Science.gov

Sample records for ionic conductivity

  1. Super ionic conductive glass

    DOEpatents

    Susman, Sherman; Volin, Kenneth J.

    1984-01-01

    An ionically conducting glass for use as a solid electrolyte in a power or secondary cell containing an alkali metal-containing anode and a cathode separated by an alkali metal ion conducting glass having an ionic transference number of unity and the general formula: A.sub.1+x D.sub.2-x/3 Si.sub.x P.sub.3-x O.sub.12-2x/3, wherein A is a network modifier for the glass and is an alkali metal of the anode, D is an intermediate for the glass and is selected from the class consisting of Zr, Ti, Ge, Al, Sb, Be, and Zn and X is in the range of from 2.25 to 3.0. Of the alkali metals, Na and Li are preferred and of the intermediate, Zr, Ti and Ge are preferred.

  2. Super ionic conductive glass

    DOEpatents

    Susman, S.; Volin, K.J.

    Described is an ionically conducting glass for use as a solid electrolyte in a power or secondary cell containing an alkali metal-containing anode and a cathode separated by an alkali metal ion conducting glass having an ionic transference number of unity and the general formula: A/sub 1 + x/D/sub 2-x/3/Si/sub x/P/sub 3 - x/O/sub 12 - 2x/3/, wherein A is a network modifier for the glass and is an alkali metal of the anode, D is an intermediate for the glass and is selected from the class consisting of Zr, Ti, Ge, Al, Sb, Be, and Zn and X is in the range of from 2.25 to 3.0. Of the alkali metals, Na and Li are preferred and of the intermediate, Zr, Ti and Ge are preferred.

  3. Lithium ion conducting ionic electrolytes

    DOEpatents

    Angell, C.A.; Xu, K.; Liu, C.

    1996-01-16

    A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100 C or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors. 4 figs.

  4. Lithium ion conducting ionic electrolytes

    DOEpatents

    Angell, C. Austen; Xu, Kang; Liu, Changle

    1996-01-01

    A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors.

  5. Quantized ionic conductance in nanopores

    SciTech Connect

    Zwolak, Michael; Lagerqvist, Johan; Di Ventra, Massimilliano

    2009-01-01

    Ionic transport in nanopores is a fundamentally and technologically important problem in view of its ubiquitous occurrence in biological processes and its impact on DNA sequencing applications. Using microscopic calculations, we show that ion transport may exhibit strong non-liDearities as a function of the pore radius reminiscent of the conductance quantization steps as a function of the transverse cross section of quantum point contacts. In the present case, however, conductance steps originate from the break up of the hydration layers that form around ions in aqueous solution. Once in the pore, the water molecules form wavelike structures due to multiple scattering at the surface of the pore walls and interference with the radial waves around the ion. We discuss these effects as well as the conditions under which the step-like features in the ionic conductance should be experimentally observable.

  6. Quantized ionic conductance in nanopores.

    PubMed

    Zwolak, Michael; Lagerqvist, Johan; Di Ventra, Massimiliano

    2009-09-18

    Ionic transport in nanopores is a fundamentally and technologically important problem in view of its occurrence in biological processes and its impact on novel DNA sequencing applications. Using molecular dynamics simulations we show that ion transport may exhibit strong nonlinearities as a function of the pore radius reminiscent of the conductance quantization steps as a function of the transverse cross section of quantum point contacts. In the present case, however, conductance steps originate from the break up of the hydration layers that form around ions in aqueous solution. We discuss this phenomenon and the conditions under which it should be experimentally observable. PMID:19792463

  7. Counterion condensation and ionic conductivity

    NASA Astrophysics Data System (ADS)

    Penafiel, L. Miguel; Litovitz, Theodore A.

    1992-02-01

    The occurrence of counterion condensation is demonstrated through measurements of the incremental ionic conductivity of pH buffered Na polyacrylate solutions. pH values were selected to allow variation of the charge density parameter ξ in the range between 0.4 and 2.8, that is, across ξ=1, the theoretical critical level for counterion condensation. The results show two regions where the incremental conductivity, ΔσP, varies differently with ξ. For ξ<1.3, ΔσP remains relatively constant. A sharp drop in ΔσP is observed between ξ=1.3 and ξ=1.7 corresponding to the onset of counterion condensation. It is suggested that this discontinuity reflects a drastic change in the polyion mobility caused by a structural rearrangement of the macromolecule. For ξ≳1.7, ΔσP decreases with approximately constant slope. This latter behavior agrees qualitatively but not quantitatively with the prediction of the counterion condensation model.

  8. Ionic conductivity studies of gel polyelectrolyte based on ionic liquid

    NASA Astrophysics Data System (ADS)

    Cha, E. H.; Lim, S. A.; Park, J. H.; Kim, D. W.; Macfarlane, D. R.

    Novel lithium polyelectrolyte-ionic liquids have been prepared and characterized of their properties. Poly(lithium 2-acrylamido-2-methyl propanesulfonate) (PAMPSLi) and its copolymer with N-vinyl formamide (VF) also has been prepared as a copolymer. 1-Ethyl-3-methylimidazolium tricyanomethanide (emImTCM) and N, N-dimethyl- N-propyl- N-butyl ammonium tricyanomethanide (N 1134TCM) which are chosen because of the same with the anion of ionic liquid were prepared. The ionic conductivity of copolymer system (PAMPSLi/PVF/emImTCM: 5.43 × 10 -3 S cm -1 at 25 °C) exhibits about over four times higher than that of homopolymer system (PAMPSLi/emImTCM: 1.28 × 10 -3 S cm -1 at 25 °C). Introduction of vinyl formamide into the copolymer type can increase the dissociation of the lithium cations from the polymer backbone. The ionic conductivity of copolymer with emImTCM (PAMPSLi/PVF/emImTCM) exhibits the higher conductivity than that of PAMPSLi/PVF/N 1134TCM (2.48 × 10 -3 S cm -1). Because of using the polymerizable anion it is seen to maintain high flexibility of imidazolium cation effectively to exhibit the higher conductivity. And also the viscosity of emImTCM (19.56 cP) is lower than that of N 1134TCM (28.61 cP). Low viscosity leads to a fast rate of diffusion of redox species.

  9. Mixed ionic and electronic conductivity in polymers

    SciTech Connect

    Shriver, D.F.

    1991-06-01

    New polymer films were synthesized that are mixed ionic-electronic conductors. Preliminary ion transport measurements have been made on these materials in the reduced state where electronic conductivity is negligible. We also have made preliminary measurements of switching times for these materials. Theoretical studies have been performed ion pairing in insulating and electronically conducting films.

  10. High H- ionic conductivity in barium hydride

    NASA Astrophysics Data System (ADS)

    Verbraeken, Maarten C.; Cheung, Chaksum; Suard, Emmanuelle; Irvine, John T. S.

    2015-01-01

    With hydrogen being seen as a key renewable energy vector, the search for materials exhibiting fast hydrogen transport becomes ever more important. Not only do hydrogen storage materials require high mobility of hydrogen in the solid state, but the efficiency of electrochemical devices is also largely determined by fast ionic transport. Although the heavy alkaline-earth hydrides are of limited interest for their hydrogen storage potential, owing to low gravimetric densities, their ionic nature may prove useful in new electrochemical applications, especially as an ionically conducting electrolyte material. Here we show that barium hydride shows fast pure ionic transport of hydride ions (H-) in the high-temperature, high-symmetry phase. Although some conductivity studies have been reported on related materials previously, the nature of the charge carriers has not been determined. BaH2 gives rise to hydride ion conductivity of 0.2 S cm-1 at 630 °C. This is an order of magnitude larger than that of state-of-the-art proton-conducting perovskites or oxide ion conductors at this temperature. These results suggest that the alkaline-earth hydrides form an important new family of materials, with potential use in a number of applications, such as separation membranes, electrochemical reactors and so on.

  11. Structure, ionic Conductivity and mobile Carrier Density in Fast Ionic Conducting Chalcogenide Glasses

    SciTech Connect

    Wenlong Yao

    2006-12-12

    This thesis consists of six sections. The first section gives the basic research background on the ionic conduction mechanism in glass, polarization in the glass, and the method of determining the mobile carrier density in glass. The proposed work is also included in this section. The second section is a paper that characterizes the structure of MI + M{sub 2}S + (0.1 Ga{sub 2}S{sub 3} + 0.9 GeS{sub 2}) (M = Li, Na, K and Cs) glasses using Raman and IR spectroscopy. Since the ionic radius plays an important role in determining the ionic conductivity in glasses, the glass forming range for the addition of different alkalis into the basic glass forming system 0.1 Ga{sub 2}S{sub 3} + 0.9 GeS{sub 2} was studied. The study found that the change of the alkali radius for the same nominal composition causes significant structure change to the glasses. The third section is a paper that investigates the ionic conductivity of MI + M{sub 2}S + (0.1Ga{sub 2}S{sub 3} + 0.9 GeS{sub 2}) (M = Li, Na, K and Cs) glasses system. Corresponding to the compositional changes in these fast ionic conducting glasses, the ionic conductivity shows changes due to the induced structural changes. The ionic radius effect on the ionic conductivity in these glasses was investigated. The fourth section is a paper that examines the mobile carrier density based upon the measurements of space charge polarization. For the first time, the charge carrier number density in fast ionic conducting chalcogenide glasses was determined. The experimental impedance data were fitted using equivalent circuits and the obtained parameters were used to determine the mobile carrier density. The influence of mobile carrier density and mobility on the ionic conductivity was separated. The fifth section is a paper that studies the structures of low-alkali-content Na{sub 2}S + B{sub 2}S{sub 3} (x {le} 0.2) glasses by neutron and synchrotron x-ray diffraction. Similar results were obtained both in neutron and synchrotron x

  12. Ionic surface electrical conductivity in sandstone

    NASA Astrophysics Data System (ADS)

    Glover, Paul W. J.; Meredith, Philip G.; Sammonds, Peter R.; Murrell, Stanley A. F.

    1994-11-01

    Recent analyses of complex conductivity measurements have indicated that high-frequency dispersions encountered in rocks saturated with low-salinity fluids are due to ionic surface conduction and that the form of these dispersions may be dependent upon the nature of the pore and crack surfaces within the rock (Ruffet et al., 1991). Unfortunately, the mechanisms of surface conduction are not well understood, and no model based on rigorous physical principles exists. This paper is split into two parts: an experimental section followed by the development of a theoretical description of adsorption of ions onto mineral surfaces. We have made complex conductivity measurements upon samples of sandstone saturated with a range of different types and concentrations of aqueous solution with a frequency range of 20 Hz to 1 MHz. The frequency dependence of complex conductivity was analyzed using the empirical model of Cole and Cole (1941). The 'fractal' surface models of Le Mehaute and Crepy (1983), Po Zen Wong (1987), the Ruffet el at. (1991) were used to calculate apparent fractal pore surface dimensions for samples saturated with different solution types and concentrations. These showed a pronounced decrease of apparent fractal surface dimension with decreasing electrolyte concentration and a decrease of apparent fractal dimension with increasing relative ionic radius of the dominant cation in solution. A model for ionic surface concentration (ISCOM I) has been developed as the first step in producing a rigorous physicochemical model of surface conduction in quartz-dominated rocks. The results from ISCOM I show that quartz surfaces are overwhelmingly dominated by adsorbed Na(+) when saturated with NaCl solutions of salinities and pH found in actual geological situations. ISCOM I also shows that the concentration threshold for dominance of surface conduction over bulk conduction is aided by depletion of ions from the bulk fluid as a result of their adsorption onto the mineral

  13. Ionic Conduction Mechanism of Polymer Gel Electrolytes

    NASA Astrophysics Data System (ADS)

    Saito, Yuria; Kataoka, Hiroshi

    2002-12-01

    Carrier migration mechanism of polymer gel electrolyte for lithium secondary batteries was investigated through the dynamic behavior of diffusion coefficient and conductivity. The gel prepared with PEO showed a homogeneous structure with any fraction of the electrolyte solution. The diffusion coefficient of the ionic species decreased with the increase in the polymer fraction in the gel. Cation migration is closely associated with the polymer, showing the reduced activation energy for diffusion with polymer in contrast to the increasing feature of the activation energy of the anion diffusion. The PVDF-gel electrolytes have a solid solubility limit due to the swelling saturation. The excess solution was then trapped in the cavities of the swollen polymer network. As a result, the diffusion showed two components. One is the fast migration of the carriers similar to that in the solution and the other is the relatively slow migration in the swollen region. The latter was influenced by the polymer due to the physical blocking and chemical interactive effects.

  14. Effect of Electric Field Alignment on Morphology and Ionic Conductivity of Polymerized Ionic Liquid Block Copolymers

    NASA Astrophysics Data System (ADS)

    Sharick, Sharon; Nykaza, Jacob; Elabd, Yossef A.; Winey, Karen I.

    2014-03-01

    Polymerized ionic liquid (PIL) block copolymers are appealing for numerous electrochemical applications, including solid polymer electrolyte membranes for batteries and anion exchange membranes for fuel cells. The extent to which the reduced segmental motion caused by the non-conducting polymer segments and grain boundaries between block copolymer microdomains are detrimental to ionic conductivity is unknown. Increased long-range morphological order and connectivity of PIL microdomains are key to understanding the ion transport mechanism and may improve the ionic conductivity of PIL block copolymers. The effect of electric field on the morphology and ionic conductivity of poly(styrene- b-1-[2-(methacryloyloxy)ethyl]-3-butylimidazolium-bis(trifluoromethanesulfonyl)imide)) (PS- b-PMEBIm-TFSI) will be discussed as a function of microdomain orientation. Electric field is used to increase the perpendicular orientation of ion-conducting pathways with respect to the electrodes. The morphology and ionic conductivity were characterized by small-angle X-ray scattering and electrochemical impedance spectroscopy, respectively. The ionic conductivity of unoriented and oriented block copolymers will be compared to the PIL homopolymer, PMEBIm-TFSI, using the Sax and Ottino model.

  15. Morphology-induced low temperature conductivity in ionic liquids

    NASA Astrophysics Data System (ADS)

    Erbas, Aykut; Olvera de La Cruz, Monica; Olvera de la Cruz Team

    Ionic liquids exhibit nano-scale liquid crystalline order depending on the polymeric details of salt molecules. The resulting morphology and temperature behavior are key factors in determining the room temperature conductivity of ionic liquids. Here we discuss the phase behavior and related ionic conductivities of dry ionic liquids with volume fractions close to unity by using extensive molecular dynamics simulations. Temperature dependence, effective persistence length of tails, and excluded volume symmetry of amphiphilic ionic liquid molecules are investigated in large scale systems with short and long-range electrostatics. Our results suggest that by adjusting stiffness of the amphiphilic molecules and excluded volume interactions, lamellar or interconnected 3D phases can be obtained. Resulting phases have significant effects on the conductive properties. If there is no excluded volume asymmetry along the molecules, mostly lamellar phases with anisotropic conductivities emerge. If the excluded volume interactions become asymmetric, lamellar phases are replaced by interconnected phases consist of charged groups. Within temperature ranges that morphological phases are observed, conductivities exhibit low-temperature maxima in accord with experiments of ionic liquid-based liquid Center of Bio-inspried Energy Center (CBES).

  16. Ionic conduction in polymer composite electrolytes

    NASA Astrophysics Data System (ADS)

    Dam, Tapabrata; Tripathy, Satya N.; Paluch, M.; Jena, S.; Pradhan, D. K.

    2016-05-01

    Conductivity and structural relaxation has been explored from modulus and dielectric loss formalisms respectively for a series of polymer composite electrolytes with zirconia as filler. The temperature dependence of conductivity followed Vogel-Tamman-Fulcher (VTF) behavior, which suggested a close correlation between conductivity and the segmental relaxation process in polymer electrolytes. Vogel temperature (T0) plays significant role in ion conduction process in these kind of materials.

  17. Mixed ionic and electronic conductivity in polymers

    SciTech Connect

    Shriver, D.F.

    1990-06-01

    The conductivity of iodine-containing polymers was investigated and conductivity along polyiodide chains is implicated by the concentration dependence of the conductivity data and spectroscopic measurements. On the theoretical side, entropy based models were developed to describe ion motion in polymers.

  18. Conductivities of the ionic complexes of two cyclic polyethers

    NASA Technical Reports Server (NTRS)

    Fielder, W. L.; Odonnell, P. M.

    1975-01-01

    The conductivities of the solid potassium thiocyanate complex of both dicyclohexyl-18-crown-6 and dibenzo-18-crown-6 were measured at 300K (27 C). Saturated aqueous potassium thiocyanate and graphite were used as ion-transporting and ion-blocking electrodes, respectively. The ionic conductivity predominated for both samples, but it was many orders of magnitude smaller than the value previously reported. The ionic conductivity of the dicyclohexyl complex (the better conductor) was 0.000003 ohm/cm. Crown complexes, in general, do not appear promising as potassium ion solid electrolytes contrary to claims in the patent literature.

  19. Correlating morphology to dc conductivity in polymerized ionic liquids

    NASA Astrophysics Data System (ADS)

    Iacob, Ciprian; Matusmoto, Atsushi; Inoue, Tadashi; Runt, James

    Polymerized ionic liquids (PILs) combine the attractive mechanical characteristics of polymers and unique physico-chemical properties of low molecular weight ionic liquids in the same material. PILs have shown remarkable advantages when employed in electrochemical devices such as dye-sensitized solar cells and lithium batteries, among others. Understanding their ionic transport mechanism is the key for designing highly conductive PILs. In the current study, the correlation between morphology and charge transport in two homologous series of PILs with systematic variation of the alkyl chain length and anions is investigated using broadband dielectric spectroscopy, rheology, differential scanning calorimetry and X-ray scattering. As the alkyl chain length increases, the backbone-to-backbone separation increases, and dc-conductivity consequently decreases. The cations dominate structural dynamics since they are attached to the polymer chains, while the anions are smaller and more mobile ionic species thereby controlling the ionic conductivity. Further interpretation of decoupling of dc conductivity from the segmental relaxation enabled the correlation between polymer morphology and dc conductivity. Supported by the National Science Foundation, Polymers Program.

  20. Tuning the ionic conductivity in protic polymerized ionic liquid homo, random, and block copolymers

    NASA Astrophysics Data System (ADS)

    Evans, Christopher; Segalman, Rachel; UCSB Team

    2015-03-01

    Proton conducting membranes are of interest for a number of energy applications including use in fuel cells and artificial photosynthesis systems. We have synthesized a new class of protic polymerized ionic liquids (PILs) based on imidazolium cations which exhibit high conductivities in the solid state. In contrast to previous imidazolium based PILs, the ionic liquid moiety is attached via a carbon on the imidazole thus leaving the two nitrogens available to act as a proton donor/acceptor. The conductivies of these protic PILs, measured by dielectric spectroscopy, are orders of magnitude higher than the analogous non-protic PILs at a given distance above (Tg). These high conductivities are the result of a strong contribution from proton motion. A series of random and block copolymers containing the polymerized ionic liquid monomer and a non-ionic comonomer were also investigated to determine the role of comonomer on the conductivity of these materials. It was found that methyl acrylate, which has a low glass transition temperature and high dielectric constant, can result in improvements of ionic conductivity. Studies using solid state NMR are underway to understand the role of protons and mobile anions in controlling the overall conductivity of these materials.

  1. Morphology and Ionic Conductivity of Humidity-Responsive Polymerized Ionic Liquid Block Copolymers

    NASA Astrophysics Data System (ADS)

    Sharick, Sharon; Meek, Kelly; Ye, Yuesheng; Elabd, Yossef A.; Winey, Karen I.

    2014-03-01

    We present the ionic conductivity and morphology of humidity-responsive polymerized ionic liquid block copolymers (PIL BCPs), poly(methyl methacrylate- b-1-[2-(methacryloyloxy)ethyl]-3-butylimidazolium-X), where X is a bromide (Br) or hydroxide (OH) anion, as a function of relative humidity (RH), temperature, and PIL composition (ϕPIL) . PIL BCPs were characterized by in situ small-angle X-ray scattering and electrochemical impedance spectroscopy. These PIL BCPs have microphase separated morphologies and long-range order increases as ϕPIL increases. Notably, ionic conductivity increases 3 to 4 orders of magnitude when RH increases from 30 to 90 percent. When ϕPIL is greater than 0.37, BCP ionic conductivity approaches or exceeds that of the homopolymer, suggesting that the dynamics in PIL microdomains mimic the homopolymer and long-range order aids ion transport. Moreover, over 60 percent of the BCP is nonconductive without a penalty in ion transport. When ϕPIL is less than 0.37, BCP conductivity is 1 to 2 orders of magnitude less than the homopolymer and non-conductive PMMA segments dominate ion transport, as expected. Ionic conductivities at 80 °C, 90 percent RH, are 7.6 mS/cm for the Br-containing BCP with ϕPIL = 0.53 and 25.0 mS/cm for the OH-containing BCP with ϕPIL = 0.50.

  2. Ion Conduction in Polymerized Ionic Liquids with Different Pendant Groups

    SciTech Connect

    Fan, Fei; Wang, Yangyang; Hong, Tao; Heres, Maximilian F; Saito, Tomonori; Sokolov, Alexei P

    2015-01-01

    Polymerized ionic liquids (PolyILs) are promising candidates for energy storage and electrochemical devices applications. Understanding their ionic transport mechanism is the key for designing highly conductive PolyILs. By using broadband dielectric spectroscopy (BDS), rheology, and differential scanning calorimetry (DSC), a systematic study has been carried out to provide a better understanding of the ionic transport mechanism in PolyILs with different pendant groups. The variation of pendant groups results in different dielectric, mechanical, and thermal properties of these PolyILs. The Walden plot analysis shows that the data points for all these PolyILs fall above the ideal Walden line, and the deviation from the ideal line increases upon approaching the glass transition temperature (Tg). The conductivity for these PolyILs at their Tgs are much higher than the usually reported value 10 15 S/cm for polymer electrolytes, in which the ionic transport is closely coupled to the segmental dynamics. These results indicate a decoupling of ionic conductivity from the segmental relaxation in these materials. The degree of decoupling increases with the increase of the fragility of polymer segmental relaxation. We relate this observation to a decrease in polymer packing efficiency with an increase in fragility.

  3. Ion Conduction in Polymerized Ionic Liquids with Different Pendant Groups

    DOE PAGESBeta

    Fan, Fei; Wang, Yangyang; Hong, Tao; Heres, Maximilian F; Saito, Tomonori; Sokolov, Alexei P

    2015-01-01

    Polymerized ionic liquids (PolyILs) are promising candidates for energy storage and electrochemical devices applications. Understanding their ionic transport mechanism is the key for designing highly conductive PolyILs. By using broadband dielectric spectroscopy (BDS), rheology, and differential scanning calorimetry (DSC), a systematic study has been carried out to provide a better understanding of the ionic transport mechanism in PolyILs with different pendant groups. The variation of pendant groups results in different dielectric, mechanical, and thermal properties of these PolyILs. The Walden plot analysis shows that the data points for all these PolyILs fall above the ideal Walden line, and the deviationmore » from the ideal line increases upon approaching the glass transition temperature (Tg). The conductivity for these PolyILs at their Tgs are much higher than the usually reported value 10 15 S/cm for polymer electrolytes, in which the ionic transport is closely coupled to the segmental dynamics. These results indicate a decoupling of ionic conductivity from the segmental relaxation in these materials. The degree of decoupling increases with the increase of the fragility of polymer segmental relaxation. We relate this observation to a decrease in polymer packing efficiency with an increase in fragility.« less

  4. Thermal boundary conductance of hydrophilic and hydrophobic ionic liquids

    NASA Astrophysics Data System (ADS)

    Oyake, Takafumi; Sakata, Masanori; Yada, Susumu; Shiomi, Junichiro

    2015-03-01

    A solid/liquid interface plays a critical role for understanding mechanisms of biological and physical science. Moreover, carrier density of the surface is dramatically enhanced by electric double layer with ionic liquid, salt in the liquid state. Here, we have measured the thermal boundary conductance (TBC) across an interface of gold thin film and ionic liquid by using time-domain thermoreflectance technique. Following the prior researches, we have identified the TBC of two interfaces. One is gold and hydrophilic ionic liquid, N,N-Diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate (DEME-BF4), which is a hydrophilic ionic liquid, and the other is N,N-Diethyl-N-methyl-N-(2-methoxyethyl) ammonium bis (trifluoromethanesulfonyl) imide (DEME-TFSI), which is a hydrophobic ionic liquid. We found that the TBC between gold and DEME-TFIS (19 MWm-2K-1) is surprisingly lower than the interface between gold and DEME-BF4 (45 MWm-2K-1). With these data, the importance of the wetting angle and ion concentration for the thermal transport at the solid/ionic liquid interface is discussed. Part of this work is financially supported by Japan Society for the Promotion of Science (JSPS) and Japan Science and Technology Agency. The author is financially supported by JSPS Fellowship.

  5. Defect association mediated ionic conductivity of rare earth doped nanoceria: Dependency on ionic radius

    NASA Astrophysics Data System (ADS)

    Anirban, Sk.; Sinha, A.; Bandyopadhyay, S.; Dutta, A.

    2016-05-01

    Rare earth doped nanoceria Ce0.9RE0.1O1.95 (RE = Pr, Nd, Eu and Gd) were prepared through citrate auto-ignition method. The single phase cubic fluorite structure with space group Fm3 ¯m of the compositions were confirmed from Rietveld analysis of XRD data. The particle size of the compositions were in the range 49.77 nm to 66.20 nm. An ionic radius dependent lattice parameter variation was found. The DC conductivity of each composition was evaluated using Random Barrier Model. The conductivity decreased and activation energy increased with increasing ionic radius from Gd to Pr doping due to the size mismatch with host ions and formation of stable defect associate. The formation of different defect associates and their correlation with ionic conductivity has been discussed.

  6. Ionic conductivity of imidazole-functionalized liquid crystal mesogens

    NASA Astrophysics Data System (ADS)

    Roddecha, Supacharee; Anthamatten, Mitchell

    2012-02-01

    Imidazole has been investigated as a novel anhydrous proton conducting functional group that could enable higher temperature operation (> 120 ^oC) of polymer electrolyte fuel cells. Its amphoteric behavior can support Grotthuss-like proton transport; however molecular mobility and a high concentration of imidazole groups are needed to achieve high ionic conductivity. Our hypothesis is that liquid crystal ordering, particularly in layered smectic phase, can facilitate formation of 2D proton transport and promote proton conductivity. We have designed and synthesized two imidazole-terminated liquid crystal mesogens, and the ionic conductivities in the liquid crystalline and isotropic states have been measured. Here we report on synthesis and characterization of diacylhydrazine liquid crystals bearing imidazole terminal groups. The proton conductivity of products is compared to pure liquid imidazole and to liquid crystal mesogens without imidazole groups.

  7. Ionic conduction in different hydrated V2O5 film

    NASA Astrophysics Data System (ADS)

    Saatci, A. Evrim; Gökdemir, F. Pınar; Menda, U. Deneb; Kavak, Pelin; Özdemir, Orhan; Kutlu, Kubilay

    2012-09-01

    Because of the layered structure of vanadium pentoxide films (V2O5), approved by XRD measurement, sensitized from different hydrated V2O5.nH2O sols, demonstrated anisotropic conductivities in current voltage (I-V) measurement. Conductivity values, originated from electronic and ionic conductions, differed provided that measurements were performed in a direction parallel to the ribbons rather than perpendicular to them. The overall electrical conductivity of V2O5nH2O sols mainly depended on the hydration state n and the amount of reduced V4+ ions in which n was determined around 4-6 [1] from the basal distance (17.6 Å) through XRD measurement while V4+ ions were determined through FTIR analysis. Electronic conduction prevailed in dehydrated V2O50.5H2O sols whereas non-stoichiometric vanadium pentoxide was a mixed-valence compound and its electronic properties arised from electron hopping between V4+ and V5+ ions so-called "small polaron model". Indeed, reduction/oxidation peaks in lithium (Li+) intercalation by cyclic voltammograms (CV) indicated the V4+ and V5+ ions in V2O5 sols. Temperature dependent I-V analysis showed Arheniuss type activation energy, EA, and located in between 0.3-0.5 eV; proposing ionic conduction rather than electronic conduction, specifically proton diffusion in V2O5 film. Indeed, hydration state greater than 0.5 predicted ionic conduction [1].

  8. Electrolytic Conductivity of Four Imidazolium-Based Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Calado, Marta S.; Diogo, João C. F.; Correia da Mata, José L.; Caetano, Fernando J. P.; Visak, Zoran P.; Fareleira, João M. N. A.

    2013-07-01

    In this article, electrolytic (ionic) conductivity measurements of four ionic liquids (ILs), namely, 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl] imide ([Cmim][NTf]), 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([Cmim][OTf]), 1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([Cmim][NTf]), and 1-ethyl-3-methylimidazolium ethyl sulfate ([Cmim][EtSO]) (ECOENG212), were performed in a temperature range of (288.15 to 333.15) K. [Cmim][NTf] was chosen to be a reference ionic liquid for several properties, including the electrolytic conductivity by the IUPAC Project 2002-005-1-100. For that reason, the measurements performed with that ionic liquid primarily serve the purpose to validate the instrumentation and the experimental procedure used in this work. The measurements were carried out using a complex impedance method, applying a novel electronic device designed and constructed for this purpose. The complete setup includes a Schott Instruments LF 913 T, used as a four-electrode conductivity cell, and a lock-in amplifier. The cell was calibrated using standard reference KCl aqueous solutions. The measurements of the impedance of the conductivity cell were carried out along a range of frequencies from (0.2 to 30) kHz, and the results were extrapolated to infinite frequency, in order to determine the electrolytic conductivity of the liquid samples. The results obtained for the ionic liquid [Cmim][NTf] were compared to reference data, and it was estimated that the overall uncertainty of the present results is better than 2 %. All the data obtained were compared with available literature data, and were analyzed and discussed in respect to the effect of temperature, cation alkyl chain length, and anion.

  9. Pink noise of ionic conductance through single artificial nanopores revisited.

    PubMed

    Tasserit, C; Koutsioubas, A; Lairez, D; Zalczer, G; Clochard, M-C

    2010-12-31

    We report voltage-clamp measurements through single conical nanopore obtained by chemical etching of a single ion track in polyimide film. Special attention is paid to the pink noise of the ionic current (i.e., 1/f noise) measured with different filling liquids. The relative pink-noise amplitude is almost independent of concentration and pH for KCl solutions, but varies strongly using ionic liquids. In particular, we show that depending on the ionic liquid, the transport of charge carriers is strongly facilitated (low noise and higher conductivity than in the bulk) or jammed. These results show that the origin of the pink noise can be ascribed neither to fluctuations of the pore geometry nor to the pore wall charges, but rather to a cooperative effect on ions motion in confined geometry. PMID:21231637

  10. Electronically and ionically conductive gels of ionic liquids and charge-transfer tetrathiafulvalene-tetracyanoquinodimethane.

    PubMed

    Mei, Xiaoguang; Ouyang, Jianyong

    2011-09-01

    Electronically and ionically conductive gels were fabricated by mixing and mechanically grinding neutral tetrathiafulvalene (TTF) and tetracyanoquinodimethane (TCNQ) in ionic liquids (ILs) like 3-ethyl-1-methylimidazolium dicyanoamide (EMIDCA), 1-ethyl-3-methylimidazolium thiocyanate (EMISCN), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMITf(2)N), trihexyltetradecylphosphonium bis(trifluoromethylsulfonyl)imide (P(14,6,6,6)Tf(2)N), and methyl-trioctylammonium bis(trifluoromethylsulfonyl)imide (MOATf(2)N). Charge-transfer TTF-TCNQ crystallites were generated during the mechanical grinding as indicated by the UV-visibile-near-infrared (UV-vis-NIR) absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction. The charge-transfer TTF-TCNQ crystallites have a needle-like shape. They form solid networks to gelate the ILs. The gel behavior is confirmed by the dynamic mechanical measurements. It depends on both the anions and cations of the ILs. In addition, when 1-methyl-3-butylimidazolium tetrafluoroborate (BMIBF(4)) and 1-methyl-3-propylimidazolium iodide (PMII) were used, the TTF-TCNQ/IL mixtures did not behave as gels. The TTF-TCNQ/IL gels are both electronically and ionically conductive, because the solid phase formed by the charge-transfer TTF-TCNQ crystallites is electronically conductive, while the ILs are ionically conductive. The gel formation is related to needle-like charge-transfer TTF-TCNQ cyrstallites and the π-π and Coulombic interactions between TTF-TCNQ and ILs. PMID:21800893

  11. Electronic and ionic conductivities in superionic Li4C60

    NASA Astrophysics Data System (ADS)

    Quintavalle, D.; Márkus, B. G.; Jánossy, A.; Simon, F.; Klupp, G.; Győri, M. A.; Kamarás, K.; Magnani, G.; Pontiroli, D.; Riccò, M.

    2016-05-01

    The 10 GHz microwave conductivity, σ (T ) and high field, 222 GHz electron spin resonance (HF-ESR) of Li4C60 fulleride is measured in a wide temperature range. We suggest that the majority of ESR active sites and at least some of the charge carriers for σ (T ) are electrons bound to a small concentration of surplus or vacancy ions in the polymer phase. Both σ (T ) and the ESR line shape depend on ionic motion. A change of the activation energy of σ (T ) at 125 K coincides with the onset of the ionic DC conductivity. The ESR line shape is determined mainly by Li ionic motion within octahedral voids below 150 K. At higher temperatures, fluctuations due to ionic diffusion change the environment of defects from axial to effectively isotropic on the ESR time scale. σ (T ) data up to 700 K through the depolymerization transition confirm that the monomeric phase of Li4C60 is a metal.

  12. Mixed ionic and electronic conducting ceramic membranes for hydrocarbon processing

    DOEpatents

    Van Calcar, Pamela; Mackay, Richard; Sammells, Anthony F.

    2002-01-01

    The invention relates to mixed phase materials for the preparation of catalytic membranes which exhibit ionic and electronic conduction and which exhibit improved mechanical strength compared to single phase ionic and electronic conducting materials. The mixed phase materials are useful for forming gas impermeable membranes either as dense ceramic membranes or as dense thin films coated onto porous substrates. The membranes and materials of this invention are useful in catalytic membrane reactors in a variety of applications including synthesis gas production. One or more crystalline second phases are present in the mixed phase material at a level sufficient to enhance the mechanical strength of the mixture to provide membranes for practical application in CMRs.

  13. Ionic conductivity and glass transition of phosphoric acids

    SciTech Connect

    Wang, Yangyang; Lane, Nathan A; Sun, Che-Nan; Fan, Fei; Zawodzinski, Thomas; Sokolov, Alexei P

    2013-01-01

    Here we report the low-temperature dielectric and viscoelastic properties of phosphoric acids in the range of H2O:P2O5 1.5 5. Both dielectric and viscosity measurements allow us to determine the glass-transition temperatures of phosphoric acids. The obtained glass-transition temperatures are in good agreement with previous differential scanning calorimetric measurements. Moreover, our analysis reveals moderate decoupling of ionic conductivity from structural relaxation in the vicinity of the glass transition.

  14. Spatial-decomposition analysis of electrical conductivity in ionic liquid.

    PubMed

    Tu, Kai-Min; Ishizuka, Ryosuke; Matubayasi, Nobuyuki

    2014-12-28

    The electrical conductivity of room temperature ionic liquid (IL) is investigated with molecular dynamics simulation. A trajectory of 1 μs in total is analyzed for the ionic liquid [C4mim][NTf2] (1-n-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, and the anion is also called TFSI or TFSA), and the ion motions are examined in direct connection to the conductivity within the framework formulated previously [K.-M. Tu, R. Ishizuka, and N. Matubayasi, J. Chem. Phys. 141, 044126 (2014)]. As a transport coefficient, the computed electrical conductivity is in fair agreement with the experiment. The conductivity is then decomposed into the autocorrelation term of Nernst-Einstein form and the cross-correlation term describing the two-body motions of ions, and the cross-correlation term is further decomposed spatially to incorporate the structural insights on ion configurations into the dynamic picture. It is observed that the ion-pair contribution to the conductivity is not spatially localized and extends beyond the first coordination shell. The extent of localization of the cross-correlation effect in the conductivity is in correspondence to that of the spatial correlation represented by radial distribution function, which persists over nanometer scale. PMID:25554167

  15. Enhancement in ionic conductivity on solid polymer electrolytes containing large conducting species

    NASA Astrophysics Data System (ADS)

    Praveen, D.; Damle, Ramakrishna

    2016-05-01

    Solid Polymer Electrolytes (SPEs) lack better conducting properties at ambient temperatures. Various methods to enhance their ionic conductivity like irradiation with swift heavy ions, γ-rays, swift electrons and quenching at low temperature etc., have been explored in the literature. Among these, one of the oldest methods is incorporation of different conducting species into the polymer matrix and/or addition of nano-sized inert particles into SPEs. Various new salts like LiBr, Mg(ClO4)2, NH4I etc., have already been tried in the past with some success. Also various nanoparticles like Al2O3, TiO2 etc., have been tried in the past. In this article, we have investigated an SPE containing Rubidium as a conducting species. Rubidium has a larger ionic size compared to lithium and sodium ions which have been investigated in the recent past. In the present article, we have investigated the conductivity of large sized conducting species and shown the enhancement in the ionic conductivity by addition of nano-sized inert particles.

  16. Morphology, Modulus, and Ionic Conductivity of a Triblock Terpolymer/Ionic Liquid Electrolyte Membrane

    NASA Astrophysics Data System (ADS)

    McIntosh, Lucas D.; Lodge, Timothy P.

    2013-03-01

    A key challenge in designing solid polymer electrolytes is increasing bulk mechanical properties such as stiffness, without sacrificing ionic conductivity. Previous work has focused on diblock copolymers, where one block is a stiff, glassy insulator and the other is a flexible ion conductor. Disadvantages of these systems include difficulty in achieving network morphologies, which minimize dead-ends for ion transport, and the necessity to operate below both the Tg of the glassy block and the order-disorder temperature. We have investigated the triblock terpolymer poly[isoprene-b-(styrene-co-norbornenylethyl styrene)-b-ethylene oxide] because it self-assembles into a triply-continuous network structure. SAXS and TEM revealed the bulk morphology of INSO to be disordered but strongly correlated after solvent casting from dichloromethane. This apparent disordered network structure was retained after chemical crosslinking and addition of the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide. Impedance spectroscopy confirmed the expected conductivity for ions confined to continuous PEO channels. The mechanical response before and after crosslinking showed an increase in the material modulus.

