Science.gov

Sample records for ionic-liquid buffer electrolytes

  1. Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids

    SciTech Connect

    Gering, Kevin L.; Harrup, Mason K.; Rollins, Harry W.

    2015-12-08

    An ionic liquid including a phosphazene compound that has a plurality of phosphorus-nitrogen units and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. One pendant group of the at least one pendant group comprises a positively charged pendant group. Additional embodiments of ionic liquids are disclosed, as are electrolyte solutions and energy storage devices including the embodiments of the ionic liquid.

  2. Ionic liquids behave as dilute electrolyte solutions

    PubMed Central

    Gebbie, Matthew A.; Valtiner, Markus; Banquy, Xavier; Fox, Eric T.; Henderson, Wesley A.; Israelachvili, Jacob N.

    2013-01-01

    We combine direct surface force measurements with thermodynamic arguments to demonstrate that pure ionic liquids are expected to behave as dilute weak electrolyte solutions, with typical effective dissociated ion concentrations of less than 0.1% at room temperature. We performed equilibrium force–distance measurements across the common ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4mim][NTf2]) using a surface forces apparatus with in situ electrochemical control and quantitatively modeled these measurements using the van der Waals and electrostatic double-layer forces of the Derjaguin–Landau–Verwey–Overbeek theory with an additive repulsive steric (entropic) ion–surface binding force. Our results indicate that ionic liquids screen charged surfaces through the formation of both bound (Stern) and diffuse electric double layers, where the diffuse double layer is comprised of effectively dissociated ionic liquid ions. Additionally, we used the energetics of thermally dissociating ions in a dielectric medium to quantitatively predict the equilibrium for the effective dissociation reaction of [C4mim][NTf2] ions, in excellent agreement with the measured Debye length. Our results clearly demonstrate that, outside of the bound double layer, most of the ions in [C4mim][NTf2] are not effectively dissociated and thus do not contribute to electrostatic screening. We also provide a general, molecular-scale framework for designing ionic liquids with significantly increased dissociated charge densities via judiciously balancing ion pair interactions with bulk dielectric properties. Our results clear up several inconsistencies that have hampered scientific progress in this important area and guide the rational design of unique, high–free-ion density ionic liquids and ionic liquid blends. PMID:23716690

  3. Magnesium Battery Electrolytes in Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Watkins, Tylan Strike

    A lack of adequate energy storage technologies is arguably the greatest hindrance to a modern sustainable energy infrastructure. Chemical energy storage, in the form of batteries, is an obvious solution to the problem. Unfortunately, today's state of the art battery technologies fail to meet the desired metrics for full scale electric grid and/or electric vehicle role out. Considerable effort from scientists and engineers has gone into the pursuit of battery chemistries theoretically capable of far outperforming leading technologies like Li-ion cells. For instance, an anode of the relatively abundant and cheap metal, magnesium, would boost the specific energy by over 4.6 times that of the current Li-ion anode (LiC6). The work presented here explores the compatibility of magnesium electrolytes in TFSI---based ionic liquids with a Mg anode (TFSI = bis(trifluoromethylsulfonyl)imide). Correlations are made between the Mg2+ speciation conditions in bulk solutions (as determined via Raman spectroscopy) and the corresponding electrochemical behavior of the electrolytes. It was found that by creating specific chelating conditions, with an appropriate Mg salt, the desired electrochemical behavior could be obtained, i.e. reversible electrodeposition and dissolution. Removal of TFSI -- contact ion pairs from the Mg2+ solvation shell was found to be essential for reversible electrodeposition. Ionic liquids with polyethylene glycol chains pendent from a parent pyrrolidinium cation were synthesized and used to create the necessary complexes with Mg 2+, from Mg(BH4)2, so that reversible electrodeposition from a purely ionic liquid medium was achieved. The following document discusses findings from several electrochemical experiments on magnesium electrolytes in ionic liquids. Explanations for the failure of many of these systems to produce reversible Mg electrodeposition are provided. The key characteristics of ionic liquid systems that are capable of achieving reversible Mg

  4. Inhibited fragmentation of mAbs in buffered ionic liquids.

    PubMed

    Mazid, Romiza R; Vijayaraghavan, R; MacFarlane, Douglas R; Cortez-Jugo, Christina; Cheng, Wenlong

    2015-05-11

    We thoroughly investigated the biological, structural and chemical stability of epidermal growth factor receptor monoclonal antibody (EGFR mAb) using choline-based buffered ionic liquids (BILs). The results demonstrated substantially enhanced stabilities in our BILs, indicating their huge promise as real-world green biological buffers for antibody storage and transportation. PMID:25869239

  5. Ionic Liquid Catalyzed Electrolyte for Electrochemical Polyaniline Supercapacitors

    NASA Astrophysics Data System (ADS)

    Inamdar, A. I.; Im, Hyunsik; Jung, Woong; Kim, Hyungsang; Kim, Byungchul; Yu, Kook-Hyun; Kim, Jin-Sang; Hwang, Sung-Min

    2013-05-01

    The effect of different wt.% of ionic liquid "1,6-bis (trimethylammonium-1-yl) hexane tetrafluoroborate" in 0.5 M LiClO4+PC electrolyte on the supercapacitor properties of polyaniline (PANI) thin film are investigated. The PANI film is synthesized using electropolymerization of aniline in the presence of sulfuric acid. The electrochemical properties of the PANI thin film are studied by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS) measurements. The optimum amount of the ionic liquid is found to be 2 wt.% which provides better ionic conductivity of the electrolyte. The highest specific capacitance of 259 F/g is obtained using the 2 wt.% electrolyte. This capacitance remains at up to 208 F/g (80% capacity retention) after 1000 charge-discharge cycles at a current density of 0.5 mA/g. The PANI film in the 2 wt.% ionic liquid catalyzed 0.5 M LiClO4+PC electrolyte shows small electrochemical resistance, better rate performance and higher cyclability. The increased ionic conductivity of the 2 wt.% ionic liquid catalyzed electrolyte causes a reduction in resistance at the electrode/electrolyte interface, which can be useful in electrochemically-preferred power devices for better applicability.

