Science.gov

Sample records for ionic strength saline

  1. Sr2+/Ca2+ and 44Ca/40Ca fractionation during inorganic calcite formation: III. Impact of salinity/ionic strength

    PubMed Central

    Tang, Jianwu; Niedermayr, Andrea; Köhler, Stephan J.; Böhm, Florian; Kısakürek, Basak; Eisenhauer, Anton; Dietzel, Martin

    2012-01-01

    In order to apply Sr/Ca and 44Ca/40Ca fractionation during calcium carbonate (CaCO3) formation as a proxy to reconstruct paleo-environments, it is essential to evaluate the impact of various environmental factors. In this study, a CO2 diffusion technique was used to crystallize inorganic calcite from aqueous solutions at different ionic strength/salinity by the addition of NaCl at 25 °C. Results show that the discrimination of Sr2+ versus Ca2+ during calcite formation is mainly controlled by precipitation rate (R in μmol/m2/h) and is weakly influenced by ionic strength/salinity. In analogy to Sr incorporation, 44Ca/40Ca fractionation during precipitation of calcite is weakly influenced by ionic strength/salinity too. At 25 °C the calcium isotope fractionation between calcite and aqueous calcium ions (Δ44/40Cacalcite-aq = δ44/40Cacalcite − δ44/40Caaq) correlates inversely to log R values for all experiments. In addition, an inverse relationship between Δ44/40Cacalcite-aq and log DSr, which is independent of temperature, precipitation rate, and aqueous (Sr/Ca)aq ratio, is not affected by ionic strength/salinity either. Considering the log DSr and Δ44/40Cacalcite-aq relationship, Sr/Ca and δ44/40Cacalcite values of precipitated calcite can be used as an excellent multi-proxy approach to reconstruct environmental conditions (e.g., temperature, precipitation rate) of calcite growth and diagenetic alteration. PMID:22347722

  2. The effect of ionic strength on oil adhesion in sandstone – the search for the low salinity mechanism

    PubMed Central

    Hilner, E.; Andersson, M. P.; Hassenkam, T.; Matthiesen, J.; Salino, P. A.; Stipp, S. L. S.

    2015-01-01

    Core flood and field tests have demonstrated that decreasing injection water salinity increases oil recovery from sandstone reservoirs. However, the microscopic mechanism behind the effect is still under debate. One hypothesis is that as salinity decreases, expansion of the electrical double layer decreases attraction between organic molecules and pore surfaces. We have developed a method that uses atomic force microscopy (AFM) in chemical force mapping (CFM) mode to explore the relationship between wettability and salinity. We functionalised AFM tips with alkanes and used them to represent tiny nonpolar oil droplets. In repeated measurements, we brought our “oil” close to the surface of sand grains taken from core plugs and we measured the adhesion between the tip and sample. Adhesion was constant in high salinity solutions but below a threshold of 5,000 to 8,000 ppm, adhesion decreased as salinity decreased, rendering the surface less oil wet. The effect was consistent, reproducible and reversible. The threshold for the onset of low salinity response fits remarkably well with observations from core plug experiments and field tests. The results demonstrate that the electric double layer force always contributes at least in part to the low salinity effect, decreasing oil wettability when salinity is low. PMID:25899050

  3. The effect of ionic strength on oil adhesion in sandstone--the search for the low salinity mechanism.

    PubMed

    Hilner, E; Andersson, M P; Hassenkam, T; Matthiesen, J; Salino, P A; Stipp, S L S

    2015-01-01

    Core flood and field tests have demonstrated that decreasing injection water salinity increases oil recovery from sandstone reservoirs. However, the microscopic mechanism behind the effect is still under debate. One hypothesis is that as salinity decreases, expansion of the electrical double layer decreases attraction between organic molecules and pore surfaces. We have developed a method that uses atomic force microscopy (AFM) in chemical force mapping (CFM) mode to explore the relationship between wettability and salinity. We functionalised AFM tips with alkanes and used them to represent tiny nonpolar oil droplets. In repeated measurements, we brought our "oil" close to the surface of sand grains taken from core plugs and we measured the adhesion between the tip and sample. Adhesion was constant in high salinity solutions but below a threshold of 5,000 to 8,000 ppm, adhesion decreased as salinity decreased, rendering the surface less oil wet. The effect was consistent, reproducible and reversible. The threshold for the onset of low salinity response fits remarkably well with observations from core plug experiments and field tests. The results demonstrate that the electric double layer force always contributes at least in part to the low salinity effect, decreasing oil wettability when salinity is low. PMID:25899050

  4. Ionic strength and DOC determinations from various freshwater sources to the San Francisco Bay

    USGS Publications Warehouse

    Hunter, Y.R.; Kuwabara, J.S.

    1994-01-01

    An exact estimation of dissolved organic carbon (DOC) within the salinity gradient of zinc and copper metals is significant in understanding the limit to which DOC could influence metal speciation. A low-temperature persulfate/oxygen/ultraviolet wet oxidation procedure was utilized for analyzing DOC samples adapted for ionic strength from major freshwater sources of the northern and southern regions of San Francisco Bay. The ionic strength of samples was modified with a chemically defined seawater medium up to 0.7M. Based on the results, a minimum effect of ionic strength on oxidation proficiency for DOC sources to the Bay over an ionic strength gradient of 0.0 to 0.7 M was observed. There was no major impacts of ionic strength on two Suwanee River fulvic acids. In general, the noted effects associated with ionic strength were smaller than the variances seen in the aquatic environment between high- and low-temperature methods.

  5. TOUGHREACT Testing in High Ionic Strength Brine Sandstone Systems

    SciTech Connect

    Xu, Tianfu

    2008-09-01

    Deep saline formations and oil and gas reservoirs often contain concentrated brine solutions of ionic strength greater than 1 (I > 1 M). Geochemical modeling, involving high ionic strength brines, is a challenge. In the original TOUGHREACT code (Xu et al., 2004; Xu et al., 2006), activity coefficients of charged aqueous species are computed using an extended Debye-Huckel (DH) equation and parameters derived by Helgeson et al. (1981). The DH model can deal with ionic strengths from dilute to moderately saline water (up to 6 molal for an NaCl-dominant solution). The equations implemented for the DH model are presented in Appendix A. During the course of the Yucca Mountain project, a Pitzer ion-interaction model was implemented into TOUGHREACT. This allows the application of this simulator to problems involving much more concentrated aqueous solutions, such as those involving geochemical processes in and around high-level nuclear waste repositories where fluid evaporation and/or boiling is expected to occur (Zhang et al., 2007). The Pitzer ion-interaction model, which we refer to as the Pitzer virial approach, and associated ion-interaction parameters have been applied successfully to study non-ideal concentrated aqueous solutions. The formulation of the Pitzer model is presented in Appendix B; detailed information can be founded in Zhang et al. (2007). For CO{sub 2} geological sequestration, the Pitzer ion-interaction model for highly concentrated brines was incorporated into TOUGHREACT/ECO2N, then was tested and compared with a previously implemented extended Debye-Hueckel (DH) ion activity model. The comparison was made through a batch geochemical system using a Gulf Coast sandstone saline formation.

  6. Role of Ionic Strength in Staphylococcal Cell Aggregation.

    PubMed

    Vanzieleghem, Thomas; Couniot, Numa; Herman-Bausier, Philippe; Flandre, Denis; Dufrêne, Yves F; Mahillon, Jacques

    2016-07-26

    Cell aggregation plays a key role in biofilm formation and pathogenesis of Staphylococcus species. Although the molecular basis of aggregation in Staphylococci has already been extensively investigated, the influence of environmental factors, such as ionic strength, remains poorly understood. In this paper, we report a new type of cellular aggregation of Staphylococci that depends solely on ionic strength. Seven strains out of 14, all belonging to staphylococcal species, formed large cell clusters within minutes in buffers of ionic strength ranging from 1.5 to 50 mM, whereas isolates belonging to other Gram-positive species did not display this phenotype. Atomic force microscopy (AFM) with chemically functionalized tips provided direct evidence that ionic strength modulates cell surface adhesive properties through changes in cell surface charge. The optimal ionic strength for aggregation was found to be strain dependent, but in all cases, bacterial aggregates formed at an ionic strength of 1.5-50 mM were rapidly dispersed in a solution of higher ionic strength, indicating a reversibility of the cell aggregation process. These findings suggest that some staphylococcal isolates can respond to ionic strength as an external stimulus to trigger rapid cell aggregation in a way that has not yet been reported. PMID:27364477

  7. "Switchable water": aqueous solutions of switchable ionic strength.

    PubMed

    Mercer, Sean M; Jessop, Philip G

    2010-04-26

    "Salting out" is a standard method for separating water-soluble organic compounds from water. In this method, adding a large amount of salt to the aqueous solution forces the organic compound out of the aqueous phase. However, the method can not be considered sustainable because it creates highly salty water. A greener alternative would be a method that allows reversible salting out. Herein, we describe aqueous solutions of switchable ionic strength. Aqueous solutions of a diamine in water have essentially zero ionic strength but are converted by CO(2) into solutions of high ionic strength. The change is reversible. Application to the reversible salting out of THF from water is described. PMID:20186910

  8. Mechanistic Study of Electroosmotic Transport Across Hydrated Nail Plates: Effects of pH and Ionic Strength

    PubMed Central

    HAO, JINSONG; LI, S. KEVIN

    2008-01-01

    The objective of this study was to investigate the effects of pH and ionic strength on electroosmotic transport in transungual iontophoresis. Transungual iontophoretic transport of model neutral permeants mannitol (MA) and urea (UR) across fully hydrated human nail plates in phosphate-buffered saline of different pH and ionic strengths were investigated in vitro. Two protocols were involved in the transport experiments with each protocol divided into stages including passive and iontophoresis transport at 0.1 and/or 0.3 mA. Nail plate electrical resistance and water uptake of nail clippings were measured at various pH and ionic strengths. In the pH study, electroosmosis enhanced the anodal transport of MA at pH 9 and cathodal transport at pH 3. The Peclet numbers of MA were more than two times higher than those of UR under these conditions. No significant electroosmosis enhancement was observed for MA and UR at pH 5. In the ionic strength study, a decrease in solution ionic strength from 0.7 to 0.04 M enhanced electroosmotic transport. Nail electrical resistance increased with decreasing the ionic strength of the equilibrating solution, but reached a plateau when the ionic strength was less than approximately 0.07 M. Solution pH and ionic strength had no significant effect on nail hydration. Under the studied pH and ionic strength conditions, the effects of electroosmosis were small compared to the direct-field effects in transungual iontophoretic transport of small to moderate size permeants. PMID:18386836

  9. Evaluation of cation-anion interaction strength in ionic liquids.

    PubMed

    Fernandes, Ana M; Rocha, Marisa A A; Freire, Mara G; Marrucho, Isabel M; Coutinho, João A P; Santos, Luís M N B F

    2011-04-14

    Electrospray ionization mass spectrometry with variable collision induced dissociation of the isolated [(cation)(2)anion](+) and/or [(anion)(2)cation](-) ions of imidazolium-, pyridinium-, pyrrolidinium-, and piperidinium-based ionic liquids (ILs) combined with a large set of anions, such as chloride, tetrafluoroborate, hexafluorophosphate, trifluoromethanesulfonate, and bis[(trifluoromethyl)sulfonyl]imide, was used to carry out a systematic and comprehensive study on the ionic liquids relative interaction energies. The results are interpreted in terms of main influences derived from the structural characteristics of both anion and cation. On the basis of quantum chemical calculations, the effect of the anion upon the dissociation energies of the ionic liquid pair, and isolated [(cation)(2)anion](+) and/or [(anion)(2)cation](-) aggregates, were estimated and are in good agreement with the experimental data. Both experimental and computational results indicate an energetic differentiation between the cation and the anion to the ionic pair. Moreover, it was found that the quantum chemical calculations can describe the trend obtained for the electrostatic cation-anion attraction potential. The impact of the cation-anion interaction strengths in the surface tension of ionic liquids is further discussed. The surface tensions dependence on the cation alkyl chain length, and on the anion nature, follows an analogous pattern to that of the relative cation-anion interaction energies determined by mass spectrometry. PMID:21425809

  10. Media ionic strength impacts embryonic responses to engineered nanoparticle exposure

    PubMed Central

    Truong, Lisa; Zaikova, Tatiana; Richman, Erik K.; Hutchison, James E.; Tanguay, Robert L.

    2012-01-01

    Embryonic zebrafish were used to assess the impact of solution ion concentrations on agglomeration and resulting in vivo biological responses of gold nanoparticles (AuNPs). The minimum ion concentration necessary to support embryonic development was determined. Surprisingly, zebrafish exhibit no adverse outcomes when raised in nearly ion-free media. During a rapid throughput screening of AuNPs, 1.2-nm 3-mercaptopropionic acid-functionalized AuNPs (1.2-nm 3-MPA-AuNPs) rapidly agglomerate in exposure solutions. When embryos were exposed to 1.2-nm 3-MPA-AuNPs dispersed in low ionic media, both morbidity and mortality were induced, but when suspended in high ionic media, there was little to no biological response. We demonstrated that the media ionic strength greatly affects agglomeration rates and biological responses. Most importantly, the insensitivity of the zebrafish embryo to external ions indicates that it is possible, and necessary, to adjust the exposure media conditions to optimize NP dispersion prior to assessment. PMID:21809903

  11. SORPTION OF CU AND ZN TO KAOLINITE AND IRON OXIDE: EFFECTS OF HUMIC ACID AND IONIC STRENGTH AND IMPLICATIONS FOR STORMWATER RUNOFF

    EPA Science Inventory

    Heavy metals are common pollutants in wet weather flows and urban waterways. Changes in ionic strength, whether from mixing with saline waters, road salt, or from the large osmotic adjustment needed for the Microtox toxicity assay, affect the aqueous chemistry of stormwater runof...

  12. The Concept of Ionic Strength Eighty Years after Its Introduction in Chemistry

    NASA Astrophysics Data System (ADS)

    Sastre de Vicente, Manuel E.

    2004-05-01

    Even today, eighty years after its empirical introduction in chemistry, the ionic strength of a solution continues to be regarded as a major variable in examining salt effects in many fields of science. In fact, many studies have examined the effect of, or dependence on, not only T , P , or pH, but also ionic strength. This paper reviews the meaning of ionic strength, including the relationship of ionic strength to macroscopic concepts such as thermodynamic quantities and microscopic ones such as molecule size. See Letter re: this article.

  13. Evaluating contribution of ionic, osmotic and oxidative stress components towards salinity tolerance in barley

    PubMed Central

    2014-01-01

    Background Salinity tolerance is a physiologically multi-faceted trait attributed to multiple mechanisms. Three barley (Hordeum vulgare) varieties contrasting in their salinity tolerance were used to assess the relative contribution of ionic, osmotic and oxidative stress components towards overall salinity stress tolerance in this species, both at the whole-plant and cellular levels. In addition, transcriptional changes in the gene expression profile were studied for key genes mediating plant ionic and oxidative homeostasis (NHX; RBOH; SOD; AHA and GORK), to compare a contribution of transcriptional and post-translational factors towards the specific components of salinity tolerance. Results Our major findings are two-fold. First, plant tissue tolerance was a dominating component that has determined the overall plant responses to salinity, with root K+ retention ability and reduced sensitivity to stress-induced hydroxyl radical production being the main contributing tolerance mechanisms. Second, it was not possible to infer which cultivars were salinity tolerant based solely on expression profiling of candidate genes at one specific time point. For the genes studied and the time point selected that transcriptional changes in the expression of these specific genes had a small role for barley’s adaptive responses to salinity. Conclusions For better tissue tolerance, sodium sequestration, K+ retention and resistance to oxidative stress all appeared to be crucial. Because these traits are highly interrelated, it is suggested that a major progress in crop breeding for salinity tolerance can be achieved only if these complementary traits are targeted at the same time. This study also highlights the essentiality of post translational modifications in plant adaptive responses to salinity. PMID:24774965

  14. Effect of Ionic Strength and Surface Charge on Convective Deposition.

    PubMed

    Joshi, Kedar; Muangnapoh, Tanyakorn; Stever, Michael D; Gilchrist, James F

    2015-11-17

    Particle-particle and particle-substrate interactions play a crucial role in capillary driven convective self-assembly for continuous deposition of particles. This systematic study demonstrates the nontrivial effects of varying surface charge and ionic strength of monosized silica microspheres in water on the quality of the deposited monolayer. Increase in particle surface charge results a broader range of parameters that result in monolayer deposition which can be explained considering the particle-substrate electrostatic repulsion in solution. Resulting changes in the coating morphology and microstructure at different solution conditions were observed using confocal microscopy enabling correlation of order to disorder transitions with relative particle stability. These results, in part, may explain similar results seen by Muangnapoh et al., 2013 in vibration-assisted convective deposition. PMID:26501996

  15. Dynamic light scattering by polyelectrolytes in low ionic strength buffers

    SciTech Connect

    Schmitz, K.S.

    1993-12-31

    Dynamic light scattering is a generic term which refers to all techniques that monitor fluctuation in the intensity of scattered light. Quasielastic light scattering (QELS) is that configuration in which no external field is applied in the course of data collection. In the case of charged macroions, QELS studies indicate a bifurcation in the relaxation modes as the ionic strength is lowered. This phenomenon is discussed in terms of an extended couple mode theory in which the dynamics of the macroions are coupled with those of the electrolyte ions. The QELS results are correlated with studies in which external electric fields of wave forms that are constant (ELS, electrophoretic light scattering) or pure sinusoidal (QELS-SEF).

  16. Transient streaming potentials under varying pore-water ionic strength

    NASA Astrophysics Data System (ADS)

    Malama, B.

    2014-12-01

    Streaming potentials (SP) are generated when polar fluids such as groundwater flow through porous media that have charged mineral surfaces. This is due to the flow-shearing of the diffuse layer of the electric double layer (EDL), which is known to form in the fluid phase at the fluid-rock interface. Previous works have suggested that the EDL vanishes at high pore-fluid ionic strengths resulting in vanishing SP signals. However, recent observations in sea-water intrusion applications by Jackson and coworkers indicate that measurable SP signals are obtainable in flows of fluids with high ionic strengths through silica sand. We demonstrate the repeatability of these observations through a series of laboratory flow experiments performed on 98% silica sand in a falling-head permeameter with brines of concentrations ranging from 0.001M to about 5 M NaCl. The results of the experiments, which clearly show measurable SP signals even at the highest concentration of 5 M NaCl, are reported. They are also used to estimate the hydraulic conductivity and electrokinetic coupling coefficient. The linearity assumption for the relation between pressure and SP differentials is evaluated for high pore-water NaCl concentrations. Additionally, displacement of one brine by another of different NaCl concentration yields dramatic transient SP responses that may be harnessed in the development of early-detection/warning technologies for sea-water intrusion applications. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S Department of Energy.

  17. Ionic Strength-Induced Formation of Smectite Quasicrystals Enhances Nitroaromatic Compound Sorption

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of ionic strength on nitroaromatic compound sorption from water by K+- and Ca2+-saturated smectite (SWy-2) was examined. The results indicated that sorption of 1,3-dinitrobenzene by K-SWy-2 increased up to 2.2 times as KCl ionic strength increased from 0.01 to 0.30 M. In contrast, sorp...

  18. The Effect of Ionic Strength on the Solubility of an Electrolyte

    ERIC Educational Resources Information Center

    Willey, Joan D.

    2004-01-01

    A simple experiment was conducted for studying and demonstrating visually and dramatically the effect of ionic strength on the solubility of an electrolyte is described. It is seen that the experiment visually illustrates the effect of ionic strength on electrolyte solubility by the appearance of the two solutions and by the difference in the…

  19. Prokaryotic Community Structure Driven by Salinity and Ionic Concentrations in Plateau Lakes of the Tibetan Plateau

    PubMed Central

    Zhong, Zhi-Ping; Liu, Ying; Miao, Li-Li; Wang, Fang; Chu, Li-Min; Wang, Jia-Li

    2016-01-01

    communities along gradients of salinity and ionic concentrations. PMID:26746713

  20. Prokaryotic Community Structure Driven by Salinity and Ionic Concentrations in Plateau Lakes of the Tibetan Plateau.

    PubMed

    Zhong, Zhi-Ping; Liu, Ying; Miao, Li-Li; Wang, Fang; Chu, Li-Min; Wang, Jia-Li; Liu, Zhi-Pei

    2016-03-01

    well as whole communities along gradients of salinity and ionic concentrations. PMID:26746713

  1. Influence of ionic strength on poly(diallyldimethylammonium chloride) macromolecule conformations in electrolyte solutions.

    PubMed

    Adamczyk, Zbigniew; Jamroży, Krzysztof; Batys, Piotr; Michna, Aneta

    2014-12-01

    Conformations of poly(diallyldimethylammonium chloride), PDADMAC, molecules in electrolyte solutions were experimentally evaluated by dynamic light scattering (DLS), micro-electrophoretic and viscosity measurements. The role of ionic strength varied within 10(-4) and 2M was systematically studied. The diffusion coefficient of the polymer molecules was equal to 1.3×10(-7)cm(2)s(-1) for the ionic strength range 5×10(-4) to 10(-2)M decreasing slightly for higher ionic strength. This corresponds to the hydrodynamic diameter of 38.5nm. Using the diffusion coefficient and the electrophoretic mobility data, the electrokinetic charge on PDADMAC molecules was calculated as a function of ionic strength. It was positive and varied between 84 and 51 elementary charges. This gives the effective ionization degree of the macromolecule equal to 13% and 8% for ionic strength of 5×10(-4) and 0.15M, respectively. Additional information about macromolecule conformation was derived from the viscosity measurements of dilute PDADMAC solutions. The intrinsic viscosity derived from these measurements decreased abruptly with ionic strength from 3400 for 10(-4)M to 100 for 2M, NaCl solutions. By extrapolating the hydrodynamic diameter and intrinsic viscosity data to zero ionic strength the polyelectrolyte molecule contour length of 240nm and the backbone diameter of 0.85nm were predicted. On the other hand, the decrease in the intrinsic viscosity for higher ionic strength was attributed to changes in macromolecule conformations to more collapsed ones. The experimental results were interpreted by molecular dynamics modeling of PDADMAC chain conformations in electrolyte solutions where the ionic strength effect and the effective ionization degree were considered. A quantitative agreement was attained for lower ionic strength range proving that the combined DLS and viscosity measurements furnish reliable information about macromolecule conformations in electrolyte solution. PMID:25265546

  2. Ionic strength independence of charge distributions in solvation of biomolecules.

    PubMed

    Virtanen, J J; Sosnick, T R; Freed, K F

    2014-12-14

    Electrostatic forces enormously impact the structure, interactions, and function of biomolecules. We perform all-atom molecular dynamics simulations for 5 proteins and 5 RNAs to determine the dependence on ionic strength of the ion and water charge distributions surrounding the biomolecules, as well as the contributions of ions to the electrostatic free energy of interaction between the biomolecule and the surrounding salt solution (for a total of 40 different biomolecule/solvent combinations). Although water provides the dominant contribution to the charge density distribution and to the electrostatic potential even in 1M NaCl solutions, the contributions of water molecules and of ions to the total electrostatic interaction free energy with the solvated biomolecule are comparable. The electrostatic biomolecule/solvent interaction energies and the total charge distribution exhibit a remarkable insensitivity to salt concentrations over a huge range of salt concentrations (20 mM to 1M NaCl). The electrostatic potentials near the biomolecule's surface obtained from the MD simulations differ markedly, as expected, from the potentials predicted by continuum dielectric models, even though the total electrostatic interaction free energies are within 11% of each other. PMID:25494774

  3. Ionic strength independence of charge distributions in solvation of biomolecules

    SciTech Connect

    Virtanen, J. J.; Sosnick, T. R.; Freed, K. F.

    2014-12-14

    Electrostatic forces enormously impact the structure, interactions, and function of biomolecules. We perform all-atom molecular dynamics simulations for 5 proteins and 5 RNAs to determine the dependence on ionic strength of the ion and water charge distributions surrounding the biomolecules, as well as the contributions of ions to the electrostatic free energy of interaction between the biomolecule and the surrounding salt solution (for a total of 40 different biomolecule/solvent combinations). Although water provides the dominant contribution to the charge density distribution and to the electrostatic potential even in 1M NaCl solutions, the contributions of water molecules and of ions to the total electrostatic interaction free energy with the solvated biomolecule are comparable. The electrostatic biomolecule/solvent interaction energies and the total charge distribution exhibit a remarkable insensitivity to salt concentrations over a huge range of salt concentrations (20 mM to 1M NaCl). The electrostatic potentials near the biomolecule's surface obtained from the MD simulations differ markedly, as expected, from the potentials predicted by continuum dielectric models, even though the total electrostatic interaction free energies are within 11% of each other.

  4. Ionic strength assay via polyacrylate-ferriferrous oxide magnetic photonic crystals.

    PubMed

    Li, Yan-Ran; Sun, Ye; Wang, He-Fang

    2015-05-21

    Convenient reading out and/or determination of ionic strength (IS) is of great significance for both scientific research and real life applications. We presented here a novel method for the rapid and sensitive IS assay based on the electrolyte-induced sensitive wavelength blueshifts of the reflection spectra of polyacrylate capped Fe3O4 magnetic photonic crystals (PA-Fe3O4-MPCs). For HCl, MgSO4 and the common electrolytes corresponding to the salinity of seawater (including NaCl, KCl, MgCl2, CaCl2, Na2SO4 and their mixtures), the PA-Fe3O4-MPCs displayed wavelength blueshifts identical to the total IS of the aqueous solutions, regardless of the kind of above-mentioned electrolytes in the solutions. Besides, the PA-Fe3O4-MPCs exhibited relatively high sensitivity (an average of 294 nm L mmol(-1) in the range of 0.05-0.30 mmol L(-1), and an even higher value of 386 nm L mmol(-1) at 0.05-0.15 mmol L(-1)) and fast response (within 8 s) to the IS of aqueous solutions. The relative standard deviation (RSD) for IS (NaCl, 0.1 mmol L(-1)) was 4.4% (n = 5). The developed method was applied to determine the salinity of seawater samples, and the determined results were validated by the traditional standard chlorinity titration and electric conductimetry method. The recoveries were in the range of 92-104%. The proposed PA-Fe3O4-MPCs based reflectometry method would have great potential for IS and salinity assays. PMID:25827462

  5. Modeling colloid and microorganism transport and release with transients in solution ionic strength

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The transport and fate of colloids, microorganisms, and nanoparticles in subsurface environments is strongly influenced by transients in solution ionic strength (IS). A sophisticated dual-permeability transport model that is capable of simulating exponential, hyperexponential, uniform, and nonmonot...

  6. High-performance ionic diode membrane for salinity gradient power generation.

    PubMed

    Gao, Jun; Guo, Wei; Feng, Dan; Wang, Huanting; Zhao, Dongyuan; Jiang, Lei

    2014-09-01

    Salinity difference between seawater and river water is a sustainable energy resource that catches eyes of the public and the investors in the background of energy crisis. To capture this energy, interdisciplinary efforts from chemistry, materials science, environmental science, and nanotechnology have been made to create efficient and economically viable energy conversion methods and materials. Beyond conventional membrane-based processes, technological breakthroughs in harvesting salinity gradient power from natural waters are expected to emerge from the novel fluidic transport phenomena on the nanoscale. A major challenge toward real-world applications is to extrapolate existing single-channel devices to macroscopic materials. Here, we report a membrane-scale nanofluidic device with asymmetric structure, chemical composition, and surface charge polarity, termed ionic diode membrane (IDM), for harvesting electric power from salinity gradient. The IDM comprises heterojunctions between mesoporous carbon (pore size ∼7 nm, negatively charged) and macroporous alumina (pore size ∼80 nm, positively charged). The meso-/macroporous membrane rectifies the ionic current with distinctly high ratio of ca. 450 and keeps on rectifying in high-concentration electrolytes, even in saturated solution. The selective and rectified ion transport furthermore sheds light on salinity-gradient power generation. By mixing artificial seawater and river water through the IDM, substantially high power density of up to 3.46 W/m(2) is discovered, which largely outperforms some commercial ion-exchange membranes. A theoretical model based on coupled Poisson and Nernst-Planck equations is established to quantitatively explain the experimental observations and get insights into the underlying mechanism. The macroscopic and asymmetric nanofluidic structure anticipates wide potentials for sustainable power generation, water purification, and desalination. PMID:25137214

  7. Effects of Ionic Strength on Passive and Iontophoretic Transport of Cationic Permeant Across Human Nail

    PubMed Central

    Smith, Kelly A.; Hao, Jinsong; Li, S. Kevin

    2010-01-01

    Purpose Transport across the human nail under hydration can be modeled as hindered transport across aqueous pore pathways. As such, nail permselectivity to charged species can be manipulated by changing the ionic strength of the system in transungual delivery to treat nail diseases. The present study investigated the effects of ionic strength upon transungual passive and iontophoretic transport. Methods Transungual passive and anodal iontophoretic transport experiments of tetraethylammonium ion (TEA) were conducted under symmetric conditions in which the donor and receiver had the same ionic strength in vitro. Experiments under asymmetric conditions were performed to mimic the in vivo conditions. Prior to the transport studies, TEA uptake studies were performed to assess the partitioning of TEA into the nail. Results Permselectivity towards TEA was inversely related to ionic strength in both passive and iontophoretic transport. The permeability and transference number of TEA were higher at lower ionic strengths under the symmetric conditions due to increased partitioning of TEA into the nail. Transference numbers were smaller under the asymmetric conditions compared with their symmetric counterparts. Conclusions The results demonstrate significant ionic strength effects upon the partitioning and transport of a cationic permeant in transungual transport, which may be instrumental in the development of transungual delivery systems. PMID:19267187

  8. Influence of ionic strength on the surface charge and interaction of layered silicate particles.

    PubMed

    Liu, Jing; Miller, Jan D; Yin, Xihui; Gupta, Vishal; Wang, Xuming

    2014-10-15

    The surface charge densities and surface potentials of selected phyllosilicate surfaces were calculated from AFM surface force measurements and reported as a function of ionic strength at pH 5.6. The results show that the silica faces of clay minerals follow the constant surface charge model because of isomorphous substitution in the silica tetrahedral layer. A decreasing surface charge density sequence was observed as follows: muscovite silica face>kaolinite silica face>talc silica face, which is expected to be due to the extent of isomorphous substitution. In contrast, at pH 5.6, the alumina face and the edge surface of kaolinite follow the constant surface potential model with increasing ionic strength, and the surface charge density increased with increasing ionic strength. The cluster size of suspended kaolinite particles at pH 5.6 was found to increase with increasing ionic strength due to an increase in the surface charge density for the alumina face and the edge surface. However, the cluster size decreased at 100mM KCl as a result of an unexpected decrease in the surface charge of the alumina face. When the ionic strength continued to increase above 100mM KCl, the van der Waals attraction dominated and larger clusters of micron size were stabilized. PMID:25086721

  9. Ionic strength-dependent changes in tentacular ion exchangers with variable ligand density. I. Structural properties.

    PubMed

    Bhambure, Rahul; Gillespie, Christopher M; Phillips, Michael; Graalfs, Heiner; Lenhoff, Abraham M

    2016-09-01

    The ligand density critically affects the performance of ion-exchange resins in such measures as the adsorption capacity and transport characteristics. However, for tentacular and other polymer-modified exchangers, the mechanistic basis of the effect of ligand density on performance is not yet fully understood. In this study we map the ionic strength-dependent structural changes in tentacular cation exchangers with variable ligand densities as the basis for subsequent investigation of effects on functional properties. Inverse size-exclusion chromatography (ISEC), scanning electron microscopy (SEM) and small-angle x-ray scattering (SAXS) were used to assess the effect of ionic strength on the pore size and intraparticle architecture of resin variants with different ligand densities. Comparison of ISEC and cryo-SEM results shows a considerable reduction in average pore size with increasing ligand density; these methods also confirm an increase of average pore size at higher ionic strengths. SAXS analysis of ionic strength-dependent conformational changes in the grafted polyelectrolyte layer shows a characteristic ionomer peak at values of the scattering vector q (0.1-0.2Å(-1)) that depend on the ligand density and the ionic strength of the solution. This peak attribution reflects nanoscale changes in the structure of the grafted polyelectrolyte chains that can in turn be responsible for observed pore-size changes in the resins. Finally, salt breakthrough experiments confirm a stronger Donnan exclusion effect on pore accessibility for small ions in the high ligand density variant. PMID:27544749

  10. Neptunium (V) Adsorption to a Halophilic Bacterium Under High Ionic Strength Conditions: A Surface Complexation Modeling Approach

    SciTech Connect

    Ams, David A

    2012-06-11

    Rationale for experimental design: Np(V) -- important as analog for Pu(V) and for HLW scenarios; High ionic strength -- relevant to salt-based repositories such as the WIPP; Halophilic microorganisms -- representative of high ionic strength environments. For the first time showed: Significant adsorbant to halophilic microorganisms over entire pH range under high ionic strength conditions; Strong influence of ionic strength with increasing adsorption with increasing ionic strength (in contrast to trends of previous low ionic strength studies); Effect of aqueous Np(V) and bacterial surface site speciation on adsorption; and Developed thermodynamic models that can be incorporated into geochemical speciation models to aid in the prediction of the fate and transport of Np(V) in more complex systems.

  11. Plutonium (IV) complexation by nitrate in acid solutions of ionic strengths from 2 to 19 molal

    SciTech Connect

    Berg, J.M.; Veirs, D.K.; Vaughn, R.B.; Cisneros, M.A.; Smith, C.A.

    1997-09-01

    Titrations of Pu(IV) with HNO{sub 3} in a series of aqueous HClO{sub 4} solutions ranging in ionic strength from 2 to 19 molal were followed using absorption spectrophotometry. The Pu 5f-5f spectra in the visible and near IR range change with complex formation. At each ionic strength, a series of spectra were obtained by varying nitrate concentration. Each series was deconvoluted into spectra f Pu{sup 4+}(aq), Pu(NO{sub 3}){sup 3+} and Pu(NO{sub 3}){sub 2}{sup 2+} complexes, and simultaneously their formation constants were determined. When corrected for the incomplete dissociation of nitric acid, the ionic strength dependence of each formation constant can be described by two parameters, {beta}{sup 0} and {Delta}{var_epsilon} using the formulae of specific ion interaction theory. The difficulties with extending this analysis to higher nitrate coordination numbers are discussed.

  12. Role of Heavy Meromyosin in Heat-Induced Gelation in Low Ionic Strength Solution Containing L-Histidine.

    PubMed

    Hayakawa, Toru; Yoshida, Yuri; Yasui, Masanori; Ito, Toshiaki; Wakamatsu, Jun-ichi; Hattori, Akihito; Nishimura, Takanori

    2015-08-01

    The gelation of myosin has a very important role in meat products. We have already shown that myosin in low ionic strength solution containing L-histidine forms a transparent gel after heating. To clarify the mechanism of this unique gelation, we investigated the changes in the nature of myosin subfragments during heating in solutions with low and high ionic strengths with and without L-histidine. The hydrophobicity of myosin and heavy meromyosin (HMM) in low ionic strength solution containing L-histidine was lower than in high ionic strength solution. The SH contents of myosin and HMM in low ionic strength solution containing l-histidine did not change during the heating process, whereas in high ionic strength solution they decreased slightly. The heat-induced globular masses of HMM in low ionic strength solution containing L-histidine were smaller than those in high ionic strength solution. These findings suggested that the polymerization of HMM molecules by heating was suppressed in low ionic strength solution containing L-histidine, resulting in formation of the unique gel. PMID:26148000

  13. Delineating Effects of Ionic Strength and Suspended Solids on Ammonia Volatilization from Dairy Manure Slurry

    NASA Astrophysics Data System (ADS)

    Koirala, K.

    2014-12-01

    Ammonia emission is a major concern due to its adverse effects on animal and human health. Ionic strength and suspended solids play key roles in the ammonia volatilization process. These two parameters, however, are usually lumped together in form of total solids. The objective of this study was to separate the contribution of suspended solids (SS) from that of ionic strength (IS) on ammonia volatilization in liquid dairy manure. A two-way factorial experiment was conducted to simultaneously test the effects of IS and SS on ammonium dissociation: a key element of the ammonia volatilization process. The fraction of ammonia (β) in total ammoniacal nitrogen (TAN) was experimentally determined in a convective emission chamber, for each level of SS and IS, at a constant wind speed of 1.5 m s-1, and air and liquid temperature of 25°C. The two way analysis of variance showed a significant effect of SS concentration (p = 0.04) on fraction of ammonia in the liquid dairy manure, while the effect of ionic strength was marginal (p = 0.05). The highest dissociation of ammonium was observed in manure with the lowest SS concentration (0%) and the lowest ionic strength (0.10 mol L-1). Significant increases in suspended solids concentration and ionic strength were necessary to influence the ammonium dissociation in dairy manure. Results revealed that substantially high content of suspended solids (> 3.0%) or relatively high dilution of manure with water (30%) were necessary for these two parameters to play significant roles in the ammonia volatilization mechanism in liquid dairy manure. Results also showed that the β was more sensitive to the changes in suspended solids concentration than in the changes in ionic strength within the ranges of SS and IS examined in this study. Overall, the SS and IS effects on ammonium dissociation (and by extension on ammonia volatilization process) were thus found negligible within the normal ranges of liquid dairy manure characteristics.

  14. Effects of ionic strength and fulvic acid on adsorption of Tb(III) and Eu(III) onto clay.

    PubMed

    Poetsch, Maria; Lippold, Holger

    2016-09-01

    High salinity and natural organic matter are both known to facilitate migration of toxic or radioactive metals in geochemical systems, but little is known on their combined effect. We investigated complexation of Tb(III) and Eu(III) (as analogues for trivalent actinides) with fulvic acid and their adsorption onto a natural clay in the presence of NaCl, MgCl2 and CaCl2 up to very high ionic strengths. (160)Tb, (152)Eu and (14)C-labelled fulvic acid were employed as radiotracers, allowing investigations at very low concentrations according to probable conditions in far-field scenarios of nuclear waste repositories. A combined Kd approach (Linear Additive Model) was tested for suitability in predicting solid-liquid distribution of metals in the presence of organic matter based on the interactions in the constituent subsystems. In this analysis, it could be shown that high ionic strength does not further enhance the mobilizing potential of humic matter. A quantitative reproduction of the influence of fulvic acid failed for most systems under study. Assumptions and limitations of the model are discussed. PMID:27454893

  15. Effects of ionic strength and fulvic acid on adsorption of Tb(III) and Eu(III) onto clay

    NASA Astrophysics Data System (ADS)

    Poetsch, Maria; Lippold, Holger

    2016-09-01

    High salinity and natural organic matter are both known to facilitate migration of toxic or radioactive metals in geochemical systems, but little is known on their combined effect. We investigated complexation of Tb(III) and Eu(III) (as analogues for trivalent actinides) with fulvic acid and their adsorption onto a natural clay in the presence of NaCl, MgCl2 and CaCl2 up to very high ionic strengths. 160Tb, 152Eu and 14C-labelled fulvic acid were employed as radiotracers, allowing investigations at very low concentrations according to probable conditions in far-field scenarios of nuclear waste repositories. A combined Kd approach (Linear Additive Model) was tested for suitability in predicting solid-liquid distribution of metals in the presence of organic matter based on the interactions in the constituent subsystems. In this analysis, it could be shown that high ionic strength does not further enhance the mobilizing potential of humic matter. A quantitative reproduction of the influence of fulvic acid failed for most systems under study. Assumptions and limitations of the model are discussed.

  16. Neptunium(V) adsorption to bacteria at low and high ionic strength

    SciTech Connect

    Ams, David A; Swanson, Juliet S; Reed, Donald T; Fein, Jeremy B

    2010-12-08

    Np(V) is expected to be the predominant oxidation state of neptunium in aerobic natural waters. Np(V), as the NpO{sub 2}{sup +} aquo and associated complexed species, is readily soluble, weakly interacting with geologic media, and has a high redox stability under a relatively wide range of subsurface conditions. These chemical properties, along with a long half-life make it a primary element of concern regarding long-term nuclear waste storage and subsurface contaminant. The fate and transport of neptunium in the environment may be influenced by adsorption onto bacterial surfaces. The adsorption of neptunium to bacterial surfaces ties the mobility of the contaminant to the mobility of the bacterium. In this study, the adsorption of the neptunyl (NpO{sub 2}{sup +}) ion was evaluated at low ionic strength on a common soil bacterium and at high ionic strength on a halophilic bacterium isolated from a briny groundwater near the Waste Isolation Pilot Plant (WIPP) in southeast New Mexico. Adsorption experiments were performed in batch reactors as a function of pH, ionic strength, and bacterialNp mass ratio. Np(V) adsorption was modeled using a surface complexation approach with the mathematical program FITEQL to determine functional group specific binding constants. The data from acid and base titrations of the bacteria were also modeled to estimate the concentrations and deprotonation constants of discrete bacterial surface functional groups. Bacterial functional group characteristics and Np(V) adsorption behavior between the soil bacterium and the halophilic bacterium were compared. These results highlight the key similarities and differences in actinide adsorption behavior in environments of significantly different ionic strength. Similarities in adsorption behavior may be linked to similarities in the characteristics of the moieties between all bacterial cell walls. Differences in adsorption behavior may reflect differences in ionic strength effects, rather than

  17. Neptunium(V) Adsorption to Bacteria at Low and High Ionic Strength

    NASA Astrophysics Data System (ADS)

    Ams, D.; Swanson, J. S.; Reed, D. T.

    2010-12-01

    Np(V) is expected to be the predominant oxidation state of neptunium in aerobic natural waters. Np(V), as the NpO2+ aquo and associated complexed species, is readily soluble, interacts weakly with geologic media, and has a high redox stability under a relatively wide range of subsurface conditions. These chemical properties, along with a long half-life make it a primary element of concern regarding long-term nuclear waste storage and subsurface containment. The fate and transport of neptunium in the environment may be influenced by adsorption onto bacterial surfaces. The adsorption of neptunium to bacterial surfaces ties the mobility of the contaminant to the mobility of the bacterium. In this study, the adsorption of the neptunyl (NpO2+) ion was evaluated at low ionic strength on a common soil bacterium and at high ionic strength on a halophilic bacterium isolated from a briny groundwater near the Waste Isolation Pilot Plant (WIPP) in southeast New Mexico. Adsorption experiments were performed in batch reactors as a function of pH, ionic strength, and bacteria/Np mass ratio. Np(V) adsorption was modeled using a surface complexation approach with the mathematical program FITEQL to determine functional group specific binding constants. The data from acid and base titrations of the bacteria used were also modeled to estimate the concentrations and deprotonation constants of discrete bacterial surface functional groups. Bacterial functional group characteristics and Np(V) adsorption behavior between the soil bacterium and the halophilic bacterium were compared. These results highlight key similarities and differences in actinide adsorption behavior in environments of significantly different ionic strength. The observed adsorption behavior may be linked to similarities and differences in the characteristics of the moieties between the cell walls of common gram-negative soil and halophilic bacteria. Moreover, differences in adsorption behavior may also reflect ionic

  18. Gelatinization kinetic of waxy starches under pressure according to ionic strength

    NASA Astrophysics Data System (ADS)

    Simonin, Hélène; Guyon, Claire; de Lamballerie, Marie; Lebail, Alain

    2010-12-01

    High pressure is a potential technology for the texturization of food products at ambient temperature. In this area, waxy starches are particularly interesting because they gelatinize quickly under sufficient pressure. However, gelatinization may be influenced by other components in the food matrix. Here, we investigate the influence of increasing ionic strength on gelatinization rate and kinetics at 500 MPa for waxy corn and waxy rice starches. We show that increasing ionic strength strongly retards and inhibits starch gelatinization under pressure and leads to heterogeneous gels with remnant granules.

  19. Effect of Ions and Ionic Strength on Surface Plasmon Absorption of Single Gold Nanowires.

    PubMed

    Baral, Susil; Green, Andrew J; Richardson, Hugh H

    2016-06-28

    The local temperature change from a single optically excited gold nanowire, lithographically prepared on Al0.94Ga0.06N embedded with Er(3+) ions, is measured in air, pure water, and various concentrations of aqueous solutions of ionic solutes of NaCl, Na2SO4, and MgSO4. The absorption cross section of the nanowire under pure water (2.25 × 10(-14) m(2)) and different solution ionic strength is measured from the slopes of temperature change versus laser intensity plots. Addition of charges into the solution decreases the amount of heat generated during optical excitation of the gold nanostructures because the absorption cross section of the gold nanowire is attenuated. A Langmuir-type behavior of the absorption cross section with ionic strength is observed that is identified with an increase in the occupancy of screened interfacial charges. The absorption cross section of the nanowire decreases with ionic strength until a saturation value of 9 × 10(-15) m(2), where saturation in the occupancy of screened interfacial charge occurs. Dynamic measurements of temperature for a single gold nanowire immersed in a microchannel flow cell show a sharp and fast temperature drop for the flow of ionic solution compared to the pure (deionized) water, suggesting that the technique can be developed as a sensor probe to detect the presence of ions in solution. PMID:27215955

  20. Effect of Pore Fluid Salinity on Compressibility and Shear Strength Development of Clayey Soils

    NASA Astrophysics Data System (ADS)

    van Paassen, Leon A.; Gareau, Laurent F.

    Investigations of shear strength, compressibility and moisture content of a recent marine clay in the Caspian Sea showed soil profiles with a lower shear strength and higher moisture content, than expected for a normally consolidated soil. Further, measured preconsolidation pressures were lower than the calculated in-situ effective stress, suggesting that the deposit was underconsolidated. The pore fluid salinity was also measured and showed an increase with depth up to saturation concentration. A research project was carried out to study the effect of pore fluid salinity on shear strength and compressibility of remoulded clays. Results of this study showed that increasing pore fluid salinity caused a decrease of the moisture content for a normally consolidated clayey soil of high plasticity. The remoulded shear strength corresponded with the measured moisture contents. The observed compressive behaviour of these clays is explained using the modified effective stress concept, which considers not only (excess) pore pressure and effective pressure, but also the electrochemical repulsive and attractive forces between the clay particles. The laboratory tests on remoulded clays show opposite results to the measurements on the natural soils. The effects of soil structure are used to explain the differences for the measurements of moisture content, undrained shear strength and preconsolidation pressure. The oedometer test procedure was reviewed and additional tests were performed on natural clay samples from this site. Results showed that the measured pre-consolidation pressure depends largely on the salinity of the permeating fluid used in the oedometer apparatus and suggest that when testing marine clays with very high pore fluid salinity, using a brine solution that closely resembles the pore fluid chemistry yields a measured preconsolidation pressure closer to the known geological stress history.

  1. Measuring DNA Confinement and Excluded Volume Parameters: Scaling with confinement and ionic strength

    NASA Astrophysics Data System (ADS)

    Klotz, Alexander; Duong, Lyndon; Coursol, Laurence; Reisner, Walter

    2014-03-01

    Using nanofluidic devices for genomic mapping requires an understanding of the underlying polymer physics of confined DNA. Despite many years of study, there are still aspects that are poorly understood, including the role that excluded volume and semiflexibility play under confinement. Here, a hybrid nanofluidic device consisting of a narrow slit embedded with a lattice of square pits was used to study confined DNA. At equilibrium, molecules tend to occupy one or more pits. The partitioning of molecular contour between the pits and the slit is dependent on maximizing entropy by removing contour from the highly confining slit while reducing excess free energy due to excluded volume interactions from increased concentration in the pit. Measurements of the average number of occupied pits as a function of pit dimension, slit height, and ionic strength serves as a probe of the underlying polymer physics. In particular, the free energy of slit-like confinement and the effective molecular width were measured across a range of slit heights and ionic strengths. It was found that effective width scales with ionic strength according to Stigter's charged rod theory, and that the Chen-Sullivan interpolation formula for the slit-like energy of confinement describes the data well for narrow slits. Unexpected scaling of the confinement free energy with ionic strength indicates that excluded volume effects are relevant for confined DNA.

  2. Polarographic determination of lead hydroxide formation constants at low ionic strength

    USGS Publications Warehouse

    Lind, Carol J.

    1978-01-01

    Values of formation constants for lead hydroxide at 25 ??C were calculated from normal pulse polarographic measurements of 10-6 M lead in 0.01 M sodium perchlorate. The low concentrations simulate those found in many freshwaters, permitting direct application of the values when considering distributions of lead species. The precise evaluation of species distribution in waters at other ionic strengths requires activity coefficient corrections. As opposed to much of the previously published work done at high ionic strength, the values reported here were obtained at low ionic strength, permitting use of smaller and better defined activity coefficient corrections. These values were further confirmed by differential-pulse polarography and differential-pulse anodic stripping voltammetry data. The logs of the values for ??1??? ??2???, and ??3??? were calculated to be 6.59, 10.80, and 13.63, respectively. When corrected to zero ionic strength these values were calculated to be 6.77, 11.07, and 13.89, respectively.

  3. Ionic strength effects on the photodegradation reactions of riboflavin in aqueous solution.

    PubMed

    Ahmad, Iqbal; Anwar, Zubair; Ali, Syed Abid; Hasan, Khwaja Ali; Sheraz, Muhammad Ali; Ahmed, Sofia

    2016-04-01

    A study of the effect of ionic strength on the photodegradation reactions (photoreduction and photoaddition) of riboflavin (RF) in phosphate buffer (pH7.0) has been carried out using a specific multicomponent spectrometric method. It has been found that the rates of photodegradation reactions of RF are dependent upon the ionic strength of the solutions at different buffer concentrations. The apparent first-order rate constants (kobs) for the photodegradation of riboflavin at ionic strengths of 0.1-0.5 (0.5M phosphate) lie in the range of 7.35-30.32×10(-3)min(-1). Under these conditions, the rate constants for the formation of the major products, lumichrome (LC) by photoreduction pathway, and cyclodehydroriboflavin (CDRF) by photoaddition pathway, are in the range of 3.80-16.03 and 1.70-6.07×10(-3)min(-1), respectively. A linear relationship has been observed between log kobs and √μ/1+√μ. A similar plot of log k/ko against √μ yields a straight line with a value of ~+1 for ZAZB showing the involvement of a charged species in the rate determining step. NaCl appears to promote the photodegradation reactions of RF probably by an excited state interaction. The implications of ionic strength on RF photodegradation by different pathways and flavin-protein interactions have been discussed. PMID:26910851

  4. Effects of molecular model, ionic strength, divalent ions, and hydrophobic interaction on human neurofilament conformation

    NASA Astrophysics Data System (ADS)

    Lee, Joonseong; Kim, Seonghoon; Chang, Rakwoo; Jayanthi, Lakshmi; Gebremichael, Yeshitila

    2013-01-01

    The present study examines the effects of the model dependence, ionic strength, divalent ions, and hydrophobic interaction on the structural organization of the human neurofilament (NF) brush, using canonical ensemble Monte Carlo (MC) simulations of a coarse-grained model with the amino-acid resolution. The model simplifies the interactions between the NF core and the sidearm or between the sidearms by the sum of excluded volume, electrostatic, and hydrophobic interactions, where both monovalent salt ions and solvents are implicitly incorporated into the electrostatic interaction potential. Several important observations are made from the MC simulations of the coarse-grained model NF systems. First, the mean-field type description of monovalent salt ions works reasonably well in the NF system. Second, the manner by which the NF sidearms are arranged on the surface of the NF backbone core has little influence on the lateral extension of NF sidearms. Third, the lateral extension of the NF sidearms is highly affected by the ionic strength of the system: at low ionic strength, NF-M is most extended but at high ionic strength, NF-H is more stretched out because of the effective screening of the electrostatic interaction. Fourth, the presence of Ca2 + ions induces the attraction between negatively charged residues, which leads to the contraction of the overall NF extension. Finally, the introduction of hydrophobic interaction does not change the general structural organization of the NF sidearms except that the overall extension is contracted.

  5. The ionic strength effect on the DNA complexation by DOPC - gemini surfactants liposomes.

    PubMed

    Pullmannová, Petra; Bastos, Margarida; Bai, Guangyue; Funari, Sergio S; Lacko, Ivan; Devínsky, Ferdinand; Teixeira, José; Uhríková, Daniela

    2012-01-01

    Liposome dispersions obtained from the mixture of gemini surfactants of the type alkane-α,ω-diyl-bis(alkyldimethylammonium bromide) and helper lipid DOPC create complexes with DNA showing a regular inner microstructure, identified by small angle X-ray diffraction as condensed lamellar phase (L(α)(c)). In addition to the L(α)(c) phase, a coexisting lamellar phase L(B) was also identified in the complexes formed, with periodicities in the range ~8.8-5.7nm, at ionic strengths corresponding to 50-200mM NaCl. The periodicities of L(B) phase did not correspond to those identified in liposome dispersion without DNA using small angle neutron scattering. The observed phase separation is shown to depend on the interplay between the surface charge density of cationic liposomes, ionic strength and method of complex preparation. The effect of ionic strength on complex formation was studied by isothermal titration calorimetry and zeta potential measurements. High ionic strength reduces the fraction of bound DNA in the complexes, and the isoelectric point is attained at a ratio of DNA/gemini surfactant which is lower than the one that can be estimated by calculation based on nominal charges of CLs and DNA. PMID:21996510

  6. Synthesis of pH- and ionic strength-responsive microgels and their interactions with lysozyme.

    PubMed

    Zhang, Bao; Sun, Binghua; Li, Xiaoxiao; Yu, Yun; Tian, Yaoqi; Xu, Xueming; Jin, Zhengyu

    2015-08-01

    Microgels composed of carboxymethyl cellulose (CMC) polymers via chemical crosslinking with sodium trimetaphosphate were synthesized and characterized using thermogravimetric analysis (TGA), swelling, and rheological analysis. The effects of pH, ionic strength, and crosslinking density on lysozyme loading in microgels were also studied. The microgel particle size ranged primarily from 10 to 20 μm. TGA revealed that the crosslinking increased the thermal stability of CMC. The swelling degree increased as pH increased from 3 to 5, and remained almost constant from pH 5 to 8. However, the swelling degree decreased with increasing ionic strength. The rheological analysis was in good agreement with the results of swelling degree. The protein uptake decreased with increasing ionic strength and crosslinking density. The pH 6 was the optimal pH for lysozyme absorption at ionic strength 0.05 M. The lysozyme-microgel complex was identified by confocal laser scanning microscopy, and the lysozyme distribution in the microgel was observed to be rather homogeneous. PMID:26001494

  7. Phosphorylation and Ionic Strength Alter the LRAP-HAP Interface in the N-terminus

    SciTech Connect

    Lu, Junxia; Xu, Yimin; Shaw, Wendy J.

    2013-04-02

    The conditions present during enamel crystallite development change dramatically as a function of time, including the pH, protein concentration, surface type and ionic strength. In this work, we investigate the role that two of these changing conditions, pH and ionic strength, have in modulating the interaction of amelogenin, LRAP, with hydroxyapatite (HAP). Using solid state NMR dipolar recoupling and chemical shift data, we investigate the structure, orientation and dynamics of three regions in the N-terminus of the protein, L15 to V19, V19 to L23 and K24 to S28. These regions are also near the only phosphorylated residue in the protein, pS16, therefore, changes in the LRAP-HAP interaction as a function of phosphorylation (LRAP(-P) vs. LRAP(+P)) were also investigated. All of the regions and conditions studies for the surface immobilized proteins showed restricted motion, with more mobility under all conditions for L15(+P) and K24(-P). The structure and orientation of the LRAP-HAP interaction in the N-terminus of the phosphorylated protein is very stable to changing solution conditions. From REDOR dipolar recoupling data, the structure and orientation in the region L15V19(+P) did not change significantly as a function of pH or ionic strength. The structure and orientation of the region V19L23(+P) were also stable to changes in pH, with the only significant change observed at high ionic strength, where the region becomes extended, suggesting this may be an important region in regulating mineral development. Chemical shift studies also suggest minimal changes in all three regions studied for both LRAP(-P) and LRAP(+P) as a function of pH or ionic strength. Phosphorylation also alters the LRAP-HAP interface. All of the three residues investigated (L15, V19, and K24) are closer to the surface in LRAP(+P), but K24S28 also changes structure as a result of phosphorylation, from a random coil to a largely helical structure, and V19L23 becomes more extended at high ionic

  8. Enhanced purification of plasmid DNA isoforms by exploiting ionic strength effects during ultrafiltration.

    PubMed

    Li, Ying; Currie, David; Zydney, Andrew L

    2016-04-01

    The solution structure of plasmid DNA is known to be a strong function of solution conditions due to intramolecular electrostatic interactions between the charged phosphate groups along the DNA backbone. The objective of this work was to determine whether it was possible to enhance the use of ultrafiltration for separation of different plasmid isoforms by proper selection of the solution ionic strength and ion type. Experiments were performed with a 3.0 kbp plasmid using composite regenerated cellulose ultrafiltration membranes. The transmission of the linear isoform was nearly independent of solution ionic strength, but increased significantly with increasing filtrate flux due to the elongation of the highly flexible plasmid in the converging flow field into the membrane pores. In contrast, the transmission of the open-circular and supercoiled plasmids both increased with increasing NaCl or MgCl2 concentration due to the change in plasmid size and conformational flexibility. The effect of ionic strength was greatest for the supercoiled plasmid, providing opportunities for enhanced purification of this therapeutically active isoform. This behavior was confirmed using experiments performed with binary mixtures of the different isoforms. These results clearly demonstrate the potential for enhancing the performance of membrane systems for plasmid DNA separations by proper selection of the ionic conditions. PMID:26370270

  9. Constitutive expression of a salinity-induced wheat WRKY transcription factor enhances salinity and ionic stress tolerance in transgenic Arabidopsis thaliana

    SciTech Connect

    Qin, Yuxiang; Tian, Yanchen; Han, Lu; Yang, Xinchao

    2013-11-15

    Highlights: •A class II WRKY transcription factor, TaWRKY79 was isolated and characterized. •TaWRKY79 was induced by NaCl or abscisic acid. •843 bp regulatory segment was sufficient to respond to ABA or NaCl treatment. •TaWRKY79 enhanced salinity and ionic tolerance while reduced sensitivity to ABA. •TaWRKY79 increased salinity and ionic tolerance in an ABA-dependent pathway. -- Abstract: The isolation and characterization of TaWRKY79, a wheat class II WRKY transcription factor, is described. Its 1297 bp coding region includes a 987 bp long open reading frame. TaWRKY79 was induced by stressing seedlings with either NaCl or abscisic acid (ABA). When a fusion between an 843 bp segment upstream of the TaWRKY79 coding sequence and GUS was introduced into Arabidopsis thaliana, GUS staining indicated that this upstream segment captured the sequence(s) required to respond to ABA or NaCl treatment. When TaWRKY79 was constitutively expressed as a transgene in A. thaliana, the transgenic plants showed an improved capacity to extend their primary root in the presence of either 100 mM NaCl, 10 mM LiCl or 2 μM ABA. The inference was that TaWRKY79 enhanced the level of tolerance to both salinity and ionic stress, while reducing the level of sensitivity to ABA. The ABA-related genes ABA1, ABA2 ABI1 and ABI5 were all up-regulated in the TaWRKY79 transgenic plants, suggesting that the transcription factor operates in an ABA-dependent pathway.

  10. The influence of ionic strength on DNA diffusion in gel networks

    NASA Astrophysics Data System (ADS)

    Fu, Yuanxi; Jee, Ah-Young; Kim, Hyeong-Ju; Granick, Steve

    Cations are known to reduce the rigidity of the DNA molecules by screening the negative charge along the sugar phosphate backbone. This was established by optical tweezer pulling experiment of immobilized DNA strands. However, little is known regarding the influence of ions on the motion of DNA molecules as they thread through network meshes. We imaged in real time the Brownian diffusion of fluorescent labeled lambda-DNA in an agarose gel network in the presence of salt with monovalent or multivalent cations. Each movie was analyzed using home-written program to yield a trajectory of center of the mass and the accompanying history of the shape fluctuations. One preliminary finding is that ionic strength has a profound influence on the slope of the trace of mean square displacement (MSD) versus time. The influence of ionic strength on DNA diffusion in gel networks.

  11. Variation of stability constants of thorium citrate complexes and of thorium hydrolysis constants with ionic strength

    SciTech Connect

    Choppin, G.R.; Erten, H.N.; Xia, Y.X.

    1995-09-01

    Citrate is among the organic anions that are expected to be present in the wastes planned for deposition in the Waste Isolation Pilot Plant repository. In this study, a solvent extraction method has been used to measure the stability constants of Thorium(IV)[Th(IV)] with citrate anions in aqueous solutions with (a) NaClO{sub 4} and (b) NaCl as the background electrolytes. The ionic strengths were varied up to 5 m (NaCl) and 14 m (NaClO{sub 4}). The data from the NaClO{sub 4} solutions at varying pH values were used to calculate the hydrolysis constants for formation of Th(OH){sup 3+} at the different ionic strengths.

  12. An Aqueous Thermodynamic Model for Polymerized Silica Species to High Ionic Strength

    SciTech Connect

    Felmy, Andrew R.; Cho, Herman M.; Rustad, James R.; Mason, Marvin J.

    2001-06-01

    The development of an aqueous thermodynamic model for polymerized silica species is presented which is valid to high ionic strengths and high dissolved silica concentration ({approx}0.1m) at low temperature (22-25 C). The model is based upon the equations of Pitzer and has been parameterized from solubility, electromotive force (emf), and nuclear magnetic resonance (NMR) data. The description of the silica speciation reactions at high dissolved silica and basic conditions (pH > 10) required the inclusion of monomeric, dimeric, trimeric (linear, cyclic and substituted), tetrameric (linear and cyclic) and hexameric (prismatic) species. The standard state equilibrium constants for the formation of these species, as well as the necessary Pitzer ion-interaction parameters to describe the ionic strength dependence of the formation reactions were determined.

  13. Intracellular Temperature Sensing: An Ultra-bright Luminescent Nanothermometer with Non-sensitivity to pH and Ionic Strength

    PubMed Central

    Liu, Helin; Fan, Yanyan; Wang, Jianhai; Song, Zhongsen; Shi, Hao; Han, Rongcheng; Sha, Yinlin; Jiang, Yuqiang

    2015-01-01

    Luminescence thermometry usually suffer from cellular complexity of the biochemical environment (such as pH and ionic strength), and thus the accuracy and reliability of the determined intracellular temperature are directly affected. Herein, a photoluminescent nanothermometer composed of polymer encapsulated quantum dots (P-QD) has been developed. And the prepared nanothermometer exhibits some advantages: such as non-sensitivity to pH and ionic strength, as well as high detection sensitivity and ultrahigh reversibility. The intracellular temperature was accurately determined under physiological conditions with different pH and ionic strength, and direct measurement of thermogenesis in individual cells has been achieved. PMID:26445905

  14. Effect of ionic strength on ruthenium CMP in H2O2-based slurries

    NASA Astrophysics Data System (ADS)

    Jiang, Liang; He, Yongyong; Li, Yuzhuo; Luo, Jianbin

    2014-10-01

    With the development of ultra-large scale integrated circuits, ruthenium has been selected as one of the most promising barrier metals for copper interconnects to replace traditional Ta/TaN bilayer. This paper mainly investigated the effect of ionic strength on the chemical mechanical polishing performance of ruthenium in H2O2-based slurries. The results show that, the ruthenium removal rate (RR) increases with the increasing concentration of H2O2 due to the formation of ruthenium oxides like Ru(OH)3, RuO2·2H2O and even RuO42-; additionally, the ruthenium RR can be further enhanced with the increase of K+ ionic strength. It is revealed that the added K+ can intensify the electrochemical reactions between H2O2 and the ruthenium surface by increasing the conductivity, meanwhile can also result in the neutralization of the zeta potentials of both silica particles and the ruthenium surface, and thus can lead to the decrease of the electrostatic repulsive force and the increase of the mechanical abrasion intensity between silica particles and the ruthenium surface. Therefore, the ruthenium RR increases with the increase of K+ ionic strength. Furthermore, the effects of K+ ionic strength on the material removal rate (MRR) selectivity of Ru vs. Cu and the galvanic corrosion of Cu/Ru couple are studied. It is found that, in order to achieve higher MRR selectivity than 1.0, KNO3 is preferred for the K+ source; and with H2O2 as the oxidizer, copper galvanic corrosion problem can be effectively suppressed.

  15. Tuning Cationic Block Copolymer Micelle Size by pH and Ionic Strength.

    PubMed

    Sprouse, Dustin; Jiang, Yaming; Laaser, Jennifer E; Lodge, Timothy P; Reineke, Theresa M

    2016-09-12

    The formation, morphology, and pH and ionic strength responses of cationic block copolymer micelles in aqueous solutions have been examined in detail to provide insight into the future development of cationic micelles for complexation with polyanions such as DNA. Diblock polymers composed of a hydrophilic/cationic block of N,N-dimethylaminoethyl methacrylate (DMAEMA) and a hydrophobic/nonionic block of n-butyl methacrylate (BMA) were synthesized [denoted as DMAEMA-b-BMA (X-Y), where X = DMAEMA molecular weight and Y = molecular weight of BMA in kDa]. Four variants were created with block molecular weights of 14-13, 14-23, 27-14, 27-29 kDa and low dispersities less than 1.10. The amphiphilic polymers self-assembled in aqueous conditions into core-shell micelles that ranged in size from 25-80 nm. These cationic micelles were extensively characterized in terms of size and net charge in different buffers over a wide range of ionic strength (0.02-1 M) and pH (5-10) conditions. The micelle core is kinetically trapped, and the corona contracts with increasing pH and ionic strength, consistent with previous work on micelles with glassy polystyrene cores, indicating that the corona properties are independent of the dynamics of the micelle core. The contraction and extension of the corona scales with solution ionic strength and charge fraction of the amine groups. The aggregation numbers of the micelles were obtained by static light scattering, and the Rg/Rh ratios are close to that of a hard sphere. The zeta potentials of the micelles were positive up to two pH units above the corona pKa, suggesting that applications relying on micelle charge for stability should be viable over a wide range of solution conditions. PMID:27487088

  16. Influence of droplet size, pH and ionic strength on endotoxin-triggered ordering transitions in liquid crystalline droplets

    PubMed Central

    Miller, Daniel S.; Abbott, Nicholas L.

    2012-01-01

    We report an investigation of ordering transitions that are induced in water-dispersed, micrometer-sized droplets of a thermotropic liquid crystal (LC) by the bacterial lipopolysaccharide endotoxin. We reveal that the ordering transitions induced by endotoxin – from a bipolar state of the droplets to a radial state – are strongly dependent on the size of the LC droplets. Specifically, as the diameters of the LC droplets increase from 2 μm to above 10 μm (in phosphate buffered saline with an ionic strength of 90 mM and a pH of 7.2), we measured the percentage of droplets exhibiting a radial configuration in the presence of 100 pg/mL endotoxin to decrease from 98 ± 1 % to 3 ± 2 %. In addition, we measured a decrease in either the ionic strength or pH of the aqueous phase to reduce the percentage of droplets exhibiting a radial configuration in the presence of endotoxin. These results, when interpreted within the context of a simple thermodynamic model that incorporates the contributions of elasticity and surface anchoring to the free energies of the LC droplets, lead us to conclude that (i) the elastic constant K24 plays a central role in determining the size-dependent response of the LC droplets to endotoxin, and (ii) endotoxin-triggered ordering transitions occur only under solution conditions (pH, ionic strength) where the combined contributions of elasticity and surface anchoring to the free energies of the bipolar and radial configurations of the LC droplets are similar in magnitude. Our analysis also suggests that the presence of endotoxin perturbs the free energies of the LC droplets by ~10−17 J/droplet, which is comparable to the standard free energy of self-association of ~103 endotoxin molecules. These results, when combined with prior reports of localization of endotoxin at the center of LC droplets, are consistent with the hypothesis that self-assembly of endotoxin within micrometer-sized LC droplets provides the driving force for the ordering

  17. Signal Amplification in Field Effect-Based Sandwich Enzyme-Linked Immunosensing by Tuned Buffer Concentration with Ionic Strength Adjuster.

    PubMed

    Kumar, Satyendra; Kumar, Narendra; Panda, Siddhartha

    2016-04-01

    Miniaturization of the sandwich enzyme-based immunosensor has several advantages but could result in lower signal strength due to lower enzyme loading. Hence, technologies for amplification of the signal are needed. Signal amplification in a field effect-based electrochemical immunosensor utilizing chip-based ELISA is presented in this work. First, the molarities of phosphate buffer saline (PBS) and concentrations of KCl as ionic strength adjuster were optimized to maximize the GOx glucose-based enzymatic reactions in a beaker for signal amplification measured by change in the voltage shift with an EIS device (using 20 μl of solution) and validated with a commercial pH meter (using 3 ml of solution). The PBS molarity of 100 μM with 25 mM KCl provided the maximum voltage shift. These optimized buffer conditions were further verified for GOx immobilized on silicon chips, and similar trends with decreased PBS molarity were obtained; however, the voltage shift values obtained on chip reaction were lower as compared to the reactions occurring in the beaker. The decreased voltage shift with immobilized enzyme on chip could be attributed to the increased Km (Michaelis-Menten constant) values in the immobilized GOx. Finally, a more than sixfold signal enhancement (from 8 to 47 mV) for the chip-based sandwich immunoassay was obtained by altering the PBS molarity from 10 to 100 μM with 25 mM KCl. PMID:26801818

  18. The binding of glucose to yeast hexokinase monomers is independent of ionic strength.

    PubMed Central

    Mayes, E L; Hoggett, J G; Kellett, G L

    1982-01-01

    Hoggett & Kellett [Eur. J. Biochem. 66, 65-77 (1976)] have reported that the binding of glucose to the monomer of hexokinase PII isoenzyme is independent of ionic strength, in contrast to the subsequent claim of Feldman & Kramp [Biochemistry 17, 1541-1547 (1978)] that the binding is strongly dependent on ionic strength. Since measurements with native hexokinase P forms are complicated by the fact that the enzyme exists in a monomer-dimer association-dissociation equilibrium, we have now studied the binding of glucose to the proteolytically-modified S forms which are monomeric. At pH 8.5, the affinity of glucose for both SI and SII monomers is independent of salt concentration over the range of KCl concentrations 0-1.0 mol . dm-3 and is in good agreement with that of the corresponding P forms in both low and high salt. These observations confirm that the binding of glucose to hexokinase P monomers is independent of ionic strength and that the affinity of glucose for the hexokinase PII monomer is about an order of magnitude greater than that for the dimer. PMID:7052060

  19. The binding of glucose to yeast hexokinase monomers is independent of ionic strength.

    PubMed

    Mayes, E L; Hoggett, J G; Kellett, G L

    1982-05-01

    Hoggett & Kellett [Eur. J. Biochem. 66, 65-77 (1976)] have reported that the binding of glucose to the monomer of hexokinase PII isoenzyme is independent of ionic strength, in contrast to the subsequent claim of Feldman & Kramp [Biochemistry 17, 1541-1547 (1978)] that the binding is strongly dependent on ionic strength. Since measurements with native hexokinase P forms are complicated by the fact that the enzyme exists in a monomer-dimer association-dissociation equilibrium, we have now studied the binding of glucose to the proteolytically-modified S forms which are monomeric. At pH 8.5, the affinity of glucose for both SI and SII monomers is independent of salt concentration over the range of KCl concentrations 0-1.0 mol . dm-3 and is in good agreement with that of the corresponding P forms in both low and high salt. These observations confirm that the binding of glucose to hexokinase P monomers is independent of ionic strength and that the affinity of glucose for the hexokinase PII monomer is about an order of magnitude greater than that for the dimer. PMID:7052060

  20. Effects of ionic strength on the production of short chain volatile hydrocarbons by Dunaliella salina (Teodoresco).

    PubMed

    Muñoz, J; Mudge, S M; Sandoval, A

    2004-02-01

    The effect of ionic strength on the production of short chain volatile hydrocarbons was studied in cultures of Dunaliella salina. Axenic cultures of D. salina were grown at three different ionic strengths 0.5, 2 and 3 M of NaCl in Johnson (J/1) culture medium [Journal of Bacteriology 95 (1968) 1461] under the following laboratory growth conditions: a 12:12 h photoperiod, 300 micromolm(-2)s(-1) of photosynthetic active radiation (PAR) provided by a fluorescent lamp of 40 W combined with a 100 W incandescent lamp at 20 +/- 1 degrees C at pH 7.5. C1 to C5 hydrocarbons were detected using a head space technique and GC-FID. Cell numbers and growth rate was greatest at 2 M NaCl 4.3 x 10(6) cellml(-1) after a 15 days period of culture. Maximum hydrocarbon production was measured in the concentration of 0.5 NaCl with lower production rates in the more concentrated solutions. The principal hydrocarbon was pentane at 0.5 M but was ethane in 2 and 3 M solutions. Production rates for individual compounds ranged between 0.13 and 22 x 10(-15) microgCcell(-1)h(-1). It is suggested that the ability to produce and release volatile organic compounds of D. salina is related to osmotic conditions established by the ionic strength of growth solution. PMID:14664856

  1. Colloid transport and deposition in water-saturated Yucca Mountain tuff as determined by ionic strength.

    PubMed

    Gamerdinger, A P; Kaplan, D I

    2001-08-15

    Colloid mobility and deposition were determined in model systems consisting of quartz sand or crushed Yucca Mountain tuff, latex microspheres (colloidal particles), and simulated groundwater. Ionic strength (I) was manipulated as a first step in defining limiting conditions for colloid transport in a system modeled after geochemical conditions at the Yucca Mountain site. Solutions of deionized water (DI), 0.1x, 1x, and 10x (the ionic strength of simulated groundwater) (I = 0.0116 M) were used in saturated columns under steady-state flow conditions. Separate experiments with conservative tracers indicated stable hydrodynamic conditions that were independent of I. Colloids were completely mobile (no deposition) in the DI and 0.1x solutions; deposition increased to 11-13% for 1x and to 89-97% for 10x treatments with similar results for sand and tuff. Deposition was described as a pseudo-first-order process; however, a decreasing rate of deposition was apparent for colloid transport at the 10x condition through the tuff. A linear dependence of colloid removal (extent and deposition rate coefficient) on I is illustrated for the model Yucca Mountain system and for a glass-KCl system reported in the literature. This simple relationship for saturated systems may be useful for predicting deposition efficiencies under conditions of varying ionic strength. PMID:11529572

  2. Titanium dioxide nanoparticles: Impact of increasing ionic strength during synthesis, reflux, and hydrothermal aging

    SciTech Connect

    Isley, Sara L.; Jordan, David S.; Penn, R. Lee

    2009-01-08

    This work investigates the role of ionic strength during synthesis, reflux, and hydrothermal aging of sol-gel synthesized titanium dioxide. Research presented here uses X-ray diffraction data and Rietveld refinements to quantify anatase, brookite, and rutile phases as functions of synthetic and aging variables. In addition, the Scherrer equation is used to obtain average crystallite sizes for each phase quantified. Results presented in this work demonstrate that the most control over the sol-gel products can be obtained by modifying the pH during hydrolysis. In addition, while varying the ionic strength during reflux and hydrothermal aging can result in enhanced control over the crystalline phase and crystallite size, the most control can be achieved by varying the ionic strength during synthesis. Finally, sol-gel synthesis at low pH (-0.6) and high-chloride concentration (3 M NaCl) produced a heterogeneous sample composed of nanocrystalline anatase (3.8 nm) and rutile (2.9 nm)

  3. General strategy for biodetection in high ionic strength solutions using transistor-based nanoelectronic sensors

    PubMed Central

    Gao, Ning; Zhou, Wei; Jiang, Xiaocheng; Hong, Guosong; Fu, Tian-Ming; Lieber, Charles M.

    2015-01-01

    Transistor-based nanoelectronic sensors are capable of label-free real-time chemical and biological detection with high sensitivity and spatial resolution, although the short Debye screening length in high ionic strength solutions has made difficult applications relevant to physiological conditions. Here, we describe a new and general strategy to overcome this challenge for field-effect transistor (FET) sensors that involves incorporating a porous and biomolecule permeable polymer layer on the FET sensor. This polymer layer increases the effective screening length in the region immediately adjacent to the device surface, and thereby enables detection of biomolecules in high ionic strength solutions in real-time. Studies of silicon nanowire (SiNW) field-effect transistors (FETs) with additional polyethylene glycol (PEG) modification show that prostate specific antigen (PSA) can be readily detected in solutions with phosphate buffer (PB) concentrations as high as 150 mM, while similar devices without PEG modification only exhibit detectable signals for concentrations ≤ 10 mM. Concentration-dependent measurements exhibited real-time detection of PSA with a sensitivity of at least 10 nM in ~130 mM ionic strength PB with linear response up to the highest (1000 nM) PSA concentrations tested. The current work represents an important step toward general application of nanoelectronic detectors for biochemical sensing in physiological environments, and is expected to open up exciting opportunities for in-vitro and in-vivo biological sensing relevant to basic biology research through medicine. PMID:25664395

  4. The effect of high ionic strength on neptunium (V) adsorption to a halophilic bacterium

    NASA Astrophysics Data System (ADS)

    Ams, David A.; Swanson, Juliet S.; Szymanowski, Jennifer E. S.; Fein, Jeremy B.; Richmann, Michael; Reed, Donald T.

