Sample records for ionic surfaces implications

  1. Influence of the ionic liquid/gas surface on ionic liquid chemistry.

    PubMed

    Lovelock, Kevin R J

    2012-04-21

    Applications such as gas storage, gas separation, NP synthesis and supported ionic liquid phase catalysis depend upon the interaction of different species with the ionic liquid/gas surface. Consequently, these applications cannot proceed to the full extent of their potential without a profound understanding of the surface structure and properties. As a whole, this perspective contains more questions than answers, which demonstrates the current state of the field. Throughout this perspective, crucial questions are posed and a roadmap is proposed to answer these questions. A critical analysis is made of the field of ionic liquid/gas surface structure and properties, and a number of design rules are mined. The effects of ionic additives on the ionic liquid/gas surface structure are presented. A possible driving force for surface formation is discussed that has, to the best of my knowledge, not been postulated in the literature to date. This driving force suggests that for systems composed solely of ions, the rules for surface formation of dilute electrolytes do not apply. The interaction of neutral additives with the ionic liquid/gas surface is discussed. Particular attention is focussed upon H(2)O and CO(2), vital additives for many applications of ionic liquids. Correlations between ionic liquid/gas surface structure and properties, ionic liquid surfaces plus additives, and ionic liquid applications are given. This journal is © the Owner Societies 2012

  2. Space charge induced surface stresses: implications in ceria and other ionic solids.

    PubMed

    Sheldon, Brian W; Shenoy, Vivek B

    2011-05-27

    Volume changes associated with point defects in space charge layers can produce strains that substantially alter thermodynamic equilibrium near surfaces in ionic solids. For example, near-surface compressive stresses exceeding -10 GPa are predicted for ceria. The magnitude of this effect is consistent with anomalous lattice parameter increases that occur in ceria nanoparticles. These stresses should significantly alter defect concentrations and key transport properties in a wide range of materials (e.g., ceria electrolytes in fuel cells). © 2011 American Physical Society

  3. Ionic-Liquid-Infused Nanostructures as Repellent Surfaces.

    PubMed

    Galvan, Yaraset; Phillips, Katherine R; Haumann, Marco; Wasserscheid, Peter; Zarraga, Ramon; Vogel, Nicolas

    2018-06-12

    In order to prepare lubricant-infused repellent coatings on silica nanostructures using low vapor pressure ionic liquids as lubricants, we study the wetting behavior of a set of imidazolium-based ionic liquids with different alkyl side chains as a function of the applied surface functionalities. We take advantage of the structural color of inverse opals prepared from a colloidal coassembly technique to study the infiltration of ionic liquids into these nanoporous structures. We find that the more hydrophobic ionic liquids with butyl and hexyl side chains can completely infiltrate inverse opals functionalized with mixed self-assembled monolayers composed of imidazole groups and aliphatic hydrocarbon chains, which we introduce via silane chemistry. These molecular species reflect the chemical nature of the ionic liquid, thereby increasing the affinity between the liquid and solid surface. The mixed surface chemistry provides sufficiently small contact angles with the ionic liquid to infiltrate the nanopores while maximizing the contact angle with water. As a result, the mixed monolayers enable the design of a stable ionic liquid/solid interface that is able to repel water as a test liquid. Our results underline the importance of matching chemical affinities to predict and control the wetting behavior in complex, multiphase systems.

  4. Corrosion prevention of magnesium surfaces via surface conversion treatments using ionic liquids

    DOEpatents

    Qu, Jun; Luo, Huimin

    2016-09-06

    A method for conversion coating a magnesium-containing surface, the method comprising contacting the magnesium-containing surface with an ionic liquid compound under conditions that result in decomposition of the ionic liquid compound to produce a conversion coated magnesium-containing surface having a substantially improved corrosion resistance relative to the magnesium-containing surface before said conversion coating. Also described are the resulting conversion-coated magnesium-containing surface, as well as mechanical components and devices containing the conversion-coated magnesium-containing surface.

  5. Charge ordering in ionic fluids mediate repulsive surface interactions

    NASA Astrophysics Data System (ADS)

    Dasbiswas, Kinjal; Ludwig, Nicholas B.; Zhang, Hao; Talapin, Dmitri; Vaikuntanathan, Suri

    Recent experiments on ionic fluids, such as surface force measurements in organic ionic liquids and the observation of colloidal stability in inorganic molten salts, suggest the presence of long-ranged repulsive forces. These cannot be explained within the classical Debye-Hückel theory for dilute electrolytes. We argue that such repulsive interactions can arise from long-range (several nm) charge density oscillations induced by a surface that preferentially binds one of the ionic species in an ionic fluid. We present a continuum theory that accounts for such charge layering based on a frustrated Ising model that incorporates both long-range Coulombic and short-range steric interactions. The mean-field analytic treatment qualitatively matches results from molecular simulations. A careful analysis of the ionic correlation functions arising from such charge ordering may also explain the long electrostatic screening lengths observed in various ionic fluids and their non-monotonic dependence on the electrolyte concentration. We acknowledge the University of Chicago for support.

  6. Stability of Secondary and Tertiary Structures of Virus-Like Particles Representing Noroviruses: Effects of pH, Ionic Strength, and Temperature and Implications for Adhesion to Surfaces.

    PubMed

    Samandoulgou, Idrissa; Hammami, Riadh; Morales Rayas, Rocio; Fliss, Ismail; Jean, Julie

    2015-11-01

    Loss of ordered molecular structure in proteins is known to increase their adhesion to surfaces. The aim of this work was to study the stability of norovirus secondary and tertiary structures and its implications for viral adhesion to fresh foods and agrifood surfaces. The pH, ionic strength, and temperature conditions studied correspond to those prevalent in the principal vehicles of viral transmission (vomit and feces) and in the food processing and handling environment (pasteurization and refrigeration). The structures of virus-like particles representing GI.1, GII.4, and feline calicivirus (FCV) were studied using circular dichroism and intrinsic UV fluorescence. The particles were remarkably stable under most of the conditions. However, heating to 65°C caused losses of β-strand structure, notably in GI.1 and FCV, while at 75°C the α-helix content of GII.4 and FCV decreased and tertiary structures unfolded in all three cases. Combining temperature with pH or ionic strength caused variable losses of structure depending on the particle type. Regardless of pH, heating to pasteurization temperatures or higher would be required to increase GII.4 and FCV adhesion, while either low or high temperatures would favor GI.1 adhesion. Regardless of temperature, increased ionic strength would increase GII.4 adhesion but would decrease GI.1 adhesion. FCV adsorption would be greater at refrigeration, pasteurization, or high temperature combined with a low salt concentration or at a higher NaCl concentration regardless of temperature. Norovirus adhesion mediated by hydrophobic interaction may depend on hydrophobic residues normally exposed on the capsid surface at pH 3, pH 8, physiological ionic strength, and low temperature, while at pasteurization temperatures it may rely more on buried hydrophobic residues exposed upon structural rearrangement. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Reactive solid surface morphology variation via ionic diffusion.

    PubMed

    Sun, Zhenchao; Zhou, Qiang; Fan, Liang-Shih

    2012-08-14

    In gas-solid reactions, one of the most important factors that determine the overall reaction rate is the solid morphology, which can be characterized by a combination of smooth, convex and concave structures. Generally, the solid surface structure varies in the course of reactions, which is classically noted as being attributed to one or more of the following three mechanisms: mechanical interaction, molar volume change, and sintering. Here we show that if a gas-solid reaction involves the outward ionic diffusion of a solid-phase reactant then this outward ionic diffusion could eventually smooth the surface with an initial concave and/or convex structure. Specifically, the concave surface is filled via a larger outward diffusing surface pointing to the concave valley, whereas the height of the convex surface decreases via a lower outward diffusion flux in the vertical direction. A quantitative 2-D continuum diffusion model is established to analyze these two morphological variation processes, which shows consistent results with the experiments. This surface morphology variation by solid-phase ionic diffusion serves to provide a fourth mechanism that supplements the traditionally acknowledged solid morphology variation or, in general, porosity variation mechanisms in gas-solid reactions.

  8. Spontaneous Ionic Polarization in Ammonia-Based Ionic Liquid [Spontaneous Ionic Polarization in Ionic Liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Ki-jeong; Yuan, Hongtao; Jang, Hoyoung

    Ionic liquids and gels have attracted attention for a variety of energy storage applications, as well as for high performance electrolytes for batteries and super-capacitors. Although the electronic structure of ionic electrolytes in these applications is of practical importance for device design and improved performance, the understanding of the electronic structure of ionic liquids and gels is still at an early stage. Here we report soft x-ray spectroscopic measurements of the surface electronic structure of a representative ammonia-based ionic gel (DEME-TFSI with PSPMMA- PS copolymer). We observe that near the outermost surface, the area of the anion peak (1s Nmore » - core level in TFSI) is relatively larger than that of the cation peak (N + in DEME). This spontaneous ionic polarization of the electrolyte surface, which is absent for the pure ionic liquid without copolymer, can be directly tuned by the copolymer content in the ionic gel, and further results in a modulation in work function. Finally, these results shed new light on the control of surface electronic properties of ionic electrolytes, as well as a difference between their implementation in ionic liquids and gels.« less

  9. Spontaneous Ionic Polarization in Ammonia-Based Ionic Liquid [Spontaneous Ionic Polarization in Ionic Liquid

    DOE PAGES

    Kim, Ki-jeong; Yuan, Hongtao; Jang, Hoyoung; ...

    2018-05-24

    Ionic liquids and gels have attracted attention for a variety of energy storage applications, as well as for high performance electrolytes for batteries and super-capacitors. Although the electronic structure of ionic electrolytes in these applications is of practical importance for device design and improved performance, the understanding of the electronic structure of ionic liquids and gels is still at an early stage. Here we report soft x-ray spectroscopic measurements of the surface electronic structure of a representative ammonia-based ionic gel (DEME-TFSI with PSPMMA- PS copolymer). We observe that near the outermost surface, the area of the anion peak (1s Nmore » - core level in TFSI) is relatively larger than that of the cation peak (N + in DEME). This spontaneous ionic polarization of the electrolyte surface, which is absent for the pure ionic liquid without copolymer, can be directly tuned by the copolymer content in the ionic gel, and further results in a modulation in work function. Finally, these results shed new light on the control of surface electronic properties of ionic electrolytes, as well as a difference between their implementation in ionic liquids and gels.« less

  10. Influence of Nanosegregation on the Surface Tension of Fluorinated Ionic Liquids

    PubMed Central

    Luís, Andreia; Shimizu, Karina; Araújo, João M. M.; Carvalho, Pedro J.; Lopes-da-Silva, José A.; Canongia Lopes, José N.; Rebelo, Luís Paulo N.; Coutinho, João A. P.; Freire, Mara G.; Pereiro, Ana B.

    2017-01-01

    We have investigated, both theoretically and experimentally, the balance between the presence of alkyl and perfluoroalkyl side chains on the surface organization and surface tension of fluorinated ionic liquids (FILs). A series of ILs composed of 1-alkyl-3-methylimidazolium cations ([CnC1im] with n = 2, 4, 6, 8, 10 or 12) combined with the perfluorobutanesulfonate anion was used. The surface tensions of the investigated liquid salts are considerably lower than those reported for non-fluorinated ionic liquids. The most surprising and striking feature was the identification, for the first time, of a minimum at n = 8 in the surface tension versus the length of the IL cation alkyl side chain. Supported by molecular dynamic simulations it was found that this trend is a result of the competition between the two nonpolar domains (perfluorinated and aliphatic) on pointing towards the gas-liquid interface, a phenomenon which occurs in ionic liquids with perfluorinated anions. Furthermore, these ionic liquids present the lowest surface entropy reported to date. PMID:27218210

  11. Ionic liquids at the surface of graphite: Wettability and structure

    NASA Astrophysics Data System (ADS)

    Bordes, Emilie; Douce, Laurent; Quitevis, Edward L.; Pádua, Agílio A. H.; Costa Gomes, Margarida

    2018-05-01

    The aim of this work is to provide a better understanding of the interface between graphite and different molecular and ionic liquids. Experimental measurements of the liquid surface tension and of the graphite-liquid contact angle for sixteen ionic liquids and three molecular liquids are reported. These experimental values allowed the calculation of the solid/liquid interfacial energy that varies, for the ionic liquids studied, between 14.5 mN m-1 for 1-ethyl-3-methylimidazolium dicyanamide and 37.8 mN m-1 for 3-dodecyl-1-(naphthalen-1-yl)-1H-imidazol-3-ium tetrafluoroborate. Imidazolium-based ionic liquids with large alkyl side-chains or functionalized with benzyl groups seem to interact more favourably with freshly peeled graphite surfaces. Even if the interfacial energy seems a good descriptor to assess the affinity of a liquid for a carbon-based solid material, we conclude that both the surface tension of the liquid and the contact angle between the liquid and the solid can be significant. Molecular dynamics simulations were used to investigate the ordering of the ions near the graphite surface. We conclude that the presence of large alkyl side-chains in the cations increases the ordering of ions at the graphite surface. Benzyl functional groups in the cations lead to a large affinity towards the graphite surface.

  12. Surface and Electrochemical Properties of Polymer Brush-Based Redox Poly(Ionic Liquid).

    PubMed

    Bui-Thi-Tuyet, Van; Trippé-Allard, Gaëlle; Ghilane, Jalal; Randriamahazaka, Hyacinthe

    2016-10-26

    Redox-active poly(ionic liquid) poly(3-(2-methacryloyloxy ethyl)-1-(N-(ferrocenylmethyl) imidazolium bis(trifluoromethylsulfonyl)imide deposited onto electrode surfaces has been prepared using surface-initiated atom transfer radical polymerization SI-ATRP. The process starts by electrochemical immobilization of initiator layer, and then methacrylate monomer carrying ferrocene and imidazolium units is polymerized in ionic liquid media via SI-ATRP process. The surfaces analyses of the polymer exhibit a well-defined polymer brushlike structure and confirm the presence of ferrocene and ionic moieties within the film. Furthermore, the electrochemical investigations of poly(redox-active ionic liquid) in different media demonstrate that the electron transfer is not restricted by the rate of counterion migration into/out of the polymer. The attractive electrochemical performance of these materials is further demonstrated by performing electrochemical measurement, of poly(ferrocene ionic liquid), in solvent-free electrolyte. The facile synthesis of such highly ordered electroactive materials based ionic liquid could be useful for the fabrication of nanostructured electrode suitable for performing electrochemistry in solvent free electrolyte. We also demonstrate possible applications of the poly(FcIL) as electrochemically reversible surface wettability system and as electrochemical sensor for the catalytic activity toward the oxidation of tyrosine.

  13. Surface science and model catalysis with ionic liquid-modified materials.

    PubMed

    Steinrück, H-P; Libuda, J; Wasserscheid, P; Cremer, T; Kolbeck, C; Laurin, M; Maier, F; Sobota, M; Schulz, P S; Stark, M

    2011-06-17

    Materials making use of thin ionic liquid (IL) films as support-modifying functional layer open up a variety of new possibilities in heterogeneous catalysis, which range from the tailoring of gas-surface interactions to the immobilization of molecularly defined reactive sites. The present report reviews recent progress towards an understanding of "supported ionic liquid phase (SILP)" and "solid catalysts with ionic liquid layer (SCILL)" materials at the microscopic level, using a surface science and model catalysis type of approach. Thin film IL systems can be prepared not only ex-situ, but also in-situ under ultrahigh vacuum (UHV) conditions using atomically well-defined surfaces as substrates, for example by physical vapor deposition (PVD). Due to their low vapor pressure, these systems can be studied in UHV using the full spectrum of surface science techniques. We discuss general strategies and considerations of this approach and exemplify the information available from complementary methods, specifically photoelectron spectroscopy and surface vibrational spectroscopy. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Fine tuning the ionic liquid-vacuum outer atomic surface using ion mixtures.

    PubMed

    Villar-Garcia, Ignacio J; Fearn, Sarah; Ismail, Nur L; McIntosh, Alastair J S; Lovelock, Kevin R J

    2015-03-28

    Ionic liquid-vacuum outer atomic surfaces can be created that are remarkably different from the bulk composition. In this communication we demonstrate, using low-energy ion scattering (LEIS), that for ionic liquid mixtures the outer atomic surface shows significantly more atoms from anions with weaker cation-anion interactions (and vice versa).

  15. Molecular simulation study of feruloyl esterase adsorption on charged surfaces: effects of surface charge density and ionic strength.

    PubMed

    Liu, Jie; Peng, Chunwang; Yu, Gaobo; Zhou, Jian

    2015-10-06

    The surrounding conditions, such as surface charge density and ionic strength, play an important role in enzyme adsorption. The adsorption of a nonmodular type-A feruloyl esterase from Aspergillus niger (AnFaeA) on charged surfaces was investigated by parallel tempering Monte Carlo (PTMC) and all-atom molecular dynamics (AAMD) simulations at different surface charge densities (±0.05 and ±0.16 C·m(-2)) and ionic strengths (0.007 and 0.154 M). The adsorption energy, orientation, and conformational changes were analyzed. Simulation results show that whether AnFaeA can adsorb onto a charged surface is mainly controlled by electrostatic interactions between AnFaeA and the charged surface. The electrostatic interactions between AnFaeA and charged surfaces are weakened when the ionic strength increases. The positively charged surface at low surface charge density and high ionic strength conditions can maximize the utilization of the immobilized AnFaeA. The counterion layer plays a key role in the adsorption of AnFaeA on the negatively charged COOH-SAM. The native conformation of AnFaeA is well preserved under all of these conditions. The results of this work can be used for the controlled immobilization of AnFaeA.

  16. Probing the interaction of ionic liquids with graphene using surface-enhanced Raman spectroscopy

    DOE PAGES

    Mahurin, Shannon Mark; Dai, Sheng; Surwade, Sumedh P.; ...

    2015-12-17

    We report an in situ measurement of the interaction of an imidazolium-based room temperature ionic liquid with both pure silver and a graphene-over-silver electrode under an applied electrochemical potential. At a negative applied potential, overall signal intensity increased indicating enhanced ionic liquid concentration at both silver and graphene electrodes. Vibrational modes associated with the imidazolium ring exhibited greater intensity enhancements and larger peak shifts compared with the anion indicating that the cation adsorbs with the ring and alkyl chain parallel to the electrode surface for both silver and graphene. In contrast to the silver, the surface enhanced Raman spectra ofmore » the ionic liquid near graphene showed shifts in the cation peaks even at no applied potential because of the strong π–π interaction between the ionic liquid and the graphene. Furthermore, the intensity of the graphene peak decreased in the presence of ionic liquid possibly due to the interaction between the ionic liquid and graphene. In conclusion, these results illustrate the effectiveness of surface-enhanced Raman spectroscopy to investigate electrolyte interactions with graphene at the liquid/electrode interface.« less

  17. Correlating Humidity-Dependent Ionically Conductive Surface Area with Transport Phenomena in Proton-Exchange Membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Qinggang; Kusoglu, Ahmet; Lucas, Ivan T.

    2011-08-01

    The objective of this effort was to correlate the local surface ionic conductance of a Nafion? 212 proton-exchange membrane with its bulk and interfacial transport properties as a function of water content. Both macroscopic and microscopic proton conductivities were investigated at different relative humidity levels, using electrochemical impedance spectroscopy and current-sensing atomic force microscopy (CSAFM). We were able to identify small ion-conducting domains that grew with humidity at the surface of the membrane. Numerical analysis of the surface ionic conductance images recorded at various relative humidity levels helped determine the fractional area of ion-conducting active sites. A simple square-root relationshipmore » between the fractional conducting area and observed interfacial mass-transport resistance was established. Furthermore, the relationship between the bulk ionic conductivity and surface ionic conductance pattern of the Nafion? membrane was examined.« less

  18. Effect of surface bilayer charges on the magnetic field around ionic channels

    NASA Astrophysics Data System (ADS)

    Gomes Soares, Marília Amável; Cortez, Celia Martins; Oliveira Cruz, Frederico Alan de; Silva, Dilson

    2017-01-01

    In this work, we present a physic-mathematical model for representing the ion transport through membrane channels, in special Na+ and K+-channels, and discuss the influence of surface bilayer charges on the magnetic field behavior around the ionic current. The model was composed of a set of equations, including: a nonlinear differential Poisson-Boltzmann equation which usually allows to estimate the surface potentials and electric potential profile across membrane; equations for the ionic flux through channel and the ionic current density based on Armstrong's model for Na+ and K+ permeability and other Physics concepts; and a magnetic field expression derived from the classical Ampère equation. Results from computational simulations using the finite element method suggest that the ionic permeability is strongly dependent of surface bilayer charges, the current density through a K+-channel is very less sensible to temperature changes than the current density through a Na+- channel, active Na+-channels do not directly interfere with the K+-channels around, and vice-versa, since the magnetic perturbation generated by an active channel is of short-range.

  19. Cellulose ionics: switching ionic diode responses by surface charge in reconstituted cellulose films.

    PubMed

    Aaronson, Barak D B; Wigmore, David; Johns, Marcus A; Scott, Janet L; Polikarpov, Igor; Marken, Frank

    2017-09-25

    Cellulose films as well as chitosan-modified cellulose films of approximately 5 μm thickness, reconstituted from ionic liquid media onto a poly(ethylene-terephthalate) (PET, 6 μm thickness) film with a 5, 10, 20, or 40 μm diameter laser-drilled microhole, show significant current rectification in aqueous NaCl. Reconstituted α-cellulose films provide "cationic diodes" (due to predominant cation conductivity) whereas chitosan-doped cellulose shows "anionic diode" effects (due to predominant anion conductivity). The current rectification, or "ionic diode" behaviour, is investigated as a function of NaCl concentration, pH, microhole diameter, and molecular weight of the chitosan dopant. Future applications are envisaged exploiting the surface charge induced switching of diode currents for signal amplification in sensing.

  20. Mesoporous and biocompatible surface active silica aerogel synthesis using choline formate ionic liquid.

    PubMed

    Meera, Kamal Mohamed Seeni; Sankar, Rajavelu Murali; Jaisankar, Sellamuthu N; Mandal, Asit Baran

    2011-09-01

    In this paper, we report the preparation and characterization of mesoporous and biocompatible transparent silica aerogel by the sol-gel polymerization of tetraethyl orthosilicate using ionic liquid. Choline cation based ionic liquid allows the silica framework to form in a non collapsing environment and controls the pore size of the gel. FT-IR spectra reveal the interaction of ionic liquid with surface -OH of the gel. DSC thermogram giving the evidence of confinement of ionic liquid within the silica matrix, which helps to avoid the shrinkage of the gel during the aging process. Nitrogen sorption measurements of gel prepared with ionic liquid exhibit a low surface area of 100.53 m2/g and high average pore size of 3.74 nm. MTT assay proves the biocompatibility and cell viability of the prepared gels. This new nanoporous silica material can be applied to immobilize biological molecules, which may retain their stability over a longer period. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Influence of ion pairing in ionic liquids on electrical double layer structures and surface force using classical density functional approach.

    PubMed

    Ma, Ke; Forsman, Jan; Woodward, Clifford E

    2015-05-07

    We explore the influence of ion pairing in room temperature ionic liquids confined by planar electrode surfaces. Using a coarse-grained model for the aromatic ionic liquid [C4MIM(+)][BF4 (-)], we account for an ion pairing component as an equilibrium associating species within a classical density functional theory. We investigated the resulting structure of the electrical double layer as well as the ensuing surface forces and differential capacitance, as a function of the degree of ion association. We found that the short-range structure adjacent to surfaces was remarkably unaffected by the degree of ion pairing, up to several molecular diameters. This was even the case for 100% of ions being paired. The physical implications of ion pairing only become apparent in equilibrium properties that depend upon the long-range screening of charges, such as the asymptotic behaviour of surface forces and the differential capacitance, especially at low surface potential. The effect of ion pairing on capacitance is consistent with their invocation as a source of the anomalous temperature dependence of the latter. This work shows that ion pairing effects on equilibrium properties are subtle and may be difficult to extract directly from simulations.

  2. Triboelectric energy harvesting with surface-charge-fixed polymer based on ionic liquid

    PubMed Central

    Sano, Chikako; Mitsuya, Hiroyuki; Ono, Shimpei; Miwa, Kazumoto; Toshiyoshi, Hiroshi; Fujita, Hiroyuki

    2018-01-01

    Abstract A novel triboelectric energy harvester has been developed using an ionic liquid polymer with cations fixed at the surface. In this report, the fabrication of the device and the characterization of its energy harvesting performance are detailed. An electrical double layer was induced in the ionic liquid polymer precursor to attract the cations to the surface where they are immobilized using a UV-based crosslinking reaction. The finalized polymer is capable of generating an electrical current when contacted by a metal electrode. Using this property, energy harvesting experiments were conducted by cyclically contacting a gold-surface electrode with the charge fixed surface of the polymer. Control experiments verified the effect of immobilizing the cations at the surface. By synthesizing a polymer with the optimal composition ratio of ionic liquid to macromonomer, an output of 77 nW/cm2 was obtained with a load resistance of 1 MΩ at 1 Hz. This tuneable power supply with a μA level current output may contribute to Internet of Things networks requiring numerous sensor nodes at remote places in the environment. PMID:29707070

  3. Peculiar surface behavior of some ionic liquids based on active pharmaceutical ingredients

    NASA Astrophysics Data System (ADS)

    Restolho, José; Mata, José Luis; Saramago, Benilde

    2011-02-01

    The ionic liquids based on biologically active cations and anions, commonly designated by ionic liquids based on active pharmaceutical ingredients (ILs-APIs), are interesting compounds for use in pharmaceutical applications. Lidocaine docusate, ranitidine docusate, and didecyldimethylammonium ibuprofen are examples of promising ILs-APIs that were recently synthesized. They were submitted to biological testing and calorimetric measurements, but nothing is known about their surface properties. In this work, we measured the surface tension and the contact angles on both hydrophilic and hydrophobic surfaces in a temperature range as wide as possible. Based on the wettability data, the polarity fractions were estimated using the Fowkes theory. The peculiar surface behavior observed was tentatively attributed to the presence of mesophases.

  4. Synthesis of Amphoteric Sulfonic Ionic Liquid Surfactant and Measurement of Its Surface Properties

    NASA Astrophysics Data System (ADS)

    Zhao, Xiuli; Zhang, Changbao; Liu, Da; Liu, Haiyan

    2018-03-01

    Three kinds of amphoteric sulfonic ionic liquid surfactants were synthesized in this paper. Their functional group structures were characterized by infrared spectrometer. The surface properties of them were studied. The results show that the functional group structures of all three products conform to the structure characteristics of amphoteric sulfonic ionic liquid surfactants. The shorter the long chain alkyl carbon chain is, the closer the arrangement of surfactant on the gas-liquid surface will be, and the higher the efficiency in reducing the surface tension..

  5. Surface confined ionic liquid as a stationary phase for HPLC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qian; Baker, Gary A; Baker, Sheila N

    Trimethoxysilane ionosilane derivatives of room temperature ionic liquids based on alkylimidazolium bromides were synthesized for attachment to silica support material. The derivatives 1-methyl-3-(trimethoxysilylpropyl)imidazolium bromide and 1-butyl-3-(trimethoxysilylpropyl)imidazolium bromide were used to modify the surface of 3 {micro}m diameter silica particles to act as the stationary phase for HPLC. The modified particles were characterized by thermogravimetric analysis (TGA) and {sup 13}C and {sup 29}Si NMR spectroscopies. The surface modification procedure rendered particles with a surface coverage of 0.84 {micro}mol m{sup -2} for the alkylimidazolium bromide. The ionic liquid moiety was predominantly attached to the silica surface through two siloxane bonds of themore » ionosilane derivative (63%). Columns packed with the modified silica material were tested under HPLC conditions. Preliminary evaluation of the stationary phase for HPLC was performed using aromatic carboxylic acids as model compounds. The separation mechanism appears to involve multiple interactions including ion exchange, hydrophobic interaction, and other electrostatic interactions.« less

  6. Controlling adsorption and passivation properties of bovine serum albumin on silica surfaces by ionic strength modulation and cross-linking.

    PubMed

    Park, Jae Hyeon; Sut, Tun Naw; Jackman, Joshua A; Ferhan, Abdul Rahim; Yoon, Bo Kyeong; Cho, Nam-Joon

    2017-03-29

    Understanding the physicochemical factors that influence protein adsorption onto solid supports holds wide relevance for fundamental insights into protein structure and function as well as for applications such as surface passivation. Ionic strength is a key parameter that influences protein adsorption, although how its modulation might be utilized to prepare well-coated protein adlayers remains to be explored. Herein, we investigated how ionic strength can be utilized to control the adsorption and passivation properties of bovine serum albumin (BSA) on silica surfaces. As protein stability in solution can influence adsorption kinetics, the size distribution and secondary structure of proteins in solution were first characterized by dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), and circular dichroism (CD) spectroscopy. A non-monotonic correlation between ionic strength and protein aggregation was observed and attributed to colloidal agglomeration, while the primarily α-helical character of the protein in solution was maintained in all cases. Quartz crystal microbalance-dissipation (QCM-D) experiments were then conducted in order to track protein adsorption onto silica surfaces as a function of ionic strength, and the measurement responses indicated that total protein uptake at saturation coverage is lower with increasing ionic strength. In turn, the QCM-D data and the corresponding Voigt-Voinova model analysis support that the surface area per bound protein molecule is greater with increasing ionic strength. While higher protein uptake under lower ionic strengths by itself did not result in greater surface passivation under subsequent physiologically relevant conditions, the treatment of adsorbed protein layers with a gluteraldehyde cross-linking agent stabilized the bound protein in this case and significantly improved surface passivation. Collectively, our findings demonstrate that ionic strength modulation influences BSA adsorption

  7. Potentiostatic control of ionic liquid surface film formation on ZE41 magnesium alloy.

    PubMed

    Efthimiadis, Jim; Neil, Wayne C; Bunter, Andrew; Howlett, Patrick C; Hinton, Bruce R W; MacFarlane, Douglas R; Forsyth, Maria

    2010-05-01

    The generation of potentially corrosion-resistant films on light metal alloys of magnesium have been investigated. Magnesium alloy, ZE41 [Mg-Zn-Rare Earth (RE)-Zr, nominal composition approximately 4 wt % Zn, approximately 1.7 wt % RE (Ce), approximately 0.6 wt % Zr, remaining balance, Mg], was exposed under potentiostatic control to the ionic liquid trihexyl(tetradecyl)phosphonium diphenylphosphate, denoted [P(6,6,6,14)][DPP]. During exposure to this IL, a bias potential, shifted from open circuit, was applied to the ZE41 surface. Electrochemical impedance spectroscopy (EIS) and chronoamperometry (CA) were used to monitor the evolution of film formation on the metal surface during exposure. The EIS data indicate that, of the four bias potentials examined, applying a potential of -200 mV versus OCP during the exposure period resulted in surface films of greatest resistance. Both EIS measurements and scanning electron microscopy (SEM) imaging indicate that these surfaces are substantially different to those formed without potential bias. Time of flight-secondary ion mass spectrometry (ToF-SIMS) elemental mapping of the films was utilized to ascertain the distribution of the ionic liquid cationic and anionic species relative to the microstructural surface features of ZE41 and indicated a more uniform distribution compared with the surface following exposure in the absence of a bias potential. Immersion of the treated ZE41 specimens in a chloride contaminated salt solution clearly indicated that the ionic liquid generated surface films offered significant protection against pitting corrosion, although the intermetallics were still insufficiently protected by the IL and hence favored intergranular corrosion processes.

  8. Effect of Ionic Strength and Surface Charge Density on the Kinetics of Cellulose Nanocrystal Thin Film Swelling.

    PubMed

    Reid, Michael S; Kedzior, Stephanie A; Villalobos, Marco; Cranston, Emily D

    2017-08-01

    This work explores cellulose nanocrystal (CNC) thin films (<50 nm) and particle-particle interactions by investigating film swelling in aqueous solutions with varying ionic strength (1-100 mM). CNC film hydration was monitored in situ via surface plasmon resonance, and the kinetics of liquid uptake were quantified. The contribution of electrostatic double-layer forces to film swelling was elucidated by using CNCs with different surface charges (anionic sulfate half ester groups, high and low surface charge density, and cationic trimethylammonium groups). Total water uptake in the thin films was found to be independent of ionic strength and surface chemistry, suggesting that in the aggregated state van der Waals forces dominate over double-layer forces to hold the films together. However, the rate of swelling varied significantly. The water uptake followed Fickian behavior, and the measured diffusion constants decreased with the ionic strength gradient between the film and the solution. This work highlights that nanoparticle interactions and dispersion are highly dependent on the state of particle aggregation and that the rate of water uptake in aggregates and thin films can be tailored based on surface chemistry and solution ionic strength.

  9. Surface tension anomalies in room temperature ionic liquids-acetone solutions

    NASA Astrophysics Data System (ADS)

    Abe, Hiroshi; Murata, Keisuke; Kiyokawa, Shota; Yoshimura, Yukihiro

    2018-05-01

    Surface tension anomalies were observed in room temperature ionic liquid (RTIL)-acetone solutions. The RTILs are 1-alkyl-3-methylimidazorium iodide with [Cnmim][I] in a [Cnmim][I]-x mol% acetone. The maximum value of the surface tension appeared at 40 mol% acetone, although density decreased monotonically with an increase in acetone concentration. A small alkyl chain length effect of the Cnmim+ cations was observed in the surface tension. By the Gibbs adsorption isotherm, it was found that I- anion-mediated surface structure became dominant above 40 mol%. In the different [Cnmim][TFSI]-acetone mixtures, normal decay of the surface tension was observed on the acetone concentration scale, where TFSI- is bis(trifluoromethanesulfonyl)imide.

  10. Controlled ionic condensation at the surface of a native extremophile membrane

    NASA Astrophysics Data System (ADS)

    Contera, Sonia Antoranz; Voïtchovsky, Kislon; Ryan, John F.

    2010-02-01

    At the nanoscale level biological membranes present a complex interface with the solvent. The functional dynamics and relative flexibility of membrane components together with the presence of specific ionic effects can combine to create exciting new phenomena that challenge traditional theories such as the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory or models interpreting the role of ions in terms of their ability to structure water (structure making/breaking). Here we investigate ionic effects at the surface of a highly charged extremophile membrane composed of a proton pump (bacteriorhodopsin) and archaeal lipids naturally assembled into a 2D crystal. Using amplitude-modulation atomic force microscopy (AM-AFM) in solution, we obtained sub-molecular resolution images of ion-induced surface restructuring of the membrane. We demonstrate the presence of a stiff cationic layer condensed at its extracellular surface. This layer cannot be explained by traditional continuum theories. Dynamic force spectroscopy experiments suggest that it is produced by electrostatic correlation mediated by a Manning-type condensation of ions. In contrast, the cytoplasmic surface is dominated by short-range repulsive hydration forces. These findings are relevant to archaeal bioenergetics and halophilic adaptation. Importantly, they present experimental evidence of a natural system that locally controls its interactions with the surrounding medium and challenges our current understanding of biological interfaces.At the nanoscale level biological membranes present a complex interface with the solvent. The functional dynamics and relative flexibility of membrane components together with the presence of specific ionic effects can combine to create exciting new phenomena that challenge traditional theories such as the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory or models interpreting the role of ions in terms of their ability to structure water (structure making/breaking). Here we

  11. Surface segregation in binary mixtures of imidazolium-based ionic liquids

    NASA Astrophysics Data System (ADS)

    Souda, Ryutaro

    2010-09-01

    Surface composition of binary mixtures of room-temperature ionic liquids has been investigated using time-of-flight secondary ion mass spectrometry at room temperature over a wide composition range. The imidazolium cations with longer aliphatic groups tend to segregate to the surface, and a bis(trifluoromethanesulfonyl)imide anion (Tf 2N -) is enriched at the surface relative to hexafluorophosphate (PF 6-). The surface of an equimolar mixture of Li[Tf 2N] and 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF 6]) has a nominal composition of [bmim][Tf 2N] because of surface segregation and ligand exchange. The surface segregation of cations and anions is likely to result from alignment of specific ligand-exchanged molecules at the topmost surface layer to exclude more hydrophobic part of the molecules.

  12. Halide Ions Effects on Surface Excess of Long Chain Ionic Liquids Water Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wenjie; Sung, Woongmo; Ao, Mingqi

    2013-10-07

    The interfacial structure and composition of water solutions with alkylimidazolium ionic liquids varying in their halide anions ([C12mim][X], X = Cl and I) were investigated by X-ray near-total-reflection fluorescence spectroscopy and X-ray reflectivity measurements. We demonstrate that X-ray fluorescence and reflectivity techniques provide a more direct measurement of surface adsorption. Furthermore, we show that for [C12mim][Cl] and [C12mim][I] solutions with mixed inorganic salts (NaI, NaCl), I– ions replace Cl– above the critical micelle concentration (CMC) of [C12mim][Cl] at much lower concentrations of NaI, whereas NaCl concentrations a hundred times higher than the CMC of [C12mim][I] only partially replace the I–more » at the interface. Our surface-sensitive X-ray diffraction and spectroscopy provide two independent tools to directly determine the surface adsorption of ionic surfactants and the interfacial composition of the surface films.« less

  13. Adsorption of polyelectrolyte-like proteins to silica surfaces and the impact of pH on the response to ionic strength. A Monte Carlo simulation and ellipsometry study.

    PubMed

    Hyltegren, Kristin; Skepö, Marie

    2017-05-15

    The adsorbed amount of the polyelectrolyte-like protein histatin 5 on a silica surface depends on the pH and the ionic strength of the solution. Interestingly, an increase in ionic strength affects the adsorbed amount differently depending on the pH of the solution, as shown by ellipsometry measurements (Hyltegren, 2016). We have tested the hypothesis that the same (qualitative) trends can be found also from a coarse-grained model that takes all charge-charge interactions into account within the frameworks of Gouy-Chapman and Debye-Hückel theories. Using the same coarse-grained model as in our previous Monte Carlo study of single protein adsorption (Hyltegren, 2016), simulations of systems with many histatin 5 molecules were performed and then compared with ellipsometry measurements. The strength of the short-ranged attractive interaction between the protein and the surface was varied. The coarse-grained model does not qualitatively reproduce the pH-dependence of the experimentally observed trends in adsorbed amount as a function of ionic strength. However, the simulations cast light on the balance between electrostatic attraction between protein and surface and electrostatic repulsion between adsorbed proteins, the deficiencies of the Langmuir isotherm, and the implications of protein charge regulation in concentrated systems. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Nanoscale lubrication of ionic surfaces controlled via a strong electric field

    DOE PAGES

    Strelcov, Evgheni; Bocharova, Vera; Sumpter, Bobby G.; ...

    2015-01-27

    Frictional forces arise whenever objects around us are set in motion. Controlling them in a rational manner means gaining leverage over mechanical energy losses and wear. This paper presents a way of manipulating nanoscale friction by means of in situ lubrication and interfacial electrochemistry. Water lubricant is directionally condensed from the vapor phase at a moving metal-ionic crystal interface by a strong confined electric field, thereby allowing friction to be tuned up or down via an applied bias. The electric potential polarity and ionic solid solubility are shown to strongly influence friction between the atomic force microscope (AFM) tip andmore » salt surface. An increase in friction is associated with the AFM tip digging into the surface, whereas reducing friction does not influence its topography. No current flows during friction variation, which excludes Joule heating and associated electrical energy losses. Lastly, the demonstrated novel effect can be of significant technological importance for controlling friction in nano- and micro-electromechanical systems.« less

  15. Thermodynamic Control of Two-Dimensional Molecular Ionic Nanostructures on Metal Surfaces

    DOE PAGES

    Jeon, Seokmin; Doak, Peter W.; Sumpter, Bobby G.; ...

    2016-07-26

    Bulk molecular ionic solids exhibit fascinating electronic properties, including electron correlations, phase transitions and superconducting ground states. In contrast, few of these phenomena have so far been observed in low-dimensional molecular structures, including thin films, nanoparticles and molecular blends, not in the least because most of such structures have so far been composed of nearly closed-shell molecules. It is therefore desirable to develop low-dimensional molecular structures of ionic molecules toward fundamental studies and potential applications. Here we present detailed analysis of monolayer-thick structures of the canonical TTF-TCNQ (tetrathiafulvalene 7,7,8,8-tetracyanoquinodimethane) system grown on low-index gold and silver surfaces. The most distinctivemore » property of the epitaxial growth is the wide abundance of stable TTF/TCNQ ratios, in sharp contrast to the predominance of 1:1 ratio in the bulk. We propose the existence of the surface phase-diagram that controls the structures of TTF-TCNQ on the surfaces, and demonstrate phase-transitions that occur upon progressively increasing the density of TCNQ while keeping the surface coverage of TTF fixed. Based on direct observations, we propose the binding motif behind the stable phases and infer the dominant interactions that enable the existence of the rich spectrum of surface structures. Finally, we also show that the surface phase diagram will control the epitaxy beyond monolayer coverage. Multiplicity of stable surface structures, the corollary rich phase diagram and the corresponding phase-transitions present an interesting opportunity for low-dimensional molecular systems, particularly if some of the electronic properties of the bulk can be preserved or modified in the surface phases.« less

  16. Long-range electrostatic screening in ionic liquids

    PubMed Central

    Gebbie, Matthew A.; Dobbs, Howard A.; Valtiner, Markus; Israelachvili, Jacob N.

    2015-01-01

    Electrolyte solutions with high concentrations of ions are prevalent in biological systems and energy storage technologies. Nevertheless, the high interaction free energy and long-range nature of electrostatic interactions makes the development of a general conceptual picture of concentrated electrolytes a significant challenge. In this work, we study ionic liquids, single-component liquids composed solely of ions, in an attempt to provide a novel perspective on electrostatic screening in very high concentration (nonideal) electrolytes. We use temperature-dependent surface force measurements to demonstrate that the long-range, exponentially decaying diffuse double-layer forces observed across ionic liquids exhibit a pronounced temperature dependence: Increasing the temperature decreases the measured exponential (Debye) decay length, implying an increase in the thermally driven effective free-ion concentration in the bulk ionic liquids. We use our quantitative results to propose a general model of long-range electrostatic screening in ionic liquids, where thermally activated charge fluctuations, either free ions or correlated domains (quasiparticles), take on the role of ions in traditional dilute electrolyte solutions. This picture represents a crucial step toward resolving several inconsistencies surrounding electrostatic screening and charge transport in ionic liquids that have impeded progress within the interdisciplinary ionic liquids community. More broadly, our work provides a previously unidentified way of envisioning highly concentrated electrolytes, with implications for diverse areas of inquiry, ranging from designing electrochemical devices to rationalizing electrostatic interactions in biological systems. PMID:26040001

  17. Quantifying the effects of altering ambient humidity on ionic composition of vocal fold surface fluid.

    PubMed

    Sivasankar, M Preeti; Carroll, Thomas L; Kosinski, Aaron M; Rosen, Clark A

    2013-07-01

    Vocal fold surface fluid (VFSF) is important in hydration and defense of underlying epithelial cells. The objective of this study was to quantify changes in the ionic composition of VFSF after altering the humidity of inhaled air. We tested the hypothesis that low humidity exposure would increase the concentration of VFSF sodium (Na(+)) and chloride (Cl(-)) ions but that high humidity exposure would decrease the concentration of VFSF Na(+) and Cl(-) ions as compared to the low humidity challenge. Prospective design. Eighteen healthy adults participated in this study. VFSF was collected from each subject at baseline and following exposure to low humidity and high humidity environments. VFSF Na(+) concentration was assessed using inductively coupled plasma mass spectrometry. VFSF Cl(-) concentration was measured with indirect potentiometry. All analyses were completed by personnel blinded to the hypothesis being tested. The low humidity environment increased Na(+) concentration in the majority of the subjects. Data for changes in Cl(-) concentrations were variable. Overall the data did not reach statistical significance (P > .05). Subjective impressions suggested that VFSF collection was more difficult in low humidity as compared to the high humidity and baseline conditions. This study is the first attempt to measure the ionic concentration of VFSF. The results from the current study have important implications for future programmatic research quantifying the effects of pollutants and laryngopharyngeal reflux on VFSF composition, epithelial hydration, and vocal fold defense. Copyright © 2012 The American Laryngological, Rhinological and Otological Society, Inc.

  18. Quantifying the Effects of Altering Ambient Humidity on Ionic Composition of Vocal Fold Surface Fluid

    PubMed Central

    Sivasankar, M. Preeti; Carroll, Thomas L.; Kosinski, Aaron M.; Rosen, Clark A.

    2013-01-01

    Objective Vocal fold surface fluid (VFSF) is important in hydration and defense of underlying epithelial cells. The objective of this study was to quantify changes in the ionic composition of VFSF after altering the humidity of inhaled air. We tested the hypothesis that low humidity exposure would increase the concentration of VFSF sodium (Na+) and chloride (Cl−) ions but that high humidity exposure would decrease the concentration of VFSF Na+ and Cl− ions as compared to the low humidity challenge. Study Design Prospective design. Methods Eighteen healthy adults participated in this study. VFSF was collected from each subject at baseline, and following exposure to low humidity and high humidity environments. VFSF Na+ concentration was assessed using inductively-coupled plasma mass spectrometry. VFSF Cl− concentration was measured with indirect potentiometry. All analyses were completed by personnel blinded to the hypothesis being tested. Results The low humidity environment increased Na+ concentration in the majority of the subjects. Data for changes in Cl− concentrations were variable. Overall the data did not reach statistical significance (p > 0.05). Subjective impressions suggested that VFSF collection was more difficult in low humidity as compared to the high humidity and baseline conditions. Conclusions This study is the first attempt to measure the ionic concentration of VFSF. The results from the current study have important implications for future programmatic research quantifying the effects of pollutants and laryngopharyngeal reflux on VFSF composition, epithelial hydration, and vocal fold defense. PMID:23529891

  19. Sensitivities of ionic explosives

    NASA Astrophysics Data System (ADS)

    Politzer, Peter; Lane, Pat; Murray, Jane S.

    2017-03-01

    We have investigated the relevance for ionic explosive sensitivity of three factors that have been demonstrated to be related to the sensitivities of molecular explosives. These are (1) the maximum available heat of detonation, (2) the amount of free space per molecule (or per formula unit) in the crystal lattice and (3) specific features of the electrostatic potential on the molecular or ionic surface. We find that for ionic explosives, just as for molecular ones, there is an overall tendency for impact sensitivity to increase as the maximum detonation heat release is greater. This means that the usual emphasis upon designing explosives with large heats of detonation needs to be tempered somewhat. We also show that a moderate detonation heat release does not preclude a high level of detonation performance for ionic explosives, as was already demonstrated for molecular ones. Relating the free space per formula unit to sensitivity may require a modified procedure for ionic explosives; this will continue to be investigated. Finally, an encouraging start has been made in linking impact sensitivities to the electrostatic potentials on ionic surfaces, although limited so far to ammonium salts.

  20. Immobilization of enzymes using non-ionic colloidal liquid aphrons (CLAs): Surface and enzyme effects.

    PubMed

    Ward, Keeran; Xi, Jingshu; Stuckey, David C

    2015-12-01

    The use of non-ionic colloidal liquid aphrons (CLAs) as a support for enzyme immobilisation was investigated. Formulation required the mixing of an aqueous-surfactant solution with a relatively non-polar solvent-surfactant solution, forming a solvent droplet surrounded by a thin stabilised aqueous film (soapy shell). Studies utilising anionic surfactants have showed increased retention, however, very little have been understood about the forces governing immobilisation. This study seeks to determine the effects of enzyme properties on CLA immobilisation by examining a non-ionic/non-polar solvent system comprised of two non-ionic surfactants, Tween 20 and 80, mineral oil and the enzymes lipase, aprotinin and α-chymotrypsin. From these results it was deduced that hydrophobic interactions strongly governed immobilisation. Confocal Scanning Laser Microscopy (CSLM) revealed that immobilisation was predominantly achieved by surface adsorption attributed to hydrophobic interactions between the enzyme and the CLA surface. Enzyme surface affinity was found to increase when added directly to the formulation (pre-manufacture addition), as opposed to the bulk continuous phase (post-manufacture addition), with α-chymotrypsin and aprotinin being the most perturbed, while lipase was relatively unaffected. The effect of zeta potential on immobilisation showed that enzymes adsorbed better closer to their pI, indicating that charge minimisation was necessary for immobilisation. Finally, the effect of increasing enzyme concentration in the aqueous phase resulted in an increase in adsorption for all enzymes due to cooperativity between protein molecules, with saturation occurring faster at higher adsorption rates. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Electrostatic interactions between ions near Thomas-Fermi substrates and the surface energy of ionic crystal at imperfect metals

    PubMed Central

    Kaiser, V.; Comtet, J.; Niguès, A.; Siria, A.; Coasne, B.; Bocquet, L.

    2017-01-01

    The electrostatic interaction between two charged particles is strongly modified in the vicinity of a metal. This situation is usually accounted for by the celebrated image charges approach, which was further extended to account for the electronic screening properties of the metal at the level of the Thomas-Fermi description. In this paper we build upon the approach by [Kornyshev et al. Zh. Eksp. Teor. Fiz., 78(3):1008–1019, 1980] and successive works to calculate the 1-body and 2-body electrostatic energy of ions near a metal in terms of the Thomas-Fermi screening length. We propose workable approximations suitable for molecular simulations of ionic systems close to metallic walls. Furthermore, we use this framework to calculate analytically the electrostatic contribution to the surface energy of a one dimensional crystal at a metallic wall and its dependence on the Thomas-Fermi screening length. These calculations provide a simple interpretation for the surface energy in terms of image charges, which allow for an estimate of interfacial properties in more complex situations of a disordered ionic liquid close to a metal surface. A counterintuitive outcome is that electronic screening, as characterized by a molecular Thomas-Fermi length ℓTF, profoundly affects the wetting of ionic systems close to a metal, in line with the recent experimental observation of capillary freezing of ionic liquids in metallic confinement. PMID:28436506

  2. Surface-bonded ionic liquid stationary phases in high-performance liquid chromatography--a review.

    PubMed

    Pino, Verónica; Afonso, Ana M

    2012-02-10

    Ionic liquids (ILs) are a class of ionic, nonmolecular solvents which remain in liquid state at temperatures below 100°C. ILs possess a variety of properties including low to negligible vapor pressure, high thermal stability, miscibility with water or a variety of organic solvents, and variable viscosity. IL-modified silica as novel high-performance liquid chromatography (HPLC) stationary phases have attracted considerable attention for their differential behavior and low free-silanol activity. Indeed, around 21 surface-confined ionic liquids (SCIL) stationary phases have been developed in the last six years. Their chromatographic behavior has been studied, and, despite the presence of a positive charge on the stationary phase, they showed considerable promise for the separation of neutral solutes (not only basic analytes), when operated in reversed phase mode. This aspect points to the potential for truly multimodal stationary phases. This review attempts to summarize the state-of-the-art about SCIL phases including their preparation, chromatographic behavior, and analytical performance. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Thermoresponsive light scattering device utilizing surface behavior effects between polyimide and an ionic liquid-water mixture exhibiting lower critical solution temperature (LCST)-type phase separation

    NASA Astrophysics Data System (ADS)

    Goda, Kazuya; Takatoh, Kohki; Funasako, Yusuke; Inokuchi, Makoto

    2018-06-01

    We proposed a thermoresponsive light scattering device that utilizes the surface behavior between polyimide and an ionic liquid-water mixture exhibiting lower critical solution temperature (LCST)-type phase separation. The LCST behavior for an ionic liquid device utilizing the polyimide with and without alkyl side chains was investigated. In the here-reported ionic liquid device that utilized the polyimide with alkyl side chains, [nBu4P][CF3COO] droplets were generated by phase separation—they were predominantly formed at the alkyl surface by a surface pinning effect. A stable transmittance in the opaque state could be obtained with this device. In contrast, an ionic liquid device using polyimide without alkyl side chains deteriorated transmittance in the opaque state because there was no surface pinning effect. Additionally, the viewing angle, contrast ratio, and heat cycle testing of this ionic liquid device with polyimide with alkyl side chains were also investigated. The results indicated that no parallax was obtained and that the ionic liquid device has a stable transmittance (verified by heat cycle testing). This unique device is expected to find use in the smart window applications that are activated by temperature changes.

  4. Nanoparticles in ionic liquids: interactions and organization.

    PubMed

    He, Zhiqi; Alexandridis, Paschalis

    2015-07-28

    Ionic liquids (ILs), defined as low-melting organic salts, are a novel class of compounds with unique properties and a combinatorially great chemical diversity. Ionic liquids are utilized as synthesis and dispersion media for nanoparticles as well as for surface functionalization. Ionic liquid and nanoparticle hybrid systems are governed by a combined effect of several intermolecular interactions between their constituents. For each interaction, including van der Waals, electrostatic, structural, solvophobic, steric, and hydrogen bonding, the characterization and quantitative calculation methods together with factors affecting these interactions are reviewed here. Various self-organized structures based on nanoparticles in ionic liquids are generated as a result of a balance of these intermolecular interactions. These structures, including colloidal glasses and gels, lyotropic liquid crystals, nanoparticle-stabilized ionic liquid-containing emulsions, ionic liquid surface-functionalized nanoparticles, and nanoscale ionic materials, possess properties of both ionic liquids and nanoparticles, which render them useful as novel materials especially in electrochemical and catalysis applications. This review of the interactions within nanoparticle dispersions in ionic liquids and of the structure of nanoparticle and ionic liquid hybrids provides guidance on the rational design of novel ionic liquid-based materials, enabling applications in broad areas.

  5. Study of surface-bonded dicationic ionic liquids as stationary phases for hydrophilic interaction chromatography.

    PubMed

    Qiao, Lizhen; Li, Hua; Shan, Yuanhong; Wang, Shuangyuan; Shi, Xianzhe; Lu, Xin; Xu, Guowang

    2014-02-21

    In the present study, several geminal dicationic ionic liquids based on 1,4-bis(3-allylimidazolium)butane and 1,8-bis(3-allylimidazolium)octane in combination with different anions bromide and bis(trifluoromethanesulphonyl)imide were prepared and then bonded to the surface of 3-mercaptopropyl modified silica materials through the "thiol-ene" click chemistry as stationary phases for hydrophilic interaction chromatography (HILIC). Compared with their monocationic analogues, the dicationic ionic liquids stationary phases presented effective retention and good selectivity for typical hydrophilic compounds under HILIC mode with the column efficiency as high as 130,000 plates/m. Moreover, the influence of different alkyl chain spacer between dications and combined anions on the retention behavior and selectivity of the dicationic ionic liquids stationary phases under HILIC mode was displayed. The results indicated that the longer linkage chain would decrease the hydrophilicity and retention on the dicationic ionic liquid stationary phase, and while differently combined anions had no difference due to the exchangeability under the common HILIC mobile phase with buffer salt. Finally, the retention mechanism was investigated by evaluating the effect of chromatographic factors on retention, including the water content in the mobile phase, the mobile phase pH and buffer salt concentration. The results showed that the dicationic ionic liquids stationary phases presented a mixed-mode retention behavior with HILIC mechanism and anion exchange. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. IR femtochemistry on the surface of wide-gap ionic crystals

    NASA Astrophysics Data System (ADS)

    Laptev, V. B.; Chekalin, S. V.; Dorofeyev, I. A.; Kompanets, V. O.; Pigulsky, S. V.; Ryabov, E. A.

    2018-02-01

    We have found and studied a phenomenon of the growth of films resulting from decomposition of some organic and silicon-containing molecules adsorbed on the surface of ionic crystals under the action of IR (1.4-5.4 µm) femtosecond radiation of a moderate intensity, ~1011 W cm-2. In the gas phase, these molecules do not decompose. Microstructured films consisting of amorphous carbon, graphite oxide, and silicon dioxide have been obtained. The formation of carbon films was accompanied by the appearance of different hydrocarbons in the gas phase. The extensive films of graphite oxide have been obtained. The decomposition of molecules on the surface is apparently caused by non-resonant ionization and subsequent deep fragmentation. The mechanisms of ionization at relatively low intensities of the femtosecond IR radiation have been discussed.

  7. Modeling electrokinetics in ionic liquids: General

    DOE PAGES

    Wang, Chao; Bao, Jie; Pan, Wenxiao; ...

    2017-04-01

    Using direct numerical simulations, we provide a thorough study regarding the electrokinetics of ionic liquids. In particular, modified Poisson–Nernst–Planck equations are solved to capture the crowding and overscreening effects characteristic of an ionic liquid. For modeling electrokinetic flows in an ionic liquid, the modified Poisson-Nernst-Planck equations are coupled with Navier–Stokes equations to study the coupling of ion transport, hydrodynamics, and electrostatic forces. Specifically, we consider the ion transport between two parallel charged surfaces, charging dynamics in a nanopore, capacitance of electric double-layer capacitors, electroosmotic flow in a nanochannel, electroconvective instability on a plane ion-selective surface, and electroconvective flow on amore » curved ionselective surface. Lastly, we also discuss how crowding and overscreening and their interplay affect the electrokinetic behaviors of ionic liquids in these application problems.« less

  8. Surface NH2-rich nanoparticles: Solidifying ionic-liquid electrolytes and improving the performance of dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Fang, Yanyan; Ma, Pin; Fu, Nianqing; Zhou, Xiaowen; Fang, Shibi; Lin, Yuan

    2017-12-01

    The surface properties of nanoparticles have a significant influence on the properties of the gel electrolytes. Herein, the surface NH2-rich nanoparticle (A-SiO2), with a tightening network, is synthesized by silanizing SiO2 nanoparticles with pre-polymerized aminopropyltriethoxysilane, which is further employed to prepare ionic-liquid gel electrolytes for dye-sensitized solar cells. The addition of a small amount of A-SiO2 can effectively solidify the ionic-liquid, whereas a large number of NH2 groups on the SiO2 surface leads to a large negative shift of the TiO2 conduction band edge, and can react with I3- in the form of a Lewis complex, resulting in an increase in the concentration of I- and a decrease in the concentration of I3- in the electrolyte. In addition, the ionic-liquid gel electrolyte possesses thixotropic behavior, which allows it to easily penetrate into the inner part of the TiO2 mesoporous film. As a result, large improvements of the photovoltage from 695 mV to 785 mV and of the photocurrent from 13.3 mA cm-2 to 14.9 mA cm-2 are achieved. This leads to significant enhancement of the power conversion efficiency, from 6.2% to 8.1%, for the cell with A-SiO2 compared to that of the pristine ionic-liquid electrolyte.

  9. Electrostatic interactions between ions near Thomas-Fermi substrates and the surface energy of ionic crystals at imperfect metals.

    PubMed

    Kaiser, V; Comtet, J; Niguès, A; Siria, A; Coasne, B; Bocquet, L

    2017-07-01

    The electrostatic interaction between two charged particles is strongly modified in the vicinity of a metal. This situation is usually accounted for by the celebrated image charges approach, which was further extended to account for the electronic screening properties of the metal at the level of the Thomas-Fermi description. In this paper we build upon a previous approach [M. A. Vorotyntsev and A. A. Kornyshev, Zh. Eksp. Teor. Fiz., 1980, 78(3), 1008-1019] and successive works to calculate the 1-body and 2-body electrostatic energy of ions near a metal in terms of the Thomas-Fermi screening length. We propose workable approximations suitable for molecular simulations of ionic systems close to metallic walls. Furthermore, we use this framework to calculate analytically the electrostatic contribution to the surface energy of a one dimensional crystal at a metallic wall and its dependence on the Thomas-Fermi screening length. These calculations provide a simple interpretation for the surface energy in terms of image charges, which allows for an estimation of the interfacial properties in more complex situations of a disordered ionic liquid close to a metal surface. The counter-intuitive outcome is that electronic screening, as characterized by a molecular Thomas-Fermi length l TF , profoundly affects the wetting of ionic systems close to a metal, in line with the recent experimental observation of capillary freezing of ionic liquids in metallic confinement.

  10. Ionic Graphitization of Ultrathin Films of Ionic Compounds.

    PubMed

    Kvashnin, A G; Pashkin, E Y; Yakobson, B I; Sorokin, P B

    2016-07-21

    On the basis of ab initio density functional calculations, we performed a comprehensive investigation of the general graphitization tendency in rocksalt-type structures. In this paper, we determine the critical slab thickness for a range of ionic cubic crystal systems, below which a spontaneous conversion from a cubic to a layered graphitic-like structure occurs. This conversion is driven by surface energy reduction. Using only fundamental parameters of the compounds such as the Allen electronegativity and ionic radius of the metal atom, we also develop an analytical relation to estimate the critical number of layers.

  11. Crown ether stereoisomerism: Implications in metal ion extraction and ionic liquid design

    NASA Astrophysics Data System (ADS)

    Pawlak, Alan J.

    Since their discovery more than four decades ago, crown ethers (CEs) have been the subject of intense investigation in a number of fields. Although many of the structural features that govern the behavior of these compounds have been thoroughly explored, the effect of their stereochemistry has received relatively little attention. In the present work, crown ether stereochemistry is shown to have important implications in both the design of ternary (i.e., three-component) ionic liquids (TILs) and metal ion extraction. Specifically, as a first step toward the development of guidelines for the rational design of ternary ionic liquids employing crown ethers as the neutral extractant, a systematic examination of the effect of crown ether stereochemistry (employing dicyclohexano-18-crown-6 (DCH18C6) as a representative crown compound), along with ring size, the nature and number of donor atoms, and the presence of functional groups, on the thermal properties (i.e., melting point or glass transition; decomposition or evaporation) of these compounds was carried out. Stereochemistry was found to have no appreciable impact on the onset temperature for mass loss. Rather, molecular weight and aromaticity were found to be more influential. Stereochemistry was, however, found to significantly affect the melting point of a TIL prepared from it; while the metal-CE formation constant, which varies with stereoisomer was observed to determine the onset temperature for mass loss of the TIL. To explore the implications of crown ether stereoisomerism in metal ion extraction, the formation constants for alkaline earth cation complexes with the isomers of DCH18C6 and selected stereoisomers of di-tert-butylcyclohexano-18-crown-6 (DtBuCH18C6) were measured. These values were found to vary inversely with the ligand strain (i.e., reorganizational) energy for the isomer, as determined by molecular mechanics calculations. Using this relationship (along with additional identification methods

  12. Mono vs multilayer fibronectin coatings on polar/hydrophobic/ionic polyurethanes: Altering surface interactions with human monocytes.

    PubMed

    Gossart, Audrey; Battiston, Kyle G; Gand, Adeline; Pauthe, Emmanuel; Santerre, J Paul

    2018-01-15

    Monocyte interactions with materials that are biofunctionalized with fibronectin (Fn) are of interest because of the documented literature which associates this protein with white blood cell function at implant sites. A degradable-polar hydrophobic ionic polyurethane (D-PHI), has been reported to promote an anti-inflammatory response from human monocytes. The aim of the current work was to study the influence of intrinsic D-PHI material chemistry on Fn adsorption (mono and multi-layer structures), and to investigate the influence of such chemistry on the structural state of the Fn, as well as the latter's influence on the activity of human monocytes on the protein coated substrates. Significant differences in Fn adsorption, surface hydrophobicity and the availability of defined peptide sequences (N terminal, C terminal or Cell Binding Domain) for the Fn in mono vs multilayer structures were observed as a function of the changes in intrinsic material chemistry. A D-PHI-formulated polyurethane substrate with subtle changes in anionic and hydrophobic domain content relative to the polar non-ionic urethane/carbonate groups within the polymer matrix promoted the lowest activation of monocytes, in the presence of multi-layer Fn constructs. These results highlight the importance of chemical heterogeneity as a design parameter for biomaterial surfaces, and establishes a desired strategy for controlling human monocyte activity at the surface of devices, when these are coated with multi-layer Fn structures. The latter is an important step towards functionalizing the materials with multi-layer protein drug carriers as interventional therapeutic agents. The control of the behavior of monocytes, especially migration and activation, is of crucial interest to modulate the inflammatory response at the site of implanted biomaterial. Several studies report the influence of adsorbed serum proteins on the behavior of monocytes on biomaterials. However, few studies show the influence

  13. Ionic liquid structure, dynamics, and electrosorption in carbon electrodes with bimodal pores and heterogeneous surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyatkin, Boris; Osti, Naresh C.; Zhang, Yu

    In this paper, we investigate the aggregation, diffusion, and resulting electrochemical behavior of ionic liquids inside carbon electrodes with complex pore architectures and surface chemistries. Carbide-derived carbons (CDCs) with bimodal porosities and defunctionalized or oxidized electrode surfaces served as model electrode materials. Our goal was to obtain a fundamental understanding of room-temperature ionic liquid ion orientation, mobility, and electrosorption behavior. Neat 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide confined in CDCs was studied using an integrated experimental and modeling approach, consisting of quasielastic neutron scattering, small-angle neutron scattering, X-ray pair distribution function analysis, and electrochemical measurements, which were combined with molecular dynamics simulations. Our analysismore » shows that surface oxygen groups increase the diffusion of confined electrolytes. Consequently, the ions become more than twice as mobile in oxygen-rich pores. Although greater self-diffusion of ions translates into higher electrochemical mobilities in oxidized pores, bulk-like behavior of ions dominates in the larger mesopores and increases the overall capacitance in defunctionalized pores. Experimental results highlight strong confinement and surface effects of carbon electrodes on electrolyte behavior, and molecular dynamics simulations yield insight into diffusion and capacitance differences in specific pore regions. Finally, we demonstrate the significance of surface defects on electrosorption dynamics of complex electrolytes in hierarchical pore architectures of supercapacitor electrodes.« less

  14. Ionic liquid structure, dynamics, and electrosorption in carbon electrodes with bimodal pores and heterogeneous surfaces

    DOE PAGES

    Dyatkin, Boris; Osti, Naresh C.; Zhang, Yu; ...

    2017-12-05

    In this paper, we investigate the aggregation, diffusion, and resulting electrochemical behavior of ionic liquids inside carbon electrodes with complex pore architectures and surface chemistries. Carbide-derived carbons (CDCs) with bimodal porosities and defunctionalized or oxidized electrode surfaces served as model electrode materials. Our goal was to obtain a fundamental understanding of room-temperature ionic liquid ion orientation, mobility, and electrosorption behavior. Neat 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide confined in CDCs was studied using an integrated experimental and modeling approach, consisting of quasielastic neutron scattering, small-angle neutron scattering, X-ray pair distribution function analysis, and electrochemical measurements, which were combined with molecular dynamics simulations. Our analysismore » shows that surface oxygen groups increase the diffusion of confined electrolytes. Consequently, the ions become more than twice as mobile in oxygen-rich pores. Although greater self-diffusion of ions translates into higher electrochemical mobilities in oxidized pores, bulk-like behavior of ions dominates in the larger mesopores and increases the overall capacitance in defunctionalized pores. Experimental results highlight strong confinement and surface effects of carbon electrodes on electrolyte behavior, and molecular dynamics simulations yield insight into diffusion and capacitance differences in specific pore regions. Finally, we demonstrate the significance of surface defects on electrosorption dynamics of complex electrolytes in hierarchical pore architectures of supercapacitor electrodes.« less

  15. Surface structure evolution in a homologous series of ionic liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haddad, Julia; Pontoni, Diego; Murphy, Bridget M.

    Interfaces of room temperature ionic liquids (RTILs) are important for both applications and basic science and are therefore intensely studied. However, the evolution of their interface structure with the cation’s alkyl chain length n from Coulomb to van der Waals interaction domination has not yet been studied for even a single broad homologous RTIL series. We present in this paper such a study of the liquid–air interface for n = 2 to 22, using angstrom-resolution X-ray methods. For n < 6, a typical “simple liquid” monotonic surface-normal electron density profile ρ e more » ( z ) is obtained, like those of water and organic solvents. For n > 6, increasingly more pronounced nanoscale self-segregation of the molecules’ charged moieties and apolar chains yields surface layering with alternating regions of headgroups and chains. The layering decays into the bulk over a few, to a few tens, of nanometers. The layering periods and decay lengths, their linear n dependence, and slopes are discussed within two models, one with partial-chain interdigitation and the other with liquid-like chains. No surface-parallel long-range order is found within the surface layer. For n = 22, a different surface phase is observed above melting. Finally, our results also impact general liquid-phase issues like supramolecular self-aggregation and bulk–surface structure relations.« less

  16. Surface structure evolution in a homologous series of ionic liquids.

    PubMed

    Haddad, Julia; Pontoni, Diego; Murphy, Bridget M; Festersen, Sven; Runge, Benjamin; Magnussen, Olaf M; Steinrück, Hans-Georg; Reichert, Harald; Ocko, Benjamin M; Deutsch, Moshe

    2018-02-06

    Interfaces of room temperature ionic liquids (RTILs) are important for both applications and basic science and are therefore intensely studied. However, the evolution of their interface structure with the cation's alkyl chain length [Formula: see text] from Coulomb to van der Waals interaction domination has not yet been studied for even a single broad homologous RTIL series. We present here such a study of the liquid-air interface for [Formula: see text], using angstrom-resolution X-ray methods. For [Formula: see text], a typical "simple liquid" monotonic surface-normal electron density profile [Formula: see text] is obtained, like those of water and organic solvents. For [Formula: see text], increasingly more pronounced nanoscale self-segregation of the molecules' charged moieties and apolar chains yields surface layering with alternating regions of headgroups and chains. The layering decays into the bulk over a few, to a few tens, of nanometers. The layering periods and decay lengths, their linear [Formula: see text] dependence, and slopes are discussed within two models, one with partial-chain interdigitation and the other with liquid-like chains. No surface-parallel long-range order is found within the surface layer. For [Formula: see text], a different surface phase is observed above melting. Our results also impact general liquid-phase issues like supramolecular self-aggregation and bulk-surface structure relations.

  17. Surface structure evolution in a homologous series of ionic liquids

    DOE PAGES

    Haddad, Julia; Pontoni, Diego; Murphy, Bridget M.; ...

    2018-01-22

    Interfaces of room temperature ionic liquids (RTILs) are important for both applications and basic science and are therefore intensely studied. However, the evolution of their interface structure with the cation’s alkyl chain length n from Coulomb to van der Waals interaction domination has not yet been studied for even a single broad homologous RTIL series. We present in this paper such a study of the liquid–air interface for n = 2 to 22, using angstrom-resolution X-ray methods. For n < 6, a typical “simple liquid” monotonic surface-normal electron density profile ρ e more » ( z ) is obtained, like those of water and organic solvents. For n > 6, increasingly more pronounced nanoscale self-segregation of the molecules’ charged moieties and apolar chains yields surface layering with alternating regions of headgroups and chains. The layering decays into the bulk over a few, to a few tens, of nanometers. The layering periods and decay lengths, their linear n dependence, and slopes are discussed within two models, one with partial-chain interdigitation and the other with liquid-like chains. No surface-parallel long-range order is found within the surface layer. For n = 22, a different surface phase is observed above melting. Finally, our results also impact general liquid-phase issues like supramolecular self-aggregation and bulk–surface structure relations.« less

  18. The effects of non-ionic polymeric surfactants on the cleaning of biofouled hydrogel materials.

    PubMed

    Guan, Allan; Li, Zhenyu; Phillips, K Scott

    2015-01-01

    Block co-polymer surfactants have been used for cleaning hydrogel medical devices that contact the body (e.g., contact lenses) because of their biocompatibility. This work examined the relationship between concentration and detergency of two non-ionic polymeric surfactants (Pluronic F127 and Triton X-100) for cleaning protein soil, with anionic surfactants (sodium dodecyl sulfate and sodium laureth sulfate) as positive controls. Surface plasmon resonance was used to quantify removal of simulated tear soil from self-assembled monolayer surfaces, and a microplate format was used to study the removal of fluorescently labeled soil proteins from contact lenses. While detergency increased as a function of concentration for anionic surfactants, it decreased with concentration for the two polymeric surfactants. The fact that the protein detergency of some non-ionic polymeric surfactants did not increase with concentration above the critical micelle concentration could have implications for optimizing the tradeoff between detergency and biocompatibility.

  19. Effects of PCB Substrate Surface Finish, Flux, and Phosphorus Content on Ionic Contamination

    NASA Astrophysics Data System (ADS)

    Bacior, M.; Sobczak, N.; Siewiorek, A.; Kudyba, A.; Homa, M.; Nowak, R.; Dziula, M.; Masłoń, S.

    2015-02-01

    The ionic contamination on printed circuit boards (PCB) having different surface finishes was examined using ionograph. The study was performed at the RT on three types of PCBs covered with: (i) hot air solder leveling (HASL LF), (ii) electroless nickel immersion gold (ENIG), and (iii) organic surface protectant (OSP), all on Cu substrates, as well as two types of fluxes, namely EF2202 and RF800. In the group of boards without soldered components, the lowest average value of contamination was for the ENIG 18 µm surface (0.01 μg NaCl/cm2). Boards with soldered components were more contaminated (from 0.29 μg NaCl/cm2 for the HASL LF 18 µm surface). After spraying boards with fluxing agents, the values of contaminants were the highest. The influence of phosphorus content in Ni-P layer of ENIG finish on ionic contamination was examined. In the group of PCBs with Au coating, the smallest amount of surface contaminants (0.32 μg NaCl/cm2) was for Ni-2-5%P layer. PCBs with Ni-11%P layer were higher contaminated (0.47 μg NaCl/cm2), and another with Ni-8%P layer had 0.81 μg NaCl/cm2. PCBs without Au coating, had the lowest contamination (0.48 μg NaCl/cm2) at phosphorous content equal 11%P. Higher contamination (0.67 μg NaCl/cm2) was at 2-5%P, up to 1.98 μg NaCl/cm2 for 8% of P. Boards with Au finish have lower value of contamination than identical boards without Au layer thus contributing to better reliability of electronic assemblies, since its failures due to current leakage and corrosion can be caused by contaminants.

  20. Ionic liquids behave as dilute electrolyte solutions

    PubMed Central

    Gebbie, Matthew A.; Valtiner, Markus; Banquy, Xavier; Fox, Eric T.; Henderson, Wesley A.; Israelachvili, Jacob N.

    2013-01-01

    We combine direct surface force measurements with thermodynamic arguments to demonstrate that pure ionic liquids are expected to behave as dilute weak electrolyte solutions, with typical effective dissociated ion concentrations of less than 0.1% at room temperature. We performed equilibrium force–distance measurements across the common ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4mim][NTf2]) using a surface forces apparatus with in situ electrochemical control and quantitatively modeled these measurements using the van der Waals and electrostatic double-layer forces of the Derjaguin–Landau–Verwey–Overbeek theory with an additive repulsive steric (entropic) ion–surface binding force. Our results indicate that ionic liquids screen charged surfaces through the formation of both bound (Stern) and diffuse electric double layers, where the diffuse double layer is comprised of effectively dissociated ionic liquid ions. Additionally, we used the energetics of thermally dissociating ions in a dielectric medium to quantitatively predict the equilibrium for the effective dissociation reaction of [C4mim][NTf2] ions, in excellent agreement with the measured Debye length. Our results clearly demonstrate that, outside of the bound double layer, most of the ions in [C4mim][NTf2] are not effectively dissociated and thus do not contribute to electrostatic screening. We also provide a general, molecular-scale framework for designing ionic liquids with significantly increased dissociated charge densities via judiciously balancing ion pair interactions with bulk dielectric properties. Our results clear up several inconsistencies that have hampered scientific progress in this important area and guide the rational design of unique, high–free-ion density ionic liquids and ionic liquid blends. PMID:23716690

  1. Modeling electrokinetics in ionic liquids: General

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chao; Bao, Jie; Pan, Wenxiao

    2017-04-07

    Using direct numerical simulations we provide a thorough study on the electrokinetics of ionic liquids. In particular, the modfied Poisson-Nernst-Planck (MPNP) equations are solved to capture the crowding and overscreening effects that are the characteristics of an ionic liquid. For modeling electrokinetic flows in an ionic liquid, the MPNP equations are coupled with the Navier-Stokes equations to study the coupling of ion transport, hydrodynamics, and electrostatic forces. Specifically, we consider the ion transport between two parallel plates, charging dynamics in a 2D straight-walled pore, electro-osmotic ow in a nano-channel, electroconvective instability on a plane ion-selective surface, and electroconvective ow onmore » a curved ion-selective surface. We discuss how the crowding and overscreening effects and their interplay affect the electrokinetic behaviors of ionic liquids in these application problems.« less

  2. Molecular dynamics investigation of the ionic liquid/enzyme interface: application to engineering enzyme surface charge.