  6. Electrolytic Conductivity of Four Imidazolium-Based Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Calado, Marta S.; Diogo, João C. F.; Correia da Mata, José L.; Caetano, Fernando J. P.; Visak, Zoran P.; Fareleira, João M. N. A.

    2013-07-01

    In this article, electrolytic (ionic) conductivity measurements of four ionic liquids (ILs), namely, 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl] imide ([Cmim][NTf]), 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([Cmim][OTf]), 1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([Cmim][NTf]), and 1-ethyl-3-methylimidazolium ethyl sulfate ([Cmim][EtSO]) (ECOENG212), were performed in a temperature range of (288.15 to 333.15) K. [Cmim][NTf] was chosen to be a reference ionic liquid for several properties, including the electrolytic conductivity by the IUPAC Project 2002-005-1-100. For that reason, the measurements performed with that ionic liquid primarily serve the purpose to validate the instrumentation and the experimental procedure used in this work. The measurements were carried out using a complex impedance method, applying a novel electronic device designed and constructed for this purpose. The complete setup includes a Schott Instruments LF 913 T, used as a four-electrode conductivity cell, and a lock-in amplifier. The cell was calibrated using standard reference KCl aqueous solutions. The measurements of the impedance of the conductivity cell were carried out along a range of frequencies from (0.2 to 30) kHz, and the results were extrapolated to infinite frequency, in order to determine the electrolytic conductivity of the liquid samples. The results obtained for the ionic liquid [Cmim][NTf] were compared to reference data, and it was estimated that the overall uncertainty of the present results is better than 2 %. All the data obtained were compared with available literature data, and were analyzed and discussed in respect to the effect of temperature, cation alkyl chain length, and anion.

  7. Novel polymer electrolytes based on gelatin and ionic liquids

    NASA Astrophysics Data System (ADS)

    Leones, Rita; Sentanin, F.; Rodrigues, Luísa C.; Ferreira, Rute A. S.; Marrucho, Isabel M.; Esperança, José M. S. S.; Pawlicka, Agnieszka; Carlos, Luís D.; Manuela Silva, M.

    2012-12-01

    This study describes the results of the characterization of polymer electrolytes using gelatin matrix doped with europium triflate and/or different ionic liquids. Samples of solvent-free electrolytes were prepared and characterized by ionic conductivity measurements, thermal analysis, electrochemical stability, X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence spectroscopy. Electrolyte samples are thermally stable up to approximately 220 °C. All the materials synthesized are totally amorphous. The room temperature conductivity maximum of this electrolyte system is based on ionic liquid 1-ethyl-3-methylimidazolium acetate, (C2mim)(OAc) (1.18 × 10-4 S cm-1 at 30 °C). The electrochemical stability domain of all samples is about 2.0 V versus Li/Li+. This new series of materials represents a promising alternative in polymer electrolytes research field. The preliminary studies carried out with electrochromic devices (ECDs) incorporating optimized compositions have confirmed that these materials may perform as satisfactory multifunctional component layers in the field of "smart windows". This new materials, will open a land of promising applications in many areas: optics, energy, medicine for example as membranes and separation devices, ECD-based devices, sensors, etc.

  8. Printed environmentally friendly supercapacitors with ionic liquid electrolytes on paper

    NASA Astrophysics Data System (ADS)

    Pettersson, F.; Keskinen, J.; Remonen, T.; von Hertzen, L.; Jansson, E.; Tappura, K.; Zhang, Y.; Wilén, C.-E.; Österbacka, R.

    2014-12-01

    Environmentally friendly supercapacitors are fabricated using commercial grade aluminum coated paper as a substrate and symmetrical activated carbon electrodes as large area electrodes. Different choline chloride-based eutectic solvents are used as electrolyte. These are inexpensive, environmentally friendly and have a larger operating window compared to that of water electrolytes. As the entire device is printed and the materials used are inexpensive, both small- and large-area power sources can be fabricated to be used in cheap, disposable and recyclable devices. Supercapacitors with different eutectic solvents are measured using cyclic charge-discharge and impedance spectroscopy measurements and compared to one widely used and one "green" imidazolium ionic liquid; EMIM:TFSI and EcoEng 212™, respectively. A mixture of ethylene glycol and choline chloride, Glyceline™, show the highest capacitance and power densities of the electrolytes being tested, including the imidazolium alternatives.

  9. The effect of ionic liquid electrolyte concentrations in dye sensitized solar cell using gel electrolyte

    NASA Astrophysics Data System (ADS)

    Pujiarti, H.; Arsyad, W. S.; Wulandari, P.; Hidayat, R.