    2013-06-01

    The mobility of neptunium (V) in subsurface high ionic strength aqueous systems may be strongly influenced by adsorption to the cell wall of the halophilic bacteria Chromohalobacter sp. This study is the first to evaluate the adsorption of neptunium (V) to the surface of a halophilic bacterium as a function of pH from approximately 2 to 10 and at ionic strengths of 2 and 4 M. This is also the first study to evaluate the effects of carbonate complexation with neptunium (V) on adsorption to whole bacterial cells under high pH conditions. A thermodynamically-based surface complexation model was adapted to describe experimental adsorption data under high ionic strength conditions where traditional corrections for aqueous ion activity are invalid. Adsorption of neptunium (V) was rapid and reversible under the conditions of the study. Adsorption was significant over the entire pH range evaluated for both ionic strength conditions and was shown to be dependent on the speciation of the sites on the bacterial surface and neptunium (V) in solution. Adsorption behavior was controlled by the relatively strong electrostatic attraction of the positively charged neptunyl ion to the negatively charged bacterial surface at pH below circum-neutral. At pH above circum-neutral, the adsorption behavior was controlled by the presence of negatively charged neptunium (V) carbonate complexes resulting in decreased adsorption, although adsorption was still significant due to the adsorption of negatively charged neptunyl-carbonate species. Adsorption in 4 M NaClO4 was enhanced relative to adsorption in 2 M NaClO4 over the majority of the pH range evaluated, likely due to the effect of increasing aqueous ion activity at high ionic strength. The protonation/deprotonation characteristics of the cell wall of Chromohalobacter sp. were evaluated by potentiometric titrations in 2 and 4 M NaClO4. Bacterial titration results indicated that Chromohalobacter sp. exhibits similar proton buffering

  5. Removal of natural organic matter by titanium tetrachloride: The effect of total hardness and ionic strength.

    PubMed

    Zhao, Y X; Shon, H K; Phuntsho, S; Gao, B Y

    2014-02-15

    This study is the first attempt to investigate the effect of total hardness and ionic strength on coagulation performance and the floc characteristics of titanium tetrachloride (TiCl4). Membrane fouling under different total hardness and ionic strength conditions was also evaluated during a coagulation-ultrafiltration (C-UF) hybrid process. Coagulation experiments were performed with two simulated waters, using humic acid (HA, high molecular weight) and fulvic acid (FA, relatively low molecular weight), respectively, as model natural organic matter (NOM). Results show that both particle and organic matter removal can be enhanced by increasing total hardness and ionic strength. Floc characteristics were significantly influenced by total hardness and ionic strength and were improved in terms of floc size, growth rate, strength, recoverability and compactness. The results of the UF tests show that the pre-coagulation with TiCl4 significantly improves the membrane permeate fluxes. Under different total hardness and ionic strength conditions, the membrane permeate flux varied according to both NOM and floc characteristics. The increase in total hardness and ionic strength improved the membrane permeate flux in the case of HA simulated water treatment. PMID:24463732

  6. EFFECTS OF PH, SOLID/SOLUTION RATIO, IONIC STRENGTH, AND ORGANIC ACIDS ON PB AND CD ON KAOLINITE

    EPA Science Inventory

    Potentiometric and ion-selective electrode titrations together with batch sorption/desorption experiments, were performed to explain the aqueous and surface complexation reactions between kaolinite, Pb, Cd and organic acids. Variables included pH, ionic strength, metal concentrat...

  7. β-Lactoglobulin (BLG) binding to highly charged cationic polymer-grafted magnetic nanoparticles: effect of ionic strength.

    PubMed

    Qin, Li; Xu, Yisheng; Han, Haoya; Liu, Miaomiao; Chen, Kaimin; Wang, Siyi; Wang, Jie; Xu, Jun; Li, Li; Guo, Xuhong

    2015-12-15

    Poly(2-(methacryloyloxy)ethyltrimethyl ammonium chloride) (PMATAC) modified magnetic nanoparticles (NPs) with a high zeta potential of ca. 50mV were synthesized by atom transfer radical polymerization (ATRP). The prepared NPs consist of a magnetic core around 13nm and a PMATAC shell around 20nm attached on the surface of magnetic nanoparticles. Thermodynamic binding parameters between β-lactoglobulin and these polycationic NPs were investigated at different ionic strengths by high-resolution turbidimetry, dynamic light scattering (DLS), and isothermal titration calorimetry (ITC). Both turbidity and ITC show that binding affinities for BLG display a non-monotonic ionic strength dependence trend and a maximum appears at ionic strength of 50mM. Such observation should arise from the coeffects of protein charge anisotropy visualized by DelPhi electrostatic modeling and the strong electrostatic repulsion among highly charged NPs at a variety of ionic strengths. PMID:26322494

  8. High-Strength Composite Fibers from Cellulose-Lignin Blends Regenerated from Ionic Liquid Solution.

    PubMed

    Ma, Yibo; Asaadi, Shirin; Johansson, Leena-Sisko; Ahvenainen, Patrik; Reza, Mehedi; Alekhina, Marina; Rautkari, Lauri; Michud, Anne; Hauru, Lauri; Hummel, Michael; Sixta, Herbert

    2015-12-01

    Composite fibres that contain cellulose and lignin were produced from ionic liquid solutions by dry-jet wet spinning. Eucalyptus dissolving pulp and organosolv/kraft lignin blends in different ratios were dissolved in the ionic liquid 1,5-diazabicyclo[4.3.0]non-5-enium acetate to prepare a spinning dope from which composite fibres were spun successfully. The composite fibres had a high strength with slightly decreasing values for fibres with an increasing share of lignin, which is because of the reduction in crystallinity. The total orientation of composite fibres and SEM images show morphological changes caused by the presence of lignin. The hydrophobic contribution of lignin reduced the vapour adsorption in the fibre. Thermogravimetric analysis curves of the composite fibres reveal the positive effect of the lignin on the carbonisation yield. Finally, the composite fibre was found to be a potential raw material for textile manufacturing and as a precursor for carbon fibre production. PMID:26542190

  9. Exogenous trehalose largely alleviates ionic unbalance, ROS burst, and PCD occurrence induced by high salinity in Arabidopsis seedlings

    PubMed Central

    Yang, Lei; Zhao, Xiaoju; Zhu, Hong; Paul, Matthew; Zu, Yuangang; Tang, Zhonghua

    2014-01-01

    Trehalose (Tre) has been reported to play a critical role in plant response to salinity and the involved mechanisms remain to be investigated in detail. Here, the putative roles of Tre in regulation of ionic balance, cellular redox state, cell death were studied in Arabidopsis under high salt condition. Our results found that the salt-induced restrictions on both vegetative and reproductive growth in salt-stressed plants were largely alleviated by exogenous supply with Tre. The microprobe analysis of ionic dynamics in the leaf and stem of florescence highlighted the Tre ability to retain K and K/Na ratio in plant tissues to improve salt tolerance. The flow cytometry assay of cellular levels of reactive oxygen species and programmed cell death displayed that Tre was able to antagonized salt-induced damages in redox state and cell death and sucrose did not play the same role with Tre. By comparing ionic distribution in leaf and inflorescence stem (IS), we found that Tre was able to restrict Na transportation to IS from leaves since that the ratio of Na accumulation in leaves relative to IS was largely improved due to Tre. The marked decrease of Na ion and improved sucrose level in IS might account for the promoted floral growth when Tre was included in the saline solution. At the same time, endogenous soluble sugars and antioxidant enzyme activities in the salt-stressed plants were also elevated by Tre to counteract high salt stress. We concluded that Tre could improve Arabidopsis salt resistance with respect to biomass accumulation and floral transition in the means of regulating plant redox state, cell death, and ionic distribution. PMID:25400644

  10. Fabrication of carbon nanotube high-frequency nanoelectronic biosensor for sensing in high ionic strength solutions.

    PubMed

    Kulkarni, Girish S; Zhong, Zhaohui

    2013-01-01

    The unique electronic properties and high surface-to-volume ratios of single-walled carbon nanotubes (SWNT) and semiconductor nanowires (NW) make them good candidates for high sensitivity biosensors. When a charged molecule binds to such a sensor surface, it alters the carrier density in the sensor, resulting in changes in its DC conductance. However, in an ionic solution a charged surface also attracts counter-ions from the solution, forming an electrical double layer (EDL). This EDL effectively screens off the charge, and in physiologically relevant conditions ~100 millimolar (mM), the characteristic charge screening length (Debye length) is less than a nanometer (nm). Thus, in high ionic strength solutions, charge based (DC) detection is fundamentally impeded. We overcome charge screening effects by detecting molecular dipoles rather than charges at high frequency, by operating carbon nanotube field effect transistors as high frequency mixers. At high frequencies, the AC drive force can no longer overcome the solution drag and the ions in solution do not have sufficient time to form the EDL. Further, frequency mixing technique allows us to operate at frequencies high enough to overcome ionic screening, and yet detect the sensing signals at lower frequencies. Also, the high transconductance of SWNT transistors provides an internal gain for the sensing signal, which obviates the need for external signal amplifier. Here, we describe the protocol to (a) fabricate SWNT transistors, (b) functionalize biomolecules to the nanotube, (c) design and stamp a poly-dimethylsiloxane (PDMS) micro-fluidic chamber onto the device, and (d) carry out high frequency sensing in different ionic strength solutions. PMID:23912795

  11. Fabrication of Carbon Nanotube High-Frequency Nanoelectronic Biosensor for Sensing in High Ionic Strength Solutions

    PubMed Central

    Kulkarni, Girish S.; Zhong, Zhaohui

    2013-01-01

    The unique electronic properties and high surface-to-volume ratios of single-walled carbon nanotubes (SWNT) and semiconductor nanowires (NW) 1-4 make them good candidates for high sensitivity biosensors. When a charged molecule binds to such a sensor surface, it alters the carrier density5 in the sensor, resulting in changes in its DC conductance. However, in an ionic solution a charged surface also attracts counter-ions from the solution, forming an electrical double layer (EDL). This EDL effectively screens off the charge, and in physiologically relevant conditions ~100 millimolar (mM), the characteristic charge screening length (Debye length) is less than a nanometer (nm). Thus, in high ionic strength solutions, charge based (DC) detection is fundamentally impeded6-8. We overcome charge screening effects by detecting molecular dipoles rather than charges at high frequency, by operating carbon nanotube field effect transistors as high frequency mixers9-11. At high frequencies, the AC drive force can no longer overcome the solution drag and the ions in solution do not have sufficient time to form the EDL. Further, frequency mixing technique allows us to operate at frequencies high enough to overcome ionic screening, and yet detect the sensing signals at lower frequencies11-12. Also, the high transconductance of SWNT transistors provides an internal gain for the sensing signal, which obviates the need for external signal amplifier. Here, we describe the protocol to (a) fabricate SWNT transistors, (b) functionalize biomolecules to the nanotube13, (c) design and stamp a poly-dimethylsiloxane (PDMS) micro-fluidic chamber14 onto the device, and (d) carry out high frequency sensing in different ionic strength solutions11. PMID:23912795

  12. The improved resistance to high salinity induced by trehalose is associated with ionic regulation and osmotic adjustment in Catharanthus roseus.

    PubMed

    Chang, Bowen; Yang, Lei; Cong, Weiwei; Zu, Yuangang; Tang, Zhonghua

    2014-04-01

    The effects of exogenous trehalose (Tre) on salt tolerance of pharmaceutical plant Catharanthus roseus and the physiological mechanisms were both investigated in this study. The results showed that the supplement of Tre in saline condition (250 mM NaCl) largely alleviated the inhibitory effects of salinity on plant growth, namely biomass accumulation and total leaf area per plant. In this saline condition, the decreased level of relative water content (RWC) and photosynthetic rate were also greatly rescued by exogenous Tre. This improved performance of plants under high salinity induced by Tre could be partly ascribed to its ability to decrease accumulation of sodium, and increase potassium in leaves. The exogenous Tre led to high levels of fructose, glucose, sucrose and Tre inside the salt-stressed plants during whole the three-week treatment. The major free amino acids such as proline, arginine, threonine and glutamate were also largely elevated in the first two-week course of treatment with Tre in saline solution. It was proposed here that Tre might act as signal to make the salt-stressed plants actively increase internal compatible solutes, including soluble sugars and free amino acids, to control water loss, leaf gas exchange and ionic flow at the onset of salt stress. The application of Tre in saline condition also promoted the accumulation of alkaloids. The regulatory role of Tre in improving salt tolerance was optimal with an exogenous concentration of 10 mM Tre. Larger concentrations of Tre were supra-optimum and adversely affected plant growth. PMID:24589477

  13. Variation of stability constants of thorium and uranium oxalate complexes with ionic strength

    SciTech Connect

    Erten, H.N; Mohammed, A.K.; Choppin, G.R.

    1993-12-31

    Extraction of Th(IV) and UO{sub 2}{sup 2+} by a solution of TTA and HDEHP, respectively, in toluene was used to obtain stability constants of their oxalate complexes in 1, 3, 5, 7 and 9 M ionic strength (NaClO{sub 2}) solutions. The complexes formed were the MOx, MHOx, MOx{sub 2} and M(HOx){sub 2} (M = Th, UO{sub 2}) species. The values were analyzed by the Specific Interaction Theory and agreed to I {le} 3 M but required an additional term for fitting at I > 3 M.

  14. Zinc isotope fractionation during adsorption onto Mn oxyhydroxide at low and high ionic strength

    NASA Astrophysics Data System (ADS)

    Bryan, Allison L.; Dong, Shuofei; Wilkes, Elise B.; Wasylenki, Laura E.

    2015-05-01

    Marine ferromanganese sediments represent one of the largest sinks from global seawater for Zn, a critical trace metal nutrient. These sediments are variably enriched in heavier isotopes of Zn relative to deep seawater, and some are among the heaviest natural samples analyzed to date. New experimental results demonstrate that adsorption of Zn to poorly crystalline Mn oxyhydroxide results in preferential association of heavier isotopes with the sorbent phase. At low ionic strength our experimental system displayed a short-lived kinetic isotope effect, with light isotopes adsorbed to birnessite (Δ66/64Znadsorbed-dissolved ∼ -0.2‰). After 100 h the sense of fractionation was opposite, such that heavier isotopes were preferentially adsorbed at steady state, but the magnitude of Δ66/64Znadsorbed-dissolved was indistinguishable from zero (+0.05 ± 0.08‰). At high ionic strength, we observed preferential sorption of heavy isotopes, with a strong negative correlation between Δ66/64Znadsorbed-dissolved and the percentage of Zn on the birnessite. Values of Δ66/64Znadsorbed-dissolved ranged from nearly +3‰ at low surface loading to +0.16‰ at high surface loading. Based on previous EXAFS work we infer that Zn adsorbs first as tetrahedral, inner-sphere complexes at low surface loading, with preferential incorporation of heavier isotopes relative to the octahedral Zn species predominating in solution. As surface loading increases, so does the proportion of Zn adsorbing as octahedral complexes, thus diminishing the magnitude of fractionation between the dissolved and adsorbed pools of Zn. The magnitude of fractionation at high ionic strength is also governed by aqueous speciation of Zn in synthetic seawater; a substantial fraction of Zn ions reside in chloro complexes, which preferentially incorporate light Zn isotopes, and this drives the adsorbed pool to be heavier relative to the bulk solution than it was at low ionic strength. Our results explain the observation

  15. Effects of starvation on the transport of Escherichia coli K12 in saturated porous media are dependent on pH and ionic strength

    NASA Astrophysics Data System (ADS)

    Xu, S.; Walczak, J. J.; Wang, L.; Bardy, S. L.; Li, J.

    2010-12-01

    In this research, we investigate the effects of starvation on the transport of E. coli K12 in saturated porous media. Particularly, we examine the relationship between such effects and the pH and ionic strength of the electrolyte solutions that were used to suspend bacterial cells. E. coli K12 (ATCC 10798) cells were cultured using either Luria-Bertani Miller (LB-Miller) broth (10 g trypton, 5 g yeast extract and 10 g NaCl in 1 L of deionized water) or LB-Luria broth (10 g tryptone, 5 g yeast extract and 0.5 g NaCl in 1 L of deionized water). Both broths had similar pH (~7.1) but differed in ionic strength (LB-Miller: ~170 mM, LB-Luria: ~ 8 mM). The bacterial cells were then harvested and suspended using one of the following electrolyte solutions: phosphate buffered saline (PBS) (pH ~7.2; ionic strength ~170 mM), 168 mM NaCl (pH ~5.7), 5% of PBS (pH ~ 7.2; ionic strength ~ 8 mM) and 8 mM NaCl (pH ~ 5.7). Column transport experiments were performed at 0, 21 and 48 hours following cell harvesting to evaluate the change in cell mobility over time under “starvation” conditions. Our results showed that 1) starvation increased the mobility of E. coli K12 cells; 2) the most significant change in mobility occurred when bacterial cells were suspended in an electrolyte solution that had different pH and ionic strength (i.e., LB-Miller culture suspended in 8 mM NaCl and LB-Luria culture suspended in 168 mM Nacl); and 3) the change in cell mobility primarily occurred within the first 21 hours. The size of the bacterial cells was measured and the surface properties (e.g., zeta potential, hydrophobicity, cell-bound protein, LPS sugar content, outer membrane protein profiles) of the bacterial cells were characterized. We found that the measured cell surface properties could not fully explain the observed changes in cell mobility caused by starvation.

  16. Modulating the Arrangement of Charged Nanotubes by Ionic Strength in Salty Water.

    PubMed

    Tao, Jiaojiao; Huang, Ningdong; Li, Junjun; Chen, Mingming; Wei, Chengsha; Li, Liangbin; Wu, Ziyu

    2014-04-01

    Despite the important role and potential application of charged cylindrical polyelectrolytes, biomacromolecules, and self-assembles, salt-modulated organization of those 1D charged nanostructures remains a topic relatively unexplored with an obscure underlying mechanism. In this Letter, the aggregation of oriented nanotubes self-assembled by ionic aromatic oligoamide in aqueous solution of NaCl over a wide concentration range is probed via small-angle X-ray scattering and a transmission electron microscope. The arrangement of nanotubes undergoes order-disorder transition sequences from an ordered rectangular phase to hexagonal packing and then to a lamellar gel. The observed transitions are understood by ionic effects on the electrostatic interaction between charged nanotubes and osmotic pressure due to ion partitioning. Above the physiological condition, electrostatic interactions are largely screened by the salts, while osmotic effects start to regulate the aggregation behavior and concomitantly deform the nanotubes. The study demonstrates rich phase behaviors of ordered, charged 1D nanostructures by tuning the ionic strength and underlying key physical principles. PMID:26274469

  17. Ionic and Amino Acid Regulation in Hard Clam (Meretrix lusoria) in Response to Salinity Challenges.

    PubMed

    Lin, Chia-Hao; Yeh, Po-Ling; Lee, Tsung-Han

    2016-01-01

    Most marine mollusks are osmoconformers, in that, their body fluid osmolality changes in the direction of the change in environmental salinity. Marine mollusks exhibit a number of osmoregulatory mechanisms to cope with either hypo- or hyperosmotic stress. The effects of changes in salinity on the osmoregulatory mechanisms of the hard clam (Meretrix lusoria, an economically important species of marine bivalve for Taiwan) have not been determined. In this study, we examined the effect of exposure to hypo (10‰)- and hyper (35‰)-osmotic salinity on hard clams raised at their natural salinity (20‰). The osmolality, [Na(+)], and [Cl(-)] of the hard clam hemolymph were changed in the same direction as the surrounding salinity. Further, the contents of total free amino acids including taurine in the gills and mantles were significantly upregulated in hard clam with increasing salinity. The gill Na(+), K(+)-ATPase (NKA) activity, the important enzyme regulating cellular inorganic ions, was not affected by the changed salinity. Mantle NKA activity, however, was stimulated in the 35‰ SW treatment. The taurine transporter (TAUT) is related to the regulation of intracellular contents of taurine, the dominant osmolyte. Herein, a TAUT gene of hard clam was cloned and a TAUT antibody was derived for the immunoblotting. The TAUT mRNA expression of the mantle in hard clam was significantly stimulated in 35‰ SW, but protein expression was not modulated by the changed salinity. In gills of the hard clam with 10‰ SW, both TAUT mRNA and protein expressions were significantly stimulated, and it may reflect a feedback regulation from the decreased gills taurine content under long-term hypoosmotic acclimation. These findings suggest that TAUT expression is regulated differently in gills and mantles following exposure to alterations in environmental salinity. Taken together, this study used the physiological, biochemical and molecular approaches to simultaneously explore the

  18. Ionic and Amino Acid Regulation in Hard Clam (Meretrix lusoria) in Response to Salinity Challenges

    PubMed Central

    Lin, Chia-Hao; Yeh, Po-Ling; Lee, Tsung-Han

    2016-01-01

    Most marine mollusks are osmoconformers, in that, their body fluid osmolality changes in the direction of the change in environmental salinity. Marine mollusks exhibit a number of osmoregulatory mechanisms to cope with either hypo- or hyperosmotic stress. The effects of changes in salinity on the osmoregulatory mechanisms of the hard clam (Meretrix lusoria, an economically important species of marine bivalve for Taiwan) have not been determined. In this study, we examined the effect of exposure to hypo (10‰)- and hyper (35‰)-osmotic salinity on hard clams raised at their natural salinity (20‰). The osmolality, [Na+], and [Cl−] of the hard clam hemolymph were changed in the same direction as the surrounding salinity. Further, the contents of total free amino acids including taurine in the gills and mantles were significantly upregulated in hard clam with increasing salinity. The gill Na+, K+-ATPase (NKA) activity, the important enzyme regulating cellular inorganic ions, was not affected by the changed salinity. Mantle NKA activity, however, was stimulated in the 35‰ SW treatment. The taurine transporter (TAUT) is related to the regulation of intracellular contents of taurine, the dominant osmolyte. Herein, a TAUT gene of hard clam was cloned and a TAUT antibody was derived for the immunoblotting. The TAUT mRNA expression of the mantle in hard clam was significantly stimulated in 35‰ SW, but protein expression was not modulated by the changed salinity. In gills of the hard clam with 10‰ SW, both TAUT mRNA and protein expressions were significantly stimulated, and it may reflect a feedback regulation from the decreased gills taurine content under long-term hypoosmotic acclimation. These findings suggest that TAUT expression is regulated differently in gills and mantles following exposure to alterations in environmental salinity. Taken together, this study used the physiological, biochemical and molecular approaches to simultaneously explore the

  19. Biotite dissolution and Cr(VI) reduction at elevated pH and ionic strength

    NASA Astrophysics Data System (ADS)

    He, Y. Thomas; Bigham, Jerry M.; Traina, Samuel J.

    2005-08-01

    The effects of elevated pH, ionic strength, and temperature on sediments in the vadose zone are of primary importance in modeling contaminant transport and understanding the environmental impact of tank leakage at nuclear waste storage facilities like those of the Hanford site. This study was designed to investigate biotite dissolution under simulated high level waste (HLW) conditions and its impact on Cr(VI) reduction and immobilization. Biotite dissolution increased with NaOH concentrations in the range of 0.1 to 2 mol L -1. There was a corresponding release of K, Fe, Si, and Al to solution, with Si and Al showing a complex pattern due to the formation of secondary zeolite minerals. Dissolved Fe concentrations were an order of magnitude lower than the other elements, possibly due to the formation of green rust and Fe(OH) 2. The reduction of Cr(VI) to Cr(III) also increased with increased NaOH concentration. A homogeneous reduction of chromate by Fe(II) aq released through biotite dissolution was probably the primary pathway responsible for this reaction. Greater ionic strengths increased biotite dissolution and consequently increased Fe(II) aq release and Cr(VI) removal. The results indicated that HLW would cause phyllosilicate dissolution and the formation of secondary precipitates that would have a major impact on radionuclide and contaminant transport in the vadose zone at the Hanford site.

  20. Ionic Strength Modulation of the Free Energy Landscape of Aβ40 Peptide Fibril Formation.

    PubMed

    Abelein, Axel; Jarvet, Jüri; Barth, Andreas; Gräslund, Astrid; Danielsson, Jens

    2016-06-01

    Protein misfolding and formation of cross-β structured amyloid fibrils are linked to many neurodegenerative disorders. Although recently developed quantitative approaches have started to reveal the molecular nature of self-assembly and fibril formation of proteins and peptides, it is yet unclear how these self-organization events are precisely modulated by microenvironmental factors, which are known to strongly affect the macroscopic aggregation properties. Here, we characterize the explicit effect of ionic strength on the microscopic aggregation rates of amyloid β peptide (Aβ40) self-association, implicated in Alzheimer's disease. We found that physiological ionic strength accelerates Aβ40 aggregation kinetics by promoting surface-catalyzed secondary nucleation reactions. This promoted catalytic effect can be assigned to shielding of electrostatic repulsion between monomers on the fibril surface or between the fibril surface itself and monomeric peptides. Furthermore, we observe the formation of two different β-structured states with similar but distinct spectroscopic features, which can be assigned to an off-pathway immature state (Fβ*) and a mature stable state (Fβ), where salt favors formation of the Fβ fibril morphology. Addition of salt to preformed Fβ* accelerates transition to Fβ, underlining the dynamic nature of Aβ40 fibrils in solution. On the basis of these results we suggest a model where salt decreases the free-energy barrier for Aβ40 folding to the Fβ state, favoring the buildup of the mature fibril morphology while omitting competing, energetically less favorable structural states. PMID:27171340

  1. The effect of macromolecular crowding, ionic strength and calcium binding on calmodulin dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Liang, Kao-Chen; Waxham, Neal; Cheung, Margaret

    2011-03-01

    The flexibility in the structure of calmodulin (CaM) allows its binding to over 300 target proteins in the cell. To investigate the structure-function relationship of CaM in response to the changing intracellular environment, we use a combined method of computer simulation and experiments based on circular dichroism (CD). The conformation, helicity and EF hand orientation of CaM are analyzed computationally to address the effect of macromolecular crowding, ionic strength and calcium binding in the experiments. We applied a unique solution of charges computed from QM/MM to accurately represent the charge distribution in the transition from apo-CaM to holo-CaM. Computationally, we found that a high level of macromolecular crowding, in addition to calcium binding and ionic strength, can impact the conformation, helicity and the EF hand orientation of CaM. Our result may provide unique insight into understanding the promiscuous behavior of calmodulin in target selection inside cells. This work is supported by National Science Foundation, Molecular & Cellular Biosciences (MCB0919974).

  2. Experimental determination of lead carbonate solubility at high ionic strengths: A Pitzer model description

    DOE PAGESBeta

    Xiong, Yongliang

    2015-05-06

    In this article, solubility measurements of lead carbonate, PbCO3(cr), cerussite, as a function of total ionic strengths are conducted in the mixtures of NaCl and NaHCO3 up to I = 1.2 mol•kg–1 and in the mixtures of NaHCO3 and Na2CO3 up to I = 5.2 mol•kg–1, at room temperature (22.5 ± 0.5 °C). The solubility constant (log Ksp) for cerussite, PbCO3(cr) = Pb2+ + CO32- was determined as –13.76 ± 0.15 (2σ) with a set of Pitzer parameters describing the specific interactions of PbCO3(aq), Pb(CO3)22-, and Pb(CO3)Cl– with the bulk-supporting electrolytes, based on the Pitzer model. The model developed inmore » this work can reproduce the experimental results including model-independent solubility values from the literature over a wide range of ionic strengths with satisfactory accuracy. The model is expected to find applications in numerous fields, including the accurate description of chemical behavior of lead in geological repositories, the modeling of formation of oxidized Pb–Zn ore deposits, and the environmental remediation of lead contamination.« less

  3. pH and ion strength modulated ionic species loading in mesoporous silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Liu, Jianbo; Yang, Xiaohai; Wang, Kemin; Wang, Qing; Yang, Meng; Li, Li; Xu, Jianguo

    2013-10-01

    Mesoporous silica nanoparticles (MSN) have emerged as appealing host materials to accommodate guest molecules for biomedical applications, and recently various methods have been developed to modulate the loading of guest molecules in the silica matrix. Herein, it was demonstrated that pH and ion strength showed great influence on the loading of charged species into the nanoparticles, taking MCM-41 as a host MSN model and methylviologen (MV2+) and 1,5-naphthalene disulfonate (NDS2-) as typical charged ionic guest molecules. As the pH increased from 3.0 to 8.0, the loading amount of MV2+ increased gradually, while on the contrary, it decreased gradually for NDS2-, for the solution pH changed the electrostatic interaction between the silica matrix and the ionic guest molecules. Additionally, the adding of NaCl reduced the electrostatic interaction, which resulted in a decreasing of the electrostatic rejection and electrostatic accumulation for the molecules carrying the same and the opposite charge to the particle respectively. Thus, pH and ion strength can be employed as simple approaches to modulate the loading of charged molecules and permselectivity in MSN. This work has a definite guidance function for molecule loading, transport modulation, controlled release as well as sensors based on MSN.

  4. Effect of added salt and increase in ionic strength on skim milk electroacidification performances.

    PubMed

    Bazinet, L; Ippersiel, D; Gendron, C; Mahdavi, B; Amiot, J; Lamarche, F

    2001-05-01

    Bipolar-memibrane electroacidification (BMEA) technology which uses the property of bipolar membranes to split water and the demineralization action of cation-exchange membranes (CEM), was tested for the production of acid casein. BMEA has numerous advantages in comparison with conventional isoelectric precipitation processes of proteins used in the dairy industry. BMEA uses electricity to generate the desired ionic species to acidify the treated solutions. The process can be precisely controlled, as electro-acidification rate is regulated by the effective current density in the cell. Water dissociation at the bipolar membrane interface is continuous and avoids local excess of acid. In-situ generation of dangerous chemicals (acids and bases) reduces the risks associated with the handling, transportation, use and elimination of these products. The aim of this study was to evaluate the performance of BMEA in different conditions of added ionic strength (p(added) = 0, 0.25, 0.5 and 1.0 M) and added salt (CaCl2, NaCl and KCl). The combination of KCl and p(added) = 0.5 M gave the best results with a 45% decrease in energy consumption. The increased energy efficiency was the result of a decrease in the anode/cathode voltage difference. This was due to an increase of conductivity, produced by addition of salt, necessary to compensate for the lack of sufficiently mobile ions in the skim milk. However, the addition of salts, irrespective of type or ionic strength, increased the required operation time. The protein profile of isolates were similar under all experimental conditions, except at 1.0 M-CaCl2. PMID:11504388

  5. Effects of ionic strength on the binding of phenanthrene and pyrene to humic substances: three-stage variation model.

    PubMed

    Lee, Chon-Lin; Kuo, Li-Jung; Wang, Huei-Ling; Hsieh, Ping-Chieh

    2003-10-01

    This study compared the effects of ionic strength on the binding constants (K(doc)) of selected polycyclic aromatic hydrocarbons (PAHs) (phenanthrene and pyrene) and a terrestrial humic acid (Leonardite Humic Acid) in different electrolyte solutions (KCl, KBr, MgCl(2) and MgSO(4)). Distinct trends were found in K(doc) variation depending upon the range of ionic strength resulting from added electrolytes. These trends demonstrated similar shapes for all the systems studied, while degree of variation increased with hydrophobicity of the PAHs. Furthermore, different types of electrolytes had different effects on the interactions between humic acid (HA) and the PAHs. These differences were primarily caused by types of cation, not anion. To describe the complicated effects of ionic strength on K(doc), we developed a three-stage variation model that encompasses increasing and decreasing trends and plateaus in K(doc) associated with ionic strength, as well as the mechanisms behind these trends, including the variation of HA structure configuration, HA aggregation and the salting-out effect. This model illustrated the importance of sufficient experimental data when interpreting the influence of ionic strength on the trends in K(doc) variation. PMID:12946908

  6. Neutron scattering and phase separation of Gamma-B crystallin vs. pH, ionic strength and protein concentration

    NASA Astrophysics Data System (ADS)

    Thurston, George; Martini, K. Michael; Desmond, Kenneth; Putzig, Elias; Dell, Zachary; Carter, Dawn; Hollenbeck, Dawn; Dexter, Nicholas; Langner, Andreas; Ross, David; Harkin, Anthony; Nelson, Edward; Zackrisson-Oskolkova, Malin; Stradner, Anna; Dorsaz, Nicolas; Foffi, Giuseppe; Schurtenberger, Peter

    2010-03-01

    We study the pH, ionic strength and concentration dependence of liquid-liquid phase separation and neutron scattering of the eye lens protein Gamma-B crystallin. At pH 7, lowering ionic strength raises the cloud points. Neutron scattering indicates anisotropic protein interactions, in agreement with prior information. At lower pH phase separation disappears, and protein repulsions increase at low ionic strength. We seek to evaluate the roles of (i) patterned charge regulation, (ii) biasing of relative protein orientation due to local charge patches, and (iii) screened net protein charge for these phenomena. We apply a grand-canonical partition function model for charge regulation and other interactions, as input to Monte Carlo and neutron scattering computations.

  7. Ionic Strength Effect on the Rate of Reduction of Hexacyanoferrate(III) by Ascorbic Acid: A Flow Injection Kinetic Experiment

    NASA Astrophysics Data System (ADS)

    Nobrega, Joanquim A.; Rocha, Fabio R. P.

    1997-05-01

    Flow injection analysis (FIA) is a well recognized tool for solutions management. In spite of the use of this technique mainly for quantitative determination of analytes in solution, FIA systems can also be used for obtaining physical chemistry data. This work describes the use of a flow diagram to perform a kinetic experiment: the effect of ionic strength on the rate of reduction of hexacyanoferrate(III) by ascorbic acid. The rate determining step of this reaction involves the collision between two anionic species. The increase of the ionic strength of the medium alters the ionic atmosphere and changes the charge densities around the anions. Consequently, there is an increment of the rate constants for higher ionic strengths. In the proposed system, the flow is stopped by commutation when the center of the sample zone attained the flow cell and a gradual decrease in signal, related to the redox reaction, is registered as function of time. This allowed the determination of the rate constants as a function of the ionic strength. The product of the charges of the ions involved in the rate determining step was estimated in 3.2 that is close to the expected value considering the proposed mechanism.

  8. The ionic strength dependence of lead (II) carbonate complexation in perchlorate media

    NASA Astrophysics Data System (ADS)

    Easley, Regina A.; Byrne, Robert H.

    2011-10-01

    Lead speciation in many aqueous geochemical systems is dominated by carbonate complexation. However, direct observations of Pb complexation by carbonate ions are few in number. This work represents the first investigation of the equilibrium Pb+CO32-⇌PbCO30 over a range of ionic strength. Through spectrophotometric observations of PbCO30 formation at 25 °C in NaHCO 3-NaClO 4 solutions, PbCO30 formation constants of the form COβ1=[PbCO30]/[Pb][CO32-] were determined between 0.001 and 5.0 molal ionic strength. Formation constant results were well represented by the equation: logCO3β1=(6.789±0.022)-{4.088·I0.5}/{1+1.5I0.5}+(0.244±0.012)I . This result, combined with previous critical assessments of formation constants for the equilibrium PbCO30+CO32-⇌Pb(CO)22-, was used to estimate the ionic strength dependence for the equilibrium Pb+2CO32-⇌Pb(CO)22-: logCO3β2=(10.41±0.18)-{4.088·I0.5}/{1+1.5I0.5}-(0.31±0.33)I where COβ2=[Pb(CO)22-]/[Pb][CO32-]2. The carbonate complexation constants produced in this study, combined with previous complexation constants for formation of Pb chloride and hydroxide species, were used to predict formation constants for mixed-ligand species Pb(CO)Cl, Pb(OH)Cl, and Pb(CO)OH. Formation constant estimates for the system Pb-HCO3-Cl-H were then used to assess Pb speciation in seawater. In the absence of complexation by organics, approximately 1.9% of the total lead in surface seawater ( S = 35, t = 25 °C, pH ˜8.2 (free H concentration scale)) is present as free hydrated Pb. Carbonate complexes, PbCO30 and Pb(CO)Cl, are predominant forms of Pb in seawater at high pH, and lead chloride complexes are predominant species at low pH. For pH >7.7 the sum concentration of PbCO30, Pb(CO)Cl, PbOH, and Pb(OH)Cl in seawater exceeds the sum concentration of Pb, PbCl, PbCl20, and PbCl3-.

  9. Determination of Surface Charge of Titanium Dioxide (Anatase) at High Ionic Strength

    NASA Astrophysics Data System (ADS)

    Schoonen, M. A.; Strongin, D. R.

    2014-12-01

    Charge development on mineral surfaces is an important control on the fate of minor and trace elements in a wide range of environments, including in possible radioactive waste repositories. Formation waters have often a high ionic strength. In this study, we determined the zeta potential (ζ) of anatase in potassium chloride solutions with concentrations up to 3M (25°C). The zeta potential is the potential at the hydrodynamic shear plane. In this study, we made use of the electro-acoustic effect. This effect is based on the development of a measureable potential/current when the electrical double layer outside the shearplane is separated from a charged particle through rapid oscillation induced by a sound wave. The advantage of this type of measurement is that the particles are not subjected to a high electric field (common to typical zeta potential measurements), which leads to electrode reactions and a shift of solution pH. Measurements were collected by subtracting the ion vibration current (IVI) due to the presence of potassium and chloride ions from the CVI. The correction is necessary for measurements in solutions with I > 0.25 M. This subtraction was done at each of the measurement conditions by centrifuging the slurrly, measuring the IVI of the supernatant, reconstituting the slurry, and then measuring CVI of the slurry. Subtraction of IVI at each condition is critical because IVI changes with pH and accounts for most of raw signal. The results show that the anatase isoelectric point shifts from a pH ~6.5 to a value of ~4.5 at 1M KCl. At ionic strength in excess of 1 M KCl, the surface appears to be slightly negatively charged accross the pH range accessible by this technique (pH 2.5-10). The loss of an isoelectric point suggests that KCl is no longer an indifferent electrolyte at 1 M KCl and higher. The results are in disagreement with earlier measurements in which anatase was shown to have a positive charge at high ionic strength across the pH scale. The

  10. Cadmium isotope fractionation during adsorption to Mn oxyhydroxide at low and high ionic strength

    NASA Astrophysics Data System (ADS)

    Wasylenki, Laura E.; Swihart, Jared W.; Romaniello, Stephen J.

    2014-09-01

    We report results of experiments conducted to quantify the sense and magnitude of cadmium stable isotope fractionation during sorption to synthetic birnessite (Mn oxyhydroxide) and to constrain the molecular mechanism responsible for fractionation in this system. Ferromanganese crusts have recently been proposed as a possible archive of the cadmium isotopic composition of seawater over the last few tens of millions of years (Horner et al., 2010), and this archive can potentially yield information about biological use of Cd by diatoms over the Cenozoic Era. Cd isotopes may also be useful for determining the extent to which sorption to mineral substrates attenuates Cd transport in contaminated aquifers. At low ionic strength, we found a small fractionation effect (Δ114/112Cdfluid-solid = +0.12 ± 0.06‰, 1 sd; equivalent to +2.4 in terms of ε114/110Cd) that was constant as a function of the fraction of total Cd sorbed, indicating a reversible equilibrium isotope effect. At high ionic strength we observed a fractionation averaging (Δ114/112Cdfluid-solid = +0.27 ± 0.07‰ (1 sd; equivalent to +5.4 in terms of ε114/110Cd). A time series conducted at high ionic strength revealed that the magnitude of isotopic fractionation decreases gradually over time, from Δ114/112Cdfluid-solid of nearly +0.4‰ after 1 h to +0.2‰ after 24 h and +0.1‰ after 912 h. Furthermore, the percentage of Cd sorbed to birnessite increases over this interval from 27% to 58%. We hypothesize that this shift results from either changes over time in the structure and crystallinity of birnessite and/or a change in the molecular mechanism of sorption of cadmium on birnessite. Our result is encouraging for application of Cd isotopes in ferromanganese crusts to reconstruction of the Cd isotopic composition of coexisting seawater, given the very slow accumulation rates of such sediments.

  11. Ionic strength effect on molecular structure of hyaluronic acid investigated by flow field-flow fractionation and multiangle light scattering.

    PubMed

    Kim, Bitnara; Woo, Sohee; Park, Young-Soo; Hwang, Euijin; Moon, Myeong Hee

    2015-02-01

    This study describes the effect of ionic strength on the molecular structure of hyaluronic acid (HA) in an aqueous solution using flow field-flow fractionation and multiangle light scattering (FlFFF-MALS). Sodium salts of HA (NaHA) raw materials (∼2 × 10(6) Da) dispersed in different concentrations of NaCl prepared by repeated dilution/ultrafiltration procedures were examined in order to study conformational changes in terms of the relationship between the radius of gyration and molecular weight (MW) and molecular weight distribution (MWD) of NaHA in solution. This was achieved by varying the ionic strength of the carrier solution used in a frit-inlet asymmetrical FlFFF (FIAF4) channel. Experiments showed that the average MW of NaHA increased as the ionic strength of the NaHA solution decreased due to enhanced entanglement or aggregation of HA molecules. Relatively large molecules (greater than ∼5 MDa) did not show a large increase in RMS radius value as the NaCl concentration decreased. Conversely, smaller species showed larger changes, suggesting molecular expansion at lower ionic strengths. When the ionic strength of the FlFFF carrier solution was decreased, the HA species in a salt-rich solution (0.2 M NaCl) underwent rapid molecular aggregation during FlFFF separation. However, when salt-depleted HA samples (I = 4.66∼0.38 mM) were analyzed with FFF carrier solutions of a high ionic strength, the changes in both molecular structure and size were somewhat reversible, although there was a delay in correction of the molecular structure. PMID:25542570

  12. Surface Physicochemistry and Ionic Strength Affects eDNA’s Role in Bacterial Adhesion to Abiotic Surfaces

    PubMed Central

    Regina, Viduthalai R.; Lokanathan, Arcot R.; Modrzyński, Jakub J.; Sutherland, Duncan S.; Meyer, Rikke L.

    2014-01-01

    Extracellular DNA (eDNA) is an important structural component of biofilms formed by many bacteria, but few reports have focused on its role in initial cell adhesion. The aim of this study was to investigate the role of eDNA in bacterial adhesion to abiotic surfaces, and determine to which extent eDNA-mediated adhesion depends on the physicochemical properties of the surface and surrounding liquid. We investigated eDNA alteration of cell surface hydrophobicity and zeta potential, and subsequently quantified the effect of eDNA on the adhesion of Staphylococcus xylosus to glass surfaces functionalised with different chemistries resulting in variable hydrophobicity and charge. Cell adhesion experiments were carried out at three different ionic strengths. Removal of eDNA from S. xylosus cells by DNase treatment did not alter the zeta potential, but rendered the cells more hydrophilic. DNase treatment impaired adhesion of cells to glass surfaces, but the adhesive properties of S. xylosus were regained within 30 minutes if DNase was not continuously present, implying a continuous release of eDNA in the culture. Removal of eDNA lowered the adhesion of S. xylosus to all surfaces chemistries tested, but not at all ionic strengths. No effect was seen on glass surfaces and carboxyl-functionalised surfaces at high ionic strength, and a reverse effect occurred on amine-functionalised surfaces at low ionic strength. However, eDNA promoted adhesion of cells to hydrophobic surfaces irrespective of the ionic strength. The adhesive properties of eDNA in mediating initial adhesion of S. xylosus is thus highly versatile, but also dependent on the physicochemical properties of the surface and ionic strength of the surrounding medium. PMID:25122477

  13. Leaching of metal(loid)s from a construction material: influence of the particle size, specific surface area and ionic strength.

    PubMed

    Schmukat, A; Duester, L; Ecker, D; Schmid, H; Heil, C; Heininger, P; Ternes, T A

    2012-08-15

    Construction materials are tested worldwide for a potential release of dangerous substances to prevent adverse effects on humans and biota. It is crucial to identify and understand the processes which are decisive for the release of hazardous substances. The current study compares the results of different test methods. Taking copper slag as model material, the influence of material particle size, eluant composition and ionic strength was tested. Ionic strength and salinity significantly influenced the release of metal(loid)s in the water phase. Furthermore, it was elucidated that colloids can cause methodological artefacts. The available specific surface area exhibited a positive correlation with the release of hazardous substances. The specific surface areas of materials were determined by the Brunauer, Emmett and Teller model (BET) and four other methods. The aluminium foil method showed the best results with regard to the statistical uncertainty, compared to a 3D laser scanning method. With help of the roughness factor λ it is possible to compare the results from surface area measurements with different material particle sizes (0-250 mm). This comparability offers the potential to match the release of metal(loid)s from laboratory studies with field applications and catchment area calculations/modelling, based on the release per m(2). PMID:22683212

  14. Hydrolysis, formation and ionization constants at 25/sup 0/C, and at high temperature-high ionic strength

    SciTech Connect

    Phillips, S.L.; Phillips, C.A.; Skeen, J.

    1985-02-01

    Thermochemical data for nuclear waste disposal are compiled. The resulting computerized database consists of critically evaluated data on Gibbs energy of formation, enthalpy of formation, entropy and heat capacity of selected substances for about 16 elements at 25/sup 0/C and zero ionic strength. Elements covered are Am, As, Br, C, Cl, F, I, Mo, Np, N, O, P, Pu, Si, Sr, S, and U. Values of these thermodynamic properties were used to calculate equilibrium quotients for hydrolysis, complexation and ionization reactions up to 300/sup 0/C and 3 ionic strength, for selected chemical reactions.

  15. Application of the effects of ionic strength reducing agents in the purification and crystallization of chitinase A.

    PubMed

    Papanikolau, Yannis; Petratos, Kyriacos

    2002-10-01

    The effects of ionic strength reducing agents may find a large number of applications. Based on these effects, we have redesigned the purification scheme of Chitinase A (ChiA) from Serratia marcescen. This scheme led to reproducibly crystallizable enzyme in both salting-in and salting-out conditions, which are presented here. Herein, we demonstrate some experimental applications of the ionic strength reducing agents theory and, in parallel, provide further evidence of the theory's correctness. Finally, we report a new crystal form produced recently in salting-in crystallization experiments. This form may allow the co-crystallization of ChiA mutants with longer substrates. PMID:12351868

  16. Some rootstocks improve pepper tolerance to mild salinity through ionic regulation.

    PubMed

    Penella, Consuelo; Nebauer, Sergio G; Quiñones, Ana; San Bautista, Alberto; López-Galarza, Salvador; Calatayud, Angeles

    2015-01-01

    Grafting has been proposed as an interesting strategy that improves the responses of crops under salinity. In pepper, we reported increased fruit yield of the commercial 'Adige' cultivar under salinity when grafted onto accessions Capsicum chinense Jacq. 'ECU-973' (12) and Capsicum baccatum L. var. pendulum 'BOL-58' (14), whereas no effect was observed when grafted onto accession Capsicum annuum L var. 'Serrano' (5). We also analysed the physiological and biochemical mechanisms related to the tolerance conferred by these rootstocks. Responses to salinity (40 mM NaCl) were studied in the different plant combinations for 30 days by determining water relations, mineral content, proline accumulation, photosynthetic parameters, nitrate reductase activity and antioxidant capacity. Higher salt tolerance was achieved when the 'Adige' cultivar was grafted onto the 12 genotype, which allowed not only lower Na(+) and Cl(-) accumulation in the scion, but also ion selectivity maintenance, particularly Na(+)/K(+) discrimination. These traits led to a minor negative impact on photosynthesis, nitrate reductase activity and lipid peroxidation in grafted scion leaves. This work suggests that using tolerant pepper rootstocks that maintain the scion's ion homeostasis is a promising strategy to provide salinity tolerance and can consequently improve crop yield. PMID:25480004

  17. Using UCST Ionic Liquid as a Draw Solute in Forward Osmosis to Treat High-Salinity Water.

    PubMed

    Zhong, Yujiang; Feng, Xiaoshuang; Chen, Wei; Wang, Xinbo; Huang, Kuo-Wei; Gnanou, Yves; Lai, Zhiping

    2016-01-19

    The concept of using a thermoresponsive ionic liquid (IL) with an upper critical solution temperature (UCST) as a draw solute in forward osmosis (FO) was successfully demonstrated here experimentally. A 3.2 M solution of protonated betaine bis(trifluoromethylsulfonyl)imide ([Hbet][Tf2N]) was obtained by heating and maintaining the temperature above 56 °C. This solution successfully drew water from high-salinity water up to 3.0 M through FO. When the IL solution cooled to room temperature, it spontaneously separated into a water-rich phase and an IL-rich phase: the water-rich phase was the produced water that contained a low IL concentration, and the IL-rich phase could be used directly as the draw solution in the next cycle of the FO process. The thermal stability, thermal-responsive solubility, and UV-vis absorption spectra of the IL were also studied in detail. PMID:26649525

  18. Role of charge suppression and ionic strength in free zone electrophoresis of proteins.

    PubMed

    Compton, B J; O'Grady, E A

    1991-11-15

    The free zone electrophoretic mobility of proteins can be predicted from the protein's amino acid content by applying a model based on the Debye-Hückle-Henry theory and Henderson-Hasselbalch equation. Calculated mobilities are always greater than actual mobility but a pH-independent proportionality (described by the constant FZ) is found between the two. Thus, determination of a protein's mobility at one pH allows, with the use of the model and FZ, calculation of its mobility at other pH conditions. This leads directly to optimum conditions for the electrophoretic resolution of proteins in capillary zone electrophoresis. The fundamental nature of FZ is examined and found to be a function of a proteins molecular weight, charge, and solution ionic strength. This work aids in explaining the form of previously proposed empirically based equations for peptide and protein mobility. PMID:1776698

  19. Motion of Molecular Probes and Viscosity Scaling in Polyelectrolyte Solutions at Physiological Ionic Strength.

    PubMed

    Sozanski, Krzysztof; Wisniewska, Agnieszka; Kalwarczyk, Tomasz; Sznajder, Anna; Holyst, Robert

    2016-01-01

    We investigate transport properties of model polyelectrolyte systems at physiological ionic strength (0.154 M). Covering a broad range of flow length scales-from diffusion of molecular probes to macroscopic viscous flow-we establish a single, continuous function describing the scale dependent viscosity of high-salt polyelectrolyte solutions. The data are consistent with the model developed previously for electrically neutral polymers in a good solvent. The presented approach merges the power-law scaling concepts of de Gennes with the idea of exponential length scale dependence of effective viscosity in complex liquids. The result is a simple and applicable description of transport properties of high-salt polyelectrolyte solutions at all length scales, valid for motion of single molecules as well as macroscopic flow of the complex liquid. PMID:27536866

  20. Motion of Molecular Probes and Viscosity Scaling in Polyelectrolyte Solutions at Physiological Ionic Strength

    PubMed Central

    Sozanski, Krzysztof; Wisniewska, Agnieszka; Kalwarczyk, Tomasz; Sznajder, Anna; Holyst, Robert

    2016-01-01

    We investigate transport properties of model polyelectrolyte systems at physiological ionic strength (0.154 M). Covering a broad range of flow length scales—from diffusion of molecular probes to macroscopic viscous flow—we establish a single, continuous function describing the scale dependent viscosity of high-salt polyelectrolyte solutions. The data are consistent with the model developed previously for electrically neutral polymers in a good solvent. The presented approach merges the power-law scaling concepts of de Gennes with the idea of exponential length scale dependence of effective viscosity in complex liquids. The result is a simple and applicable description of transport properties of high-salt polyelectrolyte solutions at all length scales, valid for motion of single molecules as well as macroscopic flow of the complex liquid. PMID:27536866

  1. Effects of pH and ionic strength on precipitation of phytopathogenic viruses by polyethylene glycol.

    PubMed

    Pastorek, J; Marcinka, K

    1989-01-01

    The effects of ionic strength of the solution (changed by varying NaCl concentrations or buffer molarity) on the precipitation with polyethylene glycol (PEG) 6000 were studied on phytopathogenic viruses of different morphology: the isometric red clover mottle virus (RCMV), rod-shaped tobacco mosaic virus, flexuous potato virus X (PVX) and bacilliform alfalfa mosaic virus. With increasing NaCl concentration or buffer molarity up to a certain level (0.1 mol/l), the efficiency of PEG precipitation increased. This relationship did not apply to PVX. The effects of pH on PEG precipitation were studied on RCMV. The efficiency of precipitation increased with decreasing difference between pH of the solution and pI of the virus. PMID:2565676

  2. Experimental determination of lead carbonate solubility at high ionic strengths: A Pitzer model description

    SciTech Connect

    Xiong, Yongliang

    2015-05-06

    In this article, solubility measurements of lead carbonate, PbCO3(cr), cerussite, as a function of total ionic strengths are conducted in the mixtures of NaCl and NaHCO3 up to I = 1.2 mol•kg–1 and in the mixtures of NaHCO3 and Na2CO3 up to I = 5.2 mol•kg–1, at room temperature (22.5 ± 0.5 °C). The solubility constant (log Ksp) for cerussite, PbCO3(cr) = Pb2+ + CO32- was determined as –13.76 ± 0.15 (2σ) with a set of Pitzer parameters describing the specific interactions of PbCO3(aq), Pb(CO3)22-, and Pb(CO3)Cl with the bulk-supporting electrolytes, based on the Pitzer model. The model developed in this work can reproduce the experimental results including model-independent solubility values from the literature over a wide range of ionic strengths with satisfactory accuracy. The model is expected to find applications in numerous fields, including the accurate description of chemical behavior of lead in geological repositories, the modeling of formation of oxidized Pb–Zn ore deposits, and the environmental remediation of lead contamination.

  3. Soluble hydrocarbons uptake by porous carbonaceous adsorbents at different water ionic strength and temperature: something to consider in oil spills.

    PubMed

    Flores-Chaparro, Carlos E; Ruiz, Luis Felipe Chazaro; Alfaro-De la Torre, Ma Catalina; Rangel-Mendez, Jose Rene

    2016-06-01

    Nowadays, petrochemical operations involve risks to the environment and one of the biggest is oil spills. Low molecular aromatics like benzene, toluene, and naphthalene dissolve in water, and because of their toxicological characteristics, these produce severe consequences to the environment. The oil spill cleanup strategies are mainly designed to deal with the heavy fractions accumulated on the water surface. Unfortunately, very limited information is available regarding the treatment of dissolved fractions.A commercial (Filtrasorb 400) and modified activated carbons were evaluated to remove benzene, toluene, and naphthalene from water, which are the most soluble aromatic hydrocarbons, at different ionic strengths (I) and temperatures (0-0.76 M and 4-25 °C, respectively). This allowed simulating the conditions of fresh and saline waters when assessing the performance of these adsorbents. It was found that the hydrocarbons adsorption affinity increased 12 % at a I of 0.5 M, due to the less negative charge of the adsorbent, while at a high I (≃0.76 M) in a synthetic seawater, the adsorption capacity decreased 21 % that was attributed to the adsorbent's pores occlusion by water clusters. Approximately, 40 h were needed to reach equilibrium; however, the maximum adsorption rate occurred within the first hour in all the cases. Moreover, the hydrocarbons adsorption and desorption capacities increased when the temperature augmented from 4 to 25 °C. On the other hand, thermally and chemically modified materials showed that the interactions between adsorbent-contaminant increased with the basification degree of the adsorbent surface. PMID:26903130

  4. Ionic strength dependence of the oxidation of SO2 by H2O2 in sodium chloride particles

    NASA Astrophysics Data System (ADS)

    Ali, H. M.; Iedema, M.; Yu, X.-Y.; Cowin, J. P.

    2014-06-01

    The reaction of sulfur dioxide and hydrogen peroxide in the presence of deliquesced (>75% RH) sodium chloride (brine) particles was studied by utilizing a cross flow mini-reactor. The reaction kinetics were followed by observing chloride depletion in particles by computer-controlled scanning electron microscope with energy dispersive X-ray analysis, namely CCSEM/EDX. The reactions take place in concentrated mixed salt brine aerosols, for which no complete kinetic equilibrium data previously existed. We measured the Henry's law solubility of H2O2 in brine solutions to close that gap. We also calculated the reaction rate as the particle transforms continuously from concentrated NaCl brine to, eventually, a mixed NaHSO4 plus H2SO4 brine solution. The reaction rate of the SO2 oxidation by H2O2 was found to be influenced by the change in ionic strength as the particle undergoes compositional transformation, following closely the dependence of the third order rate constant on ionic strength as predicted using established rate equations. This is the first study that has measured the ionic strength dependence of sulfate formation (in non-aqueous media) from oxidation of mixed salt brine aerosols in the presence of H2O2. It also gives the first report of the dependence of the Henry's law constant of H2O2 on ionic strength.

  5. CHLORIDEDETERMINATION IN HIGH IONIC STRENGTH SOLUTION OF AMMONIUM ACETATE USING NEGATIVE ION ELECTRON SPRAY IONIZATION (HPLC/MS)

    EPA Science Inventory

    A precise ion chromatography method has been developed for the determination of chloride in high ionic strength ammonium acetate solutions (10-5 M-5 M) using sodium carbonate/sodium bicarbonate as eluent. Negative ion electrospray ionization (ESI) mass spectrometry was used for q...

  6. State-of-the-Art pH Electrode Quality Control for Measurements of Acidic, Low Ionic Strength Waters.

    ERIC Educational Resources Information Center

    Stapanian, Martin A.; Metcalf, Richard C.

    1990-01-01

    Described is the derivation of the relationship between the pH measurement error and the resulting percentage error in hydrogen ion concentration including the use of variable activity coefficients. The relative influence of the ionic strength of the solution on the percentage error is shown. (CW)

  7. A novel conductance glucose biosensor in ultra-low ionic strength solution triggered by the oxidation of Ag nanoparticles.

    PubMed

    Song, Yonghai; Chen, Jingyi; Liu, Hongyu; Li, Ping; Li, Hongbo; Wang, Li

    2015-09-01

    A simple, sensitive and effective method to detect glucose in ultra-low ionic strength solution containing citrate-capped silver nanoparticles (CCAgNPs) was developed by monitoring the change of solution conductance. Glucose was catalyzed into gluconic acid firstly by glucose oxidase in an O2-saturated solution accompanied by the reduction of O2 into hydrogen peroxide (H2O2). Then, CCAgNPs was oxidized by H2O2 into Ag(+) and the capping regent of citrate was released at the same time. All these resulted Ag(+), gluconic acid and the released citrate would contribute to the increase of solution ionic strength together, leading to a detectable increase of solution conductance. And a novel conductance glucose biosensor was developed with a routine linear range of 0.06-4.0 mM and a suitable detection limit of 18.0 μM. The novel glucose biosensor was further applied in energy drink sample and proven to be suitable for practical system with low ionic strength. The proposed conductance biosensor achieved a significant breakthrough of glucose detection in ultra-low ionic strength media. PMID:26388373

  8. The role of ionic strength and grain size on the transport of colloids in unsaturated sand columns

    NASA Astrophysics Data System (ADS)

    Mitropoulou, Polyxeni N.; Syngouna, Vasiliki I.; Chrysikopoulos, Constantinos V.

    2013-04-01

    The main objective of this study was to better understand the combined effects of ionic strength, and sand grain size on colloid fate and transport in unsaturated porous media. Spherical fluorescent polymer microspheres with three different sizes (0.075, 0.30 and 2.1 μm), and laboratory columns packed with two size fractions of clean quartz sand (0.513 and 0.181 mm) were used. The saturation level of the packed columns was set to 83-95% with solutions having a wide range of ionic strength (0.1-1000 mM). The electrophoretic mobility of colloids and sand grains were evaluated for all the experimental conditions employed. The various experimental collision efficiencies were quantified using the classical colloid filtration theory. The theoretical collision efficiencies were estimated with appropriate DLVO energies using a Maxwell model. The experimental results suggested that the retention of the bigger colloids (2.1 μm) was slightly higher compared to the conservative tracer and smaller colloids (0.3 and 0.075 μm) in deionized-distilled-water, indicating sorption at air-water interfaces or straining. Moreover, relatively smaller attachment was observed onto fine than medium quartz sand. The mass recovery of the 0.3 μm microspheres in NaCl solution was shown to significantly decrease with increasing ionic strength. Both the experimental and theoretical collision efficiencies based on colloid interactions with solid-water interfaces, were increased with increasing ionic strength.

  9. Ionic Strength Effect on the Rate of Reduction of Hexacyanoferrate (III) by Ascorbic Acid: A Physical Chemistry Laboratory Experiment.

    ERIC Educational Resources Information Center

    Watkins, Kenneth W.; Olson, June A.

    1980-01-01

    Describes a physical chemistry experiment that allows students to test the effect of ionic strength on the rates of a reaction between ions. The reduction of hexacyanoferrate III by ascorbic acid is detailed. Comparisons with the iodine clock reaction are made. (CS)

  10. Ionic strength dependence of the oxidation of SO2 by H2O2 in sodium chloride particles

    SciTech Connect

    Ali, Hashim M.; Iedema, Martin J.; Yu, Xiao-Ying; Cowin, James P.

    2014-06-20

    The reaction of sulfur dioxide and hydrogen peroxide in the presence of deliquesced (>75% RH) sodium particles was studied by utilizing a crossflow-mini reactor. The reaction kinetics was followed by observing chloride depletion in particles by computer-controlled scanning electron microscope with energy dispersive X-ray analysis, namely SEM/EDX. The reactions take place in concentrated mixed salt brine aerosols, for which no complete kinetic equilibrium data previously existed. We measured the Henry’s law solubility of H2O2 to close that gap. We also calculated the reaction rate as the particle transforms continuously from concentrated NaCl brine to eventually a mixed NaHSO4 plus H2SO4 brine solution. The reaction rate of the SO2 oxidation by H2O2 was found to be influenced by the change in ionic strength as the particle undergoes compositional transformation, following closely the dependence of the third order rate constant on ionic strength as predicted rates using previously established rate equations. This is the first study that has measured the ionic strength dependence of sulfate formation (in non-aqueous media) from oxidation of mixed salt brine aerosols in the presence of H2O2. It also gives the first report of the Henry’s law constant of H2O2 dependence on ionic strength.

  11. Colloid Transport in Unsaturated Porous Media: The Role of Water Content and Ionic Strength on Particle Straining

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Packed column and mathematical modeling studies were conducted to explore the influence of water saturation, pore-water ionic strength, and grain size on the transport of latex microsphere colloids (1.1 micron) in porous media. Experiments were carried out under unfavorable conditions in terms of c...

  12. COLLOID TRANSPORT IN UNSATURATED POROUS MEDIA: THE ROLE OF WATER CONTENT AND IONIC STRENGTH ON PARTICLE STRAINING

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Packed column and mathematical modeling studies were conducted to explore the influence of water content, pore-water ionic strength, and grain size on the transport of latex microsphere colloids (1 ƒÝm) in unsaturated conditions. Experiments were conducted under unfavorable conditions in terms of co...

  13. TiO₂ nanoparticle transport and retention through saturated limestone porous media under various ionic strength conditions.

    PubMed

    Esfandyari Bayat, Ali; Junin, Radzuan; Derahman, Mohd Nawi; Samad, Adlina Abdul

    2015-09-01

    The impact of ionic strength (from 0.003 to 500mM) and salt type (NaCl vs MgCl2) on transport and retention of titanium dioxide (TiO2) nanoparticles (NPs) in saturated limestone porous media was systematically studied. Vertical columns were packed with limestone grains. The NPs were introduced as a pulse suspended in aqueous solutions and breakthrough curves in the column outlet were generated using an ultraviolent-visible spectrometry. Presence of NaCl and MgCl2 in the suspensions were found to have a significant influence on the electrokinetic properties of the NP aggregates and limestone grains. In NaCl and MgCl2 solutions, the deposition rates of the TiO2-NP aggregates were enhanced with the increase in ionic strength, a trend consistent with traditional Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Furthermore, the NP aggregates retention increased in the porous media with ionic strength. The presence of salts also caused a considerable delay in the NPs breakthrough time. MgCl2 as compared to NaCl was found to be more effective agent for the deposition and retention of TiO2-NPs. The experimental results followed closely the general trends predicted by the filtration and DLVO calculations. Overall, it was found that TiO2-NP mobility in the limestone porous media depends on ionic strength and salt type. PMID:25889359

  14. Systematic Approach for Calculating the Concentrations of Chemical Species in Multiequilibrium Problems: Inclusion of the Ionic Strength Effects

    ERIC Educational Resources Information Center

    Baeza-Baeza, Juan J.; Garcia-Alvarez-Coque, M. Celia

    2012-01-01

    A general systematic approach including ionic strength effects is proposed for the numerical calculation of concentrations of chemical species in multiequilibrium problems. This approach extends the versatility of the approach presented in a previous article and is applied using the Solver option of the Excel spreadsheet to solve real problems…

  15. The effect of ionic strength and hardness of trichloroethylene contaminated groundwater in remediation using granular activated carbon

    NASA Astrophysics Data System (ADS)

    Heo, J.; Chang, H.

    2005-12-01

    The objective of this study is to evaluate the trichloroethylene (TCE) removal by granular activated carbon (GAC) based on influential factors (ionic strength, hardness) of various groundwaters. The experimental method used in this study was batch experiments. Synthetic groundwater for test was made according to ionic strength, hardness and then it was artificially contaminated by TCE 5ppm. The variation of ions in synthetic groundwater was measured by I.C. and I.C.P. Surface area of GAC was determined by the Brunauer, Emmett and Teller (BET) adsorption data. The results of tests showed that TCE removal using GAC is affected by the hardness of synthetic groundwaters. It was founded that surface area of GAC was decreased by increasing of ions. Due to pore blocking of ions by functional group, the surface area of GAC decreased and the difference of the remediation appeared. This result was affected by the ionic strength and hardness of water. Therefore, the ionic strength and hardness of contaminated groundwater must be considered in remediation using GAC.

  16. EFFECTS OF PH, SOLID/SOLUTION RATIO, IONIC STRENGTH, AND ORGANIC ACIDS ON PB AND CD SOPRTION ON KAOLINITE

    EPA Science Inventory

    Potentiometric and ion-selective electrode titrations together with batch sorption/desorption experiments, were performed to explain the aqueous and surface complexation reactions between kaolinite, Pb, Cd and three organic acids. Variables included pH, ionic strength, metal conc...

  17. Low absorption state of phycocyanin from Acaryochloris marina antenna system: On the interplay between ionic strength and excitonic coupling

    NASA Astrophysics Data System (ADS)

    Nganou, Collins

    2013-07-01

    This paper studies the excitonic factor in the excited state energy transfer of phycobilisome (PBS) by using a polarized time-resolved pump-probe and by changing the ionic strength of the cofactors' medium in the PBS of Acaryochloris marina (A. marina). As a result, the interplay between the surrounding medium and the closely excited adjacent cofactors is shown to be a negligible factor of the excitonic decay kinetics at 618 nm of the phycocyanin (PC), while it appears as a driving factor of an increase in excitonic delocalization at 630 nm. The obtained anisotropy values are consistent with the contribution of ionic strength in the excitonic mechanism in PBS. These values were 0.38 in high ionic strength and 0.4 in low ionic strength at 618 nm, and 0.52 in high ionic strength and 0.4 in low ionic strength at 630-635 nm. The anisotropy value of 0.52 in high phosphate is similar at 630 nm and 635 nm, which is consistent with an excitonic delocalization band at 635 nm. The 635 nm band is suggested to show the true low energy level of PC in A. marina PBS. The anisotropy decay kinetic at 630 nm suggests that the excited state population of PC is not all equilibrated in 3 ps because of the existence of the 10 ps decay kinetic component. The presence of the slow kinetic decay component in high, and low ionic strength, is consistent with a 10 and 14 ps energy transfer pathway, while the 450 fs kinetic decay component is consistent with the presence of an additional excitation energy transfer pathway between adjacent α84 and β84. Furthermore, the 450 fs decay kinetic is suggested to be trapped in the trimer, while the 400 fs decay kinetic rules out an excitonic flow from low energy level PC to allophycoyanin. This excitonic flow may occur between β84 in adjacent trimers, towards the low energy state of the PBS rod.

  18. The Role of Biomacromolecular Crowding, Ionic Strength, and Physicochemical Gradients in the Complexities of Life's Emergence

    PubMed Central

    Spitzer, Jan; Poolman, Bert

    2009-01-01

    Summary: We have developed a general scenario of prebiotic physicochemical evolution during the Earth's Hadean eon and reviewed the relevant literature. We suggest that prebiotic chemical evolution started in microspaces with membranous walls, where external temperature and osmotic gradients were coupled to free-energy gradients of potential chemical reactions. The key feature of this scenario is the onset of an emergent evolutionary transition within the microspaces that is described by the model of complex vectorial chemistry. This transition occurs at average macromolecular crowding of 20 to 30% of the cell volume, when the ranges of action of stabilizing colloidal forces (screened electrostatic forces, hydration, and excluded volume forces) become commensurate. Under these conditions, the macromolecules divide the interior of microspaces into dynamically crowded macromolecular regions and topologically complementary electrolyte pools. Small ions and ionic metabolites are transported vectorially between the electrolyte pools and through the (semiconducting) electrolyte pathways of the crowded macromolecular regions from their high electrochemical potential (where they are biochemically produced) to their lower electrochemical potential (where they are consumed). We suggest a sequence of tentative transitions between major evolutionary periods during the Hadean eon as follows: (i) the early water world, (ii) the appearance of land masses, (iii) the pre-RNA world, (iv) the onset of complex vectorial chemistry, and (v) the RNA world and evolution toward Darwinian thresholds. We stress the importance of high ionic strength of the Hadean ocean (short Debye's lengths) and screened electrostatic interactions that enabled the onset of the vectorial structure of the cytoplasm and the possibility of life's emergence. PMID:19487732

  19. Effects of ionic strength, temperature, and pH on degradation of selected antibiotics

    USGS Publications Warehouse

    Loftin, K.A.; Adams, C.D.; Meyer, M.T.; Surampalli, R.

    2008-01-01

    Aqueous degradation rates, which include hydrolysis and epimerization, for chlorretracycline (CTC), oxytetracycline (OTC), tetracycline (TET), lincomycin (LNC), sulfachlorpyridazine (SCP), sulfadimethoxine (SDM), sulfathiazole (STZ), trimethoprim (TRM), and tylosin A (TYL) were studied as a function of ionic strength (0.0015, 0.050, or 0.084 mg/L as Na2HPO4), temperature (7, 22, and 35??C), and pH (2, 5, 7, 9, and 11). Multiple linear regression revealed that ionic strength did not significantly affect (?? = 0.05) degradation rates for all compounds, but temperature and pH affected rates for CTC, OTC, and TET significandy (?? = 0.05). Degradation also was observed for TYL at pH 2 and 11. No significant degradation was observed for LNC, SCR SDM, STZ, TRM, and TYL (pH 5, 7, and 9) under study conditions. Pseudo first-order rate constants, half-lives, and Arrhenius coefficients were calculated where appropriate. In general, hydrolysis rates for CTC, OTC, and TET increased as pH and temperature increased following Arrhenius relationships. Known degradation products were used to confirm that degradation had occurred, but these products were not quantified. Half-lives ranged from less than 6 h up to 9.7 wk for the tetracyclines and for TYL (pH 2 and 11), but no degradation of LIN, the sulfonamides, or TRM was observed during the study period. These results indicate that tetracyclines and TYL at pH 2 and 11 are prone to pH-mediated transformation and hydrolysis in some cases, but not the sulfonamides, LIN nor TRM are inclined to degrade under study conditions. This indicates that with the exception of CTC OTC, and TET, pH-mediated reactions such as hydrolysis and epimerization are not likely removal mechanisms in surface water, anaerobic swine lagoons, wastewater, and ground water. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  20. Novel double-confined polymeric ionic liquids as sorbents for solid-phase microextraction with enhanced stability and durability in high-ionic-strength solution.

    PubMed

    Feng, Juanjuan; Sun, Min; Xu, Lili; Wang, Shuai; Liu, Xia; Jiang, Shengxiang

    2012-12-14

    Because of the occurrence of ion exchange between high-ionic-strength solution and anions of polymeric ionic liquids (PILs), PILs based solid-phase microextraction (SPME) fibers were rarely used in direct immersion mode to high-salt-added samples. In this work, a novel double-confined PIL sorbent was prepared by co-polymerization of cation and anion of 1-vinyl-3-octylimidzaolium p-styrenesulfonate (VOIm(+)SS(-)). The poly(VOIm(+)-SS(-)) was chemically bonded onto functionalized stainless steel wire via surface radical chain-transfer reaction. Stability of poly(VOIm(+)-SS(-)) in high-ionic-strength solution was investigated and compared with that of poly(1-vinyl-3-octylimidzaolium benzenesulfonate) (poly(VOIm(+)BS(-))) by elemental analysis of sulfur element, and results turned out that the poly(VOIm(+)-SS(-)) was more stable. Coupled to gas chromatography (GC), the poly(VOIm(+)-SS(-)) fiber was used to extract three sorts of compounds including anilines, phenols and phthalate esters in aqueous solution. The as-established method showed good linearity, low detection limits, and acceptable repeatability. The direct immersion SPME-GC method was applied to determine the model phthalate esters in bottled mineral water. The determination results were satisfactory. PMID:23127811

  1. Influence of ionic conductivity in bioelectricity production from saline domestic sewage sludge in microbial fuel cells.

    PubMed

    Karthikeyan, Rengasamy; Selvam, Ammayaippan; Cheng, Ka Yu; Wong, Jonathan Woon-Chung

    2016-01-01

    This study aimed at manipulating ionic conductivity (EC) to harvest the maximum electrical energy from seawater-based domestic wastewater sewage sludge (SWS), unique to only a few cities, through microbial fuel cell (MFC). SWS has never been investigated as a MFC substrate before, and thus the influence of high in-situ EC on the energy recovery was unknown. In this study, the EC of the SWS was reduced through mixing it with fresh water-based domestic wastewater sewage sludge (FWS) or diluted 50% using deionized water while FWS and SWS were individually served as reference treatments. SWS:FWS mix (1:1) exhibited a maximum Coulombic efficiency of 28.6±0.5% at a COD removal of 59±3% while the peak power density was 20-fold higher than FWS. The improved performance was due to the lower ohmic internal resistance (36.8±4.2Ω) and optimal conductivity (12.8±0.2mScm(-1)). Therefore, dilution with FWS could enhance energy recovery from SWS. PMID:26590759

  2. Stability of the Cadmium Complex with the Bacterial Trihydroxamate Siderophore Desferrioxamine B at Seawater Ionic Strength

    NASA Astrophysics Data System (ADS)

    Christenson, E. A.; Schijf, J.

    2010-12-01

    strength. Whereas this is orders of magnitude smaller than values for DFOB complexes of other divalent transition metals (e.g., β(Cu2+) ~ 1014), it nevertheless makes DFOB one of the strongest known biogenic Cd ligands, rivaling synthetic ligands such as NTA. We present measurements of the stability constant of the Cd(II)-DFOB complex that were obtained by potentiometric titration of DFOB in the presence of Cd in a non-complexing background electrolyte (NaClO4) at seawater ionic strength (0.7 M). The titrations were corrected for hydrolysis and also performed at different Cd:DFOB ratios to detect any polynuclear species. Stability constants were derived from non-linear regressions of the data using FITEQL4.0. The results may provide new insights into the marine biogeochemistry of cadmium and its potential effects on primary productivity.

  3. Effects of temperature, pH, and ionic strength on the Henry's law constant of triethylamine

    NASA Astrophysics Data System (ADS)

    Leng, Chun-Bo; Roberts, Jason E.; Zeng, Guang; Zhang, Yun-Hong; Liu, Yong

    2015-05-01

    The Henry's law constants (KH) of triethylamine (TEA) in pure water and in 1-octanol were measured for the temperatures pertinent to the lower troposphere (278-298 K) using a bubble column system coupled to a Fourier transform infrared spectrometer. The KH values of TEA in water and 1-octanol at 298 K are 5.75 ± 0.86 mol L-1 atm-1 and 115.62 ± 5.78 mol L-1 atm-1. The KH values display strong dependence on temperature, pH, and ionic strength. The characteristic times for TEA to establish an equilibrium between gas and droplet with a size of 5.6 µm are ~33 s (298 K, pH = 5.6); ~8.9 × 102 s (278 K, pH = 5.6); ~1.3 × 103 s (298 K, pH = 4.0); and 3.6 × 104 s (278 K, pH = 4.0). The evaluation of TEA partitioning between gas phase and condensed phase implies that TEA predominantly resides in rainwater, and TEA loss to organic aerosol is negligible.

  4. Liquid-Gated Epitaxial Graphene: How Leakage Currents Affect Ionic Strength Sensing

    NASA Astrophysics Data System (ADS)

    Bedoya, Mauricio D.; Metaxas, Peter J.; Scrimgeour, Jan; Hu, Yike; Dong, Rui; Berger, Claire; de Heer, Walt A.; Curtis, Jennifer E.

    2013-03-01

    Graphene is a promising material for the fabrication of miniaturized biological and chemical sensors. Epitaxial graphene is an exciting candidate due to its compatibility with standard processing techniques and its intrinsic robustness. We have fabricated liquid-gated FET-like devices based upon sub-millimeter wide epitaxial graphene strips defined using optical lithography methods. The devices exhibit a bipolar conductance versus gate voltage behavior with the minimum conductance point being dependent upon the ionic strength of a KCl solution. Measurements of the graphene conductance and gate-leakage currents during the stepping of the gate voltage demonstrate the presence of time dependent nA-scale leakage currents which limit signal stability at short times. Notably, these currents depend upon the gate voltage and the composition of the gate electrode. These and other electrode dependent effects have ramifications for graphene sensor design and implementation such as the need to limit gate voltage operating windows as and carefully design electrodes. With high transconductance and controlled doping, such devices should be able to function at low gate voltages if a full understanding of charge and charge transport at the graphene interface is obtained. NSF Grant No. DMR-0820382. PJM thanks the ANN and DIISR.

  5. Experimental results of the influence of ionic strength in liquid environment on fiber life

    NASA Astrophysics Data System (ADS)

    Overgaard, Jette V.

    1996-01-01

    Stress free corrosion such as chemical dissolution of silica optical fibers is normally assumed to be a pure pH dependent reaction. In our investigation we have found that it is not only the pH values that influence the lifetime of the fiber in water, but also the ionic strength of the water in contact with the fiber. We have seen that the lifetime of the normal dual coated fibers is severely reduced in seawater compared to the lifetime in deionized water. Carbon coated fibers show better results in these harsh conditions; but the experiments also demonstrate that the carbon coated fibers begin to fail before they have had a sufficient lifetime. A chemical explanation of the results, based on dissolution of glass in water and influence from the ions in question, is given. In this paper, experimental results from long term static fatigue tests on fibers in different liquid environments is shown. In the laboratory we have samples still living after almost four years in different environments. We have buffered water at pH values from 3 to 11, artificial seawater and deionized water. The fibers in the tests are both commercially available dual coated and carbon coated fibers and carbon coated test fibers.