    PubMed

    Burney, Patrick R; Nordwald, Erik M; Hickman, Katie; Kaar, Joel L; Pfaendtner, Jim

    2015-04-01

    Molecular simulations of the enzymes Candida rugosa lipase and Bos taurus α-chymotrypsin in aqueous ionic liquids 1-butyl-3-methylimidazolium chloride and 1-ethyl-3-methylimidazolium ethyl sulfate were used to study the change in enzyme-solvent interactions induced by modification of the enzyme surface charge. The enzymes were altered by randomly mutating lysine surface residues to glutamate, effectively decreasing the net surface charge by two for each mutation. These mutations resemble succinylation of the enzyme by chemical modification, which has been shown to enhance the stability of both enzymes in ILs. After establishing that the enzymes were stable on the simulated time scales, we focused the analysis on the organization of the ionic liquid substituents about the enzyme surface. Calculated solvent charge densities show that for both enzymes and in both solvents that changing positively charged residues to negative charge does indeed increase the charge density of the solvent near the enzyme surface. The radial distribution of IL constituents with respect to the enzyme reveals decreased interactions with the anion are prevalent in the modified systems when compared to the wild type, which is largely accompanied by an increase in cation contact. Additionally, the radial dependence of the charge density and ion distribution indicates that the effect of altering enzyme charge is confined to short range (≤1 nm) ordering of the IL. Ultimately, these results, which are consistent with that from prior experiments, provide molecular insight into the effect of enzyme surface charge on enzyme stability in ILs. © 2015 Wiley Periodicals, Inc.

  3. Surface effects on ionic Coulomb blockade in nanometer-size pores

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiroya; Iizuka, Hideo; Pershin, Yuriy V.; Di Ventra, Massimiliano

    2018-01-01

    Ionic Coulomb blockade in nanopores is a phenomenon that shares some similarities but also differences with its electronic counterpart. Here, we investigate this phenomenon extensively using all-atom molecular dynamics of ionic transport through nanopores of about one nanometer in diameter and up to several nanometers in length. Our goal is to better understand the role of atomic roughness and structure of the pore walls in the ionic Coulomb blockade. Our numerical results reveal the following general trends. First, the nanopore selectivity changes with its diameter, and the nanopore position in the membrane influences the current strength. Second, the ionic transport through the nanopore takes place in a hopping-like fashion over a set of discretized states caused by local electric fields due to membrane atoms. In some cases, this creates a slow-varying ‘crystal-like’ structure of ions inside the nanopore. Third, while at a given voltage, the resistance of the nanopore depends on its length, the slope of this dependence appears to be independent of the molarity of ions. An effective kinetic model that captures the ionic Coulomb blockade behavior observed in MD simulations is formulated.

  4. Surface effects on ionic Coulomb blockade in nanometer-size pores.

    PubMed

    Tanaka, Hiroya; Iizuka, Hideo; Pershin, Yuriy V; Ventra, Massimiliano Di

    2018-01-12

    Ionic Coulomb blockade in nanopores is a phenomenon that shares some similarities but also differences with its electronic counterpart. Here, we investigate this phenomenon extensively using all-atom molecular dynamics of ionic transport through nanopores of about one nanometer in diameter and up to several nanometers in length. Our goal is to better understand the role of atomic roughness and structure of the pore walls in the ionic Coulomb blockade. Our numerical results reveal the following general trends. First, the nanopore selectivity changes with its diameter, and the nanopore position in the membrane influences the current strength. Second, the ionic transport through the nanopore takes place in a hopping-like fashion over a set of discretized states caused by local electric fields due to membrane atoms. In some cases, this creates a slow-varying 'crystal-like' structure of ions inside the nanopore. Third, while at a given voltage, the resistance of the nanopore depends on its length, the slope of this dependence appears to be independent of the molarity of ions. An effective kinetic model that captures the ionic Coulomb blockade behavior observed in MD simulations is formulated.

  5. Computational prediction of ionic liquid 1-octanol/water partition coefficients.

    PubMed

    Kamath, Ganesh; Bhatnagar, Navendu; Baker, Gary A; Baker, Sheila N; Potoff, Jeffrey J

    2012-04-07

    Wet 1-octanol/water partition coefficients (log K(ow)) predicted for imidazolium-based ionic liquids using adaptive bias force-molecular dynamics (ABF-MD) simulations lie in excellent agreement with experimental values. These encouraging results suggest prospects for this computational tool in the a priori prediction of log K(ow) values of ionic liquids broadly with possible screening implications as well (e.g., prediction of CO(2)-philic ionic liquids).

  6. Nanoporous membranes with electrochemically switchable, chemically stabilized ionic selectivity

    NASA Astrophysics Data System (ADS)

    Small, Leo J.; Wheeler, David R.; Spoerke, Erik D.

    2015-10-01

    Nanopore size, shape, and surface charge all play important roles in regulating ionic transport through nanoporous membranes. The ability to control these parameters in situ provides a means to create ion transport systems tunable in real time. Here, we present a new strategy to address this challenge, utilizing three unique electrochemically switchable chemistries to manipulate the terminal functional group and control the resulting surface charge throughout ensembles of gold plated nanopores in ion-tracked polycarbonate membranes 3 cm2 in area. We demonstrate the diazonium mediated surface functionalization with (1) nitrophenyl chemistry, (2) quinone chemistry, and (3) previously unreported trimethyl lock chemistry. Unlike other works, these chemistries are chemically stabilized, eliminating the need for a continuously applied gate voltage to maintain a given state and retain ionic selectivity. The effect of surface functionalization and nanopore geometry on selective ion transport through these functionalized membranes is characterized in aqueous solutions of sodium chloride at pH = 5.7. The nitrophenyl surface allows for ionic selectivity to be irreversibly switched in situ from cation-selective to anion-selective upon reduction to an aminophenyl surface. The quinone-terminated surface enables reversible changes between no ionic selectivity and a slight cationic selectivity. Alternatively, the trimethyl lock allows ionic selectivity to be reversibly switched by up to a factor of 8, approaching ideal selectivity, as a carboxylic acid group is electrochemically revealed or hidden. By varying the pore shape from cylindrical to conical, it is demonstrated that a controllable directionality can be imparted to the ionic selectivity. Combining control of nanopore geometry with stable, switchable chemistries facilitates superior control of molecular transport across the membrane, enabling tunable ion transport systems.Nanopore size, shape, and surface charge all play

  7. Surface layering and melting in an ionic liquid studied by resonant soft X-ray reflectivity

    PubMed Central

    Mezger, Markus; Ocko, Benjamin M.; Reichert, Harald; Deutsch, Moshe

    2013-01-01

    The molecular-scale structure of the ionic liquid [C18mim]+[FAP]− near its free surface was studied by complementary methods. X-ray absorption spectroscopy and resonant soft X-ray reflectivity revealed a depth-decaying near-surface layering. Element-specific interfacial profiles were extracted with submolecular resolution from energy-dependent soft X-ray reflectivity data. Temperature-dependent hard X-ray reflectivity, small- and wide-angle X-ray scattering, and infrared spectroscopy uncovered an intriguing melting mechanism for the layered region, where alkyl chain melting drove a negative thermal expansion of the surface layer spacing. PMID:23431181

  8. Mean-Field Description of Ionic Size Effects with Non-Uniform Ionic Sizes: A Numerical Approach

    PubMed Central

    Zhou, Shenggao; Wang, Zhongming; Li, Bo

    2013-01-01

    Ionic size effects are significant in many biological systems. Mean-field descriptions of such effects can be efficient but also challenging. When ionic sizes are different, explicit formulas in such descriptions are not available for the dependence of the ionic concentrations on the electrostatic potential, i.e., there is no explicit, Boltzmann type distributions. This work begins with a variational formulation of the continuum electrostatics of an ionic solution with such non-uniform ionic sizes as well as multiple ionic valences. An augmented Lagrange multiplier method is then developed and implemented to numerically solve the underlying constrained optimization problem. The method is shown to be accurate and efficient, and is applied to ionic systems with non-uniform ionic sizes such as the sodium chloride solution. Extensive numerical tests demonstrate that the mean-field model and numerical method capture qualitatively some significant ionic size effects, particularly those for multivalent ionic solutions, such as the stratification of multivalent counterions near a charged surface. The ionic valence-to-volume ratio is found to be the key physical parameter in the stratification of concentrations. All these are not well described by the classical Poisson–Boltzmann theory, or the generalized Poisson–Boltzmann theory that treats uniform ionic sizes. Finally, various issues such as the close packing, limitation of the continuum model, and generalization of this work to molecular solvation are discussed. PMID:21929014

  9. Determination of Surface Charge of Titanium Dioxide (Anatase) at High Ionic Strength

    NASA Astrophysics Data System (ADS)

    Schoonen, M. A.; Strongin, D. R.

    2014-12-01

    Charge development on mineral surfaces is an important control on the fate of minor and trace elements in a wide range of environments, including in possible radioactive waste repositories. Formation waters have often a high ionic strength. In this study, we determined the zeta potential (ζ) of anatase in potassium chloride solutions with concentrations up to 3M (25°C). The zeta potential is the potential at the hydrodynamic shear plane. In this study, we made use of the electro-acoustic effect. This effect is based on the development of a measureable potential/current when the electrical double layer outside the shearplane is separated from a charged particle through rapid oscillation induced by a sound wave. The advantage of this type of measurement is that the particles are not subjected to a high electric field (common to typical zeta potential measurements), which leads to electrode reactions and a shift of solution pH. Measurements were collected by subtracting the ion vibration current (IVI) due to the presence of potassium and chloride ions from the CVI. The correction is necessary for measurements in solutions with I > 0.25 M. This subtraction was done at each of the measurement conditions by centrifuging the slurrly, measuring the IVI of the supernatant, reconstituting the slurry, and then measuring CVI of the slurry. Subtraction of IVI at each condition is critical because IVI changes with pH and accounts for most of raw signal. The results show that the anatase isoelectric point shifts from a pH ~6.5 to a value of ~4.5 at 1M KCl. At ionic strength in excess of 1 M KCl, the surface appears to be slightly negatively charged accross the pH range accessible by this technique (pH 2.5-10). The loss of an isoelectric point suggests that KCl is no longer an indifferent electrolyte at 1 M KCl and higher. The results are in disagreement with earlier measurements in which anatase was shown to have a positive charge at high ionic strength across the pH scale. The

  10. Surface-active ionic liquids for palladium-catalysed cross coupling in water: effect of ionic liquid concentration on the catalytically active species† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7ra07757b

    PubMed Central

    Taskin, Meltem; Cognigni, Alice; Zirbs, Ronald; Reimhult, Erik

    2017-01-01

    We report the design and synthesis of surface-active ionic liquids for application in palladium-catalyzed cross coupling reactions. A series of dodecylimidazolium-based ionic liquids were applied as additives in the Heck reaction of ethyl acrylate and iodobenzene, and high yields of >90% could be obtained in water without the addition of further ligands. Our results indicate that the ionic liquid concentration in water is the key factor affecting the formation of the catalytically active species and hence the yield. Moreover, imidazolium-based ionic liquids that are able to form a carbene species differ significantly from conventional cationic surfactants, as a concentration dependent formation of the N-heterocyclic carbene complex was observed. PMID:29308189

  11. Grafting of ionic liquids on stainless steel surface for antibacterial application.

    PubMed

    Pang, Li Qing; Zhong, Li Juan; Zhou, Hui Fang; Wu, Xue E; Chen, Xiao Dong

    2015-02-01

    Stainless steel (SS) is favored for many uses due to its excellent chemical resistance, thermal stability and mechanical properties. Biofilms can be formed on stainless steel and may lead to serious hygiene problems and economic losses in many areas, e.g. food processing, public infrastructure and healthcare. For the first time, our work endeavored to make SS having antibacterial properties, ionic liquids (ILs) were grafted on SS surface via silane treatment followed by thiol-ene click reaction. The chemical structure and composition of the ILs grafted stainless-steel coupon surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy. The antibacterial activity has been investigated, and the results showed that the ILs grafted SS surface exhibited significant antibacterial effects against Gram-negative Escherichia coli. Additionally, the results obtained here indicated that the ILs used here having bromide anion showed much better antibacterial activity against E. coli than the corresponding ILs with tetrafluoroborate and hexafluorophosphate as anions. These results obtained here can help to design novel and more efficient stainless steel having antibacterial surface. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Particle self-assembly at ionic liquid-based interfaces.

    PubMed

    Frost, Denzil S; Nofen, Elizabeth M; Dai, Lenore L

    2014-04-01

    This review presents an overview of the nature of ionic liquid (IL)-based interfaces and self-assembled particle morphologies of IL-in-water, oil- and water-in-IL, and novel IL-in-IL Pickering emulsions with emphasis on their unique phenomena, by means of experimental and computational studies. In IL-in-water Pickering emulsions, particles formed monolayers at ionic liquid-water interfaces and were close-packed on fully covered emulsion droplets or aggregated on partially covered droplets. Interestingly, other than equilibrating at the ionic liquid-water interfaces, microparticles with certain surface chemistries were extracted into the ionic liquid phase with a high efficiency. These experimental findings were supported by potential of mean force calculations, which showed large energy drops as hydrophobic particles crossed the interface into the IL phase. In the oil- and water-in-IL Pickering emulsions, microparticles with acidic surface chemistries formed monolayer bridges between the internal phase droplets rather than residing at the oil/water-ionic liquid interfaces, a significant deviation from traditional Pickering emulsion morphology. Molecular dynamics simulations revealed aspects of the mechanism behind this bridging phenomenon, including the role of the droplet phase, surface chemistry, and inter-particle film. Novel IL-in-IL Pickering emulsions exhibited an array of self-assembled morphologies including the previously observed particle absorption and bridging phenomena. The appearance of these morphologies depended on the particle surface chemistry as well as the ILs used. The incorporation of particle self-assembly with ionic liquid science allows for new applications at the intersection of these two fields, and have the potential to be numerous due to the tunability of the ionic liquids and particles incorporated, as well as the particle morphology by combining certain groups of particle surface chemistry, IL type (protic or aprotic), and whether oil

  13. Preparation and evaluation of surface-bonded tricationic ionic liquid silica as stationary phases for high-performance liquid chromatography.

    PubMed

    Qiao, Lizhen; Shi, Xianzhe; Lu, Xin; Xu, Guowang

    2015-05-29

    Two tricationic ionic liquids were prepared and then bonded onto the surface of supporting silica materials through "thiol-ene" click chemistry as new stationary phases for high-performance liquid chromatography. The obtained columns of tricationic ionic liquids were evaluated respectively in the reversed-phase liquid chromatography (RPLC) mode and hydrophilic interaction liquid chromatography (HILIC) mode, and possess ideal column efficiency of 80,000 plates/m in the RPLC mode with naphthalene as the test solute. The tricationic ionic liquid stationary phases exhibit good hydrophobic and shape selectivity to hydrophobic compounds, and RPLC retention behavior with multiple interactions. In the HILIC mode, the retention and selectivity were evaluated through the efficient separation of nucleosides and bases as well as flavonoids, and the typical HILIC retention behavior was demonstrated by investigating retention changes of hydrophilic solutes with water volume fraction in mobile phase. The results show that the tricationic ionic liquid columns possess great prospect for applications in analysis of hydrophobic and hydrophilic samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Calculating the Maximum Density of the Surface Packing of Ions in Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Kislenko, S. A.; Moroz, Yu. O.; Karu, K.; Ivaništšev, V. B.; Fedorov, M. V.

    2018-05-01

    The maximum density of monolayer packing on a graphene surface is calculated by means of molecular dynamics (MD) for ions of characteristic size and symmetry: 1-butyl-3-methylimidazolium [BMIM]+, tetrabutylammonium [TBA]+, tetrafluoroborate [BF4]-, dicyanamide [DCA]-, and bis(trifluoromethane) sulfonimide [TFSI]-. The characteristic orientations of ions in a closely packed monolayer are found. It is shown that the formation of a closely packed monolayer is possible for [DCA]- and [BF4]- anions only at surface charges that exceed the limit of the electrochemical stability of the corresponding ionic liquids. For the [TBA]+ cation, a monolayer structure can be observed at the charge of nearly 30 μC/cm2 attainable in electrochemical experiment.

  15. Two-site ionic labeling with pyranine: implications for structural dynamics studies of polymers and polypeptides by time-resolved fluorescence anisotropy.

    PubMed

    Sharma, Jai; Tleugabulova, Dina; Czardybon, Wojciech; Brennan, John D

    2006-04-26

    Time-resolved fluorescence anisotropy (TRFA) is widely used to study dynamic motions of biomolecules in a variety of environments. However, depolarization due to rapid side chain motions often complicates the interpretation of anisotropy decay data and interferes with the accurate observation of segmental motions. Here, we demonstrate a new method for two-point ionic labeling of polymers and biomolecules that have appropriately spaced amino groups using the fluorescent probe 8-hydroxyl-1,3,6-trisulfonated pyrene (pyranine). TRFA analysis shows that such labeling provides a more rigid attachment of the fluorophore to the macromolecule than the covalent or single-point ionic labeling of amino groups, leading to time-resolved anisotropy decays that better reflect the backbone motion of the labeled polymer segment. Optimal coupling of pyranine to biomolecule dynamics is shown to be obtained for appropriately spaced Arg groups, and in such cases the ionic binding is stable up to 150 mM ionic strength. TRFA was used to monitor the behavior of pyranine-labeled poly(allylamine) (PAM) and poly-d-lysine (PL) in sodium silicate derived sol-gel materials and revealed significant restriction of backbone motion upon entrapment for both polymers, an observation that was not readily apparent in a previous study with entrapped fluorescein-labeled PAM and PL. The implications of these findings for fluorescence studies of polymer and biomolecule dynamics are discussed.

  16. Ionic liquids in tribology.

    PubMed

    Minami, Ichiro

    2009-06-24

    Current research on room-temperature ionic liquids as lubricants is described. Ionic liquids possess excellent properties such as non-volatility, non-flammability, and thermo-oxidative stability. The potential use of ionic liquids as lubricants was first proposed in 2001 and approximately 70 articles pertaining to fundamental research on ionic liquids have been published through May 2009. A large majority of the cations examined in this area are derived from 1,3-dialkylimidazolium, with a higher alkyl group on the imidazolium cation being beneficial for good lubrication, while it reduces the thermo-oxidative stability. Hydrophobic anions provide both good lubricity and significant thermo-oxidative stability. The anions decompose through a tribochemical reaction to generate metal fluoride on the rubbed surface. Additive technology to improve lubricity is also explained. An introduction to tribology as an interdisciplinary field of lubrication is also provided.

  17. Ionics of nanoheterogeneous materials

    NASA Astrophysics Data System (ADS)

    Uvarov, Nikolay F.

    2007-05-01

    The results of studies of composite ionic conductors are considered. The relationship between their properties and the ionic salt disordering and the interfacial interaction between the components of the material is analysed. Special attention is paid to models that describe the surface disordering and the mechanism of defect formation. The methods of calculation of physicochemical characteristics of composites, the thermodynamic stability and peculiarities of the genesis of the nanocomposite morphology are discussed.

  18. Ionic self-assembly of surface functionalized metal-organic polyhedra nanocages and their ordered honeycomb architecture at the air/water interface.

    PubMed

    Li, Yantao; Zhang, Daojun; Gai, Fangyuan; Zhu, Xingqi; Guo, Ya-nan; Ma, Tianliang; Liu, Yunling; Huo, Qisheng

    2012-08-18

    Metal-organic polyhedra (MOP) nanocages were successfully surface functionalized via ionic self-assembly and the ordered honeycomb architecture of the encapsulated MOP nanocages was also fabricated at the air/water surface. The results provide a novel synthetic method and membrane processing technique of amphiphilic MOP nanocages for various applications.

  19. Probing the Surface Tension of Ionic Liquids Using the Langmuir Principle

    PubMed Central

    2018-01-01

    At 298 K, the surface tension of ionic liquids (ILs) of the 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide series, [CnC1Im][NTf2], ranges from around 35 mN·m–1 for [C2C1Im][NTf2] to just below 30 mN·m–1 for [C12C1Im][NTf2]. However, the decrease rate along the series is not constant: a large decrease from [C2C1Im][NTf2] to [C8C1Im][NTf2] is followed by almost constant values from [C8C1Im][NTf2] to [C12C1Im][NTf2]. Such behavior is hard to interpret from a molecular point of view without suitable information about the free-surface structure of the different ILs. In this work, we have successfully used the Langmuir principle in combination with structural data obtained from angle-resolved X-ray photoelectron spectroscopy experiments and molecular dynamics simulations, to predict the correct surface tension trend along the IL series. The concepts unveiled for this particular homologous IL family can be easily extended to other systems. PMID:29485882

  20. Effects of anisotropic surface texture on the performance of ionic polymer-metal composite (IPMC)

    NASA Astrophysics Data System (ADS)

    He, Qingsong; Yu, Min; Ding, Haitao; Guo, Dongjie; Dai, Zhendong

    2010-04-01

    Ionic polymer metal composite (IPMC), an electrically activated polymer (EAP), has attracted great attention for the excellent properties such as large deformation, light weight, low noise, flexibility and low driving voltages, which makes the material a possible application as artificial muscle if the output force can be increased. To improve the property, we manufactured the Nafion membrane by casting from liquid solution, modified the surface by sandblasting or polishing, and obtained the isotropic and anisotropic surface texture respectively. The microstructure of the Nafion surface and metal electrode, effects of surface texture on the output force and displacement of IPMC were studied. Results show that the output force of IPMC with the anisotropic surface texture is 2~4 times higher than that with the isotropic surface texture without enormous sacrifice of the displacement. The output force may reach to 6.63gf (Sinusoidal 3.5V and 0.1Hz, length 20mm, width 5mm and thickness 0.66mm), which suggest an effective way to improve the mechanical properties of IPMC.

  1. An ionic electro-active actuator made with graphene film electrode, chitosan and ionic liquid

    NASA Astrophysics Data System (ADS)

    He, Qingsong; Yu, Min; Yang, Xu; Kim, Kwang Jin; Dai, Zhendong

    2015-06-01

    A newly developed ionic electro-active actuator composed of an ionic electrolyte layer sandwiched between two graphene film layers was investigated. Scanning electronic microscopy observation and x-ray diffraction analysis showed that the graphene sheets in the film stacked in a nearly face-to-face fashion but did not restack back to graphite, and the resulting graphene film with low sheet resistance (10 Ω sq-1) adheres well to the electrolyte membrane. Contact angle measurement showed the surface energy (37.98 mJ m-2) of the ionic electrolyte polymer is 2.67 times higher than that (14.2 mJ m-2) of the Nafion membrane, contributing to the good adhesion between the graphene film electrode and the electrolyte membrane. An electric double-layer is formed at the interface between the graphene film electrode and the ionic electrolyte membrane under the input potential, resulting in a higher capacitance of 27.6 mF cm-2. We report that this ionic actuator exhibits adequate bending strain, ranging from 0.032 to 0.1% (305 to 945 μm) as functions of voltage.

  2. Is the boundary layer of an ionic liquid equally lubricating at higher temperature?

    PubMed

    Hjalmarsson, Nicklas; Atkin, Rob; Rutland, Mark W

    2016-04-07

    Atomic force microscopy has been used to study the effect of temperature on normal forces and friction for the room temperature ionic liquid (IL) ethylammonium nitrate (EAN), confined between mica and a silica colloid probe at 25 °C, 50 °C, and 80 °C. Force curves revealed a strong fluid dynamic influence at room temperature, which was greatly reduced at elevated temperatures due to the reduced liquid viscosity. A fluid dynamic analysis reveals that bulk viscosity is manifested at large separation but that EAN displays a nonzero slip, indicating a region of different viscosity near the surface. At high temperatures, the reduction in fluid dynamic force reveals step-like force curves, similar to those found at room temperature using much lower scan rates. The ionic liquid boundary layer remains adsorbed to the solid surface even at high temperature, which provides a mechanism for lubrication when fluid dynamic lubrication is strongly reduced. The friction data reveals a decrease in absolute friction force with increasing temperature, which is associated with increased thermal motion and reduced viscosity of the near surface layers but, consistent with the normal force data, boundary layer lubrication was unaffected. The implications for ILs as lubricants are discussed in terms of the behaviour of this well characterised system.

  3. Perfect Composition Depth Profiling of Ionic Liquid Surfaces Using High-resolution RBS/ERDA.

    PubMed

    Nakajima, Kaoru; Zolboo, Enkhbayar; Ohashi, Tomohiro; Lísal, Martin; Kimura, Kenji

    2016-01-01

    In order to reveal the surface structures of large molecular ionic liquids (ILs), the near-surface elemental depth distributions of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C n C 1 Im][Tf 2 N], n = 2, 6, 10) were studied using high-resolution Rutherford backscattering spectroscopy (HRBS) in combination with high-resolution elastic recoil detection analysis (HR-ERDA). The elemental depth profiles of all constituent elements, including hydrogen, were derived from HR-ERDA/HRBS measurements, so that the profiles would reproduce both HR-ERDA and HRBS spectra simultaneously. The derived elemental depth profiles agree with state-of-the-art molecular dynamics simulations, indicating the feasibility of this method. A controversy concerning the preferential orientation of [C 2 C 1 Im] at the surface has been resolved by this new combination analysis; namely, the [C 2 C 1 Im] cation has a preferential orientation with the ethyl chain pointing towards the vacuum in the topmost molecular layer.

  4. Surface characterization of imidazolium-based ionic liquids with cyano-functionalized anions at the gas-liquid interface using sum frequency generation spectroscopy.

    PubMed

    Peñalber, Chariz Y; Grenoble, Zlata; Baker, Gary A; Baldelli, Steven

    2012-04-21

    Advancement in the field of ionic liquid technology requires a comprehensive understanding of their surface properties, as a wide range of chemical reactions occur mainly at interfaces. As essential media currently used in several technological applications, their accurate molecular level description at the gas-liquid interface is of utmost importance. Due to the high degree of chemical information provided in the vibrational spectrum, vibrational spectroscopy gives the most detailed model for molecular structure. The inherently surface-sensitive technique, sum frequency generation (SFG) spectroscopy, in combination with bulk-sensitive vibrational spectroscopic techniques such as FTIR and Raman, has been used in this report to characterize the surface of cyano-containing ionic liquids, such as [BMIM][SCN], [BMIM][DCA], [BMIM][TCM] and [EMIM][TCB] at the gas-liquid interface. By structural variation of the anion while keeping the cation constant, emphasis on the molecular arrangement of the anion at the gas-liquid interface is reported, and its subsequent role (if any) in determining the surface molecular orientation of the cation. Vibrational modes seen in the C-H stretching region revealed the presence of the cation at the gas-liquid interface. The cation orientation is independent of the type of cyano-containing anion, however, a similar arrangement at the surface as reported in previous studies was found, with the imidazolium ring lying flat at the surface, and the alkyl chains pointing towards the gas phase. SFG results show that all three anions of varying symmetry, namely, [DCA](-) (C(2v)), [TCM](-)(D(3h)) and [TCB](-) (T(d)) in ionic liquids [BMIM]DCA], [BMIM][TCM] and [EMIM][TCB] are significantly tilted from the surface plane, while the linear [SCN](-) in [BMIM][SCN] exhibited poor ordering, as seen in the absence of its C-N stretching mode in the SFG vibrational spectra. This journal is © the Owner Societies 2012

  5. Numerical modeling of ultrasonic cavitation in ionic liquids

    NASA Astrophysics Data System (ADS)

    Calvisi, Michael L.; Elder, Ross M.

    2017-11-01

    Ionic liquids have favorable properties for sonochemistry applications in which the high temperatures and pressures achieved by cavitation bubbles are important drivers of chemical processes. Two different numerical models are presented to simulate ultrasonic cavitation in ionic liquids, each with different capabilities and physical assumptions. A model based on a compressible form of the Rayleigh-Plesset equation (RPE) simulates ultrasonic cavitation of a spherical bubble with a homogeneous interior, incorporating evaporation and condensation at the bubble surface, and temperature-varying thermodynamic properties in the interior. A second, more computationally intensive model of a spherical bubble uses the finite element method (FEM) and accounts for spatial variations in pressure and temperature throughout the flow domain. This model provides insight into heat transfer across the bubble surface and throughout the bubble interior and exterior. Parametric studies are presented for sonochemistry applications involving ionic liquids as a solvent, examining a range of realistic ionic liquid properties and initial conditions to determine their effect on temperature and pressure. Results from the two models are presented for parametric variations including viscosity, thermal conductivity, water content of the ionic liquid solvent, acoustic frequency, and initial bubble pressure. An additional study performed with the FEM model examines thermal penetration into the surrounding ionic liquid during bubble oscillation. The results suggest the prospect of tuning ionic liquid properties for specific applications.

  6. Fast Conversion of Ionic Liquids and Poly(Ionic Liquid)s into Porous Nitrogen-Doped Carbons in Air

    PubMed Central

    Men, Yongjun; Ambrogi, Martina; Han, Baohang; Yuan, Jiayin

    2016-01-01

    Ionic liquids and poly(ionic liquid)s have been successfully converted into nitrogen-doped porous carbons with tunable surface area up to 1200 m2/g at high temperatures in air. Compared to conventional carbonization process conducted under inert gas to produce nitrogen-doped carbons, the new production method was completed in a rather shorter time without noble gas protection. PMID:27070588

  7. Fast Conversion of Ionic Liquids and Poly(Ionic Liquid)s into Porous Nitrogen-Doped Carbons in Air.

    PubMed

    Men, Yongjun; Ambrogi, Martina; Han, Baohang; Yuan, Jiayin

    2016-04-08

    Ionic liquids and poly(ionic liquid)s have been successfully converted into nitrogen-doped porous carbons with tunable surface area up to 1200 m²/g at high temperatures in air. Compared to conventional carbonization process conducted under inert gas to produce nitrogen-doped carbons, the new production method was completed in a rather shorter time without noble gas protection.

  8. Exploring the Structure of Nitrogen-Rich Ionic Liquids and Their Binding to the Surface of Oxide-Free Boron Nanoparticles

    DTIC Science & Technology

    2013-01-29

    Shreeve et al . synthesized a number of highly energetic ionic liquids with multiple nitrogen atoms in their structures,18−23 in the hope of increasing...results have to be interpreted with caution. Lovelock et al .61 have shown that clean surfaces can be obtained by sputtering for the [CnC1Im][Tf2N] IL...flat on the gold surface while a long chain ether functional group is directed away from the surface, providing steric stabilization.74 Zhang et al

  9. Stabilization of MgAl2O4 spinel surfaces via doping

    NASA Astrophysics Data System (ADS)

    Hasan, Md. M.; Dholabhai, Pratik P.; Castro, Ricardo H. R.; Uberuaga, Blas P.

    2016-07-01

    Surface structure of complex oxides plays a vital role in processes such as sintering, thin film growth, and catalysis, as well as being a critical factor determining the stability of nanoparticles. Here, we report atomistic calculations of the low-index stoichiometric magnesium aluminate spinel (MgAl2O4) surfaces, each with two different chemical terminations. High temperature annealing was used to explore the potential energy landscape and provide more stable surface structures. We find that the lowest energy surface is {100} while the highest energy surface is {111}. The surfaces were subsequently doped with three trivalent dopants (Y3+, Gd3+, La3+) and one tetravalent dopant (Zr4+) and both the surface segregation energies of the dopants and surface energies of the doped surface were determined. All of the dopants reduce the surface energy of spinel, though this reduction in energy depends on both the size and valence of the dopant. Dopants with larger ionic radius tend to segregate to the surface more strongly and reduce the surface energy to a greater extent. Furthermore, the ionic valence of the dopants seems to have a stronger influence on the segregation than does ionic size. For both undoped and doped spinel, the predicted crystal shape is dominated by {100} surfaces, but the relative fraction of the various surfaces changes with doping due to the unequal changes in energy, which has implications on equilibrium nanoparticle shapes and therefore on applications sensitive to surface properties.

  10. On the concept of critical surface excess of micellization.

    PubMed

    Talens-Alesson, Federico I

    2010-11-16

    The critical surface excess of micellization (CSEM) should be regarded as the critical condition for micellization of ionic surfactants instead of the critical micelle concentration (CMC). There is a correspondence between the surface excesses Γ of anionic, cationic, and zwitterionic surfactants at their CMCs, which would be the CSEM values, and the critical association distance for ionic pair association calculated using Bjerrum's correlation. Further support to this concept is given by an accurate method for the prediction of the relative binding of alkali cations onto dodecylsulfate (NaDS) micelles. This method uses a relative binding strength parameter calculated from the values of surface excess Γ at the CMC of the alkali dodecylsulfates. This links both the binding of a given cation onto micelles and the onset for micellization of its surfactant salt. The CSEM concept implies that micelles form at the air-water interface unless another surface with greater affinity for micelles exists. The process would start when surfactant monomers are close enough to each other for ionic pairing with counterions and the subsequent assembly of these pairs becomes unavoidable. This would explain why the surface excess Γ values of different surfactants are more similar than their CMCs: the latter are just the bulk phase concentrations in equilibrium with chemicals with different hydrophobicity. An intriguing implication is that CSEM values may be used to calculate the actual critical distances of ionic pair formation for different cations, replacing Bjerrum's estimates, which only discriminate by the magnitude of the charge.

  11. Molecular Dynamics Simulations of the Interfacial Region between Boehmite and Gibbsite Basal Surfaces and High Ionic Strength Aqueous Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Zhizhang; Ilton, Eugene S.; Prange, Micah P.

    Classical molecular dynamics (MD) simulations were used to study the interactions of up to 2 M NaCl and NaNO3 aqueous solutions with the presumed inert boehmite (010) and gibbsite (001) surfaces. The force field parameters used in these simulations were validated against density functional theory calculations of Na+ and Cl- hydrated complexes adsorbed at the boehmite (010) surface. In all the classical MD simulations and regardless of the ionic strength or the nature of the anion, Na+ ions were found to preferably form inner-sphere complexes over outer-sphere complexes at the aluminum (oxy)hydroxide surfaces, adsorbing closer to the surface than bothmore » water molecules and anions. In contrast, Cl- ions were distributed almost equally between inner- and outer-sphere positions. The resulting asymmetry in adsorption strengths offers molecular-scale evidence for the observed isoelectric point (IEP) shift to higher pH at high ionic strength for aluminum (oxy)hydroxides. As such, the MD simulations also provided clear evidence against the assumption that the basal surfaces of boehmite and gibbsite are inert to background electrolytes. Finally, the MD simulations indicated that, although the adsorption behavior of Na+ in NaNO3 and NaCl solutions was similar, the different affinities of NO3- and Cl- for the aluminum (oxy)hydroxide surfaces might have macroscopic consequences, such as difference in the sensitivity of the IEP to the electrolyte concentration.« less

  12. Ionic Size Effects: Generalized Boltzmann Distributions, Counterion Stratification, and Modified Debye Length.

    PubMed

    Liu, Bo; Liu, Pei; Xu, Zhenli; Zhou, Shenggao

    2013-10-01

    Near a charged surface, counterions of different valences and sizes cluster; and their concentration profiles stratify. At a distance from such a surface larger than the Debye length, the electric field is screened by counterions. Recent studies by a variational mean-field approach that includes ionic size effects and by Monte Carlo simulations both suggest that the counterion stratification is determined by the ionic valence-to-volume ratios. Central in the mean-field approach is a free-energy functional of ionic concentrations in which the ionic size effects are included through the entropic effect of solvent molecules. The corresponding equilibrium conditions define the generalized Boltzmann distributions relating the ionic concentrations to the electrostatic potential. This paper presents a detailed analysis and numerical calculations of such a free-energy functional to understand the dependence of the ionic charge density on the electrostatic potential through the generalized Boltzmann distributions, the role of ionic valence-to-volume ratios in the counterion stratification, and the modification of Debye length due to the effect of ionic sizes.

  13. Ionic Size Effects: Generalized Boltzmann Distributions, Counterion Stratification, and Modified Debye Length

    PubMed Central

    Liu, Bo; Liu, Pei; Xu, Zhenli; Zhou, Shenggao

    2013-01-01

    Near a charged surface, counterions of different valences and sizes cluster; and their concentration profiles stratify. At a distance from such a surface larger than the Debye length, the electric field is screened by counterions. Recent studies by a variational mean-field approach that includes ionic size effects and by Monte Carlo simulations both suggest that the counterion stratification is determined by the ionic valence-to-volume ratios. Central in the mean-field approach is a free-energy functional of ionic concentrations in which the ionic size effects are included through the entropic effect of solvent molecules. The corresponding equilibrium conditions define the generalized Boltzmann distributions relating the ionic concentrations to the electrostatic potential. This paper presents a detailed analysis and numerical calculations of such a free-energy functional to understand the dependence of the ionic charge density on the electrostatic potential through the generalized Boltzmann distributions, the role of ionic valence-to-volume ratios in the counterion stratification, and the modification of Debye length due to the effect of ionic sizes. PMID:24465094

  14. Disinfection of Spacecraft Potable Water Systems by Passivation with Ionic Silver

    NASA Technical Reports Server (NTRS)

    Birmele, Michele N.; McCoy, LaShelle e.; Roberts, Michael S.

    2011-01-01

    Microbial growth is common on wetted surfaces in spacecraft environmental control and life support systems despite the use of chemical and physical disinfection methods. Advanced control technologies are needed to limit microorganisms and increase the reliability of life support systems required for long-duration human missions. Silver ions and compounds are widely used as antimicrobial agents for medical applications and continue to be used as a residual biocide in some spacecraft water systems. The National Aeronautics and Space Administration (NASA) has identified silver fluoride for use in the potable water system on the next generation spacecraft. Due to ionic interactions between silver fluoride in solution and wetted metallic surfaces, ionic silver is rapidly depleted from solution and loses its antimicrobial efficacy over time. This report describes research to prolong the antimicrobial efficacy of ionic silver by maintaining its solubility. Three types of metal coupons (lnconel 718, Stainless Steel 316, and Titanium 6AI-4V) used in spacecraft potable water systems were exposed to either a continuous flow of water amended with 0.4 mg/L ionic silver fluoride or to a static, pre-treatment passivation in 50 mg/L ionic silver fluoride with or without a surface oxidation pre-treatment. Coupons were then challenged in a high-shear, CDC bioreactor (BioSurface Technologies) by exposure to six bacteria previously isolated from spacecraft potable water systems. Continuous exposure to 0.4 mg/L ionic silver over the course of 24 hours during the flow phase resulted in a >7-log reduction. The residual effect of a 24-hour passivation treatment in 50 mg/L of ionic silver resulted in a >3-log reduction, whereas a two-week treatment resulted in a >4-log reduction. Results indicate that 0.4 mg/L ionic silver is an effective biocide against many bacteria and that a prepassivation of metal surfaces with silver can provide additional microbial control.

  15. Elucidation of the effect of ionic liquid pretreatment on rice husk via structural analyses

    PubMed Central

    2012-01-01

    Background In the present study, three ionic liquids, namely 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), 1-ethyl-3-methylimidazolium acetate ([EMIM]OAc), and 1-ethyl-3-methylimidazolium diethyl phosphate ([EMIM]DEP), were used to partially dissolve rice husk, after which the cellulose were regenerated by the addition of water. The aim of the investigation is to examine the implications of the ionic liquid pretreatments on rice husk composition and structure. Results From the attenuated total reflectance Fourier transform-infrared (ATR FT-IR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM) results, the regenerated cellulose were more amorphous, less crystalline, and possessed higher structural disruption compared with untreated rice husk. The major component of regenerated cellulose from [BMIM]Cl and [EMIM]DEP pretreatments was cellulose-rich material, while cellulose regenerated from [EMIM]OAc was a matrix of cellulose and lignin. Cellulose regenerated from ionic pretreatments could be saccharified via enzymatic hydrolysis, and resulted in relatively high reducing sugars yields, whereas enzymatic hydrolysis of untreated rice husk did not yield reducing sugars. Rice husk residues generated from the ionic liquid pretreatments had similar chemical composition and amorphousity to that of untreated rice husk, but with varying extent of surface disruption and swelling. Conclusions The structural architecture of the regenerated cellulose and rice husk residues showed that they could be used for subsequent fermentation or derivation of cellulosic compounds. Therefore, ionic liquid pretreatment is an alternative in the pretreatment of lignocellulosic biomass in addition to the conventional chemical pretreatments. PMID:22958710

  16. Impact of Environmental Conditions (pH, Ionic Strength, And Electrolyte Type) On The Surface Charge And Aggregation Of Silver Nanoparticles Suspensions

    EPA Science Inventory

    The impact of capping agents and environmental conditions (pH, ionic strength, and background electrolytes) on surface charge and aggregation potential of silver nanoparticles (AgNPs) suspensions were investigated. Capping agents are chemicals used in the synthesis of nanopartic...

  17. Optimization of enzymatic esterification of dihydrocaffeic acid with hexanol in ionic liquid using response surface methodology.

    PubMed

    Gholivand, Somayeh; Lasekan, Ola; Tan, Chin Ping; Abas, Faridah; Wei, Leong Sze

    2017-05-26

    Developing an efficient lipophilization reaction system for phenolic derivatives could enhance their applications in food processing. Low solubility of phenolic acids reduces the efficiency of phenolic derivatives in most benign enzyme solvents. The conversion of phenolic acids through esterification alters their solubility and enhances their use as food antioxidant additives as well as their application in cosmetics. This study has shown that lipase-catalyzed esterification of dihydrocaffeic acid with hexanol in ionic liquid (1-butyl-3-methylimidazoliumbis (trifluoromethylsulfonyl) imide) was the best approach for esterification reaction. In order to achieve the maximum yield, the process was optimized by response surface methodology (RSM) based on a five-level and four independent variables such as: dosage of enzyme; hexanol/dihydrocaffeic acid mole ratio; temperature and reaction time. The optimum esterification condition (Y = 84.4%) was predicted to be obtained at temperature of 39.4 °C, time of 77.5 h dosage of enzyme at 41.6% and hexanol/dihydrocaffeic acid mole ratio of 2.1. Finally, this study has produced an efficient enzymatic esterification method for the preparation of hexyl dihydrocaffeate in vitro using a lipase in an ionic liquid system. Concentration of hexanol was the most significant (p < 0.05) independent variable that influenced the yield of hexyl dihydrocaffeate. Graphical abstract Synthesis of different Hexyl dihydrocaffeates in ionic liquid.

  18. Molecular modeling of field-driven ion emission from ionic liquids

    NASA Astrophysics Data System (ADS)

    Zhang, Fei; He, Yadong; Qiao, Rui

    2017-11-01

    Traditionally, operating electrosprays in the purely ionic mode is challenging, but recent experiments confirmed that such operation can be achieved using room-temperature ionic liquids as working electrolytes. Such electrosprays have shown promise in applications including chemical analysis, nanomanufacturing, and space propulsion. The mechanistic and quantitative understanding of such electrosprays at the molecular level, however, remain limited at present. In this work, we simulated ion emission from EMIM-PF6 ionic liquid films using the molecular dynamics method. We show that, when the surface electric field is smaller than 1.5V/nm, the ion emission current predicted using coarse-grained ionic liquid model observes the classical scaling law by J. V. Iribarne and B. A. Thomson, i.e., ln(Je/ σ) En1/2. These simulations, however, cannot capture the co-emission of cations and anions from ionic liquid surface observed in some experiments. Such co-emission was successfully captured when united-atom models were adopted for the ionic liquids. By examining the co-emission events with picosecond, sub-angstrom resolution, we clarified the origins of the co-emission phenomenon and delineate the molecular events leading to ion emission.

  19. Stabilization of MgAl 2O 4 spinel surfaces via doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasan, Md. M.; Dholabhai, Pratik P.; Castro, Ricardo H. R.

    Here, the surface structure of complex oxides plays a vital role in processes such as sintering, thin film growth, and catalysis, as well as being a critical factor determining the stability of nanoparticles. We report atomistic calculations of the low-index stoichiometric magnesium aluminate spinel (MgAl 2O 4) surfaces, each with two different chemical terminations. High temperature annealing was used to explore the potential energy landscape and provide more stable surface structures. We find that the lowest energy surface is {100} while the highest energy surface is {111}. The surfaces were subsequently doped with three trivalent dopants (Y 3+, Gd 3+,more » La 3+) and one tetravalent dopant (Zr 4+) and both the surface segregation energies of the dopants and surface energies of the doped surface were determined. All of the dopants reduce the surface energy of spinel, though this reduction in energy depends on both the size and valence of the dopant. Dopants with larger ionic radius tend to segregate to the surface more strongly and reduce the surface energy to a greater extent. Furthermore, the ionic valence of the dopants seems to have a stronger influence on the segregation than does ionic size. For both undoped and doped spinel, the predicted crystal shape is dominated by {100} surfaces, but the relative fraction of the various surfaces changes with doping due to the unequal changes in energy, which has implications on equilibrium nanoparticle shapes and therefore on applications sensitive to surface properties.« less

  20. Stabilization of MgAl 2O 4 spinel surfaces via doping

    DOE PAGES

    Hasan, Md. M.; Dholabhai, Pratik P.; Castro, Ricardo H. R.; ...

    2016-02-06

    Here, the surface structure of complex oxides plays a vital role in processes such as sintering, thin film growth, and catalysis, as well as being a critical factor determining the stability of nanoparticles. We report atomistic calculations of the low-index stoichiometric magnesium aluminate spinel (MgAl 2O 4) surfaces, each with two different chemical terminations. High temperature annealing was used to explore the potential energy landscape and provide more stable surface structures. We find that the lowest energy surface is {100} while the highest energy surface is {111}. The surfaces were subsequently doped with three trivalent dopants (Y 3+, Gd 3+,more » La 3+) and one tetravalent dopant (Zr 4+) and both the surface segregation energies of the dopants and surface energies of the doped surface were determined. All of the dopants reduce the surface energy of spinel, though this reduction in energy depends on both the size and valence of the dopant. Dopants with larger ionic radius tend to segregate to the surface more strongly and reduce the surface energy to a greater extent. Furthermore, the ionic valence of the dopants seems to have a stronger influence on the segregation than does ionic size. For both undoped and doped spinel, the predicted crystal shape is dominated by {100} surfaces, but the relative fraction of the various surfaces changes with doping due to the unequal changes in energy, which has implications on equilibrium nanoparticle shapes and therefore on applications sensitive to surface properties.« less

  1. Effects of novel triple-stage antimalarial ionic liquids on lipid membrane models.

    PubMed

    Ferraz, Ricardo; Pinheiro, Marina; Gomes, Ana; Teixeira, Cátia; Prudêncio, Cristina; Reis, Salette; Gomes, Paula

    2017-09-01

    Primaquine-based ionic liquids, obtained by acid-base reaction between parent primaquine and cinnamic acids, were recently found as triple-stage antimalarial hits. These ionic compounds displayed significant activity against both liver- and blood-stage Plasmodium parasites, as well as against stage V P. falciparum parasites. Remarkably, blood-stage activity of the ionic liquids against both chloroquine-sensitive (3D7) and resistant (Dd2) P. falciparum strains was clearly superior to those of the respective covalent (amide) analogues and of parent primaquine. Having hypothesized that such behaviour might be ascribed to an enhanced ability of the ionic compounds to permeate into Plasmodium-infected erythrocytes, we have carried out a differential scanning calorimetry-based study of the interactions between the ionic liquids and membrane models. Results provide evidence, at the molecular level, that the primaquine-derived ionic liquids may contribute to an increased permeation of the parent drug into malaria-infected erythrocytes, which has relevant implications towards novel antimalarial approaches based on ionic liquids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Ionic liquids as novel solvents for ionic polymer transducers

    NASA Astrophysics Data System (ADS)

    Bennett, Matthew D.; Leo, Donald J.

    2004-07-01

    The use of ionic liquids as solvents for ionic polymer (specifically, Nafion) transducers is demonstrated. Ionic liquids are attractive for this application because of their high inherent stability. Ionic liquids are salts that exist as liquids at room temperature and have no measureable vapor pressure. Therefore, the use of ionic liquids as solvents for ionic polymer transducers can eliminate the traditional problem of water evaporation in these devices. Another benefit of the use of ionic liquids in this way is the reduction or elimination of the characteristic back-relaxation common in water-solvated ionic polymer actuators. The results demonstrate that the viscosity of the ionic liquid and the degree to which the ionic liquid swells the membrane are the important physical parameters to consider. Five ionic liquids were studied, based on substituted pyrrolidinium, phosphonium, or imidazolium cations and fluoroanions. Of these five ionic liquids, transduction is demonstrated in three of them and the best results are obtained with 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid. This substance has an electrochemical stability window of 4.1 V, a melting point of -10 °C, and a viscosity of 35-45 cP [19]. Results demonstrate that platinum-plated Nafion transducers solvated with this ionic liquid exhibit sensing and actuation responses and that these transducers are stable in air. Endurance testing of this sample reveals a decrease in the free strain of only 25 % after 250,000 actuation cycles in air.

  3. Impurity effects on ionic-liquid-based supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Lian, Cheng; Henderson, Douglas; Wu, Jianzhong

    2017-02-01

    Small amounts of an impurity may affect the key properties of an ionic liquid and such effects can be dramatically amplified when the electrolyte is under confinement. Here the classical density functional theory is employed to investigate the impurity effects on the microscopic structure and the performance of ionic-liquid-based electrical double-layer capacitors, also known as supercapacitors. Using a primitive model for ionic species, we study the effects of an impurity on the double layer structure and the integral capacitance of a room temperature ionic liquid in model electrode pores and find that an impurity strongly binding to the surface of a porous electrode can significantly alter the electric double layer structure and dampen the oscillatory dependence of the capacitance with the pore size of the electrode. Meanwhile, a strong affinity of the impurity with the ionic species affects the dependence of the integral capacitance on the pore size. Up to 30% increase in the integral capacitance can be achieved even at a very low impurity bulk concentration. By comparing with an ionic liquid mixture containing modified ionic species, we find that the cooperative effect of the bounded impurities is mainly responsible for the significant enhancement of the supercapacitor performance.

  4. Impurity effects on ionic-liquid-based supercapacitors

    DOE PAGES

    Liu, Kun; Lian, Cheng; Henderson, Douglas; ...

    2016-12-27

    Small amounts of an impurity may affect the key properties of an ionic liquid and such effects can be dramatically amplified when the electrolyte is under confinement. Here the classical density functional theory is employed to investigate the impurity effects on the microscopic structure and the performance of ionic-liquid-based electrical double-layer capacitors, also known as supercapacitors. Using a primitive model for ionic species, we study the effects of an impurity on the double layer structure and the integral capacitance of a room temperature ionic liquid in model electrode pores and find that an impurity strongly binding to the surface ofmore » a porous electrode can significantly alter the electric double layer structure and dampen the oscillatory dependence of the capacitance with the pore size of the electrode. Meanwhile, a strong affinity of the impurity with the ionic species affects the dependence of the integral capacitance on the pore size. Up to 30% increase in the integral capacitance can be achieved even at a very low impurity bulk concentration. As a result, by comparing with an ionic liquid mixture containing modified ionic species, we find that the cooperative effect of the bounded impurities is mainly responsible for the significant enhancement of the supercapacitor performance.« less

  5. Graphene/Ionic Liquid Composite Films and Ion Exchange

    PubMed Central

    Mo, Yufei; Wan, Yunfang; Chau, Alicia; Huang, Fuchuan

    2014-01-01

    Wettability of graphene is adjusted by the formation of various ionic surfaces combining ionic liquid (IL) self-assembly with ion exchange. The functionalized ILs were designed and synthesized with the goal of obtaining adjustable wettability. The wettability of the graphene surface bearing various anions was measured systematically. The effect of solvent systems on ion exchange ratios on the graphene surface has also been investigated. Meanwhile, the mechanical properties of the graphene/IL composite films were investigated on a nanometer scale. The elasticity and adhesion behavior of the thin film was determined with respected to the indentation deformation by colloid probe nanoindentation method. The results indicate that anions played an important role in determining graphene/IL composite film properties. In addition, surface wetting and mechanics can be quantitatively determined according to the counter-anions on the surface. This study might suggest an alternate way for quantity detection of surface ions by surface force. PMID:24970602

  6. Electrochemical Deposition of Niobium onto the Surface of Copper Using a Novel Choline Chloride-Based Ionic Liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wixtroma, Alex I.; Buhlera, Jessica E.; Reece, Charles E.

    2013-06-01

    Recent research has shown that choline chloride-based solutions can be used to replace acid-based electrochemical polishing solutions. In this study niobium metal was successfully deposited on the surface of copper substrate via electrochemical deposition using a novel choline chloride-based ionic liquid. The niobium metal used for deposition on the Cu had been dissolved in the solution from electrochemical polishing of a solid niobium piece prior to the deposition. The visible coating on the surface of the Cu was analyzed using scanning electron microscopy (SEM) and electron dispersive x-ray spectroscopy (EDX). This deposition method effectively recycles previously dissolved niobium from electrochemicalmore » polishing.« less

  7. A step toward the development of high-temperature stable ionic liquid-in-oil microemulsions containing double-chain anionic surface active ionic liquid.

    PubMed

    Rao, Vishal Govind; Banerjee, Chiranjib; Ghosh, Surajit; Mandal, Sarthak; Kuchlyan, Jagannath; Sarkar, Nilmoni

    2013-06-20

    Owing to their fascinating properties and wide range of potential applications, interest in nonaqueous microemulsions has escalated in the past decade. In the recent past, nonaqueous microemulsions containing ionic liquids (ILs) have been utilized in performing chemical reactions, preparation of nanomaterials, synthesis of nanostructured polymers, and drug delivery systems. The most promising fact about IL-in-oil microemulsions is their high thermal stability compared to that of aqueous microemulsions. Recently, surfactant-like properties of surface active ionic liquids (SAILs) have been used for preparation of microemulsions with high-temperature stability and temperature insensitivity. However, previously described methods present a limited possibility of developing IL-in-oil microemulsions with a wide range of thermal stability. With our previous work, we introduced a novel method of creating a huge number of IL-in-oil microemulsions (Rao, V. G.; Ghosh, S.; Ghatak, C.; Mandal, S.; Brahmachari, U.; Sarkar, N. J. Phys. Chem. B2012, 116, 2850-2855), composed of a SAIL as a surfactant, room-temperature ionic liquids as a polar phase, and benzene as a nonpolar phase. The use of benzene as a nonpolar solvent limits the application of the microemulsions to temperatures below 353 K. To overcome this limitation, we have synthesized N,N-dimethylethanolammonium 1,4-bis(2-ethylhexyl) sulfosuccinate (DAAOT), which was used as a surfactant. DAAOT in combination with isopropyl myristate (IPM, as an oil phase) and ILs (as a polar phase) produces a huge number of high-temperature stable IL-in-oil microemulsions. By far, this is the first report of a huge number of high-temperature stable IL-in-oil microemulsions. In particular, we demonstrate the wide range of thermal stability of [C6mim][TF2N]/DAAOT/IPM microemulsions by performing a phase behavior study, dynamic light scattering measurements, and (1)H NMR measurements and by using coumarin-480 (C-480) as a fluorescent probe

  8. High Current Ionic Diode Using Homogeneously Charged Asymmetric Nanochannel Network Membrane.

    PubMed

    Choi, Eunpyo; Wang, Cong; Chang, Gyu Tae; Park, Jungyul

    2016-04-13

    A high current ionic diode is achieved using an asymmetric nanochannel network membrane (NCNM) constructed by soft lithography and in situ self-assembly of nanoparticles with uniform surface charge. The asymmetric NCNM exhibits high rectified currents without losing a rectification ratio because of its ionic selectivity gradient and differentiated electrical conductance. Asymmetric ionic transport is analyzed with diode-like I-V curves and visualized via fluorescent dyes, which is closely correlated with ionic selectivity and ion distribution according to variation of NCNM geometries.

  9. Charge Transport and Phase Behavior of Imidazolium-Based Ionic Liquid Crystals from Fully Atomistic Simulations.

    PubMed

    Quevillon, Michael J; Whitmer, Jonathan K

    2018-01-02

    Ionic liquid crystals occupy an intriguing middle ground between room-temperature ionic liquids and mesostructured liquid crystals. Here, we examine a non-polarizable, fully atomistic model of the 1-alkyl-3-methylimidazolium nitrate family using molecular dynamics in the constant pressure-constant temperature ensemble. These materials exhibit a distinct "smectic" liquid phase, characterized by layers formed by the molecules, which separate the ionic and aliphatic moieties. In particular, we discuss the implications this layering may have for electrolyte applications.

  10. The 1-ethyl-3-methylimidazolium bis(trifluoro-methylsulfonyl)-imide ionic liquid nanodroplets on solid surfaces and in electric field: A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Dong, Dengpan; Vatamanu, Jenel P.; Wei, Xiaoyu; Bedrov, Dmitry

    2018-05-01

    Atomistic molecular dynamics simulations were conducted to study the wetting states of 1-ethyl-3-methylimidazolium bis(trifluoro-methylsulfonyl)-imide ionic liquid (IL) nanodroplets on surfaces with different strengths of van der Waals (VDW) interactions and in the presence of an electric field. By adjusting the depth of Lennard-Jones potential, the van der Waals interaction between the solid surface and ionic liquid was systematically varied. The shape of the droplets was analyzed to extract the corresponding contact angle utilized to characterize wetting states of the nanodroplets. The explored range of surface-IL interactions allowed contact angles ranging from complete IL spreading on the surface to poor wettability. The effect of the external electrical field was explored by adding point charges to the surface atoms. Systems with two charge densities (±0.002 e/atom and ±0.004 e/atom) that correspond to 1.36 V/nm and 2.72 V/nm electric fields were investigated. Asymmetrical wetting states were observed for both cases. At 1.36 V/nm electric field, contributions of IL-surface VDW interactions and Coulombic interactions to the wetting state were competitive. At 2.72 V/nm field, electrostatic interactions dominate the interaction between the nanodroplet and surface, leading to enhanced wettability on all surfaces.

  11. Strong Stretching of Poly(ethylene glycol) Brushes Mediated by Ionic Liquid Solvation.

    PubMed

    Han, Mengwei; Espinosa-Marzal, Rosa M

    2017-09-07

    We have measured forces between mica surfaces coated with a poly(ethylene glycol) (PEG) brush solvated by a vacuum-dry ionic liquid, 1-ethyl-3-methyl imidazolium bis(trifluoromethylsulfonyl)imide, with a surface forces apparatus. At high grafting density, the solvation mediated by the ionic liquid causes the brush to stretch twice as much as in water. Modeling of the steric repulsion indicates that PEG behaves as a polyelectrolyte; the hydrogen bonding between ethylene glycol and the imidazolium cation seems to effectively charge the polymer brush, which justifies the strong stretching. Importantly, under strong polymer compression, solvation layers are squeezed out at a higher rate than for the neat ionic liquid. We propose that the thermal fluctuations of the PEG chains, larger in the brush than in the mushroom configuration, maintain the fluidity of the ionic liquid under strong compression, in contrast to the solid-like squeezing-out behavior of the neat ionic liquid. This is the first experimental study of the behavior of a polymer brush solvated by an ionic liquid under nanoconfinement.

  12. Ionic depletion at the crystalline Gibbs layer of PEG-capped gold nanoparticle brushes at aqueous surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Wenjie; Zhang, Honghu; Mallapragada, Surya; Travesset, Alex; Vaknin, David

    2017-12-01

    In situ surface-sensitive x-ray diffraction and grazing incidence x-ray fluorescence spectroscopy (GIXFS) methods are combined to determine the ionic distributions across the liquid/vapor interfaces of thiolated-polyethylene-glycol-capped gold nanoparticle (PEG-AuNP) solutions. Induced by the addition of salts (i.e., Cs2SO4 ) to PEG-AuNPs solutions, two-dimensional hexagonal lattices of PEG-AuNPs form spontaneously at the aqueous surfaces, as is demonstrated by x-ray reflectivity and grazing incidence small-angle x-ray scattering. By taking advantage of element specificity with the GIXFS method, we find that the cation Cs+ concentration at the crystalline film is significantly reduced in parts of the PEG-AuNP film compared with that in the bulk.

  13. Temperature-triggered micellization of block copolymers on an ionic liquid surface.

    PubMed

    Lu, Haiyun; Akgun, Bulent; Wei, Xinyu; Li, Le; Satija, Sushil K; Russell, Thomas P

    2011-10-18

    In situ neutron reflectivity was used to study thermally induced structural changes of the lamellae-forming polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) block copolymer thin films floating on the surface of an ionic liquid (IL). The IL, 1-butyl-3-methylimidazolium trifluoromethanesulfonate, is a nonsolvent for PS and a temperature-tunable solvent for P2VP, and, as such, micellization can be induced at the air-IL interface by changing the temperature. Transmission electron microscopy and scanning force microscopy were used to investigate the resultant morphologies of the micellar films. It was found that highly ordered nanostructures consisting of spherical micelles with a PS core surrounded by a P2VP corona were produced. In addition, bilayer films of PS homopolymer on top of a PS-b-P2VP layer also underwent micellization with increasing temperature but the micellization was strongly dependent on the thickness of the PS and PS-b-P2VP layers. © 2011 American Chemical Society

  14. Charge Transport and Phase Behavior of Imidazolium-Based Ionic Liquid Crystals from Fully Atomistic Simulations

    PubMed Central

    2018-01-01

    Ionic liquid crystals occupy an intriguing middle ground between room-temperature ionic liquids and mesostructured liquid crystals. Here, we examine a non-polarizable, fully atomistic model of the 1-alkyl-3-methylimidazolium nitrate family using molecular dynamics in the constant pressure–constant temperature ensemble. These materials exhibit a distinct “smectic” liquid phase, characterized by layers formed by the molecules, which separate the ionic and aliphatic moieties. In particular, we discuss the implications this layering may have for electrolyte applications. PMID:29301305

  15. Mixed ionic-electronic conductor-based radiation detectors and methods of fabrication

    DOEpatents

    Conway, Adam; Beck, Patrick R; Graff, Robert T; Nelson, Art; Nikolic, Rebecca J; Payne, Stephen A; Voss, Lars; Kim, Hadong

    2015-04-07

    A method of fabricating a mixed ionic-electronic conductor (e.g. TlBr)-based radiation detector having halide-treated surfaces and associated methods of fabrication, which controls polarization of the mixed ionic-electronic MIEC material to improve stability and operational lifetime.

  16. Imidazolium-based ionic liquids used as additives in the nanolubrication of silicon surfaces.

    PubMed

    Amorim, Patrícia M; Ferraria, Ana M; Colaço, Rogério; Branco, Luís C; Saramago, Benilde

    2017-01-01

    In recent years, with the development of micro/nanoelectromechanical systems (MEMS/NEMS), the demand for efficient lubricants of silicon surfaces intensified. Although the use of ionic liquids (ILs) as additives to base oils in the lubrication of steel/steel or other types of metal/ metal tribological pairs has been investigated, the number of studies involving Si is very low. In this work, we tested imidazolium-based ILs as additives to the base oil polyethylene glycol (PEG) to lubricate Si surfaces. The friction coefficients were measured in a nanotribometer. The viscosity of the PEG + IL mixtures as well as their contact angles on the Si surface were measured. The topography and chemical composition of the substrates surfaces were determined with atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS), respectively. Due to the hygroscopic properties of PEG, the first step was to assess the effect of the presence of water. Then, a series of ILs based on the cations 1-ethyl-3-methylimidazolium [EMIM], 1-butyl-3-methylimidazolium [BMIM], 1-ethyl-3-vinylimidazolium [EVIM], 1-(2-hydroxyethyl)-3-methylimidazolium [C 2 OHMIM] and 1-allyl-3-methylimidazolium [AMIM] combined with the anions dicyanamide [DCA], trifluoromethanesulfonate [TfO], and ethylsulfate [EtSO 4 ] were added to dry PEG. All additives (2 wt %) led to a decrease in friction coefficient as well as an increase in viscosity (with the exception of [AMIM][TfO]) and improved the Si wettability. The additives based on the anion [EtSO 4 ] exhibited the most promising tribological behavior, which was attributed to the strong interaction with the Si surface ensuring the formation of a stable surface layer, which hinders the contact between the sliding surfaces.

  17. Neptunium(V) Adsorption to Bacteria at Low and High Ionic Strength

    NASA Astrophysics Data System (ADS)

    Ams, D.; Swanson, J. S.; Reed, D. T.

    2010-12-01

    Np(V) is expected to be the predominant oxidation state of neptunium in aerobic natural waters. Np(V), as the NpO2+ aquo and associated complexed species, is readily soluble, interacts weakly with geologic media, and has a high redox stability under a relatively wide range of subsurface conditions. These chemical properties, along with a long half-life make it a primary element of concern regarding long-term nuclear waste storage and subsurface containment. The fate and transport of neptunium in the environment may be influenced by adsorption onto bacterial surfaces. The adsorption of neptunium to bacterial surfaces ties the mobility of the contaminant to the mobility of the bacterium. In this study, the adsorption of the neptunyl (NpO2+) ion was evaluated at low ionic strength on a common soil bacterium and at high ionic strength on a halophilic bacterium isolated from a briny groundwater near the Waste Isolation Pilot Plant (WIPP) in southeast New Mexico. Adsorption experiments were performed in batch reactors as a function of pH, ionic strength, and bacteria/Np mass ratio. Np(V) adsorption was modeled using a surface complexation approach with the mathematical program FITEQL to determine functional group specific binding constants. The data from acid and base titrations of the bacteria used were also modeled to estimate the concentrations and deprotonation constants of discrete bacterial surface functional groups. Bacterial functional group characteristics and Np(V) adsorption behavior between the soil bacterium and the halophilic bacterium were compared. These results highlight key similarities and differences in actinide adsorption behavior in environments of significantly different ionic strength. The observed adsorption behavior may be linked to similarities and differences in the characteristics of the moieties between the cell walls of common gram-negative soil and halophilic bacteria. Moreover, differences in adsorption behavior may also reflect ionic

  18. Ionic liquid as an electrolyte additive for high performance lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Deyab, M. A.

    2018-06-01

    The performance of lead-acid battery is improved in this work by inhibiting the corrosion of negative battery electrode (lead) and hydrogen gas evolution using ionic liquid (1-ethyl-3-methylimidazolium diethyl phosphate). The results display that the addition of ionic liquid to battery electrolyte (5.0 M H2SO4 solution) suppresses the hydrogen gas evolution to very low rate 0.049 ml min-1 cm-2 at 80 ppm. Electrochemical studies show that the adsorption of ionic liquid molecules on the lead electrode surface leads to the increase in the charge transfer resistance and the decrease in the double layer capacitance. I also notice a noteworthy improvement of battery capacity from 45 mAh g-1 to 83 mAh g-1 in the presence of ionic liquid compound. Scanning electron microscopy and energy dispersive X-ray analysis confirm the adsorption of ionic liquid molecules on the battery electrode surface.

  19. Evolution of carboxymethyl cellulose layer morphology on hydrophobic mineral surfaces: variation of polymer concentration and ionic strength.

    PubMed

    Beaussart, Audrey; Mierczynska-Vasilev, Agnieszka; Beattie, David A

    2010-06-15

    The adsorption of carboxymethyl cellulose (CMC) on the basal planes of talc and molybdenite has been studied using in situ atomic force microscope (AFM) imaging. These experiments were partnered with quantitative adsorption isotherm determinations on particulate samples. The isotherms revealed a clear increase of the CMC adsorbed amount upon increasing the solution ionic strength for adsorption on both minerals. In addition, the shapes of the isotherms changed in response to the change in the electrolyte concentration, with CMC on talc displaying stepped (10(-3) M KCl), Langmuir (10(-2) M KCl), then Freundlich isotherm shapes (10(-1) M KCl), and CMC on molybdenite displaying stepped (10(-3) M KCl), Freundlich (10(-2) M KCl), then Langmuir isotherm shapes (10(-1) M KCl). AFM imaging of the polymer layer on the mineral surfaces with varying solution conditions mirrored and confirmed the conclusions from the isotherms: as the polymer solution concentration increased, coverage on the basal plane increased; as the ionic strength increased, coverage on the basal plane increased and the morphology of the layer changed from isolated well-distributed polymer domains to extensive adsorption and formation of dense, uneven polymer domains/features. In addition, comparison of the talc and molybdenite datasets points toward the presence of different binding mechanisms for CMC adsorption on the talc and molybdenite basal plane surfaces. 2010 Elsevier Inc. All rights reserved.

  20. The electrode/ionic liquid interface: electric double layer and metal electrodeposition.

    PubMed

    Su, Yu-Zhuan; Fu, Yong-Chun; Wei, Yi-Min; Yan, Jia-Wei; Mao, Bing-Wei

    2010-09-10

    The last decade has witnessed remarkable advances in interfacial electrochemistry in room-temperature ionic liquids. Although the wide electrochemical window of ionic liquids is of primary concern in this new type of solvent for electrochemistry, the unusual bulk and interfacial properties brought about by the intrinsic strong interactions in the ionic liquid system also substantially influence the structure and processes at electrode/ionic liquid interfaces. Theoretical modeling and experimental characterizations have been indispensable in reaching a microscopic understanding of electrode/ionic liquid interfaces and in elucidating the physics behind new phenomena in ionic liquids. This Minireview describes the status of some aspects of interfacial electrochemistry in ionic liquids. Emphasis is placed on high-resolution and molecular-level characterization by scanning tunneling microscopy and vibrational spectroscopies of interfacial structures, and the initial stage of metal electrodeposition with application in surface nanostructuring.

  1. Influence of trehalose on the interaction of curcumin with surface active ionic liquid micelle and its vesicular aggregate composed of a non-ionic surfactant sorbitan stearate

    NASA Astrophysics Data System (ADS)

    Roy, Arpita; Dutta, Rupam; Sarkar, Nilmoni

    2016-11-01

    The present investigation unravels the effect of trehalose on 1-hexadecyl-3-methylimidazolium chloride ([C16mim]Cl), a cationic surface active ionic liquid (SAIL) micelle and SAIL ([C16mim]Cl)-nonionic surfactant (Sorbitan Stearate, Span 60) based vesicles. The influence of trehalose on size and morphology of the aggregates has been investigated using dynamic light scattering (DLS) and transmission electron microscopic (TEM) measurements. Besides, we have studied the dynamic properties of curcumin inside these aggregates using fluorescence spectroscopic based techniques. The results revealed that trehalose molecules play crucial role in modulation of the photophysical properties of curcumin in these organized assemblies.

  2. Controlling Ionic Transport for Device Design in Synthetic Nanopores

    NASA Astrophysics Data System (ADS)

    Kalman, Eric Boyd

    Polymer nanopores present a number of behaviors not seen in microscale systems, such as ion current rectification, ionic selectivity, size exclusion and potential dependent ion concentrations in and near the pore. The existence of these effects stems from the small size of nanopores with respect to the characteristic length scales of surface interactions at the interface between the nanopore surface and the solution within it. The large surface-to-volume ratio due to the nanoscale geometry of a nanopore, as well as similarity in scale between geometry and interaction demands the solution interact with the nanopore walls. As surfaces in solution almost always carry residual charge, these surface forces are primarily the electrostatic interactions between the charge groups on the pore surface and the ions in solution. These interactions may be used by the experimentalist to control ionic transport through synthetic nanopores, and use them as a template for the construction of devices. In this research, we present our work on creating a number of ionic analogs to seminal electronic devices, specifically diodes, and transistors, by controlling ionic transport through the electrostatic interactions between a single synthetic nanopore and ions. Control is achieved by "doping" the effective charge carrier concentration in specific regions of the nanopore through manipulation of the pore's surface charge. This manipulation occurs through two mechanisms: chemical modification of the surface charge and electrostatic manipulation of the local internal nanopore potential using a gate electrode. Additionally, the innate selectivity of the charged nanopores walls allows for the separation of charges in solution. This well-known effect, which spawns measureable quantities, the streaming potential and current, has been used to create nanoscale water desalination membranes. We attempt to create a device using membranes with large nanopore densities for the desalination of water

  3. The solvation structures of cellulose microfibrils in ionic liquids.

    PubMed

    Mostofian, Barmak; Smith, Jeremy C; Cheng, Xiaolin

    2011-12-01

    The use of ionic liquids for non-derivatized cellulose dissolution promises an alternative method for the thermochemical pretreatment of biomass that may be more efficient and environmentally acceptable than more conventional techniques in aqueous solution. Here, we performed equilibrium MD simulations of a cellulose microfibril in the ionic liquid 1-butyl-3-methylimidazolium chloride (BmimCl) and compared the solute structure and the solute-solvent interactions at the interface with those from corresponding simulations in water. The results indicate a higher occurrence of solvent-exposed orientations of cellulose surface hydroxymethyl groups in BmimCl than in water. Moreover, spatial and radial distribution functions indicate that hydrophilic surfaces are a preferred site of interaction between cellulose and the ionic liquid. In particular, hydroxymethyl groups on the hydrophilic fiber surface adopt a different conformation from their counterparts oriented towards the fiber's core. Furthermore, the glucose units with these solvent-oriented hydroxymethyls are surrounded by the heterocyclic organic cation in a preferred parallel orientation, suggesting a direct and distinct interaction scheme between cellulose and BmimCl.

  4. Ionic electroactive hybrid transducers

    NASA Astrophysics Data System (ADS)

    Akle, Barbar J.; Bennett, Matthew D.; Leo, Donald J.