    2014-09-01

    Dye Sensitized Solar Cells (DSSCs) have received much attention because of some advantages, such as using environment-friendly materials and requiring less high-tech equipment. Commonly DSSCs are built using conventional electrolyte solution, which is prone to electrolyte leakage and low stability. In this paper, we present the characteristics of DSSCs using gel electrolyte, which was made of ionic liquid and hybrid polymer gel, and the effect of ionic liquid concentration on their characteristics. The hybrid composite polymer was composed of siloxane and ethylene glycol polymer networks. Their working performances were investigated by the current-voltage (J-V) characterizations and small ac impedance measurements, which are correlated with the concentrations of ionic liquid electrolyte. The experimental results showed that cell working performance slightly decreased but the solution leakage problem was eliminated.

  10. Buffered chlorogallate(III) ionic liquids and electrodeposition of gallium films.

    PubMed

    Seddon, Kenneth R; Srinivasan, Geetha; Swadźba-Kwaśny, Małgorzata; Wilson, Anthony R

    2013-04-01

    Buffering of Lewis acidic chlorometallate ionic liquids is a useful tool to modify their properties for electrochemical and catalytic applications. Lewis acidic chlorogallate(iii) ionic liquids containing the 1-octyl-3-methylimidazolium cation, buffered with sodium chloride, were studied using (71)Ga NMR spectroscopy and cyclic voltammetry. All the studied Lewis acidic compositions (0.50 < χGaCl3 ≤ 0.75) could be buffered to mild or moderate acidity, but not to neutrality. Electrodeposition of gallium from such buffered systems was possible, yielding deposits of improved morphology over the unbuffered ionic liquids, due to the constant melt composition maintained by the buffer. These findings were in a stark contrast with older studies on chloroaluminate(iii) ionic liquids buffered with sodium chloride. PMID:23420108

  11. Metal-air cell comprising an electrolyte with a room temperature ionic liquid and hygroscopic additive

    DOEpatents

    Friesen, Cody A.; Krishnan, Ramkumar; Tang, Toni; Wolfe, Derek

    2014-08-19

    An electrochemical cell comprising an electrolyte comprising water and a hydrophobic ionic liquid comprising positive ions and negative ions. The electrochemical cell also includes an air electrode configured to absorb and reduce oxygen. A hydrophilic or hygroscopic additive modulates the hydrophobicity of the ionic liquid to maintain a concentration of the water in the electrolyte is between 0.001 mol % and 25 mol %.

  12. Polymer--Ionic liquid Electrolytes for Electrochemical Capacitors

    NASA Astrophysics Data System (ADS)

    Ketabi, Sanaz

    Polymer electrolyte, comprised of ionic conductors, polymer matrix, and additives, is one of the key components that control the performance of solid flexible electrochemical capacitors (ECs). Ionic liquids (ILs) are highly promising ionic conductors for next generation polymer electrolytes due to their excellent electrochemical and thermal stability. Fluorinated ILs are the most commonly applied in polymer-IL electrolytes. Although possessing high conductivity, these ILs have low environmental favorability. The aim of this work was to develop environmentally benign polymer-ILs for both electrochemical double layer capacitors (EDLCs) and pseudocapacitors, and to provide insights into the influence of constituent materials on the ion conduction mechanism and the structural stability of the polymer-IL electrolytes. Solid polymer electrolytes composed of poly(ethylene oxide) (PEO) and 1-ethyl-3-methylimidazolium hydrogen sulfate (EMIHSO4) were investigated for ECs. The material system was optimized to achieve the two criteria for high performance polymer-ILs: high ionic conductivity and highly amorphous structure. Thermal and structural analyses revealed that EMIHSO4 acted as an ionic conductor and a plasticizer that substantially decreased the crystallinity of PEO. Two types of inorganic nanofillers were incorporated into these polymer electrolytes. The effects of SiO2 and TiO2 nanofillers on ionic conductivity, crystallinity, and dielectric properties of PEO-EMIHSO 4 were studied over a temperature range from -10 °C and 80 °C. Using an electrochemical capacitor model, impedance (complex capacitance) and dielectric analyses were performed to understand the ionic conduction process with and without fillers in both semi crystalline and amorphous states of the polymer electrolytes. Despite their different nanostructures, both SiO2 and TiO2 promoted an amorphous structure in PEO-EMIHSO 4 and increased the ionic conductivity 2-fold. While in the amorphous state, the

  13. Ionic Liquids as Electrolytes for Electrochemical Double-Layer Capacitors: Structures that Optimize Specific Energy.

    PubMed

    Mousavi, Maral P S; Wilson, Benjamin E; Kashefolgheta, Sadra; Anderson, Evan L; He, Siyao; Bühlmann, Philippe; Stein, Andreas

    2016-02-10

    Key parameters that influence the specific energy of electrochemical double-layer capacitors (EDLCs) are the double-layer capacitance and the operating potential of the cell. The operating potential of the cell is generally limited by the electrochemical window of the electrolyte solution, that is, the range of applied voltages within which the electrolyte or solvent is not reduced or oxidized. Ionic liquids are of interest as electrolytes for EDLCs because they offer relatively wide potential windows. Here, we provide a systematic study of the influence of the physical properties of ionic liquid electrolytes on the electrochemical stability and electrochemical performance (double-layer capacitance, specific energy) of EDLCs that employ a mesoporous carbon model electrode with uniform, highly interconnected mesopores (3DOm carbon). Several ionic liquids with structurally diverse anions (tetrafluoroborate, trifluoromethanesulfonate, trifluoromethanesulfonimide) and cations (imidazolium, ammonium, pyridinium, piperidinium, and pyrrolidinium) were investigated. We show that the cation size has a significant effect on the electrolyte viscosity and conductivity, as well as the capacitance of EDLCs. Imidazolium- and pyridinium-based ionic liquids provide the highest cell capacitance, and ammonium-based ionic liquids offer potential windows much larger than imidazolium and pyridinium ionic liquids. Increasing the chain length of the alkyl substituents in 1-alkyl-3-methylimidazolium trifluoromethanesulfonimide does not widen the potential window of the ionic liquid. We identified the ionic liquids that maximize the specific energies of EDLCs through the combined effects of their potential windows and the double-layer capacitance. The highest specific energies are obtained with ionic liquid electrolytes that possess moderate electrochemical stability, small ionic volumes, low viscosity, and hence high conductivity, the best performing ionic liquid tested being 1-ethyl-3