  6. Effect of solution temperature, pH and ionic strength on dye adsorption onto Magellanic peat.

    PubMed

    Sepulveda, Luisa Antonia; Santana, Cesar Costapinto

    2013-01-01

    The aim of this research was to study the effect of the solution temperature, pH and ionic strength on the adsorption of the Basic Blue 3 (BB3) and Acid Black 1 (AB1) dyes in Magellanic peat. The peat used was physically characterized as fibrous, of low decomposition level, without the presence of crystalline material and with a highly porous morphology. The functional groups with major concentration in the surface adsorbent were the carboxylics and phenolics, with values of 0.91 and 0.47 mmol/g, respectively. The results of the batch assays showed that the adsorption of the AB1 dye was strongly dependent of electrical charge density on the surface, contrary to what occurred to the BB3 dye, because the interactions between the dyes and carboxylic groups of the peat could be either electrostatic or non-electrostatic. The Langmuir, Freundlich and Sips isotherm models were fitted to the experimental data; among them, the Sips model presented the best adjustment quality. The maximum adsorption capacities for BB3 and AB1 dyes were 33.1 and 33.7 mg/g, respectively. The adsorption of BB3 dye onto Magellan peat has an exothermic behaviour, obtaining an adsorption enthalpy of -3.44 kJ/mol. Contrarily the adsorption of AB1 has an adsorption enthalpy of 56.76 kJ/mol. PMID:23837348

  7. Evidence for an increase of DNA contour length at low ionic strength.

    PubMed Central

    Geller, K; Reinert, K E

    1980-01-01

    The polyion chain expansion of DNA was studied by viscometry within the Na+ concentration range c5 = 0.002 M to 0.4 M. The DNA molecular weights M were between 0.5 x 10(6) and 13 x 10(6). The relative change of intrinsic viscosity [eta] is linearly correlated to c5(-1/2) with a slope that increases with increasing M. This behaviour reflects the predominance of helix stiffening in chain expansion. At c5(112) > 0.01(-1/2 M-1/2 (Debye-Hückel screening radius 1/chi > (1/chi)*=3nm) the relative change of [eta] rises with a steeper slope. This effect increases with decreasing M suggesting that helix lengthening contributes to the chain expansion. Our model enables us to interpret other ionic-strength dependent effects known from literature. The start of the significant duplex elongation at (1/chi)* can be correlated to the polyion-charge arrangement. In accordance with our interpretation (1/chi)* is found to be greater for DNA-intercalator complexes. PMID:7433095

  8. LRRC8 Proteins Form Volume-Regulated Anion Channels that Sense Ionic Strength.

    PubMed

    Syeda, Ruhma; Qiu, Zhaozhu; Dubin, Adrienne E; Murthy, Swetha E; Florendo, Maria N; Mason, Daniel E; Mathur, Jayanti; Cahalan, Stuart M; Peters, Eric C; Montal, Mauricio; Patapoutian, Ardem

    2016-01-28

    The volume-regulated anion channel (VRAC) is activated when a cell swells, and it plays a central role in maintaining cell volume in response to osmotic challenges. SWELL1 (LRRC8A) was recently identified as an essential component of VRAC. However, the identity of the pore-forming subunits of VRAC and how the channel is gated by cell swelling are unknown. Here, we show that SWELL1 and up to four other LRRC8 subunits assemble into heterogeneous complexes of ∼800 kDa. When reconstituted into bilayers, LRRC8 complexes are sufficient to form anion channels activated by osmolality gradients. In bilayers, as well as in cells, the single-channel conductance of the complexes depends on the LRRC8 composition. Finally, low ionic strength (Γ) in the absence of an osmotic gradient activates the complexes in bilayers. These data demonstrate that LRRC8 proteins together constitute the VRAC pore and that hypotonic stress can activate VRAC through a decrease in cytoplasmic Γ. PMID:26824658

  9. Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles.

    PubMed

    French, Rebecca A; Jacobson, Astrid R; Kim, Bojeong; Isley, Sara L; Penn, R Lee; Baveye, Philippe C

    2009-03-01

    The extensive use of titanium dioxide nanoparticles (nano-TiO2) in many consumer products has raised concerns about possible risks to the environment The magnitude of the threat may depend on whether nano-TiO2 remains dispersed in the environment, or forms much larger-sized aggregates or clusters. Currently, limited information is available on the issue. In this context, the purpose of the present article is to report initial measurements of the morphology and rate of formation of nano-TiO2 aggregates in aqueous suspensions as a function of ionic strength and of the nature of the electrolyte in a moderately acid to circumneutral pH range typical of soil and surface water conditions. Dynamic light scattering results show that 4-5 nm titanium dioxide particles readily form stable aggregates with an average diameter of 50-60 nm at pH approximately 4.5 in a NaCl suspension adjusted to an ionic strength of 0.0045 M. Holding the pH constant but increasing the ionic strength to 0.0165 M, leads to the formation of micron-sized aggregates within 15 min. At all other pH values tested (5.8-8.2), micron-sized aggregates form in less than 5 min (minimum detection time), even at low ionic strength (0.0084-0.0099 M with NaCl). In contrast, micron-sized aggregates form within 5 min in an aqueous suspension of CaCl2 at an ionic strength of 0.0128 M and pH of 4.8, which is significantly faster than observed for NaCI suspensions with similar ionic strength and pH. This result indicates that divalent cations may enhance aggregation of nano-TiO2 in soils and surface waters. Optical micrographs show branching aggregates of sizes ranging from the 1 microm optical limit of the microscope to tens of micrometers in diameter. PMID:19350903

  10. High ionic strength and low pH detain activated skinned rabbit skeletal muscle crossbridges in a low force state.

    PubMed

    Seow, C Y; Ford, L E

    1993-04-01

    The effects of varying pH and ionic strength on the force-velocity relations and tension transients of skinned rabbit skeletal muscle were studied at 1-2 degrees C. Both decreasing pH from 7.35 to 6.35 and raising ionic strength from 125 to 360 mM reduced isometric force by about half and decreased sarcomere stiffness by about one-fourth, so that the stiffness/force ratio was increased by half. Lowering pH also decreased maximum shortening velocity by approximately 29%, while increasing ionic strength had little effect on velocity. These effects on velocity were correlated with asymmetrical effects on stiffness. The increase in the stiffness/force ratio with both interventions was manifest as a greater relative force change associated with a sarcomere length step. This force difference persisted for a variable time after the step. At the high ionic strength the force difference was long-lasting after stretches but relaxed quickly after releases, suggesting that the structures responsible would not impose much resistance to steady-state shortening. The opposite was found in the low pH experiments. The force difference relaxed quickly after stretches but persisted for a long time after releases. Furthermore, this force difference reached a constant value of approximately 8% of isometric force with intermediate sizes of release, and was not increased with larger releases. This value was almost identical to the value of an internal load that would be sufficient to account for the reduction in maximum velocity seen at the low pH. The results are interpreted as showing that both low pH and high ionic strength inhibit the movement of crossbridges into the force-generating parts of their cycle after they have attached to the actin filaments, with very few other effects on the cycle. The two interventions are different, however, in that detained bridges can be detached readily by shortening when the detention is caused by high ionic strength but not when it is caused by low

  11. A computer program for geochemical analysis of acid-rain and other low-ionic-strength, acidic waters

    USGS Publications Warehouse

    Johnsson, P.A.; Lord, D.G.

    1987-01-01

    ARCHEM, a computer program written in FORTRAN 77, is designed primarily for use in the routine geochemical interpretation of low-ionic-strength, acidic waters. On the basis of chemical analyses of the water, and either laboratory or field determinations of pH, temperature, and dissolved oxygen, the program calculates the equilibrium distribution of major inorganic aqueous species and of inorganic aluminum complexes. The concentration of the organic anion is estimated from the dissolved organic concentration. Ionic ferrous iron is calculated from the dissolved oxygen concentration. Ionic balances and comparisons of computed with measured specific conductances are performed as checks on the analytical accuracy of chemical analyses. ARCHEM may be tailored easily to fit different sampling protocols, and may be run on multiple sample analyses. (Author 's abstract)

  12. Improved thermodynamic model for interaction of EDTA with trivalent actinides and lanthanide to ionic strength of 6.60 m

    NASA Astrophysics Data System (ADS)

    Thakur, Punam; Xiong, Yongliang; Borkowski, Marian; Choppin, Gregory R.

    2014-05-01

    The dissociation constants of ethylenediaminetetraacetic acid (H4EDTA), and the stability constants of Am3+, Cm3+and Eu3+ with EDTA4- have been determined at 25 °C, over a range of concentration varying from 0.1 to 6.60 m NaClO4 using potentiometric titration and an extraction technique, respectively. The formation of only 1:1 complex, M(EDTA)-, where (M = Am3+, Cm3+ and Eu3+), was observed under the experimental conditions. The observed ionic strength dependencies of the dissociation constants and the stability constants have been described successfully over the entire ionic strength range using the Pitzer model. The thermodynamic stability constant: logβ1010=20.55±0.18 for Am3+, logβ1010=20.43±0.20 for Cm3+ and logβ1010=20.65±0.19 for Eu3+ were calculated by extrapolation of data to zero ionic strength in an NaClO4 medium. In addition, logβ1010 of 20.05 ± 0.40 for Am3+ was obtained by simultaneously modeling data both in NaCl and NaClO4 media. For all stability constants, the Pitzer model gives an excellent representation of the data using interaction parameters β(0), β(1), and Cϕ determined in this work. The improved model presented in this work would enable researchers to model accurately the potential mobility of actinides (III) and light rare earth elements to ionic strength of 6.60 m in low temperature environments in the presence of EDTA.

  13. Stability constants for the formation of lead chloride complexes as a function of temperature and ionic strength

    NASA Astrophysics Data System (ADS)

    Luo, Yanxin; Millero, Frank J.

    2007-01-01

    The stability constants for the formation of lead (Pb 2+) with chloride Pb+nCl↔PbCln2-nβn(n=1,2,3) have been determined using a spectrophotometric method in NaClO 4 solutions as a function of ionic strength (0-6 m) and temperature (15-45 °C). The results have been fitted to the equations:

  14. Carbonate adsorption onto goethite as a function of pH and ionic strength. [Yucca Mountain Project:a1

    SciTech Connect

    Rundberg, R.S. ); Albinsson, Y. . Dept. of Nuclear Chemistry)

    1991-01-01

    The adsorption of carbonate onto geothite was studied as a function of both pH and ionic strength (NaClO{sub 4} electrolyte) using {sup 14}C tracer. The pH ranged from 2.5 to 11.6. The ionic strength was controlled by varying the NaClO{sub 4} concentration and ranged from 0.01 to 0.1 molar. The results indicate that carbonate is adsorbed on goethite as primarily an inner-sphere complex at pH values above the point of zero charge. This is inferred from the lack of dependence on ionic strength in the adsorption of carbonate. Below the point of zero charge carbonate is adsorbed by an additional outer-sphere mechanism. An adsorption isotherm was measured at pH 7.0 with an electrolyte concentration of 0.01M. Deconvolution of the isotherm proved that at least two sorption mechanisms exist. These mechanisms lead to large distribution coefficients at low pH. Thereby making the complete removal and exclusion of carbonate from an aqueous goethite system difficult, for the purpose of characterizing a clean'' goethite surface.

  15. Equilibrium distribution of permeants in polyelectrolyte microcapsules filled with negatively charged polyelectrolyte: the influence of ionic strength and solvent polarity.

    PubMed

    Tong, Weijun; Song, Haiqing; Gao, Changyou; Möhwald, Helmuth

    2006-07-01

    The effects of ionic strength and solvent polarity on the equilibrium distribution of fluorescein (FL) and FITC-dextran between the interior of polyelectrolyte multilayer microcapsules filled with negatively charged strong polyelectrolyte and the bulk solution were systematically investigated. A negatively charged strong polyelectrolyte, poly(styrene sulfonate) (PSS), used for CaCO3 core fabrication, was entrapped inside the capsules. Due to the semipermeability of the capsule wall, a Donnan equilibrium between the inner solution within the capsules and the bulk solution was created. The equilibrium distribution of the negatively charged permeants was investigated by means of confocal laser scanning microscopy as a function of ionic strength and solvent polarity. The equilibrium distribution of the negatively charged permeants could be tuned by increasing the bulk ionic strength to decrease the Donnan potential. Decreasing the solvent polarity also could enhance the permeation of FL, which induces a sudden increase of permeation when the ethanol volume fraction was higher than 0.7. This is mainly attributed to the precipitation of PSS. A theoretical model combining the Donnan equilibrium and Manning counterion condensation was employed to discuss the results. PMID:16805590

  16. Dioctahedral smectite reactions at elevated temperatures: Effects of K-availability, Na/K ratio and ionic strength

    USGS Publications Warehouse

    Whitney, G.

    1992-01-01

    Hydrothermal experiments were conducted to measure the effects of K availability, Na/K ratio and ionic strength in chloride solutions on the rate and extent of the reaction of smectite to interstratified illite/smectite. The < 2 ??m fraction of a bentonite was treated hydrothermally at temperatures of 200, 250, 300, 350, 400 and 450??C for run times of up to 30 days in the presence of 0.33, 0.66 and 1.00 equivalents of K per O10(OH)2. The effect of K-content on reaction progress is dramatic at low (0.33 eq.) K concentrations, but diminishes above a concentration of 0.66 equivalents. The effect of K-content is also more important at lower temperatures than at higher temperatures. Addition of K above that required to satisfy the cation exchange capacity of the smectite reduced the amount of chlorite byproduct and produced authigenic K-feldspar at the highest K-concentration. Similar experiments were run using Na/K equivalent ratios of 0 to 25 and total solution molalities of 0 to 3.75 molal. Because these experiments were small fixed-volume experiments, it was necessary to vary two of the three key variables (K-content, Na/K ratio, ionic strength simultaneously. The data suggest, however, that K-content has a much stronger effect than either Na/K ratio or ionic strength on illitization reaction progress. ?? 1992.

  17. Solubilisation of myosin in a solution of low ionic strength L-histidine: Significance of the imidazole ring.

    PubMed

    Chen, Xing; Zou, Yufeng; Han, Minyi; Pan, Lihua; Xing, Tong; Xu, Xinglian; Zhou, Guanghong

    2016-04-01

    Myosin, a major muscle protein, can be solubilised in a low ionic strength solution containing L-histidine (His). To elucidate which chemical constituents in His are responsible for this solubilisation, we investigated the effects of 5mM His, imidazole (Imi), L-α-alanine (Ala), 1-methyl-L-histidine (M-his) and L-carnosine (Car) on particle properties of myosin suspensions and conformational characteristics of soluble myosin at low ionic strength (1 mM KCl, pH 7.5). His, Imi and Car, each containing an imidazole ring, were able to induce a myosin suspension, which had small particle size species and high absolute zeta potential, thus increasing the solubility of myosin. His, Imi and Car affected the tertiary structure and decreased the α-helix content of soluble myosin. Therefore, the imidazole ring of His appeared to be the significant chemical constituent in solubilising myosin at low ionic strength solution, presumably by affecting its secondary structure. PMID:26593463

  18. Impact of ionic strength on chitin nanocrystal-xyloglucan multilayer film growth.

    PubMed

    Villares, Ana; Moreau, Céline; Capron, Isabelle; Cathala, Bernard

    2014-09-01

    The impact of the ionic strength on the film growth has been studied for the architectures composed of chitin nanocrystals (ChiNC) and xyloglucan (XG) to better understand the fabrication process of multilayer films. The formation of ChiNC-XG assemblies was monitored by quartz crystal microbalance with dissipation (QCM-D) and multilayer films were fabricated by the spin-coating assisted layer-by-layer (LbL) procedure. Films were prepared from 1 g L(-1) ChiNC dispersions at pH 4 without and with the addition of NaCl (0 and 5 mM, respectively) and 0.5 g L(-1) XG solutions in water. Distinct growth pattern and structural characteristics were found for the films prepared from ChiNC at 0 and 5 mM NaCl. Specifically, films assembled without salt exhibited lower mass deposition and film growth failed after 5 (ChiNC-XG) bilayers. Differently, at 5 mM NaCl higher amounts of both polymers (ChiNC and XG) were adsorbed; therefore, the films were thicker, and the deposition succeeded up to 10 bilayers. Atomic force microscopy (AFM) revealed an almost completely covered surface after the adsorption of ChiNC at 5 mM NaCl whereas salt-free ChiNC dispersions resulted in lower surface coverage. These results reliably concluded that the fabrication of (ChiNC-XG) films requires the screening of the charges to promote the layers stability. PMID:24719043

  19. Colloid release and clogging in porous media: Effects of solution ionic strength and flow velocity.

    PubMed

    Torkzaban, Saeed; Bradford, Scott A; Vanderzalm, Joanne L; Patterson, Bradley M; Harris, Brett; Prommer, Henning

    2015-10-01

    The release and retention of in-situ colloids in aquifers play an important role in the sustainable operation of managed aquifer recharge (MAR) schemes. The processes of colloid release, retention, and associated permeability changes in consolidated aquifer sediments were studied by displacing native groundwater with reverse osmosis-treated (RO) water at various flow velocities. Significant amounts of colloid release occurred when: (i) the native groundwater was displaced by RO-water with a low ionic strength (IS), and (ii) the flow velocity was increased in a stepwise manner. The amount of colloid release and associated permeability reduction upon RO-water injection depended on the initial clay content of the core. The concentration of released colloids was relatively low and the permeability reduction was negligible for the core sample with a low clay content of about 1.3%. In contrast, core samples with about 6 and 7.5% clay content exhibited: (i) close to two orders of magnitude increase in effluent colloid concentration and (ii) more than 65% permeability reduction. Incremental improvement in the core permeability was achieved when the flow velocity increased, whereas a short flow interruption provided a considerable increase in the core permeability. This dependence of colloid release and permeability changes on flow velocity and colloid concentration was consistent with colloid retention and release at pore constrictions due to the mechanism of hydrodynamic bridging. A mathematical model was formulated to describe the processes of colloid release, transport, retention at pore constrictions, and subsequent permeability changes. Our experimental and modeling results indicated that only a small fraction of the in-situ colloids was released for any given change in the IS or flow velocity. Comparison of the fitted and experimentally measured effluent colloid concentrations and associated changes in the core permeability showed good agreement, indicating that the

  20. Temperature and Ionic Strength Effects on the Chlorosome Light-Harvesting Antenna Complex

    SciTech Connect

    Tang, Kuo-Hsiang; Zhu, Liying; Urban, Volker S; Collins, Aaron M.; Biswas, Pratim; Blankenship, R. E.

    2011-03-15

    Chlorosomes, the peripheral light-harvesting antenna complex from green photosynthetic bacteria, are the largest and one of the most efficient light-harvesting antenna complexes found in nature. In contrast to other light-harvesting antennas, chlorosomes are constructed from more than 150,000 self-assembled bacteriochlorophylls (BChls) and contain relatively few proteins that play secondary roles. These unique properties have led to chlorosomes as an attractive candidate for developing biohybrid solar cell devices. In this article, we investigate the temperature and ionic strength effects on the viability of chlorosomes from the photosynthetic green bacterium Chloroflexus aurantiacus using small-angle neutron scattering and dynamic light scattering. Our studies indicate that chlorosomes remain intact up to 75 °C and that salt induces the formation of large aggregates of chlorosomes. No internal structural changes are observed for the aggregates. The salt-induced aggregation, which is a reversible process, is more efficient with divalent metal ions than with monovalent metal ions. Moreover, with treatment at 98 °C for 2 min, the bulk of the chlorosome pigments are undamaged, while the baseplate is destroyed. Chlorosomes without the baseplate remain rodlike in shape and are 30-40% smaller than with the baseplate attached. Further, chlorosomes are stable from pH 5.5 to 11.0. Together, this is the first time such a range of characterization tools have been used for chlorosomes, and this has enabled elucidation of properties that are not only important to understanding their functionality but also may be useful in biohybrid devices for effective light harvesting.

  1. Effect of high salinity on anaerobic treatment of low strength effluents.

    PubMed

    Ozalp, G; Gomec, C Y; Ozturk, I; Gonuldinc, S; Altinbas, M

    2003-01-01

    In anaerobic treatment, it is obligatory to know the effect of potentially inhibitory compounds due to the fact that methane formation may retard severely and may proceed slower than organic acid production. One of the most important inhibitory substances in anaerobic treatment is high salinity. In many cases, the main collectors of a municipal sewer system should have been built in the coastal zone and below the ground water level due to the available topography of wastewater catchments area, which is carrying the risk of seawater infiltration. Besides, one of the most convenient methods for leachate control is to treat landfill leachates with domestic wastewaters in the central municipal wastewater treatment plants such as in Istanbul. Thus, the nitrogen load of the treatment plants increase significantly. In this study, the effects of high salinity and ammonium nitrogen levels on mesophilic anaerobic tretament processes were investigated. In the first part of the study, high salinity effect on anaerobic treatment was investigated by feeding synthetic wastewater containing high salinity between 0.15%-1.5% ratios. In the second part of the study, the simultaneous effect of high salinity and ammonia (1.5% salinity+1,000 mg NH3/l) was examined by a lab-scale Upflow Anaerobic Sludge Bed Reactor (UASBR). Results indicated no significant inhibition in both cases and effective COD removals (89%) and total biogas productions having methane content of 84% could be achieved. PMID:14753538

  2. The influence of ionic strength and organic compounds on nanoparticle TiO2 (n-TiO2) aggregation.

    PubMed

    Lee, Jaewoong; Bartelt-Hunt, Shannon L; Li, Yusong; Gilrein, Erica Jeanne

    2016-07-01

    This study investigated the aggregation of n-TiO2 in the presence of humic acid (HA) and/or 17β-estradiol (E2) under high ionic strength conditions simulating levels detected in landfill leachate. Aggregation of n-TiO2 was strongly influenced by ionic strength as well as ionic valence in that divalent cations (Ca(2+)) were more effective than monovalent (Na(+)) at the surface modification. HA or E2 enhanced aggregation of n-TiO2 in 20 mM CaCl2, however little aggregation was observed in 100 mM NaCl. Similarly, we observed only the increased aggregation of n-TiO2 in the presence of HA/E2. These results showed the critical role of particles' surface charges on the aggregation behaviors of n-TiO2 that HA plays more significantly than E2. However, the slightly increased zeta potential and aggregation of n-TiO2 in the combination of HA and E2 at both 20 mM CaCl2 and 100 mM NaCl means that E2 has influenced on the surface modification of n-TiO2 by adsorption. Based on the aggregation of n-TiO2 under high ionic strength with HA and/or E2, we simulated the mobility of aggregated n-TiO2 in porous media. As a result, we observed that the mobility distance of aggregated n-TiO2 was dramatically influenced by the surface modification with both HA and/or E2 between particles and media. Furthermore, larger mobility distance was observed with larger aggregation of n-TiO2 particles that can be explained by clean bed filtration (CFT) theory. PMID:27045636

  3. Directionality of individual kinesin-5 Cin8 motors is modulated by loop 8, ionic strength and microtubule geometry.

    PubMed

    Gerson-Gurwitz, Adina; Thiede, Christina; Movshovich, Natalia; Fridman, Vladimir; Podolskaya, Maria; Danieli, Tsafi; Lakämper, Stefan; Klopfenstein, Dieter R; Schmidt, Christoph F; Gheber, Larisa

    2011-12-14

    Kinesin-5 motors fulfil essential roles in mitotic spindle morphogenesis and dynamics as slow, processive microtubule (MT) plus-end directed motors. The Saccharomyces cerevisiae kinesin-5 Cin8 was found, surprisingly, to switch directionality. Here, we have examined directionality using single-molecule fluorescence motility assays and live-cell microscopy. On spindles, Cin8 motors mostly moved slowly (∼25 nm/s) towards the midzone, but occasionally also faster (∼55 nm/s) towards the spindle poles. In vitro, individual Cin8 motors could be switched by ionic conditions from rapid (380 nm/s) and processive minus-end to slow plus-end motion on single MTs. At high ionic strength, Cin8 motors rapidly alternated directionalities between antiparallel MTs, while driving steady plus-end relative sliding. Between parallel MTs, plus-end motion was only occasionally observed. Deletion of the uniquely large insert in loop 8 of Cin8 induced bias towards minus-end motility and affected the ionic strength-dependent directional switching of Cin8 in vitro. The deletion mutant cells exhibited reduced midzone-directed motility and efficiency to support spindle elongation, indicating the importance of directionality control for the anaphase function of Cin8. PMID:22101328

  4. Directionality of individual kinesin-5 Cin8 motors is modulated by loop 8, ionic strength and microtubule geometry

    PubMed Central

    Gerson-Gurwitz, Adina; Thiede, Christina; Movshovich, Natalia; Fridman, Vladimir; Podolskaya, Maria; Danieli, Tsafi; Lakämper, Stefan; Klopfenstein, Dieter R; Schmidt, Christoph F; Gheber, Larisa

    2011-01-01

    Kinesin-5 motors fulfil essential roles in mitotic spindle morphogenesis and dynamics as slow, processive microtubule (MT) plus-end directed motors. The Saccharomyces cerevisiae kinesin-5 Cin8 was found, surprisingly, to switch directionality. Here, we have examined directionality using single-molecule fluorescence motility assays and live-cell microscopy. On spindles, Cin8 motors mostly moved slowly (∼25 nm/s) towards the midzone, but occasionally also faster (∼55 nm/s) towards the spindle poles. In vitro, individual Cin8 motors could be switched by ionic conditions from rapid (380 nm/s) and processive minus-end to slow plus-end motion on single MTs. At high ionic strength, Cin8 motors rapidly alternated directionalities between antiparallel MTs, while driving steady plus-end relative sliding. Between parallel MTs, plus-end motion was only occasionally observed. Deletion of the uniquely large insert in loop 8 of Cin8 induced bias towards minus-end motility and affected the ionic strength-dependent directional switching of Cin8 in vitro. The deletion mutant cells exhibited reduced midzone-directed motility and efficiency to support spindle elongation, indicating the importance of directionality control for the anaphase function of Cin8. PMID:22101328

  5. Quantitative and qualitative optimization of allergen extraction from peanut and selected tree nuts. Part 2. Optimization of buffer and ionic strength using a full factorial experimental design.

    PubMed

    L'Hocine, Lamia; Pitre, Mélanie

    2016-03-01

    A full factorial design was used to assess the single and interactive effects of three non-denaturing aqueous (phosphate, borate, and carbonate) buffers at various ionic strengths (I) on allergen extractability from and immunoglobulin E (IgE) immunoreactivity of peanut, almond, hazelnut, and pistachio. The results indicated that the type and ionic strength of the buffer had different effects on protein recovery from the nuts under study. Substantial differences in protein profiles, abundance, and IgE-binding intensity with different combinations of pH and ionic strength were found. A significant interaction between pH and ionic strength was observed for pistachio and almond. The optimal buffer system conditions, which maximized the IgE-binding efficiency of allergens and provided satisfactory to superior protein recovery yield and profiles, were carbonate buffer at an ionic strength of I=0.075 for peanut, carbonate buffer at I=0.15 for almond, phosphate buffer at I=0.5 for hazelnut, and borate at I=0.15 for pistachio. The buffer type and its ionic strength could be manipulated to achieve the selective solubility of desired allergens. PMID:26471623

  6. Stability of YREE complexes with the trihydroxamate siderophore desferrioxamine B at seawater ionic strength

    NASA Astrophysics Data System (ADS)

    Christenson, Emily A.; Schijf, Johan

    2011-11-01

    Organic complexation of yttrium and the rare earth elements (YREEs), although generally believed to be important, is an understudied aspect of YREE solution speciation in the open ocean. We report the first series of stability constants for complexes of YREEs (except Ce and Pm) with the trihydroxamate siderophore desferrioxamine B (DFOB), representing a class of small organic ligands that have an extraordinary selectivity for Fe(III) and are found in surface seawater at low-picomolar concentrations. Constants were measured by potentiometric titration of DFOB (pH 3-10) in the presence of single YREEs, in simple media at seawater ionic strength (NaClO 4 or NaCl, I = 0.7 M). Under these circumstances, the terminal amine of DFOB does not deprotonate. The four acid dissociation constants of the siderophore were determined separately by potentiometric titration of DFOB alone. Values for the bidentate (log β1), tetradentate (log β2), and hexadentate (log β3) complexes of La-Lu range from 4.88 to 6.53, 7.70 to 11.27, and 10.09 to 15.19, respectively, while Y falls between Gd and Tb in each case. Linear free-energy relations of the three stability constants with the first YREE hydrolysis constant, log β1∗, yield regression coefficients of >0.97. On the other hand, plots of the constants vs. the radius of the inner hydration sphere display an increasing deviation from linearity for the lightest REEs (La > Pr > Nd). This may signify steric constraints in DFOB folding around bulkier cations, a larger mismatch in coordination number, or a substantial degree of covalence in the YREE-hydroxamate bond. Complexes of the YREEs with DFOB are many orders of magnitude more stable than those with carbonate, the dominant inorganic YREE ligand in seawater. Speciation modeling with MINEQL indicates that, for an average seawater composition, the hexadentate complex could constitute as much as 28% of dissolved Lu at free DFOB concentrations as low as 10 -13 M. Such conditions might

  7. Hysteresis in the amount of colloids mobilized from intact cores of a fractured soil as a result of changes in the ionic strength of simulated rainfall

    NASA Astrophysics Data System (ADS)

    Mohanty, S.; Ryan, J. N.; Saiers, J. E.

    2010-12-01

    Understanding the mechanisms of colloid mobilization is essential to predicting the importance of colloid-facilitated transport of contaminants in subsurface environment. The mobilization of colloids increases with a decrease in the ionic strength of the pore water. Colloid mobilization is hysteretic in response to changes in ionic strength - the amount of colloids mobilized at a given ionic strength is not matched when the experiment is repeated following exposure to pore water of higher or lower ionic strengths. An exchange of pore water between the soil matrix and macropores is proposed to be the primary reason for the hysteresis of colloid mobilization during changes in ionic strength. The mobilization of colloids by pore water of a given ionic strength is either enhanced or inhibited by the slow release of matrix pore water of a lower or higher ionic strengths, respectively. This hypothesis was tested by conducting simulated rainfall experiments on undisturbed, intact cores of fractured soil (25.4 cm diameter, 15.2 cm depth) sampled from Oak Ridge National Laboratory, Tennessee. Rainfall of increasing, and then decreasing, ionic strength was applied to soil cores in successive events of 6 h of rainfall and an 18 h pause for each ionic strength. The ionic strength ranged from 0.01 to 10 mM as sodium chloride. Sodium bromide was included to provide a conservative tracer (Br-). Samples were collected from 19 ports in a hexagonal grid at the base of the soil core to identify regions of fast and slow flow attributed to macropore and matrix pathways. The samples were analyzed for concentrations of colloids (turbidity) and bromide (ion-selective electrode), conductivity, and pH. A flow-interruption method during bromide injection was employed to estimate the mass transfer rate of bromide between the soil macropores and matrix. Colloid concentrations, flow rates, and breakthrough times for bromide were found to be different for each port in the experiments at

  8. Effects of kaolinite colloids on Cd2 + transport through saturated sand under varying ionic strength conditions: Column experiments and modeling approaches

    NASA Astrophysics Data System (ADS)

    Wikiniyadhanee, Rakkreat; Chotpantarat, Srilert; Ong, Say Kee

    2015-11-01

    Column experiments were performed under various ionic strengths (0.0-0.9 mM) using 10 mg L- 1 of Cd2 + without kaolinite colloids and 10 mg L- 1 Cd2 + mixed with 100 mg L- 1 kaolinite colloids. The nonequilibrium two-site model (TSM) described the behavior of both Cd2 + transport and Cd2 + co-transported with kaolinite colloids better than the equilibrium model (CDeq) (R2 = 0.978-0.996). The results showed that an increase in ionic strength negatively impacted the retardation factors (R) of both Cd2 + and Cd2 + mixed with kaolinite colloids. The presence of kaolinite colloids increased the retardation factors of Cd2 + from 7.23 to 7.89, 6.76 to 6.61 and 3.79 to 6.99 for ionic strengths of 0.225, 0.45 and 0.9 mM, respectively. On the other hand, the presence of kaolinite colloids decreased the retardation factor of Cd2 + from 8.13 to 7.83 for ionic strength of 0.0 mM. The fraction of instantaneous sorption sites (f) parameters, kinetic constant for sorption sites (α) and Freundlich constant (Kf) were estimated from HYDRUS-1D of TSM for Cd2 + transport. The fraction of instantaneous sorption sites was found to increase for an increase in ionic strength. Kf values of Cd2 + transport without kaolinite colloids for 0.0, 0.225 and 0.45 mM were found to be higher than those of Cd2 + transport with kaolinite colloids, except for ionic strength of 0.9 mM. Hence, the presence of kaolinite colloids probably retarded the mobility of Cd2 + in porous media for higher ionic strengths. Furthermore, retardation factors and Kf values of both Cd2 + transport and Cd2 + co-transport were shown to decrease when ionic strength increased. Interestingly, according to TSM, the fraction of instantaneous sorption sites tends to increase for an increase in ionic strength, which imply that the mechanism of Cd2 + sorption onto quartz sand can be better described using equilibrium sorption rather than nonequilibrium sorption for an increase in ionic strength.

  9. Effects of kaolinite colloids on Cd²⁺ transport through saturated sand under varying ionic strength conditions: Column experiments and modeling approaches.

    PubMed

    Wikiniyadhanee, Rakkreat; Chotpantarat, Srilert; Ong, Say Kee

    2015-11-01

    Column experiments were performed under various ionic strengths (0.0-0.9 mM) using 10 mg L(-1) of Cd(2+) without kaolinite colloids and 10 mg L(-1) Cd(2+) mixed with 100 mg L(-1) kaolinite colloids. The nonequilibrium two-site model (TSM) described the behavior of both Cd(2+) transport and Cd(2+) co-transported with kaolinite colloids better than the equilibrium model (CD(eq)) (R(2)=0.978-0.996). The results showed that an increase in ionic strength negatively impacted the retardation factors (R) of both Cd(2+) and Cd(2+) mixed with kaolinite colloids. The presence of kaolinite colloids increased the retardation factors of Cd(2+) from 7.23 to 7.89, 6.76 to 6.61 and 3.79 to 6.99 for ionic strengths of 0.225, 0.45 and 0.9 mM, respectively. On the other hand, the presence of kaolinite colloids decreased the retardation factor of Cd(2+) from 8.13 to 7.83 for ionic strength of 0.0 mM. The fraction of instantaneous sorption sites (f) parameters, kinetic constant for sorption sites (α) and Freundlich constant (K(f)) were estimated from HYDRUS-1D of TSM for Cd(2+) transport. The fraction of instantaneous sorption sites was found to increase for an increase in ionic strength. K(f) values of Cd(2+) transport without kaolinite colloids for 0.0, 0.225 and 0.45 mM were found to be higher than those of Cd(2+) transport with kaolinite colloids, except for ionic strength of 0.9 mM. Hence, the presence of kaolinite colloids probably retarded the mobility of Cd(2+) in porous media for higher ionic strengths. Furthermore, retardation factors and K(f) values of both Cd(2+) transport and Cd(2+) co-transport were shown to decrease when ionic strength increased. Interestingly, according to TSM, the fraction of instantaneous sorption sites tends to increase for an increase in ionic strength, which imply that the mechanism of Cd(2+) sorption onto quartz sand can be better described using equilibrium sorption rather than nonequilibrium sorption for an increase in ionic strength. PMID

  10. Assessment of the Effects of Flow Rate and Ionic Strength on Microbial Fuel Cell Performance Using Electrochemical Impedance Spectroscopy

    SciTech Connect

    Aaron, D; Tsouris, Costas; Hamilton, Choo Yieng; Borole, Abhijeet P

    2010-01-01

    Impedance changes of the anode, cathode and solution were examined for a microbial fuel cell (MFC) under varying conditions in order to improve its performance. An MFC inoculated with a pre-enriched microbial culture resulted in a startup time of ten days. Over this period, the anode impedance decreased below the cathode impedance, suggesting a cathode limited power output. Decreasing the anode flow rate did not impact the anode impedance significantly, while it increased the cathode impedance by 65% . Reducing the anode-medium ionic strength from 100% to 10% increased the cathode impedance by 48%.

  11. Effect of oxidation state and ionic strength on sorption of actinides (Th, U, Np, Am) to geologic media

    SciTech Connect

    Dittrich, Timothy M.; Richmann, Michael K.; Reed, Donald T.

    2015-10-30

    The degree of conservatism in the estimated sorption partition coefficients (Kds) used in a performance assessment model is being evaluated based on a complementary batch and column method. The main focus of this work is to investigate the role of ionic strength, solution chemistry, and oxidation state (III-VI) in actinide sorption to dolomite rock. Based on redox conditions and solution chemistry expected at the WIPP, possible actinide species include Pu(III), Pu(IV), U(IV), U(VI), Np(IV), Np(V), Am(III), and Th(IV).

  12. Influence of porewater velocity and ionic strength on DOC concentrations in and losses from peat-sand mixtures

    NASA Astrophysics Data System (ADS)

    Pfaffner, Nora; Tiemeyer, Bärbel; Fiedler, Sabine

    2015-04-01

    Organic soils play an important role in the global carbon cycle as they can act as a source or a sink for greenhouse gas emissions. The new IPCC Wetlands Supplement accounts for the first time for CO2 emissions from the decomposition of dissolved organic carbon (DOC). While there is a wealth of studies on "true" peat soils, knowledge on DOC losses from organic soils heavily disturbed by e.g. mixing with sand is fragmentary. Moreover, there are only a few studies on the influence of soil hydrological properties on DOC transport. This study investigates physico-chemical controls on the concentration and losses of DOC from a peat-sand mixture in a saturated column experiment with undisturbed columns. The soil originates from the study site "Grosses Moor" (Northern Germany) which is a former bog where peat layers remaining after peat mining were mixed with the underlying mineral soil. We studied the influence of the flow regime and the ionic strength of the irrigation solution on DOC concentrations and losses. Three different pumping rates and two different ionic strengths determined by different concentrations of a sodium chloride-calcium chloride mixture in the irrigation solution were applied. Transport properties of the soil were obtained by analyzing breakthrough curves (BTCs) of a conservative tracer (potassium bromide). For interpretation of the BTCs, the transport model STANMOD which is based on the two-region (mobile/immobile) non-equilibrium concept was fitted to the data. The shape of the BTCs and the STANMOD results showed that three of the four columns had a dual porosity structure, which affects the porewater velocity and the contact area. After a large initial peak, DOC concentrations equilibrated to nearly constant values. Increased porewater velocities decreased the concentration of DOC, but increased the losses. A new equilibrium concentration was reached after nearly all changes of the porewater velocity. At maximum pumping rates as determined from

  13. Effect of ionic strength on perfusive flow in capillary electrochromatography columns packed with wide-pore stationary phases.

    PubMed

    Dearie, H S; Smith, N W; Moffatt, F; Wren, S A C; Evans, K P

    2002-02-01

    The use of wide-pore stationary phases in capillary electrochromatography has shown exceptional increases in separation efficiency in conjunction with high electroosmotic flow. These effects are due to the perfusive flow mechanism which is primarily controlled by the ionic strength of the mobile phase. Good correlation between calculated values of electrochemical double-layer thickness and efficiency data have also been obtained. Reduced plate height values of <0.5 have been observed with pore sizes of 4000 A. In addition, electroosmotic flow mobility twice that of 3 microm Spherisorb ODS-1 has been obtained. PMID:11862987

  14. Divalent cation and ionic strength effects on Vinca alkaloid-induced tubulin self-association.

    PubMed Central

    Lobert, S; Boyd, C A; Correia, J J

    1997-01-01

    We present here a systematic study of ionic strength and divalent cation effects on Vinca alkaloid-induced tubulin spiral formation. We used sedimentation velocity experiments and quantitative fitting of weight-average sedimentation coefficients versus free drug concentrations to obtain thermodynamic parameters under various solution conditions. The addition of 50-150 mM NaCl to our standard buffer (10 mM piperazine-N,N'-bis(2-ethanesulfonic acid), 1 mM Mg, 50 microM GDP or GTP, pH 6.9) enhances overall vinblastine- or vincristine-induced tubulin self-association. As demonstrated in previous studies, GDP enhances overall self-association more than GTP, although in the presence of salt, GDP enhancement is reduced. For example, in 150 mM NaCl, GDP enhancement is 0.24 kcal/mol for vinblastine and 0.36 kcal/mol for vincristine versus an average enhancement of 0.87 (+/- 0.34) kcal/mol for the same drugs in the absence of salt. Wyman linkage analysis of experiments with vinblastine or vincristine over a range of NaCl concentrations showed a twofold increase in the change in NaCl bound to drug-induced spirals in the presence of GTP compared to GDP. These data indicate that GDP enhancement of Vinca alkaloid-induced tubulin self-association is due in part to electrostatic inhibition in the GTP state. In the absence of NaCl, we found that vinblastine and 1 mM Mn2+ or Ca2+ causes immediate condensation of tubulin. The predominant aggregates observed by electron microscopy are large sheets. This effect was not found with 1 mM Mg2+. At 100 microM cation concentrations (Mn2+, Mg2+, or Ca2+), GDP enhances vinblastine-induced spiral formation by 0.55 (+/- 0.26) kcal/mol. This effect is found only in K2, the association of liganded heterodimers at the ends of growing spirals. There is no GDP enhancement of K1, the binding of drug to heterodimer, although K1 is dependent upon the divalent cation concentration. NaCl diminishes tubulin condensation, probably by inhibiting lateral

  15. Estimation of distribution coefficient of natural radionuclides in soil around uranium mines and its effect with ionic strength of water.

    PubMed

    Mishra, S; Maity, S; Pandit, G G

    2012-11-01

    The distribution coefficient, K(d) in soil is an important parameter to predict the migration of contaminants. In this study, uranium (U) and its decay products thorium (Th), radium (Ra), bismuth (Bi), lead (Pb) and polonium (Po), which may contaminate the soil and ground water around uranium mining areas, have been considered. Soil and ground water samples were collected from a proposed uranium mining site in India. The soil samples were characterised for different parameters affecting the K(d) values. The batch sorption method was employed to measure the K(d) of different radionuclides. The important factors affecting the batch method for K(d) estimation were identified and optimised. The variation of K(d) was observed with different ionic strength water samples. Results showed high K(d) values for Th(IV), Po(IV) and Pb(II) (log K(d) ∼4) and low K(d) (log K(d) ∼2-3) for U(VI), Ra(II) and Bi(III) in all three types of water with different ionic strength. PMID:22927651

  16. Transport of aluminum oxide nanoparticles in saturated sand: effects of ionic strength, flow rate, and nanoparticle concentration.

    PubMed

    Rahman, Tanzina; George, Jessica; Shipley, Heather J

    2013-10-01

    The effect of ionic strength (IS), flow rate, and nanoparticle concentration on the transport and deposition of aluminum oxide nanoparticles (Al2O3 NPs) in saturated sand was investigated. Mobility of Al2O3 NPs was influenced by IS, the highest mobility was observed in DI water (97% elution of the influent) and decreased with increasing ionic strength. Decreased mobility of the NPs was due to aggregation as the IS increased. Varying flow conditions did not have a significant effect on mobility. However, increased and faster elution was observed when the influent concentration was increased from 50 mg/L to 400 mg/L. The influent and effluent nanoparticle sizes were also measured using dynamic light scattering. For most conditions, the size was observed to be below 100 nm and there was no significant change to the influent and effluent particle sizes. Significant elution was observed although conditions were electrostatically favorable, which was attributed to the small, stable size (~82 nm) of the particles and blocking. DLVO theory was also applied to the data to better understand the mechanisms of mobility. It is necessary to consider these mechanisms for a reliable prediction of transport through the subsurface and potential removal methods such as filtration. PMID:23835066

  17. Influence of cellulose nanocrystals concentration and ionic strength on the elaboration of cellulose nanocrystals-xyloglucan multilayered thin films.

    PubMed

    Dammak, Abir; Moreau, Céline; Azzam, Firas; Jean, Bruno; Cousin, Fabrice; Cathala, Bernard

    2015-12-15

    The effect of the variation of CNC concentration on the growth pattern of CNC-XG films is investigated. We found that a transition in the growth slope occurs at a CNC concentration of roughly 3-4gL(-1). A close effect can be obtained by the increase of the ionic strength of the CNC suspensions, suggesting that electrostatic interactions are involved. Static light scattering investigation of CNC dispersions at increasing concentrations demonstrated that the particle-particle interactions change as the CNC concentration increases. Neutron Reflectivity (NR) was used to probe the internal structure of the films. The increase of the CNC concentration as well as the increase of the ionic strength in the CNC suspension were found to induce a densification of the adsorbed CNC layers, even though the mechanisms are not strictly identical in both cases. Small changes in these parameters provide a straightforward way of controlling the architecture of CNC-based multilayered thin films and, as a result, their functional properties. PMID:26322493

  18. Influence of ionic strength and soil characteristics on the behavior of Cryptosporidium oocysts in saturated porous media.

    PubMed

    Balthazard-Accou, Ketty; Fifi, Urbain; Agnamey, Patrice; Casimir, Justin André; Brasseur, Philippe; Emmanuel, Evens

    2014-05-01

    The physico-chemical behavior of Cryptosporidium oocysts was investigated during their transfer through an alluvial formation from Les Cayes (Haiti) via batch tests. Five approximately 3 kg soil samples were collected and combined prior to batch tests from the alluvial formations. The experiments were carried out at soil pH by equilibrating different ranges of pure oocysts concentrations and soil samples with 3mM CaCl2 and 1mM NaBr as electrolyte. We used the Debye-Hückel equation describing ion activity in a solution for a given ionic strength. The equilibrium adsorption mechanism is used to enumerate the oocysts in the soil. The results suggest that the oocysts behavior in porous media depends on soil characteristics such as soil pH, the nature of the mineral and organic constituents of the soil and the ionic strength and activities in solution. These results show that a total transfer in batch containing NaBr solutions against a partial one in batch containing CaCl2 solutions depends on the oocysts media concentration. To confirm the oocysts number retained in soil, confocal microscopy was successfully used and the images demonstrate that the majority of oocysts were retained at the range of concentrations tested. The findings from this study demonstrated that the retention of C. Parvum in soils may be influenced by chemical conditions and soils characteristics, which are important for groundwater risk assessment. PMID:24359923

  19. Investigation of the Sedimentation Behavior of Aluminum Phosphate: Influence of pH, Ionic Strength, and Model Antigens.

    PubMed

    Muthurania, Kevin; Ignatius, Arun Alphonse; Jin, Zhaowei; Williams, Jennifer; Ohtake, Satoshi

    2015-11-01

    Evaluation of the physical characteristics of vaccines formulated in the presence of adjuvants, such as aluminum salts (Alum), is an important step in the development of vaccines. Depending on the formulation conditions and the associated electrostatic interactions of the adjuvant particles, the vaccine suspension may transition between flocculated and deflocculated states. The impact of practical formulation parameters, including pH, ionic strength, and the presence of model antigens, has been correlated to the sedimentation behavior of aluminum phosphate suspensions. A novel approach for the characterization of suspension properties of Alum has been developed to predict the flocculated state of the system using a sedimentation analysis-based tool (Turbiscan®). Two sedimentation parameters, the settling onset time (Sonset) and the sedimentation volume ratio (SVR) can be determined simultaneously in a single measurement. The results demonstrate the suspension characteristics to be significantly altered by solution conditions (pH and ionic strength) and the charge state of bound antigens. Formulation conditions that promote the flocculated state of the suspension are characterized by faster Sonset and higher SVR, and are generally easy to resuspend. The Turbiscan® method described herein is a useful tool for the characterization of aluminum-containing suspensions and may be adapted for screening and optimization of suspension-based vaccine formulations in general. PMID:26205044

  20. Dispersion and stability of bare hematite nanoparticles: effect of dispersion tools, nanoparticle concentration, humic acid and ionic strength

    PubMed Central

    Dickson, Dionne; Liu, Guangliang; Li, Chenzhong; Tachiev, Georgio; Cai, Yong

    2012-01-01

    The aggregation and sedimentation of iron oxide nanoparticles (IONPs) can significantly affect the mobility and reactivity of IONPs and subsequently influence the interaction between IONPs and environmental contaminants. Dispersing bare IONPs into a stable suspension within nanoscale range is an important step for studying the interaction of IONPs with contaminants (e.g., toxic metals). In this study, different techniques to disperse bare IONPs (vortex, bath sonication and probe ultrasonication) and the effects of important environmental factors such as dissolved organic matter and ionic strength on the stability of IONPs dispersions were investigated. Vortex minimally dispersed IONPs with hydrodynamic diameter outside the “nanosize range” (698–2400nm). Similar to vortex, bath sonication could not disperse IONPs efficiently. Probe ultrasonication was more effective at dispersing IONPs (50% or more) with hydrodynamic diameters ranging from 120–140 nm with minimal changes in size and sedimentation of IONPs for a prolonged period of time. Over the course of 168 hours, considerable amounts of IONPs remained dispersed in the presence and absence of low ionic strength (0.1 mM of NaCl) and 100 mg/L of humic acid (HA). These results indicate that IONPs can be broken down efficiently into “nanosize range” by probe ultrasonication and a degree of stability can be achieved without the use of synthetic modifiers to enhance colloidal stability. This dispersion tool could be used to develop a laboratory method to study the adsorption mechanism between dispersed bare IONPs and toxic contaminants. PMID:22289174

  1. Stability constants for the formation of rare earth-inorganic complexes as a function of ionic strength

    NASA Astrophysics Data System (ADS)

    Millero, Frank J.

    1992-08-01

    Recent studies have been made on the distribution of the rare earths (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) in natural waters relative to their concentration in shales. These metals have also been used as models for the behavior of the trivalent actinides. The speciation of the rare earths in natural waters is modelled by using ionic interaction models which require reliable stability constants. In this paper the stability constants for the formation of lanthanide complexes ( k mx∗) with Cl -, NO 3-, SO 42-, OH -, HCO 3-, H 2PO 4-, HPO 42-, and CO 32- determined in NaClO 44 at various ionic strengths have been extrapolated to infinite dilution using the Pitzer interaction model. The activity coefficients for free ions ( γM, γx) needed for this extrapolation have been estimated from the Pitzer equations. The thermodynamic stability constants ( KMX) and activity coefficients of the various ion pairs ( γMX) were determined from In ( solK MX∗/γ Mγ x) = In K mx+ In (γ MX). The activity coefficients of the ion pairs have been used to determine Pitzer parameters ( BMX) for the rare earth complexes. The values of BMX were found to be the same for complexes of the same charge. These results make it possible to estimate the stability constants for the formation of rare earth complexes over a wide range of ionic strengths. The stability constants have been used to determine the speciation of the lanthanides in seawater and in brines. The carbonate complexes dominate for all natural waters where the carbonate alkalinity is greater than 0.001 eq/L at a pH near 8.

  2. Deciphering the energetic barriers to calcium carbonate nucleation as a continuum of competing interfacial forces between polysaccharide chemistry and ionic strength

    NASA Astrophysics Data System (ADS)

    Giuffre, A. J.; De Yoreo, J. J.; Dove, P. M.

    2013-12-01

    Calcified skeletons are produced within complex assemblages of proteins and polysaccharides whose roles in mineralization are not well understood. Researchers have long-postulated that living organisms utilize organic matrices to actively guide the formation and growth of crystalline structures. The timing and placement of these features are most easily controlled during the nucleation stage. Our recent kinetic study of heterogeneous calcite nucleation found the energy barrier to formation is regulated by a systematic relationship to the competing interfacial energies between the substrate, crystal, and liquid (Giuffre et al., 2013). Chitosan presents a low energy barrier to nucleation because its near-neutral charge favors formation of a substrate-crystal interface, thus reducing substrate interactions with water. Progressively higher barriers are measured for negatively charged alginates and heparin that favor contact with the solution over the formation of new substrate-crystal interfaces. These results showed calcite nucleation is regulated by substrate-crystal interactions but could not quantify the larger continuum of competing forces that must regulate calcite nucleation. To determine these relationships, we estimate the energy barriers to nucleation and crystal-liquid interfacial energies by measuring the kinetics of homogeneous calcite nucleation in NaCl solutions at ionic strengths that extend to seawater salinity (0.6 M). The data show that solutions of greater ionic strength produce faster nucleation rates, smaller crystal-liquid interfacial energies, and lower barriers to nucleation, which concurs with recent theoretical and experimental findings that background electrolytes promote ion desolvation during nucleation. By applying this relationship to heterogeneous nucleation on chitosan and heparin in future work, we will quantify the relative contributions of substrate-crystal-liquid interfacial energies. The findings reiterate a directing role for PS

  3. London-van der Waals and EDL effects in the coalescence of oil drops. 2: Ionic strength and pH effects

    SciTech Connect

    Deshiikan, S.R.; Papadopoulous, K.D.

    1995-09-15

    Coalescence of n-hexadecane oil drops (70--100 {micro}m in diameter) suspended inside an aqueous medium of varying pH and ionic strength is reported. The drops were produced in situ by micropipettes inside aqueous-phase-filled fine capillaries (100--160 {micro}m, i.d.) At constant pH values of 5.7 and 10.9 the ionic strength of the aqueous medium was changed with KCl so that the Debye length ({kappa}{sup {minus}1}) varied between 1.6 to 362 nm and 0.36 to 14 nm, respectively. Visual observations showed coalescence when {kappa}{sup {minus}1} was less than {approximately} 5.0 nm. The DLVO theory together with previously reported measurements of critical thickness of rupture of aqueous thin films also predicts coalescence under these conditions.The effect of change in pH at constant ionic strength ({kappa}{sup {minus}1} = 5.0 nm) was also studied. While theory predicts coalescence at all pH values with constant {kappa}{sup {minus}1}, coalescence time increases with pH. At similar conditions of high ionic strength, the coalescence times at very low pH are lower than at intermediate pH by two orders of magnitude, suggesting that pH is more important than ionic strength in controlling the coalescence of the oil drops.

  4. Mechanisms of Pathogen and Surrogate Transport in Porous Media: Concurrent Effects of Grain Characteristics, NOM and Ionic Strength

    NASA Astrophysics Data System (ADS)

    Emelko, M. B.; Stimson, J.; McLellan, N.; Tufenkji, N.

    2009-05-01

    It is widely accepted that riverbank filtration (RBF) can provide substantial reductions in the concentrations of both microbial and chemical contaminants while providing more consistent water quality to subsequent treatment processes. Factors such as experimental scale, subsurface heterogeneity, and variable flow paths and fluxes have made it difficult to relate laboratory outcomes to field performance. Field studies have been plagued with inadequate consideration of ground water flow, reliance on unproven "surrogate" parameters, non-detects at the extraction well, and limited sampling. As a result, a treatment-technique type of approach has been utilized to describe subsurface and operational conditions that result in effective RBF. While it is generally understood that parameters such as ionic strength, the presence of natural organic matter (NOM), and media size and shape characteristics affect pathogen transport in porous media, one major limiting factor in the development of regulatory credits and predictive models is the lack of understanding of the concurrent effects of such parameters. To provide guidance for assessing the efficacy of RBF processes, the present investigation is focused on evaluating the concurrent effects of these parameters on pathogen transport in RBF environments. This work details the complete outcomes of a factorial experimental investigation of the concurrent impacts of the four parameters: ionic strength, NOM concentration, grain size, and uniformity coefficient on pathogen and surrogate transport in porous media. Duplicate column studies have been conducted to evaluate the transport of Cryptosporidium oocysts and Salmonella typhimurium bacteria in saturated sandy environments; PR772 bacteriophage, and 4.5 μm and 1.5 μm microspheres are also being used as surrogates for pathogen transport. The strain of Salmonella was selected due to the direct link to human illness in the Grand River watershed. Preliminary results indicate that

  5. Kinetics of gypsum crystal growth from high ionic strength solutions: A case study of Dead Sea - seawater mixtures

    NASA Astrophysics Data System (ADS)

    Reznik, Itay J.; Gavrieli, Ittai; Antler, Gilad; Ganor, Jiwchar

    2011-04-01

    Gypsum precipitation kinetics were examined from a wide range of chemical compositions (11ionic strengths (4.75-10 m) and saturation state with respect to gypsum (1.16-1.74) in seeded batch experiments of mixtures of Ca 2+-rich Dead Sea brine and SO42--rich seawater. Despite the variability in the experimental solutions, a single general rate law was formulated to describe the heterogeneous precipitation rate of gypsum from these mixtures: Ratehet=k1·(Ω0.5-1)10+k2·(Ω0.5-1)2mol ms, where k1 and k2 are heterogeneous rate coefficients (mol s -1 m -2) that vary as a function of the solution compositions, and is the saturation state with respect to gypsum. It is suggested that two parallel mechanisms control the heterogeneous precipitation rate. Under closer-to-equilibrium conditions, the reaction is dominated by a mechanism best described as a 2nd order reaction with respect to Ω0.5 - 1, which fits to the predictions of both the Burton Cabrera and Frank (BCF) crystal growth theory ( Burton et al., 1951) and other layer-by-layer growth mechanisms ( Goto and Ridge, 1967; Van Rosmalen et al., 1981; Bosbach and Rammensee, 1994). Under further-away-from-equilibrium conditions, the reaction is dominated by an apparent 10th order reaction. A conceptual model for gypsum growth kinetics is presented. The model is based on the 2nd order kinetic coefficients determined in the present study and data from the literature and is valid under a wide range of ionic strengths and Ca/SO42- ratios. According to this model, the integration of SO42- to kinks on the surface of the growing crystals is the rate-limiting step in the precipitation reaction. At ionic strengths above 8.5 m the precipitation rate of gypsum is enhanced, possibly due to the formation of CaSO4° ion pairs and/or a decrease in hydration frequencies.

  6. The Effect of Ionic Strength and Specific Anions on Substrate Binding and Hydrolytic Activities of Na,K-ATPase

    PubMed Central

    Nørby, Jens G.; Esmann, Mikael

    1997-01-01

    The physiological ligands for Na,K-ATPase (the Na,K-pump) are ions, and electrostatic forces, that could be revealed by their ionic strength dependence, are therefore expected to be important for their reaction with the enzyme. We found that the affinities for ADP3−, eosin2−, p-nitrophenylphosphate, and Vmax for Na,K-ATPase and K+-activated p-nitrophenylphosphatase activity, were all decreased by increasing salt concentration and by specific anions. Equilibrium binding of ADP was measured at 0–0.5 M of NaCl, Na2SO4, and NaNO3 and in 0.1 M Na-acetate, NaSCN, and NaClO4. The apparent affinity for ADP decreased up to 30 times. At equal ionic strength, I, the ranking of the salt effect was NaCl ≈ Na2SO4 ≈ Na-acetate < NaNO3 < NaSCN < NaClO4. We treated the influence of NaCl and Na2SO4 on Kdiss for E·ADP as a “pure” ionic strength effect. It is quantitatively simulated by a model where the binding site and ADP are point charges, and where their activity coefficients are related to I by the limiting law of Debye and Hückel. The estimated net charge at the binding site of the enzyme was about +1. Eosin binding followed the same model. The NO3− effect was compatible with competitive binding of NO3− and ADP in addition to the general I-effect. Kdiss for E·NO3 was ∼32 mM. Analysis of Vmax/Km for Na,K-ATPase and K+-p-nitrophenylphosphatase activity shows that electrostatic forces are important for the binding of p-nitrophenylphosphate but not for the catalytic effect of ATP on the low affinity site. The net charge at the p-nitrophenylphosphate-binding site was also about +1. The results reported here indicate that the reversible interactions between ions and Na,K-ATPase can be grouped according to either simple Debye-Hückel behavior or to specific anion or cation interactions with the enzyme. PMID:9154904

  7. Refinement of current monitoring methodology for electroosmotic flow assessment under low ionic strength conditions.

    PubMed

    Saucedo-Espinosa, Mario A; Lapizco-Encinas, Blanca H

    2016-05-01

    Current monitoring is a well-established technique for the characterization of electroosmotic (EO) flow in microfluidic devices. This method relies on monitoring the time response of the electric current when a test buffer solution is displaced by an auxiliary solution using EO flow. In this scheme, each solution has a different ionic concentration (and electric conductivity). The difference in the ionic concentration of the two solutions defines the dynamic time response of the electric current and, hence, the current signal to be measured: larger concentration differences result in larger measurable signals. A small concentration difference is needed, however, to avoid dispersion at the interface between the two solutions, which can result in undesired pressure-driven flow that conflicts with the EO flow. Additional challenges arise as the conductivity of the test solution decreases, leading to a reduced electric current signal that may be masked by noise during the measuring process, making for a difficult estimation of an accurate EO mobility. This contribution presents a new scheme for current monitoring that employs multiple channels arranged in parallel, producing an increase in the signal-to-noise ratio of the electric current to be measured and increasing the estimation accuracy. The use of this parallel approach is particularly useful in the estimation of the EO mobility in systems where low conductivity mediums are required, such as insulator based dielectrophoresis devices. PMID:27375813

  8. Sorption mechanisms of Sr and Pb on zeolitized tuffs from the Nevada test site as a function of pH and ionic strength

    SciTech Connect

    Um, Wooyong; Papelis, Charalambos

    2003-11-01

    The sorption of divalent strontium, Sr{sup 2+}, and divalent lead, Pb{sup 2+}, on zeolitized tuffs from the Nevada Test Site (NTS) was investigated using macroscopic batch sorption experiments and x-ray absorption spectroscopy (XAS) as a function of geochemical parameters, including pH, ionic strength, and type of background electrolyte. The sorption of Sr{sup 2+} is dependent on the ionic strength of the medium and independent of pH, suggesting that Sr{sup 2+} sorption is controlled by ion exchange at permanent charge sites. At higher ionic strengths, background electrolyte cations compete effectively with Sr{sup 2+} for cation exchange sites and Sr{sup 2+} sorption is suppressed. At the two lower ionic strengths (0.01 and 0.1 M), Pb{sup 2+} sorption is also consistent with adsorption by cation exchange. At the highest ionic strength (1.0 M), however, exclusion of Pb{sup 2+} from cation exchange sites resulted in pH dependent adsorption, consistent with sorption on amphoteric surface hydroxyl sites or formation of surface precipitates. XAS was used to test these hypotheses. Based on XAS data, Sr{sup 2+} formed hydrated surface complexes coordinated with approximately eight oxygen atoms at an average distance of 2.60 ({+-}0.02) {angstrom}, regardless of conditions, consistent with the formation of mononuclear, outer-sphere surface complexes at the Ca2 site in the B channel of clinoptilolite. The coordination environment of sorbed Pb{sup 2+} was more complex and a function of pH and ionic strength. The first shell consisted of two to three oxygen atoms at an average distance of 2.20 ({+-}0.02) {angstrom}. At low pH and ionic strength, XAS data were consistent with Pb{sup 2+} adsorption at the Na1 and Ca2 cation exchange sites in channels A and B of clinoptilolite, respectively. At the highest ionic strength (1.0 M) and low pH, XAS provides evidence for formation of Pb{sup 2+} monodentate, corner-sharing inner-sphere complexes, while at higher pH, XAS analysis is

  9. Influence of ionic strength on the time course of force development and phosphate release by dogfish muscle fibres.

    PubMed

    West, Timothy G; Ferenczi, Michael A; Woledge, Roger C; Curtin, N A

    2005-09-15

    We measured the effects of ionic strength (IS), 200 (standard) and 400 mmol l(-1) (high), on force and ATP hydrolysis during isometric contractions of permeabilized white fibres from dogfish myotomal muscle at their physiological temperature, 12 degrees C. One goal was to test the validity of our kinetic scheme that accounts for energy release, work production and ATP hydrolysis. Fibres were activated by flash photolysis of the P(3)-1-(2 nitrophenyl) ethyl ester of ATP (NPE-caged ATP), and time-resolved phosphate (P(i)) release was detected with the fluorescent protein MDCC-PBP, N-(2[1-maleimidyl]ethyl)-7-diethylamino-coumarin-3-carboxamide phosphate binding protein. High IS slowed the transition from rest to contraction, but as the fibres approached the isometric force plateau they showed little IS sensitivity. By 0.5 s of contraction, the force and the rate of P(i) release at standard and high IS values were not significantly different. A five-step reaction mechanism was used to account for the observed time courses of force and P(i) release in all conditions explored here. Only the rate constants for reactions of ATP, ADP and P(i) with the contractile proteins varied with IS, thus suggesting that the actin-myosin interactions are largely non-ionic. Our reaction scheme also fits previous results for intact fibres. PMID:16037082

  10. A cytochrome c peroxidase from Pseudomonas nautica 617 active at high ionic strength: expression, purification and characterization.

    PubMed

    Alves, T; Besson, S; Duarte, L C; Pettigrew, G W; Girio, F M; Devreese, B; Vandenberghe, I; Van Beeumen, J; Fauque, G; Moura, I

    1999-10-12

    Cytochrome c peroxidase was expressed in cells of Pseudomonas nautica strain 617 grown under microaerophilic conditions. The 36.5 kDa dihaemic enzyme was purified to electrophoretic homogeneity in three chromatographic steps. N-terminal sequence comparison showed that the Ps. nautica enzyme exhibits a high similarity with the corresponding proteins from Paracoccus denitrificans and Pseudomonas aeruginosa. UV-visible spectra confirm calcium activation of the enzyme through spin state transition of the peroxidatic haem. Monohaemic cytochrome c(552) from Ps. nautica was identified as the physiological electron donor, with a half-saturating concentration of 122 microM and allowing a maximal catalytic centre activity of 116,000 min(-1). Using this cytochrome the enzyme retained the same activity even at high ionic strength. There are indications that the interactions between the two redox partners are mainly hydrophobic in nature. PMID:10525144

  11. Respiratory complexes III and IV can each bind two molecules of cytochrome c at low ionic strength.

    PubMed

    Moreno-Beltrán, Blas; Díaz-Moreno, Irene; González-Arzola, Katiuska; Guerra-Castellano, Alejandra; Velázquez-Campoy, Adrián; De la Rosa, Miguel A; Díaz-Quintana, Antonio

    2015-02-13

    The transient interactions of respiratory cytochrome c with complexes III and IV is herein investigated by using heterologous proteins, namely human cytochrome c, the soluble domain of plant cytochrome c1 and bovine cytochrome c oxidase. The binding molecular mechanisms of the resulting cross-complexes have been analyzed by Nuclear Magnetic Resonance and Isothermal Titration Calorimetry. Our data reveal that the two cytochrome c-involving adducts possess a 2:1 stoichiometry - that is, two cytochrome c molecules per adduct - at low ionic strength. We conclude that such extra binding sites at the surfaces of complexes III and IV can facilitate the turnover and sliding of cytochrome c molecules and, therefore, the electron transfer within respiratory supercomplexes. PMID:25595453

  12. Effect of carboxymethyl cellulose and ionic strength on stability of mineral suspensions in potash ore flotation systems.

    PubMed

    Pawlik, M; Laskowski, J S; Ansari, A

    2003-04-15

    The adsorption of sodium carboxymethyl cellulose from aqueous solutions varying in ionic strength from that of distilled water to 50% NaCl/KCl brine (about 3.5 mol/dm(3)) onto illite and dolomite has been studied. The purpose of this work was to investigate the solvency effects in the phenomena underlying the potash flotation process that is carried out in saturated brine. Based on viscosity measurements, the adsorption results were analyzed in terms of a simple model of polymer macromolecules in solution. Suspension stability measurements carried out concomitantly with adsorption tests showed the ranges of carboxymethyl cellulose concentration over which the tested suspensions either were aggregated or were restabilized. PMID:12686172

  13. A study of the corrosion products of mild steel in high ionic strength brines.

    PubMed

    Wang, Z; Moore, R C; Felmy, A R; Mason, M J; Kukkadapu, R K

    2001-01-01

    The corrosion layer on steel surfaces that formed after exposure to waste isolation pilot plant (WIPP) brines under anoxic conditions was characterized for chemical composition, thickness and phase composition. The chemical composition of the corrosion layer was determined both by X-ray photoelectron spectroscopy (XPS) and by chemical analysis of acid solutions used to remove the corrosion layer. Atomic force microscopic (AFM) images indicated that the brine-corroded surface layer shows extensive granulation along the contours of the steel surface that is characteristic of sharp polishing marks. The corrosion layer seemed to be porous and could be dissolved and detached in dilute hydrochloric acid. The corrosion layer appears to be composed of iron oxides with some ionic substitutions from the brines. The 77 K Mössbauer spectrum recorded for iron powder leached under similar conditions indicated the corrosion layer was comprised principally of green rust. PMID:11300533

  14. Synaptotagmin-1 binds to PIP2-containing membrane but not to SNAREs at physiological ionic strength

    PubMed Central

    Park, Yongsoo; Seo, Jong Bae; Fraind, Alicia; Pérez-Lara, Angel; Yavuz, Halenur; Han, Kyungreem; Jung, Seung-Ryoung; Kattan, Iman; Walla, Peter Jomo; Choi, MooYoung; Cafiso, David S.; Koh, Duk-Su; Jahn, Reinhard

    2015-01-01

    Ca2+-sensor synaptotagmin-1 is thought to trigger membrane fusion by binding to acidic membrane lipids and SNARE proteins. Previous work has shown that binding is mediated by electrostatic interactions that are sensitive to the ionic environment. However, the influence of divalent or polyvalent ions, at physiological concentrations, on synaptotagmin binding to membranes or SNAREs has not been explored. Here we show that binding of rat synaptotagmin-1 to membranes containing PIP2 is regulated by charge shielding caused by the presence of divalent cations. Surprisingly, polyvalent ions such as ATP and Mg2+ completely abrogate synaptotagmin-1 binding to SNAREs regardless of whether Ca2+ is present or not. Altogether, our data suggest that at physiological ion concentrations Ca2+-dependent synaptotagmin-1 binding is confined to PIP2-containing membrane patches in the plasma membrane, suggesting that membrane interaction of synaptotagmin-1 rather than SNARE binding triggers exocytosis of vesicles. PMID:26389740

  15. A cation exchange model to describe Cs+ sorption at high ionic strength in subsurface sediments at Hanford site, USA.

    PubMed

    Liu, Chongxuan; Zachara, John M; Smith, Steve C

    2004-02-01

    A theoretical and experimental study of cation exchange in high ionic strength electrolytes was performed using pristine subsurface sediments from the U.S. Department of Energy Hanford site. These sediments are representative of the site contaminated sediments impacted by release of high level waste (HLW) solutions containing 137Cs+ in NaNO3 brine. The binary exchange behavior of Cs+-Na+, Cs+-K+, and Na+-K+ was measured over a range in electrolyte concentration. Vanselow selectivity coefficients (Kv) that were calculated from the experimental data using Pitzer model ion activity corrections for aqueous species showed monotonic increases with increasing electrolyte concentrations. The influence of electrolyte concentration was greater on the exchange of Na+-Cs+ than K+-Cs+, an observation consistent with the differences in ion hydration energy of the exchanging cations. A previously developed two-site ion exchange model [Geochimica et Cosmochimica Acta 66 (2002) 193] was modified to include solvent (water) activity changes in the exchanger phase through application of the Gibbs-Duhem equation. This water activity-corrected model well described the ionic strength effect on binary Cs+ exchange, and was extended to the ternary exchange system of Cs+-Na+-K+ on the pristine sediment. The model was also used to predict 137Cs+ distribution between sediment and aqueous phase (Kd) beneath a leaked HLW tank in Hanfordd's S-SX tank using the analytical aqueous data from the field and the binary ion exchange coefficients for the pristine sediment. The Kd predictions closely followed the trend in the field data and were improved by consideration of water activity effects that were considerable in certain regions of the vadose zone plume. PMID:14734247

  16. A cation exchange model to describe Cs + sorption at high ionic strength in subsurface sediments at Hanford site, USA

    NASA Astrophysics Data System (ADS)

    Liu, Chongxuan; Zachara, John M.; Smith, Steve C.

    2004-02-01

    A theoretical and experimental study of cation exchange in high ionic strength electrolytes was performed using pristine subsurface sediments from the U.S. Department of Energy Hanford site. These sediments are representative of the site contaminated sediments impacted by release of high level waste (HLW) solutions containing 137Cs + in NaNO 3 brine. The binary exchange behavior of Cs +-Na +, Cs +-K +, and Na +-K + was measured over a range in electrolyte concentration. Vanselow selectivity coefficients ( Kv) that were calculated from the experimental data using Pitzer model ion activity corrections for aqueous species showed monotonic increases with increasing electrolyte concentrations. The influence of electrolyte concentration was greater on the exchange of Na +-Cs + than K +-Cs +, an observation consistent with the differences in ion hydration energy of the exchanging cations. A previously developed two-site ion exchange model [Geochimica et Cosmochimica Acta 66 (2002) 193] was modified to include solvent (water) activity changes in the exchanger phase through application of the Gibbs-Duhem equation. This water activity-corrected model well described the ionic strength effect on binary Cs + exchange, and was extended to the ternary exchange system of Cs +-Na +-K + on the pristine sediment. The model was also used to predict 137Cs + distribution between sediment and aqueous phase ( Kd) beneath a leaked HLW tank in Hanfordd's S-SX tank using the analytical aqueous data from the field and the binary ion exchange coefficients for the pristine sediment. The Kd predictions closely followed the trend in the field data and were improved by consideration of water activity effects that were considerable in certain regions of the vadose zone plume.

  17. Evaluating the Effect of Ionic Strength on Duplex Stability for PNA Having Negatively or Positively Charged Side Chains

    PubMed Central

    De Costa, N. Tilani S.; Heemstra, Jennifer M.

    2013-01-01

    The enhanced thermodynamic stability of PNA:DNA and PNA:RNA duplexes compared with DNA:DNA and DNA:RNA duplexes has been attributed in part to the lack of electrostatic repulsion between the uncharged PNA backbone and negatively charged DNA or RNA backbone. However, there are no previously reported studies that systematically evaluate the effect of ionic strength on duplex stability for PNA having a charged backbone. Here we investigate the role of charge repulsion in PNA binding by synthesizing PNA strands having negatively or positively charged side chains, then measuring their duplex stability with DNA or RNA at varying salt concentrations. At low salt concentrations, positively charged PNA binds more strongly to DNA and RNA than does negatively charged PNA. However, at medium to high salt concentrations, this trend is reversed, and negatively charged PNA shows higher affinity for DNA and RNA than does positively charged PNA. These results show that charge screening by counterions in solution enables negatively charged side chains to be incorporated into the PNA backbone without reducing duplex stability with DNA and RNA. This research provides new insight into the role of electrostatics in PNA binding, and demonstrates that introduction of negatively charged side chains is not significantly detrimental to PNA binding affinity at physiological ionic strength. The ability to incorporate negative charge without sacrificing binding affinity is anticipated to enable the development of PNA therapeutics that take advantage of both the inherent benefits of PNA and the multitude of charge-based delivery technologies currently being developed for DNA and RNA. PMID:23484047

  18. Evaluating the effect of ionic strength on duplex stability for PNA having negatively or positively charged side chains.

    PubMed

    De Costa, N Tilani S; Heemstra, Jennifer M

    2013-01-01

    The enhanced thermodynamic stability of PNA:DNA and PNA:RNA duplexes compared with DNA:DNA and DNA:RNA duplexes has been attributed in part to the lack of electrostatic repulsion between the uncharged PNA backbone and negatively charged DNA or RNA backbone. However, there are no previously reported studies that systematically evaluate the effect of ionic strength on duplex stability for PNA having a charged backbone. Here we investigate the role of charge repulsion in PNA binding by synthesizing PNA strands having negatively or positively charged side chains, then measuring their duplex stability with DNA or RNA at varying salt concentrations. At low salt concentrations, positively charged PNA binds more strongly to DNA and RNA than does negatively charged PNA. However, at medium to high salt concentrations, this trend is reversed, and negatively charged PNA shows higher affinity for DNA and RNA than does positively charged PNA. These results show that charge screening by counterions in solution enables negatively charged side chains to be incorporated into the PNA backbone without reducing duplex stability with DNA and RNA. This research provides new insight into the role of electrostatics in PNA binding, and demonstrates that introduction of negatively charged side chains is not significantly detrimental to PNA binding affinity at physiological ionic strength. The ability to incorporate negative charge without sacrificing binding affinity is anticipated to enable the development of PNA therapeutics that take advantage of both the inherent benefits of PNA and the multitude of charge-based delivery technologies currently being developed for DNA and RNA. PMID:23484047

  19. Stability and mobility of cerium oxide nanoparticles in soils: effects of humic substances, pH and ionic strength

    NASA Astrophysics Data System (ADS)

    Chen, Yirui; Mu, Linlin; Li, Chunyan; Bai, Lingyun; Jacobson, Astrid; Darnault, Christophe

    2015-04-01

    Among the large number of types of nanomaterials used in the field of nanotechnology, cerium oxide nanoparticles (CeO2 NPs) are among the top five most commonly utilized by industry, agriculture and nanomedicine for their unique physico-chemical properties. They are used, for example, in the production of catalysts, as fuel additives, and as polishing agents. Therefore, the release and encounter of CeO2 NPs in the environment following their application, waste disposal, life-cycle and accidents is inevitable. It is critical to examine the behavior of CeO2 NPs released in the environment to assess the risk they pose to the environmental and public health. In particular, little is known about the fate and transport of CeO2 NPs in soils and groundwater. To assess the behavior of CeO2 NPs, it is important to investigate the factors that affect their stability and mobility. Humic substances are a major component of soils and have been shown to have the potential to impact the transport and retention of nanoparticles in soils. Consequently, our study characterizes the impacts of humic and fulvic acids on the stability and mobility of cerium oxides in model porous media under various pH and ionic strength conditions. Batch experiments conducted at various concentrations of humic and fulvic acids coupled with a wide range of pHs and ionic strengths were investigated. Selected parameters from these batch studies were then used as experimental conditions representative of environmental systems to perform column transport experiments to assess of the mobility of CeO2 NPs in saturated porous media, which is the first step in simulating their behavior in soil and groundwater systems.

  20. Modeling of the impact of ionic strength on the electroosmotic flow in capillary electrophoresis with uniform and discontinuous buffer systems.

