into the void structure of the fiber wall, and with maintenance of subambient temperatures, the rate of cross-linking is slow enough to allow the growing polymer to permeate the wall structure before significant increase in polymer molecular weight. These ion exchange fibers are produced from polyacrylonitrile hollow fibers with an appropriate wall structure that enables the impregnating vinylpyridine monomer mixture to form a truly semipermeable anion barrier after curing.

  19. Diffusion kinetics of the ion exchange of benzocaine on sulfocationites

    NASA Astrophysics Data System (ADS)

    Al'tshuler, O. G.; Shkurenko, G. Yu.; Gorlov, A. A.; Al'tshuler, G. N.

    2016-06-01

    The theory of the ion exchange kinetics on strong acid cationites with the participation of weak electrolytes is discussed. The kinetics of desorption of benzocaine in the protonated and molecular forms from strong acid cationites, sulfonated polycalixarene, and KU-23 30/100 sulfocationite, is studied experimentally. It is shown that the flow of protonated benzocaine from cationite upon desorption proceeding by the ion-exchange mechanism is more intense than upon desorption of nonionized benzocaine molecules. It is established that the diffusion coefficient of benzocaine cations is (1.21 ± 0.23) × 10-12 m2/s in KU-23 30/100 sulfocation and (0.65 ± 0.06) × 10-13 m2/s in sulfonated polycalixarene, while the diffusion coefficient of benzocaine molecules is (0.65 ± 0.15) × 10-14 m2/s in sulfonated polycalixarene.

  20. Graphene/Ionic Liquid Composite Films and Ion Exchange

    PubMed Central

    Mo, Yufei; Wan, Yunfang; Chau, Alicia; Huang, Fuchuan

    2014-01-01

    Wettability of graphene is adjusted by the formation of various ionic surfaces combining ionic liquid (IL) self-assembly with ion exchange. The functionalized ILs were designed and synthesized with the goal of obtaining adjustable wettability. The wettability of the graphene surface bearing various anions was measured systematically. The effect of solvent systems on ion exchange ratios on the graphene surface has also been investigated. Meanwhile, the mechanical properties of the graphene/IL composite films were investigated on a nanometer scale. The elasticity and adhesion behavior of the thin film was determined with respected to the indentation deformation by colloid probe nanoindentation method. The results indicate that anions played an important role in determining graphene/IL composite film properties. In addition, surface wetting and mechanics can be quantitatively determined according to the counter-anions on the surface. This study might suggest an alternate way for quantity detection of surface ions by surface force. PMID:24970602

  1. Insoluble polyelectrolyte and ion-exchange hollow fiber impregnated therewith

    NASA Technical Reports Server (NTRS)

    Rembaum, A. (Inventor)

    1977-01-01

    The number of quaternary sites and ion exchange capacity of a polyquaternary, cross linked, insoluble copolymer of a vinyl pyridine and a dihalo organic compound is increased by about 15-35% by reaction of the polymer with an amine followed by quaternization, if required. The polymer forms spontaneously in the presence of a substrate such as within the pores of a hollow fiber. The improved resin impregnated fiber may be utilized to remove ions from waste or process steams.

  2. Cyanide recycling using strong-base ion-exchange resins

    NASA Astrophysics Data System (ADS)

    Leão, Versiane Albis; Ciminelli, Virgínia S. T.; Costa, Renato De Souza

    1998-10-01

    Among the techniques available to recover cyanide and metal cyanocomplexes from diluted streams, ion-exchange resins seem attractive because of the possibility of treating either pulps or clear solutions with this process. This article discusses the results of adsorption and elution of metal cyanocomplexes obtained with industrial effluents and selected data from the literature. The behavior of iron and copper cyanocomplexes during elution is emphasized.

  3. Separation of organic ion exchange resins from sludge -- engineering study

    SciTech Connect

    Duncan, J.B.

    1998-08-25

    This engineering study evaluates the use of physical separation technologies to separate organic ion exchange resin from KE Basin sludge prior to nitric acid dissolution. This separation is necessitate to prevent nitration of the organics in the acid dissolver. The technologies under consideration are: screening, sedimentation, elutriation. The recommended approach is to first screen the Sludge and resin 300 microns then subject the 300 microns plus material to elutriation.

  4. Ion exchange and surface charge on montmorillonite clay

    SciTech Connect

    Sperry, J.M.; Peirce, J.J.

    1999-05-01

    An ion-exchange model originally developed for pure oxides prepared in the laboratory is extended to study of ion exchange and surface charge on a naturally occurring montmorillonite clay. The range of surface charges measured for montmorillonite with various electrolyte solutions and clay pretreatments is within the range of those measured for a wide variety of oxides prepared in the laboratory, including MnO{sub 2}-IC1, MnO{sub 2}-IC12, MnO{sub 2}-IC22, titanium dioxide, ferric oxide, and aluminum oxide. In addition, fitted parameter values for lateral interaction constants and equilibrium constants for the acid sites that characterize ion exchange on montmorillonite are on the same order of magnitude as those obtained for pure oxides. Surface charge of montmorillonite in sodium nitrate solution is measured to be approximately 15 to 25% greater than that measured between a pH of 4 and 9 in calcium chloride solution. This difference is attributed to the greater charge on the calcium (2{sup +}) ion; thus, its stronger electrostatic attraction to the acid hydroxyl site. An order of magnitude change in solids concentration (C{sub p}) can lead to a difference in measured net surface charge density of the same oxide sample of several orders of magnitude. This difference increases at higher pH, indicating the importance of reporting the corresponding C{sub p} at which experiments are conducted.

  5. Properties of a Novel Ion-Exchange Film

    NASA Technical Reports Server (NTRS)

    Street, Kenneth W.; Hill, Carol M.; Philipp, Warren H.; Tanner, Stephen P.; Gorse, Joseph; Lusk, Amy; Taylor, Jason; Dickens, Jason

    2002-01-01

    A new ion-exchange material (based on polyacrylic acid) and some of its analytical applications have been reported. This paper contains data on the ion-exchange properties of the film form of the material and its potential application to the decontamination of waste water and drinking water. The film has a high exchange capacity of 5 to 6 meq/g and a pK(sub a) of 5.7. The calcium form is the most effective for removing metal ions from solution, and the optimum pH range is between 5 and 7. The exchange rates are slower for the film than for bead and powder forms of the ion-exchange material; otherwise, the properties are similar. The film is effective when hard water solutions are employed and also when metal ions are in the complex matrix of waste water from electroplating. The film can be used in flow systems having a flow channel large enough to allow passage of turbid solutions.

  6. Properties of a Novel Ion-Exchange Film

    NASA Technical Reports Server (NTRS)

    Street, Kenneth W.; Hill, Carol M.; Philipp, Warren H.; Tanner, Stephen P.; Gorse, Joseph; Lusk, Amy; Taylor, Jason; Dickens, Jason

    2004-01-01

    A new ion-exchange material (based on polyacrylic acid) and some of its analytical applications have been reported. This paper contains data on the ion-exchange properties of the film form of the material and its potential application to the decontamination of waste water and drinking water. The film has a high exchange capacity of 5 to 6 meq/g and a pK(sub a) of 5.7. The calcium form is the most effective for removing metal ions from solution, and the optimum pH range is between 5 and 7. The exchange rates are slower for the film than for bead and powder forms of the ion-exchange material; otherwise, the properties are similar. The film is effective when hard water solutions are employed and also when metal ions are in the complex matrix of waste water from electroplating. The film can be used in flow systems having a flow channel large enough to allow passage of turbid solutions.

  7. Evaluation of Elution Parameters for Cesium Ion Exchange Resins

    SciTech Connect

    Burgeson, Ingrid E.; Deschane, Jaquetta R.; Cook, Bryan J.; Blanchard, David L.; Weier, Dennis R.

    2006-08-28

    Cesium ion exchange is one of the planned processes for treating and disposing of waste at the U.S. Department of Energy Hanford Site. Radioactive supernatant liquids from the waste tanks will undergo ultrafiltration, followed by cesium ion exchange using a regenerable organic ion exchange resin. Two resins, SuperLig?644 and a Resorcinol-formaldehyde resin are being evaluated for cesium removal and cesium elution characteristics. The main purpose of this study is to optimize the cesium elution to provide a resin which after undergoing elution would meet the U.S. Department of Energy/Office of River Protection Project-Waste Treatment Plant processing and resin disposal criteria. Columns of each resin type were loaded to greater or equal to 90% breakthrough with a Hanford waste stimulant and eluted with nitric acid. The temperature, flow rate and nitric acid concentration were varied to determine the optimal elution conditions. Temperature and eluant flow rate were the most important elution parameters. As would be predicted based upon kinetic consideration alone, decreasing the eluant flow rate and increasing the temperature provided the optimal elution conditions. Varying the nitric acid concentration did not have a significant effect on the elution; however, elutions performed using both high acid concentration (1M) and elevated temperature (45 C) resulted in resin degradation, causing gas generation and resin bed disruption.

  8. Thermal analysis for ion-exchange column system

    SciTech Connect

    Lee, S. Y.; King, W. D.

    2012-07-01

    Models have been developed to simulate the thermal characteristics of Crystalline Silico-titanate (CST) ion exchange media fully loaded with radioactive cesium in a column configuration and distributed within a waste storage tank. This work was conducted to support the Small Column Ion Exchange (SCIX) program which is focused on processing dissolved, high-sodium salt waste for the removal of specific radionuclides (including Cs-137, Sr-90, and actinides) within a High Level Waste (HLW) storage tank at the Savannah River Site. A two-dimensional computational modeling approach for the in-column ion-exchange domain was taken to include conservative, bounding estimates for key parameters such that the results would provide the maximum centerline temperatures achievable under the design configurations using a feed composition known to promote high cesium loading on CST. A primary objective of these calculations was to estimate temperature distributions across packed CST beds immersed in waste supernate or filled with dry air under various accident scenarios. Accident scenarios evaluated included loss of salt solution flow through the bed, inadvertent column drainage, and loss of active cooling in the column. The modeling results demonstrate that the baseline design using one central and four outer cooling tubes provides a highly efficient cooling mechanism for reducing the maximum column temperature. (authors)

  9. Removal of ammonium from municipal landfill leachate using natural zeolites.

    PubMed

    Ye, Zhihong; Wang, Jiawen; Sun, Lingyu; Zhang, Daobin; Zhang, Hui

    2015-01-01

    Ammonium ion-exchange performance of the natural zeolite was investigated in both batch and column studies. The effects of zeolite dosage, contact time, stirring speed and pH on ammonium removal were investigated in batch experiments. The result showed that ammonium removal efficiency increased with an increase in zeolite dosage from 25 to 150 g/L, and an increase in stirring speed from 200 to 250 r/min. But further increase in zeolite dosage and stirring speed would result in an unpronounced increase of ammonium removal. The optimal pH for the removal of ammonium was found as 7.1. In the column studies, the effect of flow rate was investigated, and the total ammonium removal percentage during 180 min operation time decreased with the flow rate though the ion-exchange capacity varied to a very small extent with the flow rate ranging from 4 to 9 mL/min. The spent zeolite was regenerated by sodium chloride solution and the ammonia removal capacity of zeolite changed little or even increased after three regeneration cycles. PMID:26510611

  10. Ion Exchange Temperature Testing with SRF Resin - 12088

    SciTech Connect

    Russell, R.L.; Rinehart, D.E.; Brown, G.N.; Peterson, R.A.

    2012-07-01

    Ion exchange using the Spherical Resorcinol-Formaldehyde (SRF) resin has been selected by the U.S. Department of Energy's Office of River Protection for use in the Pretreatment Facility of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and for potential application in an at-tank deployment for removing Cs-137. Recent proposed changes to the WTP ion exchange process baseline indicate that higher temperatures (50 deg. C) to alleviate post-filtration precipitation issues prior to reaching the ion exchange columns may be required. Therefore, it is important to understand the behavior of SRF resin performance under the conditions expected with the new equipment and process changes. This research examined the impact of elevated temperature on resin loading and resin degradation during extended solution flow at elevated temperature (45 deg., 50 deg., 55 deg., 60 deg., 65 deg., 75 deg. C). Testing for extended times at elevated temperatures showed that the resin does degrade and loading capacity is reduced at and above 45 deg. C. Above 60 deg. C the resin appears to not load at all. It was observed that the resin disintegrated at 75 deg. C until not much was left and partially disintegrated at 65 deg. C, which caused the column to plug in both tests after ∼336 hours. The results indicate that WTP will lose resin loading capacity if the ion exchange process is performed above 25 deg. C, and the resin will disintegrate above 65 deg. C. Therefore, WTP will have a restricted operating range of temperatures to perform the ion exchange process with this resin. PNNL and WTP are currently evaluating the operating limits of the resin in further detail. Aging in 0.5 M HNO{sub 3} also caused the resin to lose capacity above 25 deg. C and to completely dissolve at 55 deg. C. Again, WTP will have a restricted operating range of temperatures when eluting the resin with nitric acid in order to maintain resin loading capacity and avoid disintegration of the resin

  11. Adsorption of hexane isomers on ion-exchanged mordenite

    SciTech Connect

    Huddersman, K.

    1996-10-01

    To remove lead from petrol and thereby promote a cleaner environment, other means must be found to keep the octane number or anti-knock qualities of the petrol high. It is found that this can be accomplished by increasing the proportion of highly branched chain hydrocarbon isomers in the fuel. This in turn promotes processes for the separation of the hydrocarbon isomers and in the case of hexane, it is an easy matter to separate out n-hexane from the more substituted isomers but it is difficult to separate out the mono- from the di-branched isomers. This work addresses itself to such challenging separations using modified zeolites as the separating agent, and by studying the heats of sorption of these isomers on zeolites using gas chromatographic techniques to find a trend in the potential abilities of these modified zeolites to effect a good separation. In this work mordenite zeolite was modified by a range of double cation exchanges and the resulting modified zeolites were investigated for their ability to sorb the hexane isomers 3-methylpentane and 2,3-dimethylbutane. These two isomers are closely related in size as they both have the same kinetic diameter of 0.56 nm. In this work only heats of sorption have been investigated and measurement of the diffusion coefficients, which also affect the ability of the modified zeolites to act as good separating agents, is currently under investigation.

  12. Smart epoxy coating containing Ce-MCM-22 zeolites for corrosion protection of Mg-Li alloy

    NASA Astrophysics Data System (ADS)

    Wang, Yanli; Zhu, Yanhao; Li, Chao; Song, Dalei; Zhang, Tao; Zheng, Xinran; Yan, Yongde; Zhang, Meng; Wang, Jun; Shchukin, Dmitry G.

    2016-04-01

    The epoxy coatings containing MCM-22 and Ce-MCM-22 zeolites were prepared by coating method on the Mg-Li alloy surface. The influence of MCM-22 and Ce-MCM-22 zeolites on corrosion protection of the epoxy coating was studied. The epoxy coating containing Ce-MCM-22 zeolites showed high corrosion resistance. Artificial defects in the epoxy coating containing Ce-MCM-22 zeolites on the Mg-Li surface were produced by the needle punching. The results show that the epoxy coating containing Ce-MCM-22 zeolites exhibits self-healing corrosion inhibition capabilities. It is ascribed to the fact that the Ce3+ ions are released from MCM-22 zeolites based on ion exchange of zeolite in the corrosion process of the Mg-Li alloy substrate. MCM-22 zeolites as reservoirs provided a prolonged release of cerium ions.

  13. Preliminary market analysis for large zeolite crystals. B.S. Thesis

    NASA Technical Reports Server (NTRS)

    Doblmaier, Thomas; Grafing, Paul; Knight, Kim

    1987-01-01

    Zeolite crystals are used in the manufacture of countless products today, which utilize their properties of absorption, ion exchange, and catalysis. It was determined that zeolites grown in space could be much larger in size than any of those currently available on Earth. The objective was to identify and examine some of the potential uses for these larger crystals. Of the several industries examined, the medical and nuclear industries offer the greatest potential.

  14. Vitrification of cesium-contaminated organic ion exchange resin

    SciTech Connect

    Sargent, T.N. Jr.

    1994-08-01

    Vitrification has been declared by the Environmental Protection Agency (USEPA) as the Best Demonstrated Available Technology (BDAT) for the permanent disposal of high-level radioactive waste. Savannah River Site currently uses a sodium tetraphenylborate (NaTPB) precipitation process to remove Cs-137 from a wastewater solution created from the processing of nuclear fuel. This process has several disadvantages such as the formation of a benzene waste stream. It has been proposed to replace the precipitation process with an ion exchange process using a new resorcinol-formaldehyde resin developed by Savannah River Technical Center (SRTC). Preliminary tests, however, showed that problems such as crust formation and a reduced final glass wasteform exist when the resin is placed in the melter environment. The newly developed stirred melter could be capable of overcoming these problems. This research explored the operational feasibility of using the stirred tank melter to vitrify an organic ion exchange resin. Preliminary tests included crucible studies to determine the reducing potential of the resin and the extent of oxygen consuming reactions and oxygen transfer tests to approximate the extent of oxygen transfer into the molten glass using an impeller and a combination of the impeller and an external oxygen transfer system. These preliminary studies were used as a basis for the final test which was using the stirred tank melter to vitrify nonradioactive cesium loaded organic ion exchange resin. Results from this test included a cesium mass balance, a characterization of the semi-volatile organic compounds present in the off gas as products of incomplete combustion (PIC), a qualitative analysis of other volatile metals, and observations relating to the effect the resin had on the final redox state of the glass.

  15. Ion Exchange Testing with SRF Resin FY2012

    SciTech Connect

    Russell, Renee L.; Rinehart, Donald E.; Peterson, Reid A.

    2013-06-11

    Ion exchange using spherical resorcinol-formaldehyde (SRF) resin has been selected by the U.S. Department of Energy’s Office of River Protection (DOE-ORP) for use in the Pretreatment Facility (PTF) of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and for potential application in at-tank deployment. Numerous studies have shown SRF resin to be effective for removing 137Cs from a wide variety of actual and simulated tank waste supernatants (Adamson et al. 2006; Blanchard et al. 2008; Burgeson et al. 2004; Duignan and Nash 2009; Fiskum et al. 2006a; Fiskum et al. 2006b; Fiskum et al. 2006c; Fiskum et al. 2007; Hassan and Adu-Wusu 2003; King et al. 2004; Nash et al. 2006). Prior work at the Pacific Northwest National Laboratory (PNNL) has focused primarily on the loading behavior for 4 to 6 M Na solutions at 25 to 45°C. Recent proposed changes to the WTP ion exchange process baseline indicate that loading may include a broader range of sodium molarities (0.1 to 8 M) and higher temperatures (50°C) to alleviate post-filtration precipitation issues. This report discusses ion exchange loading kinetics testing activities performed in accordance with Test Plan TP-WTPSP-002, Rev. 3.0 , which was prepared and approved in response to the Test Specification 24590 PTF-TSP-RT-09-002, Rev. 0 (Lehrman 2010) and Test Exception 24590 PTF TEF RT-11-00003, Rev. 0 (Meehan 2011). This testing focused on column tests evaluating the impact of elevated temperature on resin degradation over an extended period of time and batch contacts evaluating the impact on Cs loading over a broad range of sodium concentrations (0.1 to 5 M). These changes may be required to alleviate post-filtration precipitation issues and broaden the data range of SRF resin loading under the conditions expected with the new equipment and process changes.

  16. HEAT TRANSFER ANALYSIS FOR ION-EXCHANGE COLUMN SYSTEM

    SciTech Connect

    Lee, S.; King, W.

    2011-05-23

    Models have been developed to simulate the thermal characteristics of Crystalline Silicotitanate (CST) ion exchange media fully loaded with radioactive cesium in a column configuration and distributed within a waste storage tank. This work was conducted to support the Small Column Ion Exchange (SCIX) program which is focused on processing dissolved, high-sodium salt waste for the removal of specific radionuclides (including Cs-137, Sr-90, and actinides) within a High Level Waste (HLW) storage tank at the Savannah River Site. The SCIX design includes CST columns inserted and supported in the tank top risers for cesium removal. Temperature distributions and maximum temperatures across the column were calculated with a focus on process upset conditions. A two-dimensional computational modeling approach for the in-column ion-exchange domain was taken to include conservative, bounding estimates for key parameters such that the results would provide the maximum centerline temperatures achievable under the design configurations using a feed composition known to promote high cesium loading on CST. The current full-scale design for the CST column includes one central cooling pipe and four outer cooling tubes. Most calculations assumed that the fluid within the column was stagnant (i.e. no buoyancy-induced flow) for a conservative estimate. A primary objective of these calculations was to estimate temperature distributions across packed CST beds immersed in waste supernate or filled with dry air under various accident scenarios. Accident scenarios evaluated included loss of salt solution flow through the bed, inadvertent column drainage, and loss of active cooling in the column. The modeling results demonstrate that the baseline design using one central and four outer cooling tubes provides a highly efficient cooling mechanism for reducing the maximum column temperature.

  17. MMI splitter by ion exchange on K9

    NASA Astrophysics Data System (ADS)

    Yuan, Jing; Luo, Fengguang; Cao, Mingcui; Chen, Wenmin

    2005-11-01

    A wavelength 0.85μm-based optical power splitter designed with Multi Mode Interference (MMI) by ion exchange on K9 glass was introduced. The waveguide material is K9 glass made in China and formed by K +-Na + pure melt salt ion exchange method. The grade index profile of planar ion-exchanged waveguide on K9 was studied and accorded with erfc function through compare of experimental and theoretic index profiles. The fabrication process of planar ionexchanged waveguide device was described. The basic theory of 1×8 MMI optical power splitter was illuminated by using guided-model propagation analysis. The working wavelength is 0.85μm, and the structure parameters of 1×8 MMI splitter were designed. The core pitch on this chip is chosen as 250μm to take the fiber connections into account, and the typical cladding diameter of optical fibers as 125μm. The critical parameters in the fabrication of the MMI power splitter are the multimode section width and length. In general the key performance specifications of the optical power splitter are insertion loss and uniformity. The output performances and the refractive index change's influence of the device were simulated by Bear Propagation Method (BPM). The uniformity was 0.93×10 -2dB, the average insertion loss was 9.12dB, and the maximal insertion loss was 9.14dB. The result shows that the advantages of the method include low loss, ease of fabrication, and low material cost.

  18. Experimental Determination of Thermodynamic Properties of Ion-Exchange in Heulandite: Binary Ion-Exchange Experiments at 55 and 85 oC Involving Ca2+, Sr2+, Na+, and K+

    SciTech Connect

    Fridriksson, T; Neuhoff, P S; Viani, B E; Bird, D K

    2004-04-26

    Heulandite is a common rock-forming zeolite that exhibits wide solid solution of extra framework cations, presumably due to ready ion exchange with aqueous solutions. In order to provide a quantitative basis for interpreting and predicting the distribution of aqueous species between heulandite and aqueous solutions, ion exchange equilibrium between heulandite and aqueous solutions with respect to the binary cation pairs Ca{sup 2+} - K{sup +}, Ca{sup 2+} - Na{sup +}, K{sup +} - Na{sup +}, K{sup +} - Sr{sup 2+}, Na{sup +} - Sr{sup 2+}, and Ca{sup 2+} - Sr{sup 2+} was investigated. Homoionic Ca-, K-, and Na-heulandites prepared from natural heulandite were equilibrated with 0.1 N Cl{sup -} solutions containing various proportions of the cations in a given binary pair at 55 and 85 C to define isotherms describing partitioning of the cations over a wide range of heulandite and solution composition with respect to the cations in each pair. In general, the experiments equilibrated rapidly, within 11-15 weeks at 55 C and 3-4 weeks at 85 C. The exception was the Ca{sup 2+} - Sr{sup 2+} binary exchange, which did not equilibrate even after 3 months at 55 C and 4 weeks at 85 C. Slow exchange of Sr{sup 2+} for Ca{sup 2+} also prohibited preparation of homoionic Sr-heulandite from the natural (Ca-rich) heulandite within 10 weeks in 2N SrCl{sub 2} solution at 90 C, although near homoionic Sr-heulandite was produced by exchange of K- and Na-heulandite. Experimentally determined isotherms were used to derive equilibrium constants for the ion exchange reactions and asymmetric Margules models describing the extent of non-ideality in extra framework solid solutions in heulandite. Regressed equilibrium constants for Ca{sup 2+}-Na{sup +}, Ca{sup 2+}-K{sup +}, and K{sup +}-Na{sup +} binary cation pairs at 55 C are internally consistent among each other (complying with the triangle rule), indicating good accuracy of these data. The maximum departure from internal Heulandite ion exchange

  19. Removal of Radioactive Nuclides by Multi-Functional Microcapsules Enclosing Inorganic Ion-Exchangers and Organic Extractants

    SciTech Connect

    Mimura, H.; Akiba, K.; Onodera, Y.

    2002-02-26

    The microcapsules enclosing two kinds of functional materials, inorganic ion-exchangers and organic extractants, were prepared by taking advantage of the high immobilization ability of alginate gel polymer. The fine powders of inorganic ion-exchanger and oil drops of extractant were kneaded with sodium alginate (NaALG) solution and the kneaded sol readily gelled in a salt solution of CaCl2, BaCl2 or HCl to form spherical gel particles. The uptake properties of various nuclides, 137Cs, 85Sr, 60Co, 88Y, 152Eu and 241Am, for thirty-four specimens of microcapsules in the presence of 10-1-10-4 M HNO3 were evaluated by the batch method. The distribution coefficient (Kd) of Cs+ above 103 cm3/g was obtained for the microcapsules enclosing CuFC or AMP. The Kd of Sr2+ around 102 cm3/g was obtained for the microcapsules containing clinoptilolite, antimonic acid, zeolite A, zeolite X or titanic acid. The microcapsules enclosing DEHPA exhibited relatively large Kd values of trivalent metal ions above 103 cm3/g; for example, the Kd values of Cs+, Sr2+, Co2+, Y3+, Eu3+ and Am3+ for a favorable microcapsule (CuFC/clinoptilolite/DEHPA/CaALG) were 1.1x104, 7.5x10, 1.1x10, 1.0x104, 1.4x104, 3.4x103 cm3/g, respectively. The uptake rates of Cs+, Y3+, Eu3+ and Am3+ for this microcapsule were rather fast; the uptake percentage above 90% was obtained after 19 h-shaking and the uptake equilibrium was attained within 1 d. The AMP/CaALG exhibited high uptake ability for Cs+ even after irradiation of 188 kGy, and DEHPA/CaALG microcapsule had similar Kd values of Cs+, Sr2+, Co2+, Y3+, Eu3+ and Am3+ ions before and after irradiation. The microcapsules with various shapes such as spherical, columnar, fibrous and filmy forms were easily prepared by changing the way of dipping kneaded sol into gelling salt solution. The microcapsules enclosing inorganic ion-exchangers and extractants have a potential possibility for the simultaneous removal of various radioactive nuclides from waste solutions.

  20. Clinoptilolite: A natural zeolite. (Latest citations from the NTIS database). Published Search

    SciTech Connect

    Not Available

    1993-03-01

    The bibliography contains citations concerning clinoptilolite, a natural, inorganic zeolite. Citations discuss the applications of clinoptilolite as a selective ion exchange medium used mainly for the removal of ammonia from waste water and effluents, and the treatment and disposal of radioactive waste. Mineralogy of clinoptilolite deposits is also presented. (Contains a minimum of 91 citations and includes a subject term index and title list.)

  1. Zeolite - A Natural Filter Material for Lead Polluted Water

    NASA Astrophysics Data System (ADS)

    Neamţu, Corina Ioana; Pică, Elena Maria; Rusu, Tiberiu

    2014-11-01

    Reducing the concentration of lead ions in a wastewater using zeolite has proven to be a successful water treatement method, all over the world. Putting the two media (solid and liquid) in contact in static conditions had good results regarding the concentration of the filtered solution, the pH and the electric conductivity, depending on the values of certain parameters such as the amount of the zeolite, volume of the solution or interaction time. The present study highlights the zeolite ability to retain the lead ions from a solution, in dynamic interaction conditions between the two environments, in a short interaction time. The results confirmed the effectiveness of ion exchange water treatment method in the conditions set, emphasizing once again the properties of the filter material - the zeolite

  2. Economical way to synthesize SSZ-13 with abundant ion-exchanged Cu+ for an extraordinary performance in selective catalytic reduction (SCR) of NOx by ammonia.

    PubMed

    Chen, Biaohua; Xu, Ruinian; Zhang, Runduo; Liu, Ning

    2014-12-01

    In this study, an economical way for SSZ-13 preparation with the essentially cheap choline chloride as template has been attempted. The as-synthesized SSZ-13 zeolite after ion exchange by copper nitrate solution exhibited a superior SCR performance (over 95% NOx conversion across a broad range from 150 to 400 °C) to the traditional zeolite-based catalysts of Cu-Beta and Cu-ZSM-5. Furthermore, the opportune size of pore opening (∼3.8 Å) made Cu-SSZ-13 exhibiting the best selectivity to N2 as well as satisfactory tolerance toward SO2 and C3H6 poisonings. The characterization (XRD, XPS, XRF, and H2-TPR) of samples confirmed that Cu-SSZ-13 possessed the most abundant Cu cations among three investigated Cu-zeolites; furthermore, either on the surface or in the bulk the ratio of Cu(+)/Cu(2+) ions for Cu-SSZ-13 is also the highest. New finding was announced that CHA-type topology is in favor of the formation of copper cations, especially generating much more Cu(+) ions than the others, rather than CuO. The activity test of Cu(CuCl)-ZSM-5 (prepared by a solid-state ion-exchange method) clearly indicated that Cu(+) ions could make a major contribution to the low-temperature deNOx activity. The activity of protonic zeolites (H-SSZ-13, H-Beta, H-ZSM-5) revealed the topology effect on SCR performances. PMID:25365767

  3. Evaluation of Ion Exchange Materials in K Basin Floor Sludge and Potential Solvents for PCB Extraction from Ion Exchange Materials

    SciTech Connect

    Schmidt, A.J.; Klinger, G.S.; Bredt, P.R.

    1999-04-10

    Approximately 73 m{sup 3} of heterogeneous solid material, ''sludge,'' (upper bound estimate, Packer 1997) have accumulated at the bottom of the K Basins in the 100 K Area of the Hanford Site. This sludge is a mixture of spent fuel element corrosion products, ion exchange materials (organic and inorganic), graphite-based gasket materials, iron and aluminum metal corrosion products, sand, and debris (Makenas et al. 1996, 1997). In addition, small amounts of polychlorinated biphenyls (PCBs) have been found. These small amounts are significant from a regulatory standpoint. Ultimately, it is planned to transfer the K Basins sludge to the Hanford double shell tanks (DSTs). Chemical pretreatment is required to address criticality issues and the destruction or removal of PCBs before the K Basin sludge can be transferred to the DSTs. Eleven technologies have been evaluated (Papp 1997) as potential pretreatment methods. Based on the evaluations and engineering studies and limited testing, Fluor Daniel Hanford recommended solvent washing of the K Basin sludge, followed by nitric acid dissolution and, potentially, peroxide addition (FDH 1997). The solvent washing (extraction) and peroxide addition would be used to facilitate PCB removal and destruction. Following solvent extraction, the PCBs could be distilled and concentrated for disposal as a low-level waste. The purpose of the work reported here was to continue investigating solvent extraction, first by better identifying the ion exchange materials in the actual sludge samples and then evaluating various solvents for removing the PCBs or possibly dissolving the resins. This report documents some of the process knowledge on ion exchange materials used and spilled in the K Basins and describes the materials identified from wet sieving KE Basin floor and canister sludge and the results of other analyses. Several photographs are included to compare materials and illustrate material behavior. A summary of previous tests on

  4. Understanding Mechanism and Designing Strategies for Sustainable Synthesis of Zeolites: A Personal Story.

    PubMed

    Wang, Yeqing; Xiao, Feng-Shou

    2016-06-01

    Zeolites with intricate micropores have been widely studied for a long time as an important class of porous materials in different areas of industrial processes such as gas adsorption and separation, ion exchange, and shape-selective catalysis. However, their industrial syntheses are not sustainable, and normally require the presence of expensive organic templates and a large amount of solvents such as water. The presence of organic templates not only increases zeolite cost but also produces harmful gases during the removal of these templates by calcination, while the use of solvents significantly increases the amount of polluted water. This Personal Account briefly summarizes recent sustainable routes for the synthesis of zeolites in our group according to our understanding of the synthetic mechanism, and mainly focuses on the organotemplate-free synthesis of zeolites in the presence of zeolite seeds, the design of environmentally friendly templates, and solvent-free synthesis of zeolites. PMID:27009872

  5. Small Column Ion Exchange Monitor System Final Report

    SciTech Connect

    CASELLA, VITO

    2004-09-30

    A Small Column Ion Exchange (SCIX) system has been designed by the Oak Ridge and Savannah River National Laboratories (ORNL and SRNL) as a potential way to reduce Cs-137 concentrations in high-level radioactive waste at the Savannah River Site. SRNL was asked to develop gamma-ray monitors at six locations within the SCIX system. Gamma-ray monitors are required to verify the proper operation of the ion exchange system, detect cesium breakthrough, and confirm presence of cesium before and after used resin is transferred to a grinder module. The only observable gamma ray in the decay of Cs-137 is from its short-lived Ba-137m daughter. Chemical processes, such as the SCIX, may disrupt the secular equilibrium between this parent-daughter pair; meaning that measurement of Ba-137m will not necessarily yield information about Cs-137 content. While this is a complicating factor that can not be ignored, it is controllable by either: allowing sufficient time for equilibrium to be reestablished (about 20 minutes), or by making multiple measurements with sufficient statistical precision to determine the extent of disequilibrium. The present work provides a means of measuring the Cs-137 and Ba-137m by taking multiple measurements in a process isolation loop that contains the process solution of interest.

  6. Data quality objectives for Ion Exchange Module (IXM) disposition

    SciTech Connect

    Choi, I.

    1995-01-31

    This Data Quality Objective (DQO) document presents the data needs and accuracy requirements for sampling ion exchange modules at the K Basins, 100 K Area, to determine if there is a hydrogen gas buildup within the modules. This document was produced by PNL, with the assistance of Neptune and Associates, and was partly funded (for facilitator) by DOE-HQ as a demonstration DQO for EM activities. PNL involved a number of PNL, WHC and support contract staff (including external technical consultants) in meetings to define the data needed, along with the necessary accuracy, to resolve issues associated with hydrogen accumulation in Ion Exchange Modules (IXMS) that were generated prior to July 1994 and only have one nuc-fil vent. IXMs generated after July 1994 have multiple nuc-fil vents and do not require sampling. PNL transmitted this DQO to WHC on January 31, 1995. This Supporting Document is to assure that the document is captured into the document retrieval system. WHC review focused on the acceptability of the technical conclusions such that the data collected will meet minimum operational, safety and environmental needs.

  7. Continuous ion exchange separation of zirconium and hafnium

    SciTech Connect

    Begovich, J.M.; Sisson, W.G.

    1981-01-01

    A pressurized continuous annular chromatograph (CAC) has been developed for truly continuous ion exchange preparative separations. This device utilizes a slowly rotating annular bed of sorbent material, fixed multiple feed points, and fixed withdrawal locations. Most of our investigations have been performed with a 28-cm-diam by 60-cm-long CAC, but a larger model has recently been designed and constructed. A detailed study has been made of the separation of copper, nickel, and cobalt components from a simulated carbonate leach liquor of the Caron process for recovering nickel and cobalt from laterite ores. Recent studies have investigated the ion exchange separation of zirconium and hafnium from a sulfate feed solution. Nuclear reactor-grade zirconium, containing < 0.01 wt % hafnium, and hafnium, containing < 1% zirconium, have been continuously prepared using cation exchange resin in the pressurized CAC. This device, because of its continuous feed and product withdrawal, its adaptability to largescale operations, and its ability to separate many components, is expected to make chromatography a more competitive process in the industrial sector.

  8. Ion exchange at the critical point of solution.

    PubMed

    Savoy, J D; Baird, J K; Lang, J R

    2016-03-11

    A mixture of isobutyric acid (IBA)+water has an upper critical point of solution at 26.7°C and an IBA concentration of 4.40M. We have determined the Langmuir isotherms for the hydroxide form of Amberlite IRN-78 resin in contact with mixtures of IBA+water at temperatures, 27.0, 29.0, 31.0 and 38.0°C, respectively. The Langmuir plot at 38.0°C forms a straight line. At the three lower temperatures, however, a peak in the Langmuir plot is observed for IBA concentrations in the vicinity of 4.40M. We regard this peak to be a critical effect not only because it is located close to 4.40M, but also because its height becomes more pronounced as the temperature of the isotherm approaches the critical temperature. For concentrations in the vicinity of the peak, the data indicate that the larger isobutyrate ion is rejected by the resin in favor of the smaller hydroxide ion. This reversal of the expected ion exchange reaction might be used to separate ions according to size. Using the Donnan theory of ion exchange equilibrium, we link the swelling pressure to the osmotic pressure. We show that the peak in the Langmuir plot is associated with a maximum in the "osmotic" energy. This maximum has its origin in the concentration derivative of the osmotic pressure, which goes to zero as the critical point is approached. PMID:26884137

  9. Epitactic ion-exchange reactions into vanadyl(IV) arsenate

    SciTech Connect

    Martinez-Lara, M.; Bruque, S.; Moreno, L.; Aranda, M.A.G. )

    1991-03-01

    The synthesis, structural characterization, thermal stability, and spectroscopic (IR, UV-vis-diffuse reflectance) properties of three vanadyl arsenates are described. Vanadyl(IV) bis(dihydrogenarsenate), (VO(H{sub 2}AsO{sub 4}){sub 2}) (1), lithium vanadyl arsenate, (Li{sub 4}VO(AsO{sub 4}){sub 2}{center dot}0.5H{sub 2}O) (2), and nickel(II) and lithium vanadyl arsenate, ((Li{sub 2.4}Ni){sub 0.8}VO(AsO{sub 4}){sub 2}{center dot}4H{sub 2}O) (3), have been prepared. (1) Tetragonal ({alpha} = 9.128 {angstrom}; c = 8.128 {angstrom}) is prepared by reduction with isobutanol or ethanol from vanadyl(V) arsenate. (2) Cubic (a = 9.024 {angstrom}) is obtained from (1) by lithium ion-exchange, and (3) tetragonal (a = 9.106 {angstrom}; c = 8.454 {angstrom}) is made from (2) by Ni{sup 2+} ion-exchange. These exchange reactions are epitactic and the overall result is a topotactic transformation.

  10. Enigmatic ion-exchange behavior of myo-inositol phosphates.

    PubMed

    Shelor, C Phillip; Liao, Hongzhu; Kadjo, Akinde Florence; Dasgupta, Purnendu K

    2015-05-01

    The separation of myo-inositol mono-, di-, tri-, tetra-, pentakis-, and hexakisphosphate (InsP1, InsP2, InsP3, InsP4, InsP5, InsP6) was carried out using hydroxide eluent ion chromatography. Acid hydrolysis of InsP6 (phytate) was used to prepare a distribution of InsPs, ranging from InsP1 to InsP5's and including unhydrolyzed InsP6. Counting all possible positional isomers (many of which have stereoisomers that will not be separable by conventional ion exchange), 40 chromatographically separable peaks are possible; up to 22 were separated and identified by mass spectrometry. InsPs show unusual ion-exchange behavior in two respects: (a) the retention order is not monotonically related with the charge on the ion and (b) at the same hydroxide eluent concentration, retention is greatly dependent on the eluent metal cation. The retention of InsP3-InsP6 was determined to be controlled by steric factors while elution was influenced by eluent cation complexation. These highly phosphorylated InsPs have a much greater affinity for alkali metals (Li(+) > Na(+) > K(+)) than quaternary ammonium ions. This difference in cation affinity was exploited to improve separation through the use of a tetramethylammonium hydroxide-sodium hydroxide gradient. PMID:25865157

  11. Low-level liquid waste decontamination by ion exchange

    SciTech Connect

    Campbell, D.O.; Lee, D.D.; Dillow, T.A.

    1991-12-01

    Improved processes are being developed to treat contaminated liquid wastes that have been and continue to be generated at Oak Ridge National Laboratory. Both inorganic and organic ion-exchange methods have given promising results. Nickel and cobalt hexacyanoferrate(2) compounds are extremely selective for cesium removal, with distribution coefficients in excess of 10{sup 6} and remarkable insensitivity to competition from sodium and potassium. They tend to lose effectiveness at pH > {approximately}11, but some formulations are useful for limited periods of time up to pH {approximately}13. Sodium titanate is selective for strontium removal at high pH. The separations are so efficient that simple batch processes can yield large decontamination factors while generating small volumes of solid waste. A resorcinol-based resin developed at the Savannah River Site gave superior cesium removal, compared with other organic ion exchangers; the distribution coefficient was limited primarily by competition from potassium and was nearly independent of sodium. The optimum pH was {approximately}12.5. It was much less effective for strontium removal, which was limited by competition from sodium. 8 refs., 6 figs., 9 tabs.

  12. Changes in the Vibrational Spectra of Zeolites Due to Sorption of Heavy Metal Cations

    NASA Astrophysics Data System (ADS)

    Król, M.; Mozgawa, W.; Barczyk, K.; Bajda, T.; Kozanecki, M.

    2013-11-01

    This work presents the results of spectroscopic (MIR and Raman) studies of zeolite structures after immobilization of heavy metal cations from aqueous solutions. The sorption of Ag+, Cu2+, Cd2+, Pb2+, Zn2+, and Cr3+ ions has been conducted on zeolites belonging to different structural groups, i.e., sodium forms of natural chabazite, mordenite, ferrierite, and clinoptilolite, as well as on synthetic zeolite Y. Systematic changes in intensities and positions of the bands corresponding to the characteristic ring vibrations have been observed in the measured spectra. The most visible changes are observed in the FT-IR spectra of the samples in the range of 850-450 cm-1, and in the Raman spectra in the range of 600-250 cm-1. Depending on the zeolite structure, the bands, which can be regarded as a kind of indicator of ion exchange, were indentifi ed. For example, in the case of IR spectra, these bands are at 766, 703, 648, 578, and 506 cm-1 for zeolite Y, at 733 and 560 cm-1 for mordenite, at 675 cm-1 for clinoptilolite, etc. The degree of changes depends on both the type of cation and its concentration in the initial solution. This is connected with the way of binding of metal ions to the zeolite aluminosilicate framework, i.e., a proportion of the ion exchange and chemisorption in the process. Cations mainly undergoing ion exchange, such as Cd2+ or Pb2+, have the greatest impact on the character of the spectra. On the other hand, Cr3+ ions practically do not modify the spectra of zeolites. Results of IR and Raman spectroscopic studies have been compared with those obtained by atomic absorption spectroscopy (AAS), from which the proportion of ion exchange to chemisorption in the process and the effective cation exchange capacity of the individual samples have been estimated.

  13. Oxidative regeneration of toluene-saturated natural zeolite by gaseous ozone: the influence of zeolite chemical surface characteristics.

    PubMed

    Alejandro, Serguei; Valdés, Héctor; Manéro, Marie-Hélène; Zaror, Claudio A

    2014-06-15

    In this study, the effect of zeolite chemical surface characteristics on the oxidative regeneration of toluene saturated-zeolite samples is investigated. A Chilean natural zeolite (53% clinoptilolite, 40% mordenite and 7% quartz) was chemically modified by acid treatment with hydrochloric acid and by ion-exchange with ammonium sulphate. Thermal pre-treatments at 623 and 823K were applied and six zeolite samples with different chemical surface characteristics were generated. Chemical modification of natural zeolite followed by thermal out-gassing allows distinguishing the role of acidic surface sites on the regeneration of exhausted zeolites. An increase in Brønsted acid sites on zeolite surface is observed as a result of ammonium-exchange treatment followed by thermal treatment at 623K, thus increasing the adsorption capacity toward toluene. High ozone consumption could be associated to a high content of Lewis acid sites, since these could decompose ozone into atomic active oxygen species. Then, surface oxidation reactions could take part among adsorbed toluene at Brønsted acid sites and surface atomic oxygen species, reducing the amount of adsorbed toluene after the regenerative oxidation with ozone. Experimental results show that the presence of adsorbed oxidation by-products has a negative impact on the recovery of zeolite adsorption capacity. PMID:24794812

  14. Cu-Na ion exchange soda-lime glass planar waveguides and their photoluminescence

    NASA Astrophysics Data System (ADS)

    Ti, Yunqiang; He, Xin; Zhang, Jian; Zheng, Jie; Wang, Pengfei; Farrell, Gerald

    2009-11-01

    Copper ion exchange technique was used to fabricate soda-lime glass planar waveguides. Prism coupling method was applied to measure the effective indices, and the refractive index profiles were reconstructed through Inverse WKB (IWKB) method. Optical absorption and photoluminescence analysis were carried out as well. The emission spectra centered at 520nm are attributed to Cu+ located in distorted octahedral sites. It was found that the ion exchange time and temperature both play an important role in the waveguides luminescence properties. The emission spectra intensities decrease with the ion exchange time increasing. The emission peak wavelength slightly blue shifts as the ion-exchange time increasing as well. The emission band intensity nearly increases consistently with the ion-exchange temperature increasing within proper ion-exchange time. Different excitation wavelengths were tested as well in order to study the site effect on photoluminescence properties.

  15. Ammonium removal from high-strength aqueous solutions by Australian zeolite.

    PubMed

    Wijesinghe, D Thushari N; Dassanayake, Kithsiri B; Sommer, Sven G; Jayasinghe, Guttila Y; J Scales, Peter; Chen, Deli

    2016-07-01

    Removal of ammonium nitrogen (NH4(+)-N) particularly from sources which are highly rich in nitrogen is important for addressing environmental pollution. Zeolites, aluminosilicate minerals, are commonly used as commercial adsorbents and ion-exchange medium in number of commercial applications due to its high adsorption capacity of ammonium (NH4(+)). However, detailed investigations on NH4(+) adsorption and ion exchange capacities of Australian natural zeolites are rare, particularly under higher NH4(+) concentrations in the medium. Therefore, this study was conducted to determine NH4(+) adsorption characteristics of Australian natural zeolites at high NH4(+) concentrations with and without other chemical compounds in an aqueous solution. Results showed that initial NH4(+) concentration, temperature, reaction time, and pH of the solution had significant effects on NH4(+) adsorption capacity of zeolite. Increased retention time and temperature generally had a positive impact on adsorption. Freundlich model fitted well with adsorption process of Australian natural zeolites; however, Langmuir model had best fitted for the adsorption process of sodium (Na(+)) treated zeolites. NaCl treatment increased the NH4(+) adsorption capacity of Australian zeolites by 25% at 1000 mg-N, NH4(+) solution. The maximum adsorption capacity of both natural Australian zeolites and Na(+) treated zeolites were estimated as 9.48 and 11.83 mg-N/g, respectively, which is lower than many zeolites from other sources. Compared to the NH4(+) only medium, presence of other competitive ions and acetic acid in the medium (resembling composition in digested swine manure slurries) reduced NH4(+) removal of natural and Na(+) treated zeolites by 44% and 57%, respectively. This suggests detailed investigations are required to determine practically achievable NH4(+) -N removal potential of zeolites for applications in complex mediums such as animal manure slurries. PMID:27050255

  16. Ion exchange resins. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search

    SciTech Connect

    Not Available

    1994-04-01

    The bibliography contains citations concerning preparation, regeneration, and applications of ion exchange resins. Applications include water and waste treatment; food processing; chemical recovery, separation, purification, and catalysis; desalination; and ore treatment and recovery. Methods are included for the processing of spent ion exchange resins and for protecting ion exchange resins from oxidation and chemical degradation. (Contains 250 citations and includes a subject term index and title list.)