  14. Lithium dope and undope reactions for tin in an ionic liquid electrolyte with some glymes

    NASA Astrophysics Data System (ADS)

    Katayama, Yasushi; Miyashita, Sodai; Miura, Takashi

    Lithium doped and undoped reactions for tin have been investigated in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide (BMPTFSA) containing 0.1 M LiTFSA with some glymes. Lithium doped and undoped for tin were found to be possible in the ionic liquid electrolyte in both absence and presence of glymes. The interfacial resistance for lithium doped and undoped reactions in the ionic liquid electrolyte was decreased by addition of 0.2 M glymes probably due to the coordination of the glymes to Li +. It was suggested that the interfacial resistance is strongly affected by the coordination environment of Li + in the ionic liquid electrolyte.

  15. Composite Electrolytes for Lithium Batteries: Ionic Liquids in APTES Crosslinked Polymers

    NASA Technical Reports Server (NTRS)

    Tigelaar, Dean M.; Meador, Mary Ann B.; Bennett, William R.

    2007-01-01

    Solvent free polymer electrolytes were made consisting of Li(+) and pyrrolidinium salts of trifluoromethanesulfonimide added to a series of hyperbranched poly(ethylene oxide)s (PEO). The polymers were connected by triazine linkages and crosslinked by a sol-gel process to provide mechanical strength. The connecting PEO groups were varied to help understand the effects of polymer structure on electrolyte conductivity in the presence of ionic liquids. Polymers were also made that contain poly(dimethylsiloxane) groups, which provide increased flexibility without interacting with lithium ions. When large amounts of ionic liquid are added, there is little dependence of conductivity on the polymer structure. However, when smaller amounts of ionic liquid are added, the inherent conductivity of the polymer becomes a factor. These electrolytes are more conductive than those made with high molecular weight PEO imbibed with ionic liquids at ambient temperatures, due to the amorphous nature of the polymer.

  16. Enhanced electrical transport in ionic liquid dispersed TMAI-PEO solid polymer electrolyte

    SciTech Connect

    Gupta, Neha; Rathore, Munesh Dalvi, Anshuman; Kumar, Anil

    2014-04-24

    A polymer composite is prepared by dispersing ionic liquid [Bmim][BF{sub 4}] in Polyethylene oxide-tetra methyl ammonium iodide composite and subsequent microwave treatment. X-ray diffraction patterns confirm the composite nature. To explore possibility of proton conductivity in these films, electrical transport is studied by impedance spectroscopy and DC polarization. It is revealed that addition of ionic liquid in host TMAI-PEO solid polymer electrolyte enhances the conductivity by ∼ 2 orders of magnitude. Polarization measurements suggest that composites are essentially ion conducting in nature. The maximum ionic conductivity is found to be ∼2 × 10{sup −5} for 10 wt % ionic liquid.

  17. Determination of preservatives in soft drinks by capillary electrophoresis with ionic liquids as the electrolyte additives.

    PubMed

    Sun, Bingbing; Qi, Li; Wang, Minglin

    2014-08-01

    A capillary electrophoresis method for separating preservatives with various ionic liquids as the electrolyte additives has been developed. The performances for separation of the preservatives using five ionic liquids with different anions and different substituted group numbers on imidazole ring were studied. After investigating the influence of the key parameters on the separation (the concentration of ionic liquids, pH, and the concentration of borax), it has been found that the separation efficiency could be improved obviously using the ionic liquids as the electrolyte additives and tested preservatives were baseline separated. The proposed capillary electrophoresis method exhibited favorable quantitative analysis property of the preservatives with good linearity (r(2) = 0.998), repeatability (relative standard deviations ≤ 3.3%) and high recovery (79.4-117.5%). Furthermore, this feasible and efficient capillary electrophoresis method was applied in detecting the preservatives in soft drinks, introducing a new way for assaying the preservatives in food products. PMID:24910409

  18. Li Ion Conducting Polymer Gel Electrolytes Based on Ionic Liquid/PVDF-HFP Blends

    PubMed Central

    Ye, Hui; Huang, Jian; Xu, Jun John; Khalfan, Amish; Greenbaum, Steve G.

    2009-01-01

    Ionic liquids thermodynamically compatible with Li metal are very promising for applications to rechargeable lithium batteries. 1-methyl-3-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide (P13TFSI) is screened out as a particularly promising ionic liquid in this study. Dimensionally stable, elastic, flexible, nonvolatile polymer gel electrolytes (PGEs) with high electrochemical stabilities, high ionic conductivities and other desirable properties have been synthesized by dissolving Li imide salt (LiTFSI) in P13TFSI ionic liquid and then mixing the electrolyte solution with poly(vinylidene-co-hexafluoropropylene) (PVDF-HFP) copolymer. Adding small amounts of ethylene carbonate to the polymer gel electrolytes dramatically improves the ionic conductivity, net Li ion transport concentration, and Li ion transport kinetics of these electrolytes. They are thus favorable and offer good prospects in the application to rechargeable Li batteries including open systems like Li/air batteries, as well as more “conventional” rechargeable lithium and lithium ion batteries. PMID:20354587

  19. Ionic liquid decorated mesoporous silica nanoparticles: a new high-performance hybrid electrolyte for lithium batteries.