    2005-05-01

    Ionic electroactive actuators have received considerable attention in the past ten years. Ionic electroactive polymers, sometimes referred to as artificial muscles, have the ability to generate large bending strain and moderate stress at low applied voltages. Typical types of ionic electroactive polymer transducers include ionic polymers, conducting polymers, and carbon nanotubes. Preliminary research combining multiple types of materials proved to enhance certain transduction properties such as speed of response, maximum strain, or quasi-static actuation. Recently it was demonstrated that ionomer-ionic liquid transducers can operate in air for long periods of time (>250,000 cycles) and showed potential to reduce or eliminate the back-relaxation issue associated with ionomeric polymers. In addition, ionic liquids have higher electrical stability window than those operated with water as the solvent thereby increasing the maximum strain that the actuator can produce. In this work, a new technique developed for plating metal particulates on the surface of ionomeric materials is applied to the development of hybrid transducers that incorporate carbon nanotubes and conducting polymers as electrode materials. The new plating technique, named the direct assembly process, consists of mixing a conducting powder with an ionomer solution. This technique has demonstrated improved response time and strain output as compared to previous methods. Furthermore, the direct assembly process is less costly to implement than traditional impregnation-reduction methods due to less dependence on reducing agents, it requires less time, and is easier to implement than other processes. Electrodes applied using this new technique of mixing RuO2 (surface area 45~65m2/g) particles and Nafion dispersion provided 5x the displacement and 10x the force compared to a transducer made with conventional methods. Furthermore, the study illustrated that the response speed of the transducer is optimized

  5. Ionic Strength Modulation of the Free Energy Landscape of Aβ40 Peptide Fibril Formation.

    PubMed

    Abelein, Axel; Jarvet, Jüri; Barth, Andreas; Gräslund, Astrid; Danielsson, Jens

    2016-06-01

    Protein misfolding and formation of cross-β structured amyloid fibrils are linked to many neurodegenerative disorders. Although recently developed quantitative approaches have started to reveal the molecular nature of self-assembly and fibril formation of proteins and peptides, it is yet unclear how these self-organization events are precisely modulated by microenvironmental factors, which are known to strongly affect the macroscopic aggregation properties. Here, we characterize the explicit effect of ionic strength on the microscopic aggregation rates of amyloid β peptide (Aβ40) self-association, implicated in Alzheimer's disease. We found that physiological ionic strength accelerates Aβ40 aggregation kinetics by promoting surface-catalyzed secondary nucleation reactions. This promoted catalytic effect can be assigned to shielding of electrostatic repulsion between monomers on the fibril surface or between the fibril surface itself and monomeric peptides. Furthermore, we observe the formation of two different β-structured states with similar but distinct spectroscopic features, which can be assigned to an off-pathway immature state (Fβ*) and a mature stable state (Fβ), where salt favors formation of the Fβ fibril morphology. Addition of salt to preformed Fβ* accelerates transition to Fβ, underlining the dynamic nature of Aβ40 fibrils in solution. On the basis of these results we suggest a model where salt decreases the free-energy barrier for Aβ40 folding to the Fβ state, favoring the buildup of the mature fibril morphology while omitting competing, energetically less favorable structural states.

  6. Ionic depletion at the crystalline Gibbs layer of PEG-capped gold nanoparticle brushes at aqueous surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wenjie; Zhang, Honghu; Mallapragada, Surya

    In situ surface-sensitive x-ray diffraction and grazing incidence x-ray fluorescence spectroscopy (GIXFS) methods are combined to determine the ionic distributions across the liquid/vapor interfaces of thiolated-polyethylene-glycol–capped gold nanoparticle (PEG-AuNP) solutions. Induced by the addition of salts (i.e., Cs 2SO 4) to PEG-AuNPs solutions, two-dimensional hexagonal lattices of PEG-AuNPs form spontaneously at the aqueous surfaces, as is demonstrated by x-ray reflectivity and grazing incidence small-angle x-ray scattering. In conclusion, by taking advantage of element specificity with the GIXFS method, we find that the cation Cs + concentration at the crystalline film is significantly reduced in parts of the PEG-AuNP film comparedmore » with that in the bulk.« less

  7. Ionic depletion at the crystalline Gibbs layer of PEG-capped gold nanoparticle brushes at aqueous surfaces

    DOE PAGES

    Wang, Wenjie; Zhang, Honghu; Mallapragada, Surya; ...

    2017-12-14

    In situ surface-sensitive x-ray diffraction and grazing incidence x-ray fluorescence spectroscopy (GIXFS) methods are combined to determine the ionic distributions across the liquid/vapor interfaces of thiolated-polyethylene-glycol–capped gold nanoparticle (PEG-AuNP) solutions. Induced by the addition of salts (i.e., Cs 2SO 4) to PEG-AuNPs solutions, two-dimensional hexagonal lattices of PEG-AuNPs form spontaneously at the aqueous surfaces, as is demonstrated by x-ray reflectivity and grazing incidence small-angle x-ray scattering. In conclusion, by taking advantage of element specificity with the GIXFS method, we find that the cation Cs + concentration at the crystalline film is significantly reduced in parts of the PEG-AuNP film comparedmore » with that in the bulk.« less

  8. Topological defects in electric double layers of ionic liquids at carbon interfaces

    DOE PAGES

    Black, Jennifer M.; Okatan, Mahmut Baris; Feng, Guang; ...

    2015-06-07

    The structure and properties of the electrical double layer in ionic liquids is of interest in a wide range of areas including energy storage, catalysis, lubrication, and many more. Theories describing the electrical double layer for ionic liquids have been proposed, however a full molecular level description of the double layer is lacking. To date, studies have been predominantly focused on ion distributions normal to the surface, however the 3D nature of the electrical double layer in ionic liquids requires a full picture of the double layer structure not only normal to the surface, but also in plane. Here wemore » utilize 3D force mapping to probe the in plane structure of an ionic liquid at a graphite interface and report the direct observation of the structure and properties of topological defects. The observation of ion layering at structural defects such as step-edges, reinforced by molecular dynamics simulations, defines the spatial resolution of the method. Observation of defects allows for the establishment of the universality of ionic liquid behavior vs. separation from the carbon surface and to map internal defect structure. In conclusion, these studies offer a universal pathway for probing the internal structure of topological defects in soft condensed matter on the nanometer level in three dimensions.« less

  9. Water Contaminant Mitigation in Ionic Liquid Propellant

    NASA Technical Reports Server (NTRS)

    Conroy, David; Ziemer, John

    2009-01-01

    Appropriate system and operational requirements are needed in order to ensure mission success without unnecessary cost. Purity requirements applied to thruster propellants may flow down to materials and operations as well as the propellant preparation itself. Colloid electrospray thrusters function by applying a large potential to a room temperature liquid propellant (such as an ionic liquid), inducing formation of a Taylor cone. Ions and droplets are ejected from the Taylor cone and accelerated through a strong electric field. Electrospray thrusters are highly efficient, precise, scaleable, and demonstrate low thrust noise. Ionic liquid propellants have excellent properties for use as electrospray propellants, but can be hampered by impurities, owing to their solvent capabilities. Of foremost concern is the water content, which can result from exposure to atmosphere. Even hydrophobic ionic liquids have been shown to absorb water from the air. In order to mitigate the risks of bubble formation in feed systems caused by water content of the ionic liquid propellant, physical properties of the ionic liquid EMI-Im are analyzed. The effects of surface tension, material wetting, physisorption, and geometric details of the flow manifold and electrospray emitters are explored. Results are compared to laboratory test data.

  10. Imidazolium-based ionic liquids used as additives in the nanolubrication of silicon surfaces

    PubMed Central

    Amorim, Patrícia M; Ferraria, Ana M; Colaço, Rogério; Branco, Luís C

    2017-01-01

    In recent years, with the development of micro/nanoelectromechanical systems (MEMS/NEMS), the demand for efficient lubricants of silicon surfaces intensified. Although the use of ionic liquids (ILs) as additives to base oils in the lubrication of steel/steel or other types of metal/ metal tribological pairs has been investigated, the number of studies involving Si is very low. In this work, we tested imidazolium-based ILs as additives to the base oil polyethylene glycol (PEG) to lubricate Si surfaces. The friction coefficients were measured in a nanotribometer. The viscosity of the PEG + IL mixtures as well as their contact angles on the Si surface were measured. The topography and chemical composition of the substrates surfaces were determined with atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS), respectively. Due to the hygroscopic properties of PEG, the first step was to assess the effect of the presence of water. Then, a series of ILs based on the cations 1-ethyl-3-methylimidazolium [EMIM], 1-butyl-3-methylimidazolium [BMIM], 1-ethyl-3-vinylimidazolium [EVIM], 1-(2-hydroxyethyl)-3-methylimidazolium [C2OHMIM] and 1-allyl-3-methylimidazolium [AMIM] combined with the anions dicyanamide [DCA], trifluoromethanesulfonate [TfO], and ethylsulfate [EtSO4] were added to dry PEG. All additives (2 wt %) led to a decrease in friction coefficient as well as an increase in viscosity (with the exception of [AMIM][TfO]) and improved the Si wettability. The additives based on the anion [EtSO4] exhibited the most promising tribological behavior, which was attributed to the strong interaction with the Si surface ensuring the formation of a stable surface layer, which hinders the contact between the sliding surfaces. PMID:29046844

  11. Mesoscale studies of ionic closed membranes with polyhedral geometries

    DOE PAGES

    Olvera de la Cruz, Monica

    2016-06-01

    Large crystalline molecular shells buckle spontaneously into icosahedra while multicomponent shells buckle into various polyhedra. Continuum elastic theory explains the buckling of closed shells with one elastic component into icosahedra. A generalized elastic model, on the other hand, describes the spontaneous buckling of inhomogeneous shells into regular and irregular polyhedra. By coassembling water-insoluble anionic (–1) amphiphiles with cationic (3+) amphiphiles, we realized ionic vesicles. Results revealed that surface crystalline domains and the unusual shell shapes observed arise from the competition of ionic correlations with charge-regulation. We explain here the mechanism by which these ionic membranes generate a mechanically heterogeneous vesicle.

  12. Response surface optimization of pH and ionic strength for emulsion characteristics of egg yolk.

    PubMed

    Kurt, S; Zorba, O

    2009-11-01

    Effects of pH (3.5, 4.5, 6.0, 7.5, and 8.5) and ionic strength (0.05, 0.15, 0.30, 0.45, and 0.55 M NaCl) on emulsion capacity, emulsion stability (ES), apparent yield stress of emulsion (AYS), and emulsion density (ED) of egg yolk were studied by using a model system. Ionic strength and pH had significant (P < 0.01) effects on the emulsion characteristics of egg yolk. Their interaction effects also have been found significant on ES, AYS, and ED. Predicted solutions of ES, emulsion capacity, and ED were minimum. The critical point of ES was determined to be at pH 6.08 and an ionic strength of 0.49 (M NaCl). Predicted solution for AYS was a maximum, which was determined to be at pH 6.04 and an ionic strength of 0.29 (M NaCl). Optimum values of pH and ionic strenght were 4.61 to 7.43 and 0.10 to 0.47, respectively.

  13. Role of Electrical Double Layer Structure in Ionic Liquid Gated Devices.

    PubMed

    Black, Jennifer M; Come, Jeremy; Bi, Sheng; Zhu, Mengyang; Zhao, Wei; Wong, Anthony T; Noh, Joo Hyon; Pudasaini, Pushpa R; Zhang, Pengfei; Okatan, Mahmut Baris; Dai, Sheng; Kalinin, Sergei V; Rack, Philip D; Ward, Thomas Zac; Feng, Guang; Balke, Nina

    2017-11-22

    Ionic liquid gating of transition metal oxides has enabled new states (magnetic, electronic, metal-insulator), providing fundamental insights into the physics of strongly correlated oxides. However, despite much research activity, little is known about the correlation of the structure of the liquids in contact with the transition metal oxide surface, its evolution with the applied electric potential, and its correlation with the measured electronic properties of the oxide. Here, we investigate the structure of an ionic liquid at a semiconducting oxide interface during the operation of a thin film transistor where the electrical double layer gates the device using experiment and theory. We show that the transition between the ON and OFF states of the amorphous indium gallium zinc oxide transistor is accompanied by a densification and preferential spatial orientation of counterions at the oxide channel surface. This process occurs in three distinct steps, corresponding to ion orientations, and consequently, regimes of different electrical conductivity. The reason for this can be found in the surface charge densities on the oxide surface when different ion arrangements are present. Overall, the field-effect gating process is elucidated in terms of the interfacial ionic liquid structure, and this provides unprecedented insight into the working of a liquid gated transistor linking the nanoscopic structure to the functional properties. This knowledge will enable both new ionic liquid design as well as advanced device concepts.

  14. Molecular Simulation of Ionic Polyimides and Composites with Ionic Liquids as Gas-Separation Membranes.

    PubMed

    Abedini, Asghar; Crabtree, Ellis; Bara, Jason E; Turner, C Heath

    2017-10-24

    Polyimides are at the forefront of advanced membrane materials for CO 2 capture and gas-purification processes. Recently, ionic polyimides (i-PIs) have been reported as a new class of condensation polymers that combine structural components of both ionic liquids (ILs) and polyimides through covalent linkages. In this study, we report CO 2 and CH 4 adsorption and structural analyses of an i-PI and an i-PI + IL composite containing [C 4 mim][Tf 2 N]. The combination of molecular dynamics (MD) and grand canonical Monte Carlo (GCMC) simulations is used to compute the gas solubility and the adsorption performance with respect to the density, fractional free volume (FFV), and surface area of the materials. Our results highlight the polymer relaxation process and its correlation to the gas solubility. In particular, the surface area can provide meaningful guidance with respect to the gas solubility, and it tends to be a more sensitive indicator of the adsorption behavior versus only considering the system density and FFV. For instance, as the polymer continues to relax, the density, FFV, and pore-size distribution remain constant while the surface area can continue to increase, enabling more adsorption. Structural analyses are also conducted to identify the nature of the gas adsorption once the ionic liquid is added to the polymer. The presence of the IL significantly displaces the CO 2 molecules from the ligand nitrogen sites in the neat i-PI to the imidazolium rings in the i-PI + IL composite. However, the CH 4 molecules move from the imidazolium ring sites in the neat i-PI to the ligand nitrogen atoms in the i-PI + IL composite. These molecular details can provide critical information for the experimental design of highly selective i-PI materials as well as provide additional guidance for the interpretation of the simulated adsorption systems.

  15. Composites of ionic liquid and amine-modified SAPO 34 improve CO2 separation of CO2-selective polymer membranes

    NASA Astrophysics Data System (ADS)

    Hu, Leiqing; Cheng, Jun; Li, Yannan; Liu, Jianzhong; Zhang, Li; Zhou, Junhu; Cen, Kefa

    2017-07-01

    Mixed matrix membranes with ionic liquids and molecular sieve particles had high CO2 permeabilities, but CO2 separation from small gas molecules such as H2 was dissatisfied because of bad interfacial interaction between ionic liquid and molecular sieve particles. To solve that, amine groups were introduced to modify surface of molecular sieve particles before loading with ionic liquid. SAPO 34 was adopted as the original filler, and four mixed matrix membranes with different fillers were prepared on the outer surface of ceramic hollow fibers. Both surface voids and hard agglomerations disappeared, and the surface became smooth after SAPO 34 was modified by amine groups and ionic liquid [P66614][2-Op]. Mixed matrix membranes with composites of amine-modified SAPO 34 and ionic liquid exhibited excellent CO2 permeability (408.9 Barrers) and CO2/H2 selectivity (22.1).

  16. Linear and Star Poly(ionic liquid) Assemblies: Surface Monolayers and Multilayers.

    PubMed

    Erwin, Andrew J; Xu, Weinan; He, Hongkun; Matyjaszewski, Krzysztof; Tsukruk, Vladimir V

    2017-04-04

    The surface morphology and organization of poly(ionic liquid)s (PILs), poly[1-(4-vinylbenzyl)-3-butylimidazolium bis(trifluoromethylsulfonyl)imide] are explored in conjunction with their molecular architecture, adsorption conditions, and postassembly treatments. The formation of stable PIL Langmuir and Langmuir-Blodgett (LB) monolayers at the air-water and air-solid interfaces is demonstrated. The hydrophobic bis(trifluoromethylsulfonyl)imide (Tf 2 N - ) is shown to be a critical agent governing the assembly morphology, as observed in the reversible condensation of LB monolayers into dense nanodroplets. The PIL is then incorporated as an unconventional polyelectrolyte component in the layer-by-layer (LbL) films of hydrophobic character. We demonstrate that the interplay of capillary forces, macromolecular mobility, and structural relaxation of the polymer chains influence the dewetting mechanisms in the PIL multilayers, thereby enabling access to a diverse set of highly textured, porous, and interconnected network morphologies for PIL LbL films that would otherwise be absent in conventional LbL films. Their compartmentalized internal structure is relevant to molecular separation membranes, ultrathin hydrophobic coatings, targeted cargo delivery, and highly conductive films.

  17. Symmetric supercapacitor: Sulphurized graphene and ionic liquid.

    PubMed

    Shaikh, Jasmin S; Shaikh, Navajsharif S; Kharade, Rohini; Beknalkar, Sonali A; Patil, Jyoti V; Suryawanshi, Mahesh P; Kanjanaboos, Pongsakorn; Hong, Chang Kook; Kim, Jin Hyeok; Patil, Pramod S

    2018-10-01

    Symmetric supercapacitor is advanced over simple supercapacitor device due to their stability over a large potential window and high energy density. Graphene is a desired candidate for supercapacitor application since it has a high surface area, good electronic conductivity and high electro chemical stability. There is a pragmatic use of ionic liquid electrolyte for supercapacitor due to its stability over a large potential window, good ionic conductivity and eco-friendly nature. For high performance supercapacitor, the interaction between ionic liquid electrolyte and graphene are crucial for better charge transportation. In respect of this, a three-dimensional (3D) nanoporous honeycomb shaped sulfur embedded graphene (S-graphene) has been synthesized by simple chemical method. Here, the fabrication of high performance symmetric supercapacitor is done by using S-graphene as an electrode and [BMIM-PF 6 ] as an electrolyte. The particular architecture of S-graphene benefited to reduce the ion diffusion resistance, providing the large surface area for charge transportation and efficient charge storage. The S-graphene and ionic liquid-based symmetric supercapacitor device showed the large potential window of 3.2 V with high energy density 124 Wh kg -1 at 0.2 A g -1 constant applied current density. Furthermore, this device shows good cycling performance (stability) with a capacitive retention of 95% over 20,000 cycles at a higher current density of 2 A g -1 . Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Ionic strength effects on silicic acid (H4SiO4) sorption and oligomerization on an iron oxide surface: an interesting interplay between electrostatic and chemical forces.

    PubMed

    Hamid, Rossuriati Dol; Swedlund, Peter J; Song, Yantao; Miskelly, Gordon M

    2011-11-01

    The effect of ionic strength on reactions at aqueous interfaces can provide insights into the nature of the chemistry involved. The adsorption of H(4)SiO(4) on iron oxides at low surface silicate concentration (Γ(Si)) forms monomeric silicate complexes with Fe-O-Si linkages, but as Γ(Si) increases silicate oligomers with Si-O-Si linkages become increasingly prevalent. In this paper, the effect of ionic strength (I) on both Γ(Si) and the extent of silicate oligomerization on the ferrihydrite surface is determined at pH 4, 7, and 10, where the surface is, respectively, positive, nearly neutral, and negatively charged. At pH 4, an increase in ionic strength causes Γ(Si) to decrease at a given H(4)SiO(4) solution concentration, while the proportion of oligomers on the surface at a given Γ(Si) increases. At pH 10, the opposite is observed; Γ(Si) increases as I increases, while the proportion of surface oligomers at a given Γ(Si) decreases. Ionic strength has only a small effect on the surface chemistry of H(4)SiO(4) at pH 7, but at low Γ(Si) this effect is in the direction observed at pH 4 while at high Γ(Si) the effect is in the direction observed at pH 10. The pH where the surface has zero charge decreases from ≈8 to 6 as Γ(Si) increases so that the surface potential (Ψ) is positive at pH 4 for all Γ(Si) and at pH 7 with low Γ(Si). Likewise, Ψ < 0 at pH 10 for all Γ(Si) and at pH 7 with high Γ(Si). The diffuse layer model is used to unravel the complex and subtle interactions between surface potential (Ψ) and chemical parameters that influence interfacial silicate chemistry. This analysis reveals that the decrease in the absolute value of Ψ as I increases causes Γ(Si) to decrease or increase where Ψ is, respectively, positive or negative. Therefore, at a given Γ(Si), the solution H(4)SiO(4) concentration changes with I, and because oligomerization has a higher H(4)SiO(4) stoichiometry coefficient than monomer adsorption, this results in the

  19. Boundary layer charge dynamics in ionic liquid-ionic polymer transducers

    NASA Astrophysics Data System (ADS)

    Davidson, Jacob D.; Goulbourne, N. C.

    2011-01-01

    Ionic polymer transducers (IPTs), also known as ionic polymer-metal composites, are soft sensors and actuators which operate through a coupling of microscale chemical, electrical, and mechanical interactions. The use of an ionic liquid as solvent for an IPT has been shown to dramatically increase transducer lifetime in free-air use, while also allowing for higher applied voltages without electrolysis. In this work, we apply Nernst-Planck/Poisson theory to model charge transport in an ionic liquid IPT by considering a certain fraction of the ionic liquid ions as mobile charge carriers, a phenomenon which is unique to ionic liquid IPTs compared to their water-based counterparts. Numerical simulations are performed using the finite element method to examine how the introduction of another pair of mobile ions affects boundary layer charge dynamics, concentration, and charge density distributions in the electric double layer, and the overall charge transferred and current response of the IPT. Due to interactions with the Nafion ionomer, not all of the ionic liquid ions will function as mobile charge carriers; only a certain fraction will exist as "free" ions. The presence of mobile ionic liquid ions in the transducer will increase the overall charge transferred when a voltage is applied, and cause the current in the transducer to decay more slowly. The additional mobile ions also cause the ionic concentration profiles to exhibit a nonlinear dynamic response, characterized by nonmonotonic ionic concentration profiles in space and time. Although the presence of mobile ionic liquid ions increases the overall amount of charge transferred, this additional charge transfer occurs in a somewhat symmetric manner. Therefore, the additional charge transferred due to the ionic liquid ions does not greatly increase the net bending moment of the transducer; in fact, it is possible that ionic liquid ion movement actually decreases the observed bending response. This suggests that an

  20. Acidic Ionic Liquids.

    PubMed

    Amarasekara, Ananda S

    2016-05-25

    Ionic liquid with acidic properties is an important branch in the wide ionic liquid field and the aim of this article is to cover all aspects of these acidic ionic liquids, especially focusing on the developments in the last four years. The structural diversity and synthesis of acidic ionic liquids are discussed in the introduction sections of this review. In addition, an unambiguous classification system for various types of acidic ionic liquids is presented in the introduction. The physical properties including acidity, thermo-physical properties, ionic conductivity, spectroscopy, and computational studies on acidic ionic liquids are covered in the next sections. The final section provides a comprehensive review on applications of acidic ionic liquids in a wide array of fields including catalysis, CO2 fixation, ionogel, electrolyte, fuel-cell, membrane, biomass processing, biodiesel synthesis, desulfurization of gasoline/diesel, metal processing, and metal electrodeposition.

  1. Microscopic properties of ionic liquid/organic semiconductor interfaces revealed by molecular dynamics simulations.

    PubMed

    Yokota, Yasuyuki; Miyamoto, Hiroo; Imanishi, Akihito; Takeya, Jun; Inagaki, Kouji; Morikawa, Yoshitada; Fukui, Ken-Ichi

    2018-05-09

    Electric double-layer transistors based on ionic liquid/organic semiconductor interfaces have been extensively studied during the past decade because of their high carrier densities at low operation voltages. Microscopic structures and the dynamics of ionic liquids likely determine the device performance; however, knowledge of these is limited by a lack of appropriate experimental tools. In this study, we investigated ionic liquid/organic semiconductor interfaces using molecular dynamics to reveal the microscopic properties of ionic liquids. The organic semiconductors include pentacene, rubrene, fullerene, and 7,7,8,8-tetracyanoquinodimethane (TCNQ). While ionic liquids close to the substrate always form the specific layered structures, the surface properties of organic semiconductors drastically alter the ionic dynamics. Ionic liquids at the fullerene interface behave as a two-dimensional ionic crystal because of the energy gain derived from the favorable electrostatic interaction on the corrugated periodic substrate.

  2. Mixed Ionic Liquid Improves Electrolyte Dynamics in Supercapacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osti, Naresh C.; Gallegos, Alejandro; Dyatkin, Boris

    Well-tailored mixtures of distinct ionic liquids can act as optimal electrolytes that extend the operating electrochemical window and improve charge storage density in supercapacitors. Here, we explore two room-temperature ionic liquids, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EmimTFSI) and 1-ethyl-3-methylimidazolium tetrafluoroborate (EmimBF 4). We study their electric double-layer behavior in the neat state and as binary mixtures on the external surfaces of onion-like carbon electrodes using quasielastic neutron scattering (QENS) and classical density functional theory techniques. Computational results reveal that a mixture with 4:1 EmimTFSI/EmimBF 4 volume ratio displaces the larger [TFSI –] anions with smaller [BF 4 –] ions, leading to an excessmore » adsorption of [Emim +] cations near the electrode surface. These findings are corroborated by the manifestation of nonuniform ion diffusivity change, complementing the description of structural modifications with changing composition, from QENS measurements. In conclusion, molecular-level understanding of ion packing near electrodes provides insight for design of ionic liquid formulations that enhance the performance of electrochemical energy storage devices.« less

  3. Mixed Ionic Liquid Improves Electrolyte Dynamics in Supercapacitors

    DOE PAGES

    Osti, Naresh C.; Gallegos, Alejandro; Dyatkin, Boris; ...

    2018-04-19

    Well-tailored mixtures of distinct ionic liquids can act as optimal electrolytes that extend the operating electrochemical window and improve charge storage density in supercapacitors. Here, we explore two room-temperature ionic liquids, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EmimTFSI) and 1-ethyl-3-methylimidazolium tetrafluoroborate (EmimBF 4). We study their electric double-layer behavior in the neat state and as binary mixtures on the external surfaces of onion-like carbon electrodes using quasielastic neutron scattering (QENS) and classical density functional theory techniques. Computational results reveal that a mixture with 4:1 EmimTFSI/EmimBF 4 volume ratio displaces the larger [TFSI –] anions with smaller [BF 4 –] ions, leading to an excessmore » adsorption of [Emim +] cations near the electrode surface. These findings are corroborated by the manifestation of nonuniform ion diffusivity change, complementing the description of structural modifications with changing composition, from QENS measurements. In conclusion, molecular-level understanding of ion packing near electrodes provides insight for design of ionic liquid formulations that enhance the performance of electrochemical energy storage devices.« less

  4. Canopy Dynamics in Nanoscale Ionic Materials Probed by NMR

    NASA Astrophysics Data System (ADS)

    Mirau, Peter

    2013-03-01

    Nanoscale ionic materials (NIMs) are hybrids prepared from ionically functionalized nanoparticles (NP) neutralized by oligomeric polymer counter-ions. NIMs are designed to behave as liquids under ambient conditions in the absence of solvent and have no volatile organic content, making them useful for a number of applications. We have used NMR relaxation and pulse-field gradient NMR to probe local and collective canopy dynamics in NIMs based on silica nanoparticles (NP), fullerols and proteins in order to understand the relationship between the core and canopy structure and the bulk properties. The NMR studies show that the canopy dynamics depend on the degree of neutralization, the canopy radius of gyration and molecular crowding at the ionically modified NP surface. The viscosity in NIMs can be directly controlled with the addition of ions that enhance the exchange rate for polymers at the NP surface. These results show that NIMs for many applications can be prepared by controlling the dynamics of the NP interface.

  5. Contact angles and wettability of ionic liquids on polar and non-polar surfaces.

    PubMed

    Pereira, Matheus M; Kurnia, Kiki A; Sousa, Filipa L; Silva, Nuno J O; Lopes-da-Silva, José A; Coutinho, João A P; Freire, Mara G

    2015-12-21

    Many applications involving ionic liquids (ILs) require the knowledge of their interfacial behaviour, such as wettability and adhesion. In this context, herein, two approaches were combined aiming at understanding the impact of the IL chemical structures on their wettability on both polar and non-polar surfaces, namely: (i) the experimental determination of the contact angles of a broad range of ILs (covering a wide number of anions of variable polarity, cations, and cation alkyl side chain lengths) on polar and non-polar solid substrates (glass, Al-plate, and poly-(tetrafluoroethylene) (PTFE)); and (ii) the correlation of the experimental contact angles with the cation-anion pair interaction energies generated by the Conductor-like Screening Model for Real Solvents (COSMO-RS). The combined results reveal that the hydrogen-bond basicity of ILs, and thus the IL anion, plays a major role through their wettability on both polar and non-polar surfaces. The increase of the IL hydrogen-bond accepting ability leads to an improved wettability of more polar surfaces (lower contact angles) while the opposite trend is observed on non-polar surfaces. The cation nature and alkyl side chain lengths have however a smaller impact on the wetting ability of ILs. Linear correlations were found between the experimental contact angles and the cation-anion hydrogen-bonding and cation ring energies, estimated using COSMO-RS, suggesting that these features primarily control the wetting ability of ILs. Furthermore, two-descriptor correlations are proposed here to predict the contact angles of a wide variety of ILs on glass, Al-plate, and PTFE surfaces. A new extended list is provided for the contact angles of ILs on three surfaces, which can be used as a priori information to choose appropriate ILs before a given application.

  6. Polyelectrolyte brushes in mixed ionic medium studied via intermolecular forces

    NASA Astrophysics Data System (ADS)

    Farina, Robert; Laugel, Nicolas; Pincus, Philip; Tirrell, Matthew

    2011-03-01

    The vast uses and applications of polyelectrolyte brushes make them an attractive field of research especially with the growing interest in responsive materials. Polymers which respond via changes in temperature, pH, and ionic strength are increasingly being used for applications in drug delivery, chemical gating, etc. When polyelectrolyte brushes are found in either nature (e.g., surfaces of cartilage and mammalian lung interiors) or commercially (e.g., skin care products, shampoo, and surfaces of medical devices) they are always surrounded by mixed ionic medium. This makes the study of these brushes in varying ionic environments extremely relevant for both current and future potential applications. The polyelectrolyte brushes in this work are diblock co-polymers of poly-styrene sulfonate (N=420) and poly-t-butyl styrene (N=20) which tethers to a hydrophobic surface allowing for a purely thermodynamic study of the polyelectrolyte chains. Intermolecular forces between two brushes are measured using the SFA. As multi-valent concentrations are increased, the brushes collapse internally and form strong adhesion between one another after contact (properties not seen in a purely mono-valent environment).

  7. Adsorption of a Textile Dye on Commercial Activated Carbon: A Simple Experiment to Explore the Role of Surface Chemistry and Ionic Strength

    ERIC Educational Resources Information Center

    Martins, Angela; Nunes, Nelson

    2015-01-01

    In this study, an adsorption experiment is proposed using commercial activated carbon as adsorbent and a textile azo dye, Mordant Blue-9, as adsorbate. The surface chemistry of the activated carbon is changed through a simple oxidation treatment and the ionic strength of the dye solution is also modified, simulating distinct conditions of water…

  8. Heterogeneous nucleation from a supercooled ionic liquid on a carbon surface

    NASA Astrophysics Data System (ADS)

    He, Xiaoxia; Shen, Yan; Hung, Francisco R.; Santiso, Erik E.

    2016-12-01

    Classical molecular dynamics simulations were used to study the nucleation of the crystal phase of the ionic liquid [dmim+][Cl-] from its supercooled liquid phase, both in the bulk and in contact with a graphitic surface of D = 3 nm. By combining the string method in collective variables [Maragliano et al., J. Chem. Phys. 125, 024106 (2006)], with Markovian milestoning with Voronoi tessellations [Maragliano et al., J. Chem. Theory Comput. 5, 2589-2594 (2009)] and order parameters for molecular crystals [Santiso and Trout, J. Chem. Phys. 134, 064109 (2011)], we computed minimum free energy paths, the approximate size of the critical nucleus, the free energy barrier, and the rates involved in these nucleation processes. For homogeneous nucleation, the subcooled liquid phase has to overcome a free energy barrier of ˜85 kcal/mol to form a critical nucleus of size ˜3.6 nm, which then grows into the monoclinic crystal phase. This free energy barrier becomes about 42% smaller (˜49 kcal/mol) when the subcooled liquid phase is in contact with a graphitic disk, and the critical nucleus formed is about 17% smaller (˜3.0 nm) than the one observed for homogeneous nucleation. The crystal formed in the heterogeneous nucleation scenario has a structure that is similar to that of the bulk crystal, with the exception of the layers of ions next to the graphene surface, which have larger local density and the cations lie with their imidazolium rings parallel to the graphitic surface. The critical nucleus forms near the graphene surface separated only by these layers of ions. The heterogeneous nucleation rate (˜4.8 × 1011 cm-3 s-1) is about one order of magnitude faster than the homogeneous rate (˜6.6 × 1010 cm-3 s-1). The computed free energy barriers and nucleation rates are in reasonable agreement with experimental and simulation values obtained for the homogeneous and heterogeneous nucleation of other systems (ice, urea, Lennard-Jones spheres, and oxide glasses).

  9. Heterogeneous nucleation from a supercooled ionic liquid on a carbon surface.

    PubMed

    He, Xiaoxia; Shen, Yan; Hung, Francisco R; Santiso, Erik E

    2016-12-07

    Classical molecular dynamics simulations were used to study the nucleation of the crystal phase of the ionic liquid [dmim + ][Cl - ] from its supercooled liquid phase, both in the bulk and in contact with a graphitic surface of D = 3 nm. By combining the string method in collective variables [Maragliano et al., J. Chem. Phys. 125, 024106 (2006)], with Markovian milestoning with Voronoi tessellations [Maragliano et al., J. Chem. Theory Comput. 5, 2589-2594 (2009)] and order parameters for molecular crystals [Santiso and Trout, J. Chem. Phys. 134, 064109 (2011)], we computed minimum free energy paths, the approximate size of the critical nucleus, the free energy barrier, and the rates involved in these nucleation processes. For homogeneous nucleation, the subcooled liquid phase has to overcome a free energy barrier of ∼85 kcal/mol to form a critical nucleus of size ∼3.6 nm, which then grows into the monoclinic crystal phase. This free energy barrier becomes about 42% smaller (∼49 kcal/mol) when the subcooled liquid phase is in contact with a graphitic disk, and the critical nucleus formed is about 17% smaller (∼3.0 nm) than the one observed for homogeneous nucleation. The crystal formed in the heterogeneous nucleation scenario has a structure that is similar to that of the bulk crystal, with the exception of the layers of ions next to the graphene surface, which have larger local density and the cations lie with their imidazolium rings parallel to the graphitic surface. The critical nucleus forms near the graphene surface separated only by these layers of ions. The heterogeneous nucleation rate (∼4.8 × 10 11 cm -3 s -1 ) is about one order of magnitude faster than the homogeneous rate (∼6.6 × 10 10 cm -3 s -1 ). The computed free energy barriers and nucleation rates are in reasonable agreement with experimental and simulation values obtained for the homogeneous and heterogeneous nucleation of other systems (ice, urea, Lennard-Jones spheres, and oxide

  10. Interaction of Ionic Liquids with Lipid Biomembrane: Implication from Supramolecular Assembly to Cytotoxicity

    NASA Astrophysics Data System (ADS)

    Jing, Benxin; Lan, Nan; Zhu, Y. Elaine

    2013-03-01

    An explosion in the research activities using ionic liquids (ILs) as new ``green'' chemicals in several chemical and biomedical processes has resulted in the urgent need to understand their impact in term of their transport and toxicity towards aquatic organisms. Though a few experimental toxicology studies have reported that some ionic liquids are toxic with increased hydrophobicity of ILs while others are not, our understanding of the molecular level mechanism of IL toxicity remains poorly understood. In this talk, we will discuss our recent study of the interaction of ionic liquids with model cell membranes. We have found that the ILs could induce morphological change of lipid bilayers when a critical concentration is exceeded, leading to the swelling and tube-like formation of lipid bilayers. The critical concentration shows a strong dependence on the length of hydrocarbon tails and hydrophobic counterions. By SAXS, Langmuir-Blodgett (LB) and fluorescence microscopic measurement, we have confirmed that tube-like lipid complexes result from the insertion of ILs with long hydrocarbon chains to minimize the hydrophobic interaction with aqueous media. This finding could give insight to the modification and adoption of ILs for the engineering of micro-organisms.

  11. Role of Electrical Double Layer Structure in Ionic Liquid Gated Devices

    DOE PAGES

    Black, Jennifer M.; Come, Jeremy; Bi, Sheng; ...

    2017-10-24

    Ionic liquid gating of transition metal oxides has enabled new states (magnetic, electronic, metal–insulator), providing fundamental insights into the physics of strongly correlated oxides. However, despite much research activity, little is known about the correlation of the structure of the liquids in contact with the transition metal oxide surface, its evolution with the applied electric potential, and its correlation with the measured electronic properties of the oxide. Here, we investigate the structure of an ionic liquid at a semiconducting oxide interface during the operation of a thin film transistor where the electrical double layer gates the device using experiment andmore » theory. We show that the transition between the ON and OFF states of the amorphous indium gallium zinc oxide transistor is accompanied by a densification and preferential spatial orientation of counterions at the oxide channel surface. This process occurs in three distinct steps, corresponding to ion orientations, and consequently, regimes of different electrical conductivity. The reason for this can be found in the surface charge densities on the oxide surface when different ion arrangements are present. Overall, the field-effect gating process is elucidated in terms of the interfacial ionic liquid structure, and this provides unprecedented insight into the working of a liquid gated transistor linking the nanoscopic structure to the functional properties. This knowledge will enable both new ionic liquid design as well as advanced device concepts.« less

  12. Role of Electrical Double Layer Structure in Ionic Liquid Gated Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, Jennifer M.; Come, Jeremy; Bi, Sheng

    Ionic liquid gating of transition metal oxides has enabled new states (magnetic, electronic, metal–insulator), providing fundamental insights into the physics of strongly correlated oxides. However, despite much research activity, little is known about the correlation of the structure of the liquids in contact with the transition metal oxide surface, its evolution with the applied electric potential, and its correlation with the measured electronic properties of the oxide. Here, we investigate the structure of an ionic liquid at a semiconducting oxide interface during the operation of a thin film transistor where the electrical double layer gates the device using experiment andmore » theory. We show that the transition between the ON and OFF states of the amorphous indium gallium zinc oxide transistor is accompanied by a densification and preferential spatial orientation of counterions at the oxide channel surface. This process occurs in three distinct steps, corresponding to ion orientations, and consequently, regimes of different electrical conductivity. The reason for this can be found in the surface charge densities on the oxide surface when different ion arrangements are present. Overall, the field-effect gating process is elucidated in terms of the interfacial ionic liquid structure, and this provides unprecedented insight into the working of a liquid gated transistor linking the nanoscopic structure to the functional properties. This knowledge will enable both new ionic liquid design as well as advanced device concepts.« less

  13. Supercapacitors based on modified graphene electrodes with poly(ionic liquid)

    NASA Astrophysics Data System (ADS)

    Trigueiro, João Paulo C.; Lavall, Rodrigo L.; Silva, Glaura G.

    2014-06-01

    The improved accessibility of the electrolyte to the surface of carbon nanomaterials is a challenge to be overcome in supercapacitors based on ionic liquid electrolytes. In this study, we report the preparation of supercapacitors based on reduced graphene oxide (RGO) electrodes and ionic liquid as the electrolyte (specifically, 1-methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide or [MPPy][TFSI]). Two types of electrodes were compared: the RGO-based electrode and a poly(ionic liquid)-modified RGO electrode (PIL:RGO). The supercapacitor produced with the PIL:RGO electrode and [MPPy][TFSI] showed an electrochemical stability of 3 V and provided a capacitance of 71.5 F g-1 at room temperature; this capacitance is 130% higher with respect to the RGO-based supercapacitor. The decrease of the specific capacitance after 2000 cycles is only 10% for the PIL:RGO-based device. The results revealed the potential of the PIL:RGO material as an electrode for supercapacitors. This composite electrode increases the compatibility with the ionic liquid electrolyte compared to an RGO electrode, promoting an increase in the effective surface area of the electrode accessible to the electrolyte ions.

  14. Highly stable noble-metal nanoparticles in tetraalkylphosphonium ionic liquids for in situ catalysis.

    PubMed

    Banerjee, Abhinandan; Theron, Robin; Scott, Robert W J

    2012-01-09

    Gold and palladium nanoparticles were prepared by lithium borohydride reduction of the metal salt precursors in tetraalkylphosphonium halide ionic liquids in the absence of any organic solvents or external nanoparticle stabilizers. These colloidal suspensions remained stable and showed no nanoparticle agglomeration over many months. A combination of electrostatic interactions between the coordinatively unsaturated metal nanoparticle surface and the ionic-liquid anions, bolstered by steric protection offered by the bulky alkylated phosphonium cations, is likely to be the reason behind such stabilization. The halide anion strongly absorbs to the nanoparticle surface, leading to exceptional nanoparticle stability in halide ionic liquids; other tetraalkylphosphonium ionic liquids with non-coordinating anions, such as tosylate and hexafluorophosphate, show considerably lower affinities towards the stabilization of nanoparticles. Palladium nanoparticles stabilized in the tetraalkylphosphonium halide ionic liquid were stable, efficient, and recyclable catalysts for a variety of hydrogenation reactions at ambient pressures with sustained activity. Aerial oxidation of the metal nanoparticles occurred over time and was readily reversed by re-reduction of oxidized metal salts. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Allylic ionic liquid electrolyte-assisted electrochemical surface passivation of LiCoO2 for advanced, safe lithium-ion batteries.

    PubMed

    Mun, Junyoung; Yim, Taeeun; Park, Jang Hoon; Ryu, Ji Heon; Lee, Sang Young; Kim, Young Gyu; Oh, Seung M

    2014-08-29

    Room-temperature ionic liquid (RTIL) electrolytes have attracted much attention for use in advanced, safe lithium-ion batteries (LIB) owing to their nonvolatility, high conductivity, and great thermal stability. However, LIBs containing RTIL-electrolytes exhibit poor cyclability because electrochemical side reactions cause problematic surface failures of the cathode. Here, we demonstrate that a thin, homogeneous surface film, which is electrochemically generated on LiCoO2 from an RTIL-electrolyte containing an unsaturated substituent on the cation (1-allyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide, AMPip-TFSI), can avert undesired side reactions. The derived surface film comprised of a high amount of organic species from the RTIL cations homogenously covered LiCoO2 with a <25 nm layer and helped suppress unfavorable thermal reactions as well as electrochemical side reactions. The superior performance of the cell containing the AMPip-TFSI electrolyte was further elucidated by surface, electrochemical, and thermal analyses.

  16. Allylic ionic liquid electrolyte-assisted electrochemical surface passivation of LiCoO2 for advanced, safe lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Mun, Junyoung; Yim, Taeeun; Park, Jang Hoon; Ryu, Ji Heon; Lee, Sang Young; Kim, Young Gyu; Oh, Seung M.

    2014-08-01

    Room-temperature ionic liquid (RTIL) electrolytes have attracted much attention for use in advanced, safe lithium-ion batteries (LIB) owing to their nonvolatility, high conductivity, and great thermal stability. However, LIBs containing RTIL-electrolytes exhibit poor cyclability because electrochemical side reactions cause problematic surface failures of the cathode. Here, we demonstrate that a thin, homogeneous surface film, which is electrochemically generated on LiCoO2 from an RTIL-electrolyte containing an unsaturated substituent on the cation (1-allyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide, AMPip-TFSI), can avert undesired side reactions. The derived surface film comprised of a high amount of organic species from the RTIL cations homogenously covered LiCoO2 with a <25 nm layer and helped suppress unfavorable thermal reactions as well as electrochemical side reactions. The superior performance of the cell containing the AMPip-TFSI electrolyte was further elucidated by surface, electrochemical, and thermal analyses.

  17. Surface Enrichment in Equimolar Mixtures of Non-Functionalized and Functionalized Imidazolium-Based Ionic Liquids.

    PubMed

    Heller, Bettina S J; Kolbeck, Claudia; Niedermaier, Inga; Dommer, Sabine; Schatz, Jürgen; Hunt, Patricia; Maier, Florian; Steinrück, Hans-Peter

    2018-04-12

    For equimolar mixtures of ionic liquids with imidazolium-based cations of very different electronic structure, we observe very pronounced surface enrichment effects by angle-resolved X-ray photoelectron spectroscopy (XPS). For a mixture with the same anion, that is, 1-methyl-3-octylimidazolium hexafluorophosphate+1,3-di(methoxy)imidazolium hexafluorophosphate ([C 8 C 1 Im][PF 6 ]+[(MeO) 2 Im][PF 6 ]), we find a strong enrichment of the octyl chain-containing [C 8 C 1 Im] + cation and a corresponding depletion of the [(MeO) 2 Im] + cation in the topmost layer. For a mixture with different cations and anions, that is, [C 8 C 1 Im][Tf 2 N]+[(MeO) 2 Im][PF 6 ], we find both surface enrichment of the [C 8 C 1 Im] + cation and the [Tf 2 N] - (bis[(trifluoromethyl)sulfonyl]imide) anion, while [(MeO) 2 Im] + and [PF 6 ] - are depleted from the surface. We propose that the observed behavior in these mixtures is due to a lowering of the surface tension by the enriched components. Interestingly, we observe pronounced differences in the chemical shifts of the imidazolium ring signals of the [(MeO) 2 Im] + cations as compared to the non-functionalized cations. Calculations of the electronic structure and the intramolecular partial charge distribution of the cations contribute to interpreting these shifts for the two different cations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Thermodynamics of interaction of ionic liquids with lipid monolayer.

    PubMed

    Bhattacharya, G; Mitra, S; Mandal, P; Dutta, S; Giri, R P; Ghosh, S K

    2018-06-01

    Understanding the interaction of ionic liquids with cellular membrane becomes utterly important to comprehend the activities of these liquids in living organisms. Lipid monolayer formed at the air-water interface is employed as a model system to follow this interaction by investigating important thermodynamic parameters. The penetration kinetics of the imidazolium-based ionic liquid 1-decyl-3-methylimidazolium tetrafluoroborate ([DMIM][BF4]) into the zwitterionic 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid layer is found to follow the Boltzmann-like equation that reveals the characteristic time constant which is observed to be the function of initial surface pressure. The enthalpy and entropy calculated from temperature-dependent pressure-area isotherms of the monolayer show that the added ionic liquids bring about a disordering effect in the lipid film. The change in Gibbs free energy indicates that an ionic liquid with longer chain has a far greater disordering effect compared to an ionic liquid with shorter chain. The differential scanning calorimetric measurement on a multilamellar vesicle system shows the main phase transition temperature to shift to a lower value, which, again, indicates the disordering effect of the ionic liquid on lipid membrane. All these studies fundamentally point out that, when ionic liquids interact with lipid molecules, the self-assembled structure of a cellular membrane gets perturbed, which may be the mechanism of these molecules having adverse effects on living organisms.

  19. Surface-active ionic liquids in micellar catalysis: impact of anion selection on reaction rates in nucleophilic substitutions† †Electronic supplementary information (ESI) available: Formulae for calculating aggregation parameters and fitting of kinetic constants and copies of NMR spectra. See DOI: 10.1039/c6cp00493h Click here for additional data file.

    PubMed Central

    Cognigni, Alice; Gaertner, Peter; Zirbs, Ronald; Peterlik, Herwig; Prochazka, Katharina; Schröder, Christian

    2016-01-01

    A series of surface-active ionic liquids based on the 1-dodecyl-3-methylimidazolium cation and different anions such as halides and alkylsulfates was synthesized. The aggregation behavior of these ionic liquids in water was characterized by surface tension, conductivity measurements and UV-Vis spectroscopy in order to determine the critical micelle concentration (CMC) and to provide aggregation parameters. The determination of surface activity and aggregation properties of amphiphilic ionic liquids was accompanied by SAXS studies on selected surface-active ionic liquids. The application of these surface-active ionic liquids with different anions was tested in nucleophilic substitution reactions for the degradation of organophosphorus compounds. Kinetic studies via UV-Vis spectrophotometry showed a strong acceleration of the reaction in the micellar system compared to pure water. In addition, an influence of the anion was observed, resulting in a correlation between the anion binding to the micelle and the reaction rate constants, indicating that the careful choice of the surface-active ionic liquid can considerably affect the outcome of reactions. PMID:27121134

  20. Force microscopy of layering and friction in an ionic liquid

    NASA Astrophysics Data System (ADS)

    Hoth, Judith; Hausen, Florian; Müser, Martin H.; Bennewitz, Roland

    2014-07-01

    The mechanical properties of the ionic liquid 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl) trifluorophosphate ([Py1,4][FAP]) in confinement between a SiOx and a Au(1 1 1) surface are investigated by means of atomic force microscopy (AFM) under electrochemical control. Up to 12 layers of ion pairs can be detected through force measurements while approaching the tip of the AFM to the surface. The particular shape of the force versus distance curve is explained by a model for the interaction between tip, gold surface and ionic liquid, which assumes an exponentially decaying oscillatory force originating from bulk liquid density correlations. Jumps in the tip-sample distance upon approach correspond to jumps of the compliant force sensor between branches of the oscillatory force curve. Frictional force between the laterally moving tip and the surface is detected only after partial penetration of the last double layer between tip and surface.

  1. Current rectification for transport of room-temperature ionic liquids through conical nanopores

    DOE PAGES

    Jiang, Xikai; Liu, Ying; Qiao, Rui

    2016-02-09

    Here, we studied the transport of room-temperature ionic liquids (RTILs) through charged conical nanopores using a Landau-Ginzburg-type continuum model that takes steric effect and strong ion-ion correlations into account. When the surface charge is uniform on the pore wall, weak current rectification is observed. When the charge density near the pore base is removed, the ionic current is greatly suppressed under negative bias voltage while nearly unchanged under positive bias voltage, thereby leading to enhanced current rectification. These predictions agree qualitatively with prior experimental observations, and we elucidated them by analyzing the different components of the ionic current and themore » structural changes of electrical double layers (EDLs) at the pore tip under different bias voltages and surface charge patterns. These analyses reveal that the different modifications of the EDL structure near the pore tip by the positive and negative bias voltages cause the current rectification and the observed dependence on the distribution of surface charge on the pore wall. The fact that the current rectification phenomena are captured qualitatively by the simple model originally developed for describing EDLs at equilibrium conditions suggests that this model may be promising for understanding the ionic transport under nonequilibrium conditions when the EDL structure is strongly perturbed by external fields.« less

  2. Chromatin ionic atmosphere analyzed by a mesoscale electrostatic approach.

    PubMed

    Gan, Hin Hark; Schlick, Tamar

    2010-10-20

    Characterizing the ionic distribution around chromatin is important for understanding the electrostatic forces governing chromatin structure and function. Here we develop an electrostatic model to handle multivalent ions and compute the ionic distribution around a mesoscale chromatin model as a function of conformation, number of nucleosome cores, and ionic strength and species using Poisson-Boltzmann theory. This approach enables us to visualize and measure the complex patterns of counterion condensation around chromatin by examining ionic densities, free energies, shielding charges, and correlations of shielding charges around the nucleosome core and various oligonucleosome conformations. We show that: counterions, especially divalent cations, predominantly condense around the nucleosomal and linker DNA, unburied regions of histone tails, and exposed chromatin surfaces; ionic screening is sensitively influenced by local and global conformations, with a wide ranging net nucleosome core screening charge (56-100e); and screening charge correlations reveal conformational flexibility and interactions among chromatin subunits, especially between the histone tails and parental nucleosome cores. These results provide complementary and detailed views of ionic effects on chromatin structure for modest computational resources. The electrostatic model developed here is applicable to other coarse-grained macromolecular complexes. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Thermal boundary conductance of hydrophilic and hydrophobic ionic liquids

    NASA Astrophysics Data System (ADS)

    Oyake, Takafumi; Sakata, Masanori; Yada, Susumu; Shiomi, Junichiro

    2015-03-01

    A solid/liquid interface plays a critical role for understanding mechanisms of biological and physical science. Moreover, carrier density of the surface is dramatically enhanced by electric double layer with ionic liquid, salt in the liquid state. Here, we have measured the thermal boundary conductance (TBC) across an interface of gold thin film and ionic liquid by using time-domain thermoreflectance technique. Following the prior researches, we have identified the TBC of two interfaces. One is gold and hydrophilic ionic liquid, N,N-Diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate (DEME-BF4), which is a hydrophilic ionic liquid, and the other is N,N-Diethyl-N-methyl-N-(2-methoxyethyl) ammonium bis (trifluoromethanesulfonyl) imide (DEME-TFSI), which is a hydrophobic ionic liquid. We found that the TBC between gold and DEME-TFIS (19 MWm-2K-1) is surprisingly lower than the interface between gold and DEME-BF4 (45 MWm-2K-1). With these data, the importance of the wetting angle and ion concentration for the thermal transport at the solid/ionic liquid interface is discussed. Part of this work is financially supported by Japan Society for the Promotion of Science (JSPS) and Japan Science and Technology Agency. The author is financially supported by JSPS Fellowship.

  4. Theoretical and Numerical Modeling of faceted Ionic crystalline vesicles

    NASA Astrophysics Data System (ADS)

    Olvera de La Cruz, Monica

    2007-03-01

    Icosahedral shape is found in several natural structures including large viruses, large fullerenes and cationic-anionic vesicles. Faceting into icosahedral shape can occur in large crystalline membranes via elasticity theory. Icosahedral symmetry is found in small systems of particles with short-range interactions on a sphere. Dr G. Vernizzi and I show a novel electrostatic-driven mechanism of ionic crystalline shells faceting into icosahedral shapes even for systems with a small number of particles. Icosahedral shape is possible in cationic and anionic molecules adsorbed onto spherical interfaces, such as emulsions or other immiscible liquid droplets because the large concentration of charges at the interface can lead to ionic crystals on the curved interface. Such self-organized ionic structures favors the formation of flat surfaces. We find that these ionic crystalline shells can have lower energy when faceted into icosahedra along particular directions. Indeed, the ``ionic'' buckling is driven by preferred bending directions of the planar ionic structure, along which is more likely for the icosahedral shape to develop an edge. Since only certain orientations are allowed, rotational symmetry is broken. One can hope to exploit this mechanism to generate functional materials where, for instance, proteins with specific charge groups can orient at specific directions along an icosahedral cationic-anionic vesicle.

  5. Application of quartz crystal microbalance to study the impact of pH and ionic strength on protein-silicone oil interactions.

    PubMed

    Dixit, Nitin; Maloney, Kevin M; Kalonia, Devendra S

    2011-06-30

    In this study, we have used quartz crystal microbalance (QCM) to quantitate the adsorption of a protein on silicone oil coated surfaces as a function of protein concentration, pH and ionic strength using a 5 MHz quartz crystal. Protein adsorption isotherms were generated at different solution pH and ionic strengths. Surface saturation concentrations were selected from adsorption isotherms and used to generate adsorption profiles from pH 3.0 to 9.0, and at ionic strengths of 10 mM and 150 mM. At low ionic strength (10mM) and pH 5.0 (close to the isoelectric point of the protein), maximum adsorption of protein to the silicone oil surface was observed. At higher ionic strength (150 mM), no significant pH influence on adsorption was observed. QCM could be used as a reliable technique to study the binding of proteins to silicone oil coated surfaces. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Dynamic and structural properties of room-temperature ionic liquids near silica and carbon surfaces.

    PubMed

    Li, Song; Han, Kee Sung; Feng, Guang; Hagaman, Edward W; Vlcek, Lukas; Cummings, Peter T

    2013-08-06

    The dynamic and structural properties of a room-temperature ionic liquid (RTIL) 1-butyl-3-methyl-imidazolium(trifluoromethanesulfonimide) ([C4mim][Tf2N]) confined in silica and carbon mesopores were investigated by molecular dynamics (MD) simulations and nuclear magnetic resonance (NMR) experiments. The complex interfacial microstructures of confined [C4mim][Tf2N] are attributed to the distinctive surface features of the silica mesopore. The temperature-dependent diffusion coefficients of [C4mim][Tf2N] confined in the silica or carbon mesopore exhibit divergent behavior. The loading fraction (f = 1.0, 0.5, and 0.25) has a large effect on the magnitude of the diffusion coefficient in the silica pore and displays weaker temperature dependence as the loading fraction decreases. The diffusion coefficients of mesoporous carbon-confined [C4mim][Tf2N] are relatively insensitive to the loading faction and exhibit a temperature dependence that is similar to the bulk dependence at all loading levels. Such phenomena can be attributed to the unique surface heterogeneity, dissimilar interfacial microstructures, and interaction potential profile of RTILs near silica and carbon walls.

  7. Allylic ionic liquid electrolyte-assisted electrochemical surface passivation of LiCoO2 for advanced, safe lithium-ion batteries

    PubMed Central

    Mun, Junyoung; Yim, Taeeun; Park, Jang Hoon; Ryu, Ji Heon; Lee, Sang Young; Kim, Young Gyu; Oh, Seung M.

    2014-01-01

    Room-temperature ionic liquid (RTIL) electrolytes have attracted much attention for use in advanced, safe lithium-ion batteries (LIB) owing to their nonvolatility, high conductivity, and great thermal stability. However, LIBs containing RTIL-electrolytes exhibit poor cyclability because electrochemical side reactions cause problematic surface failures of the cathode. Here, we demonstrate that a thin, homogeneous surface film, which is electrochemically generated on LiCoO2 from an RTIL-electrolyte containing an unsaturated substituent on the cation (1-allyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide, AMPip-TFSI), can avert undesired side reactions. The derived surface film comprised of a high amount of organic species from the RTIL cations homogenously covered LiCoO2 with a <25 nm layer and helped suppress unfavorable thermal reactions as well as electrochemical side reactions. The superior performance of the cell containing the AMPip-TFSI electrolyte was further elucidated by surface, electrochemical, and thermal analyses. PMID:25168309

  8. Phenomenological Transition of an Aluminum Surface in an Ionic Liquid and Its Beneficial Implementation in Batteries.

    PubMed

    Shvartsev, B; Gelman, D; Amram, D; Ein-Eli, Y

    2015-12-29

    Aluminum (Al) electrochemical dissolution in organic nonaqueous media and room temperature ionic liquids (RTILs) is partially hampered by the presence of a native oxide. In this work, Al activation in EMIm(HF)2.3F RTIL is reported. It was confirmed that as a result of the interaction of Al with the RTIL, a new film is formed instead of the pristine oxide layer. Aluminum surface modifications result in a transformation from a passive state to the active behavior of the metal. This was confirmed via the employment of electrochemical methods and characterization by XPS, AFM, and TEM. It was shown that the pristine oxide surface film dissolves in EMIm(HF)2.3F, allowing an Al-O-F layer to be formed instead. This newly built up layer dramatically restricts Al corrosion while enabling high rates of Al anodic dissolution. These beneficial features allow the implementation of Al as an anode in advanced portable power sources, such as aluminum-air batteries.

  9. Covalent Immobilization of Cellulase Using Magnetic Poly(ionic liquid) Support: Improvement of the Enzyme Activity and Stability.

    PubMed

    Hosseini, Seyed Hassan; Hosseini, Seyedeh Ameneh; Zohreh, Nasrin; Yaghoubi, Mahshid; Pourjavadi, Ali

    2018-01-31

    A magnetic nanocomposite was prepared by entrapment of Fe 3 O 4 nanoparticles into the cross-linked ionic liquid/epoxy type polymer. The resulting support was used for covalent immobilization of cellulase through the reaction with epoxy groups. The ionic surface of the support improved the adsorption of enzyme, and a large amount of enzyme (106.1 mg/g) was loaded onto the support surface. The effect of the presence of ionic monomer and covalent binding of enzyme was also investigated. The structure of support was characterized by various instruments such as FT-IR, TGA, VSM, XRD, TEM, SEM, and DLS. The activity and stability of immobilized cellulase were investigated in the prepared support. The results showed that the ionic surface and covalent binding of enzyme onto the support improved the activity, thermal stability, and reusability of cellulase compared to free cellulase.

  10. Synthesis and Properties of Highly Dispersed Ionic Silica–Poly(ethylene oxide) Nanohybrids

    PubMed Central

    2013-01-01

    We report an ionic hybrid based on silica nanoparticles as the anion and amine-terminated poly(ethylene oxide) (PEO) as a cation. The charge on the nanoparticle anion is carried by the surface hydroxyls. SAXS and TEM reveal an exceptional degree of dispersion of the silica in the polymer and high degree of order in both thin film and bulk forms. In addition to better dispersion, the ionic hybrid shows improved flow characteristics compared to silica/PEO mixtures in which the ionic interactions are absent. PMID:23351113

  11. Ionic skin.

    PubMed

    Sun, Jeong-Yun; Keplinger, Christoph; Whitesides, George M; Suo, Zhigang

    2014-12-03

    Electronic skins (i.e., stretchable sheets of distributed sensors) report signals using electrons, whereas natural skins report signals using ions. Here, ionic conductors are used to create a new type of sensory sheet, called "ionic skin". Ionic skins are highly stretchable, transparent, and biocompatible. They readily measure strains from 1% to 500%, and pressures as low as 1 kPa. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Immobilization of molecular catalysts in supported ionic liquid phases.

    PubMed

    Van Doorslaer, Charlie; Wahlen, Joos; Mertens, Pascal; Binnemans, Koen; De Vos, Dirk

    2010-09-28

    In a supported ionic liquid phase (SILP) catalyst system, an ionic liquid (IL) film is immobilized on a high-surface area porous solid and a homogeneous catalyst is dissolved in this supported IL layer, thereby combining the attractive features of homogeneous catalysts with the benefits of heterogeneous catalysts. In this review reliable strategies for the immobilization of molecular catalysts in SILPs are surveyed. In the first part, general aspects concerning the application of SILP catalysts are presented, focusing on the type of catalyst, support, ionic liquid and reaction conditions. Secondly, organic reactions in which SILP technology is applied to improve the performance of homogeneous transition-metal catalysts are presented: hydroformylation, metathesis reactions, carbonylation, hydrogenation, hydroamination, coupling reactions and asymmetric reactions.

  13. PREFACE: Ionic fluids Ionic fluids

    NASA Astrophysics Data System (ADS)

    Levin, Yan; Kornyshev, Alexei; Barbosa, Marcia C.

    2009-10-01

    In spite of its apparent simplicity Coulomb law, when applied to many body systems, leads to an amazingly rich mathematical structure. The simple idea that two similarly charged objects always repel, is not necessarily true in a colloidal suspension or a dusty plasma. Neither can one simply predict the direction of the electrophoretic motion of a polyion from only knowing its chemical charge. Strong Coulomb correlations in ionic fluids result in instabilities very similar to the gas--liquid phase separation observed in atomic fluids. It is fair to say that bulk behavior of simple aqueous monovalent electrolytes is now very well understood. Unfortunately this is not the case for multivalent electrolytes or molten salts. In these systems cation-anion association leads to strong non-linear effects which manifest themselves in formations of tightly bound ionic clusters. In spite of the tremendous effort invested over the years, our understanding of these systems remains qualitative. In this special issue we have collected articles from some of the biggest experts working on ionic fluids. The papers are both experimental and theoretical. They range from simple electrolytes in the bulk and near interfaces, to polyelectrolytes, colloids, and molten salts. The special issue, covers a wide spectrum of the ongoing research on ionic fluids. All readers should find something of interest here.

  14. Research progress on ionic plasmas generated in an intense hydrogen negative ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeiri, Y., E-mail: takeiri@nifs.ac.jp; Tsumori, K.; Nagaoka, K.

    2015-04-08

    Characteristics of ionic plasmas, observed in a high-density hydrogen negative ion source, are investigated with a multi-diagnostics system. The ionic plasma, which consists of hydrogen positive- and negative-ions with a significantly low-density of electrons, is generated in the ion extraction region, from which the negative ions are extracted through the plasma grid. The negative ion density, i.e., the ionic plasma density, as high as the order of 1×10{sup 17}m{sup −3}, is measured with cavity ring-down spectroscopy, while the electron density is lower than 1×10{sup 16}m{sup −3}, which is confirmed with millimeter-wave interferometer. Reduction of the negative ion density is observedmore » at the negative ion extraction, and at that time the electron flow into the ionic plasma region is observed to conserve the charge neutrality. Distribution of the plasma potential is measured in the extraction region in the direction normal to the plasma grid surface with a Langmuir probe, and the results suggest that the sheath is formed at the plasma boundary to the plasma grid to which the bias voltage is applied. The beam extraction should drive the negative ion transport in the ionic plasma across the sheath formed on the extraction surface. Larger reduction of the negative ions at the beam extraction is observed in a region above the extraction aperture on the plasma grid, which is confirmed with 2D image measurement of the Hα emission and cavity ring-down spectroscopy. The electron distribution is also measured near the plasma grid surface. These various properties observed in the ionic plasma are discussed.« less

  15. Spherical harmonics analysis of surface density fluctuations of spherical ionic SDS and nonionic C12E8 micelles: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Yoshii, Noriyuki; Nimura, Yuki; Fujimoto, Kazushi; Okazaki, Susumu

    2017-07-01

    The surface structure and its fluctuation of spherical micelles were investigated using a series of density correlation functions newly defined by spherical harmonics and Legendre polynomials based on the molecular dynamics calculations. To investigate the influence of head-group charges on the micelle surface structure, ionic sodium dodecyl sulfate and nonionic octaethyleneglycol monododecylether (C12E8) micelles were investigated as model systems. Large-scale density fluctuations were observed for both micelles in the calculated surface static structure factor. The area compressibility of the micelle surface evaluated by the surface static structure factor was tens-of-times larger than a typical value of a lipid membrane surface. The structural relaxation time, which was evaluated from the surface intermediate scattering function, indicates that the relaxation mechanism of the long-range surface structure can be well described by the hydrostatic approximation. The density fluctuation on the two-dimensional micelle surface has similar characteristics to that of three-dimensional fluids near the critical point.

  16. Spherical harmonics analysis of surface density fluctuations of spherical ionic SDS and nonionic C12E8 micelles: A molecular dynamics study.

    PubMed

    Yoshii, Noriyuki; Nimura, Yuki; Fujimoto, Kazushi; Okazaki, Susumu

    2017-07-21

    The surface structure and its fluctuation of spherical micelles were investigated using a series of density correlation functions newly defined by spherical harmonics and Legendre polynomials based on the molecular dynamics calculations. To investigate the influence of head-group charges on the micelle surface structure, ionic sodium dodecyl sulfate and nonionic octaethyleneglycol monododecylether (C 12 E 8 ) micelles were investigated as model systems. Large-scale density fluctuations were observed for both micelles in the calculated surface static structure factor. The area compressibility of the micelle surface evaluated by the surface static structure factor was tens-of-times larger than a typical value of a lipid membrane surface. The structural relaxation time, which was evaluated from the surface intermediate scattering function, indicates that the relaxation mechanism of the long-range surface structure can be well described by the hydrostatic approximation. The density fluctuation on the two-dimensional micelle surface has similar characteristics to that of three-dimensional fluids near the critical point.

  17. Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gering, Kevin L.; Harrup, Mason K.; Rollins, Harry W.

    2015-12-08

    An ionic liquid including a phosphazene compound that has a plurality of phosphorus-nitrogen units and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. One pendant group of the at least one pendant group comprises a positively charged pendant group. Additional embodiments of ionic liquids are disclosed, as are electrolyte solutions and energy storage devices including the embodiments of the ionic liquid.

  18. Nanoscale mapping of electromechanical response in ionic conductive ceramics with piezoelectric inclusions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seol, Daehee; Seo, Hosung; Kim, Yunseok, E-mail: yunseokkim@skku.edu

    Electromechanical (EM) response in ion conductive ceramics with piezoelectric inclusions was spatially explored using strain-based atomic force microscopy. Since the sample is composed of two dominant phases of ionic and piezoelectric phases, it allows us to explore two different EM responses of electrically induced ionic response and piezoresponse over the same surface. Furthermore, EM response of the ionic phase, i.e., electrochemical strain, was quantitatively investigated from the comparison with that of the piezoelectric phase, i.e., piezoresponse. These results could provide additional information on the EM properties, including the electrochemical strain at nanoscale.

  19. Comparison of Three Ionic Liquid-Tolerant Cellulases by Molecular Dynamics

    PubMed Central

    Jaeger, Vance; Burney, Patrick; Pfaendtner, Jim

    2015-01-01

    We have employed molecular dynamics to investigate the differences in ionic liquid tolerance among three distinct family 5 cellulases from Trichoderma viride, Thermogata maritima, and Pyrococcus horikoshii. Simulations of the three cellulases were conducted at a range of temperatures in various binary mixtures of the ionic liquid 1-ethyl-3-methyl-imidazolium acetate with water. Our analysis demonstrates that the effects of ionic liquids on the enzymes vary in each individual case from local structural disturbances to loss of much of one of the enzyme’s secondary structure. Enzymes with more negatively charged surfaces tend to resist destabilization by ionic liquids. Specific and unique structural changes in the enzymes are induced by the presence of ionic liquids. Disruption of the secondary structure, changes in dynamical motion, and local changes in the binding pocket are observed in less tolerant enzymes. Ionic-liquid-induced denaturation of one of the enzymes is indicated over the 500 ns timescale. In contrast, the most tolerant cellulase behaves similarly in water and in ionic-liquid-containing mixtures. Unlike the heuristic approaches that attempt to predict enzyme stability using macroscopic properties, molecular dynamics allows us to predict specific atomic-level structural and dynamical changes in an enzyme’s behavior induced by ionic liquids and other mixed solvents. Using these insights, we propose specific experimentally testable hypotheses regarding the origin of activity loss for each of the systems investigated in this study. PMID:25692593

  20. Ion association at discretely-charged dielectric interfaces: Giant charge inversion [Dielectric response controlled ion association at physically heterogeneous surfaces: Giant charge reversal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhi -Yong; Wu, Jianzhong

    2017-07-11

    Giant charge reversal has been identified for the first time by Monte Carlo simulation for a discretely charged surface in contact with a trivalent electrolyte solution. It takes place regardless of the surface charge density under study and the monovalent salt. In stark contrast to earlier predictions based on the 2-dimensional Wigner crystal model to describe strong correlation of counterions at the macroion surface, we find that giant charge reversal reflects an intricate interplay of ionic volume effects, electrostatic correlations, surface charge heterogeneity, and the dielectric response of the confined fluids. While the novel phenomenon is yet to be confirmedmore » with experiment, the simulation results appear in excellent agreement with a wide range of existing observations in the subregime of charge inversion. Lastly, our findings may have far-reaching implications to understanding complex electrochemical phenomena entailing ionic fluids under dielectric confinements.« less

  1. Nanoconfined ionic liquids: Disentangling electrostatic and viscous forces

    NASA Astrophysics Data System (ADS)

    Lhermerout, Romain; Perkin, Susan

    2018-01-01

    Recent reports of surface forces across nanoconfined ionic liquids have revealed the existence of an anomalously long-ranged interaction apparently of electrostatic origin. Ionic liquids are viscous, and therefore it is important to inspect rigorously whether the observed repulsive forces are indeed equilibrium forces or, rather, arise from the viscous force during drainage of the fluid between two confining surfaces. In this paper we present our direct measurements of surface forces between mica sheets approaching in the ionic liquid [C2C1Im ] [NTf2] , exploring three orders of magnitude in approach velocity. Trajectories are systematically fitted by solving the equation of motion, allowing us to disentangle the viscous and equilibrium contributions. First, we find that the drainage obeys classical hydrodynamics with a negative slip boundary condition in the range of the structural force, implying that a nanometer -thick portion of the liquid in the vicinity of the solid surface is composed of ordered molecules that do not contribute to the flow. Second, we show that a long-range static force must indeed be invoked, in addition to the viscous force, in order to describe the data quantitatively. This equilibrium interaction decays exponentially and with decay length in agreement with the screening length reported for the same system in previous studies. In those studies the decay was simply checked to be independent of velocity and measured at a low approach rate, rather than explicitly taking account of viscous effects: we explain why this gives indistinguishable outcomes for the screening length by noting that the viscous force is linear to very good approximation over a wide range of distances.

  2. Antifungal activity of ionic liquids based on (-)-menthol: a mechanism study.

    PubMed

    Suchodolski, Jakub; Feder-Kubis, Joanna; Krasowska, Anna

    2017-04-01

    The mechanism of toxicity of chiral ionic liquids with (1R,2S,5R)-(-)-menthol [C n -Am-Men][Cl] (n=10, 11 or 12) in the fungus Candida albicans is reported here. Ionic liquids were more toxic towards Candida strain lacking all identified multidrug resistance efflux pumps. Moreover, the compounds tested inhibited C. albicans filamentation at the concentration at which detached fungal cells also adhered to the plastic surface. Our results showed the high activity of all the tested chiral ionic liquids in the permeabilization of C. albicans' membranes and in the digestion and interruption of the cell wall. The investigated ionic liquids thus have potential as disinfectants because besides their antifungal and antiadhesive action these compounds do not cause hemolysis. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Electroactive Ionic Soft Actuators with Monolithically Integrated Gold Nanocomposite Electrodes.

    PubMed

    Yan, Yunsong; Santaniello, Tommaso; Bettini, Luca Giacomo; Minnai, Chloé; Bellacicca, Andrea; Porotti, Riccardo; Denti, Ilaria; Faraone, Gabriele; Merlini, Marco; Lenardi, Cristina; Milani, Paolo

    2017-06-01

    Electroactive ionic gel/metal nanocomposites are produced by implanting supersonically accelerated neutral gold nanoparticles into a novel chemically crosslinked ion conductive soft polymer. The ionic gel consists of chemically crosslinked poly(acrylic acid) and polyacrylonitrile networks, blended with halloysite nanoclays and imidazolium-based ionic liquid. The material exhibits mechanical properties similar to that of elastomers (Young's modulus ≈ 0.35 MPa) together with high ionic conductivity. The fabrication of thin (≈100 nm thick) nanostructured compliant electrodes by means of supersonic cluster beam implantation (SCBI) does not significantly alter the mechanical properties of the soft polymer and provides controlled electrical properties and large surface area for ions storage. SCBI is cost effective and suitable for the scaleup manufacturing of electroactive soft actuators. This study reports the high-strain electromechanical actuation performance of the novel ionic gel/metal nanocomposites in a low-voltage regime (from 0.1 to 5 V), with long-term stability up to 76 000 cycles with no electrode delamination or deterioration. The observed behavior is due to both the intrinsic features of the ionic gel (elasticity and ionic transport capability) and the electrical and morphological features of the electrodes, providing low specific resistance (<100 Ω cm -2 ), high electrochemical capacitance (≈mF g -1 ), and minimal mechanical stress at the polymer/metal composite interface upon deformation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Fullerol ionic fluids.

    PubMed

    Fernandes, Nikhil; Dallas, Panagiotis; Rodriguez, Robert; Bourlinos, Athanasios B; Georgakilas, Vasilios; Giannelis, Emmanuel P

    2010-09-01

    We report for the first time an ionic fluid based on hydroxylated fullerenes (fullerols). The ionic fluid was synthesized by neutralizing the fully protonated fullerol with an amine terminated polyethylene/polypropylene oxide oligomer (Jeffamine). The ionic fluid was compared to a control synthesized by mixing the partially protonated form (sodium form) of the fullerols with the same oligomeric amine in the same ratio as in the ionic fluids (20 wt% fullerol). In the fullerol fluid the ionic bonding significantly perturbs the thermal transitions and melting/crystallization behavior of the amine. In contrast, both the normalized heat of fusion and crystallization of the amine in the control are similar to those of the neat amine consistent with a physical mixture of the fullerols/amine with minimal interactions. In addition to differences in thermal behavior, the fullerol ionic fluid exhibits a complex viscoelastic behavior intermediate between the neat Jeffamine (liquid-like) and the control (solid-like).

  5. Fullerol ionic fluids

    NASA Astrophysics Data System (ADS)

    Fernandes, Nikhil; Dallas, Panagiotis; Rodriguez, Robert; Bourlinos, Athanasios B.; Georgakilas, Vasilios; Giannelis, Emmanuel P.