  17. Ionically conducting polymers: Principles and properties of solid electrolytes

    SciTech Connect

    Skotheim, T.; Okamoto, Y.

    1987-01-01

    The recent success in developing rechargeable lithium batteries incorporating polyether-based electrolytes has led to the anticipation of a wider use of polymer electrolytes in a host of different applications. The polymers with the best combinations of solvation power, conductivity and electrochemical stability are all based on either PEO or polymers incorporating a high density of EO units. PEO-based electrolytes still yield the highest conductivities at elevated temperatures (approx.100/sup 0/C) when it is completely amorphous. What has emerged during the last ten years of research on polymer electrolytes is the central importance of the amorphous state for high conductivity, where the ion mobility is governed by the mobility associated with a low glass transition temperature. The difference between polymer and liquid electrolytes is that in the former the solvating part does not migrate with the ions. There is, however, still some controversy concerning the nature of the ionic species, i.e. whether the salt is present in the form of associated ions. The intensive research of the last few years has led to a far better understanding of these polymer-ion complexes. Several different types of solvating polymers have been developed, in particular single ion conductors, which represent much of the future of ion conducting polymer research. 36 refs.

  18. Phase Behavior and Ionic Conductivity of Concentrated Solutions of Polystyrene-Poly(ethylene oxide) Diblock Copolymers in an Ionic Liquid

    SciTech Connect

    Simone, Peter M.; Lodge, Timothy P.

    2010-03-16

    Concentrated solutions of poly(styrene-b-ethylene oxide) (PS-PEO) diblock copolymers were prepared using the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [EMI][TFSI] as the solvent. The self-assembled microstructures adopted by the copolymer solutions have been characterized using small-angle X-ray scattering. Lyotropic mesophase transitions were observed, with a progression from hexagonally packed cylinders of PEO, to lamellae, to hexagonally packed cylinders of PS upon increasing [EMI][TFSI] content. The change in lamellar domain spacing with ionic liquid concentration was found to be comparable to that reported for other block copolymers in strongly selective solvents. The ionic conductivity of the concentrated PS-PEO/[EMI][TFSI] solutions was measured via impedance spectroscopy, and ranged from 1 x 10{sup -7} to 1 x 10{sup -3} S/cm at temperatures from 25-100 C. Additionally, the ionic conductivity of the solutions was found to increase with both ionic liquid concentration and molecular weight of the PEO blocks. The ionic conductivity of PEO homopolymer/[EMI][TFSI] solutions was also measured in order to compare the conductivity of the PS-PEO solutions to the expected limit for a lamellar sample with randomly oriented microstructure grains.

  19. Ionic conductances regulating the excitability of colonic smooth muscles

    PubMed Central

    Koh, Sang Don; Ward, Sean M.; Sanders, Kenton M.

    2012-01-01

    The tunica muscularis of the gastrointestinal (GI) tract contains two layers of smooth muscle cells (SMC) oriented perpendicular to each other. SMC express a variety of voltage-dependent and voltage-independent ionic conductance(s) that develop membrane potential and control excitability. Resting membrane potentials (RMP) vary through the GI tract but generally are within the range of −80 to −40mV. RMP sets the ‘gain’ of smooth muscle and regulates openings of voltage-dependent Ca2+ channels. A variety of K+ channels contribute to setting RMP of SMC. In most regions RMP is considerably less negative than the K+ equilibrium potential, due to a finely tuned balance between background K+ channels and non-selective cation channels (NSCC). Variations in expression patterns and openings of K+ channels and NSCC account for differences of the RMP in different regions of the GI tract. Smooth muscle excitability is also regulated by interstitial cells (interstitial cells of Cajal (ICC) and PDGFRα+ cells) that express additional conductances and are electrically coupled to SMC. Thus, ‘myogenic’ activity results from the integrated behavior of the SMC/ICC/PDGFRα+ cell (SIP) syncytium. Inputs from excitatory and inhibitory motor neurons are required to produce the complex motor patterns of the gut. Motor neurons innervate three cell-types in the SIP, and receptors, second messenger pathways and ion channels in these cells mediate post-junctional responses. Studies of isolated SIP cells have begun to unravel the mechanisms responsible for neural responses. This review discusses ion channels that set and regulate RMP of SIP cells and how neurotransmitters regulate membrane potential. PMID:22726670

  20. Lithium ion conductive behavior of TiO2 nanotube/ionic liquid matrices

    PubMed Central

    2014-01-01

    A series of TiO2 nanotube (TNT)/ionic liquid matrices were prepared, and their lithium ion conductive properties were studied. SEM images implied that ionic liquid was dispersed on the whole surface of TNT. Addition of TNT to ionic liquid (1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide (BMImTFSA)) resulted in significant increase of ionic conductivity. Furthermore, lithium transference number was also largely enhanced due to the interaction of anion with TNT. Vogel-Fulcher-Tammann parameter showed higher carrier ion number for TNT/BMImTFSA in comparison with BMImTFSA. PMID:25313300

  1. Correlating Humidity-Dependent Ionically Conductive Surface Area with Transport Phenomena in Proton-Exchange Membranes

    SciTech Connect

    He, Qinggang; Kusoglu, Ahmet; Lucas, Ivan T.; Clark, Kyle; Weber, Adam Z.; Kostecki, Robert

    2011-08-01

    The objective of this effort was to correlate the local surface ionic conductance of a Nafion? 212 proton-exchange membrane with its bulk and interfacial transport properties as a function of water content. Both macroscopic and microscopic proton conductivities were investigated at different relative humidity levels, using electrochemical impedance spectroscopy and current-sensing atomic force microscopy (CSAFM). We were able to identify small ion-conducting domains that grew with humidity at the surface of the membrane. Numerical analysis of the surface ionic conductance images recorded at various relative humidity levels helped determine the fractional area of ion-conducting active sites. A simple square-root relationship between the fractional conducting area and observed interfacial mass-transport resistance was established. Furthermore, the relationship between the bulk ionic conductivity and surface ionic conductance pattern of the Nafion? membrane was examined.

  2. Mechanism of ionic conduction in polyether-polyurethane networks containing lithium perchlorate

    NASA Astrophysics Data System (ADS)

    Le Nest, J. F.; Defendini, F.; Gandini, A.; Cheradame, H.; Cohen-Addad, J. P.

    The swelling behaviour of polyethylene oxide-urethane networks (with and without LiClO 4) was studied with several organic liquids and water. All the results are consistent with a model for the network-salt interaction involving the solvation of Li + ions by oxygen atoms of the ether. More specifically, strong interactions take place between ionic quadrupoles and two polyether chains leading to reversible physicochemical (ionic) crosslinks. The number of such interactions grows with salt concentration up to a limit characterised by one ionic crosslink every twelve ethylene oxide units. An ionic transport mechanism (conduction) is proposed on the basis of this model considered in a dynamic context.

  3. Ionic Conduction in Lithium Ion Battery Composite Electrode Governs Cross-sectional Reaction Distribution

    NASA Astrophysics Data System (ADS)

    Orikasa, Yuki; Gogyo, Yuma; Yamashige, Hisao; Katayama, Misaki; Chen, Kezheng; Mori, Takuya; Yamamoto, Kentaro; Masese, Titus; Inada, Yasuhiro; Ohta, Toshiaki; Siroma, Zyun; Kato, Shiro; Kinoshita, Hajime; Arai, Hajime; Ogumi, Zempachi; Uchimoto, Yoshiharu

    2016-05-01

    Composite electrodes containing active materials, carbon and binder are widely used in lithium-ion batteries. Since the electrode reaction occurs preferentially in regions with lower resistance, reaction distribution can be happened within composite electrodes. We investigate the relationship between the reaction distribution with depth direction and electronic/ionic conductivity in composite electrodes with changing electrode porosities. Two dimensional X-ray absorption spectroscopy shows that the reaction distribution is happened in lower porosity electrodes. Our developed 6-probe method can measure electronic/ionic conductivity in composite electrodes. The ionic conductivity is decreased for lower porosity electrodes, which governs the reaction distribution of composite electrodes and their performances.

  4. Ionic Conduction in Lithium Ion Battery Composite Electrode Governs Cross-sectional Reaction Distribution

    PubMed Central

    Orikasa, Yuki; Gogyo, Yuma; Yamashige, Hisao; Katayama, Misaki; Chen, Kezheng; Mori, Takuya; Yamamoto, Kentaro; Masese, Titus; Inada, Yasuhiro; Ohta, Toshiaki; Siroma, Zyun; Kato, Shiro; Kinoshita, Hajime; Arai, Hajime; Ogumi, Zempachi; Uchimoto, Yoshiharu

    2016-01-01

    Composite electrodes containing active materials, carbon and binder are widely used in lithium-ion batteries. Since the electrode reaction occurs preferentially in regions with lower resistance, reaction distribution can be happened within composite electrodes. We investigate the relationship between the reaction distribution with depth direction and electronic/ionic conductivity in composite electrodes with changing electrode porosities. Two dimensional X-ray absorption spectroscopy shows that the reaction distribution is happened in lower porosity electrodes. Our developed 6-probe method can measure electronic/ionic conductivity in composite electrodes. The ionic conductivity is decreased for lower porosity electrodes, which governs the reaction distribution of composite electrodes and their performances. PMID:27193448

  5. Ionic Conduction in Lithium Ion Battery Composite Electrode Governs Cross-sectional Reaction Distribution.

    PubMed

    Orikasa, Yuki; Gogyo, Yuma; Yamashige, Hisao; Katayama, Misaki; Chen, Kezheng; Mori, Takuya; Yamamoto, Kentaro; Masese, Titus; Inada, Yasuhiro; Ohta, Toshiaki; Siroma, Zyun; Kato, Shiro; Kinoshita, Hajime; Arai, Hajime; Ogumi, Zempachi; Uchimoto, Yoshiharu

    2016-01-01

    Composite electrodes containing active materials, carbon and binder are widely used in lithium-ion batteries. Since the electrode reaction occurs preferentially in regions with lower resistance, reaction distribution can be happened within composite electrodes. We investigate the relationship between the reaction distribution with depth direction and electronic/ionic conductivity in composite electrodes with changing electrode porosities. Two dimensional X-ray absorption spectroscopy shows that the reaction distribution is happened in lower porosity electrodes. Our developed 6-probe method can measure electronic/ionic conductivity in composite electrodes. The ionic conductivity is decreased for lower porosity electrodes, which governs the reaction distribution of composite electrodes and their performances. PMID:27193448

  6. Decoupling Ionic Conductivity from Structural Relaxation: A Way to Solid Polymer Electrolytes?

    SciTech Connect

    Agapov, Alexander L; Sokolov, Alexei P

    2011-01-01

    Using broadband dielectric spectroscopy, we studied the temperature dependence of ionic conductivity and structural relaxation in a number of polymers. We demonstrate that temperature dependence of ionic conductivity can be decoupled from structural relaxation in a material specific way. We show that the strength of the decoupling correlates with the steepness of the temperature dependence of structural relaxation in the polymer, i.e., with its fragility. We ascribe the observed result to stronger frustration in chain packing characteristic for more fragile polymers. We speculate that employment of more fragile polymers might lead to design of polymers with higher ionic conductivity.

  7. The graph-theoretic minimum energy path problem for ionic conduction

    NASA Astrophysics Data System (ADS)

    Kishida, Ippei

    2015-10-01

    A new computational method was developed to analyze the ionic conduction mechanism in crystals through graph theory. The graph was organized into nodes, which represent the crystal structures modeled by ionic site occupation, and edges, which represent structure transitions via ionic jumps. We proposed a minimum energy path problem, which is similar to the shortest path problem. An effective algorithm to solve the problem was established. Since our method does not use randomized algorithm and time parameters, the computational cost to analyze conduction paths and a migration energy is very low. The power of the method was verified by applying it to α-AgI and the ionic conduction mechanism in α-AgI was revealed. The analysis using single point calculations found the minimum energy path for long-distance ionic conduction, which consists of 12 steps of ionic jumps in a unit cell. From the results, the detailed theoretical migration energy was calculated as 0.11 eV by geometry optimization and nudged elastic band method. Our method can refine candidates for possible jumps in crystals and it can be adapted to other computational methods, such as the nudged elastic band method. We expect that our method will be a powerful tool for analyzing ionic conduction mechanisms, even for large complex crystals.

  8. Li Ion Conducting Polymer Gel Electrolytes Based on Ionic Liquid/PVDF-HFP Blends

    PubMed Central

    Ye, Hui; Huang, Jian; Xu, Jun John; Khalfan, Amish; Greenbaum, Steve G.

    2009-01-01

    Ionic liquids thermodynamically compatible with Li metal are very promising for applications to rechargeable lithium batteries. 1-methyl-3-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide (P13TFSI) is screened out as a particularly promising ionic liquid in this study. Dimensionally stable, elastic, flexible, nonvolatile polymer gel electrolytes (PGEs) with high electrochemical stabilities, high ionic conductivities and other desirable properties have been synthesized by dissolving Li imide salt (LiTFSI) in P13TFSI ionic liquid and then mixing the electrolyte solution with poly(vinylidene-co-hexafluoropropylene) (PVDF-HFP) copolymer. Adding small amounts of ethylene carbonate to the polymer gel electrolytes dramatically improves the ionic conductivity, net Li ion transport concentration, and Li ion transport kinetics of these electrolytes. They are thus favorable and offer good prospects in the application to rechargeable Li batteries including open systems like Li/air batteries, as well as more “conventional” rechargeable lithium and lithium ion batteries. PMID:20354587

  9. Defect Physics and Ionic conduction in Solid Electrolyte Interphase for Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Pan, Jie; Cheng, Yang-Tse; Qi, Yue

    The ionic conduction through the solid electrolyte interphase (SEI) is important to the rate capability of the battery. The origin of ionic conduction in the SEI is defect formation and transport. In this study, we developed a theoretical method based on density functional theory to calculate the ionic conductivity in LiF, an important SEI component, in contact with electrode materials. Seventeen native defects with their relevant charge states were investigated to determine the dominant defects on various electrodes. The contacted electrode serves as a Li reservoir with adjustable Li chemical potential (μLi) for defect formation. The formation energy and diffusion barrier of defects were mapped to ionic conductivity by the Nernst-Einstein relationship. The main defect is Schottky pair in the intrinsic region and Li ion vacancy in the p-type region. The ionic conductivity is calculated to be approximately 10-31 S/cm when LiF is in contact with an anode but it can increase to 10-12 S/cm on a cathode. Comparing with other SEI components, the ionic conductivity is very low in LiF if it is coated on an anode surface. However, due to the low concentration of electronic carriers, LiF can act as a good passivation layer on the electrode and prevent further electrolyte decomposition. This work is supported by Department of Energy and National Science Foundation.

  10. Electrical perturbations of ultrathin bilayers: role of ionic conductive layer.

    PubMed

    Nazaripoor, Hadi; Koch, Charles R; Bhattacharjee, Subir

    2014-12-16

    The effect of electrostatic force on the dynamics, morphological evolution, and drainage time of ultrathin liquid bilayers (<100 nm) are investigated for perfect dielectric-perfect dielectric (PD-PD) and ionic liquid-perfect dielectric (IL-PD) bilayers. The weakly nonlinear "thin film" equation is solved numerically to obtain spatiotemporal evolution of the liquid-liquid interface responses to transverse electric field. In order to predict the electrostatic component of conjoining/disjoining pressure acting on the interface for IL-PD bilayers, an analytical model is developed using the nonlinear Poisson-Boltzmann equation. It is found that IL-PD bilayers with electric permittivity ratio of layers (lower to top), εr, greater than one remain stable under an applied electric field. An extensive numerical study is carried out to generate a map based on εr and the initial mean thickness of the lower layer. This map is used to predict the formation of various structures on PD-PD bilayer interface and provides a baseline for unstable IL-PD bilayers. The use of an ionic liquid (IL) layer is found to reduce the size of the structures, but results in polydispersed and disordered pillars spread over the domain. The numerical predictions follow similar trend of experimental observation of Lau and Russel. (Lau, C. Y.; Russel, W. B. Fundamental Limitations on Ordered Electrohydrodynamic Patterning; Macromolecules 2011, 44, 7746-7751). PMID:25419880

  11. Solid electrolytes for fluoride ion batteries: ionic conductivity in polycrystalline tysonite-type fluorides.

    PubMed

    Rongeat, Carine; Reddy, M Anji; Witter, Raiker; Fichtner, Maximilian

    2014-02-12

    Batteries based on a fluoride shuttle (fluoride ion battery, FIB) can theoretically provide high energy densities and can thus be considered as an interesting alternative to Li-ion batteries. Large improvements are still needed regarding their actual performance, in particular for the ionic conductivity of the solid electrolyte. At the current state of the art, two types of fluoride families can be considered for electrolyte applications: alkaline-earth fluorides having a fluorite-type structure and rare-earth fluorides having a tysonite-type structure. As regard to the latter, high ionic conductivities have been reported for doped LaF3 single crystals. However, polycrystalline materials would be easier to implement in a FIB due to practical reasons in the cell manufacturing. Hence, we have analyzed in detail the ionic conductivity of La(1-y)Ba(y)F(3-y) (0 ≤ y ≤ 0.15) solid solutions prepared by ball milling. The combination of DC and AC conductivity analyses provides a better understanding of the conduction mechanism in tysonite-type fluorides with a blocking effect of the grain boundaries. Heat treatment of the electrolyte material was performed and leads to an improvement of the ionic conductivity. This confirms the detrimental effect of grain boundaries and opens new route for the development of solid electrolytes for FIB with high ionic conductivities. PMID:24444763

  12. TOPICAL REVIEW Ionic conductivity in oxide heterostructures: the role of interfaces

    NASA Astrophysics Data System (ADS)

    Fabbri, Emiliana; Pergolesi, Daniele; Traversa, Enrico

    2010-10-01

    Rapidly growing attention is being directed to the investigation of ionic conductivity in oxide film heterostructures. The main reason for this interest arises from interfacial phenomena in these heterostructures and their applications. Recent results revealed that heterophase interfaces have faster ionic conduction pathways than the bulk or homophase interfaces. This finding can open attractive opportunities in the field of micro-ionic devices. The influence of the interfaces on the conduction properties of heterostructures is becoming increasingly important with the miniaturization of solid-state devices, which leads to an enhanced interface density at the expense of the bulk. This review aims to describe the main evidence of interfacial phenomena in ion-conducting film heterostructures, highlighting the fundamental and technological relevance and offering guidelines to understanding the interface conduction mechanisms in these structures.

  13. Ionic conductivity and thermoelectric power of pure and Al2O3-dispersed AgI

    NASA Technical Reports Server (NTRS)

    Shahi, K.; Wagner, J. B., Jr.

    1981-01-01

    Ionic and electronic conductivities, and thermoelectric power have been measured for AgI and AgI containing a dispersion of submicron size Al2O3 particles. While the dispersion of Al2O3 enhances the ionic conductivity significantly, it does not affect the electronic properties of the matrix. The enhancement is a strong function of the size and concentration of the dispersoid. Various models have been tested to account for the enhanced conduction. However, the complex behavior of the present results points out the need for more sophisticated theoretical models. Ionic conduction and thermoelectric power data suggest that the dispersed Al2O3 generates an excess of cation vacancies and thereby enhances the conductivity and suppresses the thermoelectric power of the matrix. The individual heats of transport of cation interstitials and vacancies have been estimated and compared to their respective migration energies.

  14. Nanoscale mapping of electromechanical response in ionic conductive ceramics with piezoelectric inclusions

    SciTech Connect

    Seol, Daehee; Seo, Hosung; Kim, Yunseok; Jesse, Stephen

    2015-08-21

    Electromechanical (EM) response in ion conductive ceramics with piezoelectric inclusions was spatially explored using strain-based atomic force microscopy. Since the sample is composed of two dominant phases of ionic and piezoelectric phases, it allows us to explore two different EM responses of electrically induced ionic response and piezoresponse over the same surface. Furthermore, EM response of the ionic phase, i.e., electrochemical strain, was quantitatively investigated from the comparison with that of the piezoelectric phase, i.e., piezoresponse. These results could provide additional information on the EM properties, including the electrochemical strain at nanoscale.

  15. Effects of plasticization on ionic conductivity enhancement of crosslinked polymer electrolyte membrane

    NASA Astrophysics Data System (ADS)

    He, Ruixuan; Kyu, Thein; Kyu's Team, Dr.

    Glass transition temperatures (Tg) of solid polymer electrolyte membranes (PEM), comprised of polyethylene glycol diacrylate (PEGDA) prepolymer, lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) salt, and succinonitrile (SCN) plasticizer, were systematically examined before and after crosslinking in the isotropic region guided by their ternary phase diagram. With increasing LiTFSI concentration, the Tg of uncured binary PEGDA/LiTFSI mixture increases drastically due to molecular complexation between lithium cation and ether oxygen, but ionic conductivity is very low (<10-6 S cm-1). Upon curing, this Tg increases and further reduces ionic conductivity. Upon adding SCN plasticizer, the Tg of PEM has significantly decreased to -60 oC and ionic conductivity also increased to the superionic conductor level of 10-3 S cm-1. The analysis of ionic conductivity vs. Tg behavior by Vogel-Tamman-Fulcher(VTF) equation revealed that this ionic conductivity enhancement is due to SCN plasticization resulting in lowering the network Tg as well as lowering the activation energy. Supported by NSF-DMR 1161070.

  16. Mixed ionic and electronic conductivity in polymers. Progress report, January 1, 1990--December 31, 1990

    SciTech Connect

    Shriver, D.F.

    1991-06-01

    New polymer films were synthesized that are mixed ionic-electronic conductors. Preliminary ion transport measurements have been made on these materials in the reduced state where electronic conductivity is negligible. We also have made preliminary measurements of switching times for these materials. Theoretical studies have been performed ion pairing in insulating and electronically conducting films.

  17. Correlation between the Activation Energies for Ionic Conductivity for Short and Long Time Scales and the Kohlrausch Stretching Parameter β for Ionically Conducting Solids and Melts

    NASA Astrophysics Data System (ADS)

    Ngai, K. L.; Greaves, G. N.; Moynihan, C. T.

    1998-02-01

    The temperature dependence of the dc conductivity σ of most glass-forming and crystalline ionic conductors is Arrhenius with constant activation energy, Eσ, at sufficiently low temperatures or conductivity levels. However, σ becomes non-Arrhenius at high temperatures or conductivity levels. We have found that the product, βEσ, of the Kohlrausch stretching exponent for the conductivity relaxation, β, and the dc conductivity activation energy in the Arrhenius regime is approximately the same as the high temperature apparent activation energy, Ea, of σ at the temperature where σ reaches the high level of 1 Ω-1 cm-1 and the conductivity relaxation time τσ is of the order of 1 psec.

  18. Communication: Dimensionality of the ionic conduction pathways in glass and the mixed-alkali effect.

    PubMed

    Novy, Melissa; Avila-Paredes, Hugo; Kim, Sangtae; Sen, Sabyasachi

    2015-12-28

    A revised empirical relationship between the power law exponent of ac conductivity dispersion and the dimensionality of the ionic conduction pathway is established on the basis of electrical impedance spectroscopic (EIS) measurements on crystalline ionic conductors. These results imply that the "universal" ac conductivity dispersion observed in glassy solids is associated with ionic transport along fractal pathways. EIS measurements on single-alkali glasses indicate that the dimensionality of this pathway D is ∼2.5, while in mixed-alkali glasses, D is lower and goes through a minimum value of ∼2.2 when the concentrations of the two alkalis become equal. D and σ display similar variation with alkali composition, thus suggesting a topological origin of the mixed-alkali effect. PMID:26723583

  19. Suppressed phase transition and giant ionic conductivity in La2Mo2O9 nanowires

    PubMed Central

    Liu, Wei; Pan, Wei; Luo, Jian; Godfrey, Andy; Ou, Gang; Wu, Hui; Zhang, Wei

    2015-01-01

    Improving the ionic conductivity of solid electrolytes at low temperatures represents a major challenge and an opportunity for enabling a variety of solid-state ionic devices for energy conversion and storage, as well as for environmental protection. Here we report a giant ionic conductivity of 0.20 Scm−1, achieved at 500 °C, in the La2Mo2O9 nanowires with a bamboo-wire morphology, corresponding to a 1000-fold enhancement in conductivity over conventional bulk material. Stabilization of the high-temperature phase is observed to account for about a 10-fold increase in the conductivity. We further demonstrate that fast surface conduction in ∼3 nm thick, partially ordered, surface ‘amorphous' films, under strain on the curved surfaces of the nanowires (as a non-autonomous surface phase or complexion), contributes to an enhancement of the conductivity by another two orders of magnitude. Exemplified here by the study of the La2Mo2O9 nanowires, new possibilities for improvement of conductivity and for miniaturization of solid-state ionic devices by the careful use of one-dimensional nanomaterials can be envisioned. PMID:26380943

  20. Ionic conductivity and dielectric permittivity of polymer electrolyte plasticized with polyethylene glycol

    NASA Astrophysics Data System (ADS)

    Das, S.; Ghosh, A.

    2016-05-01

    We have studied ionic conductivity and dielectric permittivity of PEO-LiClO4 solid polymer electrolyte plasticized with polyethylene glycol (PEG). The temperature dependence of the ionic conductivity has been well interpreted using Vogel-Tamman-Fulcher equation. The maximum dielectric constant is observed for 30 wt. % of PEG content. To get further insights into the ion dynamics, the complex dielectric permittivity has been studied with Havriliak-Negami function. The variation of relaxation time with inverse temperature obtained from HN formalism follows VTF nature.

  1. Ion beam irradiation as a tool to improve the ionic conductivity in solid polymer electrolyte systems

    NASA Astrophysics Data System (ADS)

    Manjunatha, H.; Damle, R.; Kumaraswamy, G. N.

    2016-05-01

    Solid polymer electrolytes (SPEs) have potential applications in solid state electronic and energy devices. The optimum conductivity of SPEs required for such applications is about 10-1 - 10-3 Scm-1, which is hard to achieve in these systems. It is observed that ionic conductivity of SPEs continuously increase with increasing concentration of inorganic salt in the host polymer. However, there is a critical concentration of the salt beyond which the conductivity of SPEs decreases due to the formation of ion pairs. In the present study, solid polymer thin films based on poly (ethylene oxide) (PEO) complexed with NaBr salt with different concentrations have been prepared and the concentration at which ion pair formation occurs in PEOxNaBr is identified. The microstructure of the SPE with highest ionic conductivity is modified by irradiating it with low energy O+1 ion (100 keV) of different fluencies. It is observed that the ionic conductivity of irradiated SPEs increases by one order in magnitude. The increase in ionic conductivity may be attributed to the enhanced segmental motion of the polymer chains due to radiation induced micro structural modification.

  2. Mixed-ionic and electronic conductivity in polymers

    SciTech Connect

    Ratner, M.A.; Shriver, D.F.

    1991-01-01

    The aim in this portion of the research is to prepare new electroactive films with high ion mobility, and to characterize the transport properties of these materials. The classic conducting polymers, polyacetylene, polythiophene, and polypyrrole have dense structures that prevent rapid redox switching because of the low diffusivity of ions. The objective is to modify the last two polymers with pendant polyethers, which should greatly improve ion transport.

  3. Electrolytes based on alkoxysilyl-functionalized ionic liquids: viscoelastic properties and conductivity.

    PubMed

    Slemenik Perše, L; Colović, M; Hajzeri, M; Orel, B; Surca Vuk, A

    2014-08-14

    Ionic liquids can be successfully used as electrolytes in electrochemical devices when they are in their quasi-solid state. Among several methods of solidification, a sol-gel process was chosen and a set of alkoxysilyl-functionalized iodide imidazolium-based ionic liquids were synthesized. The electrolytes were prepared by mixing these ionic liquids with a non-polymerisable ionic liquid (1-methyl-3-propylimidazolium iodide (MPIm(+)I(-))). Iodine was dissolved in an electrolyte matrix in order to form an I3(-)/I(-) redox couple. The change of the structure from sol to gel was followed by rheological tests in order to show the effect of different rheological parameters on the gelation process. The solvolysis with glacial acetic acid and condensation were followed by rheological experiments on the samples taken from a batch, and in situ on the rheometer. The formed three-dimensional sol-gel networks of various alkoxysilyl-functionalized ionic liquids differed in their microstructures and viscoelastic properties that were correlated with conductivity. The results show that the conductivity of approximately 10(-3) S cm(-1) at room temperature was achieved for the gels with relatively high values of elastic modulus and noticeable viscous contribution. It is shown that not only the viscosity but also the viscoelastic behavior and especially the relationship between viscous and elastic moduli (phase shift) together with the time of gelation are essential for the high conductivity of electrolytes. PMID:24955729

  4. Ionic Conductivity And Structural Relaxation Studies on Lithium Niobophosphate Glass

    SciTech Connect

    Dabas, Prashant; Hariharan, K.

    2011-07-15

    Niobium pentoxide (Nb{sub 2}O{sub 5}) increases the chemical and thermal stability of otherwise hygroscopic alkali phosphate glasses and also enhances the conduction characteristics. Ion dynamics and structural relaxation have been investigated for mol%50Li{sub 2}0-45P{sub 2}0{sub 5}-5Nb{sub 2}O{sub 5}. The non-linearity parameter 'x' in the Tool-Narayanaswamy model is evaluated using the dependence of fictive and glass transition temperatures on the cooling and heating rates.

  5. Electronically and ionically conductive porous material and method for manufacture of resin wafers therefrom

    DOEpatents

    Lin, YuPo J.; Henry, Michael P.; Snyder, Seth W.

    2011-07-12

    An electrically and ionically conductive porous material including a thermoplastic binder and one or more of anion exchange moieties or cation exchange moieties or mixtures thereof and/or one or more of a protein capture resin and an electrically conductive material. The thermoplastic binder immobilizes the moieties with respect to each other but does not substantially coat the moieties and forms the electrically conductive porous material. A wafer of the material and a method of making the material and wafer are disclosed.

  6. Electronically and ionically conductive porous material and method for manufacture of resin wafers therefrom

    DOEpatents

    Lin, YuPo J.; Henry, Michael P.; Snyder, Seth W.

    2008-11-18

    An electrically and ionically conductive porous material including a thermoplastic binder and one or more of anion exchange moieties or cation exchange moieties or mixtures thereof and/or one or more of a protein capture resin and an electrically conductive material. The thermoplastic binder immobilizes the moieties with respect to each other but does not substantially coat the moieties and forms the electrically conductive porous material. A wafer of the material and a method of making the material and wafer are disclosed.

  7. Ionic conductivity and transport properties of poly(vinylidene fluoride-co-hexafluoropropylene)-based solid polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Abreha, Merhawi; Subrahmanyam, A. R.; Siva Kumar, J.

    2016-08-01

    Polymer electrolytes containing poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) and various concentrations of lithium triflate were prepared to determine the optimal polymer-salt composition for maximum ionic conductivity. Complex formation was ascertained from X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) studies. The conductivity measurements reveal that the ionic conductivity of the polymer electrolytes containing various salt concentrations increases with temperature and obeys the Arrhenius rule. It is found that the electrolyte containing 25 wt.% of lithium triflate exhibits the highest room temperature conductivity. Moreover, Ionic transference measurements show predominance of ionic motion.

  8. Glass capable of ionic conduction and method of preparation

    DOEpatents

    Susman, Sherman; Boehm, Leah; Volin, Kenneth J.; Delbacq, Charles J.

    1985-01-01

    Sulfide glasses capable of conducting alkali metal ions are prepared from a nonmetal glass former such as GeS.sub.2, B.sub.2 S.sub.3 and SiS.sub.2 in mixture with a glass modifier such as Na.sub.2 S or another alkali metal sulfide. A molten mixture of the constituents is rapidly quenched to below the glass transition temperature by contact with a metal mold. The rapid quench is sufficient to prevent crystallization and permit solidification as an amorphous solid mixture. An oxygen-free atmosphere is maintained over the mixture to prevent oxidation. A new glass system of (1-X) Na.sub.2 O:XB.sub.2 S.sub.3 is disclosed.

  9. Glass capable of ionic conduction and method of preparation

    DOEpatents

    Susman, Sherman; Delbecq, Charles J.; Volin, Kenneth J.; Boehm, Leah

    1984-01-01

    Sulfide glasses capable of conducting alkali metal ions are prepared from a nonmetal glass former such as GeS.sub.2, B.sub.2 S.sub.3 and SiS.sub.2 in mixture with a glass modifier such as Na.sub.2 S or another alkali metal sulfide. A molten mixture of the constituents is rapidly quenched to below the glass transition temperature by contact with a metal mold. The rapid quench is sufficient to prevent crystallization and permit solidification as an amorphous solid mixture. An oxygen-free atmosphere is maintained over the mixture to prevent oxidation. A new glass system of (1-X) Na.sub.2 O:XB.sub.2 S.sub.3 is disclosed.

  10. Glass capable of ionic conduction and method of preparation

    DOEpatents

    Susman, S.; Boehm, L.; Volin, K.J.; Delbecq, C.J.

    1982-05-06

    Sulfide glasses capable of conducting alkali metal ions are prepared from a nonmetal glass former such as GeS/sub 2/, B/sub 2/S/sub 2/ and SiS/sub 2/ in mixture with a glass modifier such as Na/sub 2/S or another alkali metal sulfide. A molten mixture of the constituents is rapidly quenched to below the glass transition temperature by contact with a metal mold. The rapid quench is sufficient to prevent crystallization and permit solidification as an amorphous solid mixture. An oxygen-free atmosphere is maintained over the mixture to prevent oxidation. A new glass system of (1 - X) Na/sub 2/O:XB/sub 2/S/sub 3/ is disclosed.

  11. Glass capable of ionic conduction and method of preparation

    DOEpatents

    Susman, S.; Delbecq, C.J.; Volin, K.J.; Boehm, L.

    1984-02-21

    Sulfide glasses capable of conducting alkali metal ions are prepared from a nonmetal glass former such as GeS[sub 2], B[sub 2]S[sub 3] and SiS[sub 2] in mixture with a glass modifier such as Na[sub 2]S or another alkali metal sulfide. A molten mixture of the constituents is rapidly quenched to below the glass transition temperature by contact with a metal mold. The rapid quench is sufficient to prevent crystallization and permit solidification as an amorphous solid mixture. An oxygen-free atmosphere is maintained over the mixture to prevent oxidation. A new glass system of (1-X) Na[sub 2]O:XB[sub 2]S[sub 3] is disclosed. 4 figs.

  12. On the computation and contribution of conductivity in molecular ionic liquids

    NASA Astrophysics Data System (ADS)

    Schröder, C.; Haberler, M.; Steinhauser, O.

    2008-04-01

    In this study we present the results of the molecular dynamics simulation of the ionic liquids: 1-butyl-3-methyl-imidazolium tetrafluoroborate and trifluoromethylacetate as well as 1-ethyl-3-methyl-imidazolium dicyanamide. Ionic liquids are characterized by both a molecular dipole moment and a net charge. Thus, in contrast to a solution of simple ions in a (non-) polar solvent, rotational and translational effects influence the very same molecule. This study works out the theoretical framework necessary to compute the conductivity spectrum and its low frequency limit of ionic liquids. Merging these computed conductivity spectra with previous simulation results on the dielectric spectra of ionic liquids yields the spectrum of the generalized dielectric constant, which may be compared to experiments. This spectrum was calculated for the three ionic liquids over six orders of magnitude in frequency ranging from 10MHz to 50THz. The role of rotation and translation and their coupling term on the generalized dielectric constant is discussed in detail with a special emphasis on the zero-frequency limit. Thereby, the frequency dependence of the cross correlation between the collective rotational dipole moment and the current is discussed.

  13. Molecular modeling of diffusion coefficient and ionic conductivity of CO2 in aqueous ionic solutions.

    PubMed

    Garcia-Ratés, Miquel; de Hemptinne, Jean-Charles; Bonet Avalos, Josep; Nieto-Draghi, Carlos

    2012-03-01

    Mass diffusion coefficients of CO(2)/brine mixtures under thermodynamic conditions of deep saline aquifers have been investigated by molecular simulation. The objective of this work is to provide estimates of the diffusion coefficient of CO(2) in salty water to compensate the lack of experimental data on this property. We analyzed the influence of temperature, CO(2) concentration,and salinity on the diffusion coefficient, the rotational diffusion, as well as the electrical conductivity. We observe an increase of the mass diffusion coefficient with the temperature, but no clear dependence is identified with the salinity or with the CO(2) mole fraction, if the system is overall dilute. In this case, we notice an important dispersion on the values of the diffusion coefficient which impairs any conclusive statement about the effect of the gas concentration on the mobility of CO(2) molecules. Rotational relaxation times for water and CO(2) increase by decreasing temperature or increasing the salt concentration. We propose a correlation for the self-diffusion coefficient of CO(2) in terms of the rotational relaxation time which can ultimately be used to estimate the mutual diffusion coefficient of CO(2) in brine. The electrical conductivity of the CO(2)-brine mixtures was also calculated under different thermodynamic conditions. Electrical conductivity tends to increase with the temperature and salt concentration. However, we do not observe any influence of this property with the CO(2) concentration at the studied regimes. Our results give a first evaluation of the variation of the CO(2)-brine mass diffusion coefficient, rotational relaxation times, and electrical conductivity under the thermodynamic conditions typically encountered in deep saline aquifers. PMID:22292779

  14. Conductivity Scaling Relationships in Nanostructured Membranes based on Protic Polymerized Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Sanoja, Gabriel; Lynd, Nathaniel; Segalman, Rachel

    2015-03-01

    Nanostructured membranes based on protic polymerized ionic liquids are of great interest for a variety of electrochemical applications. Understanding the relationship between composition, structure, and ionic conductivity for these materials is essential for designing novel membranes with improved properties. In this work, we explore the effect of volume fraction of ionic liquid on conductivity, σ using a model system composed of poly[isoprene-block-(ethylene oxide-stat-histamine glycidyl ether) diblock copolymers [PI- b - P(EO-stat-HGE)] and the resulting [PI- b - P(EO-stat-IL)] obtained after treatment with trifluoroacetic acid. These materials self-assemble into lamellar structures with volume fractions of ionic liquid ranging from 0.50 to 0.90 as demonstrated by SAXS. PI- b - P(EO-stat-IL) membranes exhibit conductivities up to 4 x 10-3 S/cm at room temperature. In addition, PI- b - P(EO-stat-IL) based membranes have lower water uptake (λ = 8-10) in comparison with most proton conducting membranes reported elsewhere. The low λ in these membranes might translate into a stronger effect of morphology on transport properties. Joint Center for Artificial Photosynthesis.