    PubMed

    Li, Yang; Wong, Ka-Wai; Ng, Ka-Ming

    2016-03-10

    We report a novel hybrid electrolyte based on mesoporous silica nanoparticles decorated with an ionic liquid, which exhibits a superior lithium ion transference number of >0.8, and an excellent electrochemical window of >5 V with attractive ionic conductivity. The insights obtained pave a new way for the preparation of high-performance electrolytes with mesoporous structures. PMID:26926805

  20. Full-ionic liquid gel electrolytes: Enhanced photovoltaic performances in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Li, Qinghua; Tang, Qunwei; He, Benlin; Yang, Peizhi

    2014-10-01

    Liquid electrolytes containing redox species have been widely used in dye-sensitized solar cells (DSSCs), whereas the volatility of organic solvents has been a tremendous obstacle for their commercial application. To assemble durable DSSCs, here we report the synthesis of full-ionic liquid electrolyte, in which 1-butyl-3-methylimidazolium nitrate is employed as solvent and 1-methyl-3-propylimidazolium iodide is iodide source. Using the imbibition performance of amphiphilic poly(acrylic acid/gelatin) [poly(AA/GR)] and poly(acrylic acid/cetyltrimethyl ammonium bromide) [poly(AA/CTAB)] matrices, full-ionic liquid electrolytes are imbibed into three-dimensional framework of poly(AA/GR) or poly(AA/CTAB) to form stable gel electrolytes. Room-temperature ionic conductivities as high as 17.82 and 18.44 mS cm-1 are recorded from full-ionic liquid imbibed poly(AA/GR) and poly(AA/CTAB) gel electrolytes, respectively. Promising power conversion efficiencies of 7.19% and 7.15% are determined from their DSSC devices in comparison with 6.55% and 6.12% from traditional acetonitrile-based poly(AA/GR) and poly(AA/CTAB) gel electrolytes, respectively. The new concept along with easy fabrication demonstrates the full-ionic liquid electrolytes to be good alternatives for robust gel electrolytes in quasi-solid-state DSSCs.

  1. Electrochemical Stability Window of Imidazolium-Based Ionic Liquids as Electrolytes for Lithium Batteries.

    PubMed

    Kazemiabnavi, Saeed; Zhang, Zhengcheng; Thornton, Katsuyo; Banerjee, Soumik

    2016-06-30

    This paper presents the computational assessment of the electrochemical stability of a series of alkyl methylimidazolium-based ionic liquids for their use as lithium battery electrolytes. The oxidation and reduction potentials of the constituent cation and anion of each ionic liquid with respect to a Li(+)/Li reference electrode were calculated using density functional theory following the method of thermodynamic cycles, and the electrochemical stability windows (ESW)s of these ionic liquids were obtained. The effect of varying the length of alkyl side chains of the methylimidazolium-based cations on the redox potentials and ESWs was investigated. The results show that the limits of the ESWs of these methylimidazolium-based ionic liquids are defined by the oxidation potential of the anions and the reduction potential of alkyl-methylimidazolium cations. Moreover, ionic liquids with [PF6](-) anion have a wider ESW. In addition to characterizing structure-function relationships, the accuracy of the computational approach was assessed through comparisons of the data against experimental measurements of ESWs. The potentials calculated by the thermodynamic cycle method are in good agreement with the experimental data while the HOMO/LUMO method overestimates the redox potentials. This work demonstrates that these approaches can provide guidance in selecting ionic liquid electrolytes when designing high-voltage rechargeable batteries. PMID:27266487

  2. Electrolytes based on alkoxysilyl-functionalized ionic liquids: viscoelastic properties and conductivity.

    PubMed

    Slemenik Perše, L; Colović, M; Hajzeri, M; Orel, B; Surca Vuk, A

    2014-08-14

    Ionic liquids can be successfully used as electrolytes in electrochemical devices when they are in their quasi-solid state. Among several methods of solidification, a sol-gel process was chosen and a set of alkoxysilyl-functionalized iodide imidazolium-based ionic liquids were synthesized. The electrolytes were prepared by mixing these ionic liquids with a non-polymerisable ionic liquid (1-methyl-3-propylimidazolium iodide (MPIm(+)I(-))). Iodine was dissolved in an electrolyte matrix in order to form an I3(-)/I(-) redox couple. The change of the structure from sol to gel was followed by rheological tests in order to show the effect of different rheological parameters on the gelation process. The solvolysis with glacial acetic acid and condensation were followed by rheological experiments on the samples taken from a batch, and in situ on the rheometer. The formed three-dimensional sol-gel networks of various alkoxysilyl-functionalized ionic liquids differed in their microstructures and viscoelastic properties that were correlated with conductivity. The results show that the conductivity of approximately 10(-3) S cm(-1) at room temperature was achieved for the gels with relatively high values of elastic modulus and noticeable viscous contribution. It is shown that not only the viscosity but also the viscoelastic behavior and especially the relationship between viscous and elastic moduli (phase shift) together with the time of gelation are essential for the high conductivity of electrolytes. PMID:24955729

  3. Ionic liquid based lithium battery electrolytes: charge carriers and interactions derived by density functional theory calculations.