  17. Fixation of radioactive ions in porous media with ion exchange gels

    DOEpatents

    Mercer, Jr., Basil W.; Godfrey, Wesley L.

    1979-01-01

    A method is provided for fixing radioactive ions in porous media by injecting into the porous media water-soluble organic monomers which are polymerizable to gel structures with ion exchange sites and polymerizing the monomers to form ion exchange gels. The ions and the particles of the porous media are thereby physically fixed in place by the gel structure and, in addition, the ions are chemically fixed by the ion exchange properties of the resulting gel.

  18. Closed cycle ion exchange method for regenerating acids, bases and salts

    DOEpatents

    Dreyfuss, Robert M.

    1976-01-01

    A method for conducting a chemical reaction in acidic, basic, or neutral solution as required and then regenerating the acid, base, or salt by means of ion exchange in a closed cycle reaction sequence which comprises contacting the spent acid, base, or salt with an ion exchanger, preferably a synthetic organic ion-exchange resin, so selected that the counter ions thereof are ions also produced as a by-product in the closed reaction cycle, and then regenerating the spent ion exchanger by contact with the by-product counter ions. The method is particularly applicable to closed cycle processes for the thermochemical production of hydrogen.

  19. Planar optical waveguides fabricated by Ag+/K+-Na+ ion exchange in soda lime glass

    NASA Astrophysics Data System (ADS)

    Marzuki, Ahmad; Gregorius, Seran Daton; Widhianingsih, Ika; Lestari, Siti; Suryawan, Joko

    2015-12-01

    This paper reports the optical properties of the optical planar waveguides in a soda lime glass fabricated by ion exchange. Planar waveguide fabrication was carried out by immersing the soda lime glass in molten 100 % AgNO3 bath for different duration (ranging from 15 minutes to 735 minutes) and at temperature of 280°C. The results show that the surface refractive index values of the ion exchanged glasses are independent of both the ion exchange duration and temperature. The number of modes and the effective diffusion depth, however, increase with increasing the duration of ion exchange process.

  20. Small Column Ion Exchange Design and Safety Strategy

    SciTech Connect

    Huff, T.; Rios-Armstrong, M.; Edwards, R.; Herman, D.

    2011-02-07

    Small Column Ion Exchange (SCIX) is a transformational technology originally developed by the Department of Energy (DOE) Environmental Management (EM-30) office and is now being deployed at the Savannah River Site (SRS) to significantly increase overall salt processing capacity and accelerate the Liquid Waste System life-cycle. The process combines strontium and actinide removal using Monosodium Titanate (MST), Rotary Microfiltration, and cesium removal using Crystalline Silicotitanate (CST, specifically UOP IONSIV{reg_sign}IE-911 ion exchanger) to create a low level waste stream to be disposed in grout and a high level waste stream to be vitrified. The process also includes preparation of the streams for disposal, e.g., grinding of the loaded CST material. These waste processing components are technically mature and flowsheet integration studies are being performed including glass formulations studies, application specific thermal modeling, and mixing studies. The deployment program includes design and fabrication of the Rotary Microfilter (RMF) assembly, ion-exchange columns (IXCs), and grinder module, utilizing an integrated system safety design approach. The design concept is to install the process inside an existing waste tank, Tank 41H. The process consists of a feed pump with a set of four RMFs, two IXCs, a media grinder, three Submersible Mixer Pumps (SMPs), and all supporting infrastructure including media receipt and preparation facilities. The design addresses MST mixing to achieve the required strontium and actinide removal and to prevent future retrieval problems. CST achieves very high cesium loadings (up to 1,100 curies per gallon (Ci/gal) bed volume). The design addresses the hazards associated with this material including heat management (in column and in-tank), as detailed in the thermal modeling. The CST must be size reduced for compatibility with downstream processes. The design addresses material transport into and out of the grinder and

  1. Cesium Ion Exchange Loading Kinetics Testing with SRF Resin

    SciTech Connect

    Russell, Renee L.; Rinehart, Donald E.; Brown, Garrett N.; Peterson, Reid A.

    2012-11-02

    Ion exchange using the Spherical Resorcinol-Formaldehyde (SRF) resin has been selected by the U.S. Department of Energy’s Office of River Protection for use in the Pretreatment Facility of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and for potential application in an at-tank deployment for removing 137Cs. Recent proposed changes to the WTP ion exchange process baseline indicate that loading may include a broader range of sodium molarities (2 to 8 M) due to caustic leaching and higher temperatures (50°C) to alleviate post-filtration precipitation issues prior to reaching the ion exchange columns. Therefore, it is important to understand the behavior of SRF resin performance under the conditions expected with the new equipment and process changes. This research examined the impact of linear load velocity (4, 6, 8 cm/min), initial sodium concentration (2, 5, 8 M), initial sodium-to-cesium ratio (1.4E+05, 2.1E+05, 2.8E+05 mol/mol), initial sodium-to-hydroxide ratio (2.0, 3.0, 4.0 mol/mol), and resin degradation during extended solution flow using elevated temperature (45°, 50°, 55°, 60°, 65°, 75°C). Testing was performed using a~2mL column packed with SRF resin with feed flowing through it in an up-flow pattern. Samples were taken at set intervals and the data analyzed to help understand the impact of these conditions on the SRF resin performance. It was found that the loading kinetics were not significantly impacted by the sodium concentration over the range tested. However, the loading kinetics were impacted by the linear load velocity. These results indicated that at the test temperature, the adsorption of cesium is strongly dependent on mass transfer through the film and not significantly impacted by interparticle diffusion. Testing for extended times at elevated temperatures showed that the resin does degrade and loading capacity is reduced at and above 45°C. Above 60°C the resin appears to not load at all.

  2. Ion Exchange Testing with SRF Resin FY 2012

    SciTech Connect

    Russell, Renee L.; Rinehart, Donald E.; Peterson, Reid A.

    2014-07-02

    Ion exchange using spherical resorcinol-formaldehyde (SRF) resin has been selected by the U.S. Department of Energy’s Office of River Protection (DOE-ORP) for use in the Pretreatment Facility (PTF) of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and for potential application in at-tank deployment. Numerous studies have shown SRF resin to be effective for removing 137Cs from a wide variety of actual and simulated tank waste supernatants (Adamson et al. 2006; Blanchard et al. 2008; Burgeson et al. 2004; Duignan and Nash 2009; Fiskum et al. 2006a; Fiskum et al. 2006b; Fiskum et al. 2006c; Fiskum et al. 2007; Hassan and Adu-Wusu 2003; King et al. 2004; Nash et al. 2006). Prior work at the Pacific Northwest National Laboratory (PNNL) has focused primarily on the loading behavior for 4 to 6 M Na solutions at 25 to 45°C. Recent proposed changes to the WTP ion exchange process baseline indicate that loading may include a broader range of sodium molarities (0.1 to 8 M) and higher temperatures (50°C) to alleviate post-filtration precipitation issues. This report discusses ion exchange loading kinetics testing activities performed in accordance with Test Plan TP-WTPSP-002, Rev. 3.01, which was prepared and approved in response to the Test Specification 24590-PTF-TSP-RT-09-002, Rev. 0 (Lehrman 2010) and Test Exception 24590-PTF-TEF-RT-11-00003, Rev. 0 (Meehan 2011). This testing focused on column tests evaluating the impact of elevated temperature on resin degradation over an extended period of time and batch contacts evaluating the impact on Cs loading over a broad range of sodium concentrations (0.1 to 5 M). These changes may be required to alleviate post-filtration precipitation issues and broaden the data range of SRF resin loading under the conditions expected with the new equipment and process changes.

  3. Synthesis and characterization of nitrogen substituted zeolites

    NASA Astrophysics Data System (ADS)

    Dogan, Fulya

    The interest in basic solid materials, particularly for basic zeolites has considerably increased in the last two decades because of their potential use in catalysis and separation. Basic zeolites have most often been obtained by ion-exchange or impregnation with alkali metal cations or grafting of organic bases onto zeolite pore walls. Such materials often suffer from instability and/or pore blockage, because none of these approaches places basic sites directly into the zeolite framework. Recently zeolitic materials have been made with some of the bridging oxygen atoms in Si--O--Si and/or Si--O--Al linkages replaced by NH groups, i.e. by substitution of framework oxygen by nitrogen. As a result, the basic strength of the framework increases due to the lower electronegativity of nitrogen with respect to oxygen. In this study, solid base catalysts are obtained by nitrogen substitution of the faujasite type of zeolites under ammonia flow at high temperatures. The efficiency of the reaction is tested by using zeolites with different aluminum contents and extraframework cations and varying the reaction conditions such as ammonia flow rate, reaction temperature and duration. The characterization studies show that high levels of nitrogen substitution can be achieved while maintaining porosity, particularly for NaY and low-aluminum HY zeolites, without a significant loss in the crystallinity. 27Al and 29 Si MAS NMR experiments performed on the nitrogen substituted zeolites show dealumination of the framework and preferential substitution for Si--OH--Al sites at the early stages of the reaction (temperatures at 750--800 °C). No preference is seen for reactions performed at higher temperatures and longer reaction times (e.g., 850 °C and 48 h). X-ray PDF analysis performed on the modified zeolites show that the Si-N distance in the 1st shell is longer than Si-O bond distance and Si-Si/Al bond distance of the Si-O/N-Si/Al linkage decreases, as an indication of a decrease in

  4. Electrodialysis-ion exchange for the separation of dissolved salts

    SciTech Connect

    Baroch, C.J.; Grant, P.J.

    1995-12-31

    The Department of Energy generates and stores a significant quantity of low level, high level, and mixed wastes. As some of the DOE facilities are decontaminated and decommissioned, additional and possibly different forms of wastes will be generated. A significant portion of these wastes are aqueous streams containing acids, bases, and salts, or are wet solids containing inorganic salts. Some of these wastes are quite dilute solutions, whereas others contain large quantities of nitrates either in the form of dissolved salts or acids. Many of the wastes are also contaminated with heavy metals, radioactive products, or organics. Some of these wastes are in storage because a satisfactory treatment and disposal processes have not been developed. This report describes the process of electrodialysis-ion exchange (EDIX) for treating aqueous wastes streams consisting of nitrates, sodium, organics, heavy metals, and radioactive species.

  5. Electrically switched cesium ion exchange. FY 1996 annual report

    SciTech Connect

    Lilga, M.A.; Orth, R.J.; Sukamto, J.P.H.; Schwartz, D.T.; Haight, S.M.; Genders, D.

    1996-12-01

    An electrochemical method for metal ion separations, called Electrically Switched Ion Exchange, is described. Direct oxidation and reduction of an electroactive film attached to an electrode surface is used to load and unload the film with alkali metal cations. The electroactive films under investigation are Ni hexacyanoferrates, which are deposited on the surface by applying an anodic potential to a Ni electrode in a solution containing the ferricyanide anion. Reported film preparation procedures were modified to produce films with improved capacity and stability. Electrochemical behavior of the derivatized electrodes were investigated using cyclic voltammetry and chronocoulometry. The films show selectivity for Cs in concentrated sodium solutions. Raman spectroscopy was used to monitor changes in oxidation state of the film and imaging experiments have demonstrated that the redox reactions are spatially homogenous across the film. Requirements for a bench scale unit were identified.

  6. Advanced integrated solvent extraction and ion exchange systems

    SciTech Connect

    Horwitz, P.

    1996-10-01

    Advanced integrated solvent extraction (SX) and ion exchange (IX) systems are a series of novel SX and IX processes that extract and recover uranium and transuranics (TRUs) (neptunium, plutonium, americium) and fission products {sup 90}Sr, {sup 99}Tc, and {sup 137}Cs from acidic high-level liquid waste and that sorb and recover {sup 90}Sr, {sup 99}Tc, and {sup 137}Cs from alkaline supernatant high-level waste. Each system is based on the use of new selective liquid extractants or chromatographic materials. The purpose of the integrated SX and IX processes is to minimize the quantity of waste that must be vitrified and buried in a deep geologic repository by producing raffinates (from SX) and effluent streams (from IX) that will meet the specifications of Class A low-level waste.

  7. Using ion exchange chromatography to purify a recombinantly expressed protein.

    PubMed

    Duong-Ly, Krisna C; Gabelli, Sandra B

    2014-01-01

    Ion exchange chromatography (IEX) separates molecules by their surface charge, a property that can vary vastly between different proteins. There are two types of IEX, cation exhange and anion exchange chromatography. The protocol that follows was designed by the authors for anion exchange chromatography of a recombinantly expressed protein having a pI of 4.9 and containing two cysteine residues and one tryptophan residue, using an FPLC system. Prior to anion exchange, the protein had been salted out using ammonium sulfate precipitation and partially purified via hydrophobic interaction chromatography (see Salting out of proteins using ammonium sulfate precipitation and Use and Application of Hydrophobic Interaction Chromatography for Protein Purification). Slight modifications to this protocol may be made to accommodate both the protein of interest and the availability of equipment. PMID:24674065

  8. Extraction and ion-exchange behavior of mendelevium (II)

    SciTech Connect

    Guseva, L.I.; Tikhomirova, G.S.; Buklanov, G.V.; Pkhar, Z.Z.; Lebedev, I.A.; Katargin, N.V.; Myasoedov, B.F.

    1988-09-01

    Medelevium-256 was obtained via multinucleon transfer reactions upon irradiation of /sup 249/Bk by /sup 22/Ne ions from the extracted beam of a U-300 cyclotron. In order to extract mendelevium and separate it from the products of nuclear reactions, an express ion-exchange method using one column with cationite and zinc amalgam in a solution of 1 mole/liter HCl as the eluent was developed. It was shown that under these conditions mendelevium is reduced and washes out as an alkaline earth element. On the basis of the location of the peaks of the elution curves of Sr/sup 2+/, Eu/sup 2+/, and Md/sup 2+/, the value of the ionic radium of Md/sup 2+/ is estimated and is used to estimate the heat of hydration.

  9. Copper ion-exchanged channel waveguides optimization for optical trapping.

    PubMed

    Reshak, A H; Khor, K N; Shahimin, M M; Murad, S A Z

    2013-08-01

    Optical trapping of particles has become a powerful non-mechanical and non-destructive technique for precise particle positioning. The manipulation of particles in the evanescent field of a channel waveguide potentially allows for sorting and trapping of several particles and cells simultaneously. Channel waveguide designs can be further optimized to increase evanescent field prior to the fabrication process. This is crucial in order to make sure that the surface intensity is sufficient for optical trapping. Simulation configurations are explained in detail with specific simulation flow. Discussion on parameters optimization; physical geometry, optical polarization and wavelength is included in this paper. The effect of physical, optical parameters and beam spot size on evanescent field has been thoroughly discussed. These studies will continue toward the development of a novel copper ion-exchanged waveguide as a method of particle sorting, with biological cell propulsion studies presently underway. PMID:23726859

  10. ION EXCHANGE PROCESS FOR THE RECOVERY AND PURIFICATION OF MATERIALS

    DOEpatents

    Long, R.S.; Bailes, R.H.

    1958-04-15

    A process for the recovery of certain metallic ions from aqueous solutions by ion exchange techniques is described. It is applicable to elements such as vanadium, chromium, nnanganese, and the like, which are capable of forming lower valent cations soluble in aqueous solutions and which also form ldgher valent anions soluble in aqueous acidic solutions. For example, small amounts of vanadium occurring in phosphoric acid prepared from phosphate rock may be recovered by reducing the vanadium to a trivalent cation adsorbing; the vanadium in a cationic exchange resin, then treating the resin with a suitable oxidizing agent to convert the adsorbed vanadium to a higher valent state, and finally eluting; the vanadium as an anion from the resin by means of an aqueous acidic solution.

  11. ION EXCHANGE SUBSTANCES BY SAPONIFICATION OF ALLYL PHOSPHATE POLYMERS

    DOEpatents

    Kennedy, J.

    1959-04-14

    An ion exchange resin having a relatively high adsorption capacity tor uranyl ion as compared with many common cations is reported. The resin comprises an alphyl-allyl hydrogen phosphate polymer, the alphyl group being either allyl or a lower alkyl group having up to 5 carbon atoins. The resin is prepared by polymerizing compounds such as alkyl-diallyl phosphate and triallyl phosphate in the presence of a free radical generating substance and then partially hydrolyzing the resulting polymer to cause partial replacement of organic radicals by cations. A preferred free radical gencrating agent is dibenzoyl peroxide. The partial hydrolysis is brought about by refluxing the polymer with concentrated aqueous NaOH for three or four hours.

  12. Electrodialysis-ion exchange for the separation of dissolved salts

    SciTech Connect

    Baroch, C.J.; Grant, P.J.

    1995-10-01

    The Department of Energy generates and stores a significant quantity of low level, high level, and mixed wastes. As some of the DOE facilities are decontaminated and decommissioned, additional and possibly different forms of wastes will be generated. A significant portion of these wastes are aqueous streams containing acids, bases, and salts, or are wet solids containing inorganic salts. Some of these wastes are quite dilute solutions, whereas others contain large quantities of nitrates either in the form of dissolved salts or acids. Many of the wastes are also contaminated with heavy metals, radioactive products, or organics. Some of these wastes are in storage because a satisfactory treatment and disposal processes have not been developed. There is considerable interest in developing processes that remove or destroy the nitrate wastes. Electrodialysis-Ion Exchange (EDIX) is a possible process that should be more cost effective in treating aqueous waste steams. This report describes the EDIX process.

  13. Electrotransportation of aniline through a perfluorosulfonate ion-exchange membrane

    SciTech Connect

    Katakura, Katsumi . Dept. of Chemical Engineering); Inaba, Minoru; Toyama, Koji; Ogumi, Zempachi; Takehara, Zenichiro . Division of Energy and Hydrocarbon Chemistry)

    1994-07-01

    Transport phenomena of aniline through Na[sup +]-, K[sup +]-, and Cs[sup +]-form of a perfluorosulfonate ion-exchange membrane, Nafion 117, under a flow of dc current, electrotransportation, were investigated. In each form, an increase in transport number of anilinium cation was observed in the current density range from 0.3 to 1.3 mA cm[sup [minus]2]. The transport number of the anilinium cation in Cs[sup +]-form was larger than that expected from the concentration and diffusion coefficient of the anilinium cation in Cs[sup +]-form Nafion. These aniline transport phenomena may be attributable to a structural change of Nafion or a decrease in hydrophobic interaction between the anilinium cation and Nafion caused by the flow of dc current.

  14. Increase of ionic conductivity in the microporous lithosilicate RUB-29 by Na-ion exchange processes

    NASA Astrophysics Data System (ADS)

    Park, S.-H.; Senyshyn, A.; Paulmann, C.

    2007-12-01

    The ionic conductivity in the zeolite-like lithosilicate RUB-29 (Cs 14Li 24[Li 18Si 72O 172]·14H 2O [S.-H. Park, J.B. Parise, H. Gies, H. Liu, C.P. Grey, B.H. Toby, J. Am. Chem. Soc. 122 (2000) 11023-11024]) increases via simple ion-exchange processes, in particular when Na cations replace a part of Cs + and Li + of the material. The resulting ionic conductivity value of 3.2×10 -3 S cm -1 at 885 K is about two orders higher than that for the original material [S.-H. Park, J.B. Parise, M.E. Franke, T. Seydel, C. Paulmann, Micropor. Mesopor. Mater., in print ( doi:10.1016/j.micromeso.2007.03.040 available online since April 19, 2007)]. The structural basis of a Na +-exchanged RUB-29 sample (Na-RUB-29) at 673 K could be elucidated by means of neutron powder diffraction. Rietveld refinements confirmed the replacement of Na + for both parts of Cs and Li cations, agreeing with idealized cell content, Na 8Cs 8Li 40Si 72O 172. As a result of the incorporation of Na + in large pores, the number of Li + vacancies in dense Li 2O-layers of the structure could increase. This can be one of the main reasons for the improved conductivity in Na-RUB-29. In addition, mobile Na cations may also contribute to the conductivity in Na-RUB-29 as continuous scattering length densities were found around the sites for Na in difference Fourier map.

  15. Removal of THM precursors by coagulation or ion exchange.

    PubMed

    Bolto, Brian; Dixon, David; Eldridge, Rob; King, Simon

    2002-12-01

    The removal of natural organic matter (NOM) from drinking water supplies can be achieved by different processes, among them coagulation and adsorption. Synthetic waters made from concentrates of humic substances from reservoir and river waters were tested in the laboratory for ease of removAl of NOM by coagulation with cationic organic polymers and with alum, and by adsorption on anion exchangers. For polymers such as high molecular weight polydiallyldimethylammonium chloride (polyDADMAC) and cationic polyacrylamides of high charge, performance was nearly as effective as alum, with colour removals 86-100% of those obtained for alum. Ion exchange using the best commercially available resins designed for this purpose, a gel polystyrene and a macroporous acrylic resin, was more effective than alum treatment for two of the natural waters studied, but inferior for a third. The resins were overall superior to cationic polymers. The NOM was separated into four fractions based on hydrophobic and hydrophilic properties. Alum was not as effective as ion exchange for the elimination of individual ionic NOM fractions. It was better than cationic polymers for removal of humic and fulvic acids, although polyDADMAC was as good for one water. For the removal of charged compounds alum then polyDADMAC were the best performers for that water. Unequivocal evidence was obtained that coagulants remove material that is not adsorbed by resins, and vice versa. A combination of coagulation with a cationic polymer and adsorption by an anion exchanger removed essentially all of the NOM. The preference of the coagulants was for the larger, more hydrophobic molecules, and of resins for smaller highly charged hydrophilic molecules. Each fraction had trihalomethane formation potentials in the range 11-24 microg/mg, except for one water that was more reactive. Hence, the actual amount of each fraction in the original water becomes a crucial factor. PMID:12448555

  16. Ion-exchange chromatography by dicarboxyl cellulose gel.

    PubMed

    Kim, U J; Kuga, S

    2001-06-01

    A new column packing material for ion-exchange chromatography was prepared from cellulose gel by periodate oxidation followed by chlorite oxidation to form spatially paired carboxyl groups (dicarboxyl cellulose, DCC). The carboxyl group was quantitatively introduced to spherical cellulose gel by controlling the extent of oxidation. The DCC gels were examined for their ion-exchange activity for various amines at pH of 2.5-5.5. In this pH range, aromatic amines with acid dissociation constant (pKa) below 2.7 showed no interaction with DCC gels as expected from their lack of protonation. The amines with pKa greater than 3.3, both aromatic and aliphatic, showed strong interaction corresponding to the amount of carboxyl introduced to the gel. However, these amines showed anomalous dependence on pH of the mobile phase, showing a maximum in retention factor at around pH 4. This is in contrast with the nearly constant retention factor of these amines on conventional carboxylated cellulose packing at pH greater than 4.0. The maximum retention factor at pH 4 of DCC gel was 4-5-times greater than that of conventional gel having a similar amount of carboxyls. Since pKa of dicarboxyl groups ranges 3-5 as determined by acid-base titration, the pH giving maximum retention corresponds to the pH at which one of paired carboxyls is dissociated. Possible cause of this anomaly is presented in terms of dissociation state of dicarboxyl groups and its interaction with amines. PMID:11459309

  17. Enhanced DOC removal using anion and cation ion exchange resins.

    PubMed

    Arias-Paic, Miguel; Cawley, Kaelin M; Byg, Steve; Rosario-Ortiz, Fernando L

    2016-01-01

    Hardness and DOC removal in a single ion exchange unit operation allows for less infrastructure, is advantageous for process operation and depending on the water source, could enhance anion exchange resin removal of dissolved organic carbon (DOC). Simultaneous application of cationic (Plus) and anionic (MIEX) ion exchange resin in a single contact vessel was tested at pilot and bench scales, under multiple regeneration cycles. Hardness removal correlated with theoretical predictions; where measured hardness was between 88 and 98% of the predicted value. Comparing bench scale DOC removal of solely treating water with MIEX compared to Plus and MIEX treated water showed an enhanced DOC removal, where removal was increased from 0.5 to 1.25 mg/L for the simultaneous resin application compared to solely applying MIEX resin. A full scale MIEX treatment plant (14.5 MGD) reduced raw water DOC from 13.7 mg/L to 4.90 mg/L in the treated effluent at a bed volume (BV) treatment rate of 800, where a parallel operation of a simultaneous MIEX and Plus resin pilot (10 gpm) measured effluent DOC concentrations of no greater than 3.4 mg/L, even at bed volumes of treatment 37.5% greater than the full scale plant. MIEX effluent compared to simultaneous Plus and MIEX effluent resulted in differences in fluorescence intensity that correlated to decreases in DOC concentration. The simultaneous treatment of Plus and MIEX resin produced water with predominantly microbial character, indicating the enhanced DOC removal was principally due to increased removal of terrestrially derived organic matter. The addition of Plus resin to a process train with MIEX resin allows for one treatment process to remove both DOC and hardness, where a single brine waste stream can be sent to sewer at a full-scale plant, completely removing lime chemical addition and sludge waste disposal for precipitative softening processes. PMID:26624231

  18. THREE-DIMENSIONAL THERMAL MODELING ANALYSIS OF CST MEDIA FOR THE SMALL ION EXCHANGE PROJECT

    SciTech Connect

    Lee, S.; King, W.

    2011-09-12

    The Small Column Ion Exchange (SCIX) project is designed to accelerate closure of High Level Waste (HLW) tanks at the Savannah River Site (SRS). The SRS tanks store HLW in three forms: sludge, saltcake, and supernate. An in-tank ion exchange process is being designed to treat supernate and dissolved saltcake waste. Through this process, radioactive cesium from the salt solution is adsorbed into Crystalline Silicotitanate (CST) ion exchange media packed within a flow-through column. A packed column loaded with radioactive cesium generates significant heat from radiolytic decay. The waste supernate solution within the ion exchange bed will boil around 120 C. Solution superheating above the boiling point within the column could lead to violent hazardous energy releases. System heating from loaded CST is also of concern in other process modules, such as the waste tank. Due to tank structural integrity concerns, the wall temperature limit for the SRS waste tanks is 100 C. The transfer of cesium-loaded CST to the tank could result in localized hot spots on the tank floor and walls which may exceed this limit. As a result, thermal modeling calculations have been conducted to predict the maximum temperatures achievable both in the column and in the waste tank. As specified in the associated Technical Task Plan, one objective of the present work was to compute temperature distributions within the ion exchange column module under accident scenarios including loss of salt solution flow through the bed and loss of coolant system flow. The column modeling domain and the scope of the calculations in this case were broadened relative to previous two-dimensional calculations to include vertical temperature distributions within the packed bed of ion exchange media as well as the upper column plenum region containing only fluid. The baseline design conditions and in-column modeling domain for the ion-exchange column module are shown in Figure 1. These evaluations assumed the maximum

  19. The effect of positioning cations on acidity and stability of the framework structure of Y zeolite.

    PubMed

    Deng, Changshun; Zhang, Junji; Dong, Lihui; Huang, Meina; Bin Li; Jin, Guangzhou; Gao, Junbin; Zhang, Feiyue; Fan, Minguang; Zhang, Luoming; Gong, Yanjun

    2016-01-01

    The investigation on the modification of NaY zeolite on LaHY and AEHY (AE refers Ca and Sr and the molar ratio of Ca and Sr is 1:1) zeolites was proformed by XRD, N2-physisorption (BET), XRF, XPS, NH3-TPD, Py-IR, hydrothermal stability, and catalytic cracking test. These results indicate that HY zeolite with ultra low content Na can be obtained from NaY zeolite through four exchange four calcination method. The positioning capability of La(3+) in sodalite cage is much better than that of AE(2+) and about 12 La(3+) can be well coordinated in sodalite cages of one unit cell of Y zeolite. Appropriate acid amount and strength favor the formation of propylene and La(3+) is more suitable for the catalytic cracking of cyclohexane than that of AE(2+). Our results not only elaborate the variation of the strong and weak acid sites as well as the Brönsted and Lewis acid sites with the change of exchanged ion content but also explore the influence of hydrothermal aging of LaHY and AEHY zeolites and find the optimum ion exchange content for the most reserved acid sites. At last, the coordination state and stabilization of ion exchanged Y zeolites were discussed in detail. PMID:26987306

  20. The effect of positioning cations on acidity and stability of the framework structure of Y zeolite

    NASA Astrophysics Data System (ADS)

    Deng, Changshun; Zhang, Junji; Dong, Lihui; Huang, Meina; Bin Li; Jin, Guangzhou; Gao, Junbin; Zhang, Feiyue; Fan, Minguang; Zhang, Luoming; Gong, Yanjun

    2016-03-01

    The investigation on the modification of NaY zeolite on LaHY and AEHY (AE refers Ca and Sr and the molar ratio of Ca and Sr is 1:1) zeolites was proformed by XRD, N2-physisorption (BET), XRF, XPS, NH3-TPD, Py-IR, hydrothermal stability, and catalytic cracking test. These results indicate that HY zeolite with ultra low content Na can be obtained from NaY zeolite through four exchange four calcination method. The positioning capability of La3+ in sodalite cage is much better than that of AE2+ and about 12 La3+ can be well coordinated in sodalite cages of one unit cell of Y zeolite. Appropriate acid amount and strength favor the formation of propylene and La3+ is more suitable for the catalytic cracking of cyclohexane than that of AE2+. Our results not only elaborate the variation of the strong and weak acid sites as well as the Brönsted and Lewis acid sites with the change of exchanged ion content but also explore the influence of hydrothermal aging of LaHY and AEHY zeolites and find the optimum ion exchange content for the most reserved acid sites. At last, the coordination state and stabilization of ion exchanged Y zeolites were discussed in detail.

  1. The effect of positioning cations on acidity and stability of the framework structure of Y zeolite

    PubMed Central

    Deng, Changshun; Zhang, Junji; Dong, Lihui; Huang, Meina; Bin Li; Jin, Guangzhou; Gao, Junbin; Zhang, Feiyue; Fan, Minguang; Zhang, Luoming; Gong, Yanjun

    2016-01-01

    The investigation on the modification of NaY zeolite on LaHY and AEHY (AE refers Ca and Sr and the molar ratio of Ca and Sr is 1:1) zeolites was proformed by XRD, N2-physisorption (BET), XRF, XPS, NH3-TPD, Py-IR, hydrothermal stability, and catalytic cracking test. These results indicate that HY zeolite with ultra low content Na can be obtained from NaY zeolite through four exchange four calcination method. The positioning capability of La3+ in sodalite cage is much better than that of AE2+ and about 12 La3+ can be well coordinated in sodalite cages of one unit cell of Y zeolite. Appropriate acid amount and strength favor the formation of propylene and La3+ is more suitable for the catalytic cracking of cyclohexane than that of AE2+. Our results not only elaborate the variation of the strong and weak acid sites as well as the Brönsted and Lewis acid sites with the change of exchanged ion content but also explore the influence of hydrothermal aging of LaHY and AEHY zeolites and find the optimum ion exchange content for the most reserved acid sites. At last, the coordination state and stabilization of ion exchanged Y zeolites were discussed in detail. PMID:26987306

  2. REMOVAL OF URANIUM FROM DRINKING WATER BY ION EXCHANGE AND CHEMICAL CLARIFICATION

    EPA Science Inventory

    A pilot demonstration was conducted of ion exchange and chemical clarification equipment for removing uranium from drinking water. Four commercial-type ion exchange columns and a prefiltering and regeneration solution system were constructed along with a pilot-scale chemical clar...

  3. Ion exchange resins. (Latest citations from the EI Compendex*plus database). Published Search

    SciTech Connect

    1995-01-01

    The bibliography contains citations concerning preparation, properties, and applications of ion exchange resins. Applications include water and waste treatment, chemical recovery, separation, purification, catalysis, desalination, and ore treatment. Regeneration and disposal of ion exchange resins are also covered. (Contains 250 citations and includes a subject term index and title list.)

  4. Ion exchange resins. (Latest citations from the EI Compendex*plus database). Published Search

    SciTech Connect

    1996-01-01

    The bibliography contains citations concerning preparation, properties, and applications of ion exchange resins. Applications include water and waste treatment, chemical recovery, separation, purification, catalysis, desalination, and ore treatment. Regeneration and disposal of ion exchange resins are also covered. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  5. Ion Exchange Resins for Long-Term Spent Nuclear Fuel Storage

    SciTech Connect

    Rideaux, J.

    1999-03-08

    This paper will specifically address the use and life cycle of ion exchange resins as they relate to the SRS Spent Nuclear Fuel Storage Basins. This paper also chronicles the use of two types of ion exchange resins and their affect on basin water quality from the sixties until today.

  6. Formation of metallic nanostructures on the surface of ion- exchange glass by focused electron beam

    NASA Astrophysics Data System (ADS)

    Komissarenko, F. E.; Zhukov, M. V.; Mukhin, I. S.; Golubok, A. O.; Sidorov, A. I.

    2015-11-01

    This paper presents a new method for formation of metallic nanostructures on the surface of ion-exchange glass. The method is based on the interaction of a focused electron beam with ions in ion-exchange glass. In experiments nanostructures with different shapes were obtained, depending on the electrons irradiation conditions.

  7. Intermediate-Scale Ion Exchange Removal of Cesium and Technetium from Hanford Tank 241-AN-102

    SciTech Connect

    King, W.D.

    2001-02-15

    Ion exchange tests have been completed at the Savannah River Technology Center for British Nuclear Fuels Limited, Inc. as part of the Hanford River Protection Project. Radioactive cesium and technetium (pertechnetate form only) were removed by ion exchange from a sample of Envelope C salt solution from Hanford Tank 241-AN-102 (sample volume: approximately 17 L at 4.8 M Na plus). The original sample was diluted and subjected to strontium/transuranics (Sr/TRU) precipitation and filtration processes before ion exchange processing was performed. Batch contact and column tests for the ion exchange removal of cesium and technetium were then completed on the Sr/TRU-decontaminated product. Previous ion exchange tests were conducted on a smaller portion (0.5 L) of the Tank 241-AN-102 supernate sample, which had been similarly pretreated, and the results were reported in a separate document.

  8. Intermediate-Scale Ion Exchange Removal of Cesium and Technetium from Hanford Tank 241-AN-102

    SciTech Connect

    King, W.D.

    2001-09-10

    Ion exchange tests have been completed at the Savannah River Technology Center for British Nuclear Fuels Limited, Inc. as part of the Hanford River Protection Project. Radioactive cesium and technetium (pertechnetate form only) were removed by ion exchange from a sample of Envelope C salt solution from Hanford Tank 241-AN-102 (sample volume: approximately 18 L at 4.8 M Na plus). The original sample was diluted and subjected to strontium/transuranics (Sr/TRU) precipitation and filtration processes before ion exchange processing was performed. Batch contact and column tests for the ion exchange removal of cesium and technetium were then completed on the Sr/TRU-decontaminated product. Previous ion exchange tests were conducted on a smaller portion (0.5 L) of the Tank 241-AN-102 supernate sample, which had been similarly pretreated, and the results were reported in a separate document.

  9. Ion-exchange selectivities of periderm and cuticular membranes toward alkali cations

    SciTech Connect

    Ersoz, M.; Duncan, H.J.

    1994-08-01

    The ion-exchange selectivities of lithium, sodium, potassium, and cesium on isolated potato periderm (Solanum tuberosum) and pear fruit cuticular membranes were investigated; the general order of preference both for cation selectivities and ion-exchange capacities was lithium > sodium > potassium > cesium. The potato periderm and pear fruit cuticular membranes exhibited a behavior typical of ion-exchange resins of the weak acid type. At constant pH 7, the ion-exchange capacities of periderm and cuticular membranes increased with hydrated ionic radius, and also with increasing pH and neutral salt concentration, and decreased with crystal ionic radius. Counterion selectivities also exhibited the same behavior. The ion-exchange properties are discussed in terms of the structure and function of potato periderm and pear fruit cuticular membranes.

  10. Ion Exchange Media for Reduction of Liquid Radwaste in Commercial Power Plants

    SciTech Connect

    Yarnell, P.A.; Tavares, A.

    2008-07-01

    Ion exchange resins currently make up as much as one-half of all radioactive waste generated by commercial nuclear power plants. A major challenge is reduction of the quantity of ion exchange media requiring disposal. Although the amount of spent ion exchange resins disposed has decreased year after year, a new urgency has arisen with the pending closure of a major disposal site in 2008. This paper explores whether ion exchange resins also can be used to potentially reduce radioactive liquid waste volumes and / or limit them to Class A wastes only. Source term reduction and minimization of manpower exposure to radioactivity are other important goals. Specialty ion exchange products may help to achieve source term reduction of certain radionuclides. Some established operations, data, and process concepts are presented to address these critical issues encountered in liquid radwaste management. (authors)

  11. Radiation Effects in Zeolites and Clays for the Sorption and Release of Radionuclides During Transport Through the Geosphere

    SciTech Connect

    Wang, Lumin; Ewing, Rod C.; Hayes, Kim F.

    2003-09-11

    Site restoration activities at DOE facilities and the permanent disposal of nuclear waste generated at DOE facilities involve working with and within various types and levels of radiation fields. The radiation exposure due to the release and sorption of long-lived actinides (e.g., 237Np) and fission products (e.g., 137Cs and 90Sr) may cause changes in important properties of geological materials along transport pathways of radionuclides through the geosphere. Through a comprehensive study of the microstructure and ion exchange capacity under varying types of irradiation (electrons, ions and neutrons), dose rate, temperature and ion exchange conditions, we have developed a basic understanding of radiation effects on the ion exchange and retention capacity of clays and zeolites for Cs and Sr. The results provide an essential database for the long term effectiveness of clays and zeolite in radionuclide retention, as well as the mobility of the radionuclides in contaminated sites.

  12. THERMAL MODELING OF ION EXCHANGE COLUMNS WITH SPHERICAL RF RESIN

    SciTech Connect

    Lee, S.; King, W.

    2009-12-30

    Models have been developed to simulate the thermal performance of RF columns fully loaded with radioactive cesium. Temperature distributions and maximum temperatures across the column were calculated during Small Column Ion Exchange (SCIX) process upset conditions with a focus on implementation at Hanford. A two-dimensional computational modeling approach was taken to include conservative, bounding estimates for key parameters such that the results will provide the maximum centerline temperatures achievable under the design configurations using a feed composition known to promote high cesium loading on RF. The current full-scale design for the SCIX system includes a central cooling tube, and one objective of these calculations was to examine its elimination to simplify the design. Results confirmed that a column design without a central cooling tube is feasible for RF, allowing for the possibility of significant design simplifications if it can be assumed that the columns are always filled with liquid. With active cooling through the four outer tubes, the maximum column diameter expected to maintain the temperature below the assumed media and safety limits is 26 inches, which is comparable to the current design diameter. Additional analysis was conducted to predict the maximum column temperatures for the previously unevaluated accident scenario involving inadvertent drainage of liquid from a cesium-saturated column, with retention of the ion exchange media and cesium in the column. As expected, much higher maximum temperatures are observed in this case due to the poor heat transfer properties of air versus liquid. For this hypothetical accident scenario involving inadvertent and complete drainage of liquid from a cesium-saturated column, the modeling results indicate that the maximum temperature within a 28 inch diameter RF column with external cooling is expected to exceed 250 C within 2 days, while the maximum temperature of a 12 inch column is maintained below

  13. Proton/calcium ion exchange behavior of calcite.

    PubMed

    Villegas-Jiménez, Adrián; Mucci, Alfonso; Paquette, Jeanne

    2009-10-21

    The characterization of the proton sorptive properties of calcite in aqueous solutions at 25 +/- 1 degrees C over a relatively wide range of chemical conditions (7.16 ion exchange is quantitatively described by the Langmuir-power exchange function under the Vanselow convention: where n = 1 and log(10)K(ex) = 13.0 +/- 0.3. This calcite behavior, never reported before, masks surface equilibria and directly impacts the aqueous speciation of carbonate-rock systems with poor CO(2)(g) ventilation (e.g., aquifers, pore and deep sea waters, industrial reactors) via the buffering of pH and calcite dissolution. In contrast, at fixed pCO(2) conditions, aqueous speciation remains unaffected upon CO(2)(g) sequestration resulting from ion exchange-induced calcite precipitation: ([triple bond]CaCO3)2(exc) + CO2(g) + H2O <==> [triple bond]Ca(HCO3)2(exc) + CaCO3(s). Accordingly, reliable predictions of aqueous speciation in natural or engineered calcite-containing systems at variable pCO(2) conditions must consider this exchange reaction and the associated K(ex). The postulated proton/calcium exchange may have far

  14. Surfactant-modified zeolites as permeable barriers to organic and inorganic groundwater contaminants

    SciTech Connect

    Bowman, R.S.; Sullivan, E.J.

    1995-10-01

    We have shown in laboratory experiments that natural zeolites treated with hexadecyltrimethylammonium (HDTMA) are effective sorbents for nonpolar organics, inorganic cations, and inorganic anions. Due to their low cost ({approximately}$0.75/kg) and granular nature, HDTMA-zeolites appear ideal candidates for reactive, permeable subsurface barriers. The HDTMA-zeolites are stable over a wide range of pH (3-13), ionic strength (1 M Cs{sup +} or Ca{sup 2+}), and in organic solvents. Surfactant-modified zeolites sorb nonpolar organics (benzene, toluene, xylene, chlorinated aliphatics) via a partitioning mechanism, inorganic cations (Pb{sup 2+}) via ion exchange and surface complexation, and inorganic anions (CrO{sub 4}{sup 2-}, SeO{sub 4}{sup 2-}, SO{sub 4}{sup 2-}) via surface precipitation.The goal of this work is to demonstrate the use of surfactant-modified zeolite as a permeable barrier to ground water contaminants.

  15. The development of a zeolite system for upgrade of the Process Waste Treatment Plant

    SciTech Connect

    Robinson, S.M.; Kent, T.E.; Arnold, W.D.; Parrott, J.R. Jr.

    1993-10-01

    Studies have been undertaken to design an efficient zeolite ion exchange system for use at the ORNL Process Waste Treatment Plant to remove cesium and strontium to meet discharge limits. This report focuses on two areas: (1) design of column hardware and pretreatment steps needed to eliminate column plugging and channeling and (2) development of equilibrium models for the wastewater system. Results indicate that zeolite columns do not plug as quickly when the wastewater equalization is performed in the new Bethel Valley Storage Tanks instead of the former equalization basin where suspended solids concentration is high. A down-flow column with spent zeolite was used successfully as a prefilter to prevent plugging of the zeolite columns being used to remove strontium and cesium. Equilibrium studies indicate that a Langmuir isotherm models binary zeolite equilibrium data while the modified Dubinin-Polyani model predicts multicomponent data.

  16. Exploitation of Unique Properties of Zeolites in the Development of Gas Sensors

    PubMed Central

    Zheng, Yangong; Li, Xiaogan; Dutta, Prabir K.

    2012-01-01

    The unique properties of microporous zeolites, including ion-exchange properties, adsorption, molecular sieving, catalysis, conductivity have been exploited in improving the performance of gas sensors. Zeolites have been employed as physical and chemical filters to improve the sensitivity and selectivity of gas sensors. In addition, direct interaction of gas molecules with the extraframework cations in the nanoconfined space of zeolites has been explored as a basis for developing new impedance-type gas/vapor sensors. In this review, we summarize how these properties of zeolites have been used to develop new sensing paradigms. There is a considerable breadth of transduction processes that have been used for zeolite incorporated sensors, including frequency measurements, optical and the entire gamut of electrochemical measurements. It is clear from the published literature that zeolites provide a route to enhance sensor performance, and it is expected that commercial manifestation of some of the approaches discussed here will take place. The future of zeolite-based sensors will continue to exploit its unique properties and use of other microporous frameworks, including metal organic frameworks. Zeolite composites with electronic materials, including metals will lead to new paradigms in sensing. Use of nano-sized zeolite crystals and zeolite membranes will enhance sensor properties and make possible new routes of miniaturized sensors. PMID:22666081

  17. Synthetic Zeolites and Other Microporous Oxide Molecular Sieves

    NASA Astrophysics Data System (ADS)

    Sherman, John D.

    1999-03-01

    Use of synthetic zeolites and other microporous oxides since 1950 has improved insulated windows, automobile air-conditioning, refrigerators, air brakes on trucks, laundry detergents, etc. Their large internal pore volumes, molecular-size pores, regularity of crystal structures, and the diverse framework chemical compositions allow "tailoring" of structure and properties. Thus, highly active and selective catalysts as well as adsorbents and ion exchangers with high capacities and selectivities were developed. In the petroleum refining and petrochemical industries, zeolites have made possible cheaper and lead-free gasoline, higher performance and lower-cost synthetic fibers and plastics, and many improvements in process efficiency and quality and in performance. Zeolites also help protect the environment by improving energy efficiency, reducing automobile exhaust and other emissions, cleaning up hazardous wastes (including the Three Mile Island nuclear power plant and other radioactive wastes), and, as specially tailored desiccants, facilitating the substitution of new refrigerants for the ozone-depleting chlorofluorocarbons banned by the Montreal Protocol.

  18. Ion-exchangeable, electronically conducting layered perovskite oxyfluorides.

    PubMed

    Kobayashi, Yoji; Tian, Mingliang; Eguchi, Miharu; Mallouk, Thomas E

    2009-07-22

    Cation-exchangeable d(0) layered perovskites are amenable to intercalation, exfoliation, and a variety of topochemical reactions, but they lack the interesting electronic and magnetic functionalities of mixed-valent perovskites. Conversely, electronically and magnetically interesting layered perovskites lack scope in terms of interlayer chemistry. To bridge this gap, the insulating, cation-exchangeable layered perovskites RbLaNb(2)O(7), KCa(2)Nb(3)O(10), and NaYTiO(4) were reacted with poly(tetrafluoroethylene) under inert atmosphere conditions to yield layer perovskites in which some of the oxygen is substituted by fluorine. In the fluorinated materials, the B-site cations are reduced to a mixed-valent state without introducing oxygen vacancies into the anion sublattice. The resulting electronically conducting solids can be exposed to air and water and even ion-exchanged in acid without oxidation of the B-site cations. Electronic transport measurements on the air-stable RbLaNb(2)O(6)F reveal room-temperature conductivity (2-7 x 10(2) ohms x cm) via a variable-range hopping mechanism, which is not substantially changed after aqueous proton exchange to H(1-x)Rb(x)LaNb(2)O(6)F (x approximately = 0.2). PMID:19548670

  19. Ion Exchange Resin and Clay Vitrification by Plasma Discharges

    NASA Astrophysics Data System (ADS)

    Díaz A., Laura V.; Pacheco S., Joel O.; Pacheco P., Marquidia; Monroy G., Fabiola; Emeterio H., Miguel; Ramos F., Fidel

    2006-12-01

    The lack of treatment of a low and intermediate level radioactive waste (LILRW) lead us to propose a vitrification process based on a plasma discharge; this technique incorporates LILRW into a matrix glass composed of ceramic clays material. The Mexican Institute of Nuclear Research (ININ), uses an ion exchange resin IRN 150 (styrene-divinilbence copolymer) in the TRIGA MARK III nuclear reactor. The principal objective of this resin is to absorb particles containing heavy metals and low-level radioactive particles. Once the IRN 150 resin filter capacity has been exceeded, it should be replaced and treated as LILRW. In this work, a transferred plasma system was realized to vitrify this resin taking advantage of its high power density, enthalpy and chemical reactivity as well as its rapid quenching and high operation temperatures. In order to characterize the morphological structure of these clay samples, Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and Thermogravimetric analysis (TGA) techniques were applied before and after the plasma treatment.