    PubMed

    Thormann, W; Zhang, C X; Caslavska, J; Gebauer, P; Mosher, R A

    1998-02-01

    A new dynamic computer model permitting the combined simulation of the temporal behavior of electroosmosis and electrophoresis under constant voltage or current conditions and in a capillary which exhibits a pH-dependent surface charge has been constructed and applied to the description of capillary zone electrophoresis, isotachophoresis, and isoelectric focusing with electroosmotic zone displacement. Electroosmosis is calculated via use of a normalized wall titration curve (mobility vs pH). Two approaches employed for normalization of the experimentally determined wall titration data are discussed, one that considers the electroosmotic mobility to be inversely proportional to the square root of the ionic strength (method based on the Gouy-Chapman theory with the counterion layer thickness being equal to the Debye-Hückel length) and one that assumes the double-layer thickness to be the sum of a compact layer of fixed charges and the Debye-Hückel thickness and the existence of a wall adsorption equilibrium of the buffer cation other than the proton (method described by Salomon, K.; et al. J. Chromatogr. 1991, 559, 69). The first approach is shown to overestimate the magnitude of electroosmosis, whereas, with the more complex dependence between the electroosmotic mobility and ionic strength, qualitative agreement between experimental and simulation data is obtained. Using one set of electroosmosis input data, the new model is shown to provide detailed insight into the dynamics of electroosmosis in typical discontinuous buffer systems employed in capillary zone electrophoresis (in which the sample matrix provides the discontinuity), in capillary isotachophoresis, and in capillary isoelectric focusing. PMID:21644753

  1. MRS thermometry calibration at 3 T: effects of protein, ionic concentration and magnetic field strength.

    PubMed

    Babourina-Brooks, Ben; Simpson, Robert; Arvanitis, Theodoros N; Machin, Graham; Peet, Andrew C; Davies, Nigel P

    2015-07-01

    MRS thermometry has been utilized to measure temperature changes in the brain, which may aid in the diagnosis of brain trauma and tumours. However, the temperature calibration of the technique has been shown to be sensitive to non-temperature-based factors, which may provide unique information on the tissue microenvironment if the mechanisms can be further understood. The focus of this study was to investigate the effects of varied protein content on the calibration of MRS thermometry at 3 T, which has not been thoroughly explored in the literature. The effects of ionic concentration and magnetic field strength were also considered. Temperature reference materials were controlled by water circulation and freezing organic fixed-point compounds (diphenyl ether and ethylene carbonate) stable to within 0.2 °C. The temperature was measured throughout the scan time with a fluoro-optic probe, with an uncertainty of 0.16 °C. The probe was calibrated at the National Physical Laboratory (NPL) with traceability to the International Temperature Scale 1990 (ITS-90). MRS thermometry measures were based on single-voxel spectroscopy chemical shift differences between water and N-acetylaspartate (NAA), Δ(H20-NAA), using a Philips Achieva 3 T scanner. Six different phantom solutions with varying protein or ionic concentration, simulating potential tissue differences, were investigated within a temperature range of 21-42 °C. Results were compared with a similar study performed at 1.5 T to observe the effect of field strengths. Temperature calibration curves were plotted to convert Δ(H20-NAA) to apparent temperature. The apparent temperature changed by -0.2 °C/% of bovine serum albumin (BSA) and a trend of 0.5 °C/50 mM ionic concentration was observed. Differences in the calibration coefficients for the 10% BSA solution were seen in this study at 3 T compared with a study at 1.5 T. MRS thermometry may be utilized to measure temperature and the tissue

  2. Ultrafiltration by a compacted clay membrane-II. Sodium ion exclusion at various ionic strengths

    USGS Publications Warehouse

    Hanshaw, B.B.; Coplen, T.B.

    1973-01-01

    Several recent laboratory studies and field investigations have indicated that shales and compacted clay minerals behave as semipermeable membranes. One of the properties of semipermeable membranes is to retard or prevent the passage of charged ionic species through the membrane pores while allowing relatively free movement of uncharged species. This phenomenon is termed salt filtering, reverse osmosis, or ultrafiltration. This paper shows how one can proceed from the ion exchange capacity of clay minerals and, by means of Donnan membrane equilibrium concept and the Teorell-Meyer-Siever theory, develop a theory to explain why and to what extent ultrafiltration occurs when solutions of known concentration are forced to flow through a clay membrane. Reasonable agreement between theory and laboratory results were found. The concentration of the ultrafiltrate was always greater than predicted because of uncertainty in values of some parameters in the equations. Ultrafiltration phenomena may be responsible for the formation of some subsurface brines and mineral deposits. The effect should also be taken into consideration in any proposal for subsurface waste emplacement in an environment containing large quantities of clay minerals. ?? 1973.

  3. Transport and Retention of TiO2 Rutile Nanoparticles in Saturated Porous Media: Influence of Solution pH, Ionic Strength, and the Presence of Humic Acid

    EPA Science Inventory

    The influence of solution pH, ionic strength, and varying concentrations of the Suwannee River Humic Acid (SRHA) on the transport of titanium dioxide (TiO2, rutile) nanoparticle aggregates (nTiO2) in saturated porous media was investigated through systematically examining the tra...

  4. Impact of Environmental Conditions (pH, Ionic Strength, And Electrolyte Type) On The Surface Charge And Aggregation Of Silver Nanoparticles Suspensions

    EPA Science Inventory

    The impact of capping agents and environmental conditions (pH, ionic strength, and background electrolytes) on surface charge and aggregation potential of silver nanoparticles (AgNPs) suspensions were investigated. Capping agents are chemicals used in the synthesis of nanopartic...

  5. A Simplified Undergraduate Laboratory Experiment to Evaluate the Effect of the Ionic Strength on the Equilibrium Concentration Quotient of the Bromcresol Green Dye

    ERIC Educational Resources Information Center

    Rodriguez, Hernan B.; Mirenda, Martin

    2012-01-01

    A modified laboratory experiment for undergraduate students is presented to evaluate the effects of the ionic strength, "I", on the equilibrium concentration quotient, K[subscript c], of the acid-base indicator bromcresol green (BCG). The two-step deprotonation of the acidic form of the dye (sultone form), as it is dissolved in water, yields…

  6. Sorption/desorption behavior of triclosan in sediment-water-rhamnolipid systems: Effects of pH, ionic strength, and DOM.

    PubMed

    Wu, Wenjin; Hu, Yongyou; Guo, Qian; Yan, Jia; Chen, Yuancai; Cheng, Jianhua

    2015-10-30

    Effects of pH, ionic strength and DOM on the sorption and desorption of triclosan (TCS) in sediment-water-rhamnolipid systems were systematically investigated through controlled batch experiments. Results showed that solubilization enhancement of TCS by rhamnolipid was higher in acid pH range than in alkaline pH range and was the highest at the ionic strength of 5×10(-2) M. Sorption of rhamnolipid onto sediment decreased with the increase of pH while the result was contrary to ionic strength. Moreover, the apparent distribution coefficients of TCS (Kd(*)) decreased from 73.35 to 32.30 L/kg with an increase of solution pH, as varying pH had significant influence on sorption of RL onto sediment and degree of ionization of TCS. Rhamnolipid presented the largest distribution capacity of TCS into the aqueous phase at moderate ionic strength (5×10(-2) M) with the Kd(*) of 17.26 L/kg. Further results also indicated that the presence of humic acid in aqueous phase could increase the desorption of TCS from contaminated sediment. The desorption enhancement was much higher in the system containing both rhamnolipid and DOM than in the single system. These findings provide meaningful information for enhanced migration of TCS from sediment to water by rhamnolipid. PMID:25938643

  7. Transport and Retention of TiO2 Rutile Nanoparticles in Saturated Porous Media at Low-Ionic-Strength Conditions: Measurements and Mechanisms

    EPA Science Inventory

    The mechanisms governing the transport and retention kinetics of titanium dioxide (TiO2, rutile) nanoparticle (NP) aggregates were investigated in saturated porous media. Experiments were carried out under a range of well-controlled ionic strength (from DI water up to 1 mM) and...

  8. Adsorption of a Textile Dye on Commercial Activated Carbon: A Simple Experiment to Explore the Role of Surface Chemistry and Ionic Strength

    ERIC Educational Resources Information Center

    Martins, Angela; Nunes, Nelson

    2015-01-01

    In this study, an adsorption experiment is proposed using commercial activated carbon as adsorbent and a textile azo dye, Mordant Blue-9, as adsorbate. The surface chemistry of the activated carbon is changed through a simple oxidation treatment and the ionic strength of the dye solution is also modified, simulating distinct conditions of water…

  9. Effects of High-pH and High-Ionic-Strength Groundwater on Iodide, Pertechnetate, and Selenate Sorption to Hanford Sediments: Final Report for Subtask 3a

    SciTech Connect

    DI Kaplan; KE Parker; RD Orr

    1998-10-14

    As part of the Immobilized Low-Activity Waste-Performance Assessment three experiments were conducted to evaluate the effect of the expected near-field chemistry on the sorption of iodide, selenate, and pertechnetate onto a sediment obtained from the Hanford Site. These experiments were performed in fiscal year 1998 at the Pacific Northwest National Laboratory.' During these experiments, attention was directed at the identification of the chemical mechanisms controlling the sorption processes to provide technical defensibility for the selection of the distribution coefficients (IQ to be used in the remainder of the performance assessment. It was found, during the conduct of the experiments, that selenium and technetium I&s increased as ionic strength increased. The cause for this is most likely to be that the higher ionic strength caused the double layer around the particles to decrease, thereby permitting greater interaction with the mineral surfaces. Further, the pH level had an effect on the sorption of these anions. These are the first-ever experiments conducted with Hanford Site sediment in which the IQ were measured as a function of ionic strength and pH. Overall, the observed trends were consistent with more generalized geochemical principles. One of the most important contributions of these experiments was that they quantified the & changes induced by variations in ionic strength and pH that are expected to exist in the near field.

  10. Dialysis buffer with different ionic strength affects the antigenicity of cultured nervous necrosis virus (NNV) suspensions.

    PubMed

    Gye, Hyun Jung; Nishizawa, Toyohiko

    2016-09-01

    Nervous necrosis virus (NNV) belongs to the genus Betanodavirus (Nodaviridae). It is highly pathogenic to various marine fishes. Here, we investigated the antigenicity changes of cultured NNV suspensions during 14days of dialyses using a dialysis tube at 1.4×10(4) molecular weight cut off (MWCO) in three different buffers (Dulbecco's phosphate buffered saline (D-PBS), 15mM Tris-HCl (pH 8.0), and deionized water (DIW)). Total NNV antigen titers of cultured NNV suspension varied depending on different dialysis buffers. For example, total NNV antigen titer during D-PBS dialysis was increased once but then decreased. During Tris-HCl dialysis, it was relatively stable. During dialysis in DIW, total NNV antigen titer was increased gradually. These antigenicity changes in NNV suspension might be due to changes in the aggregation state of NNV particles and/or coat proteins (CPs). ELISA values of NNV suspension changed due to changing aggregates state of NNV antigens. NNV particles in suspension were aggregated at a certain level. These aggregates were progressive after D-PBS dialysis, but regressive after Tris-HCl dialysis. The purified NNV particles self-aggregated after dialysis in D-PBS or in Tris-HCl containing 600mM NaCl, but not after dialysis in Tris-HCl or DIW. Quantitative analysis is merited to determine NNV antigens in the highly purified NNV particles suspended in buffer at low salt condition. PMID:27381060

  11. Membrane interactions in nerve myelin. I. Determination of surface charge from effects of pH and ionic strength on period.

    PubMed Central

    Inouye, H.; Kirschner, D. A.

    1988-01-01

    We have used x-ray diffraction to study the interactions between myelin membranes in the sciatic nerve (PNS) and optic nerve (CNS) as a function of pH (2-10) and ionic strength (0-0.18). The period of myelin was found to change in a systematic manner with pH and ionic strength. PNS periods ranged from 165 to 250 A or more, while CNS periods ranged from 150 to 230 A. The native periods were observed only near physiological ionic strength at neutral or alkaline pH. The smallest periods were observed in the pH range 2.5-4 for PNS myelin and pH 2.5-5 for CNS myelin. The minimum period was also observed for PNS myelin after prolonged incubation in distilled water. At pH 4, within these acidic pH ranges, myelin period increased slightly with ionic strength; however, above these ranges, the period increased with pH and decreased with ionic strength. Electron density profiles calculated at different pH and ionic strength showed that the major structural alteration underlying the changes in period was in the width of the aqueous space at the extracellular apposition of membranes; the width of the cytoplasmic space was virtually constant. Assuming that the equilibrium myelin periods are determined by a balance of nonspecific forces/i.e., the electrostatic repulsion force and the van der Walls attractive force, as well as the short-range repulsion force (hydration force, or steric stabilization), then values in the period-dependency curve can be used to define the isoelectric pH and exclusion length of the membrane. The exclusion length, which is related to the minimum period at isoelectric pH, was used to calculate the electrostatic repulsion force given the other forces. The electrostatic repulsion was then used to calculate the surface potential, which in turn was used to calculate the surface charge density (at different pH and ionic strength). We found the negative surface charge increases with pH at constant ionic strength and with ionic strength at constant pH. We

  12. Determination of electrophoretic mobilities and hydrodynamic radii of three humic substances as a function of pH and ionic strength.

    PubMed

    Hosse, M; Wilkinson, K J

    2001-11-01

    Capillary electrophoresis (CE) and fluorescence correlation spectroscopy (FCS) were employed to determine electrophoretic mobilities and hydrodynamic sizes of three humic substances (IHSS aquatic fulvic acid (FA), IHSS aquatic humic acid (HA), and IHSS peat humic acid (PHA)) as a function of pH and ionic strength. A slight aggregation corresponding to the formation of dimers and trimers was observed at low pH using fluorescence correlation spectroscopy (FCS). For example, for the peat humic acid, diffusion coefficients decreased from 2.1 x 10(-10) m2 s(-1) at pH 4 to 2.4 x 10(-10) m2 s(-1) at pH 11. For all three humic substances, electrophoretic mobilities were also shown to decrease significantly below pH 6. Calculated zeta potentials observed at high pH of -69 mV (FA), -62 mV (HA), and -63 mV (PHA) decreased to -39, -50, and -47 mV, respectively, under slightly acidic pH (4.5-4.8) conditions. No evidence of ionic strength induced aggregation was found using fluorescence correlation spectroscopy (FCS); diffusion coefficients increased slightly (<25%) with increasing ionic strength (up to 1 M). Negative electrophoretic mobilities decreased to a maximum measured ionic strength of 0.18 M. Above this ionic strength, no peaks were observed due to an increased HS adsorption to the capillary wall and an important decrease in electroosmotic flow. Interpretation of electrophoretic mobilities determined by CE is complicated by the fact that under certain conditions, HS appeared to be complexed by CE buffer systems, including MES, BES, and AMPSO. PMID:11718346

  13. Effects of Ionic Strength on Bacteriophage MS2 Behavior and Their Implications for the Assessment of Virus Retention by Ultrafiltration Membranes ▿

    PubMed Central

    Furiga, Aurelie; Pierre, Gwenaelle; Glories, Marie; Aimar, Pierre; Roques, Christine; Causserand, Christel; Berge, Mathieu

    2011-01-01

    Bacteriophage MS2 is widely used as a surrogate to estimate pathogenic virus elimination by membrane filtration processes used in water treatment. Given that this water technology may be conducted with different types of waters, we focused on investigating the effects of ionic strength on MS2 behavior. For this, MS2 was analyzed while suspended in solutions of various ionic strengths, first in a batch experiment and second during membrane ultrafiltration, and quantified using (i) quantitative reverse transcriptase PCR (qRT-PCR), which detects the total number of viral genomes, (ii) qRT-PCR without the RNA extraction step, which reflects only particles with a broken capsid (free RNA), and (iii) the PFU method, which detects only infectious viruses. At the beginning of the batch experiments using solutions containing small amounts of salts, losses of MS2 infectivity (90%) and broken particles (20%) were observed; these proportions did not change during filtration. In contrast, in high-ionic-strength solutions, bacteriophage kept its biological activity under static conditions, but it quickly lost its infectivity during the filtration process. Increasing the ionic strength decreased both the inactivation and the capsid breakup in the feed suspension and increased the loss of infectivity in the filtration retentate, while the numbers of MS2 genomes were identical in both experiments. In conclusion, the effects of ionic strength on MS2 behavior may significantly distort the results of membrane filtration processes, and therefore, the combination of classical and molecular methods used here is useful for an effective validation of the retention efficiency of ultrafiltration membranes. PMID:21075898

  14. An improved thermodynamic model for the complexation of trivalent actinides and lanthanide with oxalic acid valid to high ionic strength.

    DOE PAGESBeta

    Xiong, Yongliang; Thakur, Punam; Borkowski, Marian

    2015-07-30

    The dissociation constants of oxalic acid (Ox), and the stability constants of Am3+, Cm3+ and Eu3+ with Ox2– have been determined at 25 °C, over a range of concentration varying from 0.1 to 6.60 m NaClO4 using potentiometric titration and extraction techniques, respectively. The experimental data support the formation of complexes, M(Ox)n3 – 2n, where (M = Am3+, Cm3+ and Eu3+ and n = 1 and 2). The dissociation constant and the stability constant values measured as a function of NaClO4 concentration were used to estimate the Pitzer parameters for the respective interactions of Am3+, Cm3+ and Eu3+ with Ox.more » Furthermore, the stability constants data of Am3+ –Ox measured in NaClO4 and in NaCl solutions from the literature were simultaneously fitted in order to refine the existing actinide–oxalate complexation model that can be used universally in the safety assessment of radioactive waste disposal. The thermodynamic stability constant: log β0101 = 6.30 ± 0.06 and log β0102 = 10.84 ± 0.06 for Am3+ was obtained by simultaneously fitting data in NaCl and NaClO4 media. Additionally, log β0101 = 6.72 ± 0.08 and log β0102 = 11.05 ± 0.09 for the Cm3+ and log β0101 = 6.67 ± 0.08 and log β0102 = 11.15 ± 0.09 for the Eu3+ were calculated by extrapolation of data to zero ionic strength in NaClO4 medium only. For all stability constants, the Pitzer model gives an excellent representation of the data using interaction parameters β(0), β(1), and CΦ determined in this work. The thermodynamic model developed in this work will be useful in accurately modeling the potential solubility of trivalent actinides and early lanthanides to ionic strength of 6.60 m in low temperature environments in the presence of Ox. Furthermore, the work is also applicable to the accurate modeling transport of rare earth elements in various environments under the surface conditions.« less

  15. Analysis of responsive characteristics of ionic-strength-sensitive hydrogel with consideration of effect of equilibrium constant by a chemo-electro-mechanical model.

    PubMed

    Li, Hua; Lai, Fukun; Luo, Rongmo

    2009-11-17

    A multiphysics model is presented in this paper for analysis of the influence of various equilibrium constants on the smart hydrogel responsive to the ionic strength of environmental solution, and termed the multieffect-coupling ionic-strength stimulus (MECis) model. The model is characterized by a set of partial differential governing equations by consideration of the mass and momentum conservations of the system and coupled chemical, electrical, and mechanical multienergy domains. The Nernst-Planck equations are derived by the mass conservation of the ionic species in both the interstitial fluid of the hydrogel and the surrounding solution. The binding reaction between the fixed charge groups of the hydrogel and the mobile ions in the solution is described by the fixed charge equation, which is based on the Langmuir monolayer theory. As an important effect for the binding reaction, the equilibrium constant is incorporated into the fixed charge equation. The kinetics of the hydrogel swelling/deswelling is illustrated by the mechanical equation, based on the law of momentum conservation for the solid polymeric networks matrix within the hydrogel. The MECis model is examined by comparison of the numerical simulations and experiments from open literature. The analysis of the influence of different equilibrium constants on the responsive characteristics of the ionic-strength-sensitive hydrogel is carried out with detailed discussion. PMID:19678621

  16. The influence of ionic strength and mixing ratio on the colloidal stability of PDAC/PSS polyelectrolyte complexes.

    PubMed

    Zhang, Yanpu; Yildirim, Erol; Antila, Hanne S; Valenzuela, Luis D; Sammalkorpi, Maria; Lutkenhaus, Jodie L

    2015-10-01

    Polyelectrolyte complexes (PECs) form by mixing polycation and polyanion solutions together, and have been explored for a variety of applications. One challenge for PEC processing and application is that under certain conditions the as-formed PECs aggregate and precipitate out of suspension over the course of minutes to days. This aggregation is governed by several factors such as electrostatic repulsion, van der Waals attractions, and hydrophobic interactions. In this work, we explore the boundary between colloidally stable and unstable complexes as it is influenced by polycation/polyanion mixing ratio and ionic strength. The polymers examined are poly(diallyldimethylammonium chloride) (PDAC) and poly(sodium 4-styrenesulfonate) (PSS). Physical properties such as turbidity, hydrodynamic size, and zeta potential are investigated upon complex formation. We also perform detailed molecular dynamics simulations to examine the structure and effective charge distribution of the PECs at varying mixing ratios and salt concentrations to support the experimental findings. The results suggest that the colloidally stable/unstable boundary possibly marks the screening effects from added salt, resulting in weakly charged complexes that aggregate. At higher salt concentrations, the complexes initially form and then gradually dissolve into solution. PMID:26268471

  17. The effect of human microtubule-associated-protein tau on the assembly structure of microtubules and its ionic strength dependence

    NASA Astrophysics Data System (ADS)

    Choi, M. C.; Raviv, U.; Miller, H. P.; Gaylord, M. R.; Kiris, E.; Ventimiglia, D.; Needleman, D. J.; Chung, P. J.; Deek, J.; Lapointe, N.; Kim, M. W.; Wilson, L.; Feinstein, S. C.; Safinya, C. R.

    2010-03-01

    Microtubules (MTs), 25 nm protein nanotubes, are among the major filamentous elements of the eukaryotic cytoskeleton involved in intracellular trafficking, cell division and the establishment and maintenance of cell shape. Microtubule-associated-protein tau regulates tubulin assembly, MT dynamics and stability. Aberrant tau action has long been correlated with numerous neurodegenerative diseases, including Alzheimer's, and fronto-temporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17) Using synchrotron small angle x-ray scattering (SAXS) and binding assay, we examine the effects of tau on the assembly structure of taxol-stabilized MTs. We find that tau regulates the distribution of protofilament numbers in MTs as reflected in the observed increase in the average radius of MTs with increasing the tau/tubulin molar ratio. Additionally, tau-MT interactions are mediated to a large extent via electrostatic interactions: the binding affinity of tau to MTs is ionic strength dependent. Supported by DOE-BES DE-FG02-06ER46314, NSF DMR-0803103, NIH NS35010, NIH NS13560. (Ref) M.C. Choi, S.C. Feinstein, and C.R. Safinya et al. Biophys. J. 97; 519 (2009).

  18. Sorption of chlorimuron-ethyl on montmorillonite clays: effects of exchangeable cations, pH, and ionic strength.

    PubMed

    Ren, Wenjie; Teng, Ying; Zhou, Qixing; Paschke, Albrecht; Schüürmann, Gerrit

    2014-10-01

    Sorption interaction of chlorimuron-ethyl with montmorillonite clays was investigated under varied types of exchangeable cation, pH, and ionic strength conditions. Chlorimuron-ethyl sorption on bentonites exhibited pronounced cation dependency, and the sorption ability increased as the sequence Ca(2+)- < Na(+)- < Al(3+)- < Fe(3+)-bentonite, due to different sorption mechanisms, whereas the cation dependency was influenced by the clay type and much weaker for montmorillonites. The decrease of pH at the range of 4.0-6.0 prominently increased sorption of chlorimuron-ethyl on all cation-exchanged montmorillonite clays, and nearly a neglected sorption (about 2 %) can be observed at pH over 7.0. In the presence of CaCl2, sorption of chlorimuron-ethyl on Fe(3+)-bentonite was promoted because of complexion of Ca(2+) and the surface of Fe(3+)-bentonite. However, as the concentration of CaCl2 increased, chlorimuron-ethyl sorption on Ca(2+)- and Fe(3+)-exchanged bentonite decreased, suggesting that Ca bridging was not the prevailing mechanism for sorption of chlorimuron-ethyl on these clays. Furthermore, chlorimuron-ethyl sorption was relatively sensitive to pH, and the change of pH may obscure effect of other factors on the sorption, so it was quite necessary to control pH at a constant value when the effect of other factor was being studied. PMID:25028319

  19. Resolution of 16 to 20 chlorophyll-protein complexes using a low ionic strength native green gel system.

    PubMed

    Allen, K D; Staehelin, L A

    1991-04-01

    Conventional native "green gel" systems resolve at most 10 chlorophyll-protein complexes from thylakoid membranes of higher plants and green algae. Such analyses suggest a simplicity of the thylakoid membrane that is not supported by a growing body of evidence on the heterogeneity of photosystems I and II (PSI and PSII) and their associated antennae (LHCI and LHCII). We report here the development and characterization of a low ionic strength native "green gel" system that resolves from 16 to 20, mostly large chlorophyll-protein complexes from a variety of higher plant and green algal species with very little release of free pigment. In Chlamydomonas, this system resolves multiple PSI-LHCI complexes, multiple PSII-LHCII complexes, four oligomeric LHCII complexes, as well as several low electrophoretic mobility reaction center complexes, and a number of small complexes. We have obtained similar resolution with a large number of higher plant and green algal species. We also demonstrate how this system can be used as a sort of "fingerprinting" technique to distinguish thylakoids of different species, and for the analysis of photosynthetic mutants, using the chlorophyll b-less chlorina f2 mutant of barley as an example. PMID:1867380

  20. Effect of pH, ionic strength and univalent inorganic ions on the reconstitution of aspartate aminotransferase.

    PubMed

    Gianfreda, L; Marino, G; Palescandolo, R; Scardi, V

    1974-02-01

    1. The effect of pH change on the reconstitution of aspartate aminotransferase (EC 2.6.1.1), i.e. the reactivation of the apoenzyme with coenzyme (pyridoxal phosphate and pyridoxamine phosphate), was studied in the pH range 4.2-8.9 by using three buffer systems at concentrations ranging from 0.025 to 0.1m. 2. Although the profile of the reconstitution rate-pH curve in the range pH5.2-6.8 (covered by sodium cacodylate-HCl buffer) reflects the influence of the H(+) concentration on the reconstitution process, the profile of the curve in the pH ranges 4.2-5.6 and 7.2-8.25 (covered respectively by sodium acetate-acetic acid and Tris-HCl buffers) appears to be influenced by the ionic strength of the buffer. 3. The reconstitution is also influenced by univalent inorganic ions such as halide ions and, to a lesser extent, alkali metal ions, which are known to alter the water structure. PMID:4856793

  1. Effect of pH, ionic strength and univalent inorganic ions on the reconstitution of aspartate aminotransferase

    PubMed Central

    Gianfreda, Liliana; Marino, Gennaro; Palescandolo, Rosaria; Scardi, Vincenzo

    1974-01-01

    1. The effect of pH change on the reconstitution of aspartate aminotransferase (EC 2.6.1.1), i.e. the reactivation of the apoenzyme with coenzyme (pyridoxal phosphate and pyridoxamine phosphate), was studied in the pH range 4.2–8.9 by using three buffer systems at concentrations ranging from 0.025 to 0.1m. 2. Although the profile of the reconstitution rate–pH curve in the range pH5.2–6.8 (covered by sodium cacodylate–HCl buffer) reflects the influence of the H+ concentration on the reconstitution process, the profile of the curve in the pH ranges 4.2–5.6 and 7.2–8.25 (covered respectively by sodium acetate–acetic acid and Tris–HCl buffers) appears to be influenced by the ionic strength of the buffer. 3. The reconstitution is also influenced by univalent inorganic ions such as halide ions and, to a lesser extent, alkali metal ions, which are known to alter the water structure. PMID:4856793

  2. Ionic Strength-Controlled Mn (Hydr)oxide Nanoparticle Nucleation on Quartz: Effect of Aqueous Mn(OH)2.

    PubMed

    Jung, Haesung; Jun, Young-Shin

    2016-01-01

    The early formation of manganese (hydr)oxide nanoparticles at mineral-water interfaces is crucial in understanding how Mn oxides control the fate and transport of heavy metals and the cycling of nutrients. Using atomic force microscopy, we investigated the heterogeneous nucleation and growth of Mn (hydr)oxide under varied ionic strengths (IS; 1-100 mM NaNO3). Experimental conditions (i.e., 0.1 mM Mn(2+) (aq) concentration and pH 10.1) were chosen to be relevant to Mn remediation sites. We found that IS controls Mn(OH)2 (aq) formation, and that the controlled Mn(OH)2 (aq) formation can affect the system's saturation and subsequent Mn(OH)2 (s) and further Mn3O4 (s) nanoparticle formation. In 100 mM IS system, nucleated Mn (hydr)oxide particles had more coverage on the quartz substrate than those in 1 mM and 10 mM IS systems. This high IS also resulted in low supersaturation ratio and thus favor heterogeneous nucleation, having better structural matching between nucleating Mn (hydr)oxides and quartz. The unique information obtained in this work improves our understanding of Mn (hydr)oxide formation in natural as well as engineered aqueous environments, such as groundwater contaminated by natural leachate and acid mine drainage remediation. PMID:26588858

  3. Roles of ionic strength and biofilm roughness on adhesion kinetics of Escherichia coli onto groundwater biofilm grown on PVC surfaces

    PubMed Central

    Janjaroen, Dao; Ling, Fangqiong; Monroy, Guillermo; Derlon, Nicolas; Mogenroth, Eberhard; Boppart, Stephen A.; Liu, Wen-Tso; Nguyen, Thanh H.

    2013-01-01

    Mechanisms of Escherichia coli attachment on biofilms grown on PVC coupons were investigated. Biofilms were grown in CDC reactors using groundwater as feed solution over a period up to 27 weeks. Biofilm physical structure was characterized at the micro- and meso-scales using Scanning Electron Microscopy (SEM) and Optical Coherence Tomography (OCT), respectively. Microbial community diversity was analyzed with Terminal Restricted Fragment Length Polymorphism (T-RFLP). Both physical structure and microbial community diversity of the biofilms were shown to be changing from 2 weeks to 14 weeks, and became relatively stable after 16 weeks. A parallel plate flow chamber coupled with an inverted fluorescent microscope was also used to monitor the attachment of fluorescent microspheres and E. coli on clean PVC surfaces and biofilms grown on PVC surfaces for different ages. Two mechanisms of E. coli attachment were identified. The adhesion rate coefficients (kd) of E. coli on nascent PVC surfaces and 2-week biofilms increased with ionic strength. However, after biofilms grew for 8 weeks, the adhesion was found to be independent of solution chemistry. Instead, a positive correlation between kd and biofilm roughness as determined by OCT was obtained, indicating that the physical structure of biofilms could play an important role in facilitating the adhesion of E. coli cells. PMID:23497979

  4. Effect of ionic strength on the thermodynamic characteristics of complexation between Fe(III) ion and nicotinamide in water-ethanol and water-dimethyl sulfoxide mixtures

    NASA Astrophysics Data System (ADS)

    Gamov, G. A.; Grazhdan, K. V.; Gavrilova, M. A.; Dushina, S. V.; Sharnin, V. A.; Baranski, A.

    2013-06-01

    Solutions of iron(III) perchlorate in water, water-ethanol, and water-dimethyl sulfoxide solvents (x_{H_2 O} = 0.7 and 0.25 mole fractions) at ionic strength values I = 0.1, 0.25, and 0.5 are studied by IR spectroscopy. Analysis of the absorption bands of perchlorate ion shows that it does not participate in association processes. It is demonstrated that in the range of ionic strength values between 0 and 0.5 (NaClO4), it affects neither the results from potentiometric titration to determine the stability constants of the iron(III)-nicotinamide complex nor the thermal effects of complexation determined via direct calorimetry in a binary solvent containing 0.3 mole fractions (m.f.) of a non-aqueous component.

  5. Effect of ionic strength and pH on the size and dynamic aggregation of TiO2 nanoparticle dispersions

    NASA Astrophysics Data System (ADS)

    Ibrahim, Hesham; Al-Turki, Ali; Al-Farraj, Abdullah

    2016-04-01

    The widespread use of TiO2 nanoparticles in many products has led to increased concern over their fate in the environment. The stability of TiO2 nanoparticles in aqueous dispersions plays a key role in the aggregation process and subsequently affect the retention and transport of nanoparticles in aquatic systems. We investigated the effect of ionic strength (0.0001-1 M NaCl), and pH (3-11) on the hydrodynamic size and zeta potential of 50 mg L‑1 TiO2dispersions. Dynamic aggregation of the TiO2 nanoparticles was monitored via time-resolved optical absorbance at a wavelength of 300 nm. Results showed that the hydrodynamic size of the TiO2 nanoparticles increased by increasing the ionic strength at all pH values. The average hydrodynamic size of the TiO2 nanoparticle dispersions with ionic strength of 1-0.1M reached 1522 nm. At lower ionic strength (0.01-0.0001M), the hydrodynamic size varied considerably by variation in pH values. Smaller hydrodynamic size was observed at both lower (3-5) and highest (11) pH values, and the hydrodynamic size reached 292 and 255 nm, respectively. For TiO2 dispersions with pH values 7 to 9, the hydrodynamic size reached 1595 nm because of the lower surface charge as the pH of the dispersion approaches the point of zero charge of the TiO2 nanoparticles. Zeta potential of the TiO2 nanoparticles were found to be positive for pH ≤ 5 and reached an average of 9.2 and 30.9 mV for TiO2 dispersions with 1-0.1M and 0.01-0.0001M, respectively. For pH ≥ 7, zeta potential was negative and showed the largest value of -42.6 mV at lower ionic strength and pH values above 9. Increasing the ionic strength caused the relative concentration (C/Co) of the TiO2 nanoparticles to decline indicating lower TiO2 nanoparticles stability. The average relative concentration of the TiO2 nanoparticles reached 0.14, 0.17, and 0.23 for the 1, 0.1, and < 0.01M, respectively. The maximum TiO2 nanoparticles stability reached an average of 0.79, and was observed at

  6. Persistence length for a model semirigid polyelectrolyte as seen by small angle neutron scattering: a relevant variation of the lower bound with ionic strength

    NASA Astrophysics Data System (ADS)

    Buhler, E.; Boué, F.

    2003-02-01

    In a SANS experiment, we have directly determined for the first time the conformation of hyaluronan, a model semirigid polyelectrolyte. At high ionic strength, this is completely possible, where the scattered intensity crosses over (when decreasing q) from a q^{-1} rod variation to a q^{-2} and, where fitting to the “wormlike” chain model gives the backbone, intrinsic, persistence length: L_0=86.5 Å. At low ionic strength, we can safely check that the measured persistence length appears increased by at least the amount predicted by Odijk for the electrostatic contribution, L_e ( kappa^{-2}, square of the Debye screening length). However, the intensity at the lowest q is not only due to the single chain, since it crosses over from a q^{-1} to a q^{-4} variation, characteristic of polymer associations.

  7. Stability of Secondary and Tertiary Structures of Virus-Like Particles Representing Noroviruses: Effects of pH, Ionic Strength, and Temperature and Implications for Adhesion to Surfaces

    PubMed Central

    Samandoulgou, Idrissa; Hammami, Riadh; Morales Rayas, Rocio; Fliss, Ismail

    2015-01-01

    Loss of ordered molecular structure in proteins is known to increase their adhesion to surfaces. The aim of this work was to study the stability of norovirus secondary and tertiary structures and its implications for viral adhesion to fresh foods and agrifood surfaces. The pH, ionic strength, and temperature conditions studied correspond to those prevalent in the principal vehicles of viral transmission (vomit and feces) and in the food processing and handling environment (pasteurization and refrigeration). The structures of virus-like particles representing GI.1, GII.4, and feline calicivirus (FCV) were studied using circular dichroism and intrinsic UV fluorescence. The particles were remarkably stable under most of the conditions. However, heating to 65°C caused losses of β-strand structure, notably in GI.1 and FCV, while at 75°C the α-helix content of GII.4 and FCV decreased and tertiary structures unfolded in all three cases. Combining temperature with pH or ionic strength caused variable losses of structure depending on the particle type. Regardless of pH, heating to pasteurization temperatures or higher would be required to increase GII.4 and FCV adhesion, while either low or high temperatures would favor GI.1 adhesion. Regardless of temperature, increased ionic strength would increase GII.4 adhesion but would decrease GI.1 adhesion. FCV adsorption would be greater at refrigeration, pasteurization, or high temperature combined with a low salt concentration or at a higher NaCl concentration regardless of temperature. Norovirus adhesion mediated by hydrophobic interaction may depend on hydrophobic residues normally exposed on the capsid surface at pH 3, pH 8, physiological ionic strength, and low temperature, while at pasteurization temperatures it may rely more on buried hydrophobic residues exposed upon structural rearrangement. PMID:26296729

  8. Preparation of non-aggregating aqueous fullerenes in highly saline solutions with a biocompatible non-ionic polymer

    NASA Astrophysics Data System (ADS)

    Aich, Nirupam; Boateng, Linkel K.; Flora, Joseph R. V.; Saleh, Navid B.

    2013-10-01

    Size-tunable stable aqueous fullerenes were prepared with different concentrations of biocompatible block-copolymer pluronic (PA) F-127, ranging from 0.001% to 1% (w/v). Size uniformity increased with the increase in PA concentration, yielding optimum 58.8 ± 5.6 and 61.8 ± 5.6 nm nC60s and nC70s, respectively (0.10%w/v PA), as observed using a dynamic light scattering technique. Fullerene aqueous suspensions also manifested enhanced stability in saline solution, Dulbecco’s modified Eagle medium (DMEM), and Roswell Park Memorial Institute (RPMI) culture medium. Transmission electron microscopy was performed to elaborate on the morphology and size specificity of fullerene clusters. Physicochemical characterizations of the suspended fullerenes were performed through UV-vis spectroscopy and electrophoretic mobility measurements. PA molecules showed size restriction by encasement, as observed via molecular dynamics simulations. Such solubilization with controllable size and non-aggregating behavior can facilitate application enhancement and mechanistic environmental and toxicological studies of size-specific fullerenes.

  9. Early osmotic, antioxidant, ionic, and redox responses to salinity in leaves and roots of Indian mustard (Brassica juncea L.).

    PubMed

    Ranjit, Singh Laxmi; Manish, Pandey; Penna, Suprasanna

    2016-01-01

    Salt-stress-induced alterations in osmotic, ionic, and redox responses were studied in the early period of treatment (30 min to 5 days) in seedlings of Brassica juncea L. Roots and shoots under mild (50 mM) and severe (250 mM) NaCl stress were analyzed for growth, oxidative stress, osmolyte accumulation, antioxidant defense, and redox state. Growth reduction was less pronounced in the early time period of salt stress while oxidative damage increased linearly and in a sustained manner under severe stress up to 6 h. An early and transient reactive oxygen species (ROS) burst, as evidenced by superoxide and hydrogen peroxide level was observed, followed by activation of enzymatic antioxidant system (GPX, SOD, CAT, and GR) in both root and shoot. The enzymatic activity was not affected much under mild stress particularly at early phase; however, severe stress induced a significant increase in the activity of antioxidant enzymes. Root ascorbate was progressively accumulated, and its redox state maintained in the early time phase of treatment under mild stress while increase in root and shoot glutathione content was recorded under mild stress at 5 days when the active ascorbate pool decreased. While early period of salt stress showed significant Na(+) accumulation over control, plants subjected to mild stress measured less Na(+) accumulation up to 5 days compared to severely stressed plants. The results showed an early induction of differential responses to salt stress in roots and shoots of Brassica which include growth limitations, reduced relative water content, increased osmolytes, redox state, and antioxidant system, and a significant Na(+) increase. The results also indicate that roots and shoots may have distinct mechanisms of responses to salt stress. PMID:25786350

  10. Transport and deposition of Suwannee River Humic Acid/Natural Organic Matter formed silver nanoparticles on silica matrices: the influence of solution pH and ionic strength.

    PubMed

    Akaighe, Nelson; Depner, Sean W; Banerjee, Sarbajit; Sohn, Mary

    2013-07-01

    The transport and deposition of silver nanoparticles (AgNPs) formed from Ag(+) reduction by Suwannee River Humic Acid (SRHA) and Suwannee River Natural Organic Matter (SRNOM) utilizing a silica matrix is reported. The morphology and stability of the AgNPs was analyzed by transmission electron microscopy (TEM), dynamic light scattering (DLS) and zeta potential measurements. The percentage conversion of the initial [Ag(+)] to [AgNPs] was determined from a combination of atomic absorption (AAS) and UV-Vis spectroscopy, and centrifugation techniques. The results indicate higher AgNP transport and consequently low deposition in the porous media at basic pH conditions and low ionic strength. However, at low acidic pH and high ionic strength, especially with the divalent metallic cations, the mobility of the AgNPs in the porous media was very low, most likely due to NP aggregation. Overall, the results suggest the potential for AgNP contamination of subsurface soils and groundwater aquifers is mostly dependent on their aggregation state, controlled by the soil water and sediment ionic strength and pH. PMID:23422173

  11. Effect of pH, ionic strength, and background electrolytes on Cr(VI) and total chromium removal by acorn shell of Quercus crassipes Humb. & Bonpl.

    PubMed

    Aranda-García, Erick; Morales-Barrera, Liliana; Pineda-Camacho, Gabriela; Cristiani-Urbina, Eliseo

    2014-10-01

    The ability of Quercus crassipes acorn shells (QCS) to remove Cr(VI) and total chromium from aqueous solutions was investigated as a function of the solution pH, ionic strength, and background electrolytes. It was found that Cr(VI) and total chromium removal by QCS depended strongly on the pH of the solution. Cr(VI) removal rate increased as the solution pH decreased. The optimum pH for total chromium removal varied depending on contact time. NaCl ionic strengths lower than 200 mM did not affect chromium removal. The presence of 20 mM monovalent cations and anions, and of divalent cations, slightly decreased the removal of Cr(VI) and total chromium by QCS; in contrast, divalent anions (SO₄(2-), PO₄(2-), CO₃(2-)) significantly affected the removal of Cr(VI) and total chromium. The biosorption kinetics of chromium ions followed the pseudo-second-order model at all solution pH levels, NaCl ionic strengths and background electrolytes tested. Results suggest that QCS may be a potential low-cost biosorbent for the removal of Cr(VI) and total chromium from aqueous solutions containing various impurities. PMID:24880725

  12. The Influence of High Drug Loading in Xanthan Tablets and Media with Different Physiological pH and Ionic Strength on Swelling and Release.

    PubMed

    Mikac, Urša; Sepe, Ana; Baumgartner, Saša; Kristl, Julijana

    2016-03-01

    The formation of a gel coat around xanthan (Xan) tablets, empty or loaded with pentoxifylline (PF), and its release in media differing in pH and ionic strength by NMR, MR imaging, and two release methods were studied. The T1 and T2 NMR relaxation times in gels depend predominantly on Xan concentration; the presence of PF has negligible influence on them. It is interesting that the matrix swelling is primarily regulated by Xan despite high drug loading (25%, 50%). The gastric pH and high ionic strength of the media do not influence the position of the penetration and swelling fronts but do affect the erosion front and gel thickness. The different release profiles obtained in mixing and nonmixing in vitro methods are the consequence of matrix hydration level and erosion at the surface. In water and in diluted acid medium with low ionic strength, the main release mechanism is erosion, whereas in other media (pH 1.2, μ ≥ 0.20 M), anomalous transport dominates as was found out by fitting of measured data with theoretical model. Besides the in vitro investigation that mimics gastric conditions, mathematical modeling makes the product development more successful. PMID:26866780

  13. Deposition of polyelectrolyte multilayer films made from chitosan and xanthan on biodegradable substrate: Effect of pH and ionic strength

    NASA Astrophysics Data System (ADS)

    Viraneva, A.; Marudova, M.; Sotirov, S.; Bodurov, I.; Pilicheva, B.; Uzunova, Y.; Exner, G.; Grancharova, Ts.; Vlaeva, I.; Yovcheva, T.

    2016-03-01

    The aim of the present work is to investigate the effect of pH and ionic strength on the deposition of chitosan/xanthan multilayers on preliminary corona charged substrates from polylactic acid. The multilayer films were formed by alternative dipping the substrate into chitosan and xanthan polyelectrolyte solutions. For this purpose 0.1% chitosan solution and 0.05% xanthan solution in acetate buffers with pH 4; 4.5 and 5 and ionic strengths 0; 0.01; 0.1 and 1 mol/l were used. The film properties were investigated by FTIR, laser refractometry, XPS and AFM methods. It was found that the binding of the polyelectrolytes to the substrate was irreversible over the time of deposition. The investigated parameters were found to depend on both pH and ionic strength of the polyelectrolyte solutions. This behaviour was attributed to the changes in charge density of the polyelectrolytes and screening effect of the counterions.

  14. An improved thermodynamic model for the complexation of trivalent actinides and lanthanide with oxalic acid valid to high ionic strength.

    SciTech Connect

    Xiong, Yongliang; Thakur, Punam; Borkowski, Marian

    2015-07-30

    The dissociation constants of oxalic acid (Ox), and the stability constants of Am3+, Cm3+ and Eu3+ with Ox2– have been determined at 25 °C, over a range of concentration varying from 0.1 to 6.60 m NaClO4 using potentiometric titration and extraction techniques, respectively. The experimental data support the formation of complexes, M(Ox)n3 – 2n, where (M = Am3+, Cm3+ and Eu3+ and n = 1 and 2). The dissociation constant and the stability constant values measured as a function of NaClO4 concentration were used to estimate the Pitzer parameters for the respective interactions of Am3+, Cm3+ and Eu3+ with Ox. Furthermore, the stability constants data of Am3+ –Ox measured in NaClO4 and in NaCl solutions from the literature were simultaneously fitted in order to refine the existing actinide–oxalate complexation model that can be used universally in the safety assessment of radioactive waste disposal. The thermodynamic stability constant: log β0101 = 6.30 ± 0.06 and log β0102 = 10.84 ± 0.06 for Am3+ was obtained by simultaneously fitting data in NaCl and NaClO4 media. Additionally, log β0101 = 6.72 ± 0.08 and log β0102 = 11.05 ± 0.09 for the Cm3+ and log β0101 = 6.67 ± 0.08 and log β0102 = 11.15 ± 0.09 for the Eu3+ were calculated by extrapolation of data to zero ionic strength in NaClO4 medium only. For all stability constants, the Pitzer model gives an excellent representation of the data using interaction parameters β(0), β(1), and CΦ determined in this work. The thermodynamic model developed in this work will be useful in accurately modeling the potential solubility of trivalent

  15. Effects of pH and ionic strength on sulfamethoxazole and ciprofloxacin transport in saturated porous media

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Gao, Bin; Li, Hui; Ma, Lena Q.

    2011-09-01

    Many antibiotics regarded as emerging contaminants have been frequently detected in soils and groundwater; however, their transport behaviors in soils remain largely unknown. This study examined the transport of two antibiotics, sulfamethoxazole (SMZ) and ciprofloxacin (CIP), in saturated porous media. Laboratory columns packed with quartz sand was used to test the effects of solution pH and ionic strength (IS) on their retention and transport. The results showed that these two antibiotics behaved differently in the saturated sand columns. In general, SMZ manifested a much higher mobility than CIP for all experimental conditions tested. Almost all SMZ transported through the columns within one pore volume in deionized water (i.e., pH = 5.6, IS = 0), but no CIP was detected in the effluents under the same condition after extended column flushing. Perturbations in solution pH (5.6 and 9.5) and IS (0 and 0.1 M) showed no effect on SMZ transport in the saturated columns. When pH increased to 9.5, however, ~ 93% of CIP was eluted from the sand columns. Increase of IS from 0 to 0.1 M also slightly changed the distribution of adsorbed CIP within the sand column at pH 5.6, but still no CIP was detected in the effluents. A mathematical model based on advection-dispersion equation coupled with equilibrium and kinetic reactions successfully simulated the transport of the antibiotics in water-saturated porous media with R2 = 0.99.

  16. Effect of pH and ionic strength on exposure and toxicity of encapsulated lambda-cyhalothrin to Daphnia magna.

    PubMed

    Son, Jino; Hooven, Louisa A; Harper, Bryan; Harper, Stacey L

    2015-12-15

    Encapsulation of pesticide active ingredients in polymers has been widely employed to control the release of poorly water-soluble active ingredients. Given the high dispersibility of these encapsulated pesticides in water, they are expected to behave differently compared to their active ingredients; however, our current understanding of the fate and effects of encapsulated pesticides is still limited. In this study, we employed a central composite design (CCD) to investigate how pH and ionic strength (IS) affect the hydrodynamic diameter (HDD) and zeta potential of encapsulated λ-cyhalothrin and how those changes affect the exposure and toxicity to Daphnia magna. R(2) values greater than 0.82 and 0.84 for HDD and zeta potential, respectively, irrespective of incubation time suggest those changes could be predicted as a function of pH and IS. For HDD, the linear factor of pH and quadratic factor of pH×pH were found to be the most significant factors affecting the change of HDD at the beginning of incubation, whereas the effects of IS and IS×IS became significant as incubation time increased. For zeta potential, the linear factor of IS and quadratic factor of IS×IS were found to be the most dominant factors affecting the change of zeta potential of encapsulated λ-cyhalothrin, irrespective of incubation time. The toxicity tests with D. magna under exposure conditions in which HDD or zeta potential of encapsulated λ-cyhalothrin was maximized or minimized in the overlying water also clearly showed the worst-case exposure condition to D. magna was when the encapsulated λ-cyhalothrin is either stable or small in the overlying water. Our results show that water quality could modify the fate and toxicity of encapsulated λ-cyhalothrin in aquatic environments, suggesting understanding their aquatic interactions are critical in environmental risk assessment. Herein, we discuss the implications of our findings for risk assessment. PMID:26327636

  17. Systematic study of effects of pH and ionic strength on attachment of phage PRD1.

    PubMed

    Sadeghi, Gholamreza; Schijven, Jack F; Behrends, Thilo; Hassanizadeh, S Majid; Gerritse, Jan; Kleingeld, Pieter J

    2011-01-01

    Objectives of this work are to investigate effects of pH and ionic strength (IS) on virus transport in saturated soil and to develop a quantitative relationship for these effects. A series of 50-cm column experiments with clean quartz sand under saturated conditions and with pH values of 5, 6, 7, 8, and IS values of 1, 10, and 20 mM were conducted. Bacteriophage PRD1 was used as a model virus. Applying a one-site kinetic model, attachment, detachment, and inactivation rate coefficients were determined from fitting breakthrough curves using the software package Hydrus-1D. Attachment rate coefficients increased with decreasing pH and increasing IS, in agreement with DLVO theory. Sticking efficiencies were calculated from the attachment rate coefficients and used to develop an empirical formula for sticking efficiency as a function of pH and IS. This relationship is applicable under unfavorable conditions for virus attachment. We compared sticking efficiencies predicted by the empirical formula with those from field and column experiments. Within the calibrated range of pH and IS, the predicted and observed sticking efficiencies are in reasonable agreement for bacteriophages PRD1 and MS2. However, the formula significantly overestimates sticking efficiencies for IS higher than 100 mM. In addition, it performs less well for viruses with different surface reactivity than PRD1 and MS2. Effects of pH and IS on detachment and inactivation rate coefficients were also investigated but the experimental results do not allow constraining these parameters with sufficient certainty. PMID:21039452

  18. Deposition and release kinetics of nano-TiO2 in saturated porous media: effects of solution ionic strength and surfactants.

    PubMed

    Godinez, Itzel G; Darnault, Christophe J G; Khodadoust, Amid P; Bogdan, Dorin

    2013-03-01

    The aggregation, transport and deposition kinetics (i.e. attachment and release) of TiO(2) nanoparticles (nano-TiO(2)) were investigated as a function of ionic strength and the presence of anionic (sodium dodecylbenzene sulfonate, SDBS) and non-ionic (Triton X-100) surfactants in 100% critical micelle concentration (CMC). The electrolyte concentration of the suspensions dictated the kinetic stability of nano-TiO(2) thus influencing the transport and retention of the nanoaggregates in the saturated porous medium. With increasing ionic strength, the interaction between approaching nano-TiO(2) and nano-TiO(2) already deposited onto collectors surfaces seemed to be more favorable than the interaction between approaching nano-TiO(2) and bare collectors surfaces. The abrupt and gradual reduction in electrolyte concentration during the flushing cycles of the column experiments induced the release of previously deposited nano-TiO(2) suggesting attachment of nano-TiO(2) through secondary energy minimum. PMID:23246754

  19. Proton inventory of the water-catalyzed hydrolysis of 1-acetyl-1,2,4-triazole. Examination of ionic strength effects

    SciTech Connect

    Patterson, J.F.; Huskey, W.P.; Hogg, J.L.

    1980-11-07

    Proton inventories of the water-catalyzed hydrolysis of 1-acetyl-1,2-4-triazole have been completed under a variety of conditions. The solvent deuterium isotope effect, k/sub H/sub 2/O/k/sub D/sub 2/O/, determined at pH 4.7 or the equivalent point on the pD rate profile at 25/sup 0/C by using acetic acid-acetate buffers at 1 M ionic strength was 3.18. The solvent deuterium isotope effects determined at ionic strenghs of 1 and 0.5 M by using 10/sup -3/ M HCl (DCl) to control the pH(D) were 3.13 and 3.07, respectively. In all cases the proton inventories exhibit significant downward curvature and are, within experimental error, consistent with a cyclic transition state structure involving four water molecules. The equation k/sub n/ = k/sub 0/(1 - n + 0.75n) describes the proton inventories where the value of the isotope fractionation factor for the four in-flight protons is 0.75. These inventories are compared to an earlier study done with no ionic strength control, and several alternative transition states are considered in detail.

  20. Use of TOUGHREACT to Simulate Effects of Fluid Chemistry onInjectivity in Fractured Geothermal Reservoirs with High Ionic StrengthFluids

    SciTech Connect

    Xu, Tianfu; Zhang, Guoxiang; Pruess, Karsten

    2005-02-09

    Recent studies suggest that mineral dissolution/precipitation and clay swelling effects could have a major impact on the performance of hot dry rock (HDR) and hot fractured rock (HFR) reservoirs. A major concern is achieving and maintaining adequate injectivity, while avoiding the development of preferential short-circuiting flow paths. A Pitzer ionic interaction model has been introduced into the publicly available TOUGHREACT code for solving non-isothermal multi-phase reactive geochemical transport problems under conditions of high ionic strength, expected in typical HDR and HFR systems. To explore chemically-induced effects of fluid circulation in these systems, we examine ways in which the chemical composition of reinjected waters can be modified to improve reservoir performance. We performed a number of coupled thermo-hydrologic-chemical simulations in which the fractured medium was represented by a one-dimensional MINC model (multiple interacting continua). Results obtained with the Pitzer activity coefficient model were compared with those using an extended Debye-Hueckel equation. Our simulations show that non-ideal activity effects can be significant even at modest ionic strength, and can have major impacts on permeability evolution in injection-production systems. Alteration of injection water chemistry, for example by dilution with fresh water, can greatly alter precipitation and dissolution effects, and can offer a powerful tool for operating hot dry rock and hot fractured rock reservoirs in a sustainable manner.

  1. Change of electrostatic potential of mean force between two curved surfaces due to different salt composition, ion valence and size under certain ionic strength

    NASA Astrophysics Data System (ADS)

    Zhou, Shiqi

    2016-02-01

    Change of an electrostatic potential of mean force (EPMF) between two cylindrical rod surfaces with salt composition, ion valence, and ion size at a constant ionic strength of 0.3 M is studied by a classical density functional theory (CDFT) in a primitive model electrolyte solution. Several novel observations are made: (i) strength of a so-called like charge attraction (LCA) reduces in an invariable manner with the salt solution changing from single 2:1 electrolyte to mixture of 2:1 and 1:1 type electrolytes of varying concentration ratios; the change is even over entire range of the composition variation under low surface charge strength, and tends to be insensitive to the composition variation in the presence of the divalent counter-ion, and more and more drastic at a critical point the divalent counter-ion disappears, respectively, as the surface charge strength becomes big enough. (ii) Both monovalent counter-ion and co-ion diameters have only a marginal effect on both the LCA strength and equilibrium distance, and the former "abnormally" affects less than the latter. (iii) Depending on the surface charge strength considered, the divalent counter-ion diameter influences the LCA strength in solution comprised of 2:1 type and 1:1 type electrolytes, monotonously or non-monotonously. All of these findings provide forceful support for a recently proposed hydrogen-bonding style mechanism explaining the LCA.

  2. The effect of humic acid on the aggregation of titanium dioxide nanoparticles under different pH and ionic strengths.

    PubMed

    Zhu, Miao; Wang, Hongtao; Keller, Arturo A; Wang, Tao; Li, Fengting

    2014-07-15

    With the increasingly widespread use of titanium dioxide nanoparticles (TiO2 NPs), the particles' environmental impacts have attracted concern, making it necessary to understand the fate and transport of TiO2 NPs in aqueous media. In this study, we investigated TiO2 NP aggregation caused by the effects of humic acid (HA), ionic strength (IS) and different pH using dynamic light scattering (DLS) to monitor the size distribution of the TiO2 NPs continuously. It was determined that HA can influence the stability of TiO2 NPs through charge neutralization, steric hindrance and bridging effects. In the absence of IS, aggregation was promoted by adding HA only when the pH (pH=4) is less than the point of zero charge for the TiO2 NPs (pHPZC≈6) because HA reduces the zeta potential of the TiO2 NPs via charge neutralization. At pH=4 and when the concentration of HA is 94.5 μg/L, the zeta potential of TiO2 NPs is close to zero, and they reach an aggregation maximum. A higher concentration of HA results in more negatively charged TiO2 NP surfaces, which hinder their aggregation. When the pH is 5.8, HA enhances the negative zeta potential of the TiO2 NPs and increases their stability via electrostatic repulsion and steric hindrance. When the pH (pH=8) is greater than pHpzc, the zeta potential of the TiO2 NPs is high (~40 mV), and it barely changes with increasing HA concentration. Thus, the TiO2 NPs are notably stable, and their size does not grow at pH8. The increase in the critical coagulation concentration (CCC) of TiO2 NPs indicated that there is steric hindrance after the addition of HA. HA can enhance the coagulation of TiO2 NPs, primarily due to bridging effect. These findings are useful in understanding the size change of TiO2 NPs, as well as the removal of TiO2 NPs and HA from aqueous media. PMID:24793841

  3. Stability constants for the formation of lead chloride complexes as a function of temperature and ionic strength

    PubMed Central

    Luo, Yanxin; Millero, Frank J.

    2015-01-01

    The stability constants for the formation of lead (Pb2+) with chloride Pb2+=nCl−↔PbCln2−nβn(n=1,2,3) have been determined using a spectrophotometric method in NaClO4 solutions as a function of ionic strength (0–6 m) and temperature (15–45 °C). The results have been fitted to the equations: logβ1∗=logβ1+0.21I−8.61I0.5∕(1+1.2I0.5)+1927.40[I0.5∕(1+1.2I0.5)]∕Tlogβ2∗=logβ2+0.32I−4.67I0.5(1+1.2I0.5)+594.54[I0.5∕(1+1.2I0.5)]∕Tlogβ3∗=logβ3+0.40I−2.68I0.5(1+1.2I0.5)−43.98[I0.5∕(1+1.2I0.5)]∕T with standard errors of 0.05, 0.04 and 0.06, respectively. The thermodynamic values of log β1, logβ2 and logβ3 at 25.0 °C and the enthalpies of formation of PbCl+, PbCl20 and PbCl3− are in good agreement with literature values. We have combined our results with the earlier work of Seward (1984) to yield thermodynamic constants that are valid from 15 to 300 °C: logβ1=44.82+0.031T−21.21logTlogβ2=61.42+0.046T−29.51logTlogβ3=107.97+0.071T−51.46logT with standard errors of 0.05, 0.08 and 0.10, respectively. PMID:26937043

  4. Accelerated Transport of 90Sr Following a Release of High Ionic Strength Solution in Vadose Zone Sediments

    SciTech Connect

    Laurence Hull; Annette Schafer

    2008-05-01

    Numerical simulation of cation exchange and mineral precipitation / dissolution reactions using the multiphase reactive geochemical transport code TOUGHREACT has provided important insight into the distribution of 90Sr between layers of geologic strata in a complex vadose zone at the U. S. Department of Energy’s Idaho National Laboratory. During a transfer operation in November 1972, 70.4 m3 of acidic, high ionic strength liquid containing 15,900 Ci of 90Sr was released over five days into alluvial gravels 137 m above the Snake River Plain Aquifer. Sampling data from perched water zones 33 m below the release contain very high levels of 90Sr as do soil samples obtained nearer the point of release. Use of traditional simulation approaches using laboratory measured constant partitioning coefficients (Kd) cannot simultaneously explain perched water and soil concentrations. To address the discrepancy, a reactive transport approach was adopted to include competitive cation exchange, dissolution / precipitation of calcite, carbon dioxide gas production and transport, and gibbsite precipitation. Simulation results using this model suggest that some of the 90Sr could have been transported very rapidly immediately after the release with the acceleration facilitated by competition with high sodium concentrations in the released liquid, by calcium dissolved from calcite, and to a lesser extent by formation of aqueous complexes with nitrate. It is known that once the leading edge of the liquid assemblage was flushed from the alluvium, the mobility of the remaining 90Sr decreased significantly in the absence of the competing cations. Calculations indicate that there should be a net increase in calcite, suggesting that 90Sr could be entrained in the mineral lattice, but insufficient field data exists for confirmation. Sensitivity studies show that the ion exchange capacity and the Na/Sr ion exchange selectivity coefficients were the most sensitive parameters. Because of the

  5. Molecular Dynamics Simulation Study of Parallel Telomeric DNA Quadruplexes at Different Ionic Strengths: Evaluation of Water and Ion Models.

    PubMed

    Rebič, Matúš; Laaksonen, Aatto; Šponer, Jiří; Uličný, Jozef; Mocci, Francesca

    2016-08-01

    Most molecular dynamics (MD) simulations of DNA quadruplexes have been performed under minimal salt conditions using the Åqvist potential parameters for the cation with the TIP3P water model. Recently, this combination of parameters has been reported to be problematic for the stability of quadruplex DNA, especially caused by the ion interactions inside or near the quadruplex channel. Here, we verify how the choice of ion parameters and water model can affect the quadruplex structural stability and the interactions with the ions outside the channel. We have performed a series of MD simulations of the human full-parallel telomeric quadruplex by neutralizing its negative charge with K(+) ions. Three combinations of different cation potential parameters and water models have been used: (a) Åqvist ion parameters, TIP3P water model; (b) Joung and Cheatham ion parameters, TIP3P water model; and (c) Joung and Cheatham ion parameters, TIP4Pew water model. For the combinations (b) and (c), the effect of the ionic strength has been evaluated by adding increasing amounts of KCl salt (50, 100, and 200 mM). Two independent simulations using the Åqvist parameters with the TIP3P model show that this combination is clearly less suited for the studied quadruplex with K(+) as counterions. In both simulations, one ion escapes from the channel, followed by significant deformation of the structure, leading to deviating conformation compared to that in the reference crystallographic data. For the other combinations of ion and water potentials, no tendency is observed for the channel ions to escape from the quadruplex channel. In addition, the internal mobility of the three loops, torsion angles, and counterion affinity have been investigated at varied salt concentrations. In summary, the selection of ion and water models is crucial as it can affect both the structure and dynamics as well as the interactions of the quadruplex with its counterions. The results obtained with the TIP4Pew

  6. Accelerated transport of 90Sr following a release of high ionic strength solution in vadose zone sediments

    NASA Astrophysics Data System (ADS)

    Hull, Laurence C.; Schafer, Annette L.

    2008-04-01

    Numerical simulation of cation exchange and mineral precipitation/dissolution reactions using the multiphase reactive geochemical transport code TOUGHREACT has provided important insight into the distribution of 90Sr among layers of geologic strata in a complex vadose zone at the U. S. Department of Energy's Idaho National Laboratory. During a transfer operation in November 1972, 70.4 m 3 of acidic, high ionic strength liquid containing 15,900 Ci of 90Sr was released over five days into alluvial gravels 137 m above the Snake River Plain Aquifer. Sampling data from perched water zones 33 m below the release contain very high levels of 90Sr as do soil samples obtained nearer the point of release. Use of traditional simulation approaches using laboratory-measured constant partitioning coefficients ( Kd) cannot simultaneously explain perched water and soil concentrations. To address the discrepancy, a reactive transport approach was adopted to include competitive cation exchange, dissolution/precipitation of calcite, carbon dioxide gas production and transport, and gibbsite precipitation. Simulation results using this model suggest that some of the 90Sr could have been transported very rapidly immediately after the release with the acceleration facilitated by competition for cation exchange sites with high sodium concentrations in the released liquid and calcium dissolved from calcite, and to a lesser extent by formation of aqueous complexes with nitrate. Once the leading edge of the liquid assemblage was flushed from the alluvium, the mobility of the remaining 90Sr decreased significantly in the absence of the competing cations. Calculations indicate that there should be a net increase in calcite, suggesting that 90Sr could be entrained in the mineral lattice, but insufficient field data exist for confirmation. Sensitivity studies show that the cation exchange selectivity coefficients were the most sensitive individual parameters determining the 90Sr distribution

  7. Accelerated transport of (90)Sr following a release of high ionic strength solution in vadose zone sediments.

    PubMed

    Hull, Laurence C; Schafer, Annette L

    2008-04-28

    Numerical simulation of cation exchange and mineral precipitation/dissolution reactions using the multiphase reactive geochemical transport code TOUGHREACT has provided important insight into the distribution of (90)Sr among layers of geologic strata in a complex vadose zone at the U. S. Department of Energy's Idaho National Laboratory. During a transfer operation in November 1972, 70.4 m(3) of acidic, high ionic strength liquid containing 15,900 Ci of (90)Sr was released over five days into alluvial gravels 137 m above the Snake River Plain Aquifer. Sampling data from perched water zones 33 m below the release contain very high levels of (90)Sr as do soil samples obtained nearer the point of release. Use of traditional simulation approaches using laboratory-measured constant partitioning coefficients (K(d)) cannot simultaneously explain perched water and soil concentrations. To address the discrepancy, a reactive transport approach was adopted to include competitive cation exchange, dissolution/precipitation of calcite, carbon dioxide gas production and transport, and gibbsite precipitation. Simulation results using this model suggest that some of the (90)Sr could have been transported very rapidly immediately after the release with the acceleration facilitated by competition for cation exchange sites with high sodium concentrations in the released liquid and calcium dissolved from calcite, and to a lesser extent by formation of aqueous complexes with nitrate. Once the leading edge of the liquid assemblage was flushed from the alluvium, the mobility of the remaining (90)Sr decreased significantly in the absence of the competing cations. Calculations indicate that there should be a net increase in calcite, suggesting that (90)Sr could be entrained in the mineral lattice, but insufficient field data exist for confirmation. Sensitivity studies show that the cation exchange selectivity coefficients were the most sensitive individual parameters determining the (90)Sr

  8. Effects of background electrolytes and ionic strength on enrichment of Cd(II) ions with magnetic graphene oxide-supported sulfanilic acid.

    PubMed

    Hu, Xin-jiang; Liu, Yun-guo; Zeng, Guang-ming; You, Shao-hong; Wang, Hui; Hu, Xi; Guo, Yi-ming; Tan, Xiao-fei; Guo, Fang-ying

    2014-12-01

    To elucidate the influence mechanisms of background electrolytes and ionic strength on Cd(II) removal, the adsorption of Cd(II) onto magnetic graphene oxide-supported sulfanilic acid (MGO-SA) in aqueous solutions containing different types and concentrations of background electrolytes was studied. The results indicate that Cd(II) adsorption was strongly dependent on pH and could be strongly affected by background electrolytes and ionic strength. The Cd(II) removal was decreased with the presence of background electrolyte cations (Na(+), K(+), Ca(2+), Mg(2+), Mn(2+), Zn(2+), and Ni(2+)), and the divalent cations exerted more obvious influences on the Cd(II) uptake than the monovalent cations at pH 6. Both Cl(-) and NO3(-) had negative effects on Cd(II) adsorption because they can form water-soluble metal-anion complexes with Cd(II) ions. The presence of 0.01molL(-1) Na3PO4 reduced the removal percentage of Cd(II) at pH<5 but extremely enhanced the Cd(II) removal when the pH>5. The Cd(II) adsorption was sensitive to changes in the concentration of NaCl, NaNO3, NaClO4, and Na3PO4. Besides, the adsorption isotherm of Cd(II) onto MGO-SA could be well described by the Freundlich model and was also influenced by the type of background electrolyte ions and the ionic strength. PMID:25238326

  9. Effects of ionic strength on the surface tension and nonequilibrium interfacial characteristics of poly(sodium styrenesulfonate)/dodecyltrimethylammonium bromide mixtures.

    PubMed

    Ábrahám, Ágnes; Kardos, Attila; Mezei, Amália; Campbell, Richard A; Varga, Imre

    2014-05-01

    We rationalize the surface tension behavior and nonequilibrium interfacial characteristics of high molecular weight poly(sodium styrenesulfonate)/dodecyltrimethylammonium bromide (NaPSS/DTAB) mixtures with respect to the ionic strength. Excellent agreement is achieved between experimental data and our recent empirical model [Langmuir 2013, 29, 11554], which is based on the lack of colloidal stability of bulk aggregates in the phase separation region and has no free fitting parameters. We show that the size of a surface tension peak positioned at the edge of the phase separation region can be suppressed by the addition of inert electrolyte, which lowers the critical micelle concentration in relation to the phase separation region. Such manipulation of the peak is possible for the 100 ppm NaPSS/DTAB system because there is a high free surfactant concentration in the phase separation region. The close agreement of our model with the experimental data of samples in the phase separation region with respect to the ionic strength indicates that the surface tension behavior can be rationalized in terms of comprehensive precipitation regardless of whether there is a peak or not. The time scale of precipitation for the investigated system is on the order of one month, which emphasizes the need to understand the dynamic changes in the state of bulk aggregation in order to rationalize the surface properties of strongly interacting mixtures; steady state surface properties measured in the interim period will represent samples far from equilibrium. We show also that the surface properties of samples of low ionic strength outside the equilibrium phase separation region can be extreme opposites depending on the sample history, which is attributed to the generation of trapped nonequilibrium states. This work highlights the need to validate the underlying nature of oppositely charged polyelectrolyte/surfactant systems prior to the interpretation of experimental data within an

  10. Immunological detection of left-handed Z DNA in isolated polytene chromosomes. Effects of ionic strength, pH, temperature and topological stress.

    PubMed Central

    Robert-Nicoud, M; Arndt-Jovin, D J; Zarling, D A; Jovin, T M

    1984-01-01

    We have searched for the presence of left-handed Z DNA in unfixed polytene chromosomes isolated from the salivary glands of Chironomus thummi larvae. Physiological as well as fixation conditions were explored to assess the effects of a variety of factors known to influence the B-Z equilibrium. At neutral pH and physiological ionic strength, a weak immunofluorescence staining confined to the periphery of chromosomal bands is elicited but only by using high concentrations of anti-Z DNA immunoglobulin (IgG). The accessibility of internal highly condensed structures, as monitored with antibodies against core histones, is very limited under these conditions. Increasing the ionic strength exposes core histone determinants but results in a decondensation of the bands. The staining for Z DNA is still weak and primarily restricted to regions resisting decondensation or undergoing collapse. Dramatic changes in anti-Z DNA immunofluorescence intensities occur upon short exposure to low pH. Adjustment of the pH between 2.5 and 2.0 leads to an abrupt large increase in antibody binding, at first confined to a few specific bands and then generalized to bands throughout the chromosomes in a pattern very similar to that elicited in classical acid-fixed squash preparations. The acid-mediated effects are influenced by ionic strength, temperature and prior removal of histones; they can be mimicked by exposure to high temperature at neutral pH. The 'transition pH' assessed with a monoclonal IgG specific for left-handed d(G-C)n sequences is slightly lower than in the case of polyclonal antibodies which also recognize d(A-C)n X d(G-T)n.(ABSTRACT TRUNCATED AT 400 WORDS) Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 7. PMID:6373247

  11. Improved antibody detection by the use of range expansion and longer filter wavelength in a low ionic strength-protamine sulphate Auto-Analyzer system.

    PubMed Central

    Downie, D M; Voak, D

    1976-01-01

    Range expansion, achieved by insertion of a variable resistance between the colorimeter and the recorder together with the use of 550 nm colorimeter filters, has resulted in markedly improved sensitivity for antibody detection, and improved sample identification, in a low ionic strength-protamine sulphate (LISPS) system. Range expansion also permits a lower concentration of red cells to be used, thus economizing on fully typed cells. Glycerol stored frozen cells were found to be only slightly less sensitive than fresh cells in this system. PMID:1002844

  12. Smart Macroporous IPN Hydrogels Responsive to pH, Temperature, and Ionic Strength: Synthesis, Characterization, and Evaluation of Controlled Release of Drugs.

    PubMed

    Dragan, Ecaterina Stela; Cocarta, Ana Irina

    2016-05-18

    Fast responsive macroporous interpenetrating polymer network (IPN) hydrogels were fabricated in this work by a sequential strategy, as follows: the first network, consisting of poly(N,N-dimethylaminoethyl methacrylate) (PDMAEM) cross-linked with N,N'-methylenebisacrylamide (BAAm), was prepared at -18 °C, the second network consisting of poly(acrylamide) (PAAm) cross-linked with BAAm, being also generated by cryogelation technique. Both single network cryogels (SNC) and IPN cryogels were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and water uptake. The presence of weak polycation PDMAEM endows the SNCs and the IPNs cryogels with sensitivity at numerous external stimuli such as pH, temperature, ionic strength, electric field, among which the first three were investigated in this work. It was found that the initial concentration of monomers in both networks was the key factor in tailoring the properties of IPN cryogels such as swelling kinetics, equilibrium water content (EWC), phase transition temperature and the response at ionic strength. The pore size increased after the formation of the second network, the swelling kinetics in pure water being comparable with that of the SNC, phase transition temperature being situated in the range 35-36 °C for IPN cryogels. The water uptake at equilibrium (WUeq) abruptly increased at pH < 3.0 in the case of SNCs, whereas the response of IPN cryogels at the decrease of pH from 6.0 to 1.0 was strongly dependent on the gel structure, the values of WUeq being lower at a higher concentration of DMAEM in the first network, the monomer concentration in the second network being about 10 wt %. The pH response was very much diminished when the monomer concentration was high in both networks (15 wt % in the first network, and 21 wt % in the second network). The increase of the ionic strength from 0 up to 0.3 M NaCl led to the decrease of the WUeq, for all cryogels, the level of dehydration

  13. Effect of Calcium Ion Removal, Ionic Strength, and Temperature on the Conformation Change in Calmodulin Protein at Physiological pH

    PubMed Central

    2014-01-01

    The response of the calmodulin (CaM) protein as a function of calcium ion removal, ionic strength, and temperature at physiological pH condition was investigated using classical molecular dynamics simulations. Changing the ionic strength and temperature came out to be two of the possible routes for observing a conformation change in the protein. This behavior is similar to the conformation change observed in our previous study where a change in the pH was observed to trigger a conformation change in this protein. In the present study, as the calcium ions are removed from the protein, the protein is observed to acquire more flexibility. This flexibility is observed to be more prominent at a higher ionic strength. At a lower ionic strength of 150 mM with all the four calcium ions intact, the N- and C-lobes are observed to come close to a distance of 30 Å starting from an initial separation distance of 48 Å. This conformation change is observed to take place around 50 ns in a simulation of 100 ns. As a second parameter, temperature is observed to play a key role in the conformation change of the protein. With an increase in the temperature, the protein is observed to acquire a more compact form with the formation of different salt bridges between the residues of the N- and the C-lobes. The salt bridge formation leads to an overall lowering of the energy of the protein thus favoring the bending of the two lobes towards each other. The improper and dihedral terms show a significant shift thus leading to a more compact form on increasing the temperature. Another set of simulations is also performed at an increased temperature of 500 K to verify the reproducibility of the results. Thus a set of three possible alterations in the environmental conditions of the protein CaM are studied, with two of them giving rise to a conformation change and one adding flexibility to the protein. PMID:25548559

  14. Effect of Calcium Ion Removal, Ionic Strength, and Temperature on the Conformation Change in Calmodulin Protein at Physiological pH.

    PubMed

    Negi, Sunita

    2014-01-01

    The response of the calmodulin (CaM) protein as a function of calcium ion removal, ionic strength, and temperature at physiological pH condition was investigated using classical molecular dynamics simulations. Changing the ionic strength and temperature came out to be two of the possible routes for observing a conformation change in the protein. This behavior is similar to the conformation change observed in our previous study where a change in the pH was observed to trigger a conformation change in this protein. In the present study, as the calcium ions are removed from the protein, the protein is observed to acquire more flexibility. This flexibility is observed to be more prominent at a higher ionic strength. At a lower ionic strength of 150 mM with all the four calcium ions intact, the N- and C-lobes are observed to come close to a distance of 30 Å starting from an initial separation distance of 48 Å. This conformation change is observed to take place around 50 ns in a simulation of 100 ns. As a second parameter, temperature is observed to play a key role in the conformation change of the protein. With an increase in the temperature, the protein is observed to acquire a more compact form with the formation of different salt bridges between the residues of the N- and the C-lobes. The salt bridge formation leads to an overall lowering of the energy of the protein thus favoring the bending of the two lobes towards each other. The improper and dihedral terms show a significant shift thus leading to a more compact form on increasing the temperature. Another set of simulations is also performed at an increased temperature of 500 K to verify the reproducibility of the results. Thus a set of three possible alterations in the environmental conditions of the protein CaM are studied, with two of them giving rise to a conformation change and one adding flexibility to the protein. PMID:25548559

  15. The effect of Ca2+ ions and ionic strength on Mn(II) oxidation by spores of the marine Bacillus sp. SG-1

    NASA Astrophysics Data System (ADS)

    Toyoda, Kazuhiro; Tebo, Bradley M.

    2013-01-01

    Manganese(IV) oxides, believed to form primarily through microbial activities, are extremely important mineral phases in marine environments where they scavenge a variety of trace elements and thereby control their distributions. The presence of various ions common in seawater are known to influence Mn oxide mineralogy yet little is known about the effect of these ions on the kinetics of bacterial Mn(II) oxidation and Mn oxide formation. We examined factors affecting bacterial Mn(II) oxidation by spores of the marine Bacillus sp. strain SG-1 in natural and artificial seawater of varying ionic conditions. Ca2+ concentration dramatically affected Mn(II) oxidation, while Mg2+, Sr2+, K+, Na+ and NO3- ions had no effect. The rate of Mn(II) oxidation at 10 mM Ca2+ (seawater composition) was four or five times that without Ca2+. The relationship between Ca2+ content and oxidation rate demonstrates that the equilibrium constant is small (on the order of 0.1) and the binding coefficient is 0.5. The pH optimum for Mn(II) oxidation changed depending on the amount of Ca2+ present, suggesting that Ca2+ exerts a direct effect on the enzyme perhaps as a stabilizing bridge between polypeptide components. We also examined the effect of varying concentrations of NaCl or KNO3 (0-2000 mM) on the kinetics of Mn(II) oxidation in solutions containing 10 mM Ca2+. Mn(II) oxidation was unaffected by changes in ionic strength (I) below 0.2, but it was inhibited by increasing salt concentrations above this value. Our results suggest that the critical coagulation concentration is around 200 mM of salt (I = ca. 0.2), and that the ionic strength of seawater (I > 0.2) accelerates the precipitation of Mn oxides around the spores. Under these conditions, the aggregation of Mn oxides reduces the supply of dissolved O2 and/or Mn2+ and inhibits the Mn(II) → Mn(III) step controlling the enzymatic oxidation of Mn(II). Our results suggest that the hardness and ionic strength of the aquatic environment

  16. Salt-tolerant rootstock increases yield of pepper under salinity through maintenance of photosynthetic performance and sinks strength.