  15. Structure and ionic conductivity of block copolymer electrolytes over a wide salt concentration range

    NASA Astrophysics Data System (ADS)

    Chintapalli, Mahati; Le, Thao; Venkatesan, Naveen; Thelen, Jacob; Rojas, Adriana; Balsara, Nitash

    Block copolymer electrolytes are promising materials for safe, long-lasting lithium batteries because of their favorable mechanical and ion transport properties. The morphology, phase behavior, and ionic conductivity of a block copolymer electrolyte, SEO mixed with LiTFSI was studied over a wide, previously unexplored salt concentration range using small angle X-ray scattering, differential scanning calorimetry and ac impedance spectroscopy, respectively. SEO exhibits a maximum in ionic conductivity at twice the salt concentration that PEO, the homopolymer analog of the ion-containing block, does. This finding is contrary to prior studies that examined a more limited range of salt concentrations. In SEO, the phase behavior of the PEO block and LiTFSI closely resembles the phase behavior of homopolymer PEO and LiTFSI. The grain size of the block copolymer morphology was found to decrease with increasing salt concentration, and the ionic conductivity of SEO correlates with decreasing grain size. Structural effects impact the ionic conductivity-salt concentration relationship in block copolymer electrolytes. SEO: polystyrene-block-poly(ethylene oxide); also PS-PEO LiTFSI: lithium bis(trifluoromethanesulfonyl imide

  16. A study of the ionic conduction of mica surface by admittance spectroscopy

    NASA Astrophysics Data System (ADS)

    Dolci, D.; Aloisi, G.; Lanzi, L.; Carlà, M.

    2007-08-01

    The ionic conduction on the surface of humid mica has been analyzed by admittance spectroscopy as a function of relative humidity for different surface treatments. Measurements at low frequency indicate that water adsorption proceeds first in the form of a strongly adsorbed uniform thin layer, then with the formation of highly inhomogeneous thick aggregates.

  17. Gelatin- and DNA-based ionic conducting membranes for electrochromic devices

    NASA Astrophysics Data System (ADS)

    Pawlicka, A.; Firmino, A.; Vieira, D.; Sentanin, F.; Grote, J. G.; Kajzar, F.

    2009-09-01

    Gelatin and DNA are abundant natural products with very good biodegradation properties and can be used to obtain acetic acid or LiClO4-based gel polymer electrolytes (GPEs) with high ionic conductivity and good stability. This article presents the results of the ionic conductivity measurements of GPEs membranes based on crosslinked and plasticized gelatin and on plasticized DNA as well as on inserted/extracted charge density of electrochemical devices (ECDs) obtained with these samples. The membranes were analyzed by impedance spectroscopy, UV-Vis spectroscopy and the ECDs by charge density measurements, respectively. At room temperature the measured ionic conductivity of the membranes is in the range of 10-4-10-5 S/cm. It obeys predominantly an Arrhenius relationship in function of temperature. The ECD with red gelatin changed the color from red to deep red and the ECD with DNA-based electrolyte changes from transparent to blue. The inserted charge density values of these ECDs were of -3.0 mC/cm2 for the device with red gelatin and -6.6 mC/cm2 for the ECD with DNA-based electrolyte. The reverse potential application promoted a charge extraction and, as consequence, bleaching of the devices. Good ionic conductivity results combined with transparency and good adhesion to the electrodes and promising preliminary results of small ECDs have shown that gelatin and DNA-based GPEs are very promising materials to be used as gel polymer electrolytes in electrochromic devices.

  18. Effect of low energy oxygen ion beam irradiation on ionic conductivity of solid polymer electrolyte

    SciTech Connect

    Manjunatha, H. Kumaraswamy, G. N.; Damle, R.

    2014-04-24

    Over the past three decades, solid polymer electrolytes (SPEs) have drawn significant attention of researchers due to their prospective commercial applications in high energy-density batteries, electrochemical sensors and super-capacitors. The optimum conductivity required for such applications is about 10{sup −2} – 10{sup −4} S/cm, which is hard to achieve in these systems. It is known that the increase in the concentration of salt in the host polymer results in a continuous increase in the ionic conductivity. However, there is a critical concentration of the salt beyond which the conductivity decreases due to formation of ion pairs with no net charge. In the present study, an attempt is made to identify the concentration at which ion pair formation occurs in PEO: RbBr. We have attempted to modify microstructure of the host polymer matrix by low energy ion (Oxygen ion, O{sup +1} with energy 100 keV) irradiation. Ionic conductivity measurements in these systems were carried out using Impedance Spectroscopy before and after irradiation to different fluencies of the oxygen ion. It is observed that the conductivity increases by one order in magnitude. The increase in ionic conductivity may be attributed to the enhanced segmental motion of the polymer chains. The study reveals the importance of ion irradiation as an effective tool to enhance conductivity in SPEs.

  19. Enhancing ionic conductivity of bulk single-crystal yttria-stabilized zirconia by tailoring dopant distribution

    SciTech Connect

    Lee, E.; Prinz, F. B.; Cai, W.

    2011-02-11

    We present an ab initio–based kinetic Monte Carlo model for ionic conductivity in single-crystal yttria-stabilized zirconia. Ionic interactions are taken into account by combining density functional theory calculations and the cluster expansion method and are found to be essential in reproducing the effective activation energy observed in experiments. The model predicts that the effective energy barrier can be reduced by 0.15–0.25 eV by arranging the dopant ions into a superlattice.

  20. Origin of Colossal Ionic Conductivity in Oxide Multilayers: Interface Induced Sublattice Disorder

    SciTech Connect

    Pennycook, Timothy J; Beck, Matthew; Varga, Kalman; Varela del Arco, Maria; Pennycook, Stephen J; Pantelides, Sokrates T

    2010-01-01

    Oxide ionic conductors typically operate at high temperatures, which limits their usefulness. Colossal room-temperature ionic conductivity was recently discovered in multilayers of yttria-stabilized zirconia (YSZ) and SrTiO3. Here we report density-functional calculations that trace the origin of the effect to a combination of lattice-mismatch strain and O-sublattice incompatibility. Strain alone in bulk YSZ enhances O mobility at high temperatures by inducing extreme O disorder. In multilayer structures, O-sublattice incompatibility causes the same extreme disorder at room temperature.

  1. The Effect of Structural Modifications on Ionic Conductivity in Newly-Designed Polyester Electrolytes

    NASA Astrophysics Data System (ADS)

    Pesko, Danielle; Jung, Yuki; Coates, Geoff; Balsara, Nitash

    2015-03-01

    Gaining a fundamental understanding of the relationship between molecular structure and ionic conductivity of polymer electrolytes is an essential step toward designing next generation materials for battery applications. In this study, we use a systematic set of newly-designed polyesters with varying side-chain lengths and oxygen functional groups to elucidate the effects of structural modifications on the conductive properties of the corresponding electrolytes. Mixtures of polyesters and lithium bis(trifluromethanesulfonyl)imide (LiTFSI) were characterized using ac impedance spectroscopy to measure the ionic conductivity at various temperatures and salt concentrations. The relative conductivities of these electrolytes in the dilute limit are directly comparable to results of molecular dynamics simulations performed using the same polymers. The simulations correspond well with the experimental results, and provide molecular level insight about the solvation environment of the lithium ions and how the ions transport through these polyesters.

  2. Proton Conducting Polymer Membrane Using The Ionic Liquid 2-Hydroxyethylammonium Lactate For Ethanol Fuel Cells

    NASA Astrophysics Data System (ADS)

    Oliveira, L.; José, N. M.; Boaventura, J.; Iglesias, M.; Mattedi, S.

    2011-12-01

    In this work, there were developed a proton conducting polymer membrane using an ammonium based protic ionic liquid: 2-hydroxyethylamominum lactate for use in proton exchange fuel cells (PEMFC). This kind of ionic liquid has been proven to be biodegradable and they have potentially low toxicity besides low cost of preparation, simple synthesis and purification. The prepared membranes are hybrid organic-inorganic materials. The polymeric matrix is prepared with polydimethylsiloxane (PDMS) mixed with tetraethoxysilane (TEOS) in a ratio of 70/30% in weight. Then, the eletrolytical mixture containing sodium monododecylsulfate (SDS) and the ionic liquid was introduced in the lattice near the gel point, there were used different proportions of the eletrolyte from 5 to 30% in weight. The prepared membranes were characterized using infrared spectroscopy (FTIR), X-ray diffraction (DRX), termogravimetric analysis (TGA), scanning electronic microscopy (SEM) and conductivity and impedance measurements. The prepared materials are flexible, with good thermal and mechanical stability and with a great potential to be used as conducting membranes of fuel cells. The used mixture minimizes the lixiviation lost of the ionic liquid from the polymeric membrane and enhances the cell efficiency if compared with traditional synthetic membranes.

  3. Structural manipulation approaches towards enhanced sodium ionic conductivity in Na-rich antiperovskites

    NASA Astrophysics Data System (ADS)

    Wang, Yonggang; Wang, Qingfei; Liu, Zhenpu; Zhou, Zhengyang; Li, Shuai; Zhu, Jinlong; Zou, Ruqiang; Wang, Yingxia; Lin, Jianhua; Zhao, Yusheng

    2015-10-01

    High-performance solid electrolytes are critical for realizing all-solid-state batteries with enhanced safety and cycling efficiency. However, currently available candidates (sulfides and the NASICON-type ceramics) still suffer from drawbacks such as inflammability, high-cost and unfavorable machinability. Here we present the structural manipulation approaches to improve the sodium ionic conductivity in a series of affordable Na-rich antiperovskites. Experimentally, the whole solid solutions of Na3OX (X = Cl, Br, I) are synthesized via a facile and timesaving route from the cheapest raw materials (Na, NaOH and NaX). The materials are nonflammable, suitable for thermoplastic processing due to low melting temperatures (<300 °C) without decomposing. Notably, owing to the flexibility of perovskite-type structure, it's feasible to control the local structure features by means of size-mismatch substitution and unequivalent-doping for a favorable sodium ionic diffusion pathway. Enhancement of sodium ionic conductivity by 2 magnitudes is demonstrated by these chemical tuning methods. The optimized sodium ionic conductivity in Na2.9Sr0.05OBr0.6I0.4 bulk samples reaches 1.9 × 10-3 S/cm at 200 °C and even higher at elevated temperature. We believe further chemical tuning efforts on Na-rich antiperovskites will promote their performance greatly for practical all-solid state battery applications.

  4. Role of Amorphous Boundary Layer in Enhancing Ionic Conductivity of Lithium–lanthanum–titanate Electrolyte

    SciTech Connect

    Mei, A.; Wang, X.; Lana, J.-L.; Fenga, Y.-C.; Genga, H.-X.; Lina, Y.-H.; Nana, C.-W.

    2010-03-01

    The low ionic conductivity is a bottleneck of the inorganic solid state electrolyte used for lithium ion battery. In ceramic electrolytes, grain boundary usually dominates the total conductivity. In order to improve the grain boundary effect, an amorphous silica layer is introduced into grain boundary of ceramic electrolytes based on lithium-lanthanum-titanate, as evidenced by electron microscopy. The results showed that the total ionic conductivity could be to be enhanced over 1 x 10{sup -4} S/cm at room temperature. The reasons can be attributed to removing the anisotropy of outer-shell of grains, supplement of lithium ions in various sites in grain boundary and close bindings among grains by the amorphous boundary layer among grains.

  5. Use of Ionic Liquids in Rod-Coil Block Copolyimides for Improved Lithium Ion Conduction

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Tigelaar, Dean M.; Chapin, Kara; Bennett, William R.

    2007-01-01

    Solvent-free, solid polymer electrolytes (SPE) have the potential to improve safety, increase design flexibility and enhance performance of rechargeable lithium batteries. Solution based electrolytes are flammable and typically incompatible with lithium metal anodes, limiting energy density. We have previously demonstrated use of polyimide rod coil block copolymers doped with lithium salts as electrolytes for lithium polymer batteries. The polyimide rod blocks provide dimensional stability while the polyethylene oxide (PEO) coil portions conduct ions. Phase separation of the rods and coils in these highly branched polymers provide channels with an order of magnitude improvement in lithium conduction over polyethylene oxide itself at room temperature. In addition, the polymers have been demonstrated in coin cells to be compatible with lithium metal. For practical use at room temperature and below, however, at least an order of magnitude improvement in ion conduction is still required. The addition of nonvolatile, room temperature ionic liquids has been shown to improve the ionic conductivity of high molecular weight PEO. Herein we describe use of these molten salts to improve ionic conductivity in the rod-coil block copolymers.

  6. Development, characterization and applications of electrodes modified with conductive polymers, ionic liquids and proteins

    NASA Astrophysics Data System (ADS)

    Tang, Yijun

    My research involves both fundamental studies and applications of the electrodes whose surfaces are chemically modified. Conductive polymers are one of the major materials that are used to modify electrode surfaces. The thorough understanding of the behavior of conductive polymers in ionic liquids is interesting and important as the ionic liquids are becoming promising solvents. With poly(vinyl ferrocene) as the model conductive polymer, electrochemical studies were performed in various ionic liquid electrolytes. A theoretical square model and dynamic equilibrium were proposed to describe the interaction between conductive polymers and ionic liquids when the electrons transferred between the electrode and electrolyte. These findings were applied to enable and accelerate the structure relaxation of conductive polymers so that the conductive polymers were capable of delivering peptides efficiently. Incorporation of metallic nanoparticles to the conductive polymer matrix entitled new properties to the conductive polymer, increasing conductivity and providing catalytic abilities. This modification on electrode surface might bring potential uses in gas sensing, energy storage, energy conversion, etc. Conductive polymer coated electrodes produced unique double layer in ionic liquids and a fundamental study of quantum charging help to understand the double layer properties. I also studied the application of surface modified electrodes in chemo- and biosensing. A nonregeneration protocol was created to save the cost and the time in analyzing interfacial binding activities and to prevent the potential of deterioration caused to biological ligands by the conventional regeneration. In the study of carbohydrate/protein interactions, a "click" chemical reaction was first used in constructing a carbohydrate-based biosensor, which was capable of detecting and analyzing proteins specifically and accurately. In another biosensor design, the hydrogen bonding between the template and

  7. Lithium-Ion-Conducting Electrolytes: From an Ionic Liquid to the Polymer Membrane

    PubMed Central

    Fernicola, A.; Weise, F. C.; Greenbaum, S. G.; Kagimoto, J.; Scrosati, B.; Soleto, A.

    2009-01-01

    This work concerns the design, the synthesis, and the characterization of the N-butyl-N-ethylpiperidinium N,N-bis(trifluoromethane)sulfonimide (PP24TFSI) ionic liquid (IL). To impart Li-ion transport, a suitable amount of lithium N,N-bis-(trifluoromethane)sulfonimide (LiTFSI) is added to the IL. The Li–IL mixture displays ionic conductivity values on the order of 10−4 S cm−1 and an electrochemical stability window in the range of 1.8–4.5 V vs Li+/Li. The voltammetric analysis demonstrates that the cathodic decomposition gives rise to a passivating layer on the surface of the working electrode, which kinetically extends the stability of the Li/IL interface as confirmed by electrochemical impedance spectroscopy measurements. The LiTFSI–PP24TFSI mixture is incorporated in a poly(vinylidene fluoride-co-hexafluoropropylene) matrix to form various electrolyte membranes with different LiTFSI–PP24TFSI contents. The ionic conductivity of all the membranes resembles that of the LiTFSI–IL mixture, suggesting an ionic transport mechanism similar to that of the liquid component. NMR measurements demonstrate a reduction in the mobility of all ions following the addition of LiTFSI to the PP24TFSI IL and when incorporating the mixture into the membrane. Finally, an unexpected but potentially significant enhancement in Li transference number is observed in passing from the liquid to the membrane electrolyte system. PMID:20354582

  8. Design, synthesis and characterization of novel materials with high ionic conductivity

    NASA Astrophysics Data System (ADS)

    Wei, Xiangyun

    1999-11-01

    In this dissertation, the design, synthesis and characterization of several different types of new materials with high ionic conductivity are described. These new materials include Lewis acid-lithium salt complexes, new polymer electrolytes, mixed alkali halides and anhydrous proton conductors. Highly conductive materials were obtained by complex formation between lithium salts, such as CF3SO3Li, and Lewis acids, such as AlCl3 and NbF5. A room temperature ionic liquid containing the lithium cation was discovered in the CF3SO3Li-AlCl 3 system. This ionic liquid exhibits room temperature Conductivity higher than 10--3 S/cm. New polymer electrolytes containing rigid polymers were synthesized and characterized. These novel polymer electrolytes exhibit high conductivity and good mechanical properties. The best conductivity, 10--4 S/cm at room temperature, was observed for the poly(1,3-dioxolan-2-one-4,5-(diyl oxalate)-LiCF3SO3 system. Many properties of these new polymer electrolytes are significantly different from traditional polymer electrolytes. Addition of salt usually softens these new polymer systems instead of stiffening the polymers as in conventional polymer electrolytes. Unlike traditional polymer electrolytes, where conductivity predominates in amorphous phases, these new polymer electrolytes exhibit conductivity in both crystalline and amorphous phases. These properties indicate that the ion conduction mechanism in these rigid polymer electrolytes is different from that in the conventional polymer electrolytes. Solid electrolytes with high ionic conductivity were discovered in the LiI-MI systems, where M is K, Rb or Cs. The highest conductivity was observed with the LiI-RbI system. For example, Li2Rb3I5 exhibits a conductivity of 1.2 x 10--2 S/cm at 65°C. The conductive phases change to resistive phases at lower temperatures. Solid anhydrous proton conductors, with room temperature conductivity higher than 10--3 S/cm, were discovered in the mixtures of

  9. Advanced two-photon photolithography for patterning of transparent, electrically conductive ionic liquid-polymer nanostructures

    NASA Astrophysics Data System (ADS)

    Bakhtina, Natalia A.; MacKinnon, Neil; Korvink, Jan G.

    2016-04-01

    A key challenge in micro- and nanotechnology is the direct patterning of functional structures. For example, it is highly desirable to possess the ability to create three-dimensional (3D), conductive, and optically transparent structures. Efforts in this direction have, to date, yielded less than optimal results since the polymer composites had low optical transparency over the visible range, were only slightly conductive, or incompatible with high resolution structuring. We have previously presented the novel cross-linkable, conductive, highly transparent composite material based on a photoresist (IP-L 780, OrmoComp, or SU-8) and the ionic liquid 1-butyl-3-methylimidazolium dicyanamide. Material patterning by conventional and two-photon photolithography has been demonstrated as proof-of-concept. Aiming to increase the resolution and to extend the spectrum of exciting applications we continued our research into identifying new ionic liquid - polymer composites. In this paper, we report the precise 3D single-step structuring of optically transparent and electrically conductive ionic liquid - polymer nanostructures with the highest spatial resolution (down to 150 nm) achieved to date. This was achieved via the development of novel cross-linkable composite based on the photoresist IP-G 780 and the ionic liquid 1-butyl-3-methylimidazolium dicyanamide. The successful combination of the developed material with the advanced direct laser writing technique enabled the time- and cost-saving direct manufacturing of transparent, electrically conductive components. We believe that the excellent characteristics of the structured material will open a wider range of exciting applications.

  10. Structural control of mixed ionic and electronic transport in conducting polymers

    DOE PAGESBeta

    Rivnay, Jonathan; Inal, Sahika; Collins, Brian A.; Sessolo, Michele; Stavrinidou, Eleni; Strakosas, Xenofon; Tassone, Christopher; Delongchamp, Dean M.; Malliaras, George G.

    2016-04-19

    Poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate), PEDOT:PSS, has been utilized for over two decades as a stable, solution-processable hole conductor. While its hole transport properties have been the subject of intense investigation, recent work has turned to PEDOT:PSS as a mixed ionic/electronic conductor in applications including bioelectronics, energy storage and management, and soft robotics. Conducting polymers can efficiently transport both holes and ions when sufficiently hydrated, however, little is known about the role of morphology on mixed conduction. Here, we show that bulk ionic and electronic mobilities are simultaneously affected by processing-induced changes in nano- and meso-scale structure in PEDOT:PSS films. Wemore » quantify domain composition, and find that domain purification on addition of dispersion co-solvents limits ion mobility, even while electronic conductivity improves. We show that an optimal morphology allows for the balanced ionic and electronic transport that is critical for prototypical mixed conductor devices. As a result, these findings may pave the way for the rational design of polymeric materials and processing routes to enhance devices reliant on mixed conduction.« less

  11. Structural control of mixed ionic and electronic transport in conducting polymers

    NASA Astrophysics Data System (ADS)

    Rivnay, Jonathan; Inal, Sahika; Collins, Brian A.; Sessolo, Michele; Stavrinidou, Eleni; Strakosas, Xenofon; Tassone, Christopher; Delongchamp, Dean M.; Malliaras, George G.

    2016-04-01

    Poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate), PEDOT:PSS, has been utilized for over two decades as a stable, solution-processable hole conductor. While its hole transport properties have been the subject of intense investigation, recent work has turned to PEDOT:PSS as a mixed ionic/electronic conductor in applications including bioelectronics, energy storage and management, and soft robotics. Conducting polymers can efficiently transport both holes and ions when sufficiently hydrated, however, little is known about the role of morphology on mixed conduction. Here, we show that bulk ionic and electronic mobilities are simultaneously affected by processing-induced changes in nano- and meso-scale structure in PEDOT:PSS films. We quantify domain composition, and find that domain purification on addition of dispersion co-solvents limits ion mobility, even while electronic conductivity improves. We show that an optimal morphology allows for the balanced ionic and electronic transport that is critical for prototypical mixed conductor devices. These findings may pave the way for the rational design of polymeric materials and processing routes to enhance devices reliant on mixed conduction.

  12. First-principles investigations of ionic conduction in Li and Na borohydrides

    NASA Astrophysics Data System (ADS)

    Varley, Joel; Heo, Tae-Wook; Ray, Keith; Bonev, Stanimir; Wood, Brandon

    Recent experimental studies have identified a family of alkali borohydride materials that exhibit superionic transition temperatures approaching room temperature and ionic conductivities exceeding 0.1 S/cm-1, making them highly promising solid electrolytes for next-generation batteries. Despite the rapid advances in improving the superionic conductivity in these materials, an understanding of the exact mechanisms driving the transport remains unknown. Here we use ab initio molecular dynamics calculations to address this issue by characterizing the diffusivity of the Li and Na species in a representative set of closoborane ionic conductors. We investigate both the Na and Li-containing borohydrides with icosahedral (B12H12) and double-capped square antiprism (B10H10) anion species and discuss the trends in ionic conductivity as a function of stoichiometry and the incorporation of various dopants. Our results support the borohydrides as a subset of a larger family of very promising solid electrolytes and identify strategies to improving the conductivity in these materials. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  13. Structural control of mixed ionic and electronic transport in conducting polymers

    PubMed Central

    Rivnay, Jonathan; Inal, Sahika; Collins, Brian A.; Sessolo, Michele; Stavrinidou, Eleni; Strakosas, Xenofon; Tassone, Christopher; Delongchamp, Dean M.; Malliaras, George G.

    2016-01-01

    Poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate), PEDOT:PSS, has been utilized for over two decades as a stable, solution-processable hole conductor. While its hole transport properties have been the subject of intense investigation, recent work has turned to PEDOT:PSS as a mixed ionic/electronic conductor in applications including bioelectronics, energy storage and management, and soft robotics. Conducting polymers can efficiently transport both holes and ions when sufficiently hydrated, however, little is known about the role of morphology on mixed conduction. Here, we show that bulk ionic and electronic mobilities are simultaneously affected by processing-induced changes in nano- and meso-scale structure in PEDOT:PSS films. We quantify domain composition, and find that domain purification on addition of dispersion co-solvents limits ion mobility, even while electronic conductivity improves. We show that an optimal morphology allows for the balanced ionic and electronic transport that is critical for prototypical mixed conductor devices. These findings may pave the way for the rational design of polymeric materials and processing routes to enhance devices reliant on mixed conduction. PMID:27090156

  14. Communication: Solvation and dielectric response in ionic liquids--conductivity extension of the continuum model.

    PubMed

    Zhang, X-X; Schröder, C; Ernsting, N P

    2013-03-21

    The solvation response of a polarity probe in a conducting liquid is analyzed based on simple continuum theory. A multi-exponential description of the dynamics is inverted to give an effective dc conductivity and a generalized permittivity spectrum in terms of Debye modes. For Coumarin 153 in ionic liquids the conductivity is found to be reduced systematically from the bulk value, whereas the permittivity from GHz-THz bulk absorption measurements is well reproduced by the solvation experiment. Thus, by using a dye as molecular antenna, the dielectric dispersion of the microscopic environment can be obtained. PMID:23534620

  15. Application of ionic and electronic conducting ceramics in solid oxide fuel cells

    SciTech Connect

    Singhal, S.C.

    1997-12-01

    Solid oxide fuel cells (SOFCs) offer a pollution-free technology to electrochemically generate electricity at high efficiencies. These fuel cells consist of an oxygen ion conducting electrolyte, electronic or mixed electronic and ionic conducting electrodes, and an electronic conducting interconnection. This paper reviews the ceramic materials used for the different cell components, and discusses the performance of cells fabricated using these materials. The paper also discusses the materials and processing studies that are underway to reduce the cell cost, and summarizes the recently built power generation systems that employed state-of-the-art SOFCs.

  16. Connection between NMR and electrical conductivity in glassy chalcogenide fast ionic conductors

    SciTech Connect

    Kim, K.H.

    1995-11-01

    The work documented in this thesis follows the traditional order. In this chapter a general discussion of ionic conduction and of glassy materials are followed by a brief outline of the experimental techniques for the investigation of fast ionic conduction in glassy materials, including NMR and impedance spectroscopy techniques. A summary of the previous and present studies is presented in the last section of this introductory chapter. The details of the background theory and models are found in the Chapter II, followed by the description of the experimental details in Chapter III. Chapter IV of the thesis describes the experimental results and the analysis of the experimental observations followed by the conclusions in chapter V.

  17. Enhanced ionic conductivity in polycrystalline TiO2 by "one-dimensional doping".

    PubMed

    Adepalli, Kiran Kumar; Kelsch, Marion; Merkle, Rotraut; Maier, Joachim

    2014-03-14

    The influence of line defects (dislocations) on the electrical properties of polycrystalline TiO2 was investigated. Line defects were created in TiO2 during spark plasma sintering at 1000 °C and 400 MPa. TEM characterisation indicates dislocations to be preferably oriented on {110} and {101} planes. The measured electrical conductivity as a function of oxygen partial pressure and temperature revealed that the dislocations play a vital role in modifying the defect chemistry of TiO2. The presence of dislocations enhanced the ionic conductivity over a wide range of oxygen partial pressures. The observed changes can be interpreted in terms of negatively charged dislocation cores and adjacent space charge accumulation layers. The present findings point towards an alternative method to tune the electrical properties of ionic solids. PMID:24477488

  18. Li-rich anti-perovskite Li3OCl films with enhanced ionic conductivity

    SciTech Connect

    Lu, XJ; Wu, G; Howard, JW; Chen, AP; Zhao, YS; Daemen, LL; Jia, QX

    2014-08-13

    Anti-perovskite solid electrolyte films were prepared by pulsed laser deposition, and their room-temperature ionic conductivity can be improved by more than an order of magnitude in comparison with its bulk counterpart. The cyclability of Li3OCl films in contact with lithium was evaluated using a Li/Li3OCl/Li symmetric cell, showing self-stabilization during cycling test.

  19. Correlation between cation conduction and ionic morphology in a PEO-based single ion conductor

    NASA Astrophysics Data System (ADS)

    Lin, Kan-Ju; Maranas, Janna

    2011-03-01

    We use molecular dynamics simulation to study ion transport and backbone mobility of a PEO-based single ion conductor. Ion mobility depends on the chemical structure and the local environment of the ions, which consequently impact ionic conductivity. We characterize the aggregation state of the ions, and assess the role of ion complexes in ionomer dynamics. In addition to solvated cations and pairs, higher order ion clusters are found. Most of the ion clusters are in string-like structure and cross-link two or more different ionomer chains through ionic binding. Ionic crosslinks decrease mobility at the ionic co-monomer; hence the mobility of the adjacent PEO segment is influenced. Na ions show slow mobility when they are inside large clusters. The hopping timescale for Na varies from 20 ns to 200. A correlation is found between Na mobility and the number of hops from one coordination site to another. Besides ether oxygens, Na ions in the ionomer also use the anion and the edge of the cluster as hopping sites. The string-like structure of clusters provide less stable sites at the two ends thus ions are more mobile in those regions. We observed Grotthus like mechanism in our ionomer, in which the positive charge migrates within the string-like cluster without the cations actually moving.

  20. Ionic conductivity of binary fluorides of potassium and rare earth elements

    NASA Astrophysics Data System (ADS)

    Sorokin, N. I.

    2016-01-01

    The ionic conductivity s of KYF4 and K2 RF5 single crystals ( R = Gd, Ho, Er) and KNdF4 and K2 RF5 ceramic samples ( R = Dy, Er) has been studied in the temperature range of 340-500°C. A comparative analysis of the σ values for these objects has been performed. Binary fluorides of potassium and rare earth elements were synthesized by the hydrothermal method (temperature 480°C, pressure 100-150 MPa) in the R 2O3-KF-H2O systems. The σ values of tetraf luorides are 3 × 10-5 S/cm (KYF4 single crystal) and 3 × 10-6 S/cm (KNdF4 ceramics) at 435°C. A K2ErF5 single crystal with σ = 1.2 × 10-4 S/cm at 435°C has the maximum value of ionic conductivity among pentafluorides. The anisotropy of ionic transport was found in K2HoF5 single crystals, σ∥ c /σ⊥ c = 2.5, where σ∥ c and σ⊥ c are, respectively, the conductivities along the crystallographic c axis and in the perpendicular direction.

  1. Conductivity of ionic liquid-derived polymers with internal gold nanoparticle conduits.

    SciTech Connect

    Lee, S.; Cummins, M. D.; Willing, G. A.; Firestone, M. A.; Materials Science Division; Univ. of Louisville

    2009-01-01

    The transport properties of self-supporting Au nanoparticle-ionic liquid-derived polymer composites were characterized. Topographic AFM images confirm the perforated lamellar composite architecture determined by small-angle X-ray scattering (SAXS) and further show that the in situ synthesized Au nanoparticles are localized within the hydrophilic (water) domains of the structure. At low Au nanoparticle content, the images reveal incomplete packing of spherical particles (i.e., voids) within these columns. The confinement and organization of the Au nanoparticles within the hydrophilic columns give rise to a large manifold of optical resonances in the near-IR region. The bulk composite conductivity, R{sub b}, was determined by ac electrochemical impedance spectroscopy (EIS) for samples prepared with increasing Au{sup 3+} content over a frequency range of 10 Hz to 1 MHz. A 100-fold increase was observed in the bulk conductivity at room temperature for composites prepared with the highest amount of Au{sup 3+} (1.58 {+-} 0.065 {micro}mol) versus the no Au composite, with the former reaching a value of 1.3 x 10{sup -4} S cm{sup -1} at 25 C. The temperature dependence of the conductivity recorded over this range was well-modeled by the Arrhenius equation. EIS studies on samples containing the highest Au nanoparticle content over a broader range of frequencies (2 x 10{sup -2} Hz to 5 x 10{sup 5} Hz) identified a low frequency component ascribed to electronic conduction. Electronic conduction due to aggregated Au nanoparticles was further confirmed by dc conductivity measurements. This work identifies a nanostructured composite that exhibits both ionic transport through the polymeric ionic liquid and electronic conduction from the organized encapsulated columns of Au nanoparticles.

  2. Ionic Conductivity, Structural Deformation and Programmable Anisotropy of DNA Origami in Electric Field

    PubMed Central

    Li, Chen-Yu; Hemmig, Elisa A.; Kong, Jinglin; Yoo, Jejoong; Hernández-Ainsa, Silvia

    2015-01-01

    The DNA origami technique can enable functionalization of inorganic structures for single-molecule electric current recordings. Experiments have shown that several layers of DNA molecules—a DNA origami plate— placed on top of a solid-state nanopore is permeable to ions. Here, we report a comprehensive characterization of the ionic conductivity of DNA origami plates by means of all-atom molecular dynamics (MD) simulations and nanocapillary electric current recordings. Using the MD method, we characterize the ionic conductivity of several origami constructs, revealing the local distribution of ions, the distribution of the electrostatic potential and contribution of different molecular species to the current. The simulations determine the dependence of the ionic conductivity on the applied voltage, the number of DNA layers, the nucleotide content and the lattice type of the plates. We demonstrate that increasing the concentration of Mg2+ ions makes the origami plates more compact, reducing their conductivity. The conductance of a DNA origami plate on top of a solid-state nanopore is determined by the two competing effects: bending of the DNA origami plate that reduces the current and separation of the DNA origami layers that increases the current. The latter is produced by the electro-osmotic flow and is reversible at the time scale of a hundred nanoseconds. The conductance of a DNA origami object is found to depend on its orientation, reaching maximum when the electric field aligns with the direction of the DNA helices. Our work demonstrates feasibility of programming the electrical properties of a self-assembled nanoscale object using DNA. PMID:25623807

  3. Decoupling Electrochemical Reaction and Diffusion Processes in Ionically-Conductive Solids on the Nanometer Scale

    SciTech Connect

    Balke, Nina; Jesse, Stephen; Kim, Yoongu; Adamczyk, Leslie A; Ivanov, Ilia N; Dudney, Nancy J; Kalinin, Sergei V

    2010-01-01

    We have developed a scanning probe microscopy approach to explore voltage-controlled ion dynamics in ionically conductive solids and decouple transport and local electrochemical reactivity on the nanometer scale. Electrochemical strain microscopy allows detection of bias-induced ionic motion through the dynamic (0.1-1 MHz) local strain. Spectroscopic modes based on low-frequency ({approx}1 Hz) voltage sweeps allow local ion dynamics to be probed locally. The bias dependence of the hysteretic strain response accessed through first-order reversal curve (FORC) measurements demonstrates that the process is activated at a certain critical voltage and is linear above this voltage everywhere on the surface. This suggests that FORC spectroscopic ESM data separates local electrochemical reaction and transport processes. The relevant parameters such as critical voltage and effective mobility can be extracted for each location and correlated with the microstructure. The evolution of these behaviors with the charging of the amorphous Si anode in a thin-film Li-ion battery is explored. A broad applicability of this method to other ionically conductive systems is predicted.

  4. Decoupling electrochemical reaction and diffusion processes in ionically-conductive solids on the nanometer scale

    SciTech Connect

    Balke, N.; Jesse, S.; Kim, Y.; Adamczyk, L.; Ivanov, I.; Dudney, N. J.; Kalinin, S. V.

    2010-12-28

    We have developed a scanning probe microscopy approach to explore voltage-controlled ion dynamics in ionically conductive solids and decouple transport and local electrochemical reactivity on the nanometer scale. Electrochemical strain microscopy allows detection of bias-induced ionic motion through the dynamic (0.1-1 MHz) local strain. Spectroscopic modes based on low-frequency (~1 Hz) voltage sweeps allow local ion dynamics to be probed locally. The bias dependence of the hysteretic strain response accessed through first-order reversal curve (FORC) measurements demonstrates that the process is activated at a certain critical voltage and is linear above this voltage everywhere on the surface. This suggests that FORC spectroscopic ESM data separates local electrochemical reaction and transport processes. The relevant parameters such as critical voltage and effective mobility can be extracted for each location and correlated with the microstructure. The evolution of these behaviors with the charging of the amorphous Si anode in a thin-film Li-ion battery is explored. A broad applicability of this method to other ionically conductive systems is predicted.

  5. Enhancing grain boundary ionic conductivity in mixed ionic–electronic conductors

    SciTech Connect

    Lin, Ye; Fang, Shumin; Su, Dong; Brinkman, Kyle S.; Chen, Fanglin

    2015-04-10

    Mixed ionic–electronic conductors are widely used in devices for energy conversion and storage. Grain boundaries in these materials have nanoscale spatial dimensions, which can generate substantial resistance to ionic transport due to dopant segregation. Here, we report the concept of targeted phase formation in a Ce0.8Gd0.2O2₋δ–CoFe2O4 composite that serves to enhance the grain boundary ionic conductivity. Using transmission electron microscopy and spectroscopy approaches, we probe the grain boundary charge distribution and chemical environments altered by the phase reaction between the two constituents. The formation of an emergent phase successfully avoids segregation of the Gd dopant and depletion of oxygen vacancies at the Ce0.8Gd0.2O2₋δ–Ce0.8Gd0.2O2₋δ grain boundary. This results in superior grain boundary ionic conductivity as demonstrated by the enhanced oxygen permeation flux. Lastly, this work illustrates the control of mesoscale level transport properties in mixed ionic–electronic conductor composites through processing induced modifications of the grain boundary defect distribution.