  20. Ion Exchange Resin and Clay Vitrification by Plasma Discharges

    SciTech Connect

    Diaz A, Laura V.

    2006-12-04

    The lack of treatment of a low and intermediate level radioactive waste (LILRW) lead us to propose a vitrification process based on a plasma discharge; this technique incorporates LILRW into a matrix glass composed of ceramic clays material. The Mexican Institute of Nuclear Research (ININ), uses an ion exchange resin IRN 150 (styrene-divinilbence copolymer) in the TRIGA MARK III nuclear reactor. The principal objective of this resin is to absorb particles containing heavy metals and low-level radioactive particles. Once the IRN 150 resin filter capacity has been exceeded, it should be replaced and treated as LILRW. In this work, a transferred plasma system was realized to vitrify this resin taking advantage of its high power density, enthalpy and chemical reactivity as well as its rapid quenching and high operation temperatures. In order to characterize the morphological structure of these clay samples, Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and Thermogravimetric analysis (TGA) techniques were applied before and after the plasma treatment.

  1. Nondiffusive mechanisms enhance protein uptake rates in ion exchange particles

    PubMed Central

    Dziennik, S. R.; Belcher, E. B.; Barker, G. A.; DeBergalis, M. J.; Fernandez, S. E.; Lenhoff, A. M.

    2003-01-01

    Scanning confocal fluorescence microscopy and multiphoton fluorescence microscopy were used to image the uptake of the protein lysozyme into individual ion exchange chromatography particles in a packed bed in real time. Self-sharpening concentration fronts penetrating into the particles were observed at low salt concentrations in all of the adsorbents studied, but persisted to 100 mM ionic strength only in some materials. In other adsorbents, diffuse profiles were seen at these higher salt concentrations, with the transition region exhibiting a pronounced fluorescence peak at the front at intermediate salt concentrations. These patterns in the uptake profiles are accompanied by significant increases in protein uptake rates that are also seen macroscopically in batch uptake experiments. The fluorescence peak appears to be a concentration overshoot that may develop, in part, from an electrokinetic contribution to transport that also enhances the uptake rate. Further evidence for an electrokinetic origin is that the effect is correlated with high adsorbent surface charge densities. Predictions of a mathematical model incorporating the electrokinetic effect are in qualitative agreement with the observations. These findings indicate that mechanisms other than diffusion contribute to protein transport in oppositely charged porous materials and may be exploited to achieve rapid uptake in process chromatography. PMID:12522150

  2. Synthesis, properties and structure of ion exchanged hydrosodalite

    NASA Astrophysics Data System (ADS)

    Kendrick, Emma; Dann, Sandra

    2004-04-01

    Alkali metal and alkali-earth metal hydrosodalites with the formula M6[AlSiO 4] 6·8H 2O ( M=Li, Na, K, Mg, Ca, Sr) have been prepared by ion exchange of Na 6[AlSiO 4] 6·8H 2O using a solution of the appropriate metal nitrate solution under reflux for a period of 24 h. The starting materials and products were characterized using a combination of techniques including IR, DSC, TGA, ICP, AA, MASNMR and X-ray diffraction. The alkali metal and alkali-earth metal hydrosodalites crystallize with the primitive cubic sodalite unit cell and an ordered AlO 4/SiO 4 framework in the space group P 4¯3n with cell parameters lying between 8.8 and 9.2 Å. The structures of these materials have been refined using powder X-ray diffraction data in order to delineate structural changes as a function of the occluded cation. Temperature-dependent powder X-ray diffraction has been used to observe changes in the structure as a function of temperature. Results from the DSC and TGA analysis show that the temperature at which water is lost from the β cages is a two-stage process. In the second stage, the temperature rises as the size of occluded cation increases, implying that the presence of a larger cation in the six-ring window blocks the path of the exiting water molecules.

  3. Immobilization of Acetobacter aceti on cellulose ion exchangers: adsorption isotherms

    SciTech Connect

    Bar, R.; Gainer, J.L.; Kirwan, D.J.

    1986-08-01

    The adsorptive behavior of cells of Acetobacter aceti, ATCC 23746, on DEAE-, TEAE-, and DEHPAE-cellulose ion exchangers in a modified Hoyer's medium at 30 degrees Centigrade was investigated. The maximum observed adsorption capacities varied from 46 to 64 mg dry wt/g resin. The Langmuir isotherm form was used to fit the data, since the cells formed a monolayer on the resin and exhibited saturation. The equilibrium constant in the Langmuir expression was qualitatively correlated with the surface charge density of the resin. The adsorption was also ''normalized'' by considering the ionic capacities of the resins. The exceptionally high normalized adsorption capacity of ECTEOLA-cellulose, 261 mg dry/meq, may be explained by an interaction between the cell wall and the polyglyceryl chains of the exchanging groups in addition to the electrostatic effects. The effect of pH on the bacterial adsorption capacity of ECTEOLA-, TEAE-, and phosphate-cellulose resins was studied and the pH of the bacteria was estimated to be 3.0. 17 references.

  4. Detoxification of lignocellulose hydrolysates with ion-exchange resins.

    PubMed

    Nilvebrant, N O; Reimann, A; Larsson, S; Jönsson, L J

    2001-01-01

    Lignocellulose hydrolysates contain fermentation inhibitors causing decreased ethanol production. The inhibitors include phenolic compounds, furan aldehydes, and aliphatic acids. One of the most efficient methods for removing inhibiting compounds prior to fermentation is treatment of the hydrolysate with ion-exchange resins. The performance and detoxification mechanism of three different resins were examined: an anion exchanger, a cation exchanger, and a resin without charged groups (XAD-8). A dilute acid hydrolysate of spruce was treated with the resins at pH 5.5 and 10.0 prior to ethanolic fermentation with Saccharomyces cerevisiae. In addition to the experiments with hydrolysate, the effect of the resins on selected model compounds, three phenolics (vanillin, guaiacol, and coniferyl aldehyde) and two furan aldehydes (furfural and hydroxymethyl furfural), was determined. The cation exchanger increased ethanol production, but to a lesser extent than XAD-8, which in turn was less effective than the anion exchanger. Treatment at pH 10.0 was more effective than at pH 5.5. At pH 10.0, the anion exchanger efficiently removed both anionic and uncharged inhibitors, the latter by hydrophobic interactions. The importance of hydrophobic interactions was further indicated by a substantial decrease in the concentration of model compounds, such as guaiacol and furfural, after treatment with XAD-8. PMID:11963864

  5. Crystalline Silicotitanate Ion Exchange Support for Salt-Alternatives

    SciTech Connect

    Fondeur, F.F.

    2001-02-23

    The current version of crystalline silicotitanate (TAM5) is commercially available from UOP under the trade name IONSIV IE-911. TAM5 was extensively tested by several researchers and was determined as the best currently available material for removing radioisotopes from various types of nuclear wastes salt solutions stored at various DOE sites. The studies at Savannah River Technology Center (SRTC) indicated that the CST granules tend to leach into the nuclear waste simulants as it is processed by the ion exchange columns that is packed with CST granules from UOP. We, at Texas A and M University, agreed to conduct research to compliment the efforts at SRTC so that IONSIV IE-911 could be used for the treatment of nuclear waste stored at the DOE Savannah River facility. After consultation, we developed a Task Plan in January 2000. According to the agreement between Westinghouse Savannah River Company, Savannah River Technology Center, Aiken SC 29808 and, College Station, TX 77843, synthesis and the performance evaluations of crystalline silicotitanates (CST) were performed the during period of April 1 - September 30, 2000. Our main goals were delivery of a kilogram of CST (TAM5-4) synthesized at Texas A and M University in July to SRTC, performance evaluation of CST in nuclear waste simulants, and consultation mainly by telephone.

  6. Porous metal oxide microspheres from ion exchange resin

    NASA Astrophysics Data System (ADS)

    Picart, S.; Parant, P.; Caisso, M.; Remy, E.; Mokhtari, H.; Jobelin, I.; Bayle, J. P.; Martin, C. L.; Blanchart, P.; Ayral, A.; Delahaye, T.

    2015-07-01

    This study is devoted to the synthesis and the characterization of porous metal oxide microsphere from metal loaded ion exchange resin. Their application concerns the fabrication of uranium-americium oxide pellets using the powder-free process called Calcined Resin Microsphere Pelletization (CRMP). Those mixed oxide ceramics are one of the materials envisaged for americium transmutation in sodium fast neutron reactors. The advantage of such microsphere precursor compared to classical oxide powder is the diminution of the risk of fine dissemination which can be critical for the handling of highly radioactive powders such as americium based oxides and the improvement of flowability for the filling of compaction chamber. Those millimetric oxide microspheres incorporating uranium and americium were synthesized and characterizations showed a very porous microstructure very brittle in nature which occurred to be adapted to shaping by compaction. Studies allowed to determine an optimal heat treatment with calcination temperature comprised between 700-800 °C and temperature rate lower than 2 °C/min. Oxide Precursors were die-pressed into pellets and then sintered under air to form regular ceramic pellets of 95% of theoretical density (TD) and of homogeneous microstructure. This study validated thus the scientific feasibility of the CRMP process to prepare bearing americium target in a powder free manner.

  7. The quantitative ion exchange separation of uranium from impurities

    SciTech Connect

    Narayanan, U.I.; Mason, P.B.; Zebrowski, J.P.; Rocca, M.; Frank, I.W.; Smith, M.M.; Johnson, K.D.; Orlowicz, G.J.; Dallmann, E.

    1995-03-01

    Two methods were tested for the quantitative separation of uranium from elemental impurities using commercially available resins. The sorption and elution behavior of uranium and the separation of it from a variety of other elements was studied. The first method utilized an anion exchange resin while the second method employed an extraction resin. The first method, the anion exchange of uranium (VI) in an acid chloride medium, was optimized and statistically tested for quantitative recovery of uranium. This procedure involved adsorption of uranium onto Blo-Rad AG 1-X8 or MP-1 ion exchange resins in 8 M HCl, separation of uncompleted or weakly complexed matrix ions with an 8 M HCI wash, and subsequent elution of uranium with 1 M HCl. Matrix ions more strongly adsorbed than uranium were left on the resin. Uranium recoveries with this procedure averaged greater than 99.9% with a standard deviation of 0.1%. In the second method, recovery of uranium on the extraction resin did not meet the criteria of this study and further examination was terminated.

  8. Magnetic ion exchange treatment of stabilized landfill leachate.

    PubMed

    Boyer, Treavor H; Graf, Katherine C; Comstock, Sarah E H; Townsend, Timothy G

    2011-05-01

    Stabilized landfill leachate is characterized by a high concentration of non-biodegradable organic matter, which is similar in chemistry to dissolved organic matter (DOM) in the natural aquatic environment. Magnetic ion exchange (MIEX) resin treatment is well-studied in drinking water for removal of DOM from natural waters. There are fewer studies evaluating MIEX treatment of waste waters, and there is no previous work evaluating MIEX treatment of landfill leachate. This work systematically evaluated MIEX treatment of stabilized landfill leachate and evaluated the results in the context of previous studies of MIEX treatment of natural and waste waters. Five leachates from four landfills were evaluated as a function of MIEX resin dose, mixing time, and regeneration efficiency. MIEX resin removed DOM from landfill leachate, even in the presence of a reported high background concentration of inorganic ions. MIEX resin that was exhausted with leachate DOM was effectively regenerated with a concentrated NaCl solution, and regenerated MIEX resin performed similarly to virgin resin. For a majority of the leachates, the removal trend for MIEX resin was color>UV-absorbing substances>dissolved organic carbon≈COD>total nitrogen. Finally, MIEX resin removed a wider range of DOM from leachate than coagulation. The most important contribution of this work is that MIEX treatment of leachate followed very similar trends as MIEX treatment of natural waters, which will allow previous MIEX data to be used to estimate the treatment efficiency of other waste waters. PMID:21497879

  9. Cation locations and dislocations in zeolites

    NASA Astrophysics Data System (ADS)

    Smith, Luis James

    The focus of this dissertation is the extra-framework cation sites in a particular structural family of zeolites, chabazite. Cation sites play a particularly important role in the application of these sieves for ion exchange, gas separation, catalysis, and, when the cation is a proton, acid catalysis. Structural characterization is commonly performed through the use of powder diffraction and Rietveld analysis of powder diffraction data. Use of high-resolution nuclear magnetic resonance, in the study of the local order of the various constituent nuclei of zeolites, complements well the long-range order information produced by diffraction. Recent developments in solid state NMR techniques allow for increased study of disorder in zeolites particularly when such phenomena test the detection limits of diffraction. These two powerful characterization techniques, powder diffraction and NMR, offer many insights into the complex interaction of cations with the zeolite framework. The acids site locations in SSZ-13, a high silica chabazite, and SAPO-34, a silicoaluminophosphate with the chabazite structure, were determined. The structure of SAPO-34 upon selective hydration was also determined. The insensitivity of X-rays to hydrogen was avoided through deuteration of the acid zeolites and neutron powder diffraction methods. Protons at inequivalent positions were found to have different acid strengths in both SSZ-13 and SAPO-34. Other light elements are incorporated into zeolites in the form of extra-framework cations, among these are lithium, sodium, and calcium. Not amenable by X-ray powder diffraction methods, the positions of such light cations in fully ion-exchanged versions of synthetic chabazite were determined through neutron powder diffraction methods. The study of more complex binary cation systems were conducted. Powder diffraction and solid state NMR methods (MAS, MQMAS) were used to examine cation site preferences and dislocations in these mixed-akali chabazites

  10. Nanomaterials-Enhanced Electrically Switched Ion Exchange Process for Water Treatment

    SciTech Connect

    Lin, Yuehe; Choi, Daiwon; Wang, Jun; Bontha, Jagannadha R.

    2009-01-01

    The objective of our work is to develop an electrically switched ion exchange (ESIX) system based on conducting polymer/carbon nanotube (CNT) nanocomposites as a new and cost-effective approach for removal of radioactive cesium, chromate, and perchlorate from contaminated groundwater. The ESIX technology combines ion exchange and electrochemistry to provide a selective, reversible method for the removal of target species from wastewater. In this technique, an electroactive ion exchange layer is deposited on a conducting substrate, and ion uptake and elution are controlled directly by modulation of the potential of the layer. ESIX offers the advantages of highly-efficient use of electrical energy combined with no secondary waste generation. Recently, we have improved upon the ESIX process by modifying the conducting substrate with carbon nanotubes prior to the deposition of the electroactive ion exchanger. The nanomaterial-based electroactive ion exchange technology will remove cesium-137, chromate, and perchlorate rapidly from wastewater. The high porosity and high surface area of the electroactive ion exchange nanocomposites results in high loading capacity and minimize interferences for non-target species. Since the ion adsorption/desorption is controlled electrically without generating a secondary waste, this electrically active ion exchange process is a green process technology that will greatly reduce operating costs.

  11. Molecular simulations and experimental studies of zeolites

    NASA Astrophysics Data System (ADS)

    Moloy, Eric C.

    Zeolites are microporous aluminosilicate tetrahedral framework materials that have symmetric cages and channels with open-diameters between 0.2 and 2.0 nm. Zeolites are used extensively in the petrochemical industries for both their microporosity and their catalytic properties. The role of water is paramount to the formation, structure, and stability of these materials. Zeolites frequently have extra-framework cations, and as a result, are important ion-exchange materials. Zeolites also play important roles as molecular sieves and catalysts. For all that is known about zeolites, much remains a mystery. How, for example, can the well established metastability of these structures be explained? What is the role of water with respect to the formation, stabilization, and dynamical properties? This dissertation addresses these questions mainly from a modeling perspective, but also with some experimental work as well. The first discussion addresses a special class of zeolites: pure-silica zeolites. Experimental enthalpy of formation data are combined with molecular modeling to address zeolitic metastability. Molecular modeling is used to calculate internal surface areas, and a linear relationship between formation enthalpy and internal surface areas is clearly established, producing an internal surface energy of approximately 93 mJ/m2. Nitrate bearing sodalite and cancrinite have formed under the caustic chemical conditions of some nuclear waste processing centers in the United States. These phases have fouled expensive process equipment, and are the primary constituents of the resilient heels in the bottom of storage tanks. Molecular modeling, including molecular mechanics, molecular dynamics, and density functional theory, is used to simulate these materials with respect to structure and dynamical properties. Some new, very interesting results are extracted from the simulation of anhydrous Na6[Si6Al 6O24] sodalite---most importantly, the identification of two distinct

  12. 10 CFR Appendix E to Part 110 - Illustrative List of Chemical Exchange or Ion Exchange Enrichment Plant Equipment and Components...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Illustrative List of Chemical Exchange or Ion Exchange.... 110, App. E Appendix E to Part 110—Illustrative List of Chemical Exchange or Ion Exchange Enrichment... chemical exchange and solid-liquid ion exchange. A. In the liquid-liquid chemical exchange...

  13. 10 CFR Appendix E to Part 110 - Illustrative List of Chemical Exchange or Ion Exchange Enrichment Plant Equipment and Components...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Illustrative List of Chemical Exchange or Ion Exchange.... 110, App. E Appendix E to Part 110—Illustrative List of Chemical Exchange or Ion Exchange Enrichment... chemical exchange and solid-liquid ion exchange. A. In the liquid-liquid chemical exchange...

  14. 10 CFR Appendix E to Part 110 - Illustrative List of Chemical Exchange or Ion Exchange Enrichment Plant Equipment and Components...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Illustrative List of Chemical Exchange or Ion Exchange.... 110, App. E Appendix E to Part 110—Illustrative List of Chemical Exchange or Ion Exchange Enrichment... chemical exchange and solid-liquid ion exchange. A. In the liquid-liquid chemical exchange...

  15. 10 CFR Appendix E to Part 110 - Illustrative List of Chemical Exchange or Ion Exchange Enrichment Plant Equipment and Components...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Illustrative List of Chemical Exchange or Ion Exchange.... 110, App. E Appendix E to Part 110—Illustrative List of Chemical Exchange or Ion Exchange Enrichment... chemical exchange and solid-liquid ion exchange. A. In the liquid-liquid chemical exchange...

  16. 10 CFR Appendix E to Part 110 - Illustrative List of Chemical Exchange or Ion Exchange Enrichment Plant Equipment and Components...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Illustrative List of Chemical Exchange or Ion Exchange.... 110, App. E Appendix E to Part 110—Illustrative List of Chemical Exchange or Ion Exchange Enrichment... chemical exchange and solid-liquid ion exchange. A. In the liquid-liquid chemical exchange...

  17. Synthesis and characterization of hydrophobic zeolite for the treatment of hydrocarbon contaminated ground water.

    PubMed

    Northcott, Kathy A; Bacus, Joannelle; Taya, Naoyuki; Komatsu, Yu; Perera, Jilska M; Stevens, Geoffrey W

    2010-11-15

    Hydrophobic zeolite was synthesized, modified and characterized for its suitability as a permeable reactive barrier (PRB) material for treatment of hydrocarbons in groundwater. Batch sorption tests were performed along with a number of standard characterization techniques. High and low ionic strength and pH tests were also conducted to determine their impact on hydrocarbon uptake. Further ion exchange tests were conducted to determine the potential for the zeolite to act as both a hydrocarbon capture material and nutrient a delivery system for bioremediation. The zeolite was coated with octadecyltrichlorosilane (C18) to change its surface properties. The results of the surface characterization tests showed that the underlying zeolite structure was largely unaffected by the coating. TGA measurements showed a reactive carbon content of 1-2%. Hydrocarbon (o-xylene and naphthalene) sorption isotherms results compared well with the behaviour of similar materials investigated by other researchers. Ionic strength and pH had little effect on hydrocarbon sorption and the treated zeolite had an ion exchange capacity of 0.3 mequiv./g, indicating it could be utilised as a nutrient source in PRBs. Recycle tests indicated that the zeolite could be used cleaned and reused at least three times without significant reduction in treatment effectiveness. PMID:20688431

  18. Ion exchange in the atomic energy industry with particular reference to actinide and fission product separation

    SciTech Connect

    Jenkins, I.L.

    1984-01-01

    Reviewed are some of the uses of ion exchange processes used by the nuclear industry for the period April, 1978 to April, 1983. The topics dealt with are: thorium, protactinium, uranium, neptunium, plutonium, americium, cesium and actinide-lanthanide separations; the higher actinides - Cm, Bk, Cf, Es and Fm; fission products; ion exchange in the geological disposal of radioactive waste. Consideration is given to safety in the use of ion exchangers and in safe methods of disposal of such materials. Full scale and pilot plant process descriptions are included as well as summaries of laboratory studies. 130 references.

  19. Characterization of Chemical Properties, Unit Cell Parameters and Particle Size Distribution of Three Zeolite Reference Materials: RM 8850 - Zeolite Y, RM 8851 - Zeolite A and RM 8852 - Ammonium ZSM-5 Zeolite

    SciTech Connect

    Turner,S.; Sieber, J.; Vetter, T.; Zeisler, R.; Marlow, A.; Moreno-Ramirez, M.; Davis, M.; Kennedy, G.; Borghard, W.; et al

    2008-01-01

    Zeolites have important industrial applications including use as catalysts, molecular sieves and ion exchange materials. In this study, three zeolite materials have been characterized by the National Institute of Standards and Technology (NIST) as reference materials (RMs): zeolite Y (RM 8850), zeolite A (RM 8851) and ZSM-5 zeolite (RM 8852). They have been characterized by a variety of chemical and physical measurement methods: X-ray fluorescence (XRF), gravimetry, instrumental neutron activation analysis (INAA), nuclear magnetic resonance (NMR), calorimetry, synchrotron X-ray diffraction, neutron diffraction, laser light extinction, laser light scattering, electric sensing zone, X-ray sedimentation, scanning transmission electron microscopy (STEM), scanning electron microscopy (SEM) and optical microscopy. The chemical homogeneity of the materials has been characterized. Reference values are given for the major components (major elements, loss on ignition [LOI] and loss on fusion [LOF]), trace elements and Si/Al and Na/Al ratios. Information values are given for enthalpies of formation, unit cell parameters, particle size distributions, refractive indices and variation of mass with variation in relative humidity (RH). Comparisons are made to literature unit cell parameters. The RMs are expected to provide a basis for intercomparison studies of these zeolite materials.

  20. Removal of metal cations from water using zeolites

    SciTech Connect

    Zamzow, M.J.; Murphy, J.E. )

    1992-11-01

    Zeolites from abundant natural deposits were investigated by the Bureau of Mines for efficiently cleaning up mining industry wastewaters. Twenty-four zeolite samples were analyzed by x-ray diffraction and inductively coupled plasma. These included clinoptilolite, mordenite, chabazite, erionite, and phillipsite. Bulk densities of a sized fraction ([minus]40, +65 mesh) varied from 0.48 to 0.93 g/ml. Attrition losses ranged from 1 to 18% during an hour-long shake test. The 24 zeolites and an ion-exchange resin were tested for the uptake of Cd, Cu, and Zn. Of the natural zeolites, phillipsite proved to be the most efficient, while the mordenites had the lowest uptakes. Sodium was the most effective exchangeable ion for exchange of heavy metals. Wastewater from an abandoned copper mine in Nevada was used to test the effectiveness of clinoptilolite for treating a multi-ion wastewater. The metal ions Fe[sup 3+], Cu[sup 2+], and Zn[sup 2+] in the copper mine wastewater were removed to below drinking water standards, but Mn[sup 2+] and Ni[sup 2+] were not. Calcium and NH[sub 4][sup +] interfered with the uptake of heavy metals. Adsorbed heavy metals were eluted from zeolites with a 3% NaCl solution. Heavy metals were concentrated in the eluates up to 30-fold relative to the waste solution. Anions were not adsorbed by the zeolites.

  1. Revised Thermal Analysis of LANL Ion Exchange Column

    SciTech Connect

    Laurinat, J

    2006-04-11

    This document updates a previous calculation of the temperature distributions in a Los Alamos National Laboratory (LANL) ion exchange column.1 LANL operates two laboratory-scale anion exchange columns, in series, to extract Pu-238 from nitric acid solutions. The Defense Nuclear Facilities Safety Board has requested an updated analysis to calculate maximum temperatures for higher resin loading capacities obtained with a new formulation of the Reillex HPQ anion exchange resin. The increased resin loading capacity will not exceed 118 g plutonium per L of resin bed. Calculations were requested for normal operation of the resin bed at the minimum allowable solution feed rate of 30 mL/min and after an interruption of flow at the end of the feed stage, when one of the columns is fully loaded. The object of the analysis is to demonstrate that the decay heat from the Pu-238 will not cause resin bed temperatures to increase to a level where the resin significantly degrades. At low temperatures, resin bed temperatures increase primarily due to decay heat. At {approx}70 C a Low Temperature Exotherm (LTE) resulting from the reaction between 8-12 M HNO{sub 3} and the resin has been observed. The LTE has been attributed to an irreversible oxidation of pendant ethyl benzene groups at the termini of the resin polymer chains by nitric acid. The ethyl benzene groups are converted to benzoic acid moities. The resin can be treated to permanently remove the LTE by heating a resin suspension in 8M HNO{sub 3} for 30-45 minutes. No degradation of the resin performance is observed after the LTE removal treatment. In fact, heating the resin in boiling ({approx}115-120 C) 12 M HNO{sub 3} for 3 hr displays thermal stability analogous to resin that has been treated to remove the LTE. The analysis is based on a previous study of the SRS Frames Waste Recovery (FWR) column, performed in support of the Pu-238 production campaign for NASA's Cassini mission. In that study, temperature transients

  2. Potentiometric sensors with ion-exchange Donnan exclusion membranes.

    PubMed

    Grygolowicz-Pawlak, Ewa; Crespo, Gastón A; Ghahraman Afshar, Majid; Mistlberger, Günter; Bakker, Eric

    2013-07-01

    Potentiometric sensors that exhibit a non-Hofmeister selectivity sequence are normally designed by selective chemical recognition elements in the membrane. In other situations, when used as detectors in separation science, for example, membranes that respond equally to most ions are preferred. With so-called liquid membranes, a low selectivity is difficult to accomplish since these membranes are intrinsically responsive to lipophilic species. Instead, the high solubility of sample lipids in an ionophore-free sensing matrix results in a deterioration of the response. We explore here potentiometric sensors on the basis of ion-exchange membranes commonly used in fuel cell applications and electrodialysis, which have so far not found their way into the field of ion-selective electrodes. These membranes act as Donnan exclusion membranes as the ions are not stripped of their hydration shell as they interact with the membrane. Because of this, lipophilic ions are no longer preferred over hydrophilic ones, making them promising candidates for the detection of abundant ions in the presence of lipophilic ones or as detectors in separation science. Two types of cation-exchanger membranes and one anion-exchange membrane were characterized, and potentiometric measuring ranges were found to be Nernstian over a wide range down to about 10 μM concentrations. Depending on the specific membrane, lipophilic ions gave equal response to hydrophilic ones or were even somewhat discriminated. The medium and long-term stability and reproducibility of the electrode signals were found to be promising when evaluated in synthetic and whole blood samples. PMID:23731350

  3. Vitrification of ion exchange materials. Innovative technology summary report

    SciTech Connect

    Not Available

    1999-07-01

    Ion exchange is a process that safely and efficiently removes radionuclides from tank waste. Cesium and strontium account for a large portion of the radioactivity in waste streams from US Department of Energy (DOE) weapons production. Crystalline silicotitanate (CST) is an inorganic sorbent that strongly binds cesium, strontium, and several other radionuclides. Developed jointly by Sandia National Laboratory and Texas A and M University, CST was commercialized through a cooperative research and development agreement with an industrial partner. Both an engineered (mesh pellets) and powdered forms are commercially available. Cesium removal is a baseline in HLW treatment processing. CST is very effective at removing cesium from HLW streams and is being considered for adoption at several sites. However, CST is nonregenerable, and it presents a significant secondary waste problem. Treatment options include vitrification of the CST, vitrification of the CST coupled with HLW, direct disposal, and low-temperature processes such as grouting. The work presented in this report demonstrates that it is effective to immobilize CST using a baseline technology such as vitrification. Vitrification produces a durable waste form. CST vitrification was not demonstrated before 1996. In FY97, acceptable glass formulations were developed using cesium-loaded CST obtained from treating supernatants from Oak Ridge Reservation (ORR) tanks, and the CST was vitrified in a research melter at the Savannah River Technology Center (SRTC). In FY98, SRS decided to reevaluate the use of in-tank precipitation using tetraphenylborate to remove cesium from tank supernatant and to consider other options for cesium removal, including CST. Hanford and Idaho National Engineering and Environmental Laboratory also require radionuclide removal in their baseline flowsheets.

  4. Peptide Orientation Affects Selectivity in Ion-Exchange Chromatography

    SciTech Connect

    Alpert, Andrew J.; Petritis, Konstantinos; Kangas, Lars J.; Smith, Richard D.; Mechtler, Karl; Mitulovic, Goran; Mohammed, Shabaz; Heck, Albert J.

    2010-06-15

    Here we demonstrate that separation of proteolytic peptides, having the same net charge and one basic residue, is affected by their specific orientation toward the stationary phase in ion-exchange chromatography. In electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) with an anion-exchange material, the C-terminus of the peptides is, on average, oriented toward the stationary phase. In cation exchange, the average peptide orientation is the opposite. Data with synthetic peptides, serving as orientation probes, indicate that in tryptic/Lys-C peptides the C-terminal carboxyl group appears to be in a zwitterionic bond with the side chain of the C-terminal Lys/Arg residue. In effect, the side chain is then less basic than the N-terminus, accounting for the specific orientation of tryptic and Lys-C peptides. Analyses of larger sets of peptides, generated from lysates by either Lys-N, Lys-C, or trypsin, reveal that specific peptide orientation affects the ability of harged side chains, such as phosphate residues, to influence retention. Phosphorylated residues that are remote in the sequence from the binding site affect retention less than those that are closer. When a peptide contains multiple charged sites, then orientation is observed to be less rigid and retention tends to be governed by the peptide’s net charge rather than its sequence. These general observations could be of value in confirming a peptide’s identification and, in particular, phosphosite assignments in proteomics analyses. More generally, orientation accounts for the ability of chromatography to separate peptides of the same compositionbut different sequence.

  5. Peptide Orientation Affects Selectivity in Ion-Exchange Chromatography

    SciTech Connect

    Alpert, Andrew J.; Petritis, Konstantinos; Kangas, Lars J.; Smith, R. D.; Mechtler, Karl; Mitulovic, Goran; Mohammed, Shabaz; Heck, Albert J.

    2010-06-15

    Here we demonstrate that separation of proteolytic peptides, having the same net charge and one basic residue, is affected by their specific orientation toward the stationary phase in ion-exchange chromatography. In electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) with an anion-exchange material, the C-terminus of the peptides is, on average, oriented toward the stationary phase. In cation exchange, the average peptide orientation is the opposite. Data with synthetic peptides, serving as orientation probes, indicate that in tryptic/ Lys-C peptides the C-terminal carboxyl group appears to be in a zwitterionic bond with the side chain of the C-terminal Lys/Arg residue. In effect, the side chain is then less basic than the N-terminus, accounting for the specific orientation of tryptic and Lys-C peptides. Analyses of larger sets of peptides, generated from lysates by either Lys-N, Lys-C, or trypsin, reveal that specific peptide orientation affects the ability of charged side chains, such as phosphate residues, to influence retention. Phosphorylated residues that are remote in the sequence from the binding site affect retention less than those that are closer. When a peptide contains multiple charged sites, then orientation is observed to be less rigid and retention tends to be governed by the peptide’s net charge rather than its sequence. These general observations could be of value in confirming a peptide’s identification and, in particular, phosphosite assignments in proteomics analyses. More generally, orientation accounts for the ability of chromatography to separate peptides of the same composition but different sequence.

  6. Peptide Orientation Affects Selectivity in Ion-Exchange Chromatography

    PubMed Central

    2010-01-01

    Here we demonstrate that separation of proteolytic peptides, having the same net charge and one basic residue, is affected by their specific orientation toward the stationary phase in ion-exchange chromatography. In electrostatic repulsion−hydrophilic interaction chromatography (ERLIC) with an anion-exchange material, the C-terminus of the peptides is, on average, oriented toward the stationary phase. In cation exchange, the average peptide orientation is the opposite. Data with synthetic peptides, serving as orientation probes, indicate that in tryptic/Lys-C peptides the C-terminal carboxyl group appears to be in a zwitterionic bond with the side chain of the C-terminal Lys/Arg residue. In effect, the side chain is then less basic than the N-terminus, accounting for the specific orientation of tryptic and Lys-C peptides. Analyses of larger sets of peptides, generated from lysates by either Lys-N, Lys-C, or trypsin, reveal that specific peptide orientation affects the ability of charged side chains, such as phosphate residues, to influence retention. Phosphorylated residues that are remote in the sequence from the binding site affect retention less than those that are closer. When a peptide contains multiple charged sites, then orientation is observed to be less rigid and retention tends to be governed by the peptide’s net charge rather than its sequence. These general observations could be of value in confirming a peptide’s identification and, in particular, phosphosite assignments in proteomics analyses. More generally, orientation accounts for the ability of chromatography to separate peptides of the same composition but different sequence. PMID:20481592

  7. Characterization of lead sorption by the natural and Fe(III)-modified zeolite

    NASA Astrophysics Data System (ADS)

    Kragović, Milan; Daković, Aleksandra; Marković, Marija; Krstić, Jugoslav; Gatta, G. Diego; Rotiroti, Nicola

    2013-10-01

    The influence of contact time, temperature and particle size on lead sorption by the natural and Fe(III)-modified zeolites was investigated. Characterization of the natural and Fe(III)-modified zeolite before and after lead sorption was performed by determination of textural properties, by scanning electron microscopy and X-ray spectroscopy in energy-dispersive mode (SEM-EDS), transmission electron microscopy (TEM) and X-ray powder diffraction (XRPD) analysis. Lead sorption kinetics at 303-333 K, best represented by the pseudo-second order model and activation energy (13.5 and 8.5 kJ/mol for the natural and Fe(III)-modified zeolite respectively) confirmed an activated chemical sorption. Desorption experiments indicated that lead was irreversibly sorbed on both zeolites. XRPD, TEM and SEM results showed that modification of the natural zeolite with Fe(III) ions did not change its crystal structure and iron is mainly located at the zeolite surface, likely in form of amorphous iron oxy-hydroxides. Specific surface area significantly increases after modification of the natural zeolite with Fe(III) ions (from 30.2 for the natural to 52.5 m2/g for Fe(III)-modified zeolite). Characterization of both lead saturated sorbents suggested that besides ion exchange, lead is both chemisorbed and precipitated at their surfaces, and presence of amorphous iron in Fe(III)-modified zeolite favors sorption of lead.

  8. Comprehensive Study of the Solubility, Thermochemistry, Ion Exchange, and Precipitation Kinetics of NO3 Cancrinite and NO33 Sodalite

    SciTech Connect

    Navrotsky, Alexandra; Liu, Qinyuan

    2004-12-01

    The precipitation of aluminosilicate phases from caustic nuclear wastes has proven to be problematic in a number of processes including radionuclide separations (cementation of columns by aluminosilicate phases), tank emptying (aluminosilicate tank heels), and condensation of wastes in evaporators (aluminosilicate precipitates in the evaporators, providing nucleation sites for growth of critical masses of radioactive actinide salts). In a collaboration between SNL and UCD, we have investigated why and how these phases form, and which conditions favor the formation of which phases. These studies have involved synthesis and characterization of aluminosilicate phases formed using a variety of synthesis techniques, kinetics of precipitation, structural investigations of aluminosilicate phases, thermodynamic calculations of aluminosilicate solubility, calorimetric studies of aluminosilicate precipitation, and a limited investigation of radionuclide partitioning and ion exchange processes (involving typical tank fluid chemistries and these materials). The predominant phases that are observed in the aluminosilicate precipitates from basic tanks wastes (i.e. Hanford, Savannah River Site ''SRS'' wastes) are the salt enclathrated zeolites: sodium nitrate, sodium carbonate and sodium hydroxide sodalite and cancrinite. These phases precipitate readily from the high ionic strength, highly basic solutions at ambient temperatures as well as at elevated temperatures, with or without the presence of an external Al and Si source (both are contained in the waste solutions), and upon interactions with reactive soil components such as clays.

  9. A novel electrochemical ion exchange system and its application in water treatment.

    PubMed

    Li, Yansheng; Li, Yongbin; Liu, Zhigang; Wu, Tao; Tian, Ying

    2011-06-01

    A novel electrochemical ion exchange system with porous cylinder electrodes is proposed for treatment of wastewater. This system can be used for desalination without the costly ion-exchange membrane and extra chemical reagents. Since the electrodes are completely uniform and no ion-exchange membrane was used in this system, it can be operated by switching anodes and cathodes flexibly for eliminating the scaling on the surface of electrodes. The strong base ion-exchange resin grains placed among the anode and cathode have played as supporting electrolyte, which is capable for the treatment of wastewater with low conductivity. The concentrated and neutralized anolyte containing chlorine is effective for disinfection and contaminants removal. Under the experimental conditions, the removal percentage of total dissolved salts was 83% and the removal percentage of chemical oxygen demand was 92% without consumption of extra chemical reagents. PMID:25084577

  10. Electrical resistance and transport numbers of ion-exchange membranes used in electrodialytic soil remediation

    SciTech Connect

    Hansen, H.K.; Ottosen, L.M.; Villumsen, A.

    1999-08-01

    Electrodialytic soil remediation is a recently developed method to decontaminate heavy metal polluted soil using ion-exchange membranes. In this method one side of the ion-exchange membrane is in direct contact with the polluted soil. It is of great importance to known if this contact with the soil causes damage to the membrane. This work presents the result of transport number and electrical resistance measurements done on four sets of ion-exchange membranes (Ionics, Inc CR67 HMR412 cation-exchange membranes and Ionics, Inc AR204 SXZR anion-exchange membranes), which have been used in four different electrodialytic soil remediation experiments. The experiments showed that after the use in electrodialytic soil remediation, the ion-exchange membranes had transport numbers in the same magnitude as new membranes. The electrical resistance for six membranes did not differ from that of new membranes, whereas two membranes showed a slightly increased resistance.

  11. MODELING AN ION EXCHANGE PROCESS FOR CESIUM REMOVAL FROM ALKALINE RADIOACTIVE WASTE SOLUTIONS

    SciTech Connect

    Smith, F; Luther Hamm, L; Sebastian Aleman, S; Johnston Michael, J

    2008-08-26

    The performance of spherical Resorcinol-Formaldehyde ion-exchange resin for the removal of cesium from alkaline radioactive waste solutions has been investigated through computer modeling. Cesium adsorption isotherms were obtained by fitting experimental data using a thermodynamic framework. Results show that ion-exchange is an efficient method for cesium removal from highly alkaline radioactive waste solutions. On average, two 1300 liter columns operating in series are able to treat 690,000 liters of waste with an initial cesium concentration of 0.09 mM in 11 days achieving a decontamination factor of over 50,000. The study also tested the sensitivity of ion-exchange column performance to variations in flow rate, temperature and column dimensions. Modeling results can be used to optimize design of the ion exchange system.

  12. Spatial distributions of scandium in granules of different ion-exchangers

    SciTech Connect

    Komarova, N.I.; Molchanova, T.V.; Rodionov, V.V.; Vodolazov, L.I.

    1992-01-20

    Scanning electron microscopy (SEM) and electron probe microanalysis (EPM) using an electron probe with high local sensitivity in nondestructive action on the sample, which is important in the analysis of ion-exchange materials, are efficient methods for physicochemical studies. SEM and EPM make it possible to study the spatial distribution of elements, characteristics of their absorption by ion-exchange materials, and establish the mechanisms of physicochemical transformations, the composition of microsections of granules, etc.. Effective ion-exchangers for extraction of scandium from sulfuric acid solutions were selected, and the characteristics of sorption absorption of scandium and the accompanying elements on these ion-exchangers were investigated by SEM and EPM. 11 refs., 2 figs.

  13. Free volume and gas permeation in ion-exchanged forms of the Nafion® membrane

    NASA Astrophysics Data System (ADS)

    Mohamed, Hamdy F. M.; Kobayashi, Y.; Kuroda, C. S.; Ohira, A.

    2010-04-01

    Variations of free volume and gas permeability of the Nafion® membrane upon ion-exchange of H+ with Cs+ or Pt2+ was studied as a function of temperature. Free volume was quantified using the positron annihilation lifetime technique. Our results showed that the free volume (VFV,Ps) of the dried membrane is enlarged by thermal expansion. It was found that the ion-exchange significantly expands the free volume and at the same time decreases the permeabilities of O2 and H2. Good linear correlations between the logarithm of permeabilities of O2 and H2 at different temperatures and 1/VFV,Ps for the ion-exchanged forms of Nafion® in the dried state suggest an important role played by the free volume in gas permeation. Considerable downward deviation of the correlations for the ion-exchanged ionomers from the H+-form suggested the importance of polymer stiffening in gas permeation.

  14. Removal of uranium, arsenic, and nitrate by continuously regenerated ion exchange process

    SciTech Connect

    Chang, D.; Awad, J.; Panahi, Z.

    1996-11-01

    Groundwater is the major source of water supply for the City of Riverside (the City). Groundwater from some of the local wells contains high levels of uranium, arsenic, and nitrate. The City is evaluating treatment technologies that can remove these contaminants, in order to be prepared to select appropriate treatment technologies when groundwater treatment is required. Treatment technologies identified by the USEPA as best available technology (BAT) for uranium and arsenic removal are coagulation/filtration, lime softening, ion exchange, and reverse osmosis. Among these technologies, ion exchange is the most cost-effective and suitable for wellhead treatment applications. Ion exchange is also effective for nitrate removal. An ion exchange pilot study was conducted for the removal of uranium, arsenic and nitrate from groundwater. This paper presents a summary of the tests results, conceptual design criteria, and preliminary cost estimate for a full-scale facility.

  15. The effect of electron beam irradiation on silver-sodium ion exchange in silicate glasses

    NASA Astrophysics Data System (ADS)

    Sidorov, Alexander I.; Prosnikov, Mikhail A.

    2016-04-01

    It is shown experimentally that electron irradiation of sodium-silicate glasses makes possible the control of the subsequent ion exchange Ag+ ↔ Na+ process in a salt melt. The reason of this effect is the negatively charged regions formation in a glass volume during electron irradiation. The electric field, produced by these regions in glass volume, results in positive Na+ ions field migration into them. The spatial redistribution of Na+ ions results in the decrease of the ion exchange efficiency, or the ion exchange can be even blocked. This led to the decrease of the luminescence intensity of neutral silver molecular clusters in the irradiated zone, and effect on the silver nanoparticles formation during the subsequent thermal treatment. The observed effects can be used for the control of ion exchange processes during integrated optics devices fabrication, and for the electron-beam recording of optical information.

  16. Ion-exchange chromatography separation applied to mineral recycle in closed systems

    NASA Technical Reports Server (NTRS)

    Ballou, E.; Spitze, L. A.; Wong, F. W.; Wydeven, T.; Johnson, C. C.

    1981-01-01

    As part of the controlled ecological life support system (CELSS) program, a study is being made of mineral separation on ion-exchange columns. The purpose of the mineral separation step is to allow minerals to be recycled from the oxidized waste products of plants, man, and animals for hydroponic food production. In the CELSS application, relatively large quantities of minerals in a broad concentration range must be recovered by the desired system, rather than the trace quantities and very low concentrations treated in analytical applications of ion-exchange chromatography. Experiments have been carried out to assess the parameters pertinent to the scale-up of ion-exchange chromatography and to determine feasibility. Preliminary conclusions are that the column scale-up is in a reasonable size range for the CELSS application. The recycling of a suitable eluent, however, remains a major challenge to the suitability of using ion exchange chromatography in closed systems.

  17. The Determination of Calcium in Dietary Supplement Tablets by Ion-Exchange.

    ERIC Educational Resources Information Center

    Dietz, Mark L.

    1986-01-01

    An experimental simple ion-exchange experiment in which the amount of calcium present in dietary supplement tablets has been developed is described and some typical student results for several brands of tablets are presented. (JN)

  18. Method of detecting defects in ion exchange membranes of electrochemical cells by chemochromic sensors

    DOEpatents

    Brooker, Robert Paul; Mohajeri, Nahid

    2016-01-05

    A method of detecting defects in membranes such as ion exchange membranes of electrochemical cells. The electrochemical cell includes an assembly having an anode side and a cathode side with the ion exchange membrane in between. In a configuration step a chemochromic sensor is placed above the cathode and flow isolation hardware lateral to the ion exchange membrane which prevents a flow of hydrogen (H.sub.2) between the cathode and anode side. The anode side is exposed to a first reactant fluid including hydrogen. The chemochromic sensor is examined after the exposing for a color change. A color change evidences the ion exchange membrane has at least one defect that permits H.sub.2 transmission therethrough.

  19. Technology transfer: Ion exchange resins for Technetium-99 removal from X-705 raffinates

    SciTech Connect

    Deacon, L.E.; Greiner, M.J.

    1982-12-03

    An ion exchange process will be used at Portsmouth to remove Technetium-99 from uranium recovery waste solutions (raffinates). Subsequent treatment will then remove nitrates from the raffinates by a biodenitrification process prior to discharge to receiving streams to meet environmental standards for liquid wastes. Ion exchange process parameters affecting safe and efficient raffinate treatment have been examined in the laboratory, and results are described in this report. 4 refs., 3 figs., 6 tabs.

  20. Experimental Ion Exchange Column With SuperLig 639 And Simulant Formulation

    SciTech Connect

    Morse, Megan; Nash, C.

    2013-08-26

    SuperLig®639 ion exchange resin was tested as a retrieval mechanism for pertechnetate, through decontamination of a perrhenate spiked 5M Simple Average Na{sup +} Mass Based Simulant. Testing included batch contacts and a three-column ion exchange campaign. A decontamination of perrhenate exceeding 99% from the liquid feed was demonstrated. Analysis of the first formulation of a SBS/WESP simulant found unexpectedly low concentrations of soluble aluminum. Follow-on work will complete the formulation.

  1. Application of the new thermodynamic approach to the description of superequivalent sorption by ion exchangers

    NASA Astrophysics Data System (ADS)

    Khokhlova, O. N.