    2010-09-01

    We report for the first time an ionic fluid based on hydroxylated fullerenes (fullerols). The ionic fluid was synthesized by neutralizing the fully protonated fullerol with an amine terminated polyethylene/polypropylene oxide oligomer (Jeffamine®). The ionic fluid was compared to a control synthesized by mixing the partially protonated form (sodium form) of the fullerols with the same oligomeric amine in the same ratio as in the ionic fluids (20 wt% fullerol). In the fullerol fluid the ionic bonding significantly perturbs the thermal transitions and melting/crystallization behavior of the amine. In contrast, both the normalized heat of fusion and crystallization of the amine in the control are similar to those of the neat amine consistent with a physical mixture of the fullerols/amine with minimal interactions. In addition to differences in thermal behavior, the fullerol ionic fluid exhibits a complex viscoelastic behavior intermediate between the neat Jeffamine® (liquid-like) and the control (solid-like).

  6. Geometry effect on electrokinetic flow and ionic conductance in pH-regulated nanochannels

    NASA Astrophysics Data System (ADS)

    Sadeghi, Morteza; Saidi, Mohammad Hassan; Moosavi, Ali; Sadeghi, Arman

    2017-12-01

    Semi-analytical solutions are obtained for the electrical potential, electroosmotic velocity, ionic conductance, and surface physicochemical properties associated with long pH-regulated nanochannels of arbitrary but constant cross-sectional area. The effects of electric double layer overlap, multiple ionic species, and surface association/dissociation reactions are all taken into account, assuming low surface potentials. The method of analysis includes series solutions which the pertinent coefficients are obtained by applying the wall boundary conditions using either of the least-squares or point matching techniques. Although the procedure is general enough to be applied to almost any arbitrary cross section, nine nanogeometries including polygonal, trapezoidal, double-trapezoidal, rectangular, elliptical, semi-elliptical, isosceles triangular, rhombic, and isotropically etched profiles are selected for presentation. For the special case of an elliptic cross section, full analytical solutions are also obtained utilizing the Mathieu functions. We show that the geometrical configuration plays a key role in determination of the ionic conductance, surface charge density, electrical potential and velocity fields, and proton enhancement. In this respect, the net electric charge and convective ionic conductance are higher for channels of larger perimeter to area ratio, whereas the opposite is true for the average surface charge density and mean velocity; the geometry impact on the two latest ones, however, vanishes if the background salt concentration is high enough. Moreover, we demonstrate that considering a constant surface potential equal to the average charge-regulated potential provides sufficiently accurate results for smooth geometries such as an ellipse at medium-high aspect ratios but leads to significant errors for geometries having narrow corners such as a triangle.

  7. Quantum State-Resolved Collision Dynamics of Nitric Oxide at Ionic Liquid and Molten Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Zutz, Amelia Marie

    Detailed molecular scale interactions at the gas-liquid interface are explored with quantum state-to-state resolved scattering of a jet-cooled beam of NO(2pi1/2; N = 0) from ionic liquid and molten metal surfaces. The scattered distributions are probed via laser-induced fluorescence methods, which yield rotational and spin-orbit state populations that elucidate the dynamics of energy transfer at the gas-liquid interface. These collision dynamics are explored as a function of incident collision energy, surface temperature, scattering angle, and liquid identity, all of which are found to substantially affect the degree of rotational, electronic and vibrational excitation of NO via collisions at the liquid surface. Rotational distributions observed reveal two distinct scattering pathways, (i) molecules that trap, thermalize and eventually desorb from the surface (trapping-desorption, TD), and (ii) those that undergo prompt recoil (impulsive scattering, IS) prior to complete equilibration with the liquid surface. Thermally desorbing NO molecules are found to have rotational temperatures close to, but slightly cooler than the surface temperature, indicative of rotational dependent sticking probabilities on liquid surfaces. Nitric oxide is a radical with multiple low-lying electronic states that serves as an ideal candidate for exploring nonadiabatic state-changing collision dynamics at the gas-liquid interface, which induce significant excitation from ground (2pi1/2) to excited (2pi 3/2) spin-orbit states. Molecular beam scattering of supersonically cooled NO from hot molten metals (Ga and Au, Ts = 300 - 1400 K) is also explored, which provide preliminary evidence for vibrational excitation of NO mediated by thermally populated electron-hole pairs in the hot, conducting liquid metals. The results highlight the presence of electronically nonadiabatic effects and build toward a more complete characterization of energy transfer dynamics at gas-liquid interfaces.

  8. Scaling Behavior for Ionic Transport and its Fluctuations in Individual Carbon Nanotubes

    PubMed Central

    Secchi, Eleonora; Niguès, Antoine; Jubin, Laetitia; Siria, Alessandro; Bocquet, Lydéric

    2016-01-01

    In this Letter, we perform an experimental study of ionic transport and current fluctuations inside individual carbon nanotubes (CNTs). The conductance exhibits a power law behavior at low salinity, with an exponent close to 1/3 versus the salt concentration in this regime. This behavior is rationalized in terms of a salinity dependent surface charge, which is accounted for on the basis of a model for hydroxide adsorption at the (hydrophobic) carbon surface. This is in contrast to boron nitride nanotubes which exhibit a constant surface conductance. Further, we measure the low frequency noise of the ionic current in CNTs and show that the amplitude of the noise scales with the surface charge, with data collapsing on a master curve for the various studied CNTs at a given pH. PMID:27127970

  9. Scaling Behavior for Ionic Transport and its Fluctuations in Individual Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Secchi, Eleonora; Niguès, Antoine; Jubin, Laetitia; Siria, Alessandro; Bocquet, Lydéric

    2016-04-01

    In this Letter, we perform an experimental study of ionic transport and current fluctuations inside individual carbon nanotubes (CNTs). The conductance exhibits a power law behavior at low salinity, with an exponent close to 1 /3 versus the salt concentration in this regime. This behavior is rationalized in terms of a salinity dependent surface charge, which is accounted for on the basis of a model for hydroxide adsorption at the (hydrophobic) carbon surface. This is in contrast to boron nitride nanotubes which exhibit a constant surface conductance. Further, we measure the low frequency noise of the ionic current in CNTs and show that the amplitude of the noise scales with the surface charge, with data collapsing on a master curve for the various studied CNTs at a given p H .

  10. Scaling Behavior for Ionic Transport and its Fluctuations in Individual Carbon Nanotubes.

    PubMed

    Secchi, Eleonora; Niguès, Antoine; Jubin, Laetitia; Siria, Alessandro; Bocquet, Lydéric

    2016-04-15

    In this Letter, we perform an experimental study of ionic transport and current fluctuations inside individual carbon nanotubes (CNTs). The conductance exhibits a power law behavior at low salinity, with an exponent close to 1/3 versus the salt concentration in this regime. This behavior is rationalized in terms of a salinity dependent surface charge, which is accounted for on the basis of a model for hydroxide adsorption at the (hydrophobic) carbon surface. This is in contrast to boron nitride nanotubes which exhibit a constant surface conductance. Further, we measure the low frequency noise of the ionic current in CNTs and show that the amplitude of the noise scales with the surface charge, with data collapsing on a master curve for the various studied CNTs at a given pH.

  11. Electronic functions of solid-to-liquid interfaces of organic semiconductor crystals and ionic liquid

    NASA Astrophysics Data System (ADS)

    Takeya, J.

    2008-10-01

    The environment of surface electrons at 'solid-to-liquid' interfaces is somewhat extreme, subjected to intense local electric fields or harsh chemical pressures that high-density ionic charge or polarization of mobile molecules create. In this proceedings, we argue functions of electronic carriers generated at the surface of organic semiconductor crystals in response to the local electric fields in the very vicinity of the interface to ionic liquid. The ionic liquids (ILs), or room temperature molten salts, are gaining considerable interest in the recent decade at the prospect of nonvolatile 'green solvents', with the development of chemically stable and nontoxic compounds. Moreover, such materials are also applied to electrolytes for lithium ion batteries and electric double-layer (EDL) capacitors. Our present solid-to-liquid interfaces of rubrene single crystals and ionic liquids work as fast-switching organic field-effect transistors (OFETs) with the highest transconductance, i.e. the most efficient response of the output current to the input voltage, among the OFETs ever built.

  12. The shape-memory effect in ionic elastomers: fixation through ionic interactions.

    PubMed

    González-Jiménez, Antonio; Malmierca, Marta A; Bernal-Ortega, Pilar; Posadas, Pilar; Pérez-Aparicio, Roberto; Marcos-Fernández, Ángel; Mather, Patrick T; Valentín, Juan L

    2017-04-19

    Shape-memory elastomers based on a commercial rubber cross-linked by both ionic and covalent bonds have been developed. The elastomeric matrix was a carboxylated nitrile rubber (XNBR) vulcanized with magnesium oxide (MgO) providing ionic interactions that form hierarchical structures. The so-named ionic transition is used as the unique thermal transition responsible for the shape-memory effect (SME) in these elastomers. These ionic interactions fix the temporary shape due to their behavior as dynamic cross-links with temperature changes. Covalent cross-links were incorporated with the addition of different proportions of dicumyl peroxide (DCP) to the ionic elastomer to establish and recover the permanent shape. In this article, the SME was modulated by modifying the degree of covalent cross-linking, while keeping the ionic contribution constant. In addition, different programming parameters, such as deformation temperature, heating/cooling rate, loading/unloading rate and percentage of tensile strain, were evaluated for their effects on shape-memory behavior.

  13. High-flux ionic diodes, ionic transistors and ionic amplifiers based on external ion concentration polarization by an ion exchange membrane: a new scalable ionic circuit platform.

    PubMed

    Sun, Gongchen; Senapati, Satyajyoti; Chang, Hsueh-Chia

    2016-04-07

    A microfluidic ion exchange membrane hybrid chip is fabricated using polymer-based, lithography-free methods to achieve ionic diode, transistor and amplifier functionalities with the same four-terminal design. The high ionic flux (>100 μA) feature of the chip can enable a scalable integrated ionic circuit platform for micro-total-analytical systems.

  14. High-flux ionic diodes, ionic transistors and ionic amplifiers based on external ion concentration polarization by an ion exchange membrane: a new scalable ionic circuit platform†

    PubMed Central

    Sun, Gongchen; Senapati, Satyajyoti

    2016-01-01

    A microfluidic-ion exchange membrane hybrid chip is fabricated by polymer-based, lithography-free methods to achieve ionic diode, transistor and amplifier functionalities with the same four-terminal design. The high ionic flux (> 100 μA) feature of the chip can enable a scalable integrated ionic circuit platform for micro-total-analytical systems. PMID:26960551

  15. Ionic imbalance induced self-propulsion of liquid metals

    PubMed Central

    Zavabeti, Ali; Daeneke, Torben; Chrimes, Adam F.; O'Mullane, Anthony P.; Zhen Ou, Jian; Mitchell, Arnan; Khoshmanesh, Khashayar; Kalantar-zadeh, Kourosh

    2016-01-01

    Components with self-propelling abilities are important building blocks of small autonomous systems and the characteristics of liquid metals are capable of fulfilling self-propulsion criteria. To date, there has been no exploration regarding the effect of electrolyte ionic content surrounding a liquid metal for symmetry breaking that generates motion. Here we show the controlled actuation of liquid metal droplets using only the ionic properties of the aqueous electrolyte. We demonstrate that pH or ionic concentration gradients across a liquid metal droplet induce both deformation and surface Marangoni flow. We show that the Lippmann dominated deformation results in maximum velocity for the self-propulsion of liquid metal droplets and illustrate several key applications, which take advantage of such electrolyte-induced motion. With this finding, it is possible to conceive the propulsion of small entities that are constructed and controlled entirely with fluids, progressing towards more advanced soft systems. PMID:27488954

  16. Ionic imbalance induced self-propulsion of liquid metals.

    PubMed

    Zavabeti, Ali; Daeneke, Torben; Chrimes, Adam F; O'Mullane, Anthony P; Zhen Ou, Jian; Mitchell, Arnan; Khoshmanesh, Khashayar; Kalantar-Zadeh, Kourosh

    2016-08-04

    Components with self-propelling abilities are important building blocks of small autonomous systems and the characteristics of liquid metals are capable of fulfilling self-propulsion criteria. To date, there has been no exploration regarding the effect of electrolyte ionic content surrounding a liquid metal for symmetry breaking that generates motion. Here we show the controlled actuation of liquid metal droplets using only the ionic properties of the aqueous electrolyte. We demonstrate that pH or ionic concentration gradients across a liquid metal droplet induce both deformation and surface Marangoni flow. We show that the Lippmann dominated deformation results in maximum velocity for the self-propulsion of liquid metal droplets and illustrate several key applications, which take advantage of such electrolyte-induced motion. With this finding, it is possible to conceive the propulsion of small entities that are constructed and controlled entirely with fluids, progressing towards more advanced soft systems.

  17. Ionic imbalance induced self-propulsion of liquid metals

    NASA Astrophysics Data System (ADS)

    Zavabeti, Ali; Daeneke, Torben; Chrimes, Adam F.; O'Mullane, Anthony P.; Zhen Ou, Jian; Mitchell, Arnan; Khoshmanesh, Khashayar; Kalantar-Zadeh, Kourosh

    2016-08-01

    Components with self-propelling abilities are important building blocks of small autonomous systems and the characteristics of liquid metals are capable of fulfilling self-propulsion criteria. To date, there has been no exploration regarding the effect of electrolyte ionic content surrounding a liquid metal for symmetry breaking that generates motion. Here we show the controlled actuation of liquid metal droplets using only the ionic properties of the aqueous electrolyte. We demonstrate that pH or ionic concentration gradients across a liquid metal droplet induce both deformation and surface Marangoni flow. We show that the Lippmann dominated deformation results in maximum velocity for the self-propulsion of liquid metal droplets and illustrate several key applications, which take advantage of such electrolyte-induced motion. With this finding, it is possible to conceive the propulsion of small entities that are constructed and controlled entirely with fluids, progressing towards more advanced soft systems.

  18. High-energy supercapacitors based on hierarchical porous carbon with an ultrahigh ion-accessible surface area in ionic liquid electrolytes

    NASA Astrophysics Data System (ADS)

    Zhong, Hui; Xu, Fei; Li, Zenghui; Fu, Ruowen; Wu, Dingcai

    2013-05-01

    A very important yet really challenging issue to address is how to greatly increase the energy density of supercapacitors to approach or even exceed those of batteries without sacrificing the power density. Herein we report the fabrication of a new class of ultrahigh surface area hierarchical porous carbon (UHSA-HPC) based on the pore formation and widening of polystyrene-derived HPC by KOH activation, and highlight its superior ability for energy storage in supercapacitors with ionic liquid (IL) as electrolyte. The UHSA-HPC with a surface area of more than 3000 m2 g-1 shows an extremely high energy density, i.e., 118 W h kg-1 at a power density of 100 W kg-1. This is ascribed to its unique hierarchical nanonetwork structure with a large number of small-sized nanopores for IL storage and an ideal meso-/macroporous network for IL transfer.A very important yet really challenging issue to address is how to greatly increase the energy density of supercapacitors to approach or even exceed those of batteries without sacrificing the power density. Herein we report the fabrication of a new class of ultrahigh surface area hierarchical porous carbon (UHSA-HPC) based on the pore formation and widening of polystyrene-derived HPC by KOH activation, and highlight its superior ability for energy storage in supercapacitors with ionic liquid (IL) as electrolyte. The UHSA-HPC with a surface area of more than 3000 m2 g-1 shows an extremely high energy density, i.e., 118 W h kg-1 at a power density of 100 W kg-1. This is ascribed to its unique hierarchical nanonetwork structure with a large number of small-sized nanopores for IL storage and an ideal meso-/macroporous network for IL transfer. Electronic supplementary information (ESI) available: Sample preparation, material characterization, electrochemical characterization and specific mass capacitance and energy density. See DOI: 10.1039/c3nr00738c

  19. New chemical approach to obtain dense layer phosphate-based ionic conductor coating on negative electrode material surface: Synthesis way, outgassing and improvement of C-rate capability

    NASA Astrophysics Data System (ADS)

    Fleutot, Benoit; Davoisne, Carine; Gachot, Grégory; Cavalaglio, Sébastien; Grugeon, Sylvie; Viallet, Virginie

    2017-04-01

    Li4Ti5O12 (LTO) based batteries have severe gassing behavior during charge/discharge and storage process, due to interfacial reactions between active material and electrolyte solution. In the same time, the electronic and ionic conductivity of pristine LTO is very poor and induces the use of nanoparticles which increase the outgassing phenomena. The coating of LTO particles could be a solution. For this the LTO spinel particles are modified with ionic conductor Li3PO4 coating using a spray-drying method. For the first time a homogeneous thin dense layer phosphate based conductor is obtained without nanoparticles, as a thin film material. It is so possible to study the influence of ionic conductor deposited on the negative electrode material on performances by the controlled layer thickness. This coating was characterized by XRD, SEM, XPS and TEM. The electrochemical performance of Li3PO4 coated Li4Ti5O12 is improved at high C-rate by the surface modification (improvement of 30 mAh g-1 at 5 C-rate compared to pristine LTO for 5 nm of coating), inducing by a modification of surface energy. An optimum coating thickness was studied. This type of coating allows a significant decrease of outgassing phenomena due the conformal coating and opens the way to a great number of studies and new technologies.

  20. Asteroid surface materials - Mineralogical characterizations and cosmological implications

    NASA Technical Reports Server (NTRS)

    Gaffey, M. J.; Mccord, T. B.

    1977-01-01

    The theoretical basis for the interpretation of diagnostic spectral features is examined and previous characterizations of asteroid surface materials are considered. A summary is provided of results reported by Gaffey and McCord (1977) who have utilized the most sophisticated interpretive techniques available to interpret the spectral reflectance data of about 65 asteroids for mineralogic and petrologic information. Cosmological implications related to the study of asteroid surface materials are also considered, taking into account source bodies for the meteorites, postaccretionary thermal history, significant factors of asteroid thermal history, and the Apollo and Amor asteroids. It is found that the asteroids exhibit surface materials made up of assemblages of meteoritic minerals. The relative abundance of meteorite types reaching the earth's surface is very different from the population of mineralogic types on asteroid surfaces. The earth-crossing or -approaching asteroids apparently derive from a restricted source region or population which is very strongly depleted in the C2-like assemblages that dominate the belt as a whole.

  1. Surface history of Mercury - Implications for terrestrial planets

    NASA Technical Reports Server (NTRS)

    Murray, B. C.; Strom, R. G.; Trask, N. J.; Gault, D. E.

    1975-01-01

    A plausible surface history of Mercury is presented which is suggested by Mariner 10 television pictures. Five periods are postulated which are delineated by successive variations in the modification of the surface by external and internal processes: accretion and differentiation, terminal heavy bombardment, formation of the Caloris basin, flooding of that basin and other areas, and light cratering accumulated on the smooth plains. Each period is described in detail; the overall history is compared with the surface histories of Venus, Mars, and the moon; and the implications of this history for earth are discussed. It is tentatively concluded that: Mercury is a differentiated planet most likely composed of a large iron core enclosed by a relatively thin silicate layer; heavy surface bombardment occurred about four billion years ago, which probably affected all the inner planets, and was followed by a period of volcanic activity; no surface modifications caused by tectonic, volcanic, or atmospheric processes took place after the volcanic period.

  2. Surface Adsorption in Nonpolarizable Atomic Models.

    PubMed

    Whitmer, Jonathan K; Joshi, Abhijeet A; Carlton, Rebecca J; Abbott, Nicholas L; de Pablo, Juan J

    2014-12-09

    Many ionic solutions exhibit species-dependent properties, including surface tension and the salting-out of proteins. These effects may be loosely quantified in terms of the Hofmeister series, first identified in the context of protein solubility. Here, our interest is to develop atomistic models capable of capturing Hofmeister effects rigorously. Importantly, we aim to capture this dependence in computationally cheap "hard" ionic models, which do not exhibit dynamic polarization. To do this, we have performed an investigation detailing the effects of the water model on these properties. Though incredibly important, the role of water models in simulation of ionic solutions and biological systems is essentially unexplored. We quantify this via the ion-dependent surface attraction of the halide series (Cl, Br, I) and, in so doing, determine the relative importance of various hypothesized contributions to ionic surface free energies. Importantly, we demonstrate surface adsorption can result in hard ionic models combined with a thermodynamically accurate representation of the water molecule (TIP4Q). The effect observed in simulations of iodide is commensurate with previous calculations of the surface potential of mean force in rigid molecular dynamics and polarizable density-functional models. Our calculations are direct simulation evidence of the subtle but sensitive role of water thermodynamics in atomistic simulations.

  3. Effects of Dopant Ionic Radius on Cerium Reduction in Epitaxial Cerium Oxide Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Nan; Orgiani, Pasquale; Di Bartolomeo, Elisabetta

    The role of trivalent rare-earth dopants in ceria epitaxial films on surface ion exchange reactivity and ion conductivity has been systematically studied. Single-crystal epitaxial films with unique crystal orientation and micro-structure nature have allowed us to rule out the influence of structural defects on both transport and surface ion exchange properties. The films conductivities were larger than those reported in literature for both polycrystalline ceramic pellets and crystalline films. An increase in oxygen vacancies and Ce 3+ concentration while decreasing the dopant ionic radius from La 3+ to Yb 3+ was observed, thus explaining the measured increased activation energy andmore » enhanced surface reactivity. The more significant ability of smaller dopant ionic radius in releasing the stress strength induced by the larger Ce 3+ ionic radius allows promoting the formation of oxygen vacancies and Ce 3+, which are two precious species in determining the efficiency of ion transport and surface ion exchange processes. This can open new perspectives in designing ceria-based materials in tailoring functional properties, either ion migration or surface reactivity, by rational cation substitutions.« less

  4. Effects of Dopant Ionic Radius on Cerium Reduction in Epitaxial Cerium Oxide Thin Films

    DOE PAGES

    Yang, Nan; Orgiani, Pasquale; Di Bartolomeo, Elisabetta; ...

    2017-04-17

    The role of trivalent rare-earth dopants in ceria epitaxial films on surface ion exchange reactivity and ion conductivity has been systematically studied. Single-crystal epitaxial films with unique crystal orientation and micro-structure nature have allowed us to rule out the influence of structural defects on both transport and surface ion exchange properties. The films conductivities were larger than those reported in literature for both polycrystalline ceramic pellets and crystalline films. An increase in oxygen vacancies and Ce 3+ concentration while decreasing the dopant ionic radius from La 3+ to Yb 3+ was observed, thus explaining the measured increased activation energy andmore » enhanced surface reactivity. The more significant ability of smaller dopant ionic radius in releasing the stress strength induced by the larger Ce 3+ ionic radius allows promoting the formation of oxygen vacancies and Ce 3+, which are two precious species in determining the efficiency of ion transport and surface ion exchange processes. This can open new perspectives in designing ceria-based materials in tailoring functional properties, either ion migration or surface reactivity, by rational cation substitutions.« less

  5. Ionic Liquids Database- (ILThermo)

    National Institute of Standards and Technology Data Gateway

    SRD 147 NIST Ionic Liquids Database- (ILThermo) (Web, free access)   IUPAC Ionic Liquids Database, ILThermo, is a free web research tool that allows users worldwide to access an up-to-date data collection from the publications on experimental investigations of thermodynamic, and transport properties of ionic liquids as well as binary and ternary mixtures containing ionic liquids.

  6. Nanoscale mapping of electromechanical response in ionic conductive ceramics with piezoelectric inclusions

    DOE PAGES

    Seol, Daehee; Seo, Hosung; Jesse, Stephen; ...

    2015-08-19

    Electromechanical (EM) response in ion conductive ceramics with piezoelectric inclusions was spatially explored using strain-based atomic force microscopy. Since the sample is composed of two dominant phases of ionic and piezoelectric phases, it allows us to explore two different EM responses of electrically induced ionic response and piezoresponse over the same surface. Furthermore, EM response of the ionic phase, i.e., electrochemical strain, was quantitatively investigated from the comparison with that of the piezoelectric phase, i.e., piezoresponse. Finally, these results could provide additional information on the EM properties, including the electrochemical strain at nanoscale.

  7. Nanoscale mapping of electromechanical response in ionic conductive ceramics with piezoelectric inclusions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seol, Daehee; Seo, Hosung; Jesse, Stephen

    Electromechanical (EM) response in ion conductive ceramics with piezoelectric inclusions was spatially explored using strain-based atomic force microscopy. Since the sample is composed of two dominant phases of ionic and piezoelectric phases, it allows us to explore two different EM responses of electrically induced ionic response and piezoresponse over the same surface. Furthermore, EM response of the ionic phase, i.e., electrochemical strain, was quantitatively investigated from the comparison with that of the piezoelectric phase, i.e., piezoresponse. Finally, these results could provide additional information on the EM properties, including the electrochemical strain at nanoscale.

  8. Electroosmotic flow and ionic conductance in a pH-regulated rectangular nanochannel

    NASA Astrophysics Data System (ADS)

    Sadeghi, Morteza; Saidi, Mohammad Hassan; Sadeghi, Arman

    2017-06-01

    Infinite series solutions are obtained for electrical potential, electroosmotic velocity, ionic conductance, and surface physicochemical properties of long pH-regulated rectangular nanochannels of low surface potential utilizing the double finite Fourier transform method. Closed form expressions are also obtained for channels of large height to width ratio for which the depthwise variations vanish. Neglecting the Stern layer impact, the effects of EDL (Electric Double Layer) overlap, multiple ionic species, and association/dissociation reactions on the surface are all taken into account. Moreover, finite-element-based numerical simulations are conducted to account for the end effects as well as to validate the analytical solutions. We show that, with the exception of the migratory ionic conductivity, all the physicochemical parameters are strong functions of the channel aspect ratio. Accordingly, a slit geometry is not a good representative of a rectangular channel when the width is comparable to the height. It is also observed that the distribution of the electrical potential is not uniform over the surface of a charge-regulated channel. In addition, unlike ordinary channels for which an increase in the background salt concentration is always accompanied by higher flow rates, quite the opposite may be true for a pH-regulated duct at higher salt concentrations.

  9. Nucleation and growth of microdroplets of ionic liquids deposited by physical vapor method onto different surfaces

    NASA Astrophysics Data System (ADS)

    Costa, José C. S.; Coelho, Ana F. S. M. G.; Mendes, Adélio; Santos, Luís M. N. B. F.

    2018-01-01

    Nanoscience and technology has generated an important area of research in the field of properties and functionality of ionic liquids (ILs) based materials and their thin films. This work explores the deposition process of ILs droplets as precursors for the fabrication of thin films, by means of physical vapor deposition (PVD). It was found that the deposition (by PVD on glass, indium tin oxide, graphene/nickel and gold-coated quartz crystal surfaces) of imidazolium [C4mim][NTf2] and pyrrolidinium [C4C1Pyrr][NTf2] based ILs generates micro/nanodroplets with a shape, size distribution and surface coverage that could be controlled by the evaporation flow rate and deposition time. No indication of the formation of a wetting-layer prior to the island growth was found. Based on the time-dependent morphological analysis of the micro/nanodroplets, a simple model for the description of the nucleation process and growth of ILs droplets is presented. The proposed model is based on three main steps: minimum free area to promote nucleation; first order coalescence; second order coalescence.

  10. Osmotic Pressure in Ionic Microgel Dispersions

    NASA Astrophysics Data System (ADS)

    Denton, Alan R.; Tang, Qiyun

    2015-03-01

    Microgels are microscopic gel particles, typically 10-1000 nm in size, that are swollen by a solvent. Hollow microgels (microcapsules) can encapsulate cargo, such as dye molecules or drugs, in their solvent-filled cavities. Their sensitive response to environmental conditions (e.g., temperature, pH) and influence on flow properties suit microgels to widespread applications in the chemical, pharmaceutical, food, and consumer care industries. When dispersed in water, polyelectrolyte gels become charged through dissociation of counterions. The electrostatic contribution to the osmotic pressure inside and outside of ionic microgels influences particle swelling and bulk materials properties, including thermodynamic, structural, optical, and rheological properties. Within the primitive and cell models of polyelectrolyte solutions, we derive an exact statistical mechanical formula for the contribution of mobile microions to the osmotic pressure within ionic microgels. Using Poisson-Boltzmann theory, we validate this result by explicitly calculating ion distributions across the surface of an ionic microgel and the electrostatic contribution to the osmotic pressure. Within a coarse-grained one-component model, we further chart the limits of the cell model for salty dispersions. This work was supported by the National Science Foundation under Grant No. DMR-1106331.

  11. Thermotropic Ionic Liquid Crystals

    PubMed Central

    Axenov, Kirill V.; Laschat, Sabine

    2011-01-01

    The last five years’ achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed. PMID:28879986

  12. Thermotropic Ionic Liquid Crystals.

    PubMed

    Axenov, Kirill V; Laschat, Sabine

    2011-01-14

    The last five years' achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed.

  13. Ionic Liquid Films at the Water-Air Interface: Langmuir Isotherms of Tetra-alkylphosphonium-Based Ionic Liquids.

    PubMed

    Shimizu, Karina; Canongia Lopes, José N; Gonçalves da Silva, Amélia M P S

    2015-08-04

    The behavior of ionic liquids trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfonyl)imide and trihexyl(tetradecyl)phosphonium dicyanamide, [P6 6 6 14][Ntf2] and [P6 6 6 14][N(CN)2], respectively, at the water-air interface was investigated using the Langmuir trough technique. The obtained surface pressure versus mean molecular area (MMA) isotherms, π-A, and surface potential versus MMA isotherms, ΔV-A, show distinct interfacial behavior between the two systems. The results were interpreted at a molecular level using molecular dynamics simulations: the different compression regimes along the [P6 6 6 14][Ntf2] isotherm correspond to the self-organization of the ions at the water surface into compact and planar monolayers that coalesce at an MMA value of ca. 1.85 nm(2)/ion pair to form an expanded liquidlike layer. Upon further compression, the monolayer collapses at around 1.2 nm(2)/ion pair to yield a progressively thicker and less organized layer. These transitions are much more subdued in the [P6 6 6 14][N(CN)2] system because of the more hydrophilic nature of the dicyanamide anion. The numerical density profiles obtained from the MD simulation trajectories are also able to emphasize the very unusual packing of the four long alkyl side chains of the cation above and below the ionic layer that forms at the water surface. Such a distribution is also different for the two studied systems during the different compression regimes.

  14. Reliability of ionic polymer metallic composite for opto-mechanical applications

    NASA Astrophysics Data System (ADS)

    Yu, Chung-Yi; Su, Guo-Dung J.

    2014-09-01

    Electroactive polymer (EAP) is capable of exhibiting large shape changes in response to electrical stimulation. EAPs can produce large deformation with lower applied voltage for actuation applications. IPMC (Ionic Polymer Metal Composite) is a well-known ionic EAPs. It has numerous attractive advantages, such as low electrical energy consumption and light weight. The mechanism of IPMC actuator is due to the ionic diffusion when the voltage gradient is applied, so that the type of ionic solution has a large impact on the physical properties of IPMC. In this paper, the reliability tests of IPMC with non-aqueous ionic solution are demonstrated. Pt-IPMC with LiOH aqueous solution exhibits the best maximum displacement, but the water in LiOH solution is electrolyzed because of the low electrolysis voltage 1.23 V of water. To improve electrolysis problems and the operation time in the air, proper solvents including high electrolysis voltage and low vapor pressure should be considered. The reliability tests focus on the durability of IPMC in the air. The surface resistance, tip displacement and response time of IPMC are presented. More improvements of IPMC fabrication, such as Ag-IPMC, was developed in this paper.

  15. Protic ionic liquid as additive on lipase immobilization using silica sol-gel.

    PubMed

    de Souza, Ranyere Lucena; de Faria, Emanuelle Lima Pache; Figueiredo, Renan Tavares; Freitas, Lisiane dos Santos; Iglesias, Miguel; Mattedi, Silvana; Zanin, Gisella Maria; dos Santos, Onélia Aparecida Andreo; Coutinho, João A P; Lima, Álvaro Silva; Soares, Cleide Mara Faria

    2013-03-05

    Ionic liquids (ILs) have evolved as a new type of non-aqueous solvents for biocatalysis, mainly due to their unique and tunable physical properties. A number of recent review papers have described a variety of enzymatic reactions conducted in IL solutions, on the other hand, to improve the enzyme's activity and stability in ILs; major methods being explored include the enzyme immobilization (on solid support, sol-gel, etc.), protic ionic liquids used as an additive process. The immobilization of the lipase from Burkholderia cepacia by the sol-gel technique using protic ionic liquids (PIL) as additives to protect against inactivation of the lipase due to release of alcohol and shrinkage of the gel during the sol-gel process was investigated in this study. The influence of various factors such as the length of the alkyl chain of protic ionic liquids (monoethanolamine-based) and a concentration range between 0.5 and 3.0% (w/v) were evaluated. The resulting hydrophobic matrices and immobilized lipases were characterised with regard to specific surface area, adsorption-desorption isotherms, pore volume (V(p)) and size (d(p)) according to nitrogen adsorption and scanning electron microscopy (SEM), physico-chemical properties (thermogravimetric - TG, differential scanning calorimetry - DSC and Fourier transform infrared spectroscopy - FTIR) and the potential for ethyl ester and emulsifier production. The total activity yields (Y(a)) for matrices of immobilized lipase employing protic ionic liquids as additives always resulted in higher values compared with the sample absent the protic ionic liquids, which represents 35-fold increase in recovery of enzymatic activity using the more hydrophobic protic ionic liquids. Compared with arrays of the immobilized biocatalyst without additive, in general, the immobilized biocatalyst in the presence of protic ionic liquids showed increased values of surface area (143-245 m(2) g(-1)) and pore size (19-38 Å). Immobilization with

  16. Evaluation of ionic air purifiers for reducing aerosol exposure in confined indoor spaces.

    PubMed

    Grinshpun, S A; Mainelis, G; Trunov, M; Adhikari, A; Reponen, T; Willeke, K

    2005-08-01

    does. The effects of particle size (within the tested range) and properties (NaCl, PSL, Pseudomonas fluorescens bacteria) as well as the effects of the manikin's body temperature and its breathing on the ionic purifier performance were either small or insignificant. The data suggest that the unipolar ionic air purifiers are particularly efficient in reducing aerosol exposure in the breathing zone when used inside confined spaces with a relatively high surface-to-volume ratio. Ionic air purifiers have become increasingly popular for removing dust particles, aeroallergens and airborne microorganisms from indoor air in various settings. While the indoor air cleaning effect, resulting from unipolar and bipolar ion emission, has been tested by several investigators, there are still controversial claims (favorable and unfavorable) about the performance of commercially available ionic air purifiers. Among the five tested ionic air purifiers (two wearable and three stationary) producing unipolar air ions, the units with a higher ion emission rate provided higher particle removal efficiency. The ion polarity (negative vs. positive), the particle size (0.3-3 microm) and properties (NaCl, PSL, Pseudomonas fluorescens bacteria), as well as the body temperature and breathing did not considerable affected the ionization-driven particle removal. The data suggest that the unipolar ionic air purifiers are particularly efficient in reducing aerosol exposure in the breathing zone when they are used inside confined spaces with a relatively high surface-to-volume ratio (such as automobile cabins, aircraft seating areas, bathrooms, cellular offices, small residential rooms, and animal confinements). Based on our experiments, we proposed that purifiers with a very high ion emission rate be operated in an intermittent mode if used indoors for extended time periods. As the particles migrate to and deposit on indoor surfaces during the operation of ionic air purifiers, some excessive surface

  17. Nanoscale Ionic Liquids

    DTIC Science & Technology

    2006-11-01

    Technical Report 11 December 2005 - 30 November 2006 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Nanoscale Ionic Liquids 5b. GRANT NUMBER FA9550-06-1-0012...Title: Nanoscale Ionic Liquids Principal Investigator: Emmanuel P. Giannelis Address: Materials Science and Engineering, Bard Hall, Cornell University...based fluids exhibit high ionic conductivity. The NFs are typically synthesized by grafting a charged, oligomeric corona onto the nanoparticle cores

  18. Effect of Ionic Soil Stabilizers on Soil-Water Characteristic of Special Clay

    NASA Astrophysics Data System (ADS)

    Cui, D.; Xiang, W.

    2011-12-01

    The engineering properties of special clay are conventionally improved through the use of chemical additive such as ionic soil stabilizer (ISS). Such special clays are often referred to as stabilized or treated clays. The soil-water characteristic curves (SWCC) of special clays from Henan province and Hubei province were measured both in natural and stabilized conditions using the pressure plate apparatus in the suction range of 0-500 kPa. The SWCC results are used to interpret the special clays behavior due to stabilizer treatment. In addition, relationships were developed between the basic clay and stabilized properties such as specific surface area and pore size distribution. The analysis showed that specific surface area decreases, cumulative pore volume and average pore size diameter decrease, dehydration rate slows and the thickness of water film thins after treatment with Ionic Soil Stabilizer. The research data and interpretation analysis presented here can be extended to understand the water film change behaviors influencing the mechanical and physical properties of stabilized special clay soils. KEY WORDS: ionic soil stabilizer, special clay, pore size diameter, specific surface area, soil water characteristic curve, water film

  19. Enhancing grain boundary ionic conductivity in mixed ionic-electronic conductors.

    PubMed

    Lin, Ye; Fang, Shumin; Su, Dong; Brinkman, Kyle S; Chen, Fanglin

    2015-04-10

    Mixed ionic-electronic conductors are widely used in devices for energy conversion and storage. Grain boundaries in these materials have nanoscale spatial dimensions, which can generate substantial resistance to ionic transport due to dopant segregation. Here, we report the concept of targeted phase formation in a Ce0.8Gd0.2O2-δ-CoFe2O4 composite that serves to enhance the grain boundary ionic conductivity. Using transmission electron microscopy and spectroscopy approaches, we probe the grain boundary charge distribution and chemical environments altered by the phase reaction between the two constituents. The formation of an emergent phase successfully avoids segregation of the Gd dopant and depletion of oxygen vacancies at the Ce0.8Gd0.2O2-δ-Ce0.8Gd0.2O2-δ grain boundary. This results in superior grain boundary ionic conductivity as demonstrated by the enhanced oxygen permeation flux. This work illustrates the control of mesoscale level transport properties in mixed ionic-electronic conductor composites through processing induced modifications of the grain boundary defect distribution.

  20. Electrotunable lubricity with ionic liquid nanoscale films.

    PubMed

    Fajardo, O Y; Bresme, F; Kornyshev, A A; Urbakh, M

    2015-01-09

    One of the main challenges in tribology is finding the way for an in situ control of friction without changing the lubricant. One of the ways for such control is via the application of electric fields. In this respect a promising new class of lubricants is ionic liquids, which are solvent-free electrolytes, and their properties should be most strongly affected by applied voltage. Based on a minimal physical model, our study elucidates the connection between the voltage effect on the structure of the ionic liquid layers and their lubricating properties. It reveals two mechanisms of variation of the friction force with the surface charge density, consistent with recent AFM measurements, namely via the (i) charge effect on normal and in-plane ordering in the film and (ii) swapping between anion and cation layers at the surfaces. We formulate conditions that would warrant low friction coefficients and prevent wear by resisting "squeezing-out" of the liquid under compression. These results give a background for controllable variation of friction.

  1. Ruthenium nanoparticles in ionic liquids: structural and stability effects of polar solutes.

    PubMed

    Salas, Gorka; Podgoršek, Ajda; Campbell, Paul S; Santini, Catherine C; Pádua, Agílio A H; Costa Gomes, Margarida F; Philippot, Karine; Chaudret, Bruno; Turmine, Mireille

    2011-08-14

    Ionic liquids are a stabilizing medium for the in situ synthesis of ruthenium nanoparticles. Herein we show that the addition of molecular polar solutes to the ionic liquid, even in low concentrations, eliminates the role of the ionic liquid 3D structure in controlling the size of ruthenium nanoparticles, and can induce their aggregation. We have performed the synthesis of ruthenium nanoparticles by decomposition of [Ru(COD)(COT)] in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C(1)C(4)Im][NTf(2)], under H(2) in the presence of varying amounts of water or 1-octylamine. For water added during the synthesis of metallic nanoparticles, a decrease of the solubility in the ionic liquid was observed, showed by nanoparticles located at the interface between aqueous and ionic phases. When 1-octylamine is present during the synthesis, stable nanoparticles of a constant size are obtained. When 1-octylamine is added after the synthesis, aggregation of the ruthenium nanoparticles is observed. In order to explain these phenomena, we have explored the molecular interactions between the different species using (13)C-NMR and DOSY (Diffusional Order Spectroscopy) experiments, mixing calorimetry, surface tension measurements and molecular simulations. We conclude that the behaviour of the ruthenium nanoparticles in [C(1)C(4)Im][NTf(2)] in the presence of 1-octylamine depends on the interaction between the ligand and the nanoparticles in terms of the energetics but also of the structural arrangement of the amine at the nanoparticle's surface.

  2. Self-Assembled Polymeric Ionic Liquid-Functionalized Cellulose Nano-crystals: Constructing 3D Ion-conducting Channels Within Ionic Liquid-based Composite Polymer Electrolytes.

    PubMed

    Shi, Qing Xuan; Xia, Qing; Xiang, Xiao; Ye, Yun Sheng; Peng, Hai Yan; Xue, Zhi Gang; Xie, Xiao Lin; Mai, Yiu-Wing

    2017-09-04

    Composite polymeric and ionic liquid (IL) electrolytes are some of the most promising electrolyte systems for safer battery technology. Although much effort has been directed towards enhancing the transport properties of polymer electrolytes (PEs) through nanoscopic modification by incorporating nano-fillers, it is still difficult to construct ideal ion conducting networks. Here, a novel class of three-dimensional self-assembled polymeric ionic liquid (PIL)-functionalized cellulose nano-crystals (CNC) confining ILs in surface-grafted PIL polymer chains, able to form colloidal crystal polymer electrolytes (CCPE), is reported. The high-strength CNC nano-fibers, decorated with PIL polymer chains, can spontaneously form three-dimensional interpenetrating nano-network scaffolds capable of supporting electrolytes with continuously connected ion conducting networks with IL being concentrated in conducting domains. These new CCPE have exceptional ionic conductivities, low activation energies (close to bulk IL electrolyte with dissolved Li salt), high Li + transport numbers, low interface resistances and improved interface compatibilities. Furthermore, the CCPE displays good electrochemical properties and a good battery performance. This approach offers a route to leak-free, non-flammable and high ionic conductivity solid-state PE in energy conversion devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Polar surface energies of iono-covalent materials: implications of a charge-transfer model tested on Li2FeSiO4 surfaces.

    PubMed

    Hörmann, Nicolas G; Groß, Axel

    2014-07-21

    The ionic compounds that are used as electrode materials in Li-based rechargeable batteries can exhibit polar surfaces that in general have high surface energies. We derive an analytical estimate for the surface energy of such polar surfaces assuming charge redistribution as a polarity compensating mechanism. The polar contribution to the converged surface energy is found to be proportional to the bandgap multiplied by the surface charge necessary to compensate for the depolarization field, and some higher order correction terms that depend on the specific surface. Other features, such as convergence behavior, coincide with published results. General conclusions are drawn on how to perform polar surface energy calculations in a slab configuration and upper boundaries of "purely" polar surface energies are estimated. Furthermore, we compare these findings with results obtained in a density functional theory study of Li(2)FeSiO(4) surfaces. We show that typical polar features are observed and provide a decomposition of surface energies into polar and local bond-cutting contributions for 29 different surfaces. We show that the model is able to explain subtle differences of GGA and GGA+U surface energy calculations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Fabrication of surfaces with extremely high contact angle hysteresis from polyelectrolyte multilayer.

    PubMed

    Wang, Liming; Wei, Jingjing; Su, Zhaohui

    2011-12-20

    High contact angle hysteresis on polyelectrolyte multilayers (PEMs) ion-paired with hydrophobic perfluorooctanoate anions is reported. Both the bilayer number of PEMs and the ionic strength of deposition solutions have significant influence on contact angle hysteresis: higher ionic strength and greater bilayer number cause increased contact angle hysteresis values. The hysteresis values of ~100° were observed on smooth PEMs and pinning of the receding contact line on hydrophilic defects is implicated as the cause of hysteresis. Surface roughness can be used to further tune the contact angle hysteresis on the PEMs. A surface with extremely high contact angle hysteresis of 156° was fabricated when a PEM was deposited on a rough substrate coated with submicrometer scale silica spheres. It was demonstrated that this extremely high value of contact angle hysteresis resulted from the penetration of water into the rough asperities on the substrate. The same substrate hydrophobized by chemical vapor deposition of 1H,1H,2H,2H-perfluorooctyltriethoxysilane exhibits high advancing contact angle and low hysteresis. © 2011 American Chemical Society

  5. Electrochemical Polishing Applications and EIS of a Novel Choline Chloride-Based Ionic Liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wixtrom, Alex I.; Buhler, Jessica E.; Reece, Charles E.

    2013-06-01

    Minimal surface roughness is a critical feature for high-field superconducting radio frequency (SRF) cavities used to engineer particle accelerators. Current methods for polishing Niobium cavities typically utilize solutions containing a mixture of concentrated sulfuric and hydrofluoric acid. Polishing processes such as these are effective, yet there are many hazards and costs associated with the use (and safe disposal) of the concentrated acid solutions. An alternative method for electrochemical polishing of the cavities was explored using a novel ionic liquid solution containing choline chloride. Potentiostatic electrochemical impedance spectroscopy (EIS) was used to analyze the ionic polishing solution. Final surface roughness ofmore » the Nb was found to be comparable to that of the acid-polishing method, as assessed by atomic force microscopy (AFM). This indicates that ionic liquid-based electrochemical polishing of Nb is a viable replacement for acid-based methods for preparation of SRF cavities.« less

  6. Ionic liquids in chemical engineering.

    PubMed

    Werner, Sebastian; Haumann, Marco; Wasserscheid, Peter

    2010-01-01

    The development of engineering applications with ionic liquids stretches back to the mid-1990s when the first examples of continuous catalytic processes using ionic liquids and the first studies of ionic liquid-based extractions were published. Ever since, the use of ionic liquids has seen tremendous progress in many fields of chemistry and engineering, and the first commercial applications have been reported. The main driver for ionic liquid engineering applications is to make practical use of their unique property profiles, which are the result of a complex interplay of coulombic, hydrogen bonding and van der Waals interactions. Remarkably, many ionic liquid properties can be tuned in a wide range by structural modifications at their cation and anion. This review highlights specific examples of ionic liquid applications in catalysis and in separation technologies. Additionally, the application of ionic liquids as working fluids in process machines is introduced.

  7. Ionic Structure at Dielectric Interfaces

    NASA Astrophysics Data System (ADS)

    Jing, Yufei

    interfaces using molecular dynamics(MD) simulations and compared it with liquid state theory result. We explore the effects of high electrolyte concentrations, multivalent ions, and dielectric contrasts on the ionic distributions. We observe the presence of non-monotonous ionic density profiles leading to structure deformation in the fluid which is attributed to the competition between electrostatic and steric (entropic) interactions. We find that thermal forces that arise from symmetry breaking at the interfaces can have a profound effect on the ionic structure and can oftentimes overwhelm the influence of dielectric discontinuity. The combined effect of ionic correlations and inhomogeneous dielectric permittivity significantly changes the character of effective interaction between two interfaces. We show that, in concentrated electrolytes with confinement, it is imperative to take into account the finite-size of the ions as well as proper description of electrostatic interactions in heterogeneous media, which is not fully fulfilled by Poisson-Boltzmann based approaches. The effect of electric field at interface between two immiscible electrolyte solutions is studied as well. The classical Poisson-Boltzmann theory has been widely used to describe the corresponding ionic distribution, even though it neglects the polarization and ion correlations typical of these charged systems. Using Monte Carlo simulations, we provide an enhanced description of an oil-water interface in the presence of an electric field without needing any adjustable parameter, including realistic ionic sizes, ion correlations, and image charges. Our data agree with experimental measurements of excess surface tension for a wide range of electrolyte concentrations of LiCl and TBATPB (tetrabutylammonium-tetraphenylborate), contrasting with the result of the classical non-linear Poisson-Boltzmann theory. More importantly, we show that the size-asymmetry between small Li+ and large Cl- ions can significantly

  8. Ionic Blocks

    ERIC Educational Resources Information Center

    Sevcik, Richard S.; Gamble, Rex; Martinez, Elizabet; Schultz, Linda D.; Alexander, Susan V.

    2008-01-01

    "Ionic Blocks" is a teaching tool designed to help middle school students visualize the concepts of ions, ionic compounds, and stoichiometry. It can also assist high school students in reviewing their subject mastery. Three dimensional blocks are used to represent cations and anions, with color indicating charge (positive or negative) and size…

  9. Reclamation of niobium compounds from ionic liquid electrochemical polishing of superconducting radio frequency cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wixtrom, Alex I.; Buhler, Jessica E.; Reece, Charles E.

    2013-06-01

    Recent research has shown that choline chloride (vitamin B4)-based solutions can be used as a greener alternative to acid-based electrochemical polishing solutions. This study demonstrated a successful method for electrochemical deposition of niobium compounds onto the surface of copper substrates using a novel choline chloride-based ionic liquid. Niobium ions present in the ionic liquid solution were dissolved into the solution prior to deposition via electrochemical polishing of solid niobium. A black coating was clearly visible on the surface of the Cu following deposition. This coating was analyzed using scanning electron microscopy (SEM), electron dispersive X-ray spectroscopy (EDX), atomic force microscopymore » (AFM), and X-ray fluorescence spectroscopy (XRF). This ionic liquid-based electrochemical deposition method effectively recycles previously dissolved niobium from electrochemical polishing of superconducting radio frequency (SRF) cavities.« less

  10. Simulation of Ionic Aggregation and Ion Dynamics in Model Ionomers

    NASA Astrophysics Data System (ADS)

    Frischknecht, Amalie L.

    2012-02-01

    Ionomers, polymers containing a small fraction of covalently bound ionic groups, are of interest as possible electrolytes in batteries. A single-ion conducting polymer electrolyte would be safer and have higher efficiency than the currently-used liquid electrolytes. However, to date ionomeric materials do not have sufficiently high conductivities for practical application. This is most likely because the ions tend to form aggregates, leading to slow ion transport. A key question is therefore how molecular structure affects the ionic aggregation and ion dynamics. To probe these structure-property relationships, we have performed molecular simulations of a set of recently synthesized poly(ethylene-co-acrylic acid) copolymers and ionomers, with a focus on the morphology of the ionic aggregates. The ionomers have a precise, constant spacing of charged groups, making them ideal for direct comparisons with simulations. Ab initio calculations give insight into the expected coordination of cations with fragments of the ionomers. All-atom molecular dynamics (MD) simulations of the ionomer melt show aggregation of the ionic groups into extended string-like clusters. An extensive set of coarse-grained molecular dynamics simulations extend the results to longer times and larger length scales. The structure factors calculated from the MD simulations compare favorably with x-ray scattering data. Furthermore, the simulations give a detailed picture of the sizes, shapes, and composition of the ionic aggregates, and how they depend on polymer architecture. Implications for ion transport will be discussed. [Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  11. Surface induced smectic order in ionic liquids - an X-ray reflectivity study of [C22C1im]+[NTf2].

    PubMed

    Mars, Julian; Hou, Binyang; Weiss, Henning; Li, Hailong; Konovalov, Oleg; Festersen, Sven; Murphy, Bridget M; Rütt, Uta; Bier, Markus; Mezger, Markus

    2017-10-11

    Surface induced smectic order was found for the ionic liquid 1-methyl-3-docosylimidazolium bis(trifluoromethlysulfonyl)imide by X-ray reflectivity and grazing incidence scattering experiments. Near the free liquid surface, an ordered structure of alternating layers composed of polar and non-polar moieties is observed. This leads to an oscillatory interfacial profile perpendicular to the liquid surface with a periodicity of 3.7 nm. Small angle X-ray scattering and polarized light microscopy measurements suggest that the observed surface structure is related to fluctuations into a metastable liquid crystalline SmA 2 phase that was found by supercooling the bulk liquid. The observed surface ordering persists up to 157 °C, i.e. more than 88 K above the bulk melting temperature of 68.1 °C. Close to the bulk melting point, we find a thickness of the ordered layer of L = 30 nm. The dependency of L(τ) = Λ ln(τ/τ 1 ) vs. reduced temperature τ follows a logarithmic growth law. In agreement with theory, the pre-factor Λ is governed by the correlation length of the isotropic bulk phase.

  12. Nicotine-based surface active ionic liquids: Synthesis, self-assembly and cytotoxicity studies.

    PubMed

    Singh, Gurbir; Kamboj, Raman; Singh Mithu, Venus; Chauhan, Vinay; Kaur, Taranjeet; Kaur, Gurcharan; Singh, Sukhprit; Singh Kang, Tejwant

    2017-06-15

    New ester-functionalized surface active ionic liquids (SAILs) based on nicotine, [C n ENic][Br] (n=8, 10 and 12), with bromide counterions have been synthesized, characterized and investigated for their self-assembly behavior in aqueous medium. Conductivity measurements in aqueous solutions of the investigated SAILs have provided information about their critical micelle concentration (cmc), and degree of counterion binding (β), where cmc was found to be 2-3-fold lower than homologous SAILs or conventional cationic surfactants. The inherent fluorescence of SAILs in the absence of any external fluorescent probe have shed light on cmc as well as interactions prevailing between the monomers in micelle at molecular level. The thermodynamic parameters related to micellization have been deduced from isothermal titration calorimetry (ITC) and conductivity measurements. 1 H NMR, spin-lattice (T 1 ) relaxation time and 2D 1 H- I H ROESY measurements have been exploited to get detailed account of internal structure of micelle. The size and shape of the micelles have been explored using dynamic light scattering (DLS) and transmission electron microscopy (TEM) measurements. The synthesized SAILs have been found to be non-cytotoxic towards C6-Glioma cell line, which adds to the possible utility of these SAILs for diverse biological applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Specialist gelator for ionic liquids.

    PubMed

    Hanabusa, Kenji; Fukui, Hiroaki; Suzuki, Masahiro; Shirai, Hirofusa

    2005-11-08

    Cyclo(l-beta-3,7-dimethyloctylasparaginyl-L-phenylalanyl) (1) and cyclo(L-beta-2-ethylhexylasparaginyl-L-phenylalanyl) (2), prepared from L-asparaginyl-L-phenylalanine methyl ester, have been found to be specialist gelators for ionic liquids. They can gel a wide variety of ionic liquids, including imizazolium, pyridinium, pyrazolidinium, piperidinium, morpholinium, and ammonium salts. The mean minimum gel concentrations (MGCs) necessary to make gels at 25 degrees C were determined for ionic liquids. The gel strength increased at a rate nearly proportional to the concentration of added gelator. The strength of the transparent gel of 1-butylpyridinium tetrafluoroborate ([C(4)py]BF(4)), prepared at a concentration of 60 g L(-1) (gelator 1/[C(4)py]BF(4)), was ca. 1500 g cm(-2). FT-IR spectroscopy indicated that a driving force for gelation was intermolecular hydrogen bonding between amides and that the phase transition from gel to liquid upon heating was brought about by the collapse of hydrogen bonding. The gels formed from ionic liquids were very thermally stable; no melting occurs up to 140 degrees C when the gels were prepared at a concentration of 70 g L(-1) (gelator/ionic liquid). The ionic conductivities of the gels were nearly the same as those of pure ionic liquids. The gelator had electrochemical stability and a wide electrochemical window. When the gels were prepared from ionic liquids containing propylene carbonate, the ionic conductivities of the resulting gels increased to levels rather higher than those of pure ionic liquids. The gelators also gelled ionic liquids containing supporting electrolytes.

  14. The Effect of Water and Confinement on Self-Assembly of Imidazolium Based Ionic Liquids at Mica Interfaces

    PubMed Central

    Cheng, H.-W.; Dienemann, J.-N.; Stock, P.; Merola, C.; Chen, Y.-J.; Valtiner, M.

    2016-01-01

    Tuning chemical structure and molecular layering of ionic liquids (IL) at solid interfaces offers leverage to tailor performance of ILs in applications such as super-capacitors, catalysis or lubrication. Recent experimental interpretations suggest that ILs containing cations with long hydrophobic tails form well-ordered bilayers at interfaces. Here we demonstrate that interfacial bilayer formation is not an intrinsic quality of hydrophobic ILs. In contrast, bilayer formation is triggered by boundary conditions including confinement, surface charging and humidity present in the IL. Therefore, we performed force versus distance profiles using atomic force microscopy and the surface forces apparatus. Our results support models of disperse low-density bilayer formation in confined situations, at high surface charging and/or in the presence of water. Conversely, interfacial structuring of long-chain ILs in dry environments and at low surface charging is disordered and dominated by bulk structuring. Our results demonstrate that boundary conditions such as charging, confinement and doping by impurities have decisive influence on structure formation of ILs at interfaces. As such, these results have important implications for understanding the behavior of solid/IL interfaces as they significantly extend previous interpretations. PMID:27452615

  15. The Effect of Water and Confinement on Self-Assembly of Imidazolium Based Ionic Liquids at Mica Interfaces.

    PubMed

    Cheng, H-W; Dienemann, J-N; Stock, P; Merola, C; Chen, Y-J; Valtiner, M

    2016-07-25

    Tuning chemical structure and molecular layering of ionic liquids (IL) at solid interfaces offers leverage to tailor performance of ILs in applications such as super-capacitors, catalysis or lubrication. Recent experimental interpretations suggest that ILs containing cations with long hydrophobic tails form well-ordered bilayers at interfaces. Here we demonstrate that interfacial bilayer formation is not an intrinsic quality of hydrophobic ILs. In contrast, bilayer formation is triggered by boundary conditions including confinement, surface charging and humidity present in the IL. Therefore, we performed force versus distance profiles using atomic force microscopy and the surface forces apparatus. Our results support models of disperse low-density bilayer formation in confined situations, at high surface charging and/or in the presence of water. Conversely, interfacial structuring of long-chain ILs in dry environments and at low surface charging is disordered and dominated by bulk structuring. Our results demonstrate that boundary conditions such as charging, confinement and doping by impurities have decisive influence on structure formation of ILs at interfaces. As such, these results have important implications for understanding the behavior of solid/IL interfaces as they significantly extend previous interpretations.

  16. Cobalt-Bridged Ionic Liquid Polymer on a Carbon Nanotube for Enhanced Oxygen Evolution Reaction Activity.

    PubMed

    Ding, Yuxiao; Klyushin, Alexander; Huang, Xing; Jones, Travis; Teschner, Detre; Girgsdies, Frank; Rodenas, Tania; Schlögl, Robert; Heumann, Saskia

    2018-03-19

    By taking inspiration from the catalytic properties of single-site catalysts and the enhancement of performance through ionic liquids on metal catalysts, we exploited a scalable way to place single cobalt ions on a carbon-nanotube surface bridged by polymerized ionic liquid. Single dispersed cobalt ions coordinated by ionic liquid are used as heterogeneous catalysts for the oxygen evolution reaction (OER). Performance data reveals high activity and stable operation without chemical instability. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  17. High-energy supercapacitors based on hierarchical porous carbon with an ultrahigh ion-accessible surface area in ionic liquid electrolytes.

    PubMed

    Zhong, Hui; Xu, Fei; Li, Zenghui; Fu, Ruowen; Wu, Dingcai

    2013-06-07

    A very important yet really challenging issue to address is how to greatly increase the energy density of supercapacitors to approach or even exceed those of batteries without sacrificing the power density. Herein we report the fabrication of a new class of ultrahigh surface area hierarchical porous carbon (UHSA-HPC) based on the pore formation and widening of polystyrene-derived HPC by KOH activation, and highlight its superior ability for energy storage in supercapacitors with ionic liquid (IL) as electrolyte. The UHSA-HPC with a surface area of more than 3000 m(2) g(-1) shows an extremely high energy density, i.e., 118 W h kg(-1) at a power density of 100 W kg(-1). This is ascribed to its unique hierarchical nanonetwork structure with a large number of small-sized nanopores for IL storage and an ideal meso-/macroporous network for IL transfer.

  18. Ionic liquid based multifunctional double network gel

    NASA Astrophysics Data System (ADS)

    Ahmed, Kumkum; Higashihara, Tomoya; Arafune, Hiroyuki; Kamijo, Toshio; Morinaga, Takashi; Sato, Takaya; Furukawa, Hidemitsu

    2015-04-01

    Gels are a promising class of soft and wet materials with diverse application in tissue engineering and bio-medical purpose. In order to accelerate the development of gels, it is required to synthesize multi-functional gels of high mechanical strength, ultra low surface friction and suitable elastic modulus with a variety of methods and new materials. Among many types of gel ionic gel made from ionic liquids (ILs) could be used for diverse applications in electrochemical devices and in the field of tribology. IL, a promising materials for lubrication, is a salt with a melting point lower than 100 °C. As a lubricant, ILs are characterized by an extremely low vapor pressure, high thermal stability and high ion conductivity. In this work a novel approach of making double network DN ionic gel using IL has been made utilizing photo polymerization process. A hydrophobic monomer Methyl methacrylate (MMA) has been used as a first network and a hydrophobic IL monomer, N,N-diethyl-N-(2-mthacryloylethyl)-N-methylammonium bistrifluoromethylsulfonyl)imide (DEMM-TFSI) has been used as a second network using photo initiator benzophenon and crosslinker triethylene glycol dimethacrylate (TEGDMA). The resulting DN ionic gel shows transparency, flexibility, high thermal stability, good mechanical toughness and low friction coefficient value which can be a potential candidate as a gel slider in different mechanical devices and can open a new area in the field of gel tribology.

  19. Porous ionic liquids: synthesis and application.

    PubMed

    Zhang, Shiguo; Dokko, Kaoru; Watanabe, Masayoshi

    2015-07-15

    Solidification of fluidic ionic liquids into porous materials yields porous ionic networks that combine the unique characteristics of ionic liquids with the common features of polymers and porous materials. This minireview reports the most recent advances in the design of porous ionic liquids. A summary of the synthesis of ordered and disordered porous ionic liquid-based nanoparticles or membranes with or without templates is provided, together with the new concept of room temperature porous ionic liquids. As a versatile platform for functional materials, porous ionic liquids have shown widespread applications in catalysis, adsorption, sensing, actuation, etc. This new research direction towards ionic liquids chemistry is still in its early stages but has great potential.

  20. Corrosion Inhibition of Cast Iron in Arabian Gulf Seawater by Two Different Ionic Liquids

    PubMed Central

    Sherif, El-Sayed M.; Abdo, Hany S.; Zein El Abedin, Sherif

    2015-01-01

    In this paper we report on the corrosion inhibition of cast iron in Arabian Gulf seawater by two different ionic liquids namely, 1-ethyl-3-methylimidazolium chloride ([EMIm]Cl) and 1-butyl-1-methylpyrrolidinium chloride ([Py1,4]Cl). The inhibiting influence of the employed ionic liquids was investigated by weight loss, open circuit potential electrochemical impedance spectroscopy, and cyclic potentiodynamic polarization. The results show the corrosion inhibition impact of the employed ionic liquids (ILs). Compared with [Py1,4]Cl, [EMIm]Cl shows a higher inhibition efficiency at a short immersion time, for the examined ILs concentrations. However, [Py1,4]Cl exhibits a higher efficiency upon increasing the immersion time indicating the persistence of the inhibiting influence. The corrosion inhibition of the employed ionic liquids is attributed to the adsorption of the cations of the ionic liquids onto the surface of cast iron forming a corrosion barrier. PMID:28793413

  1. Superconductivity Series in Transition Metal Dichalcogenides by Ionic Gating

    PubMed Central

    Shi, Wu; Ye, Jianting; Zhang, Yijin; Suzuki, Ryuji; Yoshida, Masaro; Miyazaki, Jun; Inoue, Naoko; Saito, Yu; Iwasa, Yoshihiro

    2015-01-01

    Functionalities of two-dimensional (2D) crystals based on semiconducting transition metal dichalcogenides (TMDs) have now stemmed from simple field effect transistors (FETs) to a variety of electronic and opto-valleytronic devices, and even to superconductivity. Among them, superconductivity is the least studied property in TMDs due to methodological difficulty accessing it in different TMD species. Here, we report the systematic study of superconductivity in MoSe2, MoTe2 and WS2 by ionic gating in different regimes. Electrostatic gating using ionic liquid was able to induce superconductivity in MoSe2 but not in MoTe2 because of inefficient electron accumulation limited by electronic band alignment. Alternative gating using KClO4/polyethylene glycol enabled a crossover from surface doping to bulk doping, which induced superconductivities in MoTe2 and WS2 electrochemically. These new varieties greatly enriched the TMD superconductor families and unveiled critical methodology to expand the capability of ionic gating to other materials. PMID:26235962

  2. Superconductivity Series in Transition Metal Dichalcogenides by Ionic Gating.

    PubMed

    Shi, Wu; Ye, Jianting; Zhang, Yijin; Suzuki, Ryuji; Yoshida, Masaro; Miyazaki, Jun; Inoue, Naoko; Saito, Yu; Iwasa, Yoshihiro

    2015-08-03

    Functionalities of two-dimensional (2D) crystals based on semiconducting transition metal dichalcogenides (TMDs) have now stemmed from simple field effect transistors (FETs) to a variety of electronic and opto-valleytronic devices, and even to superconductivity. Among them, superconductivity is the least studied property in TMDs due to methodological difficulty accessing it in different TMD species. Here, we report the systematic study of superconductivity in MoSe2, MoTe2 and WS2 by ionic gating in different regimes. Electrostatic gating using ionic liquid was able to induce superconductivity in MoSe2 but not in MoTe2 because of inefficient electron accumulation limited by electronic band alignment. Alternative gating using KClO4/polyethylene glycol enabled a crossover from surface doping to bulk doping, which induced superconductivities in MoTe2 and WS2 electrochemically. These new varieties greatly enriched the TMD superconductor families and unveiled critical methodology to expand the capability of ionic gating to other materials.

  3. Ionic liquid-induced aggregate formation and their applications.

    PubMed

    Dutta, Rupam; Kundu, Sangita; Sarkar, Nilmoni

    2018-06-01

    In the last two decades, researchers have extensively studied highly stable and ordered supramolecular assembly formation using oppositely charged surfactants. Thereafter, surface-active ionic liquids (SAILs), a special class of room temperature ionic liquids (RTILs), replace the surfactants to form various supramolecular aggregates. Therefore, in the last decade, the building blocks of the supramolecular aggregates (micelle, mixed micelle, and vesicular assemblies) have changed from oppositely charged surfactant/surfactant pair to surfactant/SAIL and SAIL/SAIL pair. It is also found that various biomolecules can also interact with SAILs to construct biologically important supramolecular assemblies. The very latest addition to this combination of ion pairs is the dye molecules having a long hydrophobic chain part along with a hydrophilic ionic head group. Thus, dye/surfactant or dye/SAIL pair also produces different assemblies through electrostatic, hydrophobic, and π-π stacking interactions. Vesicles are one of the important self-assemblies which mimic cellular membranes, and thus have biological application as a drug carrier. Moreover, vesicles can act as a suitable microreactor for nanoparticle synthesis.

  4. Static and dynamic wetting behaviour of ionic liquids.

    PubMed

    Delcheva, Iliana; Ralston, John; Beattie, David A; Krasowska, Marta

    2015-08-01

    Ionic liquids (ILs) are a unique family of molecular liquids ('molten salts') that consist of a combination of bulky organic cations coupled to inorganic or organic anions. The net result of steric hindrance and strong hydrogen bonding between components results in a material that is liquid at room temperature. One can alter the properties of ionic liquids through chemical modification of anion and cation, thus tailoring the IL for a given application. One such property that can be controlled or selected is the wettability of an IL on a particular solid substrate. However, the study of wetting of ionic liquids is complicated by the care required for accurate and reproducible measurement, due to both the susceptibility of the IL properties to water content, as well as to the sensitivity of wettability measurements to the state of the solid surface. This review deals with wetting studies of ILs to date, including both static and dynamic wetting, as well as issues concerning line tension and the formation of precursor and wetting films. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Biocatalytic transformations in ionic liquids.

    PubMed

    van Rantwijk, Fred; Madeira Lau, Rute; Sheldon, Roger A

    2003-03-01

    Room temperature ionic liquids are non-volatile, thermally stable and highly polar; they are also moderately hydrophilic solvents. Here, we discuss their use as reaction media for biocatalysis. Enzymes of widely diverging types are catalytically active in ionic liquids or aqueous biphasic ionic liquid systems. Lipases, in particular, maintain their activity in anhydrous ionic liquid media; the (enantio)selectivity and operational stability are often better than in traditional media. The unconventional solvent properties of ionic liquids have been exploited in biocatalyst recycling and product recovery schemes that are not feasible with traditional solvent systems.

  6. Surface characterizations of oxides synthesized by successive ionic layer deposition

    NASA Astrophysics Data System (ADS)

    Gilbert, Thomas I.

    Successive ionic layer deposition (SILD) is an aqueous technique for depositing thin oxide films on a surface in a layer-by-layer fashion through a series of chemical reactions. This dissertation examines empirical aspects of the SILD technique by characterizing thin oxide films synthesized on model planar supports and then extends the SILD technique to synthesize supported oxide nanostructures on three dimensional supports of interest to catalysis. Atomic force microscopy, x-ray photoelectron spectroscopy, and scanning electron microscopy provided insight into the SILD of zirconia, alumina, and barium oxide thin films on silicon wafers. The SILD conditions that most affected the surface morphology of the thin oxide films were the selection of aqueous metal salt precursors comprising the SILD solutions and the total number of SILD cycles. Recent studies suggest that a highly dispersed phase of barium oxide supported on alumina interacts differently with NO2 than a bulk-like phase of barium oxide SILD was used to synthesize disperse nanoislands or rafts of barium oxide on larger rafts of alumina supported on a silicon wafer. The SILD method was then extended to deposit barium oxide on an alumina powder support comprised of dense 150 nm spherical crystallites fused together into 1-2 pm particles. Equally weight loaded samples of barium oxide on the fused alumina powder were prepared by SILD and wet impregnation. The NO2 storage behavior of the barium oxide, evaluated by thermogravimetric analysis during NO2 temperature programmed desorption (TPD) experiments, provided insight into the dispersion of barium oxide that resulted from each of the loading techniques. The highly dispersed barium oxide rafts synthesized by SILD on fused alumina released NO2 at temperatures below 500°C during TPD. By comparison, the barium oxide loaded by wet impregnation showed a higher temperature desorption feature above 500°C indicative of bulk-like barium oxide nanoparticles. The NO2

  7. Architecture, Assembly, and Emerging Applications of Branched Functional Polyelectrolytes and Poly(ionic liquid)s.

    PubMed

    Xu, Weinan; Ledin, Petr A; Shevchenko, Valery V; Tsukruk, Vladimir V

    2015-06-17

    Branched polyelectrolytes with cylindrical brush, dendritic, hyperbranched, grafted, and star architectures bearing ionizable functional groups possess complex and unique assembly behavior in solution at surfaces and interfaces as compared to their linear counterparts. This review summarizes the recent developments in the introduction of various architectures and understanding of the assembly behavior of branched polyelectrolytes with a focus on functional polyelectrolytes and poly(ionic liquid)s with responsive properties. The branched polyelectrolytes and poly(ionic liquid)s interact electrostatically with small molecules, linear polyelectrolytes, or other branched polyelectrolytes to form assemblies of hybrid nanoparticles, multilayer thin films, responsive microcapsules, and ion-conductive membranes. The branched structures lead to unconventional assemblies and complex hierarchical structures with responsive properties as summarized in this review. Finally, we discuss prospectives for emerging applications of branched polyelectrolytes and poly(ionic liquid)s for energy harvesting and storage, controlled delivery, chemical microreactors, adaptive surfaces, and ion-exchange membranes.

  8. Corrosion inhibition performance of imidazolium ionic liquids and their influence on surface ferrous carbonate layer formation

    NASA Astrophysics Data System (ADS)

    Yang, Dongrui

    Corrosion inhibitors as effective anti-corrosion applications were widely studied and drawn much attention in both academe and industrial area. In this work, a systematic work, including inhibitors selection, anti-corrosion property and characterization, influence on scale formation, testing system design and so on, were reported. The corrosion inhibition performance of four imidazolium ionic liquids in carbon dioxide saturated NaCl solution was investigated by using electrochemical and surface analysis technologies. The four compounds are 1-ethyl-3-methylimidazolium chloride (a), 1-butyl-3-methylimidazolium chloride (b), 1-hexyl-3-methylimidazolium chloride (c), 1-decyl-3-methylimidazolium chloride (d). Under the testing conditions, compound d showed the highest inhibition efficiency and selected as the main object of further study. As a selected representative formula, 1-decyl-3-methylimidazolium chloride was studied in detail about its corrosion inhibition performance on mild steel in carbon dioxide saturated NaCl brine at pH 3.8 and 6.8. Electrochemical and surface analysis techniques were used to characterize the specimen corrosion process during the immersion in the blank and inhibiting solutions. The precorrosion of specimen surface showed significant and different influences on the anti-corrosion property of DMICL at pH 3.8 and 6.8. The corrosion inhibition efficiency (IE) was calculated based on parameters obtained from electrochemical techniques; the achieved IE was higher than 98% at the 25th hour for the steel with a well-polished surface at pH 3.8. The fitting parameters obtained from electrochemical data helped to account for the interfacial changes. As proved in previous research, 1-decyl-3-methylimidazolium chloride could be used as good corrosion inhibitors under certain conditions. However, under other conditions, such chemicals, as well as other species in oil transporting system, could be a factor influencing the evolution of protective surface

  9. Suppressing Ionic Terms with Number-Counting Jastrow Factors in Real Space

    DOE PAGES

    Goetz, Brett Van Der; Neuscamman, Eric

    2017-04-06

    Here, we demonstrate that four-body real-space Jastrow factors are, with the right type of Jastrow basis function, capable of performing successful wave function stenciling to remove unwanted ionic terms from an overabundant Fermionic reference without unduly modifying the remaining components. In addition to greatly improving size consistency (restoring it exactly in the case of a geminal power), real-space wave function stenciling is, unlike its Hilbert-space predecessors, immediately compatible with diffusion Monte Carlo, allowing it to be used in the pursuit of compact, strongly correlated trial functions with reliable nodal surfaces. Furthermore, we demonstrate the efficacy of this approach in themore » context of a double bond dissociation by using it to extract a qualitatively correct nodal surface despite being paired with a restricted Slater determinant, that, due to ionic term errors, produces a ground state with a qualitatively incorrect nodal surface when used in the absence of the Jastrow.« less

  10. Suppressing Ionic Terms with Number-Counting Jastrow Factors in Real Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goetz, Brett Van Der; Neuscamman, Eric

    Here, we demonstrate that four-body real-space Jastrow factors are, with the right type of Jastrow basis function, capable of performing successful wave function stenciling to remove unwanted ionic terms from an overabundant Fermionic reference without unduly modifying the remaining components. In addition to greatly improving size consistency (restoring it exactly in the case of a geminal power), real-space wave function stenciling is, unlike its Hilbert-space predecessors, immediately compatible with diffusion Monte Carlo, allowing it to be used in the pursuit of compact, strongly correlated trial functions with reliable nodal surfaces. Furthermore, we demonstrate the efficacy of this approach in themore » context of a double bond dissociation by using it to extract a qualitatively correct nodal surface despite being paired with a restricted Slater determinant, that, due to ionic term errors, produces a ground state with a qualitatively incorrect nodal surface when used in the absence of the Jastrow.« less

  11. Determination of the Critical Micelle Concentration of Neutral and Ionic Surfactants with Fluorometry, Conductometry, and Surface Tension-A Method Comparison.