  6. Enhancing grain boundary ionic conductivity in mixed ionic–electronic conductors

    PubMed Central

    Lin, Ye; Fang, Shumin; Su, Dong; Brinkman, Kyle S; Chen, Fanglin

    2015-01-01

    Mixed ionic–electronic conductors are widely used in devices for energy conversion and storage. Grain boundaries in these materials have nanoscale spatial dimensions, which can generate substantial resistance to ionic transport due to dopant segregation. Here, we report the concept of targeted phase formation in a Ce0.8Gd0.2O2−δ–CoFe2O4 composite that serves to enhance the grain boundary ionic conductivity. Using transmission electron microscopy and spectroscopy approaches, we probe the grain boundary charge distribution and chemical environments altered by the phase reaction between the two constituents. The formation of an emergent phase successfully avoids segregation of the Gd dopant and depletion of oxygen vacancies at the Ce0.8Gd0.2O2−δ–Ce0.8Gd0.2O2−δ grain boundary. This results in superior grain boundary ionic conductivity as demonstrated by the enhanced oxygen permeation flux. This work illustrates the control of mesoscale level transport properties in mixed ionic–electronic conductor composites through processing induced modifications of the grain boundary defect distribution. PMID:25857355

  7. Enhancing grain boundary ionic conductivity in mixed ionic–electronic conductors

    DOE PAGESBeta

    Lin, Ye; Fang, Shumin; Su, Dong; Brinkman, Kyle S.; Chen, Fanglin

    2015-04-10

    Mixed ionic–electronic conductors are widely used in devices for energy conversion and storage. Grain boundaries in these materials have nanoscale spatial dimensions, which can generate substantial resistance to ionic transport due to dopant segregation. Here, we report the concept of targeted phase formation in a Ce0.8Gd0.2O2₋δ–CoFe2O4 composite that serves to enhance the grain boundary ionic conductivity. Using transmission electron microscopy and spectroscopy approaches, we probe the grain boundary charge distribution and chemical environments altered by the phase reaction between the two constituents. The formation of an emergent phase successfully avoids segregation of the Gd dopant and depletion of oxygen vacanciesmore » at the Ce0.8Gd0.2O2₋δ–Ce0.8Gd0.2O2₋δ grain boundary. This results in superior grain boundary ionic conductivity as demonstrated by the enhanced oxygen permeation flux. Lastly, this work illustrates the control of mesoscale level transport properties in mixed ionic–electronic conductor composites through processing induced modifications of the grain boundary defect distribution.« less

  8. Altered ion channel conductance and ionic selectivity induced by large imposed membrane potential pulse.

    PubMed Central

    Chen, W; Lee, R C

    1994-01-01

    The effects of large magnitude transmembrane potential pulses on voltage-gated Na and K channel behavior in frog skeletal muscle membrane were studied using a modified double vaseline-gap voltage clamp. The effects of electroconformational damage to ionic channels were separated from damage to lipid bilayer (electroporation). A 4 ms transmembrane potential pulse of -600 mV resulted in a reduction of both Na and K channel conductivities. The supraphysiologic pulses also reduced ionic selectivity of the K channels against Na+ ions, resulting in a depolarization of the membrane resting potential. However, TTX and TEA binding effects were unaltered. The kinetics of spontaneous reversal of the electroconformational damage of channel proteins was found to be dependent on the magnitude of imposed membrane potential pulse. These results suggest that muscle and nerve dysfunction after electrical shock may be in part caused by electroconformational damage to voltage-gated ion channels. PMID:7948676

  9. Effect of ionic conductivity of zirconia electrolytes on polarization properties of various electrodes in SOFC

    SciTech Connect

    Watanabe, Masahiro; Uchida, Hiroyuki; Yoshida, Manabu

    1996-12-31

    Solid oxide fuel cells (SOFCs) have been intensively investigated because, in principle, their energy conversion efficiency is fairly high. Lowering the operating temperature of SOFCs from 1000{degrees}C to around 800{degrees}C is desirable for reducing serious problems such as physical and chemical degradation of the constructing materials. The object of a series of the studies is to find a clue for achieving higher electrode performances at a low operating temperature than those of the present level. Although the polarization loss at electrodes can be reduced by using mixed-conducting ceria electrolytes, or introducing the mixed-conducting (reduced zirconia or ceria) laver on the conventional zirconia electrolyte surface, no reports are available on the effect of such an ionic conductivity of electrolytes on electrode polarizations. High ionic conductivity of the electrolyte, of course, reduces the ohmic loss. However, we have found that the IR-free polarization of a platinum anode attached to zirconia electrolytes is greatly influenced by the ionic conductivity, {sigma}{sub ion}, of the electrolytes used. The higher the {sigma}{sub ion}, the higher the exchange current density, j{sub 0}, for the Pt anode in H{sub 2} at 800 {approximately} 1000{degrees}C. It was indicated that the H{sub 2} oxidation reaction rate was controlled by the supply rate of oxide ions through the Pt/zirconia interface which is proportional to the {sigma}{sub ion}. Recently, we have proposed a new concept of the catalyzed-reaction layers which realizes both high-performances of anodes and cathodes for medium-temperature operating SOFCs. We present the interesting dependence of the polarization properties of various electrodes (the SDC anodes with and without Ru microcatalysts, Pt cathode, La(Sr)MnO{sub 3} cathodes with and without Pt microcatalysts) on the {sigma}{sub ion} of various zirconia electrolytes at 800 {approximately} 1000{degrees}C.

  10. Liquid crystal self-assembly of halloysite nanotubes in ionic liquids: a novel soft nanocomposite ionogel electrolyte with high anisotropic ionic conductivity and thermal stability

    NASA Astrophysics Data System (ADS)

    Zhao, Ningning; Liu, Yulin; Zhao, Xiaomeng; Song, Hongzan

    2016-01-01

    We report a novel class of liquid crystalline (LC) nanohybrid ionogels fabricated via self-assembly of natural halloysite nanotubes (HNTs) in ionic liquids (ILs). The obtained ionogels are very stable and nonvolatile and show LC phases over a wide temperature range. Remarkably, the nanocomposite ionogels exhibit high anisotropic ionic conductivity after shear, and their room temperature ionic conductivity can reach 3.8 × 10-3 S cm-1 for aligned nanotubes perpendicular to the electrode even when the HNTs content increases to 40 wt%, which is 380 times higher than that obtained for aligned nanotubes parallel to the electrode, which is 1.0 × 10-5 S cm-1. Crucially, the obtained LC nanocomposite ionogels have very high thermal stability, which can sustain 400 °C thermal treatment. The findings will promote the development of novel nanocomposite ionogel electrolytes with faster ion transport and larger anisotropic conductivity.We report a novel class of liquid crystalline (LC) nanohybrid ionogels fabricated via self-assembly of natural halloysite nanotubes (HNTs) in ionic liquids (ILs). The obtained ionogels are very stable and nonvolatile and show LC phases over a wide temperature range. Remarkably, the nanocomposite ionogels exhibit high anisotropic ionic conductivity after shear, and their room temperature ionic conductivity can reach 3.8 × 10-3 S cm-1 for aligned nanotubes perpendicular to the electrode even when the HNTs content increases to 40 wt%, which is 380 times higher than that obtained for aligned nanotubes parallel to the electrode, which is 1.0 × 10-5 S cm-1. Crucially, the obtained LC nanocomposite ionogels have very high thermal stability, which can sustain 400 °C thermal treatment. The findings will promote the development of novel nanocomposite ionogel electrolytes with faster ion transport and larger anisotropic conductivity. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06888f

  11. Ionic conductivity measurement in magnesium aluminate spinel and solid state galvanic cell with magnesium aluminate electrolyte

    NASA Astrophysics Data System (ADS)

    Lee, Myongjai

    This thesis work is about the experimental measurement of electronic and ionic conductivities in the MgAl2O4 spinel at 500˜600°C range and exploring the fundamental origin of solid-state galvanic cell behavior in the cell of Al|MgAl2O4|Mg, Al|MgAl2O 4|C, and Mg|MgAl2O4|C, in which at least one metal electrode in common with the composition of the electrolyte. For the electronic conductivity measurement, we have used the ion-blocking Gold and Carbon electrodes which are inert with both Mg and Al ions to suppress the ionic conduction from the total conduction. DC polarization method was used to measure the conduction through Au|MgAl2O4|Au and C|MgAl2O4|C specimens. The measured electrical conductivity using Au|MgAl2O4|Au and C|MgAl2O4|C specimens showed 10-9.3 ˜ 10-8.4 (O·cm) -1 at 600˜720°C range following the Arrhenius-type relation. These conductivity data are in agreement with reported data obtained from Pt and Ag ion-blocking electrodes deposited on MgAl2O4 specimens. For the ionic conductivity measurement, we have used the non-blocking Al and Mg electrodes for Al and Mg ionic conductivities, respectively. Ionic conductivity measurement of Al and Mg in separate manner has not been reported yet. In both Al|MgAl2O4|Al and Mg|MgAl2O 4|Mg specimens, gradual increase of conduction was observed once at the initial period before it reaches the steady state conduction. By DC method on the range of 580˜650°C, steady state Al ionic conductivity was measured from Al|MgAl2O4|Al specimen showing 10 -7.7 ˜ 10-6.8 (O·cm)-1 with the activation energy of 1.9eV in sigma = sigma0 exp-QRT formula. There was no difference in the conductivity by the change of the atmosphere from 5%H2 + 95%N2 mixed gas to pure Ar gas. So it was confirmed that the oxygen defect chemistry did not play a role. For Mg ionic conductivity Mg|MgAl2O4|Mg specimen was used and the measured conductivity shows 10-6.7 ˜ 10-4.4 (O·cm)-1 at 400˜550°C with the activation energy of 1.44eV at Ar gas

  12. Deciphering Physical versus Chemical Contributions to the Ionic Conductivity of Functionalized Poly(methacrylate)-Based Ionogel Electrolytes.

    PubMed

    D'Angelo, Anthony J; Grimes, Jerren J; Panzer, Matthew J

    2015-11-25

    Polymer-supported ionic liquids (ionogels) are emergent, nonvolatile electrolytes for electrochemical energy storage applications. Here, chemical and physical interactions between the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI TFSI) and three different cross-linked polymer scaffolds with varying chemical functional groups have been investigated in ionogels fabricated via in situ UV-initiated radical polymerization of methyl methacrylate (MMA), 2,2,2-trifluoroethyl methacrylate (TFEMA), or 2-(dimethylamino)ethyl methacrylate (DMAEMA) and a small amount of the cross-linker pentaerythritol tetraacrylate. Experimental findings demonstrate that the chemical functionality of the polymer side groups can significantly affect the degree of ion dissociation within the ionic liquid component of the ionogel and that the fraction of dissociated ions is the dominant factor in determining relative ionic conductivity in these materials, rather than any large differences in ion diffusivity. The MMA-based polymer scaffold exhibits a stronger attractive interaction with EMI TFSI (as evidenced by a higher activation energy of ionic conductivity) compared to the TFEMA- and DMAEMA-based scaffolds, resulting in consistently lower ionic conductivity values for MMA-based ionogels. These results may offer guidance toward the rational selection of future polymer-ionic liquid pairings in order to maximize the fraction of dissociated ions, thereby yielding highly conductive ionogel electrolytes. PMID:26528868

  13. Ionic conductivity and dielectric permittivity of PEO-LiClO{sub 4} solid polymer electrolyte plasticized with propylene carbonate

    SciTech Connect

    Das, S.; Ghosh, A.

    2015-02-15

    We have studied ionic conductivity and dielectric permittivity of PEO-LiClO{sub 4} solid polymer electrolyte plasticized with propylene carbonate. Differential scanning calorimetry and X-ray diffraction studies confirm minimum volume fraction of crystalline phase for the polymer electrolyte with 40 wt. % propylene carbonate. The ionic conductivity exhibits a maximum for the same composition. The temperature dependence of the ionic conductivity has been well interpreted using Vogel-Tamman-Fulcher equation. Ion-ion interactions in the polymer electrolytes have been studied using Raman spectra and the concentrations of free ions, ion-pairs and ion-aggregates have been determined. The ionic conductivity increases due to the increase of free ions with the increase of propylene carbonate content. But for higher content of propylene carbonate, the ionic conductivity decreases due to the increase of concentrations of ion-pairs and ion-aggregates. To get further insights into the ion dynamics, the experimental data for the complex dielectric permittivity have been studied using Havriliak–Negami function. The variation of relaxation time with temperature obtained from this formalism follows Vogel-Tamman-Fulcher equation similar to the ionic conductivity.

  14. Ionic charge transport between blockages: Sodium cation conduction in freshly excised bulk brain tissue

    NASA Astrophysics Data System (ADS)

    Emin, David; Akhtari, Massoud; Ellingson, B. M.; Mathern, G. W.

    2015-08-01

    We analyze the transient-dc and frequency-dependent electrical conductivities between blocking electrodes. We extend this analysis to measurements of ions' transport in freshly excised bulk samples of human brain tissue whose complex cellular structure produces blockages. The associated ionic charge-carrier density and diffusivity are consistent with local values for sodium cations determined non-invasively in brain tissue by MRI (NMR) and diffusion-MRI (spin-echo NMR). The characteristic separation between blockages, about 450 microns, is very much shorter than that found for sodium-doped gel proxies for brain tissue, >1 cm.

  15. General method to predict voltage-dependent ionic conduction in a solid electrolyte coating on electrodes

    NASA Astrophysics Data System (ADS)

    Pan, Jie; Cheng, Yang-Tse; Qi, Yue

    2015-04-01

    Understanding the ionic conduction in solid electrolytes in contact with electrodes is vitally important to many applications, such as lithium ion batteries. The problem is complex because both the internal properties of the materials (e.g., electronic structure) and the characteristics of the externally contacting phases (e.g., voltage of the electrode) affect defect formation and transport. In this paper, we developed a method based on density functional theory to study the physics of defects in a solid electrolyte in equilibrium with an external environment. This method was then applied to predict the ionic conduction in lithium fluoride (LiF), in contact with different electrodes which serve as reservoirs with adjustable Li chemical potential (μLi) for defect formation. LiF was chosen because it is a major component in the solid electrolyte interphase (SEI) formed on lithium ion battery electrodes. Seventeen possible native defects with their relevant charge states in LiF were investigated to determine the dominant defect types on various electrodes. The diffusion barrier of dominant defects was calculated by the climbed nudged elastic band method. The ionic conductivity was then obtained from the concentration and mobility of defects using the Nernst-Einstein relationship. Three regions for defect formation were identified as a function of μLi: (1) intrinsic, (2) transitional, and (3) p -type region. In the intrinsic region (high μLi, typical for LiF on the negative electrode), the main defects are Schottky pairs and in the p -type region (low μLi, typical for LiF on the positive electrode) are Li ion vacancies. The ionic conductivity is calculated to be approximately 10-31Scm-1 when LiF is in contact with a negative electrode but it can increase to 10-12Scm-1 on a positive electrode. This insight suggests that divalent cation (e.g., Mg2+) doping is necessary to improve Li ion transport through the engineered LiF coating, especially for LiF on negative

  16. Investigation of ionic conductivity of polymeric electrolytes based on poly (ether urethane) networks using positron probe

    NASA Astrophysics Data System (ADS)

    Peng, Z. L.; Wang, B.; Li, S. Q.; Wang, S. J.; Liu, H.; Xie, H. Q.

    1994-10-01

    Positron-lifetime measurements have been made for poly (ether urethane) undoped and doped with [LiClO 4]/[Unit]=0.05 in the temperature range of 120-340 K. The measured lifetime spectra were resolved into three components. The lifetime and the intensity of orthopositronium were used to evaluate the amount of the free volume in poly (ether urethane). It was found that the variation of ionic conductivity with temperature and salt concentration can be rationalised in terms of free volume consideration.

  17. Influence of purity of NdF3 single crystals on their ionic conductivity

    NASA Astrophysics Data System (ADS)

    Sorokin, N. I.; Zhmurova, Z. I.; Krivandina, E. A.; Sobolev, B. P.

    2012-05-01

    Single crystals of the NdF3 superionic conductor have been grown by the Bridgman method from a melt in a helium atmosphere using a fluorinating PbF2 agent. Commercial NdF3 reagents of special purity grade, reagent grade, and pure grade are used. It is found that the ionic conductivity σ of the crystals depends considerably on the purity grade of the starting substances: at 200°C σ = 1.4 × 10-, 3 × 10-4, and 8 × 10-4 S/cm for reagents of special purity grade, reagent grade, and pure grade, respectively.

  18. Ionic charge transport between blockages: Sodium cation conduction in freshly excised bulk brain tissue

    SciTech Connect

    Emin, David; Akhtari, Massoud; Ellingson, B. M.; Mathern, G. W.

    2015-08-15

    We analyze the transient-dc and frequency-dependent electrical conductivities between blocking electrodes. We extend this analysis to measurements of ions’ transport in freshly excised bulk samples of human brain tissue whose complex cellular structure produces blockages. The associated ionic charge-carrier density and diffusivity are consistent with local values for sodium cations determined non-invasively in brain tissue by MRI (NMR) and diffusion-MRI (spin-echo NMR). The characteristic separation between blockages, about 450 microns, is very much shorter than that found for sodium-doped gel proxies for brain tissue, >1 cm.

  19. Enhanced ionic oxygen flow through mixed ionic-electronic conducting membranes: Directional dependence, composite construction and the partial oxidation of methane

    NASA Astrophysics Data System (ADS)

    Gerdes, Kirk R.

    Mixed Ionic-Electronic Conducting (MIEC) membranes transport ions and electrons in a crystalline matrix. Ionic transport occurs through MIEC materials in the presence of an applied ionic potential gradient. MIEC membranes form a special class of ionic conductors with primary applications as membrane separators, sensors, and components in solid oxide fuel cells. Current efforts focus on separation of oxygen from air for supply to high temperature reactions. One such reaction is the methane partial oxidation to synthesis gas (CO and H2). Certain MIEC membrane characteristics are required for a methane partial oxidation reactor: (1) the cost of the material must be economical on a tube cost per mol oxygen transported basis; (2) the membrane must be stable in steep oxygen partial pressure gradients and in the presence of reducing gases; (3) the membrane must be stable at temperatures exceeding 800°C without fracturing due to thermal stress. Two mechanisms govern the transport of oxygen through MIEC membranes: surface exchange at the MIEC/gas surface and ionic transport through the MIEC bulk. Most MIEC membranes conduct oxygen with a mixed transport mechanism, i.e., both surface exchange and bulk diffusion affect the total transport. We investigate the relative importance of bulk diffusion versus surface exchange in MIEC tubular and disk membranes made of La0.5Sr0.5Fe 0.8Ga0.2O3-delta. We propose a proof based on the currently accepted transport model for the directional dependence of ionic flow through a tubular MIEC. We qualitatively confirm directional dependence using a novel experimental system. Further, we propose a model for ionic flow in a composite membrane system consisting of a dense, tubular LSFG substrate with a thin, dense layer of SrCox Fe1-xO3-delta applied to the surface(s). Comparisons are made between the performance of the monolithic membrane tube and the layered composite membrane tube. A layered composite tubular membrane is constructed and tested

  20. Water uptake, ionic conductivity and swelling properties of anion-exchange membrane

    SciTech Connect

    Duan, QJ; Ge, SH; Wang, CY

    2013-12-01

    Water uptake, ionic conductivity and dimensional change of the anion-exchange membrane made by Tokuyama Corporation (A201 membrane) are investigated at different temperatures and water activities. Specifically, the amount of water taken up by membranes exposed to water vapor and membranes soaked in liquid water is determined. The water uptake of the A201 membrane increases with water content as well as temperature. In addition, water sorption data shows Schroeder's paradox for the AEMs investigated. The swelling properties of the A201 membrane exhibit improved dimensional stability compared with Nafion membrane. Water sorption of the A201 membrane occurs with a substantial negative excess volume of mixing. The threshold value of hydrophilic fraction in the A201 membrane for ionic conductivity is around 0.34, above which, the conductivity begins to rise quickly. This indicates that a change in the connectivity of the hydrophilic domains occurs when hydrophilic fraction approaches 0.34. (C) 2013 Elsevier B.V. All rights reserved.

  1. Characterization of conducting cellulose acetate based polymer electrolytes doped with "green" ionic mixture.

    PubMed

    Ramesh, S; Shanti, R; Morris, Ezra

    2013-01-01

    Polymer electrolytes were developed by solution casting technique utilizing the materials of cellulose acetate (CA), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and deep eutectic solvent (DES). The DES is synthesized from the mixture of choline chloride and urea of 1:2 ratios. The increasing DES content well plasticizes the CA:LiTFSI:DES matrix and gradually improves the ionic conductivity and chemical integrity. The highest conducting sample was identified for the composition of CA:LiTFSI:DES (28 wt.%:12 wt.%:60 wt.%), which has the greatest ability to retain the room temperature ionic conductivity over the entire 30 days of storage time. The changes in FTIR cage peaks upon varying the DES content in CA:LiTFSI:DES prove the complexation. This complexation results in the collapse of CA matrix crystallinity, observed from the reduced intensity of XRD diffraction peaks. The DES-plasticized sample is found to be more heat-stable compared to pure CA. Nevertheless, the addition of DES diminishes the CA:LiTFSI matrix's heat-resistivity but at the minimum addition the thermal stability is enhanced. PMID:23044100

  2. Temperature Behavior of Electric Relaxational Effects due to Ionic Conductivity in Liquid Lactones

    NASA Astrophysics Data System (ADS)

    Świergiel, J.; Jadżyn, J.

    2012-05-01

    This paper concerns the studies of temperature and frequency behavior of the complex impedance, electric modulus, and electric conductivity due to an ionic current in liquid γ-butyrolactone (GBL) and γ-valerolactone (GVL). The frequency of the applied electric stimulus (500 Hz to 5 MHz) corresponds to the static dielectric regime of the lactones. The studies were performed in the temperature range of 263 K to 313 K. It was shown that in the static dielectric case, the dc ionic conductivity ( σ DC) and the static dielectric permittivity {(\\varepsilon_s)} determine the relaxational behavior of the impedance ( Z*) and the electric modulus ( M*) of the molecular liquids and both spectra are of the Debye-type characterized by the same conductivity relaxation time ( τ σ ). Both σ DC and τ σ of GBL and GVL fairly well fulfill an Arrhenius temperature dependence with very similar values of the thermal activation energy {E_{σ_DC} ≈ E_{tau_σ} ≈ 25 kJ . mol^{-1}} . The temperature dependence of the static dielectric permittivity and its temperature derivative is analyzed and interpreted in terms of the dipolar aggregation in the studied lactones.

  3. Ionic conductivities of lithium phosphorus oxynitride glasses, polycrystals, and thin films

    SciTech Connect

    Wang, B.; Bates, J.B.; Chakoumakos, B.C.; Sales, B.C.; Kwak, B.S.; Zuhr, R.A.; Robertson, J.D.

    1994-11-01

    Various lithium phosphorus oxynitrides have been prepared in the form of glasses, polycrystals, and thin films. The structures of these compounds were investigated by X-ray and neutron diffraction, X-ray photoelectron spectroscopy (XPS), and high-performance liquid chromatography (HPLC). The ac impedance measurements indicate a significant improvement of ionic conductivity as the result of incorporation of nitrogen into the structure. In the case of polycrystalline Li{sub 2.88}PO{sub 3.73}N{sub 0.14} with the {gamma}-Li{sub 3}PO{sub 4} structure, the conductivity increased by several orders of magnitude on small addition of nitrogen. The highest conductivities in the bulk glasses and thin films were found to be 3.0 {times} 10{sup -7} and 8.9 {times} 10{sup -7} S{center_dot}cm{sup -1} at 25{degrees}C, respectively.

  4. Oxygen flux and dielectric response study of Mixed Ionic-Electronic Conducting (MIEC) heterogeneous functional materials

    NASA Astrophysics Data System (ADS)

    Rabbi, Fazle

    Dense mixed ionic-electronic conducting (MIEC) membranes consisting of ionic conductive perovskite-type and/or fluorite-type oxides and high electronic conductive spinel type oxides, at elevated temperature can play a useful role in a number of energy conversion related systems including the solid oxide fuel cell (SOFC), oxygen separation and permeation membranes, partial oxidization membrane reactors for natural gas processing, high temperature electrolysis cells, and others. This study will investigate the impact of different heterogeneous characteristics of dual phase ionic and electronic conductive oxygen separation membranes on their transport mechanisms, in an attempt to develop a foundation for the rational design of such membranes. The dielectric behavior of a material can be an indicator for MIEC performance and can be incorporated into computational models of MIEC membranes in order to optimize the composition, microstructure, and ultimately predict long term membrane performance. The dielectric behavior of the MIECs can also be an indicator of the transport mechanisms and the parameters they are dependent upon. For this study we chose a dual phase MIEC oxygen separation membrane consisting of an ionic conducting phase: gadolinium doped ceria-Ce0.8 Gd0.2O2 (GDC) and an electronic conductive phase: cobalt ferrite-CoFe2O4 (CFO). The membranes were fabricated from mixtures of Nano-powder of each of the phases for different volume percentages, sintered with various temperatures and sintering time to form systematic micro-structural variations, and characterized by structural analysis (XRD), and micro-structural analysis (SEM-EDS). Performance of the membranes was tested for variable partial pressures of oxygen across the membrane at temperatures from 850°C-1060°C using a Gas Chromatography (GC) system. Permeated oxygen did not directly correlate with change in percent mixture. An intermediate mixture 60%GDC-40%CFO had the highest flux compared to the 50%GDC

  5. Bombardment induced ion transport - part IV: ionic conductivity of ultra-thin polyelectrolyte multilayer films.

    PubMed

    Wesp, Veronika; Hermann, Matthias; Schäfer, Martin; Hühn, Jonas; Parak, Wolfgang J; Weitzel, Karl-Michael

    2016-02-14

    The dependence of the ionic conductance of ultra-thin polyelectrolyte multilayer (PEM) films on the temperature and the number of bilayers has been investigated by the recently developed low energy bombardment induced ion transport (BIIT) method. To this end multilayers of alternating poly(sodium 4-styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) layers were deposited on a metal electrode and subsequently bombarded by a low energy potassium ion beam. Ions are transported through the film according to the laws of electro-diffusion towards a grounded backside electrode. They are neutralized at the interface between the polymer film and the metal electrode. The detected neutralization current scales linearly with the acceleration potential of the ion beam indicating Ohmic behavior for the (PAH/PSS)x multilayer, where x denotes the number of bilayers. The conductance exhibits a non-monotonic dependence on the number of bilayers, x. For 2 ≤ x ≤ 8 the conductance increases non-linearly with the number of bilayers. For x ≥ 8 the conductance decreases with increasing number of bilayers. The variation of the conductance is rationalized by a model accounting for the structure dependence of the conductivity. The thinnest sample for which the conductance has been measured is the single bilayer reflecting properties dominated by the interface. The activation energy for the ion transport is 0.49 eV. PMID:26411996

  6. Ionic conductivity in a quantum lattice gas model with three-particle interactions

    NASA Astrophysics Data System (ADS)

    Barry, J. H.; Muttalib, K. A.; Tanaka, T.

    2012-12-01

    A system of mesoscopic ions with dominant three-particle interactions is modeled by a quantum lattice liquid on the planar kagomé lattice. The two-parameter Hamiltonian contains localized attractive triplet interactions as potential energy and nearest neighbor hopping-type terms as kinetic energy. The dynamic ionic conductivity σ(ω) is theoretically investigated for ‘weak hopping’ via a quantum many-body perturbation expansion of the thermal (Matsubara) Green function (current-current correlation). A simple analytic continuation and mapping of the thermal Green function provide the temporal Fourier transform of the physical retarded Green function in the Kubo formula. Substituting pertinent exact solutions for static multi-particle correlations known from previous work, Arrhenius relations are revealed in zeroth-order approximation for the dc ionic conductivity σdc along special trajectories in density-temperature space. The Arrhenius plots directly yield static activation energies along the latter loci. Experimental possibilities relating to σdc are discussed in the presence of equilibrium aggregation. This article is part of ‘Lattice models and integrability’, a special issue of Journal of Physics A: Mathematical and Theoretical in honour of F Y Wu's 80th birthday.

  7. Fundamentals of ionic conductivity relaxation gained from study of procaine hydrochloride and procainamide hydrochloride at ambient and elevated pressure

    NASA Astrophysics Data System (ADS)

    Wojnarowska, Z.; Swiety-Pospiech, A.; Grzybowska, K.; Hawelek, L.; Paluch, M.; Ngai, K. L.

    2012-04-01

    The pharmaceuticals, procaine hydrochloride and procainamide hydrochloride, are glass-forming as well as ionically conducting materials. We have made dielectric measurements at ambient and elevated pressures to characterize the dynamics of the ion conductivity relaxation in these pharmaceuticals, and calorimetric measurements for the structural relaxation. Perhaps due to their special chemical and physical structures, novel features are found in the ionic conductivity relaxation of these pharmaceuticals. Data of conductivity relaxation in most ionic conductors when represented by the electric loss modulus usually show a single resolved peak in the electric modulus loss M″(f ) spectra. However, in procaine hydrochloride and procainamide hydrochloride we find in addition another resolved loss peak at higher frequencies over a temperature range spanning across Tg. The situation is analogous to many non-ionic glass-formers showing the presence of the structural α-relaxation together with the Johari-Goldstein (JG) β-relaxation. Naturally the analogy leads us to name the slower and faster processes resolved in procaine hydrochloride and procainamide hydrochloride as the primary α-conductivity relaxation and the secondary β-conductivity relaxation, respectively. The analogy of the β-conductivity relaxation in procaine HCl and procainamide HCl with JG β-relaxation in non-ionic glass-formers goes further by the finding that the β-conductivity is strongly related to the α-conductivity relaxation at temperatures above and below Tg. At elevated pressure but compensated by raising temperature to maintain α-conductivity relaxation time constant, the data show invariance of the ratio between the β- and the α-conductivity relaxation times to changes of thermodynamic condition. This property indicates that the β-conductivity relaxation has fundamental importance and is indispensable as the precursor of the α-conductivity relaxation, analogous to the relation found

  8. Spatial resolution of the electrical conductance of ionic fluids using a Green-Kubo method.

    PubMed

    Jones, R E; Ward, D K; Templeton, J A

    2014-11-14

    We present a Green-Kubo method to spatially resolve transport coefficients in compositionally heterogeneous mixtures. We develop the underlying theory based on well-known results from mixture theory, Irving-Kirkwood field estimation, and linear response theory. Then, using standard molecular dynamics techniques, we apply the methodology to representative systems. With a homogeneous salt water system, where the expectation of the distribution of conductivity is clear, we demonstrate the sensitivities of the method to system size, and other physical and algorithmic parameters. Then we present a simple model of an electrochemical double layer where we explore the resolution limit of the method. In this system, we observe significant anisotropy in the wall-normal vs. transverse ionic conductances, as well as near wall effects. Finally, we discuss extensions and applications to more realistic systems such as batteries where detailed understanding of the transport properties in the vicinity of the electrodes is of technological importance. PMID:25399135

  9. Difference between nuclear spin relaxation and ionic conductivity relaxation in superionic glasses

    NASA Astrophysics Data System (ADS)

    Ngai, K. L.

    1993-04-01

    Tatsumisago, Angell, and Martin [J. Chem. Phys. 97, 6968 (1992)] have compared conductivity relaxation data and 7Li nuclear spin lattice relaxation (SLR) data measured on a lithium chloroborate glass and found pronounced differences in the most probable relaxation times. The electrical conductivity relaxation (ECR) time, τ*σ, at some temperature occurs on a time scale shorter by some two orders of magnitude than the 7Li spin lattice relaxation correlation time, τ*s, and has a significantly lower activation energy. SLR and ECR monitor the motions of ions through different dynamic variables and correlation functions. Using this fact and the coupling model, I am able to explain quantitatively all aspects of the difference between SLR and ECR, and to establish relations between their different relaxation characteristics. The large difference between the observed activation energies of SLR and ECR alone should have implications on the validity of any proposed theory of the dynamics of ionic transport.

  10. Relaxation Width and Ionic Conductivity of Supercooled Glycerol at High Pressure

    NASA Astrophysics Data System (ADS)

    Zin Win, Kyaw; Menon, Narayanan

    2006-03-01

    We have measured the dielectric susceptibility of supercooled glycerol from 0.01 Hz to 100 kHz at up to 900 MPa and close to the glass transition temperature. We find that, at a fixed relaxation frequency, the relaxation width increases with pressure. We also establish a relation between isobaric fragility and the width of glycerol and compare it to a correlation between these quantities at 1 atmosphere for a variety of liquids. We find that volume has a much bigger effect than temperature on the changes in the width. We are also for the first time able to study the ionic conductivity as a function of temperature and pressure, and study the Nernst-Einstein relation between the conductivity and the relaxation frequency. R. Bohmer, K. L. Ngai, C. A. Angell, and D. J. Plazek, J. Chem. Phys. 99, 4201 (1993).

  11. Protein Kinase C Regulates Ionic Conductance in Hippocampal Pyramidal Neurons: Electrophysiological Effects of Phorbol Esters

    NASA Astrophysics Data System (ADS)

    Baraban, Jay M.; Snyder, Solomon H.; Alger, Bradley E.

    1985-04-01

    The vertebrate central nervous system contains very high concentrations of protein kinase C, a calcium-and phospholipid-stimulated phosphorylating enzyme. Phorbol esters, compounds with inflammatory and tumor-promoting properties, bind to and activate this enzyme. To clarify the role of protein kinase C in neuronal function, we have localized phorbol ester receptors in the rat hippocampus by autoradiography and examined the electrophysiological effects of phorbol esters on hippocampal pyramidal neurons in vitro. Phorbol esters blocked a calcium-dependent potassium conductance. In addition, phorbol esters blocked the late hyperpolarization elicited by synaptic stimulation even though other synaptic potentials were not affected. The potencies of several phorbol esters in exerting these actions paralleled their affinities for protein kinase C, suggesting that protein kinase C regulates membrane ionic conductance.

  12. Parasitic Currents Caused by Different Ionic and Electronic Conductivities in Fuel Cell Anodes.

    PubMed

    Schalenbach, Maximilian; Zillgitt, Marcel; Maier, Wiebke; Stolten, Detlef

    2015-07-29

    The electrodes in fuel cells simultaneously realize electric and ionic conductivity. In the case of acidic polymer electrolytes, the electrodes are typically made of composites of carbon-supported catalyst and Nafion polymer electrolyte binder. In this study, the interaction of the proton conduction, the electron conduction, and the electrochemical hydrogen conversion in such composite electrode materials was examined. Exposed to a hydrogen atmosphere, these composites displayed up to 10-fold smaller resistivities for the proton conduction than that of Nafion membranes. This effect was ascribed to the simultaneously occurring electrochemical hydrogen oxidation and evolution inside the composite samples, which are driven by different proton and electron resistivities. The parasitic electrochemical currents resulting were postulated to occur in the anode of fuel cells with polymer, solid oxide, or liquid alkaline electrolytes, when the ohmic drop of the ion conduction in the anode is higher with the anodic kinetic overvoltage (as illustrated in the graphical abstract). In this case, the parasitic electrochemical currents increase the anodic kinetic overpotential and the ohmic drop in the anode. Thinner fuel cell anodes with smaller ohmic drops for the ion conduction may reduce the parasitic electrochemical currents. PMID:26154401

  13. Mixed polaronic-ionic conduction in lithium borate glasses and glass-ceramics containing copper oxide

    NASA Astrophysics Data System (ADS)

    Khalil, M. M. I.

    2007-03-01

    The effect of electric field strength on conduction in lithium borate glasses doped with CuO with different concentration was studied and the value of the jump distance of charge carrier was calculated. The conductivity measurements indicate that the conduction is due to non-adiabatic hopping of polarons and the activation energies are found to be temperature and concentration dependent. Lithium borate glasses are subjected to carefully-programmed thermal treatments which cause the nucleation and growth of crystalline phases. X-ray diffraction analysis confirmed the amorphous nature for the investigated glass sample and the formation of crystalline phase for annealed samples at 650 °C. The main separated crystalline phase is Li2B8O13. The scanning electron micrographs of some selected glasses showed a significant change in the morphology of the films investigated due to heat treatment of the glass samples. It was found that the dc-conductivity decreases with an increase of the HT temperature. The decrease of dc conductivity, with an increase of the HT temperature, can be related to the decrease in the number of free ions in the glass matrix. There is deviation from linearity at high temperature regions in the logσ-1/T plots for all investigated doped samples at a certain temperature at which the transition from polaronic to ionic conduction occurs. The hopping of small polarons is dominant at low temperatures, whereas the hopping of Li+ ions dominates at high temperatures.

  14. Increase of ionic conductivity in the microporous lithosilicate RUB-29 by Na-ion exchange processes

    NASA Astrophysics Data System (ADS)

    Park, S.-H.; Senyshyn, A.; Paulmann, C.

    2007-12-01

    The ionic conductivity in the zeolite-like lithosilicate RUB-29 (Cs 14Li 24[Li 18Si 72O 172]·14H 2O [S.-H. Park, J.B. Parise, H. Gies, H. Liu, C.P. Grey, B.H. Toby, J. Am. Chem. Soc. 122 (2000) 11023-11024]) increases via simple ion-exchange processes, in particular when Na cations replace a part of Cs + and Li + of the material. The resulting ionic conductivity value of 3.2×10 -3 S cm -1 at 885 K is about two orders higher than that for the original material [S.-H. Park, J.B. Parise, M.E. Franke, T. Seydel, C. Paulmann, Micropor. Mesopor. Mater., in print ( doi:10.1016/j.micromeso.2007.03.040 available online since April 19, 2007)]. The structural basis of a Na +-exchanged RUB-29 sample (Na-RUB-29) at 673 K could be elucidated by means of neutron powder diffraction. Rietveld refinements confirmed the replacement of Na + for both parts of Cs and Li cations, agreeing with idealized cell content, Na 8Cs 8Li 40Si 72O 172. As a result of the incorporation of Na + in large pores, the number of Li + vacancies in dense Li 2O-layers of the structure could increase. This can be one of the main reasons for the improved conductivity in Na-RUB-29. In addition, mobile Na cations may also contribute to the conductivity in Na-RUB-29 as continuous scattering length densities were found around the sites for Na in difference Fourier map.