    PubMed

    Angenendt, Knut; Johansson, Patrik

    2011-06-23

    The solvation of lithium salts in ionic liquids (ILs) leads to the creation of a lithium ion carrying species quite different from those found in traditional nonaqueous lithium battery electrolytes. The most striking differences are that these species are composed only of ions and in general negatively charged. In many IL-based electrolytes, the dominant species are triplets, and the charge, stability, and size of the triplets have a large impact on the total ion conductivity, the lithium ion mobility, and also the lithium ion delivery at the electrode. As an inherent advantage, the triplets can be altered by selecting lithium salts and ionic liquids with different anions. Thus, within certain limits, the lithium ion carrying species can even be tailored toward distinct important properties for battery application. Here, we show by DFT calculations that the resulting charge carrying species from combinations of ionic liquids and lithium salts and also some resulting electrolyte properties can be predicted. PMID:21591707

  4. Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte

    NASA Astrophysics Data System (ADS)

    Kuboki, Takashi; Okuyama, Tetsuo; Ohsaki, Takahisa; Takami, Norio

    Lithium-air batteries using hydrophobic ionic liquid consisting of 1-alkyl-3-methyl imidazolium cation and perfluoroalkylsulfonyl imide anion were investigated. 1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide, which has high conductivity and prevents hydrolysis of the lithium anode, showed the best electrolyte performance. The cell worked for 56 days in air, and the cathode carbon materials showed high discharge capacity of 5360 mAh g -1. In addition to hydrophobic ionic liquids for use as electrolytes, various carbon materials for use as high-capacity cathodes were investigated.

  5. Capacitance of Ti3C2Tx MXene in ionic liquid electrolyte

    NASA Astrophysics Data System (ADS)

    Lin, Zifeng; Barbara, Daffos; Taberna, Pierre-Louis; Van Aken, Katherine L.; Anasori, Babak; Gogotsi, Yury; Simon, Patrice

    2016-09-01

    Ti3C2Tx MXene, a two-dimensional (2D) early transition metal carbide, has shown an extremely high volumetric capacitance in aqueous electrolytes, but in a narrow voltage window (less than 1.23 V). The utilization of MXene materials in ionic liquid electrolytes with a large voltage window has never been addressed. Here, we report the preparation of the Ti3C2Tx MXene ionogel film by vacuum filtration for use as supercapacitor electrodes operating in 1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI-TFSI) neat ionic liquid electrolyte. Due to the disordered structure of the Ti3C2Tx hydrogel film and a stable spacing after vacuum drying, achieved through ionic liquid electrolyte immersion of the Ti3C2Tx hydrogel film, the Ti3C2Tx surface became accessible to EMI+ and TFSI- ions. A capacitance of 70 F g-1 together with a large voltage window of 3 V was obtained at a scan rate of 20 mV s-1 in neat EMI-TFSI electrolyte. The electrochemical signature indicates a capacitive behavior even at a high scan rate (500 mV s-1) and a high power performance. This work opens up the possibilities of using MXene materials with various ionic liquid electrolytes.

  6. Mass and Charge Transport in the Polymer-Ionic-Liquid System PEO-EMImI: From Ionic-Liquid-in-Polymer to Polymer-in-Ionic-Liquid Electrolytes.

    PubMed

    Kösters, Johannes; Schönhoff, Monika; Stolwijk, Nicolaas A

    2015-04-30

    Conventional polymer electrolytes based on inorganic salts are commonly characterized and utilized over a small salt-poor composition range because of phase transitions accompanied by loss of ion conductivity at high salt concentrations. By contrast, well-chosen polymer-ionic-liquid (IL) systems offer the possibility to vary the IL content from the IL-in-polymer to the polymer-in-IL domain. We have investigated the temperature-dependent ionic conductivity in PEOyEMImI systems consisting of poly(ethylene oxide) complexed with 1-ethyl-3-methylimidazolium iodide for y = EO/IL ratios ranging from 0.6 to 60 and compared diffusivity data with that arising from (1)H pulsed-field-gradient nuclear magnetic resonance for EMIm and (125)I radiotracer diffusion for iodine. Surprisingly, the diffusivity of cations and anions vary at most by 50% at fixed temperatures over the entire composition range. The much larger changes in the charge diffusivity Dσ relate to ion pairing exhibiting a minimum near the intermediate composition y = 10. Altogether, the results are relevant to application in dye-sensitized solar cells and show that a high ion density is crucial to enhance the iodine transport capacity. PMID:25848686

  7. Polymer electrolytes containing guanidinium-based polymeric ionic liquids for rechargeable lithium batteries

    NASA Astrophysics Data System (ADS)

    Li, Mingtao; Yang, Li; Fang, Shaohua; Dong, Siming; Hirano, Shin-ichi; Tachibana, Kazuhiro

    2011-10-01

    The electrochemical properties of solvent-free, quaternary polymer electrolytes based on a novel polymeric ionic liquid (PIL) as polymer host and incorporating 1g13TFSI ionic liquid, LiTFSI salt and nano-scale silica are reported. The PIL-LiTFSI-1g13TFSI-SiO2 electrolyte membranes are found to be chemically stable even at 80 °C in contact with lithium anode and thermally stable up to 320 °C. Particularly, the quaternary polymer electrolytes exhibit high lithium ion conductivity at high temperature, wide electrochemical stability window, time-stable interfacial resistance values and good lithium stripping/plating performance. Batteries assembled with the quaternary polymer electrolyte at 80 °C are capable to deliver 140 mAh g-1 at 0.1C rates with very good capacity retention.