    PubMed

    Scholz, Norman; Behnke, Thomas; Resch-Genger, Ute

    2018-01-01

    Micelles are of increasing importance as versatile carriers for hydrophobic substances and nanoprobes for a wide range of pharmaceutical, diagnostic, medical, and therapeutic applications. A key parameter indicating the formation and stability of micelles is the critical micelle concentration (CMC). In this respect, we determined the CMC of common anionic, cationic, and non-ionic surfactants fluorometrically using different fluorescent probes and fluorescence parameters for signal detection and compared the results with conductometric and surface tension measurements. Based upon these results, requirements, advantages, and pitfalls of each method are discussed. Our study underlines the versatility of fluorometric methods that do not impose specific requirements on surfactants and are especially suited for the quantification of very low CMC values. Conductivity and surface tension measurements yield smaller uncertainties particularly for high CMC values, yet are more time- and substance consuming and not suitable for every surfactant.

  12. Ionic liquid-based single-drop microextraction followed by liquid chromatography-ultraviolet spectrophotometry detection to determine typical UV filters in surface water samples.

    PubMed

    Vidal, Lorena; Chisvert, Alberto; Canals, Antonio; Salvador, Amparo

    2010-04-15

    A user-friendly and inexpensive ionic liquid-based single-drop microextraction (IL-SDME) procedure has been developed to preconcentrate trace amounts of six typical UV filters extensively used in cosmetic products (i.e., 2-hydroxy-4-methoxybenzophenone, isoamyl 4-methoxycinnamate, 3-(4'-methylbenzylidene)camphor, 2-ethylhexyl 2-cyano-3,3-diphenylacrylate, 2-ethylhexyl 4-dimethylaminobenzoate and 2-ethylhexyl 4-methoxycinnamate) from surface water samples prior to analysis by liquid chromatography-ultraviolet spectrophotometry detection (LC-UV). A two-stage multivariate optimization approach was developed by means of a Plackett-Burman design for screening and selecting the significant variables involved in the SDME procedure, which were later optimized by means of a circumscribed central composite design. The studied variables were drop volume, sample volume, agitation speed, ionic strength, extraction time and ethanol quantity. Owing to particularities, ionic liquid type and pH of the sample were optimized separately. Under optimized experimental conditions (i.e., 10 microL of 1-hexyl-3-methylimidazolium hexafluorophosphate, 20 mL of sample containing 1% (v/v) ethanol and NaCl free adjusted to pH 2, 37 min extraction time and 1300 rpm agitation speed) enrichment factors up to ca. 100-fold were obtained depending on the target analyte. The method gave good levels of repeatability with relative standard deviations varying between 2.8 and 8.8% (n=6). Limits of detection were found in the low microg L(-1) range, varying between 0.06 and 3.0 microg L(-1) depending on the target analyte. Recovery studies from different types of surface water samples collected during the winter period, which were analysed and confirmed free of all target analytes, ranged between 92 and 115%, showing that the matrix had a negligible effect upon extraction. Finally, the proposed method was applied to the analysis of different water samples (taken from two beaches, two swimming pools and a

  13. Surface polymerization of (3,4-ethylenedioxythiophene) probed by in situ scanning tunneling microscopy on Au(111) in ionic liquids

    NASA Astrophysics Data System (ADS)

    Ahmad, Shahzada; Carstens, Timo; Berger, Rüdiger; Butt, Hans-Jürgen; Endres, Frank

    2011-01-01

    The electropolymerization of 3,4-ethylenedioxythiophene (EDOT) to poly(3,4-ethylenedioxythiophene) (PEDOT) was investigated in the air and water-stable ionic liquids 1-hexyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate [HMIm]FAP and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) amide [EMIm]TFSA. In situscanning tunnelling microscopy (STM) results show that the electropolymerization of EDOT in the ionic liquid can be probed on the nanoscale. In contrast to present understanding, it was observed that the EDOT can be oxidised in ionic liquids well below its oxidation potential and the under potential growth of polymer was visualized by in situSTM. These results serve as the first study to confirm the under potential growth of conducting polymers in ionic liquids. Furthermore, ex situmicroscopy measurements were performed. Quite a high current of 670 nA was observed on the nanoscale by conductive scanning force microscopy (CSFM).The electropolymerization of 3,4-ethylenedioxythiophene (EDOT) to poly(3,4-ethylenedioxythiophene) (PEDOT) was investigated in the air and water-stable ionic liquids 1-hexyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate [HMIm]FAP and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) amide [EMIm]TFSA. In situscanning tunnelling microscopy (STM) results show that the electropolymerization of EDOT in the ionic liquid can be probed on the nanoscale. In contrast to present understanding, it was observed that the EDOT can be oxidised in ionic liquids well below its oxidation potential and the under potential growth of polymer was visualized by in situSTM. These results serve as the first study to confirm the under potential growth of conducting polymers in ionic liquids. Furthermore, ex situmicroscopy measurements were performed. Quite a high current of 670 nA was observed on the nanoscale by conductive scanning force microscopy (CSFM). Electronic supplementary information (ESI) available: In situ

  14. Simulation of a cellulose fiber in ionic liquid suggests a synergistic approach to dissolution

    DOE PAGES

    Mostofian, Barmak; Smith, Jeremy C.; Cheng, Xiaolin

    2013-08-11

    Ionic liquids dissolve cellulose in a more efficient and environmentally acceptable way than conventional methods in aqueous solution. An understanding of how ionic liquids act on cellulose is essential for improving pretreatment conditions and thus detailed knowledge of the interactions between the cations, anions and cellulose is necessary. Here in this study, to explore ionic liquid effects, we perform all-atom molecular dynamics simulations of a cellulose microfibril in 1-butyl-3-methylimidazolium chloride and analyze site–site interactions and cation orientations at the solute–solvent interface. The results indicate that Cl - anions predominantly interact with cellulose surface hydroxyl groups but with differences between chainsmore » of neighboring cellulose layers, referred to as center and origin chains; Cl- binds to C3-hydroxyls on the origin chains but to C2- and C6-hydroxyls on the center chains, thus resulting in a distinct pattern along glucan chains of the hydrophilic fiber surfaces. In particular, Cl - binding disrupts intrachain O3H–O5 hydrogen bonds on the origin chains but not those on the center chains. In contrast, Bmim + cations stack preferentially on the hydrophobic cellulose surface, governed by non-polar interactions with cellulose. Complementary to the polar interactions between Cl - and cellulose, the stacking interaction between solvent cation rings and cellulose pyranose rings can compensate the interaction between stacked cellulose layers, thus stabilizing detached cellulose chains. Moreover, a frequently occurring intercalation of Bmim + on the hydrophilic surface is observed, which by separating cellulose layers can also potentially facilitate the initiation of fiber disintegration. The results provide a molecular description why ionic liquids are ideal cellulose solvents, the concerted action of anions and cations on the hydrophobic and hydrophilic surfaces being key to the efficient dissolution of the amphiphilic

  15. Life Sciences Implications of Lunar Surface Operations

    NASA Technical Reports Server (NTRS)

    Chappell, Steven P.; Norcross, Jason R.; Abercromby, Andrew F.; Gernhardt, Michael L.

    2010-01-01

    The purpose of this report is to document preliminary, predicted, life sciences implications of expected operational concepts for lunar surface extravehicular activity (EVA). Algorithms developed through simulation and testing in lunar analog environments were used to predict crew metabolic rates and ground reaction forces experienced during lunar EVA. Subsequently, the total metabolic energy consumption, the daily bone load stimulus, total oxygen needed, and other variables were calculated and provided to Human Research Program and Exploration Systems Mission Directorate stakeholders. To provide context to the modeling, the report includes an overview of some scenarios that have been considered. Concise descriptions of the analog testing and development of the algorithms are also provided. This document may be updated to remain current with evolving lunar or other planetary surface operations, assumptions and concepts, and to provide additional data and analyses collected during the ongoing analog research program.

  16. Vibrational Spectroscopy of Ionic Liquids.

    PubMed

    Paschoal, Vitor H; Faria, Luiz F O; Ribeiro, Mauro C C

    2017-05-24

    Vibrational spectroscopy has continued use as a powerful tool to characterize ionic liquids since the literature on room temperature molten salts experienced the rapid increase in number of publications in the 1990's. In the past years, infrared (IR) and Raman spectroscopies have provided insights on ionic interactions and the resulting liquid structure in ionic liquids. A large body of information is now available concerning vibrational spectra of ionic liquids made of many different combinations of anions and cations, but reviews on this literature are scarce. This review is an attempt at filling this gap. Some basic care needed while recording IR or Raman spectra of ionic liquids is explained. We have reviewed the conceptual basis of theoretical frameworks which have been used to interpret vibrational spectra of ionic liquids, helping the reader to distinguish the scope of application of different methods of calculation. Vibrational frequencies observed in IR and Raman spectra of ionic liquids based on different anions and cations are discussed and eventual disagreements between different sources are critically reviewed. The aim is that the reader can use this information while assigning vibrational spectra of an ionic liquid containing another particular combination of anions and cations. Different applications of IR and Raman spectroscopies are given for both pure ionic liquids and solutions. Further issues addressed in this review are the intermolecular vibrations that are more directly probed by the low-frequency range of IR and Raman spectra and the applications of vibrational spectroscopy in studying phase transitions of ionic liquids.

  17. Hydrogen bonding in ionic liquids.

    PubMed

    Hunt, Patricia A; Ashworth, Claire R; Matthews, Richard P

    2015-03-07

    Ionic liquids (IL) and hydrogen bonding (H-bonding) are two diverse fields for which there is a developing recognition of significant overlap. Doubly ionic H-bonds occur when a H-bond forms between a cation and anion, and are a key feature of ILs. Doubly ionic H-bonds represent a wide area of H-bonding which has yet to be fully recognised, characterised or explored. H-bonds in ILs (both protic and aprotic) are bifurcated and chelating, and unlike many molecular liquids a significant variety of distinct H-bonds are formed between different types and numbers of donor and acceptor sites within a given IL. Traditional more neutral H-bonds can also be formed in functionalised ILs, adding a further level of complexity. Ab initio computed parameters; association energies, partial charges, density descriptors as encompassed by the QTAIM methodology (ρBCP), qualitative molecular orbital theory and NBO analysis provide established and robust mechanisms for understanding and interpreting traditional neutral and ionic H-bonds. In this review the applicability and extension of these parameters to describe and quantify the doubly ionic H-bond has been explored. Estimating the H-bonding energy is difficult because at a fundamental level the H-bond and ionic interaction are coupled. The NBO and QTAIM methodologies, unlike the total energy, are local descriptors and therefore can be used to directly compare neutral, ionic and doubly ionic H-bonds. The charged nature of the ions influences the ionic characteristics of the H-bond and vice versa, in addition the close association of the ions leads to enhanced orbital overlap and covalent contributions. The charge on the ions raises the energy of the Ylp and lowers the energy of the X-H σ* NBOs resulting in greater charge transfer, strengthening the H-bond. Using this range of parameters and comparing doubly ionic H-bonds to more traditional neutral and ionic H-bonds it is clear that doubly ionic H-bonds cover the full range of weak

  18. Functionalized ionic liquids and their applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hariprakasha, Humcha Krishnamurthy; Rangan, Krishnaswamy Kasthuri; Sudarshan, Tirumalai Srinivas

    2018-01-16

    Disclosure of functionalized ionic liquids. Use of disclosed ionic liquids as solvent for carbon dioxide. Use of disclosed ionic liquids as flame retardant. Use of disclosed ionic liquids for coating fabric to obtain flame retardant fabric.

  19. Synthesis of new solid polymer electrolyte and actuator based on PEDOT/NBR/ionic liquid

    NASA Astrophysics Data System (ADS)

    Cho, M. S.; Seo, H. J.; Nam, J. D.; Choi, H. R.; Koo, J. C.; Lee, Y.

    2006-03-01

    The conducting polymer actuator was presented. The solid polymer electrolyte based on nitrile rubber (NBR) activated with different ionic liquids was prepared. The three different grades of NBR films were synthesized by emulsion polymerization with different amount of acrylonitrile, 23, 35, and 40 mol. %, respectively. The effect of acrylonitrile content on the ionic conductivity and dielectric constant of solid polymer electrolytes was characterized. A conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), was synthesized on the surface of the NBR layer by using a chemical oxidation polymerization technique, and room temperature ionic liquids (RTIL) based on imidazolium salts, e.g. 1-butyl-3-methyl imidazolium X [where X= BF 4 -, PF 6 -, (CF 3SO II) IIN -], were absorbed into the composite film. The effects of the anion size of the ionic liquids on the displacement of the actuator were examined. The displacement increased with increasing the anion-size of the ionic liquids.

  20. Ionic Liquids and Relative Process Design

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Lu, X.; Zhang, Y.; Zhou, Q.; Sun, J.; Han, L.; Yue, G.; Liu, X.; Cheng, W.; Li, S.

    Ionic liquids have gained increasing attention in recent years due to their significant advantages, not only as alternative solvents but also as new materials and catalysts. Until now, most research work on ionic liquids has been at the laboratory or pilot scale. In view of the multifarious applications of ionic liquids, more new knowledge is needed and more systematic work on ionic liquids should be carried out deeply and broadly in order to meet the future needs of process design. For example, knowledge of the physicochemical properties is indispensable for the design of new ionic liquids and for the development of novel processes. The synthesis and application of ionic liquids are fundamental parts of engineering science, and the toxicity and environmental assessment of ionic liquids is critical importance for their large scale applications, especially for process design. These research aspects are closely correlated to the industrial applications of ionic liquids and to sustainable processes. However, material process design in the industrial applications of ionic liquids has hardly been implemented. Therefore, this chapter reviews several essential issues that are closely related to process design, such as the synthesis, structure-property relationships, important applications, and toxicity of ionic liquids.

  1. Phosphorylation and Ionic Strength Alter the LRAP-HAP Interface in the N-terminus

    PubMed Central

    Lu, Jun-xia; Xu, Yimin Sharon; Shaw, Wendy J.

    2013-01-01

    The conditions present during enamel crystallite development change dramatically as a function of time, including the pH, protein concentration, surface type and ionic strength. In this work, we investigate the role that two of these changing conditions, pH and ionic strength, have in modulating the interaction of the amelogenin, LRAP, with hydroxyapatite (HAP). Using solid state NMR dipolar recoupling and chemical shift data, we investigate the structure, orientation and dynamics of three regions in the N-terminus of the protein, L15 to V19, V19 to L23 and K24 to S28. These regions are also near the only phosphorylated residue in the protein, pS16, therefore, changes in the LRAP-HAP interaction as a function of phosphorylation (LRAP(−P) vs. LRAP(+P)) were also investigated. All of the regions and conditions studied for the surface immobilized proteins showed restricted motion, with indications of slightly more mobility under all conditions for L15(+P) and K24(−P). The structure and orientation of the LRAP-HAP interaction in the N-terminus of the phosphorylated protein is very stable to changing solution conditions. From REDOR dipolar recoupling data, the structure and orientation in the region L15V19(−P) did not change significantly as a function of pH or ionic strength. The structure and orientation of the region V19L23(+P) were also stable to changes in pH, with the only significant change observed at high ionic strength, where the region becomes extended, suggesting this may be an important region in regulating mineral development. Chemical shift studies also suggest minimal changes in all three regions studied for both LRAP(−P) and LRAP(+P) as a function of pH or ionic strength and reveal that K24 has multiple resolvable resonance, suggestive of two coexisting structures. Phosphorylation also alters the LRAP-HAP interface. All of the three residues investigated (L15, V19, and K24) are closer to the surface in LRAP(+P), but K24S28 also changes structure

  2. Dual Ionic and Organic Nature of Ionic Liquids

    PubMed Central

    Shi, Rui; Wang, Yanting

    2016-01-01

    Inherited the advantages of inorganic salts and organic solvents, ionic liquids (ILs) exhibit many superior properties allowing them promising green solvents for the future. Although it has been widely acknowledged that the unique features of ILs originate from their dual ionic and organic nature, its microscopic physical origin still remains blurry. In this work, by comparing the ion/molecule cage structures obtained from molecular dynamics simulations for seven prototypic liquids—a molten inorganic salt, four ILs, a strongly polar organic solvent, and a weakly polar organic solvent, we have revealed that the depth of the cage energy landscape characterizes the ionic nature of ILs, whereas the slope and curvature of its mimimum determine the organic nature of ILs. This finding advances our understanding of ILs and thus will help their efficient utilization as well as the systematic design of novel functionalized ILs. PMID:26782660

  3. Molecular origin of high free energy barriers for alkali metal ion transfer through ionic liquid-graphene electrode interfaces.

    PubMed

    Ivaništšev, Vladislav; Méndez-Morales, Trinidad; Lynden-Bell, Ruth M; Cabeza, Oscar; Gallego, Luis J; Varela, Luis M; Fedorov, Maxim V

    2016-01-14

    In this work we study mechanisms of solvent-mediated ion interactions with charged surfaces in ionic liquids by molecular dynamics simulations, in an attempt to reveal the main trends that determine ion-electrode interactions in ionic liquids. We compare the interfacial behaviour of Li(+) and K(+) at a charged graphene sheet in a room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, and its mixtures with lithium and potassium tetrafluoroborate salts. Our results show that there are dense interfacial solvation structures in these electrolytes that lead to the formation of high free energy barriers for these alkali metal cations between the bulk and direct contact with the negatively charged surface. We show that the stronger solvation of Li(+) in the ionic liquid leads to the formation of significantly higher interfacial free energy barriers for Li(+) than for K(+). The high free energy barriers observed in our simulations can explain the generally high interfacial resistance in electrochemical storage devices that use ionic liquid-based electrolytes. Overcoming these barriers is the rate-limiting step in the interfacial transport of alkali metal ions and, hence, appears to be a major drawback for a generalised application of ionic liquids in electrochemistry. Some plausible strategies for future theoretical and experimental work for tuning them are suggested.

  4. Graphene-ionic liquid composites

    DOEpatents

    Aksay, Ilhan A.; Korkut, Sibel; Pope, Michael; Punckt, Christian

    2016-11-01

    Method of making a graphene-ionic liquid composite. The composite can be used to make elec-trodes for energy storage devices, such as batteries and supercapacitors. Dis-closed and claimed herein is method of making a graphene-ionic liquid com-posite, comprising combining a graphene source with at least one ionic liquid and heating the combination at a temperature of at least about 130 .degree. C.

  5. Interactions in ion pairs of protic ionic liquids: Comparison with aprotic ionic liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuzuki, Seiji, E-mail: s.tsuzuki@aist.go.jp; Shinoda, Wataru; Miran, Md. Shah

    2013-11-07

    The stabilization energies for the formation (E{sub form}) of 11 ion pairs of protic and aprotic ionic liquids were studied by MP2/6-311G{sup **} level ab initio calculations to elucidate the difference between the interactions of ions in protic ionic liquids and those in aprotic ionic liquids. The interactions in the ion pairs of protic ionic liquids (diethylmethylammonium [dema] and dimethylpropylammonium [dmpa] based ionic liquids) are stronger than those of aprotic ionic liquids (ethyltrimethylammonium [etma] based ionic liquids). The E{sub form} for the [dema][CF{sub 3}SO{sub 3}] and [dmpa][CF{sub 3}SO{sub 3}] complexes (−95.6 and −96.4 kcal/mol, respectively) are significantly larger (more negative)more » than that for the [etma][CF{sub 3}SO{sub 3}] complex (−81.0 kcal/mol). The same trend was observed for the calculations of ion pairs of the three cations with the Cl{sup −}, BF{sub 4}{sup −}, TFSA{sup −} anions. The anion has contact with the N–H bond of the dema{sup +} or dmpa{sup +} cations in the most stable geometries of the dema{sup +} and dmpa{sup +} complexes. The optimized geometries, in which the anions locate on the counter side of the cations, are 11.0–18.0 kcal/mol less stable, which shows that the interactions in the ions pairs of protic ionic liquids have strong directionality. The E{sub form} for the less stable geometries for the dema{sup +} and dmpa{sup +} complexes are close to those for the most stable etma{sup +} complexes. The electrostatic interaction, which is the major source of the attraction in the ion pairs, is responsible for the directionality of the interactions and determining the magnitude of the interaction energy. Molecular dynamic simulations of the [dema][TFSA] and [dmpa][TFSA] ionic liquids show that the N–H bonds of the cations have contact with the negatively charged (oxygen and nitrogen) atoms of TFSA{sup −} anion, while the strong directionality of the interactions was not suggested from the

  6. Thermophysical properties of tri-n-butylphosphate-ionic liquid mixture

    NASA Astrophysics Data System (ADS)

    Rout, Alok; Mishra, Satyabrata; Venkatesan, K. A.; Antony, M. P.; Pandey, N. K.

    2018-04-01

    Thermophysical properties such as viscosity, density, energy of activation and coefficient of thermal expansion were measured for the solvent phase composed of tri-n-butylphosphate (TBP), 1-butyl-3-methylimidazolium bis(trifluoromethane-sulfonyl)imide ([C4mim][NTf2]) and 1.1 M TBP/[C4mim][NTf2]. The results were compared with that of nitric acid equilibrated [C4mim][NTf2] and 1.1M TBP/[C4mim][NTf2]. Thermal stability of the ionic liquid phase was assessed by using differential scanning calorimetric (DSC) technique. Other important physical properties such as refractive index and surface tension of the ionic liquid phase composition were evaluated before and after acid saturation.

  7. Effect of surface ionic screening on the polarization reversal scenario in ferroelectric thin films: Crossover from ferroionic to antiferroionic states

    NASA Astrophysics Data System (ADS)

    Morozovska, Anna N.; Eliseev, Eugene A.; Kurchak, Anatolii I.; Morozovsky, Nicholas V.; Vasudevan, Rama K.; Strikha, Maksym V.; Kalinin, Sergei V.

    2017-12-01

    Nonlinear electrostatic interaction between the surface ions of electrochemical nature and ferroelectric dipoles gives rise to the coupled ferroionic states in nanoscale ferroelectrics. Here, we investigate the role of the surface ion formation energy on the polarization states and its reversal mechanisms, domain structure, and corresponding phase diagrams of ferroelectric thin films. Using 3D finite element modeling, we analyze the distribution and hysteresis loops of ferroelectric polarization and ionic charge, and the dynamics of the domain states. These calculations performed over large parameter space delineate the regions of single- and polydomain ferroelectric, ferroionic, antiferroionic, and nonferroelectric states as a function of surface ion formation energy, film thickness, applied voltage, and temperature. We further map the analytical theory for 1D systems onto an effective Landau-Ginzburg free energy and establish the correspondence between the 3D numerical and 1D analytical results. This approach allows us to perform an overview of the ferroionic system phase diagrams and explore the specifics of polarization reversal and domain evolution phenomena.

  8. Effect of surface ionic screening on the polarization reversal scenario in ferroelectric thin films: Crossover from ferroionic to antiferroionic states

    DOE PAGES

    Morozovska, Anna N.; Eliseev, Eugene A.; Kurchak, Anatolii I.; ...

    2017-12-08

    Nonlinear electrostatic interaction between the surface ions of electrochemical nature and ferroelectric dipoles gives rise to the coupled ferroionic states in nanoscale ferroelectrics. Here, we investigated the role of the surface ions formation energy value on the polarization states and polarization reversal mechanisms, domain structure and corresponding phase diagrams of ferroelectric thin films. Using 3D finite elements modeling we analyze the distribution and hysteresis loops of ferroelectric polarization and ionic charge, and dynamics of the domain states. These calculations performed over large parameter space delineate the regions of single- and poly- domain ferroelectric, ferroionic, antiferroionic and non-ferroelectric states as amore » function of surface ions formation energy, film thickness, applied voltage and temperature. We further map the analytical theory for 1D system onto effective Landau-Ginzburg free energy and establish the correspondence between the 3D numerical and 1D analytical results. In conclusion, this approach allows performing the overview of the ferroionic system phase diagrams and exploring the specifics of switching and domain evolution phenomena.« less

  9. Effect of surface ionic screening on the polarization reversal scenario in ferroelectric thin films: Crossover from ferroionic to antiferroionic states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morozovska, Anna N.; Eliseev, Eugene A.; Kurchak, Anatolii I.

    Nonlinear electrostatic interaction between the surface ions of electrochemical nature and ferroelectric dipoles gives rise to the coupled ferroionic states in nanoscale ferroelectrics. Here, we investigated the role of the surface ions formation energy value on the polarization states and polarization reversal mechanisms, domain structure and corresponding phase diagrams of ferroelectric thin films. Using 3D finite elements modeling we analyze the distribution and hysteresis loops of ferroelectric polarization and ionic charge, and dynamics of the domain states. These calculations performed over large parameter space delineate the regions of single- and poly- domain ferroelectric, ferroionic, antiferroionic and non-ferroelectric states as amore » function of surface ions formation energy, film thickness, applied voltage and temperature. We further map the analytical theory for 1D system onto effective Landau-Ginzburg free energy and establish the correspondence between the 3D numerical and 1D analytical results. In conclusion, this approach allows performing the overview of the ferroionic system phase diagrams and exploring the specifics of switching and domain evolution phenomena.« less

  10. Correlation between ion diffusional motion and ionic conductivity for different electrolytes based on ionic liquid.

    PubMed

    Kaur, Dilraj Preet; Yamada, K; Park, Jin-Soo; Sekhon, S S

    2009-04-23

    Room temperature ionic liquid 2,3-dimethyl-1-hexylimidazolium bis(trifluoromethane sulfonyl)imide (DMHxImTFSI) has been synthesized and used in the preparation of polymer gel electrolytes containing polymethylmethacrylate and propylene carbonate (PC). The onset of ion diffusional motion has been studied by (1)H and (19)F NMR spectroscopy and the results obtained for ionic liquid, liquid electrolytes, and polymer gel electrolytes have been correlated with the ionic conductivity results for these electrolytes in the 100-400 K temperature range. The temperature at which (1)H and (19)F NMR lines show motional narrowing and hence ion diffusional motion starts has been found to be closely related to the temperature at which a large increase in ionic conductivity has been observed for these electrolytes. Polymer gel electrolytes have high ionic conductivity over a wide range of temperatures. Thermogravimetric analysis/differential scanning calorimetry studies show that the ionic liquid (DMHxImTFSI) used in the present study is thermally stable up to 400 degrees C, whereas the addition of PC lowers the thermal stability of polymer gel electrolytes containing the ionic liquid. Different electrolytes have been observed to show high ionic conductivity in different range of temperatures, which can be helpful in the design of polymer gel electrolytes for specific applications.

  11. Comparative study of bending characteristics of ionic polymer actuators containing ionic liquids for modeling actuation

    NASA Astrophysics Data System (ADS)

    Kikuchi, Kunitomo; Sakamoto, Takumi; Tsuchitani, Shigeki; Asaka, Kinji

    2011-04-01

    Ionic polymer metal composites (IPMCs) that can operate in air have recently been developed by incorporating an ionic liquid in ionic polymers. To understand transduction in these composites, it is important to determine the role of the ionic liquid in the ionic polymer (Nafion®), to identify the counter cation, and to investigate the interaction of IPMCs with water vapor in the air. We used Fourier-transform infrared spectroscopy to analyze three Nafion® membranes, which were soaked in mixtures of water and an ionic liquid (1-ethyl-3-methyl-imidazolium tetrafluoroborate (EMIBF4), 1-buthyl-3-methyl-imidazolium tetrafluoroborate (BMIBF4), and 1-buthyl-3-methyl-imidazolium hexafluorophosphate (BMIPF6)). The results demonstrate that only cations (EMI+ and BMI+) in the ionic liquids are taken into the Nafion® membranes as counter ions and that the water content of the membranes in air is less than ˜4% that of Nafion® swollen with water. Based on the experimental results, a transduction model is proposed for an IPMC with an ionic liquid. In this model, bending is caused by local swelling due to the volume effect of the bulky counter cations. This model can explain 30-50% of the experimentally observed bending curvature.

  12. The effect of high ionic strength on neptunium (V) adsorption to a halophilic bacterium

    NASA Astrophysics Data System (ADS)

    Ams, David A.; Swanson, Juliet S.; Szymanowski, Jennifer E. S.; Fein, Jeremy B.; Richmann, Michael; Reed, Donald T.

    2013-06-01

    The mobility of neptunium (V) in subsurface high ionic strength aqueous systems may be strongly influenced by adsorption to the cell wall of the halophilic bacteria Chromohalobacter sp. This study is the first to evaluate the adsorption of neptunium (V) to the surface of a halophilic bacterium as a function of pH from approximately 2 to 10 and at ionic strengths of 2 and 4 M. This is also the first study to evaluate the effects of carbonate complexation with neptunium (V) on adsorption to whole bacterial cells under high pH conditions. A thermodynamically-based surface complexation model was adapted to describe experimental adsorption data under high ionic strength conditions where traditional corrections for aqueous ion activity are invalid. Adsorption of neptunium (V) was rapid and reversible under the conditions of the study. Adsorption was significant over the entire pH range evaluated for both ionic strength conditions and was shown to be dependent on the speciation of the sites on the bacterial surface and neptunium (V) in solution. Adsorption behavior was controlled by the relatively strong electrostatic attraction of the positively charged neptunyl ion to the negatively charged bacterial surface at pH below circum-neutral. At pH above circum-neutral, the adsorption behavior was controlled by the presence of negatively charged neptunium (V) carbonate complexes resulting in decreased adsorption, although adsorption was still significant due to the adsorption of negatively charged neptunyl-carbonate species. Adsorption in 4 M NaClO4 was enhanced relative to adsorption in 2 M NaClO4 over the majority of the pH range evaluated, likely due to the effect of increasing aqueous ion activity at high ionic strength. The protonation/deprotonation characteristics of the cell wall of Chromohalobacter sp. were evaluated by potentiometric titrations in 2 and 4 M NaClO4. Bacterial titration results indicated that Chromohalobacter sp. exhibits similar proton buffering

  13. X-ray Reflectivity Study of Ionic Liquids at Electrified Surfaces

    NASA Astrophysics Data System (ADS)

    Chu, Miaoqi

    previous chapters are employed to extract information about the solid-liquid interface. Electron density depletion due to methyl terminal of solvent molecules (methyl gap) and due to the reduced surface density compared to the bulk density (density gap) are analyzed. In the next Chapter, XRR technique is employed to study the structures and dynamics of room temperature ionic liquids (RTILs) at an electrified surface. RTILs are molten salts at room temperature, consisted purely by anions and cations, with potential applications in energy storage, electro-synthesis, electrodeposition etc. The solvent-free and high charge concentrated novel liquids process many unique properties that not seen in normal dilute salt solution. It is predicted that when a surface isn't highly charged, RTILs form alternating layers of anion/cation to screen the surface charge; when it's highly charged, a crowding layer with ions with like charge forms. The alternating structure has been observed experimentally but not the crowding layer. Following the rules of optimization XRR experiment in Chapter 2, conductive silicon which has small electron density is used which maximize the EDP contrast. This makes it possible to directly observe the formation of crowding layer. The thickness of this crowding layer, charge distributions and compositions as a function of applied voltage. The dynamics of anion/cation reorganization in RTILs determine the power density for RTILs? energy application. In Chapter 5, the time-dependence of the formation and dissipation of the crowding layer is studied with XRR. An ultra-slow dynamic, much longer than the typical RC time constant, is revealed. Comparisons with theoretical predications and experiments studies are made in order to understand the origin of this process. The thesis is summarized in Chapter 6, along with several proposals for future work.

  14. Nanoscale capillary freezing of ionic liquids confined between metallic interfaces and the role of electronic screening

    PubMed Central

    Comtet, Jean; Niguès, Antoine; Kaiser, Vojtech; Coasne, Benoit; Bocquet, Lydéric; Siria, Alessandro

    2017-01-01

    Room temperature Ionic liquids (RTIL) are new materials with fundamental importance for energy storage and active lubrication. They are unsual liquids, which challenge the classical frameworks of electrolytes, whose behavior at electrified interfaces remains elusive with exotic responses relevant to their electrochemical activity. By means of tuning fork based AFM nanorheological measurements, we explore here the properties of confined RTIL, unveiling a dramatic change of the RTIL towards a solid-like phase below a threshold thickness, pointing to capillary freezing in confinement. This threshold is related to the metallic nature of the confining materials, with more metallic surfaces facilitating freezing. This is interpreted in terms of the shift of freezing transition, taking into account the influence of the electronic screening on RTIL wetting of the confining surfaces. Our findings provide fresh views on the properties of confined RTIL with implications for their properties inside nanoporous metallic structures and suggests applications to tune nanoscale lubrication with phase-changing RTIL, by varying the nature and patterning of the substrate, and application of active polarisation. PMID:28346432

  15. Nanoscale capillary freezing of ionic liquids confined between metallic interfaces and the role of electronic screening

    NASA Astrophysics Data System (ADS)

    Comtet, Jean; Niguès, Antoine; Kaiser, Vojtech; Coasne, Benoit; Bocquet, Lydéric; Siria, Alessandro

    2017-06-01

    Room-temperature ionic liquids (RTILs) are new materials with fundamental importance for energy storage and active lubrication. They are unusual liquids, which challenge the classical frameworks of electrolytes, whose behaviour at electrified interfaces remains elusive, with exotic responses relevant to their electrochemical activity. Using tuning-fork-based atomic force microscope nanorheological measurements, we explore here the properties of confined RTILs, unveiling a dramatic change of the RTIL towards a solid-like phase below a threshold thickness, pointing to capillary freezing in confinement. This threshold is related to the metallic nature of the confining materials, with more metallic surfaces facilitating freezing. This behaviour is interpreted in terms of the shift of the freezing transition, taking into account the influence of the electronic screening on RTIL wetting of the confining surfaces. Our findings provide fresh views on the properties of confined RTIL with implications for their properties inside nanoporous metallic structures, and suggests applications to tune nanoscale lubrication with phase-changing RTILs, by varying the nature and patterning of the substrate, and application of active polarization.

  16. Nanoscale capillary freezing of ionic liquids confined between metallic interfaces and the role of electronic screening.

    PubMed

    Comtet, Jean; Niguès, Antoine; Kaiser, Vojtech; Coasne, Benoit; Bocquet, Lydéric; Siria, Alessandro

    2017-06-01

    Room-temperature ionic liquids (RTILs) are new materials with fundamental importance for energy storage and active lubrication. They are unusual liquids, which challenge the classical frameworks of electrolytes, whose behaviour at electrified interfaces remains elusive, with exotic responses relevant to their electrochemical activity. Using tuning-fork-based atomic force microscope nanorheological measurements, we explore here the properties of confined RTILs, unveiling a dramatic change of the RTIL towards a solid-like phase below a threshold thickness, pointing to capillary freezing in confinement. This threshold is related to the metallic nature of the confining materials, with more metallic surfaces facilitating freezing. This behaviour is interpreted in terms of the shift of the freezing transition, taking into account the influence of the electronic screening on RTIL wetting of the confining surfaces. Our findings provide fresh views on the properties of confined RTIL with implications for their properties inside nanoporous metallic structures, and suggests applications to tune nanoscale lubrication with phase-changing RTILs, by varying the nature and patterning of the substrate, and application of active polarization.

  17. Ionic liquids for nano- and microstructures preparation. Part 2: Application in synthesis.

    PubMed

    Łuczak, Justyna; Paszkiewicz, Marta; Krukowska, Anna; Malankowska, Anna; Zaleska-Medynska, Adriana

    2016-01-01

    Ionic liquids (ILs) are widely applied to prepare metal nanoparticles and 3D semiconductor microparticles. Generally, they serve as a structuring agent or reaction medium (solvent), however it was also demonstrated that ILs can play a role of a co-solvent, metal precursor, reducing as well as surface modifying agent. The crucial role and possible types of interactions between ILs and growing particles have been presented in the Part 1 of this review paper. Part 2 of the paper gives a comprehensive overview of recent experimental studies dealing with application of ionic liquids for preparation of metal and semiconductor based nano- and microparticles. A wide spectrum of preparation routes using ionic liquids is presented, including precipitation, sol-gel technique, hydrothermal method, nanocasting and ray-mediated methods (microwave, ultrasound, UV-radiation and γ-radiation). It was found that ionic liquids formed of a 1-butyl-3-methylimidazolium [BMIM] combined with tetrafluoroborate [BF4], hexafluorophosphate [PF6], and bis(trifluoromethanesulfonyl)imide [Tf2N] are the most often used ILs in the synthesis of nano- and microparticles, due to their low melting temperature, low viscosity and good transportation properties. Nevertheless, examples of other IL classes with intrinsic nanoparticles stabilizing abilities such as phosphonium and ammonium derivatives are also presented. Experimental data revealed that structure of ILs (both anion and cation type) affects the size and shape of formed metal particles, and in some cases may even determine possibility of particles formation. The nature of the metal precursor determines its affinity to polar or nonpolar domains of ionic liquid, and therefore, the size of the nanoparticles depends on the size of these regions. Ability of ionic liquids to form varied extended interactions with particle precursor as well as other compounds presented in the reaction media (water, organic solvents etc.) provides nano- and

  18. Surface polymerization of (3,4-ethylenedioxythiophene) probed by in situ scanning tunneling microscopy on Au(111) in ionic liquids.

    PubMed

    Ahmad, Shahzada; Carstens, Timo; Berger, Rüdiger; Butt, Hans-Jürgen; Endres, Frank

    2011-01-01

    The electropolymerization of 3,4-ethylenedioxythiophene (EDOT) to poly(3,4-ethylenedioxythiophene) (PEDOT) was investigated in the air and water-stable ionic liquids 1-hexyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate [HMIm]FAP and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) amide [EMIm]TFSA. In situ scanning tunnelling microscopy (STM) results show that the electropolymerization of EDOT in the ionic liquid can be probed on the nanoscale. In contrast to present understanding, it was observed that the EDOT can be oxidised in ionic liquids well below its oxidation potential and the under potential growth of polymer was visualized by in situ STM. These results serve as the first study to confirm the under potential growth of conducting polymers in ionic liquids. Furthermore, ex situ microscopy measurements were performed. Quite a high current of 670 nA was observed on the nanoscale by conductive scanning force microscopy (CSFM).

  19. Application of the compensated Arrhenius formalism to self-diffusion: implications for ionic conductivity and dielectric relaxation.

    PubMed

    Petrowsky, Matt; Frech, Roger

    2010-07-08

    Self-diffusion coefficients are measured from -5 to 80 degrees C in a series of linear alcohols using pulsed field gradient NMR. The temperature dependence of these data is studied using a compensated Arrhenius formalism that assumes an Arrhenius-like expression for the diffusion coefficient; however, this expression includes a dielectric constant dependence in the exponential prefactor. Scaling temperature-dependent diffusion coefficients to isothermal diffusion coefficients so that the exponential prefactors cancel results in calculated energies of activation E(a). The exponential prefactor is determined by dividing the temperature-dependent diffusion coefficients by the Boltzmann term exp(-E(a)/RT). Plotting the prefactors versus the dielectric constant places the data on a single master curve. This procedure is identical to that previously used to study the temperature dependence of ionic conductivities and dielectric relaxation rate constants. The energies of activation determined from self-diffusion coefficients in the series of alcohols are strikingly similar to those calculated for the same series of alcohols from both dielectric relaxation rate constants and ionic conductivities of dilute electrolytes. The experimental results are described in terms of an activated transport mechanism that is mediated by relaxation of the solution molecules. This microscopic picture of transport is postulated to be common to diffusion, dielectric relaxation, and ionic transport.

  20. Role of associated defects in oxygen ion conduction and surface exchange reaction for epitaxial samaria-doped ceria thin films as catalytic coatings

    DOE PAGES

    Yang, Nan; Shi, Yanuo; Schweiger, Sebastian; ...

    2016-05-18

    Samaria-doped ceria (SDC) thin films are particularly important for energy and electronic applications such as micro-solid oxide fuel cells, electrolysers, sensors and memristors. In this paper we report a comparative study investigating ionic conductivity and surface reactions for well-grown epitaxial SDC films varying the samaria doping concentration. With increasing doping above 20 mol% of samaria, an enhancement in the defect association was observed by Raman spectroscopy. The role of such defect associates on the films` oxygen ion transport and exchange was investigated by electrochemical impedance spectroscopy and electrochemical strain microscopy (ESM). The measurements reveal that the ionic transport has amore » sharp maximum in ionic conductivity and drop in its activation energy down to 0.6 eV for 20 mol% doping. Increasing the doping concentration further up to 40 mol%, raises the activation energy substantially by a factor of two. We ascribe the sluggish transport kinetics to the "bulk" ionic-near ordering in case of the heavily doped epitaxial films. Analysis of the ESM first order reversal curve measurements indicate that these associated defects may have a beneficial role by lowering the activation of the oxygen exchange "surface" reaction for heavily doped 40 mol% of samaria. We reveal in a model experiment through a solid solution series of samaria doped ceria epitaxial films that the occurrence of associate defects in the bulk affects the surface charging state of the films to increase the exchange rates. Lastly, the implication of these findings are the design of coatings with tuned oxygen surface exchange by control of bulk associate clusters for future electro-catalytic applications.« less

  1. Curvature dependence of the effect of ionic functionalization on the attraction among nanoparticles in dispersion

    NASA Astrophysics Data System (ADS)

    Jabes, B. Shadrack; Bratko, Dusan; Luzar, Alenka

    2018-06-01

    Solubilization of nanoparticles facilitates nanomaterial processing and enables new applications. An effective method to improve dispersibility in water is provided by ionic functionalization. We explore how the necessary extent of functionalization depends on the particle geometry. Using molecular dynamics/umbrella sampling simulations, we determine the effect of the solute curvature on solvent-averaged interactions among ionizing graphitic nanoparticles in aqueous dispersion. We tune the hydrophilicity of molecular-brush coated fullerenes, carbon nanotubes, and graphane platelets by gradually replacing a fraction of the methyl end groups of the alkyl coating by the ionizing -COOK or -NH3Cl groups. To assess the change in nanoparticles' dispersibility in water, we determine the potential-of-mean-force profiles at varied degrees of ionization. When the coating comprises only propyl groups, the attraction between the hydrophobic particles intensifies from spherical to cylindrical to planar geometry. This is explained by the increasing fraction of surface groups that can be brought into contact and the reduced access to water molecules, both following the above sequence. When ionic groups are added, however, the dispersibility increases in the opposite order, with the biggest effect in the planar geometry and the smallest in the spherical geometry. These results highlight the important role of geometry in nanoparticle solubilization by ionic functionalities, with about twice higher threshold surface charge necessary to stabilize a dispersion of spherical than planar particles. At 25%-50% ionization, the potential of mean force reaches a plateau because of the counterion condensation and saturated brush hydration. Moreover, the increase in the fraction of ionic groups can weaken the repulsion through counterion correlations between adjacent nanoparticles. High degrees of ionization and concomitant ionic screening gradually reduce the differences among surface

  2. Predicting critical temperatures of ionic and non-ionic fluids from thermophysical data obtained near the melting point.

    PubMed

    Weiss, Volker C

    2015-10-14

    In the correlation and prediction of thermophysical data of fluids based on a corresponding-states approach, the critical temperature Tc plays a central role. For some fluids, in particular ionic ones, however, the critical region is difficult or even impossible to access experimentally. For molten salts, Tc is on the order of 3000 K, which makes accurate measurements a challenging task. Room temperature ionic liquids (RTILs) decompose thermally between 400 K and 600 K due to their organic constituents; this range of temperatures is hundreds of degrees below recent estimates of their Tc. In both cases, reliable methods to deduce Tc based on extrapolations of experimental data recorded at much lower temperatures near the triple or melting points are needed and useful because the critical point influences the fluid's behavior in the entire liquid region. Here, we propose to employ the scaling approach leading to universal fluid behavior [Román et al., J. Chem. Phys. 123, 124512 (2005)] to derive a very simple expression that allows one to estimate Tc from the density of the liquid, the surface tension, or the enthalpy of vaporization measured in a very narrow range of low temperatures. We demonstrate the validity of the approach for simple and polar neutral fluids, for which Tc is known, and then use the methodology to obtain estimates of Tc for ionic fluids. When comparing these estimates to those reported in the literature, good agreement is found for RTILs, whereas the ones for the molten salts NaCl and KCl are lower than previous estimates by 10%. The coexistence curve for ionic fluids is found to be more adequately described by an effective exponent of βeff = 0.5 than by βeff = 0.33.

  3. THERMALLY STABLE NANOCRYSTALLINE TIO2 PHOTOCATALYSTS SYNTHESIZED VIA SOL-GEL METHODS MODIFIED WITH IONIC LIQUID AND SURFACTANT MOLECULES

    EPA Science Inventory

    Recently, sol-gel methods employing ionic liquids (ILs) have shown significant implications for the synthesis of well-defined nanostructured inorganic materials. Herein, we synthesized nanocrystalline TiO2 particles via an alkoxide sol-gel method employing a water-immi...

  4. Thermo-Rheometric Studies of New Class Ionic Liquid Lubricants

    NASA Astrophysics Data System (ADS)

    Bakhtiyarov, Sayavur; Street, Kenneth; Scheiman, Daniel; van Dyke, Alan

    2010-11-01

    Due to their specific properties, such as small volatility, nonflammability, extreme thermal stability, low melting point, wide liquid range, and good miscibility with organic materials, ionic liquids attracted particular interest in various industrial processes. Recently, the unique properties of ionic liquids caught the attention of space tribologists. The traditional lubricating materials used in space have limited lifetimes in vacuum due to the catalytic degradation on metal surfaces, high vaporization at high temperatures, dewetting, and other disadvantages. The lubricants for the space applications must have vacuum stability, high viscosity index, low creep tendency, good elastohydrodynamic and boundary lubrication properties, radiation atomic oxygen resistance, optical or infrared transparency. Unfortunately, the properties such as heat flow, heat capacity, thermogravimetric weight loss, and non-linearity in the rheological behavior of the lubricants are not studied well for newly developed systems. These properties are crucial to analyzing thermodynamic and energy dissipative aspects of the lubrication process. In this paper we will present the rheological and heat and mass transfer measurements for the ionic liquid lubricants, their mixtures with and without additive.

  5. Geometrical control of ionic current rectification in a configurable nanofluidic diode.

    PubMed

    Alibakhshi, Mohammad Amin; Liu, Binqi; Xu, Zhiping; Duan, Chuanhua

    2016-09-01

    Control of ionic current in a nanofluidic system and development of the elements analogous to electrical circuits have been the subject of theoretical and experimental investigations over the past decade. Here, we theoretically and experimentally explore a new technique for rectification of ionic current using asymmetric 2D nanochannels. These nanochannels have a rectangular cross section and a stepped structure consisting of a shallow and a deep side. Control of height and length of each side enables us to obtain optimum rectification at each ionic strength. A 1D model based on the Poisson-Nernst-Planck equation is derived and validated against the full 2D numerical solution, and a nondimensional concentration is presented as a function of nanochannel dimensions, surface charge, and the electrolyte concentration that summarizes the rectification behavior of such geometries. The rectification factor reaches a maximum at certain electrolyte concentration predicted by this nondimensional number and decays away from it. This method of fabrication and control of a nanofluidic diode does not require modification of the surface charge and facilitates the integration with lab-on-a-chip fluidic circuits. Experimental results obtained from the stepped nanochannels are in good agreement with the 1D theoretical model.

  6. Quantification of amino acids and peptides in an ionic liquid based aqueous two-phase system by LC-MS analysis.

    PubMed

    Oppermann, Sebastian; Oppermann, Christina; Böhm, Miriam; Kühl, Toni; Imhof, Diana; Kragl, Udo

    2018-04-25

    Aqueous two-phase systems (ATPS) occur by the mixture of two polymers or a polymer and an inorganic salt in water. It was shown that not only polymers but also ionic liquids in combination with inorganic cosmotrophic salts are able to build ATPS. Suitable for the formation of ionic liquid-based ATPS systems are hydrophilic water miscible ionic liquids. To understand the driving force for amino acid and peptide distribution in IL-ATPS at different pH values, the ionic liquid Ammoeng 110™ and K 2 HPO 4 have been chosen as a test system. To quantify the concentration of amino acids and peptides in the different phases, liquid chromatography and mass spectrometry (LC-MS) technologies were used. Therefore the peptides and amino acids have been processed with EZ:faast™-Kit from Phenomenex for an easy and reliable quantification method even in complex sample matrices. Partitioning is a surface-dependent phenomenon, investigations were focused on surface-related amino acid respectively peptide properties such as charge and hydrophobicity. Only a very low dependence between the amino acids or peptides hydrophobicity and the partition coefficient was found. Nevertheless, the presented results show that electrostatic respectively ionic interactions between the ionic liquid and the amino acids or peptides have a strong impact on their partitioning behavior.

  7. Lithium-Air and ionic Liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kellar, Michael

    2015-09-01

    The final portion of this project was accomplished at Sandia National Labs, Livermore, with the overall goal being to optimize lithium-air cells with an ionic liquid electrolyte. Both of these are potential future routes for lithium-ion technology. Lithiumair presents the advantage of higher gravimetric energy density, and ionic liquids present the advantage of greater hydrophobicity and much lower volatility, along with a larger window of electrochemical stability. Ionic liquids however have several drawbacks for the battery industry. Currently they are not as cost effective as many organic solvents. Additionally, because of the added viscosity of ionic interactions compared to themore » typical dipole interactions of a solvent, the ionic conductivity is lower than for common organic solvents.« less

  8. Structure, ionic conductivity and mobile carrier density in fast ionic conducting chalcogenide glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Wenlong

    2006-01-01

    This thesis consists of six sections. The first section gives the basic research background on the ionic conduction mechanism in glass, polarization in the glass, and the method of determining the mobile carrier density in glass. The proposed work is also included in this section. The second section is a paper that characterizes the structure of MI + M 2S + (0.1 Ga 2S 3 + 0.9 GeS 2) (M = Li, Na, K and Cs) glasses using Raman and IR spectroscopy. Since the ionic radius plays an important role in determining the ionic conductivity in glasses, the glass formingmore » range for the addition of different alkalis into the basic glass forming system 0.1 Ga 2S 3 + 0.9 GeS 2 was studied. The study found that the change of the alkali radius for the same nominal composition causes significant structure change to the glasses. The third section is a paper that investigates the ionic conductivity of MI + M 2S + (0.1Ga 2S 3 + 0.9 GeS 2) (M = Li, Na, K and Cs) glasses system. Corresponding to the compositional changes in these fast ionic conducting glasses, the ionic conductivity shows changes due to the induced structural changes. The ionic radius effect on the ionic conductivity in these glasses was investigated. The fourth section is a paper that examines the mobile carrier density based upon the measurements of space charge polarization. For the first time, the charge carrier number density in fast ionic conducting chalcogenide glasses was determined. The experimental impedance data were fitted using equivalent circuits and the obtained parameters were used to determine the mobile carrier density. The influence of mobile carrier density and mobility on the ionic conductivity was separated. The fifth section is a paper that studies the structures of low-alkali-content Na 2S + B 2S 3 (x ≤ 0.2) glasses by neutron and synchrotron x-ray diffraction. Similar results were obtained both in neutron and synchrotron x-ray diffraction experiments. The results provide direct structural

  9. Facile ionothermal synthesis of microporous and mesoporous carbons from task specific ionic liquids.

    PubMed

    Lee, Je Seung; Wang, Xiqing; Luo, Huimin; Baker, Gary A; Dai, Sheng

    2009-04-08

    An expedient, template-free, high-yield, and solventless route to nitrogen-rich micro- and mesoporous carbons is reported based on direct, atmospheric-pressure carbonization of task-specific ionic liquids bearing one or more nitrile side chains. The resulting textural properties (pore regime, surface area) are highly dependent upon the structural motifs of the ions comprising the corresponding parent ionic liquid, and uniform carbon films are routinely deposited with this novel methodology, highlighting excited new opportunities in the development of advanced functional carbon composites.

  10. High performance ultracapacitors with carbon nanomaterials and ionic liquids

    DOEpatents

    Lu, Wen; Henry, Kent Douglas

    2012-10-09

    The present invention is directed to the use of carbon nanotubes and/or electrolyte structures in various electrochemical devices, such as ultracapacitors having an ionic liquid electrolyte. The carbon nanotubes are preferably aligned carbon nanotubes. Compared to randomly entangled carbon nanotubes, aligned carbon nanotubes can have better defined pore structures and higher specific surface areas.

  11. Study of the effect of tribo-materials and surface finish on the lubricant performance of new halogen-free room temperature ionic liquids

    NASA Astrophysics Data System (ADS)

    Saurín, N.; Minami, I.; Sanes, J.; Bermúdez, M. D.

    2016-03-01

    The present work evaluates different materials and surface finish in the presence of newly designed, hydrophobic halogen-free room temperature ionic liquids (RTILs) as lubricants. A reciprocating tribo-tester was employed with steel-ceramic and steel-thermosetting epoxy resin contacts under boundary lubrication conditions. Four different tetraalkylphosphonium organosilanesulfonate RTILs provided excellent lubricating performance, with friction coefficients as low as 0.057, and non-measurable wear for the higher roughness machine-finish stainless steel flat against sapphire balls, in the case of the lubricants containing the 2-trimethylsilylethanesulfonate anion. Higher friction coefficients of the order of 0.1 and wear volumes of the order of 10-4 mm3 were observed for the lower roughness fine-finished flat stainless steel surface. All RTILs prevent wear of epoxy resin against stainless steel balls, with friction coefficients in the range of 0.03-0.06. EDX analysis shows the presence of RTILs on the stainless steel surfaces after the tribological tests. Under the experimental conditions, no corrosive processes were observed.

  12. DNA surface hybridization regimes

    PubMed Central

    Gong, Ping; Levicky, Rastislav

    2008-01-01

    Surface hybridization reactions, in which sequence-specific recognition occurs between immobilized and solution nucleic acids, are routinely carried out to quantify and interpret genomic information. Although hybridization is fairly well understood in bulk solution, the greater complexity of an interfacial environment presents new challenges to a fundamental understanding, and hence application, of these assays. At a surface, molecular interactions are amplified by the two-dimensional nature of the immobilized layer, which focuses the nucleic acid charge and concentration to levels not encountered in solution, and which impacts the hybridization behavior in unique ways. This study finds that, at low ionic strengths, an electrostatic balance between the concentration of immobilized oligonucleotide charge and solution ionic strength governs the onset of hybridization. As ionic strength increases, the importance of electrostatics diminishes and the hybridization behavior becomes more complex. Suppression of hybridization affinity constants relative to solution values, and their weakened dependence on the concentration of DNA counterions, indicate that the immobilized strands form complexes that compete with hybridization to analyte strands. Moreover, an unusual regime is observed in which the surface coverage of immobilized oligonucleotides does not significantly influence the hybridization behavior, despite physical closeness and hence compulsory interactions between sites. These results are interpreted and summarized in a diagram of hybridization regimes that maps specific behaviors to experimental ranges of ionic strength and probe coverage. PMID:18381819

  13. Ionic Strength Is a Barrier to the Habitability of Mars.

    PubMed

    Fox-Powell, Mark G; Hallsworth, John E; Cousins, Claire R; Cockell, Charles S

    2016-06-01

    The thermodynamic availability of water (water activity) strictly limits microbial propagation on Earth, particularly in hypersaline environments. A considerable body of evidence indicates the existence of hypersaline surface waters throughout the history of Mars; therefore it is assumed that, as on Earth, water activity is a major limiting factor for martian habitability. However, the differing geological histories of Earth and Mars have driven variations in their respective aqueous geochemistry, with as-yet-unknown implications for habitability. Using a microbial community enrichment approach, we investigated microbial habitability for a suite of simulated martian brines. While the habitability of some martian brines was consistent with predictions made from water activity, others were uninhabitable even when the water activity was biologically permissive. We demonstrate experimentally that high ionic strength, driven to extremes on Mars by the ubiquitous occurrence of multivalent ions, renders these environments uninhabitable despite the presence of biologically available water. These findings show how the respective geological histories of Earth and Mars, which have produced differences in the planets' dominant water chemistries, have resulted in different physicochemical extremes which define the boundary space for microbial habitability. Habitability-Mars-Salts-Water activity-Life in extreme environments. Astrobiology 16, 427-442.

  14. On the relationship between the specific heat enhancement of salt-based nanofluids and the ionic exchange capacity of nanoparticles.

    PubMed

    Mondragón, Rosa; Juliá, J Enrique; Cabedo, Luis; Navarrete, Nuria

    2018-05-14

    Nanoparticles have been used in thermal applications to increase the specific heat of the molten salts used in Concentrated Solar Power plants for thermal energy storage. Although several mechanisms for abnormal enhancement have been proposed, they are still being investigated and more research is necessary. However, this nanoparticle-salt interaction can also be found in chemical applications in which nanoparticles have proved suitable to be used as an adsorbent for nitrate removal given their high specific surface, reactivity and ionic exchange capacity. In this work, the ionic exchange capacity mechanism for the nanoparticles functionalization phenomenon was evaluated. The ionic exchange capacity of silica and alumina nanoparticles dispersed in lithium, sodium and potassium nitrates was measured. Fourier-transform infrared spectroscopy tests confirmed the adsorption of nitrate ions on the nanoparticle surface. A relationship between the ionic exchange capacity of nanoparticles and the specific heat enhancement of doped molten salts was proposed for the first time.

  15. Interaction of Ester-Functionalized Ionic Liquids with Atomically-Defined Cobalt Oxides Surfaces: Adsorption, Reaction and Thermal Stability.

    PubMed

    Xu, Tao; Waehler, Tobias; Vecchietti, Julia; Bonivardi, Adrian; Bauer, Tanja; Schwegler, Johannes; Schulz, Peter S; Wasserscheid, Peter; Libuda, Joerg

    2017-12-06

    Hybrid materials consisting of ionic liquid (ILs) films on supported oxides hold a great potential for applications in electronic and energy materials. In this work, we have performed surface science model studies scrutinizing the interaction of ester-functionalized ILs with atomically defined Co 3 O 4 (111) and CoO(100) surfaces. Both supports are prepared under ultra-high vacuum (UHV) conditions in form of thin films on Ir(100) single crystals. Subsequently, thin films of three ILs, 3-butyl-1-methyl imidazolium bis(trifluoromethyl-sulfonyl) imide ([BMIM][NTf 2 ]), 3-(4-methoxyl-4-oxobutyl)-1-methylimidazolium bis(trifluoromethyl-sulfonyl) imide ([MBMIM][NTf 2 ]), and 3-(4-isopropoxy-4-oxobutyl)-1-methylimidazolium bis(trifluoromethyl-sulfonyl) imide ([IPBMIM][NTf 2 ]), were deposited on these surfaces by physical vapor deposition (PVD). Time-resolved and temperature-programmed infrared reflection absorption spectroscopy (TR-IRAS, TP-IRAS) were applied to monitor in situ the adsorption, film growth, and thermally induced desorption. By TP-IRAS, we determined the multilayer desorption temperature of [BMIM][NTf 2 ] (360±5 K), [MBMIM][NTf 2 ] (380 K) and [IPBMIM][NTf 2 ] (380 K). Upon deposition below the multilayer desorption temperature, all three ILs physisorb on both cobalt oxide surfaces. However, strong orientation effects are observed in the first monolayer, where the [NTf 2 ] - ion interacts with the surface through the SO 2 groups and the CF 3 groups point towards the vacuum. For the two functionalized ILs, the [MBMIM] + and [IPBMIM] + interact with the surface Co 2+ ions of both surfaces via the CO group of their ester function. A very different behavior is found, if the ILs are deposited above the multilayer desorption temperature (400 K). While for [BMIM][NTf 2 ] and [MBMIM][NTf 2 ] a molecularly adsorbed monolayer film is formed, [IPBMIM][NTf 2 ] undergoes a chemical transformation on the CoO(100) surface. Here, the ester group is cleaved and

  16. Comparative Investigation of the Ionicity of Aprotic and Protic Ionic Liquids in Molecular Solvents by using Conductometry and NMR Spectroscopy.

    PubMed

    Thawarkar, Sachin; Khupse, Nageshwar D; Kumar, Anil

    2016-04-04

    Electrical conductivity (σ), viscosity (η), and self-diffusion coefficient (D) measurements of binary mixtures of aprotic and protic imidazolium-based ionic liquids with water, dimethyl sulfoxide, and ethylene glycol were measured from 293.15 to 323.15 K. The temperature dependence study reveals typical Arrhenius behavior. The ionicities of aprotic ionic liquids were observed to be higher than those of protic ionic liquids in these solvents. The aprotic ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, [bmIm][BF4 ], displays 100 % ionicity in both water and ethylene glycol. The protic ionic liquids in both water and ethylene glycol are classed as good ionic candidates, whereas in DMSO they are classed as having a poor ionic nature. The solvation dynamics of the ionic species of the ionic liquids are illustrated on the basis of the (1) H NMR chemical shifts of the ionic liquids. The self-diffusion coefficients D of the cation and anion of [HmIm][CH3 COO] in D2 O and in [D6 ]DMSO are determined by using (1) H nuclei with pulsed field gradient spin-echo NMR spectroscopy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Self-consistent modelling of electrochemical strain microscopy in mixed ionic-electronic conductors: Nonlinear and dynamic regimes

    DOE PAGES

    Varenyk, O. V.; Silibin, M. V.; Kiselev, Dmitri A.; ...

    2015-08-19

    The frequency dependent Electrochemical Strain Microscopy (ESM) response of mixed ionic-electronic conductors is analyzed within the framework of Fermi-Dirac statistics and the Vegard law, accounting for steric effects from mobile donors. The emergence of dynamic charge waves and nonlinear deformation of the surface in response to bias applied to the tip-surface junction is numerically explored. The 2D maps of the strain and concentration distributions across the mixed ionic-electronic conductor and bias-induced surface displacements are calculated. Furthermore, the obtained numerical results can be applied to quantify the ESM response of Li-based solid electrolytes, materials with resistive switching, and electroactive ferroelectric polymers,more » which are of potential interest for flexible and high-density non-volatile memory devices.« less

  18. Self-consistent modelling of electrochemical strain microscopy in mixed ionic-electronic conductors: Nonlinear and dynamic regimes

    NASA Astrophysics Data System (ADS)

    Varenyk, O. V.; Silibin, M. V.; Kiselev, D. A.; Eliseev, E. A.; Kalinin, S. V.; Morozovska, A. N.

    2015-08-01

    The frequency dependent Electrochemical Strain Microscopy (ESM) response of mixed ionic-electronic conductors is analyzed within the framework of Fermi-Dirac statistics and the Vegard law, accounting for steric effects from mobile donors. The emergence of dynamic charge waves and nonlinear deformation of the surface in response to bias applied to the tip-surface junction is numerically explored. The 2D maps of the strain and concentration distributions across the mixed ionic-electronic conductor and bias-induced surface displacements are calculated. The obtained numerical results can be applied to quantify the ESM response of Li-based solid electrolytes, materials with resistive switching, and electroactive ferroelectric polymers, which are of potential interest for flexible and high-density non-volatile memory devices.

  19. Ionic transport in high-energy-density matter

    DOE PAGES

    Stanton, Liam G.; Murillo, Michael S.

    2016-04-08

    Ionic transport coefficients for dense plasmas have been numerically computed using an effective Boltzmann approach. Here, we developed a simplified effective potential approach that yields accurate fits for all of the relevant cross sections and collision integrals. These results have been validated with molecular-dynamics simulations for self-diffusion, interdiffusion, viscosity, and thermal conductivity. Molecular dynamics has also been used to examine the underlying assumptions of the Boltzmann approach through a categorization of behaviors of the velocity autocorrelation function in the Yukawa phase diagram. By using a velocity-dependent screening model, we examine the role of dynamical screening in transport. Implications of thesemore » results for Coulomb logarithm approaches are discussed.« less

  20. Novel double-confined polymeric ionic liquids as sorbents for solid-phase microextraction with enhanced stability and durability in high-ionic-strength solution.

    PubMed

    Feng, Juanjuan; Sun, Min; Xu, Lili; Wang, Shuai; Liu, Xia; Jiang, Shengxiang

    2012-12-14

    Because of the occurrence of ion exchange between high-ionic-strength solution and anions of polymeric ionic liquids (PILs), PILs based solid-phase microextraction (SPME) fibers were rarely used in direct immersion mode to high-salt-added samples. In this work, a novel double-confined PIL sorbent was prepared by co-polymerization of cation and anion of 1-vinyl-3-octylimidzaolium p-styrenesulfonate (VOIm(+)SS(-)). The poly(VOIm(+)-SS(-)) was chemically bonded onto functionalized stainless steel wire via surface radical chain-transfer reaction. Stability of poly(VOIm(+)-SS(-)) in high-ionic-strength solution was investigated and compared with that of poly(1-vinyl-3-octylimidzaolium benzenesulfonate) (poly(VOIm(+)BS(-))) by elemental analysis of sulfur element, and results turned out that the poly(VOIm(+)-SS(-)) was more stable. Coupled to gas chromatography (GC), the poly(VOIm(+)-SS(-)) fiber was used to extract three sorts of compounds including anilines, phenols and phthalate esters in aqueous solution. The as-established method showed good linearity, low detection limits, and acceptable repeatability. The direct immersion SPME-GC method was applied to determine the model phthalate esters in bottled mineral water. The determination results were satisfactory. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Frost grain size metamorphism - Implications for remote sensing of planetary surfaces

    NASA Technical Reports Server (NTRS)

    Clark, R. N.; Fanale, F. P.; Zent, A. P.

    1983-01-01

    The effective grain size of a material on a planetary surface affects the strength of absorption features observed in the reflectance of a particulate surface. In the case of a planetary surface containing volatile ices, the absorption characteristics can change in connection with processes leading to a change in the grain size of the material. The present investigation is concerned with an evaluation regarding the occurrence of such processes and the implications for remote sensing applications. It is found that quantitative modeling of the kinetics of grain growth and destruction by thermal and nonthermal processes can provide a means to reconcile apparent optical paths in the volatile portions of planetary surfaces with the physical history of those surfaces. Attention is also given to conditions in the case of the Pluto/Triton system, Uranus and Saturnian satellites, and the Galilean system.

  2. Exploring inclusion complexes of ionic liquids with α- and β- cyclodextrin by NMR, IR, mass, density, viscosity, surface tension and conductance study

    NASA Astrophysics Data System (ADS)

    Barman, Biraj Kumar; Rajbanshi, Biplab; Yasmin, Ananya; Roy, Mahendra Nath

    2018-05-01

    The formation of the host-guest inclusion complexes of ionic liquids namely [BMIm]Cl and [HMIm]Cl with α-CD and β-CD were studied by means of physicochemical and spectroscopic methods. Conductivity and surface tension study were in good agreement with the 1H NMR and FT-IR studies which confirm the formation of the inclusion complexes. The Density and viscosity study also supported the formation of the ICs. Further the stoichiometry was determined 1:1 for each case and the association constants and thermodynamic parameters derived supported the most feasible formation of the [BMIm]Cl- β-CD inclusion complex.

  3. Corresponding-states behavior of an ionic model fluid with variable dispersion interactions

    NASA Astrophysics Data System (ADS)

    Weiss, Volker C.

    2016-06-01

    Guggenheim's corresponding-states approach for simple fluids leads to a remarkably universal representation of their thermophysical properties. For more complex fluids, such as polar or ionic ones, deviations from this type of behavior are to be expected, thereby supplying us with valuable information about the thermodynamic consequences of the interaction details in fluids. Here, the gradual transition of a simple fluid to an ionic one is studied by varying the relative strength of the dispersion interactions compared to the electrostatic interactions among the charged particles. In addition to the effects on the reduced surface tension that were reported earlier [F. Leroy and V. C. Weiss, J. Chem. Phys. 134, 094703 (2011)], we address the shape of the coexistence curve and focus on properties that are related to and derived from the vapor pressure. These quantities include the enthalpy and entropy of vaporization, the boiling point, and the critical compressibility factor Zc. For all of these properties, the crossover from simple to characteristically ionic fluid is seen once the dispersive attraction drops below 20%-40% of the electrostatic attraction (as measured for two particles at contact). Below this threshold, ionic fluids display characteristically low values of Zc as well as large Guggenheim and Guldberg ratios for the reduced enthalpy of vaporization and the reduced boiling point, respectively. The coexistence curves are wider and more skewed than those for simple fluids. The results for the ionic model fluid with variable dispersion interactions improve our understanding of the behavior of real ionic fluids, such as inorganic molten salts and room temperature ionic liquids, by gauging the importance of different types of interactions for thermodynamic properties.

  4. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    PubMed Central

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-01-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes, or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70% molar yield toward citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide. PMID:24790972

  5. Manufacturing and actuation characterization of ionic polymer metal composites with silver as electrodes

    NASA Astrophysics Data System (ADS)

    Pandita, Surya D.; Lim, Hyoung Tae; Yoo, Youngtai; Park, Hoon Cheol

    2006-03-01

    Manufacturing and characterization of ionic polymer metal composites (IPMCs) with silver as electrodes have been investigated. Tollen's reagent that contains ion Ag(NH 3) II + was used as a raw material for silver deposition on the surfaces of the polymer membrane Nafion"R". Two types of inner solvents, namely common water based electrolyte solution (LiOH 1N) and ionic liquid were used and investigated. Compared to IPMCs with platinum electrodes, silver-plated IPMCs with water electrolyte showed higher conductivity. The actuation response of silver-plated IPMCs with the water based electrolyte was faster than that of platinum IPMCs. However, the silver electrode was too brittle and severely damaged during the solvent exchange process from water to ionic liquid, resulted in high resistance and hence very low actuation behavior.

  6. Control of Nanoscale Friction on Gold in an Ionic Liquid by a Potential-Dependent Ionic Lubricant Layer

    NASA Astrophysics Data System (ADS)

    Sweeney, James; Hausen, Florian; Hayes, Robert; Webber, Grant B.; Endres, Frank; Rutland, Mark W.; Bennewitz, Roland; Atkin, Rob

    2012-10-01

    The lubricating properties of an ionic liquid on gold surfaces can be controlled through application of an electric potential to the sliding contact. A nanotribology approach has been used to study the frictional behavior of 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl) trifluorophosphate ([Py1,4]FAP) confined between silica colloid probes or sharp silica tips and a Au(111) substrate using atomic force microscopy. Friction forces vary with potential because the composition of a confined ion layer between the two surfaces changes from cation-enriched (at negative potentials) to anion-enriched (at positive potentials). This offers a new approach to tuning frictional forces reversibly at the molecular level without changing the substrates, employing a self-replenishing boundary lubricant of low vapor pressure.

  7. Application of Ionic Liquids in Hydrometallurgy

    PubMed Central

    Park, Jesik; Jung, Yeojin; Kusumah, Priyandi; Lee, Jinyoung; Kwon, Kyungjung; Lee, Churl Kyoung

    2014-01-01

    Ionic liquids, low temperature molten salts, have various advantages manifesting themselves as durable and environmentally friendly solvents. Their application is expanding into various fields including hydrometallurgy due to their unique properties such as non-volatility, inflammability, low toxicity, good ionic conductivity, and wide electrochemical potential window. This paper reviews previous literatures and our recent results adopting ionic liquids in extraction, synthesis and processing of metals with an emphasis on the electrolysis of active/light, rare earth, and platinum group metals. Because the research and development of ionic liquids in this area are still emerging, various, more fundamental approaches are expected to popularize ionic liquids in the metal manufacturing industry. PMID:25177864

  8. Ionic Liquids for Advanced Materials

    DTIC Science & Technology

    2008-12-01

    optical clarity to completely opacity with increased amounts of ionic liquid . This transition was not previously observed in Nafion ® membranes swollen...1 IONIC LIQUIDS FOR ADVANCED MATERIALS Timothy E. Long, Sean M. Ramirez, Randy Heflin, Harry W. Gibson, Louis A. Madsen, Donald J. Leo, Nakhiah...is to develop a micromechanical model for the electrochemomechanical transduction mechanisms in newly synthesized ionic liquid polymers in order to

  9. ESM of ionic and electrochemical phenomena on the nanoscale

    DOE PAGES

    Kalinin, Sergei V.; Kumar, Amit; Balke, Nina; ...

    2011-01-01

    Operation of energy storage and conversion devices is ultimately controlled by series of intertwined ionic and electronic transport processes and electrochemical reactions at surfaces and interfaces, strongly mediated by strain and mechanical processes. In a typical fuel cell, these include chemical species transport in porous cathode and anode materials, gas-solid electrochemical reactions at grains and triple-phase boundaries (TPBs), ionic and electronic flows in multicomponent electrodes, and chemical and electronic potential drops at internal interfaces in electrodes and electrolytes. Furthermore, all these phenomena are sensitively affected by the microstructure of materials from device level to the atomic scales. Similar spectrum ofmore » length scales and phenomena underpin operation of other energy systems including primary and secondary batteries, as well as hybrid systems such flow and metal-air/water batteries.« less

  10. Acoustic cavitation in 1-butyl-3-methylimidazolium bis(triflluoromethyl-sulfonyl)imide based ionic liquid.

    PubMed

    Merouani, Slimane; Hamdaoui, Oualid; Haddad, Boumediene

    2018-03-01

    In this work, a comparison between the temperatures/pressures within acoustic cavitation bubble in an imidazolium-based room-temperature ionic liquid (RTIL), 1-butyl-3-methylimidazolium bis(triflluoromethyl-sulfonyl)imide ([BMIM][NTf 2 ]), and in water has been made for a wide range of cavitation parameters including frequency (140-1000kHz), acoustic intensity (0.5-1Wcm -2 ), liquid temperature (20-50°C) and external static pressure (0.7-1.5atm). The used cavitation model takes into account the liquid compressibility as well as the surface tension and the viscosity of the medium. It was found that the bubble temperatures and pressures were always much higher in the ionic liquid compared to those predicted in water. The valuable effect of [BMIM][NTf 2 ] on the bubble temperature was more pronounced at higher acoustic intensity and liquid temperature and lower frequency and external static pressure. However, confrontation between the predicted and the experimental estimated temperatures in ionic liquids showed an opposite trend as the temperatures measured in some pure ionic liquids are of the same order as those observed in water. The injection of liquid droplets into cavitation bubbles, the pyrolysis of ionic liquids at the bubble-solution interface as well as the lower number of collapsing bubbles in the ionic liquid may be the responsible for the lower measured bubble temperatures in ionic liquids, as compared with water. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Transports of ionic liquids in ionic polymer conductor network composite actuators

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Liu, Sheng; Lin, Junhong; Wang, Dong; Jain, Vaibhav; Montazami, Reza; Heflin, James R.; Li, Jing; Madsen, Louis; Zhang, Q. M.

    2010-04-01

    We investigate the influence of ionic liquids on the electromechanical performance of Ionic Polymer Conductor Network Composite (IPCNC) bending actuators. Two imidazolium ionic liquids (ILs) with one cation, which is 1-ethyl-3- methylimidazolium ([EMI+]), and two different anions, which are tetrafluoroborate ([BF4-]) and trifluoromethanesulfonate ([Tf-]), are chosen for the study. By combining the time domain electric and electromechanical responses, we developed a new model that describes the ion transports in IPCNC actuators. The time constant of excess cation and anion migration in various composite electrodes are deduced: 6s and 25s in RuO2/Nafion; 7.9s and 36.3s in RuO2/Aquivion; 4.8s and 53s in Au/PAH, respectively. NMR is also applied to provide quantitative measures of self-diffusion coefficients independently for IL anions and cations both in pure ILs and in ILs absorved into ionomers. All the results indicate that the motion of cation, in the studied pure ionic liquids, polymer matrix and conductor network composites, is faster than that of anion. Moreover, the CNC morphology is playing a crucial role in determining the ion transport in the porous electrodes.