  15. Syntheses, structures, and ionic conductivities of perovskite-structured lithium–strontium–aluminum/gallium–tantalum-oxides

    SciTech Connect

    Phraewphiphat, Thanya; Iqbal, Muhammad; Suzuki, Kota; Matsuda, Yasuaki; Yonemura, Masao; Hirayama, Masaaki; Kanno, Ryoji

    2015-05-15

    The ionic conductivities of new perovskite-structured lithium–strontium–aluminum/gallium–tantalum oxides were investigated. Solid solutions of the new perovskite oxides, (Li{sub x}Sr{sub 1−x})(Al{sub (1−x)/2}Ta{sub (1+x)/2})O{sub 3} and (Li{sub x}Sr{sub 1−x})(Ga{sub (1−x)/2}Ta{sub (1+x)/2})O{sub 3}, were synthesized using a ball-milled-assisted solid-state method. The partial substitution of the smaller Ga{sup +3} for Ta{sup +5} resulted in new compositions, the structures of which were determined by neutron diffraction measurements using a cubic perovskite structural model with the Pm−3m space group. Vacancies were introduced into the Sr(Li) sites by the formation of solid solutions with compositions (Li{sub x}Sr{sub 1−x−y}☐{sub y})(Ga{sub [(1−x)/2]−y}Ta{sub [(1+x)/2]+y})O{sub 3}, where the composition range of 0≤y≤0.20 was examined for x=0.2 and 0.25. The highest conductivity, 1.85×10{sup −3} S cm{sup −1} at 250 °C, was obtained for (Li{sub 0.25}Sr{sub 0.625}☐{sub 0.125})(Ga{sub 0.25}Ta{sub 0.75})O{sub 3} (x=0.25, y=0.125). Enhanced ionic conductivities were achieved by the introduction of vacancies at the A-sites. - Graphical abstract: Novel lithium-conducting oxides with the cubic perovskite structure (Li{sub x}Sr{sub 1−x−y}☐{sub y})(Ga{sub [(1−x)/2]−y}Ta{sub [(1+x)/2]+y})O{sub 3} provide a specific solid-solution region with various x and y values, exhibiting the highest ionic conductivity (1.85 S cm{sup −1} at 250 °C) for (Li{sub 0.25}Sr{sub 0.625}☐{sub 0.125})(Ga{sub 0.25}Ta{sub 0.75})O{sub 3} (x=0.25, y=0.125 in (Li{sub x}Sr{sub 1−x−y}☐{sub y})(Ga{sub [(1−x)/2]−y}Ta{sub [(1+x)/2]+y})O{sub 3}). The vacancies (☐) introduced into the A-sites contribute to the enhancement of lithium diffusion in the perovskite structure because of the enlargement of the bottleneck size and suppression of the interaction between lithium and oxygen. - Highlights: • The perovskite-structured novel Li

  16. AC and DC conductivity of ionic liquid containing polyvinylidene fluoride thin films

    NASA Astrophysics Data System (ADS)

    Frübing, Peter; Wang, Feipeng; Kühle, Till-Friedrich; Gerhard, Reimund

    2016-01-01

    Polarisation processes and charge transport in polyvinylidene fluoride (PVDF) with a small amount (0.01-10 wt%) of the ionic liquid (IL) 1-ethyl-3-methylimidazolium nitrate ({[EMIM]}^+[{NO}_3]^-) are investigated by means of dielectric spectroscopy. The response of PVDF that contains more than 0.01 wt% IL is dominated by a low-frequency relaxation which shows typical signatures of electrode polarisation. Furthermore, the α a relaxation, related to the glass transition, disappears for IL contents of more than 1 wt%, which indicates that the amorphous phase loses its glass-forming properties and undergoes structural changes. The DC conductivity is determined from the low-frequency limit of the AC conductivity and from the dielectric loss peak related to the electrode polarisation. DC conductivities of 10^{-10} to 10^{-2} {S}/{m} are obtained—increasing with IL content and temperature. The dependence of the DC conductivity on the IL content follows a power law with an exponent greater than one, indicating an increase in the ion mobility. The temperature dependence of the DC conductivity shows Vogel-Fulcher-Tammann behaviour, which implies that charge transport is coupled to polymer chain motion. Mobile ion densities and ion mobilities are calculated from the DC conductivity and the dielectric loss related to electrode polarisation, with the results that less than one per cent of the total ion concentration contributes to the conductivity and that the strong increase in conductivity with temperature is mainly caused by a strong increase in ion mobility. This leads to the conclusion that in particular the ion mobility must be reduced in order to decrease the DC conductivity.

  17. Tunable ionic-conductivity of collapsed Sandia octahedral molecular sieves (SOMS).

    SciTech Connect

    Pless, Jason; Nenoff, Tina Maria; Garino, Terry J.; Axness, Marlene

    2006-11-01

    This proposal focuses on the synthesis and characterization of ''tunable'' perovskite ceramics with resulting controlled strength and temperature of dielectric constants and/or with ionic conductivity. Traditional methods of synthesis involve high temperature oxide mixing and baking. We developed a new methodology of synthesis involving the (1) low temperature hydrothermal synthesis of metastable porous phases with ''tuned'' stoichiometry, and element types, and then (2) low temperature heat treatment to build exact stoichiometry perovskites, with the desired vacancy concentrations. This flexible pathway can lead to compositions and structures not attainable by conventional methods. During the course of this program, a series of Na-Nb perovskites were synthesized by calcining and collapsing microporous Sandia Octahedral Molecular Sieve (SOMS) phases. These materials were studied by various characterization techniques and conductivity measurements to better delineate stability and stoichiometry/bulk conductivity relationships. The conductivity can be altered by changing the concentration and type of the substituting framework cation(s) or by ion exchange of sodium. To date, the Na{sub 0.9}Mg{sub 0.1}Nb{sub 0.8}Ti{sub 0.2}O{sub 3-{delta}} shows the best conductivity.

  18. Phase Behavior and Conductivity of Phosphonated Block Copolymers Containing Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Jung, Ha Young; Kim, Sung Yeon; Park, Moon Jeong

    2015-03-01

    As the focus on proton exchange fuel cells continues to escalate in the era of alternative energy systems, the rational design of sulfonated polymers has emerged as a key technique for enhancing device efficiency. While the sulfonic acid group guarantees high proton conductivity of membranes under humidified conditions, the growing need for high temperature operation has discouraged their practical uses in fuel cells. In this respect, phosphonated polymers have drawn intensive attention in recent years owing to their self-dissociation ability. In this study, we have synthesized a set of phosphonated block copolymers, poly(styrenephosphonate-methylbutylene) (PSP- b - PMB), by varying phosphonation level (PL). A wide variety of self-assembled morphologies, i.e., disordered, lamellar, hexagonally perforated lamellae and hexagonally packed cylindrical phases, were observed with PL. Remarkably, upon comparing the morphology of PSP- b-PMB and that of sulfonated analog, we found distinctly dissimilar domain sizes at the same molecular weight and composition. A range of ionic liquids (ILs) were incorporated into the PSP- b-PMB block copolymers and their ion transport properties were examined. It has been revealed that the degree of confinement of ionic phases (domain size) impacts the ion mobility and proton dissociation efficiency of IL-containing polymers.

  19. Nearest Neighbor Hopping conduction observed with ionic liquid induced silicon surface states

    NASA Astrophysics Data System (ADS)

    Nelson, Jj; Reich, K. V.; Sammon, M.; Shklovskii, B. I.; Goldman, A. M.

    A two-dimensional hole gas can be created on the surface of a bulk Si wafer by using an ionic liquid in an electric double layer transistor configuration (EDLT). EDLTs are useful in observing metal to insulator and superconductor to insulator transitions due to record high carrier densities of 1015 cm-2 that can be achieved. In some cases the high carrier densities are due in part to oxidation of the sample surface. With an EDLT configuration we have observed a 2D insulator-to metal transition with low mobility Si at the highest reported critical carrier density. The experiment reported here is designed to promote electrostatic carrier induction over electrochemical reactions and is focused on carrier densities near 1011 cm-2. At such a low densities we observe nearest neighbor hopping conduction on the surface of Si. This observation suggests that the ionic liquid covering the surface should be treated as a series of discrete charges that can act as a platform to better understand EDLT physics at higher carrier densities. This work was supported in part by the National Science Foundation under Grant NSF-1263316.

  20. Conductivity Scaling Relationships of Nanostructured Membranes based on Hydrated Protic Polymerized Ionic Liquids: Effect of Domain Spacing

    NASA Astrophysics Data System (ADS)

    Sanoja, Gabriel; Popere, Bhooshan; Beckingham, Bryan; Evans, Christopher; Lynd, Nathaniel; Segalman, Rachel

    Elucidating the relationship between chemical structure, morphology, and ionic conductivity is essential for designing novel materials for electrochemical applications. In this work, the effect of lamellar domain spacing (d) on ionic conductivity (σ) is investigated for a model system of hydrated block copolymer based on a protic polymerized ionic liquid. We present a strategy that allows for the synthesis of a well-defined series of narrowly dispersed PS- b - PIL with constant volume fraction of ionic liquid moieties (fIL ~ 0.39). These materials self-assemble into ordered lamellar morphologies with variable domain spacing (23-59 nm) as demonstrated by SAXS. PS- b - PIL membranes exhibit ionic conductivities above 10-4 S/cm at room temperature, which are independent of domain spacing. The conductivity scaling relationship demonstrated in this work suggests that a mechanically robust membrane can be designed without compromising its ability to transport ions. In addition, PIL-based membranes exhibit lower water uptake (λ = 10) in comparison with many proton-conducting systems reported elsewhere. The low water content of these materials makes them promising candidates for solar-fuels electrochemical devices.

  1. Thermally conductive of nanofluid from surfactant doped polyaniline nanoparticle and deep eutectic ionic liquid

    NASA Astrophysics Data System (ADS)

    Siong, Chew Tze; Daik, Rusli; Hamid, Muhammad Azmi Abdul

    2014-09-01

    Nanofluid is a colloidal suspension of nano-size particles in a fluid. Spherical shape dodecylbenzenesulfonic acid doped polyaniline (DBSA-PANI) nanoparticles were synthesized via reverse micellar polymerization in isooctane with average size of 50 nm- 60 nm. The aim of study is to explore the possibility of using deep eutectic ionic liquid (DES) as a new base fluid in heat transfer application. DES was prepared by heating up choline chloride and urea with stirring. DES based nanofluids containing DBSA-PANI nanoparticles were prepared using two-step method. Thermal conductivity of nanofluids was measured using KD2 Pro Thermal Properties Analyzer. When incorporated with DBSA-PANI nanoparticles, DES with water was found to exhibit a bigger increase in thermal conductivity compared to that of the pure DES. The thermal conductivity of DES with water was increased by 4.67% when incorporated with 0.2 wt% of DBSA-PANI nanoparticles at 50°C. The enhancement in thermal conductivity of DES based nanofluids is possibly related to Brownian motion of nanoparticles as well as micro-convection of base fluids and also interaction between dopants and DES ions.

  2. Ionic conductivity of ScF3 single crystals (ReO3 type)

    NASA Astrophysics Data System (ADS)

    Sorokin, N. I.; Karimov, D. N.; Grebenev, V. V.; Sobolev, B. P.

    2016-03-01

    Electrical conductivity σ of ScF3 single crystals (sp. gr. Pmoverline 3 m, ReO3 structure type) has been studied by impedance spectroscopy and compared with the electrical conductivity of rare earth HoF3 (β-YF3 type) and LaF3 (tysonite type) trifluorides. ScF3 crystals obtained by Bridgman directional solidification have ionic conductivity σ = 4 × 10-8 S/cm at 673 K. It is smaller than the σ values for LaF3 (sp. gr. Poverline 3 c1) and HoF3 (sp. gr. Pnma) single crystals by a factor of 104-105. The low conductivity of ScF3 crystals is due to the weak coordinating ability (coordination number CN = 6) and low electronic polarizability (α cat = 1.1 Å3) of Sc3+ ions. Mobile V F + vacancies and less mobile interstitial V i - ions (defects are formed according to the Frenkel mechanism) are involved in the ion transport. HoF3 and LaF3 single crystals have a high coordinating ability (CN = 9 for Ho3+ and CN = 11 for La3+) and a high electronic polarizability of cations (α cat = 1.6-1.9 Å3 for Ho3+ and α cat = 2.2 Å3 for La3+). Only mobile V F + vacancies (defects are formed according to the Schottky mechanism) are involved in ion transport.

  3. Three-dimensional ionic conduction in the strained electrolytes of solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Han, Yupei; Zou, Minda; Lv, Weiqiang; Mao, Yiwu; Wang, Wei; He, Weidong

    2016-05-01

    Flexible power sources including fuel cells and batteries are the key to realizing flexible electronic devices with pronounced foldability. To understand the bending effects in these devices, theoretical analysis on three-dimensional (3-D) lattice bending is necessary. In this report, we derive a 3-D analytical model to analyze the effects of electrolyte crystal bending on ionic conductivity in flexible solid-state batteries/fuel cells. By employing solid oxide fuel cells as a materials' platform, the intrinsic parameters of bent electrolyte materials, including lattice constant, Young's modulus, and Poisson ratio, are evaluated. Our work facilitates the rational design of highly efficient flexible electrolytes for high-performance flexible device applications.

  4. Phonon-mediated Thermal Conductivity in Ionic Solids by Lattice Dynamics-based Methods

    SciTech Connect

    Chernatynskiy, Aleksandr; Turney, Joseph E.; McGaughey, Alan J. H.; Amon, Christina H.; Phillpot, Simon R.

    2011-07-22

    Phonon properties predicted from lattice dynamics calculations and the Boltzmann Transport Equation (BTE) are used to elucidate the thermal-transport properties of ionic materials. It is found that a rigorous treatment of the Coulombic interactions within the harmonic analysis is needed for the analysis of the phonon structure of the solid, while a short-range approximation is sufficient for the third-order force constants. The effects on the thermal conductivity of the relaxation time approximation, the classical approximation to the phonon statistics, the direct summation method for the electrostatic interactions, and the quasi-harmonic approximation to lattice dynamics are quantified. Quantitative agreement is found between predictions from molecular dynamics simulations (a method valid at temperatures above the Debye temperature) and the BTE result within quasi-harmonic approximation over a wide temperature range.

  5. Ceramic membranes for catalytic membrane reactors with high ionic conductivities and low expansion properties

    DOEpatents

    Mackay, Richard; Sammells, Anthony F.

    2000-01-01

    Ceramics of the composition: Ln.sub.x Sr.sub.2-x-y Ca.sub.y B.sub.z M.sub.2-z O.sub.5+.delta. where Ln is an element selected from the fblock lanthanide elements and yttrium or mixtures thereof; B is an element selected from Al, Ga, In or mixtures thereof; M is a d-block transition element of mixtures thereof; 0.01.ltoreq.x.ltoreq.1.0; 0.01.ltoreq.y.ltoreq.0.7; 0.01.ltoreq.z.ltoreq.1.0 and .delta. is a number that varies to maintain charge neutrality are provided. These ceramics are useful in ceramic membranes and exhibit high ionic conductivity, high chemical stability under catalytic membrane reactor conditions and low coefficients of expansion. The materials of the invention are particularly useful in producing synthesis gas.

  6. Conductive Hybrid Crystal Composed from Polyoxomolybdate and Deprotonatable Ionic-Liquid Surfactant.

    PubMed

    Kobayashi, Jun; Kawahara, Ryosuke; Uchida, Sayaka; Koguchi, Shinichi; Ito, Takeru

    2016-01-01

    A polyoxomolybdate inorganic-organic hybrid crystal was synthesized with deprotonatable ionic-liquid surfactant. 1-dodecylimidazolium cation was employed for its synthesis. The hybrid crystal contained δ-type octamolybdate (Mo₈) isomer, and possessed alternate stacking of Mo₈ monolayers and interdigitated surfactant bilayers. The crystal structure was compared with polyoxomolybdate hybrid crystals comprising 1-dodecyl-3-methylimidazolium surfactant, which preferred β-type Mo₈ isomer. The less bulky hydrophilic moiety of the 1-dodecylimidazolium interacted with the δ-Mo₈ anion by N-H···O hydrogen bonds, which presumably induced the formation of the δ-Mo₈ anion. Anhydrous conductivity of the hybrid crystal was estimated to be 5.5 × 10(-6) S·cm(-1) at 443 K by alternating current (AC) impedance spectroscopy. PMID:27347926

  7. Conductive Hybrid Crystal Composed from Polyoxomolybdate and Deprotonatable Ionic-Liquid Surfactant

    PubMed Central

    Kobayashi, Jun; Kawahara, Ryosuke; Uchida, Sayaka; Koguchi, Shinichi; Ito, Takeru

    2016-01-01

    A polyoxomolybdate inorganic-organic hybrid crystal was synthesized with deprotonatable ionic-liquid surfactant. 1-dodecylimidazolium cation was employed for its synthesis. The hybrid crystal contained δ-type octamolybdate (Mo8) isomer, and possessed alternate stacking of Mo8 monolayers and interdigitated surfactant bilayers. The crystal structure was compared with polyoxomolybdate hybrid crystals comprising 1-dodecyl-3-methylimidazolium surfactant, which preferred β-type Mo8 isomer. The less bulky hydrophilic moiety of the 1-dodecylimidazolium interacted with the δ-Mo8 anion by N–H···O hydrogen bonds, which presumably induced the formation of the δ-Mo8 anion. Anhydrous conductivity of the hybrid crystal was estimated to be 5.5 × 10−6 S·cm−1 at 443 K by alternating current (AC) impedance spectroscopy. PMID:27347926

  8. Block copolymer with simultaneous electric and ionic conduction for use in lithium ion batteries

    DOEpatents

    Javier, Anna Esmeralda K; Balsara, Nitash Pervez; Patel, Shrayesh Naran; Hallinan, Jr., Daniel T

    2013-10-08

    Redox reactions that occur at the electrodes of batteries require transport of both ions and electrons to the active centers. Reported is the synthesis of a block copolymer that exhibits simultaneous electronic and ionic conduction. A combination of Grignard metathesis polymerization and click reaction was used successively to synthesize the block copolymer containing regioregular poly(3-hexylthiophene) (P3HT) and poly(ethylene oxide) (PEO) segments. The P3HT-PEO/LiTFSI mixture was then used to make a lithium battery cathode with LiFePO.sub.4 as the only other component. All-solid lithium batteries of the cathode described above, a solid electrolyte and a lithium foil as the anode showed capacities within experimental error of the theoretical capacity of the battery. The ability of P3HT-PEO to serve all of the transport and binding functions required in a lithium battery electrode is thus demonstrated.

  9. Microstructure effects on proton conductivity in EVOH based ionic polymer-metal composites actuator

    NASA Astrophysics Data System (ADS)

    Dai, Lijun; Li, Lei; Zhang, Yujun

    2007-07-01

    The ionomer of sulfonated ethylene vinyl alcohol copolymers (EVOH) modified by poly (ethylene glycol) (PEG) (EVOH-g-SPEG) has been synthesized by the following process, EVOH was grafted by PEG through the Williamson reaction and sulfonic groups were introduced onto the end of PEG side chain by the open ring reaction of 1,3-propane sultone and the hydroxyl groups in EVOH. The crystalline structure and phase images of EVOH-g-SPEG membrane were characterized by X-ray diffraction (XRD) and atomic force microscope (AFM), and the ion conductivity is measured by a.c. impedance. XRD indicates that the water in EVOH-g-SPEG membrane region could destroy the membrane crystalline structure and the water absorption membranes are nearly amorphous. AFM phase images of the hydration membranes clearly show the hydrophilic domains, with sizes increasing from 10 to 35 nm as a function of the side chain length and the phase inversion could also be observed when n>=5 (n, numbers of grafting PEG side chain), which was consistent with a rapid increasing in water absorption. The a.c. impedance tests indicate that the comb-like EVOH-g-SPEG grafting with 2 PEG side chain provides the highest ionic conductivity (1.65×10 -3Scm -1). Moreover, the tip displacement and the bending stress of ionic polymer-metal composites (IPMC) prepared by electroless deposition of argentum were gained by electro-deformation tests. Its results show that the tip bending stress increased with the increasing input voltage and reached to its maximum under the applied voltage of 3.6V~4.4V. IPMC based on the EVOH-g-SPEG membrane exhibits higher bending stress with its maximum value of 6.20MPa.

  10. Structure and ionic conductivity of well-aligned polycrystalline sodium titanogallate grown by reactive diffusion

    NASA Astrophysics Data System (ADS)

    Hasegawa, Ryo; Okabe, Momoko; Asaka, Toru; Ishizawa, Nobuo; Fukuda, Koichiro

    2015-09-01

    We prepared the b-axis-oriented polycrystalline Na0.85Ti0.51Ga4.37O8 (NTGO) embedded in Ga2O3-doped Na2Ti4O9 matrix using the reactive diffusion technique. When the sandwich-type Ga2TiO5/NaGaO2/Ga2TiO5 diffusion couple was heated at 1323 K for 24 h, the NTGO polycrystal was readily formed in the presence of a liquid phase. The resulting polycrystalline material was characterized by X-ray diffractometry, electron microscopy and impedance spectroscopy. We mechanically processed the annealed diffusion couple and obtained the thin-plate electrolyte consisting mostly of the grain-aligned NTGO polycrystal. The ionic conductivity (σ) of the electrolyte along the common b-axis direction steadily increased from 1.3×10-4 to 7.3×10-3 S/cm as the temperature increased from 573 to 1073 K. There was a slope change at ca. 792 K for the Arrhenius plot of σ; the activation energies were 0.39 eV above this temperature and 0.57 eV below it. The NTGO showed the crystal structure (space group C2/m) with substantial positional disordering of one of the two Ga sites. The Na+ ions occupied ca. 43% of the Wyckoff position 4i site, the deficiency of which would contribute to the relatively high ionic conductivity along the b-axis. The reactive diffusion could be widely applicable as the novel technique to the preparation of grain-aligned ceramics of multi-component systems.

  11. Ionic conductivity in Gd-doped CeO2: Ab initio color-diffusion nonequilibrium molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Nilsson, Johan O.; Vekilova, Olga Yu.; Hellman, Olle; Klarbring, Johan; Simak, Sergei I.; Skorodumova, Natalia V.

    2016-01-01

    A first-principles nonequilibrium molecular dynamics (NEMD) study employing the color-diffusion algorithm has been conducted to obtain the bulk ionic conductivity and the diffusion constant of gadolinium-doped cerium oxide (GDC) in the 850-1150 K temperature range. Being a slow process, ionic diffusion in solids usually requires simulation times that are prohibitively long for ab initio equilibrium molecular dynamics. The use of the color-diffusion algorithm allowed us to substantially speed up the oxygen-ion diffusion. The key parameters of the method, such as field direction and strength as well as color-charge distribution, have been investigated and their optimized values for the considered system have been determined. The calculated ionic conductivity and diffusion constants are in good agreement with available experimental data.

  12. Determination of the ionic conductivity of Sr-doped lanthanum manganite by modified Hebb-Wagner technique

    NASA Astrophysics Data System (ADS)

    Miruszewski, T.; Karczewski, J.; Bochentyn, B.; Jasinski, P.; Gazda, M.; Kusz, B.

    2016-04-01

    The Hebb-Wagner polarization method with the electron blocking electrode has been discussed in this paper in aim to determine a partial ionic conductivity of Sr-doped lanthanum manganite. The "limiting current" in the proposed system was measured using the two-point DC technique with additional Pt electrode between LSM and blocking electrode. The electrochemical model based on bulk diffusion processes and Boltzmann statistics has been also described. The ionic conductivity calculated with the use of proposed model for La0.7Sr0.3MnO3+δ was 5.3×10-4 S cm-1 at 800 °C and the activation energy of ionic conductivity was found to be (0.60±0.02) eV. This result is in agreement with previous literature reports and indicates the workability of the modified Hebb-Wagner system.

  13. Ionic conductivity in the crystalline polymer electrolytes PEO6:LiXF6, X = P, As, Sb.

    PubMed

    Stoeva, Zlatka; Martin-Litas, Isabelle; Staunton, Edward; Andreev, Yuri G; Bruce, Peter G

    2003-04-16

    Ionically conducting polymers (salts dissolved in a polymer matrix) are of great interest because they uniquely exhibit ionic conductivity in a soft but solid membrane. As such, they are critical to the development of devices such as all-solid-state lithium batteries. The established view of ionic conductivity in polymer electrolytes is that this occurs in amorphous materials above their glass transition temperature and that crystalline polymer electrolytes are insulators. In contrast, we show that three crystalline polymer electrolytes, poly(ethylene oxide)(6):LiXF(6), X = P, As, Sb, not only conduct but do so better than the analogous amorphous phases! It is also shown that the conductivities of all three 6:1 complexes are similar, consistent with the dimension of the bottlenecks to conduction derived from their crystal structures. An increase in ionic conductivity with reduction of molecular weight of the crystalline polymer electrolyte (from 2000 to 1000) is reported and shown to relate to the increase in crystallite size on reducing molecular weight. PMID:12683834

  14. Enhancing oxygen transport through Mixed-Ionic-and-Electronic-Conducting ceramic membranes

    NASA Astrophysics Data System (ADS)

    Yu, Anthony S.

    Ceramic membranes based on Mixed-Ionic-and-Electronic-Conducting (MIEC) oxides are capable of separating oxygen from air in the presence of an oxygen partial-pressure gradient. These MIEC membranes show great promise for oxygen consuming industrial processes, such as the production of syngas from steam reforming of natural gas (SRM), as well as for electricity generation in Solid Oxide Fuel Cells (SOFC). For both applications, the overall performance is dictated by the rate of oxygen transport across the membrane. Oxygen transport across MIEC membranes is composed of a bulk oxygen-ion diffusion process and surface processes, such as surface reactions and adsorption/desorption of gaseous reactants/products. The main goal of this thesis was to determine which process is rate-limiting in order to significantly enhance the overall rate of oxygen transport in MIEC membrane systems. The rate-limiting step was determined by evaluating the total resistance to oxygen transfer, Rtot. Rtot is the sum of a bulk diffusion resistance in the membrane itself, Rb, and interfacial loss components, Rs. Rb is a function of the membrane's ionic conductivity and thickness, while Rs arises primarily from slow surface-exchange kinetics that cause the P(O2) at the surfaces of the membrane to differ from the P(O 2) in the adjacent gas phases. Rtot can be calculated from the Nernst potential across the membrane and the measured oxygen flux. The rate-limiting process can be determined by evaluating the relative contributions of the various losses, Rs and Rb, to Rtot. Using this method, this thesis demonstrates that for most membrane systems, Rs is the dominating factor. In the development of membrane systems with high oxygen transport rates, thin membranes with high ionic conductivities are required to achieve fast bulk oxygen-ion diffusion. However, as membrane thickness is decreased, surface reaction kinetics become more important in determining the overall transport rate. The two

  15. Co-variation of ionic conductances supports phase maintenance in stomatogastric neurons.

    PubMed

    Soofi, Wafa; Archila, Santiago; Prinz, Astrid A

    2012-08-01

    Neuronal networks produce reliable functional output throughout the lifespan of an animal despite ceaseless molecular turnover and a constantly changing environment. Central pattern generators, such as those of the crustacean stomatogastric ganglion (STG), are able to robustly maintain their functionality over a wide range of burst periods. Previous experimental work involving extracellular recordings of the pyloric pattern of the STG has demonstrated that as the burst period varies, the inter-neuronal delays are altered proportionally, resulting in burst phases that are roughly invariant. The question whether spike delays within bursts are also proportional to pyloric period has not been explored in detail. The mechanism by which the pyloric neurons accomplish phase maintenance is currently not obvious. Previous studies suggest that the co-regulation of certain ion channel properties may play a role in governing neuronal activity. Here, we observed in long-term recordings of the pyloric rhythm that spike delays can vary proportionally with burst period, so that spike phase is maintained. We then used a conductance-based model neuron to determine whether co-varying ionic membrane conductances results in neural output that emulates the experimentally observed phenomenon of spike phase maintenance. Next, we utilized a model neuron database to determine whether conductance correlations exist in model neuron populations with highly maintained spike phases. We found that co-varying certain conductances, including the sodium and transient calcium conductance pair, causes the model neuron to maintain a specific spike phase pattern. Results indicate a possible relationship between conductance co-regulation and phase maintenance in STG neurons. PMID:22134522

  16. Tunable Mixed Ionic/Electronic Conductivity and Permittivity of Graphene Oxide Paper for Electrochemical Energy Conversion.

    PubMed

    Bayer, Thomas; Bishop, Sean R; Perry, Nicola H; Sasaki, Kazunari; Lyth, Stephen M

    2016-05-11

    Graphene oxide (GO) is a two-dimensional graphitic carbon material functionalized with oxygen-containing surface functional groups. The material is of interest in energy conversion, sensing, chemical processing, gas barrier, and electronics applications. Multilayer GO paper has recently been applied as a new proton conducting membrane in low temperature fuel cells. However, a detailed understanding of the electrical/dielectric properties, including separation of the ionic vs electronic contributions under relevant operating conditions, has so far been lacking. Here, the electrical conductivity and dielectric permittivity of GO paper are investigated in situ from 30 to 120 °C, and from 0 to 100% relative humidity (RH) using impedance spectroscopy. These are related to the water content, measured by thermogravimetric analysis. With the aid of electron blocking measurements, GO is demonstrated to be a mixed electronic-protonic conductor, and the ion transference number is derived for the first time. For RH > 40%, conductivity is dominated by proton transport (with a maximum of 0.5 mS/cm at 90 °C and 100% RH). For RH < 40%, electronic conductivity dominates (with a maximum of 7.4 mS/cm at ∼80 °C and 0% RH). The relative permittivity of GO paper increases with decreasing humidity, from ∼10 at 100% RH to several 1000 at 10% RH. These results underline the potential of GO for application not only as a proton conducting electrolyte but also as a mixed conducting electrode material under appropriate conditions. Such materials are highly applicable in electrochemical energy conversion and storage devices such as fuel cells and electrolyzers. PMID:27088238

  17. Ionic conductivity of dual-phase polymer electrolytes comprised of NBR/SBR latex films swollen with lithium salt solutions

    SciTech Connect

    Matsumoto, Morihiko; Ichino, Toshihiro; Rutt, J.S.; Nishi, Shiro . NTT Interdisciplinary Research Lab.)

    1994-08-01

    Dual-phase polymer electrolytes (DPE) with high ionic conductivity and good mechanical strength were prepared by swelling poly(acrylonitrile-co-butadiene) rubber (NBR) and poly(styrene-co-butadiene) rubber (SBR) mixed latex films with lithium salt solutions (e.g., 1M LiClO[sub 4]/[gamma]-butyrolactone). The latex films retain particle morphology in the solid state. The NBR phase (formed from fused NBR latex particles) is polar and is impregnated selectively with polar lithium salt solutions, yielding ion-conductive channels, whereas the SBR phase (formed from fused SBR latex particles) is nonpolar and is not impregnated, providing a mechanically supportive matrix. The ionic conductivity of the DPE increased dramatically with increasing content of lithium salt solution, and higher amounts of solution were imbibed with increasing content of NBR relative to SBR. Several factors which affect the ionic conductivity of this system were examined, and the highest ionic conductivity (>10[sup [minus]3] S/cm) was obtained when either an NBR/SBR 70/30 (w/w) or a 50/50 (w/w) latex film was saturated with 1M LiClO[sub 4]/[gamma]-BL solution or 1M LiClO[sub 4]/[gamma]-BL/DME solution. Ion-conductive behavior changed critically with increasing lithium salt solution uptake. At low levels of lithium salt solution uptake, evidence suggested that ionic conductivity of the absorbed lithium salt solution was strongly influenced by the presence of the NBR in the ion-conductive channel, but at higher levels, the effects of the NBR were reduced and free'' lithium salt solution was present.

  18. Structure and ionic conductivity of well-aligned polycrystalline sodium titanogallate grown by reactive diffusion

    SciTech Connect

    Hasegawa, Ryo; Okabe, Momoko; Asaka, Toru; Ishizawa, Nobuo; Fukuda, Koichiro

    2015-09-15

    We prepared the b-axis-oriented polycrystalline Na{sub 0.85}Ti{sub 0.51}Ga{sub 4.37}O{sub 8} (NTGO) embedded in Ga{sub 2}O{sub 3}-doped Na{sub 2}Ti{sub 4}O{sub 9} matrix using the reactive diffusion technique. When the sandwich-type Ga{sub 2}TiO{sub 5}/NaGaO{sub 2}/Ga{sub 2}TiO{sub 5} diffusion couple was heated at 1323 K for 24 h, the NTGO polycrystal was readily formed in the presence of a liquid phase. The resulting polycrystalline material was characterized by X-ray diffractometry, electron microscopy and impedance spectroscopy. We mechanically processed the annealed diffusion couple and obtained the thin-plate electrolyte consisting mostly of the grain-aligned NTGO polycrystal. The ionic conductivity (σ) of the electrolyte along the common b-axis direction steadily increased from 1.3×10{sup −4} to 7.3×10{sup −3} S/cm as the temperature increased from 573 to 1073 K. There was a slope change at ca. 792 K for the Arrhenius plot of σ; the activation energies were 0.39 eV above this temperature and 0.57 eV below it. The NTGO showed the crystal structure (space group C2/m) with substantial positional disordering of one of the two Ga sites. The Na{sup +} ions occupied ca. 43% of the Wyckoff position 4i site, the deficiency of which would contribute to the relatively high ionic conductivity along the b-axis. The reactive diffusion could be widely applicable as the novel technique to the preparation of grain-aligned ceramics of multi-component systems. - Graphical abstract: We have prepared the b-axis-oriented Na{sub 0.85}Ti{sub 0.51}Ga{sub 4.37}O{sub 8} polycrystal embedded in Ga{sub 2}O{sub 3}-doped Na{sub 2}Ti{sub 4}O{sub 9} matrix by the heat treatment of sandwich-type diffusion couple of Ga{sub 2}TiO{sub 5}/NaGaO{sub 2}/Ga{sub 2}TiO{sub 5}. The resulting Na{sub 0.85}Ti{sub 0.51}Ga{sub 4.37}O{sub 8} electrolyte showed the ionic conductivity ranging from 1.3×10{sup −4} S/cm at 573 K to 7.3×10{sup −3} S/cm at 1073 K. - Highlights: • The b

  19. Mixed-salt Effects on the Ionic Conductivity of Lithium-doped PEO-containing Block Copolymers

    SciTech Connect

    W Young; J Albert; A Schantz; T Epps

    2011-12-31

    We demonstrate a simple, yet effective, mixed-salt method to increase the room temperature ionic conductivity of lithium-doped block copolymer electrolyte membranes by suppressing the crystalline phases in the conducting block. We examined a mixed-salt system of LiClO{sub 4} and LiN(SO{sub 2}CF{sub 3}){sub 2} (LiTFSI) doped into a lamellae-forming poly(styrene-b-ethylene oxide) (PS-PEO) diblock copolymer. The domain spacings, morphologies, thermal behavior, and crystalline phases of salt-doped PS-PEO samples were characterized, and the ionic conductivities of block copolymer electrolytes were obtained through ac impedance measurements. Comparing the ionic conductivity profiles of salt-doped PS-PEO samples at different mixed-salt ratios and total salt concentrations, we found that the ionic conductivity at room temperature can be improved by more than an order of magnitude when coinhibition of crystallite growth is promoted by the concerted behavior of the PEO:LiClO{sub 4} and PEO:LiTFSI phases. Additionally, we examined the influence of mixed-salt ratio and total salt concentration on copolymer energetics, and we found that the slope of the effective interaction parameter (x{sub eff}) vs salt concentration in our lamellae-forming PS-PEO system was lower than that reported for a cylinder-forming PS-PEO system due to the balance between chain stretching and salt segregation in the PEO domains.

  20. Mixed-Salt Effects on the Ionic Conductivity of Lithium-Doped PEO-Containing Block Copolymers

    SciTech Connect

    Young, Wen-Shiue; Albert, Julie N.L.; Schantz, A. Benjamin; Epps, III, Thomas H.

    2012-10-10

    We demonstrate a simple, yet effective, mixed-salt method to increase the room temperature ionic conductivity of lithium-doped block copolymer electrolyte membranes by suppressing the crystalline phases in the conducting block. We examined a mixed-salt system of LiClO{sub 4} and LiN(SO{sub 2}CF{sub 3}){sub 2} (LiTFSI) doped into a lamellae-forming poly(styrene-b-ethylene oxide) (PS-PEO) diblock copolymer. The domain spacings, morphologies, thermal behavior, and crystalline phases of salt-doped PS-PEO samples were characterized, and the ionic conductivities of block copolymer electrolytes were obtained through ac impedance measurements. Comparing the ionic conductivity profiles of salt-doped PS-PEO samples at different mixed-salt ratios and total salt concentrations, we found that the ionic conductivity at room temperature can be improved by more than an order of magnitude when coinhibition of crystallite growth is promoted by the concerted behavior of the PEO:LiClO{sub 4} and PEO:LiTFSI phases. Additionally, we examined the influence of mixed-salt ratio and total salt concentration on copolymer energetics, and we found that the slope of the effective interaction parameter ({chi}{sub eff}) vs salt concentration in our lamellae-forming PS-PEO system was lower than that reported for a cylinder-forming PS-PEO system due to the balance between chain stretching and salt segregation in the PEO domains.

  1. Highly conductive ionic liquids toward high-performance space-lubricating greases.

    PubMed

    Fan, Xiaoqiang; Wang, Liping

    2014-08-27

    Although ionic liquids (ILs) as a class of promising materials have a wide range of applications due to the excellent properties, their potential as space lubricants has been not systematically explored. Here two kinds of conductive alkyl imidazolium ILs greases were prepared using 1-hexyl-3-methylimidazolium tetrafluoroborate (LB106) and 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl) amide (L-F106) as base oil and the polytetrafluoroethylene (PTFE) as thickener, with multiple-alkylated cyclopentane grease (MACs) as a comparison. Their chemical composition and tribological properties were investigated in detail under simulated space environment which is composed of high vacuum, high temperature and irradiation. Results show that the high conductive ILs greases not only possess good adaptive abilities to space environment and thermal stability but also provide excellent friction reducing and antiwear behaviors as well as high load carrying capacities. The unique physicochemical properties are attributed to a combination of special anions and cations, the excellent tribological properties are strongly dependent on a boundary protective film on the rubbing surfaces. PMID:25089650

  2. Polyelectrolyte microcapsules as ionic liquid reservoirs within ionomer membrane to confer high anhydrous proton conductivity

    NASA Astrophysics Data System (ADS)

    Zhang, Haoqin; Wu, Wenjia; Li, Yifan; Liu, Yong; Wang, Jingtao; Zhang, Bing; Liu, Jindun

    2015-04-01

    Herein, novel composite membranes are prepared by embedding methacrylic acid polyelectrolyte microcapsules (PMCs) into sulfonated poly(ether ether ketone) (SPEEK) matrix, followed by impregnating imidazole-type ionic liquids (ILs). Within the composite membrane, the lumens of PMCs act as IL reservoirs, which provide large space for IL storage and thus significantly elevate the IL uptake. The IL leaching measurement suggests that the cross-linked shells of PMCs manipulate the IL release, endowing the composite membrane with high IL retention. Moreover, the high IL retention renders the composite membrane more anhydrous hopping sites (e.g., the imidazole groups on IL and the acid-base pairs between imidazole and sulfonic acid groups), imparting a facilitated proton conduction via Grotthuss mechanism. In particular, the composite membrane containing 12% PMCs achieves a high anhydrous proton conductivity of 33.7 mS cm-1 at 150 °C. The same membrane also exhibits a surprising steady-state IL retention of 36.9% after leaching in liquid water.

  3. Influence of ionic conductivity in bioelectricity production from saline domestic sewage sludge in microbial fuel cells.