    2014-08-01

    Using the example of sorption systems with the participation of amino acids, it is shown that the novel thermodynamic approach to describing superequivalent sorption as a combination of ion exchange and nonexchangeable absorption allows us to adequately describe such equilibria. Results from calculating the activity coefficients of components of a sorbent phase and the thermodynamic constants of ion exchange equilibrium and the superequivalent absorption of phenylalanine by AV-17-8 anion exchange resin are presented.

  2. Lead Removal From Synthetic Leachate Matrices by a Novel Ion-Exchange Material

    NASA Technical Reports Server (NTRS)

    Street, Kenneth W., Jr.; Hovanitz, Edward S.; Chi, Sulan

    2002-01-01

    This report discusses the application of a novel polyacrylate-based ion-exchange material (IEM) for the removal of lead (Pb) ions from water. Preliminary testing includes the establishment of the operating pH range, capacity information, and the effect of calcium and anions in the matrix. Batch testing with powder indicates slightly different optimal operational conditions from those used for column testing. The ion exchanger is excellent for removing lead from aqueous solutions.

  3. Quantifying defects in zeolites and zeolite membranes

    NASA Astrophysics Data System (ADS)

    Hammond, Karl Daniel

    Zeolites are crystalline aluminosilicates that are frequently used as catalysts to transform chemical feedstocks into more useful materials in a size- or shape-selective fashion; they are one of the earliest forms of nanotechnology. Zeolites can also be used, especially in the form of zeolite membranes (layers of zeolite on a support), to separate mixtures based on the size of the molecules. Recent advances have also created the possibility of using zeolites as alkaline catalysts, in addition to their traditional applications as acid catalysts and catalytic supports. Transport and catalysis in zeolites are greatly affected by physical and chemical defects. Such defects can be undesirable (in the case of zeolite membranes), or desirable (in the case of nitrogen-doped alkaline zeolites). Studying zeolites at the relevant length scales requires indirect experimental methods such as vapor adsorption or atomic-scale modeling such as electronic structure calculations. This dissertation explores both experimental and theoretical characterization of zeolites and zeolite membranes. Physical defects, important in membrane permeation, are studied using physical adsorption experiments and models of membrane transport. The results indicate that zeolite membranes can be modeled as a zeolite powder on top of a support---a "supported powder," so to speak---for the purposes of adsorption. Mesoporosity that might be expected based on permeation and confocal microscopy measurements is not observed. Chemical defects---substitutions of nitrogen for oxygen---are studied using quantum mechanical models that predict spectroscopic properties. These models provide a method for simulating the 29Si NMR spectra of nitrogendefected zeolites. They also demonstrate that nitrogen substitutes into the zeolite framework (not just on the surface) under the proper reaction conditions. The results of these studies will be valuable to experimentalists and theorists alike in our efforts to understand the

  4. Small-Column Ion-Exchange Alternative to Remove 137Cs from Low-Curie Salt Waste: Summary of Phase 1

    SciTech Connect

    Walker, JR.,J.F.

    2004-05-12

    A Small-Column Ion-Exchange (SCIX) system is being evaluated for removing cesium from the Type 2 and/or Type 3 dissolved saltcake wastes at the Savannah River Site (SRS) to ensure that the dissolved saltcake meets the waste acceptance criteria at the Saltstone Facility. Both crystalline silicotitanate (CST) and IONSIV{trademark} IE-96 zeolite were evaluated as the ion-exchange media. The accelerated alternative, using CST in the SCIX, could save as much as $3 billion in operating and storage costs and {approx}20 years in processing time compared to the current baseline. With its proven high cesium-loading capacity for the expected dissolved saltcake compositions and temperatures, CST is the preferred sorbent for SCIX. The low-cost alternative sorbent, zeolite, greatly increases the volume of sorbent required because of its much lower cesium-loading capacity. Thus, zeolite greatly increases the cost for the alternative, mainly because of the increased number of Defense Waste Processing Facility canisters required to dispose of the loaded sorbent (potentially over 7000 for zeolite, compared with <500 for CST). The models previously developed for predicting cesium loading on CST compared favorably with laboratory measurements of equilibrium distribution ratios and column loading performance using dissolved saltcake simulants. These models predict that a column of 432 gal of CST can operate at 25 gal/min and treat 100,000 to 900,000 gal of dissolved saltcake, depending on the solution composition. An average value of 300,000 gal per column was used for the cost benefit analysis. Predicted cesium loading on the CST is normally below 300 Ci/L; however, solutions with low salt concentrations could potentially load the CST to 630 Ci/L. Heat transfer calculations predict nonboiling temperatures for the small columns with loadings <100 Ci/L with only natural convection cooling. For the loadings up to the maximum calculated for the tank farm (630 Ci/L), a water cooling system

  5. Enhanced capacity and stability for the separation of cesium in electrically switched ion exchange

    SciTech Connect

    Tawfic, A.F.; Dickson, S.E.; Kim, Y.; Mekky, W.

    2015-03-15

    Electrically switched ion exchange (ESIX) can be used to separate ionic contaminants from industrial wastewater, including that generated by the nuclear industry. The ESIX method involves sequential application of reduction and oxidation potentials to an ion exchange film to induce the respective loading and unloading of cesium. This technology is superior to conventional methods (e.g electrodialysis reversal or reverse osmosis) as it requires very little energy for ionic separation. In previous studies, ESIX films have demonstrated relatively low ion exchange capacities and limited film stabilities over repeated potential applications. In this study, the methodology for the deposition of electro-active films (nickel hexacyanoferrate) on nickel electrodes was modified to improve the ion exchange capacity for cesium removal using ESIX. Cyclic voltammetry was used to investigate the ion exchange capacity and stability. Scanning electron microscopy (SEM) was used to characterize the modified film surfaces. Additionally, the films were examined for the separation of cesium ions. This modified film preparation technique enhanced the ion exchange capacity and improves the film stability compared to previous methods for the deposition of ESIX films. (authors)

  6. Coupled acoustic-gravity field for dynamic evaluation of ion exchange with a single resin bead.

    PubMed

    Kanazaki, Takahiro; Hirawa, Shungo; Harada, Makoto; Okada, Tetsuo

    2010-06-01

    A coupled acoustic-gravity field is efficient for entrapping a particle at the position determined by its acoustic properties rather than its size. This field has been applied to the dynamic observation of ion-exchange reactions occurring in a single resin bead. The replacement of counterions in an ion-exchange resin induces changes in its acoustic properties, such as density and compressibility. Therefore, we can visually trace the advancement of an ion-exchange reaction as a time change in the levitation position of a resin bead entrapped in the field. Cation-exchange reactions occurring in resin beads with diameters of 40-120 microm are typically completed within 100-200 s. Ion-exchange equilibrium or kinetics is often evaluated with off-line chemical analyses, which require a batch amount of ion exchangers. Measurements with a single resin particle allow us to evaluate ion-exchange dynamics and kinetics of ions including those that are difficult to measure by usual off-line analyses. The diffusion properties of ions in resins have been successfully evaluated from the time change in the levitation positions of resin beads. PMID:20462180

  7. ROTARY FILTER FINES TESTING FOR SMALL COLUMN ION EXCHANGE

    SciTech Connect

    Herman, D.

    2011-08-03

    SRNL was requested to quantify the amount of 'fines passage' through the 0.5 micron membranes currently used for the rotary microfilter (RMF). Testing was also completed to determine if there is any additional benefit to utilizing a 0.1 micron filter to reduce the amount of fines that could pass through the filter. Quantifying of the amount of fines that passed through the two sets of membranes that were tested was accomplished by analyzing the filtrate by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) for titanium. Even with preparations to isolate the titanium, all samples returned results of less than the instrument's detection limit of 0.184 mg/L. Test results show that the 0.5 micron filters produced a significantly higher flux while showing a negligible difference in filtrate clarity measured by turbidity. The first targeted deployment of the RMF is with the Small Column Ion Exchange (SCIX) at the Savannah River Site (SRS). SCIX uses crystalline silicotitanate (CST) to sorb cesium to decontaminate a clarified salt solution. The passage of fine particles through the filter membranes in sufficient quantities has the potential to impact the downstream facilities. To determine the amount of fines passage, a contract was established with SpinTek Filtration to operate a 3-disk pilot scale unit with prototypic filter disk and various feeds and two different filter disk membranes. SpinTek evaluated a set of the baseline 0.5 micron filter disks as well as a set of 0.1 micron filter disks to determine the amount of fine particles that would pass the membrane and to determine the flux each set produced. The membrane on both disk sets is manufactured by the Pall Corporation (PMM 050). Each set of disks was run with three feed combinations: prototypically ground CST, CST plus monosodium titanate (MST), and CST, MST, plus Sludge Batch 6 (SB6) simulant. Throughout the testing, samples of the filtrate were collected, measured for turbidity, and sent back

  8. CHARACTERIZATION OF CYCLED SPHERICAL RESORCINOL-FORMALDEHYDE ION EXCHANGE RESIN

    SciTech Connect

    Nash, C.; Duignan, M.

    2010-02-23

    This report presents characterization data for two spherical resorcinol-formaldehyde (sRF) resin beds that had processed cesium in non-radioactive and radioactive cycles. All column cycle operations for the resin beds including loading, displacements, elution, regeneration, breakthroughs, and solution analyses are reported in Nash and Duignan, 2009a. That report covered four ion exchange (IX) campaigns using the two {approx}11 mL beds in columns in a lead-lag arrangement. The first two campaigns used Savannah River Site (SRS) Tank 2F nonradioactive simulant while the latter two were fed with actual dissolved salt in the Savannah River National Laboratory (SRNL) Shielded Cells. Both radioactive cycles ran to cesium breakthrough of the lead column. The resin beds saw in excess of 400 bed volumes of feed in each cycle. Resin disposal plans in tank farm processing depend on characterizations of resin used with actual tank feed. Following a final 30 bed volume (BV) elution with nitric acid, the resin beds were found to contain detectable chromium, barium, boron, aluminum, iron, sodium, sulfur, plutonium, cesium, and mercury. Resin affinity for plutonium is important in criticality safety considerations. Cesium-137 was found to be less than 10E+7 dpm/g of resin, similar to past work with sRF resin. Sulfur levels are reasonably consistent with other work and are expected to represent sulfur chemistry used in the resin manufacture. There were low but detectable levels of technetium, americium, and curium. Toxicity Characteristic Leaching Procedure (TCLP) work on the used (eluted) resin samples showed significant contents of mercury, barium, and chromium. One resin sample exceeded the TCLP level for mercury while the other metals were below TCLP levels. TCLP organics measurements indicated measurable benzene in one case, though the source was unknown. Results of this work were compared with other work on similar sRF resin characterizations in this report. This is the first

  9. Cation immobilization in pyrolyzed simulated spent ion exchange resins

    NASA Astrophysics Data System (ADS)

    Luca, Vittorio; Bianchi, Hugo L.; Manzini, Alberto C.

    2012-05-01

    Significant quantities of spent ion exchange resins that are contaminated by an assortment of radioactive elements are produced by the nuclear industry each year. The baseline technology for the conditioning of these spent resins is encapsulation in ordinary Portland cement which has various shortcomings none the least of which is the relatively low loading of resin in the cement and the poor immobilization of highly mobile elements such as cesium. The present study was conducted with cationic resin samples (Lewatit S100) loaded with Cs+, Sr2+, Co2+, Ni2+ in roughly equimolar proportions at levels at or below 30% of the total cation exchange capacity. Low temperature thermal treatment of the resins was conducted in inert (Ar), or reducing (CH4) gas atmospheres, or supercritical ethanol to convert the hydrated polymeric resin beads into carbonaceous materials that contained no water. This pyrolytic treatment resulted in at least a 50% volume reduction to give mechanically robust spherical materials. Scanning electron microscope investigations of cross-sections of the beads combined with energy dispersive analysis showed that initially all elements were uniformly distributed through the resin matrix but that at higher temperatures the distribution of Cs became inhomogeneous. Although Cs was found in the entire cross-section, a significant proportion of the Cs occurred within internal rings while a proportion migrated toward the outer surfaces to form a crustal deposit. Leaching experiments conducted in water at 25 °C showed that the divalent contaminant elements were very difficult to leach from the beads heated in inert atmospheres in the range 200-600 °C. Cumulative fractional loses of the order of 0.001 were observed for these divalent elements for temperatures below 500 °C. Regardless of the processing temperature, the cumulative fractional loss of Cs in water at 25 °C reached a plateau or steady-state within the first 24 h increasing only marginally up 120 h

  10. Effect of ultrasound on the kinetics of cation exchange in NaX zeolite.

    PubMed

    Erten-Kaya, Yasemin; Cakicioglu-Ozkan, Fehime

    2012-05-01

    In this study, we focused on the effect of ultrasound on ion exchange kinetics to obtain the Li-, Ca- and Ce-rich NaX zeolite. The results were compared to those obtained from the traditional batch exchange method under similar conditions. Contact time and initial cation concentration (fold equivalent excess) were studied. Ultrasound enhanced the replacement of Na(+) ion with Li(+), Ca(2+) and Ce(3+) ions in the extra-framework of zeolite up to 76%, 72% and 66%, respectively. The intraparticle diffusion is the rate limiting step in the ion exchange for both exchange methods. As compared to the traditional exchange method, the ultrasonic method applied in this study was found to be very effective on the exchange amount at equilibrium. PMID:22079806

  11. Chemical Interactions in Multimetal/Zeolite Catalysts

    SciTech Connect

    Sachtler, Wolfgang M. H.

    2004-04-16

    This two-year project has led to a significant improvement in the fundamental understanding of the catalytic action of zeolite-supported redox catalysts. It turned out to be essential that we could combine four strategies for the preparation of catalysts containing transition metal (TM) ions in zeolite cavities: (1) ion exchange from aqueous solution; (2) chemical vapor deposition (CVD) of a volatile halide onto a zeolite in its acidic form; (3) solid state ion exchange; and (4) hydrothermal synthesis of a zeolite having TM ions in its lattice, followed by a treatment transporting these ions to ''guest positions''. Technique (2) enables us to position more TM ions into cavities than permitted by the conventional technique (1).viz one positive charge per Al centered tetrahedron in the zeolite lattice. The additional charge is compensated by ligands to the TM ions, for instance in oxo-ions such as (GaO){sup +} or dinuclear [Cu-O-Cu]{sup 2+}. While technique (3) is preferred over CVD where volatile halides are not available, technique (4) leads to rather isolated ''ex lattice'' oxo-ions. Such oxo-ions tend to be mono-nuclear, in contrast to technique (2) which preferentially creates dinuclear oxo-ions of the same TM element. A favorable element for the present research was that the PI is also actively engaged in a project on the reduction of nitrogen oxides, sponsored by EMSI program of the National Science Foundation and the US Department of Energy, Office of Science. This combination created a unique opportunity to test and analyze catalysts for the one step oxidation of benzene to phenol and compare them with catalysts for the reduction of nitrogen oxides, using hydrocarbons as the reductant. In both projects catalysts have been used which contain Fe ions or oxo-ions in the cavities the zeolite MFI, often called ZSM-5. With Fe as the TM-element and MFI as the host zeolite we found that catalysts with high Fe content, prepared by technique (2) were optimal for the

  12. Experimental Findings On Minor Actinide And Lanthanide Separations Using Ion Exchange

    SciTech Connect

    Hobbs, D. T.; Shehee, T. C.; Clearfield, A.

    2013-09-17

    This project seeks to determine if inorganic or hybrid inorganic ion-exchange materials can be exploited to provide effective americium and curium separations. Specifically, we seek to understand the fundamental structural and chemical factors responsible for the selectivity of the tested ion-exchange materials for actinide and lanthanide ions. During FY13, experimental work focused in the following areas: (1) investigating methods to oxidize americium in dilute nitric acid with subsequent ion-exchange performance measurements of ion exchangers with the oxidized americium and (2) synthesis, characterization and testing of ion-exchange materials. Ion-exchange materials tested included alkali titanates, alkali titanosilicates, carbon nanotubes and group(IV) metal phosphonates. Americium oxidation testing sought to determine the influence that other redox active components may have on the oxidation of Am(III). Experimental findings indicated that Pu(IV) is oxidized to Pu(VI) by peroxydisulfate, but there are no indications that the presence of plutonium affects the rate or extent of americium oxidation at the concentrations of peroxydisulfate being used. Tests also explored the influence of nitrite on the oxidation of Am(III). Given the formation of Am(V) and Am(VI) in the presence of nitrite, it appears that nitrite is not a strong deterrent to the oxidation of Am(III), but may be limiting Am(VI) by quickly reducing Am(VI) to Am(V). Interestingly, additional absorbance peaks were observed in the UV-Vis spectra at 524 and 544 nm in both nitric acid and perchloric acid solutions when the peroxydisulfate was added as a solution. These peaks have not been previously observed and do not correspond to the expected peak locations for oxidized americium in solution. Additional studies are in progress to identify these unknown peaks. Three titanosilicate ion exchangers were synthesized using a microwave-accelerated reaction system (MARS�) and determined to have high

  13. Synthesis and characterization of zeolites prepared from industrial fly ash.

    PubMed

    Franus, Wojciech; Wdowin, Magdalena; Franus, Małgorzata

    2014-09-01

    In this paper, we present the possibility of using fly ash to produce synthetic zeolites. The synthesis class F fly ash from the Stalowa Wola SA heat and power plant was subjected to 24 h hydrothermal reaction with sodium hydroxide. Depending on the reaction conditions, three types of synthetic zeolites were formed: Na-X (20 g fly ash, 0.5 dm(3) of 3 mol · dm(-3) NaOH, 75 °C), Na-P1 (20 g fly ash, 0.5 dm(3) of 3 mol · dm(-3) NaOH, 95 °C), and sodalite (20 g fly ash, 0.8 dm(3) of 5 mol · dm(-3) NaOH + 0.4 dm(3) of 3 mol · dm(-3) NaCl, 95 °C). As synthesized materials were characterized to obtain mineral composition (X-ray diffractometry, Scanning electron microscopy-energy dispersive spectrometry), adsorption properties (Brunauer-Emmett-Teller surface area, N2 isotherm adsorption/desorption), and ion exchange capacity. The most effective reaction for zeolite preparation was when sodalite was formed and the quantitative content of zeolite from X-ray diffractometry was 90 wt%, compared with 70 wt% for the Na-X and 75 wt% for the Na-P1. Residues from each synthesis reaction were the following: mullite, quartz, and the remains of amorphous aluminosilicate glass. The best zeolitic material as characterized by highest specific surface area was Na-X at almost 166 m(2) · g(-1), while for the Na-P1 and sodalite it was 71 and 33 m(2) · g(-1), respectively. The ion exchange capacity decreased in the following order: Na-X at 1.8 meq · g(-1), Na-P1 at 0.72 meq · g(-1), and sodalite at 0.56 meq · g(-1). The resulting zeolites are competitive for commercially available materials and are used as ion exchangers in industrial wastewater and soil decontamination. PMID:24838802

  14. A new approach to evaluate natural zeolite ability to sorb lead (Pb) from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Drosos, Evangelos I. P.; Karapanagioti, Hrissi K.

    2013-04-01

    Lead (Pb) is a hazardous pollutant commonly found in aquatic ecosystems. Among several methods available, the addition of sorbent amendments to soils or sediments is attractive, since its application is relatively simple, while it can also be cost effective when a low cost and re-usable sorbent is used; e.g. natural zeolites. Zeolites are crystalline aluminosilicates with a three-dimensional structure composed of a set of cavities occupied by large ions and water molecules. Zeolites can accommodate a wide variety of cations, such as Na+, K+, Ca2+, Mg2+, which are rather loosely held and can readily be exchanged for others in an aqueous solution. Natural zeolites are capable of removing cations, such as lead, from aqueous solutions by ion exchange. There is a wide variation in the cation exchange capacity (CEC) of natural zeolites because of the different nature of various zeolites cage structures, natural structural defects, adsorbed ions, and their associated gangue minerals. Naturally occurring zeolites are rarely pure and are contaminated to varying degrees by other minerals, such as clays and feldspars, metals, quartz, or other zeolites as well. These impurities affect the CEC even for samples originated from the same region but from a different source. CEC of the material increases with decreasing impurity content. Potentially exchangeable ions in such impurities do not necessarily participate in ion exchange mechanism, while, in some cases, impurities may additionally block the access to active sites. For zeoliferous rocks having the same percentage of a zeolitic phase, the CEC increases with decreasing Si/Al ratio, as the more Si ions are substituted by Al ions, the more negative the valence of the matrix becomes. Sodium seems to be the most effective exchangeable ion for lead. On the contrary, it is unlikely that the potassium content of the zeolite would be substituted. A pretreatment with high concentration solutions of Na, such as 2 M NaCl, can

  15. Controlling the adsorption enthalpy of CO(2) in zeolites by framework topology and composition.

    PubMed

    Grajciar, Lukáš; Čejka, Jiří; Zukal, Arnošt; Otero Areán, Carlos; Turnes Palomino, Gemma; Nachtigall, Petr

    2012-10-01

    Zeolites are often investigated as potential adsorbents for CO(2) adsorption and separation. Depending on the zeolite topology and composition (Si/Al ratio and extra-framework cations), the CO(2) adsorption heats at low coverages vary from -20 to -60 kJ mol(-1), and with increasing surface coverage adsorption heats either stay approximately constant or they quickly drop down. Experimental adsorption heats obtained for purely siliceous porous solids and for ion-exchanged zeolites of the structural type MFI, FER, FAU, LTA, TUN, IMF, and -SVR are discussed in light of results of periodic density functional theory calculations corrected for the description of dispersion interactions. Key factors influencing the stability of CO(2) adsorption complexes are identified and discussed at the molecular level. A general model for CO(2) adsorption in zeolites and related materials is proposed and data reported in literature are evaluated with regard to the proposed model. PMID:22887989

  16. Synthesis and adsorption properties of the cation exchange forms of OFF-type zeolite

    NASA Astrophysics Data System (ADS)

    Gorshunova, K. K.; Travkina, O. S.; Kustov, L. M.; Kutepov, B. I.

    2016-03-01

    The possibility of the ion-exchange of Na+ and K+ cations contained in OFF-type zeolite for H+, Ni2+, Cu2+, Co2+, and La3+ cations is investigated. Chemical and phase compositions, the morphology of crystals, and the adsorption properties of synthesized samples are studied via X-ray fluorescence and X-ray diffraction analysis, IR spectroscopy, scanning electron microscopy, and adsorption measurements.

  17. Modified methods of zeolite and its application of ammonia removal for residential area wastewater treatment

    NASA Astrophysics Data System (ADS)

    Zuo, Jinlong

    2010-11-01

    With the rapid development of urbanization in China, lots of residential area wastewater was directly discharged into the rivers or lakes, which led to eutrophication and the increasing pollution of the water environment. In order to improve ammonia removal capability from the residential area wastewater, zeolite was modified in this paper. Some results for virgin zeolite were revealed by SEM and X ray diffraction. The best results could be attained by combined modification with orthogonal experiment. The adsorption capacity of modified zeolite could be reach mean value of 137.14 meq/100 g, which was 1.8 times than virgin zeolite. The results of bench scale experiments showed that the data in the experiments were in line with Langmuir isotherms for ammonium ion absorbed onto modified zeolite. Moreover, it demonstrated that the biofilm which attached on the surface of modified zeolite only modified the surface feature of modified zeolite, while ion-exchange and diffusion procedure were not affected. So the zeolite was suggested as a suitable material for adsorbing ammonia of residential area wastewater.

  18. Feasible conversion of solid waste bauxite tailings into highly crystalline 4A zeolite with valuable application

    SciTech Connect

    Ma, Dongyang; Wang, Zhendong; Guo, Min; Zhang, Mei; Liu, Jingbo

    2014-11-15

    Highlights: • Concept to convert waste to valuable product is carried out in this study. • An industrially feasible and cost-effective approach was developed and optimized. • Highly crystalline and well-defined zeolite was produced under moderate conditions. • The zeolite derived from the bauxite tailings displayed high ion exchange capacity. • Bauxite tailings have potential application in heavy metal ions adsorbent. - Abstract: Bauxite tailings are a major type of solid wastes generated in the flotation process. The waste by-products caused significant environmental impact. To lessen this hazardous effect from poisonous mine tailings, a feasible and cost-effective solution was conceived and implemented. Our approach focused on reutilization of the bauxite tailings by converting it to 4A zeolite for reuse in diverse applications. Three steps were involved in the bauxite conversion: wet-chemistry, alkali fusion, and crystallization to remove impurities and to prepare porous 4A zeolite. It was found that the cubic 4A zeolite was single phase, in high purity, with high crystallinity and well-defined structure. Importantly, the 4A zeolite displayed maximum calcium ion exchange capacity averaged at 296 mg CaCO{sub 3}/g, comparable to commercially-available zeolite (310 mg CaCO{sub 3}/g) exchange capacity. Base on the optimal synthesis condition, the reaction yield of zeolite 4A from bauxite tailings achieved to about 38.43%, hence, this study will provide a new paradigm for remediation of bauxite tailings, further mitigating the environmental and health care concerns, particularly in the mainland of PR China.

  19. Desalination by electrodialysis with the ion-exchange membrane prepared by radiation-induced graft polymerization

    NASA Astrophysics Data System (ADS)

    Choi, Seong-Ho; Han Jeong, Young; Jeong Ryoo, Jae; Lee, Kwang-Pill

    2001-01-01

    Ion-exchange membranes modified with the triethylamine [-N(CH 2CH 3) 3] and phosphoric acid (-PO 3 H) groups were prepared by radiation-induced grafting of glycidyl methacrylate (GMA) onto the polyolefin nonwavon fabric (PNF) and subsequent chemical modification of poly(GMA) graft chains. The physical and chemical properties of the GMA-grafted PNF and the PNF modified with ion-exchange groups were investigated by SEM, XPS, TGA, and DSC. Furthermore, electrochemical properties such as specific electric resistance, transport number of K +, and desalination were examined. The grafting yield increased with increasing reaction time and reaction temperature. The maximum grafting yield was obtained with 40% (vol.%) monomer concentration in dioxane at 60°C. The content of the cation- and anion-exchange group increased with increasing grafting yield. Electrical resistance of the PNF modified with TEA and -PO 3 H group decreased, while the water uptake (%) increased with increasing ion-exchange group capacities. Transport number of the PNF modified with ion-exchange group were the range of ca. 0.82-0.92. The graft-type ion-exchange membranes prepared by radiation-induced graft copolymerization were successfully applied as separators for electrodialysis.

  20. Adsorption of three pharmaceuticals on two magnetic ion-exchange resins.

    PubMed

    Jiang, Miao; Yang, Weiben; Zhang, Ziwei; Yang, Zhen; Wang, Yuping

    2015-05-01

    The presence of pharmaceuticals in aquatic environments poses potential risks to the ecology and human health. This study investigated the removal of three widely detected and abundant pharmaceuticals, namely, ibuprofen (IBU), diclofenac (DC), and sulfadiazine (SDZ), by two magnetic ion-exchange resins. The adsorption kinetics of the three adsorbates onto both resins was relatively fast and followed pseudo-second-order kinetics. Despite the different pore structures of the two resins, similar adsorption patterns of DC and SDZ were observed, implying the existence of an ion-exchange mechanism. IBU demonstrated a combination of interactions during the adsorption process. These interactions were dependent on the specific surface area and functional groups of the resin. The adsorption isotherm fittings verified the differences in the behavior of the three pharmaceuticals on the two magnetic ion-exchange resins. The presence of Cl- and SO4(2-) suppressed the adsorption amount, but with different inhibition levels for different adsorbates. This work facilitates the understanding of the adsorption behavior and mechanism of pharmaceuticals on magnetic ion-exchange resins. The results will expand the application of magnetic ion-exchange resins to the removal of pharmaceuticals in waters. PMID:25968278

  1. Partition Coefficients of Selected Compounds Using Ion Exchange Separation of Cesium From High Level Waste

    SciTech Connect

    Toth, James J.; Blanchard, David L.; Arm, Stuart T.; Urie, Michael W.

    2004-04-24

    The removal of cesium radioisotope (137Cs) from the High Level Waste stored in underground storage tanks at the Hanford site is a formidable chemical separations challenge for the Waste Treatment Plant. An eluatable organic-based ion exchange resin was selected as the baseline technology (1). The baseline technology design employs a proprietary macrocyclic weak-acid ion exchange resin to adsorb the cesium (137Cs) during the process loading cycle in a fixed bed column design. Following loading, the cesium is eluted from the resin using a nitric acid eluant. Previous work provided limited understanding of the performance of the resin, processed with actual wastes, and under multiple load and elute conditions, which are required for the ion exchange technology to be underpinned sufficiently for resolution of all process-related design issues before flowsheet and construction drawings can be released. By performing multiple ion exchange column tests with waste feeds, and measuring the chemical and radionuclide compositions of the waste feeds, column effluents and column eluants, ion exchange stream composition information can be provided for supporting resolution of selected design issues.

  2. Assessment of commercially available ion exchange materials for cesium removal from highly alkaline wastes

    SciTech Connect

    Brooks, K.P.; Kim, A.Y.; Kurath, D.E.

    1996-04-01

    Approximately 61 million gallons of nuclear waste generated in plutonium production, radionuclide removal campaigns, and research and development activities is stored on the Department of Energy`s Hanford Site, near Richland, Washington. Although the pretreatment process and disposal requirements are still being defined, most pretreatment scenarios include removal of cesium from the aqueous streams. In many cases, after cesium is removed, the dissolved salt cakes and supernates can be disposed of as LLW. Ion exchange has been a leading candidate for this separation. Ion exchange systems have the advantage of simplicity of equipment and operation and provide many theoretical stages in a small space. The organic ion exchange material Duolite{trademark} CS-100 has been selected as the baseline exchanger for conceptual design of the Initial Pretreatment Module (IPM). Use of CS-100 was chosen because it is considered a conservative, technologically feasible approach. During FY 96, final resin down-selection will occur for IPM Title 1 design. Alternate ion exchange materials for cesium exchange will be considered at that time. The purpose of this report is to conduct a search for commercially available ion exchange materials which could potentially replace CS-100. This report will provide where possible a comparison of these resin in their ability to remove low concentrations of cesium from highly alkaline solutions. Materials which show promise can be studied further, while less encouraging resins can be eliminated from consideration.

  3. Preparation of ion exchanger layered electrodes for advanced membrane capacitive deionization (MCDI).

    PubMed

    Lee, Ju-Young; Seo, Seok-Jun; Yun, Sung-Hyun; Moon, Seung-Hyeon

    2011-11-01

    A noble electrode for capacitive deionization (CDI) was prepared by embedding ion exchanger onto the surface of a carbon electrode to practice membrane capacitive deionization (MCDI). Bromomethylated poly (2, 6-dimethyl-1, 4-phenylene oxide) (BPPO) was sprayed on carbon cloth followed by sulfonation and amination to form cation exchange and anion exchange layers, respectively. The ion exchange layers were examined by Scanning electron microscopy (SEM) and Fourier transform infrared spectrometer (FT-IR). The SEM image showed that the woven carbon cloth was well coated and connected with BPPO. The FT-IR spectrum revealed that sulfonic and amine functional groups were attached on the cationexchange and anionexchange electrodes, respectively. The advantages of the developed carbon electrodes have been successively demonstrated in a batch and a continuous mode CDI operations without ion exchange membranes for salt removal using 100 mg/L NaCl solution. PMID:21777933

  4. Semi-aerobic stabilized landfill leachate treatment by ion exchange resin: isotherm and kinetic study

    NASA Astrophysics Data System (ADS)

    Zamri, Mohd Faiz Muaz Ahmad; Kamaruddin, Mohamad Anuar; Yusoff, Mohd Suffian; Aziz, Hamidi Abdul; Foo, Keng Yuen

    2015-03-01

    This study was carried out to investigate the treatability of ion exchange resin (Indion MB 6 SR) for the removal of chromium (VI), aluminium (III), zinc (II), copper (II), iron (II), and phosphate (PO4)3-, chemical oxygen demand (COD), ammonia nitrogen (NH3-N) and colour from semi-aerobic stabilized leachate by batch test. A range of ion exchange resin dosage was tested towards the removal efficiency of leachate parameters. It was observed that equilibrium data were best represented by the Langmuir model for metal ions and Freundlich was ideally fit for COD, NH3-N and colour. Intra particle diffusion model, pseudo first-order and pseudo second-order isotherm models were found ideally fit with correlation of the experimental data. The findings revealed that the models could describe the ion exchange kinetic behaviour efficiently, which further suggests comprehensive outlook for the future research in this field.

  5. Influence of Ionic Liquids on the Selectivity of Ion Exchange-Based Polymer Membrane Sensing Layers.

    PubMed

    Mendecki, Lukasz; Callan, Nicole; Ahern, Meghan; Schazmann, Benjamin; Radu, Aleksandar

    2016-01-01

    The applicability of ion exchange membranes is mainly defined by their permselectivity towards specific ions. For instance, the needed selectivity can be sought by modifying some of the components required for the preparation of such membranes. In this study, a new class of materials -trihexyl(tetradecyl)phosphonium based ionic liquids (ILs) were used to modify the properties of ion exchange membranes. We determined selectivity coefficients for iodide as model ion utilizing six phosphonium-based ILs and compared the selectivity with two classical plasticizers. The dielectric properties of membranes plasticized with ionic liquids and their response characteristics towards ten different anions were investigated using potentiometric and impedance measurements. In this large set of data, deviations of obtained selectivity coefficients from the well-established Hofmeister series were observed on many occasions thus indicating a multitude of applications for these ion-exchanging systems. PMID:27438837

  6. Activation product behavior on borated mixed-bed ion exchange resin

    SciTech Connect

    Kudera, D.E.

    1981-01-01

    The Loss-of-Fluid Test (LOFT) Facility uses two separate mixed-bed ion exchange systems to decontaminate solutions. The radioactive solutions to be decontaminated are demineralized water containing boric acid (500 to 3500 ppM B) and lithium hydroxide (approx. 1 ppM Li). Many activation products are formed during nuclear operation. This paper describes the capability of the mixed cation-anion (Li-OH) type resin to remove these activation products from solution. Problems in measuring decontamination factors (DF) are discussed. The tendency of certain isotopes to give early indication of resin exhaustion is shown. Typical DF (ratio of before-ion-exchange concentration to after-ion-exchange concentration) have been determined for 22 different isotopes in the LOFT purification systems.

  7. Influence of Ionic Liquids on the Selectivity of Ion Exchange-Based Polymer Membrane Sensing Layers

    PubMed Central

    Mendecki, Lukasz; Callan, Nicole; Ahern, Meghan; Schazmann, Benjamin; Radu, Aleksandar

    2016-01-01

    The applicability of ion exchange membranes is mainly defined by their permselectivity towards specific ions. For instance, the needed selectivity can be sought by modifying some of the components required for the preparation of such membranes. In this study, a new class of materials –trihexyl(tetradecyl)phosphonium based ionic liquids (ILs) were used to modify the properties of ion exchange membranes. We determined selectivity coefficients for iodide as model ion utilizing six phosphonium-based ILs and compared the selectivity with two classical plasticizers. The dielectric properties of membranes plasticized with ionic liquids and their response characteristics towards ten different anions were investigated using potentiometric and impedance measurements. In this large set of data, deviations of obtained selectivity coefficients from the well-established Hofmeister series were observed on many occasions thus indicating a multitude of applications for these ion-exchanging systems. PMID:27438837

  8. Removal of heavy metals from mine waters by natural zeolites

    SciTech Connect

    Ulla Wingenfelder; Carsten Hansen; Gerhard Furrer; Rainer Schulin

    2005-06-15

    The study investigated the removal of Fe, Pb, Cd, and Zn from synthetic mine waters by a natural zeolite. The emphasis was given to the zeolite's behavior toward a few cations in competition with each other. Pb was removed efficiently from neutral as well as from acidic solutions, whereas the uptake of Zn and Cd decreased with low pH and high iron concentrations. With increasing Ca concentrations in solution, elimination of Zn and Cd became poorer while removal of Pb remained virtually unchanged. The zeolite was stable in acidic solutions. Disintegration was only observed below pH 2.0. Forward- and back-titration of synthetic acidic mine water were carried out in the presence and absence of zeolite to simulate the effects of a pH increase by addition of neutralizing agents and a re-acidification which can be caused by subsequent mixing with acidic water. The pH increase during neutralization causes precipitation of hydrous ferric oxides and decreased dissolved metal concentrations. Zeolite addition further diminished Pb concentrations but did not have an effect on Zn and Cd concentrations in solution. During re-acidification of the solution, remobilization of Pb was weaker in the presence than in the absence of zeolite. No substantial differences were observed for Fe, Cd, and Zn immobilization. The immobilization of the metals during pH increase and the subsequent remobilization caused by re-acidification can be well described by a geochemical equilibrium speciation model that accounts for metal complexation at hydrous ferric oxides, for ion exchange on the zeolite surfaces, as well as for dissolution and precipitation processes. 42 refs., 5 figs., 3 tabs.

  9. Structure-Property Relationships of Inorganically Surface-Modified Zeolite Molecular Sieves for Nanocomposite Membrane Fabrication

    SciTech Connect

    Lydon, Megan E; Unocic, Kinga A; Jones, Christopher W; Nair, Sankar

    2012-01-01

    A multiscale experimental study of the structural, compositional, and morphological characteristics of aluminosilicate (LTA) and pure-silica (MFI) zeolite materials surface-modified with MgO{sub x}H{sub y} nanostructures is presented. These characteristics are correlated with the suitability of such materials in the fabrication of LTA/Matrimid mixed-matrix membranes (MMMs) for CO{sub 2}/CH{sub 4} separations. The four functionalization methods studied in this work produce surface nanostructures that may appear superficially similar under SEM observation but in fact differ considerably in shape, size, surface coverage, surface area/roughness, degree of attachment to the zeolite surface, and degree of zeolite pore blocking. The evaluation of these characteristics by a combination of TEM, HRTEM, N{sub 2} physisorption, multiscale compositional analysis (XPS, EDX, and ICP-AES elemental analysis), and diffraction (ED and XRD) allows improved understanding of the origin of disparate gas permeation properties observed in MMMs made with four types of surface-modified zeolite LTA materials, as well as a rational selection of the method expected to result in the best enhancement of the desired properties (in the present case, CO{sub 2}/CH{sub 4} selectivity increase without sacrificing permeability). A method based on ion exchange of the LTA with Mg{sup 2+}, followed by base-induced precipitation and growth of MgOxHy nanostructures, deemed 'ion exchange functionalization' here, offers modified particles with the best overall characteristics resulting in the most effective MMMs. LTA/Matrimid MMMs containing ion exchange functionalized particles had a considerably higher CO{sub 2}/CH{sub 4} selectivity (40) than could be obtained with the other functionalization techniques (30), while maintaining a CO{sub 2} permeability of 10 barrers. A parallel study on pure silica MFI surface nanostructures is also presented to compare and contrast with the zeolite LTA case.

  10. Novel ion-exchange membranes for electrodialysis prepared by radiation-induced graft polymerization

    SciTech Connect

    Tsuneda, Satoshi; Saito, Kyoichi; Misuhara, Hisashi; Sugo, Takanobu

    1995-11-01

    Ion-exchange membranes have been used to concentrate seawater to produce salt as well as to desalinate brackish water to render it potable. Also, the interest in applications of ion-exchange membranes as separators for electrodialytic desalination of bioproducts and separators in hydrogen-oxygen fuel cells has been growing. Novel ion-exchange membranes containing sulfonic acid (SO{sub 3}H) and trimethyl ammonium [N(CH{sub 3}){sub 3}] groups were prepared by a simple method of radiation-induced cografting of sodium styrene sulfonate (SSS) with acrylic acid (AAc) and vinyl benzyl trimethyl ammonium chloride (VBTAC) with 2-hydroxyethyl methacrylate (HEMA), onto a polyethylene film with a thickness of 50 {micro}m. The high density graft chain was introduced throughout the polyethylene film. The maximum cation- and anion-exchange capacities of the resultant membranes were 2.5 and 1.3 mol/kg, receptively. These membranes exhibited an electrical resistance one order lower than commercially available ion-exchange membranes; for example, 12 h cografting provided cation- and anion-exchange membranes whose electrical resistances in a 0.5 M NaCl solution were 0.25 and 0.85 {Omega} cm{sup 2}, respectively. From the evaluation of electrodialytic desalination in a batch mode, using a pair of the graft-type ion-exchange membranes, the time required to achieve 99.5% desalination of the initial 0.5 M NaCl solutions was reduced to 85% comparing with that of the commercial ion-exchange membranes.

  11. Separation of Molybdenum-Uranium by a Process Combining Ion Exchange Resin and Membranes

    NASA Astrophysics Data System (ADS)

    Lounis, A.; Setti, L.; Djennane, A.; Melikchi, R.

    The purpose of this study is to determine whether the electrodeionization with ion-exchange resin is suitable for removing uranium from a solution containing molybdenum. A hybrid process combining ion exchange (resins and membranes) using electric current. For this electroextraction process, the cation exchange resin is introduced into an electrodialysis cell and compressed between two cations exchange membranes. We have investigated a continuous electroextraction process. As important result we note that: The factor of selectivity,r, for molybdenum versus uranium is superior to 3; the concentration in radio active element (U3O8) is lower than 1.5 mg L-1 and small cell voltage is observed.

  12. RESORCINOL-FORMALDEHYDE ION EXCHANGE RESIN CHEMISTRY FOR HIGH LEVEL WASTE TREATMENT

    SciTech Connect

    Nash, C.; Duignan, M.

    2010-01-14

    A principal goal at the Savannah River Site is to safely dispose of the large volume of liquid nuclear waste held in many storage tanks. In-tank ion exchange technology is being considered for cesium removal using a polymer resin made of resorcinol formaldehyde that has been engineered into microspheres. The waste under study is generally lower in potassium and organic components than Hanford waste; therefore, the resin performance was evaluated with actual dissolved salt waste. The ion exchange performance and resin chemistry results are discussed.

  13. Summary of Testing of SuperLig 639 at the TFL Ion Exchange Facility

    SciTech Connect

    Steimke, J.L.

    2000-12-19

    A pilot scale facility was designed and built in the Thermal Fluids Laboratory at the Savannah River Technology Center to test ion exchange resins for removing technetium and cesium from simulated Hanford Low Activity Waste (LAW). The facility supports the design of the Hanford River Protection Project for BNFL, Inc. The pilot scale system mimics the full-length of the columns and the operational scenario of the planned ion exchange system. Purposes of the testing include confirmation of the design, evaluation of methods for process optimization and developing methods for waste volume minimization. This report documents the performance of the technetium removal resin.

  14. Selectivity of ion exchangers in extracting cesium and rubidium from alkaline solutions

    NASA Astrophysics Data System (ADS)

    Shelkovnikova, L. A.; Kargov, S. I.; Gavlina, O. T.; Ivanov, V. A.; Al'tshuler, G. N.

    2013-01-01

    We compare the ion exchange selectivity of phenol-type sorbents based on phenol formaldehyde resins, products of condensation of diatomic phenols with formaldehyde, and crosslinked polymer based on C-phenyl[4]resorcinarene resin, for cesium and rubidium ions. It is shown that phenol formaldehyde sorbents are the ones most selective. The interaction of alkali metal cations with the anion of calix[4]arene is investigated via quantum-chemical modeling. It is shown that the selectivity toward cesium and rubidium ions in ion exchangers of the phenolic type is not due to specific interactions of ions with phenolic groups.

  15. Fractionation of Aspergillus niger cellulases by combined ion exchange affinity chromatography

    SciTech Connect

    Boyer, R.F.; Allen, T.L.; Dykema, P.A.

    1987-02-05

    Eight chemically modified cellulose supports were tested for their ability to adsorb components of the Aspergillus niger cellulase system. At least two of the most effective adsorbents, aminoethyl cellulose and carboxymethyl cellulose, were shown to be useful for the fractionation of cellulases. These supports apparently owe their resolving capacity to both ion exchange and biospecific binding effects; however, the relative importance of each effect is unknown. These observations form the basis for a new cellulase fractionation technique, combined ion exchange-affinity chromatography. 22 references.

  16. Zeolite parageneses in the North Atlantic igneous province: Implications for geotectonics and groundwater quality of basaltic crust

    SciTech Connect

    Neuhoff, P.S.; Fridriksson, T.; Bird, D.K.

    2000-01-01

    Zeolites are among the most common products of chemical interaction between groundwaters and the Earth's crust during diagenesis and low-grade metamorphism. The unique crystal structures of zeolites result in large molar volumes, high cation-exchange capacities, and reversible dehydration. These properties influence both the stability and chemistry of zeolites in geologic systems, leading to complex parageneses and compositional relationships that provide sensitive indicators of physicochemical conditions in the crust. Observations of zeolite occurrence in Tertiary basaltic lavas in the North Atlantic region indicate that individual zeolite minerals are distributed in distinct, depth-controlled zones that parallel the paleosurface of the plateau basalts and transgress the lava stratigraphy. The zeolite zones are interpreted to have formed at the end of burial metamorphism of the lavas. Relative timing relations between various mineral parageneses and crustal-scale deformal features indicate that the minerals indicative of the zeolite zones formed within 1 million years after cessation of volcanism. Empirical correlation between the depth distribution of zeolite zones and the temperatures of formation of zeolites in geothermal systems provides estimates of regional thermal gradients and heat flow in flood-basalt provinces. Similarly, the orientations of zeolite zones can be used to distinguish synvolcanic and post-volcanic crustal deformation. Because zeolites that characterize the individual zones display different ion-exchange selectivities for various cations, reactions between groundwaters and zeolites in basaltic aquifers can result in depth-controlled zones where individual elements are concentrated in the crust. This is established for Sr, which is concentrated by at least an order of magnitude in heulandite, resulting in an overall SR enrichment of lavas in the heulandite-stilbite zeolite zone.

  17. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity.

    PubMed

    Choi, Minkee; Cho, Hae Sung; Srivastava, Rajendra; Venkatesan, Chithravel; Choi, Dae-Heung; Ryoo, Ryong

    2006-09-01

    Zeolites are a family of crystalline aluminosilicate materials widely used as shape-selective catalysts, ion exchange materials, and adsorbents for organic compounds. In the present work, zeolites were synthesized by adding a rationally designed amphiphilic organosilane surfactant to conventional alkaline zeolite synthesis mixtures. The zeolite products were characterized by a complementary combination of X-ray diffraction (XRD), nitrogen sorption, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The analyses show that the present method is suitable as a direct synthesis route to highly mesoporous zeolites. The mesopore diameters could be uniformly tailored, similar to ordered mesoporous silica with amorphous frameworks. The mesoporous zeolite exhibited a narrow, small-angle XRD peak, which is characteristic of the short-range correlation between mesopores, similar to disordered wormhole-like mesoporous materials. The XRD patterns and electron micrographs of the samples taken during crystallization clearly showed the evolution of the mesoporous structure concomitantly to the crystallization of zeolite frameworks. The synthesis of the crystalline aluminosilicate materials with tunable mesoporosity and strong acidity has potentially important technological implications for catalytic reactions of large molecules, whereas conventional mesoporous materials lack hydrothermal stability and acidity. PMID:16892049

  18. SUMMARY REPORT: CONTROL AND TREATMENT TECHNOLOGY FOR THE METAL FINISHING INDUSTRY: ION EXCHANGE

    EPA Science Inventory

    This Technology Transfer ummary Report is one of a series of reports that summarizes a pollution control technology for the metal finishing industry. he 45-page report is intended to promote an understanding of the use of ion exchange in the metal finishing industry. The sections...