  12. The surface energy of water: functional implications of hexagonal/cuboidal transformations in the surface arrays.

    PubMed

    Widdas, W F

    2006-10-30

    Hyde's scientific book The Language of Shape has emphasized the importance of minimum surfaces in the structure of biological membranes. Minimum surfaces can be visualized as the property which brings many droplets of liquids to spherical bubbles, since a sphere has the minimum surface to volume ratio. Thus, a sphere with a surface of 4pir2 and volume of 4/3pir3 has a surface to volume ratio of 3/r, that is, the ratio is dependent upon the reciprocal of the radius. The chemistry of water as dihydrides of the electronegative element oxygen is fundamentally dependent upon its polar properties and particularly the delta positive charges on the hydrogen atoms and the double delta negative charge on the larger oxygen atom, which from its mass (16 Da) is regarded as the centre of the water molecules. The cohesion of water as a liquid or as semi-crystal like structures in the surface depends upon electrostatic forces that are comparable in strength to covalent bonds. This review discusses the functional implications of some unexpected properties which have been evinced by model building and illustrated as a Poster in the 4th World Congress of Cellular and Molecular Biology.

  13. Ionic Liquid Crystals: Versatile Materials.

    PubMed

    Goossens, Karel; Lava, Kathleen; Bielawski, Christopher W; Binnemans, Koen

    2016-04-27

    This Review covers the recent developments (2005-2015) in the design, synthesis, characterization, and application of thermotropic ionic liquid crystals. It was designed to give a comprehensive overview of the "state-of-the-art" in the field. The discussion is focused on low molar mass and dendrimeric thermotropic ionic mesogens, as well as selected metal-containing compounds (metallomesogens), but some references to polymeric and/or lyotropic ionic liquid crystals and particularly to ionic liquids will also be provided. Although zwitterionic and mesoionic mesogens are also treated to some extent, emphasis will be directed toward liquid-crystalline materials consisting of organic cations and organic/inorganic anions that are not covalently bound but interact via electrostatic and other noncovalent interactions.

  14. Ionically cross-linked poly(allylamine) as a stimulus-responsive underwater adhesive: ionic strength and pH effects.

    PubMed

    Lawrence, Patrick G; Lapitsky, Yakov

    2015-02-03

    Gel-like coacervates that adhere to both hydrophilic and hydrophobic substrates under water have recently been prepared by ionically cross-linking poly(allylamine) (PAH) with pyrophosphate (PPi) and tripolyphosphate (TPP). Among the many advantages of these underwater adhesives (which include their simple preparation and low cost) is their ability to dissolve on demand when exposed to high or low pH. To further analyze their stimulus-responsive properties, we have investigated the pH and ionic strength effects on the formation, rheology and adhesion of PAH/PPi and PAH/TPP complexes. The ionic cross-linker concentrations needed to form these adhesives decreased with increasing pH and ionic strength (although the complexes ceased to form when the parent solution pH exceeded ca. 8.5; i.e., the effective pKa of PAH). Once formed, their ionic cross-links were most stable (as inferred from their relaxation times) at near-neutral or slightly alkaline pH values (of roughly 6.5-9) and at low ionic strengths. The decrease in ionic cross-link stability within complexes prepared at other pH values and at elevated (150-300 mM) NaCl concentrations diminished both the strength and longevity of adhesion (although, under most conditions tested, the short-term tensile adhesion strengths remained above 10(5) Pa). Additionally, the sensitivity of PAH/PPi and PAH/TPP complexes to ionic strength was demonstrated as a potential route to injectable adhesive design (where spontaneous adhesive formation was triggered via injection of low-viscosity, colloidal PAH/TPP dispersions into phosphate buffered saline). Thus, while the sensitivity of ionically cross-linked PAH networks to pH and ionic strength can weaken their adhesion, it can also impart them with additional functionality, such as minimally invasive, injectable delivery, and ability to form and dissolve their bonds on demand.

  15. Stern potential and Debye length measurements in dilute ionic solutions with electrostatic force microscopy.

    PubMed

    Kumar, Bharat; Crittenden, Scott R

    2013-11-01

    We demonstrate the ability to measure Stern potential and Debye length in dilute ionic solution with atomic force microscopy. We develop an analytic expression for the second harmonic force component of the capacitive force in an ionic solution from the linearized Poisson-Boltzmann equation. This allows us to calibrate the AFM tip potential and, further, obtain the Stern potential of sample surfaces. In addition, the measured capacitive force is independent of van der Waals and double layer forces, thus providing a more accurate measure of Debye length.

  16. Corresponding-states behavior of an ionic model fluid with variable dispersion interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, Volker C., E-mail: volker.weiss@bccms.uni-bremen.de

    2016-06-21

    Guggenheim’s corresponding-states approach for simple fluids leads to a remarkably universal representation of their thermophysical properties. For more complex fluids, such as polar or ionic ones, deviations from this type of behavior are to be expected, thereby supplying us with valuable information about the thermodynamic consequences of the interaction details in fluids. Here, the gradual transition of a simple fluid to an ionic one is studied by varying the relative strength of the dispersion interactions compared to the electrostatic interactions among the charged particles. In addition to the effects on the reduced surface tension that were reported earlier [F. Leroymore » and V. C. Weiss, J. Chem. Phys. 134, 094703 (2011)], we address the shape of the coexistence curve and focus on properties that are related to and derived from the vapor pressure. These quantities include the enthalpy and entropy of vaporization, the boiling point, and the critical compressibility factor Z{sub c}. For all of these properties, the crossover from simple to characteristically ionic fluid is seen once the dispersive attraction drops below 20%–40% of the electrostatic attraction (as measured for two particles at contact). Below this threshold, ionic fluids display characteristically low values of Z{sub c} as well as large Guggenheim and Guldberg ratios for the reduced enthalpy of vaporization and the reduced boiling point, respectively. The coexistence curves are wider and more skewed than those for simple fluids. The results for the ionic model fluid with variable dispersion interactions improve our understanding of the behavior of real ionic fluids, such as inorganic molten salts and room temperature ionic liquids, by gauging the importance of different types of interactions for thermodynamic properties.« less

  17. Dielectric study on mixtures of ionic liquids.

    PubMed

    Thoms, E; Sippel, P; Reuter, D; Weiß, M; Loidl, A; Krohns, S

    2017-08-07

    Ionic liquids are promising candidates for electrolytes in energy-storage systems. We demonstrate that mixing two ionic liquids allows to precisely tune their physical properties, like the dc conductivity. Moreover, these mixtures enable the gradual modification of the fragility parameter, which is believed to be a measure of the complexity of the energy landscape in supercooled liquids. The physical origin of this index is still under debate; therefore, mixing ionic liquids can provide further insights. From the chemical point of view, tuning ionic liquids via mixing is an easy and thus an economic way. For this study, we performed detailed investigations by broadband dielectric spectroscopy and differential scanning calorimetry on two mixing series of ionic liquids. One series combines an imidazole based with a pyridine based ionic liquid and the other two different anions in an imidazole based ionic liquid. The analysis of the glass-transition temperatures and the thorough evaluations of the measured dielectric permittivity and conductivity spectra reveal that the dynamics in mixtures of ionic liquids are well defined by the fractions of their parent compounds.

  18. Holey graphene nanosheets with surface functional groups as high-performance supercapacitors in ionic-liquid electrolyte.

    PubMed

    Yang, Cheng-Hsien; Huang, Po-Ling; Luo, Xu-Feng; Wang, Chueh-Han; Li, Chi; Wu, Yi-Hsuan; Chang, Jeng-Kuei

    2015-05-22

    Pores and surface functional groups are created on graphene nanosheets (GNSs) to improve supercapacitor properties in a butylmethylpyrrolidinium-dicyanamide (BMP-DCA) ionic liquid (IL) electrolyte. The GNS electrode exhibits an optimal capacitance of 330 F g(-1) and a satisfactory rate capability within a wide potential range of 3.3 V at 25 °C. Pseudocapacitive effects are confirmed using X-ray photoelectron spectroscopy. Under the same conditions, carbon nanotube and activated carbon electrodes show capacitances of 80 and 81 F g(-1) , respectively. Increasing the operation temperature increases the conductivity and decreases the viscosity of the IL electrolyte, further improving cell performance. At 60 °C, a symmetric-electrode GNS supercapacitor with the IL electrolyte is able to deliver maximum energy and power densities of 140 Wh kg(-1) and 52.5 kW kg(-1) (based on the active material on both electrodes), respectively, which are much higher than the 20 Wh kg(-1) and 17.8 kW kg(-1) obtained for a control cell with a conventional organic electrolyte. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Structure and dynamics of mica-confined films of [C10C1Pyrr][NTf2] ionic liquid

    NASA Astrophysics Data System (ADS)

    Freitas, Adilson Alves de; Shimizu, Karina; Smith, Alexander M.; Perkin, Susan; Canongia Lopes, José Nuno

    2018-05-01

    The structure of the ionic liquid 1-decyl-1-methylpyrrolidinium bis[(trifluoromethane)sulfonyl]imide, [C10C1Pyrr][NTf2], has been probed using Molecular Dynamics (MD) simulations. The simulations endeavour to model the behaviour of the ionic liquid in bulk isotropic conditions and also at interfaces and in confinement. The MD results have been confronted and validated with scattering and surface force experiments reported in the literature. The calculated structure factors, distribution functions, and density profiles were able to provide molecular and mechanistic insights into the properties of these long chain ionic liquids under different conditions, in particular those that lead to the formation of multi-layered ionic liquid films in confinement. Other properties inaccessible to experiment such as in-plane structures and relaxation rates within the films have also been analysed. Overall the work contributes structural and dynamic information relevant to many applications of ionic liquids with long alkyl chains, ranging from nanoparticle synthesis to lubrication.

  20. On the chemical stabilities of ionic liquids.

    PubMed

    Sowmiah, Subbiah; Srinivasadesikan, Venkatesan; Tseng, Ming-Chung; Chu, Yen-Ho

    2009-09-25

    Ionic liquids are novel solvents of interest as greener alternatives to conventional organic solvents aimed at facilitating sustainable chemistry. As a consequence of their unusual physical properties, reusability, and eco-friendly nature, ionic liquids have attracted the attention of organic chemists. Numerous reports have revealed that many catalysts and reagents were supported in the ionic liquid phase, resulting in enhanced reactivity and selectivity in various important reaction transformations. However, synthetic chemists cannot ignore the stability data and intermolecular interactions, or even reactions that are directly applicable to organic reactions in ionic liquids. It is becoming evident from the increasing number of reports on use of ionic liquids as solvents, catalysts, and reagents in organic synthesis that they are not totally inert under many reaction conditions. While in some cases, their unexpected reactivity has proven fortuitously advantageous in others is has been a problem, it is imperative that when selecting an ionic liquid for a particular synthetic application, attention be paid to its compatibility with the reaction conditions. Even though, more than 200 room temperature ionic liquids are known, only a few reports have commented their effects on reaction mechanisms or rate/stability. Therefore, rather than attempting to give a comprehensive overview of ionic liquid chemistry, this review focuses on the non-innocent nature of ionic liquids, with a decided emphasis to clearly illuminate the ability of ionic liquids to affect the mechanistic aspects of some organic reactions thereby affecting and promoting the yield and selectivity.

  1. Titan's seasonal weather patterns, associated surface modification, and geological implications

    NASA Astrophysics Data System (ADS)

    Turtle, E. P.; Perry, J. E.; Barnes, J. W.; McEwen, A. S.; Barbara, J. M.; Del Genio, A. D.; Hayes, A. G.; West, R. A.; Lorenz, R. D.; Schaller, E. L.; Lunine, J. I.; Ray, T. L.; Lopes, R. M. C.; Stofan, E. R.

    2013-09-01

    Model predictions [e.g., 1-3] and observations [e.g., 4,5] illustrate changes in Titan's weather patterns related to the seasons (Fig. 1). In two cases, surface changes were documented following large cloud outbursts (Figs. 2, 3): the first in Arrakis Planitia at high southern latitudes in Fall 2004, during Titan's late southern summer [6]; and the second at lows southern latitudes in Concordia and Hetpet Regiones, Yalaing Terra (Fig. 3), and Adiri, in Fall 2010, just over a year after Titan's northern vernal equinox [4, 7, 8]. Not only do these storms demonstrate Titan's atmospheric conditions and processes, they also have important implications for Titan's surface process, its methane cycle, and its geologic history.

  2. Ionic liquid-tolerant cellulase enzymes

    DOEpatents

    Gladden, John; Park, Joshua; Singer, Steven; Simmons, Blake; Sale, Ken

    2017-10-31

    The present invention provides ionic liquid-tolerant cellulases and method of producing and using such cellulases. The cellulases of the invention are useful in saccharification reactions using ionic liquid treated biomass.

  3. Adsorption of non-ionic ABC triblock copolymers: Surface modification of TiO2 suspensions in aqueous and non-aqueous medium

    NASA Astrophysics Data System (ADS)

    Lerch, Jean-Philippe; Atanase, Leonard Ionut; Riess, Gérard

    2017-10-01

    A series of non-ionic ABC triblock copolymers, such as poly(butadiene)-b-poly(2-vinylpyrridine)-b-poly(ethylene oxide) (PB-P2VP-PEO) were synthesized by sequential anionic polymerizations. For these copolymers comprising an organo-soluble PB and a water-soluble PEO block, their P2VP middle block has been selected for its anchoring capacity on solid surfaces. The adsorption isotherms on TiO2 were obtained in heptane and in aqueous medium, as selective solvents. In both of these cases, the P2VP middle block provides the surface anchoring, whereas PB and PEO sequences are acting as stabilizing moieties in heptane and water respectively. By extension to ABC triblock copolymers of the scaling theory developed for diblock copolymers, the density of adsorbed chains could be correlated with the molecular characteristics of the PB-P2VP-PEO triblock copolymers. From a practical point a view, it could be demonstrated that these copolymers are efficient dispersing agents for the TiO2 pigments in both aqueous and non-aqueous medium.

  4. Experimental demonstration of scaling behavior for ionic transport and its fluctuations in individual carbon nanotube

    NASA Astrophysics Data System (ADS)

    Bocquet, Lyderic; Secchi, Eleonora; Nigues, Antoine; Siria, Alessandro

    2015-11-01

    We perform an experimental study of ionic transport and current fluctuations inside individual Carbon Nanotubes (CNT) with a size ranging from 40 down to 7 nanometers in radius. The conductance exhibits a power law behavior dependence on the salinity, with an exponent close to 1/3. This is in contrast to Boron-Nitride nanotubes which exhibits a constant surface conductance. This scaling behavior is rationalized in terms of a model accounting for hydroxide adsorption at the (hydrophobic) carbon surface. This predicts a density dependent surface charge with a exponent 1/3 in full agreement with the experimental observations. Then we measure the low frequency noise of the ionic current in single CNTs. The noise exhibits a robust 1/f characteristic, with an amplitude which scales proportionaly to the surface charge measured independently. Data for the various CNT at a given pH do collapse on a master curve. This behavior is rationalized in terms of the fluctuations of the surface charge based on the adsorption behavior. This suggests that the low frequency noise takes its origin in the process occuring at the surface of the carbon nanotube.

  5. Roles of ionic strength and biofilm roughness on adhesion kinetics of Escherichia coli onto groundwater biofilm grown on PVC surfaces

    PubMed Central

    Janjaroen, Dao; Ling, Fangqiong; Monroy, Guillermo; Derlon, Nicolas; Mogenroth, Eberhard; Boppart, Stephen A.; Liu, Wen-Tso; Nguyen, Thanh H.

    2013-01-01

    Mechanisms of Escherichia coli attachment on biofilms grown on PVC coupons were investigated. Biofilms were grown in CDC reactors using groundwater as feed solution over a period up to 27 weeks. Biofilm physical structure was characterized at the micro- and meso-scales using Scanning Electron Microscopy (SEM) and Optical Coherence Tomography (OCT), respectively. Microbial community diversity was analyzed with Terminal Restricted Fragment Length Polymorphism (T-RFLP). Both physical structure and microbial community diversity of the biofilms were shown to be changing from 2 weeks to 14 weeks, and became relatively stable after 16 weeks. A parallel plate flow chamber coupled with an inverted fluorescent microscope was also used to monitor the attachment of fluorescent microspheres and E. coli on clean PVC surfaces and biofilms grown on PVC surfaces for different ages. Two mechanisms of E. coli attachment were identified. The adhesion rate coefficients (kd) of E. coli on nascent PVC surfaces and 2-week biofilms increased with ionic strength. However, after biofilms grew for 8 weeks, the adhesion was found to be independent of solution chemistry. Instead, a positive correlation between kd and biofilm roughness as determined by OCT was obtained, indicating that the physical structure of biofilms could play an important role in facilitating the adhesion of E. coli cells. PMID:23497979

  6. CADDIS Volume 2. Sources, Stressors and Responses: Ionic Strength

    EPA Pesticide Factsheets

    Introduction to the ionic strength module, when to list ionic strength as a candidate cause, ways to measure ionic strength, simple and detailed conceptual diagrams for ionic strength, ionic strength module references and literature reviews.

  7. Gas-liquid interface of room-temperature ionic liquids.

    PubMed

    Santos, Cherry S; Baldelli, Steven

    2010-06-01

    The organization of ions at the interface of ionic liquids and the vacuum is an ideal system to test new ideas and concepts on the interfacial chemistry of electrolyte systems in the limit of no solvent medium. Whilst electrolyte systems have numerous theoretical and experimental methods used to investigate their properties, the ionic liquids are relatively new and our understanding of the interfacial properties is just beginning to be explored. In this critical review, the gas-liquid interface is reviewed, as this interface does not depend on the preparation of another medium and thus produces a natural interface. The interface has been investigated by sum frequency generation vibrational spectroscopy and ultra-high vacuum techniques. The results provide a detailed molecular-level view of the surface composition and structure. These have been complemented by theoretical studies. The combinations of treatments on this interface are starting to provide a somewhat convergent description of how the ions are organized at this neat interface (108 references).

  8. Design of Energetic Ionic Liquids (Preprint)

    DTIC Science & Technology

    2008-05-07

    mesoscale-level simulations of bulk ionic liquids based upon multiscale coarse graining techniques. 15. SUBJECT TERMS 16. SECURITY...simulations utilizing polarizable force fields, and mesoscale-level simulations of bulk ionic liquids based upon multiscale coarse graining...Simulations of the Energetic Ionic Liquid 1-hydroxyethyl-4-amino-1, 2, 4- triazolium Nitrate (HEATN): Molecular dynamics (MD) simulations have been

  9. The Role of Ionic Interactions in the Adherence of the S. epidermidis Adhesin SdrF to Prosthetic Material

    PubMed Central

    Toba, Faustino A.; Visai, Livia; Trivedi, Sheetal; Lowy, Franklin D.

    2012-01-01

    Staphylococcus epidermidis infections are common complications of prosthetic device implantation. SdrF, a surface protein, appears to play a critical role in the initial colonization step by adhering to type I collagen and Dacron™. The role of ionic interactions in S. epidermidis adherence to prosthetic material was examined. SdrF was cloned and expressed in Lactococcus lactis. The effect of pH, cation concentration and detergents on adherence to different types of plastic surfaces was assessed by crystal violet staining and bacterial cell counting. SdrF, in contrast with controls and other S. epidermidis surface proteins, bound to hydrophobic materials such as polystyrene. Binding was an ionic interaction and was affected by surface charge of the plastic, pH and cation concentration. Adherence of the SdrF construct was increased to positively charged plastics and was reduced by increasing concentrations of Ca2+ and Na+. Binding was optimal at pH 7.4. Kinetic studies demonstrated that the SdrF B domain, as well as one of the B subdomains was sufficient to mediate binding. The SdrF construct also bound more avidly to Goretex™ than the lacotococcal control. SdrF is a multifunctional protein that contributes to prosthetic devices infections by ionic, as well as specific receptor-ligand interactions. PMID:23039791

  10. Hydroxyl-Exchanged Nanoporous Ionic Copolymer toward Low-Temperature Cycloaddition of Atmospheric Carbon Dioxide into Carbonates.

    PubMed

    Guo, Zengjing; Cai, Xiaochun; Xie, Jingyan; Wang, Xiaochen; Zhou, Yu; Wang, Jun

    2016-05-25

    An ionic copolymer catalyst with nanopores, large surface area, high ionic density, and superior basicity was prepared via the radical copolymerization of amino-functionalized ionic liquid bromide and divinylbenzene, followed with a hydroxyl exchange for removing bromonium. Evaluated in chemical fixation of CO2 with epoxides into cyclic carbonates in the absence of any solvent and basic additive, the nanoporous copolymer catalyst showed high and stable activity, superior to various control catalysts including the halogen-containing analogue. Further, high yields were obtained over a wide scope of substrates including aliphatic long carbon-chain alkyl epoxides and internal epoxide, even under atmospheric pressure and less than 100 °C for the majority of the substrates. On the basis of in situ Fourier transform infrared (FT-IR) investigation and density functional theory (DFT) calculation for the reaction intermediates, we proposed a possible reaction mechanism accounting for the superior catalytic activity of the ionic copolymer. The specifically prepared ionic copolymer material of this work features highly stable, noncorrosive, and sustainable catalysis and, thus, may be a new possibility for efficient chemical fixation of CO2 since it is an environmentally friendly, metal-free solid catalyst.

  11. Beneficial effect of added water on sodium metal cycling in super concentrated ionic liquid sodium electrolytes

    NASA Astrophysics Data System (ADS)

    Basile, Andrew; Ferdousi, Shammi A.; Makhlooghiazad, Faezeh; Yunis, Ruhamah; Hilder, Matthias; Forsyth, Maria; Howlett, Patrick C.

    2018-03-01

    The plating and stripping performance of sodium metal in an ionic liquid electrolyte is improved when including water as an additive. Herein we report for the first time the trend of improved cycling behavior of Na0/+ in N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide with 500 ppm H2O. The addition of water to this ionic liquid electrolyte promotes the breakdown of the [FSI]- anion towards beneficial SEI formation. The benefits during plating and stripping of sodium is observed as lower total polarization during symmetrical cell cycling and decreased electrode/electrolyte interface impedance. Sodium metal surfaces after cycling with 500 ppm H2O are shown to be smooth in morphology in comparison to lower additive concentrations. The outcome of adventitious moisture benefiting Na0/+ cycling in an ionic liquid, contrary to conventional electrolytes, allows flexibility in ionic liquid electrolyte design to the benefit of battery manufacturers.

  12. Enhanced Mixed Electronic-Ionic Conductors through Cation Ordering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobson, Allan J.; Morgan, Dane; Grey, Clare

    2014-08-31

    The performance of many energy conversion and storage devices depend on the properties of mixed ionic-electronic conducting (miec) materials. Mixed or ambipolar conductors simultaneously transport ions and electrons and provide the critical interface between chemical and electrical energy in devices such as fuel cells, ion transport membranes, and batteries. Enhancements in storage capacity, reversibility, power density and device lifetime all require new materials and a better understanding of the fundamentals of ambipolar conductivity and surface reactivity.The high temperature properties of the ordered perovksites AA’B 2O 5+x, where A = rare earth ion, Y and B = Ba, Sr were studied.more » The work was motivated by the high oxygen transport and surface exchange rates observed for members of this class of mixed ionic and electronic conductors. A combined experimental and computational approach, including structural, electrochemical, and transport characterization and modeling was used. The approach attacks the problem simultaneously at global (e.g., neutron diffraction and impedance spectroscopy), local (e.g., pair distribution function, nuclear magnetic resonance) and molecular (ab initio thermokinetic modeling) length scales. The objectives of the work were to understand how the cation and associated anion order lead to exceptional ionic and electronic transport properties and surface reactivity in AA’B2O5+x perovskites. A variety of compounds were studied by X-ray and neutron diffraction, measurements of thermodynamics and transport and theoretically. These included PrBaCo 2O 5+x and NdBaCo 2O 5+x, PrBaCo 2-xFexO 6- δ (x = 0, 0.5, 1.0, 1.5 and 2) and LnBaCoFeO 6- δ (Ln = La, Pr, Nd, Sm, Eu and Gd), Sr 3YCo 4O 10.5, YBaMn 2O 5+x. A 0.5A’ 0.5BO 3 (where A=Y, Sc, La, Ce, Pr, Nd, Pm, Sm; A’= Sr, Ba; and B= Fe, Co, Mn, Ni), Ba 2In 2O 5, and La 1 xSr xCoO 3-δ /(La 1-ySry) 2CoO 4±δ interfaces.« less

  13. Nanoscale organization in the fluorinated room temperature ionic liquid: Tetraethyl ammonium (trifluoromethanesulfonyl)(nonafluorobutylsulfonyl)imide

    NASA Astrophysics Data System (ADS)

    Lo Celso, F.; Appetecchi, G. B.; Jafta, C. J.; Gontrani, L.; Canongia Lopes, J. N.; Triolo, A.; Russina, O.

    2018-05-01

    Fluorinated Room Temperature Ionic Liquids (FRTILs) are a branch of ionic liquids that is the object of growing interest for a wide range of potential applications, due to the synergic combination of specifically ionic features and those properties that stem from fluorous tails. So far limited experimental work exists on the micro- and mesoscopic structural organization in this class of compounds. Such a work is however necessary to fully understand morphological details at atomistic level that would have strong implications in terms of bulk properties. Here we use the synergy between X-ray and neutron scattering together with molecular dynamics simulations to access structural details of a technologically relevant FRTIL that is characterised by an anion bearing a long enough fluorinated tail to develop specific morphological features. In particular, we find the first experimental evidence that in FRTILs bearing an asymmetric bis(perfluoroalkyl)sulfonyl-imide anion, fluorous side chains tend to be spatially segregated into nm-scale spatial heterogeneities. This feature together with the well-established micro-segregation of side alkyl chains in conventional RTILs leads to the concept of triphilic ILs, whose technological applications are yet to be fully developed.

  14. Ion distribution and selectivity of ionic liquids in microporous electrodes.

    PubMed

    Neal, Justin N; Wesolowski, David J; Henderson, Douglas; Wu, Jianzhong

    2017-05-07

    The energy density of an electric double layer capacitor, also known as supercapacitor, depends on ion distributions in the micropores of its electrodes. Herein we study ion selectivity and partitioning of symmetric, asymmetric, and mixed ionic liquids among different pores using the classical density functional theory. We find that a charged micropore in contact with mixed ions of the same valence is always selective to the smaller ions, and the ion selectivity, which is strongest when the pore size is comparable to the ion diameters, drastically falls as the pore size increases. The partitioning behavior in ionic liquids is fundamentally different from those corresponding to ion distributions in aqueous systems whereby the ion selectivity is dominated by the surface energy and entropic effects insensitive to the degree of confinement.

  15. WtF‐Nano: One‐Pot Dewatering and Water‐Free Topochemical Modification of Nanocellulose in Ionic Liquids or γ‐Valerolactone

    PubMed Central

    Laaksonen, Tiina; Helminen, Jussi K. J.; Lemetti, Laura; Långbacka, Jesper; Rico del Cerro, Daniel; Hummel, Michael; Rantamäki, Antti H.; Kakko, Tia; Kemell, Marianna L.; Wiedmer, Susanne K.; Heikkinen, Sami; Kilpeläinen, Ilkka

    2017-01-01

    Abstract Ionic liquids are used to dewater a suspension of birch Kraft pulp cellulose nanofibrils (CNF) and as a medium for water‐free topochemical modification of the nanocellulose (a process denoted as “WtF‐Nano”). Acetylation was applied as a model reaction to investigate the degree of modification and scope of effective ionic liquid structures. Little difference in reactivity was observed when water was removed, after introduction of an ionic liquid or molecular co‐solvent. However, the viscoelastic properties of the CNF suspended in two ionic liquids show that the more basic, but non‐dissolving ionic liquid, allows for better solvation of the CNF. Vibrio fischeri bacterial tests show that all ionic liquids in this study were harmless. Scanning electron microscopy and wide‐angle X‐ray scattering on regenerated samples show that the acetylated CNF is still in a fibrillar form. 1 D and 2 D NMR analyses, after direct dissolution in a novel ionic liquid electrolyte solution, indicate that both cellulose and residual xylan on the surface of the nanofibrils reacts to give acetate esters. PMID:29112334

  16. Ionic Strength, Surface Charge, and Packing Density Effects on the Properties of Peptide Self-Assembled Monolayers.

    PubMed

    Leo, Norman; Liu, Juan; Archbold, Ian; Tang, Yongan; Zeng, Xiangqun

    2017-02-28

    The various environmental parameters of packing density, ionic strength, and solution charge were examined for their effects on the properties of the immobilized peptide mimotope CH19 (CGSGSGSQLGPYELWELSH) that binds with the therapeutic antibody Trastuzumab (Herceptin) on a gold substrate. The immobilization of CH19 onto gold was examined with a quartz crystal microbalance (QCM). The QCM data showed the presence of intermolecular interactions resulting in the increase of viscoelastic properties of the peptide self-assembled monolayer (SAM). The CH19 SAM was diluted with CS7 (CGSGSGS) to decrease the packing density as CH19/CS7. The packing density and ionic strength parameters were evaluated by atomic force microscopy (AFM), ellipsometry, and QCM. AFM and ellipsometry showed a distinct conformational difference between CH19 and CH19/CS7, indicating a relationship between packing density and conformational state of the immobilized peptide. The CH19 SAM thickness was 40 Å with a rough topology, while the CH19/CS7 SAM thickness was 20 Å with a smooth topology. The affinity studies showed that the affinity of CH19 and CH19/CS7 to Trastuzumab were both on the order of 10 7 M -1 in undiluted PBS buffer, while the dilution of the buffer by 1000× increased both SAMs affinities to Trastuzumab to the order of 10 15 M -2 and changed the binding behavior from noncooperative to cooperative binding. This indicated that ionic strength had a more pronounced effect on binding properties of the CH19 SAM than packing density. Electrochemical impedance spectroscopy (EIS) was conducted on the CH19/CS7 SAM, which showed an increase in impedance after each EIS measurement cycle. Cyclic voltammetry on the CH19/CS7 SAM decreased impedance to near initial values. The impact of the packing density, buffer ionic strength, and local charge perturbation of the peptide SAM properties was interpreted based on the titratable sites in CH19 that could participate in the proton transfer and water

  17. Transferable Coarse-Grained Models for Ionic Liquids.

    PubMed

    Wang, Yanting; Feng, Shulu; Voth, Gregory A

    2009-04-14

    The effective force coarse-graining (EF-CG) method was applied to the imidazolium-based nitrate ionic liquids with various alkyl side-chain lengths. The nonbonded EF-CG forces for the ionic liquid with a short side chain were extended to generate the nonbonded forces for the ionic liquids with longer side chains. The EF-CG force fields for the ionic liquids exhibit very good transferability between different systems at various temperatures and are suitable for investigating the mesoscopic structural properties of this class of ionic liquids. The good additivity and ease of manipulation of the EF-CG force fields can allow for an inverse design methodology of ionic liquids at the coarse-grained level. With the EF-CG force field, the molecular dynamics (MD) simulation at a very large scale has been performed to check the significance of finite size effects on the structural properties. From these MD simulation results, it can be concluded that the finite size effect on the phenomenon of ionic liquid spatial heterogeneity (Wang, Y.; Voth, G. A. J. Am. Chem. Soc. 2005, 127, 12192) is small and that this phenomenon is indeed a nanostructural behavior which leads to the experimentally observed mesoscopic heterogeneous structure of ionic liquids.

  18. Capacitance, charge dynamics, and electrolyte-surface interactions in functionalized carbide-derived carbon electrodes

    DOE PAGES

    Dyatkin, Boris; Mamontov, Eugene; Cook, Kevin M.; ...

    2015-12-24

    Our study analyzed the dynamics of ionic liquid electrolyte inside of defunctionalized, hydrogenated, and aminated pores of carbide-derived carbon supercapacitor electrodes. The approach tailors surface functionalities and tunes nanoporous structures to decouple the influence of pore wall composition on capacitance, ionic resistance, and long-term cyclability. Moreover, quasi-elastic neutron scattering probes the self-diffusion properties and electrode-ion interactions of electrolyte molecules confined in functionalized pores. Room-temperature ionic liquid interactions in confined pores are strongest when the hydrogen-containing groups are present on the surface. This property translates into higher capacitance and greater ion transport through pores during electrochemical cycling. Aminated pores, unlike hydrogenatedmore » pores, do not favorably interact with ionic liquid ions and, subsequently, are outperformed by defunctionalized surfaces.« less

  19. Refined method for predicting electrochemical windows of ionic liquids and experimental validation studies.

    PubMed

    Zhang, Yong; Shi, Chaojun; Brennecke, Joan F; Maginn, Edward J

    2014-06-12

    A combined classical molecular dynamics (MD) and ab initio MD (AIMD) method was developed for the calculation of electrochemical windows (ECWs) of ionic liquids. In the method, the liquid phase of ionic liquid is explicitly sampled using classical MD. The electrochemical window, estimated by the energy difference between the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), is calculated at the density functional theory (DFT) level based on snapshots obtained from classical MD trajectories. The snapshots were relaxed using AIMD and quenched to their local energy minima, which assures that the HOMO/LUMO calculations are based on stable configurations on the same potential energy surface. The new procedure was applied to a group of ionic liquids for which the ECWs were also experimentally measured in a self-consistent manner. It was found that the predicted ECWs not only agree with the experimental trend very well but also the values are quantitatively accurate. The proposed method provides an efficient way to compare ECWs of ionic liquids in the same context, which has been difficult in experiments or simulation due to the fact that ECW values sensitively depend on experimental setup and conditions.

  20. Mechanism of wear and tribofilm formation with ionic liquids and ashless antiwear additives

    NASA Astrophysics Data System (ADS)

    Sharma, Vibhu

    Increasingly stringent government regulation on emissions (EPA Emissions Standard Reference Guide and latest CAFE standards requiring an average fuel economy of 54.5 mpg (combined cars and trucks) by 2025) impose significant challenges to the automotive and lubricant industries calling for the development and implementation of lower viscosity ILSAC GF-5&6 and API-CJ4&5 oils which further limit the amount of SAPS and deposits in engines. Development of additives that result in lower ash content, volatility and anti-wear property plays a crucial role in being able to reach these standards. The current industrial additive technology i.e. zinc dialkyldithiophosphate (ZDDP) forms harmful deposits on catalytic convertor due to the volatility of Zn, S and P which, impairs its functionality and consequently results in higher emission from vehicles. In this research work, ionic liquids (IL's) that are non-volatile have been studied as new generation environment friendly antiwear additives along with other ashless anti-wear additives including boron based additives to overcome the current challenges of improving the fuel efficiency and reducing the amount of hazardous emissions. The goal of this thesis work is to study the tribological performance of selected IL's and develop a comprehensive understating of IL's chemistry and its consequences to their friction and wear outcomes. As first approach, various P, S and F based ionic liquids are studied for their tribological properties by analyzing the friction and wear results generated using standard tribological experiments. Following this, advanced surface characterization techniques such as X-ray absorption near edge structure (XANES) spectroscopy, SEM, Nano-indentation, SPM techniques are used to investigate the chemical-mechanical properties of the antiwear films. Results indicate that the tribological properties of ionic liquids depend on their solubility in base oil (BO) as well as their chemical interaction with the

  1. Immobilization of yeast cells with ionic hydrogel carriers by adhesion-multiplication.

    PubMed

    Zhaoxin, L; Fujimura, T

    2000-12-01

    The mixture of an ionic monomer, 2-acrylamido 2-methylpropanesulfonic acid (TBAS), and a series of poly(ethylene glycol) dimethacrylate (nG) monomers were copolymerized with 60Co gamma-rays, and the produced ionic hydrogel polymers were used for immobilization of yeast cells. The cells were adhered onto the surface of the hydrogel polymers and intruded into the interior of the polymers with growing. The immobilized yeast cells with these hydrogel polymers had higher ethanol productivity than that of free cells. The yield of ethanol with poly(TBAS-14G) carrier was the highest and increased by 3.5 times compared to the free cells. It was found that the ethanol yield increased with the increase of glycol number in poly(ethylene glycol) dimethacrylate. The state of the immobilized cells was observed with microscope, and it was also found that the difference in the ethanol productivity is mainly due to the difference in the internal structure and properties of polymer carrier, such as surface charge, hydrophilicity, and swelling ability of polymer carrier.

  2. Influence of ionic strength and surfactant concentration on electrostatic surfacial assembly of cetyltrimethylammonium bromide-capped gold nanorods on fully immersed glass.

    PubMed

    Ferhan, Abdul Rahim; Guo, Longhua; Kim, Dong-Hwan

    2010-07-20

    The effect of ionic strength as well as surfactant concentration on the surface assembly of cetyltrimethylammonium bromide (CTAB)-capped gold nanorods (GNRs) has been studied. Glass substrates were modified to yield a net negative charge through electrostatic coating of polystyrenesulfonate (PSS) over a self-assembled monolayer (SAM) of positively charged aminopropyltriethoxysilane (APTS). The substrates were then fully immersed in GNR solutions at different CTAB concentrations and ionic strengths. Under slightly excess CTAB concentrations, it was observed that the density of GNRs immobilized on a substrate was predictably tunable through the adjustment of NaCl concentration over a wide range. Motivated by the experimental observation, we hypothesize that electrostatic shielding of charges around the GNRs affects the density of GNR immobilization. This model ultimately explains that at moderate to high CTAB concentrations a second electrostatic shielding effect contributed by excess CTAB molecules occurs, resulting in a parabolic trend of nanorod surface density when ionic strength is continually increased. In contrast, at a low CTAB concentration, the effect of ionic strength becomes much less significant due to insufficient CTAB molecules to provide for the second electrostatic shielding effect. The tunability of electrostatic-based surface assembly of GNRs enables the attainment of a dense surface assembly of nanorods without significant removal of CTAB or any other substituted stabilizing agent, both of which could compromise the stability and morphology of GNRs in solution. An additional study performed to investigate the robustness of such electrostatic-based surface assembly also proved its reliability to be used as biosensing platforms.

  3. Membrane separation of ionic liquid solutions

    DOEpatents

    Campos, Daniel; Feiring, Andrew Edward; Majumdar, Sudipto; Nemser, Stuart

    2015-09-01

    A membrane separation process using a highly fluorinated polymer membrane that selectively permeates water of an aqueous ionic liquid solution to provide dry ionic liquid. Preferably the polymer is a polymer that includes polymerized perfluoro-2,2-dimethyl-1,3-dioxole (PDD). The process is also capable of removing small molecular compounds such as organic solvents that can be present in the solution. This membrane separation process is suitable for drying the aqueous ionic liquid byproduct from precipitating solutions of biomass dissolved in ionic liquid, and is thus instrumental to providing usable lignocellulosic products for energy consumption and other industrial uses in an environmentally benign manner.

  4. High-performance supercapacitors based on poly(ionic liquid)-modified graphene electrodes.

    PubMed

    Kim, Tae Young; Lee, Hyun Wook; Stoller, Meryl; Dreyer, Daniel R; Bielawski, Christopher W; Ruoff, Rodney S; Suh, Kwang S

    2011-01-25

    We report a high-performance supercapacitor incorporating a poly(ionic liquid)-modified reduced graphene oxide (PIL:RG-O) electrode and an ionic liquid (IL) electrolyte (specifically, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide or EMIM-NTf(2)). PIL:RG-O provides enhanced compatibility with the IL electrolyte, thereby increasing the effective electrode surface area accessible to electrolyte ions. The supercapacitor assembled with PIL:RG-O electrode and EMIM-NTf(2) electrolyte showed a stable electrochemical response up to 3.5 V operating voltage and was capable of yielding a maximum energy density of 6.5 W·h/kg with a power density of 2.4 kW/kg. These results demonstrate the potential of the PIL:RG-O material as an electrode in high-performance supercapacitors.

  5. Quantifying intermolecular interactions of ionic liquids using cohesive energy densities.

    PubMed

    Lovelock, Kevin R J

    2017-12-01

    For ionic liquids (ILs), both the large number of possible cation + anion combinations and their ionic nature provide a unique challenge for understanding intermolecular interactions. Cohesive energy density, ced , is used to quantify the strength of intermolecular interactions for molecular liquids, and is determined using the enthalpy of vaporization. A critical analysis of the experimental challenges and data to obtain ced for ILs is provided. For ILs there are two methods to judge the strength of intermolecular interactions, due to the presence of multiple constituents in the vapour phase of ILs. Firstly, ced IP , where the ionic vapour constituent is neutral ion pairs, the major constituent of the IL vapour. Secondly, ced C+A , where the ionic vapour constituents are isolated ions. A ced IP dataset is presented for 64 ILs. For the first time an experimental ced C+A , a measure of the strength of the total intermolecular interaction for an IL, is presented. ced C+A is significantly larger for ILs than ced for most molecular liquids, reflecting the need to break all of the relatively strong electrostatic interactions present in ILs. However, the van der Waals interactions contribute significantly to IL volatility due to the very strong electrostatic interaction in the neutral ion pair ionic vapour. An excellent linear correlation is found between ced IP and the inverse of the molecular volume. A good linear correlation is found between IL ced IP and IL Gordon parameter (which are dependent primarily on surface tension). ced values obtained through indirect methods gave similar magnitude values to ced IP . These findings show that ced IP is very important for understanding IL intermolecular interactions, in spite of ced IP not being a measure of the total intermolecular interactions of an IL. In the outlook section, remaining challenges for understanding IL intermolecular interactions are outlined.

  6. Improved ionic conductivity of lithium-zinc-tellurite glass-ceramic electrolytes

    NASA Astrophysics Data System (ADS)

    Widanarto, W.; Ramdhan, A. M.; Ghoshal, S. K.; Effendi, M.; Cahyanto, W. T.; Warsito

    An enhancement in the secondary battery safety demands the optimum synthesis of glass-ceramics electrolytes with modified ionic conductivity. To achieve improved ionic conductivity and safer operation of the battery, we synthesized Li2O included zinc-tellurite glass-ceramics based electrolytes of chemical composition (85-x)TeO2·xLi2O·15ZnO, where x = 0, 5, 10, 15 mol%. Samples were prepared using the melt quenching method at 800 °C followed by thermal annealing at 320 °C for 3 h and characterized. The effects of varying temperature, alternating current (AC) frequency and Li2O concentration on the structure and ionic conductivity of such glass-ceramics were determined. The SEM images of the annealed glass-ceramic electrolytes displayed rough surface with a uniform distribution of nucleated crystal flakes with sizes less than 1 μm. X-ray diffraction analysis confirmed the well crystalline nature of achieved electrolytes. Incorporation of Li2O in the electrolytes was found to generate some new crystalline phases including hexagonal Li6(TeO6), monoclinic Zn2Te3O8 and monoclinic Li2Te2O5. The estimated crystallite size of the electrolyte was ranged from ≈40 to 80 nm. AC impedance measurement revealed that the variation in the temperatures, Li2O contents, and high AC frequencies have a significant influence on the ionic conductivity of the electrolytes. Furthermore, electrolyte doped with 15 mol% of Li2O exhibited the optimum performance with an ionic conductivity ≈2.4 × 10-7 S cm-1 at the frequency of 54 Hz and in the temperature range of 323-473 K. This enhancement in the conductivity was attributed to the sizable alteration in the ions vibration and ruptures of covalent bonds in the electrolytes network structures.

  7. Quantifying intermolecular interactions of ionic liquids using cohesive energy densities

    PubMed Central

    2017-01-01

    For ionic liquids (ILs), both the large number of possible cation + anion combinations and their ionic nature provide a unique challenge for understanding intermolecular interactions. Cohesive energy density, ced, is used to quantify the strength of intermolecular interactions for molecular liquids, and is determined using the enthalpy of vaporization. A critical analysis of the experimental challenges and data to obtain ced for ILs is provided. For ILs there are two methods to judge the strength of intermolecular interactions, due to the presence of multiple constituents in the vapour phase of ILs. Firstly, cedIP, where the ionic vapour constituent is neutral ion pairs, the major constituent of the IL vapour. Secondly, cedC+A, where the ionic vapour constituents are isolated ions. A cedIP dataset is presented for 64 ILs. For the first time an experimental cedC+A, a measure of the strength of the total intermolecular interaction for an IL, is presented. cedC+A is significantly larger for ILs than ced for most molecular liquids, reflecting the need to break all of the relatively strong electrostatic interactions present in ILs. However, the van der Waals interactions contribute significantly to IL volatility due to the very strong electrostatic interaction in the neutral ion pair ionic vapour. An excellent linear correlation is found between cedIP and the inverse of the molecular volume. A good linear correlation is found between IL cedIP and IL Gordon parameter (which are dependent primarily on surface tension). ced values obtained through indirect methods gave similar magnitude values to cedIP. These findings show that cedIP is very important for understanding IL intermolecular interactions, in spite of cedIP not being a measure of the total intermolecular interactions of an IL. In the outlook section, remaining challenges for understanding IL intermolecular interactions are outlined. PMID:29308254

  8. Ionic liquid and nanoparticle hybrid systems: Emerging applications.

    PubMed

    He, Zhiqi; Alexandridis, Paschalis

    2017-06-01

    Having novel electronic and optical properties that emanate from their nano-scale dimensions, nanoparticles are central to numerous applications. Ionic liquids can confer to nanoparticle chemical protection and physicochemical property enhancement through intermolecular interactions and can consequently improve the stability and reusability of nanoparticle for various operations. With an aim to combine the novel properties of nanoparticles and ionic liquids, different structures have been generated, based on a balance of several intermolecular interactions. Such ionic liquid and nanoparticle hybrids are showing great potential in diverse applications. In this review, we first introduce various types of ionic liquid and nanoparticle hybrids, including nanoparticle colloidal dispersions in ionic liquids, ionic liquid-grafted nanoparticles, and nanoparticle-stabilized ionic liquid-based emulsions. Such hybrid materials exhibit interesting synergisms. We then highlight representative applications of ionic liquid and nanoparticle hybrids in the catalysis, electrochemistry and separations fields. Such hybrids can attain better stability and higher efficiency under a broad range of conditions. Novel and enhanced performance can be achieved in these applications by combining desired properties of ionic liquids and of nanoparticles within an appropriate hybrid nanostructure. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Fast Ignition and Sustained Combustion of Ionic Liquids

    NASA Technical Reports Server (NTRS)

    Joshi, Prakash B. (Inventor); Piper, Lawrence G. (Inventor); Oakes, David B. (Inventor); Sabourin, Justin L. (Inventor); Hicks, Adam J. (Inventor); Green, B. David (Inventor); Tsinberg, Anait (Inventor); Dokhan, Allan (Inventor)

    2016-01-01

    A catalyst free method of igniting an ionic liquid is provided. The method can include mixing a liquid hypergol with a HAN (Hydroxylammonium nitrate)-based ionic liquid to ignite the HAN-based ionic liquid in the absence of a catalyst. The HAN-based ionic liquid and the liquid hypergol can be injected into a combustion chamber. The HAN-based ionic liquid and the liquid hypergol can impinge upon a stagnation plate positioned at top portion of the combustion chamber.

  10. Ionic Vapor Composition in Critical and Supercritical States of Strongly Interacting Ionic Compounds.

    PubMed

    Chaban, Vitaly V; Prezhdo, Oleg V

    2016-05-12

    The critical point, CP (T, P), of the phase diagram quantifies the minimum amount of kinetic energy needed to prevent a substance from existing in a condensed phase. Therefore, the CP is closely related to the properties of the fluid far below the critical temperature. Approaches designed to predict thermophysical properties of a system necessarily aim to provide reliable estimates of the CP. Vice versa, CP estimation is impossible without knowledge of the vapor phase behavior. We report ab initio Born-Oppenheimer molecular dynamics (BOMD) simulations of sodium and potassium chlorides, NaCl and KCl, at and above their expected CPs. We advance the present knowledge regarding the existence of ionic species in the vapor phase by establishing significant percentages of atomic clusters: 29-30% in NaCl and 34-38% in KCl. A neutral pair of counterions is the most abundant cluster in the ionic vapors (ca. 35% of all vaporized ions exist in this form). Unexpectedly, an appreciable fraction of clusters is charged. The ionic vapor composition is determined by the vapor density, rather than the nature of the alkali ion. The previously suggested CPs of NaCl and KCl appear overestimated, based on the present simulations. The reported results offer essential insights into the ionic fluid properties and assist in development of thermodynamic theories. The ab initio BOMD method has been applied to investigate the vapor phase composition of an ionic fluid for the first time.

  11. Synthesis of hetero ionic compounds using dialkylcarbonate quaternization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan

    2017-09-19

    Methods of preparing hetero ionic complexes, and ionic liquids from bisulfate salts of heteroatomic compounds using dialkylcarbonates as a primary quaternizing reactant are disclosed. Also disclosed are methods of making electrochemical cells comprising the ionic liquids, and an electrochemical cell comprising an alkaline electrolyte and a hetero ionic complex additive.

  12. Synthesis of hetero ionic compounds using dialkylcarbonate quaternization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan

    2018-04-03

    Methods of preparing hetero ionic complexes, and ionic liquids from bisulfate salts of heteroatomic compounds using dialkylcarbonates as a primary quaternizing reactant are disclosed. Also disclosed are methods of making electrochemical cells comprising the ionic liquids, and an electrochemical cell comprising an alkaline electrolyte and a hetero ionic complex additive.

  13. The Association of Cryptosporidium parvum With Suspended Sediments: Implications for Transport in Surface Waters

    NASA Astrophysics Data System (ADS)

    Searcy, K. E.; Packman, A. I.; Atwill, E. R.; Harter, T.

    2003-12-01

    Understanding the transport and fate of microorganisms in surface waters is of vital concern in protecting the integrity and safety of municipal water supply systems. The human pathogen Cryptosporidium parvum is a particular public health interest, as it is ubiquitous in the surface waters of the United States, it can persist for long periods in the environment, and it is difficult to disinfect in water treatment plants. Due to its small size (5 um), low specific gravity (1.05 g/cm3), and negative surface charge, C. parvum oocysts are generally considered to move through watersheds from their source to drinking water reservoirs with little attenuation. However, the transport of the oocysts in surface waters may be mediated by interactions with suspended sediments. Batch experiments were conducted to determine the extent of C. parvum oocyst attachment to several inorganic and organic sediments under varying water chemical conditions, and settling column experiments were performed to demonstrate how these associations influence the effective settling velocity of C. parvum oocysts. Results from these experiments showed that C. parvum oocysts do associate with inorganic and organic sediments and often settle at the rate of the suspended sediment. The size and surface charge of the host suspended sediment influenced the extent of oocyst attachment as oocysts preferentially associated with particles greater than 3 um, and fewer oocysts associated with particles having a highly negative surface charge. Background water chemical conditions including ionic strength, ion composition, and pH did not have a significant effect on oocyst attachment to suspended sediments.

  14. Piezoelectric transformers for low-voltage generation of gas discharges and ionic winds in atmospheric air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Michael J.; Go, David B., E-mail: dgo@nd.edu; Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indianapolis 46556

    To generate a gas discharge (plasma) in atmospheric air requires an electric field that exceeds the breakdown threshold of ∼30 kV/cm. Because of safety, size, or cost constraints, the large applied voltages required to generate such fields are often prohibitive for portable applications. In this work, piezoelectric transformers are used to amplify a low input applied voltage (<30 V) to generate breakdown in air without the need for conventional high-voltage electrical equipment. Piezoelectric transformers (PTs) use their inherent electromechanical resonance to produce a voltage amplification, such that the surface of the piezoelectric exhibits a large surface voltage that can generate corona-like dischargesmore » on its corners or on adjacent electrodes. In the proper configuration, these discharges can be used to generate a bulk air flow called an ionic wind. In this work, PT-driven discharges are characterized by measuring the discharge current and the velocity of the induced ionic wind with ionic winds generated using input voltages as low as 7 V. The characteristics of the discharge change as the input voltage increases; this modifies the resonance of the system and subsequent required operating parameters.« less

  15. Ionic thermoelectric gating organic transistors

    PubMed Central

    Zhao, Dan; Fabiano, Simone; Berggren, Magnus; Crispin, Xavier

    2017-01-01

    Temperature is one of the most important environmental stimuli to record and amplify. While traditional thermoelectric materials are attractive for temperature/heat flow sensing applications, their sensitivity is limited by their low Seebeck coefficient (∼100 μV K−1). Here we take advantage of the large ionic thermoelectric Seebeck coefficient found in polymer electrolytes (∼10,000 μV K−1) to introduce the concept of ionic thermoelectric gating a low-voltage organic transistor. The temperature sensing amplification of such ionic thermoelectric-gated devices is thousands of times superior to that of a single thermoelectric leg in traditional thermopiles. This suggests that ionic thermoelectric sensors offer a way to go beyond the limitations of traditional thermopiles and pyroelectric detectors. These findings pave the way for new infrared-gated electronic circuits with potential applications in photonics, thermography and electronic-skins. PMID:28139738

  16. The flexible structure of the K24S28 region of Leucine-Rich Amelogenin Protein (LRAP) bound to apatites as a function of surface type, calcium, mutation, and ionic strength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Junxia; Burton, Sarah D.; Xu, Yimin

    2014-07-11

    Leucine-Rich Amelogenin Protein (LRAP) is a member of the amelogenin family of biomineralization proteins, proteins which play a critical role in enamel formation. Recent studies have revealed the structure and orientation of the N- and C-terminus of LRAP bound to hydroxyapatite (HAP), a surface used as an analog of enamel. The structure of one region, K24 to S28, was found to be sensitive to phosphorylation of S16, the only naturally observed site of serine phosphorylation in LRAP, suggesting that the residues from K24 to S28 may sit at a key region of structural flexibility and play a role in themore » protein’s function. In this work, we investigated the sensitivity of the structure and orientation of this region when bound to HAP as a function of several factors which may vary during enamel formation to influence structure: the ionic strength (0.05 M, 0.15 M, 0.2 M), the calcium concentration (0.07 mM and 0.4 mM), and the surface to which it is binding (HAP and carbonated apatite (CAP), a more direct mimic of enamel). A naturally occurring mutation found in amelogenin (T21I), was also investigated. The structure in the K24S28 region of the protein was found to be sensitive to these conditions, with the CAP surface and excess Ca2+ (8:1 [Ca2+]:[LRAP-K24S28(+P)]) resulting in a much tighter helix, while low ionic strength relaxed the helical structure. Higher ionic strength and the point mutation did not result in any structural change in this region. The distance of the backbone of K24 from the surface was most sensitive to excess Ca2+ and in the T21I-mutation. Collectively, these data suggest that the protein is able to accommodate structural changes while maintaining its interaction with the surface, and provides further evidence of the structural sensitivity of the K24 to S28 region, a sensitivity that may contribute to function in biomineralization. This research was supported by NIH-NIDCR Grant DE-015347. The research was performed at the Pacific

  17. Nanoparticle enhanced ionic liquid heat transfer fluids

    DOEpatents

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.

    2014-08-12

    A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.

  18. Ionic Liquid Fuels for Chemical Propulsion

    DTIC Science & Technology

    2016-10-31

    nucleophilicity in the ionic liquid is critical. Both gas -phase and condensed-phase (CPCM-GIL) density functional theory calculations support the...stability trends in dialkylimidazolium ionic liquids and could be used as a higher accuracy method than the gas -phase DFT approach for predicting thermal...stabilities of ionic liquids in general. One important finding from the comparison of the gas -phase basicities relative to the GIL condensed- phase

  19. Probing Lipid Bilayers under Ionic Imbalance.

    PubMed

    Lin, Jiaqi; Alexander-Katz, Alfredo

    2016-12-06

    Biological membranes are normally under a resting transmembrane potential (TMP), which originates from the ionic imbalance between extracellular fluids and cytosols, and serves as electric power storage for cells. In cell electroporation, the ionic imbalance builds up a high TMP, resulting in the poration of cell membranes. However, the relationship between ionic imbalance and TMP is not clearly understood, and little is known about the effect of ionic imbalance on the structure and dynamics of biological membranes. In this study, we used coarse-grained molecular dynamics to characterize a dipalmitoylphosphatidylcholine bilayer system under ionic imbalances ranging from 0 to ∼0.06 e charges per lipid (e/Lip). We found that the TMP displayed three distinct regimes: 1) a linear regime between 0 and 0.045 e/Lip, where the TMP increased linearly with ionic imbalance; 2) a yielding regime between ∼0.045 and 0.060 e/Lip, where the TMP displayed a plateau; and 3) a poration regime above ∼0.060 e/Lip, where we observed pore formation within the sampling time (80 ns). We found no structural changes in the linear regime, apart from a nonlinear increase in the area per lipid, whereas in the yielding regime the bilayer exhibited substantial thinning, leading to an excess of water and Na + within the bilayer, as well as significant misalignment of the lipid tails. In the poration regime, lipid molecules diffused slightly faster. We also found that the fluid-to-gel phase transition temperature of the bilayer dropped below the normal value with increased ionic imbalances. Our results show that a high ionic imbalance can substantially alter the essential properties of the bilayer, making the bilayer more fluid like, or conversely, depolarization of a cell could in principle lead to membrane stiffening. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Retention of neodymium by dolomite at variable ionic strength as probed by batch and column experiments.

    PubMed

    Emerson, H P; Zengotita, F; Richmann, M; Katsenovich, Y; Reed, D T; Dittrich, T M

    2018-10-01

    The results presented in this paper highlight the complexity of adsorption and incorporation processes of Nd with dolomite and significantly improve upon previous work investigating trivalent actinide and lanthanide interactions with dolomite. Both batch and mini column experiments were conducted at variable ionic strength. These data highlight the strong chemisorption of Nd to the dolomite surface (equilibrium K d 's > 3000 mL/g) and suggest that equilibrium adsorption processes may not be affected by ionic strength based on similar results at 0.1 and 5.0 M ionic strength in column breakthrough and equilibrium batch (>5 days) results. Mini column experiments conducted over approximately one year also represent a significant development in measurement of sorption of Nd in the presence of flow as previous large-scale column experiments did not achieve breakthrough likely due to the high loading capacity of dolomite for Nd (up to 240 μg/g). Batch experiments in the absence of flow show that the rate of Nd removal increases with increasing ionic strength (up to 5.0 M) with greater removal at greater ionic strength for a 24 h sampling point. We suggest that the increasing ionic strength induces increased mineral dissolution and re-precipitation caused by changes in activity with ionic strength that lead to increased removal of Nd through co-precipitation processes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Ionic liquids as electrolytes for Li-ion batteries-An overview of electrochemical studies

    NASA Astrophysics Data System (ADS)

    Lewandowski, Andrzej; Świderska-Mocek, Agnieszka

    The paper reviews properties of room temperature ionic liquids (RTILs) as electrolytes for lithium and lithium-ion batteries. It has been shown that the formation of the solid electrolyte interface (SEI) on the anode surface is critical to the correct operation of secondary lithium-ion batteries, including those working with ionic liquids as electrolytes. The SEI layer may be formed by electrochemical transformation of (i) a molecular additive, (ii) RTIL cations or (iii) RTIL anions. Such properties of RTIL electrolytes as viscosity, conductivity, vapour pressure and lithium-ion transport numbers are also discussed from the point of view of their influence on battery performance.

  2. Alkyl chain interaction at the surface of room temperature ionic liquids: systematic variation of alkyl chain length (R = C(1)-C(4), C(8)) in both cation and anion of [RMIM][R-OSO(3)] by sum frequency generation and surface tension.

    PubMed

    Santos, Cherry S; Baldelli, Steven

    2009-01-29

    The gas-liquid interface of halide-free 1,3-dialkylimidazolium alkyl sulfates [RMIM][R-OSO(3)] with R chain length from C(1)-C(4) and C(8) has been studied systematically using the surface-specific sum frequency generation (SFG) vibrational spectroscopy and surface tension measurements. From the SFG spectra, vibrational modes from the methyl group of both cation and anion are observed for all ionic liquid samples considered in the present study. These results suggest the presence of both ions at the gas-liquid interface, which is further supported by surface tension measurements. Surface tension data show a decreasing trend as the alkyl chain in the imidazolium cation is varied from methyl to butyl chain, with a specific anion. A similar trend is observed when the alkyl chain of the anion is modified and the cation is fixed.

  3. Rare earth metal-containing ionic liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prodius, Denis; Mudring, Anja-Verena

    As an innovative tool, ionic liquids (ILs) are widely employed as an alternative, smart, reaction media (vs. traditional solvents) offering interesting technology solutions for dissolving, processing and recycling of metal-containing materials. The costly mining and refining of rare earths (RE), combined with increasing demand for high-tech and energy-related applications around the world, urgently requires effective approaches to improve the efficiency of rare earth separation and recovery. In this context, ionic liquids appear as an attractive technology solution. Finally, this paper addresses the structural and coordination chemistry of ionic liquids comprising rare earth metals with the aim to add to understandingmore » prospects of ionic liquids in the chemistry of rare earths.« less

  4. Rare earth metal-containing ionic liquids

    DOE PAGES

    Prodius, Denis; Mudring, Anja-Verena

    2018-03-07

    As an innovative tool, ionic liquids (ILs) are widely employed as an alternative, smart, reaction media (vs. traditional solvents) offering interesting technology solutions for dissolving, processing and recycling of metal-containing materials. The costly mining and refining of rare earths (RE), combined with increasing demand for high-tech and energy-related applications around the world, urgently requires effective approaches to improve the efficiency of rare earth separation and recovery. In this context, ionic liquids appear as an attractive technology solution. Finally, this paper addresses the structural and coordination chemistry of ionic liquids comprising rare earth metals with the aim to add to understandingmore » prospects of ionic liquids in the chemistry of rare earths.« less

  5. Computational analysis of the solvation of coffee ingredients in aqueous ionic liquid mixtures.

    PubMed

    Zeindlhofer, Veronika; Khlan, Diana; Bica, Katharina; Schröder, Christian

    2017-01-13

    In this paper, we investigate the solvation of coffee ingredients including caffeine, gallic acid as representative for phenolic compounds and quercetin as representative for flavonoids in aqueous mixtures of the ionic liquid 1-ethyl-3-methylimidazolium acetate [C 2 mim][OAc] at various concentrations. Due to the anisotropy of the solutes we show that classical Kirkwood-Buff theory is not appropriate to study solvation effects with increasing ionic liquid content. However, excess coordination numbers as well as the mean residence time of solvent molecules at the surface of the solutes can be determined by Voronoi tessellation. Since the volume of the hydration shells is also available by this method, solvation free energies will be discussed as a function of the ionic liquid concentration to yield a physical meaningful picture of solvation for the anisotropic solutes. Hydrogen bonding capabilities of the solutes and their relevance for experimental extraction yields from spent coffee grounds are also discussed.

  6. Electrohydrodynamic ionic wind, force field, and ionic mobility in a positive dc wire-to-cylinders corona discharge in air

    NASA Astrophysics Data System (ADS)

    Monrolin, Nicolas; Praud, Olivier; Plouraboué, Franck

    2018-06-01

    Ionic wind refers to the acceleration of partially ionized air between two high-voltage electrodes. We study the momentum transfer from ions to air, resulting from ionic wind created by two asymmetric electrodes and producing a net thrust. This electrohydrodynamic (EHD) thrust, has already been measured in previous studies with digital scales. In this study, we provide more insights into the electrohydrodynamic momentum transfer for a wire-to-cylinder(s) positive dc corona discharge. We provide a simple and general theoretical derivation for EHD thrust, which is proportional to the current/mobility ratio and also to an effective distance integrated on the surface of the electrodes. By considering various electrode configurations, our investigation brings out the physical origin of previously obtained optimal configurations, associated with a better tradeoff between Coulomb forcing, friction occurring at the collector, and wake interactions. By measuring two-dimensional velocity fields using particle image velocimetry (PIV), we are able to evaluate the resulting local net force, including the pressure gradient. It is shown that the contribution of velocity fluctuations in the wake of the collecting electrode(s) must be taken into account to recover the net thrust. We confirm the proportionality between the EHD force and the current/mobility ratio experimentally, and evaluate the ion mobility from PIV measurements. A spectral analysis of the velocity fluctuations indicates a dominant frequency corresponding to a Strouhal number of 0.3 based on the ionic wind velocity and the collector size. Finally, the effective mobility of charge carriers is estimated by a PIV based method inside the drift region.

  7. New Pyrazolium Salts as a Support for Ionic Liquid Crystals and Ionic Conductors.

    PubMed

    Pastor, María Jesús; Sánchez, Ignacio; Campo, José A; Schmidt, Rainer; Cano, Mercedes

    2018-04-03

    Ionic liquid crystals (ILCs) are a class of materials that combine the properties of liquid crystals (LCs) and ionic liquids (ILs). This type of materials is directed towards properties such as conductivity in ordered systems at different temperatures. In this work, we synthesize five new families of ILCs containing symmetrical and unsymmetrical substituted pyrazolium cations, with different alkyl long-chains, and anions such as Cl - , BF₄ - , ReO₄ - , p -CH₃-₆H₄SO₃ - (PTS) and CF₃SO₃ - (OTf). We study their thermal behavior by polarized light optical microscopy (POM) and differential scanning calorimetry (DSC). All of them, except those with OTf as counteranion, show thermotropic mesomorphism. The observations by POM reveal textures of lamellar mesophases. Those agree with the arrangement observed in the X-ray crystal structure of [H₂pz R(4),R(4) ][ReO₄]. The nature of the mesophases is also confirmed by variable temperature powder X-ray diffraction. On the other hand, the study of the dielectric properties at variable temperature in mesomorphic (Cl - and BF₄ - ) and non-mesomorphic (OTf) salts indicates that the supramolecular arrangement of the mesophase favors a greater ionic mobility and therefore ionic conductivity.

  8. Noise and Ionic Conductivity in Glass Nanochannels

    NASA Astrophysics Data System (ADS)

    Wiener, Benjamin; Siria, Alessandro; Bocquet, Lydéric; Stein, Derek

    2015-03-01

    Ion transport in nanochannels is relevant to processes in biology and has technological applications like batteries, fuel cells, and water desalination. We report experimental studies of the ionic conductance and noise characteristics of pulled glass capillaries with openings on the order of 200 nanometers. We employed an AC measurement technique to probe very low frequency fluctuations in the conductivity and to test a theory attributing these to chemical fluctuations in the surface charge density of the glass. We also investigate Hooge's empirical description of the noise power spectrum and its relationship to current rectification observed in nanochannels in the surface dominated ``Dukhin'' regime. Finally, we test the effects of anion and cation mobility on the direction and magnitude of the observed rectification. Research supported by NSF Grant DMR-1409577 and Oxford Nanopore Technologies.

  9. A review of the structure and dynamics of nanoconfined water and ionic liquids via molecular dynamics simulation.

    PubMed

    Foroutan, Masumeh; Fatemi, S Mahmood; Esmaeilian, Farshad

    2017-02-01

    During the past decade, the research on fluids in nanoconfined geometries has received considerable attention as a consequence of their wide applications in different fields. Several nanoconfined systems such as water and ionic liquids, together with an equally impressive array of nanoconfining media such as carbon nanotube, graphene and graphene oxide have received increasingly growing interest in the past years. Water is the first system that has been reviewed in this article, due to its important role in transport phenomena in environmental sciences. Water is often considered as a highly nanoconfined system, due to its reduction to a few layers of water molecules between the extended surface of large macromolecules. The second system discussed here is ionic liquids, which have been widely studied in the modern green chemistry movement. Considering the great importance of ionic liquids in industry, and also their oil/water counterpart, nanoconfined ionic liquid system has become an important area of research with many fascinating applications. Furthermore, the method of molecular dynamics simulation is one of the major tools in the theoretical study of water and ionic liquids in nanoconfinement, which increasingly has been joined with experimental procedures. In this way, the choice of water and ionic liquids in nanoconfinement is justified by applying molecular dynamics simulation approaches in this review article.

  10. Zinc isotope fractionation during adsorption onto Mn oxyhydroxide at low and high ionic strength

    NASA Astrophysics Data System (ADS)

    Bryan, Allison L.; Dong, Shuofei; Wilkes, Elise B.; Wasylenki, Laura E.

    2015-05-01

    Marine ferromanganese sediments represent one of the largest sinks from global seawater for Zn, a critical trace metal nutrient. These sediments are variably enriched in heavier isotopes of Zn relative to deep seawater, and some are among the heaviest natural samples analyzed to date. New experimental results demonstrate that adsorption of Zn to poorly crystalline Mn oxyhydroxide results in preferential association of heavier isotopes with the sorbent phase. At low ionic strength our experimental system displayed a short-lived kinetic isotope effect, with light isotopes adsorbed to birnessite (Δ66/64Znadsorbed-dissolved ∼ -0.2‰). After 100 h the sense of fractionation was opposite, such that heavier isotopes were preferentially adsorbed at steady state, but the magnitude of Δ66/64Znadsorbed-dissolved was indistinguishable from zero (+0.05 ± 0.08‰). At high ionic strength, we observed preferential sorption of heavy isotopes, with a strong negative correlation between Δ66/64Znadsorbed-dissolved and the percentage of Zn on the birnessite. Values of Δ66/64Znadsorbed-dissolved ranged from nearly +3‰ at low surface loading to +0.16‰ at high surface loading. Based on previous EXAFS work we infer that Zn adsorbs first as tetrahedral, inner-sphere complexes at low surface loading, with preferential incorporation of heavier isotopes relative to the octahedral Zn species predominating in solution. As surface loading increases, so does the proportion of Zn adsorbing as octahedral complexes, thus diminishing the magnitude of fractionation between the dissolved and adsorbed pools of Zn. The magnitude of fractionation at high ionic strength is also governed by aqueous speciation of Zn in synthetic seawater; a substantial fraction of Zn ions reside in chloro complexes, which preferentially incorporate light Zn isotopes, and this drives the adsorbed pool to be heavier relative to the bulk solution than it was at low ionic strength. Our results explain the observation

  11. Scratching the surface of ice: Interfacial phase transitions and their kinetic implications

    NASA Astrophysics Data System (ADS)

    Limmer, David

    The surface structure of ice maintains a high degree of disorder down to surprisingly low temperatures. This is due to a number of underlying interfacial phase transitions that are associated with incremental changes in broken symmetry relative to the bulk crystal. In this talk I summarize recent work attempting to establish the nature and locations of these different phase transitions as well as how they depend on external conditions and nonequilibrium driving. The implications of this surface disorder is discussed in the context of simple kinetic processes that occur at these interfaces. Recent experimental work on the roughening transition is highlighted.

  12. Influence of ionic strength, anions, cations, and natural organic matter on the adsorption of pharmaceuticals to silica.

    PubMed

    Bui, Tung Xuan; Choi, Heechul

    2010-08-01

    The adsorption of four wide-use pharmaceuticals (carbamazepine, diclofenac, ibuprofen, and ketoprofen) onto a porous silica was investigated under varied ionic strengths, different anions, divalent cations (Ca(2+) and Mg(2+)), trivalent cations (Al(3+) and Fe(3+)), and natural organic matter (NOM). The experiments demonstrated that at a given pH the adsorption was most affected by ionic strength, trivalent cations, and properties of pharmaceuticals. The increase of ionic strength resulted in an increase in the adsorption of ketoprofen, but a decrease in the adsorption of carbamazepine. Trivalent metal cations made intense increases in the adsorption of three acidic pharmaceuticals, which could be due to the formation of inner-sphere complex of the cations on the surface and/or complexation of the pharmaceuticals with both surface and aqueous metal species. It was found that the adsorption of carbamazepine was not affected by divalent and trivalent cations, whereas the adsorption of diclofenac was solely impacted by the presence of Al(3+). Moreover, divalent cations at low concentration could slightly enhance the adsorption of ibuprofen and ketoprofen, whereas NOM caused a reduction in the adsorption of the tested pharmaceuticals except for diclofenac. These results suggest that ionic strength, divalent cations, trivalent cations, and NOM are notable factors affecting the adsorption of pharmaceuticals and thus the ultimate fate of pharmaceuticals in the aqueous environment. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. A classical density functional theory for the asymmetric restricted primitive model of ionic liquids

    NASA Astrophysics Data System (ADS)

    Lu, Hongduo; Nordholm, Sture; Woodward, Clifford E.; Forsman, Jan

    2018-05-01

    A new three-parameter (valency, ion size, and charge asymmetry) model, the asymmetric restricted primitive model (ARPM) of ionic liquids, has recently been proposed. Given that ionic liquids generally are composed of monovalent species, the ARPM effectively reduces to a two-parameter model. Monte Carlo (MC) simulations have demonstrated that the ARPM is able to reproduce key properties of room temperature ionic liquids (RTILs) in bulk and at charged surfaces. The relatively modest complexity of the model raises the possibility, which is explored here, that a classical density functional theory (DFT) could resolve its properties. This is relevant because it might generate great improvements in terms of both numerical efficiency and understanding in the continued research of RTILs and their applications. In this report, a DFT for rod-like molecules is proposed as an approximate theoretical tool for an ARPM fluid. Borrowing data on the ion pair fraction from a single bulk simulation, the ARPM is modelled as a mixture of dissociated ions and connected ion pairs. We have specifically studied an ARPM where the hard-sphere diameter is 5 Å, with the charge located 1 Å from the hard-sphere centre. We focus on fluid structure and electrochemical behaviour of this ARPM fluid, into which a model electrode is immersed. The latter is modelled as a perfect conductor, and surface polarization is handled by the method of image charges. Approximate methods, which were developed in an earlier study, to take image interactions into account, are also incorporated in the DFT. We make direct numerical comparisons between DFT predictions and corresponding simulation data. The DFT theory is implemented both in the normal mean field form with respect to the electrostatic interactions and in a correlated form based on hole formation by both steric repulsions and ion-ion Coulomb interactions. The results clearly show that ion-ion correlations play a very important role in the screening of

  14. [Advances of poly (ionic liquid) materials in separation science].

    PubMed

    Liu, Cuicui; Guo, Ting; Su, Rina; Gu, Yuchen; Deng, Qiliang

    2015-11-01

    Ionic liquids, as novel ionization reagents, possess beneficial characteristics including good solubility, conductivity, thermal stability, biocompatibility, low volatility and non-flammability. Ionic liquids are attracting a mass of attention of analytical chemists. Poly (ionic liquid) materials have common performances of ionic liquids and polymers, and have been successfully applied in separation science area. In this paper, we discuss the interaction mechanisms between the poly(ionic liquid) materials and analytes including hydrophobic/hydrophilic interactions, hydrogen bond, ion exchange, π-π stacking and electrostatic interactions, and summarize the application advances of the poly(ionic liquid) materials in solid phase extraction, chromatographic separation and capillary electrophoresis. At last, we describe the future prospect of poly(ionic liquid) materials.

  15. Advances in the analysis of biological samples using ionic liquids.

    PubMed

    Clark, Kevin D; Trujillo-Rodríguez, María J; Anderson, Jared L

    2018-02-12

    Ionic liquids are a class of solvents and materials that hold great promise in bioanalytical chemistry. Task-specific ionic liquids have recently been designed for the selective extraction, separation, and detection of proteins, peptides, nucleic acids, and other physiologically relevant analytes from complex biological samples. To facilitate rapid bioanalysis, ionic liquids have been integrated in miniaturized and automated procedures. Bioanalytical separations have also benefited from the modification of nonspecific magnetic materials with ionic liquids or the implementation of ionic liquids with inherent magnetic properties. Furthermore, the direct detection of the extracted molecules in the analytical instrument has been demonstrated with structurally tuned ionic liquids and magnetic ionic liquids, providing a significant advantage in the analysis of low-abundance analytes. This article gives an overview of these advances that involve the application of ionic liquids and derivatives in bioanalysis. Graphical abstract Ionic liquids, magnetic ionic liquids, and ionic liquid-based sorbents are increasing the speed, selectivity, and sensitivity in the analysis of biological samples.