    PubMed

    Karthikeyan, Rengasamy; Selvam, Ammayaippan; Cheng, Ka Yu; Wong, Jonathan Woon-Chung

    2016-01-01

    This study aimed at manipulating ionic conductivity (EC) to harvest the maximum electrical energy from seawater-based domestic wastewater sewage sludge (SWS), unique to only a few cities, through microbial fuel cell (MFC). SWS has never been investigated as a MFC substrate before, and thus the influence of high in-situ EC on the energy recovery was unknown. In this study, the EC of the SWS was reduced through mixing it with fresh water-based domestic wastewater sewage sludge (FWS) or diluted 50% using deionized water while FWS and SWS were individually served as reference treatments. SWS:FWS mix (1:1) exhibited a maximum Coulombic efficiency of 28.6±0.5% at a COD removal of 59±3% while the peak power density was 20-fold higher than FWS. The improved performance was due to the lower ohmic internal resistance (36.8±4.2Ω) and optimal conductivity (12.8±0.2mScm(-1)). Therefore, dilution with FWS could enhance energy recovery from SWS. PMID:26590759

  4. Enhanced ionic conductivity of apatite-type lanthanum silicate electrolyte for IT-SOFCs through copper doping

    NASA Astrophysics Data System (ADS)

    Ding, Xifeng; Hua, Guixiang; Ding, Dong; Zhu, Wenliang; Wang, Hongjin

    2016-02-01

    Apatite-type Lanthanum silicate (LSO) is among the most promising electrolyte for intermediate temperature solid oxide fuel cells (IT-SOFCs) owing to the high conductivity and low activation energy at lower temperature than traditional doped-zirconia electrolyte. The ionic conductivity as well as the sintering density of lanthanum silicate oxy-apatite, La10Si6-xCuxO27-δ (LSCO, 0 ≤ x ≤ 2), was effectively enhanced through a small amount of doped copper. The phase composition, relative density, ionic conductivity and thermal expansion behavior of La10Si6-xCuxO27-δ was systematically investigated by X-ray diffraction (XRD), Archimedes' drainage method, scanning electron microscope (SEM), electrochemical impedance spectra (EIS) and thermal dilatometer techniques. With increasing copper doping content, the ionic conductivity of La10Si6-xCuxO27-δincreased, reaching a maximum of 4.8 × 10-2 S cm-1 at 800 °C for x = 1.5. The improved ionic conductivity could be primarily associated with the enhanced grain conductivity. The power output performance of NiO-LSCO/LSCO/LSCF single cell was superior to that obtained on NiO-LSO/LSO/LSCF at different temperatures using hydrogen as fuel and oxygen as oxidant, which could be attributed to the enhanced oxygen ionic conductivity as well as the sintering density for the copped doped lanthanum silicate. In conclusion, the apatite La10Si4.5Cu1.5O25.5 is a promising candidate electrolyte for IT-SOFCs.

  5. Polymerized ionic liquid diblock copolymers: impact of water/ion clustering on ion conductivity.

    PubMed

    Nykaza, Jacob R; Ye, Yuesheng; Nelson, Rachel L; Jackson, Aaron C; Beyer, Frederick L; Davis, Eric M; Page, Kirt; Sharick, Sharon; Winey, Karen I; Elabd, Yossef A

    2016-01-28

    Herein, we examine the synergistic impact of both ion clustering and block copolymer morphology on ion conductivity in two polymerized ionic liquid (PIL) diblock copolymers with similar chemistries but different side alkyl spacer chain lengths (ethyl versus undecyl). When saturated in liquid water, water/ion clusters were observed only in the PIL block copolymer with longer alkyl side chains (undecyl) as evidenced by both small-angle neutron scattering and intermediate-angle X-ray scattering, i.e., water/ion clusters form within the PIL microdomain under these conditions. The resulting bromide ion conductivity in the undecyl sample was higher than the ethyl sample (14.0 mS cm(-1)versus 6.1 mS cm(-1) at 50 °C in liquid water) even though both samples had the same block copolymer morphology (lamellar) and the undecyl sample had a lower ion exchange capacity (0.9 meq g(-1)versus 1.4 meq g(-1)). No water/ion clusters were observed in either sample under high humidity or dry conditions. The resulting ion conductivity in the undecyl sample with lamellar morphology was significantly higher in the liquid water saturated state compared to the high humidity state (14.0 mS cm(-1)versus 4.2 mS cm(-1)), whereas there was no difference in ion conductivity in the ethyl sample when comparing these two states. These results show that small chemical changes to ion-containing block copolymers can induce water/ion clusters within block copolymer microdomains and this can subsequently have a significant effect on ion transport. PMID:26575014

  6. Defect Physics, Delithiation Mechanism, and Electronic and Ionic Conduction in Layered Lithium Manganese Oxide Cathode Materials

    NASA Astrophysics Data System (ADS)

    Hoang, Khang

    2015-02-01

    Layered Li Mn O2 and Li2Mn O3 are of great interest for lithium-ion battery cathodes because of their high theoretical capacities. The practical application of these materials is, however, limited due to poor electrochemical performance. We herein report a comprehensive first-principles study of defect physics in Li Mn O2 and Li2Mn O3 using hybrid density-functional calculations. We find that manganese antisites have low formation energies in Li Mn O2 and may act as nucleation sites for the formation of impurity phases. The antisites can also occur with high concentrations in Li2Mn O3 ; however, unlike in Li Mn O2 , they can be eliminated by tuning the experimental conditions during preparation. Other intrinsic point defects may also occur and have an impact on the materials' properties and functioning. An analysis of the formation of lithium vacancies indicates that lithium extraction from Li Mn O2 is associated with oxidation at the manganese site, resulting in the formation of manganese small hole polarons; whereas in Li2Mn O3 the intrinsic delithiation mechanism involves oxidation at the oxygen site, leading to the formation of bound oxygen hole polarons ηO+ . The layered oxides are found to have no or negligible bandlike carriers, and they cannot be doped n or p type. The electronic conduction proceeds through hopping of hole and/or electron polarons; the ionic conduction occurs through lithium monovacancy and/or divacancy migration mechanisms. Since ηO+ is not stable in the absence of negatively charged lithium vacancies in bulk Li2Mn O3 , the electronic conduction near the start of delithiation is likely to be poor. We suggest that the electronic conduction associated with ηO+ and, hence, the electrochemical performance of Li2Mn O3 can be improved through nanostructuring and/or ion substitution.

  7. Ionic conductivity of the aqueous layer separating a lipid bilayer membrane and a glass support.

    PubMed

    White, Ryan J; Zhang, Bo; Daniel, Susan; Tang, John M; Ervin, Eric N; Cremer, Paul S; White, Henry S

    2006-12-01

    The in-plane ionic conductivity of the approximately 1-nm-thick aqueous layer separating a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer membrane and a glass support was investigated. The aqueous layer conductivity was measured by tip-dip deposition of a POPC bilayer onto the surface of a 20- to 75-microm-thick glass membrane containing a single conical-shaped nanopore and recording the current-voltage (i-V) behavior of the glass membrane nanopore/POPC bilayer structure. The steady-state current across the glass membrane passes through the nanopore (45-480 nm radius) and spreads radially outward within the aqueous layer between the glass support and bilayer. This aqueous layer corresponds to the dominant resistance of the glass membrane nanopore/POPC bilayer structure. Fluorescence recovery after photobleaching measurements using dye-labeled lipids verified that the POPC bilayer maintains a significant degree of fluidity on the glass membrane. The slopes of ohmic i-V curves yield an aqueous layer conductivity of (3 +/- 1) x 10(-3) Omega(-1) cm(-1) assuming a layer thickness of 1.0 nm. This conductivity is essentially independent of the concentration of KCl in the bulk solution (10-4 to 1 M) in contact with the membrane. The results indicate that the concentration and mobility of charge carriers in the aqueous layer between the glass support and bilayer are largely determined by the local structure of the glass/water/bilayer interface. PMID:17129059

  8. Ionic-liquid-based proton conducting membranes for anhydrous H2/Cl2 fuel-cell applications.

    PubMed

    Liu, Sa; Zhou, Li; Wang, Pengjie; Zhang, Fangfang; Yu, Shuchun; Shao, Zhigang; Yi, Baolian

    2014-03-12

    An ionic-liquid-doped poly(benzimidazole) (PBI) proton-conducting membrane for an anhydrous H2/Cl2 fuel cell has been proposed. Compared with other ionic liquids, such as imidazole-type ionic liquids, diethylmethylammonium trifluoromethanesulfonate ([dema][TfO]) showed better electrode reaction kinetics (H2 oxidation and Cl2 reduction reaction at platinum) and was more suitable for a H2/Cl2 fuel cell. PBI polymer and [dema][TfO] were compatible with each other, and the hybrid membranes exhibited high stability and good ionic conductivity, reaching 20.73 mS cm(-1) at 160 °C. We also analyzed the proton-transfer mechanism in this ionic-liquid-based membrane and considered that both proton-hopping and diffusion mechanisms existed. In addition, this composite electrolyte worked well in a H2/Cl2 fuel cell under non-water conditions. This work would give a good path to study the novel membranes for anhydrous H2/Cl2 fuel-cell application. PMID:24490850

  9. Single-layer ionic conduction on carboxyl-terminated silane monolayers patterned by constructive lithography.

    PubMed

    Berson, Jonathan; Burshtain, Doron; Zeira, Assaf; Yoffe, Alexander; Maoz, Rivka; Sagiv, Jacob

    2015-06-01

    Ionic transport plays a central role in key technologies relevant to energy, and information processing and storage, as well as in the implementation of biological functions in living organisms. Here, we introduce a supramolecular strategy based on the non-destructive chemical patterning of a highly ordered self-assembled monolayer that allows the reproducible fabrication of ion-conducting surface patterns (ion-conducting channels) with top -COOH functional groups precisely definable over the full range of length scales from nanometre to centimetre. The transport of a single layer of selected metal ions and the electrochemical processes related to their motion may thus be confined to predefined surface paths. As a generic solid ionic conductor that can accommodate different mobile ions in the absence of any added electrolyte, these ion-conducting channels exhibit bias-induced competitive transport of different ionic species. This approach offers unprecedented opportunities for the realization of designed ion-conducting systems with nanoscale control, beyond the inherent limitations posed by available ionic materials. PMID:25849368

  10. Low Temperature Synthesis of Cubic-phase Fast-ionic Conducting Bi-doped Garnet Solid State Electrolytes

    NASA Astrophysics Data System (ADS)

    Schwanz, Derek K.; Marinero, Ernesto

    We report on the synthesis of cubic-phase fast ionic conducting garnet solid state electrolytes based on LiLaZrO (LLZO) at unprecedented low synthesis temperatures. Ionic conductivities around 1.2 x 10-4 S/cm are readily achieved. Bismuth aliovalent substitution into LLZO utilizing the Pechini processing method is successfully employed to synthesize LiLaZrBiO compounds. Cubic phase LiLaZrBiO powders are generated in the temperature range 650C to 900C in air. In contrast, in the absence of Bi and under identical synthesis conditions, the cubic phase of LiLaZrO is not formed below 750C and a transformation to the poor ionically conducting tetragonal phase is observed at 800C for the undoped compound. The critical role of Bi in lowering the formation temperature of the garnet cubic phase and the improvements in ionic conductivity are elucidated in this work through microstructural and electrochemical studies.

  11. A novel conductance glucose biosensor in ultra-low ionic strength solution triggered by the oxidation of Ag nanoparticles.

    PubMed

    Song, Yonghai; Chen, Jingyi; Liu, Hongyu; Li, Ping; Li, Hongbo; Wang, Li

    2015-09-01

    A simple, sensitive and effective method to detect glucose in ultra-low ionic strength solution containing citrate-capped silver nanoparticles (CCAgNPs) was developed by monitoring the change of solution conductance. Glucose was catalyzed into gluconic acid firstly by glucose oxidase in an O2-saturated solution accompanied by the reduction of O2 into hydrogen peroxide (H2O2). Then, CCAgNPs was oxidized by H2O2 into Ag(+) and the capping regent of citrate was released at the same time. All these resulted Ag(+), gluconic acid and the released citrate would contribute to the increase of solution ionic strength together, leading to a detectable increase of solution conductance. And a novel conductance glucose biosensor was developed with a routine linear range of 0.06-4.0 mM and a suitable detection limit of 18.0 μM. The novel glucose biosensor was further applied in energy drink sample and proven to be suitable for practical system with low ionic strength. The proposed conductance biosensor achieved a significant breakthrough of glucose detection in ultra-low ionic strength media. PMID:26388373

  12. Elucidating Interactions and Conductivity of Newly Synthesised Low Bandgap Polymer with Protic and Aprotic Ionic Liquids

    PubMed Central

    Attri, Pankaj; Lee, Seung-Hyun; Hwang, Sun Woo; Kim, Joong I. L.; Lee, Sang Woo; Kwon, Gi-Chung; Choi, Eun Ha; Kim, In Tae

    2013-01-01

    In this paper, we have examined the conductivity and interaction studies of ammonium and imidazolium based ionic liquids (ILs) with the newly synthesised low bandgap polymer (Poly(2-heptadecyl-4-vinylthieno[3,4-d]thiazole) (PHVTT)). Use of low bandgap polymers is the most suitable way to harvest a broader spectrum of solar radiations for solar cells. But, still there is lack of most efficient low bandgap polymer. In order to solve this problem, we have synthesised a new low bandgap polymer and investigated its interaction with the ILs to enhance its conductivity. ILs may undergo almost unlimited structural variations; these structural variations have attracted extensive attention in polymer studies. The aim of present work is to illustrate the state of art progress of implementing the interaction of ILs (protic and aprotic ILs) with newly synthesised low bandgap polymer. In addition to this, our UV-Vis spectroscopy, confocal Raman spectroscopy and FT-IR spectroscopy results have revealed that all studied ILs (tributylmethylammonium methyl sulfate ([N1444][MeSO4] from ammonium family) and 1-methylimidazolium chloride ([Mim]Cl, and 1-butyl-3-methylimidazolium chloride ([Bmim]Cl from imidazolium family) have potential to interact with polymer. Our semi empirical calculation with help of Hyperchem 7 shows that protic IL ([Mim]Cl) interacts strongly with the low bandgap polymer through the H-bonding. Further, protic ILs shows enhanced conductivity than aprotic ILs in association with low bandgap polymer. This study provides the combined effect of low bandgap polymer and ILs that may generate many theoretical and experimental opportunities. PMID:23874829

  13. Enhancing ionic conductivity in lithium amide for improved energy storage materials

    NASA Astrophysics Data System (ADS)

    Davies, Rosalind A.; Hewett, David R.; Anderson, Paul A.

    2015-03-01

    Non-stoichiometry and bulk cation transport have been identified as key factors in the release and uptake of hydrogen in the Li-N-H system. Amide halide phases have been synthesized that have ionic conductivities several orders of magnitude greater than lithium amide, a faster rate of hydrogen release and elimination of the by-product, ammonia. Here we report the effect of both anion- and cation-doping on the hydrogen desorption properties of lithium amide, focusing in particular on how the presence of chloride anions and magnesium cations affects and controls the structure of the amide and imide compounds at the sub-nanometre level. Reducing the chloride content resulted in new low-chloride rhombohedral phases that contain around half of the chloride present in earlier amide chlorides, but maintained the enhancements seen in hydrogen desorption properties when compared to the halide-free system. These materials may also have potential in a range of other energy applications such as all solid state lithium ion batteries, supercapacitors, and CO2 capture and storage membranes. Invited talk at the 7th International Workshop on Advanced Materials Science and Nanotechnology IWAMSN2014, 2-6 November 2014, Ha Long, Vietnam.

  14. Voltage oscillations and ionic conductances in hair cells isolated from the alligator cochlea.

    PubMed

    Fuchs, P A; Evans, M G

    1988-12-01

    Tall hair cells were isolated by enzymatic and mechanical dissociation from selected regions of the apical half of the alligator (A. mississippiensis) cochlea. Single cells were subjected to voltage-clamp and current-clamp using the tight-seal whole-cell recording technique. Most hair cells isolated from the apex of the cochlea produced slowly regenerative depolarizations or Na action potentials during current injection, whereas hair cells isolated from more basal regions usually produced voltage oscillations (ringing) in response to depolarizing current injection, an indication of electrical resonance. Resonant frequencies ranged from 50 to 157 Hz in different cells. The higher-frequency cells tended to have larger and more rapidly activating outward currents than did the lower-frequency cells. An inward Ca current and an outward Ca-activated K current were present in all hair cells. In addition, an inwardly rectifying current and a small, transient outward current were often seen. Thus, we conclude that an electrical tuning mechanism is present in alligator hair cells. The role of the ionic conductances in shaping hair cell responses to current injection, and the possible contributions of these electrical responses to cochlear function are discussed. PMID:3244125

  15. Conductive polymeric ionic liquids for electroanalysis and solid-phase microextraction.

    PubMed

    Young, Joshua A; Zhang, Cheng; Devasurendra, Amila M; Tillekeratne, L M Viranga; Anderson, Jared L; Kirchhoff, Jon R

    2016-03-01

    Three novel electropolymerizable thiophene-based ionic liquids (ILs) were synthesized and characterized as potential candidates for developing selective extraction media for chemical analysis. Electropolymerization of the bis[(trifluoromethyl)sulfonyl]imide ([NTf2](-)) analogs successfully produced uniform polymeric thin-films on macro- and microelectrode substrates from both vinyl and methylimidazolium IL monomer derivatives. The resultant conducting polymer IL (CPIL) films were characterized by electrochemical methods and found to exhibit attractive behavior towards anionic species while simultaneously providing an exclusion barrier toward cationic species. Thermogravimetric analysis of the thiophene-based IL monomers established a high thermal stability, particularly for the methylimidazolium IL, which was stable until temperatures above 350 °C. Subsequently, the methylimidazolium IL was polymerized on 125 μm platinum wires and utilized for the first time as a sorbent coating for headspace solid-phase microextraction (HS-SPME). The sorbent coating was easily prepared in a reproducible manner, provided high thermal stability, and allowed for the gas chromatographic analysis of polar analytes. The normalized response of the poly[thioph-C6MIm][NTf2]-based sorbent coating exhibited higher extraction efficiency compared to an 85 μm polyacrylate fiber and excellent fiber-to-fiber reproducibility. Therefore, the electropolymerizable thiophene-based ILs were found to be viable new materials for the preparation of sorbent coatings for HS-SPME. PMID:26873467

  16. Ionic conductivity study on electron beam irradiated polyacrylonitrile—polyethylene oxide gel

    NASA Astrophysics Data System (ADS)

    Ma, Yi-Zhun; Pang, Li-Long; Zhu, Ya-Bin; Wang, Zhi-Guang; Shen, Tie-Long

    2011-07-01

    Different mass percent polyacrylonitrile (PAN)—polyethylene oxide (PEO) gels were prepared and irradiated by an electron beam (EB) with energy of 1.0 MeV to the dose ranging from 13 kGy to 260 kGy. The gels were analysed by using Fourier transform infrared spectrum, gel fraction and ionic conductivity (IC) measurement. The results show that the gel is crosslinked by EB irradiation, the crosslinking degree rises with the increasing EB irradiation dose (ID) and the mass percents of both PAN and PEO contribute a lot to the crosslinking; in addition, EB irradiation can promote the IC of PAN—PEO gels. There exists an optimum irradiation dose, at which the IC can increase dramatically. The IC changes of the PAN—PEO gels along with ID are divided into three regions: IC rapidly increasing region, IC decreasing region and IC balanced region. The cause of the change can be ascribed to two aspects, gel capturing electron degree and crosslinking degree. By comparing the IC—ID curves of different mass percents of PAN and PEO in gel, we found that PAN plays a more important role for gel IC promotion than PEO, since addition of PAN in gel causes the IC—ID curve sharper, while addition of PEO in gel causes the curve milder.

  17. Mixed ionic and electronic conducting membranes for hydrogen generation and separation

    NASA Astrophysics Data System (ADS)

    Cui, Hengdong

    Dense mixed ionic and electronic conducting (MIEC) membranes are receiving increasing attention due to their potential for application as gas separation membranes to separate oxygen from air. The objective of this work is to study a novel, chemically-assisted separation process that utilizes oxygen-ion and electron-conducting MIECs for generating and separating hydrogen from steam. This research aims at exploring new routes and materials for high-purity hydrogen production for use in fuel cells and hydrogen-based internal combustion (IC) engines. In this approach, hydrocarbon fuel such as methane is fed to one side of the membrane, while steam is fed to the other side. The MIEC membrane separation process involves steam dissociation and oxidation of the fuel. The oxygen ions formed as a result of steam dissociation are transported across the membrane in a coupled transport process with electrons being transported in the opposite direction. Upon reaching the fuel side of the membrane, the oxygen ions oxidize the hydrocarbon. This process results in hydrogen production on the steam side of the membrane. The oxygen partial pressure gradient across the membrane is the driving force for this process. In this work, a novel, dual-phase composite MIEC membrane system comprising of rare-earth doped ceria with high oxygen ion conductivity and donor-doped strontium titanate with high electronic conductivity were investigated. The chemical diffusion coefficient and surface exchange coefficient have been measured using the electrical conductivity relaxation (ECR) technique. These two parameters control the rate of oxygen permeation across the membrane. The permeation data have been fit with a kinetic model that incorporates oxygen surface exchange on two sides of the membrane and bulk transport of oxygen through the membrane. This material has higher bulk diffusion coefficient and surface exchange reaction rate compared to other known MIEC conductors under the process

  18. Conductance modulation in topological insulator Bi{sub 2}Se{sub 3} thin films with ionic liquid gating

    SciTech Connect

    Son, Jaesung; Banerjee, Karan; Yang, Hyunsoo; Brahlek, Matthew; Koirala, Nikesh; Oh, Seongshik; Lee, Seoung-Ki; Ahn, Jong-Hyun

    2013-11-18

    A Bi{sub 2}Se{sub 3} topological insulator field effect transistor is investigated by using ionic liquid as an electric double layer gating material, leading to a conductance modulation of 365% at room temperature. We discuss the role of charged impurities on the transport properties. The conductance modulation with gate bias is due to a change in the carrier concentration, whereas the temperature dependent conductance change is originated from a change in mobility. Large conductance modulation at room temperature along with the transparent optical properties makes topological insulators as an interesting (opto)electronic material.

  19. Simultaneous improvement in ionic conductivity and flexibility of solid polymer electrolytes for thin film lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Ji, Jianying

    Solid polymer electrolytes (SPEs) provide advantages over liquid electrolytes in terms of safety, reliability, less temperature sensitive, and simplicity of design. With the use of a SPE in lithium batteries, high specific energy and specific power, safe operation, flexibility in packaging, and low cost of fabrication can be expected. However, after 30 years, SPEs have rarely found commercial success due to the low ionic conductivity and/or insufficient mechanical properties, both of which are related to the movement of the polymer chains. Many physical/chemical methods have been exploited to simultaneously create enhancement in ionic conductivity and mechanical properties, and some suggested ways have shown promise. However, the complex strategies have always introduced other challenge issues and incurred extra costs for manufacturing. In such a context, the development of dry solid state electrolytes is the central challenge to be faced worldwide. This thesis deals with the approaches to improving ionic conductivity and mechanical properties simultaneously. The method is to apply two kinds of controllable organic fillers: copolymer and protein. Our work revealed that the commercial available copolymer, poly (ethylene oxide)- block-polyethylene (PEO-b-PE), possesses a capability for enhancing the multiple performances of poly(ethylene oxide)(PEO)-based polymer electrolyte. And the effects of composition and molecular weight of the copolymers on performance of the resulting SPEs were examined. It was found that increasing the PE block percentage in the copolymer resulted in a significant increase in both ionic conductivity and mechanical properties, while increasing the molecular weight of the copolymer resulted in better mechanical properties, and an identical ionic conductivity. A rubber-like, soy protein-based SPE (s-SPE)was obtained by employing soy protein isolate (SPI), a soy product usually used as rigid fillers for enhancing mechanical properties of

  20. Role of thickness and density on the ionic conductivity of fuel cell membrane prepared with supramolecular structure

    NASA Astrophysics Data System (ADS)

    Hendrana, Sunit; Pudjiastuti, Sri; Chaldun, Elsy Rahimi; Widodo, Henry; Rochliadi, Achmad; Handono, Mohammad Arief

    2016-02-01

    Membrane in Polymer Electrolyte Membrane Fuel Cell (PEMFC) plays important role in electrochemical reaction within, which allow ion to pass, but prevent electron to pass through. Thus, membrane plays critical role in facilitating electrochemical reaction. Effort have been made to make membrane other than Nafion®. The new mentioned membrane is prepared by constructing supramolecular structure arise from hydrogen bond between sulfonated polystyrene (sPS) and polyethylene-graft-maleic anhydride (PE-g-MAH). Therefore, the understanding of new membrane's ability to conduct ion will be investigated with respect to its thickness. The immediate results show that thinner membrane gets better in the expected properties. This fact could be observed from the value of ionic conductivity which reaches a value of 10-5 S.cm-1. The initial results indicate thickness of the membrane affect water uptake into membrane, and the dense of membrane could also alter the ionic conductivity properties.

  1. Electronic and ionic co-conductive coating on the separator towards high-performance lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Wang, Qingsong; Wen, Zhaoyin; Yang, Jianhua; Jin, Jun; Huang, Xiao; Wu, Xiangwei; Han, Jinduo

    2016-02-01

    A thin coating layer composed of the mixture of the electronic conductive carbon and lithium ionic conductive inorganic solid electrolyte was introduced on one side of the routine Celgard separator. This functional coated separator is designed to localize the polysulfides on the cathode side and act as an upper current collector for further utilization of sulfur while alleviating the ion conductivity decrease induced by the dissolved polysulfides in the discharge and charge process. Moreover, catalytic conversion of polysulfides by the solid state highly ionic conductor is observed. This brings significant improvement in battery specific capacity and cycling stability, with an initial discharge capacity of 1247 mA h g-1 and a reversible capacity of 830 mA h g-1 after 150 extended cycles at 0.5 C rate. Rest-testing proves a low self-discharge and excellent capacity retention of the modified cells.

  2. Reusable electrochemical sensor for bisphenol A based on ionic liquid functionalized conducting polymer platform.

    PubMed

    Wang, Jhe-Yi; Su, Ya-Ling; Wu, Bo-Hao; Cheng, Shu-Hua

    2016-01-15

    The toxicity of bisphenol A (BPA) has attracted considerable attention, and the reported electrochemical sensors for BPA need further improvement in reusability due to serious surface fouling. In this study, a composite film is designed aiming to provide both an accurate and repeatable platform for BPA determination. The conducting poly(3,4-ethylenedioxythiophene) film (PEDOT) and ionic liquid 1-butyl-3-methylimidazolium bromide (BMIMBr) were modified onto screen-printed carbon electrodes (SPCE) by electropolymerization and drop/spin methods, respectively. The surface characteristics of the composite film were characterized by field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and surface water contact angle experiments. The composite film-modified electrodes exhibited a linear response to BPA in the range of 0.1-500µM in pH 7.0 phosphate buffer solution (PBS) under optimized flow-injection amperometry. The method sensitivity and detection limit (S/N=3) were 0.2661μA μM(-1) (2.419μA μM(-1)cm(-2)) and 0.02µM, respectively. A relative standard deviation of 1.95% was obtained for 77 successive measurements of 10µM BPA, and the repeatability outperformed previously reported work. The proposed method was applied to detect BPA released from plastic water bottles using the standard addition method, and satisfactory recoveries were obtained. The electrochemical assay was validated by comparison with the chromatographic method, and the results showed good agreement between the two methods. PMID:26592583

  3. Molecular mechanics of DNA bricks: in situ structure, mechanical properties and ionic conductivity

    NASA Astrophysics Data System (ADS)

    Slone, Scott Michael; Li, Chen-Yu; Yoo, Jejoong; Aksimentiev, Aleksei

    2016-05-01

    The DNA bricks method exploits self-assembly of short DNA fragments to produce custom three-dimensional objects with subnanometer precision. In contrast to DNA origami, the DNA brick method permits a variety of different structures to be realized using the same library of DNA strands. As a consequence of their design, however, assembled DNA brick structures have fewer interhelical connections in comparison to equivalent DNA origami structures. Although the overall shape of the DNA brick objects has been characterized and found to conform to the features of the target designs, the microscopic properties of DNA brick objects remain yet to be determined. Here, we use the all-atom molecular dynamics method to directly compare the structure, mechanical properties and ionic conductivity of DNA brick and DNA origami structures different only by internal connectivity of their consistituent DNA strands. In comparison to equivalent DNA origami structures, the DNA brick structures are found to be less rigid and less dense and have a larger cross-section area normal to the DNA helix direction. At the microscopic level, the junction in the DNA brick structures are found to be right-handed, similar to the structure of individual Holliday junctions (HJ) in solution, which contrasts with the left-handed structure of HJ in DNA origami. Subject to external electric field, a DNA brick plate is more leaky to ions than an equivalent DNA origami plate because of its lower density and larger cross-section area. Overall, our results indicate that the structures produced by the DNA brick method are fairly similar in their overall appearance to those created by the DNA origami method but are more compliant when subject to external forces, which likely is a consequence of their single crossover design.

  4. Gold-ionic liquid nanofluids with preferably tribological properties and thermal conductivity

    PubMed Central

    2011-01-01

    Gold/1-butyl-3-methylimidazolium hexafluorophosphate (Au/[Bmim][PF6]) nanofluids containing different stabilizing agents were fabricated by a facile one-step chemical reduction method, of which the nanofluids stabilized by cetyltrimethylammonium bromide (CTABr) exhibited ultrahighly thermodynamic stability. The transmission electron microscopy, UV-visible absorption, Fourier transform infrared, and X-ray photoelectron characterizations were conducted to reveal the stable mechanism. Then, the tribological properties of these ionic liquid (IL)-based gold nanofluids were first investigated in more detail. In comparison with pure [Bmim][PF6] and the nanofluids possessing poor stability, the nanofluids with high stability exhibited much better friction-reduction and anti-wear properties. For instance, the friction coefficient and wear volume lubricated by the nanofluid with rather low volumetric concentration (1.02 × 10-3%) stabilized by CTABr under 800 N are 13.8 and 45.4% lower than that of pure [Bmim][PF6], confirming that soft Au nanoparticles (Au NPs) also can be excellent additives for high performance lubricants especially under high loads. Moreover, the thermal conductivity (TC) of the stable nanofluids with three volumetric fraction (2.55 × 10-4, 5.1 × 10-4, and 1.02 × 10-3%) was also measured by a transient hot wire method as a function of temperature (33 to 81°C). The results indicate that the TC of the nanofluid (1.02 × 10-3%) is 13.1% higher than that of [Bmim][PF6] at 81°C but no obvious variation at 33°C. The conspicuously temperature-dependent and greatly enhanced TC of Au/[Bmim][PF6] nanofluids stabilized by CTABr could be attributed to micro-convection caused by the Brownian motion of Au NPs. Our results should open new avenues to utilize Au NPs and ILs in tribology and the high-temperature heat transfer field. PMID:21711789

  5. Effects of ionic conduction on hydrothermal hydrolysis of corn starch and crystalline cellulose induced by microwave irradiation.

    PubMed

    Tsubaki, Shuntaro; Oono, Kiriyo; Onda, Ayumu; Yanagisawa, Kazumichi; Mitani, Tomohiko; Azuma, Jun-ichi

    2016-02-10

    This study investigated the effects of ionic conduction of electrolytes under microwave field to facilitate hydrothermal hydrolysis of corn starch and crystalline cellulose (Avicel), typical model biomass substrates. Addition of 0.1M NaCl was effective to improve reducing sugar yield by 1.61-fold at unit energy (kJ) level. Although Avicel cellulose was highly recalcitrant to hydrothermal hydrolysis, addition of 0.1M MgCl2 improved reducing sugar yield by 6.94-fold at unit energy (kJ). Dielectric measurement of the mixture of corn starch/water/electrolyte revealed that ionic conduction of electrolytes were strongly involved in facilitating hydrothermal hydrolysis of polysaccharides. PMID:26686168

  6. Ionic conductivity of single crystals of sodium aluminium germanate Na8Al6Ge6O24(OH)2

    NASA Astrophysics Data System (ADS)

    Sorokin, N. I.

    2015-09-01

    The electrical conductivity of single crystals of sodium aluminium germanate Na8Al6Ge6O24(OH)2 (cubic system, sp. gr. ), which is a germanium analog of sodalite, has been studied in the temperature range of 468‒758 K. Na8Al6Ge6O24(OH)2 crystals are obtained by hydrothermal synthesis (temperature in the dissolution zone 573‒673 K, temperature gradient ~1.5 K/cm). NaAlO2 and GeO2В oxides are used as starting reagents; NaOH hydroxide serves as a solvent. The ionic conductivity of Na8Al6Ge6O24(OH)2 crystals is 2 × 10-4 S/cm (at 758 K); the activation energy of ionic transfer is 0.46 ± 0.03 eV.

  7. Ionic Conductivity of Block Copolymer Electrolytes in the Vicinity of Order−Disorder and Order−Order Transitions

    SciTech Connect

    Wanakule, Nisita S.; Panday, Ashoutosh; Mullin, Scott A.; Gann, Eliot; Hexemer, Alex; Balsara, Nitash P.

    2009-09-15

    Order-order and order-disorder phase transitions in mixtures of poly(styrene-block-ethylene oxide) (SEO) copolymers and lithium bis(trifluoromethylsulfonimide) (LiTFSI), a common lithium salt used in polymer electrolytes, were studied using a combination of small-angle X-ray scattering (SAXS), birefringence, and ac impedance spectroscopy. The SEO/LiTFSI mixtures exhibit lamellar, hexagonally packed cylinders, and gyroid microphases. The molecular weight of the blocks and the salt concentration was adjusted to obtain order-order and order-disorder transition temperatures within the available experimental window. The ionic conductivities of the mixtures, normalized by the ionic conductivity of a 20 kg/mol homopolymer PEO sample at the salt concentration and temperature of interest, were independent of temperature, in spite of the presence of the above-mentioned phase transitions.

  8. Multilayered YSZ/GZO films with greatly enhanced ionic conduction for low temperature solid oxide fuel cells

    SciTech Connect

    Li, Bin; Zhang, Jiaming; Kaspar, Tiffany C.; Shutthanandan, V.; Ewing, Rodney C.; Lian, Jie

    2012-11-21

    Strain confinement in heterostructured films significantly affects ionic conductivity of the electrolytes for solid oxide fuel cells based on a multi-layered design strategy. Nearly ideal tensile strain can be achieved by a dedicated manipulation of the lattice mismatch between adjacent layers and fine control of the layer thicknesses to minimize the formation of dislocations and thus to achieve optimized ionic conduction. This strategy was demonstrated by a model system of multilayered 8 mol%Y2O3 stabilized ZrO2 (YSZ) with Gd2Zr2O7 (GZO) films, which were epitaxially grown on Al2O3 (0001) substrates by pulsed laser deposition (PLD) with the {111} planes of YSZ/GZO along the Al2O3 [0 1 -1 0] direction. The tensile strain (3%) resulting from the lattice mismatch can be confined in individual YSZ layers with the formation of a coherent, dislocation-free interface upon the manipulation of the layer thickness below a critical value, e.g., down to 5 nm. The strained heterostructure displays a two order-of-magnitude increase in oxide-ion conductivity as compared with bulk YSZ, and a high ionic conductivity of 0.01 S cm-1 at 475 °C can be achieved, five times greater than that of Gd-doped ceria/zirconia. The approach of strain confinement by fine control of lattice mismatch and layer thickness represents a promising strategy in developing advanced electrolytes enabling the miniaturization of solid-state ionic devices that can be operated at low temperatures below 500 °C.

  9. Ionic liquids by proton transfer: vapor pressure, conductivity, and the relevance of DeltapKa from aqueous solutions.

    PubMed

    Yoshizawa, Masahiro; Xu, Wu; Angell, C Austen

    2003-12-17

    We describe the behavior of the conductivity, viscosity, and vapor pressure of various binary liquid systems in which proton transfer occurs between neat Brönsted acids and bases to form salts with melting points below ambient. Such liquids form an important subgroup of the ionic liquid (IL) class of reaction media and electrolytes on which so much attention is currently being focused. Such "protic ionic liquids" exhibit a wide range of thermal stabilities. We find a simple relation between the limit set by boiling, when the total vapor pressure reaches one atm, and the difference in pK(a) value for the acid and base determined in dilute aqueous solutions. For DeltapK(a) values above 10, the boiling point elevation becomes so high (>300 degrees C) that preemptive decomposition prevents its measurement. The completeness of proton transfer in such cases is suggested by the molten salt-like values of the Walden product, which is used to distinguish good from poor ionic liquids. For the good ionic liquids, the hydrogen bonding of acid molecules to the proton-transfer anion is strong enough that boiling points, but not melting points, may maximize at the hydrogen-bonded dianion composition. High boiling liquids of this type constitute an interesting class of high-temperature protonic acid that may have high-temperature fuel cell applications. PMID:14664586

  10. High Conductivity, High Strength Solid Electrolytes Formed by in Situ Encapsulation of Ionic Liquids in Nanofibrillar Methyl Cellulose Networks.

    PubMed

    Mantravadi, Ramya; Chinnam, Parameswara Rao; Dikin, Dmitriy A; Wunder, Stephanie L

    2016-06-01

    Strong, solid polymer electrolyte ion gels, with moduli in the MPa range, a capacitance of 2 μF/cm(2), and high ambient ionic conductivities (>1 × 10(-3) S/cm), all at room temperature, have been prepared from butyl-N-methyl pyrrolidinium bis(trifluoromethylsulfonyl) imide (PYR14TFSI) and methyl cellulose (MC). These properties are particularly attractive for supercapacitor applications. The ion gels are prepared by codissolution of PYR14TFSI and MC in N,N-dimethylformamide (DMF), which after heating and subsequent cooling form a gel. Evaporation of DMF leave thin, flexible, self-standing ion gels with up to 97 wt % PYR14TFSI, which have the highest combined moduli and ionic conductivity of ion gels to date, with an excellent electrochemical stability window (5.6 V). These favorable properties are attributed to the immiscibility of PYR14TFSI in MC, which permits the ionic conductivity to be independent of the MC at low MC content, and the in situ formation of a volume spanning network of semicrystalline MC nanofibers, which have a high glass transition temperature (Tg = 190 °C) and remain crystalline until they degrade at 300 °C. PMID:27153318

  11. Size effect of cubic ZrO2 nanoparticles on ionic conductivity of polyethylene oxide-based composite

    NASA Astrophysics Data System (ADS)

    Dey, Arup; Ghoshal, Tandra; Karan, S.; De, S. K.