  19. Improvement of technology for treatment of spent radioactive ion-exchange resins at nuclear power stations

    NASA Astrophysics Data System (ADS)

    Korchagin, Yu. P.; Aref'ev, E. K.; Korchagin, E. Yu.

    2010-07-01

    Results from tests of technology for decontaminating spent radioactive ion-exchange resins at the Balakovo and Kalinin nuclear power stations are presented. Versions of technological schemes with cleaning and repeated use of decontaminating solution are considered. The possibility of considerably reducing the volume of radioactive wastes is demonstrated.

  20. Ion exchange using poorly activated supports, an easy way for purification of large proteins.

    PubMed

    Pessela, Benevides C C; Munilla, Roberto; Betancor, Lorena; Fuentes, Manuel; Carrascosa, Alfonso V; Vian, Alejandro; Fernandez-Lafuente, Roberto; Guisán, Jose M

    2004-04-23

    Ion-exchange chromatography using commercial ionic supports is a commonly used technique for protein purification. However, selective adsorption of a target protein from a given extract onto commercial ion exchangers seems to be quite complex since they are designed to adsorb the maximum percentage of proteins with the opposite charge. In this paper, ion-exchanger supports with different activation degrees (from 1 to 40 micromol of amino groups per g of agarose) have been prepared and used for the purification of large proteins. These kinds of proteins have large surfaces to interact by many points with the support. Therefore, it was possible to purify large proteins as beta-galactosidase from Thermus sp. strain T2 from a crude extract from Escherichia coli or bovine liver catalase from a commercial preparation, with tailor-made ion-exchanger supports. A simple step of adsorption/desorption on lowly activated supports rendered both enzymes rather pure as confirmed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Moreover, this strategy makes also easy the desorption step that requires rather low NaCl concentrations, which may become a serious problem for desorption of large proteins when using conventional supports, due to their ability of generating a very strong adsorption. PMID:15116925

  1. The development and characterization of ion exchange membranes for selected electrochemical power sources

    NASA Astrophysics Data System (ADS)

    Arnold, C., Jr.; Assink, R. A.

    The work is reviewed on the development and characterization of ion exchange membranes in an effort to improve the efficiency of three flowing electrolyte batteries. The batteries are: (1) NASA's iron chromium redox battery; (2) Lockheed's zinc ferricyanide battery; and (3) Johnson Control's zinc bromine battery. These batteries were developed for solar photovoltaic, utility load leveling, and electric vehicle applications, respectively.

  2. Synthesis of Anomeric Methyl Fructofuranosides and Their Separation on an Ion-Exchange Resin

    ERIC Educational Resources Information Center

    Nurminen, Erkki; Poijarvi, Paivi; Koskua, Katja; Hovinen, Jari

    2007-01-01

    Treatment of d-fructose with methanol in the presence of acid as a catalyst gives a mixture of methyl-[beta]-d-fructopyranoside, methyl-[alpha]-D-fructofuranoside, and methyl-[beta]-d-fructofuranoside, which were separated on an ion exchange column and characterized polarimetrically.

  3. Integrated optics Bragg filters made by ion exchange and wafer bonding

    NASA Astrophysics Data System (ADS)

    Gardillou, F.; Bastard, L.; Broquin, J.-E.

    2006-09-01

    A polarization-insensitive Bragg filter has been realized on a glass substrate thanks to the epoxy-free wafer bonding technique. This device is based on the combined embedding of a corrugated grating and a surface ion-exchanged waveguide, both realized on a silicate glass. With this configuration, the grating patterns are also protected from external degradation of the environment.

  4. HIGH ASPECT RATIO ION EXCHANGE RESIN BED - HYDRAULIC RESULTS FOR SPERICAL RESIN BEADS

    SciTech Connect

    Duignan, M; Charles Nash, C; Timothy Punch, T

    2007-09-27

    A principal role of the DOE Savannah River Site is to safely dispose of a large volume of liquid nuclear waste held in many storage tanks. An in-tank ion exchange unit is being considered for cesium removal to accelerate waste processing. This unit is planned to have a relatively high bed height to diameter ratio (10:1). Complicating the design is the need to cool the ion exchange media; therefore, the ion exchange column will have a central cooling core making the flow path annular. To separate cesium from waste the media being considered is made of resorcinol formaldehyde resin deposited on spherical plastic beads and is a substitute for a previously tested resin made of crystalline silicotitanate. This spherical media not only has an advantage of being mechanically robust, but, unlike its predecessor, it is also reusable, that is, loaded cesium can be removed through elution and regeneration. Resin regeneration leads to more efficient operation and less spent resin waste, but its hydraulic performance in the planned ion exchange column was unknown. Moreover, the recycling process of this spherical resorcinol formaldehyde causes its volume to significantly shrink and swell. To determine the spherical media's hydraulic demand a linearly scaled column was designed and tested. The waste simulant used was prototypic of the wastes' viscosity and density. This paper discusses the hydraulic performance of the media that will be used to assist in the design of a full-scale unit.

  5. Small-Scale Ion Exchange Removal of Cesium and Technetium from Hanford Tank 241-AN-102

    SciTech Connect

    Hassan, N.M.

    2000-07-27

    The pretreatment process for BNFL, Inc.'s Hanford River Protection Project is to provide decontaminated low activity waste and concentrated eluate streams for vitrification into low and high activity waste glass, respectively. The pretreatment includes sludge washing, filtration, precipitation, and ion exchange processes to remove entrained solids, cesium, transuranics, technetium, and strontium. The cesium (Cs-137) and technetium (Tc-99) ion exchange removal is accomplished by using SuperLig 644, and 639 resins from IBC Advanced Technologies, American Fork, Utah. The resins were shown to selectively remove cesium and technetium (as anionic pertechnetate ) from alkaline salt solutions. The efficiency of ion exchange column loading and elution is a complex function involving feed compositions, equilibrium and kinetic behavior of ion exchange resins, diffusion, and the ionic strength and pH of the aqueous solution. A previous experimental program completed at the Savannah River Tech nology Center2 demonstrated the conceptualized flow sheet parameters with an Envelope C sample from Hanford Tank 241-AN-107. Those experiments also included determination of Cs and Tc batch distribution coefficients by SuperLig 644 and 639 resins and demonstration of small-scale column breakthrough and elution. The experimental findings were used in support of preliminary design bases and pretreatment flow sheet development by BNFL, Inc.

  6. Small-Scale Ion Exchange Removal of Cesium and Technetium from Hanford Tank 241-AN-103

    SciTech Connect

    Hassan, N.M.

    2000-07-27

    The pretreatment process for BNFL, Inc.'s Hanford River Protection Project is to provide decontaminated low activity waste and concentrated eluate streams for vitrification into low activity and high level waste glass, respectively. The pretreatment includes sludge washing, filtration, precipitation, and ion exchange processes to remove entrained solids, cesium, transuranics, technetium, and strontium. The ion exchange removal of cesium (Cs) and technetium (Tc) ions is accomplished by using SuperLig 644, and 639 resins from IBC Advanced Technologies, American Fork, Utah. The resins were shown to selectively remove cesium and technetium (as pertechnetate), from alkaline salt solutions. The efficiency of ion exchange column loading and elution is a complex function involving feed compositions, equilibrium and kinetic behavior of ion exchange resins, diffusion, and the ionic strength and pH of the aqueous solution. A previous experimental program completed at the Savannah River Technology Center demonstrated the conceptualized flow sheet parameters with a similar Hanford tank sample (241-AW-101). Those experiments included determination of Cs and Tc batch distribution coefficients by SuperLig 644 and 639 resins and demonstration of small-scale column breakthrough and elution. The experimental findings were used in support of preliminary design bases and pretreatment flow sheet development by BNFL, Inc.

  7. EVALUATION OF ION EXCHANGE SOFTENING ON THE LEACHING OF METALS FROM HOUSEHOLD PLUMBING SYSTEMS

    EPA Science Inventory

    A 16 month pilot plant study was conducted to determine the effect of ion exchange softening on the leaching of metals from household plumbing materials. wo pipe loop pilot plant systems were assembled. ach system consisted of duplicate loops of lead pipe, copper pipe with 50:50 ...

  8. Updating of sewage - purification facilities of electroplating enterprises with counterflow ion-exchange filters

    NASA Astrophysics Data System (ADS)

    Torosyan, V. F.; Torosyan, E. S.; Sorokin, P. D.; Telitsyn, A. A.

    2015-09-01

    The paper focuses on work of electroplating sewage-purification facilities of mechanical engineering production; drawbacks caused by specific features of physical and chemical processes of coagulation and technological malfunctions have been revealed. Additional equipment - ion-exchanging filters have been selected on the basis of designed methods, they make it possible for enterprises of mechanical engineering to implement conversion to water rotation systems.

  9. Second harmonic generation in ion-exchanged waveguides of semiconductor microcrystallite-doped glasses

    NASA Astrophysics Data System (ADS)

    MacDonald, R. L.; Driscoll, T. J.; Lawandy, N. M.

    1991-09-01

    The first observations of optically encoded secondary harmonic generation in waveguides written in semiconductor doped glasses (SDGs) is reported. This new property should extend the usefulness of SDG to integrated optical systems where switching as well as frequency doubling may be required. The first ion-exchanged waveguide fabrication in potassium-based glasses is also reported.

  10. Vitrification of Cesium-Laden Organic Ion Exchange Resin in a Stirred Melter

    SciTech Connect

    Cicero-Herman, C.A; Sargent, T.N.; Overcamp, T.J.; Bickford, D.F.

    1997-07-09

    The goal of this research was a feasibility study for vitrifying the organic ion exchange resin in a stirred-tank melter. Tests were conducted to determine the fate of cesium including the feed, exit glass, and offgas streams and to assess any impact of feeding the resin on the melter or its performance.

  11. Highly-selective and Regenerable Ion Exchange for Perchlorate Remediation, Recovery, and Environmental Forensics

    NASA Astrophysics Data System (ADS)

    Gu, B.; Brown, G.

    2007-12-01

    Perchlorate (ClO4-) has recently emerged as a widespread contaminant found in drinking water and groundwater supplies in the United States and is known to disrupt thyroid function by inhibiting iodide uptake. Among various treatment technologies, the highly-selective and regenerable ion-exchange technology has recently been developed at ORNL for removing ClO4- from contaminated water. The selective ion exchange technology relies on a unique, highly specific resin to trap ClO4- from contaminated water. The treatment system is then regenerated and perchlorate is destroyed. The reaction that destroys ClO4- produces Cl- and Fe(III) that are used to regenerate the resin, resulting in practically zero secondary waste production. In comparison with conventional non-selective ion-exchange technology, this new treatment process is expected to result in not only a reduced O&M cost but also the elimination of the disposal of hazardous wastes containing perchlorate. Additionally, the selective and regenerable ion exchange technology has allowed the quantitative recovery of perchlorate from contaminated water for reuse, or from other environmental matrices such as sediment, groundwater, and salt deposits for perchlorate isotopic and source identification. Naturally-forming perchlorate has been found to contain distinct oxygen and chlorine isotope signatures or anomalies as compared with anthropogenic perchlorate and can thus provide unambiguous identification of the sources of perchlorate contamination as a powerful tool for the forensics of perchlorate in the environment.

  12. Determination of fluoride in potable waters by ion-exchange and potentiometric titration.

    PubMed

    Light, T S; Mannion, R F; Fletcher, K S

    1969-10-01

    A procedure is described for the accurate titration of fluoride at the 1 mg l . level in potable water. The procedure employs an ion-exchange step for concentration of fluoride and removal of interfering ions, and Tb(IV) as titrant. Precision and relative error of the method are both 1%. PMID:18960653

  13. ARSENIC REMOVAL FROM DRINKING WATER BY ION EXCHANGE AND ACTIVATED ALUMINA PLANTS

    EPA Science Inventory

    This report documents a long term performance study of two ion exchange (IE) and two activated alumina (AA) treatment plants to remove arsenic from drinking water. Performance information was collected on these systems that are located in the northeast for one full year. The stud...

  14. High-resolution determination of {sup 147}Pm in urine using dynamic ion-exchange chromatography

    SciTech Connect

    Elchuk, S.; Lucy, C.A.; Burns, K.I.

    1992-10-15

    Ion exchange preconcentration followed by HPLC purification prior to scintillation counting was used to measure the concentration of {sup 147}Pm in urine. the detection limit for this method was found to be 0.1 Bq (3 fg) of {sup 147}Pm in 500 ml of urine.

  15. ONE MGD ION EXCHANGE PLANT FOR REMOVAL OF NITRATE FROM WELL WATER

    EPA Science Inventory

    A full scale 1 mgd demonstration plant, using ion exchange, for removal of nitrate from well water was built at McFarland, California. The plant has been performing satisfactorily in the semi-automatic mode since October 1983. Full automation of the plant was completed in June 19...

  16. Basic Ion Exchange Softening. Training Module 2.210.2.77.

    ERIC Educational Resources Information Center

    McMullen, L. D.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with ion exchange softening. It includes objectives, an instructor guide, student handouts, and transparency masters. This is the first level of a three module series. The module considers the principles, components, operation,…

  17. Intermediate Ion Exchange Softening. Training Module 2.211.3.77.

    ERIC Educational Resources Information Center

    McMullen, L. D.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with the operation of an ion exchange softening system. It includes objectives, an instructor guide, student handouts, and transparency masters. This is the second level of a three module series. The module considers operation and…

  18. Advanced Ion Exchange Softening. Training Module 2.212.4.77.

    ERIC Educational Resources Information Center

    McMullen, L. D.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with the operation of an ion exchange softening system. It includes objectives, an instructor guide, student handouts and transparency masters. This is the third level of a three module series. This module considers the theory of ion…

  19. Bi-functional ion exchangers for enhanced performance of dye-sensitized solar cells.

    PubMed

    Kong, Eui-Hyun; Chang, Yong-June; Lim, Jongchul; Kim, Back-Hyun; Lee, Jung-Hoon; Kwon, Do-Kyun; Park, Taiho; Jang, Hyun Myung

    2013-07-28

    Ion exchange using aerosol OT (AOT) offers dye adsorption twice as fast as known methods. Moreover, it suppresses the dye-agglomeration that may cause insufficient dye-coverage on the photoelectrode surface. Consequently, its dual function of fast dye-loading and higher dye-coverage significantly improves the power conversion efficiency of dye-sensitized solar cells. PMID:23775416

  20. SELECTIVE REDUCTION OF NITRIC OXIDE BY METHANE OVER CERIUM AND SILVER ION-EXCHANGED ZSM-5 ZEOLITES. (R825430)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  1. Zeolite catalysis: technology

    SciTech Connect

    Heinemann, H.

    1980-07-01

    Zeolites have been used as catalysts in industry since the early nineteen sixties. The great majority of commercial applications employ one of three zeolite types: zeolite Y; Mordenite; ZSM-5. By far the largest use of zeolites is in catalytic cracking, and to a lesser extent in hydrocracking. This paper reviews the rapid development of zeolite catalysis and its application in industries such as: the production of gasoline by catalytic cracking of petroleum; isomerization of C/sub 5/ and C/sub 6/ paraffin hydrocarbons; alkylation of aromatics with olefins; xylene isomerization; and conversion of methanol to gasoline.

  2. Corrosion of steel drums containing cemented ion-exchange resins as intermediate level nuclear waste

    NASA Astrophysics Data System (ADS)

    Duffó, G. S.; Farina, S. B.; Schulz, F. M.

    2013-07-01

    Exhausted ion-exchange resins used in nuclear reactors are immobilized by cementation before being stored. They are contained in steel drums that may undergo internal corrosion depending on the presence of certain contaminants. The objective of this work is to evaluate the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins with different aggressive species. The corrosion potential and the corrosion rate of the steel, and the electrical resistivity of the matrix were monitored for 900 days. Results show that the cementation of ion-exchange resins seems not to pose special risks regarding the corrosion of the steel drums. The corrosion rate of the steel in contact with cemented ion-exchange resins in the absence of contaminants or in the presence of 2.3 wt.% sulphate content remains low (less than 0.1 μm/year) during the whole period of the study (900 days). The presence of chloride ions increases the corrosion rate of the steel at the beginning of the exposure but, after 1 year, the corrosion rate drops abruptly reaching a value close to 0.1 μm/year. This is probably due to the lack of water to sustain the corrosion process. When applying the results obtained in the present work to estimate the corrosion depth of the steel drums containing the cemented radioactive waste after a period of 300 years, it is found that in the most unfavourable case (high chloride contamination), the corrosion penetration will be considerably lower than the thickness of the wall of the steel drums. Cementation of ion-exchange resins does not seem to pose special risks regarding the corrosion of the steel drums that contained them; even in the case the matrix is highly contaminated with chloride ions.

  3. Microspheres aided introduction of ionophore and ion-exchanger to the ion-selective membrane.

    PubMed

    Wojciechowski, Marcin; Kisiel, Anna; Bulska, Ewa; Michalska, Agata

    2012-01-15

    In this work a novel method for introduction of ionophore and ion-exchanger to the ion-selective polyacrylate based membrane is proposed. These compounds (and optionally primary ions) are introduced to polyacrylate microspheres, used to prepare ion-selective membrane. The approach proposed here can be used to prepare membranes containing primary ions equally distributed through the receptor phase, i.e. membranes that do not require conditioning in primary ions solution and are free from problems related to slow diffusion of primary ions. Thus obtained sensors were characterized with linear responses (also at relatively high activities) and high selectivities, despite considerable reduction of ionophore and ion-exchanger amount introduced to the membrane. To be able to prepare ion-selective membranes using this approach, a method for quantification of ionophore and ion-exchanger introduced into microspheres is required. In this work a novel method utilizing high performance liquid chromatography (HPLC) with DAD or FLD detection is proposed. Incorporation of ionophore and ion-exchanger into the microspheres was achieved either by absorption into ready spheres or in course of photopolymerization of polymeric beads. The obtained results have proven that both procedures led to incorporation of ionophore/ion-exchanger into polymeric spheres, however, the content of the compounds in the spheres post process is different from their ratio in solution from which they had been introduced. These effects need to be considered/compensated while preparing microspheres containing ion-selective membranes. As a model system poly(n-butyl acrylate) spheres, silver selective ionophore and sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate were chosen, resulting ultimately in silver-selective electrodes. PMID:22265471

  4. Direct assay of thymidine kinase bound to ion-exchange paper for dot spotting and enzyme blotting analysis

    SciTech Connect

    van den Berg, K.J.

    1986-05-15

    The direct assay of thymidine kinase (Tk) bound to ion-exchange paper was investigated as a means to further simplify the analytical procedure. Thymidine kinase bound firmly and quantitatively to ion-exchange paper at near neutral pH. The enzymatic properties of Tk did not change while bound to the ion-exchange paper. The amount of phosphorylated /sup 12//sub 5/IdU or /sup 125/IdC formed on ion-exchange paper was proportional to the amount of applied Tk. Enzymatic activity could be determined visually by autoradiography or by gamma counting. This method was relatively independent of the protein concentration or volume of the sample and which allows the assay from dilute solutions. A simplified dot spot method that can be used for the assay of thymidine kinase activity in cell extracts is described. Thymidine kinase could also be visualized after electrophoresis and blotting on ion-exchange paper.

  5. Zeolite Y adsorbents with high vapor uptake capacity and robust cycling stability for potential applications in advanced adsorption heat pumps

    SciTech Connect

    Li, XS; Narayanan, S; Michaelis, VK; Ong, TC; Keeler, EG; Kim, H; Mckay, IS; Griffin, RG; Wang, EN

    2015-01-01

    Modular and compact adsorption heat pumps (AHPs) promise an energy-efficient alternative to conventional vapor compression based heating, ventilation and air conditioning systems. A key element in the advancement of AHPs is the development of adsorbents with high uptake capacity, fast intracrystalline diffusivity and durable hydrothermal stability. Herein, the ion exchange of NaY zeolites with ingoing Mg2+ ions is systematically studied to maximize the ion exchange degree (IED) for improved sorption performance. It is found that beyond an ion exchange threshold of 64.1%, deeper ion exchange does not benefit water uptake capacity or characteristic adsorption energy, but does enhance the vapor diffusivity. In addition to using water as an adsorbate, the uptake properties of Mg, Na-Y zeolites were investigated using 20 wt.% MeOH aqueous solution as a novel anti-freeze adsorbate, revealing that the MeOH additive has an insignificant influence on the overall sorption performance. We also demonstrated that the lab-scale synthetic scalability is robust, and that the tailored zeolites scarcely suffer from hydrothermal stability even after successive 108-fold adsorption/desorption cycles. The samples were analyzed using N-2 sorption, Al-27/Si-29 MAS NMR spectroscopy, ICP-AES, dynamic vapor sorption, SEM, Fick's 2nd law and D-R equation regressions. Among these, close examination of sorption isotherms for H2O and N-2 adsorbates allows us to decouple and extract some insightful information underlying the complex water uptake phenomena. This work shows the promising performance of our modified zeolites that can be integrated into various AHP designs for buildings, electronics, and transportation applications. (C) 2014 Elsevier Inc. All rights reserved.

  6. Zeolite Y Adsorbents with High Vapor Uptake Capacity and Robust Cycling Stability for Potential Applications in Advanced Adsorption Heat Pumps

    PubMed Central

    Li, Xiansen; Narayanan, Shankar; Michaelis, Vladimir K.; Ong, Ta-Chung; Keeler, Eric G.; Kim, Hyunho; McKay, Ian S.; Griffin, Robert G.; Wang, Evelyn N.

    2014-01-01

    Modular and compact adsorption heat pumps (AHPs) promise an energy-efficient alternative to conventional vapor compression based heating, ventilation and air conditioning systems. A key element in the advancement of AHPs is the development of adsorbents with high uptake capacity, fast intracrystalline diffusivity and durable hydrothermal stability. Herein, the ion exchange of NaY zeolites with ingoing Mg2+ ions is systematically studied to maximize the ion exchange degree (IED) for improved sorption performance. It is found that beyond an ion exchange threshold of 64.1%, deeper ion exchange does not benefit water uptake capacity or characteristic adsorption energy, but does enhance the vapor diffusivity. In addition to using water as an adsorbate, the uptake properties of Mg,Na-Y zeolites were investigated using 20 wt.% MeOH aqueous solution as a novel anti-freeze adsorbate, revealing that the MeOH additive has an insignificant influence on the overall sorption performance. We also demonstrated that the labscale synthetic scalability is robust, and that the tailored zeolites scarcely suffer from hydrothermal stability even after successive 108-fold adsorption/desorption cycles. The samples were analyzed using N2 sorption, 27Al/29Si MAS NMR spectroscopy, ICP-AES, dynamic vapor sorption, SEM, Fick’s 2nd law and D-R equation regressions. Among these, close examination of sorption isotherms for H2O and N2 adsorbates allows us to decouple and extract some insightful information underlying the complex water uptake phenomena. This work shows the promising performance of our modified zeolites that can be integrated into various AHP designs for buildings, electronics, and transportation applications. PMID:25395877

  7. Zeolite Y Adsorbents with High Vapor Uptake Capacity and Robust Cycling Stability for Potential Applications in Advanced Adsorption Heat Pumps.

    PubMed

    Li, Xiansen; Narayanan, Shankar; Michaelis, Vladimir K; Ong, Ta-Chung; Keeler, Eric G; Kim, Hyunho; McKay, Ian S; Griffin, Robert G; Wang, Evelyn N

    2015-01-01

    Modular and compact adsorption heat pumps (AHPs) promise an energy-efficient alternative to conventional vapor compression based heating, ventilation and air conditioning systems. A key element in the advancement of AHPs is the development of adsorbents with high uptake capacity, fast intracrystalline diffusivity and durable hydrothermal stability. Herein, the ion exchange of NaY zeolites with ingoing Mg(2+) ions is systematically studied to maximize the ion exchange degree (IED) for improved sorption performance. It is found that beyond an ion exchange threshold of 64.1%, deeper ion exchange does not benefit water uptake capacity or characteristic adsorption energy, but does enhance the vapor diffusivity. In addition to using water as an adsorbate, the uptake properties of Mg,Na-Y zeolites were investigated using 20 wt.% MeOH aqueous solution as a novel anti-freeze adsorbate, revealing that the MeOH additive has an insignificant influence on the overall sorption performance. We also demonstrated that the labscale synthetic scalability is robust, and that the tailored zeolites scarcely suffer from hydrothermal stability even after successive 108-fold adsorption/desorption cycles. The samples were analyzed using N2 sorption, (27)Al/(29)Si MAS NMR spectroscopy, ICP-AES, dynamic vapor sorption, SEM, Fick's 2(nd) law and D-R equation regressions. Among these, close examination of sorption isotherms for H2O and N2 adsorbates allows us to decouple and extract some insightful information underlying the complex water uptake phenomena. This work shows the promising performance of our modified zeolites that can be integrated into various AHP designs for buildings, electronics, and transportation applications. PMID:25395877

  8. Novel modified zeolites for energy-efficient hydrocarbon separations.

    SciTech Connect

    Arruebo, Manuel; Dong, Junhang; Anderson, Thomas (Burns and McDonnell, Kansas City, MO); Gu, Xuehong; Gray, Gary (Goodyear Chemical Company, Akron, OH); Bennett, Ron (Goodyear Chemical Company, Akron, OH); Nenoff, Tina Maria; Kartin, Mutlu; Johnson, Kaylynn (Goodyear Chemical Company, Akron, OH); Falconer, John; Noble, Richard

    2006-11-01

    We present synthesis, characterization and testing results of our applied research project, which focuses on the effects of surface and skeletal modification of zeolites for significant enhancements in current hydrocarbon (HC) separations. Zeolites are commonly used by the chemical and petroleum industries as catalysts and ion-exchangers. They have high potential for separations owing to their unique pore structures and adsorption properties and their thermal, mechanical and chemical properties. Because of zeolites separation properties, low cost, and robustness in industrial process, they are natural choice for use as industrial adsorbents. This is a multidisciplinary effort to research, design, develop, engineer, and test new and improved materials for the separation of branched vs. linear organic molecules found in commercially important HC streams via adsorption based separations. The focus of this project was the surface and framework modification of the commercially available zeolites, while tuning the adsorption properties and the selectivities of the bulk and membrane separations. In particular, we are interested with our partners at Goodyear Chemical, on how to apply the modified zeolites to feedstock isoprene purification. For the characterization and the property measurements of the new and improved materials powder X-ray diffraction (PXRD), Residual Gas Analyzer-Mass Spectroscopy (RGA-MS), Electron Microscopy (SEM/EDAX), temperature programmed desorption (TPD) and surface area techniques were utilized. In-situ carbonization of MFI zeolite membranes allowed for the maximum separation of isoprene from n-pentane, with a 4.1% enrichment of the binary stream with n-pentane. In four component streams, a modified MFI membrane had high selectivities for n-pentane and 1-3-pentadiene over isoprene but virtually no separation for the 2-methyl-2-butene/isoprene pair.

  9. Mimicking high-silica zeolites: highly stable germanium- and tin-rich zeolite-type chalcogenides.

    PubMed

    Lin, Qipu; Bu, Xianhui; Mao, Chengyu; Zhao, Xiang; Sasan, Koroush; Feng, Pingyun

    2015-05-20

    High-silica zeolites, as exemplified by ZSM-5, with excellent chemical and thermal stability, have generated a revolution in industrial catalysis. In contrast, prior to this work, high-silica-zeolite-like chalcogenides based on germanium/tin remained unknown, even after decades of research. Here six crystalline high-germanium or high-tin zeolite-type sulfides and selenides with four different topologies are reported. Their unprecedented framework compositions give these materials much improved thermal and chemical stability with high surface area (Langmuir surface area of 782 m(2)/g(-1)) comparable to or better than zeolites. Among them, highly stable CPM-120-ZnGeS allows for ion exchange with diverse metal or complex cations, resulting in fine-tuning in porosity, fast ion conductivity, and photoelectric response. Being among the most porous crystalline chalcogenides, CPM-120-ZnGeS (exchanged with Cs(+) ions) also shows reversible adsorption with high capacity and affinity for CO2 (98 and 73 cm(3) g(-1) at 273 and 298 K, respectively, isosteric heat of adsorption = 40.05 kJ mol(-1)). Moreover, CPM-120-ZnGeS could also function as a robust photocatalyst for water reduction to generate H2. The overall activity of H2 production from water, in the presence of Na2S-Na2SO3 as a hole scavenger, was 200 μmol h(-1)/(0.10 g). Such catalytic activity remained undiminished under illumination by UV light for as long as measured (200 h), demonstrating excellent resistance to photocorrosion even under intense UV radiation. PMID:25950820

  10. Ion-exchange and hydrophobic interactions affecting selectivity for neutral and charged solutes on three structurally similar agglomerated ion-exchange and mixed-mode stationary phases.

    PubMed

    Kazarian, Artaches A; Taylor, Mark R; Haddad, Paul R; Nesterenko, Pavel N; Paull, Brett

    2013-11-25

    The nature and extent of mixed-mode retention mechanisms evident for three structurally related, agglomerated, particle-based stationary phases were evaluated. These three agglomerated phases were Thermo Fisher ScientificIon PacAS11-HC - strong anion exchange, Thermo Fisher Scientific IonPac CS10--strong cation-exchange PS-DVB, and the Thermo Fisher Scientific Acclaim Trinity P1silica-based substrate, which is commercially marketed as a mixed-mode stationary phase. All studied phases can exhibit zwitterionic and hydrophobic properties, which contribute to the retention of charged organic analytes. A systematic approach was devised to investigate the relative ion-exchange capacities and hydrophobicities for each of the three phases, together with the effect of eluent pH upon selectivity, using a specifically selected range of anionic, cationic and neutral aromatic compounds. Investigation of the strong anion-exchange column and the Trinity P1 mixed-mode substrate, in relation to ion-exchange capacity and pH effects, demonstrated similar retention behaviour for both the anionic and ampholytic solutes, as expected from the structurally related phases. Further evaluation revealed that the ion-exchange selectivity of the mixed-mode phase exhibited properties similar to that of the strong anion-exchange column, with secondary cation-exchange selectivity, albeit with medium to high anion-exchange and cation-exchange capacities, allowing selective retention for each of the anionic, cationic and ampholytic solutes. Observed mixed-mode retention upon the examined phases was found to be a sum of anion- and cation-exchange interactions, secondary ion-exchange and hydrophobic interactions, with possible additional hydrogen bonding. Hydrophobic evaluation of the three phases revealed logP values of 0.38-0.48, suggesting low to medium hydrophobicity. These stationary phases were also benchmarked against traditional reversed-phase substrates namely, octadecylsilica YMC-Pac Pro C18

  11. Survey: utilization of zeolites for the removal of radioactivity from liquid waste streams. [178 references

    SciTech Connect

    Roddy, J.W.

    1981-08-01

    A survey was made of the literature and of experience at selected nuclear installations to provide information on the stability of inorganic ion exchangers when used for the decontamination of both low-level and high-level radioactive liquids. Results of past campaigns at the Savannah River Plant, Oak Ridge National Laboratory, and Rockwell Hanford Operations were examined. In addition, the performance of zeolites used for controlling water quality in nuclear fuel storage basins was evaluated. The literature survey served as a guide for identifying relevant material from foreign sources and supplemented the information obtained by direct contact of domestic researchers. The study included a brief review of the physical and chemical properties of zeolites. A secondary objective of the study was to compile data on the corrosion resistance of containment materials for zeolites.

  12. Evaluation of Zeolite Permeable Treatment Wall for the Removal of Strontium-90 from Groundwater

    NASA Astrophysics Data System (ADS)

    Seneca, S. M.; Bronner, C.; Ross, E.; Rabideau, A. J.

    2009-05-01

    Experimental and modeling studies have been initiated to evaluate the potential performance of a permeable treatment wall comprised of zeolite-rich rock for the removal of strontium-90 from groundwater. Preliminary column studies were performed using a synthetic groundwater referenced to anticipate field conditions, with a focus on quantifying the competitive ion exchange among five cations (Na+, K+, Ca2+, Mg2+, and Sr2+). Variations of the column configurations addressed the effects of particle size and flow rates on removal efficiency. In general, kinetic effects were not significant for the test conditions. Ongoing studies are focused on the comparison of zeolites obtained from two sources: Teague Mineral Products (Adrian, OR) and Bear River Zeolite (Preston, UT), and on the possible influence of native soil that is mixed with treatment wall material during construction. The results of the performance assessment will support the possible deployment of a full scale treatment wall at a Western New York nuclear facility.

  13. [Zeolite catalysis in conversion of cellulosics

    SciTech Connect

    Tsao, G.T.

    1992-01-01

    To transform biomass into fermentable substrate for yeast, we are using zeolites instead of enzymes to catalyze the two bottleneck reactions in biomass conversion, xylose isomerization and ceuobiose hydrolysis. The experimental results on these reactions carried out over various zeolites and other catalysts are presented herein. The advantages and disadvantages of using these catalysts over enzymes are also discussed. Heterogeneous solid catalysts other than zeolites has been employed for cellobiose-to-glucose hydrolysis. The size and shape selectivity that makes zeoutes unique for some reactions can add diffusional hindrance. We have spent some time screening various known solid acidic catalysts. We report that a class of cationic ion exchange resins in the acidified form (e.g. Amberlite) has worked well as an acidic catalyst in hydrolyzing cellobiose to glucose. Our experimental results, together with those obtained from a homogeneous acid catalyst (e.g. sulfuric acid) for comparison are provided. Having succeeded in finding an alternative solid acid catalyst for hydrolysis, we explored other solid resin or other homogeneous but non-enzyme catalyst to carry out the xylose-to-xylulose isomerization. A fairly extensive search has been made. We explored the use of sodium aluminates in the homogeneous phase isomerization of glucose to fructose and obtained a very high conversion of glucose to fructose with the final mixture containing 85% of fructose instead of the common 45%. Fructose apparently complexes with aluminates, and its equilibrium concentration is shifted to considerably higher values than permitted by simple glucose/fructose equilibrium. We have recently found a number of catalysts capable of promoting isomerization between aldoses and ketoses. One solid resin, known as polyvinyl pyridine (PVP), is able to convert xylose to xylulose at a pH below 7. Our usage of alternative isomerization catalysts, including PVP, are described.

  14. [Zeolite catalysis in conversion of cellulosics

    SciTech Connect

    Tsao, G.T.

    1992-12-31

    To transform biomass into fermentable substrate for yeast, we are using zeolites instead of enzymes to catalyze the two bottleneck reactions in biomass conversion, xylose isomerization and ceuobiose hydrolysis. The experimental results on these reactions carried out over various zeolites and other catalysts are presented herein. The advantages and disadvantages of using these catalysts over enzymes are also discussed. Heterogeneous solid catalysts other than zeolites has been employed for cellobiose-to-glucose hydrolysis. The size and shape selectivity that makes zeoutes unique for some reactions can add diffusional hindrance. We have spent some time screening various known solid acidic catalysts. We report that a class of cationic ion exchange resins in the acidified form (e.g. Amberlite) has worked well as an acidic catalyst in hydrolyzing cellobiose to glucose. Our experimental results, together with those obtained from a homogeneous acid catalyst (e.g. sulfuric acid) for comparison are provided. Having succeeded in finding an alternative solid acid catalyst for hydrolysis, we explored other solid resin or other homogeneous but non-enzyme catalyst to carry out the xylose-to-xylulose isomerization. A fairly extensive search has been made. We explored the use of sodium aluminates in the homogeneous phase isomerization of glucose to fructose and obtained a very high conversion of glucose to fructose with the final mixture containing 85% of fructose instead of the common 45%. Fructose apparently complexes with aluminates, and its equilibrium concentration is shifted to considerably higher values than permitted by simple glucose/fructose equilibrium. We have recently found a number of catalysts capable of promoting isomerization between aldoses and ketoses. One solid resin, known as polyvinyl pyridine (PVP), is able to convert xylose to xylulose at a pH below 7. Our usage of alternative isomerization catalysts, including PVP, are described.

  15. Synergistic integration of ion-exchange and catalytic reduction for complete decomposition of perchlorate in waste water.

    PubMed

    Kim, You-Na; Choi, Minkee

    2014-07-01

    Ion-exchange has been frequently used for the treatment of perchlorate (ClO4(-)), but disposal or regeneration of the spent resins has been the major hurdle for field application. Here we demonstrate a synergistic integration of ion-exchange and catalytic decomposition by using Pd-supported ion-exchange resin as an adsorption/catalysis bifunctional material. The ion-exchange capability of the resin did not change after generation of the Pd clusters via mild ethanol reduction, and thus showed very high ion-exchange selectivity and capacity toward ClO4(-). After the resin was saturated with ClO4(-) in an adsorption mode, it was possible to fully decompose the adsorbed ClO4(-) into nontoxic Cl(-) by the catalytic function of the Pd catalysts under H2 atmosphere. It was demonstrated that prewetting the ion-exchange resin with ethanol significantly accelerate the decomposition of ClO4(-) due to the weaker association of ClO4(-) with the ion-exchange sites of the resin, which allows more facile access of ClO4(-) to the catalytically active Pd-resin interface. In the presence of ethanol, >90% of the adsorbed ClO4(-) could be decomposed within 24 h at 10 bar H2 and 373 K. The ClO4(-) adsorption-catalytic decomposition cycle could be repeated up to five times without loss of ClO4(-) adsorption capacity and selectivity. PMID:24894447

  16. Development and validation of a novel modeling framework integrating ion exchange and resin regeneration for water treatment.

    PubMed

    Zhang, Jie; Amini, Adib; O'Neal, Jeremy A; Boyer, Treavor H; Zhang, Qiong

    2015-11-01

    Models have been developed to simulate the process of ion exchange for water treatment. However the modeling of resin regeneration process, which can predict regeneration efficiency and residual stream for determining technology sustainability, was not incorporated into previous models. Therefore a model integrating both ion exchange and resin regeneration considering regeneration efficiency is needed for evaluating and improving ion exchange technology. This study developed an integrated model aiming to simulate ion exchange and resin regeneration in different configurations (fixed bed, fluidized bed) for the first time. The integrated model has been validated via comparing model predictions with experimental data. The impacts of dimensionless groups (i.e. the Péclet number, the diffusion modulus, and the Biot number) on ion exchange breakthrough curve have been analyzed using this model. In addition, this integrated model has been used to optimize the regeneration frequency to improve the overall performance of ion exchange. It demonstrated this integrated model could be a useful tool for further studies in ion exchange technology. PMID:26253896

  17. Synthesis of Na-A and faujasitic zeolites from high silicon fly ash

    SciTech Connect

    Fotovat, F.; Kazemian, H.; Kazemeini, M.

    2009-04-02

    High silicon fly ash (HSFA) utilized as a source of silicon in synthesizing of Na-A, -X and -Y zeolites through alkali fusion followed by hydrothermal treatment at 100 deg. C for 12 h. Various types of zeolites with different degrees of purity were prepared by changing Si/Al ratio of the reaction mixture from 1.6 to 3.0. In addition, exact boundaries of this ratio for synthesis of each zeolite type were determined. Furthermore, the effect of NaOH amount utilized in alkaline fusion step on crystalinity of samples investigated. The synthesized zeolites were characterized using various techniques including; XRD, TGA, FTIR, SEM and BET. The ion-exchange behaviors of zeolitic samples tested with Co{sup 2+}. The obtained Na-X zeolite was crystaline, had a very high cation-exchange capability of 4.9 mequiv. g{sup -1} and possessed relatively high specific surface area of about 434 m{sup 2} g{sup -1}.

  18. Feasible conversion of solid waste bauxite tailings into highly crystalline 4A zeolite with valuable application.

    PubMed

    Ma, Dongyang; Wang, Zhendong; Guo, Min; Zhang, Mei; Liu, Jingbo

    2014-11-01

    Bauxite tailings are a major type of solid wastes generated in the flotation process. The waste by-products caused significant environmental impact. To lessen this hazardous effect from poisonous mine tailings, a feasible and cost-effective solution was conceived and implemented. Our approach focused on reutilization of the bauxite tailings by converting it to 4A zeolite for reuse in diverse applications. Three steps were involved in the bauxite conversion: wet-chemistry, alkali fusion, and crystallization to remove impurities and to prepare porous 4A zeolite. It was found that the cubic 4A zeolite was single phase, in high purity, with high crystallinity and well-defined structure. Importantly, the 4A zeolite displayed maximum calcium ion exchange capacity averaged at 296 mg CaCO3/g, comparable to commercially-available zeolite (310 mg CaCO3/g) exchange capacity. Base on the optimal synthesis condition, the reaction yield of zeolite 4A from bauxite tailings achieved to about 38.43%, hence, this study will provide a new paradigm for remediation of bauxite tailings, further mitigating the environmental and health care concerns, particularly in the mainland of PR China. PMID:25153822

  19. The characteristic assessment of spent ion exchange resin from PUSPATI TRIGA REACTOR (RTP) for immobilization process

    SciTech Connect

    Wahida, Nurul; Yasir, Muhamad Samudi; Majid, Amran Ab; Irwan, M. N.; Wahab, Mohd Abd; Marzukee, Nik; Paulus, Wilfred; Phillip, Esther; Thanaletchumy

    2014-09-03

    In this paper, spent ion exchange resin generated from PUSPATI TRIGA reactor (RTP) in Malaysian Nuclear Agency were characterized based on the water content, radionuclide content and radionuclide leachability. The result revealed that the water content in the spent resin is 48%. Gamma spectrometry analysis indicated the presence of {sup 134}Cs, {sup 137}Cs, {sup 152}Eu, {sup 54}Mn, {sup 58}Co, {sup 60}Co and {sup 65}Zn. The leachability test shows a small concentrations (<1 Bq/l) of {sup 152}Eu and {sup 134}Cs were leached out from the spent resin while {sup 60}Co activity concentrations slightly exceeded the limit generally used for industrial wastewater i.e. 1 Bq/l. Characterization of spent ion exchange resin sampled from RTP show that this characterization is important as a basis to immobilize this radioactive waste using geopolymer technology.

  20. LITERATURE REVIEWS TO SUPPORT ION EXCHANGE TECHNOLOGY SELECTION FOR MODULAR SALT PROCESSING

    SciTech Connect

    King, W

    2007-11-30

    This report summarizes the results of literature reviews conducted to support the selection of a cesium removal technology for application in a small column ion exchange (SCIX) unit supported within a high level waste tank. SCIX is being considered as a technology for the treatment of radioactive salt solutions in order to accelerate closure of waste tanks at the Savannah River Site (SRS) as part of the Modular Salt Processing (MSP) technology development program. Two ion exchange materials, spherical Resorcinol-Formaldehyde (RF) and engineered Crystalline Silicotitanate (CST), are being considered for use within the SCIX unit. Both ion exchange materials have been studied extensively and are known to have high affinities for cesium ions in caustic tank waste supernates. RF is an elutable organic resin and CST is a non-elutable inorganic material. Waste treatment processes developed for the two technologies will differ with regard to solutions processed, secondary waste streams generated, optimum column size, and waste throughput. Pertinent references, anticipated processing sequences for utilization in waste treatment, gaps in the available data, and technical comparisons will be provided for the two ion exchange materials to assist in technology selection for SCIX. The engineered, granular form of CST (UOP IE-911) was the baseline ion exchange material used for the initial development and design of the SRS SCIX process (McCabe, 2005). To date, in-tank SCIX has not been implemented for treatment of radioactive waste solutions at SRS. Since initial development and consideration of SCIX for SRS waste treatment an alternative technology has been developed as part of the River Protection Project Waste Treatment Plant (RPP-WTP) Research and Technology program (Thorson, 2006). Spherical RF resin is the baseline media for cesium removal in the RPP-WTP, which was designed for the treatment of radioactive waste supernates and is currently under construction in Hanford, WA

  1. Planar Waveguides Formed by Ag Na Ion Exchange in Nonlinear Optical Glasses: Diffusion and Optical Properties

    NASA Astrophysics Data System (ADS)

    Martin, Marc; Videau, Jean J.; Canioni, Lionel; Adamietz, Frédéric; Sarger, Laurent; Le Flem, Gilles

    2000-01-01

    All-optical communication systems are the subject of intense research related to the integration of nonlinear optical materials. In sodiocalcic borophosphate glasses that contain niobium oxide and exhibit high nonlinear optical indices, planar waveguides have been formed by a Ag Na ion-exchange technique. WKB analysis has been used to characterize the diffusion profiles of silver ions exchanged in glass substrate samples chemically by an electron microprobe technique and optically by an M -line technique. These methods permit the Ag penetration depth and diffusion profile shape and index profiles to be determined. The results are analyzed and discussed in relation to Ca 2 concentration and exchange conditions in glasses. The Ag diffusion in these glasses can be almost entirely controlled for index-profile engineering.

  2. Electrodialytic separation of alkali-element ions with the aid of ion-exchange membranes

    SciTech Connect

    Gurskii, V.S.; Moskvin, L.N.

    1988-03-20

    Electrodialytic separation of ions bearing charges of the same sign with the aid of ion-exchange membranes has been examined in the literature in relation to the so-called ideal membranes, which do not exhibit selectivity with respect to one ion type in ion exchange. It has been shown that separation on such membranes is effective only for counterions differing in size of charge. A matter of greater importance from the practical standpoint is the possibility of using electrodialysis for separating ions bearing like charges and having similar properties, including ionic forms of isotopes of the same element. In this paper they report a comparative study of ion separation, with reference to the Cs-Na pair, by electrodialysis through various types of cation-exchange membranes. Changes of the solution concentration in the cathode compartment were monitored by measurement of /sup 22/Na and /sup 137/Cs activities.

  3. Protein losses in ion-exchange and hydrophobic interaction high-performance liquid chromatography

    SciTech Connect

    Goheen, Steven C.; Gibbins, Betty M.

    2000-01-01

    Protein losses in ion-exchange and hydrophobic interaction HPLC were examined. The supports were allnon-porous, packed in columns of identical dimensions. Two ion-exchange chromatography (IEC), anion and cation, as well as a hydrophobic interaction chromatography (HIC) columns were tested. Proteins included cytochrome c, bovine serum albumin (BSA), immunoglobulin G and fibrinogen. Temperature effects on HIC supports were studied for cytochrome c and BSA. Both retention times and recoveries of the proteins were measured. The influence of column residence time on the recovery of proteins were also investigated. We found a linear relationship between the amount of protein recovered and the log of the molecular mass. Retention times also generally increased with temperature for both HIC and IEC. Other trends in retention behavior and recoveries are discussed.

  4. Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes.