  16. The magic of aqueous solutions of ionic liquids: ionic liquids as a powerful class of catanionic hydrotropes†

    PubMed Central

    Cláudio, Ana Filipa M.; Neves, Márcia C.; Shimizu, Karina; Canongia Lopes, José N.; Freire, Mara G.; Coutinho, João A. P.

    2015-01-01

    Hydrotropes are compounds able to enhance the solubility of hydrophobic substances in aqueous media and therefore are widely used in the formulation of drugs, cleaning and personal care products. In this work, it is shown that ionic liquids are a new class of powerful catanionic hydrotropes where both the cation and the anion synergistically contribute to increase the solubility of biomolecules in water. The effects of the ionic liquid chemical structures, their concentration and the temperature on the solubility of two model biomolecules, vanillin and gallic acid were evaluated and compared with the performance of conventional hydrotropes. The solubility of these two biomolecules was studied in the entire composition range, from pure water to pure ionic liquids, and an increase in the solubility of up to 40-fold was observed, confirming the potential of ionic liquids to act as hydrotropes. Using dynamic light scattering, NMR and molecular dynamics simulations, it was possible to infer that the enhanced solubility of the biomolecule in the IL aqueous solutions is related to the formation of ionic-liquid–biomolecules aggregates. Finally, it was demonstrated that hydrotropy induced by ionic liquids can be used to recover solutes from aqueous media by precipitation, simply by using water as an anti-solvent. The results reported here have a significant impact on the understanding of the role of ionic liquid aqueous solutions in the extraction of value-added compounds from biomass as well as in the design of novel processes for their recovery from aqueous media. PMID:26379471

  17. The influence of ionic strength and organic compounds on nanoparticle TiO2 (n-TiO2) aggregation.

    PubMed

    Lee, Jaewoong; Bartelt-Hunt, Shannon L; Li, Yusong; Gilrein, Erica Jeanne

    2016-07-01

    This study investigated the aggregation of n-TiO2 in the presence of humic acid (HA) and/or 17β-estradiol (E2) under high ionic strength conditions simulating levels detected in landfill leachate. Aggregation of n-TiO2 was strongly influenced by ionic strength as well as ionic valence in that divalent cations (Ca(2+)) were more effective than monovalent (Na(+)) at the surface modification. HA or E2 enhanced aggregation of n-TiO2 in 20 mM CaCl2, however little aggregation was observed in 100 mM NaCl. Similarly, we observed only the increased aggregation of n-TiO2 in the presence of HA/E2. These results showed the critical role of particles' surface charges on the aggregation behaviors of n-TiO2 that HA plays more significantly than E2. However, the slightly increased zeta potential and aggregation of n-TiO2 in the combination of HA and E2 at both 20 mM CaCl2 and 100 mM NaCl means that E2 has influenced on the surface modification of n-TiO2 by adsorption. Based on the aggregation of n-TiO2 under high ionic strength with HA and/or E2, we simulated the mobility of aggregated n-TiO2 in porous media. As a result, we observed that the mobility distance of aggregated n-TiO2 was dramatically influenced by the surface modification with both HA and/or E2 between particles and media. Furthermore, larger mobility distance was observed with larger aggregation of n-TiO2 particles that can be explained by clean bed filtration (CFT) theory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Elution of viruses by ionic and nonionic surfactants.

    PubMed Central

    Fujito, B T; Lytle, C D

    1996-01-01

    The ionic and nonionic surfactants sodium dodecyl sulfate and Triton X-100, respectively, eluted two viruses, phi X174 and PRD1, which were adsorbed to the ionic and nonionic binding membranes cationic polysulfone and nitrocellulose, respectively. Results indicated that complete elution was readily achieved only when combinations of surfactants and binding membranes were matched (i.e., ionic-ionic or nonionic-nonionic). PMID:8795240

  19. Ion size effects upon ionic exclusion from dielectric interfaces and slit nanopores

    NASA Astrophysics Data System (ADS)

    Buyukdagli, Sahin; Achim, C. V.; Ala-Nissila, T.

    2011-05-01

    A previously developed field-theoretic model (Coalson et al 1995 J. Chem. Phys. 102 4584) that treats core collisions and Coulomb interactions on the same footing is investigated in order to understand ion size effects on the partition of neutral and charged particles at planar interfaces and the ionic selectivity of slit nanopores. We introduce a variational scheme that can go beyond the mean-field (MF) regime and couple in a consistent way pore-modified core interactions, steric effects, electrostatic solvation and image-charge forces, and surface charge induced electrostatic potential. Density profiles of neutral particles in contact with a neutral hard wall, obtained from Monte Carlo (MC) simulations are compared with the solutions of mean-field and variational equations. A recently proposed random-phase approximation (RPA) method is tested as well. We show that in the dilute limit, the MF and the variational theories agree well with simulation results, in contrast to the RPA method. The partition of charged Yukawa particles at a neutral dielectric interface (e.g. an air-water or protein-water interface) is investigated. It is shown that as a result of the competition between core collisions that push the ions toward the surface, and repulsive solvation and image forces that exclude them from the interface, a concentration peak of finite size ions sets in close to the dielectric interface. This effect is amplified with increasing ion size and bulk concentration. An integral expression for the surface tension that accounts for excluded volume effects is computed and the decrease of the surface tension with increasing ion size is illustrated. We also characterize the role played by the ion size in the ionic selectivity of neutral slit nanopores. We show that the complex interplay between electrostatic forces, excluded volume effects induced by core collisions and steric effects leads to an unexpected reversal in the ionic selectivity of the pore with varying pore

  20. A closer look at the complex hydrophilic/hydrophobic interactions forces at the human hair surface

    NASA Astrophysics Data System (ADS)

    Baghdadli, N.; Luengo, G. S.; Recherche, L.

    2008-03-01

    The complex chemical structure of the hair surface is far from being completely understood. Current understanding is based on Rivett's model1 that was proposed to explain the macroscopic hydrophobic nature of the surface of natural hair. In this model covalently-linked fatty acids are chemically grafted to the amorphous protein (keratin) through a thio-ester linkage2,3. Nevertheless, experience like wetting and electrical properties of human hair surface4 shows that the complexity of the hair surface is not fully understand based on this model in literature. Recent studies in our laboratory show for the first time microscopic evidence of the heterogeneous physico-chemical character of the hair surface. By using Chemical Force Microscopy, the presence of hydrophobic and ionic species are detected and localized, before and after a cosmetic treatment (bleaching). Based on force curve analysis the mapping of the local distribution of hydrophilic and hydrophobic groups of hair surface is obtained. A discussion on a more plausible hair model and its implications will be presented based on these new results.

  1. Improving Ionic Conductivity and Lithium-Ion Transference Number in Lithium-Ion Battery Separators.

    PubMed

    Zahn, Raphael; Lagadec, Marie Francine; Hess, Michael; Wood, Vanessa

    2016-12-07

    The microstructure of lithium-ion battery separators plays an important role in separator performance; however, here we show that a geometrical analysis falls short in predicting the lithium-ion transport in the electrolyte-filled pore space. By systematically modifying the surface chemistry of a commercial polyethylene separator while keeping its microstructure unchanged, we demonstrate that surface chemistry, which alters separator-electrolyte interactions, influences ionic conductivity and lithium-ion transference number. Changes in separator surface chemistry, particularly those that increase lithium-ion transference numbers can reduce voltage drops across the separator and improve C-rate capability.

  2. Crosslinking by ligands to surface immunoglobulin triggers mobilization of intracellular 45Ca2+ in B lymphocytes

    PubMed Central

    1979-01-01

    Detailed studies of steady-state ion fluxes in murine lymphocytes were used to examine for possible ionic changes generated by surface Ig, the antigen receptor of B lymphocytes. When bound by ligands, surface Ig triggered the mobilization and release of 45Ca2+ from the cell interior by a transmembrane process requiring crosslinking of the bound receptors. This ionic event was unique for two reasons: (a) it did not occur when other common lymphocyte surface macromolecules were bound with rabbit anti-lymphocyte antibodies; and (b) it was not accompanied by a general perturbation of lymphocyte ionic properties such as a change in 42K+ fluxes nor did it depend on the presence of extracellular ions. Capping of surface Ig shares the same time sequence, dose response, requirement for crosslinking, and lack of dependence on extracellular ions. These correlations suggest that mobilization of intracellular Ca2+ may represent an early ionic signal for the contractile activation of lymphocytes that generates capping of surface Ig. PMID:315942

  3. Ionic liquids comprising heteraromatic anions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, William F.; Brennecke, Joan F.; Maginn, Edward J.

    2018-04-24

    Some embodiments described herein relate to ionic liquids comprising an anion of a heteraromatic compound such as optionally substituted pyrrolide, optionally substituted pyrazolide, optionally substituted indolide, optionally substituted phospholide, or optionally substituted imidazolide. Methods and devices for gas separation or gas absorption related to these ionic liquids are also described herein.

  4. Enhanced super-hydrophobic and switching behavior of ZnO nanostructured surfaces prepared by simple solution--immersion successive ionic layer adsorption and reaction process.

    PubMed

    Suresh Kumar, P; Sundaramurthy, J; Mangalaraj, D; Nataraj, D; Rajarathnam, D; Srinivasan, M P

    2011-11-01

    A simple and cost-effective successive ionic layer adsorption and reaction (SILAR) method was adopted to fabricate hydrophobic ZnO nanostructured surfaces on transparent indium-tin oxide (ITO), glass and polyethylene terephthalate (PET) substrates. ZnO films deposited on different substrates show hierarchical structures like spindle, flower and spherical shape with diameters ranging from 30 to 300 nm. The photo-induced switching behaviors of ZnO film surfaces between hydrophobic and hydrophilic states were examined by water contact angle and X-ray photoelectron spectroscopy (XPS) analysis. ZnO nanostructured films had contact angles of ~140° and 160°±2 on glass and PET substrates, respectively, exhibiting hydrophobic behavior without any surface modification or treatment. Upon exposure to ultraviolet (UV) illumination, the films showed hydrophilic behavior (contact angle: 15°±2), which upon low thermal stimuli revert back to its original hydrophobic nature. Such reversible and repeatable switching behaviors were observed upon cyclical exposure to ultraviolet radiation. These biomimetic ZnO surfaces exhibit good anti-reflective properties with lower reflectance of 9% for PET substrates. Thus, the present work is significant in terms of its potential application in switching devices, solar coatings and self-cleaning smart windows. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Lewis Acidic Ionic Liquids.

    PubMed

    Brown, Lucy C; Hogg, James M; Swadźba-Kwaśny, Małgorzata

    2017-08-21

    Until very recently, the term Lewis acidic ionic liquids (ILs) was nearly synonymous with halometallate ILs, with a strong focus on chloroaluminate(III) systems. The first part of this review covers the historical context in which these were developed, speciation of a range of halometallate ionic liquids, attempts to quantify their Lewis acidity, and selected recent applications: in industrial alkylation processes, in supported systems (SILPs/SCILLs) and in inorganic synthesis. In the last decade, interesting alternatives to halometallate ILs have emerged, which can be divided into two sub-sections: (1) liquid coordination complexes (LCCs), still based on halometallate species, but less expensive and more diverse than halometallate ionic liquids, and (2) ILs with main-group Lewis acidic cations. The two following sections cover these new liquid Lewis acids, also highlighting speciation studies, Lewis acidity measurements, and applications.

  6. Adverse reactions of low osmolar non-ionic and ionic contrast media when used together or separately during percutaneous coronary intervention.

    PubMed

    Juergens, Craig P; Khaing, Aye Mi; McIntyre, Geraldine J; Leung, Dominic Y C; Lo, Sidney T H; Fernandes, Clyne; Hopkins, Andrew P

    2005-09-01

    Due to perceived advantages in the use of non-ionic contrast agents for diagnostic angiography and ionic agents for percutaneous coronary intervention (PCI), patients often receive various combinations of both types of agents. To assess potential adverse effects of non-ionic and ionic contrast media when used together or separately during percutaneous coronary intervention. We retrospectively evaluated the outcomes of 532 patients undergoing percutaneous coronary intervention in our institution. Patients were divided into two groups: those that underwent diagnostic angiography and "follow on" PCI; and those that underwent "planned" PCI. The groups were subdivided on the basis of the use of the ionic agent ioxaglate or the non-ionic agent iopromide during PCI. The frequency of allergic reactions and major adverse cardiac events (MACE) were noted. With respect to the "follow on" group, allergic reactions occurred in 9 of 150 patients (6.0%) who received the combination of ioxaglate and iopromide versus 1 of 93 (1.1%) who only received iopromide (p=0.094). There was no difference with respect to MACE [6 (4.0%) ioxaglate and iopromide versus 4 (4.3%) iopromide alone, p=1.00]. In the "planned" group, 7 of 165 patients (4.2%) receiving ioxaglate had an allergic reaction as opposed 0.0% (0 of 124 patients) in the iopromide group (p=0.021). All contrast reactions were mild. The incidence of a MACE was similar in both groups [1 (0.6%) ioxaglate versus 2 (1.6%) iopromide, p=0.579]. The incidence of allergic reactions was similar if ioxaglate was used alone or in combination with iopromide (p=0.478). Whilst combining ionic and non-ionic contrast agents in the same procedure was not associated with any more adverse reactions than using an ionic contrast agent alone, the ionic contrast agent ioxaglate was associated with the majority of allergic reactions. With respect to choice of contrast agent, using the non-ionic agent iopromide alone for coronary intervention is associated

  7. Morphological and electromechanical characterization of ionic liquid/Nafion polymer composites

    NASA Astrophysics Data System (ADS)

    Bennett, Matthew; Leo, Donald

    2005-05-01

    Ionic liquids have shown promise as replacements for water in ionic polymer transducers. Ionic liquids are non-volatile and have a larger electrochemical stability window than water. Therefore, transducers employing ionic liquids can be operated for long periods of time in air and can be actuated with higher voltages. Furthermore, transducers based on ionic liquids do not exhibit the characteristic back relaxation that is common with water-swollen materials. However, the physics of transduction in the ionic liquid-swollen materials is not well understood. In this paper, the morphology of Nafion/ionic liquid composites is characterized using small-angle X-ray scattering (SAXS). The electromechanical transduction behavior of the composites is also investigated. For this testing, five different counterions and two ionic liquids are used. The results reveal that both the morphology and transduction performance of the composites is affected by the identity of the ionic liquid, the cation, and the swelling level of ionic liquid within the membrane. Specifically, speed of response is found to be lower for the membranes that were exchanged with the smaller lithium and potassium ions. The response speed is also found to increase with increased content of ionic liquid. Furthermore, for the two ionic liquids studied, the actuators swollen with the less viscous ionic liquid exhibited a slower response. The slower speed of response corresponds to less contrast between the ionically conductive phase and the inert phase of the polymer. This suggests that disruption of the clustered morphology in the ionic liquid-swollen membranes as compared to water-swollen membranes attenuates ion mobility within the polymer. This attenuation is attributed to swelling of the non-conductive phase by the ionic liquids.

  8. Liquid-liquid extraction of neodymium(III) by dialkylphosphate ionic liquids from acidic medium: the importance of the ionic liquid cation.

    PubMed

    Rout, Alok; Kotlarska, Justyna; Dehaen, Wim; Binnemans, Koen

    2013-10-21

    The ionic liquids 1-hexyl-3-methylimidazolium bis(2-ethylhexyl)phosphate, [C6mim][DEHP], 1-hexyl-1-methylpyrrolidinium bis(2-ethylhexyl)phosphate, [C6mpyr][DEHP], and tetrabutylammonium bis(2-ethylhexyl)phosphate, [N4444][DEHP], were prepared and characterized using (1)H and (13)C NMR spectroscopy. The extraction behavior of neodymium(iii) from nitrate medium by these ionic liquids, diluted with the room temperature ionic liquids 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C6mim][NTf2], 1-hexyl-3-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, [C6mpyr][NTf2], and tributylmethylammonium bis(trifluoromethylsulfonyl)imide, [N1444][NTf2], was studied. The distribution ratio of neodymium(iii) was measured as a function of various parameters, such as pH, concentration of the ionic liquid extractant, nature of diluents, concentration of ionic liquid cations and nitrate anions in the aqueous phase. The extraction behavior was compared with that obtained for a solution of the molecular extractant bis(2-ethylhexyl)phosphoric acid (DEHPA) in an ionic liquid diluent. The extraction of neodymium(iii) in the ionic liquids [C6mim][DEHP] and [C6mpyr][DEHP] showed markedly different extraction properties in comparison with that of the quaternary ammonium analogue [N4444][DEHP], especially concerning the pH dependence of the extraction process. These results show that the extraction process can be tuned by the selection of the ionic liquid cation. The extraction experiments also included the trivalent rare-earth ions lanthanum(iii), cerium(iii), praseodymium(iii), ytterbium(iii) and yttrium(iii). Studies of the stripping behavior and the reusability of the ionic liquids were carried out, which indicate that the ionic liquids can be reused with no loss in activity.

  9. Vertically Aligned and Continuous Nanoscale Ceramic-Polymer Interfaces in Composite Solid Polymer Electrolytes for Enhanced Ionic Conductivity.

    PubMed

    Zhang, Xiaokun; Xie, Jin; Shi, Feifei; Lin, Dingchang; Liu, Yayuan; Liu, Wei; Pei, Allen; Gong, Yongji; Wang, Hongxia; Liu, Kai; Xiang, Yong; Cui, Yi

    2018-06-13

    Among all solid electrolytes, composite solid polymer electrolytes, comprised of polymer matrix and ceramic fillers, garner great interest due to the enhancement of ionic conductivity and mechanical properties derived from ceramic-polymer interactions. Here, we report a composite electrolyte with densely packed, vertically aligned, and continuous nanoscale ceramic-polymer interfaces, using surface-modified anodized aluminum oxide as the ceramic scaffold and poly(ethylene oxide) as the polymer matrix. The fast Li + transport along the ceramic-polymer interfaces was proven experimentally for the first time, and an interfacial ionic conductivity higher than 10 -3 S/cm at 0 °C was predicted. The presented composite solid electrolyte achieved an ionic conductivity as high as 5.82 × 10 -4 S/cm at the electrode level. The vertically aligned interfacial structure in the composite electrolytes enables the viable application of the composite solid electrolyte with superior ionic conductivity and high hardness, allowing Li-Li cells to be cycled at a small polarization without Li dendrite penetration.

  10. Ionic Liquids in Electro-active Devices (ILED)

    DTIC Science & Technology

    2013-12-12

    Polyesters: Structure-Property Relationships in Thermal Behavior, Ionic Conductivity , and Morphology , Advanced Functional Materials, (01 2010...and Ionic Conductivities , Macromolecular Chemistry and Physics, (10 2011): . doi: M. Green, C. Schreiner, T. Long. Thermal , Rheological, and Ion...block giving thermal stability and ionic conductivity . Table 1 shows the molecular weight analysis of the triblock copolymers with increasing

  11. Estimation of the ionic charge of non-metallic species into an electrical discharge through a web application

    NASA Astrophysics Data System (ADS)

    Pérez Gutiérrez, B. R.; Vera-Rivera, F. H.; Niño, E. D. V.

    2016-08-01

    Estimate the ionic charge generated in electrical discharges will allow us to know more accurately the concentration of ions implanted on the surfaces of nonmetallic solids. For this reason, in this research a web application was developed to allow us to calculate the ionic charge generated in an electrical discharge from the experimental parameters established in an ion implantation process performed in the JUPITER (Joint Universal Plasma and Ion Technologies Experimental Reactor) reactor. The estimated value of the ionic charge will be determined from data acquired on an oscilloscope, during startup and shutdown of electrical discharge, which will then be analyzed and processed. The study will provide best developments with regard to the application of ion implantation in various industrial sectors.

  12. New Pyrazolium Salts as a Support for Ionic Liquid Crystals and Ionic Conductors

    PubMed Central

    Pastor, María Jesús; Sánchez, Ignacio; Schmidt, Rainer; Cano, Mercedes

    2018-01-01

    Ionic liquid crystals (ILCs) are a class of materials that combine the properties of liquid crystals (LCs) and ionic liquids (ILs). This type of materials is directed towards properties such as conductivity in ordered systems at different temperatures. In this work, we synthesize five new families of ILCs containing symmetrical and unsymmetrical substituted pyrazolium cations, with different alkyl long-chains, and anions such as Cl−, BF4−, ReO4−, p-CH3-6H4SO3− (PTS) and CF3SO3− (OTf). We study their thermal behavior by polarized light optical microscopy (POM) and differential scanning calorimetry (DSC). All of them, except those with OTf as counteranion, show thermotropic mesomorphism. The observations by POM reveal textures of lamellar mesophases. Those agree with the arrangement observed in the X-ray crystal structure of [H2pzR(4),R(4)][ReO4]. The nature of the mesophases is also confirmed by variable temperature powder X-ray diffraction. On the other hand, the study of the dielectric properties at variable temperature in mesomorphic (Cl− and BF4−) and non-mesomorphic (OTf) salts indicates that the supramolecular arrangement of the mesophase favors a greater ionic mobility and therefore ionic conductivity. PMID:29614030

  13. Environmental implications and applications of engineered ...

    EPA Pesticide Factsheets

    This review focus on environmental implications and applications of engineered magnetite (Fe3O4) nanoparticles (MNPs) as a single phase or a component of a hybrid nanocomposite that take advantages of their superparamagnetism and high surface area. MNPs are synthesized via co-precipitation, thermal decomposition, hydrothermal process, emulsion, and microbial process. Aggregation/sedimentation and transport of MNPs depend on surface charge of MNPs and geochemical parameters such as pH, ionic strength, and organic matter. MNPs generally have low toxicity to humans and ecosystem. MNPs are used for making excellent anode electrode materials in lithium-ion battery, for constructing biosensors, and for catalyzing a variety of chemical reactions. MNPs are used for air cleanup and carbon sequestration. MNP nanocomposites are made as antimicrobial agent for water disinfection and flocculants for water treatment. Conjugated MNPs are widely used for adsorptive/separative removal of organics, dye, oil, arsenic, Cr(VI), heavy metals, radionuclides, and rare earth elements. MNPs can degrade organic/inorganic contaminants via chemical reduction or oxidation in water, sediment, and soil. Future studies should further explore mechanisms of MNP interactions with other nanomaterials and contaminants, economic and green approaches of MNP synthesis, and field scale demonstration of MNP utilization. Submit to Journal of Hazardous Materials.

  14. Non-ionic detergents facilitate non-specific binding of M13 bacteriophage to polystyrene surfaces.

    PubMed

    Hakami, Abdulrahim R; Ball, Jonathan K; Tarr, Alexander W

    2015-09-01

    Phage-displayed random peptide libraries are widely used for identifying peptide interactions with proteins and other substrates. Selection of peptide ligands involves iterative rounds of affinity enrichment. The binding properties of the selected phage clones are routinely tested using immunoassay after propagation to high titre in a bacterial host and precipitation using polyethylene glycol (PEG) and high salt concentration. These immunoassays can suffer from low sensitivity and high background signals. Polysorbate 20 (Tween(®) 20) is a non-ionic detergent commonly used in immunoassay washing buffers to reduce non-specific binding, and is also used as a blocking reagent. We have observed that Tween 20 enhances non-specific M13 library phage binding in a peptide-independent manner. Other non-ionic detergents were also found to promote significant, dose-dependent non-specific phage binding in ELISA. This effect was not observed for assays using phage concentrated by ultracentrifugation, suggesting that interactions occur between detergents and the PEG-precipitated phage, irrespective of the displayed peptide motif. This artefact may impact on successful affinity selection of peptides from phage-display libraries. We propose alternative methods for screening phage libraries for identifying binding interactions with target ligands. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. 3-Dimensional atomic scale structure of the ionic liquid-graphite interface elucidated by AM-AFM and quantum chemical simulations

    NASA Astrophysics Data System (ADS)

    Page, Alister J.; Elbourne, Aaron; Stefanovic, Ryan; Addicoat, Matthew A.; Warr, Gregory G.; Voïtchovsky, Kislon; Atkin, Rob

    2014-06-01

    In situ amplitude modulated atomic force microscopy (AM-AFM) and quantum chemical simulations are used to resolve the structure of the highly ordered pyrolytic graphite (HOPG)-bulk propylammonium nitrate (PAN) interface with resolution comparable with that achieved for frozen ionic liquid (IL) monolayers using STM. This is the first time that (a) molecular resolution images of bulk IL-solid interfaces have been achieved, (b) the lateral structure of the IL graphite interface has been imaged for any IL, (c) AM-AFM has elucidated molecular level structure immersed in a viscous liquid and (d) it has been demonstrated that the IL structure at solid surfaces is a consequence of both thermodynamic and kinetic effects. The lateral structure of the PAN-graphite interface is highly ordered and consists of remarkably well-defined domains of a rhomboidal superstructure composed of propylammonium cations preferentially aligned along two of the three directions in the underlying graphite lattice. The nanostructure is primarily determined by the cation. Van der Waals interactions between the propylammonium chains and the surface mean that the cation is enriched in the surface layer, and is much less mobile than the anion. The presence of a heterogeneous lateral structure at an ionic liquid-solid interface has wide ranging ramifications for ionic liquid applications, including lubrication, capacitive charge storage and electrodeposition.In situ amplitude modulated atomic force microscopy (AM-AFM) and quantum chemical simulations are used to resolve the structure of the highly ordered pyrolytic graphite (HOPG)-bulk propylammonium nitrate (PAN) interface with resolution comparable with that achieved for frozen ionic liquid (IL) monolayers using STM. This is the first time that (a) molecular resolution images of bulk IL-solid interfaces have been achieved, (b) the lateral structure of the IL graphite interface has been imaged for any IL, (c) AM-AFM has elucidated molecular level

  16. Solid-State Ionic Diodes Demonstrated in Conical Nanopores

    DOE PAGES

    Plett, Timothy S.; Cai, Wenjia; Le Thai, Mya; ...

    2017-02-27

    Ionic transport at the nanoscale features phenomena that are not observed in larger systems. Nonlinear current–voltage curves characteristic of ionic diodes as well as ion selectivity are examples of effects observed at the nanoscale. Many man-made nanopore systems are inspired by biological channels in a cell membrane, thus measurements are often performed in aqueous solutions. Consequently, much less is known about ionic transport in nonaqueous systems, especially in solid-state electrolytes. Here we show ionic transport through single pores filled with gel electrolyte of poly(methyl methacrylate) (PMMA) doped with LiClO 4 in propylene carbonate. The system has no liquid interface andmore » the ionic transport occurs through the porous gel structure. We demonstrate that a conically shaped nanopore filled with the gel rectifies the current and works as a solid-state ionic diode.« less

  17. Density-functional calculations of the surface tension of liquid Al and Na

    NASA Technical Reports Server (NTRS)

    Stroud, D.; Grimson, M. J.

    1984-01-01

    Calculations of the surface tensions of liquid Al and Na are described using the full ionic density functional formalism of Wood and Stroud (1983). Surface tensions are in good agreement with experiment in both cases, with results substantially better for Al than those found previously in the gradient approximation. Preliminary minimization with respect to surface profile leads to an oscillatory profile superimposed on a nearly steplike ionic density disribution; the oscillations have a wavellength of about a hardsphere diameter.

  18. Ionic liquid-based reagents improve the stability of midterm fecal sample storage.

    PubMed

    Hao, Lilan; Xia, Zhongkui; Yang, Huanming; Wang, Jian; Han, Mo

    2017-08-01

    Fecal samples are widely used in metagenomic research, which aims to elucidate the relationship between human health and the intestinal microbiota. However, the best conditions for stable and reliable storage and transport of these samples at room temperature are still unknown, and whether samples stored at room temperature for several days will maintain their microbiota composition is still unknown. Here, we established and tested a preservation method using reagents containing imidazolium- or pyridinium-based ionic liquids. We stored human fecal samples in these reagents for up to 7 days at different temperatures. Subsequently, all samples were sequenced and compared with fresh samples and/or samples treated under other conditions. The 16S rRNA sequencing results suggested that ionic liquid-based reagents could stabilize the composition of the microbiota in fecal samples during a 7-day storage period, particularly when stored at room temperature. Thus, this method may have implications in the storage of fecal samples for metagenomic research. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Thermodynamics of aggregate formation between a non-ionic polymer and ionic surfactants: An isothermal titration calorimetric study.

    PubMed

    Patel, Salin Gupta; Bummer, Paul M

    2017-01-10

    This report examines the energetics of aggregate formation between hydroxypropyl methylcellulose (HPMC) and model ionic surfactants including sodium dodecyl sulfate (SDS) at pharmaceutically relevant concentrations using the isothermal titration calorimetry (ITC) technique and a novel treatment of calorimetric data that accounts for the various species formed. The influence of molecular weight of HPMC, temperature and ionic strength of solution on the aggregate formation process was explored. The interaction between SDS and HPMC was determined to be an endothermic process and initiated at a critical aggregation concentration (CAC). The SDS-HPMC interactions were observed to be cooperative in nature and dependent on temperature and ionic strength of the solution. Molecular weight of HPMC significantly shifted the interaction parameters between HPMC and SDS such that at the highest molecular weight (HPMC K-100M;>240kDa), although the general shape of the titration curve (enthalpogram) was observed to remain similar, the critical concentration parameters (CAC, polymer saturation concentration (C sat ) and critical micelle concentration (CMC)) were significantly altered and shifted to lower concentrations of SDS. Ionic strength was also observed to influence the critical concentration parameters for the SDS-HPMC aggregation and decreased to lower SDS concentrations with increasing ionic strength for both anionic and cationic surfactant-HPMC systems. From these data, other thermodynamic parameters of aggregation such as ΔH agg ° , ΔG agg ° , H agg ° , ΔS agg ° , and ΔC p were calculated and utilized to postulate the hydrophobic nature of SDS-HPMC aggregate formation. The type of ionic surfactant head group (anionic vs. cationic i.e., dodecyltrimethylammonium bromide (DTAB)) was found to influence the strength of HPMC-surfactant interactions wherein a distinct CAC signifying the strength of HPMC-DTAB interactions was not observed. The interpretation of the

  20. Steric and electrostatic surface forces on sulfonated PEG graft surfaces with selective albumin adsorption.

    PubMed

    Bremmell, Kristen E; Britcher, Leanne; Griesser, Hans J

    2013-06-01

    Addition of ionized terminal groups to PEG graft layers may cause additional interfacial forces to modulate the net interfacial interactions between PEG graft layers and proteins. In this study we investigated the effect of terminal sulfonate groups, characterizing PEG-aldehyde (PEG-CHO) and sulfonated PEG (PEG-SO3) graft layers by XPS and colloid probe AFM interaction force measurements as a function of ionic strength, in order to determine surface forces relevant to protein resistance and models of bio-interfacial interaction of such graft coatings. On the PEG-CHO surface the measured interaction force does not alter with ionic strength, typical of a repulsive steric barrier coating. An analogous repulsive interaction force of steric origin was also observed on the PEG-SO3 graft coating; however, the net interaction force changed with ionic strength. Interaction forces were modelled by steric and electrical double layer interaction theories, with fitting to a scaling theory model enabling determination of the spacing and stretching of the grafted chains. Albumin, fibrinogen, and lysozyme did not adsorb on the PEG-CHO coating, whereas the PEG graft with terminal sulfonate groups showed substantial adsorption of albumin but not fibrinogen or lysozyme from 0.15 M salt solutions. Under lower ionic strength conditions albumin adsorption was again minimized as a result of the increased electrical double-layer interaction observed with the PEG-SO3 modified surface. This unique and unexpected adsorption behaviour of albumin provides an alternative explanation to the "negative cilia" model used by others to rationalize observed thromboresistance on PEG-sulfonate coatings. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Nanoarchitecture Control Enabled by Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Murdoch, Heather A.; Limmer, Krista R.; Labukas, Joseph P.

    2017-04-01

    Ionic liquids have many advantages over traditional aqueous electrosynthesis for fabrication of functional nanoarchitectures, including enabling the integration of nanoparticles into traditional coatings, superhydrophobicity, nanofoams, and other hierarchical structures. Shape and size control through ionic liquid selection and processing conditions can synthesize nanoparticles and nanoarchitectures without the use of capping agents, surfactants, or templates that are often deleterious to the functionality of the resultant system. Here we give a brief overview of some recent and interesting applications of ionic liquids to the synthesis of nanoparticles and nanoarchitectures.

  2. Measurement of UO2 surface oxidation using grazing-incidence x-ray diffraction: Implications for nuclear forensics

    NASA Astrophysics Data System (ADS)

    Tracy, Cameron L.; Chen, Chien-Hung; Park, Sulgiye; Davisson, M. Lee; Ewing, Rodney C.

    2018-04-01

    Nuclear forensics involves determination of the origin and history of interdicted nuclear materials based on the detection of signatures associated with their production and trafficking. The surface oxidation undergone by UO2 when exposed to air is a potential signature of its atmospheric exposure during handling and transport. To assess the sensitivity of this oxidation to atmospheric parameters, surface sensitive grazing-incidence x-ray diffraction (GIXRD) measurements were performed on UO2 samples exposed to air of varying relative humidity (34%, 56%, and 95% RH) and temperature (room temperature, 50 °C, and 100 °C). Near-surface unit cell contraction was observed following exposure, indicating oxidation of the surface and accompanying reduction of the uranium cation ionic radii. The extent of unit cell contraction provides a measure of the extent of oxidation, allowing for comparison of the effects of various exposure conditions. No clear influence of relative humidity on the extent of oxidation was observed, with samples exhibiting similar degrees of unit cell contraction at all relative humidities investigated. In contrast, the thickness of the oxidized layers increased substantially with increasing temperature, such that differences on the order of 10 °C yielded readily observable crystallographic signatures of the exposure conditions.

  3. Interfacial Structures of Trihexyltetradecylphosphonium-bis(mandelato)borate Ionic Liquid Confined between Gold Electrodes.

    PubMed

    Wang, Yong-Lei; Golets, Mikhail; Li, Bin; Sarman, Sten; Laaksonen, Aatto

    2017-02-08

    Atomistic molecular dynamics simulations have been performed to study microscopic the interfacial ionic structures, molecular arrangements, and orientational preferences of trihexyltetradecylphosphonium-bis(mandelato)borate ([P 6,6,6,14 ][BMB]) ionic liquid confined between neutral and charged gold electrodes. It was found that both [P 6,6,6,14 ] cations and [BMB] anions are coabsorbed onto neutral electrodes at different temperatures. The hexyl and tetradecyl chains in [P 6,6,6,14 ] cations lie preferentially flat on neutral electrodes. The oxalato and phenyl rings in [BMB] anions are characterized by alternative parallel-perpendicular orientations in the mixed innermost ionic layer adjacent to neutral electrodes. An increase in temperature has a marginal effect on the interfacial ionic structures and molecular orientations of [P 6,6,6,14 ][BMB] ionic species in a confined environment. Electrifying gold electrodes leads to peculiar changes in the interfacial ionic structures and molecular orientational arrangements of [P 6,6,6,14 ] cations and [BMB] anions in negatively and positively charged gold electrodes, respectively. As surface charge density increases (but lower than 20 μC/cm 2 ), the layer thickness of the mixed innermost interfacial layer gradually increases due to a consecutive accumulation of [P 6,6,6,14 ] cations and [BMB] anions at negatively and positively charged electrodes, respectively, before the formation of distinct cationic and anionic innermost layers. Meanwhile, the molecular orientations of two oxalato rings in the same [BMB] anions change gradually from a parallel-perpendicular feature to being partially characterized by a tilted arrangement at an angle of 45° from the electrodes and finally to a dominant parallel coordination pattern along positively charged electrodes. Distinctive interfacial distribution patterns are also observed accordingly for phenyl rings that are directly connected to neighboring oxalato rings in [BMB] anions.

  4. Amino acid ionic liquids.

    PubMed

    Ohno, Hiroyuki; Fukumoto, Kenta

    2007-11-01

    The preparation of ionic liquids derived from amino acids, and their properties, are outlined. Since amino acids have both a carboxylic acid residue and an amino group in a single molecule, they can be used as either anions or cations. These groups are also useful in their ability to introduce functional group(s). Twenty different natural amino acids were used as anions, to couple with the 1-ethyl-3-methylimidazolium cation. The salts obtained were all liquid at room temperature. The properties of the resulting ionic liquids (AAILs) depend on the side groups of the amino acids involved. These AAILs, composed of an amino acid with some functional groups such as a hydrogen bonding group, a charged group, or an aromatic ring, had an increased glass transition (or melting) temperature and/or higher viscosity as a result of additional interactions among the ions. Viscosity is reduced and the decomposition temperature of imidazolium-type salts is improved by using the tetrabutylphosphonium cation. The chirality of AAILs was maintained even upon heating to 150 degrees C after acetylation of the free amino group. The amino group was also modified to introduce a strong acid group so as to form hydrophobic and chiral ionic liquids. Unique phase behavior of the resulting hydrophobic ionic liquids and water mixture is found; the mixture is clearly phase separated at room temperature, but the solubility of water in this IL increases upon cooling, to give a homogeneous solution. This phase change is reversible, and separation occurs again by raising the temperature a few degrees. It is extraordinary for an IL/water mixture to display such behavior with a lower critical solution temperature. Some likely applications are proposed for these amino acid derived ionic liquids.

  5. Ionic liquids for addressing unmet needs in healthcare

    PubMed Central

    Agatemor, Christian; Ibsen, Kelly N.; Tanner, Eden E. L.

    2018-01-01

    Abstract Advances in the field of ionic liquids have opened new applications beyond their traditional use as solvents into other fields especially healthcare. The broad chemical space, rich with structurally diverse ions, and coupled with the flexibility to form complementary ion pairs enables task‐specific optimization at the molecular level to design ionic liquids for envisioned functions. Consequently, ionic liquids now are tailored as innovative solutions to address many problems in medicine. To date, ionic liquids have been designed to promote dissolution of poorly soluble drugs and disrupt physiological barriers to transport drugs to targeted sites. Also, their antimicrobial activity has been demonstrated and could be exploited to prevent and treat infectious diseases. Metal‐containing ionic liquids have also been designed and offer unique features due to incorporation of metals. Here, we review application‐driven investigations of ionic liquids in medicine with respect to current status and future potential. PMID:29376130

  6. Enzyme catalysis with small ionic liquid quantities.

    PubMed

    Fischer, Fabian; Mutschler, Julien; Zufferey, Daniel

    2011-04-01

    Enzyme catalysis with minimal ionic liquid quantities improves reaction rates, stereoselectivity and enables solvent-free processing. In particular the widely used lipases combine well with many ionic liquids. Demonstrated applications are racemate separation, esterification and glycerolysis. Minimal solvent processing is also an alternative to sluggish solvent-free catalysis. The method allows simplified down-stream processing, as only traces of ionic liquids have to be removed.

  7. Competitive adsorption and ordered packing of counterions near highly charged surfaces: From mean-field theory to Monte Carlo simulations.

    PubMed

    Wen, Jiayi; Zhou, Shenggao; Xu, Zhenli; Li, Bo

    2012-04-01

    Competitive adsorption of counterions of multiple species to charged surfaces is studied by a size-effect-included mean-field theory and Monte Carlo (MC) simulations. The mean-field electrostatic free-energy functional of ionic concentrations, constrained by Poisson's equation, is numerically minimized by an augmented Lagrangian multiplier method. Unrestricted primitive models and canonical ensemble MC simulations with the Metropolis criterion are used to predict the ionic distributions around a charged surface. It is found that, for a low surface charge density, the adsorption of ions with a higher valence is preferable, agreeing with existing studies. For a highly charged surface, both the mean-field theory and the MC simulations demonstrate that the counterions bind tightly around the charged surface, resulting in a stratification of counterions of different species. The competition between mixed entropy and electrostatic energetics leads to a compromise that the ionic species with a higher valence-to-volume ratio has a larger probability to form the first layer of stratification. In particular, the MC simulations confirm the crucial role of ionic valence-to-volume ratios in the competitive adsorption to charged surfaces that had been previously predicted by the mean-field theory. The charge inversion for ionic systems with salt is predicted by the MC simulations but not by the mean-field theory. This work provides a better understanding of competitive adsorption of counterions to charged surfaces and calls for further studies on the ionic size effect with application to large-scale biomolecular modeling.

  8. Dynamic dielectrophoresis model of multi-phase ionic fluids.

    PubMed

    Yan, Ying; Luo, Jing; Guo, Dan; Wen, Shizhu

    2015-01-01

    Ionic-based dielectrophoretic microchips have attracted significant attention due to their wide-ranging applications in electro kinetic and biological experiments. In this work, a numerical method is used to simulate the dynamic behaviors of ionic droplets in a microchannel under the effect of dielectrophoresis. When a discrete liquid dielectric is encompassed within a continuous fluid dielectric placed in an electric field, an electric force is produced due to the dielectrophoresis effect. If either or both of the fluids are ionic liquids, the magnitude and even the direction of the force will be changed because the net ionic charge induced by an electric field can affect the polarization degree of the dielectrics. However, using a dielectrophoresis model, assuming ideal dielectrics, results in significant errors. To avoid the inaccuracy caused by the model, this work incorporates the electrode kinetic equation and defines a relationship between the polarization charge and the net ionic charge. According to the simulation conditions presented herein, the electric force obtained in this work has an error exceeding 70% of the actual value if the false effect of net ionic charge is not accounted for, which would result in significant issues in the design and optimization of experimental parameters. Therefore, there is a clear motivation for developing a model adapted to ionic liquids to provide precise control for the dielectrophoresis of multi-phase ionic liquids.

  9. Application of Ionic Liquids in Amperometric Gas Sensors.

    PubMed

    Gębicki, Jacek; Kloskowski, Adam; Chrzanowski, Wojciech; Stepnowski, Piotr; Namiesnik, Jacek

    2016-01-01

    This article presents an analysis of available literature data on metrological parameters of the amperometric gas sensors containing ionic liquids as an electrolyte. Four mechanism types of signal generation in amperometric sensors with ionic liquid are described. Moreover, this article describes the influence of selected physico-chemical properties of the ionic liquids on the metrological parameters of these sensors. Some metrological parameters are also compared for amperometric sensors with GDE and SPE electrodes and with ionic liquids for selected analytes.

  10. Ionic Liquids as Extraction Media for Metal Ions

    NASA Astrophysics Data System (ADS)

    Hirayama, Naoki

    In solvent extraction separation of metal ions, recently, many researchers have investigated possible use of hydrophobic ionic liquids as extraction media instead of organic solvents. Ionic liquids are salts of liquid state around room temperature and can act not only as solvents but also as ion-exchangers. Therefore, the extraction mechanism of metal ions into ionic liquids is complicated. This review presents current overview and perspective on evaluation of nature of hydrophobic ionic liquids as extraction media for metal ions.

  11. Multichannel detection of ionic currents through two nanopores fabricated on integrated Si3N4 membranes.

    PubMed

    Yanagi, Itaru; Akahori, Rena; Aoki, Mayu; Harada, Kunio; Takeda, Ken-Ichi

    2016-08-16

    Integration of solid-state nanopores and multichannel detection of signals from each nanopore are effective measures for realizing high-throughput nanopore sensors. In the present study, we demonstrated fabrication of Si3N4 membrane arrays and the simultaneous measurement of ionic currents through two nanopores formed in two adjacent membranes. Membranes with thicknesses as low as 6.4 nm and small nanopores with diameters of less than 2 nm could be fabricated using the poly-Si sacrificial-layer process and multilevel pulse-voltage injection. Using the fabricated nanopore membranes, we successfully achieved simultaneous detection of clear ionic-current blockades when single-stranded short homopolymers (poly(dA)60) passed through two nanopores. In addition, we investigated the signal crosstalk and leakage current among separated chambers. When two nanopores were isolated on the front surface of the membrane, there was no signal crosstalk or leakage current between the chambers. However, when two nanopores were isolated on the backside of the Si substrate, signal crosstalk and leakage current were observed owing to high-capacitance coupling between the chambers and electrolysis of water on the surface of the Si substrate. The signal crosstalk and leakage current could be suppressed by oxidizing the exposed Si surface in the membrane chip. Finally, the observed ionic-current blockade when poly(dA)60 passed through the nanopore in the oxidized chip was approximately half of that observed in the non-oxidized chip.

  12. Development of ionic gels using thiol-based monomers in ionic liquid

    NASA Astrophysics Data System (ADS)

    Ahmed, Kumkum; Naga, Naofumi; Kawakami, Masaru; Furukawa, Hidemitsu

    2016-04-01

    Ionic gels (IGs) using ionic liquids (ILs) can propose diverse applications in the field of optics, sensors and separation have opened wide prospects in materials science. ILs have attracted remarkable interest for gel polymer electrolytes and batteries based on their useful properties such as non-volatility, non-flammability, a wide electrochemical window, high thermal stability and a high ionic conductivity. The formation of gel in IL media makes it possible to immobilize ILs within organic or inorganic matrices and to take advantage of their unique properties in the solid state, thus eliminating some shortcomings related to shaping and risk of leakage. In this work for the first time we used multifunctional thiol monomers having uniform structure and good compatibility with the IL of our interest. Therefore we focused on developing thiol monomer-based IGs using multifunctional thiol monomers and acrylate crosslinkers utilizing thiol-ene reaction between monomer and crosslinking molecules in an IL medium and characterize their physico-chemical properties like thermal, conductive, mechanical properties etc.. This work has been focused mainly to improve the mechanical strength of IGs and make prospects of IGs in tribology and lubricants.

  13. Ultrasound-Assisted Extraction of Carnosic Acid and Rosmarinic Acid Using Ionic Liquid Solution from Rosmarinus officinalis

    PubMed Central

    Zu, Ge; Zhang, Rongrui; Yang, Lei; Ma, Chunhui; Zu, Yuangang; Wang, Wenjie; Zhao, Chunjian

    2012-01-01

    Ionic liquid based, ultrasound-assisted extraction was successfully applied to the extraction of phenolcarboxylic acids, carnosic acid and rosmarinic acid, from Rosmarinus officinalis. Eight ionic liquids, with different cations and anions, were investigated in this work and [C8mim]Br was selected as the optimal solvent. Ultrasound extraction parameters, including soaking time, solid–liquid ratio, ultrasound power and time, and the number of extraction cycles, were discussed by single factor experiments and the main influence factors were optimized by response surface methodology. The proposed approach was demonstrated as having higher efficiency, shorter extraction time and as a new alternative for the extraction of carnosic acid and rosmarinic acid from R. officinalis compared with traditional reference extraction methods. Ionic liquids are considered to be green solvents, in the ultrasound-assisted extraction of key chemicals from medicinal plants, and show great potential. PMID:23109836

  14. Ionic liquid stationary phases for gas chromatography.

    PubMed

    Poole, Colin F; Poole, Salwa K

    2011-04-01

    This article provides a summary of the development of ionic liquids as stationary phases for gas chromatography beginning with early work on packed columns that established details of the retention mechanism and established working methods to characterize selectivity differences compared with molecular stationary phases through the modern development of multi-centered cation and cross-linked ionic liquids for high-temperature applications in capillary gas chromatography. Since there are many reviews on ionic liquids dealing with all aspects of their chemical and physical properties, the emphasis in this article is placed on the role of gas chromatography played in the design of ionic liquids of low melting point, high thermal stability, high viscosity, and variable selectivity for separations. Ionic liquids provide unprecedented opportunities for extending the selectivity range and temperature-operating range of columns for gas chromatography, an area of separation science that has otherwise been almost stagnant for over a decade. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Ionic Channels as Natural Nanodevices

    DTIC Science & Technology

    2006-05-01

    introduce the numerical techniques required to simulate charge transport in ion channels. [1] Using Poisson- Nernst -Planck-type (PNP) equations ...Eisenberg. 2003. Ionic diffusion through protein channels: from molecular description to continuum equations . Nanotech 2003, 3: 439-442. 4...Nadler, B., Schuss, Z., Singer, A., and R. S. Eisenberg. 2004. Ionic diffusion through confined geometries: from Langevin equations to partial

  16. An Alternative to the Ionic Model

    ERIC Educational Resources Information Center

    Sanderson, R. T.

    1975-01-01

    Describes the "coordinated polymeric model," which yields more accurate energy calculations than the "ionic model" for compounds which exhibit considerable covalency. The dichotomy between ionic and covalent bonding is thus largely broken down for solids which are nonmolecular in the crystalline state. (MLH)

  17. Thermoelectric Generators Based on Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Laux, Edith; Uhl, Stefanie; Jeandupeux, Laure; López, Pilar Pérez; Sanglard, Pauline; Vanoli, Ennio; Marti, Roger; Keppner, Herbert

    2018-06-01

    Looking at energy harvesting using body or waste heat for portable electronic or on-board devices, Ionic liquids are interesting candidates as thermoactive materials in thermoelectric generators (TEGs) because of their outstanding properties. Two different kinds of ionic liquid, with alkylammonium and choline as cations, were studied, whereby different anions and redox couples were combined. This study focussed on the intention to find non-hazardous and environmentally friendly ionic liquids for TEGs to be selected among the thousands that can potentially be used. Seebeck coefficients (SEs) as high as - 15 mV/K were measured, in a particular case for an electrode temperature difference of 20 K. The bottleneck of our TEG device is still the abundance of negative SE liquids matching the internal resistance with the existing positive SE-liquids at series connections. In this paper, we show further progress in finding increased negative SE liquids. For current extraction from the TEG, the ionic liquid must be blended with a redox couple, allowing carrier exchange in a cyclic process under a voltage which is incuced by the asymmetry of the generator in terms of hot and cold electrodes. In our study, two types of redox pairs were tested. It was observed that a high SE of an ionic liquid/redox blend is not a sufficient condition for high power output. It appears that more complex effects between the ionic liquid and the electrode determine the magnitude of the final current/power output. The physico-chemical understanding of such a TEG cell is not yet available.

  18. Thermoelectric Generators Based on Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Laux, Edith; Uhl, Stefanie; Jeandupeux, Laure; López, Pilar Pérez; Sanglard, Pauline; Vanoli, Ennio; Marti, Roger; Keppner, Herbert

    2018-03-01

    Looking at energy harvesting using body or waste heat for portable electronic or on-board devices, Ionic liquids are interesting candidates as thermoactive materials in thermoelectric generators (TEGs) because of their outstanding properties. Two different kinds of ionic liquid, with alkylammonium and choline as cations, were studied, whereby different anions and redox couples were combined. This study focussed on the intention to find non-hazardous and environmentally friendly ionic liquids for TEGs to be selected among the thousands that can potentially be used. Seebeck coefficients (SEs) as high as - 15 mV/K were measured, in a particular case for an electrode temperature difference of 20 K. The bottleneck of our TEG device is still the abundance of negative SE liquids matching the internal resistance with the existing positive SE-liquids at series connections. In this paper, we show further progress in finding increased negative SE liquids. For current extraction from the TEG, the ionic liquid must be blended with a redox couple, allowing carrier exchange in a cyclic process under a voltage which is incuced by the asymmetry of the generator in terms of hot and cold electrodes. In our study, two types of redox pairs were tested. It was observed that a high SE of an ionic liquid/redox blend is not a sufficient condition for high power output. It appears that more complex effects between the ionic liquid and the electrode determine the magnitude of the final current/power output. The physico-chemical understanding of such a TEG cell is not yet available.

  19. Durable and water-floatable ionic polymer actuator with hydrophobic and asymmetrically laser-scribed reduced graphene oxide paper electrodes.

    PubMed

    Kim, Jaehwan; Jeon, Jin-Han; Kim, Hyun-Jun; Lim, Hyuneui; Oh, Il-Kwon

    2014-03-25

    Ionic polymer actuators driven by electrical stimuli have been widely investigated for use in practical applications such as bioinspired robots, sensors, and biomedical devices. However, conventional ionic polymer-metal composite actuators have a serious drawback of poor durability under long-term actuation in open air, mainly because of the leakage of the inner electrolyte and hydrated cations through cracks in the metallic electrodes. Here, we developed a highly durable and water-floatable ionic polymer artificial muscle by employing hydrophobic and asymmetrically laser-scribed reduced graphene oxide paper electrodes (HLrGOP). The highly conductive, flexible, and cost-effective HLrGOP electrodes have asymmetrically smooth hydrophobic outer and rough inner surfaces, resulting in liquid-impermeable and water-floatable functionalities and strong bonding between an ionic polymer and the electrodes. More interestingly, the HLrGOP electrode, which has a unique functionality to prevent the leakage of the vaporized or liquid electrolyte and mobile ions during electrical stimuli, greatly contributes to an exceptionally durable ionic polymer-graphene composite actuator that is a prerequisite for practical applications in active biomedical devices, biomimetic robots, touch-feedback haptic systems, and flexible soft electronics.

  20. Capacitance of Ti 3C 2T x MXene in Ionic Liquid Electrolyte

    DOE PAGES

    Lin, Zifeng; Barbara, Daffos; Taberna, Pierre-Louis; ...

    2016-04-14

    Ti 3C 2T x MXene, a two-dimensional (2D) early transition metal carbide, has shown an extremely high volumetric capacitance in aqueous electrolytes, but in a narrow voltage window (less than 1.23 V). The utilization of MXene materials in ionic liquid electrolytes with a large voltage window has never been addressed. Here, we report the preparation of the Ti 3C 2T x MXene ionogel film by vacuum filtration for use as supercapacitor electrodes operating in 1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI-TFSI) neat ionic liquid electrolyte. Due to the disordered structure of the Ti 3C 2T x hydrogel film and a stable spacing after vacuummore » drying, achieved through ionic liquid electrolyte immersion of the Ti 3C 2T x hydrogel film, the Ti 3C 2T x surface became accessible to EMI + and TFSI - ions. A capacitance of 70 F g -1 together with a large voltage window of 3 V was obtained at a scan rate of 20 mV s -1 in neat EMI-TFSI electrolyte. The electrochemical signature indicates a capacitive behavior even at a high scan rate (500 mV s -1) and a high power performance. This work opens up the possibilities of using MXene materials with various ionic liquid electrolytes.« less

  1. Perspective: Chemical reactions in ionic liquids monitored through the gas (vacuum)/liquid interface.

    PubMed

    Maier, F; Niedermaier, I; Steinrück, H-P

    2017-05-07

    This perspective analyzes the potential of X-ray photoelectron spectroscopy under ultrahigh vacuum (UHV) conditions to follow chemical reactions in ionic liquids in situ. Traditionally, only reactions occurring on solid surfaces were investigated by X-ray photoelectron spectroscopy (XPS) in situ. This was due to the high vapor pressures of common liquids or solvents, which are not compatible with the required UHV conditions. It was only recently realized that the situation is very different when studying reactions in Ionic Liquids (ILs), which have an inherently low vapor pressure, and first studies have been performed within the last years. Compared to classical spectroscopy techniques used to monitor chemical reactions, the advantage of XPS is that through the analysis of their core levels all relevant elements can be quantified and their chemical state can be analyzed under well-defined (ultraclean) conditions. In this perspective, we cover six very different reactions which occur in the IL, with the IL, or at an IL/support interface, demonstrating the outstanding potential of in situ XPS to gain insights into liquid phase reactions in the near-surface region.

  2. Elucidation of ionic interactions in the protic ionic liquid solutions by isothermal titration calorimetry.

    PubMed

    Rai, Gitanjali; Kumar, Anil

    2014-04-17

    The strong hydrogen-bonded network noted in protic ionic liquids (PILs) may lead to stronger interactions of the ionic entities of PILs with solvents (water, methanol, ethylene glycol, dimethylsulfoxide (DMSO), N,N'-dimethylformamide (DMF)) as compared with those of aprotic ionic liquids (APILs). The PILs used in this work are 1-methylimidazolium tetrafluoroborate, 2-methylpyridinium tetrafluoroborate, and N-methylpyrrolodinium tetrafluoroborate in comparison to 1-butyl-3-methylimidazolium tetrafluoroborate, which is classified as an APIL. In this work, the excess partial molar enthalpy, H(E)IL obtained from isothermal calorimetric titrations at 298.15 K is used to probe the nature of interactions of the PIL cations with solvent molecules against those present in APIL-solvent systems. This work also reports interesting flip-flopping in the thermal behavior of these PIL-solvent systems depending upon the structure of the cationic ring of a PIL. In some cases, these flip-flops are the specific fingerprints for specific PILs in a common solvent environment. The excess partial molar enthalpy at infinite dilution, H(E,∞)IL, of these PILs bears a critical dependence on the solvent properties. An analysis of relative apparent molar enthalpies, ϕL, of the PIL solutions by the ion interaction model of Pitzer yields important information on ionic interactions of these systems.

  3. Ionic Liquid/Metal-Organic Framework Composites: From Synthesis to Applications.

    PubMed

    Kinik, Fatma Pelin; Uzun, Alper; Keskin, Seda

    2017-07-21

    Metal-organic frameworks (MOFs) have been widely studied for different applications owing to their fascinating properties such as large surface areas, high porosities, tunable pore sizes, and acceptable thermal and chemical stabilities. Ionic liquids (ILs) have been recently incorporated into the pores of MOFs as cavity occupants to change the physicochemical properties and gas affinities of MOFs. Several recent studies have shown that IL/MOF composites show superior performances compared with pristine MOFs in various fields, such as gas storage, adsorption and membrane-based gas separation, catalysis, and ionic conductivity. In this review, we address the recent advances in syntheses of IL/MOF composites and provide a comprehensive overview of their applications. Opportunities and challenges of using IL/MOF composites in many applications are reviewed and the requirements for the utilization of these composite materials in real industrial processes are discussed to define the future directions in this field. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Cytochrome c oxidase inhibition by calcium at physiological ionic composition of the medium: Implications for physiological significance of the effect.

    PubMed

    Vygodina, Tatiana V; Mukhaleva, Elizaveta; Azarkina, Natalia V; Konstantinov, Alexander A

    2017-12-01

    Cytochrome c oxidase (CcO) from mammalian mitochondria binds Ca 2+ and Na + in a special cation binding site. Binding of Ca 2+ brings about partial inhibition of the enzyme while Na + competes with Ca 2+ for the binding site and protects the enzyme from the inhibition [Vygodina, T., Kirichenko, A. and Konstantinov, A.A. (2013). Direct Regulation of Cytochrome c oxidase by Calcium Ions. PLoS One 8(9): e74436]. In the original studies, the inhibition was found to depend significantly on the ionic composition of the buffer. Here we describe inhibition of CcO by Ca 2+ in media containing the main ionic components of cytoplasm (150mM KCl, 12mM NaCl and 1mM MgCl 2 ). Under these conditions, Ca 2+ inhibits CcO with effective K i of 20-26μM, that is an order of magnitude higher than determined earlier in the absence of Na + . At physiological value of ionic strength, the inhibition can be observed at any turnover number of CcO, rather than only at low TN (<10s -1 ) as found previously. The inhibition requires partially oxidized state of cytochrome c and is favored by high ionic strength with a sharp transition at 0.1-0.2M. The high K i =20-26μM found for CcO inhibition by calcium matches closely the known value of "K m " for Ca 2+ -induced activation of the mitochondrial calcium uniporter. The inhibition of CcO by Ca 2+ is proposed to modulate mitochondrial Ca 2+ -uptake via the mitochondrial calcium uniporter, promote permeability transition pore opening and induce reduction of Mia40 in the mitochondrial intermembrane space. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Ionic liquid electrolytes for dye-sensitized solar cells.

    PubMed

    Gorlov, Mikhail; Kloo, Lars

    2008-05-28

    The potential of room-temperature molten salts (ionic liquids) as solvents for electrolytes for dye-sensitized solar cells has been investigated during the last decade. The non-volatility, good solvent properties and high electrochemical stability of ionic liquids make them attractive solvents in contrast to volatile organic solvents. Despite this, the relatively high viscosity of ionic liquids leads to mass-transport limitations. Here we review recent developments in the application of different ionic liquids as solvents or components of liquid and quasi-solid electrolytes for dye-sensitized solar cells.

  6. Highly luminescent and color-tunable salicylate ionic liquids

    DOE PAGES

    Campbell, Paul S.; Yang, Mei; Pitz, Demian; ...

    2014-03-11

    High quantum yields of up to 40.5 % can be achieved in salicylate-bearing ionic liquids. A range of these ionic liquids have been synthesized and their photoluminescent properties studied in detail. The differences noted can be related back to the structure of the ionic liquid cation and possible interionic interactions. It is found that shifts of emission, particularly in the pyridinium-based ionic liquids, can be related to cation–anion pairing interactions. Furthermore, facile and controlled emission color mixing is demonstrated through combining different ILs, with emission colors ranging from blue to yellow.

  7. Facile green synthesis of silver doped fluor-hydroxyapatite/β-cyclodextrin nanocomposite in the dual acting fluorine-containing ionic liquid medium for bone substitute applications

    NASA Astrophysics Data System (ADS)

    Jegatheeswaran, S.; Selvam, S.; Sri Ramkumar, V.; Sundrarajan, M.

    2016-05-01

    A novel green route has approached for the synthesis of silver doped fluor-hydroxyapatite/β-cyclodextrin composite by the assistance of fluorine-based ionic liquid. The selected [BMIM]BF4 ionic liquid for this work plays a dual role as fluoride source and templating agent. It helps to improve the crystalline structures and the shape of the composites. The crystallinity, surface morphology, topographical studies of the synthesized composite were validated. The XRD results of the composite show typical Ag reflection peaks at 38.1°, 44.2° and 63.4°. The ionic liquid assisted composite displayed the hexagonal shaped HA particles, which are surrounded by spherical nano-Ag particles and these particles are uniformly dispersed in the β-cyclodextrin matrix in both horizontal and cross sections from surface morphology observations. The Ionic liquid assisted silver doped fluor-hydroxyapatite/β-cyclodextrin composite exhibited very good antibacterial activities against Escherichia coli, Salmonella typhi, Klebsiella pneumonia and Serratia liquefaciens pathogens. The antibacterial proficiencies were established using Confocal Laser Scanning Microscopic developed biofilms images and bacterial growth curve analysis. The cytotoxicity results of the ionic liquid assisted composite analyzed by cell proliferation in vitro studies using human osteosarcoma cell line (MG-63) and this study has shown excellent biocompatibility.

  8. Active chemisorption sites in functionalized ionic liquids for carbon capture.

    PubMed

    Cui, Guokai; Wang, Jianji; Zhang, Suojiang

    2016-07-25

    Development of novel technologies for the efficient and reversible capture of CO2 is highly desired. In the last decade, CO2 capture using ionic liquids has attracted intensive attention from both academia and industry, and has been recognized as a very promising technology. Recently, a new approach has been developed for highly efficient capture of CO2 by site-containing ionic liquids through chemical interaction. This perspective review focuses on the recent advances in the chemical absorption of CO2 using site-containing ionic liquids, such as amino-based ionic liquids, azolate ionic liquids, phenolate ionic liquids, dual-functionalized ionic liquids, pyridine-containing ionic liquids and so on. Other site-containing liquid absorbents such as amine-based solutions, switchable solvents, and functionalized ionic liquid-amine blends are also investigated. Strategies have been discussed for how to activate the existent reactive sites and develop novel reactive sites by physical and chemical methods to enhance CO2 absorption capacity and reduce absorption enthalpy. The carbon capture mechanisms of these site-containing liquid absorbents are also presented. Particular attention has been paid to the latest progress in CO2 capture in multiple-site interactions by amino-free anion-functionalized ionic liquids. In the last section, future directions and prospects for carbon capture by site-containing ionic liquids are outlined.

  9. Ionic Liquid Epoxy Resin Monomers

    NASA Technical Reports Server (NTRS)

    Paley, Mark S. (Inventor)

    2013-01-01

    Ionic liquid epoxide monomers capable of reacting with cross-linking agents to form polymers with high tensile and adhesive strengths. Ionic liquid epoxide monomers comprising at least one bis(glycidyl) N-substituted nitrogen heterocyclic cation are made from nitrogen heterocycles corresponding to the bis(glycidyl) N-substituted nitrogen heterocyclic cations by a method involving a non-nucleophilic anion, an alkali metal cation, epichlorohydrin, and a strong base.

  10. Boundary control of bidomain equations with state-dependent switching source functions in the ionic model

    NASA Astrophysics Data System (ADS)

    Chamakuri, Nagaiah; Engwer, Christian; Kunisch, Karl

    2014-09-01

    Optimal control for cardiac electrophysiology based on the bidomain equations in conjunction with the Fenton-Karma ionic model is considered. This generic ventricular model approximates well the restitution properties and spiral wave behavior of more complex ionic models of cardiac action potentials. However, it is challenging due to the appearance of state-dependent discontinuities in the source terms. A computational framework for the numerical realization of optimal control problems is presented. Essential ingredients are a shape calculus based treatment of the sensitivities of the discontinuous source terms and a marching cubes algorithm to track iso-surface of excitation wavefronts. Numerical results exhibit successful defibrillation by applying an optimally controlled extracellular stimulus.

  11. Ionic liquids: Promising green solvents for lignocellulosic biomass utilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Chang Geun; Pu, Yunqiao; Ragauskas, Arthur J.

    Ionic liquids are effective solvents/media for the utilization of lignocellulosic biomass. The unique properties of ionic liquids enable them to effectively dissolve and/or convert the biomass into various types of products. This review aims to cover the latest progress achieved in applications of ionic liquids on biomass conversion and analysis. Specifically, several recently developed approaches on how to overcome current challenges on the use of ionic liquids in the biomass conversion were highlighted. Here, recent studies addressing the potential applications of ionic liquids for the production of novel biomass-derived chemicals and materials were also discussed.

  12. Ionic liquids: Promising green solvents for lignocellulosic biomass utilization

    DOE PAGES

    Yoo, Chang Geun; Pu, Yunqiao; Ragauskas, Arthur J.

    2017-06-01

    Ionic liquids are effective solvents/media for the utilization of lignocellulosic biomass. The unique properties of ionic liquids enable them to effectively dissolve and/or convert the biomass into various types of products. This review aims to cover the latest progress achieved in applications of ionic liquids on biomass conversion and analysis. Specifically, several recently developed approaches on how to overcome current challenges on the use of ionic liquids in the biomass conversion were highlighted. Here, recent studies addressing the potential applications of ionic liquids for the production of novel biomass-derived chemicals and materials were also discussed.

  13. Chemical surface deposition of ultra-thin semiconductors

    DOEpatents

    McCandless, Brian E.; Shafarman, William N.

    2003-03-25

    A chemical surface deposition process for forming an ultra-thin semiconducting film of Group IIB-VIA compounds onto a substrate. This process eliminates particulates formed by homogeneous reactions in bath, dramatically increases the utilization of Group IIB species, and results in the formation of a dense, adherent film for thin film solar cells. The process involves applying a pre-mixed liquid coating composition containing Group IIB and Group VIA ionic species onto a preheated substrate. Heat from the substrate causes a heterogeneous reaction between the Group IIB and VIA ionic species of the liquid coating composition, thus forming a solid reaction product film on the substrate surface.

  14. Sequential Vapor Infiltration Treatment Enhances the Ionic Current Rectification Performance of Composite Membranes Based on Mesoporous Silica Confined in Anodic Alumina.

    PubMed

    Liang, Yanyan; Liu, Zhengping

    2016-12-20

    Ionic current rectification of nanofluidic diode membranes has been studied widely in recent years because it is analogous to the functionality of biological ion channels in principle. We report a new method to fabricate ionic current rectification membranes based on mesoporous silica confined in anodic aluminum oxide (AAO) membranes. Two types of mesostructured silica nanocomposites, hexagonal structure and nanoparticle stacked structure, were used to asymmetrically fill nanochannels of AAO membranes by a vapor-phase synthesis (VPS) method with aspiration approach and were further modified via sequence vapor infiltration (SVI) treatment. The ionic current measurements indicated that SVI treatment can modulate the asymmetric ionic transport in prepared membranes, which exhibited clear ionic current rectification phenomenon under optimal conditions. The ionic current rectifying behavior is derived from the asymmetry of surface conformations, silica species components, and hydrophobic wettability, which are created by the asymmetrical filling type, silica depositions on the heterogeneous membranes, and the condensation of silanol groups. This article provides a considerable strategy to fabricate composite membranes with obvious ionic current rectification performance via the cooperation of the VPS method and SVI treatment and opens up the potential of mesoporous silica confined in AAO membranes to mimic fluid transport in biological processes.

  15. High-Surface-Area CO2 Sponge: High Performance CO2 Scrubbing Based on Hollow Fiber-Supported Designer Ionic Liquid Sponges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    IMPACCT Project: The team from ORNL and Georgia Tech is developing a new technology that will act like a sponge, integrating a new, alcohol-based ionic liquid into hollow fibers (magnified image, right) to capture CO2 from the exhaust produced by coal-fired power plants. Ionic liquids, or salts that exist in liquid form, are promising materials for carbon capture and storage, but their tendency to thicken when combined with CO2 limits their efficiency and poses a challenge for their development as a cost-effective alternative to current-generation solutions. Adding alcohol to the mix limits this tendency to thicken in the presence ofmore » CO2 but can also make the liquid more likely to evaporate, which would add significantly to the cost of CO2 capture. To solve this problem, ORNL is developing new classes of ionic liquids with high capacity for absorbing CO2. ORNL’s sponge would reduce the cost associated with the energy that would need to be diverted from power plants to capture CO2 and release it for storage.« less

  16. Competitive Adsorption and Ordered Packing of Counterions near Highly Charged Surfaces: From Mean-Field Theory to Monte Carlo Simulations

    PubMed Central

    Wen, Jiayi; Zhou, Shenggao; Xu, Zhenli; Li, Bo

    2013-01-01

    Competitive adsorption of counterions of multiple species to charged surfaces is studied by a size-effect included mean-field theory and Monte Carlo (MC) simulations. The mean-field electrostatic free-energy functional of ionic concentrations, constrained by Poisson’s equation, is numerically minimized by an augmented Lagrangian multiplier method. Unrestricted primitive models and canonical ensemble MC simulations with the Metropolis criterion are used to predict the ionic distributions around a charged surface. It is found that, for a low surface charge density, the adsorption of ions with a higher valence is preferable, agreeing with existing studies. For a highly charged surface, both of the mean-field theory and MC simulations demonstrate that the counterions bind tightly around the charged surface, resulting in a stratification of counterions of different species. The competition between mixed entropy and electrostatic energetics leads to a compromise that the ionic species with a higher valence-to-volume ratio has a larger probability to form the first layer of stratification. In particular, the MC simulations confirm the crucial role of ionic valence-to-volume ratios in the competitive adsorption to charged surfaces that had been previously predicted by the mean-field theory. The charge inversion for ionic systems with salt is predicted by the MC simulations but not by the mean-field theory. This work provides a better understanding of competitive adsorption of counterions to charged surfaces and calls for further studies on the ionic size effect with application to large-scale biomolecular modeling. PMID:22680474

  17. Ionic Conductivity and Air Stability of Al-Doped Li₇La₃Zr₂O₁₂ Sintered in Alumina and Pt Crucibles.

    PubMed

    Xia, Wenhao; Xu, Biyi; Duan, Huanan; Guo, Yiping; Kang, Hongmei; Li, Hua; Liu, Hezhou

    2016-03-02

    Li7La3Zr2O12 (LLZO) is a promising electrolyte material for all-solid-state battery due to its high ionic conductivity and good stability with metallic lithium. In this article, we studied the effect of crucibles on the ionic conductivity and air stability by synthesizing 0.25Al doped LLZO pellets in Pt crucibles and alumina crucibles, respectively. The results show that the composition and microstructure of the pellets play important roles influencing the ionic conductivity, relative density, and air stability. Specifically, the 0.25Al-LLZO pellets sintered in Pt crucibles exhibit a high relative density (∼96%) and high ionic conductivity (4.48 × 10(-4) S cm(-1)). The ionic conductivity maintains 3.6 × 10(-4) S cm(-1) after 3-month air exposure. In contrast, the ionic conductivity of the pellets from alumina crucibles is about 1.81 × 10(-4) S cm(-1) and drops to 2.39 × 10(-5) S cm(-1) 3 months later. The large grains and the reduced grain boundaries in the pellets sintered in Pt crucibles are favorable to obtain high ionic conductivity and good air stability. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy results suggest that the formation of Li2CO3 on the pellet surface is probably another main reason, which is also closely related to the relative density and the amount of grain boundary within the pellets. This work stresses the importance of synthesis parameters, crucibles included, to obtain the LLZO electrolyte with high ionic conductivity and good air stability.

  18. Direct mapping of ion diffusion times on LiCoO2 surfaces with nanometer resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Senli; Jesse, Stephen; Kalnaus, Sergiy

    2011-01-01

    The strong coupling between the molar volume and mobile ion concentration in ionically-conductive solids is used for spatially-resolved studies of ionic transport on the polycrystalline LiCoO2 surface by time-resolved spectroscopy. Strong variability between ionic transport at the grain boundaries and within the grains is observed, and the relationship between relaxation and hysteresis loop formation is established. The use of the strain measurements allows ionic transport be probed on the nanoscale, and suggests enormous potential for probing ionic materials and devices.

  19. Notre Dame Geothermal Ionic Liquids Research: Ionic Liquids for Utilization of Geothermal Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brennecke, Joan F.

    The goal of this project was to develop ionic liquids for two geothermal energy related applications. The first goal was to design ionic liquids as high temperature heat transfer fluids. We identified appropriate compounds based on both experiments and molecular simulations. We synthesized the new ILs, and measured their thermal stability, measured storage density, viscosity, and thermal conductivity. We found that the most promising compounds for this application are aminopyridinium bis(trifluoromethylsulfonyl)imide based ILs. We also performed some measurements of thermal stability of IL mixtures and used molecular simulations to better understand the thermal conductivity of nanofluids (i.e., mixtures of ILsmore » and nanoparticles). We found that the mixtures do not follow ideal mixture theories and that the addition of nanoparticles to ILs may well have a beneficial influence on the thermal and transport properties of IL-based heat transfer fluids. The second goal was to use ionic liquids in geothermally driven absorption refrigeration systems. We performed copious thermodynamic measurements and modeling of ionic liquid/water systems, including modeling of the absorption refrigeration systems and the resulting coefficients of performance. We explored some IL/organic solvent mixtures as candidates for this application, both with experimentation and molecular simulations. We found that the COPs of all of the IL/water systems were higher than the conventional system – LiBr/H2O. Thus, IL/water systems appear very attractive for absorption refrigeration applications.« less

  20. ``Smart'' Surfaces of Polymer Brushes

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Meng, Dong

    2009-03-01

    ``Smart'' surfaces, also known as stimuli-responsive surfaces, can change their properties (e.g., wettability, adhesion, friction, elasticity, and biocompatibility) in response to external stimuli (e.g., temperature, pressure, light, solvent selectivity, ionic strength, type of salt, pH, applied electric field, etc.). In this work, we use numerical self-consistent field calculations to study in detail the structure and stimuli- responses of various polymer brushes, including (1) the thermo- response of PNIPAM brushes in water, (2) solvent-response of uncharged diblock copolymer brushes, and (3) the stimuli- response of charged two-component polymer brushes (including both the binary A/B brushes and diblock copolymer A-B brushes) to ionic strength, pH, and applied electric field. Among the many design parameters (e.g., chain lengths, grafting densities, A-B incompatibility, degree of ionization of charged polymers, etc.) we identify those that strongly affect the surface switchability. Such knowledge is useful to the experimental design of these smart polymer brushes for their applications.