    2011-08-01

    A solvent free solid composite polymer electrolyte (SCPE) film consisting of high molecular mass polyethylene oxide (PEO) with sodium perchlorate (NaClO4) as electrolytic salt and cubic zirconium oxide (ZrO2) nanoparticles as the filler has been prepared by solution casting technique to influence the transport properties. X-ray diffraction and Fourier transform infrared spectroscopy confirm the formation of the SCPE film, whereas atomic force microscopy reveals the presence of a network of interconnected nanoparticles forming uniform surface feature of relatively low roughness. The highest ionic conductivity (σ = 6.96 × 10-5 S-cm-1) for PEO25 - NaClO4 with 5 wt. % ZrO2 nanoparticles of the smallest size 4.5 nm is an order of magnitude higher than the pure PEO25 - NaClO4 at room temperature. The conductivity enhancement is due to the creation of additional sites and favorable conduction pathways for ionic transport through Lewis acid-base type interactions between the polar surface groups of the ceramic filler and the electrolyte ionic species.

  12. Acetylcholinesterase biosensor for carbamate drugs based on tetrathiafulvalene-tetracyanoquinodimethane/ionic liquid conductive gels.

    PubMed

    Zamfir, Lucian-Gabriel; Rotariu, Lucian; Bala, Camelia

    2013-08-15

    A highly sensitive acetylcholinesterase biosensor was developed for detection of carbamate drugs based on TTF-TCNQ-ionic liquid gel thiocholine sensor. The TTF-TCNQ-ionic/ionic liquid gel was characterized by FT-IR and scanning electron microscopy. The electrocatalytic behavior of TTF-TCNQ-ionic liquid gels toward oxidation of thiocholine was thoroughly investigated. 1-Ethyl-3-methylimidazolium tetracyanoborate gel based sensor allowed amperometric detection of thiocholine at +400 mV vs. Ag/AgCl with a high sensitivity of 55.9±1.2 μA mM(-1)cm(-2) and a low detection limit equal to 7.6 μM. The catalytic rate constant and diffusion constant of thiocholine were estimated from chronoamperometric data. The proposed biosensor based on AChE immobilized in sol-gel matrix was used for the detection of two carbamate therapeutic drugs. Very low detection limits of 26 pM eserine and 0.3 nM neostigmine were achieved. The analysis of spiked tap water proved the biosensor capability to be used as a screening method for detection of carbamate drugs in wastewaters. PMID:23500478

  13. Enhanced ionic conductivity of Ce0.8Sm0.2O2-δ by Sr addition

    NASA Astrophysics Data System (ADS)

    Gao, Zhan; Liu, Xingmin; Bergman, Bill; Zhao, Zhe

    2012-06-01

    Sm and Sr co-doped ceria-based electrolyte with compositions of Ce0.8(Sm1-xSrx)0.2O2-δ (x = 0, 0.3, 0.5, 0.7) are synthesized and investigated with the aim of improving the electrical properties of Ce0.8Sm0.2O2-δ. X-ray diffraction (XRD) and electron microscope (SEM and TEM) techniques are employed to characterize the microstructure of powders and sintered pellets. The ionic conductivity has been examined by the A.C. impedance spectroscopy in air. The Ce0.8(Sm0.7Sr0.3)0.2O2-δ exhibits the highest bulk conductivity among the series, which can be mainly ascribed to the increase of oxygen vacancy concentration. The specific grain-boundary conductivities are observed to increase with the Sr doping content up to x = 0.5. Further increase in Sr concentration will lead to reduced specific grain-boundary conductivities. The total conductivities of all Sm and Sr co-doped ceria are higher than that of Ce0.8Sm0.2O1.9. The results indicate that Sr co-doping opens a new avenue to improve ionic conductivity in Ce0.8Sm0.2O1.9.

  14. Cellulose acetate-lithium bis(trifluoromethanesulfonyl)imide solid polymer electrolyte: ATR-FTIR and ionic conductivity behavior

    NASA Astrophysics Data System (ADS)

    Mohd Razalli, Siti Masyitah; Sheikh Mohd Saaid, Siti Irma Yuana; Marwan Ali, Ab Malik; Hassan, Oskar Hasdinor; Yahya, Muhd Zu Azhan

    2015-05-01

    Solid polymer electrolytes (SPEs) based on cellulose acetate (CA) doped with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt are prepared by solution cast technique. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy of the polymer salt complexes are recorded in the frequency range between 400 cm-1 and 4000 cm-1. The shifting of carbonyl band (C=O) at 1737 cm-1 to a lower wavenumber confirms the occurrence of complexation between the polymer and the salt. The electrochemical impedance spectroscopy (EIS) analysis discovered that the film with 25 wt.% of salt shows the highest ionic conductivity at room temperature. The change in real dielectric permittivity (ɛr) as a function of frequency at different salt concentrations which exhibits a dispersive behavior at low frequencies and decays at higher frequencies, shows the electrode polarization and space charge effect. The real modulus formalism (Mr) analysis shows that the polymer electrolytes in this work are ionic conductors.

  15. Effect of epoxidation level on thermal properties and ionic conductivity of epoxidized natural rubber solid polymer nanocomposite electrolytes

    NASA Astrophysics Data System (ADS)

    Harun, Fatin; Chan, Chin Han; Sim, Lai Har; Winie, Tan; Zainal, Nurul Fatahah Asyqin

    2015-08-01

    Effect of epoxide content on the thermal and conductivity properties of epoxidized natural rubber (ENR) solid polymer nanocomposite electrolytes was investigated. Commercial available epoxidized natural rubber having 25 (ENR25) and 50 mole% (ENR50) epoxide, respectively were incorporated with lithium perchlorate (LiClO4) salt and titanium dioxide (TiO2) nanofiller via solution casting method. The solid polymer nanocomposite electrolytes were characterized by differential scanning calorimetry (DSC) and impedance spectroscopy (IS) for their thermal properties and conductivity, respectively. It was evident that introduction of LiClO4 causes a greater increase in glass transition temperature (Tg) and ionic conductivity of ENR50 as compared to ENR25. Upon addition of TiO2 in ENR/LiClO4 system, a remarkable Tg elevation was observed for both ENRs where ENR50 reveals a more pronounced changes. It is interesting to note that they exhibit different phenomenon in ionic conductivity with TiO2 loading where ENR25 shows enhancement of conductivity while ENR50 shows declination.

  16. Effect of epoxidation level on thermal properties and ionic conductivity of epoxidized natural rubber solid polymer nanocomposite electrolytes

    SciTech Connect

    Harun, Fatin; Chan, Chin Han; Winie, Tan; Sim, Lai Har; Zainal, Nurul Fatahah Asyqin

    2015-08-28

    Effect of epoxide content on the thermal and conductivity properties of epoxidized natural rubber (ENR) solid polymer nanocomposite electrolytes was investigated. Commercial available epoxidized natural rubber having 25 (ENR25) and 50 mole% (ENR50) epoxide, respectively were incorporated with lithium perchlorate (LiClO{sub 4}) salt and titanium dioxide (TiO{sub 2}) nanofiller via solution casting method. The solid polymer nanocomposite electrolytes were characterized by differential scanning calorimetry (DSC) and impedance spectroscopy (IS) for their thermal properties and conductivity, respectively. It was evident that introduction of LiClO{sub 4} causes a greater increase in glass transition temperature (T{sub g}) and ionic conductivity of ENR50 as compared to ENR25. Upon addition of TiO{sub 2} in ENR/LiClO{sub 4} system, a remarkable T{sub g} elevation was observed for both ENRs where ENR50 reveals a more pronounced changes. It is interesting to note that they exhibit different phenomenon in ionic conductivity with TiO{sub 2} loading where ENR25 shows enhancement of conductivity while ENR50 shows declination.

  17. An experimental study of perovskite-structured mixed ionic- electronic conducting oxides and membranes

    NASA Astrophysics Data System (ADS)

    Zeng, Pingying

    In recent decades, ceramic membranes based on mixed ionic and electronic conducting (MIEC) perovskite-structured oxides have received many attentions for their applications for air separation, or as a membrane reactor for methane oxidation. While numerous perovskite oxide materials have been explored over the past two decades; there are hardly any materials with sufficient practical economic value and performance for large scale applications, which justifies continuing the search for new materials. The main purposes of this thesis study are: (1) develop several novel SrCoO3-delta based MIEC oxides, SrCoCo1-xMxO3-delta, based on which membranes exhibit excellent oxygen permeability; (2) investigate the significant effects of the species and concentration of the dopants M (metal ions with fixed valences) on the various properties of these membranes; (3) investigate the significant effects of sintering temperature on the microstructures and performance of oxygen permeation membranes; and (4) study the performance of oxygen permeation membranes as a membrane reactor for methane combustion. To stabilize the cubic phase structure of the SrCoO3-delta oxide, various amounts of scandium was doped into the B-site of SrCoO 3-delta to form a series of new perovskite oxides, SrScxCoCo 1-xO3-delta (SSCx, x = 0-0.7). The significant effects of scandium-doping concentration on the phase structure, electrical conductivity, sintering performance, thermal and structural stability, cathode performance, and oxygen permeation performance of the SSCx membranes, were systematically studied. Also for a more in-depth understanding, the rate determination steps for the oxygen transport process through the membranes were clarified by theoretical and experimental investigation. It was found that only a minor amount of scandium (5 mol%) doping into the B-site of SrCoO3-delta can effectively stabilize the cubic phase structure, and thus significantly improve the electrical conductivity and

  18. Ionic transport in mixed-alkali glasses: hop through the distinctly different conduction pathways of low dimensionality

    NASA Astrophysics Data System (ADS)

    Rim, Young-Hoon; Kim, Mac; Kim, Jeong Eun; Yang, Yong Suk

    2013-02-01

    A feature common to various solids, including single-alkali (SA) and mixed-alkali (MA) glasses, is a frequency-dependent ionic conductivity that shows the power law and the linear behavior with frequency. In spite of the advances made, the origin of this behavior continues to be controversial. We report our measurements of the conductivity of a series of MA borate glasses (Li1-xAx)2B4O7 (A = Na, K, Rb, Cs; 0 ⩽ x ⩽ 1.0) in the frequency range of 100 Hz-15 MHz and in the temperature range from 300 K to less than the glass transition temperature Tg . Using a self-similar spatial structure model, we show that the real process of ionic transport in the SA and the MA glass systems can be described by the fractional kinetic equations containing non-integer integration/differentiation operators. In the procedure of a systematic deduction of the ionic transport in glass systems, we obtained two important insights. Firstly, the time-dependent conductivity σ(t) ˜ exp (t/τ c)α reproduces the empirical expression of mean square displacement of the mobile ions ˜tα as a first approximation of ions moving through the fractal pathway and leads to the universal power-law behavior at frequency scales. Secondly, the modified fractional Rayleigh equation with a repulsive interaction provides a quantitative explanation for experimental findings on the SA and the MA glasses. Investigations on the power-law exponent β in the SA and the MA borate glasses indicate that the ions move through the different branches of the fractal structured conduction pathways due to the structural character, associated with a site mismatch effect, and Coulomb blockade by the randomly distributed ions.

  19. The role of MgBr2 to enhance the ionic conductivity of PVA/PEDOT:PSS polymer composite

    PubMed Central

    Sheha, Eslam M.; Nasr, Mona M.; El-Mansy, Mabrouk K.

    2014-01-01

    A solid polymer electrolyte system based on poly(vinyl alcohol) (PVA) and poly(3,4-Etylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) complexed with magnesium bromide (MgBr2) salt was prepared using solution cast technique. The ionic conductivity is observed to increase with increasing MgBr2 concentration. The maximum conductivity was found to be 9.89 × 10−6 S/cm for optimum polymer composite film (30 wt.% MgBr2) at room temperature. The increase in the conductivity is attributed to the increase in the number of ions as the salt concentration is increased. This has been proven by dielectric studies. The increase in conductivity is also attributable to the increase in the fraction of amorphous region in the electrolyte films as confirmed by their structural, thermal, electrical and optical properties. PMID:26199746

  20. Monitoring the ionic content of exhaled breath condensate in various respiratory diseases by capillary electrophoresis with contactless conductivity detection.

    PubMed

    Greguš, Michal; Foret, František; Kindlová, Dagmar; Pokojová, Eva; Plutinský, Marek; Doubková, Martina; Merta, Zdeněk; Binková, Ilona; Skřičková, Jana; Kubáň, Petr

    2015-06-01

    The analysis of an ionic profile of exhaled breath condensate (EBC) by capillary electrophoresis with contactless conductivity detection and double opposite end injection, is demonstrated. A miniature sampler made from a 2 ml syringe and an aluminium cooling cylinder was used for the fast collection of EBC (under one minute). Analysis of the collected EBC was performed in a 60 mM 2-(N-morpholino)ethanesulfonic acid, 60 mM L-histidine background electrolyte with 30 µM cetyltrimethylammonium bromide and 2 mM 18-crown-6 at pH 6, and excellent repeatability of migration times (RSD  <1.3% (n = 7)) and peak areas (RSD  <  7% (n = 7)) of 14 ions (inorganic anions, cations and organic acids) was obtained. It is demonstrated that the analysis of EBC samples obtained from patients with various respiratory diseases (chronic obstructive pulmonary disease, asthma, pulmonary fibrosis, sarcoidosis, cystic fibrosis) is possible in less than five minutes and the ionic profile can be compared with the group of healthy individuals. The analysis of the ionic profile of EBC samples provides a set of data in which statistically significant differences among the groups of patients could be observed for several clinically relevant anions (nitrite, nitrate, acetate, lactate). The developed collection system and method provides a highly reproducible and fast way of collecting and analyzing EBC, with future applicability in point-of-care diagnostics. PMID:25944821

  1. Ionic Conductivity and Air Stability of Al-Doped Li₇La₃Zr₂O₁₂ Sintered in Alumina and Pt Crucibles.

    PubMed

    Xia, Wenhao; Xu, Biyi; Duan, Huanan; Guo, Yiping; Kang, Hongmei; Li, Hua; Liu, Hezhou

    2016-03-01

    Li7La3Zr2O12 (LLZO) is a promising electrolyte material for all-solid-state battery due to its high ionic conductivity and good stability with metallic lithium. In this article, we studied the effect of crucibles on the ionic conductivity and air stability by synthesizing 0.25Al doped LLZO pellets in Pt crucibles and alumina crucibles, respectively. The results show that the composition and microstructure of the pellets play important roles influencing the ionic conductivity, relative density, and air stability. Specifically, the 0.25Al-LLZO pellets sintered in Pt crucibles exhibit a high relative density (∼96%) and high ionic conductivity (4.48 × 10(-4) S cm(-1)). The ionic conductivity maintains 3.6 × 10(-4) S cm(-1) after 3-month air exposure. In contrast, the ionic conductivity of the pellets from alumina crucibles is about 1.81 × 10(-4) S cm(-1) and drops to 2.39 × 10(-5) S cm(-1) 3 months later. The large grains and the reduced grain boundaries in the pellets sintered in Pt crucibles are favorable to obtain high ionic conductivity and good air stability. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy results suggest that the formation of Li2CO3 on the pellet surface is probably another main reason, which is also closely related to the relative density and the amount of grain boundary within the pellets. This work stresses the importance of synthesis parameters, crucibles included, to obtain the LLZO electrolyte with high ionic conductivity and good air stability. PMID:26859158

  2. Electrochemical activity and high ionic conductivity of lithium copper pyroborate Li6CuB4O10.

    PubMed

    Strauss, Florian; Rousse, Gwenaëlle; Alves Dalla Corte, Daniel; Ben Hassine, Mohamed; Saubanère, Matthieu; Tang, Mingxue; Vezin, Hervé; Courty, Matthieu; Dominko, Robert; Tarascon, Jean-Marie

    2016-06-01

    In the search for new cathode materials for Li-ion batteries, borate (BO3(3-)) based compounds have gained much interest during the last two decades due to the low molecular weight of the borate polyanions which leads to active materials with increased theoretical capacities. In this context we herein report the electrochemical activity versus lithium and the ionic conductivity of a diborate or pyroborate B2O5(4-) based compound, Li6CuB4O10. By combining various electrochemical techniques with in situ X-ray diffraction, we show that this material can reversibly insert/deinsert limited amounts of lithium (∼0.3 Li(+)) in a potential window ranging from 2.5 to 4.5 V vs. Li(+)/Li(0). We demonstrate, via electron paramagnetic resonance (EPR), that such an electrochemical activity centered near 4.25 V vs. Li(+)/Li(0) is associated with the Cu(3+)/Cu(2+) redox couple, confirmed by density functional theory (DFT) calculations. Another specificity of this compound lies in its different electrochemical behavior when cycled down to 1 V vs. Li(+)/Li(0) which leads to the extrusion of elemental copper via a conversion type reaction as deduced by transmission electron microscopy (TEM). Lastly, we probe the ionic conductivity by means of AC and DC impedance measurements as a function of temperature and show that Li6CuB4O10 undergoes a reversible structural transition around 350 °C, leading to a surprisingly high ionic conductivity of ∼1.4 mS cm(-1) at 500 °C. PMID:27189653

  3. Influence of Al2O3 on the ionic conductivity of plasticized PVC-PEG blend polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Ravindran, D.; Vickraman, P.

    2016-05-01

    Polymer electrolytes with PVC-PEG blend as host matrix and LiClO4 as dopant salt was prepared through conventional solution casting method. To enhance the conductivity propylene carbonate (PC) was used as plasticizer. The influence of ceramic filler Al2O3 on the conductivity of the electrolyte films were studied by varying the (PVC: Al2O3) ratio. The films were subjected to XRD, complex impedance analysis and SEM analysis. The XRD studies reveal a marginal increase in the amorphous phase of the electrolyte films due to the incorporation of filler. The AC impedance analysis shows the dependency of ionic conductivity on the content (wt %) of filler and exhibit a maximum at 4 wt% filler. The SEM analysis depicts the occurrence of phase separation in electrolyte which is attributed to the poor solubility of polymer PVC in the liquid electrolyte.

  4. Electro-osmotic pumping and ionic conductance measurements in porous membranes

    NASA Astrophysics Data System (ADS)

    Vajandar, Saumitra K.

    fabricated out of heavily doped silicon wafers using microfabrication techniques. The pores have a 15 mum x 40 mum cross sectional area with a thin layer of SiNx coated conformally over the pores by low-pressure chemical vapor deposition (LPCVD). The range of gate voltages applied was from -45 V to + 40 V. For Vg < 0, current leakage through the SiNx film was observed whereas negligible leaking current was detected for Vg > 0. This current rectification effect is known as electrolytic rectification, as a result of which a greater EO flow control, nearly 70% reduction in flow velocity, was observed for positive gate bias and 15% flow velocity enhancement under negative gate bias of similar magnitude. Ionic current is closely related to EO flow and the last part of the dissertation is devoted to ionic current measurements through commercially made nanoporous glass membranes (4 nm average pore diameter). This study was motivated by a molecular dynamics (MD) simulation highlighting an unusual ionic current trend in a 3 nm diameter pore having high surface charge density at high electrolyte concentrations. The ionic current was measured with two kinds of electrolytes---NaCl and KCl. The experimental results, however, indicated an expected linear trend of ionic current for electrolyte concentrations beyond 1 M, contrary to the results of the MD simulation study, which was attributed to a low surface charge density measured for the porous glass membranes.

  5. Membrane dipole potential modulates proton conductance through gramicidin channel: movement of negative ionic defects inside the channel.

    PubMed Central

    Rokitskaya, Tatyana I; Kotova, Elena A; Antonenko, Yuri N

    2002-01-01

    The effect of membrane dipole potential on gramicidin channel activity in bilayer lipid membranes (BLMs) was studied. Remarkably, it appeared that proton conductance of gramicidin A (gA) channels responded to modulation of the dipole potential oppositely as compared with gA alkali metal cation conductance. In particular, the addition of phloretin, known to reduce the membrane dipole potential, resulted in a decrease in gA proton conductance, on one hand, and an increase in gA alkali metal conductance, on the other hand, whereas 6-ketocholestanol, the agent raising the membrane dipole potential, provoked an increase in gA proton conductance as opposed to a decrease in the alkali metal cation conductance. The peculiarity of the 6-ketocholestanol effect consisted in its dependence on the H(+) concentration. The experiments with the impermeant dipolar compound, phloridzin, showed that the response of proton transport through gramicidin channels to varying the membrane dipole potential did not change qualitatively if the dipole potential of only one monolayer or both monolayers of the BLM was altered. In contrast to gA proton conductance, the single-channel lifetime changed similarly with varying the membrane dipole potential, regardless of the kind of permeant cations (protons or potassium ions). The results of this study could be tentatively accounted for by an assumption that one of the rate-limiting steps of proton conduction through gramicidin channels represents, in fact, movement of negatively charged species (negative ionic defects) across a membrane. PMID:11806928

  6. Monte Carlo simulation of diffusion and ionic conductivity in a simple cubic random alloy via the interstitialcy mechanism

    NASA Astrophysics Data System (ADS)

    Wilangowski, F.; Stolwijk, N. A.

    2015-12-01

    This Monte Carlo study deals with mass and charge transport in binary ionic alloys governed by interstitialcy defects acting as diffusion vehicles. In particular, we calculate tracer correlation factors {{f}\\text{A}} and {{f}\\text{B}} in a simple cubic random alloy AB for diffusion via the collinear interstitialcy mechanism as a function of composition and jump frequency ratio {{w}\\text{A}}\\ll {{w}\\text{B}} . Interstitialcy correlation factors {{f}\\text{I}} , which play a crucial role in the interpretation of ion-conductivity data, are also determined. The evaluation of partial correlation factors provides insight into the types of jumps that mostly contribute to the different transport processes under consideration. Examination of the percolation behaviour yields the site-percolation threshold of the mobile component B for {{w}\\text{A}}=0 . Surprisingly, a unique second-order threshold composition is found, which relates to the abundance of different interstitialcy jump types when {{w}\\text{A}}/{{w}\\text{B}} . Both numerically obtained threshold values are accurately reproduced by estimated analytical expressions based on simple arguments. Practical implications of the simulation results are explored by calculating tracer diffusivity ratios D\\text{A}*/D\\text{B}* and by comparing self-diffusion with ionic conductivity using the Nernst-Einstein equation.

  7. Surfactant-free ionic liquid-based nanofluids with remarkable thermal conductivity enhancement at very low loading of graphene

    PubMed Central

    2012-01-01

    We report for the first time the preparation of highly stable graphene (GE)-based nanofluids with ionic liquid as base fluids (ionic liquid-based nanofluids (Ionanofluids)) without any surfactant and the subsequent investigations on their thermal conductivity, specific heat, and viscosity. The microstructure of the GE and MWCNTs are observed by transmission electron microscope. Thermal conductivity (TC), specific heat, and viscosity of these Ionanofluids were measured for different weight fractions and at varying temperatures, demonstrating that the Ionanofluids exhibit considerably higher TC and lower viscosity than that of their base fluids without significant specific heat decrease. An enhancement in TC by about 15.5% and 18.6% has been achieved at 25 °C and 65 °C respectively for the GE-based nanofluid at mass fraction of as low as 0.06%, which is larger than that of the MWCNT-dispersed nanofluid at the same loading. When the temperature rises, the TC and specific heat of the Ionanofluid increase clearly, while the viscosity decreases sharply. Moreover, the viscosity of the prepared Ionanofluids is lower than that of the base fluid. All these advantages of this new kind of Ionanofluid make it an ideal fluid for heat transfer and thermal storage. PMID:22713249

  8. Preparation and enhancement of ionic conductivity in Al-added garnet-like Li6.8La3Zr1.8Bi0.2O12 lithium ionic electrolyte

    NASA Astrophysics Data System (ADS)

    Xia, Yu; Ma, Liang; Lu, Hui; Wang, Xian-Ping; Gao, Yun-Xia; Liu, Wang; Zhuang, Zong; Guo, Li-Jun; Fang, Qian-Feng

    2015-12-01

    Garnet-like Li6.8La3Zr1.8Bi0.2O12 (LLZBO) + x mol.% Al2O3 ( x = 0, 1.25, 2.50) lithium ionic electrolytes were prepared by conventional solid state reaction method under two different sintering temperatures of 1000°C and 1100°C. XPS, induced coupled plasma optical emission spectrometer (ICP-OES), XRD and AC impedance spectroscopy were applied to investigate the bismuth valance, lithium concentration, phase structure and lithium ionic conductivity, respectively. Electrical measurement demonstrated that ionic conductivity of Al-added LLZBO compounds could be obviously improved when the sample sintering temperature increased from 1000°C to 1100°C. The highest ionic conductivity 6.3×10-5 S/cm was obtained in the LLZBO-1.25%Al sample sintered at 1100°C, in consistent with the lowest activation energy 0.45 eV for the lithium ion migration. The mechanism related with good ionic conductivity in the Al-added LLZBO sample was attributed to the lattice distortion induced by the partial Al substitution at Zr sites, which is helpful to improve the migration ability of Li ions in lattice.

  9. Mixed ionic and electronic conductivity in polymers. Progress report, January 1, 1989--December 31, 1989

    SciTech Connect

    Shriver, D.F.

    1990-06-01

    The conductivity of iodine-containing polymers was investigated and conductivity along polyiodide chains is implicated by the concentration dependence of the conductivity data and spectroscopic measurements. On the theoretical side, entropy based models were developed to describe ion motion in polymers.

  10. Establishment of structure-conductivity relationship for tris(2,2'-bipyridine) ruthenium ionic C(60) salts.

    PubMed

    Hong, Jie; Shores, Matthew P; Elliott, C Michael

    2010-12-20

    Three ionic C(60) salts with [Ru(bpy)(3)](m+) (bpy = 2,2'-bipyridine) as cations were synthesized. The UV-vis-NIR spectra, XPS spectra, and elemental analysis have demonstrated their compositions: [Ru(bpy)(3)](2)(C(60)) (1), [Ru(bpy)(3)](C(60)) (2), and [Ru(bpy)(3)](C(60))(2) (3). Single crystals of polycrystalline compounds 1 and 2 were obtained as solvates. At room temperature, all three salts are semiconducting with the highest four-probe conductivity observed for compound 1 at ∼10 S m(-1). The electronic conduction mechanisms can be described appropriately by an electron hopping model in this immobilized polyvalent redox system. PMID:21070047

  11. Pb loss in Pb(Zr,Ti)O3 ceramics observed by in situ ionic conductivity measurements

    NASA Astrophysics Data System (ADS)

    Donnelly, Niall J.; Randall, Clive A.

    2011-05-01

    Analysis of the impedance spectra of Nb-doped Pb(Zr,Ti)O3 (PZT) embedded capacitors revealed that the ionic conductivity increased monotonically during annealing at 700 °C. Furthermore, the rate of increase was lowered by a reduction in the ambient pO2. The results could be explained by a model in which oxygen vacancies are generated as a consequence of Pb evaporation from the PZT. At 700 °C, this process is most likely limited by surface kinetics rather than Pb bulk diffusion. It was shown that the Pb loss could be completely recovered by annealing in a high activity Pb source with a commensurate reduction in oxygen vacancy concentration. The electronic conductivity was predominantly p-type and was relatively unaffected by the Pb loss throughout the course of the experiment.

  12. The ionic transport mechanism and coupling between the ion conduction and segmental relaxation processes of PEO20-LiCF3SO3 based ion conducting polymer clay composites.

    PubMed

    Dam, Tapabrata; Jena, Sidhartha S; Pradhan, Dillip K

    2016-07-20

    A series of ion conducting polymer-clay composites has been prepared using a solution casting technique. Relaxation dynamics and the ionic transport mechanism are systematically studied employing broadband dielectric spectroscopy over a wide frequency and temperature range. Among different phenomenological and theoretical models for ion conduction in disordered ionic conductors, conductivity isotherm spectra are analysed using the modified Almond-West and random free energy barrier model. Conductivity scaling suggests that the ionic transport mechanism is independent of temperature, and a similar inference is also obtained using scaled electrical modulus spectra. DC conductivity along with conductivity and segmental relaxation time following the Vogel-Tammann-Fulcher relationship suggests coupling between the ionic transport and segmental relaxation processes. Electrical modulus and dielectric formalism are used to understand the conductivity and segmental relaxation processes, respectively. The presence of first and second universality in the ionic transport mechanism is discussed using the real part of conductivity spectra and dielectric loss spectra. The crossover between the first and second universality is explained using the Kramer-Krönig approach. The ion diffusion coefficient is investigated using Ratner's classical approach in combination with the modified Stokes-Einstein relationship to correlate the coupled nature of the ion conduction mechanism and polymer segmental motion. PMID:27399598

  13. Phase stability and ionic conductivity in substituted La{sub 2}W{sub 2}O{sub 9}

    SciTech Connect

    Marrero-Lopez, D.

    2008-02-15

    Different substitutions, i.e. Sr{sup 2+}, Ba{sup 2+}, K{sup +}, Nb{sup 5+} and V{sup 5+}, have been performed in the triclinic {alpha}-La{sub 2}W{sub 2}O{sub 9} structure in order to stabilise the high temperature and better ionic conductor cubic {beta}-phase. This approach has been used to try to obtain a new series of ionic conductors with LAMOX-type structure without molybdenum and presumably better redox stability compared to {beta}-La{sub 2}Mo{sub 2}O{sub 9}. Nanocrystalline materials obtained by a freeze-drying precursor method at 600 deg. C exhibit mainly the {beta}-La{sub 2}W{sub 2}O{sub 9} structure, however, the triclinic {alpha}-form is stabilised as the firing temperature increases and the crystallite size grows. Only high levels of Ba{sup 2+} and V{sup 5+} substitutions retained the cubic form at room temperature after firing above 1100 deg. C. However, these phases are metastable above 700 deg. C, exhibiting an irreversible transformation to the low temperature triclinic {alpha}-phase. The synthesis, structure, phase stability, kinetic of phase transformation and electrical conductivity of these materials have been studied in the present report. - Graphical abstract: Several substitutions have been tested in order to investigate the stabilisation of the high temperature cubic {beta}-La{sub 2}W{sub 2}O{sub 9} and to obtain new ionic conductors with LAMOX structure without molybdenum composition.

  14. Effect of Temperature and Pressure on Ionic Conductivity of PAN-Based Polymer Electrolytes Containing Inorganic Salts

    NASA Astrophysics Data System (ADS)

    Ahmad, A.; Isa, K. B. Md.; Osman, Z.

    2010-07-01

    The conducting polymer electrolyte films consisting polyacrylonitrile (PAN) as the host polymer, ethylene carbonate (EC) as a plasticizer, lithium triflate (LiCF3SO3) and sodium triflate (NaCF3SO3) as inorganic salts were prepared by the solution cast technique. The pure PAN film was prepared as a reference. The ionic conductivity for the films is characterized using impedance spectroscopy. The room temperature conductivity for the PAN+24 wt.%EC film, PAN+26 wt.%LiCF3SO3 film, the PAN+24 wt.%NaCF3SO3 film is 3.43×10-11 S cm-1, 3.04×10-4 S cm-1, and 7.13×10-4 S cm-1, respectively. On addition of plasticizer, the room temperature of PAN+LiCF3SO3 and PAN+NaCF3SO3 films increases by one order of magnitude. The conductivity-temperature and conductivity-pressure dependence studies are then performed on the highest conducting film from the unplasticized and plasticized systems in the temperature and pressure range between 303 K and 373 K and 0.01 MPa and 0.09 MPa, respectively. The conductivity-temperature studies indicate the activation energy, Ea for all system decrease with the increase of the conductivity. The activation volume, ΔV* for each system can be determined from the plot of ln σ versus pressure. It can be observed that the ΔV* is decreased as the conductivity increased. This result can be explained in term of free volume.

  15. DEVELOPMENT AND SELECTION OF IONIC LIQUID ELECTROLYTES FOR HYDROXIDE CONDUCTING POLYBENZIMIDAZOLE MEMBRANES IN ALKALINE FUEL CELLS

    SciTech Connect

    Fox, E.

    2012-05-01

    Alkaline fuel cell (AFC) operation is currently limited to specialty applications such as low temperatures and pure HO due to the corrosive nature of the electrolyte and formation of carbonates. AFCs are the cheapest and potentially most efficient (approaching 70%) fuel cells. The fact that non-Pt catalysts can be used, makes them an ideal low cost alternative for power production. The anode and cathode are separated by and solid electrolyte or alkaline porous media saturated with KOH. However, CO from the atmosphere or fuel feed severely poisons the electrolyte by forming insoluble carbonates. The corrosivity of KOH (electrolyte) limits operating temperatures to no more than 80°C. This chapter examines the development of ionic liquids electrolytes that are less corrosive, have higher operating temperatures, do not chemically bond to CO and enable alternative fuels. Work is detailed on the IL selection and characterization as well as casting methods within the polybenzimidazole based solid membrane. This approach is novel as it targets the root of the problem (the electrolyte) unlike other current work in alkaline fuel cells which focus on making the fuel cell components more durable.

  16. Installation of a reactive site for covalent wiring onto an intrinsically conductive poly(ionic liquid)

    DOE PAGESBeta

    Brombosz, Scott M.; Lee, Sungwon; Firestone, Millicent A.

    2014-11-04

    We describe post-polymerization radical bromination of a nanostructured poly(ionic liquid) that selectively introduces a reactive bromo-group onto the polyalkylthiophene backbone. Raman and FT-IR spectroscopy proves that the bromine is successfully introduced at the 3-methyl position of the thiophene and that the molecular structure of the polymer remains largely intact with only minimal chain scission detected. FT-IR and Vis-NIR spectroscopy indicates that incorporation of the bromine induces twisting (loss of co-planarity) of the polythiophene backbone. WAXS confirms retention of an ordered lamellar structure with minor lattice spacing contraction. Cyclic voltammetry confirms spectroscopic findings that the bromination reaction yields a stable p-dopedmore » polymer. The installed bromine is susceptible to nucleophilic displacement permitting the covalent attachment of other functional molecules, such as a dialkylphosphonate. Elemental analysis of such a transformation established that 100 % functionalization can be achieved. These results collectively demonstrate that post-modification of a π-conjugated polymer can be used to both tune electronic and photonic properties, as well as install a chemoselective attachment point for the covalent wiring of other molecules.« less

  17. Installation of a reactive site for covalent wiring onto an intrinsically conductive poly(ionic liquid)

    SciTech Connect

    Brombosz, Scott M.; Lee, Sungwon; Firestone, Millicent A.

    2014-11-04

    We describe post-polymerization radical bromination of a nanostructured poly(ionic liquid) that selectively introduces a reactive bromo-group onto the polyalkylthiophene backbone. Raman and FT-IR spectroscopy proves that the bromine is successfully introduced at the 3-methyl position of the thiophene and that the molecular structure of the polymer remains largely intact with only minimal chain scission detected. FT-IR and Vis-NIR spectroscopy indicates that incorporation of the bromine induces twisting (loss of co-planarity) of the polythiophene backbone. WAXS confirms retention of an ordered lamellar structure with minor lattice spacing contraction. Cyclic voltammetry confirms spectroscopic findings that the bromination reaction yields a stable p-doped polymer. The installed bromine is susceptible to nucleophilic displacement permitting the covalent attachment of other functional molecules, such as a dialkylphosphonate. Elemental analysis of such a transformation established that 100 % functionalization can be achieved. These results collectively demonstrate that post-modification of a π-conjugated polymer can be used to both tune electronic and photonic properties, as well as install a chemoselective attachment point for the covalent wiring of other molecules.

  18. Enhanced ionic conduction at the film/substrate interface in LiI thin films grown on sapphire(0001)

    SciTech Connect

    Lubben, D.; Modine, F.A.

    1993-12-01

    The ionic conductivity of LiI thin films grown on sapphire(0001) substrates has been studied in-situ during deposition as a function of film thickness and deposition conditions. LiI films were produced at room temperature by sublimation in an ultra-high-vacuum system. The conductivity of the LiI parallel to the film/substrate interface was determined from frequency-dependent impedance measurements as a function of film thickness using Au interdigital electrodes deposited on the sapphire surface. The measurements show a conduction of {approximately}5 times the bulk value at the interface which gradually decreases as the film thickness is increased beyond 100 nm. This interfacial enhancement is not stable but anneals out with a characteristic log of time dependence. Fully annealed films have an activation energy for conduction ({sigma}T) of {approximately}0.47{plus_minus}.03 eV, consistent with bulk measurements. The observed annealing behavior can be fit with a model based on dislocation motion which implies that the increase in conduction near the interface is not due to the formation of a space-charge layer as previously reported but to defects generated during the growth process. This explanation is consistent with the behavior exhibited by CaF{sub 2} films grown under similar conditions.

  19. Effect of Eu3+ concentration on the grating efficiency and ionic conductivity in sodium-magnesium-aluminosilicate glasses

    NASA Astrophysics Data System (ADS)

    Hamad, Abdulatif Y.; Wicksted, James P.; Ascio, Robert; Martin, Joel J.; Hunt, Charles; Dixon, George S.

    2002-09-01

    We report a systematic study of a grating formation in which the Eu2O3 in sodium-magnesium-aluminosilicate glasses is varied from 0.76 to 8.11 mol %. The growth, decay, and erasure of the grating are reported as functions of the Eu2O3. The maximum persistent change in the index of refraction was 3 x10-5. The persistent change in the index of refraction was initially a quadratic function of the Eu2O3 and showed a limiting behavior at the highest Eu2O3. The transient change in the index of refraction Deltantran was a quadratic function of Eu2O3 throughout the range of concentrations studied here. The grating buildup rate increased linearly with Deltantran. The results of this study are consistent with the model published recently by Dixon [et al.] Ionic conductivities were also measured to help separate the effect of the Eu3+ on the glass network from its active role in transferring the optical energy into ionic motion.