    PubMed

    Li, Haibo; Gao, Yang; Pan, Likun; Zhang, Yanping; Chen, Yiwei; Sun, Zhuo

    2008-12-01

    A novel membrane capacitive deionization (MCDI) device, integrating both the advantages of carbon nanotubes and carbon nanofibers (CNTs-CNFs) composite film and ion-exchange membrane, was proposed with high removal efficiency, low energy consumption and low cost. The CNTs-CNFs film was synthesized by low pressure and low temperature thermal chemical vapor deposition. Several experiments were conducted to compare desalination performance of MCDI with capacitive deionization (CDI), showing that salt removal of the MCDI system was 49.2% higher than that of the CDI system. The electrosorption isotherms of MCDI and CDI show both of them follow Langmuir adsorption, indicating no change in adsorption behavior when ion-exchange membranes are introduced into CDI system. The better desalination performance of MCDI than that of CDI is due to the minimized ion desorption during electrosorption. PMID:18929385

  5. Separation of hemicellulose-derived saccharides from wood hydrolysate by lime and ion exchange resin.

    PubMed

    Wang, Xiaojun; Zhuang, Jingshun; Fu, Yingjuan; Tian, Guoyu; Wang, Zhaojiang; Qin, Menghua

    2016-04-01

    A combined process of lime treatment and mixed bed ion exchange was proposed to separate hemicellulose-derived saccharides (HDS) from prehydrolysis liquor (PHL) of lignocellulose as value added products. The optimization of lime treatment achieved up to 44.2% removal of non-saccharide organic compounds (NSOC), mainly colloidal substances, with negligible HDS degradation at 0.5% lime level and subsequent neutralization by phosphoric acid. The residual NSOC and calcium ions in lime-treated PHL were eliminated by mixed bed ion exchange. The breakthrough curves of HDS and NSOC showed selective retention toward NSOC, leading to 75% HDS recovery with 95% purity at 17 bed volumes of exchange capacity. In addition, macroporous resin showed higher exchange capacity than gel resin as indicated by the triple processing volume. The remarkable selectivity of the combined process suggested the feasibility for HDS separation from PHL. PMID:26859331

  6. Erbium doping of lithium niobate by the ion exchange process for high-gain optical amplifiers

    NASA Astrophysics Data System (ADS)

    Caccavale, Frederico; Fedorov, Vyacheslav A.; Korkishko, Yuri N.; Morozova, Tamara V.; Sada, Cinzia; Segato, Francesco

    2000-04-01

    The erbium-lithium ion exchange is presented as a method for the erbium local doping of lithium niobate crystals. Ion exchange process is performed immersing the LiNbO3 substrates in a liquid melt, containing erbium ions; due to their high mobility, the lithium ions migrate from the crystal to the melt, and are replaced by erbium ions. A systematic analysis of the doping process is performed, and the influence of the process parameters is investigated: exchange time and temperature, crystal cut direction, composition and chemical reactivity of the Er ions liquid source. By structural (X-Ray Diffraction and Rutherford Backscattering Spectrometry), compositional (Secondary Ion Mass Spectrometry) and spectroscopic techniques (optical spectroscopy and micro-luminescence), the formation of lithium deficient phases and the incorporation of the Er ions into the LiNbO3 matrix is studied.

  7. Hydrogen production in the K-Basin ion exchange columns, modules and cartridge filters

    SciTech Connect

    Not Available

    1994-12-21

    K-Basin uses ion exchange modules and ion exchange (IX) columns for removing radionuclides from the basin water. When the columns and modules are loaded, they are removed from service, drained and stored. After a few IX columns accumulate in storage, they are moved to a burial box. One of the burial box contains 33 columns and the other, six. The radionuclides act on the liquid left within and adhering to the beads to produce hydrogen. This report describes the generation rate, accumulation rate and significance of that accumulation. This summary also highlights those major areas of concern to the external (to Westinghouse Hanford Company [WHC]) reviewers. Appendix H presents the comments made by the external reviewers and, on a separate sheet, the responses to those comments. The concerns regarding the details of the analytical approach, are addressed in Appendix H and in the appropriate section.

  8. Ion-exchange sorption and preparative chromatography of biologically active materials

    SciTech Connect

    Samsonov, G.V.

    1986-01-01

    This book presents information on the following topics: the problems of fine physico-chemical biotechnology; types of highly permeable network polyelectrolytes; methods for studying the permeability and porosity of network polyelectrolytes; the conformation state and flexibility of the structural elements of network polyelectrolytes; ion-exchange processes without the sorption of physiologically active substances; ion exchange, hydration, and swelling; nucleosides, nucleotides, alkaloids, sulfonamides, and miscellaneous physiologically active subtances; sharp front formation for the exchange of ions with the same valences; standard quasi-equilibrium frontal chromatography on ionites; sorption kinetics in ionites with structural heterogeneity; experimental investigations of the diffusivities of organic and physiologically active ions in ionite beads; and increasing the efficiency of low-pressure chromatography by using surface-layer and bidispersed ionites.

  9. Automated resource-saving technology of ion-exchange water treatment

    NASA Astrophysics Data System (ADS)

    Livshits, M.

    2015-01-01

    Stable high quality of the purified water can be provided by adaptive control of water-treatment installations with the observer in a loop of the control system on the basis of observer of ion exchange processes. To obtain this goal the following problems have been solved: the hierarchic structure of water treatment system is developed; the system of water treatment quality criteria for ion exchange processes is developed; the created mathematical model of ionic exchange processes is functionally oriented to application in control system as an observer; methodologies of identification of a mathematical model of ionic exchange processes is developed; verification of the mathematical model of ionic exchange is performed on experimental-industrial basis; automatic control system of water treatment with observer in the loop is developed for low-waste installation of a heat supply system.

  10. Basis document for PFP plutonium nitrate ion exchange process in Room 228A

    SciTech Connect

    Risenmay, H.R.

    1997-04-23

    The PFP facility currently has approximately 4300 liters of plutonium nitrate solution in storage. This material will be calcined by the Vertical Denigration Calciner (VDC) located in room 230C. However, part of the material needs to be purified to remove constituents that will interfere with the calcination process. An Ion Exchange process using Reillex{trademark} HPQ anion exchange resin was tested by the Plutonium Process Support Laboratories (PPSL) (I). The Ion exchange process is to be installed in glovebox HC-7 in room 228A/234-5Z. The plutonium separated from the interfering constituents will be in a concentrated condition ready to be calcined by the VDC in room 230C. The oxide product of the VDC will be placed into the 2736-Z vaults for long term storage.

  11. The characteristic assessment of spent ion exchange resin from PUSPATI TRIGA REACTOR (RTP) for immobilization process

    NASA Astrophysics Data System (ADS)

    Wahida, Nurul; Yasir, Muhamad Samudi; Majid, Amran Ab; Wahab, Mohd Abd; Marzukee, Nik; Paulus, Wilfred; Phillip, Esther; Thanaletchumy, Irwan, M. N.

    2014-09-01

    In this paper, spent ion exchange resin generated from PUSPATI TRIGA reactor (RTP) in Malaysian Nuclear Agency were characterized based on the water content, radionuclide content and radionuclide leachability. The result revealed that the water content in the spent resin is 48%. Gamma spectrometry analysis indicated the presence of 134Cs, 137Cs, 152Eu, 54Mn, 58Co, 60Co and 65Zn. The leachability test shows a small concentrations (<1 Bq/l) of 152Eu and 134Cs were leached out from the spent resin while 60Co activity concentrations slightly exceeded the limit generally used for industrial wastewater i.e. 1 Bq/l. Characterization of spent ion exchange resin sampled from RTP show that this characterization is important as a basis to immobilize this radioactive waste using geopolymer technology.

  12. An evaluation of organic substance fraction removal during ion exchange with Miex-DOC resin.

    PubMed

    Wolska, Małgorzata

    2015-07-01

    In this study, the usefulness of Miex-DOC resin in eliminating organic substances and their fractions from water sources for drinking water was evaluated. The objects of study were samples from three surface water sources and one infiltration water source taken at water treatment plants before treatment in technical conditions. In particular, the effectiveness of removing biodegradable and non-biodegradable fractions as a function of resin dosages and water-resin contact times was evaluated. The ion exchange process with the Miex-DOC resin achieved a high effectiveness in removing aromatic non-biodegradable organic substances, and therefore a reduction in UV254 absorbance. The biodegradable fraction is much less susceptible to removal yet its removal effectiveness allows for a significant reduction in hazards connected with secondary microorganism development. The results of this study indicate the possibility of using ion exchange with the Miex-DOC resin for effective removal of disinfection by-product precursors. PMID:25976333

  13. Characterization of radioactive ion exchange media waste generated at Three Mile Island

    SciTech Connect

    Runion, T.C.; Holzworth, R.E.; Ogle, R.E.; Burton, H.M.; Bixby, W.W.

    1981-10-01

    The March 1979 accident at General Public Utilities Nuclear Corporation (GPUNC) Three Mile Island Nuclear Power Station Unit 2 (TMI-2), resulted in the transfer of more than 1100 m/sup 3/ of contaminated water to the auxiliary and fuel handling building. The principal sources of the water were the makeup and letdown purification system and the containment building sump. The contaminated water was processed through an ion exchange system designated as EPICOR II. The EPICOR-II System is a three-stage process. The contaminated water passes through a first stage of ion exchange media, designated as prefilters, and then through the second and third stages, designated as demineralizers. The majority of the activity was deposited in the first-stage prefilters, which have a maximum administrative loading limit of 1300 curies. The predominant radionuclides present in the prefilters are cesium and strontium.

  14. Systematic modeling study of channel waveguide fabrication by thermal silver ion exchange.

    PubMed

    Li, Guangyu; Winick, Kim A; Griffin, Henry C; Hayden, Joseph S

    2006-03-10

    A systematic study of thermal silver ion exchange used for the fabrication of optical channel waveguides is reported in a single-alkali glass. The diffusion equilibrium and diffusion dynamics are experimentally studied, and the concentration-dependent diffusion coefficients are determined. The relationship between the fabrication conditions, i.e., time, temperature, and melt concentration, and the induced waveguide refractive index profile is established. It is demonstrated that the diffusion equation can be solved, without use of any free parameters, to predict the refractive index profiles of both planar and channel waveguides. A 1.6 cm diameter integrated optic ring resonator, with a propagation loss of 0.1 dB/cm, is fabricated in a glass by thermal silver ion exchange. The induced refractive index profile is related to the optical characteristics of the functional device. PMID:16572690

  15. Stabilization of copper nanoparticles with volume- and surface-distribution inside ion-exchange matrices

    NASA Astrophysics Data System (ADS)

    Kravchenko, T. A.; Sakardina, E. A.; Kalinichev, A. I.; Zolotukhina, E. V.

    2015-09-01

    Nanocomposites characterized by the surface and volume distributions of deposited copper nanoparticles are obtained via the chemical deposition of copper onto sulfonic acid and carboxylic cation exchanger and strongly basic anion exchanger matrices. The electrode behavior of the synthesized composites in CuSO4 solution is studied by open-circuit chronopotentiometry. The effect the nature of the fixed centers of the ion-exchange matrix has on the initial state of metallic particles and the processes that occur in solutions of their metal ions is established from the deviation of the nanocomposites' electrode potential from the potential of a compact electrode and the nature of its change over time. It is shown that the mechanism behind the interaction of the matrix and metal ions (ion exchange, non-exchange absorption, complexation) determines not only the initial size and distribution of metal particles, but also the rate at which they achieve aggregative stability.

  16. Kinetics and thermodynamics of copper ions removal from wastewater by use of zeolite.

    PubMed

    Panayotova, M I

    2001-01-01

    Natural Bulgarian zeolite was tested for its ability to remove Cu2+ from model wastewater. Influence of process variables was investigated. It was found that the optimum wastewater to zeolite ratio is 100:1 and the optimum pH value of water to be treated is 5.5 to 7.5. Zeolite with finer particles shows a higher uptake capacity. The simultaneous presence of Ca2+ and Mg2+ in concentrations similar to their concentrations in Bulgarian natural water does not significantly influence the uptake of Cu2+. Zeolite modification by treating it with NaCl, CH3COONa and NaOH increases its uptake ability. Copper ions are strongly immobilized by modified zeolite and secondary pollution of water caused by its contact with preloaded zeolite is very low (1.5-2.5% of Cu2+ preliminary immobilized have been released back into acidified water). Contacting with 2 mol dm(-3) NaCl can easily regenerate loaded zeolite; best results were obtained for zeolite modified with NaCl. Requirements of Bulgarian standards for industrial wastewater can be met by a one-stage process for an initial Cu2+ concentration of 10 mg dm(-3), and by a two stage process for an initial Cu2+ concentration of 50 mg dm(-3). Uptake of Cu2+ by zeolite from neutral wastewater has proved to be as effective as Cu2+ removal by precipitation of copper hydroxide. The process of Cu2+ uptake by natural zeolite is best described by the kinetic equation for adsorption. This fact, together with the correlation found between the Cu2+ uptake and the amount of Na+, Ca2+ and K+ released into solution by zeolite shows that the ion exchange sorption plays the basic role in Cu2+ uptake by natural zeolite. The value obtained for the apparent activation energy (26.112 kJ mol(-1) implies that the process can be easily carried out with a satisfactory rate. The uptake equilibrium is best described by the Langmuir adsorption isotherm, with Langmuir constants KL= 6.4 x 10(-2) dm3 mg(-1) and M = 6.74 mg g(-1). The apparent equilibrium constant

  17. Evaluation of Selective Ion Exchange Resins for Removal of Mercury from the H-Area Water Treatment Unit

    SciTech Connect

    Serkiz, S.M.

    2000-09-05

    This study investigated the ability of seven ion exchange (IX) resins, some of which were mercury specific, to remove mercury in H-Area WTU waters from three sources (Reverse Osmosis (RO) Feed, RO Permeate from Train A, and a mercury ''hot spot'' extraction well HEX 18). Seven ion exchange resins, including ResinTech CG8 and Dowex 21K (the cation and anion exchange resins currently used at the H-Area WTU) were screened against five alternative ion exchange materials plus an experimental blank. Mercury decontamination factors (DFs), mercury breakthrough, and post-test contaminant concentrations of IX resins were determined for each IX material tested.

  18. Repeated use of ion-exchange resin membranes in calcareous soils

    USGS Publications Warehouse

    Sherrod, S.K.; Belnap, Jayne; Miller, M.E.

    2003-01-01

    This study compared the consistency of nutrient extraction among repeated cycles of ion-exchange resin membrane use. Two sandy calcareous soils and different equilibration temperatures were tested. No single nutrient retained consistent values from cycle to cycle in all treatments, although both soil source and temperature conferred some influence. It was concluded that the most conservative use of resin membranes is single-use.

  19. Development and properties of crystalline silicotitanate (CST) ion exchangers for radioactive waste applications

    SciTech Connect

    Miller, J.E.; Brown, N.E.

    1997-04-01

    Crystalline silicotitanates (CSTs) are a new class of ion exchangers that were jointly invented by researchers at Sandia National Laboratories and Texas A&M University. One particular CST, known as TAM-5, is remarkable for its ability to separate parts-per-million concentrations of cesium from highly alkaline solutions (pH> 14) containing high sodium concentrations (>5M). It is also highly effective for removing cesium from neutral and acidic solutions, and for removing strontium from basic and neutral solutions. Cesium isotopes are fission products that account for a large portion of the radioactivity in waste streams generated during weapons material production. Tests performed at numerous locations with early lab-scale TAM-5 samples established the material as a leading candidate for treating radioactive waste volumes such as those found at the Hanford site in Washington. Thus Sandia developed a Cooperative Research and Development Agreement (CRADA) partnership with UOP, a world leader in developing, commercializing, and supplying adsorbents and associated process technology to commercialize and further develop the material. CSTs are now commercially available from UOP in a powder (UOP IONSIV{reg_sign} IE-910 ion exchanger) and granular form suitable for column ion exchange operations (UOP IONSIV{reg_sign} IE-911 ion exchanger). These materials exhibit a high capacity for cesium in a wide variety of solutions of interest to the Department of Energy, and they are chemically, thermally, and radiation stable. They have performed well in tests at numerous sites with actual radioactive waste solutions, and are being demonstrated in the 100,000 liter Cesium Removal Demonstration taking place at Oak Ridge National Laboratory with Melton Valley Storage Tank waste. It has been estimated that applying CSTs to the Hanford cleanup alone will result in a savings of more than $300 million over baseline technologies.

  20. Anion exchangers with branched functional ion exchange layers of different hydrophilicity for ion chromatography.

    PubMed

    Shchukina, O I; Zatirakha, A V; Smolenkov, A D; Nesterenko, P N; Shpigun, O A

    2015-08-21

    Novel polystyrene-divinylbenzene (PS-DVB) based anion exchangers differing from each other in the structure of the branched functional ion exchange layer are prepared to investigate the role of linker and functional site on ion exchange selectivity. The proposed method of synthesis includes the obtaining of aminated PS-DVB particles by means of their acylation with following reductive amination with methylamine. Further modification of the obtained secondary aminogroups is provided by the alkylation with either 1,4-butanediol diglycidyl ether (1,4-BDDGE) or resorcinol diglycidyl ether (RDGE), which form the linkers of different hydrophobicity, and amination of terminal epoxide rings with trimethylamine (TMA), dimethylethanolamine (DMEA), methyldiethanolamine (MDEA) or triethanolamine (TEA). The variation of the structure and hydrophobicity of the linker and terminal quaternary ammonium sites in the functional layer allows the alteration of selectivity and separation efficiency of the obtained adsorbents. The ion exchange selectivity and separation efficiency of the anion exchangers are evaluated using the model mixtures of anions (F(-), HCOO(-), Cl(-), NO2(-), Br(-), NO3(-), HPO4(2-) and SO4(2-)) in potassium hydroxide eluents. The adsorbents show the decrease of selectivity with increasing the hydrophilicity of the terminal functional site. The anion exchangers having more flexible and hydrophilic 1,4-BDDGE linker provide smaller separation factors for most of the analytes as compared with RDGE-containing adsorbents with the same terminal ion exchange sites, but are characterized with higher column efficiencies and better peak symmetry for polarizable anions. In case of 1,4-BDDGE-modified anion exchangers of the particle size of 3.3μm functionalized with DMEA and MDEA the calculated values of column efficiencies for polarizable NO3(-) and Br(-) are up to 49,000 and 53,000N/m, respectively, which is almost twice higher than the values obtained for the RDGE

  1. Vitrification Demonstration with Argentine Ion Exchange Material in the Stir-Melter

    SciTech Connect

    Cicero-Herman, C.A.

    2002-06-28

    The Savannah River Technology Center (SRTC) is investigating the viability of vitrification treatment of Argentine ion exchange material as part of a Department of Energy (DOE) - Office of Science and Technology Development Task Plan. Bench-scale studies were performed by the SRTC to define the necessary vitrification process for this material. However, the process had to be demonstrated in a melter system before vitrification could be considered a viable treatment option.

  2. Radon (222Rn) in ground water of fractured rocks: a diffusion/ion exchange model.

    PubMed

    Wood, Warren W; Kraemer, Thomas F; Shapiro, Allen

    2004-01-01

    Ground waters from fractured igneous and high-grade sialic metamorphic rocks frequently have elevated activity of dissolved radon (222Rn). A chemically based model is proposed whereby radium (226Ra) from the decay of uranium (238U) diffuses through the primary porosity of the rock to the water-transmitting fracture where it is sorbed on weathering products. Sorption of 226Ra on the fracture surface maintains an activity gradient in the rock matrix, ensuring a continuous supply of 226Ra to fracture surfaces. As a result of the relatively long half-life of 226Ra (1601 years), significant activity can accumulate on fracture surfaces. The proximity of this sorbed 226Ra to the active ground water flow system allows its decay progeny 222Rn to enter directly into the water. Laboratory analyses of primary porosity and diffusion coefficients of the rock matrix, radon emanation, and ion exchange at fracture surfaces are consistent with the requirements of a diffusion/ion-exchange model. A dipole-brine injection/withdrawal experiment conducted between bedrock boreholes in the high-grade metamorphic and granite rocks at the Hubbard Brook Experimental Forest, Grafton County, New Hampshire, United States (42 degrees 56'N, 71 degrees 43'W) shows a large activity of 226Ra exchanged from fracture surfaces by a magnesium brine. The 226Ra activity removed by the exchange process is 34 times greater than that of 238U activity. These observations are consistent with the diffusion/ion-exchange model. Elutriate isotopic ratios of 223Ra/226Ra and 238U/226Ra are also consistent with the proposed chemically based diffusion/ion-exchange model. PMID:15318778

  3. Dark electrochemistry and photoelectrochemistry of molecularly doped ion-exchange polymer blends

    SciTech Connect

    Crouch, A.M.; Ordonez, I.; Langford, C.H.; Lawrence, M.F.

    1988-10-20

    Ion-exchange polymer blends have been shown to produce modified electrode surfaces with high affinities for ionic reactants. The main feature of these blends is their spontaneous tendency to segregate into hydrophilic and hydrophobic domains. It is now believed that, when appropriate dye molecules are incorporated into such films and then illuminated, these systems operate under both ionic and dry electronic conduction mechanisms. The dark electrochemical measurements performed on an ion-exchange polymer containing ZnTPPS/sup 4 -/, ZnTPP, ZnPc(OPh)/sub 4/, or CuPcTS/sub 4-/, in contact with a Fe(CN)/sub 6//sup 3-/4-/ redox solution, show that the dye molecules within the film are immobile and that the high ion-exchange capability is maintained. The photoelectrochemical results obtained with the dye-loaded films indicate that electrons may be transferred from the photoexcited dyes to the polymer matrix and transported to the SnO/sub 2/ substrate electrode. The oxidized dye molecules are reduced by accepting electrons from the Fe(CN)/sub 6//sup 4 -/ species. The electronic conduction following charge separation is assumed to be intimately related to the ion-exchange polymer's tendency to segregate into hydrophilic and hydrophobic domains and also the excited-state energetics of the dye. A model which invokes the existence of large distributions of molecular ion states is proposed to explain the conduction of electrons through the hydrophobic domains of the polymer film and a detailed energy level diagram is presented to summarize the overall situation.

  4. Storage and Aging Effects on Spherical Resorcinol-Formaldehyde Resin Ion Exchange Performance

    SciTech Connect

    Fiskum, Sandra K.; Arm, Stuart T.; Edwards, Matthew K.; Steele, Marilyn J.; Thomas, Kathie K.

    2007-09-10

    Bechtel National, Inc. (BNI) is evaluating the alternate Cs ion exchanger, spherical resorcinol-formaldehyde (RF), for use in the River Protection Project-Waste Treatment Plant (RPP-WTP).( ) Previous test activities with spherical RF indicate that it has adequate capacity, selectivity, and kinetics to perform in the plant according to the flowsheet needs. It appears to have better elution and hydraulic properties than the existing alternatives: ground-gel RF and SuperLig® 644 (SL 644).( ) To date, the spherical RF performance testing has been conducted on freshly manufactured resin (within ~2 months of manufacture). The ion exchange resins will be manufactured and shipped to the WTP up to 1 year before being used in the plant. Changes in the resin properties during storage could reduce the capacity of the resin to remove Cs from low-activity waste solutions. Active sites on organic SL-644 resin have been shown to degrade during storage (Arm et al. 2004). Additional testing was needed to study the effects of storage conditions and aging on spherical RF ion exchange performance. Variables that could have a significant impact on ion exchange resins during storage include storage temperature, medium, and time. Battelle—Pacific Northwest Division (PNWD) was contracted to test the effects of various storage conditions on spherical RF resin. Data obtained from the testing will be used by the WTP operations to provide direction for suitable storage conditions and manage the spherical RF resin stock. Storage test conditions included wet and dry resin configurations under nitrogen at three temperatures. Work was initially conducted under contract number 24590-101-TSA-W000-00004 satisfying the needs defined in Appendix C of the Research and Technology Plan( ) TSS A-219 to evaluate the impact of storage conditions on RF resin performance. In February 2007, the contract mechanism was switched to Pacific Northwest National Laboratory (PNNL) Operating Contract DE-AC05-76RL

  5. An exploratory program for using hydrous metal oxide ion exchangers as Fischer-Tropsch catalysts

    SciTech Connect

    Lynch, A.W.; Dosch, R.G.; Sault, A.G.

    1990-01-01

    The purpose of this program is to investigate the potential of hydrous metal oxide (HMO) ion exchangers, invented at Sandia National Laboratories, as Fischer-Tropsch (F-T) catalysts. Metals known to be active in F-T synthesis (e.g. Fe, Co) were ion exchanged on hydrous metal oxide supports. Although HMO catalysts based on Zr, Nb, and Ta have been investigated in direct coal liquefaction studies, this effect focused on formulations based on the hydrous titanium oxide (HTO) system. The program has the goals of developing a catalyst with (1) high activity, (2) selectively to fuel range or other useful products, and (3) better properties for use in slurry reactors. The program has three main tasks: (1) catalyst synthesis, to develop methods for preparing catalysts having desirable F-T properties, (2) characterization, to investigate catalysts proving to have desirable properties by a variety of analytical techniques to determine correlations between activity and material properties and (3) testing to determine activity and selectivity of catalysts. This paper discussed results of activity testing of Ruhrchemie catalyst and some catalyst formulations prepared using ion exchange on hydrous titanium oxide and precipitation. For example, at 250{degree}C the Ruhrchemie catalyst converts {approximately}50% of the syngas feed to reaction products. In comparison, iron catalysts prepared by ion exchange and precipitation had conversions ranging from 20 to 50% over a temperature range of 250 to 275{degree}C of the syngas feed. In addition, results are Auger surface analysis of Ruhrchemie catalyst are presented. 6 refs., 2 figs., 2 tabs.

  6. Ion-exchanger colorimetry-I Micro determination of chromium, iron, copper and cobalt in water.

    PubMed

    Yoshimura, K; Waki, H; Ohashi, S

    1976-06-01

    A new sensitive, colorimetric method based on the direct measurement of light-absorption by an ion-exchange resin phase, which has sorbed the sample complex species, has been developed. Determinations ofchromium(VI) with diphenylearbazide, iron(II) with 1,10-phenanthroline, copper with Zincon and cobalt with thiocyanate have more than ten times the sensitivity obtainable with conventional solution colorimetry. The present method can be applied to natural water samples containing very low levels of these metals. PMID:18961894

  7. Formation of nonlinear optical waveguides by using ion-exchange and implantation techniques

    NASA Astrophysics Data System (ADS)

    Arnold, G. W.; de Marchi, G.; Gonella, F.; Mazzoldi, P.; Quaranta, A.; Battaglin, G.; Catalano, M.; Garrido, F.; Haglund, R. F., Jr.

    1996-08-01

    Composite materials consisting of metal nanoclusters embedded in glass matrices have been obtained by the combined use of ion-exchange and ion implantation processes, with possible application in the design of nonlinear all-optical switching devices. Optical waveguides containing either silver or copper clusters have been fabricated. Optical absorption and electron microscopy have been performed to detect the presence of metal clusters. Preliminary measurements have been also performed of the optical nonlinear response on both silver- and copper-containing glasses.

  8. Membrane permeation process for dehydration of organic liquid mixtures using sulfonated ion-exchange polyalkene membranes

    DOEpatents

    Cabasso, Israel; Korngold, Emmanuel

    1988-01-01

    A membrane permeation process for dehydrating a mixture of organic liquids, such as alcohols or close boiling, heat sensitive mixtures. The process comprises causing a component of the mixture to selectively sorb into one side of sulfonated ion-exchange polyalkene (e.g., polyethylene) membranes and selectively diffuse or flow therethrough, and then desorbing the component into a gas or liquid phase on the other side of the membranes.

  9. Effect of diffusion potential, osmosis and ion-exchange on transdermal drug delivery: theory and experiments.

    PubMed

    Hirvonen, J; Murtomäki, L; Kontturi, K

    1998-12-01

    Equations expressing the effect of the diffusion potential on the trace ion transfer across a porous charged membrane have been derived. These equations have been tested with experiments with human cadaver skin. The transfer of sotalol and salicylate was measured varying the salt (NaCl) concentration in the donor and receiver compartments. It appears that osmotic pressure and ion-exchange make a significant contribution to the flux enhancement by the diffusion potential. PMID:9801427

  10. Radon (222Rn) in ground water of fractured rocks: A diffusion/ion exchange model

    USGS Publications Warehouse

    Wood, W.W.; Kraemer, T.F.; Shapiro, A.

    2004-01-01

    Ground waters from fractured igneous and high-grade sialic metamorphic rocks frequently have elevated activity of dissolved radon (222Rn). A chemically based model is proposed whereby radium (226Ra) from the decay of uranium (238U) diffuses through the primary porosity of the rock to the water-transmitting fracture where it is sorbed on weathering products. Sorption of 226Ra on the fracture surface maintains an activity gradient in the rock matrix, ensuring a continuous supply of 226Ra to fracture surfaces. As a result of the relatively long half-life of 226Ra (1601 years), significant activity can accumulate on fracture surfaces. The proximity of this sorbed 226Ra to the active ground water flow system allows its decay progeny 222Rn to enter directly into the water. Laboratory analyses of primary porosity and diffusion coefficients of the rock matrix, radon emanation, and ion exchange at fracture surfaces are consistent with the requirements of a diffusion/ion- exchange model. A dipole-brine injection/withdrawal experiment conducted between bedrock boreholes in the high-grade metamorphic and granite rocks at the Hubbard Brook Experimental Forest, Grafton County, New Hampshire, United States (42??56???N, 71??43???W) shows a large activity of 226Ra exchanged from fracture surfaces by a magnesium brine. The 226Ra activity removed by the exchange process is 34 times greater than that of 238U activity. These observations are consistent with the diffusion/ion-exchange model. Elutriate isotopic ratios of 223Ra/226Ra and 238U/226Ra are also consistent with the proposed chemically based diffusion/ion-exchange model.

  11. Sorption of beryllium from sulfate solutions by amino-carboxylic amphoteric ion-exchange resins (polyampholytes)

    SciTech Connect

    Pakholkov, V.S.; Tsevin, A.P.; Rychkov, V.N.

    1986-05-10

    In studies of sorption of beryllium ions from BeSO4 solutions by a series of aminocarboxylic polyampholytes the influence of pH and of the H2SO4, (NH4)2SO4, and BeSO4 concentrations was demonstrated. The mechanism of the process is postulated on the basis of sorption data and the results of IR-spectroscopic studies. It is concluded that carboxyl groups of polyampholytes take part in ion exchange.

  12. Sorption of iron(III) from chromate solution by the aminocarboxylic ion exchanger ANKB-2

    SciTech Connect

    Stoyanova, O.F.; Izmailova, D.R.; Kurolap, N.S.; Uglyanskaya, V.A.

    1986-12-20

    The possibility of iron(III) sorption by the amphoteric ion exchanger ANKB-2 from chromate solution and its superiority over the cation exchanger KU-23 (10/60) have been demonstrated. By means of IR spectroscopy it has been shown that iron(III) sorption from chromate solution by ANKB-2 proceeds via both ionic and coordination reactions. The proportion of these kinds of reaction does not depend on the Cr(VI) content of the initial solution.

  13. Beryllosilicate frameworks and zeolites.

    PubMed

    Armstrong, Jennifer A; Weller, Mark T

    2010-11-10

    Using inspiration derived from studying naturally occurring minerals, a series of framework beryllosilicates have been synthesized under hydrothermal conditions. These include two new zeolite topologies, a unique layered beryllosilicate, and beryllosilicate analogues of numerous aluminosilicate zeolites. Materials with the structure of the rare zeolite mineral nabesite have been synthesized for the first time, including both sodium and potassium derivatives. The structural chemistry of these beryllosilicates frameworks is discussed with reference to the networks of linked tetrahedra, which include the first instance of pentagonal, two-dimensional Cairo-tiling of silicate tetrahedra in one of the new zeolite topologies, their porosity, and their thermal stability. PMID:20949941

  14. 2D fluorescence spectroscopy for monitoring ion-exchange membrane based technologies - Reverse electrodialysis (RED).

    PubMed

    Pawlowski, Sylwin; Galinha, Claudia F; Crespo, João G; Velizarov, Svetlozar

    2016-01-01

    Reverse electrodialysis (RED) is one of the emerging, membrane-based technologies for harvesting salinity gradient energy. In RED process, fouling is an undesirable operation constraint since it leads to a decrease of the obtainable net power density due to increasing stack electric resistance and pressure drop. Therefore, early fouling detection is one of the main challenges for successful RED technology implementation. In the present study, two-dimensional (2D) fluorescence spectroscopy was used, for the first time, as a tool for fouling monitoring in RED. Fluorescence excitation-emission matrices (EEMs) of ion-exchange membrane surfaces and of natural aqueous streams were acquired during one month of a RED stack operation. Fouling evolvement on the ion-exchange membrane surfaces was successfully followed by 2D fluorescence spectroscopy and quantified using principal components analysis (PCA). Additionally, the efficiency of cleaning strategy was assessed by measuring the membrane fluorescence emission intensity before and after cleaning. The anion-exchange membrane (AEM) surface in contact with river water showed to be significantly affected due to fouling by humic compounds, which were found to cross through the membrane from the lower salinity (river water) to higher salinity (sea water) stream. The results obtained show that the combined approach of using 2D fluorescence spectroscopy and PCA has a high potential for studying fouling development and membrane cleaning efficiency in ion exchange membrane processes. PMID:26497936

  15. The chemical precipitation of nickel on ion exchangers and active carbons

    NASA Astrophysics Data System (ADS)

    Khorol'Skaya, S. V.; Zolotukhina, E. V.; Polyanskii, L. N.; Peshkov, S. V.; Kravchenko, T. A.; Krysanov, V. A.

    2010-12-01

    The chemical precipitation of nickel in the form of poorly soluble precipitates in ion exchanger matrices and on active carbons from solutions of nickel chloride and chemical nickel plating electrolytes was studied. The sorption of nickel ions from a solution of nickel chloride occurs most effectively on Purolite D24002 macroporous chelate forming ion exchanger, KU-23-15/100 sulfo cation exchanger, and KU-2-8 gel sulfo cation exchanger. Nickel enters sulfo cation exchangers in the form of counterions, and is adsorbed on Purolite D24002 largely because of complex formation. The subsequent precipitation of nickel in the solid state in matrix pores liberates ionogenic centers, which allows repeated sorption cycles to be performed. After three chemical precipitation cycles under static conditions, the amount of nickel is higher by 170-250% than the ion exchange capacity of the sorbents. The electrolyte of chemical nickel plating contains nickel predominantly in the form of negatively charged and neutral complexes with glycine, which cannot form bonds with the matrices under study. It is therefore reasonable to perform sorption at decreased solution pH values.

  16. Unified superresolution experiments and stochastic theory provide mechanistic insight into protein ion-exchange adsorptive separations

    PubMed Central

    Kisley, Lydia; Chen, Jixin; Mansur, Andrea P.; Shuang, Bo; Kourentzi, Katerina; Poongavanam, Mohan-Vivekanandan; Chen, Wen-Hsiang; Dhamane, Sagar; Willson, Richard C.; Landes, Christy F.

    2014-01-01

    Chromatographic protein separations, immunoassays, and biosensing all typically involve the adsorption of proteins to surfaces decorated with charged, hydrophobic, or affinity ligands. Despite increasingly widespread use throughout the pharmaceutical industry, mechanistic detail about the interactions of proteins with individual chromatographic adsorbent sites is available only via inference from ensemble measurements such as binding isotherms, calorimetry, and chromatography. In this work, we present the direct superresolution mapping and kinetic characterization of functional sites on ion-exchange ligands based on agarose, a support matrix routinely used in protein chromatography. By quantifying the interactions of single proteins with individual charged ligands, we demonstrate that clusters of charges are necessary to create detectable adsorption sites and that even chemically identical ligands create adsorption sites of varying kinetic properties that depend on steric availability at the interface. Additionally, we relate experimental results to the stochastic theory of chromatography. Simulated elution profiles calculated from the molecular-scale data suggest that, if it were possible to engineer uniform optimal interactions into ion-exchange systems, separation efficiencies could be improved by as much as a factor of five by deliberately exploiting clustered interactions that currently dominate the ion-exchange process only accidentally. PMID:24459184

  17. Controlled transdermal delivery of leuprorelin by pulsed iontophoresis and ion-exchange fiber.

    PubMed

    Malinovskaja, Kristina; Laaksonen, Timo; Hirvonen, Jouni

    2014-11-01

    Poor transport efficacy and issues related to biological variation are major concerns in the development of novel iontophoretic devices for the transdermal delivery of therapeutic peptides. The objective of this study was to examine the impact of constant and pulsed current on the transport of nonapeptide leuprorelin acetate across porcine epidermis. Also, the potential of drug delivery system combining iontophoresis and ion-exchange fibers as drug matrices for the delivery of the same peptide was tested. The present study demonstrated the benefit of pulsed current (Tn=2.59×10(-4)) over constant current (Tn=1.7×10(-4)) in terms of more efficient transdermal peptide transport. An increase in the delivery of electroosmotic marker by pulsed current was due to the combined effect of more pronounced electroosmotic transport and reduced inhibition of passive transport. We also showed a promising approach using ion-exchange fibers for controlling the release and iontophoretic transdermal delivery of peptides. Positively charged leuprorelin acetate was bound to the ion-exchange groups of cation-exchange fibers until it was gradually released by mobile counter ions in the external solution. Transdermal flux from acrylic acid grafted Smopex®-102 fibers remained higher (Jss=0.71μg/hcm(2)) than from sulfonic acid grafted Smopex®-101 fibers (Jss=0.31μg/hcm(2)) due to better drug release. PMID:25173088

  18. IMPACT OF THE SMALL COLUMN ION EXCHANGE PROCESS ON THE DEFENSE WASTE PROCESSING FACILITY - 12112

    SciTech Connect

    Koopman, D.; Lambert, D.; Fox, K.; Stone, M.

    2011-11-07

    The Savannah River Site (SRS) is investigating the deployment of a parallel technology to the Salt Waste Processing Facility (SWPF, presently under construction) to accelerate high activity salt waste processing. The proposed technology combines large waste tank strikes of monosodium titanate (MST) to sorb strontium and actinides with two ion exchange columns packed with crystalline silicotitanate (CST) resin to sorb cesium. The new process was designated Small Column Ion Exchange (SCIX), since the ion exchange columns were sized to fit within a waste storage tank riser. Loaded resins are to be combined with high activity sludge waste and fed to the Defense Waste Processing Facility (DWPF) for incorporation into the current glass waste form. Decontaminated salt solution produced by SCIX will be fed to the SRS Saltstone Facility for on-site immobilization as a grout waste form. Determining the potential impact of SCIX resins on DWPF processing was the basis for this study. Accelerated salt waste treatment is projected to produce a significant savings in the overall life cycle cost of waste treatment at SRS.

  19. Capillary ion-exchange chromatography with nanogram sensitivity for the analysis of monoclonal antibodies.

    PubMed

    Rea, Jennifer C; Freistadt, Benny S; McDonald, Daniel; Farnan, Dell; Wang, Yajun Jennifer

    2015-12-11

    Ion-exchange chromatography (IEC) is widely used for profiling the charge heterogeneity of proteins, including monoclonal antibodies (mAbs). Despite good resolving power and robustness, ionic strength-based ion-exchange separations are generally product specific and can be time consuming to develop. In addition, conventional analytical scale ion-exchange separations require tens of micrograms of mAbs for each injection, amounts that are often unavailable in sample-limited applications. We report the development of a capillary IEC (c-IEC) methodology for the analysis of nanogram amounts of mAb charge variants. Several key modifications were made to a commercially available liquid chromatography system to perform c-IEC for charge variant analysis of mAbs with nanogram sensitivity. We demonstrate the method for multiple monoclonal antibodies, including antibody fragments, on different columns from different manufacturers. Relative standard deviations of <10% were achieved for relative peak areas of main peak, acidic and basic regions, which are common regions of interest for quantifying monoclonal antibody charge variants using IEC. The results herein demonstrate the excellent sensitivity of this c-IEC characterization method, which can be used for analyzing charge variants in sample-limited applications, such as early-stage candidate screening and in vivo studies. PMID:26596872

  20. Evaluation of ion exchange resins and various enzymes in thiamine analysis.

    PubMed

    Ellefson, W C; Richter, E; Adams, M; Baillies, N T

    1981-11-01

    Four ion exchange resins and 9 enzyme preparations are evaluated for use in the official AOAC thiamine method because Decalso and Clarase or Mylase P either are no longer available or are available in a form that is not suitable for use in the assay. The enzymes are prepared in the same manner described for Clarase or Mylase P in the AOAC method and are compared with Clarase T300 for their effectiveness in releasing thiamine from thiamine phosphate, and their ability to produce similar results on samples. Rhozyme S is 90-100% as effective as Clarase T300 in both of these respects. The other enzymes tested were not satisfactory. Further study is necessary because Rhozyme S also is no longer manufactured. The ion exchange resins are prepared for use in the manner described for Decalso in the AOAC method. Recoveries of thiamine range from 95 to 100%, using Bio-Rex 70 (hydrogen form) ion exchange resin. The other resins tested were not satisfactory. PMID:7309654

  1. TRANSIENT HEAT TRANSFER ANALYSIS FOR ION-EXCHANGE WASTE REMOVAL PROCESS

    SciTech Connect

    Lee, S.

    2010-07-12

    The small column ion exchange (SCIX) process treats low curie salt (LCS) waste before feeding it to the saltstone facility to be made into grout. Through this process, radioactive cesium from the salt solution is absorbed into the CST bed. A CST column loaded with radioactive cesium will generate significant heat from radiolytic decay. If engineering designs of the CST sorption column can not handle this thermal load, hot spots may develop locally within the column and degrade the performance of the ion-exchange process. The CST starts to degrade at about 80 to 85 C, and the CST completely changes to another material above 120 C. In addition, the process solution will boil around 130 C. If the column boiled dry, the sorbent could plug the column and require replacement of the column module. The objective of the present work is to compute temperature distributions across the column as a function of transit time after the initiation of accidents when there is loss of the salt solution flow in the CST column under abnormal conditions of the process operations. In this situation, the customer requested that the calculations should be conservative in that the model results would show the maximum centerline temperatures achievable by the CST design configurations. The thermal analysis results will be used to evaluate the fluid temperature distributions and the process component temperatures within the ion exchange system. This information will also assist in the system design and maintenance.

  2. Exploring the favorable ion-exchange ability of phthalylated cellulose biopolymer using thermodynamic data.

    PubMed

    de Melo, Júlio C P; da Silva Filho, Edson C; Santana, Sirlane A A; Airoldi, Claudio

    2010-09-01

    A phthalylated ion-exchange biopolymer was obtained by adding cellulose to molten phthalic anhydride in a quasi solvent-free procedure. Through this route 2.99+/-0.07 mmolg(-1) of pendant groups containing ester and carboxylic acid moieties were incorporated into the polymeric structure that was characterized by elemental analysis, solid-state carbon nuclear magnetic resonance (CP/MAS), infrared spectroscopy, X-ray diffraction, and thermogravimetry. The chemically modified polysaccharide is able to exchange cations from aqueous solution as demonstrated by batchwise methodology. The data were adjusted to a modified Langmuir equation to give 2.43+/-0.12 and 2.26+/-0.11 mmolg(-1) for divalent cobalt and nickel cations, respectively. The net thermal effects obtained from calorimetric titration measurements were also adjusted to a modified Langmuir equation, and the enthalpy of the interaction was calculated to give endothermic values of 2.11+/-0.28 and 2.50+/-0.31kJmol(-1) for these cations, respectively. The spontaneity of this ion-exchange process is reflected in negative Gibbs energy and with a contribution of positive entropic values. This set of thermodynamic data at the solid-liquid interface suggests a favorable ion-exchange process for this anchored biopolymer for cation exchange from the environment. PMID:20673881

  3. Engineering study for the treatment of spent ion exchange resin resulting from nuclear process applications

    SciTech Connect

    Place, B.G.

    1990-09-01

    This document is an engineering study of spent ion exchange resin treatment processes with the purpose of identifying one or more suitable treatment technologies. Classifications of waste considered include all classes of low-level waste (LLW), mixed LLW, transuranic (TRU) waste, and mixed TRU waste. A total of 29 process alternatives have been evaluated. Evaluation parameters have included economic parameters (both total life-cycle costs and capital costs), demonstrated operability, environmental permitting, operational availability, waste volume reduction, programmatic consistency, and multiple utilization. The results of this study suggest that there are a number of alternative process configurations that are suitable for the treatment of spent ion exchange resin. The determinative evaluation parameters were economic variables (total life-cycle cost or capital cost) and waste volume reduction. Immobilization processes are generally poor in volume reduction. Thermal volume reduction processes tend to have high capital costs. There are immobilization processes and thermal volume reduction processes that can treat all classifications of spent ion exchange resin likely to be encountered. 40 refs., 19 figs., 17 tabs.

  4. Solidification of microbiologically treated ion-exchange resins using Portland cement-based systems

    SciTech Connect

    Voima Oy, I.

    1993-12-31

    Pretreated inactive ion exchange resins from the Loviisa nuclear power plant (NPP) were first reduced to one tenth of the original volume through microbiological treatment. During the process, the granular ion exchange resins were decomposed to result in dregs, which were solidified with two types of Portland cements. The objective of the present experiments was to investigate whether commercial cements are suitable solidification agents for this kind of waste. A total of ten mixtures were pretested for their rheological and setting properties. On the basis of the pretest results, four additional mixtures were chosen and tested for the spread value, density, air content, setting time and bleeding of the fresh waste product and for the dimensional stability and compressive strength of the hardened waste product. The cementing systems incorporated in the tests were ASTM type V Portland cement and ASTm type P Portland Composite cements. The dregs used in the tests were taken from a Pilot-Plant experiment at the Loviisa NPP and contained 2 wt-% solids. The test results were promising in showing that microbiological dregs can very easily be soldified with Portland cements to form a high-quality waste product. Thus, the microbiological treatment of spent ion exchange resins will drastically decrease the amount of solidified waste to be disposed of at the Loviisa NPP.

  5. Cast and 3D printed ion exchange membranes for monolithic microbial fuel cell fabrication

    NASA Astrophysics Data System (ADS)

    Philamore, Hemma; Rossiter, Jonathan; Walters, Peter; Winfield, Jonathan; Ieropoulos, Ioannis

    2015-09-01

    We present novel solutions to a key challenge in microbial fuel cell (MFC) technology; greater power density through increased relative surface area of the ion exchange membrane that separates the anode and cathode electrodes. The first use of a 3D printed polymer and a cast latex membrane are compared to a conventionally used cation exchange membrane. These new techniques significantly expand the geometric versatility available to ion exchange membranes in MFCs, which may be instrumental in answering challenges in the design of MFCs including miniaturisation, cost and ease of fabrication. Under electrical load conditions selected for optimal power transfer, peak power production (mean 10 batch feeds) was 11.39 μW (CEM), 10.51 μW (latex) and 0.92 μW (Tangoplus). Change in conductivity and pH of anolyte were correlated with MFC power production. Digital and environmental scanning electron microscopy show structural changes to and biological precipitation on membrane materials following long term use in an MFC. The cost of the novel membranes was lower than the conventional CEM. The efficacy of two novel membranes for ion exchange indicates that further characterisation of these materials and their fabrication techniques, shows great potential to significantly increase the range and type of MFCs that can be produced.