  1. Physics of transduction in ionic liquid-swollen Nafion membranes

    NASA Astrophysics Data System (ADS)

    Bennett, Matthew; Leo, Donald

    2006-03-01

    Ionic polymer transducers are a class of electroactive polymers that are able to generate large strains (1-5%) in response to low voltage inputs (1-5 V). Additionally, these materials generate electrical charge in response to mechanical strain and are therefore able to operate as soft, distributed sensors. Traditionally, ionic polymer transducers have been limited in their application by their hydration dependence. This work seeks to overcome this limitation by replacing the water with an ionic liquid. Ionic liquids are molten salts that exhibit very high thermal and electrochemical stability while also possessing high ionic conductivity. Results have shown that an ionic liquid-swollen ionic polymer transducer can operate for more than 250,000 cycles in air as compared to about 2,000 cycles for a water-swollen transducer. The current work examines the mechanisms of transduction in ionic liquid-swollen transducers based on Nafion polymer membranes. Specifically, the morphology and relevant ion associations within these membranes are investigated by the use of small-angle X-ray scattering (SAXS), Fourier transform infrared spectroscopy (FTIR), and nuclear magnetic resonance spectroscopy (NMR). These results reveal that the ionic liquid interacts with the membrane in much the same way that water does, and that the counterions of the Nafion polymer are the primary charge carriers. The results of these analyses are compared to the macroscopic transduction behavior in order to develop a model of the charge transport mechanism responsible for electromechanical coupling in these membranes.

  2. Resistive sensing of gaseous nitrogen dioxide using a dispersion of single-walled carbon nanotubes in an ionic liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Prabhash; Department of Nanoengineering, Samara State Aerospace University, 443086 Samara; Pavelyev, V.S.

    2016-06-15

    Graphical abstract: Ionic liquid ([C6-mim]PF6) used as dispersant agent for SWCNTs: An investigations were carried out to find the structural quality and surface modification for sensor application. - Highlights: • An effective technique based on Ionic liquids (IL) and their use as a dispersant. • Electron microscopy and spectroscopy for structure characterization. • Covalent linkage of ILs with SWNTs and dispersion of SWCNTs. • The IL-wrapped sensing film, capable for detecting trace levels of gas. - Abstract: Single-walled carbon nanotubes (SWCNTs) were dispersed in an imidazolium-based ionic liquid (IL) and investigated in terms of structural quality, surface functionalization and inter-CNTmore » force. Analysis by field emission electron microscopy and transmission electron microscopy shows the IL layer to coat the SWNTs, and FTIR and Raman spectroscopy confirm strong binding of the ILs to the SWNTs. Two kinds of resistive sensors were fabricated, one by drop casting of IL-wrapped SWCNTs, the other by conventional dispersion of SWCNTs. Good response and recovery to NO{sub 2} is achieved with the IL-wrapped SWCNTs material upon UV-light exposure, which is needed because decrease the desorption energy barrier to increase the gas molecule desorption. NO{sub 2} can be detected in the 1–20 ppm concentration range. The sensor is not interfered by humidity due to the hydrophobic tail of PF6 (ionic liquid) that makes our sensor highly resistant to moisture.« less

  3. Excimer Formation Dynamics of Dipyrenyldecane in Structurally Different Ionic Liquids.

    PubMed

    Yadav, Anita; Pandey, Siddharth

    2017-12-07

    Ionic liquids, being composed of ions alone, may offer alternative pathways for molecular aggregation. These pathways could be controlled by the chemical structure of the cation and the anion of the ionic liquids. Intramolecular excimer formation dynamics of a bifluorophoric probe, 1,3-bis(1-pyrenyl)decane [1Py(10)1Py], where the fluorophoric pyrene moieties are separated by a long decyl chain, is investigated in seven different ionic liquids in 10-90 °C temperature range. The long alkyl separator allows for ample interaction with the solubilizing milieu prior to the formation of the excimer. The ionic liquids are composed of two sets, one having four ionic liquids of 1-butyl-3-methylimidazolium cation ([bmim + ]) with different anions and the other having four ionic liquids of bis(trifluoromethylsulfonyl)imide anion ([Tf 2 N - ]) with different cations. The excimer-to-monomer emission intensity ratio (I E /I M ) is found to increase with increasing temperature in sigmoidal fashion. Chemical structure of the ionic liquid controls the excimer formation efficiency, as I E /I M values within ionic liquids with the same viscosities are found to be significantly different. The excited-state intensity decay kinetics of 1Py(10)1Py in ionic liquids do not adhere to a simplistic Birk's scheme, where only one excimer conformer forms after excitation. The apparent rate constants of excimer formation (k a ) in highly viscous ionic liquids are an order of magnitude lower than those reported in organic solvents. In general, the higher the viscosity of the ionic liquid, the more sensitive is the k a to the temperature with higher activation energy, E a . The trend in E a is found to be similar to that for activation energy of the viscous flow (E a,η ). Stokes-Einstein relationship is not followed in [bmim + ] ionic liquids; however, with the exception of [choline][Tf 2 N], it is found to be followed in [Tf 2 N - ] ionic liquids suggesting the cyclization dynamics of 1Py(10)1Py

  4. Long alkyl-chain imidazolium ionic liquids: Antibiofilm activity against phototrophic biofilms.

    PubMed

    Reddy, G Kiran Kumar; Nancharaiah, Y V; Venugopalan, V P

    2017-07-01

    Biofilm formation is problematic and hence undesirable in medical and industrial settings. In addition to bacteria, phototrophic organisms are an integral component of biofilms that develop on surfaces immersed in natural waters. 1-Alkyl-3-methyl imidazolium ionic liquids (IL) with varying alkyl chain length were evaluated for their influence on the formation of monospecies (Navicula sp.) and multispecies biofilms under phototrophic conditions. An IL with a long alkyl side chain, 1-hexadecyl-3-methylimidaazolium chloride ([C 16 (MIM)][Cl]) retarded growth, adhesion and biofilm formation of Navicula sp. at concentrations as low as 5μM. Interestingly, [C 16 (MIM)][Cl] was very effective in preventing multispecies phototrophic biofilms on fibre reinforced plastic surfaces immersed in natural waters (fresh and seawater). SYTOX ® Green staining and chlorophyll leakage assay confirmed that the biocidal activity of the IL was exerted through cell membrane disruption. The data show that [C 16 (MIM)][Cl] is a potent inhibitor of phototrophic biofilms at micromolar concentrations and a promising agent for biofilm control in re-circulating cooling water systems. This is the first report that ionic liquids inhibit biofilm formation by phototrophic organisms which are important members of biofilms in streams and cooling towers. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Method for Reduction of Silver Biocide Plating on Metal Surfaces

    NASA Technical Reports Server (NTRS)

    Steele, John; Nalette, Timothy; Beringer, Durwood

    2013-01-01

    Silver ions in aqueous solutions (0.05 to 1 ppm) are used for microbial control in water systems. The silver ions remain in solution when stored in plastic containers, but the concentration rapidly decreases to non-biocidal levels when stored in metal containers. The silver deposits onto the surface and is reduced to non-biocidal silver metal when it contacts less noble metal surfaces, including stainless steel, titanium, and nickel-based alloys. Five methods of treatment of contact metal surfaces to deter silver deposition and reduction are proposed: (1) High-temperature oxidation of the metal surface; (2) High-concentration silver solution pre-treatment; (3) Silver plating; (4) Teflon coat by vapor deposition (titanium only); and (5) A combination of methods (1) and (2), which proved to be the best method for the nickel-based alloy application. The mechanism associated with surface treatments (1), (2), and (5) is thought to be the development of a less active oxide layer that deters ionic silver deposition. Mechanism (3) is an attempt to develop an equilibrium ionic silver concentration via dissolution of metallic silver. Mechanism (4) provides a non-reactive barrier to deter ionic silver plating. Development testing has shown that ionic silver in aqueous solution was maintained at essentially the same level of addition (0.4 ppm) for up to 15 months with method (5) (a combination of methods (1) and (2)), before the test was discontinued for nickel-based alloys. Method (1) resulted in the maintenance of a biocidal level (approximately 0.05 ppm) for up to 10 months before that test was discontinued for nickel-based alloys. Methods (1) and (2) used separately were able to maintain ionic silver in aqueous solution at essentially the same level of addition (0.4 ppm) for up to 10 months before the test was discontinued for stainless steel alloys. Method (3) was only utilized for titanium alloys, and was successful at maintaining ionic silver in aqueous solution at

  6. Time-dependent density functional theory for the charging kinetics of electric double layer containing room-temperature ionic liquids

    DOE PAGES

    Lian, Cheng; Univ. of California, Riverside, CA; Zhao, Shuangliang; ...

    2016-11-29

    Understanding the charging kinetics of electric double layers is of fundamental importance for the design and development of novel electrochemical devices such as supercapacitors and field-effect transistors. In this paper, we study the dynamic behavior of room-temperature ionic liquids using a classical time-dependent density functional theory that accounts for the molecular excluded volume effects, the electrostatic correlations, and the dispersion forces. While the conventional models predict a monotonic increase of the surface charge with time upon application of an electrode voltage, our results show that dispersion between ions results in a non-monotonic increase of the surface charge with the durationmore » of charging. Finally and furthermore, we investigate the effects of van der Waals attraction between electrode/ionic-liquid interactions on the charging processes.« less

  7. Ionic liquid containing hydroxamate and N-alkyl sulfamate ions

    DOEpatents

    Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan

    2016-03-15

    Embodiments of the invention are related to ionic liquids and more specifically to ionic liquids used in electrochemical metal-air cells in which the ionic liquid includes a cation and an anion selected from hydroxamate and/or N-alkyl sulfamate anions.

  8. Mitochondria-rich cells adjustments and ionic balance in the Neotropical fish Prochilodus lineatus exposed to titanium dioxide nanoparticles.

    PubMed

    Carmo, Talita L L; Azevedo, Vinícius C; Siqueira, Priscila R; Galvão, Tiago D; Santos, Fabrício A; Martinez, Cláudia B R; Appoloni, Carlos R; Fernandes, Marisa N

    2018-07-01

    Manufactured titanium dioxide nanoparticles (TiO 2 -NP) have been intensely applied in numerous industrial products and may be a risk for aquatic systems as they are not completely removed from domestic and industrial wastes after water treatment. This study evaluated the osmo- and ionic balance, Na + /K + -ATPase, H + -ATPase and carbonic anhydrase activities and the mitochondria-rich cells (MRC) in the gills and kidney of the Neotropical fish Prochilodus lineatus after 2 (acute) and 14 (subchronic) days of exposure to nominal 0, 1, 5, 10 and 50 mg L -1 TiO 2 -NP. The nominal concentrations corresponded to 0.0, 0.6, 1.6, 2.7 and 18.1 mg L -1 suspended TiO 2 -NP, respectively, in the water column one hour after NP introduction and were maintained for at least 24 h. Acute exposure to TiO 2 -NP decreased plasma osmolality and Ca 2+ levels. Na + /K + -ATPase, H + -ATPase and carbonic anhydrase activities were inhibited in the gills, but not in the kidney. Total MRC density did not change in gills and kidneys. At gill surface, total MRC density decreased in fish exposed to 50 mg L -1 TiO 2 -NP and the total MRC fractional surface area unchanged although, there were some changes in the fractional area of MRC with apical microvilli (MRCm) and MRC with apical sponge-like structure (MRCs). MRCm was more abundant than MRCs. After subchronic exposure, there was no change in plasma osmolality, ionic balance and enzyme activities. Total gill MRC density increased in the filament epithelium and renal tubules. In the gills, MRC contacting water exhibited some adjustments. Total MRC and fractional surface area unchanged, but there was an increase of MRCs contacting water at gill surface after exposure to10 and 50 mg L -1 TiO 2 -NP. MRC proliferation in filament epithelium and in renal tubules as well as the increasing MRCs at gill surface may have contributed to avoid change in plasma osmolality, ionic balance and enzyme activities and suggested a cellular physiological

  9. Thioimidazolium Ionic Liquids as Tunable Alkylating Agents.

    PubMed

    Guterman, Ryan; Miao, Han; Antonietti, Markus

    2018-01-19

    Alkylating ionic liquids based on the thioimidazolium structure combine the conventional properties of ionic liquids, including low melting point and nonvolatility, with the alkylating function. Alkyl transfer occurs exclusively from the S-alkyl position, thus allowing for easy derivatization of the structure without compromising specificity. We apply this feature to tune the electrophilicty of the cation to profoundly affect the reactivity of these alkylating ionic liquids, with a caffeine-derived compound possessing the highest reactivity. Anion choice was found to affect reaction rates, with iodide anions assisting in the alkylation reaction through a "shuttling" process. The ability to tune the properties of the alkylating agent using the toolbox of ionic liquid chemistry highlights the modular nature of these compounds as a platform for alkylating agent design and integration in to future systems.

  10. Highly stretchable, transparent ionic touch panel

    NASA Astrophysics Data System (ADS)

    Kim, Chong-Chan; Lee, Hyun-Hee; Oh, Kyu Hwan; Sun, Jeong-Yun

    2016-08-01

    Because human-computer interactions are increasingly important, touch panels may require stretchability and biocompatibility in order to allow integration with the human body. However, most touch panels have been developed based on stiff and brittle electrodes. We demonstrate an ionic touch panel based on a polyacrylamide hydrogel containing lithium chloride salts. The panel is soft and stretchable, so it can sustain a large deformation. The panel can freely transmit light information because the hydrogel is transparent, with 98% transmittance for visible light. A surface-capacitive touch system was adopted to sense a touched position. The panel can be operated under more than 1000% areal strain without sacrificing its functionalities. Epidermal touch panel use on skin was demonstrated by writing words, playing a piano, and playing games.

  11. Ion Transport in Nanostructured Block Copolymer/Ionic Liquid Membranes

    NASA Astrophysics Data System (ADS)

    Hoarfrost, Megan Lane

    Incorporating an ionic liquid into one block copolymer microphase provides a platform for combining the outstanding electrochemical properties of ionic liquids with a number of favorable attributes provided by block copolymers. In particular, block copolymers thermodynamically self-assemble into well-ordered nanostructures, which can be engineered to provide a durable mechanical scaffold and template the ionic liquid into continuous ion-conducting nanochannels. Understanding how the addition of an ionic liquid affects the thermodynamic self-assembly of block copolymers, and how the confinement of ionic liquids to block copolymer nanodomains affects their ion-conducting properties is essential for predictable structure-property control. The lyotropic phase behavior of block copolymer/ionic liquid mixtures is shown to be reminiscent of mixtures of block copolymers with selective molecular solvents. A variety of ordered microstructures corresponding to lamellae, hexagonally close-packed cylinders, body-centered cubic, and face-centered cubic oriented micelles are observed in a model system composed of mixtures of imidazolium bis(trifluoromethylsulfonyl)imide ([Im][TFSI]) and poly(styrene- b-2-vinyl pyridine) (PS-b-P2VP). In contrast to block copolymer/molecular solvent mixtures, the interfacial area occupied by each PS-b-P2VP chain decreases upon the addition of [Im][TFSI], indicating a considerable increase in the effective segregation strength of the PS-b-P2VP copolymer with ionic liquid addition. The relationship between membrane structure and ionic conductivity is illuminated through the development of scaling relationships that describe the ionic conductivity of block copolymer/ionic liquid mixtures as a function of membrane composition and temperature. It is shown that the dominant variable influencing conductivity is the overall volume fraction of ionic liquid in the mixture, which means there

  12. Ionic Liquids and Poly(ionic liquid)s for Morphosynthesis of Inorganic Materials.

    PubMed

    Gao, Min-Rui; Yuan, Jiayin; Antonietti, Markus

    2017-04-24

    Ionic liquids (ILs) are new, innovative ionic solvents with rich physicochemical properties and intriguing pre-organized solvent structures; these materials offer great potential to impact across versatile areas of scientific research, for example, synthetic inorganic chemistry. Recent use of ILs as precursors, templates, and solvents has led to inorganic materials with tailored sizes, dimensionalities, morphologies, and functionalities that are difficult to obtain, or even not accessible, by using conventional solvents. Poly(ionic liquid)s (PILs) polymerized from IL monomers also raise the prospect of modifying nucleation, growth, and crystallization of inorganic objects, shedding light on the synthesis of a wide range of new materials. Here we survey recent key progress in using ILs and PILs in the field of synthetic inorganic chemistry. As well as highlighting the unique features of ILs and PILs that enable advanced synthesis, the effects of adding other solvents to the final products, along with the emerging applications of the created inorganic materials will be discussed. We finally provide an outlook on several development opportunities that could lead to new advancements of this exciting research field. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Indoor air purification by dielectric barrier discharge combined with ionic wind: physical and microbiological investigations

    NASA Astrophysics Data System (ADS)

    Timmermann, E.; Prehn, F.; Schmidt, M.; Höft, H.; Brandenburg, R.; Kettlitz, M.

    2018-04-01

    A non-thermal plasma source based on a surface dielectric barrier discharge (DBD) is developed for purification of recirculating air in operating theatres in hospitals. This is a challenging application due to high flow rates, short treatment times and the low threshold for ozone in the ventilated air. Therefore, the surface DBD was enhanced in order to generate an ionic wind, which can deflect and thus, filter out airborne microorganisms. Electrical and gas diagnostics as well as microbiological experiments were performed in a downscaled plasma source under variation of various electrical parameters, but application-oriented airflow velocity and humidity. The dependence of electrical power and ozone concentration as well as charged particles in the plasma treated air on frequency, voltage and relative humidity is presented and discussed. The presence of humidity causes a more conductive dielectric surface and thus a weaker plasma formation, especially at low frequency. The airborne test bacteria, Escherichia coli, showed significant effect to plasma treatment (up to 20% reduction) and to plasma with ionic wind (up to 90% removal); especially a configuration with 70% removal and an accompanying ozone concentration of only 360 ppb is promising for future application.

  14. Constraints on CME Evolution from in situ Observations of Ionic Charge States

    NASA Technical Reports Server (NTRS)

    Gruesbeck, Jacob R.; Lepri, Susan T.; Zurbuchen, Thomas H.; Antiochos, Spiro K.

    2010-01-01

    We present a novel procedure for deriving the physical properties of Coronal Mass Ejections (CMES) in the corona. Our methodology uses in-situ measurements of ionic charge states of C, O, Si and Fe in the heliosphere and interprets them in the context of a model for the early evolution of ICME plasma, between 2 - 5 R-solar. We find that the data can be fit only by an evolution that consists of an initial heating of the plasma, followed by an expansion that ultimately results in cooling. The heating profile is consistent with a compression of coronal plasma due to flare reconnect ion jets and an expansion cooling due to the ejection, as expected from the standard CME/flare model. The observed frozen-in ionic charge states reflect this time-history and, therefore, provide important constraints for the heating and expansion time-scales, as well as the maximum temperature the CME plasma is heated to during its eruption. Furthermore, our analysis places severe limits on the possible density of CME plasma in the corona. We discuss the implications of our results for CME models and for future analysis of ICME plasma composition.

  15. Dissolution and fractionation of nut shells in ionic liquids.

    PubMed

    Carneiro, Aristides P; Rodríguez, Oscar; Macedo, Eugénia A

    2017-03-01

    The aim of this work was to study the dissolution of raw peanut and chestnut shells in ionic liquids. Dissolution of raw biomass up to 7wt% was achieved under optimized operatory conditions. Quantification of polysaccharides dissolved through quantitative 13 Cq NMR revealed extractions of the cellulosic material to ionic liquids as high as 87%. Regeneration experiments using an antisolvent mixture allowed to recover the cellulosic material and the ionic liquid. The overall mass balance presented very low loss rates (<8%), recoveries of 75% and 95% of cellulosic material from peanut and chestnut shells, respectively, and the recovery of more than 95% of the ionic liquid in both cases. These results show the high potential of using nut shells and ionic liquids for biorefining purposes. Moreover, high recovery of ionic liquids favors the process from an economical point of view. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Ionic transport through sub-10 nm diameter hydrophobic high-aspect ratio nanopores: experiment, theory and simulation

    PubMed Central

    Balme, Sébastien; Picaud, Fabien; Manghi, Manoel; Palmeri, John; Bechelany, Mikhael; Cabello-Aguilar, Simon; Abou-Chaaya, Adib; Miele, Philippe; Balanzat, Emmanuel; Janot, Jean Marc

    2015-01-01

    Fundamental understanding of ionic transport at the nanoscale is essential for developing biosensors based on nanopore technology and new generation high-performance nanofiltration membranes for separation and purification applications. We study here ionic transport through single putatively neutral hydrophobic nanopores with high aspect ratio (of length L = 6 μm with diameters ranging from 1 to 10 nm) and with a well controlled cylindrical geometry. We develop a detailed hybrid mesoscopic theoretical approach for the electrolyte conductivity inside nanopores, which considers explicitly ion advection by electro-osmotic flow and possible flow slip at the pore surface. By fitting the experimental conductance data we show that for nanopore diameters greater than 4 nm a constant weak surface charge density of about 10−2 C m−2 needs to be incorporated in the model to account for conductance plateaus of a few pico-siemens at low salt concentrations. For tighter nanopores, our analysis leads to a higher surface charge density, which can be attributed to a modification of ion solvation structure close to the pore surface, as observed in the molecular dynamics simulations we performed. PMID:26036687

  17. Extensive ionic partitioning in interfaces that membranous and biomimetic surfaces form with electrolytes: Antitheses of the gold-electrolyte interface

    NASA Astrophysics Data System (ADS)

    Chilcott, Terry; Guo, Chuan; Coster, Hans

    2013-04-01

    Maxwell-Wagner modeling of electrical impedance measurements of tetradecane-electrolyte systems yielded three interfacial layers between the tetradecane layer and the bulk electrolytes of concentration ranging from 1-300 mM KCl whereas the gold-electrolyte system yielded only one layer. The conductivity and thickness for the surface layer were orders of magnitude different from that expected for the Gouy-Chapman layer and did not reflect dependencies of the Debye length on concentration. Conductivity values for the three layers were less than those of the bulk electrolyte but exhibited a dependency on concentration similar to that expected for the bulk. Thickness values for the layers indicate an interface extending ~106 Å into the bulk electrolyte, which contrasts with the gold-electrolyte interface that extended only 20-30 Å into the bulk. Maxwell-Wagner characterizations of both interfaces were consistent with spatial distributions of ionic partitioning arising from the Born energy as determined by the dielectric properties of the substrates and electrolyte. The distributions for the membranous and silicon interfaces were similar but the antitheses of that for the gold interface.

  18. Manipulating interactions between functional colloidal particles and polyethylene surfaces using interfacial engineering.

    PubMed

    Ziani, Khalid; Barish, Jeffrey A; McClements, David Julian; Goddard, Julie M

    2011-08-01

    The purpose of this study was to examine the interaction between lipid droplets and polyethylene surfaces, representative of those commonly used in food packaging. Lipid droplets with various surface charges were prepared by homogenizing corn oil and water in the presence of surfactants with different electrical characteristics: non-ionic (Tween 80, T80), cationic (lauric arginate, LAE), and/or anionic (sodium dodecyl sulfate, SDS). The ionic properties of polyethylene surfaces were modified by UV-treatment. Stable emulsions containing small droplets (d<200 nm) with nearly neutral (T80), cationic (T80: LAE), and anionic (T80: SDS) charges were prepared by adding different levels of the ionic surfactants to Tween 80 stabilized emulsions. Scanning electronic microscopy (SEM), confocal fluorescence microscopy, and ATR-FTIR showed that the number of droplets attached to the polyethylene surfaces depended on the droplet charge and the polyethylene surface characteristics. The greatest degree of droplet adsorption was observed for the cationic droplets to the UV-ozone treated polyethylene surfaces, which was attributed to electrostatic attraction. These results are important for understanding the behavior of encapsulated lipophilic components in food containers. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. One-step synthesis, wettability and foaming properties of high-performance non-ionic hydro-fluorocarbon hybrid surfactants

    NASA Astrophysics Data System (ADS)

    Peng, Ying-ying; Lu, Feng; Tong, Qing-Xiao

    2018-03-01

    In this work, a series of non-ionic hydro-fluorocarbon hybrid surfactants (C9F19CONH(CH2)3N(CmH2m+1)2, abbreviated as C9F19AM (m = 1), C9F19AE (m = 2) and C9F19AB (m = 4) were easily synthesized by one-step reaction and characterized by 1HNMR, 19FNMR and MS spectroscopy. Unlike conventional non-ionic surfactants (most hydrophilic units consisted of hydroxy or ether groups), their hydrophilic groups were composed of amide group, an eco-friendly unit. The surface activity, wettability, thermal stability and foaming performance were investigated. The results showed that the C9F19AE (C9F19CONH(CH2)3N[CH2CH3]2) had superior surface and interface activities, which could reduce the surface tension of water down to 15.37 mN/m and the interfacial tension (cyclohexane/water/surfactants) to 5.8 mN/m with a low cmc (critical micelle concentration) of 0.12 mmol/L. Through the calculation of Amin (the minimum area occupied per-surfactant molecule), we speculated this higher surface activity was related to the compatibility between hydrocarbon and fluorocarbon chains. When used as wetting and foaming agents, the C9F19AE also outperformed great advantages over conventional non-ionic fluorocarbon and hydrocarbon surfactants, which could decrease the contact angle of water on PTFE plate from 107.7° to 3.6°, and increase the foam integrated value F to 536 500 ± 3066.5 mL s. Moreover, the decomposition temperature (Td) of C9F19AE could reach up to 173 °C. This work demonstrates a valuable strategy to develop a kind of high-efficiency foaming agent via facile synthesis.

  20. CADDIS Volume 2. Sources, Stressors and Responses: Ionic Strength - Simple Conceptual Diagram

    EPA Pesticide Factsheets

    Introduction to the ionic strength module, when to list ionic strength as a candidate cause, ways to measure ionic strength, simple and detailed conceptual diagrams for ionic strength, ionic strength module references and literature reviews.

  1. CADDIS Volume 2. Sources, Stressors and Responses: Ionic Strength - Detailed Conceptual Diagram

    EPA Pesticide Factsheets

    Introduction to the ionic strength module, when to list ionic strength as a candidate cause, ways to measure ionic strength, simple and detailed conceptual diagrams for ionic strength, ionic strength module references and literature reviews.

  2. Ionic liquid compatibility in polyethylene oxide/siloxane ion gel membranes

    DOE PAGES

    Kusuma, Victor A.; Macala, Megan K.; Liu, Jian; ...

    2018-10-02

    Ion gel films were prepared by incorporating eight commercially available ionic liquids in two different cross-linked polymer matrices to evaluate their phase miscibility, gas permeability and ionic conductivity for potential applications as gas separation membranes and solid electrolyte materials. The ionic liquids cations were 1-ethyl-3-methylimidazolium, 1-ethyl-3-methylpyridinium, 1-butyl-1-methylpyrrolidinium, tributylmethylphosphonium, and butyltrimethylammonium with a common anion (bis(trifluoromethylsulfonyl)imide). In addition, ionic liquids with 1-ethyl-3-methylimidazolium cation with acetate, dicyanamide and tetrafluoroborate counterions were evaluated. The two polymers were cross-linked poly(ethylene oxide) and cross-linked poly(ethylene oxide)/siloxane copolymer. Differential scanning calorimetry, X-ray diffractometry and visual observations were performed to evaluate the ion gels’ miscibility, thermal stabilitymore » and homogeneity. Ionic liquids with the least basic anion (bis(trifluoromethylsulfonyl)imide) and aromatic cations containing acidic proton (e.g. imidazolium and pyridinium) gave the most stable and miscible ion gels. Phase stability was shown to be a function of both ionic liquid content and temperature, with phase separation observed at elevated temperatures. In conclusion, gas permeability testing with carbon dioxide and nitrogen and ionic conductivity measurements confirmed that these ionic liquids increased the gas permeability and ionic conductivity of the polymers.« less

  3. Ionic liquid compatibility in polyethylene oxide/siloxane ion gel membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kusuma, Victor A.; Macala, Megan K.; Liu, Jian

    Ion gel films were prepared by incorporating eight commercially available ionic liquids in two different cross-linked polymer matrices to evaluate their phase miscibility, gas permeability and ionic conductivity for potential applications as gas separation membranes and solid electrolyte materials. The ionic liquids cations were 1-ethyl-3-methylimidazolium, 1-ethyl-3-methylpyridinium, 1-butyl-1-methylpyrrolidinium, tributylmethylphosphonium, and butyltrimethylammonium with a common anion (bis(trifluoromethylsulfonyl)imide). In addition, ionic liquids with 1-ethyl-3-methylimidazolium cation with acetate, dicyanamide and tetrafluoroborate counterions were evaluated. The two polymers were cross-linked poly(ethylene oxide) and cross-linked poly(ethylene oxide)/siloxane copolymer. Differential scanning calorimetry, X-ray diffractometry and visual observations were performed to evaluate the ion gels’ miscibility, thermal stabilitymore » and homogeneity. Ionic liquids with the least basic anion (bis(trifluoromethylsulfonyl)imide) and aromatic cations containing acidic proton (e.g. imidazolium and pyridinium) gave the most stable and miscible ion gels. Phase stability was shown to be a function of both ionic liquid content and temperature, with phase separation observed at elevated temperatures. In conclusion, gas permeability testing with carbon dioxide and nitrogen and ionic conductivity measurements confirmed that these ionic liquids increased the gas permeability and ionic conductivity of the polymers.« less

  4. Synthesis and micellar properties of surface-active ionic liquids: 1-alkyl-3-methylimidazolium chlorides.

    PubMed

    El Seoud, Omar A; Pires, Paulo Augusto R; Abdel-Moghny, Thanaa; Bastos, Erick L

    2007-09-01

    A series of surface-active ionic liquids, RMeImCl, has been synthesized by the reaction of purified 1-methylimidazole and 1-chloroalkanes, RCl, R=C(10),C(12),C(14), and C(16), respectively. Adsorption and aggregation of these surfactants in water have been studied by surface tension measurement. Additionally, solution conductivity, electromotive force, fluorescence quenching of micelle-solubilized pyrene, and static light scattering have been employed to investigate micelle formation. The following changes resulted from an increase in the length of R: an increase of micelle aggregation number; a decrease of: minimum area/surfactant molecule at solution/air interface; critical micelle concentration, and degree of counter-ion dissociation. Theoretically-calculated aggregation numbers and those based on quenching of pyrene are in good agreement. Gibbs free energies of adsorption at solution/air interface, DeltaG(ads)(0), and micelle formation in water, DeltaG(mic)(0), were calculated, and compared to those of three surfactant series, alkylpyridinium chlorides, RPyCl, alkylbenzyldimethylammonium chlorides, RBzMe(2)Cl, and benzyl(3-acylaminoethyl)dimethylammonium chlorides, R(')AEtBzMe(2)Cl, respectively. Contributions to the above-mentioned Gibbs free energies from surfactant methylene groups (in the hydrophobic tail) and the head-group were calculated. For RMeImCl, the former energy is similar to that of other cationic surfactants. The corresponding free energy contribution of the head-group to DeltaG(mic)(0) showed the following order: RPyCl approximately RBzMe(2)Cl>RMeImCl>R(')AEtBzMe(2)Cl. The head-groups of the first two surfactant series are more hydrophobic than the imidazolium ring of RMeImCl, this should favor their aggregation. Micellization of RMeImCl, however, is driven by a relatively strong hydrogen-bonding between the chloride ion and the hydrogens in the imidazolium ring, in particular the relatively acidic H2. This interaction more than compensates for

  5. Key Developments in Ionic Liquid Crystals.

    PubMed

    Alvarez Fernandez, Alexandra; Kouwer, Paul H J

    2016-05-16

    Ionic liquid crystals are materials that combine the classes of liquid crystals and ionic liquids. The first one is based on the multi-billion-dollar flat panel display industry, whilst the latter quickly developed in the past decades into a family of highly-tunable non-volatile solvents. The combination yields materials with a unique set of properties, but also with many challenges ahead. In this review, we provide an overview of the key concepts in ionic liquid crystals, particularly from a molecular perspective. What are the important molecular parameters that determine the phase behavior? How should they be introduced into the molecules? Finally, which other tools does one have to realize specific properties in the material?

  6. Key Developments in Ionic Liquid Crystals

    PubMed Central

    Alvarez Fernandez, Alexandra; Kouwer, Paul H. J.

    2016-01-01

    Ionic liquid crystals are materials that combine the classes of liquid crystals and ionic liquids. The first one is based on the multi-billion-dollar flat panel display industry, whilst the latter quickly developed in the past decades into a family of highly-tunable non-volatile solvents. The combination yields materials with a unique set of properties, but also with many challenges ahead. In this review, we provide an overview of the key concepts in ionic liquid crystals, particularly from a molecular perspective. What are the important molecular parameters that determine the phase behavior? How should they be introduced into the molecules? Finally, which other tools does one have to realize specific properties in the material? PMID:27196890

  7. Enhancing oxygen transport through Mixed-Ionic-and-Electronic-Conducting ceramic membranes

    NASA Astrophysics Data System (ADS)

    Yu, Anthony S.

    Ceramic membranes based on Mixed-Ionic-and-Electronic-Conducting (MIEC) oxides are capable of separating oxygen from air in the presence of an oxygen partial-pressure gradient. These MIEC membranes show great promise for oxygen consuming industrial processes, such as the production of syngas from steam reforming of natural gas (SRM), as well as for electricity generation in Solid Oxide Fuel Cells (SOFC). For both applications, the overall performance is dictated by the rate of oxygen transport across the membrane. Oxygen transport across MIEC membranes is composed of a bulk oxygen-ion diffusion process and surface processes, such as surface reactions and adsorption/desorption of gaseous reactants/products. The main goal of this thesis was to determine which process is rate-limiting in order to significantly enhance the overall rate of oxygen transport in MIEC membrane systems. The rate-limiting step was determined by evaluating the total resistance to oxygen transfer, Rtot. Rtot is the sum of a bulk diffusion resistance in the membrane itself, Rb, and interfacial loss components, Rs. Rb is a function of the membrane's ionic conductivity and thickness, while Rs arises primarily from slow surface-exchange kinetics that cause the P(O2) at the surfaces of the membrane to differ from the P(O 2) in the adjacent gas phases. Rtot can be calculated from the Nernst potential across the membrane and the measured oxygen flux. The rate-limiting process can be determined by evaluating the relative contributions of the various losses, Rs and Rb, to Rtot. Using this method, this thesis demonstrates that for most membrane systems, Rs is the dominating factor. In the development of membrane systems with high oxygen transport rates, thin membranes with high ionic conductivities are required to achieve fast bulk oxygen-ion diffusion. However, as membrane thickness is decreased, surface reaction kinetics become more important in determining the overall transport rate. The two

  8. Synthesis of electroactive ionic liquids for flow battery applications

    DOEpatents

    Anderson, Travis Mark; Ingersoll, David; Staiger, Chad; Pratt, Harry

    2015-09-01

    The present disclosure is directed to synthesizing metal ionic liquids with transition metal coordination cations, where such metal ionic liquids can be used in a flow battery. A cation of a metal ionic liquid includes a transition metal and a ligand coordinated to the transition metal.

  9. Ionic structure in liquids confined by dielectric interfaces

    NASA Astrophysics Data System (ADS)

    Jing, Yufei; Jadhao, Vikram; Zwanikken, Jos W.; Olvera de la Cruz, Monica

    2015-11-01

    The behavior of ions in liquids confined between macromolecules determines the outcome of many nanoscale assembly processes in synthetic and biological materials such as colloidal dispersions, emulsions, hydrogels, DNA, cell membranes, and proteins. Theoretically, the macromolecule-liquid boundary is often modeled as a dielectric interface and an important quantity of interest is the ionic structure in a liquid confined between two such interfaces. The knowledge gleaned from the study of ionic structure in such models can be useful in several industrial applications, such as in the design of double-layer supercapacitors for energy storage and in the extraction of metal ions from wastewater. In this article, we compute the ionic structure in a model system of electrolyte confined by two planar dielectric interfaces using molecular dynamics simulations and liquid state theory. We explore the effects of high electrolyte concentrations, multivalent ions, dielectric contrasts, and external electric field on the ionic distributions. We observe the presence of non-monotonic ionic density profiles leading to a layered structure in the fluid which is attributed to the competition between electrostatic and steric (entropic) interactions. We find that thermal forces that arise from symmetry breaking at the interfaces can have a profound effect on the ionic structure and can oftentimes overwhelm the influence of the dielectric discontinuity. The combined effect of ionic correlations and inhomogeneous dielectric permittivity significantly changes the character of the effective interaction between the two interfaces.

  10. Industrial uses and applications of ionic liquids

    NASA Astrophysics Data System (ADS)

    Gutowski, Keith E.

    2018-02-01

    Ionic liquids are salts that melt at low temperatures (usually defined as less than 100 °C) and have a number of interesting properties that make them useful for industrial applications. Typical ionic liquid properties include high thermal stabilities, negligible vapor pressures, wide liquidus ranges, broad electrochemical windows, and unique solvation properties. Furthermore, the potential combinations of cations and anions provide nearly unlimited chemical tunability. This article will describe the diverse industrial uses of ionic liquids and how their unique properties are leveraged, with examples ranging from chemical processing to consumer packaged goods.

  11. Superbase-derived protic ionic liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Sheng; Luo, Huimin; Baker, Gary A.

    2013-09-03

    Protic ionic liquids having a composition of formula (A.sup.-)(BH.sup.+) wherein A.sup.- is a conjugate base of an acid HA, and BH.sup.+ is a conjugate acid of a superbase B. In particular embodiments, BH.sup.+ is selected from phosphazenium species and guanidinium species encompassed, respectively, by the general formulas: ##STR00001## The invention is also directed to films and membranes containing these protic ionic liquids, with particular application as proton exchange membranes for fuel cells.

  12. Phase behavior of Langmuir monolayers with ionic molecular heads: Molecular simulations

    NASA Astrophysics Data System (ADS)

    González-Castro, Carlos A.; Ramírez-Santiago, Guillermo

    2015-03-01

    We carried out Monte Carlo simulations in the N ,Π,T ensemble of a Langmuir monolayer coarse-grained molecular model. Considering that the hydrophilic groups can be ionized by modulating acid-base interactions, here we study the phase behavior of a model that incorporates the short-range steric and long-range ionic interactions. The simulations were carried out in the reduced temperature range 0.1 ≤T*<4.0 , where there is a competition of these interactions. Different order parameters were calculated and analyzed for several values of the reduced surface pressure in the interval, 1 ≤Π*≤40. For most of the surface pressures two directions of molecular tilt were found: (i) towards the nearest neighbor (NN) at low temperatures, T*<0.7, and most of the values of Π* and (ii) towards next-nearest neighbors (NNN) in the temperature interval 0.7 ≤T*<1.1 for Π*<25. We also found the coexistence of the NN and NNN at intermediate temperatures and Π*>25 . A low-temperature reentrant disorder-order-disorder transition in the positions of the molecular heads and in the collective tilt of the tails was found for all the surface pressure values. It was also found that the molecular tails arranged forming "rotating patterns" in the temperature interval, 0.5 surface pressures. We estimated the monolayer's surface pressure versus temperature and the temperature versus area per molecule phase diagrams. It was found that the LE ↔LC phase transition shifts to smaller temperatures when the molecular heads carry an ion in qualitative agreement with experimental observations of fatty acid monolayers with ionic head groups. Two surface pressure versus area per molecule isotherms were also calculated. At low temperatures near the LC-NN ↔ LC-NNN transitions and at higher temperatures close to the LE ↔ LC transitions. From these isotherms the monolayer's area compression modulus was obtained and its variation ranges in the LE and LC phases were

  13. Dye-sensitized solar cells using ionic liquids as redox mediator

    NASA Astrophysics Data System (ADS)

    Denizalti, Serpil; Ali, Abdulrahman Khalaf; Ela, Çağatay; Ekmekci, Mesut; Erten-Ela, Sule

    2018-01-01

    In this research, the influence of ionic liquid on the conversion efficiency, incident photons to converted electrons (IPCE) and performance of fabricated solar cell was investigated using various ionic liquids. Ionic liquids with different substituents and ions were prepared and used as redox mediators in dye-sensitized solar cells (DSSCs). Ionic liquids were characterized 1H and 13C NMR spectra. We practically investigated the performance of ionic liquid salts were used as the mobile ions and found that the efficiencies of DSSCs were increased up to 40% comparing commercial electrolyte system. The ionic liquid compounds were incorporated in DSSCs to obtain an efficient charge transfer, solving the corrosion problem of platinum layer in counter electrode compared to commercial electrolyte.

  14. Counterion-induced swelling of ionic microgels

    NASA Astrophysics Data System (ADS)

    Denton, Alan R.; Tang, Qiyun

    2016-10-01

    Ionic microgel particles, when dispersed in a solvent, swell to equilibrium sizes that are governed by a balance between electrostatic and elastic forces. Tuning of particle size by varying external stimuli, such as pH, salt concentration, and temperature, has relevance for drug delivery, microfluidics, and filtration. To model swelling of ionic microgels, we derive a statistical mechanical theorem, which proves exact within the cell model, for the electrostatic contribution to the osmotic pressure inside a permeable colloidal macroion. Applying the theorem, we demonstrate how the distribution of counterions within an ionic microgel determines the internal osmotic pressure. By combining the electrostatic pressure, which we compute via both Poisson-Boltzmann theory and molecular dynamics simulation, with the elastic pressure, modeled via the Flory-Rehner theory of swollen polymer networks, we show how deswelling of ionic microgels with increasing concentration of particles can result from a redistribution of counterions that reduces electrostatic pressure. A linearized approximation for the electrostatic pressure, which proves remarkably accurate, provides physical insight and greatly eases numerical calculations for practical applications. Comparing with experiments, we explain why soft particles in deionized suspensions deswell upon increasing concentration and why this effect may be suppressed at higher ionic strength. The failure of the uniform ideal-gas approximation to adequately account for counterion-induced deswelling below close packing of microgels is attributed to neglect of spatial variation of the counterion density profile and the electrostatic pressure of incompletely neutralized macroions.

  15. Solid state ionics: a Japan perspective

    NASA Astrophysics Data System (ADS)

    Yamamoto, Osamu

    2017-12-01

    The 70-year history of scientific endeavor of solid state ionics research in Japan is reviewed to show the contribution of Japanese scientists to the basic science of solid state ionics and its applications. The term 'solid state ionics' was defined by Takehiko Takahashi of Nagoya University, Japan: it refers to ions in solids, especially solids that exhibit high ionic conductivity at a fairly low temperature below their melting points. During the last few decades of exploration, many ion conducting solids have been discovered in Japan such as the copper-ion conductor Rb4Cu16I7Cl13, proton conductor SrCe1-xYxO3, oxide-ion conductor La0.9Sr0.9Ga0.9Mg0.1O3, and lithium-ion conductor Li10GeP2S12. Rb4Cu16I7Cl13 has a conductivity of 0.33 S cm-1 at 25 °C, which is the highest of all room temperature ion conductive solid electrolytes reported to date, and Li10GeP2S12 has a conductivity of 0.012 S cm-1 at 25 °C, which is the highest among lithium-ion conductors reported to date. Research on high-temperature proton conducting ceramics began in Japan. The history, the discovery of novel ionic conductors and the story behind them are summarized along with basic science and technology.

  16. Ionic liquid marbles.

    PubMed

    Gao, Lichao; McCarthy, Thomas J

    2007-10-09

    Liquid marbles have been reported during this decade and have been argued to be potentially useful for microfluidic and lab-on-a-chip applications. The liquid marbles described to date have been composed of either water or glycerol as the liquid and hydrophobized lycopodium or silica as the stabilizing particles. Both of these components are potentially reactive and do not permit the use of organic chemistry; the liquids are volatile. We report the use of perfluoroalkyl particles (oligomeric (OTFE) and polymeric (PTFE) tetrafluoroethylene, which are unreactive) to support/stabilize a range of ionic liquid marbles. Ionic liquids are not volatile and have been demonstrated to be versatile solvents for chemical transformations. Water marbles prepared with OTFE are much more robust than those prepared with hydrophobized lycopodium or silica.

  17. Ionic liquid-assisted synthesis of Br-modified g-C3N4 semiconductors with high surface area and highly porous structure for photoredox water splitting

    NASA Astrophysics Data System (ADS)

    Zhao, Shuo; Zhang, Yiwei; Wang, Yanyun; Zhou, Yuming; Qiu, Kaibo; Zhang, Chao; Fang, Jiasheng; Sheng, Xiaoli

    2017-12-01

    Coping with the gradually increasing worldwide energy and environmental issues, it is urgent to develop efficient, cheap and visible-light-driven photocatalysts for hydrogen production. Here, we present a facile way to synthesize bromine doped graphitic carbon nitride (CN-BrX) with highly porous structure by using ionic liquid (1-butyl-3-vinylimidazolium bromide) as the Br source and soft-template for the first time, which applied in hydrogen evolution under visible light irradiation. A systematic study is conducted on the optimization in the doping amount. The results find that the as-fabricated CN-BrX photocatalysts possess a uniform porous network with thin walls due to the release of volatile domains and decomposition of ionic liquids. The highly porous structure with the large surface area (≤150 m2/g) benefits the exposure of active sites. Moreover, the bromine modification and porous structure can narrow the band gap, enhance the transportation capability of photogenerated electrons, improve the optical and conductive properties of CN, thus contribute to an outstanding H2 evolution rate under visible light irradiation (120 μmol h-1), which is about 3.6 times higher than pure CN. This work provides a new insight for designing the novel g-C3N4 based photocatalysts for hydrogen production, CO2 conversion and environmental remediation.

  18. EFFECTS OF PH, SOLID/SOLUTION RATIO, IONIC STRENGTH, AND ORGANIC ACIDS ON PB AND CD SOPRTION ON KAOLINITE

    EPA Science Inventory

    Potentiometric and ion-selective electrode titrations together with batch sorption/desorption experiments, were performed to explain the aqueous and surface complexation reactions between kaolinite, Pb, Cd and three organic acids. Variables included pH, ionic strength, metal conc...

  19. Response surface method (RSM) for optimization of ionic conductivity of membranes polymer electrolyte poly (vinylidene fluoride) (PVDF) with polyvinyl pyrrolidone (PVP) as pore forming agent

    NASA Astrophysics Data System (ADS)

    Dyartanti, E. R.; Susanto, H.; Widiasa, I. N.; Purwanto, A.

    2017-06-01

    The Membranes Polymer Gel Electrolyte (MPGEs) based poly (vinylidene fluoride) (PVDF) was prepared by a phase inversion method using polyvinyl pyrrolidone (PVP) as a pore-forming agent and N, N-dimethyl acetamide (DMAc) as a solvent and water as non solvet. The membranes were then soaked in 1 M lithium hexafluorophosphate (LiPF6) in ethylene carbonate (EC) / dimethyl carbonate (DMC) / Diethyl carbonate (DEC) (4:2:4 %vol) solution in order to prepare polymer electrolyte membranes. The MPEGs PVDF/PVP/Nanoclay was applied using central composite design (CCD) experimental design to obtain a quantitative relationship between selected membranes prepared parameters namely (PVDF, PVP as pore forming agent and nanoclay filler concentration) and Ionic conductivity MPEGs. The model was used to find the optimum ionic conductivity from polymer electrolyte membranes. The polymer electrolyte membranes show good ionic conductivity on the order of 6.3 - 8.7 x 10-3 S cm-1 at the ambient temperatures. The ionic conductivity tended to increase with PVP and nanoclay concentration and decrease with PVDF composition. The model predicted the maximum ionic conductivity of 8.47 x 10-3 S cm-1 when the PVDF, PVP and nanoclay concentration were set at 8.01 %, 8.04 % and 10.12%, respectively. The first section in your paper.

  20. Self-healing guar gum and guar gum-multiwalled carbon nanotubes nanocomposite gels prepared in an ionic liquid.

    PubMed

    Sharma, Mukesh; Mondal, Dibyendu; Mukesh, Chandrakant; Prasad, Kamalesh

    2013-10-15

    Guar gum is a galactomannan extracted from the seed of the leguminous shrub Cyamopsis tetragonoloba. It was found to form a soft viscoelastic gel in 1-butyl-3-methylimidazolium chloride, an ionic liquid at an optimized concentration of 10%w/v. A nanocomposite gel of the gum with enhanced strength could be prepared with 0.2%w/v of multiwalled carbon nanotubes (MWCNTs) in the ionic liquid. When the gels thus prepared were subjected to surface fractures or bisected completely, they found to self-heal at room temperature without any external interventions. The self-healing process could be repeated several times. These viscoelastic gel systems showed thixotropic nature and recovery of the storage modulus with time for several cycles was observed upon rheological investigations. The interaction took place between ionic liquid, guar gum and MWCNT was studied by SEM, TEM, FT-IR, powder XRD and rheometry. The results suggested that, upon standing at room temperature development of electrostatic interactions and the van der Waals interactions among the ionic liquid molecules facilitated the formation of reversible noncovalent bonds and eventually activated the self-healing in the gel systems through appropriate chain entanglements. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Ionic Liquid Catalyzed Electrolyte for Electrochemical Polyaniline Supercapacitors

    NASA Astrophysics Data System (ADS)

    Inamdar, A. I.; Im, Hyunsik; Jung, Woong; Kim, Hyungsang; Kim, Byungchul; Yu, Kook-Hyun; Kim, Jin-Sang; Hwang, Sung-Min

    2013-05-01

    The effect of different wt.% of ionic liquid "1,6-bis (trimethylammonium-1-yl) hexane tetrafluoroborate" in 0.5 M LiClO4+PC electrolyte on the supercapacitor properties of polyaniline (PANI) thin film are investigated. The PANI film is synthesized using electropolymerization of aniline in the presence of sulfuric acid. The electrochemical properties of the PANI thin film are studied by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS) measurements. The optimum amount of the ionic liquid is found to be 2 wt.% which provides better ionic conductivity of the electrolyte. The highest specific capacitance of 259 F/g is obtained using the 2 wt.% electrolyte. This capacitance remains at up to 208 F/g (80% capacity retention) after 1000 charge-discharge cycles at a current density of 0.5 mA/g. The PANI film in the 2 wt.% ionic liquid catalyzed 0.5 M LiClO4+PC electrolyte shows small electrochemical resistance, better rate performance and higher cyclability. The increased ionic conductivity of the 2 wt.% ionic liquid catalyzed electrolyte causes a reduction in resistance at the electrode/electrolyte interface, which can be useful in electrochemically-preferred power devices for better applicability.

  2. Effect of Ionic Correlations on the Surface Forces in Thin Liquid Films: Influence of Multivalent Coions and Extended Theory

    PubMed Central

    Danov, Krassimir D.; Basheva, Elka S.; Kralchevsky, Peter A.

    2016-01-01

    Experimental data for the disjoining pressure of foam films stabilized by anionic surfactant in the presence of 1:1, 1:2, 1:3, and 2:2 electrolytes: NaCl, Na2SO4, Na3Citrate, and MgSO4 are reported. The disjoining pressure predicted by the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory coincides with the experimental data in the case of a 1:1 electrolyte, but it is considerably greater than the measured pressure in all other cases. The theory is extended to account for the effects of ionic correlations and finite ionic radii. Original analytical expressions are derived for the local activity coefficient, electrostatic disjoining pressure, and asymptotic screening parameter. With the same parameter of counterion binding as for a 1:1 electrolyte, the curves predicted by the extended theory are in perfect agreement with the experimental data for 1:2 and 1:3 electrolytes. In comparison with the DLVO theory, the effect of ionic correlations leads to more effective screening of electrostatic interactions, and lower electric potential and counterion concentrations in the film’s midplane, resulting in lower disjoining pressure, as experimentally observed. The developed theory is applicable to both multivalent coions and multivalent counterions. Its application could remove some discrepancies between theory and experiment observed in studies with liquid films from electrolyte solutions. PMID:28773269

  3. Method to detect the end-point for PCR DNA amplification using an ionically labeled probe and measuring impedance change

    DOEpatents

    Miles, Robin R [Danville, CA; Belgrader, Phillip [Severna Park, MD; Fuller, Christopher D [Oakland, CA

    2007-01-02

    Impedance measurements are used to detect the end-point for PCR DNA amplification. A pair of spaced electrodes are located on a surface of a microfluidic channel and an AC or DC voltage is applied across the electrodes to produce an electric field. An ionically labeled probe will attach to a complementary DNA segment, and a polymerase enzyme will release the ionic label. This causes the conductivity of the solution in the area of the electrode to change. This change in conductivity is measured as a change in the impedance been the two electrodes.

  4. Molecular dynamics simulations of pyrrolidinium and imidazolium ionic liquids at graphene interfaces.

    PubMed

    Begić, Srđan; Jónsson, Erlendur; Chen, Fangfang; Forsyth, Maria

    2017-11-15

    Understanding the electrode-electrolyte interface is essential in the battery research as the ion transport and ion structures at the interface most likely affect the performance of a battery. Here we investigate interfacial structures of three ionic liquids: 1-ethyl-3-methylimidazolium dicyanamide ([C 2 mim][dca]), 1-butyl-3-methylimidazolium dicyanamide ([C 4 mim][dca]) and N-butyl-N-methylpyrrolidinium dicyanamide ([C 4 myr][dca]) at a charged and uncharged graphene interface using molecular dynamics simulations. We find that these ionic liquids (ILs) behave differently both in the bulk phase and near a graphene interface and we find that this difference is apparent in all types of analyses performed here. First, a partial density analysis in the direction perpendicular to the surface of the electrodes, which, in the cases near a negatively charged graphene, reveals that the pyrrolidinium system is generally more layered than the imidazolium systems. Second, a 2D topographic structure analysis of the IL species in the inner layer near a negatively charged graphene surface, which reveals that the pyrrolidinium system exhibits a quasi-hexagonal surface configuration of the cations, while the imidazolium systems show linearly arranged groups of cations. Third, a 3D orientation-preference analysis of cation rings near the negative graphene electrode, which shows that the pyrrolidinium rings prefer to lie parallel to the electrode surface while the imidazolium rings prefer to stand on the electrode surface at high tilt angles. Extending the imidazolium alkyl chain was found to reduce the number of imidazoliums that can link up into linearly arranged groups in the inner layer 2D structures. Our results support earlier experimental findings and indicate that the interfacial nanostructures may have a significant influence on the electrochemical performance of IL-based batteries.

  5. Development of large-surface Nafion-metal composite actuator and its electrochemical characterization

    NASA Astrophysics Data System (ADS)

    Noh, Taegeun; Tak, Yong Suk; Nam, Jaedo; Jeon, Jaewook; Kim, Hunmo; Choi, Hyoukryeol; Bae, Sang Sik

    2001-07-01

    Behaviors of nafion-based actuators are significantly affected by interfacial area between electrode and polymer electrolyte. Replication method was utilized to manufacture a large surface-area composite actuator. Etched aluminum foil was used as a template for replication using liquid nafion solution. Measurement of double layer charging and scanning electron microscopy indicated that interfacial area was greatly increased by replication method. Higher surface area induced a better bending performance of ionic polymer metal composite (IPMC). In parallel, the effect of cations on IPMC was interpreted with constant current experiment, linear sweep voltammetry and electrochemical impedance spectroscopy. For univalent cations, ion size is the most influencing parameter on ionic mobility inside membrane. However, ion-ion interaction affects an ionic mobility for divalent cations.

  6. Interconnected ionic domains enhance conductivity in microphase separated block copolymer electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arges, Christopher G.; Kambe, Yu; Dolejsi, Moshe

    Block copolymer electrolytes (BCEs) represent an attractive choice as solid-state ionic conductors for electrochemical technologies used in energy storage and conversion, water treatment, sensors, and data storage and processing. Unlocking the maximum ionic conductivity of BCEs requires an intimate understanding as to how the microphase separated structure influences transport properties. However, elucidating such knowledge remains elusive due to the challenging task of precisely engineering BCEs with a defined structure in bulk materials. In this work, we examined BCEs in a thin film format because it was amenable to attaining BCEs with a desired nanostructure. Specifically, we systematically investigated anion-conducting BCEsmore » with different degrees of connectivity of the ionic domains. For the first time, we demonstrate that increasing terminal defects in the ionic domain from 1 terminal defect per mu m(2) to 20 terminal defects per mu m(2) ( a relatively small amount of defects) decreased ionic conductivity by 67% compared to the maximum value attained. Conversely, maximizing ionic domain connectivity increased the ionic conductivity by two-fold over a non-ordered BCE film. These experiments highlight that microphase separation alone was insufficient for ameliorating ionic conductivity in BCEs. Rather, microphase separation coupled with complete ionic domain connectivity realized BCEs with significantly enhanced ionic conductivity.« less

  7. Electron-transfer reactions of cobalt(III) complexes. 1. The kinetic investigation of the reduction of various surfactant cobalt(III) complexes by iron(II) in surface active ionic liquids

    NASA Astrophysics Data System (ADS)

    Nagaraj, Karuppiah; Senthil Murugan, Krishnan; Thangamuniyandi, Pilavadi; Sakthinathan, Subramanian

    2015-05-01

    The kinetics of outer sphere electron transfer reaction of surfactant cobalt(III) complex ions, cis-[Co(en)2(C12H25NH2)2]3+ (1), cis-[Co(dp)2(C12H25NH2)2]3+ (2), cis-[Co(trien)(C12H25NH2)2]3+ (3), cis-[Co(bpy)2(C12H25NH2)2]3+ (4) and cis-[Co(phen)2(C12H25NH2)2]3+ (5) (en: ethylenediamine, dp: diaminopropane, trien : triethylenetetramine, bpy: 2,2‧-bipyridyl, phen: 1,10-phenanthroline and C12H25NH2 : dodecylamine) have been interrogated by Fe2+ ion in ionic liquid (1-butyl-3-methylimidazoliumbromide) medium at different temperatures (298, 303, 308, 313, 318 and 323 K) by the spectrophotometry method under pseudo first order conditions using an excess of the reductant. Experimentally the reactions were found to be of second order and the electron transfer as outer sphere. The second order rate constant for the electron transfer reaction in ionic liquids was found to increase with increase in the concentration of all these surfactant cobalt(III) complexes. Among these complexes (from en to phen ligand), complex containing the phenanthroline ligand rate is higher compared to other complexes. By assuming the outer sphere mechanism, the results have been explained based on the presence of aggregated structures containing cobalt(III) complexes at the surface of ionic liquids formed by the surfactant cobalt(III) complexes in the reaction medium. The activation parameters (enthalpy of activation ΔH‡ and entropy of activation ΔS‡) of the reaction have been calculated which substantiate the kinetics of the reaction.

  8. Ionic Conductivity and its Role in Oxidation Reactions

    NASA Astrophysics Data System (ADS)

    Tamimi, Mazin Abdulla

    In the field of solid oxide fuel cells (SOFCs), a substantial portion of research is focused on the ability of some oxide materials to conduct oxygen anions through their structure. For electrolytes, the benefits of improving bulk transport of ions are obvious: decrease the resistive losses of the electrolyte, and device efficiency goes up and higher power densities are possible. Even for cathode materials, better bulk ion transport leads to an increase in the oxygen exchange rate at the cathode surface, and the oxygen reduction reaction at the cathode surface is the rate limiting step for SOFC operation at intermediate temperatures (500-700ºC). As operation in this regime is a key step towards lowering the manufacturing cost and increasing the lifetime of devices, much effort is spent searching for new, more conductive materials, and analyzing existing materials to discover the structure-activity relationships that influence ionic conductivity. In the first part of this work, an overview is given of the neutron powder diffraction (NPD) techniques that are used to probe the structure of the materials in later parts. In the second part, NPD was used to analyze the structures of perovskite-type cathode materials, and show that increases in bulk conductivity led to increases in the surface oxygen exchange rate of these materials. In the final part, the methods used for SOFC cathode design were applied towards the design of oxide catalysts used for certain hydrocarbon partial oxidation reactions. The reactions studied follow the Mars van Krevelen mechanism, where oxygen atoms in the catalyst are consumed as part of the reaction and are subsequently replenished by oxygen in the gas phase. Similar to SOFC cathode operation, these processes include an oxygen reduction step, so it was hypothesized that increasing the ionic conductivity of the catalysts would improve their performance, just as it does for SOFC cathode materials. While the results are preliminary, the

  9. Reconstruction of electrocardiogram using ionic current models for heart muscles.

    PubMed

    Yamanaka, A; Okazaki, K; Urushibara, S; Kawato, M; Suzuki, R

    1986-11-01

    A digital computer model is presented for the simulation of the electrocardiogram during ventricular activation and repolarization (QRS-T waves). The part of the ventricular septum and the left ventricular free wall of the heart are represented by a two dimensional array of 730 homogeneous functional units. Ionic currents models are used to determine the spatial distribution of the electrical activities of these units at each instant of time during simulated cardiac cycle. In order to reconstruct the electrocardiogram, the model is expanded three-dimensionally with equipotential assumption along the third axis and then the surface potentials are calculated using solid angle method. Our digital computer model can be used to improve the understanding of the relationship between body surface potentials and intracellular electrical events.

  10. Ionic solutions of two-dimensional materials

    NASA Astrophysics Data System (ADS)

    Cullen, Patrick L.; Cox, Kathleen M.; Bin Subhan, Mohammed K.; Picco, Loren; Payton, Oliver D.; Buckley, David J.; Miller, Thomas S.; Hodge, Stephen A.; Skipper, Neal T.; Tileli, Vasiliki; Howard, Christopher A.

    2017-03-01

    Strategies for forming liquid dispersions of nanomaterials typically focus on retarding reaggregation, for example via surface modification, as opposed to promoting the thermodynamically driven dissolution common for molecule-sized species. Here we demonstrate the true dissolution of a wide range of important 2D nanomaterials by forming layered material salts that spontaneously dissolve in polar solvents yielding ionic solutions. The benign dissolution advantageously maintains the morphology of the starting material, is stable against reaggregation and can achieve solutions containing exclusively individualized monolayers. Importantly, the charge on the anionic nanosheet solutes is reversible, enables targeted deposition over large areas via electroplating and can initiate novel self-assembly upon drying. Our findings thus reveal a unique solution-like behaviour for 2D materials that enables their scalable production and controlled manipulation.

  11. Combining autohydrolysis and ionic liquid microwave treatment to enhance enzymatic hydrolysis of Eucalyptus globulus wood.

    PubMed

    Rigual, Victoria; Santos, Tamara M; Domínguez, Juan Carlos; Alonso, M Virginia; Oliet, Mercedes; Rodriguez, Francisco

    2018-03-01

    The combination of autohydrolysis and ionic liquid microwave treatments of eucalyptus wood have been studied to facilitate sugar production in a subsequent enzymatic hydrolysis step. Three autohydrolysis conditions (150 °C, 175 °C and 200 °C) in combination with two ionic liquid temperatures (80 °C and 120 °C) were compared in terms of chemical composition, enzymatic digestibility and sugar production. Morphology was measured (using SEM) and the biomass surface was visualized with confocal fluorescence microscopy. The synergistic cooperation of both treatments was demonstrated, enhancing cellulose accessibility. At intermediate autohydrolysis conditions (175 °C) and low ionic liquid temperature (80 °C), a glucan digestibility of 84.4% was obtained. Using SEM micrographs, fractal dimension (as a measure of biomass complexity) and lacunarity (as a measure of homogeneity) were calculated before and after pretreatment. High fractals dimensions and low lacunarities correspond to morphologically complex and homogeneous samples, that are better digested by enzyme cocktails. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Functionalized graphene sheets with poly(ionic liquid)s and high adsorption capacity of anionic dyes

    NASA Astrophysics Data System (ADS)

    Zhao, Weifeng; Tang, Yusheng; Xi, Jia; Kong, Jie

    2015-01-01

    Graphene sheets were covalently functionalized with poly(1-vinylimidazole) (PVI) type poly(ionic liquid), by utilizing a diazonium addition reaction and the subsequent grafting of PVI polymers onto the graphene sheet surface by a quaternarization reaction. The resultant modified graphene sheets showed improved dispersion property when being dissolved in DMF and ethanol. FTIR, XPS, XRD and TEM observations confirmed the success of the covalent functionalization, and thermogravimetric analysis revealed that the grafting ratio of PVI was ∼12 wt%. The obtained PVI-functionalized graphene showed a high capability for removing anionic dyes such as methyl blue (MB) from water solution. The experimental data of isotherm fitted well with the Langmuir adsorption model. The adsorption capacity of 1910 mg g-1 for methyl blue (MB) dye was observed for functionalized graphene sheets with poly(ionic liquid)s, which was higher than that of unmodified graphene. The high adsorption capacity observed in this study emphasizes that poly(ionic liquid)s-modified graphene materials have a great potential for water purification as they are highly efficient and stable adsorbents for sustainability.

  13. Evaluation of ionic liquids supported on silica as a sorbent for fully automated online solid-phase extraction with LC-MS determination of sulfonamides in bovine milk samples.

    PubMed

    da Silva, Meire Ribeiro; Mauro Lanças, Fernando

    2018-03-10

    Sulfonamides are antibiotics widely used in the treatment of diseases in dairy cattle. However, their indiscriminate use for disease control may lead to their presence in tissues and milk and their determination requires a sample preparation step as part of an analytical approach. Among the several sample preparation techniques available, those based upon the use of sorptive materials have been widely employed. Recently, the application of ionic liquids immobilized on silica surfaces or polymeric materials has been evaluated for such an application. This manuscript addresses the evaluation of silica-based ionic liquid obtained by a sol-gel synthesis process by basic catalysis as sorbent for online solid-phase extraction with liquid chromatography and electrospray ionization time-of-flight mass spectrometry for sulfonamides determination. Infrared vibrational spectroscopy confirmed the presence of the ionic liquid on the silica surface, suggesting that the ionic liquid was anchored on to the silica surface. Other sorbents varying the ionic liquid alkyl chain were also synthesized and evaluated by off-line solid-phase extraction in the sulfonamide extraction. As the length of the alkyl chain increased, the amount of extracted sulfonamides decreased, possibly due to a decrease in the electrostatic interaction caused by the reduction in the polarity, as well as the presence of a hexafluorophosphate anion that increases the hydrophobic character of the material. The use of 1-butyl-3-methylimidazolium hexafluorophosphate as a selective ionic liquid sorbent enabled the isolation and sulfonamide preconcentration in bovine milk by online solid-phase extraction with liquid chromatography and electrospray ionization time-of-flight mass spectrometry. The limit of quantification for the method developed was 5-7, 5 μg/mL, with extraction recoveries ranging between 74 and 93% and intra- and interassay between 1.5-12.5 and 2.3-13.1, respectively. © 2018 WILEY-VCH Verlag Gmb

  14. Ionic migration and weathering in frozen Antarctic soils

    NASA Technical Reports Server (NTRS)

    Ugolini, F. C.; Anderson, D. M.

    1973-01-01

    Soils of continental Antarctica are forming in one of the most severe terrestrial environments. Continuously low temperatures and the scarcity of water in the liquid state result in the development of desert-type soils. In an earlier experiment to determine the degree to which radioactive Na(Cl-36) would migrate from a shallow point source in permafrost, movement was observed. To confirm this result, a similar experiment involving (Na-22)Cl was conducted. Significantly less movement of the Na-22 ion was observed. Ionic movement in the unfrozen interfacial films at mineral surfaces in frozen ground is held to be important in chemical weathering in Antarctic soils.

  15. Efficient conversion of lignocellulosic biomass to levulinic acid using acidic ionic liquids.

    PubMed

    Khan, Amir Sada; Man, Zakaria; Bustam, Mohamad Azmi; Nasrullah, Asma; Ullah, Zahoor; Sarwono, Ariyanti; Shah, Faiz Ullah; Muhammad, Nawshad

    2018-02-01

    In the present research work, dicationic ionic liquids, containing 1,4-bis(3-methylimidazolium-1-yl) butane ([C 4 (Mim) 2 ]) cation with counter anions [(2HSO 4 )(H 2 SO 4 ) 0 ], [(2HSO 4 )(H 2 SO 4 ) 2 ] and [(2HSO 4 )(H 2 SO 4 ) 4 ] were synthesised. ILs structures were confirmed using 1 H NMR spectroscopy. Thermal stability, Hammett acidity, density and viscosity of ILs were determined. Various types of lignocellulosic biomass such as rubber wood, palm oil frond, bamboo and rice husk were converted into levulinic acid (LA). Among the synthesized ionic liquids, [C 4 (Mim) 2 ][(2HSO 4 )(H 2 SO 4 ) 4 ] showed higher % yield of LA up to 47.52 from bamboo biomass at 110°C for 60min, which is the better yield at low temperature and short time compared to previous reports. Surface morphology, surface functional groups and thermal stability of bamboo before and after conversion into LA were studied using SEM, FTIR and TGA analysis, respectively. This one-pot production of LA from agro-waste will open new opportunity for the conversion of sustainable biomass resources into valuable chemicals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. A novel hydroxyapatite film coated with ionic silver via inositol hexaphosphate chelation prevents implant-associated infection

    NASA Astrophysics Data System (ADS)

    Funao, Haruki; Nagai, Shigenori; Sasaki, Aya; Hoshikawa, Tomoyuki; Tsuji, Takashi; Okada, Yasunori; Koyasu, Shigeo; Toyama, Yoshiaki; Nakamura, Masaya; Aizawa, Mamoru; Matsumoto, Morio; Ishii, Ken

    2016-03-01

    Various silver-coated implants have been developed to prevent implant-associated infections, and have shown dramatic effects in vitro. However, the in vivo results have been inconsistent. Recent in vitro studies showed that silver exerts antibacterial activity by mediating the generation of reactive oxygen species in the presence of oxygen. To maintain its antibacterial activity in vivo, the silver should remain in an ionic state and be stably bound to the implant surface. Here, we developed a novel bacteria-resistant hydroxyapatite film in which ionic silver is immobilized via inositol hexaphosphate chelation using a low-heat immersion process. This bacteria-resistant coating demonstrated significant antibacterial activity both in vitro and in vivo. In a murine bioluminescent osteomyelitis model, no bacteria were detectable 21 days after inoculation with S. aureus and placement of this implant. Serum interleukin-6 was elevated in the acute phase in this model, but it was significantly lower in the ionic-silver group than the control group on day 2. Serum C-reactive protein remained significantly higher in the control group than the ionic-silver group on day 14. Because this coating is produced by a low-heat immersion process, it can be applied to complex structures of various materials, to provide significant protection against implant-associated infections.

  17. Predicting ion specific capacitances of supercapacitors due to quantum ionic interactions.

    PubMed

    Parsons, Drew F

    2014-08-01

    A new theoretical framework is now available to help explain ion specific (Hofmeister) effects. All measurements in physical chemistry show ion specificity, inexplicable by classical electrostatic theories. These ignore ionic dispersion forces that change ionic adsorption. We explored ion specificity in supercapacitors using a modified Poisson-Boltzmann approach that includes ionic dispersion energies. We have applied ab initio quantum chemical methods to determine required ion sizes and ion polarisabilities. Our model represents graphite electrodes through their optical dielectric spectra. The electrolyte was 1.2 M Li salt in propylene carbonate, using the common battery anions, PF6(-), BF4(-) and ClO4(-). We also investigated the perhalate series with BrO4(-) and IO4(-). The capacitance C=dσ/dψ was calculated from the predicted electrode surface charge σ of each electrode with potential ψ between electrodes. Compared to the purely electrostatic calculation, the capacitance of a positively charged graphite electrode was enhanced by more than 15%, with PF6(-) showing >50% increase in capacitance. IO4(-) provided minimal enhancement. The enhancement is due to adsorption of both anions and cations, driven by ionic dispersion forces. The Hofmeister series in the single-electrode capacitance was PF6(-)>BF4(-)>ClO4(-)>BrO4(-)>IO4(-) . When the graphite electrode was negatively charged, the perhalates provided almost no enhancement of capacitance, while PF6(-) and BF4(-) decreased capacitance by about 15%. Due to the asymmetric impact of nonelectrostatic ion interactions, the capacitances of positive and negative electrodes are not equal. The capacitance of a supercapacitor should therefore be reported as two values rather than one, similar to the matrix of mutual capacitances used in multielectrode devices. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. The radiation chemistry of ionic liquids: A review

    DOE PAGES

    Mincher, Bruce J.; Wishart, James F.

    2014-07-03

    Ionic liquids have received increasing attention as media for radiochemical separations. Recent literature includes examinations of the efficiencies and mechanisms of the solvent extraction of lanthanides, actinides and fission products into ionic liquid solutions. For radiochemical applications, including as replacement solvents for nuclear fuel reprocessing, a thorough understanding of the radiation chemistry of ionic liquids will be required. Such an understanding can be achieved based on a combination of steady-state radiolysis experiments coupled with post-irradiation product identification and pulse-radiolysis experiments to acquire kinetic information. These techniques allow for the elucidation of radiolytic mechanisms. This contribution reviews the current ionic liquidmore » radiation chemistry literature as it affects separations, with these considerations in mind.« less

  19. Surface acid-base behaviors of Chinese loess.

    PubMed

    Chu, Zhaosheng; Liu, Wenxin; Tang, Hongxiao; Qian, Tianwei; Li, Shushen; Li, Zhentang; Wu, Guibin

    2002-08-15

    Acid-base titration was applied to investigate the surface acid-base properties of a Chinese loess sample at different ionic strengths. The acidimetric supernatant was regarded as the system blank of titration to correct the influence of particle dissolution on the estimation of proton consumption. The titration behavior of the system blank could be described by the hydrolysis of Al3+ and Si(OH)4 in aqueous solution as well as the production of hydroxyaluminosilicates. The formation of Al-Si species on homogeneous surface sites by hydrous aluminum and silicic acid, released from solid substrate during the acidic titration, was considered in the model description of the back-titration procedure. A surface reaction model was suggested as follows: >SOH<-->SO(-)+H+, pK(a)(int)=3.48-3.98;>SOH+Al(3+)+H4SiO4<-->SOAl(OSi(OH)3(+)+2H+, pK(SC)=3.48-4.04. Two simple surface complexation models accounted for the interfacial structure, i.e., the constant capacitance model (CCM) and the diffuse layer model (DLM), and gave a satisfactory description of the experimental data. Considering the effect of ionic strength on the electrostatic profile at the solid-aqueous interface, the DLM was appropriate at the low concentrations (0.01 and 0.005 mol/L) of background electrolyte (NaNO3 in this study), while the CCM was preferable in the case of high ionic strength (0.1 mol/L).

  20. Structure-activity relationship of the ionic cocrystal: 5-amino-2-naphthalene sulfonate·ammonium ions for pharmaceutical applications

    NASA Astrophysics Data System (ADS)

    Sangeetha, M.; Mathammal, R.

    2018-02-01

    The ionic cocrystals of 5-amino-2-naphthalene sulfonate · ammonium ions (ANSA-ṡNH4+) were grown under slow evaporation method and examined in detail for pharmaceutical applications. The crystal structure and intermolecular interactions were studied from the single X-ray diffraction analysis and the Hirshfeld surfaces. The 2D fingerprint plots displayed the inter-contacts possible in the ionic crystal. Computational DFT method was established to determine the structural, physical and chemical properties. The molecular geometries obtained from the X-ray studies were compared with the optimized geometrical parameters calculated using DFT/6-31 + G(d,p) method. The band gap energy calculated from the UV-Visible spectral analysis and the HOMO-LUMO energy gap are compared. The theoretical UV-Visible calculations helped in determining the type of electronic transition taking place in the title molecule. The maximum absorption bands and transitions involved in the molecule represented the drug reaction possible. Non-linear optical properties were characterized from SHG efficiency measurements experimentally and the NLO parameters are also calculated from the optimized structure. The reactive sites within the molecule are detailed from the MEP surface maps. The molecular docking studies evident the structure-activity of the ionic cocrystal for anti-cancer drug property.