  8. Electrochemistry of magnesium electrolytes in ionic liquids for secondary batteries.

    PubMed

    Vardar, Gulin; Sleightholme, Alice E S; Naruse, Junichi; Hiramatsu, Hidehiko; Siegel, Donald J; Monroe, Charles W

    2014-10-22

    The electrochemistry of Mg salts in room-temperature ionic liquids (ILs) was studied using plating/stripping voltammetry to assess the viability of IL solvents for applications in secondary Mg batteries. Borohydride (BH4(-)), trifluoromethanesulfonate (TfO(-)), and bis(trifluoromethanesulfonyl)imide (Tf2N(-)) salts of Mg were investigated. Three ILs were considered: l-n-butyl-3-methylimidazolium (BMIM)-Tf2N, N-methyl-N-propylpiperidinium (PP13)-Tf2N, and N,N-diethyl-N-methyl(2-methoxyethyl)ammonium (DEME(+)) tetrafluoroborate (BF4(-)). Salts and ILs were combined to produce binary solutions in which the anions were structurally similar or identical, if possible. Contrary to some prior reports, no salt/IL combination appeared to facilitate reversible Mg plating. In solutions containing BMIM(+), oxidative activity near 0.8 V vs Mg/Mg(2+) is likely associated with the BMIM cation, rather than Mg stripping. The absence of voltammetric signatures of Mg plating from ILs with Tf2N(-) and BF4(-) suggests that strong Mg/anion Coulombic attraction inhibits electrodeposition. Cosolvent additions to Mg(Tf2N)2/PP13-Tf2N were explored but did not result in enhanced plating/stripping activity. The results highlight the need for IL solvents or cosolvent systems that promote Mg(2+) dissociation. PMID:25248147

  9. Aspects of Protonic Ionic Liquid as Electrolyte in Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Laux, Edith; Uhl, Stefanie; Journot, Tony; Brossard, Julien; Jeandupeux, Laure; Keppner, Herbert

    2016-04-01

    The Seebeck coefficient (S E) or thermopower and power output have been measured in a series of 16 ionic liquids (ILs). Thermoelectric current extraction is assisted by a dissolved redox couple (I2/LiI) added to the IL. The experiments were carried out in a thermoelectric cell where the IL is packaged between two electrodes. A large range of Seebeck coefficients and power outputs could be observed. The highest S E was measured for protonic ILs, reaching a value of 968 μV/K. Moreover, the maximal power output of an IL-based thermoelectric generator and the polarity of its electrodes depend on the concentration of the redox-active species in the IL. The power output of the generator increased continuously with the redox concentration up to a maximum value (at 0.4 mol/L) but decayed for higher concentrations. We showed that an IL with high S E [linked to open-circuit voltage (V OC)] does not necessarily lead to high power output; rather, it is carrier transport and extraction that determine the generator power. Surprisingly, the carrier extraction is not highest at the maximum electrode temperature difference; the power output observed for a given electrode temperature difference can be further increased by heating up the cold electrode in spite of the consequent reduction in the total temperature difference between the electrodes.

  10. Aspects of Protonic Ionic Liquid as Electrolyte in Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Laux, Edith; Uhl, Stefanie; Journot, Tony; Brossard, Julien; Jeandupeux, Laure; Keppner, Herbert

    2016-07-01

    The Seebeck coefficient ( S E) or thermopower and power output have been measured in a series of 16 ionic liquids (ILs). Thermoelectric current extraction is assisted by a dissolved redox couple (I2/LiI) added to the IL. The experiments were carried out in a thermoelectric cell where the IL is packaged between two electrodes. A large range of Seebeck coefficients and power outputs could be observed. The highest S E was measured for protonic ILs, reaching a value of 968 μV/K. Moreover, the maximal power output of an IL-based thermoelectric generator and the polarity of its electrodes depend on the concentration of the redox-active species in the IL. The power output of the generator increased continuously with the redox concentration up to a maximum value (at 0.4 mol/L) but decayed for higher concentrations. We showed that an IL with high S E [linked to open-circuit voltage ( V OC)] does not necessarily lead to high power output; rather, it is carrier transport and extraction that determine the generator power. Surprisingly, the carrier extraction is not highest at the maximum electrode temperature difference; the power output observed for a given electrode temperature difference can be further increased by heating up the cold electrode in spite of the consequent reduction in the total temperature difference between the electrodes.

  11. Eco-friendly Energy Storage System: Seawater and Ionic Liquid Electrolyte.

    PubMed

    Kim, Jae-Kwang; Mueller, Franziska; Kim, Hyojin; Jeong, Sangsik; Park, Jeong-Sun; Passerini, Stefano; Kim, Youngsik

    2016-01-01

    As existing battery technologies struggle to meet the requirements for widespread use in the field of large-scale energy storage, novel concepts are urgently needed concerning batteries that have high energy densities, low costs, and high levels of safety. Here, a novel eco-friendly energy storage system (ESS) using seawater and an ionic liquid is proposed for the first time; this represents an intermediate system between a battery and a fuel cell, and is accordingly referred to as a hybrid rechargeable cell. Compared to conventional organic electrolytes, the ionic liquid electrolyte significantly enhances the cycle performance of the seawater hybrid rechargeable system, acting as a very stable interface layer between the Sn-C (Na storage) anode and the NASICON (Na3 Zr2 Si2 PO12) ceramic solid electrolyte, making this system extremely promising for cost-efficient and environmentally friendly large-scale energy storage. PMID:26611916