    PubMed

    Penella, Consuelo; Landi, Marco; Guidi, Lucia; Nebauer, Sergio G; Pellegrini, Elisa; San Bautista, Alberto; Remorini, Damiano; Nali, Cristina; López-Galarza, Salvador; Calatayud, Angeles

    2016-04-01

    The performance of a salt-tolerant pepper (Capsicum annuum L.) accession (A25) utilized as a rootstock was assessed in two experiments. In a first field experiment under natural salinity conditions, we observed a larger amount of marketable fruit (+75%) and lower Blossom-end Root incidence (-31%) in commercial pepper cultivar Adige (A) grafted onto A25 (A/A25) when compared with ungrafted plants. In order to understand this behavior a second greenhouse experiment was conducted to determine growth, mineral partitioning, gas exchange and chlorophyll a fluorescence parameters, antioxidant systems and proline content in A and A/A25 plants under salinity conditions (80 mM NaCl for 14 days). Salt stress induced significantly stunted growth of A plants (-40.6% of leaf dry weight) compared to the control conditions, while no alterations were observed in A/A25 at the end of the experiment. Accumulation of Na(+) and Cl(-) in leaves and roots was similar in either grafted or ungrafted plants. Despite the activation of protective mechanisms (increment of superoxide dismutase, catalase, ascorbate peroxidase activity and non-photochemical quenching), A plants showed severely reduced photosynthetic CO2 assimilation (-45.6% of AN390) and substantial buildup of malondialdehyde (MDA) by-product, suggesting the inability to counteract salt-triggered damage. In contrast, A/A25 plants, which had a constitutive enhanced root apparatus, were able to maintain the shoot and root growth under salinity conditions by supporting the maintained photosynthetic performance. No increases in catalase and ascorbate peroxidase activities were observed in response to salinity, and MDA levels increased only slightly; indicating that alleviation of oxidative stress did not occur in A/A25 plants. In these plants the increased proline levels could protect enzymatic stability from salt-triggered damage, preserving the photosynthetic performance. The results could indicate that salt stress was vanished by

  17. Studies of a weak polyampholyte at the air-buffer interface: The effect of varying pH and ionic strength

    NASA Astrophysics Data System (ADS)

    Cicuta, Pietro; Hopkinson, Ian

    2001-05-01

    We have carried out experiments to probe the static and dynamic interfacial properties of β-casein monolayers spread at the air-buffer interface, and analyzed these results in the context of models of weak polyampholytes. Measurements have been made systematically over a wide range of ionic strength and pH. In the semidilute regime of surface concentration a scaling exponent, which can be linked to the degree of chain swelling, is found. This shows that at pH close to the isoelectric point, the protein is compact. At pH away from the isoelectric pH the protein is extended. The transition between compact and extended states is continuous. As a function of increasing ionic strength, we observe swelling of the protein at the isoelectric pH but contraction of the protein at pH values away from it. These behaviors are typical of a those predicted theoretically for a weak polyampholyte. Dilational moduli measurements, made as a function of surface concentration exhibit maxima that are linked to the collapse of hydrophilic regions of the protein into the subphase. Based on this data we present a configuration map of the protein configuration in the monolayer. These findings are supported by strain (surface pressure) relaxation measurements and surface quasielastic light scattering measurements which suggest the existence of loops and tails in the subphase at higher surface concentrations.

  18. Myosin assembly critical for the enzyme activity of smooth muscle myosin phosphatase: effects of MgATP, ionic strength, and Mg(2+).

    PubMed

    Sato, O; Ogawa, Y

    2001-06-01

    We suggested that an assembled form of phosphorylated myosin (P-myosin) might exhibit higher affinity for smooth muscle myosin phosphatase (SMMP) than dissociated P-myosin on the basis of the effect of MgATP [Sato and Ogawa (1999) J. Biochem. 126, 787-797]. To further deepen our understanding, we examined the SMMP activity and P-myosin assembly with various ionic strengths and Mg(2+) concentrations, with and without MgATP, all of which are well known to be critical for myosin assembly. The structure of myosin molecules was directly observed by electron microscopy using a rotary shadowing procedure, which was found to be consistent with the sedimentation assay. We found that the SMMP activity was always high when P-myosin was assembled. MgATP, which disassembled P-myosin mostly into a folded conformation, in contrast, decreased the enzyme activity. We also found that glycerol had a dissociating action on P-myosin, primarily dissociating it into an extended conformation, resulting in reduced SMMP activity, and that increases in the ionic strength and Mg(2+) (>5 mM) inhibited SMMP. These results indicate that myosin assembly is essential for SMMP activity. PMID:11388902

  19. Solubility and modeling acid-base properties of adrenaline in NaCl aqueous solutions at different ionic strengths and temperatures.

    PubMed

    Bretti, Clemente; Cigala, Rosalia Maria; Crea, Francesco; De Stefano, Concetta; Vianelli, Giuseppina

    2015-10-12

    Solubility and acid-base properties of adrenaline were studied in NaCl aqueous solutions at different ionic strengths (0ionic strength was modeled by means of the Debye-Hückel type equation and of the SIT (Specific ion Interaction Theory) approach. The specific interaction parameters of the ion pairs were also reported. For the protonation constants, the following thermodynamic values at infinite dilution were obtained: T=298.15 K, logK1(H0)=10.674±0.018 and logK2(H0)=8.954±0.022; T=310.15K, logK1(H0)=10.355±0.018 and logK2(H0)=8.749±0.030. PMID:26122929

  20. An Aqueous Thermodynamic Model for the Complexation of Sodium and Strontium with Organic Chelates valid to High Ionic Strength. I. Ethylenedinitrilotetraacetic acid (EDTA)

    SciTech Connect

    Felmy, Andrew R.; Mason, Marvin J.

    2003-04-01

    An aqueous thermodynamic model is developed, which accurately describes the effects of Na+ complexation, ionic strength, carbonate concentration, and temperature on the complexation of Sr2+ by ethylenedinitrilotetraacetic acid (EDTA) under basic conditions. The model is developed from the analysis of literature data on apparent equilibrium constants, enthalpies, and heat capacities; as well as on an extensive set of solubility data on SrCO3(c) in the presence of EDTA obtained as part of this study. The solubility data for SrCO3(c) were obtained in solutions ranging in Na2CO3 concentration from 0.01m to 1.8m, in NaNO3 concentration from 0 to 5m, and at temperatures extending to 75?C. The final aqueous thermodynamic model is based upon the equations of Pitzer and requires the inclusion of a NaEDTA3- species. An accurate model for the ionic strength dependence of the ion-interaction coefficients for the SrEDTA2- and NaEDTA3- aqueous species allows the extrapolation of standard state equilibrium constants for these species which are significantly different from the 0.1m reference state values available in the literature. The final model is tested by application to chemical systems containing competing metal ions (i.e., Ca2+) to further verify the proposed model and indicate the applicability of the model parameters to chemical systems containing other divalent metal-EDTA complexes.

  1. Forces of interactions between bare and polymer-coated iron and silica: effect of pH, ionic strength, and humic acids.

    PubMed

    Pensini, Erica; Sleep, Brent E; Yip, Christopher M; O'Carroll, Denis

    2012-12-18

    The interactions between a silica substrate and iron particles were investigated using atomic force microscopy-based force spectroscopy (AFM). The micrometer- and nanosized iron particles employed were either bare or coated with carboxymethyl cellulose (CMC), a polymer utilized to stabilize iron particle suspensions. The effect of water chemistry on the forces of interaction was probed by varying ionic strength (with 100 mM NaCl and 100 mM CaCl₂) or pH (4, 5.5, and 8) or by introducing 10 mg/L of humic acids (HA). When particles were uncoated, the forces upon approach between silica and iron were attractive at pH 4 and 5.5 and in 100 mM CaCl₂ at pH 8, but they were negligible in 100 mM NaCl buffered to pH 8 and repulsive in water buffered to pH 8 and in HA solutions. HA produced electrosteric repulsion between iron particles and silica, likely due to its sorption to iron particles. HA sorption to silica was excluded on the basis of experiments conducted with a quartz-crystal microbalance with dissipation monitoring. Repulsion with CMC-coated iron was attributed to electrosteric forces, which were damped at high ionic strength. An extended DLVO model and a modified version of Ohshima's theory were successfully utilized to model AFM data. PMID:23163600

  2. A study of the mechanism of ferritin formation. The effect of pH, ionic strength and temperature, inhibition by imidazole and kinetic analysis.

    PubMed

    Pâgues, E; Pâques, A; Crichton, R R

    1980-06-01

    The rate of ferritin formation in the buffers 4-morpholinepropanesulphonic acid (Mops), 4-morpholineethanesulphonic acid (Mes) and imidazole at pH values from 5.0 to 6.5 is quite similar. However, the rate of iron deposition is much greater in Mops and Mes at pH values above 6.5 than in imidazole. Increasing the concentration of imidazole inhibits ferritin formation and also leads to a transformation in the shape of the kinetic curves observed. This inhibiton is also observed at constant ionic strength but is not found for non-complexing buffers such as Mops. An inhibition of ferritin formation in imidazole and in Mops buffers is also observed with increasing ionic strength. We conclude that the unprotonated form of imidazole inhibits iron deposition, possibly by binding to the active site of the apoferritin molecule. The temperature dependence of iron deposition was examined. An optimum temperature of 50 degrees C was found but the Arrhenius plots were non-linear. On the basis of these and previous results, a kinetic model is developed which accounts well for ferritin formation at pH values below 6.5 and above 7.0 in non-complexing buffers. The model does not account for the kinetics observed at pH values close to neutrality. PMID:6249590

  3. Ionic strength and composition govern the elasticity of biological membranes. A study of model DMPC bilayers by force- and transmission IR spectroscopy.

    PubMed

    Šegota, Suzana; Vojta, Danijela; Pletikapić, Galja; Baranović, Goran

    2015-02-01

    Infrared (IR) spectroscopy was used to quantify the ion mixture effect of seawater (SW), particularly the contribution of Mg(2+) and Ca(2+) as dominant divalent cations, on the thermotropic phase behaviour of 1,2-dimyristoyl-sn-glycero-3-posphocholine (DMPC) bilayers. The changed character of the main transition at 24 °C from sharp to gradual in films and the 1 °C shift of the main transition temperature in dispersions reflect the interactions of lipid headgroups with the ions in SW. Force spectroscopy was used to quantify the nanomechanical hardness of a DMPC supported lipid bilayer (SLB). Considering the electrostatic and ion binding equilibrium contributions while systematically probing the SLB in various salt solutions, we showed that ionic strength had a decisive influence on its nanomechanics. The mechanical hardness of DMPC SLBs in the liquid crystalline phase linearly increases with the increasing fraction of all ion-bound lipids in a series of monovalent salt solutions. It also linearly increases in the gel phase but almost three times faster (the corresponding slopes are 4.9 nN/100 mM and 13.32 nN/100 mM, respectively). We also showed that in the presence of divalent ions (Ca(2+) and Mg(2+)) the bilayer mechanical hardness was unproportionally increased, and that was accompanied with the decrease of Na(+) ion and increase of Cl(-) ion bound lipids. The underlying process is a cooperative and competitive ion binding in both the gel and the liquid crystalline phase. Bilayer hardness thus turned out to be very sensitive to ionic strength as well as to ionic composition of the surrounding medium. In particular, the indicated correlation helped us to emphasize the colligative properties of SW as a naturally occurring complex ion mixture. PMID:25447291

  4. Effects of ionic strength and sulfate upon thermal aggregation of grape chitinases and thaumatin-like proteins in a model system.

    PubMed

    Marangon, Matteo; Sauvage, Francois-Xavier; Waters, Elizabeth J; Vernhet, Aude

    2011-03-23

    Consumers expect white wines to be clear. During the storage of wines, grape proteins can aggregate to form haze. These proteins, particularly chitinases and thaumatin-like proteins (TL-proteins), need to be removed, and this is done through adsorption by bentonite, an effective but inefficient wine-processing step. Alternative processes are sought, but, for them to be successful, an in-depth understanding of the causes of protein hazing is required. This study investigated the role played by ionic strength (I) and sulfate toward the aggregation of TL-proteins and chitinases upon heating. Purified proteins were dissolved in model wine and analyzed by dynamic light scattering (DLS). The effect of I on protein aggregation was investigated within the range from 2 to 500 mM/L. For chitinases, aggregation occurred during heating with I values of 100 and 500 mM/L, depending on the isoform. This aggregation immediately led to the formation of large particles (3 μm, visible haze after cooling). TL-protein aggregation was observed only with I of 500 mM/L; it mainly developed during cooling and led to the formation of finite aggregates (400 nm) that remained invisible. With sulfate in the medium chitinases formed visible haze immediately when heat was applied, whereas TL-proteins aggregated during cooling but not into particles large enough to be visible to the naked eye. The data show that the aggregation mechanisms of TL-proteins and chitinases are different and are influenced by the ionic strength and ionic content of the model wine. Under the conditions used in this study, chitinases were more prone to precipitate and form haze than TL-proteins. PMID:21361294

  5. High Conductivity, High Strength Solid Electrolytes Formed by in Situ Encapsulation of Ionic Liquids in Nanofibrillar Methyl Cellulose Networks.

    PubMed

    Mantravadi, Ramya; Chinnam, Parameswara Rao; Dikin, Dmitriy A; Wunder, Stephanie L

    2016-06-01

    Strong, solid polymer electrolyte ion gels, with moduli in the MPa range, a capacitance of 2 μF/cm(2), and high ambient ionic conductivities (>1 × 10(-3) S/cm), all at room temperature, have been prepared from butyl-N-methyl pyrrolidinium bis(trifluoromethylsulfonyl) imide (PYR14TFSI) and methyl cellulose (MC). These properties are particularly attractive for supercapacitor applications. The ion gels are prepared by codissolution of PYR14TFSI and MC in N,N-dimethylformamide (DMF), which after heating and subsequent cooling form a gel. Evaporation of DMF leave thin, flexible, self-standing ion gels with up to 97 wt % PYR14TFSI, which have the highest combined moduli and ionic conductivity of ion gels to date, with an excellent electrochemical stability window (5.6 V). These favorable properties are attributed to the immiscibility of PYR14TFSI in MC, which permits the ionic conductivity to be independent of the MC at low MC content, and the in situ formation of a volume spanning network of semicrystalline MC nanofibers, which have a high glass transition temperature (Tg = 190 °C) and remain crystalline until they degrade at 300 °C. PMID:27153318

  6. Drug release from E chemistry hypromellose tablets using the Bio-Dis USP type III apparatus: An evaluation of the effect of systematic agitation and ionic strength.

    PubMed

    Asare-Addo, Kofi; Supuk, Enes; Mahdi, Mohammed H; Adebisi, Adeola O; Nep, Elijah; Conway, Barbara R; Kaialy, Waseem; Al-Hamidi, Hiba; Nokhodchi, Ali

    2016-07-01

    The aim of the study was to evaluate the effect of systematic agitation, increasing ionic strength and gel strength on drug release from a gel-forming matrix (HPMC E10M, E4M and E50LV) using USP type III Bio-Dis apparatus with theophylline as a model drug. The triboelectric charging; particle sizing, water content, true density and SEM of all the hypromellose grades, theophylline and formulated blends were characterised. The results showed that balanced inter-particulate forces exist between drug particles and the excipient surface and this enabled optimum charge to mass ratio to be measured. Agitation and ionic strength affected drug release from E50LV and E4M tablet matrices in comparison to the E10M tablet matrices. Drug release increased substantially when water was used as the dissolution media relative to media at pH 1.2 (containing 0.4M NaCl). The results showed all f2 values for the E10M tablet matrices were above 50 suggesting the drug release from these tablet matrices to be similar. Rheological data also explained the different drug release behaviour with the stress required to yield/erode being 1Pa, 150Pa, and 320Pa, for the E50LV, E4M and E10M respectively. The stiffness of the gel was also found to be varied from 2.5Pa, 176.2Pa and 408.3Pa for the E50LV, E4M and E10M respectively. The lower G' value can be explained by a softer gel being formed after tablet introduction into the dissolution media thereby indicating faster drug release. PMID:27038913

  7. Modeling cesium retention onto Na-, K- and Ca-smectite: Effects of ionic strength, exchange and competing cations on the determination of selectivity coefficients

    NASA Astrophysics Data System (ADS)

    Missana, Tiziana; Benedicto, Ana; García-Gutiérrez, Miguel; Alonso, Ursula

    2014-03-01

    Cesium (137Cs) retention onto three homoionic smectites (Na-, K- and Ca-smectite), obtained from natural Spanish FEBEX bentonite, was studied. Special emphasis was given to the analysis of non-linear sorption behaviour and the dependence of selectivity on the ionic strength. A very large set of experimental sorption data was generated from sorption tests under a wide range of pHs (2-11), ionic strengths (10-3 to 100 M), and radionuclide concentrations (10-10 to 10-3 M). The aqueous phase, in contact with the clay, was analysed to quantify the effects of the presence of trace aqueous ions on Cs retention. For all the exchanged clays, Cs sorption was non-linear and a two-site exchange model approach was adopted to interpret and model sorption data. Highly selective sites for Cs sorption (Type 1 sites, T1), resembling those present in micaceous materials, with very low capacity but controlling uptake of Cs at low concentration, were observed. The logarithm value of selectivity coefficients determined for Cs+ in respect to Na+, K+ and Ca2+ in these sites is: LogNaCsK(T1)=7.59±0.15,LogKCsK(T1)=5.15±0.15 and LogCaCsK(T1)=14.41±0.17, respectively. The exchange sites at the surface of smectite sheets (planar sites), with a capacity approximately equivalent to the cation exchange capacity (CEC) of the clay, constitute the second type of sorption sites (Type 2 sites, T2). The logarithm of the selectivity coefficients determined for Cs+ with respect to Na+, K+ and Ca2+ is: LogNaCsK(T2)=1.68±0.15,LogKCsK(T2)=1.16±0.15LogCaCsK(T2)=3.02± 0.15, respectively. The analysis of the dependence of sorption values on the ionic strength clearly indicated that for a correct interpretation of data, competition effects of trace ions in solution must be always accounted for. Data obtained in this work and performed analyses are basic to explain the behaviour of raw FEBEX bentonite, and other smectite-based clay materials, under more complex experimental conditions.

  8. Deposition and Release Behaviour of ZnO Nanoparticles in Saturated Quartz Sand: Role of Biofilm, Ionic Strength, and pH

    NASA Astrophysics Data System (ADS)

    Hwang, Gukhwa; Han, Yosep; Kim, Donghyun; Bradford, Scott A.; Lee, Byoungcheun; Eom, Igchun; Kim, Pil Je; Choi, Siyoung Q.; Lee, Youngsoo; Kim, Hyunjung

    2015-04-01

    The influence of biofilm, ionic strength, and pH on the deposition and release behavior of zinc oxide nanoparticles (ZnO-NPs) was systematically investigated in well-controlled saturated sand column. The results for the initial transport of the ZnO-NPs at pH 9 showed significant retention at the inlet of the column with hyper-exponential retention profiles regardless of solution ionic strength investigated (0.1 and 10 mM) and Pseudomonas putida biofilm coating; however, the increase in solution ionic strength and the presence of biofilm onto quartz sand tended to increase the retention of ZnO-NPs. The trend was likely attributed to more favorable NPs-NPs interaction and greater surface roughness, respectively. The results were well supported by the DLVO interaction energy profiles and Electron Microscopic observations. For the release tests, particle free solution at pH 6 was continuously injected into the column with the ZnO-NPs retained during the initial transport tests. The results for breakthrough curves and time-lapsed retention profiles showed that reducing solution pH led to the release of large amount of the initially retained ZnO-NPs, and the release rate was observed to be greater for bare silica than biofilm-coated sand. The release of ZnO-NPs was likely attributed to the dissolution of Zn2+ due to the change of pH. The proposed mechanism was further verified by conducting additional column tests at higher pHs (pH 9 and 10), which showed significantly reduced release of ZnO-NPs, and even nearly no release at pH 10. The findings from this study suggests that there exists high potential of complete transport of ZnO-NPs into groundwater in that the pH of various soil environments typically ranges from 5 to 9. This work was supported by the National Institute of Environmental Research, Ministry of Environment and the Energy Efficiency & Resources Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted

  9. High ionic strength depresses muscle contractility by decreasing both force per cross-bridge and the number of strongly attached cross-bridges.

    PubMed

    Wang, Li; Bahadir, Anzel; Kawai, Masataka

    2015-06-01

    An increase in ionic strength (IS) lowers Ca(2+) activated tension in muscle fibres, however, its molecular mechanism is not well understood. In this study, we used single rabbit psoas fibres to perform sinusoidal analyses. During Ca(2+) activation, the effects of ligands (ATP, Pi, and ADP) at IS ranging 150-300 mM were studied on three rate constants to characterize elementary steps of the cross-bridge cycle. The IS effects were studied because a change in IS modifies the inter- and intra-molecular interactions, hence they may shed light on the molecular mechanisms of force generation. Both the ATP binding affinity (K1) and the ADP binding affinity (K 0) increased to 2-3x, and the Pi binding affinity (K5) decreased to 1/2, when IS was raised from 150 to 300 mM. The effect on ATP/ADP can be explained by stereospecific and hydrophobic interaction, and the effect on Pi can be explained by the electrostatic interaction with myosin. The increase in IS increased cross-bridge detachment steps (k2 and k-4), indicating that electrostatic repulsion promotes these steps. However, IS did not affect attachment steps (k-2 and k4). Consequently, the equilibrium constant of the detachment step (K2) increased by ~100%, and the force generation step (K4) decreased by ~30%. These effects together diminished the number of force-generating cross-bridges by 11%. Force/cross-bridge (T56) decreased by 26%, which correlates well with a decrease in the Debye length that limits the ionic atmosphere where ionic interactions take place. We conclude that the major effect of IS is a decrease in force/cross-bridge, but a decrease in the number of force generating cross-bridge also takes place. The stiffness during rigor induction did not change with IS, demonstrating that in-series compliance is not much affected by IS. PMID:25836331

  10. Effect of ionic strength on intra-protein electron transfer reactions: The case study of charge recombination within the bacterial reaction center.

    PubMed

    Giustini, Mauro; Parente, Matteo; Mallardi, Antonia; Palazzo, Gerardo

    2016-09-01

    It is a common believe that intra-protein electron transfer (ET) involving reactants and products that are overall electroneutral are not influenced by the ions of the surrounding solution. The results presented here show an electrostatic coupling between the ionic atmosphere surrounding a membrane protein (the reaction center (RC) from the photosynthetic bacterium Rhodobacter sphaeroides) and two very different intra-protein ET processes taking place within it. Specifically we have studied the effect of salt concentration on: i) the kinetics of the charge recombination between the reduced primary quinone acceptor QA(-) and the primary photoxidized donor P(+); ii) the thermodynamic equilibrium (QA(-)↔QB(-)) for the ET between QA(-) and the secondary quinone acceptor QB. A distinctive point of this investigation is that reactants and products are overall electroneutral. The protein electrostatics has been described adopting the lowest level of complexity sufficient to grasp the experimental phenomenology and the impact of salt on the relative free energy level of reactants and products has been evaluated according to suitable thermodynamic cycles. The ionic strength effect was found to be independent on the ion nature for P(+)QA(-) charge recombination where the leading electrostatic term was the dipole moment. In the case of the QA(-)↔QB(-) equilibrium, the relative stability of QA(-) and QB(-) was found to depend on the salt concentration in a fashion that is different for chaotropic and kosmotropic ions. In such a case both dipole moment and quadrupole moments of the RC must be considered. PMID:27297026

  11. Inhibition of potato polyphenol oxidase by anions and activity in various carboxylate buffers (pH 4.8) at constant ionic strength.

    PubMed

    Malkin, B D; Thickman, K R; Markworth, C J; Wilcox, D E; Kull, F J

    2001-01-01

    The activity of potato polyphenol oxidase (tyrosinase) toward DL-3,4-dihydroxyphenylalanine (K(M) 5.39 mM) was studied using a variety of carboxylate buffers at a common pH and ionic strength. Enzyme activity, greatest in citrate and least in oxalate, correlated with increasing carboxyl concentration and molecular mass. The lower activity in oxalate was attributed to more effective chelation of a copper(II) form of the enzyme by the oxalate dianion. Sodium halide salts inhibited the enzyme. Although there was little difference in inhibition between sodium and potassium salts, the degree and type of inhibition was anion dependent; K(is), values for NaCl and KCl, (competitive inhibitors) were 1.82 and 1.62 mM, whereas Na(2) SO(4) and K(2) SO(4) (mixed inhibitors) had K(is) and K(ii) values in the 250 to 450 mM range. PMID:11342282

  12. Effect of pH, ionic strength, dissolved organic carbon, time, and particle size on metals release from mine drainage impacted streambed sediments.

    PubMed

    Butler, Barbara A

    2009-03-01

    Acid-mine drainage (AMD) input to a stream typically results in the stream having a reduced pH, increased concentrations of metals and salts, and decreased biological productivity. Removal and/or treatment of these AMD sources is desired to return the impacted stream(s) to initial conditions, or at least to conditions suitable for restoration of the aquatic ecosystem. Some expected changes in the water chemistry of the stream following removal of AMD input include an increase in pH, a decrease in ionic strength, and an increase in dissolved organic carbon (DOC) concentrations from increased biological activity in the absence of toxic metals concentrations. These changes in water chemistry may cause the existing contaminated bed sediments to become a source of metals to the stream water. Streambed sediments, collected from North Fork Clear Creek (NFCC), Colorado, currently impacted by AMD, were assessed for the effects of pH, ionic strength, DOC concentration, time, and particle size on metals release using a factorial design. The design included two levels for each chemical parameter (ionic strength = 40 and 80% lower than ambient; pH = 6 and 8; and DOC = 1 and 3 mg/l higher than ambient), ten sampling times (from zero to 48 h), and two size fractions of sediments (63 microm < or = x < 2 mm and < 63 microm). Greater concentrations of metals were released from the smaller sized sediments compared with the larger, with the exception of Cu. A mild acid digestion (0.6M HCl) evaluated the amount of each metal that could be removed easily from each of the sediment size fractions. Release of all metals over all time points, treatments, and from both sediment sizes was less than 1% of the extractable concentrations, with the exception of Mn, which ranged from 4 to 7% from the smaller sized sediment. Greater percentages of the 0.6M HCl-extractable concentrations of Cu, Fe, and Zn were released from the larger sized sediment, while this was true for release of Cd and Mn from

  13. Reversal of flagellar rotation is important in initial attachment of Escherichia coli to glass in a dynamic system with high- and low-ionic-strength buffers.

    PubMed

    McClaine, Jennifer W; Ford, Roseanne M

    2002-03-01

    The attachment rates of wild-type, smooth-swimming, tumbly, and paralyzed Escherichia coli to glass was measured at fluid velocities of 0.0044 and 0.044 cms(-1) (corresponding to shear rates of 0.34 and 3.4 s(-1), respectively), in 0.02 and 0.2 M buffer solutions. At the highest ionic strength, we did not observe a significant difference in the attachment rate of wild-type and paralyzed cells at either fluid velocity. However, when the ionic strength was reduced, paralyzed bacteria attached at rates 4 and 10 times lower than that of the wild type under fluid velocities of 0.0044 and 0.044 cms(-1), respectively. This suggested that the rotation of the flagella assisted in attachment. We then compared the attachment rates of smooth-swimming (counterclockwise rotation only) and tumbly (clockwise rotation only) cells to the wild type to determine whether the direction of rotation was important to cell attachment. At 0.0044 cms(-1), the smooth-swimming cells attached at rates similar to that of the wild type in both buffer solutions but significantly less at the higher fluid velocity. Tumbly cells attached at much lower rates under all conditions. Thus, the combination of clockwise and counterclockwise flagellar rotation and their coupling appeared to be important in cell attachment. We considered a number of hypotheses to interpret these observations, including a residence time analysis and a comparison of traditional Derjaguin-Landau-Verwey-Overbeek (DLVO) theory to soft-particle theory. PMID:11872478

  14. Zn2+ and Sr2+ Adsorption at the TiO2 (110)-Electrolyte Interface: Influence of Ionic Strength, Coverage, and Anions

    SciTech Connect

    Zhang,Z.; Fenter, P.; Cheng, L.; Sturchio, N.; Bedzyk, M.; Machesky, M.; Anovitz, L.; Wesolowski, D.

    2006-01-01

    The X-ray standing wave technique was used to probe the sensitivity of Zn{sup 2+} and Sr{sup 2+} ion adsorption to changes in both the adsorbed ion coverage and the background electrolyte species and concentrations at the rutile ({alpha}-TiO{sub 2}) (110)-aqueous interface. Measurements were made with various background electrolytes (NaCl, NaTr, RbCl, NaBr) at concentrations as high as 1 m. The results demonstrate that Zn{sub 2+} and Sr{sub 2+} reside primarily in the condensed layer and that the ion heights above the Ti-O surface plane are insensitive to ionic strength and the choice of background electrolyte (with <0.1 Angstroms changes over the full compositional range). The lack of any specific anion coadsorption upon probing with Br{sup -}, coupled with the insensitivity of Zn{sup 2+} and Sr{sup 2+} cation heights to changes in the background electrolyte, implies that anions do not play a significant role in the adsorption of these divalent metal ions to the rutile (110) surface. Absolute ion coverage measurements for Zn{sup 2+} and Sr{sup 2+} show a maximum Stern-layer coverage of {approx}0.5 monolayer, with no significant variation in height as a function of Stern-layer coverage. These observations are discussed in the context of Gouy-Chapman-Stern models of the electrical double layer developed from macroscopic sorption and pH-titration studies of rutile powder suspensions. Direct comparison between these experimental observations and the MUltiSIte Complexation (MUSIC) model predictions of cation surface coverage as a function of ionic strength revealed good agreement between measured and predicted surface coverages with no adjustable parameters.

  15. Inkjet-printed gold nanoparticle chemiresistors: influence of film morphology and ionic strength on the detection of organics dissolved in aqueous solution.

    PubMed

    Chow, Edith; Herrmann, Jan; Barton, Christopher S; Raguse, Burkhard; Wieczorek, Lech

    2009-01-19

    The influence of film morphology on the performance of inkjet-printed gold nanoparticle chemiresistors has been investigated. Nanoparticles deposited from a single-solvent system resulted in a "coffee ring"-like structure with most of the materials deposited at the edge. It was shown that the uniformity of the film could be improved if the nanoparticles were deposited from a mixture of solvents comprising N-methyl-2-pyrrolidone and water. Electrical conductivity measurements showed that both "coffee ring" and "flat" films were qualitatively similar suggesting that the films have similar nanoscale structures. To form the functional chemiresistor device, the 4-(dimethylamino)pyridine coating on the nanoparticle was exchanged with 1-hexanethiol to provide a hydrophobic sensing layer. The performance of 1-hexanethiol coated gold nanoparticle chemiresistors to small organic molecules, toluene, dichloromethane and ethanol dissolved in 1 M KCl in regard to changes in impedance and response times was unaffected by the film morphology. For larger hydrocarbons such as octane, the rate of uptake of the analyte into the film was significantly faster when the flatter nanoparticle film was used as opposed to the "coffee ring" film which has a thicker edge. Furthermore, the presence of potassium and chloride ions in the solution media does not significantly affect the impedance of the nanoparticle film at 1 Hz (<2% variation in film impedance over more than four orders of magnitude change in ionic strength). However, the ionic strength of the media affected the partitioning of the analyte into the hydrophobic nanoparticle film. The response of the sensor was found to increase with an increased salt concentration due to a salting-out of the analyte from the solution. PMID:19100893

  16. Ionic modification of calcium phosphate cement viscosity. Part II: hypodermic injection and strength improvement of brushite cement.

    PubMed

    Barralet, J E; Grover, L M; Gbureck, U

    2004-05-01

    Brushite-forming calcium phosphate cements are of great interest as bone replacement materials because they are resorbable in physiological conditions. However, their short setting times, low mechanical strengths and limited injectability limit broad clinical application. In this study, we showed that a significant improvement of these properties of brushite cement could be achieved by the use of sodium citrate or citric acid as setting retardants, such that workable cement pastes with a powder to liquid ratio of up to 5 could be manufactured. The cement used in this study consisted of an equimolar powder mixture of beta-tricalcium phosphate and monocalcium phosphate hydrate The use of 500 mM-1M retardant solutions as liquid phase enabled initial setting times of 8-12 min. Wet compressive strength were found to be in the range between 12-18 MPa after immersion of uncompacted cement samples in serum for 24 h. A further strength improvement to 32 MPa was obtained by compaction of the cement paste during samples preparation. This is significant because high-temperature processes cannot be used to fabricate hydrated calcium phosphate materials. Cement pastes were injectable through a hypodermic needle at a powder to liquid ratio of 3.3 g/ml when a 1M citric acid was used as liquid phase, thus enabling precise controlled delivery to small defects. PMID:14741635

  17. Enhancing the basicity of ionic liquids by tuning the cation-anion interaction strength and via the anion-tethered strategy.

    PubMed

    Xu, Dan; Yang, Qiwei; Su, Baogen; Bao, Zongbi; Ren, Qilong; Xing, Huabin

    2014-01-30

    Ionic liquids (ILs) with relatively strong basicity often show impressive performance in chemical processes, so it is important to enhance the basicity of ILs by molecular design. Here, we proposed two effective ways to enhance the basicity of ILs: by weakening the cation-anion interaction strength and by employing the anion-tethered strategy. Notably, two quantum-chemical parameters, the most negative surface electrostatic potential and the lowest surface average local ionization energy, were adopted as powerful tools to demonstrate the electrostatic and covalent aspects of basicity, respectively, at the microscopic level. It was shown that, for the ILs with the same anion (acetate or trifluoroacetate), the basicity of the ILs could be enhanced when the cation-anion interaction strength was weakened. For the acetate anion-based ILs, the hydrogen-bonding basicity scale (β) increased by 29% when the cation changed from 1-butyl-3-methylimidazolium ([Bmim]) to tetrabutylphosphonium ([P4444]), achieving one of the highest reported β values for ILs. Moreover, it was also demonstrated that, when an amine group was tethered to the anion of the IL, its basicity was stronger than when it was tethered to the cation. These results are highly instructive for designing ILs with strong basicity and for improving the efficiency of IL-based processes, such as CO2 capture, SO2 and acetylene absorption, dissolution of cellulose, extraction of bioactive compounds, and so on. PMID:24387657

  18. Ionization potentials, electron affinities, resonance excitation energies, oscillator strengths, and ionic radii of element Uus (Z = 117) and astatine.

    PubMed

    Chang, Zhiwei; Li, Jiguang; Dong, Chenzhong

    2010-12-30

    Multiconfiguration Dirac-Fock (MCDF) method was employed to calculate the first five ionization potentials, electron affinities, resonance excitation energies, oscillator strengths, and radii for the element Uus and its homologue At. Main valence correlation effects were taken into account. The Breit interaction and QED effects were also estimated. The uncertainties of calculated IPs, EAs, and IR for Uus and At were reduced through an extrapolation procedure. The good consistency with available experimental and other theoretical values demonstrates the validity of the present results. These theoretical data therefore can be used to predict some unknown physicochemical properties of element Uus, Astatine, and their compounds. PMID:21141866

  19. High Ionic Strength Depresses Muscle Contractility by Decreasing both Force per Cross-bridge and the Number of Strongly Attached Cross-bridges

    PubMed Central

    Wang, Li; Bahadir, Anzel; Kawai, Masataka

    2015-01-01

    An increase in ionic strength (IS) lowers Ca2+ activated tension in muscle fibres, however, its molecular mechanism is not well understood. In this study, we used single rabbit psoas fibres to perform sinusoidal analyses. During Ca2+ activation, the effects of ligands (ATP, Pi, and ADP) at IS ranging 150 mM – 300 mM were studied on three rate constants to characterize elementary steps of the cross-bridge cycle. The IS effects were studied because a change in IS modifies the inter- and intra-molecular interactions, hence they may shed light on the molecular mechanisms of force generation. Both the ATP binding affinity (K1) and the ADP binding affinity (K0) increased to 2-3x, and the Pi binding affinity (K5) decreased to 1/2, when IS was raised from 150 mM to 300 mM. The effect on ATP/ADP can be explained by stereospecific and hydrophobic interaction, and the effect on Pi can be explained by the electrostatic interaction with myosin. The increase in IS increased cross-bridge detachment steps (k2 and k−4), indicating that electrostatic repulsion promotes these steps. However, IS did not affect attachment steps (k−2 and k4). Consequently, the equilibrium constant of the detachment step (K2) increased by ~100%, and the force generation step (K4) decreased by ~30%. These effects together diminished the number of force-generating cross-bridges by 11%. Force/cross-bridge (T56) decreased by 26%, which correlates well with a decrease in the Debye length that limits the ionic atmosphere where ionic interactions take place. We conclude that the major effect of IS is a decrease in force/cross-bridge, but a decrease in the number of force generating cross-bridge also takes place. The stiffness during rigor induction did not change with IS, demonstrating that in-series compliance is not much affected by IS. PMID:25836331

  20. Capacitive Deionization of High-Salinity Solutions

    SciTech Connect

    Sharma, Ketki; Gabitto, Jorge; Mayes, Richard T.; Yiacoumi, Sotira; Bilheux, Hassina Z.; Walker, Lakeisha M.H.; Dai, Sheng; Tsouris, Costas

    2014-12-22

    Desalination of high salinity solutions has been studied using a novel experimental technique and a theoretical model. Neutron imaging has been employed to visualize lithium ions in mesoporous carbon materials, which are used as electrodes in capacitive deionization for water desalination. Experiments were conducted with a flow-through capacitive deionization cell designed for neutron imaging and with lithium chloride (6LiCl) as the electrolyte. Sequences of neutron images have been obtained at a relatively high concentration of lithium chloride (6LiCl) solution to provide information on the transport of ions within the electrodes. A new model that computes the individual ionic concentration profiles inside mesoporous carbon electrodes has been used to simulate the capacitive deionization process. Modifications have also been introduced into the simulation model to calculate results at high electrolyte concentrations. Experimental data and simulation results provide insight into why capacitive deionization is not effective for desalination of high ionic-strength solutions. The combination of experimental information, obtained through neutron imaging, with the theoretical model will help in the design of capacitive deionization devices, which can improve the process for high ionic-strength solutions.

  1. Capacitive Deionization of High-Salinity Solutions

    DOE PAGESBeta

    Sharma, Ketki; Gabitto, Jorge; Mayes, Richard T.; Yiacoumi, Sotira; Bilheux, Hassina Z.; Walker, Lakeisha M.H.; Dai, Sheng; Tsouris, Costas

    2014-12-22

    Desalination of high salinity solutions has been studied using a novel experimental technique and a theoretical model. Neutron imaging has been employed to visualize lithium ions in mesoporous carbon materials, which are used as electrodes in capacitive deionization for water desalination. Experiments were conducted with a flow-through capacitive deionization cell designed for neutron imaging and with lithium chloride (6LiCl) as the electrolyte. Sequences of neutron images have been obtained at a relatively high concentration of lithium chloride (6LiCl) solution to provide information on the transport of ions within the electrodes. A new model that computes the individual ionic concentration profilesmore » inside mesoporous carbon electrodes has been used to simulate the capacitive deionization process. Modifications have also been introduced into the simulation model to calculate results at high electrolyte concentrations. Experimental data and simulation results provide insight into why capacitive deionization is not effective for desalination of high ionic-strength solutions. The combination of experimental information, obtained through neutron imaging, with the theoretical model will help in the design of capacitive deionization devices, which can improve the process for high ionic-strength solutions.« less

  2. Salinization and Saline Environments

    NASA Astrophysics Data System (ADS)

    Vengosh, A.

    2003-12-01

    One of the most conspicuous phenomena of water-quality degradation, particularly in arid and semi-arid zones, is salinization of water and soil resources. Salinization is a long-term phenomenon, and during the last century many aquifers and river basins have become unsuitable for human consumption owing to high levels of salinity. Future exploitation of thousands of wells in the Middle East and in many other water-scarce regions in the world depends, to a large extent, on the degree and rate of salinization. Moreover, every year a large fraction of agricultural land is salinized and becomes unusable.Salinization is a global environmental phenomenon that affects many different aspects of our life (Williams, 2001a, b): changing the chemical composition of natural water resources (lakes, rivers, and groundwater), degrading the quality of water supply to the domestic and agriculture sectors, contribution to loss of biodiversity, taxonomic replacement by halotolerant species ( Williams, 2001a, b), loss of fertile soil, collapse of agricultural and fishery industries, changing of local climatic conditions, and creating severe health problems (e.g., the Aral Basin). The damage due to salinity in the Colorado River Basin alone, for example, ranges between 500 and 750 million per year and could exceed 1 billion per year if the salinity in the Imperial Dam increases from 700 mg L-1 to 900 mg L-1 (Bureau of Reclamation, 2003, USA). In Australia, accelerating soil salinization has become a massive environmental and economic disaster. Western Australia is "losing an area equal to one football oval an hour" due to spreading salinity ( Murphy, 1999). The annual cost for dryland salinity in Australia is estimated as AU700 million for lost land and AU$130 million for lost production ( Williams et al., 2002). In short, the salinization process has become pervasive.Salinity in water is usually defined by the chloride content (mg L-1) or total dissolved solids content (TDS, mg L-1or g

  3. Aggregation of nanoscale iron oxyhydroxides and corresponding effects on metal uptake, retention, and speciation: I. Ionic-strength and pH

    NASA Astrophysics Data System (ADS)

    Dale, J. G.; Stegemeier, J. P.; Kim, C. S.

    2015-01-01

    The capacity of nanosized particles to adsorb and sequester dissolved metals can be significantly impacted by the mechanism and extent of aggregation the particles have undergone, which in turn can affect the long-term fate and transport of potentially toxic metals in natural aqueous systems. Suspensions of monodisperse nanoscale iron oxyhydroxides were synthesized and subjected to increased pH (pH 8.0, 10.0) or ionic strength (0.1, 1.0 M NaNO3) conditions to induce various states of aggregation prior to conducting macroscopic adsorption/desorption experiments with dissolved Cu(II) or Zn(II). The metal adsorption and retention capacities of the nanoparticle aggregates were compared to one another and to non-aggregated control nanoparticles, while the mode(s) of metal sorption to the nanoparticle surfaces were characterized by extended X-ray absorption fine structure (EXAFS) spectroscopy analysis. With increasing aggregation by both pH and ionic strength, the proportion of introduced zinc adsorbed to the iron oxyhydroxide nanoparticles progressively decreased from 45% on the monodispersed control particles to as low as 16% on the aggregates, while the proportion of introduced zinc retained upon desorption (obtained by lowering the suspension pH) increased from 7% on the control particles to as much as 17% on the aggregated particles. Copper exhibited a subtler trend of only slightly declining uptake (from 43% to 36%) and retention (from 35% to 30%) with increasing aggregation state. EXAFS analysis was consistent with the macroscopic results, showing relatively little change in Cu speciation between samples analyzed before and after the desorption step but significant increases in Zn-Fe interatomic distances and coordination numbers after desorption. This suggests the presence of both strongly- and weakly-bound zinc ions; the latter are likely affiliated with less stable, more distorted surface sorption sites and are thus more readily desorbed, resulting in the

  4. Salinization and Saline Environments

    NASA Astrophysics Data System (ADS)

    Vengosh, A.

    2003-12-01

    One of the most conspicuous phenomena of water-quality degradation, particularly in arid and semi-arid zones, is salinization of water and soil resources. Salinization is a long-term phenomenon, and during the last century many aquifers and river basins have become unsuitable for human consumption owing to high levels of salinity. Future exploitation of thousands of wells in the Middle East and in many other water-scarce regions in the world depends, to a large extent, on the degree and rate of salinization. Moreover, every year a large fraction of agricultural land is salinized and becomes unusable.Salinization is a global environmental phenomenon that affects many different aspects of our life (Williams, 2001a, b): changing the chemical composition of natural water resources (lakes, rivers, and groundwater), degrading the quality of water supply to the domestic and agriculture sectors, contribution to loss of biodiversity, taxonomic replacement by halotolerant species ( Williams, 2001a, b), loss of fertile soil, collapse of agricultural and fishery industries, changing of local climatic conditions, and creating severe health problems (e.g., the Aral Basin). The damage due to salinity in the Colorado River Basin alone, for example, ranges between 500 and 750 million per year and could exceed 1 billion per year if the salinity in the Imperial Dam increases from 700 mg L-1 to 900 mg L-1 (Bureau of Reclamation, 2003, USA). In Australia, accelerating soil salinization has become a massive environmental and economic disaster. Western Australia is "losing an area equal to one football oval an hour" due to spreading salinity ( Murphy, 1999). The annual cost for dryland salinity in Australia is estimated as AU700 million for lost land and AU$130 million for lost production ( Williams et al., 2002). In short, the salinization process has become pervasive.Salinity in water is usually defined by the chloride content (mg L-1) or total dissolved solids content (TDS, mg L-1or g

  5. Modeling the diffusion of Na+ in compacted water-saturated Na-bentonite as a function of pore water ionic strength

    SciTech Connect

    Bourg, I.C.; Sposito, G.; Bourg, A.C.M.

    2008-08-15

    Assessments of bentonite barrier performance in waste management scenarios require an accurate description of the diffusion of water and solutes through the barrier. A two-compartment macropore/nanopore model (on which smectite interlayer nanopores are treated as a distinct compartment of the overall pore space) was applied to describe the diffusion of {sup 22}Na{sup +} in compacted, water-saturated Na-bentonites and then compared with the well-known surface diffusion model. The two-compartment model successfully predicted the observed weak ionic strength dependence of the apparent diffusion coefficient (D{sub a}) of Na{sup +}, whereas the surface diffusion model did not, thus confirming previous research indicating the strong influence of interlayer nanopores on the properties of smectite clay barriers. Since bentonite mechanical properties and pore water chemistry have been described successfully with two-compartment models, the results in the present study represent an important contribution toward the construction of a comprehensive two-compartment model of compacted bentonite barriers.

  6. Influence of ionic strength changes on the structure of pre-adsorbed salivary films. A response of a natural multi-component layer.

    PubMed

    Macakova, Lubica; Yakubov, Gleb E; Plunkett, Mark A; Stokes, Jason R

    2010-05-01

    Salivary films coating oral surfaces are critically important for oral health. This study focuses on determining the underlying nature of this adsorbed film and how it responds to departures from physiological conditions due to changes in ionic strength. Under physiological conditions, it is found that pre-adsorbed in vitro salivary film on hydrophobic surfaces is present as a highly hydrated viscoelastic layer. We follow the evolution of this film in terms of its effective thickness, hydration and viscoelastic properties, as well as adsorbed mass of proteins, using complementary surface characterisation methods: a Surface Plasmon Resonance (SPR) and a Quartz Crystal Microbalance with Dissipation Monitoring (QCM-D). Our results support a heterogeneous model for the structure of the salivary film with an inner dense anchoring layer and an outer highly extended hydrated layer. Further swelling of the film was observed upon decreasing the salt concentration down to 1mM NaCl. However, upon exposure to deionised water, a collapse of the film occurs that was associated with the loss of water contained within the adsorbed layer. We suggest that the collapse in deionised water is driven by an onset of electrostatic attraction between different parts of the multi-component salivary film. It is anticipated that such changes could also occur when the oral cavity is exposed to food, beverage, oral care and pharmaceutical formulations where drastic changes to the structural integrity of the film is likely to have implications on oral health, sensory perception and product performance. PMID:20133111

  7. Impact of ionic strength of growth on the physiochemical properties, structure, and adhesion of Listeria monocytogenes polyelectrolyte brushes to a silicon nitride surface in water.

    PubMed

    Gordesli, Fatma Pinar; Abu-Lail, Nehal I

    2012-12-15

    The adhesion energies between pathogenic Listeria monocytogenes EGDe to a model surface of silicon nitride were quantified using atomic force microscopy (AFM) in water for cells grown in pure media (as the control) and in media of four different ionic strengths of added NaCl (IS of 0.05 M, 0.1 M, 0.3 M and 0.5 M NaCl). The physiochemical properties of L. monocytogenes EGDe surface brushes were shown to have a strong influence on the adhesion of the microbe to the silicon nitride surface. The transitions in the adhesion energies, physiochemical properties, and the structure of bacterial surface polyelectrolyte brushes were observed for the cells grown in the media of 0.1M added NaCl. Our results suggested that the highest long-range electrostatic repulsion which was partially balanced by the Liftshitz-van der Waals attraction for the cells grown at 0.1M was responsible for the highest energy barrier to adhesion for these cells as predicted by the soft-particle analysis of DLVO theory and the lower adhesion measured by AFM. PMID:23010316

  8. Complexation study of NpO{sub 2}{sup +} and UO{sub 2}{sup 2+} ions with several organic ligands in aqueous solutions of high ionic strength

    SciTech Connect

    Borkowski, M.; Lis, S.; Choppin, G.R.

    1995-09-01

    The acid dissociation constants, pK{sub a}, and the stability constants for NpO{sub 2}{sup +} and UO{sub 2}{sup 2+} have been measured for certain organic ligands [acetate, {alpha}-hydroxyisobutyrate, lactate, ascorbate, oxalate, citrate, EDTA, 8-hydroxyquinoline, 1, 10-phenanthroline, and thenoyltrifluoroacetone] in 5 m (NaCl) ionic strength solution. The pK{sub a} values were determined by potentiometry or spectrometry. These methods, as well as solvent extraction with {sup 233}U and {sup 237}Np radiotracers, were used to measure the stability constants of the 1:1 and 1:2 complexes of dioxo cations. These constants were used to estimate the concentrations required to result in 10 % competition with hydrolysis in the 5 m NaCl solution. Such estimates are of value in assessing the solubility from radioactive waste of AnO{sub 2}{sup +} and AnO{sub 2}{sup 2+} in brine solutions in contact with nuclear waste in a salt-bed repository.

  9. An Aqueous Thermodynamic Model for the Complexation of Sodium and Strontium with Organic Chelators valid to High Ionic Strength. II. N-(2-hydroxyethyl)ethylenedinitrilotriacetic acid (HEDTA)

    SciTech Connect

    Felmy, Andrew R.; Mason, Marvin J.; Qafoku, Odeta

    2003-04-01

    This is the second paper in a two part series on the development of aqueous thermodynamic models for the complexation of Na+ and Sr2+ with organic chelators. In this paper the development of an aqueous thermodynamic model describing the effects of ionic strength, carbonate concentration, and temperature on the complexation of Sr2+ by HEDTA under basic conditions is presented. The thermodynamic model describing the Na+ interactions with the HEDTA3- chelate relies solely on the use of Pitzer ion-interaction parameters. The exclusive use of Pitzer ion-interaction parameters differs significantly from our previous model for EDTA, which required the introduction of a NaEDTA3- ion pair. Estimation of the Pitzer ion-interaction parameters for HEDTA3- and SrHEDTA- with Na+ allows the extrapolation of a standard state equilibrium constant for the SrHEDTA- species which is one order of magnitude greater than the 0.1M reference state value available in the literature. The overall model is developed from data available in the literature on apparent equilibrium constants for HEDTA protonation, the solubility of salts in concentrated HEDTA solutions, and from new data on the solubility of SrCO3(c) obtained as part of this study. The predictions of the final thermodynamic model for the Na-Sr-OH-CO3-NO3-HEDTA-H2O system are tested by application to chemical systems containing competing metal ions (i.e., Ca2+).

  10. Stabilization and Control of Rheological Properties of Fe2O3/Al(OH)(3)-rich Colloidal Slurries Under High Ionic Strength and pH

    SciTech Connect

    Chun, Jaehun; Poloski, Adam P.; Hansen, E. K.

    2010-08-01

    Controlling the stability and rheological properties of colloidal slurries has been an important but challenging issue for various applications such as cosmetics, ceramic processing, and nuclear waste treatment. For example, at the Department of Energy (DOE) Hanford and Savannah River sites, operation of the waste treatment facilities with increased solids loading affects waste processing rates but impacts the rheological properties. We investigated various rheological modifiers on a Fe2O3-rich nuclear waste simulant, characterized by high ionic strength and pH, in order to reduce rheological properties of the colloidal slurry. Rheological modifiers change particle interactions in colloidal slurries; they mainly alter the electrostatic and steric interactions between particles, leading to a change in rheological properties. Weak acid type rheological modifiers strengthen electrostatic repulsion whereas nonionic/polymer surfactant type rheological modifiers introduce a steric repulsion. Using rheological analysis, it was found that citric acid and polyacrylic acid are good rheological modifiers for the simulant tested, effectively reducing yield stresses by as much as 70%. Further analysis supports that addition of such rheological modifiers increases the stability of the slurry. Binding cations in bulk solution and adsorption on the surface of the particles are identified as a reasonable working mechanism for citric acid and polyacrylic acid.

  11. An evaluation of in-situ measurements of water temperature, specific conductance, and pH in low ionic strength streams

    USGS Publications Warehouse

    Ranalli, A.J.

    1998-01-01

    Survey for continuous measurement of water temperature, specific conductance, and pH in four low ionic strength streams in the Catskill Mountains of New York was evaluated through a calculation of their bias, precision, and accuracy and by comparison with laboratory measurements of specific conductance and pH on samples collected concurrently. Results indicate that the mini-monitor measurements of specific conductance and pH in an acidic stream (acid-neutralizing capacity always less than 0) agreed with laboratory measurements well enough that the minimonitors can be used to supplement laboratory measurements (mean difference in pH was 0.02 pH unit and mean difference in specific conductance was 0.72 ??S cm-1. This mean difference was 0.32 ??S cm-1 if the minimonitor data were adjusted by the bias). In less acidic streams (two streams in which the acid-neutralizing capacity was always greater than 0 and one in which the acid-neutralizing capacity was greater than 0 except during high flows), there was poor agreement between laboratory and minimonitor measurements of specific conductance at high flows and pH at all flows. The water-temperature probes measured with sufficiently small bias (-0.1 ??C) and adequate precision (??0.70 ??C) for use with most applications.

  12. Complex coacervation of hyaluronic acid and chitosan: effects of pH, ionic strength, charge density, chain length and the charge ratio.

    PubMed

    Kayitmazer, A B; Koksal, A F; Kilic Iyilik, E

    2015-11-28

    Hyaluronic acid (HA) and chitosan (CH) can form nanoparticles, hydrogels, microspheres, sponges, and films, all with a wide range of biomedical applications. This variety of phases reflects the multiple pathways available to HA/CH complexes. Here, we use turbidimetry, dynamic light scattering, light microscopy and zeta potential measurements to show that the state of the dense phase depends on the molar ratio of HA carboxyl to CH amines, and is strongly dependent on their respective degrees of ionization, α and β. Due to the strong charge complementarity between HA and CH, electrostatic self-assembly takes place at very acidic pH, but is almost unobservable at ionic strength (I) ≥ 1.5 M NaCl. All systems display discontinuity in the I-dependence of the turbidity, corresponding to a transition from coacervates to flocculates. An increase in either polymer chain length or charge density enhances phase separation. Remarkably, non-stoichiometric coacervate suspensions form at zeta potentials far away from zero. This result is attributed to the entropic effects of chain semi-flexibility as well as to the charge mismatch between the two biopolymers. PMID:26406548

  13. Effects of salinity on leaf breakdown: Dryland salinity versus salinity from a coalmine.

    PubMed

    Sauer, Felix G; Bundschuh, Mirco; Zubrod, Jochen P; Schäfer, Ralf B; Thompson, Kristie; Kefford, Ben J

    2016-08-01

    Salinization of freshwater ecosystems as a result of human activities represents a global threat for ecosystems' integrity. Whether different sources of salinity with their differing ionic compositions lead to variable effects in ecosystem functioning is unknown. Therefore, the present study assessed the impact of dryland- (50μS/cm to 11,000μS/cm) and coalmine-induced (100μS/cm to 2400μS/cm) salinization on the leaf litter breakdown, with focus on microorganisms as main decomposer, in two catchments in New South Wales, Australia. The breakdown of Eucalyptus camaldulensis leaves decreased with increasing salinity by up to a factor of three. Coalmine salinity, which is characterised by a higher share of bicarbonates, had a slightly but consistently higher breakdown rate at a given salinity relative to dryland salinity, which is characterised by ionic proportions similar to sea water. Complementary laboratory experiments supported the stimulatory impact of sodium bicarbonates on leaf breakdown when compared to sodium chloride or artificial sea salt. Furthermore, microbial inoculum from a high salinity site (11,000μS/cm) yielded lower leaf breakdown at lower salinity relative to inoculum from a low salinity site (50μS/cm). Conversely, inoculum from the high salinity site was less sensitive towards increasing salinity levels relative to inoculum from the low salinity site. The effects of the different inoculum were the same regardless of salt source (sodium bicarbonate, sodium chloride and artificial sea salt). Finally, the microorganism-mediated leaf litter breakdown was most efficient at intermediate salinity levels (≈500μS/cm). The present study thus points to severe implications of increasing salinity intensities on the ecosystem function of leaf litter breakdown, while the underlying processes need further scrutiny. PMID:27393920

  14. Oxygen isotope systematics in the aragonite-CO2-H2O-NaCl system up to 0.7 mol/kg ionic strength at 25 °C

    USGS Publications Warehouse

    Kim, Sang-Tae; Gebbinck, Christa Klein; Mucci, Alfonso; Coplen, Tyler B.

    2014-01-01

    To investigate the oxygen isotope systematics in the aragonite-CO2-H2O-NaCl system, witherite (BaCO3) was precipitated quasi-instantaneously and quantitatively from Na-Cl-Ba-CO2 solutions of seawater-like ionic strength (I = 0.7 mol/kg) at two pH values (~7.9 and ~10.6) at 25 °C. The oxygen isotope composition of the witherite and the dissolved inorganic carbon speciation in the starting solution were used to estimate the oxygen isotope fractionations between HCO3¯ and H2O as well as between CO3 2 and H2O. Given the analytical error on the oxygen isotope composition of the witherite and uncertainties of the parent solution pH and speciation, oxygen isotope fractionation between NaHCO3° and HCO3¯, as well as between NaCO3¯ and CO3 2, is negligible under the experimental conditions investigated. The influence of dissolved NaCl concentration on the oxygen isotope fractionation in the aragonite-CO2-H2O-NaCl system also was investigated at 25 °C. Aragonite was precipitated from Na-Cl-Ca-Mg-(B)-CO2 solutions of seawater-like ionic strength using passive CO2 degassing or constant addition methods. Based upon our new experimental observations and published experimental data from lower ionic strength solutions by Kim et al. (2007b), the equilibrium aragonite-water oxygen isotope fractionation factor is independent of the ionic strength of the parent solution up to 0.7 mol/kg. Hence, our study also suggests that the aragonite precipitation mechanism is not affected by the presence of sodium and chloride ions in the parent solution over the range of concentrations investigated.

  15. The effect of ionic strength on the adsorption of H{sup +}, Cd{sup 2+}, Pb{sup 2+}, and Cu{sup 2+} by Bacillus subtilis and Bacillus licheniformis: A surface complexation model

    SciTech Connect

    Daughney, C.J.; Fein, J.B.

    1998-02-01

    To quantify metal adsorption onto bacterial surfaces, recent studies have applied surface complexation theory to model the specific chemical and electrostatic interactions occurring at the solution-cell wall interface. However, to date, the effect of ionic strength on these interactions has not been investigated. In this study, the authors perform acid-base titrations of suspensions containing Bacillus subtilis or Bacillus licheniformis in 0.01 or 0.1 M NaNO{sub 3}, and they evaluate the constant capacitance and basic Stern double-layer models for their ability to describe ionic-strength-dependent behavior. The constant capacitance model provides the best description of the experimental data. The constant capacitance model parameters vary between independently grown bacterial cultures, possibly due to cell wall variation arising from genetic exchange during reproduction. The authors perform metal-B. subtilis and metal-B. licheniformis adsorption experiments using Cd, Pb, and Cu, and they solve for stability constants describing metal adsorption onto distinct functional groups on the bacterial cell walls. They find that these stability constants vary substantially but systematically between the two bacterial species at the two different ionic strengths.

  16. Solubility of B-Nb2O5 and the Hydrolysis of Niobium(V) in Aqueous Solution as a Function of Temperature and Ionic Strength

    SciTech Connect

    Peiffert, C; Nguyen-Trung, Chinh {nmn}; Palmer, Donald; Laval, J. P.; Giffaut, E.

    2010-01-01

    B-Nb{sub 2}O{sub 5} was recrystallized from commercially available oxide, and XRD analyses indicated that it is stable in contact with solutions over the pH range 0 to 9, whereas solid polyniobates such as Na{sub 8}Nb{sub 6}O{sub 19} 13H{sub 2}O(s) appear to predominate at pH > 9. Solubilities of the crystalline B-Nb{sub 2}O{sub 5} were determined in five NaClO{sub 4} solutions (0.1 {le} Im/mol {center_dot} kg{sup -1} {le} 1.0) over a wide pH range at (25.0 {+-} 0.1) C and at 0.1 MPa. A limited number of measurements were also made at Im = 6.0 mol {center_dot} kg{sup -1}, whereas at Im = 1.0 mol {center_dot} kg{sup -1} the full range of pH was also covered at (10, 50 and 70) C. The pH of these solutions was fixed using either HClO{sub 4} (pH {le} 4) or NaOH (pH {ge} 10) and determined by mass balance, whereas the pH on the molality scale was measured in buffer mixtures of acetic acid + acetate (4 {le} pH {le} 6), Bis-Tris (pH {approx} 7), Tris (pH {approx} 8) and boric acid + borate (pH {approx} 9). Treatment of the solubility results indicated the presence of four species, Nb(OH){sub n}{sup 5-n} (where n = 4-7), so that the molal solubility quotients were determined according to: 0.5Nb{sub 2}O{sub 5}(cr) + 0.5(2n-5)H{sub 2}O(l){sup {center_dot}-} Nb(OH){sub n}{sup 5-n} + (n-5)H{sup +} (n = 4-7) and were fitted empirically as a function of ionic strength and temperature, including the appropriate Debye-Hueckel term. A Specific Interaction Theory (SIT) approach was also attempted. The former approach yielded the following values of log 10 K{sub sn} (infinite dilution) at 25 C: -(7.4 {+-} 0.2) for n = 4; -(9.1 {+-} 0.1) for n = 5; -(14.1 {+-} 0.3) for n = 6; and -(23.9 {+-} 0.6) for n = 7. Given the experimental uncertainties (2{sigma}), it is interesting to note that the effect of ionic strength only exceeded the combined uncertainties significantly in the case of log 10 K{sub s6} to I{sub m} = 1.0 mol {center_dot} kg{sup -1}, such that these values may be of use by

  17. Transport and Retention of CdSe/ZnS Quantum Dots in Saturated Sand: Effects of Organic Ligands, pH and Ionic Strength

    NASA Astrophysics Data System (ADS)

    Li, Chunyan; Snee, Preston; Darnault, Christophe

    2016-04-01

    The presence of nanomaterials in soil, water, and air systems following their life cycle or accidents and their effects on the environment and public health are inevitable. Ability to forecast the public health and ecological impacts of these nanomaterials encountered in the environment is limited. Therefore, it is critical to be able to predict the fate and transport on nanomaterials in the environment, in particular the subsurface, in order to conduct risk assessments. To assess the transport and retention of nanomaterials in the subsurface environment, we selected quantum dots (QDs). QDs are metal and semiconductor based nanomaterials that are essential to nanoscience and nanotechnology. Understanding the parameters that effect the transport and retention of QDs in the soil water environment is critical. Natural organic ligands are commonly found in soils and impact the soil physico-chemical processes through multifaceted reactions with metal ions present in soil solution and ligand exchange reactions on soil surfaces. Therefore, ligands may modify the surface properties of QDs and effect their stability, transport and retention in the subsurface environment. In this research, size, surface charge, and stability of CdSe/ZnS QDs in water solutions are monitored in batch experiments. The influence of organic ligands (acetate, oxalate, and citrate) on the stability of QDs at different pHs (1.5, 3.5, 5, 7 and 9) and ionic strengths (0.05 and 0.1 M) conditions were examined. The stability and aggregation phenomena of QDs were studied using UV-vis and DLS methods. Parameters from batch studies were selected to establish chemical conditions to be used in transport experiments to produce breakthrough curves and retention profiles in order to characterize the fate and transport of QDs in saturated sand. These transport experiments are essential to understand the mobility and retention processes in porous media where QD interactions with surfaces of heterogeneous

  18. Humic Substances-dependent Aggregation and Transport of Cerium Oxide Nanoparticles in Porous Media at Different pHs and Ionic Strengths

    NASA Astrophysics Data System (ADS)

    Mu, L.; Jacobson, A. R.; Darnault, C. J. G.

    2015-12-01

    Cerium oxide nanoparticles (CeO2 NPs) are commonly used in several fields and industries, such as chemical and pharmaceutical, due to both their physical and chemical properties. For example, they are employed in the manufacturing of catalysts, as fuel additives, and as polishing agents. The release and exposure to CeO2 NPs can occur during their fabrication, application, and waste disposal, as well as through their life-cycle and accidents. Therefore, the assessment of the dynamic nature of CeO2 NPs stability and mobilty in the environment is of paramount importance to establish the environmental and public health risks associated with their inevitable release in the environment. Humic substances are a key element of soils and have been revealed to possibly affect the fate and transport of nanoparticles in soils. Consequently, our present research aims at investigating the influence that different pHs, monovalent and divalent cations, Suwannee River humic acid, and Suwanee River fulvic acid have on the aggregation, transport, and deposition of CeO2 NPs. Batch studies performed with different concentrations of humic and fulvic acids associated with a wide spectrum of pHs and ionic strengths were examined. Key variables from these batch studies were then examined to simulate experimental conditions commonly encountered in the soil-water system to conduct column transport experiments in order to establish the fate and transport of CeO2 NPs in saturated porous media, which is a critical phase in characterizing the behavior of CeO2 NPs in subsurface environmental systems.

  19. Modeling the transport of TiO2 nanoparticle aggregates in saturated and unsaturated granular media: effects of ionic strength and pH.

    PubMed

    Fang, Jing; Xu, Mei-jia; Wang, Deng-jun; Wen, Bei; Han, Jing-yi

    2013-03-01

    This study aims to explore the mechanisms governing the transport and retention kinetics of TiO(2) nanoparticle aggregates (NPAs) in flow-through columns of packed sand, particularly under unsaturated conditions. The study was carried out at different pHs (2.6, 7.1, and 9.6) and ionic strengths (ISs) (1.0, 10, and 50 mM). A two-site kinetic attachment model was used to describe transport behaviors of TiO(2) NPAs. At low ISs (i.e., 1.0 and 10 mM) and in neutral/alkaline conditions, high mobility of TiO(2) NPAs was observed in both saturated and unsaturated conditions. However, the retention of TiO(2) NPAs was substantially enhanced at the high IS (50 mM) and in extremely acidity condition (pH = 2.6), because of increased aggregation and straining of TiO(2) NPAs during their transport course. The breakthrough curves (BTCs) of TiO(2) NPAs under unsaturated and saturated conditions almost overlapped, suggesting that decreasing the water saturation did not enhance the retention of TiO(2) NPAs in sand columns. This was probably due to the repulsive interactions existed between negatively charged air-water and TiO(2) NPAs systems that resulted in unfavorable attachment conditions. The two-site kinetic attachment model provided a good description for the BTCs of TiO(2) NPAs both in saturated and unsaturated conditions. The fitted parameters could successfully explain the transport behaviors of TiO(2) NPAs under various solution chemistries. PMID:23276424

  20. Stability and Mobility of CdSe/ZnS Quantum Dots in Soils: Effects of Organic Ligands, pH and Ionic Strength

    NASA Astrophysics Data System (ADS)

    Li, C.; Darnault, C. J. G.; Snee, P. T.

    2015-12-01

    Quantum dots (QDs) are the key enablers in the domain of nanoscience and have found many applications due to their physico-chemical and optical properties. For example, they are used in solar cells, lighting technologies, and biomedical imaging. Their presence in the environment following their application and life-cycle is inevitable. Therefore, it is critical to understand their behavior in the soil water system to assess the risks they may pose to natural systems and to public health. Assessing the factors that impact the stability and mobility of QDs in the soil water system is important. Natural organic ligands occur in subsurface environments and alter chemical processes in soils through complex reactions with metal ions in solution and ligand exchange reactions on soil surfaces. Consequently, the presence of ligands may alter the surface properties of QDs and impact their stability and mobility in saturated porous media. In this study, characteristics and stability of CdSe/ZnS QDs in water solutions are tested in batch experiments. The impacts of organic ligands (acetate, oxalate, and citrate) on the stability of QDs under various pH (5, 7 and 9) and ionic strength (0.05 and 0.1 M) conditions were investigated. The stability and aggregation kinetics of QDs were examined using UV-vis and DLS methods. Selected parameters from batch experiments were then used as study conditions to perform column transport experiments to generate breakthrough curves and retention profiles to assess the fate and transport of QDs in saturated porous media, which is the first phase in simulating their behavior in the subsurface.

  1. pH and ionic strength effects on the binding constant between a nitrogen-containing polycyclic aromatic compound and humic acid.

    PubMed

    Chang, Kuei-Chen; Lee, Chon-Lin; Hsieh, Ping-Chieh; Brimblecombe, Peter; Kao, Shu-Min

    2015-09-01

    Polycyclic aromatic compounds (PACs) are widespread environmental pollutants with a high potential to act as human carcinogens and mutagens. The behavior of PACs is significantly affected by their interactions with dissolved organic matter (DOM), such as their transport, solubility, bioavailability, and bioaccumulation in the aquatic environment. Being a basic PAC, benzo(h)quinoline (BQ) is the dominant species, as the solution's pH value is higher than BQ's pK a (pK a of BQ = 4.2). In contrast, benzo(h)quinolinium (BQH(+)) is the major species, as the solution's pH value is lower than its pK a. The binding constant (K DOC), measured by fluorescence quenching, between BQ/BQH(+) and Leonardite humic acid (LHA) would decrease 70 to 95 % and 20 to 90 % when increasing the ionic strength in acidic and neutral to basic conditions, respectively. The results can be attributed to the added cation (Na(+) and Mg(2+)), which forms a bridge with LHA and enhances the intramolecular reaction among these functional groups, therefore inducing the coiling up within the LHA molecule. In addition, the decrease of the K DOC with added MgCl2/MgSO4 (75-95 %) is higher than that with added NaCl/Na2SO4 (20-75 %), indicating that the K DOC was affected by the charge density of cations. The fluorescence intensity of BQH(+) in the absence of LHA (F 0) was found to decay only in the acidic solution with Cl(-), suggesting that Cl(-) might be a heavy atom serving as a quencher in an acidic solution. PMID:25940463

  2. Growth kinetics of step edges on celestite (0 0 1) surfaces as a function of temperature, saturation state, ionic strength, and aqueous strontium:sulfate ratio: An in-situ atomic force microscopy study

    NASA Astrophysics Data System (ADS)

    Bracco, Jacquelyn N.; Gooijer, Yiscka; Higgins, Steven R.

    2016-02-01

    Step velocities on the celestite (0 0 1) surface have been measured as a function of temperature (23-45 °C), saturation state (S = 1.1-2.2), ionic strength (I = 0.01, 0.06, and 0.1 M), and aqueous strontium:sulfate ratio (r = 0.01-100) using atomic force microscopy (AFM). Celestite growth hillocks were flanked by [0 1 0]-aligned step edges, which are polar, and step edges vicinal to <1 2 0>, which are non-polar. [0 1 0] step velocities increased with temperature and saturation state, however step velocities did not vary significantly with ionic strength. Step velocities were non-linear with saturation state, suggesting a change in mechanism at high S as compared with low S. At constant S, the step velocities were maximized at r = 1 and decreased significantly at extreme r, demonstrating the governing role of solute stoichiometry. We successfully fit the step velocity data as a function of r using the Stack and Grantham (2010) nucleation and propagation model. Based on the results as a function of ionic strength and r, the mechanism at low S is likely ion-by-ion attachment to the step with an activation energy of 75 (±10) kJ mol-1. At high S the mechanism is a combination of the one at low S and possibly attachment of a neutral species such as an ion pair with an activation energy of 43 (±9) kJ mol-1.

  3. Growth kinetics of step edges on celestite (0 0 1) surfaces as a function of temperature, saturation state, ionic strength, and aqueous strontium:sulface ratio: An in-situ atomic force microscopy study

    SciTech Connect

    Bracco, Jacquelyn N.; Gooijer, Yiscka; Higgins, Steven R.

    2015-12-12

    Step velocities on the celestite (0 0 1) surface have been measured as a function of temperature (23–45 °C), saturation state (S = 1.1–2.2), ionic strength (I = 0.01, 0.06, and 0.1 M), and aqueous strontium:sulfate ratio (r = 0.01–100) using atomic force microscopy (AFM). Celestite growth hillocks were flanked by [0 1 0]-aligned step edges, which are polar, and step edges vicinal to <1 2 0>, which are non-polar. [0 1 0] step velocities increased with temperature and saturation state, however step velocities did not vary significantly with ionic strength. Step velocities were non-linear with saturation state, suggesting a change in mechanism at high S as compared with low S. At constant S, the step velocities were maximized at r = 1 and decreased significantly at extreme r, demonstrating the governing role of solute stoichiometry. We successfully fit the step velocity data as a function of r using the Stack and Grantham (2010) nucleation and propagation model. Based on the results as a function of ionic strength and r, the mechanism at low S is likely ion-by-ion attachment to the step with an activation energy of 75 (±10) kJ mol–1. In conclusion, at high S the mechanism is a combination of the one at low S and possibly attachment of a neutral species such as an ion pair with an activation energy of 43 (±9) kJ mol–1.

  4. Growth kinetics of step edges on celestite (0 0 1) surfaces as a function of temperature, saturation state, ionic strength, and aqueous strontium:sulface ratio: An in-situ atomic force microscopy study

    DOE PAGESBeta

    Bracco, Jacquelyn N.; Gooijer, Yiscka; Higgins, Steven R.

    2015-12-12

    Step velocities on the celestite (0 0 1) surface have been measured as a function of temperature (23–45 °C), saturation state (S = 1.1–2.2), ionic strength (I = 0.01, 0.06, and 0.1 M), and aqueous strontium:sulfate ratio (r = 0.01–100) using atomic force microscopy (AFM). Celestite growth hillocks were flanked by [0 1 0]-aligned step edges, which are polar, and step edges vicinal to <1 2 0>, which are non-polar. [0 1 0] step velocities increased with temperature and saturation state, however step velocities did not vary significantly with ionic strength. Step velocities were non-linear with saturation state, suggesting amore » change in mechanism at high S as compared with low S. At constant S, the step velocities were maximized at r = 1 and decreased significantly at extreme r, demonstrating the governing role of solute stoichiometry. We successfully fit the step velocity data as a function of r using the Stack and Grantham (2010) nucleation and propagation model. Based on the results as a function of ionic strength and r, the mechanism at low S is likely ion-by-ion attachment to the step with an activation energy of 75 (±10) kJ mol–1. In conclusion, at high S the mechanism is a combination of the one at low S and possibly attachment of a neutral species such as an ion pair with an activation energy of 43 (±9) kJ mol–1.« less

  5. Responsive Stabilization of Nanoparticles for Extreme Salinity and High-Temperature Reservoir Applications.

    PubMed

    Ranka, Mikhil; Brown, Paul; Hatton, T Alan

    2015-09-01

    Colloidal stabilization of nanoparticles under extreme salinity and high temperature conditions is a key challenge in the development of next generation technologies for subsurface reservoir characterization and oil recovery. Polyelectrolytes have been investigated as nanoparticle stabilizers, but typically fail at high ionic strengths and elevated temperatures due to excessive charge screening and dehydration. We report an approach to nanoparticle stabilization that overcomes these limitations, and exploits the antipolyelectrolyte phenomenon, in which screening of intrachain electrostatic interactions causes a polyzwitterion chain to undergo a structural transition from a collapsed globule to a more open coil-like regime with increases in ionic strength and temperature. Small-angle neutron scattering on a model zwitterionic polymer in solution indicated an increase in both radius of gyration and excluded volume parameter of the polymer with increases in ionic strength and temperature. The model zwitterion was subsequently incorporated within a polymeric stabilizer for nanoparticles under harsh reservoir conditions, and used to functionalize hydrophilic (silica) as well as hydrophobic (polystyrene) nanoparticles. Long-term colloidal stability was achieved at salt concentrations up to 120,000 mg/dm3 at 90 °C, approximately twice the stability limit previously reported in the literature. The approach can be broadly generalized to a large class of synthetic polyzwitterions, and can be adapted to a wide variety of other colloidal systems in which demands placed by extreme salinity and temperature conditions must be met. PMID:26278070

  6. Long-term impact of salinity on the performance and microbial population of an aerobic granular reactor treating a high-strength aromatic wastewater.

    PubMed

    Ramos, Carlos; Suárez-Ojeda, María Eugenia; Carrera, Julián

    2015-12-01

    The effect of salinity over granular biomass treating a mixture of aromatic compounds (phenol, o-cresol and p-nitrophenol) was evaluated in a continuous airlift reactor. To mimic an industrial wastewater, increasing concentrations (from 2.0 to 29.0 g salts L(-1)) of a mixture of salts (MgSO4, NaCl, KCl, CaCl2 and NaHCO3) were introduced in the influent. The gradual salinity increase led to a good acclimation of the biomass obtaining complete biodegradation of the aromatic compounds and no accumulation of metabolic intermediates. However, a deterioration of the morphology of aerobic granules with a complete loss of granulation after 125 days was produced at 29.0 g salts L(-1). At that moment, anaerobic granules were added to promote granulation and after 50 days new aerobic granules were formed. These new aerobic granules remained stable for more than 100 days at the highest salinity condition with 100% removal of the mixture of aromatic compounds. PMID:26457833

  7. Effects of Temperature, Oxygen Level, Ionic Strength, and pH on the Reaction of Benzene with Hydroxyl Radicals at the Air-Water Interface in Comparison to the Bulk Aqueous Phase.

    PubMed

    Heath, Aubrey A; Valsaraj, Kalliat T

    2015-08-01

    Atmospheric aerosols (e.g., fog droplets) are complex, multiphase mediums. Depending on location, time of day, and/or air mass source, there can be considerable variability within these droplets, relating to temperature, pH, and ionic strength. Due to the droplets' inherently small size, the reactions that occur within these droplets are determined by bulk aqueous phase and air-water interfacial conditions. In this study, the reaction of benzene and hydroxyl radicals is examined kinetically in a thin-film flow-tube reactor. By varying the aqueous volume (e.g., film thickness) along the length of the reactor, both bulk and interfacial reaction rates are measured from a single system. Temperature, pH, and ionic strength are varied to model conditions typical of fog events. Oxygen-poor conditions are measured to study oxygen's overall effect on the reaction pathway. Initial rate activation energies and the bulk aqueous phase and interfacial contributions to the overall rate constant are also obtained. PMID:26158391

  8. Dioxouranium(VI)-carboxylate complexes. Speciation of UO2(2+)-1,2,3-propanetricarboxylate system in NaCl(aq) at different ionic strengths and at t=25 degrees C.