  6. Preparation of Ion Exchange Films for Solid-Phase Spectrophotometry and Solid-Phase Fluorometry

    NASA Technical Reports Server (NTRS)

    Hill, Carol M.; Street, Kenneth W.; Tanner, Stephen P.; Philipp, Warren H.

    2000-01-01

    Atomic spectroscopy has dominated the field of trace inorganic analysis because of its high sensitivity and selectivity. The advantages gained by the atomic spectroscopies come with the disadvantage of expensive and often complicated instrumentation. Solid-phase spectroscopy, in which the analyte is preconcentrated on a solid medium followed by conventional spectrophotometry or fluorometry, requires less expensive instrumentation and has considerable sensitivity and selectivity. The sensitivity gains come from preconcentration and the use of chromophore (or fluorophore) developers and the selectivity is achieved by use of ion exchange conditions that favor the analyte in combination with speciative chromophores. Little work has been done to optimize the ion exchange medium (IEM) associated with these techniques. In this report we present a method for making ion exchange polymer films, which considerably simplify the solid-phase spectroscopic techniques. The polymer consists of formaldehyde-crosslinked polyvinyl alcohol with polyacrylic acid entrapped therein. The films are a carboxylate weak cation exchanger in the calcium form. They are mechanically sturdy and optically transparent in the ultraviolet and visible portion of the spectrum, which makes them suitable for spectrophotometry and fluorometry.

  7. Impact of natural organic matter properties on the kinetics of suspended ion exchange process.

    PubMed

    Bazri, Mohammad Mahdi; Mohseni, Madjid

    2016-03-15

    Removal kinetics of four standard organic matter isolates under the application of strongly basic ion exchange resins (IEX) in suspended mode was studied under commercial application conditions. Suwannee River natural organic matter (SRNOM), SR fulvic acid (SRFA), and Pony Lake fulvic acid (PLFA) were greatly removed (>90%) and highly preferred by IEX resins (α > 5, over Cl(-), and HCO3(-)) while SR humic acid (SRHA) was the least preferred organic structure among the four isolates studied (α ≈ 1). Moreover, the efficacy of removal for fulvic acids (i.e., SRFA, PLFA) was consistent over consecutive reuse of IEX resins (i.e., loading cycles) whereas it decreased for SRNOM and SRHA over the course of operation. The stoichiometric correlation between the chloride released from the resins as a result of organic molecules uptake indicated that ion exchange was the dominant mechanism. Results obtained indicated that molecular weight and charge density of isolates played a major role in the performance of ion exchange process for organic matter removal. Furthermore, various empirical and physical models were evaluated using the experimental data and pore diffusion was found to be the rate-liming step during the uptake of organic matters; hence, it was used as the appropriate model to predict the kinetics of removal. Consequently, free liquid diffusivities and effective pore diffusion coefficients of organic molecules were estimated and findings were in agreement with the literature data that were obtained from spectrophotometric methods. PMID:26774263

  8. Electrochemical Ion-Exchange Regeneration and Fluidized Bed Crystallization for Zero-Liquid-Discharge Water Softening.

    PubMed

    Chen, Yingying; Davis, Jake R; Nguyen, Chi H; Baygents, James C; Farrell, James

    2016-06-01

    This research investigated the use of an electrochemical system for regenerating ion-exchange media and for promoting the crystallization of hardness minerals in a fluidized bed crystallization reactor (FBCR). The closed-loop process eliminates the creation of waste brine solutions that are normally produced when regenerating ion-exchange media. A bipolar membrane electrodialysis stack was used to generate acids and bases from 100 mM salt solutions. The acid was used to regenerate weak acid cation (WAC) ion-exchange media used for water softening. The base solutions were used to absorb CO2 gas and to provide a source of alkalinity for removing noncarbonate hardness by WAC media operated in H(+) form. The base solutions were also used to promote the crystallization of CaCO3 and Mg(OH)2 in a FBCR. The overall process removes hardness ions from the water being softened and replaces them with H(+) ions, slightly decreasing the pH value of the softened water. The current utilization efficiency for acid and base production was ∼75% over the operational range of interest, and the energy costs for producing acids and bases were an order of magnitude lower than the costs for purchasing acid and base in bulk quantities. Ion balances indicate that the closed-loop system will accumulate SO4(2-), Cl(-), and alkali metal ions. Acid and base balances indicate that for a typical water, small amounts of base will be accumulated. PMID:27161852

  9. Cerium doped soda-lime-silicate glasses: effects of silver ion-exchange on optical properties

    NASA Astrophysics Data System (ADS)

    Paje, S. E.; García, M. A.; Villegas, M. A.; Llopis, J.

    2001-09-01

    Effects of silver ion-exchange on optical absorption (OA) and photoluminescence (PL) spectra of a cerium doped soda-lime-silicate glass at room temperature are investigated. The optical spectra are described in terms of the characteristic transitions 4f↔5d originated in Ce 3+ ions placed mainly in two different sites of the glass network. As Ag + ions are introduced into the cerium doped glass, they are reduced to elementary silver (Ag 0) which are favoured by the reaction Ce 3++Ag +→Ce 4++Ag 0. Then, the number of Ce 3+ ions decrease inversely with depth from the surface contrarily to Ce 4+ ions does, and elementary silver diffuses and aggregates to form nanoparticles. As a consequence of these changes, the OA spectra of exchanged samples increase substantially in the UV range and the luminescence decreases significantly. The high sensitivity of PL together with deconvolution analysis of spectra, however, allows us to detect changes in the excitation and emission spectra from the earlier stages of ion-exchange. This indicates that during the ion-exchange we deal with fast processes (much shorter than 1 min). In fact, transmission electron microscopy observations of samples from the glass exchanged for a short time as 1 min at 325°C show the presence of a scanty number of silver nanoparticles, which confirms this point. Furthermore, with increasing the length of time of ion-exchange, PL spectra exhibit a progressive red shift indicative in part of a covalence increment in the oxygen-cerium coordinated bonding. We observe no luminescence from Ag + ions and other silver molecular species in contrast with other preliminary PL studies on silver ion-exchange in soda-lime-silicate glasses free of cerium. The effect is discussed on the basis of a supplementary increase in the number of Ce 4+ ions mainly due to the reaction Ce 3++Ag +→Ce 4++Ag 0, which prevents efficiently the luminescence of the silver centers.

  10. Ion exchange substrates for plant cultivation in extraterrestrial stations and space crafts

    NASA Astrophysics Data System (ADS)

    Soldatov, Vladimir

    2012-07-01

    Ion exchange substrates Biona were specially designed at the Belarus Academy of Sciences for plants cultivation in spacecrafts and extraterrestrial stations. The first versions of such substrates have been successfully used in several space experiments and in a long-term experiment in which three soviet test-spacemen spent a full year in hermetic cabin imitating a lunar station cabin (1067-1968). In this experiment the life support system included a section with about one ton of the ion exchange substrate, which was used to grow ten vegetations of different green cultures used in the food of the test persons. Due to failure of a number of Soviet space experiments, decay of the Soviet Union and the following economic crisis the research in this field carried out in Belarus were re-directed to the needs of usual agriculture, such as adaptation of cell cultures, growing seedlings, rootage of cuttings etc. At present ion exchange substrate Biona are produced in limited amounts at the experimental production plant of the Institute of Physical Organic Chemistry and used in a number of agricultural enterprises. New advanced substrates and technologies for their production have been developed during that time. In the presentation scientific principles of preparation and functioning of ion exchange substrates as well as results of their application for cultivation different plants are described. The ion exchange substrate is a mixture of cation and anion exchangers saturated in a certain proportions with all ions of macro and micro elements. These chemically bound ions are not released to water and become available for plants in exchange to their root metabolites. The substrates contain about 5% mass of nutrient elements far exceeding any other nutrient media for plants. They allow generating 3-5 kg of green biomass per kilogram of substrate without adding any fertilizers; they are sterile by the way of production and can be sterilized by usual methods; allow regeneration

  11. HWVP submerged bed scrubber waste treatment by ion exchange at high pH

    SciTech Connect

    Bray, L.A.; Carson, K.J.; Elovich, R.J.; Eakin, D.E.

    1996-03-01

    The Hanford Waste Vitrification Plant (HWVP) is expected to produce aqueous waste streams that will require further processing for cesium, strontium, and transuranic (TRU) removal prior to incorporation into grout. Fluor Daniel, Inc. has recommended that zeolite be added to these waste streams for adsorption of cesium (Cs) and strontium (Sr) following pH adjustment by sodium hydroxide (NAOH) addition. Filtration will then used to remove the TRU elements associated with the process solids and the zeolite containing the Cs and Sr.

  12. Modelling Mixed Bed Ion Exchange Kinetics for Removal of Trace Levels of Divalent Cations in Ultrapure Water

    SciTech Connect

    B. Widman

    2003-01-01

    Ion exchanger resin fluid film mass transfer coefficients and the ionic diffusivities from which they are derived are often measured by use of ion exchange resin columns. Such tests, usually run dynamically using short resin beds, are often performed using relatively high (ppm) concentrations of ions to accurately measure output concentrations as a function of flow rate. The testing described herein was performed to determine fluid film ionic diffusivities for cationic concentrations typical of ultrapure water ({le}ppb levels) containing ppm levels of ammonia. Effective ionic diffusivities at these low ionic concentrations and high pHs were needed to complete a computer model (SIMIX) to be used in ion exchange simulations. SIMIX is a generalized multicomponent ion exchange model designed to simulate the removal of divalent cations from ultrapure water.

  13. Recovery of gallium(III) from strongly alkaline media using a Kelex-100-loaded ion-exchange resin

    SciTech Connect

    Nakayama, Morio; Egawa, Hiroaki

    1997-10-01

    Kelex-100 [7-(4-ethyl-1-methyloctyl)-8-hydroxyquinoline] is an important liquid-chelating ion exchanger in hydrometallurgy and a highly selective extractant for gallium (Ga). In this study, Kelex-100-loaded ion-exchange resins were prepared for the recovery of Ga(III) from sodium aluminate solutions (Bayer solution) used in the Bayer process. When macroporous type ion-exchange resins were used as polymer matrices for loading Kelex-100, the physical pore structure and the ion-exchange group significantly affected the adsorption of Ga(III) from strongly alkaline media on the Kelex-100-loaded resin. In particular, the Kelex-100-loaded carboxylic type resin having a macroporous structure showed a high capacity for Ga(III) in concentrated NaOH solution and effectively recovered Ga(III) from the Bayer solution containing large amounts of aluminum(III).

  14. Ion Exchange Equilibrium and Kinetic Properties of Polyacrylate Films and Applications to Chemical Analysis and Environmental Decontamination

    NASA Technical Reports Server (NTRS)

    Tanner, Stephen P.

    1997-01-01

    One of the goals of the original proposal was to study how cross-linking affects the properties of an ion exchange material(IEM) developed at Lewis Research Center. However, prior to the start of this work, other workers at LERC investigated the effect of cross-linking on the properties of this material. Other than variation in the ion exchange capacity, the chemical characteristics were shown to be independent of the cross-linking agent, and the degree of cross-linking. New physical forms of the film were developed (film, supported film, various sizes of beads, and powder). All showed similar properties with respect to ion exchange equilibria but the kinetics of ion exchange depended on the surface area per unit mass; the powder form of the IEM exchanging much more rapidly than the other forms. The research performed under this grant was directed towards the application of the IEM to the analysis of metal ions at environmental concentrations.

  15. Sorption of beryllium from fluorine-containing solutions by amino-phosphonate amphoteric ion-exchange resins

    SciTech Connect

    Pakholkov, V.S.; Rychkov, V.N.

    1981-10-20

    Sorption of beryllium ions by a series of amino-phosphonate amphoteric ion-exchange resins from BeF/sub 2/ solutions containing HF, NH/sub 4/F.HF, and NH/sub 4/F has been studied. The influence of the salt form of the resin, concentration of fluoride ions, and beryllium content in the original solutions was demonstrated. The mechanism of ion exchange on amphoteric ion-exchangers was postulated on the basis of chemical analysis and sorption and IR-spectroscopic data. Conclusions are drawn regarding the participation of phosphorus-containing groups of the resins in exchange. Data are presented on desorption of complex fluoride ions and beryllium from amphoteric ion-exchange resins by solutions of hydrofluoric, hydrochloric, and sulfuric acids, ammonium fluoride, and ammonium hydrogenfluoride.

  16. Stability and thermal transformation studies of Zn2+- and Fe2+- loaded zeolite Y prepared from Egyptian kaolin

    NASA Astrophysics Data System (ADS)

    EL-Mekkawi, Doaa M.; Ibrahim, Fatma A.; Selim, Mohamed M.

    2015-10-01

    The stability and thermal transformation of Zn2+ and Fe2+- zeolites based kaolin were studied with respect to their loading experimental conditions. Zeolite Y prepared from Egyptian kaolin was used in our investigations. Zeolite shows different degrees of framework stability according to the type of cation and the loading experimental conditions. The obtained data indicate the predominance of adsorption and ion exchange mechanisms during Fe2+ and Zn2+ loading, respectively. The loading experimental conditions also greatly affect the solid-solid interactions of transition metal-zeolites at elevated temperatures. ZnAl2O4 and silica phases were formed upon thermal treatment of Zn-Y zeolites. The ratio of ZnAl2O4 to silica phases increases as the amount of loaded Zn2+ increases in the corresponding unheated zeolites. However, nepheline phase was obtained upon heating Fe-Y zeolites loaded at low initial Fe2+ concentrations. Upon increasing of loaded Fe2+, iron oxide beside other amorphous phases from silica, alumina and/or aluminosilicates were obtained.

  17. Removal of ammonium ion from aqueous solution by natural Turkish (Yildizeli) zeolite for environmental quality.

    PubMed

    Saltali, Kadir; Sari, Ahmet; Aydin, Mehmet

    2007-03-01

    The purposes of this study were to investigate the removal efficiency of ammonium (NH(4)(+)) ion from aqueous solution using the natural Turkish (Yildizeli) zeolite and to characterize equilibrium isotherms. Experiments were carried out using batch method as a function of the solution pH, shaking time, dosage of adsorbent, and temperature. All these factors affected NH(4)(+) ion removal from aqueous solution. Equilibrium modelling data were fitted to linear Langmuir and Freundlich models. Dubinin-Redushckevich (D-R) isotherm was applied to describe the nature of ion exchange of NH(4)(+) and found that it occurred physically. Thermodynamics parameters such as change in free energy (DeltaG degrees ), enthalpy (DeltaH degrees ) and entropy (DeltaS degrees ) were also calculated. These parameters confirmed that ion exchange of NH(4)(+) by the zeolite was feasible, spontaneous and exothermic in nature. Based on the results, it can be concluded that the natural Turkish (Yildizeli) zeolite is suitable for the removal of NH(4)(+) ions in wastewater treatments and agricultural purposes to in terms of sustainability of environmental quality. PMID:16930832

  18. Regeneration of spent powdered activated carbon saturated with inorganic ions by cavitation united with ion exchange method.

    PubMed

    Li, Gang; Gao, Hong; Li, Yansheng; Yang, Huixin

    2011-06-01

    Using ion exchange resin as transfer media, regenerate powdered activated carbon (PAC) adsorbed inorganic ions by cavitation to enhance the transfer; we studied how the regeneration time and the mass ratio of resin and PAC influence the regeneration rate respectively through re-adsorption. The result showed that the effective regeneration of PAC saturated with inorganic ions was above 90% using ion exchange resin as media and transfer carrier, the quantity of PAC did not reduced but activated in the process. PMID:25084579

  19. Synthetic zeolites and other microporous oxide molecular sieves.

    PubMed

    Sherman, J D

    1999-03-30

    Use of synthetic zeolites and other microporous oxides since 1950 has improved insulated windows, automobile air-conditioning, refrigerators, air brakes on trucks, laundry detergents, etc. Their large internal pore volumes, molecular-size pores, regularity of crystal structures, and the diverse framework chemical compositions allow "tailoring" of structure and properties. Thus, highly active and selective catalysts as well as adsorbents and ion exchangers with high capacities and selectivities were developed. In the petroleum refining and petrochemical industries, zeolites have made possible cheaper and lead-free gasoline, higher performance and lower-cost synthetic fibers and plastics, and many improvements in process efficiency and quality and in performance. Zeolites also help protect the environment by improving energy efficiency, reducing automobile exhaust and other emissions, cleaning up hazardous wastes (including the Three Mile Island nuclear power plant and other radioactive wastes), and, as specially tailored desiccants, facilitating the substitution of new refrigerants for the ozone-depleting chlorofluorocarbons banned by the Montreal Protocol. PMID:10097059

  20. Synthetic zeolites and other microporous oxide molecular sieves

    PubMed Central

    Sherman, John D.

    1999-01-01

    Use of synthetic zeolites and other microporous oxides since 1950 has improved insulated windows, automobile air-conditioning, refrigerators, air brakes on trucks, laundry detergents, etc. Their large internal pore volumes, molecular-size pores, regularity of crystal structures, and the diverse framework chemical compositions allow “tailoring” of structure and properties. Thus, highly active and selective catalysts as well as adsorbents and ion exchangers with high capacities and selectivities were developed. In the petroleum refining and petrochemical industries, zeolites have made possible cheaper and lead-free gasoline, higher performance and lower-cost synthetic fibers and plastics, and many improvements in process efficiency and quality and in performance. Zeolites also help protect the environment by improving energy efficiency, reducing automobile exhaust and other emissions, cleaning up hazardous wastes (including the Three Mile Island nuclear power plant and other radioactive wastes), and, as specially tailored desiccants, facilitating the substitution of new refrigerants for the ozone-depleting chlorofluorocarbons banned by the Montreal Protocol. PMID:10097059

  1. Decontamination and dismantlement of the building 594 waste ion exchange facility at Argonne National Laboratory-East project final report.

    SciTech Connect

    Wiese, E. C.

    1998-11-23

    The Building 594 D&D Project was directed toward the following goals: Removal of any radioactive and hazardous materials associated with the Waste Ion Exchange Facility; Decontamination of the Waste Ion Exchange Facility to unrestricted use levels; Demolition of Building 594; and Documentation of all project activities affecting quality (i.e., waste packaging, instrument calibration, audit results, and personnel exposure) These goals had been set in order to eliminate the radiological and hazardous safety concerns inherent in the Waste Ion Exchange Facility and to allow, upon completion of the project, unescorted and unmonitored access to the area. The ion exchange system and the resin contained in the system were the primary areas of concern, while the condition of the building which housed the system was of secondary concern. ANL-E health physics technicians characterized the Building 594 Waste Ion Exchange Facility in September 1996. The characterization identified a total of three radionuclides present in the Waste Ion Exchange Facility with a total activity of less than 5 {micro}Ci (175 kBq). The radionuclides of concern were Co{sup 60}, Cs{sup 137}, and Am{sup 241}. The highest dose rates observed during the project were associated with the resin in the exchange vessels. DOE Order 5480.2A establishes the maximum whole body exposure for occupational workers at 5 rem (50 mSv)/yr; the administrative limit at ANL-E is 1 rem/yr (10 mSv/yr).

  2. Ion Exchange Technology Development in Support of the Urine Processor Assembly

    NASA Technical Reports Server (NTRS)

    Mitchell, Julie; Broyan, James; Pickering, Karen

    2013-01-01

    The urine processor assembly (UPA) on the International Space Station (ISS) recovers water from urine via a vacuum distillation process. The distillation occurs in a rotating distillation assembly (DA) where the urine is heated and subjected to sub-ambient pressure. As water is removed, the original organics, salts, and minerals in the urine become more concentrated and result in urine brine. Eventually, water removal will concentrate the urine brine to super saturation of individual constituents, and precipitation occurs. Under typical UPA DA operating conditions, calcium sulfate or gypsum is the first chemical to precipitate in substantial quantity. During preflight testing with ground urine, the UPA achieved 85% water recovery without precipitation. However, on ISS, it is possible that crewmember urine can be significantly more concentrated relative to urine from ground donors. As a result, gypsum precipitated in the DA when operating at water recovery rates at or near 85%, causing the failure and subsequent re14 NASA Tech Briefs, September 2013 placement of the DA. Later investigations have demonstrated that an excess of calcium and sulfate will cause precipitation at water recovery rates greater than 70%. The source of the excess calcium is likely physiological in nature, via crewmembers' bone loss, while the excess sulfate is primarily due to the sulfuric acid component of the urine pretreatment. To prevent gypsum precipitation in the UPA, the Precipitation Prevention Project (PPP) team has focused on removing the calcium ion from pretreated urine, using ion exchange resins as calcium removal agents. The selectivity and effectiveness of ion exchange resins are determined by such factors as the mobility of the liquid phase through the polymer matrix, the density of functional groups, type of functional groups bound to the matrix, and the chemical characteristics of the liquid phase (pH, oxidation potential, and ionic strength). Previous experience with ion

  3. Novel interactions of the charge-balancing cations with framework defects and trapped hydrogen atoms in holmium-exchanged Y zeolites

    SciTech Connect

    Iton, L.E.

    1983-04-01

    The indirect superhyperfine interaction (ISHFI) between impurity electrons and host nuclei in Van Vleck paramagnets is induced by the large magnetic polarizability of the ground singlet electronic state of the Van Vleck cation. ISHFI effects were observed on neutral, spin S = 1/2 impurities for the first time. They appear in the EPR spectrum of Na-Y zeolite, partially ion-exchanged with /sup 165/Ho/sup 3 +/, which has been dehydrated and ..gamma..-irradiated.

  4. Specific ion effects on membrane potential and the permselectivity of ion exchange membranes.

    PubMed

    Geise, Geoffrey M; Cassady, Harrison J; Paul, Donald R; Logan, Bruce E; Hickner, Michael A

    2014-10-21

    Membrane potential and permselectivity are critical parameters for a variety of electrochemically-driven separation and energy technologies. An electric potential is developed when a membrane separates electrolyte solutions of different concentrations, and a permselective membrane allows specific species to be transported while restricting the passage of other species. Ion exchange membranes are commonly used in applications that require advanced ionic electrolytes and span technologies such as alkaline batteries to ammonium bicarbonate reverse electrodialysis, but membranes are often only characterized in sodium chloride solutions. Our goal in this work was to better understand membrane behaviour in aqueous ammonium bicarbonate, which is of interest for closed-loop energy generation processes. Here we characterized the permselectivity of four commercial ion exchange membranes in aqueous solutions of sodium chloride, ammonium chloride, sodium bicarbonate, and ammonium bicarbonate. This stepwise approach, using four different ions in aqueous solution, was used to better understand how these specific ions affect ion transport in ion exchange membranes. Characterization of cation and anion exchange membrane permselectivity, using these ions, is discussed from the perspective of the difference in the physical chemistry of the hydrated ions, along with an accompanying re-derivation and examination of the basic equations that describe membrane potential. In general, permselectivity was highest in sodium chloride and lowest in ammonium bicarbonate solutions, and the nature of both the counter- and co-ions appeared to influence measured permselectivity. The counter-ion type influences the binding affinity between counter-ions and polymer fixed charge groups, and higher binding affinity between fixed charge sites and counter-ions within the membrane decreases the effective membrane charge density. As a result permselectivity decreases. The charge density and polarizability

  5. Studies on the application of temperature-responsive ion exchange polymers with whey proteins.

    PubMed

    Maharjan, Pankaj; Campi, Eva M; De Silva, Kirthi; Woonton, Brad W; Jackson, W Roy; Hearn, Milton T W

    2016-03-18

    Several new types of temperature-responsive ion exchange resins of different polymer composition have been prepared by grafting the products from the co-polymerisation of N-phenylacrylamide, N-iso-propylacrylamide and acrylic acid derivatives onto cross-linked agarose. Analysis of the binding isotherms for these different resins obtained under batch adsorption conditions indicated that the resin based on N-iso-propylacrylamide containing 5% (w/w) N-phenylacrylamide and 5% (w/w) acrylic acid resulted in the highest adsorption capacity, Bmax, for the whey protein, bovine lactoferrin, e.g. 14 mg bovine lactoferrin/mL resin at 4 °C and 62 mg bovine lactoferrin/mL resin at 40 °C, respectively. Under dynamic loading conditions at 40 °C, 94% of the loaded bovine lactoferrin on a normalised mg protein per mL resin basis was adsorbed by this new temperature-responsive ion-exchanger, and 76% was eluted by a single cycle temperature shift to 4 °C without varying the composition of the 10mM sodium dihydrogen phosphate buffer, pH 6.5, or the flow rate. The binding characteristics of these different ion exchange resins with bovine lactoferrin were also compared to results obtained using other resins based on N-isopropylacrylamide but contained N-tert-butylacrylamide rather than N-phenylacrylamide, where the corresponding dynamic capture and release properties for bovine lactoferrin required different temperature conditions of 20 °C and 50 °C, respectively for optimal desorption/adsorption. The cationic protein, bovine lactoperoxidase, was also adsorbed and desorbed with these temperature-responsive resins under similar conditions of changing temperature, whereas the anionic protein, bovine β-lactoglobulin, was not adsorbed under this regime of temperature conditions but instead eluted in the flow-through. PMID:26905884

  6. Hexavalent chromium [Cr(VI)] removal by the electrochemical ion-exchange process.

    PubMed

    Dharnaik, Amit Shivputra; Ghosh, Pranab Kumar

    2014-01-01

    In the present investigation, the performance of a laboratory-scale plate and frame-type electrochemical ion-exchange (EIX) cell on removal ofhexavalent chromium from synthetic wastewater containing 5 mg/l of Cr(VI) was evaluated under varying applied voltages. Ruthenium dioxide-coated titanium plate (RuO2/Ti) was used as anode and stainless steel plates as cathode. The EIX cell was run at different hydraulic retention time (HRT). Before using in the electrochemical cell, the capacity of ion-exchange resin was evaluated through kinetic and isotherm equilibrium tests in batch mode. The batch kinetic study result showed that the equilibrium time for effective ion exchange with resin is 2 h. The isotherm equilibrium data fit well to both Freundlich and Langmuir isotherms. Maximum capacity (qm) of resin calculated from Langmuir isotherm was 71.42 mg/g. Up to 99% of chromium removal was noticed in the EIX cell containing fresh resin at applied voltages of 10 V and higher. Migration of chromium ion to anode chamber was not noticed while performing the experiment with fresh resin. As high as 50% removal of chromium was observed from the middle chamber containing exhausted resin at an applied voltage of 25 V when the influent flow rate was maintained at 45 min of HRT. The performance of the reactor was increased to 72% when the influent flow rate was decreased to maintain at 90 min of HRT. Build-up of chromium in the anode chamber took place when exhausted resin was used in the process. PMID:25145180

  7. Removal of charged micropollutants from water by ion-exchange polymers -- effects of competing electrolytes.

    PubMed

    Bäuerlein, Patrick S; Ter Laak, Thomas L; Hofman-Caris, Roberta C H M; de Voogt, Pim; Droge, Steven T J

    2012-10-15

    A wide variety of environmental compounds of concern, e.g. pharmaceuticals or illicit drugs, are acids or bases that may predominantly be present as charged species in drinking water sources. These charged micropollutants may prove difficult to remove by currently used water treatment steps (e.g. UV/H(2)O(2), activated carbon (AC) or membranes). We studied the sorption affinity of some ionic organic compounds to both AC and different charged polymeric materials. Ion-exchange polymers may be effective as additional extraction phases in water treatment, because sorption of all charged compounds to oppositely charged polymers was stronger than to AC, especially for the double-charged cation metformin. Tested below 1% of the polymer ion-exchange capacity, the sorption affinity of charged micropollutants is nonlinear and depends on the composition of the aqueous medium. Whereas oppositely charged electrolytes do not impact sorption of organic ions, equally charged electrolytes do influence sorption indicating ion-exchange (IE) to be the main sorption mechanism. For the tested polymers, a tenfold increased salt concentration lowered the IE-sorption affinity by a factor two. Different electrolytes affect IE with organic ions in a similar way as inorganic ions on IE-resins, and no clear differences in this trend were observed between the sulphonated and the carboxylated cation-exchanger. Sorption of organic cations is five fold less in Ca(2+) solutions compared to similar concentrations of Na(+), while that of anionic compounds is three fold weaker in SO(4)(2-) solutions compared to equal concentrations of Cl(-). PMID:22818952

  8. An Evaluation of Solution Algorithms and Numerical Approximation Methods for Modeling an Ion Exchange Process

    PubMed Central

    Bu, Sunyoung; Huang, Jingfang; Boyer, Treavor H.; Miller, Cass T.

    2010-01-01

    The focus of this work is on the modeling of an ion exchange process that occurs in drinking water treatment applications. The model formulation consists of a two-scale model in which a set of microscale diffusion equations representing ion exchange resin particles that vary in size and age are coupled through a boundary condition with a macroscopic ordinary differential equation (ODE), which represents the concentration of a species in a well-mixed reactor. We introduce a new age-averaged model (AAM) that averages all ion exchange particle ages for a given size particle to avoid the expensive Monte-Carlo simulation associated with previous modeling applications. We discuss two different numerical schemes to approximate both the original Monte Carlo algorithm and the new AAM for this two-scale problem. The first scheme is based on the finite element formulation in space coupled with an existing backward-difference-formula-based ODE solver in time. The second scheme uses an integral equation based Krylov deferred correction (KDC) method and a fast elliptic solver (FES) for the resulting elliptic equations. Numerical results are presented to validate the new AAM algorithm, which is also shown to be more computationally efficient than the original Monte Carlo algorithm. We also demonstrate that the higher order KDC scheme is more efficient than the traditional finite element solution approach and this advantage becomes increasingly important as the desired accuracy of the solution increases. We also discuss issues of smoothness, which affect the efficiency of the KDC-FES approach, and outline additional algorithmic changes that would further improve the efficiency of these developing methods for a wide range of applications. PMID:20577570

  9. Crystalline silicotitanates--new ion exchanger for selective removal of cesium and strontium from radwastes

    SciTech Connect

    Dosch, R.G.; Klavetter, E.A.; Stephens, H.P.; Brown, N.E.; Anthony, R.G.

    1996-08-01

    A new class of inorganic ion exchange material called crystalline silicotitanates (CST) has been developed for radioactive waste treatment in a collaborative effort between Sandia National Laboratories and Texas A&M University. The Sandia National Laboratories Laboratory Directed Research and Development program provided the initial funding for this effort and this report summarizes the rapid progress that was achieved. A wide range of compositions were synthesized, evaluated for cesium (Cs) removal efficiency, and a composition called TAM-5 was developed that exhibits high selectivity and affinity for Cs and strontium (Sr). Tests show it can remove parts per million concentrations of Cs{sup +} from highly alkaline, high-sodium, simulated radioactive waste solutions modeled after those at Hanford, Oak Ridge, and Savannah River. In experiments with solutions that simulate highly alkaline Hanford defense wastes, the crystalline silicotitanates exhibit distribution coefficients for Cs{sup +} of greater than 2,000 ml/g, and distribution coefficients greater than 10,000 ml/g for solutions adjusted to a pH between 1 and 10. In addition, the CSTs were found to exhibit distribution coefficients for Sr{sup +} greater than 100,000 ml/g and for plutonium of 2,000 ml/g from simulated Hanford waste. The CST crystal structure was determined and positions of individual atoms identified using x-ray and neutron diffraction. The structural information has permitted identification of the ion exchange sites and provided insights into the strong effect of pH on Cs ion exchange. Information on the synthesis, composition, and structure of CST is considered proprietary and is not discussed in this report.

  10. Evaluation of a hybrid ion exchange-catalyst treatment technology for nitrate removal from drinking water.

    PubMed

    Bergquist, Allison M; Choe, Jong Kwon; Strathmann, Timothy J; Werth, Charles J

    2016-06-01

    Ion exchange (IX) is the most common approach to treating nitrate-contaminated drinking water sources, but the cost of salt to make regeneration brine, as well as the cost and environmental burden of waste brine disposal, are major disadvantages. A hybrid ion exchange-catalyst treatment system, in which waste brine is catalytically treated for reuse, shows promise for reducing costs and environmental burdens of the conventional IX system. An IX model with separate treatment and regeneration cycles was developed, and ion selectivity coefficients for each cycle were separately calibrated by fitting experimental data. Of note, selectivity coefficients for the regeneration cycle required fitting the second treatment cycle after incomplete resin regeneration. The calibrated and validated model was used to simulate many cycles of treatment and regeneration using the hybrid system. Simulated waste brines and a real brine obtained from a California utility were also evaluated for catalytic nitrate treatment in a packed-bed, flow-through column with 0.5 wt%Pd-0.05 wt%In/activated carbon support (PdIn/AC). Consistent nitrate removal and no apparent catalyst deactivation were observed over 23 d (synthetic brine) and 45 d (real waste brine) of continuous-flow treatment. Ion exchange and catalyst results were used to evaluate treatment of 1 billion gallons of nitrate-contaminated source water at a 0.5 MGD water treatment plant. Switching from a conventional IX system with a two bed volume regeneration to a hybrid system with the same regeneration length and sequencing batch catalytic reactor treatment would save 76% in salt cost. The results suggest the hybrid system has the potential to address the disadvantages of a conventional IX treatment systems. PMID:27043747

  11. An evaluation of solution algorithms and numerical approximation methods for modeling an ion exchange process

    NASA Astrophysics Data System (ADS)

    Bu, Sunyoung; Huang, Jingfang; Boyer, Treavor H.; Miller, Cass T.

    2010-07-01

    The focus of this work is on the modeling of an ion exchange process that occurs in drinking water treatment applications. The model formulation consists of a two-scale model in which a set of microscale diffusion equations representing ion exchange resin particles that vary in size and age are coupled through a boundary condition with a macroscopic ordinary differential equation (ODE), which represents the concentration of a species in a well-mixed reactor. We introduce a new age-averaged model (AAM) that averages all ion exchange particle ages for a given size particle to avoid the expensive Monte-Carlo simulation associated with previous modeling applications. We discuss two different numerical schemes to approximate both the original Monte-Carlo algorithm and the new AAM for this two-scale problem. The first scheme is based on the finite element formulation in space coupled with an existing backward difference formula-based ODE solver in time. The second scheme uses an integral equation based Krylov deferred correction (KDC) method and a fast elliptic solver (FES) for the resulting elliptic equations. Numerical results are presented to validate the new AAM algorithm, which is also shown to be more computationally efficient than the original Monte-Carlo algorithm. We also demonstrate that the higher order KDC scheme is more efficient than the traditional finite element solution approach and this advantage becomes increasingly important as the desired accuracy of the solution increases. We also discuss issues of smoothness, which affect the efficiency of the KDC-FES approach, and outline additional algorithmic changes that would further improve the efficiency of these developing methods for a wide range of applications.

  12. Ion exchange and dehydration effects on potassium and argon contents of clinoptilolite

    SciTech Connect

    WoldeGabriel, G.; Levy, S.

    1995-12-31

    Zeolite-rich Miocene tuffs are an important part of the principal hydrochemical barrier to water-borne radionuclide transport from a potential high-level nuclear waste repository at Yucca Mountain, Nevada. The timing of zeolitization is an issue that relates to paleohydrology, permeability, zeolite stability, and unsaturated-zone geochemical processes. Exploratory K/Ar dating of clinoptilolite, the most abundant and widespread zeolite, shows a striking and consistent pattern of increasing apparent ages (2-13 Ma) with depth. Only the isotopic ages from the saturated zone are compatible with geologic evidence suggesting an age >10 Ma for most of the zeolites. Factors that may be responsible for the young apparent ages in the unsaturated zone were investigated. Cation exchange with recharge water and Ar diffusion under unsaturated conditions (processes that may be characteristic of the unsaturated zone) were evaluated experimentally for their effects on K/Ar systematics. Cation exchanging a natural clinoptilolite with Ca-, Cs-, K-, and Na- chloride solutions showed minimal effects on radiogenic Ar content. However, clinoptilolite heated at 200{degrees}C for 16 hours in air lost a significant amount of its radiogenic Ar compared with minimal losses from clinoptilolite heated in water at 100{degrees}C for over 5 months. The preliminary results indicate that Ar loss from incompletely hydrated clinoptilolite may be a major factor contributing to the young apparent ages of clinoptilolite in the unsaturated zone at Yucca Mountain.

  13. Carboxymethylated polyethylenimine-polymethylenepolyphenylene isocyanate chelating ion exchange resin preconcentration for inductively coupled plasma spectrometry

    SciTech Connect

    Horvath, A.; Barnes, R.M.

    1986-06-01

    A carboxymethylated polyethylenimine-polylmethylenepolyphenylene isocyanate chelating ion exchange resin was prepared, characterized, and used for metals preconcentration for inductively coupled plasma spectrometry. The uptake of copper, cadmium, lead, and zinc by the resin was quantitative in the presence of high concentrations of ammonium, calcium, magnesium, potassium, sodium, and acetate and citrate salts. These metals could be collected from artificial seawater, Dead Sea water, and dissolved bone with a recovery of nearly 100%. The resin also chelates heavy metals and rare earths. Complexed metals can be eluted from the resin column with strong acids. The resin does not change volume with ionic form changes and can be regenerated for repeated use.

  14. Ion-exchange funneling in thin-film coating modification of heterogeneous electrodialysis membranes

    NASA Astrophysics Data System (ADS)

    Rubinstein, Isaak; Zaltzman, Boris; Pundik, Tamara

    2002-04-01

    Inexpensive highly permselective heterogeneous ion-exchange membranes are prohibitively highly polarizable by a dc current for being used in electrodialysis. According to recent experiments, polarizability of these membranes may be considerably reduced by casting on their surface a thin layer of crosslinked polyelectrolyte, slightly charged with the same sign as the membrane's charge. The present paper is concerned with this effect. Concentration polarization of a permselective heterogeneous ion-exchange membrane by a dc current is determined by geometric factors, such as, the typical size of the ion-permeable ``gates'' at the membrane surface relative to the separation distance between them and the diffusion layer thickness. The main quantitative characteristic of polarizability of a heterogeneous membrane is its voltage/currrent curve with its typical saturation at the limiting current, which is lower than that for a homogeneous membrane. In the present study we modify the previously developed two-dimensional model of ionic transport in a diffusion layer at a heterogeneous ion-exchange membrane by including into consideration a homogeneous ion-exchange layer adjacent to the membrane surface. A numerical solution of the respective boundary value problem shows that, indeed, adding even a very thin and weakly charged layer of this kind increases the value of the limiting current, to that of a homogeneous membrane. What differs, for different values of coating parameters, is the form of the voltage/current curves but not the value of the limiting current, namely: the thinner is the coating and the lower the fixed charge density in it, the ``slower'' is the approach of the limiting current. In order to explain this feature, a simple limiting model of modified membrane is derived from the original two-layer model. In this limiting model, asymptotically valid for a thin coating, solution of the ionic transport equations in it is replaced, via a suitable averaging

  15. Hydraulic Permeability of Resorcinol-Formaldehyde Ion-Exchange Resin - Effects of Oxygen Uptake and Radiation

    SciTech Connect

    Taylor, Paul Allen

    2009-01-01

    An ion-exchange process, using spherical resorcinol-formaldehyde (RF) resin is the baseline process for removing cesium from the dissolved salt solution in the high-level waste tanks at the U.S. Department of Energy's (DOE) Hanford site in Washington State. The RF resin is also being evaluated for use in the proposed Small Column Ion Exchange (SCIX) system, which is an alternative treatment option at DOE's Savannah River Site (SRS)in South Carolina. Testing at ORNL will determine the impact of radiation exposure and oxygen uptake by the RF resin on the hydraulic permeability of the resin. Samples of the resin will be removed periodically to measure physical properties (bead size and compressibility) and cesium capacity. The proposed full-scale treatment system at Hanford, the Waste Treatment Plant (WTP), will use an ion-exchange column containing nominally 680 gal of resin, which will treat 30 gpm of waste solution. The ion-exchange column is designed for a typical pressure drop of 6 psig, with a maximum of 9.7 psig. The lab-scale column is 3-in. clear PVC pipe and is prototypic of the proposed Hanford column. The fluid velocity in the lab-scale test will be much higher than for the full-scale column, in order to generate the maximum pressure drop expected in that column (9.7 psig). The frictional drag from this high velocity will produce similar forces on the resin in the lab-scale column as would be expected at the bottom of the full-scale column. The chemical changes in the resin caused by radiation exposure and oxygen uptake are expected to cause physical changes in the resin that could reduce the bed porosity and reduce the hydraulic permeability of the resin bed. These changes will be monitored by measuring the pressure drop through the lab-scale column and by measuring the physical properties of samples of the resin. The test loop with the lab-scale column is currently being fabricated, and operation will start by late May. Testing will be completed by the

  16. Ion Exchange Chromatography and Mass Spectrometric Methods for Analysis of Cadmium-Phytochelatin (II) Complexes

    PubMed Central

    Merlos Rodrigo, Miguel Angel; Cernei, Natalia; Kominkova, Marketa; Zitka, Ondrej; Beklova, Miroslava; Zehnalek, Josef; Kizek, Rene; Adam, Vojtech

    2013-01-01

    In this study, in vitro formed Cd-phytochelatin (PC2) complexes were characterized using ion exchange chromatography (IEC) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The ratio of both studied compounds as well as experimental conditions were optimized. The highest yield of the complex was observed under an applied concentration of 100 µg·mL−1 PC2 and 100 µg·mL−1 of CdCl2. The data obtained show that IEC in combination with MALDI-TOF is a reliable and fast method for the determination of these complexes. PMID:23538727

  17. Cooperative interactions of metal nanoparticles in the ion-exchange matrix with oxygen dissolved in water

    NASA Astrophysics Data System (ADS)

    Khorolskaya, S. V.; Polyanskii, L. N.; Kravchenko, T. A.; Konev, D. V.

    2014-06-01

    The kinetics of the reduction of molecular oxygen dissolved in water with nanocomposites consisting of an ion-exchange matrix and copper nanoparticles deposited in it in various amounts was studied. As the metal content in the polymer increased, the amount of reduced oxygen initially increased and then reached the limiting value. At a certain metal content, ionization of individual particles with formation of metal counterions changes to the oxidation of particles assembly giving layers of oxide products. The mechanism changes at the percolation threshold of the electron conductivity of the nanocomposite and determines the maximum amount of absorbed oxygen.

  18. Copper doping of silicate glasses by the ion-exchange technique: A photoluminescence spectroscopy study

    NASA Astrophysics Data System (ADS)

    Borsella, E.; Dal Vecchio, A.; Garcı̀a, M. A.; Sada, C.; Gonella, F.; Polloni, R.; Quaranta, A.; van Wilderen, L. J. G. W.

    2002-01-01

    Copper-alkali ion exchange is used for doping superficial layers of different silicate glasses (commercial soda-lime and BK7) with copper ions. Spectroscopic and time-resolved photoluminescence properties of the obtained systems are studied in the range of 80-294 K. Analysis indicates the presence of Cu+ ions located in distorted octahedral sites, and a different position of the triplet electronic levels for the two glass matrices. The luminescence decay-time signal is simulated by a biexponential behavior, interpreted on the basis of a four-level scheme.

  19. ION-EXCHANGE METHOD FOR SEPARATING RADIUM FROM RADIUM-BARIUM MIXTURES

    DOEpatents

    Fuentevilla, M.E.

    1959-06-30

    An improved process is presented for separating radium from an aqueous feed solution containing radium and barium values and a complexing agent for these metals. In this process a feed solutlon containing radium and barium ions and a complexing agent for said ions ls cycled through an exchange zone in resins. The radiumenriched resin is then stripped of radium values to form a regeneration liquid, a portion of which is collected as an enriched product, the remaining portion being recycled to the exchange zone to further enrich the ion exchange resin in radium.

  20. Formulation Study on Immobilization of Spent Ion Exchange Resins in Polymer Cements

    SciTech Connect

    Lili Xia; Meiqiong Lin; Bao Liangjin

    2006-07-01

    Applying normal design and correlative computer software, a new matrix material and an excellent waste formulation were developed. Based on the theory calculations and normal design in this paper, using polymer complex cement as immobilization matrix that mixed with simulating spent ion exchange resin a new waste formulation was carried out. The characterization of solidified waste had been done after 28 days curing. The results conformed to the treatment of the waste about the requests of the national standard [GB14569-93-1]. Leach index of the solidified waste was excellent. An optimized formulation was recommended. (authors)

  1. Mathematical modeling of heat transfer in Pu-238 ion exchange columns

    SciTech Connect

    Wehner, J.A.

    1987-01-01

    The safety of increased Pu-238 loading on the larger ion exchange columns to be installed in the H-Canyon Frames was examined from the standpoint of the temperature increase of a fully-loaded column, following a flow interruption. A mathematical model incorporating self-heating and resin degradation was developed. Transient temperature profiles generated by this model indicate that the column loading limits may be safely scaled up in proportion to the column diameters. This model was also used to demonstrate that a short agitation period following an incomplete product elution step will appreciably decrease the maximum temperature rise of the resin bed.

  2. Ni-sulfide particles in NaY-zeolite for combined hydrodesulfurization and hydrocracking purposes

    NASA Astrophysics Data System (ADS)

    de Bont, P. W.; Vissenberg, M. J.; Boellaard, E.; de Beer, V. H. J.; van Veen, J. A. R.; van Santen, R. A.; van der Kraan, A. M.

    1998-12-01

    The influence of physisorbed water on the formation of nickel-sulfide species in a 57Co doped ion exchange type 57Co:NiNaY catalyst is studied by Mössbauer Emission Spectroscopy. The absence or presence of physisorbed water during sulfidation seems to have no influence on the local nickel environment of the formed Ni-sulfide species. This result is confirmed by EXAFS measurements. In spite of the resemblance found in MES and EXAFS a large difference is found for the initial HDS activities, which is explained by the different particle sizes (HREM) found at the outer surface of the zeolite.

  3. Abu Zenima synthetic zeolite for removing iron and manganese from Assiut governorate groundwater, Egypt

    NASA Astrophysics Data System (ADS)

    Farrag, Abd El Hay Ali; Abdel Moghny, Th.; Mohamed, Atef Mohamed Gad; Saleem, Saleem Sayed; Fathy, Mahmoud

    2016-06-01

    Groundwater in Upper Egypt especially in Assiut Governorate is considered the second source of fresh water and used for drinking, agriculture, domestic and industrial purposes. Unfortunately, it is characterized by high concentrations of iron and manganese ions. The study aimed at synthesizing zeolite-4A from kaolinite for removing the excess iron and manganese ions from Assiut Governorate groundwater wells. Therefor, the kaolinite was hydrothermally treated through the metakaolinization and zeolitization processes to produce crystalline zeolite-4A. The chemical composition of crystalline zeolite-4A and its morphology were then characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Then the column experiments were conducted to study the performance of crystalline salt-4A as ion exchange and investigate their operating parameters and regeneration conditions. Thomas and Yoon-Nelson models were applied to predict adsorption capacity and the time required for 50 % breakthrough curves. The effects of initial concentrations of 600 and 1000 mg L-1 for Fe2+ and Mn2+, feed flow rate of 10-30 ml/min, and height range of 0.4-1.5 cm on the breakthrough behavior of the adsorption system were determined. The obtained results indicated that the synthesized zeolite-A4 can remove iron and manganese ions from groundwater to the permissible limit according to the standards drinking water law.