  20. Effect of ion structure on conductivity in lithium-doped ionic liquid electrolytes: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Liu, Hongjun; Maginn, Edward

    2013-09-01

    Molecular dynamics simulations were performed to examine the role cation and anion structure have on the performance of ionic liquid (IL) electrolytes for lithium conduction over the temperature range of 320-450 K. Two model ionic liquids were studied: 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([bmim][Tf2N]) and 1-butyl-4-methylpyridinium pyrrolide ([bmpyr][pyl]) doped with Li[Tf2N] and Li[pyl], respectively. The results have demonstrated that the Li+ doped IL containing the planar [bmpyr] cation paired with the planar [pyl] anion significantly outperformed the [bmim][Tf2N] IL. The different coordination of Li+ with the [Tf2N]- or [pyl]- anions produces a remarkable change in IL structure with a concomitant effect on the transport of all ions. For the doped [bmim][Tf2N], each Li+ is coordinated by four oxygen atoms from [Tf2N]- anions. Formation of a rigid structure between Li+ and [Tf2N]- induces a decrease in the mobility of all ions. In contrast, for the doped [bmpyr][pyl], each Li+ is coordinated by two nitrogen atoms from [pyl]- anions. The original alternating structure cation|anion|cation in the neat [bmpyr][pyl] is replaced by another alternating structure cation|anion|Li+|anion|cation in the doped [bmpyr][pyl]. Increases of Li+ mole fraction in doped [bmpyr][pyl] affects the dynamics to a much lesser extent compared with [bmim][Tf2N] and leads to reduced diffusivities of cations and anions, but little change in the dynamics of Li+. More importantly, the calculations predict that the Li+ ion conductivity of doped [bmpyr][pyl] is comparable to that observed in organic liquid electrolytes and is about an order of magnitude higher than that of doped [bmim][Tf2N]. Such Li+ conductivity improvement suggests that this and related ILs may be promising candidates for use as electrolytes in lithium ion batteries and capacitors.

  1. Electrical Conductivity and Electronic/Ionic Properties of TiO x -CaO-SiO2 Slags at Various Oxygen Potentials and Temperatures

    NASA Astrophysics Data System (ADS)

    Liu, Jun-Hao; Zhang, Guo-Hua; Wu, Yue-Dong; Chou, Kuo-Chih

    2016-02-01

    The electrical conductivity of molten slags is an extremely important factor in the design of electric smelting furnaces. As a fundamental study on properties of the TiO x -bearing slags, the total electrical conductivity and electronic/ionic properties of TiO x -SiO2-CaO slags were measured at different oxygen potentials and temperatures using four-electrode method. The experiment results show that for a specific composition, the temperature dependences of ionic, electronic, and total conductivity obey the Arrhenius law. The stepped potential chronoamperometry method was employed for measuring the electronic transference number, which exhibits a strong dependence on oxygen potential, but is unaffected by temperature. The total electrical, electronic, and ionic conductivities present similar increasing trends with increasing the ratio of CO/CO2, which is resulted from increasing of Ti3+.

  2. Effect of Structure on Transport Properties (Viscosity, Ionic Conductivity, and Self-Diffusion Coefficient) of Aprotic Heterocyclic Anion (AHA) Room Temperature Ionic Liquids. 2. Variation of Alkyl Chain Length in the Phosphonium Cation.

    PubMed

    Sun, Liyuan; Morales-Collazo, Oscar; Xia, Han; Brennecke, Joan F

    2016-06-30

    A series of room-temperature ionic liquids (ILs) composed of triethyl(alkyl)phosphonium cations paired with three different aprotic heterocyclic anions (AHAs) (alkyl = butyl ([P2224](+)) and octyl ([P2228](+))) were prepared to investigate the effect of cationic alkyl chain length on transport properties. The transport properties and density of these ILs were measured from 283.15 to 343.15 K at ambient pressure. The dependence of the transport properties (viscosity, ionic conductivity, diffusivity, and molar conductivity) on temperature can be described by the Vogel-Fulcher-Tamman (VFT) equation. The ratio of the molar conductivity obtained from the molar concentration and ionic conductivity measurements to that calculated from self-diffusion coefficients (measured by pulsed gradient spin-echo nuclear magnetic resonance spectroscopy) using the Nernst-Einstein equation was used to quantify the ionicity of these ILs. The molar conductivity ratio decreases with increasing number of carbon atoms in the alkyl chain, indicating that the reduced Coulombic interactions resulting from lower density are more than balanced by the increased van der Waals interactions between the alkyl chains. The results of this study may provide insight into the design of ILs with enhanced dynamics that may be suitable as electrolytes in lithium ion batteries and other electrochemical applications. PMID:27243107

  3. Impact of segregation energetics on oxygen conductivity at ionic grain boundaries

    SciTech Connect

    Aidhy, Dilpuneet S; Zhang, Yanwen; Weber, William J

    2014-01-01

    In pursuit of whether nanocrystallinity could lead to higher anion conductivity, research has revealed contradicting results exposing the limited understanding of point defect energetics at grain boundaries (GBs)/interfaces. By disentangling and addressing key GB energetics issues, i.e., segregation, migration and binding energies of oxygen vacancies in the presence and absence of dopants at the GBs, and the segregation energetics of dopants, we elucidate, using atomic simulations of doped ceria, that dopant segregation is the key factor leading to degradation of oxygen conductivity in nanocrystalline materials. A framework for designing enhanced conducting nanocrystalline materials is proposed where the focus of doping strategies shifts from bulk to segregation at GBs.

  4. AC conductivity scaling behavior in grain and grain boundary response regime of fast lithium ionic conductors

    NASA Astrophysics Data System (ADS)

    Mariappan, C. R.

    2014-05-01

    AC conductivity spectra of Li-analogues NASICON-type Li1.5Al0.5Ge1.5P3O12 (LAGP), Li-Al-Ti-P-O (LATP) glass-ceramics and garnet-type Li7La2Ta2O13 (LLTO) ceramic are analyzed by universal power law and Summerfield scaling approaches. The activation energies and pre-exponential factors of total and grain conductivities are following the Meyer-Neldel (M-N) rule for NASICON-type materials. However, the garnet-type LLTO material deviates from the M-N rule line of NASICON-type materials. The frequency- and temperature-dependent conductivity spectra of LAGP and LLTO are superimposed by Summerfield scaling. The scaled conductivity curves of LATP are not superimposed at the grain boundary response region. The superimposed conductivity curves are observed at cross-over frequencies of grain boundary response region for LATP by incorporating the exp ( {{{ - (EAt - EAg )} {{{ - (EAt - EAg )} {kT}}} ) factor along with Summerfield scaling factors on the frequency axis, where EAt and EAg are the activation energies of total and grain conductivities, respectively.

  5. Ultrasound and ionic-liquid-assisted synthesis and characterization of polyaniline/Y2O3 nanocomposite with controlled conductivity.

    PubMed

    Kowsari, E; Faraghi, G

    2010-04-01

    A sonochemical method has been employed to prepare polyaniline-Y(2)O(3) nanocomposite with controlled conductivity with the assistance of an ionic liquid (IL). Ultrasound energy and the IL replace conventional oxidants and metal complexes in promoting the polymerization of aniline monomer for the first time. Structural characterization has revealed that the resulting nanocomposite consists of microspheres of average diameter 3-5 microm. The products were found to consist of regular solid microspheres covered with some 40 nm nanoparticles. Under certain polymerization conditions, polyaniline nanofibers and nanosheet were obtained. The method may open a new pathway for the preparation of nanoscale conducting polymer nanocomposites with the aid of ILs. The conductivity of the product varies with the mass ratio of aniline monomer to Y(2)O(3) and IL. TG curves of the products suggest that the thermal degradation process of the PANI/Y(2)O(3) composites proceeds in two steps and that the composites are more thermally stable than pure PANI. The reaction conditions have been optimized by varying parameters such as the aniline/Y(2)O(3) ratio and the type and amount of IL used. The effect of the ultrasonic irritation time and frequency on the morphology, conductivity and yield were discussed. PMID:20036598

  6. Sparse Cyclic Excitations Explain the Low Ionic Conductivity of Stoichiometric Li7La3Zr2O12

    NASA Astrophysics Data System (ADS)

    Burbano, Mario; Carlier, Dany; Boucher, Florent; Morgan, Benjamin J.; Salanne, Mathieu

    2016-04-01

    We have performed long time scale molecular dynamics simulations of the cubic and tetragonal phases of the solid lithium-ion electrolyte Li7La3Zr2O12 (LLZO), using a first-principles parametrized interatomic potential. Collective lithium transport was analyzed by identifying dynamical excitations: persistent ion displacements over distances comparable to the separation between lithium sites, and stringlike clusters of ions that undergo cooperative motion. We find that dynamical excitations in c-LLZO (cubic) are frequent, with participating lithium numbers following an exponential distribution, mirroring the dynamics of fragile glasses. In contrast, excitations in t-LLZO (tetragonal) are both temporally and spatially sparse, consisting preferentially of highly concerted lithium motion around closed loops. This qualitative difference is explained as a consequence of lithium ordering in t-LLZO and provides a mechanistic basis for the much lower ionic conductivity of t-LLZO compared to c-LLZO.

  7. Sparse Cyclic Excitations Explain the Low Ionic Conductivity of Stoichiometric Li_{7}La_{3}Zr_{2}O_{12}.

    PubMed

    Burbano, Mario; Carlier, Dany; Boucher, Florent; Morgan, Benjamin J; Salanne, Mathieu

    2016-04-01

    We have performed long time scale molecular dynamics simulations of the cubic and tetragonal phases of the solid lithium-ion electrolyte Li_{7}La_{3}Zr_{2}O_{12} (LLZO), using a first-principles parametrized interatomic potential. Collective lithium transport was analyzed by identifying dynamical excitations: persistent ion displacements over distances comparable to the separation between lithium sites, and stringlike clusters of ions that undergo cooperative motion. We find that dynamical excitations in c-LLZO (cubic) are frequent, with participating lithium numbers following an exponential distribution, mirroring the dynamics of fragile glasses. In contrast, excitations in t-LLZO (tetragonal) are both temporally and spatially sparse, consisting preferentially of highly concerted lithium motion around closed loops. This qualitative difference is explained as a consequence of lithium ordering in t-LLZO and provides a mechanistic basis for the much lower ionic conductivity of t-LLZO compared to c-LLZO. PMID:27081991

  8. Response Behaviour of a Hydrogen Sensor Based on Ionic Conducting Polymer-metal Interfaces Prepared by the Chemical Reduction Method

    PubMed Central

    Sakthivel, Mariappan; Weppner, Werner

    2006-01-01

    A solid-state amperometric hydrogen sensor based on a protonated Nafion membrane and catalytic active electrode operating at room temperature was fabricated and tested. Ionic conducting polymer-metal electrode interfaces were prepared chemically by using the impregnation-reduction method. The polymer membrane was impregnated with tetra-ammine platinum chloride hydrate and the metal ions were subsequently reduced by using either sodium tetrahydroborate or potassium tetrahydroborate. The hydrogen sensing characteristics with air as reference gas is reported. The sensors were capable of detecting hydrogen concentrations from 10 ppm to 10% in nitrogen. The response time was in the range of 10-30 s and a stable linear current output was observed. The thin Pt films were characterized by XRD, Infrared Spectroscopy, Optical Microscopy, Atomic Force Microscopy, Scanning Electron Microscopy and EDAX.

  9. Increasing the intensity of protonated secondary ions in time-of-flight secondary ion mass spectrometry using a proton-conducting ionic liquid, diethylmethylammonium trifluoromethanesulfonate

    NASA Astrophysics Data System (ADS)

    Fujiwara, Yukio; Saito, Naoaki

    2015-07-01

    To increase the secondary ion intensities of organic molecules, room-temperature ionic liquids were investigated in two time-of-flight secondary ion mass spectrometry (TOF-SIMS) experiments. First, ionic liquids as well as glycerol were tested as liquid matrices of arginine. The secondary ion intensity of protonated arginine was increased 200-fold by using a proton-conducting ionic liquid, diethylmethylammonium trifluoromethanesulfonate ([dema][TfO]). The matrix effect of [dema][TfO] was higher than that of glycerol, which is a typical matrix in SIMS. Next, ionic liquids were tested as primary ion beams. The number of protonated secondary ions of arginine was significantly increased by using a primary ion beam of [dema][TfO].

  10. Dual-barrel conductance micropipet as a new approach to the study of ionic crystal dissolution kinetics.

    PubMed

    Kinnear, Sophie L; McKelvey, Kim; Snowden, Michael E; Peruffo, Massimo; Colburn, Alex W; Unwin, Patrick R

    2013-12-17

    A new approach to the study of ionic crystal dissolution kinetics is described, based on the use of a dual-barrel theta conductance micropipet. The solution in the pipet is undersaturated with respect to the crystal of interest, and when the meniscus at the end of the micropipet makes contact with a selected region of the crystal surface, dissolution occurs causing the solution composition to change. This is observed, with better than 1 ms time resolution, as a change in the ion conductance current, measured across a potential bias between an electrode in each barrel of the pipet. Key attributes of this new technique are: (i) dissolution can be targeted at a single crystal surface; (ii) multiple measurements can be made quickly and easily by moving the pipet to a new location on the surface; (iii) materials with a wide range of kinetics and solubilities are open to study because the duration of dissolution is controlled by the meniscus contact time; (iv) fast kinetics are readily amenable to study because of the intrinsically high mass transport rates within tapered micropipets; (v) the experimental geometry is well-defined, permitting finite element method modeling to allow quantitative analysis of experimental data. Herein, we study the dissolution of NaCl as an example system, with dissolution induced for just a few milliseconds, and estimate a first-order heterogeneous rate constant of 7.5 (±2.5) × 10(-5) cm s(-1) (equivalent surface dissolution flux ca. 0.5 μmol cm(-2) s(-1) into a completely undersaturated solution). Ionic crystals form a huge class of materials whose dissolution properties are of considerable interest, and we thus anticipate that this new localized microscale surface approach will have considerable applicability in the future. PMID:24224979

  11. AC impedance analysis of ionic and electronic conductivities in electrode mixture layers for an all-solid-state lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Siroma, Zyun; Sato, Tomohiro; Takeuchi, Tomonari; Nagai, Ryo; Ota, Akira; Ioroi, Tsutomu

    2016-06-01

    The ionic and electronic effective conductivities of an electrode mixture layers for all-solid-state lithium-ion batteries containing Li2Ssbnd P2S5 as a solid electrolyte were investigated by AC impedance measurements and analysis using a transmission-line model (TLM). Samples containing graphite (graphite electrodes) or LiNi0.5Co0.2Mn0.3O2 (NCM electrodes) as the active material were measured under a "substrate | sample | bulk electrolyte | sample | substrate" configuration (ion-electron connection) and a "substrate | sample | substrate" configuration (electron-electron connection). Theoretically, if the electronic resistance is negligibly small, which is the case with our graphite electrodes, measurement with the ion-electron connection should be effective for evaluating ionic conductivity. However, if the electronic resistance is comparable to the ionic resistance, which is the case with our NCM electrodes, the results with the ion-electron connection may contain some inherent inaccuracy. In this report, we theoretically and practically demonstrate the advantage of analyzing the results with the electron-electron connection, which gives both the ionic and electronic conductivities. The similarity of the behavior of ionic conductivity with the graphite and NCM electrodes confirms the reliability of this analysis.

  12. Development of a new highly conductive and thermomechanically stable complex membrane based on sulfonated polyimide/ionic liquid for high temperature anhydrous fuel cells

    NASA Astrophysics Data System (ADS)

    Deligöz, Hüseyin; Yılmazoğlu, Mesut

    The paper deals with the synthesis and characterization of a new type of acid doped highly conductive complex membrane based on sulfonated polyimide (sPI) and ionic liquid (IL) for high temperature anhydrous fuel cells. For this purpose, 2,4-diaminobenzene sulfonic acid (2,4-DABSA) is reacted with benzophenontetracarboxylic dianhydride (BTDA) to yield sulfonated poly(amic acid) (sPAA) intermediate. Subsequently, IL is added into sPAA to form an interaction between sulfonic acid and imidazolium group of IL followed by acid doping. The ionic conductivity of acid doped sPI/IL complex polymer membrane is higher than that of IL containing composite membranes reported in the literature (5.59 × 10 -2 S cm -1 at 180 °C). Furthermore, dynamic mechanical analysis (DMA) results of acid doped sPI/IL complex membrane show that the mechanical strength of the complex product is slightly changed until 350 °C due to the formation of ionic interactions between sulfonic acid groups of sPI and imidazolium groups of IL. Consequently, the ionic interaction not only provides high ionic conductivity with excellent thermomechanical properties (the storage module of 0.91 GPa at 300 °C) but also results in a positive effect in long term conductivity stability by blocking IL migration through the membrane.

  13. Electrical and ionic conductivity effects on magic-angle spinning nuclear magnetic resonance parameters of CuI.

    PubMed

    Yesinowski, James P; Ladouceur, Harold D; Purdy, Andrew P; Miller, Joel B

    2010-12-21

    We investigate experimentally and theoretically the effects of two different types of conductivity, electrical and ionic, upon magic-angle spinning NMR spectra. The experimental demonstration of these effects involves (63)Cu, (65)Cu, and (127)I variable temperature MAS-NMR experiments on samples of γ-CuI, a Cu(+)-ion conductor at elevated temperatures as well as a wide bandgap semiconductor. We extend previous observations that the chemical shifts depend very strongly upon the square of the spinning-speed as well as the particular sample studied and the magnetic field strength. By using the (207)Pb resonance of lead nitrate mixed with the γ-CuI as an internal chemical shift thermometer we show that frictional heating effects of the rotor do not account for the observations. Instead, we find that spinning bulk CuI, a p-type semiconductor due to Cu(+) vacancies in nonstoichiometric samples, in a magnetic field generates induced AC electric currents from the Lorentz force that can resistively heat the sample by over 200 °C. These induced currents oscillate along the rotor spinning axis at the spinning speed. Their associated heating effects are disrupted in samples containing inert filler material, indicating the existence of macroscopic current pathways between micron-sized crystallites. Accurate measurements of the temperature-dependence of the (63)Cu and (127)I chemical shifts in such diluted samples reveal that they are of similar magnitude (ca. 0.27 ppm/K) but opposite sign (being negative for (63)Cu), and appear to depend slightly upon the particular sample. This relationship is identical to the corresponding slopes of the chemical shifts versus square of the spinning speed, again consistent with sample heating as the source of the observed large shift changes. Higher drive-gas pressures are required to spin samples that have higher effective electrical conductivities, indicating the presence of a braking effect arising from the induced currents produced by

  14. Electrical and ionic conductivity effects on magic-angle spinning nuclear magnetic resonance parameters of CuI

    NASA Astrophysics Data System (ADS)

    Yesinowski, James P.; Ladouceur, Harold D.; Purdy, Andrew P.; Miller, Joel B.

    2010-12-01

    We investigate experimentally and theoretically the effects of two different types of conductivity, electrical and ionic, upon magic-angle spinning NMR spectra. The experimental demonstration of these effects involves 63Cu, 65Cu, and 127I variable temperature MAS-NMR experiments on samples of γ-CuI, a Cu+-ion conductor at elevated temperatures as well as a wide bandgap semiconductor. We extend previous observations that the chemical shifts depend very strongly upon the square of the spinning-speed as well as the particular sample studied and the magnetic field strength. By using the 207Pb resonance of lead nitrate mixed with the γ-CuI as an internal chemical shift thermometer we show that frictional heating effects of the rotor do not account for the observations. Instead, we find that spinning bulk CuI, a p-type semiconductor due to Cu+ vacancies in nonstoichiometric samples, in a magnetic field generates induced AC electric currents from the Lorentz force that can resistively heat the sample by over 200 °C. These induced currents oscillate along the rotor spinning axis at the spinning speed. Their associated heating effects are disrupted in samples containing inert filler material, indicating the existence of macroscopic current pathways between micron-sized crystallites. Accurate measurements of the temperature-dependence of the 63Cu and 127I chemical shifts in such diluted samples reveal that they are of similar magnitude (ca. 0.27 ppm/K) but opposite sign (being negative for 63Cu), and appear to depend slightly upon the particular sample. This relationship is identical to the corresponding slopes of the chemical shifts versus square of the spinning speed, again consistent with sample heating as the source of the observed large shift changes. Higher drive-gas pressures are required to spin samples that have higher effective electrical conductivities, indicating the presence of a braking effect arising from the induced currents produced by rotating a

  15. Ionic conductivity of stabilized zirconia networks in compositeSOFC electrodes

    SciTech Connect

    Yamahara, Keiji; Sholklapper, Tal Z.; Jacobson, Craig P.; Visco,Steven J.; De Jonghe, Lutgard C.

    2004-03-01

    The effective oxygen conductivities in the zirconia networks of porous LSM-YSZ and LSM-SYSZ composites [i.e. La0.85Sr0.15MnO3(Y2O3)0.08(ZrO2)0.92 and La0.85Sr0.15MnO3(c2O3)0.1(Y2O3)0.01(ZrO2)0.89,respectively] were evaluated by an AC impedance technique using specimens in which LSM was removed by hydrochloric acid leaching. The oxygen conductivities of porous YSZ and SYSZ alone followed a Koh-Fortini relationship. LSM-containing zirconia network conductivities were additionally decreased by the presence of the LSM, presumably by increased grain boundary resistances. Constriction resistances were estimated to have a minor effect.

  16. Microscopic signature of insulator-to-metal transition in highly doped semicrystalline conducting polymers in ionic-liquid-gated transistors

    NASA Astrophysics Data System (ADS)

    Tanaka, Hisaaki; Nishio, Satoshi; Ito, Hiroshi; Kuroda, Shin-ichi

    2015-12-01

    Electronic state of charge carriers, in particular, in highly doped regions, in thin-film transistors of a semicrystalline conducting polymer poly(2,5-bis(3-alkylthiophene-2-yl)thieno[3,2-b]thiophene), has been studied by using field-induced electron spin resonance (ESR) spectroscopy. By adopting an ionic-liquid gate insulator, a gate-controlled reversible electrochemical hole-doping of the polymer backbone is achieved, as confirmed from the change of the optical absorption spectra. The edge-on molecular orientation in the pristine film is maintained even after the electrochemical doping, which is clarified from the angular dependence of the g value. As the doping level increases, spin 1/2 polarons transform into spinless bipolarons, which is demonstrated from the spin-charge relation showing a spin concentration peak around 1%, contrasting to the monotonic increase in the charge concentration. At high doping levels, a drastic change in the linewidth anisotropy due to the generation of conduction electrons is observed, indicating the onset of metallic state, which is also supported by the temperature dependence of the spin susceptibility and the ESR linewidth. Our results suggest that semicrystalline conducting polymers become metallic with retaining their molecular orientational order, when appropriate doping methods are chosen.

  17. Microscopic signature of insulator-to-metal transition in highly doped semicrystalline conducting polymers in ionic-liquid-gated transistors

    SciTech Connect

    Tanaka, Hisaaki Nishio, Satoshi; Ito, Hiroshi; Kuroda, Shin-ichi

    2015-12-14

    Electronic state of charge carriers, in particular, in highly doped regions, in thin-film transistors of a semicrystalline conducting polymer poly(2,5-bis(3-alkylthiophene-2-yl)thieno[3,2-b]thiophene), has been studied by using field-induced electron spin resonance (ESR) spectroscopy. By adopting an ionic-liquid gate insulator, a gate-controlled reversible electrochemical hole-doping of the polymer backbone is achieved, as confirmed from the change of the optical absorption spectra. The edge-on molecular orientation in the pristine film is maintained even after the electrochemical doping, which is clarified from the angular dependence of the g value. As the doping level increases, spin 1/2 polarons transform into spinless bipolarons, which is demonstrated from the spin-charge relation showing a spin concentration peak around 1%, contrasting to the monotonic increase in the charge concentration. At high doping levels, a drastic change in the linewidth anisotropy due to the generation of conduction electrons is observed, indicating the onset of metallic state, which is also supported by the temperature dependence of the spin susceptibility and the ESR linewidth. Our results suggest that semicrystalline conducting polymers become metallic with retaining their molecular orientational order, when appropriate doping methods are chosen.

  18. Computational modeling of the structure and the ionic conductivity of the solid electrolyte materials Li3AsS4 and its Ge substitutions

    NASA Astrophysics Data System (ADS)

    Al-Qawasmeh, Ahmad; Holzwarth, N. A. W.

    Oak Ridge National Laboratory (G. Sahu et al.) reported that the substitution of Ge into Li3AsS4 leads to the composition Li3.334Ge0.334As0.666S4 with impressively high ionic conductivity . We use ab initio calculations to examine the structural relationships and the ionic conductivity mechanisms for pure Li3AsS4, Li3.334Ge0.334As0.666S4, and other compositions of these electrolytes. Supported by NSF Grant DMR-1105485 and 1507942 and WFU's DEAC cluster.

  19. Design and synthesis of guest-host nanostructures to enhance ionic conductivity across nanocomposite membranes

    DOEpatents

    Hu, Michael Z [Knoxville, TN; Kosacki, Igor [Oak Ridge, TN

    2010-01-05

    An ion conducting membrane has a matrix including an ordered array of hollow channels and a nanocrystalline electrolyte contained within at least some or all of the channels. The channels have opposed open ends, and a channel width of 1000 nanometers or less, preferably 60 nanometers or less, and most preferably 10 nanometers or less. The channels may be aligned perpendicular to the matrix surface, and the length of the channels may be 10 nanometers to 1000 micrometers. The electrolyte has grain sizes of 100 nanometers or less, and preferably grain sizes of 1 to 50 nanometers. The electrolyte may include grains with a part of the grain boundaries aligned with inner walls of the channels to form a straight oriented grain-wall interface or the electrolyte may be a single crystal. In one form, the electrolyte conducts oxygen ions, the matrix is silica, and the electrolyte is yttrium doped zirconia.

  20. Mixed-ionic and electronic conductivity in polymers. Annual technical progress report

    SciTech Connect

    Ratner, M.A.; Shriver, D.F.

    1991-12-31

    The aim in this portion of the research is to prepare new electroactive films with high ion mobility, and to characterize the transport properties of these materials. The classic conducting polymers, polyacetylene, polythiophene, and polypyrrole have dense structures that prevent rapid redox switching because of the low diffusivity of ions. The objective is to modify the last two polymers with pendant polyethers, which should greatly improve ion transport.

  1. Application for continuation of mixed ionic and electronic conductivity in polymers

    SciTech Connect

    Shiver, D.F.; Ratner, M.A.

    1990-01-01

    The aim in this portion of the research is to prepare new electroactive films with high ion mobility, and to characterize the transport properties of these materials. The classic conducting polymers, polyacetylene, polythiophene, and polypyrrole have dense structures that prevent rapid redox switching because of the low diffusivity of ions. The objective is to modify the last two polymers with pendant polyethers, which should greatly improve ion transport.

  2. Highly Conductive Ionic-Liquid Gels Prepared with Orthogonal Double Networks of a Low-Molecular-Weight Gelator and Cross-Linked Polymer.

    PubMed

    Kataoka, Toshikazu; Ishioka, Yumi; Mizuhata, Minoru; Minami, Hideto; Maruyama, Tatsuo

    2015-10-21

    We prepared a heterogeneous double-network (DN) ionogel containing a low-molecular-weight gelator network and a polymer network that can exhibit high ionic conductivity and high mechanical strength. An imidazolium-based ionic liquid was first gelated by the molecular self-assembly of a low-molecular-weight gelator (benzenetricarboxamide derivative), and methyl methacrylate was polymerized with a cross-linker to form a cross-linked poly(methyl methacrylate) (PMMA) network within the ionogel. Microscopic observation and calorimetric measurement revealed that the fibrous network of the low-molecular-weight gelator was maintained in the DN ionogel. The PMMA network strengthened the ionogel of the low-molecular-weight gelator and allowed us to handle the ionogel using tweezers. The orthogonal DNs produced ionogels with a broad range of storage elastic moduli. DN ionogels with low PMMA concentrations exhibited high ionic conductivity that was comparable to that of a neat ionic liquid. The present study demonstrates that the ionic conductivities of the DN and single-network, low-molecular-weight gelator or polymer ionogels strongly depended on their storage elastic moduli. PMID:26426303

  3. Studies on structural, thermal and AC conductivity scaling of PEO-LiPF6 polymer electrolyte with added ionic liquid [BMIMPF6

    NASA Astrophysics Data System (ADS)

    Chaurasia, S. K.; Saroj, A. L.; Shalu, Singh, V. K.; Tripathi, A. K.; Gupta, A. K.; Verma, Y. L.; Singh, R. K.

    2015-07-01

    Preparation and characterization of polymer electrolyte films of PEO+10wt.% LiPF6 + xwt.% BMIMPF6 (1-butyl-3-methylimidazolium hexafluorophosphate) containing dopant salt lithium hexafluorophosphate (LiPF6) and ionic liquid (BMIMPF6) having common anion PF6 - are reported. The ionic conductivity of the polymer electrolyte films has been found to increase with increasing concentration of BMIMPF6 in PEO+10 wt.% LiPF6 due to the plasticization effect of ionic liquid. DSC and XRD results show that the crystallinity of polymer electrolyte decreases with BMIMPF6 concentration which, in turn, is responsible for the increase in ionic conductivity. FTIR spectroscopic study shows the complexation of salt and/or ionic liquid cations with the polymer backbone. Ion dynamics behavior of PEO+LiPF6 as well as PEO+LiPF6 + BMIMPF6 polymer electrolytes was studied by frequency dependent conductivity, σ(f) measurements. The values σ(f) at various temperatures have been analyzed in terms of Jonscher power law (JPL) and scaled with respect to frequency which shows universal power law characteristics at all temperatures.

  4. Investigation of the free volume and ionic conducting mechanism of poly(ethylene oxide)-LiClO4 polymeric electrolyte by positron annihilating lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Gong, Jing; Gong, Zhen-Li; Yan, Xiao-Li; Gao, Shu; Zhang, Zhong-Liang; Wang, Bo

    2012-10-01

    The positron annihilation lifetime and ionic conductivity are each measured as a function of organophilic rectorite (OREC) content and temperature in a range from 160 K to 300 K. According to the variation of ortho-positronium (o-Ps) lifetime with temperature, the glassy transition temperature is determined. The continuous maximum entropy lifetime (MELT) analysis clearly shows that the OREC and temperature have important effects on o-Ps lifetime and free volume distribution. The experimental results show that the temperature dependence of ionic conductivity obeys the Vogel—Tammann—Fulcher (VTF) and Williams—Landel—Ferry (WLF) equations, implying a free-volume transport mechanism. A linear least-squares procedure is used to evaluate the apparent activation energy related to the ionic transport in the VTF equation and several important parameters in the WLF equation. It is worthwhile to notice that a direct linear relationship between the ionic conductivity and free volume fraction is established using the WLF equation based on the free volume theory for nanocomposite electrolyte, which indicates that the segmental chain migration and ionic migration and diffusion could be explained by the free volume theory.

  5. Universal dielectric response of variously doped CeO{sub 2} ionically conducting ceramics

    SciTech Connect

    Nowick, A.S.; Vaysleyb, A.V.; Kuskovsky, I.

    1998-10-01

    The Jonscher power law, or {open_quotes}universal dielectric response{close_quotes} (UDR) behavior was studied for a range of CeO{sub 2} solid solutions with Y{sup 3+} and Gd{sup 3+} dopants, with particular emphasis on dilute systems which possess relatively simple defect structures. The results show power-law frequency dependence of the ac conductivity, with exponent s=0.61{plus_minus}0.03, independent of temperature and concentration. The conductivity data also show scaling behavior in terms of a time constant {tau}, whose activation energy is very close to that of the dc conductivity. For 1{percent} Y and 1{percent} Gd samples, an additional Debye-type relaxation is observed due to dopant{endash}oxygen-vacancy pairs. Such samples are clearly in the association range (stage III). These results contradict the assumption by Almond and West that {tau}{sup {minus}1} is the hopping frequency of the carrier defects. At very low concentrations ({approximately}0.01{percent}), UDR behavior virtually disappears. The present results are then compared to the principal theories that describe UDR behavior. It is found that, while each theory suffers from some drawbacks, the more phenomenological theories fare better. {copyright} {ital 1998} {ital The American Physical Society}

  6. Slopes, nearly constant loss, universality, and hopping rates for dispersive ionic conduction

    NASA Astrophysics Data System (ADS)

    Macdonald, J. Ross; Ahmad, Mohamad M.

    2007-01-01

    The title topics are investigated, discussed, and new insights provided by considering isothermal frequency response data for seven different materials having quite different conductivity spans and involving different electrode polarization effects and temperatures. These data sets were fitted using several different models, including the Kohlrausch-related K0 and K1 ones derived from stretched-exponential response in the temporal domain. The quasi-universal UN model, the K1 with its shape parameter, β1, fixed at 1/3, fitted most of the data very well, and its fits of such data were used to compare its predictions for hopping rate with those derived from fitting with the conventional 'universal dynamic response' Almond-West real-part-of-conductivity model. The K1-model theoretical hopping rate, involving the mean waiting time for a hop and derived from microscopic stochastic analysis, was roughly twice as large as the empirical Almond-West rate for most of the materials considered and should be used in place of it. Its use in a generalized Nernst-Einstein equation led to comparison of estimates of the concentration of fully dissociated mobile charge carriers in superionic PbSnF4 with earlier estimates of Ahmad using an Almond-West hopping rate value. Agreement with an independent structure-derived value was relatively poor. Fitting results obtained using the K0 model, for Na2SO4 data sets for two different polycrystalline material phases, and involving severely limited conductivity variation, were far superior to those obtained using the K1 model. The estimated values of the K0 shape parameter, β0, were close to 1/3 for both phases, strongly suggesting that the charge motion was one dimensional for each phase, even though they involved different crystalline structures.

  7. Porous polymer electrolytes with high ionic conductivity and good mechanical property for rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Liang, Bo; Jiang, Qingbai; Tang, Siqi; Li, Shengliang; Chen, Xu

    2016-03-01

    Porous polymer electrolytes (PPEs) are attractive for developing lithium-ion batteries because of the combined advantages of liquid and solid polymer electrolytes. In the present study, a new porous polymer membrane doped with phytic acid (PA) is prepared, which is used as a crosslinker in polymer electrolyte matrix and can also plasticize porous polymer electrolyte membranes, changing them into soft tough flexible materials. A PEO-PMMA-LiClO4-x wt.% PA (x = weight of PA/weight of polymer, PEO: poly(ethylene oxide); PMMA: poly(methyl methacrylate)) polymer membrane is prepared by a simple evaporation method. The effects of the ratio of PA to PEO-PMMA on the properties of the porous membrane, including morphology, porous structure, and mechanical property, are systematically studied. PA improves the porous structure and mechanical properties of polymer membrane. The maximum tensile strength and elongation of the porous polymer membranes are 20.71 MPa and 45.7% at 15 wt.% PA, respectively. Moreover, the PPEs with 15 wt.% PA has a conductivity of 1.59 × 10-5 S/cm at 20 °C, a good electrochemical window (>5 V), and a low interfacial resistance. The results demonstrate the compatibility of the mechanical properties and conductivity of the PPEs, indicating that PPEs have good application prospects for lithium-ion batteries.

  8. Lead titanate/cyclic carbonate dependence on ionic conductivity of ferro/acrylate blend polymer composites

    NASA Astrophysics Data System (ADS)

    Jayaraman, R.; Vickraman, P.; Subramanian, N. M. V.; Justin, A. Simon

    2016-05-01

    Impedance, XRD, DSC and FTIR studies had been carried out for PVdF-co-HFP/LIBETI based system for three plasticizer (EC/DMC) - filler (PbTiO3) weight ratios. The enhanced conductivity 4.18 × 10-5 Scm-1 was noted for 57.5 wt% -7.5 wt% plasticizer - filler. while blending PEMA to PVdF-co-HFP respectively 7.5: 22.5 wt % (3/7), 15 wt%: 15 wt % (5/5) and 22.5wt %: 7.5 wt % (7/3), the improved conductivity was noted for 3/7 ratio 1.22 × 10-5 S cm-1 and its temperature dependence abide Arrhenius behavior. The intensity of peaks in XRD diffractogram registered dominance of lead titanate, from 2θ = 10° to 80° and absence of VdF crystallites (α+β phase) was noted. In DSC studies, the presence of the exotherm events, filler effect was distinctively seen exhibiting recrystallization of VdF crystallites. In blending PEMA, however, no trace of exotherms was found suggestive of PEMA better inhibiting recrystallization. FTIR study confirmed molecular interactions of various constituents in the vibrational band 500 - 1000 cm-1 both in pristine PVdF-co-HFP and PEMA blended composites with reference to C-F stretching, C-H stretching and C=O carbonyl bands.

  9. Atomistic simulations of ammonium-based protic ionic liquids: steric effects on structure, low frequency vibrational modes and electrical conductivity.

    PubMed

    Sunda, Anurag Prakash; Mondal, Anirban; Balasubramanian, Sundaram

    2015-02-14

    Protic ionic liquids (PILs) are of great interest as electrolytes in various energy applications. Molecular dynamics simulations of trialkylammonium (with varying alkyl group such as methyl, ethyl, and n-propyl) triflate PILs are performed to characterize the influence of the alkyl group on the acidic site (N-H) of the ammonium cation. Spatial distribution function of anions over this site on the cation reveals significant influence of the length of alkyl tail on intermolecular structure. Vibrational density of states and normal modes are calculated for bulk liquids to probe atomic displacements in the far infrared region. The observed N-H···O hydrogen bond stretching vibration in 155-165 cm(-1) frequency region agrees well with experiments. Trends in electrical conductivity calculated using Nernst-Einstein and Green-Kubo relation are in qualitative agreement with experiments. The self-diffusion coefficient and the electrical conductivity is highest for N,N-dimethyl-N-ethylammonium triflate ([N112][TfO]) and is lowest for N,N-di-n-propyl-N-methylammonium triflate ([N133][TfO]) IL. PMID:25585541

  10. Study of Mast Cells and Granules from Primo Nodes Using Scanning Ionic Conductance Microscopy.

    PubMed

    Yoo, Yeong-Yung; Jung, Goo-Eun; Kwon, Hee-Min; Bae, Kyoung-Hee; Cho, Sang-Joon; Soh, Kwang-Sup

    2015-12-01

    Acupuncture points have a notable characteristic in that they have a higher density of mast cells (MCs) compared with nonacupoints in the skin, which is consistent with the augmentation of the immune function by acupuncture treatment. The primo vascular system, which was proposed as the anatomical structure of the acupuncture points and meridians, also has a high density of MCs. We isolated the primo nodes from the surfaces of internal abdominal organs, and the harvested primo nodes were stained with toluidine blue. The MCs were easily recognized by their stained color and their characteristic granules. The MCs were classified into four stages according to the degranulation of histamine granules in the MCs. Using conventional optical microscopes details of the degranulation state of MCs in each stage were not observable. However, we were able to investigate the distribution of the granules on the surfaces of the MCs in each stage, and to demonstrate the height profiles and three-dimensional structures of the MCs without disturbance of the cell membrane by using the scanning ion conductance microscopy. PMID:26742911