    PubMed

    Crea, Francesco; De Stefano, Concetta; Milea, Demetrio; Sammartano, Silvio

    2007-01-01

    The formation constants of dioxouranium(VI)-1,2,3-propanetricarboxylate [tricarballylate (3-), TCA] complexes were determined in NaCl aqueous solutions at 0 < or = I/mol L(-1) < or = 1.0 and t=25 degrees C, by potentiometry, ISE-[H+] glass electrode. The speciation model obtained at each ionic strength includes the following species: ML-, MLH0, ML2(4-) and ML2H3- (M = UO2(2+) and L = TCA). The dependence on ionic strength of protonation constants of 1,2,3-propanetricarboxylate and of the metal-ligand complexes was modeled by the SIT (Specific ion Interaction Theory) approach and by the Pitzer equations. The formation constants at infinite dilution are [for the generic equilibrium p UO22+ + q (L3-) + r H+ = (UO2(2+))p(L)qHr(2p-3q+r); betapqr]: log beta110 = 6.222 +/- 0.030, log beta111 = 11.251 +/- 0.009, log beta121 = 7.75 +/- 0.02, log beta121 = 14.33 +/- 0.06. The sequestering ability of 1,2,3-propanetricarboxylate towards UO2(2+) was quantified by using a sigmoid Boltzman type equation. PMID:17822225

  9. pH-Responsive poly(itaconic acid-co-N-vinylpyrrolidone) hydrogels with reduced ionic strength loading solutions offer improved oral delivery potential for high isoelectric point-exhibiting therapeutic proteins.

    PubMed

    Koetting, Michael C; Peppas, Nicholas A

    2014-08-25

    pH-Responsive hydrogels comprised of itaconic acid copolymerized with N-vinylpyrrolidone (P(IA-co-NVP)) were synthesized and tested as carriers for the oral delivery of high isoelectric point (pI) exhibiting therapeutic proteins. Swelling studies show that P(IA-co-NVP) hydrogels exhibit significantly greater and faster pH-responsive swelling than previously studied methacrylic acid-based hydrogels, achieving up to 68% greater equilibrium swelling and 10.4 times greater swelling in time-limited experiments. Using salmon calcitonin as a model high pI protein therapeutic, we show that P(IA-co-NVP) hydrogels exhibit significantly greater delivery potential than methacrylic acid-based hydrogels. Additionally, we show that utilizing a lower ionic strength solution during drug loading significantly improves drug delivery potential for high pI therapeutics. By using a 1.5mM PBS buffer rather than the standard 150 mM PBS buffer during loading, up to 83 times as much calcitonin can be delivered in neutral conditions, with up to a 9.6-fold improvement in percent release. Using P(IA-co-NVP) hydrogel microparticles and a low ionic strength loading solution, up to 48 μg calcitonin/mg hydrogel can be delivered in small intestinal conditions. Based on expected absorption in the small intestine, this is sufficient delivery potential for achieving therapeutic dosage via a single, regularly-sized pill taken daily. PMID:24853463

  10. Bioaccumulation of silver nanoparticles in rainbow trout (Oncorhynchus mykiss): influence of concentration and salinity.

    PubMed

    Salari Joo, Hamid; Kalbassi, Mohammad Reza; Yu, Il Je; Lee, Ji Hyun; Johari, Seyed Ali

    2013-09-15

    With the increasing use of silver nanoparticles (Ag-NPs), their entrance into aquatic ecosystems is inevitable. Thus, the present study simulated the potential fate, toxicity, and bioaccumulation of Ag-NPs released into aquatic systems with different salinities. The Ag-NPs were characterized using inductively coupled plasma-atomic emission spectroscopy (ICP-AES), dynamic light scattering (DLS), transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDX), and UV-vis spectroscopy. Juvenile rainbow trout were exposed to Ag-NPs in three different salinity concentrations, including low (0.4 ppt), moderate (6 ± 0.3 ppt), and high (12 ± 0.2 ppt) salinity, for 14 days in static renewal systems. The nominal Ag-NP concentrations in the low salinity were 0.032, 0.1, 0.32, and 1 ppm, while the Ag-NP concentrations in the moderate and high salinity were 3.2, 10, 32, and 100 ppm. UV-vis spectroscopy was used during 48 h (re-dosing time) to evaluate the stability and possible changes in size of the Ag-NPs in the water. The results revealed that the λmax of the Ag-NPs remained stable (415-420 nm) at all concentrations in the low salinity with a reduction of absorbance between 380 and 550 nm. In contrast, the λmax quickly shifted to a longer wavelength and reduced absorbance in the moderate and higher salinity. The bioaccumulation of Ag in the studied tissues was concentration-dependent in all the salinities based on the following order: liver>kidneys≈gills>white muscles. All the tissue silver levels were significantly higher in the high salinity than in the moderate salinity. In addition, all the fish exposed to Ag-NPs in the low, moderate, and high salinity showed a concentration-dependent increase in their hepatosomatic index (HSI). In conclusion, most Ag-NPs that enter into freshwater ecosystems (low ionic strength) remain suspended, representing a potentially negative threat to the biota in an ionic or nanoscale form. However, in a higher salinity

  11. The flexible structure of the K24S28 region of Leucine-Rich Amelogenin Protein (LRAP) bound to apatites as a function of surface type, calcium, mutation, and ionic strength

    SciTech Connect

    Lu, Junxia; Burton, Sarah D.; Xu, Yimin; Buchko, Garry W.; Shaw, Wendy J.

    2014-07-11

    Leucine-Rich Amelogenin Protein (LRAP) is a member of the amelogenin family of biomineralization proteins, proteins which play a critical role in enamel formation. Recent studies have revealed the structure and orientation of the N- and C-terminus of LRAP bound to hydroxyapatite (HAP), a surface used as an analog of enamel. The structure of one region, K24 to S28, was found to be sensitive to phosphorylation of S16, the only naturally observed site of serine phosphorylation in LRAP, suggesting that the residues from K24 to S28 may sit at a key region of structural flexibility and play a role in the protein’s function. In this work, we investigated the sensitivity of the structure and orientation of this region when bound to HAP as a function of several factors which may vary during enamel formation to influence structure: the ionic strength (0.05 M, 0.15 M, 0.2 M), the calcium concentration (0.07 mM and 0.4 mM), and the surface to which it is binding (HAP and carbonated apatite (CAP), a more direct mimic of enamel). A naturally occurring mutation found in amelogenin (T21I), was also investigated. The structure in the K24S28 region of the protein was found to be sensitive to these conditions, with the CAP surface and excess Ca2+ (8:1 [Ca2+]:[LRAP-K24S28(+P)]) resulting in a much tighter helix, while low ionic strength relaxed the helical structure. Higher ionic strength and the point mutation did not result in any structural change in this region. The distance of the backbone of K24 from the surface was most sensitive to excess Ca2+ and in the T21I-mutation. Collectively, these data suggest that the protein is able to accommodate structural changes while maintaining its interaction with the surface, and provides further evidence of the structural sensitivity of the K24 to S28 region, a sensitivity that may contribute to function in biomineralization. This research was supported by NIH-NIDCR Grant DE-015347. The research was performed at the Pacific Northwest

  12. The flexible structure of the K24S28 region of Leucine-Rich Amelogenin Protein (LRAP) bound to apatites as a function of surface type, calcium, mutation, and ionic strength

    PubMed Central

    Lu, Jun-xia; Burton, Sarah D.; Xu, Yimin S.; Buchko, Garry W.; Shaw, Wendy J.

    2014-01-01

    Leucine-Rich Amelogenin Protein (LRAP) is a member of the amelogenin family of biomineralization proteins, proteins which play a critical role in enamel formation. Recent studies have revealed the structure and orientation of the N- and C-terminus of LRAP bound to hydroxyapatite (HAP), a surface used as an analog of enamel. The structure of one region, K24 to S28, was found to be sensitive to phosphorylation of S16, the only naturally observed site of serine phosphorylation in LRAP, suggesting that K24S28 may sit at a key region of structural flexibility and play a role in the protein's function. In this work, we investigated the sensitivity of the structure and orientation of this region when bound to HAP as a function of several factors which may vary during enamel formation to influence structure: the ionic strength (0.05, 0.15, 0.2 M), the calcium concentration (0.07 and 0.4 mM), and the surface to which it is binding [HAP and carbonated apatite (CAP), a more direct mimic of enamel]. A naturally occurring mutation found in amelogenin (T21I) was also investigated. The structure in the K24S28 region of the protein was found to be sensitive to these conditions, with the CAP surface and excess Ca2+ (8:1 [Ca2+]:[LRAP-K24S28(+P)]) resulting in a tighter helix, while low ionic strength relaxed the helical structure. Higher ionic strength and the point mutation did not result in any structural change in this region. The distance of the backbone of K24 from the surface was most sensitive to excess Ca2+ and in the T21I-mutation. Collectively, these data suggest that phosphorylated LRAP is able to accommodate structural changes while maintaining its interaction with the surface, and provides further evidence of the structural sensitivity of the K24S28 region, a sensitivity that may contribute to function in biomineralization. PMID:25071599

  13. Ecophysiological constraints of two invasive plant species under a saline gradient: Halophytes versus glycophytes

    NASA Astrophysics Data System (ADS)

    Duarte, B.; Santos, D.; Marques, J. C.; Caçador, I.

    2015-12-01

    Salt marsh environments are harsh environments where salinity comprises one of the most important species distribution shaping factor, presenting sediment salinities from 0 to 855 mM (0-50 ppt). Invasive species have often a high colonizing potential, due to its high plasticity and adaptation ability. Spartina patens is an invasive species already spread along several Mediterranean countries, like France and Spain. Cyperus longus is typically a freshwater species that has been spreading across the Mediterranean. In order to evaluate the ecophysiological fitness of these species, mesocosmos trials were performed subjecting both species to increasing realistic salinity levels and their photochemical and biochemical feedback was evaluated. Both species presented very different behaviours. S. patens appears to be insensitive to salt stress, mostly due to elevated proline concentrations in its leaves allowing it to maintain its osmotic balance, and thus preventing the damaging of its photochemical mechanisms. C. longus, on the other hand, was highly affected by elevated salt levels mostly due to the lack of osmotic balance driven by an incapacity to counteract the elevated ionic strength of the external medium by osmocompatible solutes. S. patens is physiologically highly adapted to saline environments and thus is capable to colonize all the marsh saline environments, while C. longus appears to be an opportunistic invader colonizing the marsh during periods of lower salinities typical from rainy seasons.

  14. Salinity Energy.

    ERIC Educational Resources Information Center

    Schmitt, Walter R.

    1987-01-01

    Discussed are the costs of deriving energy from the earth's natural reserves of salt. Argues that, as fossil fuel supplies become more depleted in the future, the environmental advantages of salinity power may prove to warrant its exploitation. (TW)

  15. Influence of cosolvents, ionic strength and the method of sample preparation on the solubilization of curcumin by Pluronics and HP-gamma-cyclodextrin. Studies of curcumin and curcuminoids, XLIV.

    PubMed

    Singh, R; Kristensen, S; Tønnesen, H H

    2012-02-01

    Curcumin was solubilized by Pluronics and the concentration of dissolved curcumin seemed to be related to the number of propylene oxide units in the Pluronic polymer. All Pluronics showed a maximum solubilizing capacity at a certain curcumin: Pluronic molar ratio and exceeding this molar ratio resulted in precipitation of curcumin when following the samples for 356 hours. PEG 400 could to a certain extent stabilize the supersaturated samples, while ethanol physically destabilized the samples. Ionic strength did not influence the solubilization of curcumin by the Pluronics. Supersaturation and precipitation inhibition caused a higher concentration of curcumin in samples prepared by SEM compared to samples prepared by SFM (i.e. the thermodynamic solubility). PMID:22512083

  16. Development of Accurate Chemical Equilibrium Models for Oxalate Species to High Ionic Strength in the System: Na-Ba-Ca-Mn-Sr-Cl-NO3-PO4-SO4-H2O at 25°C

    SciTech Connect

    Qafoku, Odeta; Felmy, Andrew R.

    2007-01-01

    The development of an accurate aqueous thermodynamic model is described for oxalate species in the Na-Ba-Ca-Mn-Sr-Cl-NO3-PO4-SO4-H2O system at 25°C. The model is valid to high ionic strength (as high as 10m) and from very acid (10m H2SO4) to neutral and basic conditions. The model is based upon the equations of Pitzer and co-workers. The necessary ion-interaction parameters are determined by comparison with experimental data taken from the literature or determined in this study. The proposed aqueous activity and solubility model is valid for a range of applications from interpretation of studies on mineral dissolution at circumneutral pH to the dissolution of high-level waste tank sludges under acidic conditions.

  17. Correlation of thermodynamic data for aqueous electrolyte solutions to very high ionic strength using INSIGHT: Vapor saturated water activity in the system CaCl{sub 2}-H{sub 2}O to 250 C and solid saturation

    SciTech Connect

    Sterner, S.M.; Felmy, A.R.; Oakes, C.S.; Pitzer, K.S.

    1998-05-01

    Osmotic coefficients for the CaCl{sub 2}-H{sub 2}O system between 25 and 250 C and from the dilute region to solid saturation or beyond (i.e., to {approx}12 mCaCl{sub 2} at the lowest temperature and {approx}32 mCaCl{sub 2} at the highest) have been correlated using the following permutations and modifications of the basic Pitzer ion-interaction equation: (1) the basic Pitzer equation, (2) the Pitzer equation augmented by an ionic strength-dependent third virial contribution, (3) the Pitzer equation together with equilibria involving the formation of CaCl{sup +} and CaCl{sub 2}{sup 0}, and (4) the simultaneous combination of all of the above. The effectiveness, accuracy, and practicality of each approach are reviewed.

  18. Report on the U.S. Geological Survey's evaluation program for standard reference samples distributed in April 1994; T-129 (trace constituents), M-130 (major constituents), N-42 (nutrients), P-22 (low ionic strength), and Hg-18 (mercury)

    USGS Publications Warehouse

    Long, H. Keith; Farrar, Jerry W.

    1994-01-01

    This report presents the results of the U.S. Geological Survey's analytical evaluation program for five standard reference samples--T-129 (trace constituents), M-130 (major constituents), N-42 (nutrients), P-22 (low ionic strength), Hg-18(mercury),--that were distributed in April 1994 to 157 laboratories registered in the U.S. Geological Survey sponsored interlaboratory testing program. Analytical data that were received from 133 of the laboratories were evaluated with respect to: overall laboratory performance and relative laboratory performance for each analyte in the five reference samples. Results of these evaluations are presented in tabular form. Also presented are tables and graphs summarizing the analytical data provided by each laboratory for each analyte in the five standard reference samples. The most probable value for each analyte was determined using nonparametric statistics.

  19. Ionic Blocks

    ERIC Educational Resources Information Center

    Sevcik, Richard S.; Gamble, Rex; Martinez, Elizabet; Schultz, Linda D.; Alexander, Susan V.

    2008-01-01

    "Ionic Blocks" is a teaching tool designed to help middle school students visualize the concepts of ions, ionic compounds, and stoichiometry. It can also assist high school students in reviewing their subject mastery. Three dimensional blocks are used to represent cations and anions, with color indicating charge (positive or negative) and size…

  20. Absolute oscillator strengths for the valence and inner (P 2p,2s) shell photoabsorption, photoionization, and ionic photofragmentation of PF 3

    NASA Astrophysics Data System (ADS)

    Au, Jennifer W.; Brion, C. E.

    1997-08-01

    Absolute oscillator strengths (cross-sections) for the photoabsorption of phosphorus pentafluoride (PF 5) have been measured for the first time in the valence and phosphorus 2p discrete regions using high-resolution (0.0-0.1 eV fwhm), dipole ( e, e) spectroscopy. Long-range data (10-300 eV) have also been obtained at lower resolution (1 eV fwhm), from which the absolute oscillator strength scale has been determined using the valence-shell Thomas-Reiche-Kuhn sum-rule. The accuracy of the present measurement has been tested using the S(-2) sum rule normalization. Evaluation of the S(-2) sum using the presently reported absolute photoabsorption oscillator strength data gives a dipole polarizabilit for PF 5 in good agreement with the experimental value. The photoionization efficiencies, photoion branching ratios, and absolute partial oscillator strengths for molecular and dissociative photoionization have also been determined for PF 5 by dipole ( e, e+ion) coincidence spectroscopy from the first ionization threshold up to and above the phosphorus 2p edge.

  1. Preparation of complex nano-particles based on alginic acid/poly[(2-dimethylamino) ethyl methacrylate] and a drug vehicle for doxorubicin release controlled by ionic strength.

    PubMed

    Cai, Hong; Ni, Caihua; Zhang, Liping

    2012-01-23

    Monodispersed complex nano-particles were synthesized simply by mixing alginic acid (ALG-H) with poly[(2-dimethylamino) ethyl methacrylate] (PDEMA) in pure water without any surfactants or additives. The structure and properties of the nano-particles were extensively studied. The surface charges and average sizes of the nano-particles were varied with the composition of ALG-H and PDEMA. The nano-particles were formed through electrostatic attraction force, and they were very stable in pure water, but dissociated in salt solutions. An anticancer drug (doxorubicin) was loaded in the nano-particles and released in different saline solutions. The release profiles revealed that the drug release could be controlled by adjusting the pH and salt concentrations. The nano-particles displayed apparent advantages such as simple preparation process, low cost, free of organic solvents, size controllable, biodegradable and biocompatible. PMID:22079138

  2. Ionic Liquid Epoxy Resin Monomers

    NASA Technical Reports Server (NTRS)

    Paley, Mark S. (Inventor)

    2013-01-01

    Ionic liquid epoxide monomers capable of reacting with cross-linking agents to form polymers with high tensile and adhesive strengths. Ionic liquid epoxide monomers comprising at least one bis(glycidyl) N-substituted nitrogen heterocyclic cation are made from nitrogen heterocycles corresponding to the bis(glycidyl) N-substituted nitrogen heterocyclic cations by a method involving a non-nucleophilic anion, an alkali metal cation, epichlorohydrin, and a strong base.

  3. Functional properties of protein from frozen mantle and fin of jumbo squid Dosidicus gigas in function of pH and ionic strength.

    PubMed

    Rocha-Estrada, J G; Córdova-Murueta, J H; García-Carreño, F L

    2010-10-01

    Functional properties of protein from mantle and fin of the jumbo squid Dosidicus gigas were explained based on microscopic muscle fiber and protein fractions profiles as observed in SDS-PAGE. Fin has higher content of connective tissue and complex fiber arrangement, and we observed higher hardness of fin gels as expected. Myosin heavy chain (MHC) was found in sarcoplasmic, myofibril and soluble-in-alkali fractions of mantle and only in sarcoplasmic and soluble-in-alkali fractions of fin. An additive effect of salt concentration and pH affected the solubility and foaming properties. Fin and mantle proteins yielded similar results in solubility tests, but significant differences occurred for specific pH and concentrations of salt. Foaming capacity was proportional to solubility; foam stability was also affected by pH and salt concentration. Hardness and fracture strength of fin gels were significantly higher than mantle gels; gels from proteins of both tissues reached the highest level in the folding test. Structural and molecular properties, such as MHC and paramyosin solubility, arrangement of muscle fibers and the content of connective tissue were useful to explain the differences observed in these protein properties. High-strength gels can be formed from squid mantle or fin muscle. Fin displayed similar or better properties than mantle in all tests. PMID:21339164

  4. Saline Sinus Rinse Recipe

    MedlinePlus

    ... Saline Sinus Rinse Recipe Share | Saline Sinus Rinse Recipe Saline sinus rinses can bring relief to patients ... at a fraction of the cost. Saline Rinse Recipe Ingredients 1. Pickling or canning salt-containing no ...

  5. Understanding of the Effects of Ionic Strength on the Bimolecular Rate Constant between Structurally Identified Redox Enzymes and Charged Substrates Using Numerical Simulations on the Basis of the Poisson-Boltzmann Equation.

    PubMed

    Sugimoto, Yu; Kitazumi, Yuki; Shirai, Osamu; Yamamoto, Masahiro; Kano, Kenji

    2016-03-31

    To understand electrostatic interactions in biomolecules, the bimolecular rate constants (k) between redox enzymes and charged substrates (in this study, redox mediators in the electrode reaction) were evaluated at various ionic strengths (I) for the mediated bioelectrocatalytic reaction. The k value between bilirubin oxidase (BOD) and positively charged mediators increased with I, while that between BOD and negatively charged mediators decreased with I. The opposite trend was observed for the reaction of glucose oxidase (GOD). In the case of noncharged mediators, the k value was independent of I for both BOD and GOD. These results reflect the electrostatic interactions between the enzymes and the mediators. Furthermore, we estimated k/k° (k° being the thermodynamic rate constant) by numerical simulation (finite element method) based on the Poisson-Boltzmann (PB) equation. By considering the charges of individual atoms involved in the amino acids around the substrate binding sites in the enzymes, the simulated k/k° values well reproduced the experimental data. In conclusion, k/k° can be predicted by PB-based simulation as long as the crystal structure of the enzyme and the substrate binding site are known. PMID:26956542

  6. Transport of ions in mesoporous carbon electrodes during capacitive deionization of high-salinity solutions.

    PubMed

    Sharma, K; Kim, Y-H; Gabitto, J; Mayes, R T; Yiacoumi, S; Bilheux, H Z; Walker, L M H; Dai, S; Tsouris, C

    2015-01-27

    Desalination of high-salinity solutions has been studied using a novel experimental technique and a theoretical model. Neutron imaging has been employed to visualize lithium ions in mesoporous carbon materials, which are used as electrodes in capacitive deionization (CDI) for water desalination. Experiments were conducted with a flow-through CDI cell designed for neutron imaging and with lithium-6 chloride ((6)LiCl) as the electrolyte. Sequences of neutron images have been obtained at a relatively high concentration of (6)LiCl solution to provide information on the transport of ions within the electrodes. A new model that computes the individual ionic concentration profiles inside mesoporous carbon electrodes has been used to simulate the CDI process. Modifications have also been introduced into the simulation model to calculate results at high electrolyte concentrations. Experimental data and simulation results provide insight into why CDI is not effective for desalination of high ionic-strength solutions. The combination of experimental information, obtained through neutron imaging, with the theoretical model will help in the design of CDI devices, which can improve the process for high ionic-strength solutions. PMID:25533167

  7. Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways.

    PubMed

    Christou, Anastasis; Manganaris, George A; Papadopoulos, Ioannis; Fotopoulos, Vasileios

    2013-04-01

    Hydrogen sulfide (H2S) has been recently found to act as a potent priming agent. This study explored the hypothesis that hydroponic pretreatment of strawberry (Fragaria × ananassa cv. Camarosa) roots with a H2S donor, sodium hydrosulfide (NaHS; 100 μM for 48 h), could induce long-lasting priming effects and tolerance to subsequent exposure to 100mM NaCI or 10% (w/v) PEG-6000 for 7 d. Hydrogen sulfide pretreatment of roots resulted in increased leaf chlorophyll fluorescence, stomatal conductance and leaf relative water content as well as lower lipid peroxidation levels in comparison with plants directly subjected to salt and non-ionic osmotic stress, thus suggesting a systemic mitigating effect of H2S pretreatment to cellular damage derived from abiotic stress factors. In addition, root pretreatment with NaHS resulted in the minimization of oxidative and nitrosative stress in strawberry plants, manifested via lower levels of synthesis of NO and H(2)O(2) in leaves and the maintenance of high ascorbate and glutathione redox states, following subsequent salt and non-ionic osmotic stresses. Quantitative real-time RT-PCR gene expression analysis of key antioxidant (cAPX, CAT, MnSOD, GR), ascorbate and glutathione biosynthesis (GCS, GDH, GS), transcription factor (DREB), and salt overly sensitive (SOS) pathway (SOS2-like, SOS3-like, SOS4) genes suggests that H2S plays a pivotal role in the coordinated regulation of multiple transcriptional pathways. The ameliorative effects of H2S were more pronounced in strawberry plants subjected to both stress conditions immediately after NaHS root pretreatment, rather than in plants subjected to stress conditions 3 d after root pretreatment. Overall, H2S-pretreated plants managed to overcome the deleterious effects of salt and non-ionic osmotic stress by controlling oxidative and nitrosative cellular damage through increased performance of antioxidant mechanisms and the coordinated regulation of the SOS pathway, thus proposing a

  8. Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways

    PubMed Central

    Christou, Anastasis; Manganaris, George A.; Papadopoulos, Ioannis; Fotopoulos, Vasileios

    2013-01-01

    Hydrogen sulfide (H2S) has been recently found to act as a potent priming agent. This study explored the hypothesis that hydroponic pretreatment of strawberry (Fragaria × ananassa cv. Camarosa) roots with a H2S donor, sodium hydrosulfide (NaHS; 100 μM for 48h), could induce long-lasting priming effects and tolerance to subsequent exposure to 100mM NaCI or 10% (w/v) PEG-6000 for 7 d. Hydrogen sulfide pretreatment of roots resulted in increased leaf chlorophyll fluorescence, stomatal conductance and leaf relative water content as well as lower lipid peroxidation levels in comparison with plants directly subjected to salt and non-ionic osmotic stress, thus suggesting a systemic mitigating effect of H2S pretreatment to cellular damage derived from abiotic stress factors. In addition, root pretreatment with NaHS resulted in the minimization of oxidative and nitrosative stress in strawberry plants, manifested via lower levels of synthesis of NO and H2O2 in leaves and the maintenance of high ascorbate and glutathione redox states, following subsequent salt and non-ionic osmotic stresses. Quantitative real-time RT-PCR gene expression analysis of key antioxidant (cAPX, CAT, MnSOD, GR), ascorbate and glutathione biosynthesis (GCS, GDH, GS), transcription factor (DREB), and salt overly sensitive (SOS) pathway (SOS2-like, SOS3-like, SOS4) genes suggests that H2S plays a pivotal role in the coordinated regulation of multiple transcriptional pathways. The ameliorative effects of H2S were more pronounced in strawberry plants subjected to both stress conditions immediately after NaHS root pretreatment, rather than in plants subjected to stress conditions 3 d after root pretreatment. Overall, H2S-pretreated plants managed to overcome the deleterious effects of salt and non-ionic osmotic stress by controlling oxidative and nitrosative cellular damage through increased performance of antioxidant mechanisms and the coordinated regulation of the SOS pathway, thus proposing a novel

  9. Hypertonic saline.

    PubMed

    Constable, P D

    1999-11-01

    A key feature in the successful resuscitation of dehydrated or endotoxemic ruminants is the total amount of sodium administered. Administration of small volumes of HS and HSD offer major advantages over large volumes of isotonic saline because HS and HSD do not require intravenous catheterization or periodic monitoring, and are therefore suitable for use in the field. Hypertonic saline and HSD exert their beneficial effect by rapidly increasing preload and transiently decreasing afterload. Contrary to early reports, HS and HSD decrease cardiac contractility and do not activate a pulmonary reflex. The osmolality of HS and HSD should be 2400 mOsm/L (7.2% NaCl solution, 8 times normal plasma osmolality). Use of HS and HSD solutions of different osmolality to 2400 mOsm/L should be avoided at all costs, as too low a tonicity removes the main advantages of HS (low cost, decreased infusion time), whereas too high a tonicity may cause rapid vasodilation and decreased cardiac contractility, resulting in death. Rapid administration (> 1 mL/kg-1/min-1) of HS (2400 mOsm/L) should be avoided, as the induced hypotension may be fatal when coupled with a transient decrease in cardiac contractility. For treating dehydrated adult ruminants, HS (2400 mOsm/L, 4-5 mL/kg i.v. over 4-5 minutes) should be administered through the jugular vein and the cow allowed to drink water. This means that 2 L of HS should be administered to adult cattle. HSD should be administered in conjunction with isotonic oral electrolyte solutions to all calves 8% or more dehydrated (eyes recessed > or = 4 mm into the orbit, cervical skin tent duration > 6 seconds) or calves with reduced cardiac output (fetlock temperature < 29 degrees C when housed at 10-24 degrees C). For treating dehydrated calves, HSD (2400 mOsm/L NaCl in 6% dextran-70, 4-5 mL/kg i.v. over 4-5 minutes) should be administered through the jugular vein and the calf allowed to suckle an isotonic oral electrolyte solution. This means that 120

  10. DOM along the Continuum from River to Reservoir: a Comparison of Freshwater and Saline Transects

    NASA Astrophysics Data System (ADS)

    Minor, E. C.; Stephens, B.

    2009-04-01

    Dissolved organic matter (DOM) plays key roles in aquatic ecosystems: as an organic carbon (energy) link between terrestrial and aquatic systems, a food source for biota, a reactant in photochemical reactions, and a sunscreen/competitor for light for aquatic organisms. The composition as well as the concentration of aquatic DOM is believed to determine DOM's efficacy in these roles. The transport and alteration of DOM in river/estuarine systems are significant processes in determining the concentration and composition of DOM in the receiving lake or ocean system (especially in productive and economically important coastal regions). Therefore this study provides a preliminary comparison of the dissolved organic carbon (DOC) concentration, DOM optical properties, and chemical composition of high molecular weight DOM (HMW DOM) on two river-to-receiving-basin transects, one freshwater (St. Louis River/Lake Superior, Minnesota, USA) and the other with a salinity gradient (Elizabeth River/lower Chesapeake Bay/coastal Atlantic, Virginia, USA). Both transects share optical property ranges and general downstream trends toward lower DOC concentrations, less aromaticity, and lower molecular weight DOM, however, there is a stronger downstream decrease in DOC concentration in the saline transect. In HMW DOM, there is more retention of carboxylic signals downstream in the freshwater transect, relative to a downstream shift toward more proteinaceous material in the saline transect. These observed DOM differences most likely result from variations in biological activity, photochemistry, and ionic strength in the two transects. Ionic strength effects include in situ processes (e.g. flocculation) and interactions affecting DOM isolation and analysis.

  11. Practically Saline.

    PubMed

    Schroeder, Jonathan; O'Neal, Catherine; Jagneaux, Tonya

    2015-01-01

    Introduction. In December 2014, the Food and Drug Administration issued a recall of all Wallcur simulation products due to reports of their use in clinical practice. We present a case of septic shock and multiorgan failure after the accidental intravenous infusion of a nonsterile Wallcur simulation product. Case. The patient presented with symptoms of rigors and dyspnea occurring immediately after infusion of Wallcur Practi-0.9% saline. Initial laboratory evidence was consistent with severe septic shock and multiorgan dysfunction. His initial lactic acid level was 9 mmol/L (reference range = 0.5-2.2), and he had evidence of acute kidney injury and markers of disseminated intravascular coagulation. All 4 blood culture bottles isolated multidrug-resistant Empedobacter brevis. The patient recovered from his illness and was discharged with ciprofloxacin therapy per susceptibilities. Discussion. This patient represents the first described case of severe septic shock associated with the infusion of a Wallcur simulation product. Intravenous inoculation of a nonsterile fluid is rare and exposes the patient to unusual environmental organisms, toxins, or unsafe fluid characteristics such as tonicity. During course of treatment, we identified the possible culprit to be a multidrug-resistant isolate of Empedobacter brevis. We also discuss the systemic failures that led to this outbreak. PMID:26668812

  12. Saline Valley

    NASA Technical Reports Server (NTRS)

    2001-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1 Figure 2

    These images of the Saline Valley area, California, were acquired March 30, 2000 and cover a full ASTER scene (60 by 60 km). Each image displays data from a different spectral region, and illustrates the complementary nature of surface compositional information available as a function of wavelength. This image displays visible and near infrared bands 3, 2, and 1 in red, green, and blue (RGB). Vegetation appears red, snow and dry salt lakes are white, and exposed rocks are brown, gray, yellow and blue. Rock colors mainly reflect the presence of iron minerals, and variations in albedo. Figure 1 displays short wavelength infrared bands 4, 6, and 8 as RGB. In this wavelength region, clay, carbonate, and sulfate minerals have diagnostic absorption features, resulting in distinct colors on the image. For example, limestones are yellow-green, and purple areas are kaolinite-rich. Figure 2 displays thermal infrared bands 13, 12 and 10 as RGB. In this wavelength region, variations in quartz content appear as more or less red; carbonate rocks are green, and mafic volcanic rocks are purple. The image is located at 36.8 degrees north latitude and 117.7 degrees west longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  13. Practically Saline

    PubMed Central

    Schroeder, Jonathan; O’Neal, Catherine; Jagneaux, Tonya

    2015-01-01

    Introduction. In December 2014, the Food and Drug Administration issued a recall of all Wallcur simulation products due to reports of their use in clinical practice. We present a case of septic shock and multiorgan failure after the accidental intravenous infusion of a nonsterile Wallcur simulation product. Case. The patient presented with symptoms of rigors and dyspnea occurring immediately after infusion of Wallcur Practi-0.9% saline. Initial laboratory evidence was consistent with severe septic shock and multiorgan dysfunction. His initial lactic acid level was 9 mmol/L (reference range = 0.5-2.2), and he had evidence of acute kidney injury and markers of disseminated intravascular coagulation. All 4 blood culture bottles isolated multidrug-resistant Empedobacter brevis. The patient recovered from his illness and was discharged with ciprofloxacin therapy per susceptibilities. Discussion. This patient represents the first described case of severe septic shock associated with the infusion of a Wallcur simulation product. Intravenous inoculation of a nonsterile fluid is rare and exposes the patient to unusual environmental organisms, toxins, or unsafe fluid characteristics such as tonicity. During course of treatment, we identified the possible culprit to be a multidrug-resistant isolate of Empedobacter brevis. We also discuss the systemic failures that led to this outbreak. PMID:26668812

  14. Systematic investigation of germination responses of Bacillus subtilis spores in different high-salinity environments.

    PubMed

    Nagler, Katja; Moeller, Ralf

    2015-05-01

    High-salinity environments play an increasingly important role in ecology regarding soil salinization due to human-induced processes, but also need to be considered in terms of natural soil desiccation and extreme habitats. It has been shown previously that spore germination of the ubiquitous soil bacterium Bacillus subtilis is detrimentally affected by the presence of high NaCl concentrations, but the underlying mechanisms and effects of other salts remained obscure. To address these two points, we performed a systematic analysis with 32 different salts using spectrophotometric and microscopic methods. It could be shown that inhibitory strength varies considerably among different salts. Although osmotic effects seem to play an important role, ionic composition and concentration (especially of the anion) as well as chemical properties seem to be decisive for the extent of germination inhibition. At the current state of knowledge, fluxes of ions, Ca(2+)-DPA and water are likely affected by all salts, whereas the exact inhibition mechanism of each salt might further depend on the respective properties of the involved ions. Hence, the observed inhibition likely is a result of several phenomena interacting with each other. Altogether this study highlights the complex impact of ionic environments on the life cycle of spore formers. PMID:25764471

  15. The effect of fluid composition, salinity, and acidity on subcritical crack growth in calcite crystals

    NASA Astrophysics Data System (ADS)

    Bergsaker, Anne Schad; Røyne, Anja; Ougier-Simonin, Audrey; Aubry, Jérôme; Renard, François

    2016-03-01

    Chemically activated processes of subcritical cracking in calcite control the time-dependent strength of this mineral, which is a major constituent of the Earth's brittle upper crust. Here experimental data on subcritical crack growth are acquired with a double torsion apparatus to characterize the influence of fluid pH (range 5-7.5) and ionic strength and species (Na2SO4, NaCl, MgSO4, and MgCl2) on the propagation of microcracks in calcite single crystals. The effect of different ions on crack healing has also been investigated by decreasing the load on the crack for durations up to 30 min and allowing it to relax and close. All solutions were saturated with CaCO3. The crack velocities reached during the experiments are in the range 10-9-10-2 m/s and cover the range of subcritical to close to dynamic rupture propagation velocities. Results show that for calcite saturated solutions, the energy necessary to fracture calcite is independent of pH. As a consequence, the effects of fluid salinity, measured through its ionic strength, or the variation of water activity have stronger effects on subcritical crack propagation in calcite than pH. Consequently, when considering the geological sequestration of CO2 into carbonate reservoirs, the decrease of pH within the range of 5-7.5 due to CO2 dissolution into water should not significantly alter the rate of fracturing of calcite. Increase in salinity caused by drying may lead to further reduction in cracking and consequently a decrease in brittle creep. The healing of cracks is found to vary with the specific ions present.

  16. Modeling solubility and acid-base properties of some amino acids in aqueous NaCl and (CH3)4NCl aqueous solutions at different ionic strengths and temperatures.

    PubMed

    Bretti, Clemente; Giuffrè, Ottavia; Lando, Gabriele; Sammartano, Silvio

    2016-01-01

    New potentiometric experiments have been performed in NaCl and in (CH3)4NCl media, to determine the protonation constants, the protonation enthalpy changes and the solubility of six natural α-amino acids, namely Glycine (Gly), Alanine (Ala), Valine (Val), Leucine (Leu), Serine (Ser) and Phenylalanine (Phe). The aim of the work is the rationalization of the protonation thermodynamics (log [Formula: see text], solubility and [Formula: see text]) in NaCl, determining recommended, tentative or provisional values in selected experimental conditions and to report, for the first time, data in a weak interacting medium, as (CH3)4NCl. Literature data analysis was performed selecting the most reliable values, analyzed together with new data here reported. Significant trends and similarities were observed in the behavior of the six amino acids, and in some cases it was possible to determine common parameters for the ionic strength and temperature dependence. In general, the first protonation step, relative to the amino group, is significantly exothermic (average value is [Formula: see text] = -44.5 ± 0.4 kJ mol(-1) at infinite dilution and T = 298.15 K), and the second, relative to the carboxylate group, is fairly close to zero ([Formula: see text] = -2.5 ± 1.6, same conditions). In both cases, the main contribution to the proton binding reaction is mainly entropic in nature. For phenylalanine and leucine, solubility measurements at different concentrations of supporting electrolyte allowed to determine total and specific solubility values, then used to obtain the Setschenow and the activity coefficients of all the species involved in the protonation equilibria. The values of the first protonation constant in (CH3)4NCl are lower than the corresponding values in NaCl, due to the weak interaction between the deprotonated amino group and (CH3)4N(+). In this light, differences between the protonation functions in NaCl and (CH3)4NCl were used for the quantification

  17. Tolerance of Venerupis philippinarum to salinity: osmotic and metabolic aspects.

    PubMed

    Carregosa, Vanessa; Figueira, Etelvina; Gil, Ana M; Pereira, Sara; Pinto, Joana; Soares, Amadeu M V M; Freitas, Rosa

    2014-05-01

    In the last few decades, attention has been focused on the impacts of contamination in marine benthic populations, while the responses of aquatic organisms to natural alterations, namely changes in salinity, have received little attention. In fact, salinity is one of the dominant environmental factors affecting marine bivalves. The ebb and flood of the tide, combined with fresh water inputs from rivers or heavy rainy events, and with extremely dry and hot seasons, can dramatically alter water salinity. Therefore, the salinity of a certain environment can restrict the spatial distribution of a given population, which is especially important when assessing the spread of an invasive species into a new environment. In the present study, the main objective was to understand how clam Venerupis philippinarum copes with salinity changes and, hence biochemical and metabolomic alterations, taking place in individuals submitted to a wide range of salinities were investigated. The results showed that V. philippinarum presented high mortality at lower salinities (0 and 7 g/L) but tolerated high salinities (35 and 42 g/L). The quantification of ionic content revealed that, clams had the capacity to maintain ionic homeostasis along the salinity gradient, mainly changing the concentration of Na, but also with the influence of Mg and Ca. The results showed a decrease in protein content at lower salinities (0 to 21 g/L). Glycogen and glucose increased with increasing salinity gradient. (1)H Nuclear Magnetic Resonance (NMR) spectra of clam aqueous extracts revealed different metabolite profiles at 7, 28 and 42 g/L salinities, thus enabling metabolite changes to be measured in relation to salinity. PMID:24556070

  18. Ionic liquid lubrication at electrified interfaces

    NASA Astrophysics Data System (ADS)

    Kong, Lingling; Huang, Wei; Wang, Xiaolei

    2016-06-01

    The lubrication performances of ionic liquids at electrified interfaces have been investigated by using a reciprocating sliding tribometer. Experimental results indicated that the lubricity of the confined ionic liquids was markedly affected by the application of external electric field and strong interface electric field strength could result in high friction. The influence was more pronounced for the ionic liquid with a shorter alkyl side chain in particular. The main reason of the friction increment might be ascribed to the electrically influenced surface adsorption where the charged ions were structured to form robust and ordered layers.

  19. Ionic Liquids Database- (ILThermo)

    National Institute of Standards and Technology Data Gateway

    SRD 147 Ionic Liquids Database- (ILThermo) (Web, free access)   IUPAC Ionic Liquids Database, ILThermo, is a free web research tool that allows users worldwide to access an up-to-date data collection from the publications on experimental investigations of thermodynamic, and transport properties of ionic liquids as well as binary and ternary mixtures containing ionic liquids.

  20. The arbuscular mycorrhizal fungus Glomus geosporum in European saline, sodic and gypsum soils.

    PubMed

    Landwehr, Melanie; Hildebrandt, Ulrich; Wilde, Petra; Nawrath, Kerstin; Tóth, Tibor; Biró, Borbála; Bothe, Hermann

    2002-08-01

    Plants of saline and sodic soils of the Hungarian steppe and of gypsum rock in the German Harz mountains, thus soils of high ionic strength and electric conductivity, were examined for their colonization by arbuscular mycorrhizal fungi (AMF). Roots of several plants of the saline and sodic soils such as Artemisia maritima, Aster tripolium or Plantago maritima are strongly colonized and show typical AMF structures (arbuscules, vesicles) whereas others like the members of the Chenopodiaceae, Salicornia europaea, Suaeda maritima or Camphorosma annua, are not. The vegetation of the gypsum rock is totally different, but several plants are also strongly colonized there. The number of spores in samples from the saline and sodic soils examined is rather variable, but high on average, although with an apparent low species diversity. Spore numbers in the soil adjacent to the roots of plants often, but not always, correlate with the degree of AMF colonization of the plants. As in German salt marshes [Hildebrandt et al. (2001)], the dominant AMF in the Hungarian saline and sodic soils is Glomus geosporum. All these isolates provided nearly identical restriction fragment length polymorphism (RFLP) patterns of the internal transcribed spacer (ITS) region of spore DNA amplified by polymerase chain reaction (PCR). Cloning and sequencing of several PCR products of the ITS regions indicated that ecotypes of the G. geosporum/ Glomus caledonium clade might exist at the different habitats. A phylogenetic dendrogram constructed from the ITS or 5.8S rDNA sequences was nearly identical to the one published for 18S rDNA data (Schwarzott et al. 2001). It is tempting to speculate that specific ecotypes may be particularly adapted to the peculiar saline or sodic conditions in such soils. They could have an enormous potential in conferring salt resistance to plants. PMID:12189475

  1. Cadmium uptake by Carpobrotus rossii (Haw.) Schwantes under different saline conditions.

    PubMed

    Zhang, Chengjun; Sale, Peter W G; Tang, Caixian

    2016-07-01

    Plants used for phytoextraction of heavy metals from contaminated soils with high levels of salinity should be able to accumulate heavy metals and also be tolerant to salinity. Australian native halophyte species Carpobrotus rossii has recently been shown to tolerate and accumulate multiple heavy metals, especially cadmium (Cd). This study examined the effects of salt type and concentration on phytoextraction of Cd in C. rossii. Plants were grown in contaminated soil for 63 days. The addition of salts increased plant growth and enhanced the accumulation of Cd in shoots up to 162 mg kg(-1) which almost doubled the Cd concentration (87 mg kg(-1)) in plants without salt addition. The increased Cd accumulation was ascribed mainly to increased ionic strength in soils due to the addition of salts and resultantly increased the mobility of Cd. In comparison, the addition of Cl(-) resulted in 8-60 % increase in Cd accumulation in shoots than the addition of SO4 (2-) and NO3 (-). The findings suggest that C. rossii is a promising candidate in phytoextraction of Cd-polluted soils with high salinity levels. PMID:27025219

  2. Reactive transport modeling of column experiments on the evolution of saline alkaline waste solutions

    NASA Astrophysics Data System (ADS)

    Zheng, Zuoping; Zhang, Guoxiang; Wan, Jiamin

    2008-04-01

    Leakage of saline-alkaline tank waste solutions often creates a serious environmental contamination problem. To better understand the mechanisms controlling the fate of such waste solutions in the Hanford vadose zone, we simulated reactive transport in columns designed to represent local site conditions. The Pitzer ion interaction module was used, with principal geochemical processes considered in the simulation including quartz dissolution, precipitation of brucite, calcite, and portlandite, multi-component cation exchange, and aqueous complexation reactions. Good matches were observed between the simulated and measured column data at ambient temperature (˜ 21 °C). Relatively good agreement was also obtained at high temperature (˜ 70 °C). The decrease of pH at the plume front is examined through formation of secondary mineral phases and/or quartz dissolution. Substantial formation of secondary mineral phases resulting from multi-component cation exchange suggests that these phases are responsible for a decrease in pH within the plume front. In addition, a sensitivity analysis was conducted with respect to cation exchange capacity, selectivity coefficient, mineral assemblage, temperature, and ionic strength. This study could serve as a useful guide to subsequent experimental work, to thermodynamic models developed for the concentrated solutions at high ionic strength and to other types of waste plume studies.

  3. Reactive transport modeling of column experiments on the evolution of saline-alkaline waste solutions.

    PubMed

    Zheng, Zuoping; Zhang, Guoxiang; Wan, Jiamin

    2008-04-01

    Leakage of saline-alkaline tank waste solutions often creates a serious environmental contamination problem. To better understand the mechanisms controlling the fate of such waste solutions in the Hanford vadose zone, we simulated reactive transport in columns designed to represent local site conditions. The Pitzer ion interaction module was used, with principal geochemical processes considered in the simulation including quartz dissolution, precipitation of brucite, calcite, and portlandite, multi-component cation exchange, and aqueous complexation reactions. Good matches were observed between the simulated and measured column data at ambient temperature ( approximately 21 degrees C). Relatively good agreement was also obtained at high temperature ( approximately 70 degrees C). The decrease of pH at the plume front is examined through formation of secondary mineral phases and/or quartz dissolution. Substantial formation of secondary mineral phases resulting from multi-component cation exchange suggests that these phases are responsible for a decrease in pH within the plume front. In addition, a sensitivity analysis was conducted with respect to cation exchange capacity, selectivity coefficient, mineral assemblage, temperature, and ionic strength. This study could serve as a useful guide to subsequent experimental work, to thermodynamic models developed for the concentrated solutions at high ionic strength and to other types of waste plume studies. PMID:18313795

  4. Ionic Liquid Structure-Induced Effects on Organic Reactions

    NASA Astrophysics Data System (ADS)

    Stark, Annegret

    Understanding the ways in which the constituents of ionic liquids, i.e. the type of cation, its substitution, and the type of anion chosen, interact with reactants is prerequisite to deliberately designing an ionic liquid solvent with optimum performance. Several approaches, including physico-chemical and spectroscopic measurements and computational studies of binary ionic liquid-substrate mixtures have been presented that investigate the strength of interactions.

  5. Measuring Salinity by Conductivity.

    ERIC Educational Resources Information Center

    Lapworth, C. J.

    1981-01-01

    Outlines procedures for constructing an instrument which uses an electrode and calibration methods to measure the salinity of waters in environments close to and affected by a saline estuary. (Author/DC)

  6. Just add Salt: Salinity-Induced Hydrate Dissociation as a Possible Source for Atmospheric Methane on Mars

    NASA Astrophysics Data System (ADS)

    Elwood Madden, M. E.; Ulrich, S. M.; Onstott, T.; Phelps, T. J.; Szymcek, P.; McCallum, S.

    2006-12-01

    Recent observations of atmospheric methane made by the Mars Odyssey spacecraft suggest a relatively recent source of methane. These observations have spurred interest in near-surface methane hydrate deposits as one possible source. While most studies concentrate on measuring the effects of pressure and temperature variations on hydrate stability, salinity changes can also significantly shift the hydrate stability field in pressure-temperature space and may result in hydrate dissociation. Therefore, long-term increases in the salinity of subsurface fluids due to evaporation or freezing may result in the destabilization of hydrates at depth and a gradual release of methane from potential reservoirs. This study integrates the results of ongoing P-T-X experiments conducted in ORNL's 72 L Seafloor Process Simulator (SPS) and data from the literature describing methane hydrate stability in the presence of numerous salts with theoretical estimates of the Martian crust's thermal structure to build a model of recent and potentially ongoing salinity-induced methane hydrate dissociation in the subsurface. Initial calculations suggest that increased salinity may decrease the depth to the base of the hydrate stability zone by up to 4 km. In addition, the rate of salinity-induced methane hydrate dissociation will also be determined experimentally using a variety of salt compositions and ionic strengths. The results of this study suggest that increases in heat flow or large-scale depressurization of hydrate reservoirs are not required for hydrate destabilization in the subsurface. Instead, gradual increases in fluid salinity may cause the dissociation of a small fraction of subsurface hydrates, resulting in the ongoing release of methane into the atmosphere.

  7. Modeling Study on Injection of Supercritical CO2 Into a Deep Saline Carbonate Formation

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Taberner, C.; Xu, T.; Cartwright, L.

    2008-12-01

    A modeling study on injection of supercritical CO2 into a deep saline carbonate formation was performed using TOUGHREACT Pitzer ion-interaction model. The carbonate formation consists of calcite (72.5%), dolomite (21.5%) and anhydrite (<6%). The brine of the formation is known as NaCl-dominant with salinity at about 250,000 ppm (NaCl equivalent), temperature at 102° C and pressure at 225 bars. The detailed chemical composition of the brine was unknown. It was reconstructed according to the salinity and the known detailed composition of a brine from a similar formation with slightly lower salinity (about 190,000 ppm). The reconstructed formation brine has an ionic strength ~5 molal and pH 5.4 with considerable concentrations of Ca+2, Mg+2, HCO3- and SO4-2. CO2 injection was considered at a constant rate and for a period of 1 year, through a vertical well in a 2D radial model domain, and a horizontal well in a 3D model domain, respectively. The preliminary simulations found that: (1) at the end of the injection, a dryout zone is developed within a few meters from the injection well due to displacement by the injected supercritical CO2 and the evaporation of water from brine into CO2; (2) at the front of the dryout zone, brine is further concentrated (ionic strength up 20 molal) due to water evaporation, pH is lowered to 3.1, halite (NaCl) and anhydrite (CaSO4) precipitate, and the brine is converted into CaCl2-dominant; (3) precipitation of halite in the dryout zone reduces the formation porosity by about 5%-10%; (4) HCl gas is generated from the dryout front; (5) calcite dissolves close to the injection well and precipitates at areas far from the well, however, the overall mineral trapping is not significant in hundreds of years for this carbonate formation. These findings are valuable for the assessment of the potentials of this carbonate formation for CO2 sequestration, injectivity changes, and well degradation by potential corrosion.

  8. Acidic Ionic Liquids.

    PubMed

    Amarasekara, Ananda S

    2016-05-25

    Ionic liquid with acidic properties is an important branch in the wide ionic liquid field and the aim of this article is to cover all aspects of these acidic ionic liquids, especially focusing on the developments in the last four years. The structural diversity and synthesis of acidic ionic liquids are discussed in the introduction sections of this review. In addition, an unambiguous classification system for various types of acidic ionic liquids is presented in the introduction. The physical properties including acidity, thermo-physical properties, ionic conductivity, spectroscopy, and computational studies on acidic ionic liquids are covered in the next sections. The final section provides a comprehensive review on applications of acidic ionic liquids in a wide array of fields including catalysis, CO2 fixation, ionogel, electrolyte, fuel-cell, membrane, biomass processing, biodiesel synthesis, desulfurization of gasoline/diesel, metal processing, and metal electrodeposition. PMID:27175515

  9. Ionic Association Ion-Selective Electrode Experiment.

    ERIC Educational Resources Information Center

    Emara, Mostafa M.; And Others

    1979-01-01

    Describes an experiment that, using a commercially available solid-state selective electrode in conjunction with a pH-meter, determines the stability constants of sodium sulfate while varying the ionic strength of the media using sodium chloride. Detailed reproducible procedures of both the measurements and calculations are described. (BT)

  10. Acute toxicity of saline produced waters to marine organisms

    SciTech Connect

    Pillard, D.A.; Evans, J.M.; DuFresne, D.L.

    1996-11-01

    Produced waters from oil and gas drilling operations are typically very saline, and may cause acute toxicity to marine organisms due imbalances as well as to an excess or deficiency of to osmotic specific common ions. In order to better understand the relationship between toxicity and ion concentration, laboratory toxicity tests were conducted using mysid shrimp (Mysidopsis bahia), sheepshead minnow, (Cyprinodon variegatus), and inland silvemide (Menidia beryllina). For each species the ionic concentration of standard laboratory water was proportionally increased or decreased to produce test solutions with a range of salinities. Individual ions (sodium, potassium, calcium, magnesium, strontium, chloride, bromide, sulfate, bicarbonate, and borate) were also manipulated to examine individual ion toxicity. Organisms were exposed for 48 hours. The three test species differ in their tolerance of salinity. Mysid shrimp show a marked decrease in survival at salinities less than approximately 5 ppt. Both fish species tolerated low salinity water, however, silversides were less tolerant of saline waters (salinity greater than 40 ppt). There were also significant differences in the responses of the organisms to different ions. The results show that salinity of the test solution may play an important role in the responses of the organisms to produced water effluent. Predictable toxicity/ion relationships developed in this study can be used to estimate whether toxicity in produced water is a result of common ions, salinity, or some other unknown toxicant.

  11. Zeta Potential of Carbonates in Saline Brines as a Function of NaCl Salinity and Potential Determining Ions: Ca, Mg and SO4

    NASA Astrophysics Data System (ADS)

    Al-Mahrouqi, D.; Vinogradov, J.; Jackson, M.

    2014-12-01

    Measurements of zeta potential are typically obtained using crushed samples and commercial zetameters at ionic strength <1M. However, many natural brines have much higher salinity. This study reports zeta potential values interpreted from streaming potential measurements in two intact carbonate rock samples as a function of brine salinity (up to 5M) and potential determining ions (PDIs: Ca, Mg, SO4). The two samples appear to be identical pure carbonates in XRD analysis but differ in age and provenance. For low salinity NaCl brines (<1M), in which the initial PDI concentration was established during pre-equilibration with the rock samples, the measured (negative) zeta potential decreased in magnitude with increasing NaCl concentration, consistent with published data and reflecting contraction of the electrical double layer. At higher NaCl salinity (>1M) the surface charge polarity was inverted for one rock sample, yet equilibrium Ca and Mg concentrations remained constant (c. 1.3x10-3 and 7x10-5M respectively) and similar for both samples, regardless of NaCl salinity. We suggest charge inversion was caused by differences in SO4 concentration (3x10-4 versus 1.2x10-3M) in the two samples after equilibration. At higher and externally controlled concentrations of Ca (0.1 - 0.42M), the zeta potential was less affected by NaCl salinity and pCa was the dominant control, although the role of SO4 in distinguishing between rock samples remained valid. The iso-electric point was different for the two samples (pCa 1.7 versus 0.5) and lower than any previously published values. Our results suggest that small differences in PDI concentration may invert surface charge polarity at high NaCl concentration; moreover, trace amounts of anhydrite or other minerals that yield aqueous SO4 can significantly modify surface charge in carbonates that otherwise appear identical. These results are important when interpreting the streaming component of SP measurements in carbonates.

  12. Anomalous Wien Effects in Supercooled Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Patro, L. N.; Burghaus, O.; Roling, B.

    2016-05-01

    We have measured conductivity spectra of several supercooled monocationic and dicationic ionic liquids in the nonlinear regime by applying ac electric fields with large amplitudes up to about 180 kV /cm . Thereby, higher harmonic ac currents up to the 7th order were detected. Our results point to the existence of anomalous Wien effects in supercooled ionic liquids. Most ionic liquids studied here exhibit a conductivity-viscosity relation, which is close to the predictions of the Nernst-Einstein and Stokes-Einstein equations, as observed for classical strong electrolytes like KCl. These "strong" ionic liquids show a much stronger nonlinearity of the conductivity than classical strong electrolytes. On the other hand, the conductivity-viscosity relation of the ionic liquid [P6 ,6 ,6 ,14][Cl ] points to ion association effects. This "weak" ionic liquid shows a strength of the nonlinear effect, which is comparable to classical weak electrolytes. However, the nonlinearity increases quadratically with the field. We suggest that a theory for explaining these anomalies will have to go beyond the level of Coulomb lattice gas models.

  13. Anomalous Wien Effects in Supercooled Ionic Liquids.

    PubMed

    Patro, L N; Burghaus, O; Roling, B

    2016-05-01

    We have measured conductivity spectra of several supercooled monocationic and dicationic ionic liquids in the nonlinear regime by applying ac electric fields with large amplitudes up to about 180  kV/cm. Thereby, higher harmonic ac currents up to the 7th order were detected. Our results point to the existence of anomalous Wien effects in supercooled ionic liquids. Most ionic liquids studied here exhibit a conductivity-viscosity relation, which is close to the predictions of the Nernst-Einstein and Stokes-Einstein equations, as observed for classical strong electrolytes like KCl. These "strong" ionic liquids show a much stronger nonlinearity of the conductivity than classical strong electrolytes. On the other hand, the conductivity-viscosity relation of the ionic liquid [P_{6,6,6,14}][Cl] points to ion association effects. This "weak" ionic liquid shows a strength of the nonlinear effect, which is comparable to classical weak electrolytes. However, the nonlinearity increases quadratically with the field. We suggest that a theory for explaining these anomalies will have to go beyond the level of Coulomb lattice gas models. PMID:27203333

  14. Report of the U.S. Geological Survey's evaluation program for standard reference samples distributed in April 1993; T-123 (trace constituents), T-125 (trace constituents), M-126 (major constituents, N-38 (nutrients), N-39 (nutrients), P-20 (low ionic strength, and Hg-16 (mercury)

    USGS Publications Warehouse

    Long, H.K.; Farrar, J.W.

    1993-01-01

    This report presents the results of the U.S. Geological Survey's analytical evaluation program for seven standard reference samples--T-123 (trace constituents), T-125 (trace constituents), M-126 (major constituents), N-38 (nutrients), N-39 (Nutrients), P-20 (precipitation-low ionic strength), and Hg-16 (mercury)--that were distributed in April 1993 to 175 laboratories registered in the U.S. Geological Survey sponsored interlaboratory testing program. Analytical data received from 131 of the laboratories were evaluated with respect to: overall laboratory performance and relative laboratory performance for each analyte in the 7 reference samples. Results of these evaluations are presented in tabular form. Also presented are tables and graphs summarizing the analytical data provided by each laboratory for each analyte in the seven standard reference samples. The most probable value for each analyte was determined using nonparametric statistics.

  15. Report on the U.S. Geological Survey's evaluation program for standard reference samples distributed in October 1994 : T-131 (trace constituents), T-133 (trace constituents), M-132 (major constituents), N-43 (nutrients), N-44 (nutrients), P-23 (low ionic strength) and Hg-19 (mercury)

    USGS Publications Warehouse

    Long, H. Keith; Farrar, Jerry W.

    1995-01-01

    This report presents the results of the U.S. Geological Survey's analytical evaluation program for 7 standard reference samples--T-131 (trace constituents), T-133 (trace constituents), M-132 (major constituents), N-43 (nutrients), N-44 (nutrients), P-23 (low ionic strength), and Hg-19 (mercury). The samples were distributed in October 1994 to 131 laboratories registered in the U.S. Geological Survey sponsored interlaboratory testing program. Analytical data that were received from 121 of the laboratories were evaluated with respect to: overall laboratory performance and relative laboratory performance for each analyte in the seven reference samples. Results of these evaluations are presented in tabular form. Also presented are tables and graphs summarizing the analytical data provided by each laboratory for each analyte in the seven standard reference samples. The most probable value for each analyte was determined using nonparametric statistics.

  16. Report on the U.S. Geological Survey's Evaluation Program Standard Reference Samples Distributed in October 1995: T-137 (Trace Constituents), M-136 (Major Constituents), N-47 (Nutrient Constituents), N-48 (Nutrient Constituents), P-25 (Low Ionic Strength Constituents), and Hg-21 (Mercury)

    USGS Publications Warehouse

    Farrar, Jerry W.; Long, H. Keith

    1996-01-01

    This report presents the results of the U.S. Geological Survey's analytical evaluation program for 6 standard reference samples--T-137 (trace constituents), M-136 (major constituents), N-47 (nutrient constituents), N-48 (nutrient constituents), P-25 (low ionic strength constituents), and Hg-21 (mercury)--that were distributed in October 1995 to 149 laboratories registered in the U.S. Geological Survey sponsored interlaboratory testing program. Analytical data that were received from 136 of the laboratories were evaluated with respect to: overall laboratory performance and relative laboratory performance for each analyte in the six reference samples. Results of these evaluations are presented in tabular form. Also presented are tables and graphs summarizing the analytical data provided by each laboratory for each analyte in the six standard reference samples. The most probable value for each analyte was determined using nonparametric statistics.

  17. Report on the U.S. Geological Survey's evaluation program for standard reference samples distributed in October 1993 : T-127 (trace constituents), M-128 (major constituents), N-40 (nutrients), N-41 (nutrients), P-21 (low ionic strength), Hg-17 (mercury), AMW-3 (acid mine water), and WW-1 (whole water)

    USGS Publications Warehouse

    Long, H.K.; Farrar, J.W.

    1994-01-01

    This report presents the results of the U.S. Geological Survey's analytical evaluation program for eight standard reference samples--T-127 (trace constituents), M-128 (major constituents), N-40 (nutrients), N-41 (nutrients), P-21 (low ionic strength), Hg-17 (mercury), AMW-3 (acid mine water), and WW-1 (whole water)--that were distributed in October 1993 to 158 laboratories registered in the U.S. Geological Survey sponsored interlaboratory testing program. Analytical data that were received from 145 of the laboratories were evaluated with respect to: overall laboratory performance and relative laboratory performance for each analyte in the eight reference samples. Results of these evaluations are presented in tabular form. Also presented are tables and graphs summarizing the analytical data provided by each laboratory for each analyte in the eight standard reference samples. The most probable value for each analyte was determined using nonparametric statistics.

  18. Salinity Management in Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Existing guidelines and standards for reclamation of saline soils and management to control salinity exist but have not been updated for over 25 years. In the past few years a looming water scarcity has resulted in questioning of the long term future of irrigation projects in arid and semi arid regi...

  19. Kinetics and Mechanisms of Calcite Reactions with Saline Waters

    SciTech Connect

    Gorman, Brian P

    2015-09-02

    Project Description: The general objective of the proposed research is to determine the kinetics and mechanisms of calcite reactions with saline waters over a wide range of saline water composition, pCO2, and modest ranges in T and P. This will be accomplished by studying both reaction rates and solubility from changes in solution chemistry, and making nanoscale observations of calcite precipitate surface morphology and composition at the micro-to-nano-scale to provide an understanding of controlling reaction mechanisms and pathways. The specific objectives necessary to reach the general objective are: a) determination of how pCO2, Ca2+, ionic strength and “foreign” ions influence reaction rates; and b) investigate the influence of these parameters on apparent kinetic solubility from dissolution and precipitation reactions. This information will clearly be central to the construction of reliable reaction-transport models to predict reservoir and formation response to increased CO2 in saline waters. This program was initially collaborative with John Morse at Texas A&M, however his passing shortly after the beginning of this program resulted in abbreviated research time and effort. Summary of Results: Early studies using electron microscopy and spectroscopy indicated that carbonate precipitation from natural seawater (NSW) conditions onto aragonite substrates was mediated by a surface amorphous calcium carbonate layer. It was hypothesized that this ACC layer (observed after < 5days reaction time) was responsible for the abnormal reaction kinetics and also served as a metastable seed layer for growth of epitaxial aragonite. Further studies of the ACC formation mechanism indicated a strong dependence on the Mg concentration in solution. Subsequent studies at shorter times (10 hrs) on calcite substrates and in a wide range of supersaturation conditions did not indicate any ACC layer. Instead, an epitaxial layer by layer

  20. Measuring soil salinity.

    PubMed

    Hardie, Marcus; Doyle, Richard

    2012-01-01

    Soil salinity is a form of land degradation in which salts accumulate in the soil profile to an extent that plant growth or infrastructure are negatively affected. A range of both field and laboratory procedures exist for measuring soil salinity. In the field, soil salinity is usually inferred from apparent electrical conductivity (EC(a)) using a range of devices, depending on the required depth of analysis, or size of the survey area. Field measurements of EC(a) require calibration to the actual salt content by laboratory analysis. In the laboratory, soil salinity is usually assessed by determining either the total soluble salts by evaporation of a soil water extract (TSS), or by determining the electrical conductivity (EC) of either a 1:5 distilled water:soil dilution, or a saturated paste extract. Although procedures for measuring soil salinity appear relatively straightforward, differences in methodology have considerable influence on measured values and interpretation of results. PMID:22895776

  1. Remote sensing of salinity

    NASA Technical Reports Server (NTRS)

    Thomann, G. C.

    1975-01-01

    The complex dielectric constant of sea water is a function of salinity at 21 cm wavelength, and sea water salinity can be determined by a measurement of emissivity at 21 cm along with a measurement of thermodynamic temperature. Three aircraft and one helicopter experiments using two different 21 cm radiometers were conducted under different salinity and temperature conditions. Single or multiple ground truth measurements were used to calibrate the data in each experiment. It is inferred from these experiments that accuracies of 1 to 2%/OO are possible with a single surface calibration point necessary only every two hours if the following conditions are met--water temperatures above 20 C, salinities above 10%/OO, and level plane flight. More frequent calibration, constraint of the aircraft's orientation to the same as it was during calibration, and two point calibration (at a high and low salinity level) rather than single point calibration may give even better accuracies in some instances.

  2. Saline infusion sonohysterography.

    PubMed

    2004-01-01

    Saline infusion sonohysterography consists of ultrasonographic imaging of the uterus and uterocervical cavity, using real-time ultrasonography during injection of sterile saline into the uterus. When properly performed, saline infusion sonohysterography can provide information about the uterus and endometrium. The most common indication for sonohysterography is abnormal uterine bleeding. sonohysterography should not be performed in a woman who is pregnant or could be pregnant or in a woman with a pelvic infection or unexplained pelvic tenderness. Physicians who perform or supervise diagnostic saline infusion sonohysterograpy should have training, experience, and demonstrated competence in gynecologic ultrasonography and saline infusion sonohysterography. Portions of this document were developed jointly with the American College of Radiology and the American Institute of Ultrasound in Medicine. PMID:14968760

  3. Protein Contribution to Plant Salinity Response and Tolerance Acquisition

    PubMed Central

    Kosová, Klára; Prášil, Ilja T.; Vítámvás, Pavel

    2013-01-01

    The review is focused on plant proteome response to salinity with respect to physiological aspects of plant salt stress response. The attention is paid to both osmotic and ionic effects of salinity stress on plants with respect to several protein functional groups. Therefore, the role of individual proteins involved in signalling, changes in gene expression, protein biosynthesis and degradation and the resulting changes in protein relative abundance in proteins involved in energy metabolism, redox metabolism, stressand defence-related proteins, osmolyte metabolism, phytohormone, lipid and secondary metabolism, mechanical stress-related proteins as well as protein posttranslational modifications are discussed. Differences between salt-sensitive (glycophytes) and salt-tolerant (halophytes) plants are analysed with respect to differential salinity tolerance. In conclusion, contribution of proteomic studies to understanding plant salinity tolerance is summarised and discussed. PMID:23531537

  4. Hurricane-induced failure of low salinity wetlands

    PubMed Central

    Howes, Nick C.; FitzGerald, Duncan M.; Hughes, Zoe J.; Georgiou, Ioannis Y.; Kulp, Mark A.; Miner, Michael D.; Smith, Jane M.; Barras, John A.

    2010-01-01

    During the 2005 hurricane season, the storm surge and wave field associated with Hurricanes Katrina and Rita eroded 527 km2 of wetlands within the Louisiana coastal plain. Low salinity wetlands were preferentially eroded, while higher salinity wetlands remained robust and largely unchanged. Here we highlight geotechnical differences between the soil profiles of high and low salinity regimes, which are controlled by vegetation and result in differential erosion. In low salinity wetlands, a weak zone (shear strength 500–1450 Pa) was observed ∼30 cm below the marsh surface, coinciding with the base of rooting. High salinity wetlands had no such zone (shear strengths > 4500 Pa) and contained deeper rooting. Storm waves during Hurricane Katrina produced shear stresses between 425–3600 Pa, sufficient to cause widespread erosion of the low salinity wetlands. Vegetation in low salinity marshes is subject to shallower rooting and is susceptible to erosion during large magnitude storms; these conditions may be exacerbated by low inorganic sediment content and high nutrient inputs. The dramatic difference in resiliency of fresh versus more saline marshes suggests that the introduction of freshwater to marshes as part of restoration efforts may therefore weaken existing wetlands rendering them vulnerable to hurricanes. PMID:20660777

  5. Sea Surface Salinity

    NASA Video Gallery

    The heat of the sun also forces evaporation at the ocean's surface, which puts water vapor into the atmosphere but leaves minerals and salts behind, keeping the ocean salty. The salinity of the oce...

  6. Cellulose regeneration and spinnability from ionic liquids.

    PubMed

    Hauru, Lauri K J; Hummel, Michael; Nieminen, Kaarlo; Michud, Anne; Sixta, Herbert

    2016-02-01

    Ionic liquid solutions of cellulose or dopes can be spun into Lyocell-type textile fibers by dry-jet wet spinning. An extruded dope is drawn over an air gap into water, where the water hydrates the ionic liquid and cellulose is regenerated. Spinnability studies have concentrated on the deformation and failure modes in the air gap and thus the rheology of the unhydrated spinning dope. Herein, a breach in the bath, another failure mode, is discussed. Dopes are prepared from the good spinning solvents NMMO·H2O and [DBNH]OAc and the poor spinning solvents [emim]OAc and [TMGH]OAc. The diffusion constants for water diffusing inwards and for ionic liquid diffusing outwards the emerging filament are measured offline. The resiliences and strengths of cellulose-ionic liquid solutions with different hydration stoichiometries are measured by means of rheometry. By calculating the diffusion dynamics, the resilience distribution of the forming filament is simulated. Gel strength distribution accounts for the tendency of [emim]OAc dopes to undergo a telescope-type breach, whereas the gelatinous solution state of [TMGH]OAc dopes accounts for their poor spinnability. PMID:26660047

  7. Applications of ionic liquids.

    PubMed

    Patel, Divia Dinesh; Lee, Jong-Min

    2012-06-01

    Ionic liquids have recently gained popularity in the scientific community owing to their special properties and characteristics. One of the reasons why ionic liquids have been termed "green solvents" is due to their negligible vapour pressure. Their use in electrochemical, biological and metal extraction applications is discussed. Wide research has been carried out for their use in batteries, solar panels, fuel cells, drug deliveries and biomass pretreatments. This work aims to consolidate the various findings from previous works in these areas. PMID:22711528

  8. Strength Testing.

    ERIC Educational Resources Information Center

    Londeree, Ben R.

    1981-01-01

    Postural deviations resulting from strength and flexibility imbalances include swayback, scoliosis, and rounded shoulders. Screening tests are one method for identifying strength problems. Tests for the evaluation of postural problems are described, and exercises are presented for the strengthening of muscles. (JN)

  9. Treatment with spermidine protects chrysanthemum seedlings against salinity stress damage.

    PubMed

    Zhang, Naiyuan; Shi, Xiaomeng; Guan, Zhiyong; Zhao, Shuang; Zhang, Fei; Chen, Sumei; Fang, Weiming; Chen, Fadi

    2016-08-01

    Salinity-stressed plants of salinity sensitive ('Qx096') and tolerant ('Qx097') chrysanthemum cultivar were treated with a range of concentrations of spermidine (Spd). Plant performance, as indicated by various parameters associated with growth, was improved by the treatment, as was the tissue content of soluble protein and proline. The extent of both Na(+) accumulation and K(+) loss was reduced. Activity levels of the stress-related enzymes SOD, POD, APX and CAT were significantly increased and the production of malondialdehyde (MDA) decreased. The suggestion was that treatment with 1.5 mM Spd would be an effective means alleviating salinity-stress induced injury through its positive effect on photosynthetic efficiency, reactive oxygen species scavenging ability and the control of ionic balance and osmotic potential. Its protective capacity was more apparent in 'Qx096' than in 'Qx097'. PMID:27173095

  10. Ionic liquids as novel solvents for ionic polymer transducers

    NASA Astrophysics Data System (ADS)

    Bennett, Matthew D.; Leo, Donald J.

    2004-07-01

    The use of ionic liquids as solvents for ionic polymer (specifically, Nafion) transducers is demonstrated. Ionic liquids are attractive for this application because of their high inherent stability. Ionic liquids are salts that exist as liquids at room temperature and have no measureable vapor pressure. Therefore, the use of ionic liquids as solvents for ionic polymer transducers can eliminate the traditional problem of water evaporation in these devices. Another benefit of the use of ionic liquids in this way is the reduction or elimination of the characteristic back-relaxation common in water-solvated ionic polymer actuators. The results demonstrate that the viscosity of the ionic liquid and the degree to which the ionic liquid swells the membrane are the important physical parameters to consider. Five ionic liquids were studied, based on substituted pyrrolidinium, phosphonium, or imidazolium cations and fluoroanions. Of these five ionic liquids, transduction is demonstrated in three of them and the best results are obtained with 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid. This substance has an electrochemical stability window of 4.1 V, a melting point of -10 °C, and a viscosity of 35-45 cP [19]. Results demonstrate that platinum-plated Nafion transducers solvated with this ionic liquid exhibit sensing and actuation responses and that these transducers are stable in air. Endurance testing of this sample reveals a decrease in the free strain of only 25 % after 250,000 actuation cycles in air.

  11. Capillary electrophoresis analysis of organic amines and amino acids in saline and acidic samples using the Mars organic analyzer.

    PubMed

    Stockton, Amanda M; Chiesl, Thomas N; Lowenstein, Tim K; Amashukeli, Xenia; Grunthaner, Frank; Mathies, Richard A

    2009-11-01

    The Mars Organic Analyzer (MOA) has enabled the sensitive detection of amino acid and amine biomarkers in laboratory standards and in a variety of field sample tests. However, the MOA is challenged when samples are extremely acidic and saline or contain polyvalent cations. Here, we have optimized the MOA analysis, sample labeling, and sample dilution buffers to handle such challenging samples more robustly. Higher ionic strength buffer systems with pK(a) values near pH 9 were developed to provide better buffering capacity and salt tolerance. The addition of ethylaminediaminetetraacetic acid (EDTA) ameliorates the negative effects of multivalent cations. The optimized protocol utilizes a 75 mM borate buffer (pH 9.5) for Pacific Blue labeling of amines and amino acids. After labeling, 50 mM (final concentration) EDTA is added to samples containing divalent cations to ameliorate their effects. This optimized protocol was used to successfully analyze amino acids in a saturated brine sample from Saline Valley, California, and a subcritical water extract of a highly acidic sample from the Río Tinto, Spain. This work expands the analytical capabilities of the MOA and increases its sensitivity and robustness for samples from extraterrestrial environments that may exhibit pH and salt extremes as well as metal ions. PMID:19968460

  12. Low-frequency Raman spectra and fragility of imidazolium ionic liquids

    SciTech Connect

    Ribeiro, Mauro C. C.

    2010-07-14

    Raman spectra within the 5-200 cm{sup -1} range have been recorded as a function of temperature for different ionic liquids based on imidazolium cations. A correlation has been found between fragility and the temperature dependence of the strength of fast relaxational motions. Understanding quasielastic scattering as the relaxational contribution to ionic mean-squared displacement elucidates some effects on ionic liquids' fragility resulting from modifications in the chemical structure.

  13. Ionic liquid based multifunctional double network gel

    NASA Astrophysics Data System (ADS)

    Ahmed, Kumkum; Higashihara, Tomoya; Arafune, Hiroyuki; Kamijo, Toshio; Morinaga, Takashi; Sato, Takaya; Furukawa, Hidemitsu

    2015-04-01

    Gels are a promising class of soft and wet materials with diverse application in tissue engineering and bio-medical purpose. In order to accelerate the development of gels, it is required to synthesize multi-functional gels of high mechanical strength, ultra low surface friction and suitable elastic modulus with a variety of methods and new materials. Among many types of gel ionic gel made from ionic liquids (ILs) could be used for diverse applications in electrochemical devices and in the field of tribology. IL, a promising materials for lubrication, is a salt with a melting point lower than 100 °C. As a lubricant, ILs are characterized by an extremely low vapor pressure, high thermal stability and high ion conductivity. In this work a novel approach of making double network DN ionic gel using IL has been made utilizing photo polymerization process. A hydrophobic monomer Methyl methacrylate (MMA) has been used as a first network and a hydrophobic IL monomer, N,N-diethyl-N-(2-mthacryloylethyl)-N-methylammonium bistrifluoromethylsulfonyl)imide (DEMM-TFSI) has been used as a second network using photo initiator benzophenon and crosslinker triethylene glycol dimethacrylate (TEGDMA). The resulting DN ionic gel shows transparency, flexibility, high thermal stability, good mechanical toughness and low friction coefficient value which can be a potential candidate as a gel slider in different mechanical devices and can open a new area in the field of gel tribology.