  4. Treatment of radioactive liquid waste by sorption on natural zeolite in Turkey.

    PubMed

    Osmanlioglu, Ahmet Erdal

    2006-09-01

    Liquid radioactive waste has been generated from the use of radioactive materials in industrial applications, research and medicine in Turkey. Natural zeolites (clinoptilolite) have been studied for the removal of several key radionuclides ((137)Cs, (60)Co, (90)Sr and (110m)Ag) from liquid radioactive waste. The aim of the present study is to investigate effectiveness of zeolite treatment on decontamination factor (DF) in a combined process (chemical precipitation and adsorption) at the laboratory tests and scale up to the waste treatment plant. In this study, sorption and precipitation techniques were adapted to decontamination of liquid low level waste (LLW). Effective decontamination was achieved when sorbents are used during the chemical precipitation. Natural zeolite samples were taken from different zeolite formations in Turkey. Comparison of the ion-exchange properties of zeolite minerals from different formations shows that Gordes clinoptilolite was the most suitable natural sorbent for radionuclides under dynamic treatment conditions and as an additive for chemical precipitation process. Clinoptilolite were shown to have a high selectivity for (137)Cs and (110m)Ag as sorbent. In the absence of potassium ions, native clinoptilolite removed (60)Co and (90)Sr very effectively from the liquid waste. In the end of this liquid waste treatment, decontamination factor was provided as 430 by using 0.5 mm clinoptilolite at 30 degrees C. PMID:16563616

  5. Removal of lead from aqueous solutions by using the natural and Fe(III)-modified zeolite

    NASA Astrophysics Data System (ADS)

    Kragović, Milan; Daković, Aleksandra; Sekulić, Živko; Trgo, Marina; Ugrina, Marin; Perić, Jelena; Gatta, G. Diego

    2012-02-01

    In the present study, the sorption of lead by the natural and Fe(III)-modified zeolite (clinoptilolite) is described. The characterization of the natural zeolite-rich rock and the Fe(III)-modified form was performed by chemical analysis, point of the zero charge (pHpzc), X-ray powder diffraction, applying the Rietveld/RIR method for the quantitative phase analysis, and scanning electron microscopy. The effects of sorbents dose and the initial lead concentrations on its sorption by two sorbents were investigated. For both sorbents, it was determined that at lower initial concentrations of lead, ion exchange of inorganic cations in zeolites with lead, together with uptake of hydrogen dominated, while at higher initial lead concentrations beside these processes, chemisorption of lead occurred. Significantly higher sorption of lead was achieved with Fe(III)-modified zeolite. From sorption isotherms, maximum sorbed amounts of lead, under the applied experimental conditions, were 66 mg/g for the natural and 133 mg/g for Fe(III)-modified zeolite. The best fit of experimental data was achieved with the Freundlich model (R2 ≥ 0.94).

  6. Evaluation of Zeolite Permeable Treatment Wall for the Removal of Strontium-90 from Groundwater

    NASA Astrophysics Data System (ADS)

    Seneca, S. M.; Bandilla, K.; Rabideau, A. J.; Ross, E.; Bronner, C. E.

    2009-12-01

    Experimental and modeling studies are in progress to evaluate the potential performance of a permeable treatment wall comprised of zeolite-rich rock for the removal of strontium-90 from groundwater. Column studies were performed using a synthetic groundwater referenced to anticipate field conditions, with a focus on quantifying the competitive ion exchange among five cations (Na+, K+, Ca2+, Mg2+, and Sr2+). Ongoing studies are focused on the comparison of zeolites obtained from two sources: Teague Mineral Products (Adrian, OR) and Bear River Zeolite (Preston, UT), and on the possible influence of native soil that is mixed with treatment wall material during construction. The data obtained from the column studies is used to support robust estimation of zeolite cation exchange parameters producing a five-solute cation exchange model describing the removal efficiency of the zeolite. The field-scale transport model provides flexibility to explore design parameters to support the possible deployment of a full scale treatment wall at a Western New York nuclear facility.

  7. Zeolites: Exploring Molecular Channels

    SciTech Connect

    Arslan, Ilke; Derewinski, Mirek

    2015-05-22

    Synthetic zeolites contain microscopic channels, sort of like a sponge. They have many uses, such as helping laundry detergent lather, absorbing liquid in kitty litter, and as catalysts to produce fuel. Of the hundreds of types of zeolites, only about 15 are used for catalysis. PNNL catalysis scientists Ilke Arslan and Mirek Derewinksi are studying these zeolites to understand what make them special. By exploring the mystery of these microscopic channels, their fundamental findings will help design better catalysts for applications such as biofuel production.

  8. Diagram of Zeolite Crystals

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Center for Advanced Microgravity Materials Processing (CAMMP) in Cambridge, MA, a NASA-sponsored Commercial Space Center, is working to improve zeolite materials for storing hydrogen fuel. CAMMP is also applying zeolites to detergents, optical cables, gas and vapor detection for environmental monitoring and control, and chemical production techniques that significantly reduce by-products that are hazardous to the environment. Depicted here is one of the many here complex geometric shapes which make them highly absorbent. Zeolite experiments have also been conducted aboard the International Space Station

  9. (1) Selective separation and solidification of radioactive nuclides by zeolites

    NASA Astrophysics Data System (ADS)

    Mimura, Hitoshi; Sato, Nobuaki; Kirishima, Akira

    Massive tsunami generated by the Great East Japan Earthquake attacked the Fukushima Daiichi Nuclear Power Plant and caused the nuclear accident of level 7 to overturn the safety myth of the nuclear power generation. The domestic worst accident does not yet reach the convergence, and many inhabitants around the power plant are forced to double pains of earthquake disaster and nuclear accident. Large amounts of high-activity-level water over 200,000 tons are accumulated on the basement floor of each turbine building, which is a serious obstacle to take measures for the nuclear accident. For the decontamination of high-activity-level water containing seawater, the inorganic ion-exchangers having high selectivity are effective especially for the selective removal of radioactive Cs. On the other hand, radioactive Cs and I released into the atmosphere from the power plant spread widely around Fukushima prefecture, and the decontamination of rainwater and soil become the urgent problem. At present, passing about four months after nuclear accident, the radioactive nuclides of 137Cs and 134Cs are mainly contained in the high-activity-level water and the selective adsorbents for radioactive Cs play an important part in the decontamination. Since the construction of original decontamination system is an urgent necessity, selective separation methods using inorganic ion-exchangers are greatly expected. From the viewpoint of cost efficiency and high Cs-selectivity, natural zeolites are effective for the decontamination of radioactive Cs. This special issue deals with the selective separation and solidification of radioactive Cs and Sr using zeolites.

  10. Haemocompatibility and ion exchange capability of nanocellulose polypyrrole membranes intended for blood purification.

    PubMed

    Ferraz, Natalia; Carlsson, Daniel O; Hong, Jaan; Larsson, Rolf; Fellström, Bengt; Nyholm, Leif; Strømme, Maria; Mihranyan, Albert

    2012-08-01

    Composites of nanocellulose and the conductive polymer polypyrrole (PPy) are presented as candidates for a new generation of haemodialysis membranes. The composites may combine active ion exchange with passive ultrafiltration, and the large surface area (about 80 m(2) g(-1)) could potentially provide compact dialysers. Herein, the haemocompatibility of the novel membranes and the feasibility of effectively removing small uraemic toxins by potential-controlled ion exchange were studied. The thrombogenic properties of the composites were improved by applying a stable heparin coating. In terms of platelet adhesion and thrombin generation, the composites were comparable with haemocompatible polymer polysulphone, and regarding complement activation, the composites were more biocompatible than commercially available membranes. It was possible to extract phosphate and oxalate ions from solutions with physiological pH and the same tonicity as that of the blood. The exchange capacity of the materials was found to be 600 ± 26 and 706 ± 31 μmol g(-1) in a 0.1 M solution (pH 7.4) and in an isotonic solution of phosphate, respectively. The corresponding values with oxalate were 523 ± 5 in a 0.1 M solution (pH 7.4) and 610 ± 1 μmol g(-1) in an isotonic solution. The heparinized PPy-cellulose composite is consequently a promising haemodialysis material, with respect to both potential-controlled extraction of small uraemic toxins and haemocompatibility. PMID:22298813

  11. Acidity field of soils as ion-exchange systems and the diagnostics of genetic soil horizons

    NASA Astrophysics Data System (ADS)

    Kokotov, Yu. A.; Sukhacheva, E. Yu.; Aparin, B. F.

    2014-12-01

    For the comprehensive description of the acidity of a two-phase ion-exchange system, we should analyze two curves of the ionite titration by a strong base in water and salt solutions and find the quantitative relationships between the corresponding pH characteristics. An idea of the three-dimensional field of acidity of ion-exchange systems (the phase space of the soil acidity characteristics) and its three two-dimensional projections is suggested. For soils, three interrelated characteristics—the pH values of the salt and water extracts and the degree of base saturation—can serve as spatial coordinates for the acidity field. Representation of factual data in this field makes it possible to compare and analyze the acidity characteristics of different soils and soil horizons and to determine their specific features. Differentiation of the field into separate volumes allows one to present the data in a discrete form. We have studied the distribution patterns of the groups of soil horizons from Leningrad oblast and other regions of northwestern Russia in the acidity field. The studied samples are grouped in different partially overlapping areas of the projections of the acidity field. The results of this grouping attest to the correctness of the modern classification of Russian soils. A notion of the characteristic soil area in the acidity field is suggested; it can be applied to all the soils with a leaching soil water regime.

  12. Determination of SrSO 04 ion pair formation using conductimetric and ion exchange techniques

    NASA Astrophysics Data System (ADS)

    Reardon, E. J.

    1983-11-01

    The dissociation constant for SrSO 04 ion pair was determined at 25°C using conductance and ion-exchange techniques. Both approaches yield values for pK of SrSO 04 at zero ionic strength in the range 2.28-2.31. Previously reported values range from 2.1 to 3.0. The refinement in the dissociation constant should allow more reliable appraisals of the extent of strontium mineral solubility controls on strontium concentrations in natural water systems. The Lee and Wheaton conductance model was used to interpret the results of the conductivity measurements in strontium sulphate solutions at 25°C. Because of the limitations imposed by the solubility of celestite, a sufficiently-wide concentration range to enable determination of all three of the parameters - dissociation constant, Λ0, and the distance parameter could not be made. Instead, values are reported for the dissociation constant and Λ0 using reasonable limiting values for the distance parameter. Dowex-50 was used in the ion-exchange technique to determine the dissociation constant for SrSO 04. This method was used to determine values at other temperatures as well. Although there is considerable scatter in the temperature data, a standard enthalpy for the dissociation reaction: SrSO04→ Sr2+ + SO2-4 is computed to be 8.7 ± 2 kJmole-1 at 25°C.

  13. Production of high resistivity water by electrodialysis. Influence of ion-exchange textiles as conducting spacers

    SciTech Connect

    Laktionov, E.; Dejean, E.; Sandeaux, J.; Sandeaux, R.; Gavach, C.; Pourcelly, G.

    1999-01-01

    Production of high resistivity water was investigated by electrodialysis (ED) using either inert or conducting spacers. Ion-exchange textiles were used as conducting spacers. Experiments were performed on a preindustrial scale with a pilot consisting of nine two-compartment cells, each membrane having an effective area of 176 cm{sup 2}. Three configurations of the ED stack were investigated for the dilution compartment: EDIT-(2) with a 2-mm thick ion-exchange textile, and ED-(2) or ED-(0.4), with a 0.4-mm thick inert spacer inserted between 2 or 0.4 mm thick dilution compartments, respectively. The textile induces a moderate increase in the pressure drop between the inlet and outlet of the stack. The performances of the different processes were compared under various experimental conditions of pH, nitrogen bubbling throughout the feed solution, flow rate, and current density. The results show that for an inlet conductivity of 10--15 {micro}S/cm, a flow rate of 2.2 {times} 10{sup {minus}5} m{sup 3}/s, and an applied voltage of 80 V, an outlet conductivity of 0.4 {micro}S/cm was obtained with the EDIT process, while no value lower than 5 {micro}S/cm was obtained with the ED process using both stacks.

  14. Literature Review of Spherical Resorcinol-Formaldehyde for Cesium Ion Exchange

    SciTech Connect

    Brown, Garrett N.

    2014-09-30

    The current report summarizes work performed throughout the scientific community and DOE complex as reported in the open literature and DOE-sponsored reports to evaluate the Cs+ ion exchange (CIX) characteristics of SRF resin. King (2007) completed a similar literature review in support of material selection for the Small Column Ion Exchange (SCIX) project. Josephson et al. (2010) and Sams et al. (2009) provided a similar brief review of SRF CIX for the near-tank Cs+ removal (NTCR) project. Thorson (2008a) documented the basis for recommending SRF over SuperLigTM 644 as the primary CIX resin in the WTP. The current review expands on previous work, summarizes additional work completed to date, and provides a broad view of the literature without focusing on a specific column system. Although the focus of the current review is the SRF resin, many cited references include multiple materials such as the non-spherical GGRF and SuperLigTM 644 organic resins and crystalline silicotitanate (CST) IONSIVTM IE-911, a non-elutable inorganic material. This report summarizes relevant information provided in the literature.

  15. Separation of nucleic acids by high-performance ion-exchange chromatography.

    PubMed

    Yamazaki, K; Tomizawa, H; Miyanaga, A; Ishikawa, O; Nakatani, S; Moriyama, H

    1995-01-01

    Separation of various nucleic acids was evaluated by high-performance ion-exchange chromatography on non-porous resin, TSKgel DNA-NPR. A 1 kb ladder DNA was studied as a model DNA on operational variables like flow rate, gradient time, temperature, sample load, etc.. As results, various DNA fragments were well separated within 15 min by 20 min linear gradient at a flow rate between 0.5 and 0.75 ml/min at room temperature while the resolutin was dependent on molecular weight of the sample. The relationship between sample load and its peak area was examined on polymerase chain reaction (PCR) product. The product was found to be quantitatively recovered even with nanogram loads. The detection limit was 3.8 ng at signal to noise level (S/N) of 3. This non-porous ion-exchanger also showed high resolution on separation of ther nucleic acids like transfer RNA, oligonucleotides (single-stranded) DNA. PMID:8841596

  16. Precipitation, dissolution, and ion exchange processes coupled with a lattice Boltzmann advection diffusion solver

    NASA Astrophysics Data System (ADS)

    Hiorth, A.; Jettestuen, E.; Cathles, L. M.; Madland, M. V.

    2013-03-01

    Pore water chemistry can dramatically affect the mechanical strength of chalk cores and the recovery of oil from them, but despite a great many core experiments, the mechanisms responsible remain unclear. This is in part because no single model is presently available that can address the changes in surface complexes and potential and mineral dissolution and precipitation that occur when fluids of different chemistry are injected. We report here the construction of a lattice Boltzmann model that includes non-linear dissolution-precipitation kinetics, surface complexation, and ion exchange. A link-based boundary condition which allows mineral boundaries to move and porosity to change is shown to converge to a correct representation of the macroscopic pore surface area. We show the chemical LB model developed predicts mineral dissolution and ion exchange similar to those predicted by PHREEQC for similar parameters, and we show how the methods developed can be applied to chalk core experiments where synthetic seawater is flooded through the core at 130 °C.

  17. Effect of ion exchange substrate on grass root development and cohesion of sandy soil

    NASA Astrophysics Data System (ADS)

    Chomczyńska, Mariola; Soldatov, Vladimir; Wasąg, Henryk; Turski, Marcin

    2016-07-01

    The effect of small additions of ion exchange substrate (nutrient carrier) on root development and accompanying ground cohesion (characterized by its penetration resistance) was studied. During two pot experiments Dactylis glomerata L. was grown on sand and its mixture with 1 and 2% (v/v) of ion exchange substrate, respectively. The number and total length of roots were measured during the first test. Penetration resistance was measured with a pentrologger, following the second experiment. After six weeks of growth, number and length of roots in sand mixture with 1 and 2% substrate was greater than in sand-only medium by 211-287 and 273-323%, respectively. At the same time, penetration resistance in series with substrate additions was significantly higher than in control medium at depth of 2.5-7(8) cm, whereas after 12 week of growth, penetration resistance in series with 1 and 2% substrate additions was significantly greater than in control sand at the whole analyzed depth. The highest resistance values in media with substrate additions 2-2.5 times greater than those in sand alone - were observed at depth of 3.5-4.0 cm. Higher resistance of sand-substrate mixtures results from more intensive development of root systems, forming a mesh which binds sand particles. Such media would be less susceptible to erosion.

  18. Removal of chromium from electroplating industry effluents by ion exchange resins.

    PubMed

    Cavaco, Sofia A; Fernandes, Sandra; Quina, Margarida M; Ferreira, Licínio M

    2007-06-18

    Effluent discharged from the chromium electroplating industry contains a large number of metals, including chromium, copper, nickel, zinc, manganese and lead. The ion exchange process is an alternative technique for application in the treatment of industrial wastewater containing heavy metals and indeed it has proven to be very promising in the removal and recovery of valuable species. The main objective of the present work is to evaluate the performance of commercial ion exchange resins for removing chromium trivalent from industrial effluents, and for this purpose two resins were tested: a chelating exchange resin (Diaion CR11) and a weak cationic resin (Amberlite IRC86). In order to evaluate the sorption capacity of the resins some equilibrium experiments were carried out, being the temperature and pH the main variables considered. The chromium solutions employed in the experiments were synthetic solutions and industrial effluents. In addition, a transient test was also performed as an attempt to understand the kinetic behaviour of the process. PMID:17336455

  19. Ion Exchange Modeling Of Cesium Removal From Hanford Waste Using Spherical Resorcinol-Formaldehyde Resin

    SciTech Connect

    Aleman, S.; Hamm, L.; Smith, F.

    2007-06-27

    This report discusses the expected performance of spherical Resorcinol-Formaldehyde (RF) ion exchange resin for the removal of cesium from alkaline Hanford radioactive waste. Predictions of full scale column performance in a carousel mode are made for the Hot Commissioning, Envelope B, and Subsequent Operations waste compositions under nominal operating conditions and for perturbations from the nominal. Only the loading phase of the process cycle is addressed in this report. Pertinent bench-scale column tests, kinetic experiments, and batch equilibrium experiments are used to estimate model parameters and to benchmark the ion-exchange model. The methodology and application presented in this report reflect the expected behavior of spherical RF resin manufactured at the intermediate-scale (i.e., approximately 100 gallon batch size; batch 5E-370/641). It is generally believed that scale-up to production-scale in resin manufacturing will result in similarly behaving resin batches whose chemical selectivity is unaffected while total capacity per gram of resin may vary some. As such, the full-scale facility predictions provided within this report should provide reasonable estimates of production-scale column performance.

  20. Modeling Ion-Exchange Processing With Spherical Resins For Cesium Removal

    SciTech Connect

    Hang, T.; Nash, C. A.; Aleman, S. E.

    2012-09-19

    The spherical Resorcinol-Formaldehyde and hypothetical spherical SuperLig(r) 644 ion-exchange resins are evaluated for cesium removal from radioactive waste solutions. Modeling results show that spherical SuperLig(r) 644 reduces column cycling by 50% for high-potassium solutions. Spherical Resorcinol Formaldehyde performs equally well for the lowest-potassium wastes. Less cycling reduces nitric acid usage during resin elution and sodium addition during resin regeneration, therefore, significantly decreasing life-cycle operational costs. A model assessment of the mechanism behind ''cesium bleed'' is also conducted. When a resin bed is eluted, a relatively small amount of cesium remains within resin particles. Cesium can bleed into otherwise decontaminated product in the next loading cycle. The bleed mechanism is shown to be fully isotherm-controlled vs. mass transfer controlled. Knowledge of residual post-elution cesium level and resin isotherm can be utilized to predict rate of cesium bleed in a mostly non-loaded column. Overall, this work demonstrates the versatility of the ion-exchange modeling to study the effects of resin characteristics on processing cycles, rates, and cold chemical consumption. This evaluation justifies further development of a spherical form of the SL644 resin.

  1. Hydraulic Testing of Ion Exchange Resins for Cesium Removal from Hanford Tank Waste

    SciTech Connect

    Brooks, Kriston P.; Augspurger, Brian S.; Blanchard, David L.; Cuta, Judith M.; Fiskum, Sandra K.; Thorson, Murray R.

    2006-08-28

    Forty years of cold war nuclear weapons production activities have resulted in the by-product of millions of gallons of highly radioactive liquid and solid wastes stored in underground tanks at the Hanford Site in southeastern Washington State. The Department of Energy has contracted the construction of a waste-treatment processing plant to remove the major portions of radioactive isotopes from the liquid waste portion for follow-on processing and vitrification of the high-activity waste separately from the low-activity waste. The plant will use ion exchange processing for 137Cs removal from the supernatant portion of Hanford tank wastes. Currently, SuperLig? 644 (IBC Advanced Technologies, Utah) is the ion exchange resin of choice. However, during pilot-scale testing, significant pressure build-up occurred after multiple load-elute cycles. Current testing activities are evaluating resorcinol-formaldehyde (RF) resin as an alternative to achieve comparable loading and elution performance with improved hydraulic performance. Studies have been conducted with both a ground gel RF resin (Boulder Scientific, Colorado) and a spherical RF resin developed by Microbeads (Trondheim, Norway). The purpose of this testing was then to compare the vertical and radial forces of the expanding resin, the breakage of the resin beads, and the differential pressure across the resin bed during multiple load-elute cycles. These tests were done in a small-scale column with high flow rates to simulate the hydraulic conditions that would be experienced in a full-scale column.

  2. A new ion-exchange adsorbent with paramagnetic properties for the separation of genomic DNA.

    PubMed

    Feng, Guodong; Jiang, Luan; Wen, Puhong; Cui, Yali; Li, Hong; Hu, Daodao

    2011-11-21

    A new ion-exchange adsorbent (IEA) derived from Fe(3)O(4)/SiO(2)-GPTMS-DEAE with paramagnetic properties was prepared. Fe(3)O(4) nanoparticles were firstly prepared in water-in-oil microemulsion. The magnetic Fe(3)O(4) particles were modified in situ by hydrolysis and condensation reactions with tetraethoxysilane (TEOS) to form the core-shell Fe(3)O(4)/SiO(2). The modified particles were further treated by 3-glycidoxypropyltrimethoxysilane (GPTMS) to form Fe(3)O(4)/SiO(2)-GPTMS nanoparticles. Fe(3)O(4)/SiO(2)-GPTMS-DEAE nanoparticles (IEA) were finally obtained through the condensation reaction between the Cl of diethylaminoethyl chloride-HCl (DEAE) and the epoxy groups of GPTMS in the Fe(3)O(4)/SiO(2)-GPTMS. The obtained IEA has features of paramagnetic and ion exchange properties because of the Fe(3)O(4) nanoparticles and protonated organic amine in the sample. The intermediates and final product obtained in the synthesis process were characterized. The separation result of genomic DNA from blood indicated that Fe(3)O(4)/SiO(2)-GPTMS-DEAE nanoparticles have outstanding advantages in operation, selectivity, and capacity. PMID:21966668

  3. Lignocellulosic Wheat Straw-Derived Ion-Exchange Adsorbent for Heavy Metals Removal.

    PubMed

    Krishnani, K K

    2016-02-01

    The aim of this work is to develop partially delignified Ca(2+)-and-Mg(2+)-ion-exchanged product from lignocellulosic wheat straw for the removal of eight different heavy metals Pb(2+), Cd(2+), Hg(2+), Co(2+), Ni(2+), Mn(2+), Zn(2+), and Cu(2+) and for detoxification of Cr(VI). Maximum fixation capacity, pH, and initial metal concentration dependence were determined to confirm strong affinity of Pb(2+), Cd(2+), Cu(2+), Zn(2+), and Hg(2+) ions onto the product, whereas Co(2+), Ni(2+), and Mn(2+) were the least fixed. Morphology of the product characterized by scanning electron microscope showed its physical integrity. Different experimental approaches were applied to determine the role of cations such as Ca(2+), Mg(2+), and Na(+) and several functional groups present in the product in an ion exchange for the fixation of metal ions. Potentiometric titration and Scatchard and Dahlquist interpretation were employed for determination of binding site heterogeneity. Results showed strong and weak binding sites in the product. This product has advantages over other conventional processes by virtue of abundance, easy operational process, and cost reduction in waste disposal of its raw material. PMID:26494139

  4. Fractionation of sulphite spent liquor for biochemical processing using ion exchange resins.

    PubMed

    Fernandes, D L A; Silva, C M; Xavier, A M R B; Evtuguin, D V

    2012-12-31

    Sulphite spent liquor (SSL) is a side product from acidic sulphite pulping of wood, which organic counterpart is composed mainly by lignosulphonates (LS) and sugars. The last are a prominent substrate for the bioprocessing although a previous purification step is necessary to eliminate microbial inhibitors. In this study a fractionation of hardwood SSL (HSSL) has been accomplished employing ion exchange resins in order to separate sugars fraction from concomitant inhibitors: LS, acetic acid, furan derivatives, phenolics, acetic acid and excess of inorganic salts. The fractionation of HSSL has been carried out using two fixed-bed ion exchangers in series (cationic+anionic). The first cation exchange column packed with Dowex 50WX2 resin was able to eliminate free cations and partially separate sugars from high molecular weight LS and furan derivatives. The second anion exchange column packed with Amberlite IRA-96 sorbed remaining LS, phenolics and acetic acid. Overall, the series arrangement under investigation has removed 99.99% of Mg(2+), 99.0% of Ca(2+), 99.6% of LS, and 100% of acetic acid, whereas the yield of recovered sugars was at least 72% of their total amount in HSSL. PMID:22465600

  5. Ion-Exchangeable Molybdenum Sulfide Porous Chalcogel: Gas Adsorption and Capture of Iodine and Mercury.

    PubMed

    Subrahmanyam, Kota S; Malliakas, Christos D; Sarma, Debajit; Armatas, Gerasimos S; Wu, Jinsong; Kanatzidis, Mercouri G

    2015-11-01

    We report the synthesis of ion-exchangeable molybdenum sulfide chalcogel through an oxidative coupling process, using (NH4)2MoS4 and iodine. After supercritical drying, the MoS(x) amorphous aerogel shows a large surface area up to 370 m(2)/g with a broad range of pore sizes. X-ray photoelectron spectroscopic and pair distribution function analyses reveal that Mo(6+) species undergo reduction during network assembly to produce Mo(4+)-containing species where the chalcogel network consists of [Mo3S13] building blocks comprising triangular Mo metal clusters and S2(2-) units. The optical band gap of the brown-black chalcogel is ∼1.36 eV. The ammonium sites present in the molybdenum sulfide chalcogel network are ion-exchangeable with K(+) and Cs(+) ions. The molybdenum sulfide aerogel exhibits high adsorption selectivities for CO2 and C2H6 over H2 and CH4. The aerogel also possesses high affinity for iodine and mercury. PMID:26456071

  6. Novel Ion-Exchange Coagulants Remove More Low Molecular Weight Organics than Traditional Coagulants.

    PubMed

    Zhao, Huazhang; Wang, Lei; Hanigan, David; Westerhoff, Paul; Ni, Jinren

    2016-04-01

    Low molecular weight (MW) charged organic matter is poorly removed by conventional coagulants but contributes to disinfection byproduct formation during chlorination of drinking waters. We hypothesized that CIEX, a new Al-based hybrid coagulant with ion-exchange functional groups, would be new mechanistic approach to remove low MW organic matter during coagulation and would perform better than polyaluminum chloride (PACl) or metal-salt based coagulants. We measured coagulation performance using dissolved organic carbon (DOC) in a high hardness surface water. CIEX achieved excellent turbidity removal and removed 20% to 46% more DOC than FeCl3, Al2(SO4)3, or PACl, depending on dose. The improved DOC removal was attributable to better removal of low MW organic matter (<2 kDa). We further studied removal mechanisms in a model water containing a low MW organic acid (salicylic acid (SA)). CIEX achieved high removal of organic acids (>90% of SA) independent of pH, whereas removal by metal salts was lower (<15%) and was strongly pH dependent. CIEX ion-exchange capability is facilitated by its covalently bound quaternary ammonium group, which conventional coagulants lack. Plus, unlike other cationic polymers that react with chloramines to form N-nitrosodimethylamine (NDMA), CIEX has a low molar yield (9.3 × 10(-7) mol NDMA per mol CIEX-N). PMID:26974542

  7. Dynamics of ion exchange between self-assembled redox polyelectrolyte multilayer modified electrode and liquid electrolyte.

    PubMed

    Grumelli, Doris E; Garay, Fernando; Barbero, Cesar A; Calvo, Ernesto J

    2006-08-10

    A probe beam deflection (PBD) study of ion exchange between an electroactive polymer poly(allylamine)-bipyridyl-pyridine osmium complex film and liquid electrolyte is reported. The PBD measurements were made simultaneously to chronoamperometric oxidation-reduction cycles, to be able to detect kinetic effects in the ion exchange. Layer-by-layer (LbL) self-assembled redox polyelectrolyte films with osmium bipyridyl complex covalently attached to poly(allylamine) (PAH-Os) and poly(styrene sulfonate) (PSS) have been built by alternate electrostatic adsorption from soluble polyelectrolytes. The ionic exchange during initial conditioning of the film ("break-in") undergoing oxidation-reduction cycles and recovery after equilibration in the reduced state have shown an exchange of anions and cations with time lag between them. The effect of the nature of cation on the ionic exchange has been investigated with dilute HCl, LiCl, NaCl, and CsCl electrolytes. The ratio of anion to cation exchanged at the film-electrolyte interface has a strong dependence on the nature of charge in the topmost layer, that is, when negatively charged PSS is the capping layer, a larger proportion of cation exchange is observed. This demonstrates that the electrical potential distribution at the redox polyelectrolyte multilayer (PEM)/electrolyte interface determines the ionic flux in response to charge injection in the film. PMID:16884254

  8. Incorporation of phthalocyanines by cationic and anionic clays via ion exchange and direct synthesis

    SciTech Connect

    Carrado, K.A.; Botto, R.E.; Winans, R.E. ); Forman, J.E. )

    1993-04-01

    Phthalocyanines (Pc) and metallophthalocyanines were incorporated into the galleries of anionic and cationic clays via ion exchange and in situ crystallization of the synthetic clay layers. Intercalation compounds between the layered magnesium silicate clay hectorite and cationic phthalocyanines were directly prepared by refluxing for 2 days aqueous solutions of silica sol, magnesium hydroxide, lithium flouride, and either alcian blue dyes (Cu(II)Pc) or 15-crown-5 tetra-substituted phthalocyanine (15C5Pc). The CuPc dyes are tetrapositively charged through peripheral quaternary ammonium groups, whereas the 15C5Pc is electrically neutral. Anionic clays prepared by hydrolysis of mixed solutions of aluminum nitrate, magnesium nitrate, and copper(II) phthalocyaninetetrasulfonic acid, tetrasodium salt (CuPcTs) in sodium hydroxide resulted in crystallization of an intercalation compound between a layered double hydroxide (LDH) and this anionic Pc. The material prepared by ion exchange of CuPcTs into a wet, freshly prepared LDH was superior in crystallinity. The phthalocyanines are oriented parallel to cationic hectorite clay layers (gallery heights 4.5-6.5[angstrom]) and perpendicular to anionic layered double hydroxide clay layers (gallery height 18,2[angstrom]) in correlation with their hosts' respective layer charge densities. 32 refs., 4 figs., 2 tabs.

  9. San copolymer membranes with ion exchangers for Cu(II) removal from synthetic wastewater by electrodialysis.

    PubMed

    Caprarescu, Simona; Corobea, Mihai Cosmin; Purcar, Violeta; Spataru, Catalin Ilie; Ianchis, Raluca; Vasilievici, Gabriel; Vuluga, Zina

    2015-09-01

    Heterogeneous membranes were obtained by using styrene-acrylonitrile copolymer (SAN) blends with low content of ion-exchanger particles (5wt.%). The membranes obtained by phase inversion were used for the removal of copper ions from synthetic wastewater solutions by electrodialytic separation. The electrodialysis was conducted in a three cell unit, without electrolyte recirculation. The process, under potentiostatic or galvanostatic control, was followed by pH and conductivity measurements in the solution. The electrodialytic performance, evaluated in terms of extraction removal degree (rd) of copper ions, was better under potentiostatic control then by the galvanostatic one and the highest (over 70%) was attained at 8V. The membrane efficiency at small ion-exchanger load was explained by the migration of resin particles toward the pores surface during the phase inversion. The prepared membranes were characterized by various techniques i.e. optical microscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis and differential thermal analysis and contact angle measurements. PMID:26354689

  10. Tank 241-AZ-102 SuperLig 639 Technetium Ion Exchange Eluate Evaporation Study

    SciTech Connect

    King, W.D.

    2001-02-15

    As part of the Hanford River Protection Project (RPP), the Savannah River Technology Center (SRTC) has conducted tests on the pretreatment and vitrification of a radioactive waste sample from Hanford Tank 241-AZ-102. The original, AZ-102 sample which was received at SRTC was characterized and filtered to remove entrained solids.1 The sample was then passed sequentially through ion exchange columns containing SuperLig{reg_sign} 644 and 639 resins for the removal of cesium and technetium ions (Tc removed as pertechnetate, TcO{sub 4}{sup {minus}}), respectively.2 The cesium and technetium absorbed to the resins was then eluted to give separate eluate solutions containing relatively high concentrations of Cs{sup +} and TcO{sub 4}{sup {minus}}. According to the current plant design, the decontaminated Tank 241-AZ-102 sample and the eluate solutions will be subjected to separate evaporation and vitrification processes to give low- and high-activity waste glasses, respectively. This report describes evaporation testing of the Tc eluate solution derived from ion exchange processing of the Tank 241-AZ-102 sample with SuperLig 639 resin.

  11. Assessment of cadmium in aquatic sediment using dialysis samplers with ion-exchange-resin collection

    SciTech Connect

    Shi, B.; Allen, H.E.; Desnoyers, C.

    1998-05-01

    Simultaneously extracted metals (SEM) and acid volatile sulfide (AVS) show the potential for toxicity on the basis of their ratio. Accordingly, the authors spiked cadmium in a range for which Cd/AVS ratios were from 0.2 to 10 in the sediment with its weight about 8 kg in each batch. Dialysis samplers with a cation ion-exchange resin (Dowex 50W-X4) collection were used in a laboratory for the determination of free cadmium concentrations in pore water of the collected sediment. When equilibrium was reached among cadmium in pore water, sediment, and ion-exchange resin, cadmium exchanged onto resin phase was regenerated with 1 N hydrochloric acid (OPTIMA grade) and determined using an atomic absorption spectrophotometer (Zeeman 5000) with a graphite furnace accessory. Cadmium determined using the dialysis sampler is considered as free cadmium which is related to the metal bioavailability toward aquatic biota. The developed methodology provides a new technique for assessment of free metal in aquatic sediment systems.

  12. Effect of competing amines on the removal of tetramethylammonium hydroxide from solution using ion exchange.

    PubMed

    Citraningrum, H M; Liu, Jhy-Chern

    2016-01-01

    Tetramethylammonium hydroxide (TMAH, TMA(+)) has been widely used as the photoresist developer in semiconductor and thin film transistor liquid crystal display manufacturing. In this study, TMAH-containing wastewater was treated by ion exchange method. Strong acid cation exchange resin was used. A kinetics study revealed that the ion exchange reaction reached equilibrium within 20 min and it could be described by a pseudo-second-order model. To assess the effects of competing ions, wastewater was spiked with three different amines, namely ethylamine (EA(+)), diethylamine (DEA(+)), and triethylamine (TEA(+)). TMAH uptake decreased when in the presence of amines, and it decreased in the order EA(+) < DEA(+) < TEA(+). It could be attributed to different proton affinity (PA) and the strength of affinity between amine molecules and resin matrix, as found from the ab initio calculation values and Langmuir isotherm parameters. However, the interaction energy between sulphonic acid groups and interfering amines in solution using density functional theory (DFT) calculation resulted in a different trend compared with that of PA. The difference might be caused by stabilization of amines by resin matrix and different molecular structures. PMID:27438252

  13. A self-regulating antimicrobial model based on the ion-exchange stimuli.

    PubMed

    Huang, Xiaobo; Liu, Yinping; Chang, Chengliang; Jiao, Longan; Hang, Ruiqiang; Tang, Bin

    2015-07-01

    In this study, a novel intelligent antimicrobial model was constructed based on the antibiotic properties of nano-silver and the ion-exchange response of dehydrated alginate (Alg) gel. Through the process of reducing reaction, hydrogel formation and dehydration, the model composed of Alg and nano-silver was fabricated. The distinguished feature of this model lies in its antimicrobial properties and biocompatibility. In this model, the releasing level of nano-silver is determined by the outside-in swelling of Alg composites, which is further self-regulated by the volume of wound exudates. The results showed that the released nano-silver was intelligently maintained within a constant concentration range, so that it could be further designed to exhibit antimicrobial activity without cytotoxicity. Furthermore, the murine wound infection model conducted with these composites resulted in a significant decrease of bacteria number. The self-regulating swelling feature based on the ion-exchange response of Alg along with the controlled release of nano-silver made this composite a promising intelligent model for antimicrobial wound dressing applications. PMID:26159674

  14. Characterization of cross-linked cellulosic ion-exchange adsorbents: 2. Protein sorption and transport.

    PubMed

    Angelo, James M; Cvetkovic, Aleksandar; Gantier, Rene; Lenhoff, Abraham M

    2016-03-18

    Adsorption behavior in the HyperCel family of cellulosic ion-exchange materials (Pall Corporation) was characterized using methods to assess, quantitatively and qualitatively, the dynamics of protein uptake as well as static adsorption as a function of ionic strength and protein concentration using several model proteins. The three exchangers studied all presented relatively high adsorptive capacities under low ionic strength conditions, comparable to commercially available resins containing polymer functionalization aimed at increasing that particular characteristic. The strong cation- and anion-exchange moieties showed higher sensitivity to increasing salt concentrations, but protein affinity on the salt-tolerant STAR AX HyperCel exchanger remained strong at ionic strengths normally used in downstream processing to elute material fully during ion-exchange chromatography. Very high uptake rates were observed in both batch kinetics experiments and time-series confocal laser scanning microscopy, suggesting low intraparticle transport resistances relative to external film resistance, even at higher bulk protein concentrations where the opposite is typically observed. Electron microscopy imaging of protein adsorbed phases provided additional insight into particle structure that could not be resolved in previous work on the bare resins. PMID:26905881

  15. MODELING CST ION EXCHANGE FOR CESIUM REMOVAL FROM SCIX BATCHES 1 - 4

    SciTech Connect

    Smith, F.

    2011-04-25

    The objective of this work is, through modeling, to predict the performance of Crystalline Silicotitinate (CST) for the removal of cesium from Small Column Ion Exchange (SCIX) Batches 1-4 (as proposed in Revision 16 of the Liquid Waste System Plan). The scope of this task is specified in Technical Task Request (TTR) 'SCIX Feed Modeling', HLE-TTR-2011-003, which specified using the Zheng, Anthony, Miller (ZAM) code to predict CST isotherms for six given SCIX feed compositions and the VErsatile Reaction and SEparation simulator for Liquid Chromatography (VERSE-LC) code to predict ion-exchange column behavior. The six SCIX feed compositions provided in the TTR represent SCIX Batches 1-4 and Batches 1 and 2 without caustic addition. The study also investigated the sensitivity in column performance to: (1) Flow rates of 5, 10, and 20 gpm with 10 gpm as the nominal flow; and (2) Temperatures of 25, 35, and 45 C with 35 C as the nominal temperature. The isotherms and column predictions presented in this report reflect the expected performance of engineered CST IE-911. This form of CST was used in experiments conducted at the Savannah River National Laboratory (SRNL) that formed the basis for estimating model parameters (Hamm et al., 2002). As has been done previously, the engineered resin capacity is estimated to be 68% of the capacity of particulate CST without binder.

  16. Pilot-scale ion-exchange centrifugal partition chromatography: purification of sinalbin from white mustard seeds.

    PubMed

    Toribio, Alix; Nuzillard, Jean-Marc; Pinel, Benoît; Boudesocque, Leslie; Lafosse, Michel; De La Poype, François; Renault, Jean-Hugues

    2009-06-01

    The purification of p-hydroxybenzylglucosinolate (sinalbin) on a multigram scale from a crude aqueous extract of white mustard seeds (Sinapis alba var. concerta) was successfully achieved by scaling up a strong ion-exchange centrifugal partition chromatography (SIXCPC) laboratory procedure. Thus, the one-step sinalbin purification was performed with 2.35 g of crude extract in approximately 170 min (830 mg/h) up to 70.3 g in approximately 160 min (26.3 g/h) by switching from a 200 mL laboratory scale column to a 5.7 L pilot-scale column. The required biphasic solvent system contained ethyl acetate, n-butanol, and water in 3:2:5 v/v/v proportions, Aliquat 336 (trioctylmethyl ammonium chloride) was added to the organic stationary phase (80 mM) and acted as ion-exchanger. Potassium iodide in the aqueous mobile phase (80 mM) was used as sinalbin displacer. The 28.5 mass scale factor arose from the increase in mobile phase flow-rate (from 2 to 50 mL/min), from the higher mass of injected white mustard seed extract (from 12 to 350 g), and from the calculated productivity (from 830 mg to 26.3 g). These results demonstrate that industry scale production of glucosinolates is easily performed by SIXCPC, thus providing pure reference standards for pharmacology studies. PMID:19479767

  17. Haemocompatibility and ion exchange capability of nanocellulose polypyrrole membranes intended for blood purification

    PubMed Central

    Ferraz, Natalia; Carlsson, Daniel O.; Hong, Jaan; Larsson, Rolf; Fellström, Bengt; Nyholm, Leif; Strømme, Maria; Mihranyan, Albert

    2012-01-01

    Composites of nanocellulose and the conductive polymer polypyrrole (PPy) are presented as candidates for a new generation of haemodialysis membranes. The composites may combine active ion exchange with passive ultrafiltration, and the large surface area (about 80 m2 g−1) could potentially provide compact dialysers. Herein, the haemocompatibility of the novel membranes and the feasibility of effectively removing small uraemic toxins by potential-controlled ion exchange were studied. The thrombogenic properties of the composites were improved by applying a stable heparin coating. In terms of platelet adhesion and thrombin generation, the composites were comparable with haemocompatible polymer polysulphone, and regarding complement activation, the composites were more biocompatible than commercially available membranes. It was possible to extract phosphate and oxalate ions from solutions with physiological pH and the same tonicity as that of the blood. The exchange capacity of the materials was found to be 600 ± 26 and 706 ± 31 μmol g−1 in a 0.1 M solution (pH 7.4) and in an isotonic solution of phosphate, respectively. The corresponding values with oxalate were 523 ± 5 in a 0.1 M solution (pH 7.4) and 610 ± 1 μmol g−1 in an isotonic solution. The heparinized PPy–cellulose composite is consequently a promising haemodialysis material, with respect to both potential-controlled extraction of small uraemic toxins and haemocompatibility. PMID:22298813

  18. ION EXCHANGE MODELING FOR REMOVAL OF CESIUM FROM HANFORD WASTE USING SUPERLIG 644 RESIN

    SciTech Connect

    Hamm, L

    2004-05-01

    The expected performance of a proposed ion exchange column using SuperLig{reg_sign} 644 resin for the removal of cesium from Hanford high level radioactive alkaline waste is discussed. This report represents a final report on the ability and knowledge with regard to modeling the Cesium-SuperLig{reg_sign} 644 resin ion exchange system. Only the loading phase of the cycle process is addressed within this report. Pertinent bench-scale column tests and batch equilibrium experiments are addressed. The methodology employed and sensitivity analyses are also included (i.e., existing methodology employed is referenced to prior developmental efforts while updated methodology is discussed). Pilot-scale testing is not assessed since no pilot-scale testing was available at the time of this report. Column performance predictions are made considering three selected feed compositions under nominal operating conditions. The sensitivity analyses provided help to identify key parameters that aid in resin procurement acceptance criteria. The methodology and application presented within this report reflect the expected behavior of SuperLig{reg_sign} 644 resin manufactured at the production-scale (i.e, 250 gallon batch size level). The primary objective of this work was, through modeling and verification based on experimental assessments, to predict the cesium removal performance of SuperLig{reg_sign} 644 resin for application in the RPP pretreatment facility.

  19. Ion-Exchange Membranes Prepared Using Layer-by-Layer Polyelectrolyte Deposition

    PubMed Central

    Liu, Guanqing; Dotzauer, David M.; Bruening, Merlin L

    2010-01-01

    Layer-by-layer polyelectrolyte adsorption in porous polymeric membranes provides a simple way to create ion-exchange sites without greatly decreasing hydraulic permeability (<20% reduction in permeability). At 80% breakthrough, membranes coated with 3-bilayer poly(styrene sulfonate) (PSS)/polyethyleneimine (PEI) films bind 37±6 mg of negatively charged Au colloids per mL of membrane volume. The binding capacity of membranes coated with 1-bilayer films decreases in the order PSS/PEI>PSS/poly(diallyldimethyl ammonium chloride)>PSS/poly(allylamine hydrochloride). Films terminated with a polyanion present cation-exchange sites that bind lysozyme, and the lysozyme-binding capacities of (PSS/PEI)3/PSS films increase with the ionic strength of the solution from which the last PSS layer is deposited. Charge screening during deposition of the terminal PSS layer gives rise to a larger number of ion-exchange sites and lysozyme binding capacities as high as 16 mg per mL of membrane. At 10% breakthrough, a stack of 3 membranes binds 3 times as much lysozyme as a single membrane, showing that stacking is an effective way to increase capacity. PMID:20606722

  20. An annular photobioreactor with ion-exchange-membrane for non-touch microalgae cultivation with wastewater.

    PubMed

    Chang, Hai-Xing; Fu, Qian; Huang, Yun; Xia, Ao; Liao, Qiang; Zhu, Xun; Zheng, Ya-Ping; Sun, Chi-He

    2016-11-01

    To eliminate the negative impacts of pollutants in wastewater (such as suspended solids, excess N, P, heavy metals) on microalgae growth, an annular ion-exchange-membrane photobioreactor (IEM-PBR) was proposed in this study. The IEM-PBR could avoid direct mixing of algae cells with wastewater by separating them into two chambers. In the IEM-PBR, the nutrients (mainly N and P) in wastewater continuously permeated into microalgae cultures through the ion-exchange-membrane for microalgae growth, while the pollutants hardly permeated into microalgae cultures. Three types of representative wastewater were investigated to evaluate the performance of the IEM-PBR. When cultivated with wastewater containing excess nutrients, high turbidity and excess heavy metals, microalgae biomass concentrations were significantly improved from 2.34, 2.15 and 0gL(-1) in the traditional PBR to 4.24, 3.13 and 2.04gL(-1) in the IEM-PBR. Correspondingly, the removal efficiencies of N and P in wastewater were also greatly improved by using the IEM-PBR. PMID:27544917