  14. Decreased Salinity and Actinide Mobility: Colloid-Facilitated Transport or pH Change?

    PubMed

    Haliena, Brian; Zheng, Hangping; Melson, Nathan; Kaplan, Daniel I; Barnett, Mark O

    2016-01-19

    Colloids have been implicated in influencing the transport of actinides and other adsorbed contaminants in the subsurface, significantly increasing their mobility. Such colloid-facilitated transport can be induced by changes in groundwater chemistry that occur, for example, when high ionic strength contaminant plumes are displaced by infiltrating rainwater. We studied the transport and mobility of Th(IV), as an analogue for Pu(IV) and other tetravalent actinides [An(IV)], in saturated columns packed with a natural heterogeneous subsurface sandy sediment. As expected, decreases in ionic strength both promoted the mobilization of natural colloids and enhanced the transport of previously adsorbed Th(IV). However, colloid-facilitated transport played only a minor role in enhancing the transport of Th(IV). Instead, the enhanced transport of Th(IV) was primarily due to the pH-dependent desorption of Th(IV) caused by the change in ionic strength. In contrast, the adsorption of Th(IV) had a marked impact on the surface charge of the sandy sediment, significantly affecting the mobility of the colloids. In the absence of Th(IV), changes in ionic strength were ineffective at releasing colloids while in the presence of Th(IV), decreases in ionic strength liberated significant concentrations of colloids. Therefore, under the conditions of our experiments which mimicked acidic, high ionic strength groundwater contaminant plumes, Th(IV) had a much greater effect on colloid transport than colloids had on Th(IV) transport. PMID:26687028

  15. Saline Systems highlights for 2006

    PubMed Central

    DasSarma, Shiladitya

    2007-01-01

    Saline Systems is a journal devoted to both basic and applied studies of saline and hypersaline environments and their biodiversity. Here, I review the reports and commentaries published in the journal in 2006, including some exploring the geochemistry of saline estuaries, lakes, and ponds, others on the ecology and molecular biology of the indigenous halophilic organisms, and still others addressing the environmental challenges facing saline environments. Several studies are relevant to applications in biotechnology and aquaculture. PMID:17244355

  16. Electroplating Using Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Abbott, Andrew P.; Frisch, Gero; Ryder, Karl S.

    2013-07-01

    Electroplating is a key technology in many large-scale industrial applications such as corrosion-resistant and decorative coatings. Issues with current aqueous processes, such as toxicity of reagents and low current efficiencies, can often be overcome by using ionic liquids, and this approach has turned ionometallurgy into a fast-growing area of research. This review outlines the interactions in ionic liquids that are responsible for the advantageous properties of these solvents in electroplating. It summarizes recent research in which these properties have been analyzed or exploited and highlights fundamental issues in research and technology that need to be addressed.

  17. Homopolymer Dissolution in a Hydrophilic Ionic Liquid

    NASA Astrophysics Data System (ADS)

    Hoagland, David; Harner, John

    2010-03-01

    Dissolution, structure, and dynamics of both neutral and charged polymers dissolved in a hydrophilic room temperature ionic liquid (IL), ethylmethylimidazolium ethyl sulfate [EMIM][EtSO4], have been studied by classical physicochemical methods (static and dynamic light scattering, intrinsic viscosity, refractometry) to determine differences in solution behavior from conventional aqueous and organic solvents. This IL is water miscible. Many neutral polymers and charged polymer salts molecularly dissolve, although solubility doesn't correlate with polymer hydrophilicity. Model neutral soluble polymers are polyvinylpyrrolidone and hydroroxyethyl cellulose while sodium poly(styrene sulfonate) and the iodo salt of methyl-quaternized poly(vinyl pyridine) fill the same role for charged polymers. The latter display none of the polyelectrolyte effects found in low ionic strength water, consistent with strong electrostatic screening in IL. In virial coefficient and coil size, the IL acts for these neutral and charged polymers as a classical good solvent. (Support: UMass MRSEC)

  18. Ionic surface electrical conductivity in sandstone

    NASA Astrophysics Data System (ADS)

    Glover, Paul W. J.; Meredith, Philip G.; Sammonds, Peter R.; Murrell, Stanley A. F.

    1994-11-01

    Recent analyses of complex conductivity measurements have indicated that high-frequency dispersions encountered in rocks saturated with low-salinity fluids are due to ionic surface conduction and that the form of these dispersions may be dependent upon the nature of the pore and crack surfaces within the rock (Ruffet et al., 1991). Unfortunately, the mechanisms of surface conduction are not well understood, and no model based on rigorous physical principles exists. This paper is split into two parts: an experimental section followed by the development of a theoretical description of adsorption of ions onto mineral surfaces. We have made complex conductivity measurements upon samples of sandstone saturated with a range of different types and concentrations of aqueous solution with a frequency range of 20 Hz to 1 MHz. The frequency dependence of complex conductivity was analyzed using the empirical model of Cole and Cole (1941). The 'fractal' surface models of Le Mehaute and Crepy (1983), Po Zen Wong (1987), the Ruffet el at. (1991) were used to calculate apparent fractal pore surface dimensions for samples saturated with different solution types and concentrations. These showed a pronounced decrease of apparent fractal surface dimension with decreasing electrolyte concentration and a decrease of apparent fractal dimension with increasing relative ionic radius of the dominant cation in solution. A model for ionic surface concentration (ISCOM I) has been developed as the first step in producing a rigorous physicochemical model of surface conduction in quartz-dominated rocks. The results from ISCOM I show that quartz surfaces are overwhelmingly dominated by adsorbed Na(+) when saturated with NaCl solutions of salinities and pH found in actual geological situations. ISCOM I also shows that the concentration threshold for dominance of surface conduction over bulk conduction is aided by depletion of ions from the bulk fluid as a result of their adsorption onto the mineral

  19. The hydro-geochemistry of groundwater resources in an area with prevailing saline groundwater, lower Shire Valley, Malawi

    NASA Astrophysics Data System (ADS)

    Monjerezi, Maurice; Vogt, Rolf D.; Aagaard, Per; Saka, John D. K.

    2012-06-01

    The area considered in this study lies within the western section of the East African Rift System (EARS) and saline groundwater occurs in some parts of the valley plain. Hydrochemical groundwater types were classified into three groups (G1-G3), indicating different stages of groundwater chemical evolution. An overall incongruent weathering of aluminosilicate minerals causes the groundwater solution to generally be in equilibrium with montmorillonite. Ca-(Mg)-HCO3 groundwater (G1), with relatively low TDS (average TDS = 548 mg/L), are mainly found in areas with Karoo basalt and Precambrian basement complex rocks. This water type is mainly governed by aluminosilicate weathering. Towards the middle of the valley, Na- and mixed cation-HCO3 groundwater (G2; average TDS = 1061 mg/L) predominates. This water type results from a combination of aluminosilicate mineral weathering, cation exchange and precipitation of clays and carbonates. The increase in ionic strength of G2 samples, in comparison with G1 samples, is attributed to mixing with high TDS groundwater in G3. Brackish and saline groundwaters (G3; average TDS = 3457 mg/L) are dominated by sodium, chloride and sulphate ions, which is attributable to dissolution of Cl- and SO42- evaporative salts. These are found in clusters and in aquifers with low recharge capacity (low transmissivity) and are attributable to intrusion of mineralised groundwater probably through fault zones from mainly sedimentary Karoo and Cretaceous Lupata formations. Evaporation plays a role in brackish/saline groundwaters found in areas with shallow water table along the Shire River.

  20. Nitrile-functionalized pyrrolidinium ionic liquids as solvents for cross-coupling reactions involving in situ generated nanoparticle catalyst reservoirs.

    PubMed

    Cui, Yugang; Biondi, Ilaria; Chaubey, Manish; Yang, Xue; Fei, Zhaofu; Scopelliti, Rosario; Hartinger, Christian G; Li, Yongdan; Chiappe, Cinzia; Dyson, Paul J

    2010-02-28

    A series of nitrile-functionalized pyrrolidinium-based ionic liquids have been prepared and characterized by spectroscopic methods and X-ray crystallography. The application of these new ionic liquids as reaction media for Suzuki and Stille C-C cross-coupling reactions has been investigated and compared with related imidazolium and pyridinium systems (including those with and without nitrile functionalities). The nature of the ionic liquid strongly influences the catalyzed reaction and it would appear that, in addition to the nitrile group, the strength of anion-cation pairing in the ionic liquid and the viscosity of the ionic liquid play critical roles. Nanoparticles are also detected following catalysis and their role, and the influence of the ionic liquid on them, is assessed. The ability to use the nitrile-functionalized pyrrolidinium-based ionic liquids diluted in other (non-functionalized) ionic liquids is also described. PMID:20145850

  1. Fun with Ionic Compounds

    ERIC Educational Resources Information Center

    Logerwell, Mollianne G.; Sterling, Donna R.

    2007-01-01

    Ionic bonding is a fundamental topic in high school chemistry, yet it continues to be a concept that students struggle to understand. Even if they understand atomic structure and ion formation, it can be difficult for students to visualize how ions fit together to form compounds. This article describes several engaging activities that help…

  2. Synthesis of ionic liquids

    DOEpatents

    Dai, Sheng; Luo, Huimin

    2011-11-01

    Ionic compounds which are liquids at room temperature are formed by the method of mixing a neutral organic ligand with the salt of a metal cation and its conjugate anion. The liquids are hydrophobic, conductive and stable and have uses as solvents and in electrochemical devices.

  3. Synthesis of ionic liquids

    DOEpatents

    Dai, Sheng [Knoxville, TN; Luo, Huimin [Knoxville, TN

    2008-09-09

    Ionic compounds which are liquids at room temperature are formed by the method of mixing a neutral organic liqand with the salt of a metal cation and its conjugate anion. The liquids are hydrophobic, conductive and stable and have uses as solvents and in electrochemical devices.

  4. Carbenes from ionic liquids.

    PubMed

    Hollóczki, Oldamur; Nyulászi, László

    2014-01-01

    In the last decade an explosive development has been observed in the fields of both ionic liquids (ILs) as potential chemically inert solvents with many possible technical applications, and N-heterocyclic carbenes (NHCs) as catalysts with superb performance. Since the cations of many ILs can be deprotonated by strong bases yielding NHCs, this two fields are inherently connected. It has only recently been recognized that some of the commonly used basic anions of the ILs (such as acetate) are able to deprotonate azolium cations. While the resulting NHC could clearly be observed in the vapor phase, in the liquid - where the mutual electrostatic interactions within the ion network stabilize the ion pairs - the neutral NHC cannot be detected by commonly used analytical techniques; however, from these ionic liquids NHCs can be trapped, e.g., by complex formation, or more importantly these ILs can be directly used as catalysts, since the NHC content is sufficiently large for these applications. Apart from imidazole-2-ylidenes, the formation of other highly reactive neutral species ("abnormal carbenes," 2-alkylideneimidazoles, pyridine-ylidenes or pyridinium-ylides) is feasible in highly basic ionic liquids. The cross-fertilizing overlap between the two fields may provide access to a great advance in both areas, and we give an overview here on the results published so far, and also on the remaining possibilities and challenges in the concept of "carbenes from ionic liquids." PMID:23539381

  5. The system NaCl-CaCl[sub 2]-H[sub 2]O; 2: Densities for ionic strengths of 0. 1--19. 2 mol[center dot]kg[sup [minus]1] at 298. 15 and 308. 15 K and at 0. 1 MPa

    SciTech Connect

    Oakes, C.S.; Bodnar, R.J. . Dept. of Geological Sciences); Simonson, J.M. . Chemistry Division)

    1990-01-01

    Data on the physical properties of the ternary system NaCl-CaCl[sub 2]-H[sub 2]O are of particular importance in the processing and disposal of brines produced from industrial processes, chemical manufacture, and petroleum and geothermal reservoirs. Densities for ternary solutions in the system NaCl-CaCl[sub 2]-H[sub 2]O were measured with a vibrating-tube densimeter at 298.15 [+-] 0.09 and 308.15 [+-] 0.03 K and 0.1 MPa and over a range of ionic strengths from 0.1 to 19.2 mol[center dot]kg[sup [minus]1]. The present results are in excellent agreement with previously published data for the NaCl-H[sub 2]O binary and are in very good agreement with the more precise of the available data for the CaCl[sub 2]-H[sub 2]O binary at 298.15 K. Very large discrepancies between the results of the three most recent reports of densities for the CaCl[sub 2]-H[sub 2]O system at 308.15 K are resolved here, improving both the accuracy and precision for this system. Most significantly, the results reported here substantially expand the volumetric data base for ternary solutions. On the basis of the results of this study, most of the previously reported 308.15 K density data in the ternary system appear to contain large errors. The authors have evaluated the data within the framework of the Pitzer formalism and obtain new values for the ion interaction and mixing parameters for this ternary system. In addition to the parameters determined from the binary end-member solutions, it was found that only [theta][sub NaCa][sup v] was needed to represent the ternary results.

  6. Intermolecular vibrations and fast relaxations in supercooled ionic liquids

    NASA Astrophysics Data System (ADS)

    Ribeiro, Mauro C. C.

    2011-06-01

    Short-time dynamics of ionic liquids has been investigated by low-frequency Raman spectroscopy (4 < ω < 100 cm-1) within the supercooled liquid range. Raman spectra are reported for ionic liquids with the same anion, bis(trifluoromethylsulfonyl)imide, and different cations: 1-butyl-3-methylimidazolium, 1-hexyl-3-methylimidazolium, 1-butyl-1-methylpiperidinium, trimethylbutylammonium, and tributylmethylammonium. It is shown that low-frequency Raman spectroscopy provides similar results as optical Kerr effect (OKE) spectroscopy, which has been used to study intermolecular vibrations in ionic liquids. The comparison of ionic liquids containing aromatic and non-aromatic cations identifies the characteristic feature in Raman spectra usually assigned to librational motion of the imidazolium ring. The strength of the fast relaxations (quasi-elastic scattering, QES) and the intermolecular vibrational contribution (boson peak) of ionic liquids with non-aromatic cations are significantly lower than imidazolium ionic liquids. A correlation length assigned to the boson peak vibrations was estimated from the frequency of the maximum of the boson peak and experimental data of sound velocity. The correlation length related to the boson peak (˜19 Å) does not change with the length of the alkyl chain in imidazolium cations, in contrast to the position of the first-sharp diffraction peak observed in neutron and X-ray scattering measurements of ionic liquids. The rate of change of the QES intensity in the supercooled liquid range is compared with data of excess entropy, free volume, and mean-squared displacement recently reported for ionic liquids. The temperature dependence of the QES intensity in ionic liquids illustrates relationships between short-time dynamics and long-time structural relaxation that have been proposed for glass-forming liquids.

  7. Overview of SMOS Salinity

    NASA Astrophysics Data System (ADS)

    Nicolas, R.

    2014-12-01

    While it is well known that the ocean is one of the most important components of the climate system, with a heat capacity 1100 times greater than the atmosphere, the ocean is also the primary reservoir for freshwater transport to the atmosphere and largest component of the global water cycle. Two new satellite sensors, the ESA Soil Moisture and Ocean Salinity (SMOS) and the NASA Aquarius SAC-D missions are now providing the first space borne measurements of the sea surface salinity (SSS). In this talk, we will present examples demonstrating how SMOS-derived SSS data are being used to better characterize key land-ocean and atmosphere-ocean interaction processes that occur within the marine hydrological cycle. In particular, we shall illustrate how SMOS and its ocean mapping capability provides observations across the world's largest tropical ocean fresh pool regions and we will discuss intra-seasonal to interannual precipitation impacts as well as large-scale river runoff from the Amazon-Orinoco and Congo rivers and its offshore advection. Synergistic multi-satellite analyses of these new surface salinity data sets combined with sea surface temperature, dynamical height and currents from altimetry, surface wind, ocean color, rainfall estimates, and in situ observations will be shown to yield new freshwater budget and ocean circulation insight. Examples of SMOS capabilities of monitoring salt exchanges across the Gulf Stream through meso-scale eddies will be provided. SSS observations from the SMOS and Aquarius/SAC-D sensors are combined to examine the response of the upper ocean to tropical cyclone passage including the potential role that a freshwater-induced upper ocean barrier layer may play in modulating surface cooling and enthalpy flux in tropical cyclone track regions.

  8. Salinity driven oceanographic upwelling

    DOEpatents

    Johnson, David H.

    1986-01-01

    The salinity driven oceanographic upwelling is maintained in a mariculture device that includes a long main duct in the general shape of a cylinder having perforated cover plates at each end. The mariculture device is suspended vertically in the ocean such that one end of the main duct is in surface water and the other end in relatively deep water that is cold, nutrient rich and relatively fresh in comparison to the surface water which is relatively warm, relatively nutrient deficient and relatively saline. A plurality of elongated flow segregating tubes are disposed in the main duct and extend from the upper cover plate beyond the lower cover plate into a lower manifold plate. The lower manifold plate is spaced from the lower cover plate to define a deep water fluid flow path to the interior space of the main duct. Spacer tubes extend from the upper cover plate and communicate with the interior space of the main duct. The spacer tubes are received in an upper manifold plate spaced from the upper cover plate to define a surface water fluid flow path into the flow segregating tubes. A surface water-deep water counterflow is thus established with deep water flowing upwardly through the main duct interior for discharge beyond the upper manifold plate while surface water flows downwardly through the flow segregating tubes for discharge below the lower manifold plate. During such counterflow heat is transferred from the downflowing warm water to the upflowing cold water. The flow is maintained by the difference in density between the deep water and the surface water due to their differences in salinity. The upwelling of nutrient rich deep water is used for marifarming by fertilizing the nutrient deficient surface water.

  9. Salinity driven oceanographic upwelling

    DOEpatents

    Johnson, D.H.

    1984-08-30

    The salinity driven oceanographic upwelling is maintained in a mariculture device that includes a long main duct in the general shape of a cylinder having perforated cover plates at each end. The mariculture device is suspended vertically in the ocean such that one end of the main duct is in surface water and the other end in relatively deep water that is cold, nutrient rich and relatively fresh in comparison to the surface water which is relatively warm, relatively nutrient deficient and relatively saline. A plurality of elongated flow segregating tubes are disposed in the main duct and extend from the upper cover plate beyond the lower cover plate into a lower manifold plate. The lower manifold plate is spaced from the lower cover plate to define a deep water fluid flow path to the interior space of the main duct. Spacer tubes extend from the upper cover plate and communicate with the interior space of the main duct. The spacer tubes are received in an upper manifold plate spaced from the upper cover plate to define a surface water fluid flow path into the flow segregating tubes. A surface water-deep water counterflow is thus established with deep water flowing upwardly through the main duct interior for discharge beyond the upper manifold plate while surface water flows downwardly through the flow segregating tubes for discharge below the lower manifold plate. During such counterflow heat is transferred from the downflowing warm water to the upflowing cold water. The flow is maintained by the difference in density between the deep water and the surface water due to their differences in salinity. The upwelling of nutrient rich deep water is used for marifarming by fertilizing the nutrient deficient surface water. 1 fig.

  10. Biocatalytic transformations in ionic liquids.

    PubMed

    van Rantwijk, Fred; Madeira Lau, Rute; Sheldon, Roger A

    2003-03-01

    Room temperature ionic liquids are non-volatile, thermally stable and highly polar; they are also moderately hydrophilic solvents. Here, we discuss their use as reaction media for biocatalysis. Enzymes of widely diverging types are catalytically active in ionic liquids or aqueous biphasic ionic liquid systems. Lipases, in particular, maintain their activity in anhydrous ionic liquid media; the (enantio)selectivity and operational stability are often better than in traditional media. The unconventional solvent properties of ionic liquids have been exploited in biocatalyst recycling and product recovery schemes that are not feasible with traditional solvent systems. PMID:12628370

  11. Dissolving Polymers in Ionic Liquids.

    NASA Astrophysics Data System (ADS)

    Hoagland, David; Harner, John

    2009-03-01

    Dissolution and phase behavior of polymers in ionic liquids have been assessed by solution characterization techniques such as intrinsic viscosity and light scattering (static and dynamic). Elevated viscosity proved the greatest obstacle. As yet, whether principles standard to conventional polymer solutions apply to ionic liquid solutions is uncertain, especially for polymers such as polyelectrolytes and hydrophilic block copolymers that may specifically interact with ionic liquid anions or cations. For flexible polyelectrolytes (polymers releasing counterions into high dielectric solvents), characterization in ionic liquids suggests behaviors more typical of neutral polymer. Coil sizes and conformations are approximately the same as in aqueous buffer. Further, several globular proteins dissolve in a hydrophilic ionic liquid with conformations analogous to those in buffer. General principles of solubility, however, remain unclear, making predictions of which polymer dissolves in which ionic liquid difficult; several otherwise intractable polymers (e.g., cellulose, polyvinyl alcohol) dissolve and can be efficiently functionalized in ionic liquids.

  12. Ionic starch-based hydrogels for the prevention of nonspecific protein adsorption.

    PubMed

    Wang, Jinmei; Sun, Hong; Li, Junjie; Dong, Dianyu; Zhang, Yabin; Yao, Fanglian

    2015-03-01

    Non-fouling materials bind water molecules via either hydrogen bonding or ionic solvation to form a hydration layer which is responsible for their resistance to protein adsorption. Three ionic starch-based polymers, namely a cationic starch (C-Starch), an anionic starch (A-Starch) and a zwitterionic starch (Z-Starch), were synthesized via etherification reactions to incorporate both hydrogen bonding and ionic solvation hydration groups into one molecule. Further, C-, A- and Z-Starch hydrogels were prepared via chemical crosslinking. The non-fouling properties of these hydrogels were tested with different proteins in solutions with different ionic strengths. The C-Starch hydrogel had low protein resistance at all ionic strengths; the A-Starch hydrogel resisted protein adsorption at ionic strengths of more than 10mM; and the Z-Starch hydrogel resisted protein adsorption at all ionic strengths. In addition, the A- and Z-Starch hydrogels both resisted cell adhesion. This work provides a new path for developing non-fouling materials using the integration of polysaccharides with anionic or zwitterionic moieties to regulate the protein resistance of materials. PMID:25498650

  13. Survival strategies of microorganisms in extreme saline environments

    NASA Astrophysics Data System (ADS)

    Imhoff, J. F.

    Halophilic representatives are found in all main lines of evolutionary descendence of microbes: in archaebacteria, Gram-negative and Gram-positive eubacteria, and also in eucaryotes. In principe all halophilic microorganisms have to adapt their surface and membrane structures to their highly ionic environments. Concerning their intracellular compartment two different strategies have been developed: Inorganic ions are largely excluded in some microorganisms while such ions are actively accumulated in others. In particular the second group of organisms has to adapt the whole metabolic machinery to the highly ionic conditions of several molar salts, whereas in the first group only the outer surface of the cytoplasmic membrane and the extracytoplasmic structures are in contact with high concentrations of inorganic ions. In this latter group, a variety of organic solutes is accumulated in response to increases of the salinity of the environment.

  14. Super ionic conductive glass

    DOEpatents

    Susman, Sherman; Volin, Kenneth J.

    1984-01-01

    An ionically conducting glass for use as a solid electrolyte in a power or secondary cell containing an alkali metal-containing anode and a cathode separated by an alkali metal ion conducting glass having an ionic transference number of unity and the general formula: A.sub.1+x D.sub.2-x/3 Si.sub.x P.sub.3-x O.sub.12-2x/3, wherein A is a network modifier for the glass and is an alkali metal of the anode, D is an intermediate for the glass and is selected from the class consisting of Zr, Ti, Ge, Al, Sb, Be, and Zn and X is in the range of from 2.25 to 3.0. Of the alkali metals, Na and Li are preferred and of the intermediate, Zr, Ti and Ge are preferred.

  15. Super ionic conductive glass

    DOEpatents

    Susman, S.; Volin, K.J.

    Described is an ionically conducting glass for use as a solid electrolyte in a power or secondary cell containing an alkali metal-containing anode and a cathode separated by an alkali metal ion conducting glass having an ionic transference number of unity and the general formula: A/sub 1 + x/D/sub 2-x/3/Si/sub x/P/sub 3 - x/O/sub 12 - 2x/3/, wherein A is a network modifier for the glass and is an alkali metal of the anode, D is an intermediate for the glass and is selected from the class consisting of Zr, Ti, Ge, Al, Sb, Be, and Zn and X is in the range of from 2.25 to 3.0. Of the alkali metals, Na and Li are preferred and of the intermediate, Zr, Ti and Ge are preferred.

  16. Effects of salinity on growth and ion regulation of juvenile alligator gar Atractosteus spatula.

    PubMed

    Schwarz, Daniel E; Allen, Peter J

    2014-03-01

    The alligator gar (Atractosteus spatula) is a primitive euryhaline fish, found primarily in estuaries and freshwater drainages associated with the northern Gulf of Mexico. The extent of its hypo-osmotic regulatory abilities is not well understood. In order to determine how salinity affects growth rates and ionic and osmoregulation, juvenile alligator gar (330 days after hatch; 185 g) were exposed to 4 different salinities (0, 8, 16, and 24 ppt) for a 30-day period. Specific growth rate, plasma osmolality and ion concentrations, gill and gastrointestinal tract Na(+), K(+)-ATPase activities, and drinking rate were compared. Juvenile alligator gar were able to tolerate hyperosmotic salinities up to 24 ppt for a 30 day period, albeit with decreased growth resulting largely from decreased food consumption. Plasma osmolality and ionic concentrations were elevated in hyperosmotic salinities, and drinking rates and gastrointestinal tract Na(+), K(+)-ATPase activities increased, particularly in the pyloric caeca, presumably the primary location of water absorption. Therefore, juvenile alligator gar<1 year of age are capable of prolonged exposure to hyperosmotic salinities, but, based on the inference of these data, require access to lower salinities for long-term survival. PMID:24368134

  17. Thermodynamic estimation: Ionic materials

    SciTech Connect

    Glasser, Leslie

    2013-10-15

    Thermodynamics establishes equilibrium relations among thermodynamic parameters (“properties”) and delineates the effects of variation of the thermodynamic functions (typically temperature and pressure) on those parameters. However, classical thermodynamics does not provide values for the necessary thermodynamic properties, which must be established by extra-thermodynamic means such as experiment, theoretical calculation, or empirical estimation. While many values may be found in the numerous collected tables in the literature, these are necessarily incomplete because either the experimental measurements have not been made or the materials may be hypothetical. The current paper presents a number of simple and relible estimation methods for thermodynamic properties, principally for ionic materials. The results may also be used as a check for obvious errors in published values. The estimation methods described are typically based on addition of properties of individual ions, or sums of properties of neutral ion groups (such as “double” salts, in the Simple Salt Approximation), or based upon correlations such as with formula unit volumes (Volume-Based Thermodynamics). - Graphical abstract: Thermodynamic properties of ionic materials may be readily estimated by summation of the properties of individual ions, by summation of the properties of ‘double salts’, and by correlation with formula volume. Such estimates may fill gaps in the literature, and may also be used as checks of published values. This simplicity arises from exploitation of the fact that repulsive energy terms are of short range and very similar across materials, while coulombic interactions provide a very large component of the attractive energy in ionic systems. Display Omitted - Highlights: • Estimation methods for thermodynamic properties of ionic materials are introduced. • Methods are based on summation of single ions, multiple salts, and correlations. • Heat capacity, entropy

  18. 3-Methylpiperidinium ionic liquids.

    PubMed

    Belhocine, Tayeb; Forsyth, Stewart A; Gunaratne, H Q Nimal; Nieuwenhuyzen, Mark; Nockemann, Peter; Puga, Alberto V; Seddon, Kenneth R; Srinivasan, Geetha; Whiston, Keith

    2015-04-28

    A wide range of room temperature ionic liquids based on the 3-methylpiperdinium cation core were produced from 3-methylpiperidine, which is a derivative of DYTEK® A amine. First, reaction with 1-bromoalkanes or 1-bromoalkoxyalkanes generated the corresponding tertiary amines (Rmβpip, R = alkyl or alkoxyalkyl); further quaternisation reactions with the appropriate methylating agents yielded the quaternary [Rmmβpip]X salts (X(-) = I(-), [CF3CO2](-) or [OTf](-); Tf = -SO2CF3), and [Rmmβpip][NTf2] were prepared by anion metathesis from the corresponding iodides. All [NTf2](-) salts are liquids at room temperature. [Rmmβpip]X (X(-) = I(-), [CF3CO2](-) or [OTf](-)) are low-melting solids when R = alkyl, but room temperature liquids upon introduction of ether functionalities on R. Neither of the 3-methylpiperdinium ionic liquids showed any signs of crystallisation, even well below 0 °C. Some related non-C-substituted piperidinium and pyrrolidinium analogues were prepared and studied for comparison. Crystal structures of 1-hexyl-1,3-dimethylpiperidinium tetraphenylborate, 1-butyl-3-methylpiperidinium bromide, 1-(2-methoxyethyl)-1-methylpiperidinium chloride and 1-(2-methoxyethyl)-1-methylpyrrolidinium bromide are reported. Extensive structural and physical data are collected and compared to literature data, with special emphasis on the systematic study of the cation ring size and/or asymmetry effects on density, viscosity and ionic conductivity, allowing general trends to be outlined. Cyclic voltammetry shows that 3-methylpiperidinium ionic liquids, similarly to azepanium, piperidinium or pyrrolidinium counterparts, are extremely electrochemically stable; the portfolio of useful alternatives for safe and high-performing electrolytes is thus greatly extended. PMID:25669485

  19. Cyclic phosphonium ionic liquids

    PubMed Central

    Mukhlall, Joshua A; Romeo, Alicia R; Gohdo, Masao; Ramati, Sharon; Berman, Marc; Suarez, Sophia N

    2014-01-01

    Summary Ionic liquids (ILs) incorporating cyclic phosphonium cations are a novel category of materials. We report here on the synthesis and characterization of four new cyclic phosphonium bis(trifluoromethylsulfonyl)amide ILs with aliphatic and aromatic pendant groups. In addition to the syntheses of these novel materials, we report on a comparison of their properties with their ammonium congeners. These exemplars are slightly less conductive and have slightly smaller self-diffusion coefficients than their cyclic ammonium congeners. PMID:24605146

  20. [Ionic composition of mollusk cells--evolutionary and ecologic aspects].

    PubMed

    Natochin, Iu V; Berger, V Ia

    1979-01-01

    Marine molluscs exhibit relative constancy in intracellular potassium at the back ground of significant changes in intracellular sodium during acclimation to differen salinities. These changes, which were observed in cells of the adductor muscle and hepa topancreas, result mainly from active extrusion of sodium (possibly, of chloride as well) from the cell at low salinities and accumulation of these ions within the cell during the increase in salinity. Changes in intracellular concentration of sodium and chloride ions serve presumably as one of the main mechanisms of volume stabilization of cells, which together with the amino acid regulation alleviates the hydration of cells at different salinities. The capacity of cells to keep their potassium accounts for the maintenance of Ki/Ko ratio during changes in cellular volume induced by osmotic effects. These data are discussed in relation to two alternative hypotheses of the decreased and close to the present salinity of ocean at the initial stages of formation of the ionic composition of cells. PMID:473987

  1. ERRORS IN APPLYING LOW IONIC-STRENGTH ACTIVITY COEFFICIENT ALGORITHMS TO HIGHER IONIC-STRENGTH AQUATIC MEDIA

    EPA Science Inventory

    The toxicological and regulatory communities are currently exploring the use of the free-ion-activity (FIA) model both alone and in conjunction with the biotic ligand model (BLM) as a means of reducing uncertainties in current methods for assessing metals bioavailability from aqu...

  2. Metrology for ocean salinity and acidity- the European Metrology Research Project ENV05

    NASA Astrophysics Data System (ADS)

    Spitzer, Petra; Seitz, Steffen; Lago, Simona; Stoica, Daniela; Mariassy, Michal; Clough, Robert; Camões, Maria Filomena

    2013-04-01

    . The development of a primary potentiometric pH procedure at higher ionic strength will allow the characterization of artificial seawater of reference composition which will be suitable as calibration standard for spectrophotometric pH measurements. A validated method for the quantification of the mass fraction of strontium based on isotope dilution mass spectrometry (ID-ICP-MS) will be developed. Analytical procedures for the quantification of nutrients in seawater will be developed taking into account matrix contributions. More accurate methodologies for the determination of iron in seawater will be developed. Confidence in quantification will be achieved by rigorous validation (covering sampling and sample treatment), including thorough uncertainty budgeting and the comparison between shipboard methods and ID-ICP-MS.

  3. Mature cathepsin L is substantially active in the ionic milieu of the extracellular medium.

    PubMed

    Dehrmann, F M; Coetzer, T H; Pike, R N; Dennison, C

    1995-12-01

    The activity of cathepsin L is affected by ionic strength, resulting in the measured pH optimum being higher in acetate-4-morpholineethane sulfonic acid (MES)-Tris buffers of constant ionic strength than in phosphate buffers of constant molarity (and hence varying ionic strength). In acetate-MES-Tris and phosphate buffers of constant ionic strength across the pH range, the catalytic constant, kcat, generally peaked at ca. pH 6.5 and essentially independently of ionic strength. Km values, of ca. 5 microM, manifested a slight rising trend with increasing ionic strength, with a sharp increase to 20-25 microM, specifically at pH 6.5 and I = 0.4. At physiological ionic strengths, the specific buffer ions present affected the activity of mature cathepsin L, kcat/Km declining above pH 6.5 in phosphate buffer, but only above pH 7 in acetate-MES-Tris buffer. In Hanks' balanced salt solution, a model of the extracellular fluid, measured values at pH 7.2 were kcat, 18.9 s-1; Km, 13.5 microM; and kcat/Km, 1.4 x 10(6) M-1 s-1. The stability of cathepsin L in the physiological pH range was also differentially affected by the specific buffer ions, generally in parallel with the enzyme activity. In Hanks' balanced salt solution, mature cathepsin L was substantially active and stable, having a half-life of 179 s at pH 7.2 and 657 s at pH 6.8 (the peritumor pH). PMID:7503566

  4. Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids

    SciTech Connect

    Gering, Kevin L.; Harrup, Mason K.; Rollins, Harry W.

    2015-12-08

    An ionic liquid including a phosphazene compound that has a plurality of phosphorus-nitrogen units and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. One pendant group of the at least one pendant group comprises a positively charged pendant group. Additional embodiments of ionic liquids are disclosed, as are electrolyte solutions and energy storage devices including the embodiments of the ionic liquid.

  5. Ionic resistance and permselectivity tradeoffs in anion exchange membranes.

    PubMed

    Geise, Geoffrey M; Hickner, Michael A; Logan, Bruce E

    2013-10-23

    Salinity gradient energy technologies, such as reverse electrodialysis (RED) and capacitive mixing based on Donnan potential (Capmix CDP), could help address the global need for noncarbon-based energy. Anion exchange membranes (AEMs) are a key component in these systems, and improved AEMs are needed in order to optimize and extend salinity gradient energy technologies. We measured ionic resistance and permselectivity properties of quaternary ammonium-functionalized AEMs based on poly(sulfone) and poly(phenylene oxide) polymer backbones and developed structure-property relationships between the transport properties and the water content and fixed charge concentration of the membranes. Ion transport and ion exclusion properties depend on the volume fraction of water in the polymer membrane, and the chemical nature of the polymer itself can influence fine-tuning of the transport properties to obtain membranes with other useful properties, such as chemical and dimensional stability. The ionic resistance of the AEMs considered in this study decreased by more than 3 orders of magnitude (i.e., from 3900 to 1.6 Ω m) and the permselectivity decreased by 6% (i.e., from 0.91 to 0.85) as the volume fraction of water in the polymer was varied by a factor of 3.8 (i.e., from 0.1 to 0.38). Water content was used to rationalize a tradeoff relationship between the permselectivity and ionic resistance of these AEMs whereby polymers with higher water content tend to have lower ionic resistance and lower permselectivity. The correlation of ion transport properties with water volume fraction and fixed charge concentration is discussed with emphasis on the importance of considering water volume fraction when interpreting ion transport data. PMID:24040962

  6. Ion Transport in Nanostructured Block Copolymer/Ionic Liquid Membranes

    NASA Astrophysics Data System (ADS)

    Hoarfrost, Megan Lane

    Incorporating an ionic liquid into one block copolymer microphase provides a platform for combining the outstanding electrochemical properties of ionic liquids with a number of favorable attributes provided by block copolymers. In particular, block copolymers thermodynamically self-assemble into well-ordered nanostructures, which can be engineered to provide a durable mechanical scaffold and template the ionic liquid into continuous ion-conducting nanochannels. Understanding how the addition of an ionic liquid affects the thermodynamic self-assembly of block copolymers, and how the confinement of ionic liquids to block copolymer nanodomains affects their ion-conducting properties is essential for predictable structure-property control. The lyotropic phase behavior of block copolymer/ionic liquid mixtures is shown to be reminiscent of mixtures of block copolymers with selective molecular solvents. A variety of ordered microstructures corresponding to lamellae, hexagonally close-packed cylinders, body-centered cubic, and face-centered cubic oriented micelles are observed in a model system composed of mixtures of imidazolium bis(trifluoromethylsulfonyl)imide ([Im][TFSI]) and poly(styrene- b-2-vinyl pyridine) (PS-b-P2VP). In contrast to block copolymer/molecular solvent mixtures, the interfacial area occupied by each PS-b-P2VP chain decreases upon the addition of [Im][TFSI], indicating a considerable increase in the effective segregation strength of the PS-b-P2VP copolymer with ionic liquid addition. The relationship between membrane structure and ionic conductivity is illuminated through the development of scaling relationships that describe the ionic conductivity of block copolymer/ionic liquid mixtures as a function of membrane composition and temperature. It is shown that the dominant variable influencing conductivity is the overall volume fraction of ionic liquid in the mixture, which means there

  7. Uncoupling of sodium and chloride to assist breeding for salinity tolerance in crops.

    PubMed

    Genc, Yusuf; Oldach, Klaus; Taylor, Julian; Lyons, Graham H

    2016-04-01

    The separation of toxic effects of sodium (Na(+)) and chloride (Cl(-)) by the current methods of mixed salts and subsequent determination of their relevance to breeding has been problematic. We report a novel method (Na(+) humate) to study the ionic effects of Na(+) toxicity without interference from Cl(-), and ionic and osmotic effects when combined with salinity (NaCl). Three cereal species (Hordeum vulgare, Triticum aestivum and Triticum turgidum ssp. durum with and without the Na(+) exclusion gene Nax2) differing in Na(+) exclusion were grown in a potting mix under sodicity (Na(+) humate) and salinity (NaCl), and water use, leaf nutrient profiles and yield were determined. Under sodicity, Na(+)-excluding bread wheat and durum wheat with the Nax2 gene had higher yield than Na(+)-accumulating barley and durum wheat without the Nax2 gene. However, under salinity, despite a 100-fold difference in leaf Na(+), all species yielded similarly, indicating that osmotic stress negated the benefits of Na(+) exclusion. In conclusion, Na(+) exclusion can be an effective mechanism for sodicity tolerance, while osmoregulation and tissue tolerance to Na(+) and/or Cl(-) should be the main foci for further improvement of salinity tolerance in cereals. This represents a paradigm shift for breeding cereals with salinity tolerance. PMID:26607560

  8. Enzyme catalysis in ionic liquids.

    PubMed

    Kragl, Udo; Eckstein, Marrit; Kaftzik, Nicole

    2002-12-01

    Ionic liquids offer new possibilities for the application of solvent engineering to biocatalytic reactions. Although in many cases ionic liquids have simply been used to replace organic solvents, they have often led to improved process performance. Unlike conventional organic solvents, ionic liquids possess no vapor pressure, are able to dissolve many compounds, and can be used to form two-phase systems with many solvents. To date, reactions involving lipases have benefited most from the use of ionic liquids, but the use of ionic liquids with other enzymes and in whole-cell processes has also been described. In some cases, remarkable results with respect to yield, (enantio)selectivity or enzyme stability were observed. PMID:12482515

  9. Molecular dynamics simulations of ionic liquid nanodroplets in electric fields

    NASA Astrophysics Data System (ADS)

    Tiruppathi, Pavithra C.

    2011-12-01

    Ionic liquids are appropriate for the application of electrospray thruster propulsion due to their physical properties such as low volatility and high electrical conductivity. The behavior of ionic liquid droplets and resulting ion and cluster emission in the presence of an electric field impacts the efficiency and thrust of the electrospray thruster. The technique of molecular simulation allows for the study of ionic liquid nanodroplets in atomic detail which is a limitation in mass spectrometric experiments. This thesis discusses the investigation of nanodroplets of the ionic liquid 1-ethyl-3- methylimidaziolium bis(triuoromethylsulfonyl)imide ([Emim+][Tf2n -]) in the presence of an electric field using molecular dynamics simulations. The ratio of the single ions to large clusters emitted from the droplet are observed and compared with experiment. The critical field strength required for ion emission from the droplet agrees with experiment. The critical field strength is also computed as a function of droplet size. The thermal stabilities, structural and dynamical properties are analyzed for the ([Emim +][Tf2n-]) nanodroplets.

  10. Ionic Vapor Composition in Pyridinium-Based Ionic Liquids.

    PubMed

    Chaban, Vitaly V; Prezhdo, Oleg V

    2016-05-26

    Strong electrostatic interactions in ionic compounds make vaporization a complex process. The gas phase can contain a broad range of ionic clusters, and the cluster composition can differ greatly from that in the liquid phase. Room-temperature ionic liquids (RTILs) constitute a complicated case due to their ionic nature, asymmetric structure, and a huge versatility of ions and ionic clusters. This work reports vapor-liquid equilibria and vapor compositions of butylpyridinium (BPY) RTILs formed with hexafluorophosphate (PF6), trifluoromethanesulfonate (TF), and bis(trifluoromethanesulfonyl)imide (TFSI) anions. Unlike inorganic crystals, the pyridinium-based RTILs contain significant percentages of charged clusters in the vapor phase. Ion triplets and ion quadruplets each constitute up to 10% of the vapor phase composition. Triples prevail over quadruples in [BPY][PF6] due to the size difference of the cation and the anion. The percentage of charged ionic clusters in the gas phase is in inverse proportion to the mass of the anion. The largest identified vaporized ionic cluster comprises eight ions, with a formation probability below 1%. Higher temperature fosters formation of larger clusters due to an increase of the saturated vapor density. PMID:27165866

  11. Decoupling of Ionic Transport from Segmental Relaxation in Polymer Electrolytes

    NASA Astrophysics Data System (ADS)

    Wang, Yangyang; Agapov, Alexander; Fan, Fei; Hong, Kunlun; Yu, Xiang; Mays, Jimmy; Sokolov, Alexei

    2012-02-01

    Polymer electrolytes provide elegant solutions to many difficulties in battery technology. However, their relatively low ionic conductivity has become the bottleneck for developing batteries with higher power density, shorter charging time, and better operations at low temperatures. In this work, we present detailed studies of the relationship between ionic conductivity and segmental relaxation in a set of specially-designed polymer electrolytes with systematic variation in chain rigidity. Our analysis shows that the ionic conductivity indeed can be decoupled from segmental dynamics in rigid polymers and the strength of the decoupling correlates with the fragility, but not with the glass transition temperature. These results call for a revision of the current picture of ionic transport in polymer electrolytes. We relate the observed decoupling phenomenon to frustration in packing of rigid polymers, which also affects their fragility. The principles demonstrated in this study may provide an alternative approach to design of highly conductive materials: by incorporating relatively rigid chain structures, it is possible to develop a new class of solid polymer electrolytes with strongly decoupled ionic conductivity.

  12. Mixed ionic and electronic conducting ceramic membranes for hydrocarbon processing

    DOEpatents

    Van Calcar, Pamela; Mackay, Richard; Sammells, Anthony F.

    2002-01-01

    The invention relates to mixed phase materials for the preparation of catalytic membranes which exhibit ionic and electronic conduction and which exhibit improved mechanical strength compared to single phase ionic and electronic conducting materials. The mixed phase materials are useful for forming gas impermeable membranes either as dense ceramic membranes or as dense thin films coated onto porous substrates. The membranes and materials of this invention are useful in catalytic membrane reactors in a variety of applications including synthesis gas production. One or more crystalline second phases are present in the mixed phase material at a level sufficient to enhance the mechanical strength of the mixture to provide membranes for practical application in CMRs.

  13. Wettability by Ionic Liquids.

    PubMed

    Liu, Hongliang; Jiang, Lei

    2016-01-01

    Ionic liquids (ILs) have become particularly attractive recently because they have demonstrated themselves to be important construction units in the broad fields of chemistry and materials science, from catalysis and synthesis to analysis and electrochemistry, from functional fluids to clean energy, from nanotechnology to functional materials. One of the greatest issues that determines the performance of ILs is the wettability of correlated surfaces. In this concept article, the key developments and issues in IL wettability are surveyed, including the electrowetting of ILs in gas-liquid-solid systems and liquid-liquid-solid systems, ILs as useful probe fluids, the superwettability of Ils, and future directions in IL wettability. This should generate extensive interest in the field and encourage more scientists to engage in this area to tackle its scientific challenges. PMID:26619157

  14. Noble metal ionic catalysts.

    PubMed

    Hegde, M S; Madras, Giridhar; Patil, K C

    2009-06-16

    Because of growing environmental concerns and increasingly stringent regulations governing auto emissions, new more efficient exhaust catalysts are needed to reduce the amount of pollutants released from internal combustion engines. To accomplish this goal, the major pollutants in exhaust-CO, NO(x), and unburned hydrocarbons-need to be fully converted to CO(2), N(2), and H(2)O. Most exhaust catalysts contain nanocrystalline noble metals (Pt, Pd, Rh) dispersed on oxide supports such as Al(2)O(3) or SiO(2) promoted by CeO(2). However, in conventional catalysts, only the surface atoms of the noble metal particles serve as adsorption sites, and even in 4-6 nm metal particles, only 1/4 to 1/5 of the total noble metal atoms are utilized for catalytic conversion. The complete dispersion of noble metals can be achieved only as ions within an oxide support. In this Account, we describe a novel solution to this dispersion problem: a new solution combustion method for synthesizing dispersed noble metal ionic catalysts. We have synthesized nanocrystalline, single-phase Ce(1-x)M(x)O(2-delta) and Ce(1-x-y)Ti(y)M(x)O(2-delta) (M = Pt, Pd, Rh; x = 0.01-0.02, delta approximately x, y = 0.15-0.25) oxides in fluorite structure. In these oxide catalysts, Pt(2+), Pd(2+), or Rh(3+) ions are substituted only to the extent of 1-2% of Ce(4+) ion. Lower-valent noble metal ion substitution in CeO(2) creates oxygen vacancies. Reducing molecules (CO, H(2), NH(3)) are adsorbed onto electron-deficient noble metal ions, while oxidizing (O(2), NO) molecules are absorbed onto electron-rich oxide ion vacancy sites. The rates of CO and hydrocarbon oxidation and NO(x) reduction (with >80% N(2) selectivity) are 15-30 times higher in the presence of these ionic catalysts than when the same amount of noble metal loaded on an oxide support is used. Catalysts with palladium ion dispersed in CeO(2) or Ce(1-x)Ti(x)O(2) were far superior to Pt or Rh ionic catalysts. Therefore, we have demonstrated that the

  15. Electrodeposition in Ionic Liquids.

    PubMed

    Zhang, Qinqin; Wang, Qian; Zhang, Suojiang; Lu, Xingmei; Zhang, Xiangping

    2016-02-01

    Due to their attractive physico-chemical properties, ionic liquids (ILs) are increasingly used as deposition electrolytes. This review summarizes recent advances in electrodeposition in ILs and focuses on its similarities and differences with that in aqueous solutions. The electrodeposition in ILs is divided into direct and template-assisted deposition. We detail the direct deposition of metals, alloys and semiconductors in five types of ILs, including halometallate ILs, air- and water-stable ILs, deep eutectic solvents (DESs), ILs with metal-containing cations, and protic ILs. Template-assisted deposition of nanostructures and macroporous structures in ILs is also presented. The effects of modulating factors such as deposition conditions (current density, current density mode, deposition time, temperature) and electrolyte components (cation, anion, metal salts, additives, water content) on the morphology, compositions, microstructures and properties of the prepared materials are highlighted. PMID:26530378

  16. A New Class of Ionic Liquids: Anion Amphiprotic Ionic Liquids.

    PubMed

    Treskow, Marcel; Pitawala, Jagath; Arenz, Sven; Matic, Aleksandar; Johansson, Patrik

    2012-08-16

    We here present a new class of protic ionic liquids, anion amphiprotic ionic liquids (AAILs). These materials are protonation equilibrium free protic ionic liquids and interesting in their own right by not following the classical Brønsted acid-base neutralization concept. Due to the very simple synthesis route applied and their stable basic chemistry, we believe in a potential use for manifold applications. This is supported by the combination of practical material properties, foremost, a general intrinsic stability versus reversal of the formation reaction toward neutral species, broad liquidus ranges, long-term thermal stabilities, high conductivities, protic characteristics, and a general stability versus water. PMID:26295756

  17. Development of ionic gels using thiol-based monomers in ionic liquid

    NASA Astrophysics Data System (ADS)

    Ahmed, Kumkum; Naga, Naofumi; Kawakami, Masaru; Furukawa, Hidemitsu

    2016-04-01

    Ionic gels (IGs) using ionic liquids (ILs) can propose diverse applications in the field of optics, sensors and separation have opened wide prospects in materials science. ILs have attracted remarkable interest for gel polymer electrolytes and batteries based on their useful properties such as non-volatility, non-flammability, a wide electrochemical window, high thermal stability and a high ionic conductivity. The formation of gel in IL media makes it possible to immobilize ILs within organic or inorganic matrices and to take advantage of their unique properties in the solid state, thus eliminating some shortcomings related to shaping and risk of leakage. In this work for the first time we used multifunctional thiol monomers having uniform structure and good compatibility with the IL of our interest. Therefore we focused on developing thiol monomer-based IGs using multifunctional thiol monomers and acrylate crosslinkers utilizing thiol-ene reaction between monomer and crosslinking molecules in an IL medium and characterize their physico-chemical properties like thermal, conductive, mechanical properties etc.. This work has been focused mainly to improve the mechanical strength of IGs and make prospects of IGs in tribology and lubricants.

  18. Decoupling Ionic Conductivity from Structural Relaxation: A Way to Solid Polymer Electrolytes?

    SciTech Connect

    Agapov, Alexander L; Sokolov, Alexei P

    2011-01-01

    Using broadband dielectric spectroscopy, we studied the temperature dependence of ionic conductivity and structural relaxation in a number of polymers. We demonstrate that temperature dependence of ionic conductivity can be decoupled from structural relaxation in a material specific way. We show that the strength of the decoupling correlates with the steepness of the temperature dependence of structural relaxation in the polymer, i.e., with its fragility. We ascribe the observed result to stronger frustration in chain packing characteristic for more fragile polymers. We speculate that employment of more fragile polymers might lead to design of polymers with higher ionic conductivity.

  19. Alfalfa production using saline drainage water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A three year study investigated the use of saline (< 6 dS/m) drainage water for irrigation of salt tolerant alfalfa in the presence of shallow saline groundwater. The irrigation treatments included; irrigating twice between cuttings with non-saline water, 2) irrigating with moderately saline water...

  20. In situ determination of salinity by PGNAA.

    PubMed

    Borsaru, M; Smith, C; Merritt, J; Aizawa, T; Rojc, A

    2006-05-01

    Salinity is a very important environmental issue all around the world. In many cases salinity was produced from human activities like farming and mining. Different soluble salts contribute to salinity, however, NaCl is the most common salt producing salinity. This work deals with the application of the prompt gamma neutron activation analysis (PGNAA) technique for in situ determination of salinity. The technique is based on the measurement of chlorine, a component of the common salt, by PGNAA. PMID:16448819

  1. Long Term Surface Salinity Measurements

    NASA Technical Reports Server (NTRS)

    Schmitt, Raymond W.; Brown, Neil L.

    2005-01-01

    Our long-term goal is to establish a reliable system for monitoring surface salinity around the global ocean. Salinity is a strong indicator of the freshwater cycle and has a great influence on upper ocean stratification. Global salinity measurements have potential to improve climate forecasts if an observation system can be developed. This project is developing a new internal field conductivity cell that can be protected from biological fouling for two years. Combined with a temperature sensor, this foul-proof cell can be deployed widely on surface drifters. A reliable in-situ network of surface salinity sensors will be an important adjunct to the salinity sensing satellite AQUARIUS to be deployed by NASA in 2009. A new internal-field conductivity cell has been developed by N Brown, along with new electronics. This sensor system has been combined with a temperature sensor to make a conductivity - temperature (UT) sensor suitable for deployment on drifters. The basic sensor concepts have been proven on a high resolution CTD. A simpler (lower cost) circuit has been built for this application. A protection mechanism for the conductivity cell that includes antifouling protection has also been designed and built. Mr. A.Walsh of our commercial partner E-Paint has designed and delivered time-release formulations of antifoulants for our application. Mr. G. Williams of partner Clearwater Instrumentation advised on power and communication issues and supplied surface drifters for testing.

  2. Ionic Liquid Crystals: Versatile Materials.

    PubMed

    Goossens, Karel; Lava, Kathleen; Bielawski, Christopher W; Binnemans, Koen

    2016-04-27

    This Review covers the recent developments (2005-2015) in the design, synthesis, characterization, and application of thermotropic ionic liquid crystals. It was designed to give a comprehensive overview of the "state-of-the-art" in the field. The discussion is focused on low molar mass and dendrimeric thermotropic ionic mesogens, as well as selected metal-containing compounds (metallomesogens), but some references to polymeric and/or lyotropic ionic liquid crystals and particularly to ionic liquids will also be provided. Although zwitterionic and mesoionic mesogens are also treated to some extent, emphasis will be directed toward liquid-crystalline materials consisting of organic cations and organic/inorganic anions that are not covalently bound but interact via electrostatic and other noncovalent interactions. PMID:27088310

  3. Special Report: Solid Ionic Conductors.

    ERIC Educational Resources Information Center

    Shriver, Duward F.; Farrington, Gregory C.

    1985-01-01

    Solid ionic conductors are unusual materials that may find valuable applications in devices ranging from high-energy density batteries to lasers. The nature of these materials and their potential uses are discussed. (JN)

  4. Nonlinear ionic pulses along microtubules.

    PubMed

    Sekulić, D L; Satarić, B M; Tuszynski, J A; Satarić, M V

    2011-05-01

    Microtubules are cylindrically shaped cytoskeletal biopolymers that are essential for cell motility, cell division and intracellular trafficking. Here, we investigate their polyelectrolyte character that plays a very important role in ionic transport throughout the intra-cellular environment. The model we propose demonstrates an essentially nonlinear behavior of ionic currents which are guided by microtubules. These features are primarily due to the dynamics of tubulin C-terminal tails which are extended out of the surface of the microtubule cylinder. We also demonstrate that the origin of nonlinearity stems from the nonlinear capacitance of each tubulin dimer. This brings about conditions required for the creation and propagation of solitonic ionic waves along the microtubule axis. We conclude that a microtubule plays the role of a biological nonlinear transmission line for ionic currents. These currents might be of particular significance in cell division and possibly also in cognitive processes taking place in nerve cells. PMID:21604102

  5. Novel approaches to ionic chromatography

    SciTech Connect

    Dasgupta, P.K.

    1990-11-01

    Research during this reporting period, continued on ionic chromatography. Major progress has been made towards on-line on-demand generation of ultrapure chemicals by electrochemical means. The concentration of the generated material is governed electrochemically.

  6. Hydrophobic ionic liquids

    DOEpatents

    Koch, V.R.; Nanjundiah, C.; Carlin, R.T.

    1998-10-27

    Ionic liquids having improved properties for application in non-aqueous batteries, electrochemical capacitors, electroplating, catalysis and chemical separations are disclosed. Exemplary compounds have one of the following formulas shown in a diagram wherein R{sub 1}, R{sub 2}, R{sub 3}, R{sub 4}, R{sub 5}, and R{sub 6} are either H; F; separate alkyl groups of from 1 to 4 carbon atoms, respectively, or joined together to constitute a unitary alkylene radical of from 2 to 4 carbon atoms forming a ring structure converging on N; or separate phenyl groups; and wherein the alkyl groups, alkylene radicals or phenyl groups may be substituted with electron withdrawing groups, preferably F-, Cl-, CF{sub 3}-, SF{sub 5}-, CF{sub 3}S-, (CF{sub 3}){sub 2}CHS- or (CF{sub 3}){sub 3}CS-; and X{sup {minus}} is a non-Lewis acid-containing polyatomic anion having a van der Waals volume exceeding 100 {angstrom}{sup 3}. 4 figs.

  7. Hydrophobic ionic liquids

    DOEpatents

    Koch, Victor R.; Nanjundiah, Chenniah; Carlin, Richard T.

    1998-01-01

    Ionic liquids having improved properties for application in non-aqueous batteries, electrochemical capacitors, electroplating, catalysis and chemical separations are disclosed. Exemplary compounds have one of the following formulas: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, and R.sub.6 are either H; F; separate alkyl groups of from 1 to 4 carbon atoms, respectively, or joined together to constitute a unitary alkylene radical of from 2 to 4 carbon atoms forming a ring structure converging on N; or separate phenyl groups; and wherein the alkyl groups, alkylene radicals or phenyl groups may be substituted with electron withdrawing groups, preferably F--, Cl--, CF.sub.3 --, SF.sub.5 --, CF.sub.3 S--, (CF.sub.3).sub.2 CHS-- or (CF.sub.3).sub.3 CS--; and X.sup.- is a non-Lewis acid-containing polyatomic anion having a van der Waals volume exceeding 100 .ANG..sup.3.

  8. Role of xylo-oligosaccharides in protection against salinity-induced adversities in Chinese cabbage.

    PubMed

    Chen, Weiwei; Guo, Chen; Hussain, Saddam; Zhu, Bingxin; Deng, Fang; Xue, Yan; Geng, Mingjian; Wu, Lishu

    2016-01-01

    Soil salinity is a stringent abiotic constraint limiting crop growth and productivity. The present study was carried out to appraise the role of xylo-oligosaccharides (XOSs) in improving the salinity tolerance of Chinese cabbage. Salinity stress (0.5% NaCl solution) and four levels (0, 40, 80, 120 mg L(-1)) of XOSs were imposed on 20-day-old plants cultured under controlled conditions. Salinity stress decreased the aboveground fresh biomass, photosynthesis, transpiration rate, stomatal conductance, internal CO2 concentration, water use efficiency, and chlorophyll contents but increased the stomatal limitation value of Chinese cabbage compared with control. Such physiological interferences, disturbances in plant water relations, and visually noticeable growth reductions in Chinese cabbage were significantly alleviated by the addition of XOSs under salinity stress. Under salinity stress, application of XOSs significantly enhanced the activities of enzymatic (superoxide dismutase, peroxidase, catalase) and non-enzymatic (ascorbate, carotene) antioxidants and reduced the malondialdehyde content in the leaves of Chinese cabbage. The XOS-applied plants under salinity stress also recorded higher soluble sugars, proline, and soluble protein content in their leaves. Exposure of salinity stress increased the ratio of Na(+)/K(+), Na(+)/Ca(2+), and Na(+)/Mg(2+) in shoot as well as root of Chinese cabbage, however, XOS application significantly reduced these ratios particularly in shoot. Lower levels of XOSs (40 or 80 mg L(-1)) were more effective for most of the studied attributes. The greater salinity tolerance and better growth in these treatments were related with enhanced antioxidative defense system, reduced lipid peroxidation, increased osmolyte accumulation, and maintenance of ionic balance. PMID:26358207

  9. Scaling Behavior for Ionic Transport and its Fluctuations in Individual Carbon Nanotubes

    PubMed Central

    Secchi, Eleonora; Niguès, Antoine; Jubin, Laetitia; Siria, Alessandro; Bocquet, Lydéric

    2016-01-01

    In this Letter, we perform an experimental study of ionic transport and current fluctuations inside individual carbon nanotubes (CNTs). The conductance exhibits a power law behavior at low salinity, with an exponent close to 1/3 versus the salt concentration in this regime. This behavior is rationalized in terms of a salinity dependent surface charge, which is accounted for on the basis of a model for hydroxide adsorption at the (hydrophobic) carbon surface. This is in contrast to boron nitride nanotubes which exhibit a constant surface conductance. Further, we measure the low frequency noise of the ionic current in CNTs and show that the amplitude of the noise scales with the surface charge, with data collapsing on a master curve for the various studied CNTs at a given pH. PMID:27127970

  10. Scaling Behavior for Ionic Transport and its Fluctuations in Individual Carbon Nanotubes.

    PubMed

    Secchi, Eleonora; Niguès, Antoine; Jubin, Laetitia; Siria, Alessandro; Bocquet, Lydéric

    2016-04-15

    In this Letter, we perform an experimental study of ionic transport and current fluctuations inside individual carbon nanotubes (CNTs). The conductance exhibits a power law behavior at low salinity, with an exponent close to 1/3 versus the salt concentration in this regime. This behavior is rationalized in terms of a salinity dependent surface charge, which is accounted for on the basis of a model for hydroxide adsorption at the (hydrophobic) carbon surface. This is in contrast to boron nitride nanotubes which exhibit a constant surface conductance. Further, we measure the low frequency noise of the ionic current in CNTs and show that the amplitude of the noise scales with the surface charge, with data collapsing on a master curve for the various studied CNTs at a given pH. PMID:27127970

  11. Scaling Behavior for Ionic Transport and its Fluctuations in Individual Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Secchi, Eleonora; Niguès, Antoine; Jubin, Laetitia; Siria, Alessandro; Bocquet, Lydéric

    2016-04-01

    In this Letter, we perform an experimental study of ionic transport and current fluctuations inside individual carbon nanotubes (CNTs). The conductance exhibits a power law behavior at low salinity, with an exponent close to 1 /3 versus the salt concentration in this regime. This behavior is rationalized in terms of a salinity dependent surface charge, which is accounted for on the basis of a model for hydroxide adsorption at the (hydrophobic) carbon surface. This is in contrast to boron nitride nanotubes which exhibit a constant surface conductance. Further, we measure the low frequency noise of the ionic current in CNTs and show that the amplitude of the noise scales with the surface charge, with data collapsing on a master curve for the various studied CNTs at a given p H .

  12. Low potassium enhances sodium uptake in red-beet under moderate saline conditions

    NASA Technical Reports Server (NTRS)

    Subbarao, G. V.; Wheeler, R. M.; Stutte, G. W.; Levine, L. H.; Sager, J. C. (Principal Investigator)

    2000-01-01

    Due to the discrepancy in metabolic sodium (Na) requirements between plants and animals, cycling of Na between humans and plants is limited and critical to the proper functioning of bio-regenerative life support systems, being considered for long-term human habitats in space (e.g., Martian bases). This study was conducted to determine the effects of limited potassium (K) on growth, Na uptake, photosynthesis, ionic partitioning, and water relations of red-beet (Beta vulgaris L. ssp. vulgaris) under moderate Na-saline conditions. Two cultivars, Klein Bol, and Ruby Queen were grown for 42 days in a growth chamber using a re-circulating nutrient film technique where the supplied K levels were 5.0, 1.25, 0.25, and 0.10 mM in a modified half-strength Hoagland solution salinized with 50 mM NaCl. Reducing K levels from 5.0 to 0.10 mM quadrupled the Na uptake, and lamina Na levels reached -20 g kg-1 dwt. Lamina K levels decreased from -60 g kg-1 dwt at 5.0 mM K to -4.0 g kg-1 dwt at 0.10 mM K. Ruby Queen and Klein Bol responded differently to these changes in Na and K status. Klein Bol showed a linear decline in dry matter production with a decrease in available K, whereas for cv. Ruby Queen, growth was stimulated at 1.25 mM K and relatively insensitive to a further decreases of K down to 0.10 mM. Leaf glycinebetaine levels showed no significant response to the changing K treatments. Leaf relative water content and osmotic potential were significantly higher for both cultivars at low-K treatments. Leaf chlorophyll levels were significantly decreased at low-K treatments, but leaf photosynthetic rates showed no significant difference. No substantial changes were observed in the total cation concentration of plant tissues despite major shifts in the relative Na and K uptake at various K levels. Sodium accounted for 90% of the total cation uptake at the low K levels, and thus Na was likely replacing K in osmotic functions without negatively affecting the plant water status, or

  13. Tuning of Redox Regulatory Mechanisms, Reactive Oxygen Species and Redox Homeostasis under Salinity Stress

    PubMed Central

    Hossain, M. Sazzad; Dietz, Karl-Josef

    2016-01-01

    Soil salinity is a crucial environmental constraint which limits biomass production at many sites on a global scale. Saline growth conditions cause osmotic and ionic imbalances, oxidative stress and perturb metabolism, e.g., the photosynthetic electron flow. The plant ability to tolerate salinity is determined by multiple biochemical and physiological mechanisms protecting cell functions, in particular by regulating proper water relations and maintaining ion homeostasis. Redox homeostasis is a fundamental cell property. Its regulation includes control of reactive oxygen species (ROS) generation, sensing deviation from and readjustment of the cellular redox state. All these redox related functions have been recognized as decisive factors in salinity acclimation and adaptation. This review focuses on the core response of plants to overcome the challenges of salinity stress through regulation of ROS generation and detoxification systems and to maintain redox homeostasis. Emphasis is given to the role of NADH oxidase (RBOH), alternative oxidase (AOX), the plastid terminal oxidase (PTOX) and the malate valve with the malate dehydrogenase isoforms under salt stress. Overwhelming evidence assigns an essential auxiliary function of ROS and redox homeostasis to salinity acclimation of plants. PMID:27242807

  14. Tuning of Redox Regulatory Mechanisms, Reactive Oxygen Species and Redox Homeostasis under Salinity Stress.

    PubMed

    Hossain, M Sazzad; Dietz, Karl-Josef

    2016-01-01

    Soil salinity is a crucial environmental constraint which limits biomass production at many sites on a global scale. Saline growth conditions cause osmotic and ionic imbalances, oxidative stress and perturb metabolism, e.g., the photosynthetic electron flow. The plant ability to tolerate salinity is determined by multiple biochemical and physiological mechanisms protecting cell functions, in particular by regulating proper water relations and maintaining ion homeostasis. Redox homeostasis is a fundamental cell property. Its regulation includes control of reactive oxygen species (ROS) generation, sensing deviation from and readjustment of the cellular redox state. All these redox related functions have been recognized as decisive factors in salinity acclimation and adaptation. This review focuses on the core response of plants to overcome the challenges of salinity stress through regulation of ROS generation and detoxification systems and to maintain redox homeostasis. Emphasis is given to the role of NADH oxidase (RBOH), alternative oxidase (AOX), the plastid terminal oxidase (PTOX) and the malate valve with the malate dehydrogenase isoforms under salt stress. Overwhelming evidence assigns an essential auxiliary function of ROS and redox homeostasis to salinity acclimation of plants. PMID:27242807

  15. Phytoremediation potential of some halophytic species for soil salinity.

    PubMed

    Devi, S; Nandwal, A S; Angrish, R; Arya, S S; Kumar, N; Sharma, S K

    2016-01-01

    Phytoremediation potential of six halophytic species i.e. Suaeda nudiflora, Suaeda fruticosa, Portulaca oleracea, Atriplex lentiformis, Parkinsonia aculeata and Xanthium strumarium was assessed under screen house conditions. Plants were raised at 8.0, 12.0, 16.0, and 20.0 dSm(-1) of chloride-dominated salinity. The control plants were irrigated with canal water. Sampling was done at vegetative stage (60-75 DAS). About 95 percent seed germination occurred up to 12 dSm(-1) and thereafter declined slightly. Mean plant height and dry weight plant(-1) were significantly decreased from 48.71 to 32.44 cm and from 1.73 to 0.61g plant(-1) respectively upon salinization. Na(+)/K(+) ratio (0.87 to 2.72), Na(+)/ Ca(2+) + Mg(2+) (0.48 to 1.54) and Cl(-)/SO4(2-) (0.94 to 5.04) ratio showed increasing trend. Salinity susceptibility index was found minimum in Suaeda fruticosa (0.72) and maximum in Parkinsonia aculeata (1.17). Total ionic content also declined and magnitude of decline varied from 8.51 to 18.91% at 8 dSm(-1) and 1.85 to 7.12% at 20 dSm(-1) of salinity. On the basis of phytoremediation potential Suaeda fruticosa (1170.02 mg plant(-1)), Atriplex lentiformis (777.87 mg plant(-1)) were the best salt hyperaccumulator plants whereas Xanthium strumarium (349.61 mg plant(-1)) and Parkinsonia aculeata (310.59 mg plant(-1)) were the least hyperaccumulator plants. PMID:26684673

  16. Plasticity in sunflower leaf and cell growth under high salinity.

    PubMed

    Céccoli, G; Bustos, D; Ortega, L I; Senn, M E; Vegetti, A; Taleisnik, E

    2015-01-01

    A group of sunflower lines that exhibit a range of leaf Na(+) concentrations under high salinity was used to explore whether the responses to the osmotic and ionic components of salinity can be distinguished in leaf expansion kinetics analysis. It was expected that at the initial stages of the salt treatment, leaf expansion kinetics changes would be dominated by responses to the osmotic component of salinity, and that later on, ion inclusion would impose further kinetics changes. It was also expected that differential leaf Na(+) accumulation would be reflected in specific changes in cell division and expansion rates. Plants of four sunflower lines were gradually treated with a relatively high (130 mm NaCl) salt treatment. Leaf expansion kinetics curves were compared in leaves that were formed before, during and after the initiation of the salt treatment. Leaf areas were smaller in salt-treated plants, but the analysis of growth curves did not reveal differences that could be attributed to differential Na(+) accumulation, since similar changes in leaf expansion kinetics were observed in lines with different magnitudes of salt accumulation. Nevertheless, in a high leaf Na(+) -including line, cell divisions were affected earlier, resulting in leaves with proportionally fewer cells than in a Na(+) -excluding line. A distinct change in leaf epidermal pavement shape caused by salinity is reported for the first time. Mature pavement cells in leaves of control plants exhibited typical lobed, jigsaw-puzzle shape, whereas in treated plants, they tended to retain closer-to-circular shapes and a lower number of lobes. PMID:24942979

  17. The Role of Silicon in Higher Plants under Salinity and Drought Stress

    PubMed Central

    Coskun, Devrim; Britto, Dev T.; Huynh, Wayne Q.; Kronzucker, Herbert J.

    2016-01-01

    Although deemed a “non-essential” mineral nutrient, silicon (Si) is clearly beneficial to plant growth and development, particularly under stress conditions, including salinity and drought. Here, we review recent research on the physiological, biochemical, and molecular mechanisms underlying Si-induced alleviation of osmotic and ionic stresses associated with salinity and drought. We distinguish between changes observed in the apoplast (i.e., suberization, lignification, and silicification of the extracellular matrix; transpirational bypass flow of solutes and water), and those of the symplast (i.e., transmembrane transport of solutes and water; gene expression; oxidative stress; metabolism), and discuss these features in the context of Si biogeochemistry and bioavailability in agricultural soils, evaluating the prospect of using Si fertilization to increase crop yield and stress tolerance under salinity and drought conditions. PMID:27486474

  18. Determining Salinity by Simple Means.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.

    This paper describes the construction and use of a simple salinometer. The salinometer is composed, mainly, of a milliammeter and a battery and uses the measurement of current flow to determine the salinity of water. A complete list of materials is given, as are details of construction and operation of the equipment. The use of the salinometer in…

  19. Mycelial bacteria of saline soils

    NASA Astrophysics Data System (ADS)

    Zvyagintsev, D. G.; Zenova, G. M.; Oborotov, G. V.

    2008-10-01

    The actinomycetal complexes of saline soils comprise the representatives of the Streptomyces and Micromonospora genera, the number of which are hundreds and thousands of CFU/g soil. Complexes of mycelial bacteria in saline soils are poorer in terms of number (by 1-3 orders of magnitude) and taxonomic composition than the complexes of the zonal soil types. A specific feature of the actinomycetal complexes of saline soils is the predominance of halophilic, alkaliphilic, and haloalkaliphilic streptomycetes that well grow at pH 8-9 and concentrations of NaCl close to 5%. Actinomycetes in saline soils grow actively, and the length of their mycelium reaches 140 m in 1 gram of soil. The haloalkaliphilic streptomycetes grow fast and inhibit the formation of spores at pH 9 and high concentrations of salts (Na2SO4 and MgCl2, 5%) as compared to their behavior on a neutral medium with a salt concentration of 0.02%. They are characterized by the maximal radial growth rate of colonies on an alkaline medium with 5% NaCl.

  20. Zn(II) and Cu(II) adsorption and retention onto iron oxyhydroxide nanoparticles: effects of particle aggregation and salinity

    PubMed Central

    2014-01-01

    Background Iron oxyhydroxides are commonly found in natural aqueous systems as nanoscale particles, where they can act as effective sorbents for dissolved metals due to their natural surface reactivity, small size and high surface area. These properties make nanoscale iron oxyhydroxides a relevant option for the remediation of water supplies contaminated with dissolved metals. However, natural geochemical processes, such as changes in ionic strength, pH, and temperature, can cause these particles to aggregate, thus affecting their sorption capabilities and remediation potential. Other environmental parameters such as increasing salinity may also impact metal retention, e.g. when particles are transported from freshwater to seawater. Results After using synthetic iron oxyhydroxide nanoparticles and nanoparticle aggregates in batch Zn(II) adsorption experiments, the addition of increasing concentrations of chloride (from 0.1 M to 0.6 M) appears to initially reduce Zn(II) retention, likely due to the desorption of outer-sphere zinc surface complexes and subsequent formation of aqueous Zn-Cl complexes, before then promoting Zn(II) retention, possibly through the formation of ternary surface complexes (supported by EXAFS spectroscopy) which stabilize zinc on the surface of the nanoparticles/aggregates. In batch Cu(II) adsorption experiments, Cu(II) retention reaches a maximum at 0.4 M chloride. Copper-chloride surface complexes are not indicated by EXAFS spectroscopy, but there is an increase in the formation of stable aqueous copper-chloride complexes as chloride concentration rises (with CuCl+ becoming dominant in solution at ~0.5 M chloride) that would potentially inhibit further sorption or encourage desorption. Instead, the presence of bidentate edge-sharing and monodentate corner-sharing complexes is supported by EXAFS spectroscopy. Increasing chloride concentration has more of an impact on zinc retention than the mechanism of nanoparticle aggregation, whereas

  1. Dual Ionic and Organic Nature of Ionic Liquids

    PubMed Central

    Shi, Rui; Wang, Yanting

    2016-01-01

    Inherited the advantages of inorganic salts and organic solvents, ionic liquids (ILs) exhibit many superior properties allowing them promising green solvents for the future. Although it has been widely acknowledged that the unique features of ILs originate from their dual ionic and organic nature, its microscopic physical origin still remains blurry. In this work, by comparing the ion/molecule cage structures obtained from molecular dynamics simulations for seven prototypic liquids—a molten inorganic salt, four ILs, a strongly polar organic solvent, and a weakly polar organic solvent, we have revealed that the depth of the cage energy landscape characterizes the ionic nature of ILs, whereas the slope and curvature of its mimimum determine the organic nature of ILs. This finding advances our understanding of ILs and thus will help their efficient utilization as well as the systematic design of novel functionalized ILs. PMID:26782660

  2. Dual Ionic and Organic Nature of Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Shi, Rui; Wang, Yanting

    2016-01-01

    Inherited the advantages of inorganic salts and organic solvents, ionic liquids (ILs) exhibit many superior properties allowing them promising green solvents for the future. Although it has been widely acknowledged that the unique features of ILs originate from their dual ionic and organic nature, its microscopic physical origin still remains blurry. In this work, by comparing the ion/molecule cage structures obtained from molecular dynamics simulations for seven prototypic liquids—a molten inorganic salt, four ILs, a strongly polar organic solvent, and a weakly polar organic solvent, we have revealed that the depth of the cage energy landscape characterizes the ionic nature of ILs, whereas the slope and curvature of its mimimum determine the organic nature of ILs. This finding advances our understanding of ILs and thus will help their efficient utilization as well as the systematic design of novel functionalized ILs.

  3. Dual Ionic and Organic Nature of Ionic Liquids.

    PubMed

    Shi, Rui; Wang, Yanting

    2016-01-01

    Inherited the advantages of inorganic salts and organic solvents, ionic liquids (ILs) exhibit many superior properties allowing them promising green solvents for the future. Although it has been widely acknowledged that the unique features of ILs originate from their dual ionic and organic nature, its microscopic physical origin still remains blurry. In this work, by comparing the ion/molecule cage structures obtained from molecular dynamics simulations for seven prototypic liquids--a molten inorganic salt, four ILs, a strongly polar organic solvent, and a weakly polar organic solvent, we have revealed that the depth of the cage energy landscape characterizes the ionic nature of ILs, whereas the slope and curvature of its mimimum determine the organic nature of ILs. This finding advances our understanding of ILs and thus will help their efficient utilization as well as the systematic design of novel functionalized ILs. PMID:26782660

  4. Salinity Preference in the Estuarine Teleost Fish Mummichog (Fundulus heteroclitus): Halocline Behavior.

    PubMed

    Marshall, W S; Tait, J C; Mercer, E W

    2016-01-01

    Mummichogs prefer seawater (SW) but have wide ability to acclimate to extreme temperatures and salinities. In the field, minnow trapping revealed that mummichogs move progressively into low-salinity warmer water during early spring after ice melt and show significant aversion to colder temperatures and high salinity. First appearance in estuarine shallows occurred above 10°C, and catch increased to 21°C over 4 wk. Three-spine sticklebacks (Gasterosteus aculeatus) also preferred warmer low-salinity locations but preferred slowing streams, whereas mummichogs preferred tidal ponds. In the laboratory, artificial haloclines tested isothermal salinity preference, between 28‰ full-strength SW (below) and 10% SW (3.0‰; above). Mummichogs of both sexes acclimated to 5°C in SW strongly preferred SW. Freshwater (0% SW)-acclimated mummichogs at 21°C also preferred SW, but of sexually mature fish acclimated to 21°C SW, only the males preferred SW; the females showed no significant preference for SW, meaning they freely entered low salinity. SW preference was manifested by a stereotypic passive aversion to the dilute upper layer at the halocline. We conclude that the overall movement of mummichogs into summer breeding grounds of low salinity is driven by maturation of females and their preference for warmer water regardless of salinity. PMID:27153132

  5. Bulk Moisture and Salinity Sensor

    NASA Technical Reports Server (NTRS)

    Nurge, Mark; Monje, Oscar; Prenger, Jessica; Catechis, John

    2013-01-01

    Measurement and feedback control of nutrient solutions in plant root zones is critical to the development of healthy plants in both terrestrial and reduced-gravity environments. In addition to the water content, the amount of fertilizer in the nutrient solution is important to plant health. This typically requires a separate set of sensors to accomplish. A combination bulk moisture and salinity sensor has been designed, built, and tested with different nutrient solutions in several substrates. The substrates include glass beads, a clay-like substrate, and a nutrient-enriched substrate with the presence of plant roots. By measuring two key parameters, the sensor is able to monitor both the volumetric water content and salinity of the nutrient solution in bulk media. Many commercially available moisture sensors are point sensors, making localized measurements over a small volume at the point of insertion. Consequently, they are more prone to suffer from interferences with air bubbles, contact area of media, and root growth. This makes it difficult to get an accurate representation of true moisture content and distribution in the bulk media. Additionally, a network of point sensors is required, increasing the cabling, data acquisition, and calibration requirements. measure the dielectric properties of a material in the annular space of the vessel. Because the pore water in the media often has high salinity, a method to measure the media moisture content and salinity simultaneously was devised. Characterization of the frequency response for capacitance and conductance across the electrodes was completed for 2-mm glass bead media, 1- to 2-mm Turface (a clay like media), and 1- to 2-mm fertilized Turface with the presence of root mass. These measurements were then used to find empirical relationships among capacitance (C), the dissipation factor (D), the volumetric water content, and the pore water salinity.

  6. Ionic Graphitization of Ultrathin Films of Ionic Compounds.

    PubMed

    Kvashnin, A G; Pashkin, E Y; Yakobson, B I; Sorokin, P B

    2016-07-21

    On the basis of ab initio density functional calculations, we performed a comprehensive investigation of the general graphitization tendency in rocksalt-type structures. In this paper, we determine the critical slab thickness for a range of ionic cubic crystal systems, below which a spontaneous conversion from a cubic to a layered graphitic-like structure occurs. This conversion is driven by surface energy reduction. Using only fundamental parameters of the compounds such as the Allen electronegativity and ionic radius of the metal atom, we also develop an analytical relation to estimate the critical number of layers. PMID:27333810

  7. Ionic screening effect on low-frequency drain current fluctuations in liquid-gated nanowire FETs.

    PubMed

    Lu, Ming-Pei; Vire, Eric; Montès, Laurent

    2015-12-11

    The ionic screening effect plays an important role in determining the fundamental surface properties within liquid-semiconductor interfaces. In this study, we investigated the characteristics of low-frequency drain current noise in liquid-gated nanowire (NW) field effect transistors (FETs) to obtain physical insight into the effect of ionic screening on low-frequency current fluctuation. When the NW FET was operated close to the gate voltage corresponding to the maximum transconductance, the magnitude of the low-frequency noise for the NW exposed to a low-ionic-strength buffer (0.001 M) was approximately 70% greater than that when exposed to a high-ionic-strength buffer (0.1 M). We propose a noise model, considering the charge coupling efficiency associated with the screening competition between the electrolyte buffer and the NW, to describe the ionic screening effect on the low-frequency drain current noise in liquid-gated NW FET systems. This report not only provides a physical understanding of the ionic screening effect behind the low-frequency current noise in liquid-gated FETs but also offers useful information for developing the technology of NW FETs with liquid-gated architectures for application in bioelectronics, nanosensors, and hybrid nanoelectronics. PMID:26574477

  8. Ionic screening effect on low-frequency drain current fluctuations in liquid-gated nanowire FETs

    NASA Astrophysics Data System (ADS)

    Lu, Ming-Pei; Vire, Eric; Montès, Laurent

    2015-12-01

    The ionic screening effect plays an important role in determining the fundamental surface properties within liquid-semiconductor interfaces. In this study, we investigated the characteristics of low-frequency drain current noise in liquid-gated nanowire (NW) field effect transistors (FETs) to obtain physical insight into the effect of ionic screening on low-frequency current fluctuation. When the NW FET was operated close to the gate voltage corresponding to the maximum transconductance, the magnitude of the low-frequency noise for the NW exposed to a low-ionic-strength buffer (0.001 M) was approximately 70% greater than that when exposed to a high-ionic-strength buffer (0.1 M). We propose a noise model, considering the charge coupling efficiency associated with the screening competition between the electrolyte buffer and the NW, to describe the ionic screening effect on the low-frequency drain current noise in liquid-gated NW FET systems. This report not only provides a physical understanding of the ionic screening effect behind the low-frequency current noise in liquid-gated FETs but also offers useful information for developing the technology of NW FETs with liquid-gated architectures for application in bioelectronics, nanosensors, and hybrid nanoelectronics.

  9. Sensitivity of nanostructure in charged cubosomes to phase changes triggered by ionic species in solution.

    PubMed

    Liu, Qingtao; Dong, Yao-Da; Hanley, Tracey L; Boyd, Ben J

    2013-11-19

    The phase behavior of dispersions comprising mixed ionic surfactant and phytantriol was precisely controlled by varying the ionic surfactant content in the mixed lipid and the ionic strength in the system. Two important trends in the phase transition of the mixed lipid systems were identified: (1) An increase in the ionic surfactant content increased the curvature of the self-assembled system toward the hydrophobic region, resulting in the phase transition from cubic phase to lamellar phase. (2) An increase in ionic strength decreased repulsion between the headgroups of the ionic surfactant, resulting in a phase transition from lamellar phase to cubic phase. The phase transitions were confirmed using small-angle X-ray scattering and cryo-TEM and were strongly correlated with the visual turbidity of the dispersions. The lipid mixture with anionic surfactant showed high sensitivity to multivalent cations for triggering the phase transition, which may be a potential strategy to develop a detection/treatment system for toxic multivalent metallic cations such as chromium. PMID:24111826

  10. Salinity gradient power: influences of temperature and nanopore size

    NASA Astrophysics Data System (ADS)

    Tseng, Shiojenn; Li, Yu-Ming; Lin, Chih-Yuan; Hsu, Jyh-Ping

    2016-01-01

    Salinity gradient power is a promising, challenging, and readily available renewable energy. Among various methods for harvesting this clean energy, nanofluidic reverse electrodialysis (NRED) is of great potential. Since ionic transport depends highly on the temperature, so is the efficiency of the associated power generated. Here, we conduct a theoretical analysis on the influences of temperature and nanopore size on NRED, focusing on the temperature and nanopore size. The results gathered reveal that the maximum power increases with increasing temperature, but the conversion efficiency depends weakly on temperature. In general, the smaller the nanopore radius or the longer the nanopore, the better the ion selectivity. These results provide desirable and necessary information for improving the performance of NRED as well as designing relevant units in renewable energy plants.

  11. Salinity gradient power: influences of temperature and nanopore size.

    PubMed

    Tseng, Shiojenn; Li, Yu-Ming; Lin, Chih-Yuan; Hsu, Jyh-Ping

    2016-01-28

    Salinity gradient power is a promising, challenging, and readily available renewable energy. Among various methods for harvesting this clean energy, nanofluidic reverse electrodialysis (NRED) is of great potential. Since ionic transport depends highly on the temperature, so is the efficiency of the associated power generated. Here, we conduct a theoretical analysis on the influences of temperature and nanopore size on NRED, focusing on the temperature and nanopore size. The results gathered reveal that the maximum power increases with increasing temperature, but the conversion efficiency depends weakly on temperature. In general, the smaller the nanopore radius or the longer the nanopore, the better the ion selectivity. These results provide desirable and necessary information for improving the performance of NRED as well as designing relevant units in renewable energy plants. PMID:26752789

  12. Water beetle tolerance to salinity and anionic composition and its relationship to habitat occupancy.

    PubMed

    Céspedes, V; Pallarés, S; Arribas, P; Millán, A; Velasco, J

    2013-10-01

    Water salinity and ionic composition are among the main environmental variables that constrain the fundamental niches of aquatic species, and accordingly, physiological tolerance to these factors constitutes a crucial part of the evolution, ecology, and biogeography of these organisms. The present study experimentally estimated the fundamental saline and anionic niches of adults of two pairs of congeneric saline beetle species that differ in habitat preference (lotic and lentic) in order to test the habitat constraint hypothesis. Osmotic and anionic realised niches were also estimated based on the field occurrences of adult beetle species using Outlying Mean Index analysis and their relationship with experimental tolerances. In the laboratory, all of the studied species showed a threshold response to increased salinity, displaying high survival times when exposed to low and intermediate conductivity levels. These results suggest that these species are not strictly halophilic, but that they are able to regulate both hyperosmotically and hypoosmotically. Anionic water composition had a significant effect on salinity tolerance at conductivity levels near their upper tolerance limits, with decreased species survival at elevated sulphate concentrations. Species occupying lentic habitats demonstrated higher salinity tolerance than their lotic congeners in agreement with the habitat constraint hypothesis. As expected, realised salinity niches were narrower than fundamental niches and corresponded to conditions near the upper tolerance limits of the species. These species are uncommon on freshwater-low conductivity habitats despite the fact that these conditions might be physiologically suitable for the adult life stage. Other factors, such as biotic interactions, could prevent their establishment at low salinities. Differences in the realised anionic niches of congeneric species could be partially explained by the varying habitat availability in the study area. Combining

  13. INTEGRATING DESALINATION AND AGRICULTURAL SALINITY CONTROL ALTERNATIVES

    EPA Science Inventory

    The cost-effectiveness relationships for various agricultural and desalination alternatives for controlling salinity in irrigation return flows are developed. Selection of optimal salinity management strategies on a river basin scale is described as a problem of integrating optim...

  14. Lithium ion conducting ionic electrolytes

    DOEpatents

    Angell, C.A.; Xu, K.; Liu, C.

    1996-01-16

    A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100 C or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors. 4 figs.

  15. Lithium ion conducting ionic electrolytes

    DOEpatents

    Angell, C. Austen; Xu, Kang; Liu, Changle

    1996-01-01

    A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors.

  16. Ion gels by self-assembly of a triblock copolymer in an ionic liquid.

    PubMed

    He, Yiyong; Boswell, Paul G; Bühlmann, Philippe; Lodge, Timothy P

    2007-05-10

    We report a new way of developing ion gels through the self-assembly of a triblock copolymer in a room-temperature ionic liquid. Transparent ion gels were achieved by gelation of a poly(styrene-block-ethylene oxide-block-styrene) (SOS) triblock copolymer in 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) with as low as 5 wt % SOS triblock copolymer. The gelation behavior, ionic conductivity, rheological properties, and microstructure of the ion gels were investigated. The ionic conductivity of the ion gels is only modestly affected by the triblock copolymer network. Its temperature dependence nearly tracks that of the bulk ionic liquid viscosity. The ion gels are thermally stable up to at least 100 degrees C and possess significant mechanical strength. The results presented here suggest that triblock copolymer gelation is a promising way to develop highly conductive ion gels and provides many advantages in terms of variety and processing. PMID:17474692

  17. On the viscosity of pyridinium based ionic liquids: an experimental and computational study.

    PubMed

    Bandrés, Isabel; Alcalde, Rafael; Lafuente, Carlos; Atilhan, Mert; Aparicio, Santiago

    2011-11-01

    A study on the viscosity of eight pyridinium based ionic liquids is reported for wide pressure and temperature ranges. Measurements were performed using an electromagnetic moving piston viscometer. Experimental data were fitted to a Tait-like equation demonstrating good correlations, which was used to calculate pressure/viscosity and temperature/viscosity coefficients. The effect of the involved anions and cation on the ionic liquid viscosity was analyzed from a molecular viewpoint using hole theory, quantum chemistry calculations using density functional theory, and classical molecular dynamics simulations. The analysis of the experimental and computational results shows the complex effects controlling viscosity of studied fluids, including strength of ionic pairs, molecular sizes, and mobility and effects rising from the availability and cavity sizes distributions in pyridinium-based ionic liquids. PMID:21942824

  18. Composite Electrolytes for Lithium Batteries: Ionic Liquids in APTES Crosslinked Polymers

    NASA Technical Reports Server (NTRS)

    Tigelaar, Dean M.; Meador, Mary Ann B.; Bennett, William R.

    2007-01-01

    Solvent free polymer electrolytes were made consisting of Li(+) and pyrrolidinium salts of trifluoromethanesulfonimide added to a series of hyperbranched poly(ethylene oxide)s (PEO). The polymers were connected by triazine linkages and crosslinked by a sol-gel process to provide mechanical strength. The connecting PEO groups were varied to help understand the effects of polymer structure on electrolyte conductivity in the presence of ionic liquids. Polymers were also made that contain poly(dimethylsiloxane) groups, which provide increased flexibility without interacting with lithium ions. When large amounts of ionic liquid are added, there is little dependence of conductivity on the polymer structure. However, when smaller amounts of ionic liquid are added, the inherent conductivity of the polymer becomes a factor. These electrolytes are more conductive than those made with high molecular weight PEO imbibed with ionic liquids at ambient temperatures, due to the amorphous nature of the polymer.

  19. Decoupling charge transport from the structural dynamics in room temperature ionic liquids

    SciTech Connect

    Griffin, Phillip; Agapov, Alexander L; Kisliuk, Alexander; Sun, Xiao-Guang; Dai, Sheng; Novikov, Vladimir; Sokolov, Alexei P

    2011-01-01

    Light scattering and dielectric spectroscopy measurements were performed on the room temperature ionic liquid (RTIL) [C4mim][NTf2] in a broad temperature and frequency range. Ionic conductivity was used to estimate self-diffusion of ions, while light scattering was used to study structural relaxation. We demonstrate that the ionic diffusion decouples from the structural relaxation process as the temperature of the sample decreases toward Tg. The strength of the decoupling appears to be significantly lower than that expected for a supercooled liquid of similar fragility. The structural relaxation process in the RTIL follows well the high-temperature mode coupling theory (MCT) scenario. Using the MCT analysis we estimated the dynamic crossover temperature in [C4mim][NTf2] to be Tc 225 5 K. However, our analysis reveals no sign of the dynamic crossover in the ionic diffusion process.

  20. Mapping Soil Salinity with ECa-Directed Soil Sampling: History, Protocols, Guidelines, Applications, and Future Research Trends

    NASA Astrophysics Data System (ADS)

    Corwin, Dennis

    2014-05-01

    Soil salinity is a spatially complex and dynamic property of soil that influences crop yields when the threshold salinity level is exceeded. Mapping soil salinity is necessary for soil classification, reclamation, crop selection, and site-specific irrigation management of salt-affected soils in the arid and semi-arid agricultural regions of the world. Because of its spatial and temporal heterogeneity soil salinity is difficult to map and monitor at field scales. There are various methods for characterizing soil salinity variability, but none of these approaches has been as extensively investigated and is as reliable and cost effective as apparent soil electrical conductivity (ECa) directed soil sampling. Geospatial measurements of ECa are well-suited for characterizing soil salinity spatial distribution because they are reliable, quick, and easy to take with GPS-based mobilized ECa measurement equipment. However, ECa is influenced by a variety of soil properties, which makes the measurement of soil salinity at field scale problematic. It is the goal of this presentation to provide an overview of the field-scale characterization of soil salinity distribution using ECa-directed soil sampling. A historical perspective, protocols and guidelines, strengths and limitations, applications, and future trends are presented for characterizing spatial and temporal variation in soil salinity using ECa-directed soil sampling. Land resource managers, farmers, extension specialists, soil classification specialists, and Natural Resource Conservation Service field staff are the beneficiaries of field-scale maps of soil salinity.

  1. Ionic conductivity studies of gel polyelectrolyte based on ionic liquid

    NASA Astrophysics Data System (ADS)

    Cha, E. H.; Lim, S. A.; Park, J. H.; Kim, D. W.; Macfarlane, D. R.

    Novel lithium polyelectrolyte-ionic liquids have been prepared and characterized of their properties. Poly(lithium 2-acrylamido-2-methyl propanesulfonate) (PAMPSLi) and its copolymer with N-vinyl formamide (VF) also has been prepared as a copolymer. 1-Ethyl-3-methylimidazolium tricyanomethanide (emImTCM) and N, N-dimethyl- N-propyl- N-butyl ammonium tricyanomethanide (N 1134TCM) which are chosen because of the same with the anion of ionic liquid were prepared. The ionic conductivity of copolymer system (PAMPSLi/PVF/emImTCM: 5.43 × 10 -3 S cm -1 at 25 °C) exhibits about over four times higher than that of homopolymer system (PAMPSLi/emImTCM: 1.28 × 10 -3 S cm -1 at 25 °C). Introduction of vinyl formamide into the copolymer type can increase the dissociation of the lithium cations from the polymer backbone. The ionic conductivity of copolymer with emImTCM (PAMPSLi/PVF/emImTCM) exhibits the higher conductivity than that of PAMPSLi/PVF/N 1134TCM (2.48 × 10 -3 S cm -1). Because of using the polymerizable anion it is seen to maintain high flexibility of imidazolium cation effectively to exhibit the higher conductivity. And also the viscosity of emImTCM (19.56 cP) is lower than that of N 1134TCM (28.61 cP). Low viscosity leads to a fast rate of diffusion of redox species.

  2. Nanoparticle enhanced ionic liquid heat transfer fluids

    DOEpatents

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.

    2014-08-12

    A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.

  3. The Aquarius Salinity Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Meissner, Thomas; Wentz, Frank; Hilburn, Kyle; Lagerloef, Gary; Le Vine, David

    2012-01-01

    The first part of this presentation gives an overview over the Aquarius salinity retrieval algorithm. The instrument calibration [2] converts Aquarius radiometer counts into antenna temperatures (TA). The salinity retrieval algorithm converts those TA into brightness temperatures (TB) at a flat ocean surface. As a first step, contributions arising from the intrusion of solar, lunar and galactic radiation are subtracted. The antenna pattern correction (APC) removes the effects of cross-polarization contamination and spillover. The Aquarius radiometer measures the 3rd Stokes parameter in addition to vertical (v) and horizontal (h) polarizations, which allows for an easy removal of ionospheric Faraday rotation. The atmospheric absorption at L-band is almost entirely due to molecular oxygen, which can be calculated based on auxiliary input fields from numerical weather prediction models and then successively removed from the TB. The final step in the TA to TB conversion is the correction for the roughness of the sea surface due to wind, which is addressed in more detail in section 3. The TB of the flat ocean surface can now be matched to a salinity value using a surface emission model that is based on a model for the dielectric constant of sea water [3], [4] and an auxiliary field for the sea surface temperature. In the current processing only v-pol TB are used for this last step.

  4. Ionic liquids as potential carriers of low viscosity magnetorheological fluids

    NASA Astrophysics Data System (ADS)

    Guerrero-Sanchez, Carlos; Ortiz-Alvarado, Armando; Schubert, Ulrich S.

    2009-03-01

    Based on the latest investigations on the formulation of new magneto-rheological fluids, it is envisioned that the use of ionic liquids as carriers of magneto-rheological fluids will open new possibilities of applications for these smart fluids due to the fact that their physical and chemical properties can be fine-tuned in a broad range. This contribution addresses one potentially important advantage of magneto-rheological fluids which use ionic liquids as novel carriers. In connection with this, magneto-rheological fluids with a low viscosity in the off-state without compromising other properties of the formulations (e. g., sedimentation of the dispersed magnetic particles, liquid state of the carriers in a broad range of temperatures) are often required for specific applications. In this regard, ionic liquids of low viscosity can be very useful in the development of such magneto-rheological fluids. Thus, this contribution reports on the magnetorheological properties of iron(II, III) oxide particles dispersed in the ionic liquid 1-ethyl-3-methylimidazolium thiocyanate (a low viscosity ionic liquid) in the temperature range from 20 °C to 80 °C. The experimental results have revealed that the apparent viscosity of the dispersion slightly changes with the temperature when a constant magnetic field is applied and its value mainly depends on the shear rate and the strength of the magnetic field. The viscosity of the dispersion remains practically unmodified with both the temperature and the magnetic field intensity as the magnetic saturation of the material is reached; in this regime the viscosity will only depend on the applied shear rate. In contrast, the yield stress values of the dispersion as well as the corresponding shear stress vs. shear rate curves have shown an inverse behavior with temperature for a constant magnetic field.

  5. Ionic transport and electrical relaxation in glass

    NASA Astrophysics Data System (ADS)

    Moynihan, C. T.; Barkatt, A.

    1987-09-01

    The basic purpose of the work described was to achieve extensive and quantitative understanding of ionic transport processes in melts and glasses by means of a combination of experimental measurements and theoretical modeling. Two major subjects of the study were the mechanism of dielectric relaxation in ionically conducting glasses and the large retardation of ionic transport in mixed alkali systems.

  6. The hype with ionic liquids as solvents

    NASA Astrophysics Data System (ADS)

    Kunz, Werner; Häckl, Katharina

    2016-09-01

    In this mini review, we give our personal opinion about the present state of the art concerning Ionic Liquids, proposed as alternative solvents. In particular, we consider their different drawbacks and disadvantages and discuss the critical aspects of the research of Ionic Liquids as solvents. Finally, we point out some aspects on potentially promising Ionic Liquid solvents.

  7. High-flux ionic diodes, ionic transistors and ionic amplifiers based on external ion concentration polarization by an ion exchange membrane: a new scalable ionic circuit platform.

    PubMed

    Sun, Gongchen; Senapati, Satyajyoti; Chang, Hsueh-Chia

    2016-04-01

    A microfluidic ion exchange membrane hybrid chip is fabricated using polymer-based, lithography-free methods to achieve ionic diode, transistor and amplifier functionalities with the same four-terminal design. The high ionic flux (>100 μA) feature of the chip can enable a scalable integrated ionic circuit platform for micro-total-analytical systems. PMID:26960551

  8. Plant signaling networks involving Ca2+ and Rboh/Nox-mediated ROS production under salinity stress

    PubMed Central

    Kurusu, Takamitsu; Kuchitsu, Kazuyuki; Tada, Yuichi

    2015-01-01

    Salinity stress, which induces both ionic and osmotic damage, impairs plant growth and causes severe reductions in crop yield. Plants are equipped with defense responses against salinity stress such as regulation of ion transport including Na+ and K+, accumulation of compatible solutes and stress-related gene expression. The initial Ca2+ influx mediated by plasma membrane ion channels has been suggested to be crucial for the adaptive signaling. NADPH oxidase (Nox)-mediated production of reactive oxygen species (ROS) has also been suggested to play crucial roles in regulating adaptation to salinity stress in several plant species including halophytes. Respiratory burst oxidase homolog (Rboh) proteins show the ROS-producing Nox activity, which are synergistically activated by the binding of Ca2+ to EF-hand motifs as well as Ca2+-dependent phosphorylation. We herein review molecular identity, structural features and roles of the Ca2+-permeable channels involved in early salinity and osmotic signaling, and comparatively discuss the interrelationships among spatiotemporal dynamic changes in cytosolic concentrations of free Ca2+, Rboh-mediated ROS production, and downstream signaling events during salinity adaptation in planta. PMID:26113854

  9. Interannual salinity variability of the Northern Yellow Sea Cold Water Mass

    NASA Astrophysics Data System (ADS)

    Li, Ang; Yu, Fei; Diao, Xinyuan

    2015-05-01

    This paper discusses the interannual variability of the Northern Yellow Sea Cold Water Mass (NYSCWM) and the factors that influence it, based on survey data from the 1976-2006 national standard section and the Korea Oceanographic Data Center, monthly E-P flux data from the European Centre for Medium-Range Weather Forecasts, and meridional wind speed data from the International Comprehensive Ocean-Atmosphere Data Set. The results show that: 1) the mean salinity of the NYSCWM center has a slightly decreasing trend, which is not consistent with the high salinity center; 2) both the southern salinity front and the halocline of the NYSCWM display a weakening trend, which indicates that the difference between the NYSCWM and coastal water decreases; 3) the Yellow Sea Warm Current intrusion, the E-P flux of the northern Yellow Sea, and the strength of the winter monsoon will affect the NYSCWM salinity during the following summer.

  10. Solubility of plutonium(VI) carbonate in saline solutions

    NASA Astrophysics Data System (ADS)

    Reilly, Sean D.; Runde, Wolfgang; Neu, Mary P.

    2007-06-01

    Among the plutonium oxidation states found to form in the environment, mobile plutonium(VI) can exist under oxidizing conditions and in waters with high chloride content due to radiolysis effects. We are investigating the solubility and speciation of plutonium(VI) carbonate under conditions relevant to natural waters and brines such as those found near some geologic radioactive waste repositories. The solid Pu(VI) phase PuO 2CO 3(s) was prepared and its solubility was measured in NaCl and NaClO 4 solutions in a CO 2 atmosphere as a function of pH and ionic strength (0.1-5.6 m). The concentration of soluble plutonium in solution was calculated from spectroscopic data and liquid scintillation counting. Spectroscopic measurements also revealed the plutonium oxidation state. The apparent solubility product of PuO 2CO 3(s) was determined at selected electrolyte concentrations to be, log Ks,0 = -13.95 ± 0.07 (0.1 m NaCl), log Ks,0 = -14.07 ± 0.13 (5.6 m NaCl), and log Ks,0 = -15.26 ± 0.11 (5.6 m NaClO 4). Specific ion interaction theory was used to calculate the solubility product at zero ionic strength, logKs,0∘=-14.82±0.05.

  11. Experimentally derived salinity tolerance of hatchling Burmese pythons (Python molurus bivittatus) from the Everglades, Florida (USA)

    USGS Publications Warehouse

    Hart, K.M.; Schofield, P.J.; Gregoire, D.R.

    2012-01-01

    In a laboratory setting, we tested the ability of 24 non-native, wild-caught hatchling Burmese pythons (Python molurus bivittatus) collected in the Florida Everglades to survive when given water containing salt to drink. After a one-month acclimation period in the laboratory, we grouped snakes into three treatments, giving them access to water that was fresh (salinity of 0, control), brackish (salinity of 10), or full-strength sea water (salinity of 35). Hatchlings survived about one month at the highest marine salinity and about five months at the brackish-water salinity; no control animals perished during the experiment. These results are indicative of a "worst-case scenario", as in the laboratory we denied access to alternate fresh-water sources that may be accessible in the wild (e.g., through rainfall). Therefore, our results may underestimate the potential of hatchling pythons to persist in saline habitats in the wild. Because of the effect of different salinity regimes on survival, predictions of ultimate geographic expansion by non-native Burmese pythons that consider salt water as barriers to dispersal for pythons may warrant re-evaluation, especially under global climate change and associated sea-level-rise scenarios. ?? 2011.

  12. Experimentally derived salinity tolerance of hatchling Burmese pythons (Python molurus bivittatus) from the Everglades, Florida (USA)

    USGS Publications Warehouse

    Hart, Kristen M.; Schofield, Pamela J.; Gregoire, Denise R.

    2012-01-01

    In a laboratory setting, we tested the ability of 24 non-native, wild-caught hatchling Burmese pythons (Python molurus bivittatus) collected in the Florida Everglades to survive when given water containing salt to drink. After a one-month acclimation period in the laboratory, we grouped snakes into three treatments, giving them access to water that was fresh (salinity of 0, control), brackish (salinity of 10), or full-strength sea water (salinity of 35). Hatchlings survived about one month at the highest marine salinity and about five months at the brackish-water salinity; no control animals perished during the experiment. These results are indicative of a "worst-case scenario", as in the laboratory we denied access to alternate fresh-water sources that may be accessible in the wild (e.g., through rainfall). Therefore, our results may underestimate the potential of hatchling pythons to persist in saline habitats in the wild. Because of the effect of different salinity regimes on survival, predictions of ultimate geographic expansion by non-native Burmese pythons that consider salt water as barriers to dispersal for pythons may warrant re-evaluation, especially under global climate change and associated sea-level-rise scenarios.

  13. The Strength of Disease: Molecular Bonds Between Asbestos and Human Cells

    NASA Astrophysics Data System (ADS)

    Taylor, E. S.; Lower, S. K.; Wylie, A. G.; Mossman, B. T.

    2008-12-01

    Occupational exposure to asbestos has been linked to the development of life-threatening cancers (i.e., mesothelioma) and diseases (i.e., asbestosis), which can sometimes take decades to appear after initial exposure. There is increasing evidence that environmental exposure to asbestos is a significant public health concern in some regions of the United States, and this type of asbestos contamination could lead to an epidemic of mesothelioma for at least the next two decades. Although mines and regions nearby should be safer with stricter protocols for processing asbestos, the long latent period for asbestos-related diseases makes understanding them an ever-present concern. In addition to the many epidemiological studies, laboratory in vitro and in vivo studies on the biochemical effect of asbestos show that the most trusted predictor for disease is the dosage of longer, thinner chrysotile and amphibole asbestos fibers. However, many scientists agree that incorporating the many physical and chemical properties of the mineral fibers is needed to properly assess their influence. The study of asbestos-related disease is essentially a multidisciplinary task, requiring knowledge from medicine, biochemistry and mineralogy. To bridge the gap between these disciplines, attention needs to be placed on the molecular communication between the asbestos fibers and the biological environments in which they can be deposited. Our work focused on determining the surface chemical response of riebeckite and crocidolite-its asbestiform counterpart-to changes in salinity and pH. As expected, studies on the mineral surface charge using atomic force microscopy (AFM) yielded a slight dependence on pH, as measured by the adhesion force acting on the probe, but not on ionic strength, except at near zero salt concentration. A transition was found for the surface charge of crocidolite above pH 7, where forces at the mineral surface increased. In contrast, the surface charge on riebeckite was

  14. Application of Ionic Liquids in Hydrometallurgy

    PubMed Central

    Park, Jesik; Jung, Yeojin; Kusumah, Priyandi; Lee, Jinyoung; Kwon, Kyungjung; Lee, Churl Kyoung

    2014-01-01

    Ionic liquids, low temperature molten salts, have various advantages manifesting themselves as durable and environmentally friendly solvents. Their application is expanding into various fields including hydrometallurgy due to their unique properties such as non-volatility, inflammability, low toxicity, good ionic conductivity, and wide electrochemical potential window. This paper reviews previous literatures and our recent results adopting ionic liquids in extraction, synthesis and processing of metals with an emphasis on the electrolysis of active/light, rare earth, and platinum group metals. Because the research and development of ionic liquids in this area are still emerging, various, more fundamental approaches are expected to popularize ionic liquids in the metal manufacturing industry. PMID:25177864

  15. Application of ionic liquids in hydrometallurgy.

    PubMed

    Park, Jesik; Jung, Yeojin; Kusumah, Priyandi; Lee, Jinyoung; Kwon, Kyungjung; Lee, Churl Kyoung

    2014-01-01

    Ionic liquids, low temperature molten salts, have various advantages manifesting themselves as durable and environmentally friendly solvents. Their application is expanding into various fields including hydrometallurgy due to their unique properties such as non-volatility, inflammability, low toxicity, good ionic conductivity, and wide electrochemical potential window. This paper reviews previous literatures and our recent results adopting ionic liquids in extraction, synthesis and processing of metals with an emphasis on the electrolysis of active/light, rare earth, and platinum group metals. Because the research and development of ionic liquids in this area are still emerging, various, more fundamental approaches are expected to popularize ionic liquids in the metal manufacturing industry. PMID:25177864

  16. Observation of ionic Coulomb blockade in nanopores

    NASA Astrophysics Data System (ADS)

    Feng, Jiandong; Liu, Ke; Graf, Michael; Dumcenco, Dumitru; Kis, Andras; di Ventra, Massimiliano; Radenovic, Aleksandra

    2016-08-01

    Emergent behaviour from electron-transport properties is routinely observed in systems with dimensions approaching the nanoscale. However, analogous mesoscopic behaviour resulting from ionic transport has so far not been observed, most probably because of bottlenecks in the controlled fabrication of subnanometre nanopores for use in nanofluidics. Here, we report measurements of ionic transport through a single subnanometre pore junction, and the observation of ionic Coulomb blockade: the ionic counterpart of the electronic Coulomb blockade observed for quantum dots. Our findings demonstrate that nanoscopic, atomically thin pores allow for the exploration of phenomena in ionic transport, and suggest that nanopores may also further our understanding of transport through biological ion channels.

  17. Electrochemically active species and multielectron processes in ionic melts

    NASA Astrophysics Data System (ADS)

    Shapoval, Viktor I.; Solov'ev, Veniamin V.; Malyshev, Viktor V.

    2001-02-01

    The model concepts for the mechanisms of formation of electrochemically active species and multielectron processes in ionic nitrate-, carbonate-, boron- and titanium-containing fluoride melts are generalised. The fundamental importance of the acid-base properties of a melt in the mechanism of formation of electrochemically active species is shown for nitrate- and carbonate-containing melts. This fact is confirmed by electrochemical measurements and by calculations of force constants for oxyanions. The optimum form of electrochemically active species has been established; their reduction abilities depend on the cationic composition of a melt, the adsorption properties of the electrode surface and the electric field strength. The bibliography includes 218 references.

  18. Flexibility and Muscular Strength.

    ERIC Educational Resources Information Center

    Liemohn, Wendell

    1988-01-01

    This definition of flexibility and muscular strength also explores their roles in overall physical fitness and focuses on how increased flexibility and muscular strength can help decrease or eliminate lower back pain. (CB)

  19. Strength Training for Girls.

    ERIC Educational Resources Information Center

    Connaughton, Daniel; Connaughton, Angela; Poor, Linda

    2001-01-01

    Strength training can be fun, safe, and appropriate for young girls and women and is an important component of any fitness program when combined with appropriate cardiovascular and flexibility activities. Concerns and misconceptions regarding girls' strength training are discussed, presenting general principles of strength training for children…

  20. Effect of Salinity on Tomato Fruit Ripening 1

    PubMed Central

    Mizrahi, Yosef

    1982-01-01

    Tomato (Lycopersicon esculentum Mill) plants from various cultivars growing on half-strength Hoagland solution were exposed at anthesis to 3 or 6 grams per liter NaCl. Salinity shortened the time of fruit development by 4 to 15%. Fruits of salt-treated plants were smaller and tasted better than did fruits of control plants. This result was obtained both for ripe fruits tested on the day of picking and for those picked at 100% development and allowed to ripen at room temperature for 9 days. Percentage of dry weight, total soluble solids, and titratable acidity; content of reducing sugars, Cl−, Na+, and various pericarp pigments; and electrical conductivity of the juice were higher in fruits of saline-treated plants than they were in those of control plants, while the pH was lower. Ethylene and CO2 evolution rates during ripening; as well as the activities of pectin methyl esterase, polymethylgalacturonase, and polygalacturonase; were also higher in fruits of the saline-treated plants. The treatment with 6 grams per liter NaCl shortened the fruit shelf life considerably. PMID:16662327

  1. Externally Wetted Ionic Liquid Thruster

    NASA Astrophysics Data System (ADS)

    Lozano, P.; Martinez-Sanchez, M.; Lopez-Urdiales, J. M.

    2004-10-01

    This paper presents initial developments of an electric propulsion system based on ionic liquid ion sources (ILIS). Propellants are ionic liquids, which are organic salts with two important characteristics; they remain in the liquid state at room temperature and have negligible vapor pressure, thus allowing their use in vacuum. The working principles of ILIS are similar to those of liquid metal ion sources (LMIS), in which a Taylor cone is electrostatically formed at the tip of an externally wetted needle while ions are emitted directly from its apex. ILIS have the advantage of being able to produce negative ions that have similar masses than their positive counterparts with similar current levels. This opens up the possibility of achieving plume electrical neutrality without electron emitters. The possible multiplexing of these emitters is discussed in terms of achievable thrust density for applications other than micro-propulsion.

  2. Quantized ionic conductance in nanopores

    SciTech Connect

    Zwolak, Michael; Lagerqvist, Johan; Di Ventra, Massimilliano

    2009-01-01

    Ionic transport in nanopores is a fundamentally and technologically important problem in view of its ubiquitous occurrence in biological processes and its impact on DNA sequencing applications. Using microscopic calculations, we show that ion transport may exhibit strong non-liDearities as a function of the pore radius reminiscent of the conductance quantization steps as a function of the transverse cross section of quantum point contacts. In the present case, however, conductance steps originate from the break up of the hydration layers that form around ions in aqueous solution. Once in the pore, the water molecules form wavelike structures due to multiple scattering at the surface of the pore walls and interference with the radial waves around the ion. We discuss these effects as well as the conditions under which the step-like features in the ionic conductance should be experimentally observable.

  3. Viscoelastic Nanomechanics of Ionically Cross-linked Polyelectrolyte Networks

    NASA Astrophysics Data System (ADS)

    Han, Biao; Lee, Daeyeon; Han, Lin

    2015-03-01

    Understanding the mechanics of ionic polyelectrolyte networks is critical for applications where nm-to-um mechanics is the key to success. This study aims to reveal the roles of ionic cross-links and fixed charges in the viscoelasticity of layer-by-layer poly(allylamine hydrochloride)/poly(acrylic acid) microfilms, PAH/PAA, a complex held by pH-sensitive amine-carboxyl links. AFM-nanoindentation and force relaxation (tip R =12.5um) was performed at ionic strength(IS) =0.01-1.0M, pH =5.5-2.0 (pKa of PAA =2.3). When pH changes from 5.5 to 2.0, the films swell for 4x from densely linked, net neutral state to loosely linked, positively charged one. A >100x reduction in indentation modulus was observed at all IS, suggesting the dominance of decrease in cross-link density. In most states, more than 90% force relaxation was observed, where cross-link breaking/reformation likely dominates viscoelasticity. However, at pH =2.5 and IS =0.01M, when electrical double layer repulsion is important (Debye length =3nm), relaxation was about 60%, highlighting the contribution of fixed charges. In summary, this study revealed unique viscoelastic behaviors of PAH/PAA due to the pH- and IS-dependent cross-link and charge densities.

  4. Polyelectrolyte brushes in mixed ionic medium studied via intermolecular forces

    NASA Astrophysics Data System (ADS)

    Farina, Robert; Laugel, Nicolas; Pincus, Philip; Tirrell, Matthew

    2011-03-01

    The vast uses and applications of polyelectrolyte brushes make them an attractive field of research especially with the growing interest in responsive materials. Polymers which respond via changes in temperature, pH, and ionic strength are increasingly being used for applications in drug delivery, chemical gating, etc. When polyelectrolyte brushes are found in either nature (e.g., surfaces of cartilage and mammalian lung interiors) or commercially (e.g., skin care products, shampoo, and surfaces of medical devices) they are always surrounded by mixed ionic medium. This makes the study of these brushes in varying ionic environments extremely relevant for both current and future potential applications. The polyelectrolyte brushes in this work are diblock co-polymers of poly-styrene sulfonate (N=420) and poly-t-butyl styrene (N=20) which tethers to a hydrophobic surface allowing for a purely thermodynamic study of the polyelectrolyte chains. Intermolecular forces between two brushes are measured using the SFA. As multi-valent concentrations are increased, the brushes collapse internally and form strong adhesion between one another after contact (properties not seen in a purely mono-valent environment).

  5. Monitoring The Dynamics Of Hyper-Saline Environments With Polarimetric SAR: Death Valley, California Example

    NASA Astrophysics Data System (ADS)

    Lasne, Y.; McDonald, K.; Paillou, P.; Freeman, A.; Chapman, B.; Farr, T.; Ruffié, G.; Malézieux, J.

    2008-12-01

    Soil salinization in arid and semi-arid regions still remains one of the most important threats not only for socio-economical issues when dealing with water ressources management, but also for ecological matters such as: desertification, climate changes, and biomass reduction. Then, monitoring and mapping of soil salinity distribution represent today a key challenge in our understanding of such environmental processes. Being highly dependent on the dielectric properties of soils, synthetic aperture radar (SAR) appears to be an efficient tool for the remote sensing of hyper-saline environments. More precisely, the influence of saline deposits on SAR imagery lies in the solubility and ionic properties of the minerals which strongly influence both real and imaginary parts of the complex permittivity of such deposits, and thus the radar backscattering coefficient. Based on temporal series acquired with spaceborne SAR systems (ALOS/PALSAR, SIR-C) over the Death Valley (CA), we show that the copolarized backscattering ratio and phase difference derived from SAR data can be used as suitable indicators to monitor the dynamics of hyper-saline deposits. In particular, we propose these copolar parameters to follow the variations in the dielectric properties of moistened and salt-affected soils on a seasonal time scale because of the close relationship between the salinity (governed by the soil moisture content) and the complex permittivity of the soils. We also highlight a strong temporal correlation between the copolar parameters and weather data since precipitation events control the soil moisture and salinity. In order to allow for a better interpretation of the saline deposits signatures observed on SAR data, we also perform analytical simulations of the radar backscattering associated with saline deposits by means of the IEM scattering model. Using laboratory and in~ situ dielectric measurements as input parameters, we simulate the copolar ratio and phase difference as

  6. Ionic Liquids to Replace Hydrazine

    NASA Technical Reports Server (NTRS)

    Koelfgen, Syri; Sims, Joe; Forton, Melissa; Allan, Barry; Rogers, Robin; Shamshina, Julia

    2011-01-01

    A method for developing safe, easy-to-handle propellants has been developed based upon ionic liquids (ILs) or their eutectic mixtures. An IL is a binary combination of a typically organic cation and anion, which generally produces an ionic salt with a melting point below 100 deg C. Many ILs have melting points near, or even below, room temperature (room temperature ionic liquids, RTILs). More importantly, a number of ILs have a positive enthalpy of formation. This means the thermal energy released during decomposition reactions makes energetic ILs ideal for use as propellants. In this specific work, to date, a baseline set of energetic ILs has been identified, synthesized, and characterized. Many of the ILs in this set have excellent performance potential in their own right. In all, ten ILs were characterized for their enthalpy of formation, density, melting point, glass transition point (if applicable), and decomposition temperature. Enthalpy of formation was measured using a microcalorimeter designed specifically to test milligram amounts of energetic materials. Of the ten ILs characterized, five offer higher Isp performance than hydrazine, ranging between 10 and 113 seconds higher than the state-of-the-art propellant. To achieve this level of performance, the energetic cations 4- amino-l,2,4-triazolium and 3-amino-1,2,4-triazolium were paired with various anions in the nitrate, dicyanamide, chloride, and 3-nitro-l,2,4-triazole families. Protonation, alkylation, and butylation synthesis routes were used for creation of the different salts.

  7. Revealing ionic motion molecular solids

    NASA Astrophysics Data System (ADS)

    Thurzo, I.; Zahn, D. R. T.

    2006-01-01

    Thin films of mixed valence semiconductor copper-tetracyano-quinodimethane (Cu-TCNQ) and small molecule tris(8-hydroxyquinolinato)aluminum (Alq3) were investigated by current-voltage (I-V) and admittance (C-V,G-V) techniques in single-layer configuration with different combinations of electrodes. The predicted hysteresis of I-V curves and nearly constant loss (NCL) could be observed for both materials. When cycling devices between negative and positive biases, slowly decaying ionic transient currents interfere with steady-state currents and point to unidirectional motions of the ionic species with subsequent redox reaction at one of the electrodes. Plotting the frequency f dependence of the equivalent parallel capacitance at zero bias as log10 C(0) versus log10(f), the dielectric behavior of Cu-TCNQ and Alq3 complies with the effective-medium model for NCL in ionic conductors [J. R. Macdonald J. Appl. Phys. 94, 558 (2003)]. It also holds for a similar plot of the equivalent parallel zero-bias conductance G(0). The nature of the revealed mobile ions is discussed with emphasis on their sources.

  8. Effects of CO2 (aq), pH, and Salinity on Biotite Dissolution Kinetics under Hydrothermal Conditions

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Jun, Y.

    2010-12-01

    A holistic understanding of dissolution and precipitation rates of Fe-bearing clay minerals under hydrothermal conditions is crucial for sustainable geological CO2 sequestration, underground nuclear waste disposal, and reclaimed reuse at aquifer recharge. In this study, batch dissolution experiments under high temperature (35-95 °C) and high pressure (PCO2 or PN2 = 1100 psi-1500 psi) were conducted to study the effect of CO2 (aq), pH, salinity, and temperature on the dissolution kinetics of biotite, which serves as a representative Fe-bearing clay mineral. To investigate the effect of dissolved CO2, dissolution rates of biotite under high CO2 pressure and HCl-pH-adjusted high N2 pressure condition were compared. Biotite intrinsic dissolution rates under PCO2 = 1100 psi-1500 psi (pH = 2.94-3.00) and 35 °C were conducted and they were similar within experimental error ranges. Thus, the effect of dissolved CO2 mostly results from the pH effect, the dissolved total inorganic carbon (CO2) concentration (2.18-3 M) and the pressure of CO2 does not alter the biotite dissolution rates significantly. The effect of pH during the range of 2.94-4.47 was also studied by conducting dissolution experiments in NaHCO3 solution (0-50 mM) under 35 °C and PCO2 = 1500 psi. The effect of ionic strength was studied using 0.1 and 1 M NaCl solutions. Higher Na+ concentration in solution accelerated K+ dissolution through Na+-K+ ion exchange. The ion exchange exfoliated the biotite layers, exposing more surfaces into acidic solution and accelerating the dissolution. Arrhenius equation was used to describe the temperature effect and to extract activation energy of dissolution. The results will provide important information for a more accurate reactive-transport modeling of Fe-bearing clay mineral behavior under hydrothermal conditions.

  9. Strength Modeling Report

    NASA Technical Reports Server (NTRS)

    Badler, N. I.; Lee, P.; Wong, S.

    1985-01-01

    Strength modeling is a complex and multi-dimensional issue. There are numerous parameters to the problem of characterizing human strength, most notably: (1) position and orientation of body joints; (2) isometric versus dynamic strength; (3) effector force versus joint torque; (4) instantaneous versus steady force; (5) active force versus reactive force; (6) presence or absence of gravity; (7) body somatotype and composition; (8) body (segment) masses; (9) muscle group envolvement; (10) muscle size; (11) fatigue; and (12) practice (training) or familiarity. In surveying the available literature on strength measurement and modeling an attempt was made to examine as many of these parameters as possible. The conclusions reached at this point toward the feasibility of implementing computationally reasonable human strength models. The assessment of accuracy of any model against a specific individual, however, will probably not be possible on any realistic scale. Taken statistically, strength modeling may be an effective tool for general questions of task feasibility and strength requirements.

  10. Estuarine turbidity, flushing, salinity, and circulation

    NASA Technical Reports Server (NTRS)

    Pritchard, D. W.

    1972-01-01

    The effects of estuarine turbidity, flushing, salinity, and circulation on the ecology of the Chesapeake Bay are discussed. The sources of fresh water, the variations in salinity, and the circulation patterns created by temperature and salinity changes are analyzed. The application of remote sensors for long term observation of water temperatures is described. The sources of sediment and the biological effects resulting from increased sediments and siltation are identified.

  11. Salinity gradient power: utilizing vapor pressure differences.

    PubMed

    Olsson, M; Wick, G L; Isaacs, J D

    1979-10-26

    By utilizing the vapor pressure difference between high-salinity and lowsalinity wvater, one can obtain power from the gradients of salinity. This scheme eliminates the major problems associated with conversion methods in which membranes are used. The method we tested gave higher conversion efficiencies than membrane methods. Furthermore, hardware and techniques being developed for ocean thermal energy conversion may be applied to this approach to salinity gradient energy conversion. PMID:17809370

  12. Radiation Chemistry and Photochemistry of Ionic Liquids

    SciTech Connect

    Wishart, J.F.; Takahaski, K.

    2010-12-01

    As our understanding of ionic liquids and their tunable properties has grown, it is possible to see many opportunities for ionic liquids to contribute to the sustainable use of energy. The potential safety and environmental benefits of ionic liquids, as compared to conventional solvents, have attracted interest in their use as processing media for the nuclear fuel cycle. Therefore, an understanding of the interactions of ionizing radiation and photons with ionic liquids is strongly needed. However, the radiation chemistry of ionic liquids is still a relatively unexplored topic although there has been a significant increase in the number of researchers in the field recently. This article provides a brief introduction to ionic liquids and their interesting properties, and recent advances in the radiation chemistry and photochemistry of ionic liquids. In this article, we will mainly focus on excess electron dynamics and radical reaction dynamics. Because solvation dynamics processes in ionic liquids are much slower than in molecular solvents, one of the distinguishing characteristics is that pre-solvated electrons play an important role in ionic liquid radiolysis. It will be also shown that the reaction dynamics of radical ions is significantly different from that observed in molecular solvents because of the Coulombic screening effects and electrostatic interactions in ionic liquids.

  13. Soil Salinity Mapping Using Multitemporal Landsat Data

    NASA Astrophysics Data System (ADS)

    Azabdaftari, A.; Sunar, F.

    2016-06-01

    Soil salinity is one of the most important problems affecting many areas of the world. Saline soils present in agricultural areas reduce the annual yields of most crops. This research deals with the soil salinity mapping of Seyhan plate of Adana district in Turkey from the years 2009 to 2010, using remote sensing technology. In the analysis, multitemporal data acquired from LANDSAT 7-ETM+ satellite in four different dates (19 April 2009, 12 October 2009, 21 March 2010, 31 October 2010) are used. As a first step, preprocessing of Landsat images is applied. Several salinity indices such as NDSI (Normalized Difference Salinity Index), BI (Brightness Index) and SI (Salinity Index) are used besides some vegetation indices such as NDVI (Normalized Difference Vegetation Index), RVI (Ratio Vegetation Index), SAVI (Soil Adjusted Vegetation Index) and EVI (Enhamced Vegetation Index) for the soil salinity mapping of the study area. The field's electrical conductivity (EC) measurements done in 2009 and 2010, are used as a ground truth data for the correlation analysis with the original band values and different index image bands values. In the correlation analysis, two regression models, the simple linear regression (SLR) and multiple linear regression (MLR) are considered. According to the highest correlation obtained, the 21st March, 2010 dataset is chosen for production of the soil salinity map in the area. Finally, the efficiency of the remote sensing technology in the soil salinity mapping is outlined.

  14. Relating river discharges to salinity changes

    NASA Astrophysics Data System (ADS)

    Xie, X.; Liu, W. T.

    2014-12-01

    New river discharge data are brought together with spacebased sea surface salinity measurements by Aquarius and SMOS to demonstrate the role of river discharge in salinity changes near three river mouths: the Mississippi, the Ganges, and the Amazon. The characteristics of the seasonal cycle and the year-to-year changes of the river runoff are described. Various versions of the satellite salinity data are compared. The relative roles of river discharge, surface water flux, and horizontal advection in changing surface salinity in regions near the river mouths are examined. Satellite measurements of SSS clearly track movements of the fresh water from river discharges. Besides the river discharge, E-P plays an important role in the seasonal salinity variation near the Ganges and Irrawaddy River mouths. For the Mississippi and Amazon river mouths, central and eastern ITCZ, E-P contributes very little to the salinity seasonal change. In the central and eastern ITCZ, contribution of advection to the salinity tendency is clearly identified. Both salinity and salinity tendency are dominated by semi-annual cycle in the Atlantic ITCZ between 5ºN to 9ºN, whereas annual cycle dominates at other latitudes.

  15. Ion association in water solution of soil and vadose zone of chestnut saline solonetz as a driver of terrestrial carbon sink

    NASA Astrophysics Data System (ADS)

    Batukaev, Abdul-Malik A.; Endovitsky, Anatoly P.; Andreev, Andrey G.; Kalinichenko, Valery P.; Minkina, Tatiana M.; Dikaev, Zaurbek S.; Mandzhieva, Saglara S.; Sushkova, Svetlana N.

    2016-03-01

    The assessment of soil and vadose zone as the drains for carbon sink and proper modeling of the effects and extremes of biogeochemical cycles in the terrestrial biosphere are the key components to understanding the carbon cycle, global climate system, and aquatic and terrestrial system uncertainties. Calcium carbonate equilibrium causes saturation of solution with CaCO3, and it determines its material composition, migration and accumulation of salts. In a solution electrically neutral ion pairs are formed: CaCO30, CaSO40, MgCO30, and MgSO40, as well as charged ion pairs CaHCO3+, MgHCO3+, NaCO3-, NaSO4-, CaOH+, and MgOH+. The calcium carbonate equilibrium algorithm, mathematical model and original software to calculate the real equilibrium forms of ions and to determine the nature of calcium carbonate balance in a solution were developed. This approach conducts the quantitative assessment of real ion forms of solution in solonetz soil and vadose zone of dry steppe taking into account the ion association at high ionic strength of saline soil solution. The concentrations of free and associated ion form were calculated according to analytical ion concentration in real solution. In the iteration procedure, the equations were used to find the following: ion material balance, a linear interpolation of equilibrium constants, a method of ionic pairs, the laws of initial concentration preservation, operating masses of equilibrium system, and the concentration constants of ion pair dissociation. The coefficient of ion association γe was determined as the ratio of ions free form to analytical content of ion γe = Cass/Can. Depending on soil and vadose zone layer, concentration and composition of solution in the ionic pair's form are 11-52 % Ca2+; 22.2-54.6 % Mg2+; 1.1-10.5 % Na+; 3.7-23.8 HCO3-, 23.3-61.6 % SO42-, and up to 85.7 % CO32-. The carbonate system of soil and vadose zone water solution helps to explain the evolution of salted soils, vadose and saturation zones, and

  16. Soil salinity detection from satellite image analysis: an integrated approach of salinity indices and field data.

    PubMed

    Morshed, Md Manjur; Islam, Md Tazmul; Jamil, Raihan

    2016-02-01

    This paper attempts to detect soil salinity from satellite image analysis using remote sensing and geographic information system. Salinity intrusion is a common problem for the coastal regions of the world. Traditional salinity detection techniques by field survey and sampling are time-consuming and expensive. Remote sensing and geographic information system offer economic and efficient salinity detection, monitoring, and mapping. To predict soil salinity, an integrated approach of salinity indices and field data was used to develop a multiple regression equation. The correlations between different indices and field data of soil salinity were calculated to find out the highly correlated indices. The best regression model was selected considering the high R (2) value, low P value, and low Akaike's Information Criterion. About 20% variation was observed between the field data and predicted EC from the satellite image analysis. The precision of this salinity detection technique depends on the accuracy and uniform distribution of field data. PMID:26815557

  17. Molecular and ionic hydrogen bond formation in fluorous solvents.

    PubMed

    O'Neal, Kristi L; Weber, Stephen G

    2009-01-01

    There are only a few studies of noncovalent association in fluorous solvents and even fewer that are quantitative. A full understanding, particularly of stoichiometry and binding strength of noncovalent interactions in fluorous solvents could be very useful in improved molecular-receptor-based extractions, advancements in sensor technologies, crystal engineering, and supramolecular chemistry. This work investigates hydrogen bonding between heterocyclic bases and a perfluoropolyether with a terminal carboxylic acid group (Krytox 157FSH (1)), chiefly in FC-72 (a mixture of perfluorohexanes). In particular, we were interested in whether or not proton transfer occurs, and if so, under what conditions in H-bonded complexes. Continuous variations experiments show that in FC-72 weaker bases (pyrazine, pyrimidine, and quinazoline) form 1:1 complexes with 1, whereas stronger bases (quinoline, pyridine, and isoquinoline) form 1:3 complexes. Ultraviolet and infrared spectral signatures reveal that the 1:1 complexes are molecular (B.HA) whereas the 1:3 complexes are ionic (BH+.A-HAHA). Infrared spectra of 1:3 ionic complexes are discussed in detail. Literature and experimental data on complexes between N-heterocyclic bases and carboxylic acids in a range of solvents are compiled to compare solvent effects on proton transfer. Polar solvents support ionic hydrogen bonds at a 1:1 mol ratio. In nonpolar organic solvents, ionic hydrogen bonds are only observed in complexes with 1:2 (base/acid) stoichiometries. In fluorous solvents, a larger excess of acid, 1:3, is necessary to facilitate proton transfer in hydrogen bonds between carboxylic acids and the bases studied. PMID:19195102

  18. Understanding the influence of Coulomb and dispersion interactions on the wetting behavior of ionic liquids.

    PubMed

    Rane, Kaustubh S; Errington, Jeffrey R

    2014-11-01

    We study the role of dispersion and electrostatic interactions in the wetting behavior of ionic liquids on non-ionic solid substrates. We consider a simple model of an ionic liquid consisting of spherical ions that interact via Lennard-Jones and Coulomb potentials. Bulk and interfacial properties are computed for five fluids distinguished by the strength of the electrostatic interaction relative to the dispersion interaction. We employ Monte Carlo simulations and an interface-potential-based approach to calculate the liquid-vapor and substrate-fluid interfacial properties. Surface tensions for each fluid are evaluated over a range of temperatures that spans from a reduced temperature of approximately 0.6 to the critical point. Contact angles are calculated at select temperatures over a range of substrate-fluid interaction strengths that spans from the near-drying regime to the wetting regime. We observe that an increase in the relative strength of Coulombic interactions between ions leads to increasing deviation from Guggenheim's corresponding states theory. We show how this deviation is related to lower values of liquid-vapor excess entropies observed for strongly ionic fluids. Our results show that the qualitative nature of wetting behavior is significantly influenced by the competition between dispersion and electrostatic interactions. We discuss the influence of electrostatic interactions on the nature of wetting and drying transitions and corresponding states like behavior observed for contact angles. For all of the fluids studied, we observe a relatively narrow range of substrate-fluid interaction strengths wherein the contact angle is nearly independent of temperature. The influence of the ionic nature of the fluid on the temperature dependence of contact angle is also discussed. PMID:25381536

  19. Combined effects of cadmium and salinity on juvenile Takifugu obscurus: cadmium moderates salinity tolerance; salinity decreases the toxicity of cadmium

    PubMed Central

    Wang, Jun; Zhu, Xuexia; Huang, Xin; Gu, Lei; Chen, Yafen; Yang, Zhou

    2016-01-01

    Obscure puffer Takifugu obscurus, a species of anadromous fish, experiences several salinity changes in its lifetime. Cadmium (Cd) is a toxic heavy metal that can potentially induce oxidative stress in fish. The present study aimed to detect the combined effects of Cd (0, 5, 10, 20 and 50 mg L−1) and salinity (0, 15 and 30 ppt) on juvenile T. obscurus. Results showed the juveniles could survive well under different salinities; however, with Cd exposure, the survival rates significantly decreased at 0 and 30 ppt. At 15 ppt, tolerance to Cd increased. Cd exposure clearly induced oxidative stress, and the responses among different tissues were qualitatively similar. Salinity acted as a protective factor which could reduce the reactive oxygen species and malondialdehyde levels. In addition, salinity could enhance the antioxidant defense system, including superoxide dismutase, catalase and glutathione. Na+/K+–ATPase activity significantly decreased under Cd exposure in gill, kidney and intestine. These findings indicated that Cd could moderate the adaptability of juvenile T. obscurus to high salinity and low salinity played a protective role upon Cd exposure. Thus, the role of salinity should be considered when evaluating the effect of heavy metals on anadromous and estuarine fishes. PMID:27487764

  20. Combined effects of cadmium and salinity on juvenile Takifugu obscurus: cadmium moderates salinity tolerance; salinity decreases the toxicity of cadmium.

    PubMed

    Wang, Jun; Zhu, Xuexia; Huang, Xin; Gu, Lei; Chen, Yafen; Yang, Zhou

    2016-01-01

    Obscure puffer Takifugu obscurus, a species of anadromous fish, experiences several salinity changes in its lifetime. Cadmium (Cd) is a toxic heavy metal that can potentially induce oxidative stress in fish. The present study aimed to detect the combined effects of Cd (0, 5, 10, 20 and 50 mg L(-1)) and salinity (0, 15 and 30 ppt) on juvenile T. obscurus. Results showed the juveniles could survive well under different salinities; however, with Cd exposure, the survival rates significantly decreased at 0 and 30 ppt. At 15 ppt, tolerance to Cd increased. Cd exposure clearly induced oxidative stress, and the responses among different tissues were qualitatively similar. Salinity acted as a protective factor which could reduce the reactive oxygen species and malondialdehyde levels. In addition, salinity could enhance the antioxidant defense system, including superoxide dismutase, catalase and glutathione. Na(+)/K(+)-ATPase activity significantly decreased under Cd exposure in gill, kidney and intestine. These findings indicated that Cd could moderate the adaptability of juvenile T. obscurus to high salinity and low salinity played a protective role upon Cd exposure. Thus, the role of salinity should be considered when evaluating the effect of heavy metals on anadromous and estuarine fishes. PMID:27487764

  1. Charge transport in confined ionic liquids

    NASA Astrophysics Data System (ADS)

    Sangoro, Joshua; Iacob, Ciprian; Kipnusu, Wycliffe; Kremer, Friedrich

    2011-03-01

    Charge transport and glassy dynamics in neat and polymerized ionic liquids confined in nanoporous silica are investigated in a wide frequency and temperature ranges by a combination of Broadband Dielectric Spectroscopy and Pulsed Field Gradient Nuclear Magnetic Resonance (PFG NMR). By applying the Einstein-Smoluchowski relations to the dielectric spectra, diffusion coefficients are obtained in quantitative agreement with independent PFG NMR. The impact of geometrical confinement as well as the pore wall-ionic liquid interactions on the overall ionic mobility is explored for diverse categories of ionic liquids. The results are discussed within the framework of dynamic glass transition assisted charge transport in ionic liquids. Financial support from the Deutsche Forschungsgemeinschaft under the DFG SPP 1191 Priority Program on Ionic Liquids is gratefully acknowledged.

  2. Links between salinity variation in the Caribbean and North Atlantic thermohaline circulation.

    PubMed

    Schmidt, Matthew W; Spero, Howard J; Lea, David W

    2004-03-11

    Variations in the strength of the North Atlantic Ocean thermohaline circulation have been linked to rapid climate changes during the last glacial cycle through oscillations in North Atlantic Deep Water formation and northward oceanic heat flux. The strength of the thermohaline circulation depends on the supply of warm, salty water to the North Atlantic, which, after losing heat to the atmosphere, produces the dense water masses that sink to great depths and circulate back south. Here we analyse two Caribbean Sea sediment cores, combining Mg/Ca palaeothermometry with measurements of oxygen isotopes in foraminiferal calcite in order to reconstruct tropical Atlantic surface salinity during the last glacial cycle. We find that Caribbean salinity oscillated between saltier conditions during the cold oxygen isotope stages 2, 4 and 6, and lower salinities during the warm stages 3 and 5, covarying with the strength of North Atlantic Deep Water formation. At the initiation of the Bølling/Allerød warm interval, Caribbean surface salinity decreased abruptly, suggesting that the advection of salty tropical waters into the North Atlantic amplified thermohaline circulation and contributed to high-latitude warming. PMID:15014495

  3. Aquarius Instrument and Salinity Retrieval

    NASA Technical Reports Server (NTRS)

    Le Vine, D. M.

    2011-01-01

    Aquarius has been designed to map the surface salinity field of the global ocean from space a parameter important for understanding ocean circulation and its relationship to climate and the global water cycle. Salinity is measured remotely from space by measuring the thermal emission from the ocean surface. This is done at the low frequency end of the microwave spectrum (e.g. 1.4 GHz) where the emission is sufficiently sensitive to changes in salinity to be detected with sophisticated radiometers. The goal is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean by providing maps on a monthly basis with a spatial resolution of 150 km and an accuracy of 0.2 psu. These are challenging requirements that have led to some unique features of the instrument. These include: a) The addition of a co-located scatterometer to help provide a correction for roughness; b) The addition of a polarimetric channel (third Stokes parameter) to the radiometer to help correct for Faraday rotation; c) Asun-synchronous orbit with a 6 pm ascending equatorial crossing to minimize Faraday rotation and with the antennas looking away from the sun toward the nighttime side to minimize contamination by radiation from the sun; and d) An antenna designed to limit side lobes in the direction of rays from the sun. In addition, achieving the accuracy goal of 0.2 psu requires averaging over one month and to do this requires a highly stable radiometer. Aquarius has three separate radiometers that image in pushbroom fashion with the three antenna beams looking across track. The antenna is a 2.5-m diameter, offset parabolic reflector with three feed horns and the three beams are arranged to image with the boresight aligned to look across track, roughly perpendicular to the spacecraft heading and pointing away from the Sun. The three beams point at angles of theta = 25.8 deg., 33.8 deg. and 40.3 deg. with respect to the spacecraft

  4. Enzyme catalysis with small ionic liquid quantities.

    PubMed

    Fischer, Fabian; Mutschler, Julien; Zufferey, Daniel

    2011-04-01

    Enzyme catalysis with minimal ionic liquid quantities improves reaction rates, stereoselectivity and enables solvent-free processing. In particular the widely used lipases combine well with many ionic liquids. Demonstrated applications are racemate separation, esterification and glycerolysis. Minimal solvent processing is also an alternative to sluggish solvent-free catalysis. The method allows simplified down-stream processing, as only traces of ionic liquids have to be removed. PMID:21107639

  5. Early Events in Ionic Liquid Radiation Chemistry

    SciTech Connect

    Wishart, J.F.; Cook, A.; Rimmer, R.D.; Gohdo, M.

    2010-09-14

    Ionic liquids are interesting and useful materials whose solvation time scales are up to thousands of times longer than in conventional solvents. The extended lifetimes of pre-solvated electrons and other energetic species in ionic liquids has profound consequences for the radiolytic product distributions and reactivity patterns. We use a newly developed, multiplexed variation of pulse-probe spectroscopy to measure the kinetics of the early dynamical and reactive events in ionic liquids.

  6. 'Halophyte filters': the potential of constructed wetlands for application in saline aquaculture.

    PubMed

    De Lange, H J; Paulissen, M P C P; Slim, P A

    2013-01-01

    World consumption of seafood continues to rise, but the seas and oceans are already over-exploited. Land-based (saline) aquaculture may offer a sustainable way to meet the growing demand for fish and shellfish. A major problem of aquaculture is nutrient waste, as most of the nutrients added through feed are released into the environment in dissolved form. Wetlands are nature's water purifiers. Constructed wetlands are commonly used to treat contaminated freshwater effluent. Experience with saline systems is more limited. This paper explores the potential of constructed saline wetlands for treating the nutrient-rich discharge from land-based saline aquaculture systems. The primary function of constructed wetlands is water purification, but other ancillary benefits can also be incorporated into treatment wetland designs. Marsh vegetation enhances landscape beauty and plant diversity, and wetlands may offer habitat for fauna and recreational areas. Various approaches can be taken in utilizing plants (halophytes, macro-algae, micro-algae) in the treatment of saline aquaculture effluent. Their strengths and weaknesses are reviewed here, and a conceptual framework is presented that takes into account economic and ecological benefits as well as spatial constraints. Use of the framework is demonstrated for assessing various saline aquaculture systems in the southwestern delta region of the Netherlands. PMID:23488001

  7. Modulating the Solubilities of Ionic Liquid Components in Aqueous-Ionic Liquid Biphasic Systems: A Q-NMR Investigation.

    PubMed

    Atanassova, Maria; Mazan, Valérie; Billard, Isabelle

    2015-06-01

    Aqueous-ionic liquid (A-IL) biphasic systems have been examined in terms of deuterated water, acid, and IL cation and anion mutual solubilities in the upper (water-rich, in mole fraction) and lower phase of aqueous/IL biphasic systems at ambient temperature. The biphasic mixtures were composed of deuterated acids of various concentrations (mainly DCl, DNO(3), and DClO(4) from 10(-2) to 10(-4)  M) and five ionic liquids of the imidazolium family with a hydrophobic anion (CF(3)SO(2))(2) N(-), that is, [C1 Cn im][Tf(2)N], (n=2, 4, 6, 8 and 10). The analytical techniques applied were (1) H NMR, (19) F NMR, Karl-Fischer titration, pH potentiometry for IL cations and anions, and water and acid determination. The effects of the ionic strength (μ=0.1 M NaCl and NaNO(3) as well as μ=0.1 M, 0.2 M and 0.4 M NaClO(4), according to the investigated acid), the nature of the IL cation, and the nature of the mineral acid on the solubilities of the (D(2)O, D(+), Tf(2)N(-), C1 Cn im(+)) entities in the lower or upper phases were determined. The addition of sodium perchlorate was found to enhance the Tf(2)N(-) solubility while inhibiting the solubility of the ionic liquid cation. Differences in IL cation and anion solubilities of up to 42 mM were evidenced. The consequences for the characterization of the aqueous biphasic system, the solvent extraction process of the metal ions, and the ecological impact of the ILs are discussed. PMID:25787248

  8. Alumina fiber strength improvement

    NASA Technical Reports Server (NTRS)

    Pepper, R. T.; Nelson, D. C.

    1982-01-01

    The effective fiber strength of alumina fibers in an aluminum composite was increased to 173,000 psi. A high temperature heat treatment, combined with a glassy carbon surface coating, was used to prevent degradation and improve fiber tensile strength. Attempts to achieve chemical strengthening of the alumina fiber by chromium oxide and boron oxide coatings proved unsuccessful. A major problem encountered on the program was the low and inconsistent strength of the Dupont Fiber FP used for the investigation.

  9. Membrane separation of ionic liquid solutions

    SciTech Connect

    Campos, Daniel; Feiring, Andrew Edward; Majumdar, Sudipto; Nemser, Stuart

    2015-09-01

    A membrane separation process using a highly fluorinated polymer membrane that selectively permeates water of an aqueous ionic liquid solution to provide dry ionic liquid. Preferably the polymer is a polymer that includes polymerized perfluoro-2,2-dimethyl-1,3-dioxole (PDD). The process is also capable of removing small molecular compounds such as organic solvents that can be present in the solution. This membrane separation process is suitable for drying the aqueous ionic liquid byproduct from precipitating solutions of biomass dissolved in ionic liquid, and is thus instrumental to providing usable lignocellulosic products for energy consumption and other industrial uses in an environmentally benign manner.

  10. Developing Pedotransfer Functions for Saline and Saline-Alkali Soils

    NASA Astrophysics Data System (ADS)

    Ramezani, Meysam; Ghanbarian-Alavijeh, Behzad; Liaghat, Abdolmajid

    2010-05-01

    Soil moisture curve is one of the soil hydraulic properities which its direct measurement is time consuming and expensive. Therefore, indirect methods such as developing pedotransfer functions have been used to predict this characteristic from soil readily available or easily measurable data. In this study, multiple linear regression method was used to develop point pedotransfer functions (PTFs) for saline and saline-alkali soils of Iran. For this purpose, 68 soil samples which their EC values were greater than 4 ds/m, and more than half of them had ESP values greater than 15% were selected. Using Jackknife method, the random splitting of data into the development and validation subsets was repeated 10 times. A ratio of 3:1 was used to split data into development and validation sets in each replication. In the SPSS software, parameters such as geometric standard deviation (δg), geometric mean diameter (dg), sodium adsorption ratio (SAR), electrical conductivity (EC), carbonate calcium (CaCO3), bulk density (BD), organic matter (OM), and clay and silt content were applied as the independent variables, and volumetric water content was determined at matric potentials of -10, -33, -100 , -300, -500, -1000, -1500 kPa. The derived PTFs were compared with the H3 model of Rosetta software for 10 splits of validation data set. Comparison of the mean RMSE and R2 values showed that the developed PTFs resulted in more accurate estimation than the Rosetta software at matric potentials of -100 , -300, -500, -1000, -1500 kPa. Whereas, Rosetta model resulted in slightly better estimation than derived PTFs at matric potentials of -10, -33 kPa. For the PTFs developed in this study, the RMSE and R2 values ranged from 0.12 to 0.35 (cm3.cm-3) and 0.64 to 0.83, respectively. While for the Rosetta model, RMSE and R2 values ranged from 0.22 to 0.33 (cm3.cm-3) and 0.37 to 0.74, respectively.

  11. Salinity change impairs pipefish immune defence.

    PubMed

    Birrer, Simone C; Reusch, Thorsten B H; Roth, Olivia

    2012-12-01

    Global change is associated with fast and severe alterations of environmental conditions. Superimposed onto existing salinity variations in a semi-enclosed brackish water body such as the Baltic Sea, a decrease in salinity is predicted due to increased precipitation and freshwater inflow. Moreover, we predict that heavy precipitation events will accentuate salinity fluctuations near shore. Here, we investigated how the immune function of the broad-nosed pipefish (Syngnathus typhle), an ecologically important teleost with sex-role reversal, is influenced by experimentally altered salinities (control: 18 PSU, lowered: 6 PSU, increased: 30 PSU) upon infection with bacteria of the genus Vibrio. Salinity changes resulted in increased activity and proliferation of immune cells. However, upon Vibrio infection, individuals at low salinity were unable to mount specific immune response components, both in terms of monocyte and lymphocyte cell proliferation and immune gene expression compared to pipefish kept at ambient salinities. We interpret this as resource allocation trade-off, implying that resources needed for osmoregulation under salinity stress are lacking for subsequent activation of the immune defence upon infection. Our data suggest that composition of small coastal fish communities may change due to elevated environmental stress levels and the incorporated consequences thereof. PMID:22982326

  12. Investigations in Marine Chemistry: Salinity II.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.

    Presented is a science activity in which the student investigates methods of calibration of a simple conductivity meter via a hands-on inquiry technique. Conductivity is mathematically compared to salinity using a point slope formula and graphical techniques. Sample solutions of unknown salinity are provided so that the students can sharpen their…

  13. Laser microprobe analyses of Cl, Br, I, and K in fluid inclusions: Implications for sources of salinity in some ancient hydrothermal fluids

    USGS Publications Warehouse

    Böhlke, J.K.; Irwin, J.J.

    1992-01-01

    The relative concentrations of Cl, Br, I, and K in fluid inclusions in hydrothermal minerals were measured by laser microprobe noble gas mass spectrometry on irradiated samples containing 10-10 to 10-8 L of fluid. Distinctive halogen signatures indicate contrasting sources of fluid salinity in fluid inclusions from representative "magmatic" (St. Austell), "metamorphic" (Alleghany), and "geothermal" (Creede, Salton Sea) aqueous systems. Br/Cl mol ratios are lowest at Salton Sea (0.27-0.33 ?? 10-3), where high salinities are largely due to halite dissolution; intermediate at St. Austell (0.85 ?? 10-3), possibly representative of magmatic volatiles; and highest (near that of seawater) at Creede (1.5-2.1 ?? 10-3) and Alleghany (1.2-2.4 ?? 10-3), where dissolved halogens probably were leached from volcanic and (or) nonevaporitic sedimentary rocks. I C1 mol ratios are lowest (near that of seawater) at Creede (1-14 ?? 10-6), possibly because organisms scavenged I during low temperature recharge; intermediate at Salton Sea (24-26 ?? 10-6) and St. Austell (81?? 10-6); and highest at Alleghany (320-940 ?? 10-6), probably because the fluids interacted with organic-rich sediments at high temperatures before being trapped. K Cl mol ratios indicate disequilibrium with respect to hypothetical feldspathic alkali-Al-silicate mineral buffers at fluid inclusion trapping temperatures at Creede, and large contributions of (Na, K)-bicarbonate to total fluid ionic strength at Alleghany. Significant variations in Cl/Br/I/K ratios among different fluid inclusion types are correlated with previously documented mineralization stages at Creede, and with the apparent oxidation state of dissolved carbon at Alleghany. The new data indicate that Cl/ Br/I ratios in hydrothermal fluid inclusions vary by several orders of magnitude, as they do in modern surface and ground waters. This study demonstrates that halogen signatures of fluid inclusions determined by microanalysis yield important

  14. Ionic self-assembly affords mesoporous ionic networks by crosslinking linear polyviologens with polyoxometalate clusters.

    PubMed

    Chen, Guojian; Hou, Wei; Li, Jing; Wang, Xiaochen; Zhou, Yu; Wang, Jun

    2016-03-21

    Ionic-bonded mesoporous ionic networks were prepared by the ionic self-assembly of polyoxometalate (POM) clusters with linear cationic polyviologens in water. The POM-enriched PMIN-2(V) possesses a high surface area up to 120 m(2) g(-1), exhibiting superior non-noble metal heterogeneous catalytic performance in the ambient aerobic selective oxidation of 5-hydroxymethylfurfural. PMID:26898883

  15. Sorption of Cm(III) and Eu(III) onto clay minerals under saline conditions: Batch adsorption, laser-fluorescence spectroscopy and modeling

    NASA Astrophysics Data System (ADS)

    Schnurr, Andreas; Marsac, Rémi; Rabung, Thomas; Lützenkirchen, Johannes; Geckeis, Horst

    2015-02-01

    The present work reports experimental data for trivalent metal cation (Cm/Eu) sorption onto illite (Illite du Puy) and montmorillonite (Na-SWy-2) in NaCl solutions up to 4.37 molal (m) in the absence of carbonate. Batch sorption experiments were carried out for a given ionic strength at fixed metal concentration (mEu = 2 × 10-7 m, labeled with 152Eu for γ-counting) and at a constant solid to liquid ratio (S:L = 2 g/L) for 3 < pHm < 12 (pHm = -log mH+). The amount of clay sorbed Eu approaches almost 100% (with log KD > 5) for pHm > 8, irrespective of the NaCl concentration. Variations in Eu uptake are minor at elevated NaCl concentrations. Time-resolved laser fluorescence spectroscopy (TRLFS) studies on Cm sorption covering a wide range of NaCl concentrations reveal nearly identical fluorescence emission spectra after peak deconvolution, i.e. no significant variation of Cm surface speciation with salinity. Beyond the three surface complexes already found in previous studies an additional inner-sphere surface species with a fluorescence peak maximum at higher wavelength (λ ∼ 610 nm) could be resolved. This new surface species appears in the high pH range and is assumed to correspond to a clay/curium/silicate complex as already postulated in the literature for kaolinite. The 2 site protolysis non-electrostatic surface complexation and cation exchange sorption model (2SPNE SC/CE) was applied to describe Eu sorption data by involving the Pitzer and SIT (specific ion interaction) formalism in the calculation of the activities of dissolved aqueous species. Good agreement of model and experiment is achieved for sorption data at pHm < 6 without the need of adjusting surface complexation constants. For pHm > 6 in case of illite and pHm > 8 in case of montmorillonite calculated sorption data systematically fall below experimental data with increasing ionic strength. Under those conditions sorption is almost quantitative and deviations must be discussed considering

  16. Quantized ionic conductance in nanopores.

    PubMed

    Zwolak, Michael; Lagerqvist, Johan; Di Ventra, Massimiliano

    2009-09-18

    Ionic transport in nanopores is a fundamentally and technologically important problem in view of its occurrence in biological processes and its impact on novel DNA sequencing applications. Using molecular dynamics simulations we show that ion transport may exhibit strong nonlinearities as a function of the pore radius reminiscent of the conductance quantization steps as a function of the transverse cross section of quantum point contacts. In the present case, however, conductance steps originate from the break up of the hydration layers that form around ions in aqueous solution. We discuss this phenomenon and the conditions under which it should be experimentally observable. PMID:19792463

  17. Enzymatic Mechanism of Leishmania major Peroxidase and the Critical Role of Specific Ionic Interactions

    PubMed Central

    Chreifi, Georges; Hollingsworth, Scott A.; Li, Huiying; Tripathi, Sarvind; Arce, Anton P.; Magaña-Garcia, Hugo I.; Poulos, Thomas L.

    2015-01-01

    Leishmania major peroxidase (LmP) is very similar to the well-known yeast cytochrome c peroxidase (CcP). Both enzymes catalyze the peroxidation of cytochrome c. Like CcP, LmP reacts with H2O2 to form Compound I, which consists of a ferryl heme and a T