  12. Ionic-Liquid-Based Polymer Electrolytes for Battery Applications.

    PubMed

    Osada, Irene; de Vries, Henrik; Scrosati, Bruno; Passerini, Stefano

    2016-01-11

    The advent of solid-state polymer electrolytes for application in lithium batteries took place more than four decades ago when the ability of polyethylene oxide (PEO) to dissolve suitable lithium salts was demonstrated. Since then, many modifications of this basic system have been proposed and tested, involving the addition of conventional, carbonate-based electrolytes, low molecular weight polymers, ceramic fillers, and others. This Review focuses on ternary polymer electrolytes, that is, ion-conducting systems consisting of a polymer incorporating two salts, one bearing the lithium cation and the other introducing additional anions capable of plasticizing the polymer chains. Assessing the state of the research field of solid-state, ternary polymer electrolytes, while giving background on the whole field of polymer electrolytes, this Review is expected to stimulate new thoughts and ideas on the challenges and opportunities of lithium-metal batteries. PMID:26783056

  13. Ionic-liquid-nanoparticle hybrid electrolytes: applications in lithium metal batteries.

    PubMed

    Lu, Yingying; Korf, Kevin; Kambe, Yu; Tu, Zhengyuan; Archer, Lynden A

    2014-01-01

    Development of rechargeable lithium metal battery (LMB) remains a challenge because of uneven lithium deposition during repeated cycles of charge and discharge. Ionic liquids have received intensive scientific interest as electrolytes because of their exceptional thermal and electrochemical stabilities. Ionic liquid and ionic-liquid-nanoparticle hybrid electrolytes based on 1-methy-3-propylimidazolium (IM) and 1-methy-3-propylpiperidinium (PP) have been synthesized and their ionic conductivity, electrochemical stability, mechanical properties, and ability to promote stable Li electrodeposition investigated. PP-based electrolytes were found to be more conductive and substantially more efficient in suppressing dendrite formation on cycled lithium anodes; as little as 11 wt % PP-IL in a PC-LiTFSI host produces more than a ten-fold increase in cell lifetime. Both PP- and IM-based nanoparticle hybrid electrolytes provide up to 10 000-fold improvements in cell lifetime than anticipated based on their mechanical modulus alone. Galvanostatic cycling measurements in Li/Li4 Ti5 O12 half cells using IL-nanoparticle hybrid electrolytes reveal more than 500 cycles of trouble-free operation and enhanced rate capability. PMID:24282090

  14. Ether-functionalized ionic liquid electrolytes for lithium-air batteries

    NASA Astrophysics Data System (ADS)

    Nakamoto, Hirofumi; Suzuki, Yushi; Shiotsuki, Taishi; Mizuno, Fuminori; Higashi, Shougo; Takechi, Kensuke; Asaoka, Takahiko; Nishikoori, Hidetaka; Iba, Hideki

    2013-12-01

    Ionic liquids composed of N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium (DEME), N-methyl-N-methoxyethylpiperidinium (PP1.1o2) cations functionalized with ethers, N-methyl-N-propylpiperidinium (PP13), and N-butyl-N-methylpyrrolidinium (P14) cations and the bis(trifluoromethanesulfonyl)amide (TFSA) anion are investigated for application as electrolytes in non-aqueous lithium-oxygen (Li-O2) batteries. The PP13-TFSA, P14-TFSA and DEME-TFSA ionic liquids have high oxygen radical stability. A comparison of the lithium supply capacity measured using pulse-gradient spin-echo NMR for 7Li nuclei and the oxygen supply capacity measured using electrochemical methods indicates that the oxygen supply is the rate-limiting step for the generation of lithium-oxygen compounds (LiOx) in these ionic liquids with supporting electrolytes. The DEME-TFSA system has the highest LiOx generation activity among the ionic liquid systems examined. We demonstrate the improved performance (output power, discharge-charge capacity and coulombic efficiency) of a Li-O2 battery using the DEME-TFSA system compared with that using the PP13-TFSA system. The improvements observed for the DEME-TFSA system are attributed to the high LiOx generation properties and lithium ion supply.

  15. Lithium-sulphur battery with activated carbon cloth-sulphur cathode and ionic liquid as electrolyte

    NASA Astrophysics Data System (ADS)

    Swiderska-Mocek, Agnieszka; Rudnicka, Ewelina

    2015-01-01

    In this study a binder-free activated carbon cloth-sulphur (ACC-S) composite cathode is presented. Such a cathode was obtained using the impregnating technique of microporous activated carbon cloth with elemental melted sulphur. The surface morphology of an activated carbon cloth-sulphur electrode was studied using a scanning electron microscope (SEM), which was equipped with an EDX spectroscopy attachment. Electrochemical properties of the ACC-S composite cathode was tested in an ionic liquid electrolyte consisting of 1-ethyl-3-methylimidazolium bis(trifluoromethanesulphonyl)imide (EtMeImNTf2) and bis(trifluoromethanesulphonyl)imide (LiNTf2). The ACC-sulphur cathode working together with lithium anode was tested with the use of cyclic voltammetry (CV), galvanostatic charge/discharge cycles and electrochemical impedance spectroscopy (EIS). The capacity and cyclic stability of the ACC-S composite cathode were much better than those for the sulphur cathode (a mixture of sulphur from graphene nanoplatelets and carbon black) tested in the same ionic liquid electrolyte. The ACC-sulphur cathode showed good cyclability and coulombic efficiency (99%) with the ionic liquid electrolyte. The reversible capacity of the ACC-S|electrolyte|Li cell was ca. 830 mAh g-1 after 50 cycles.

  16. Silicon microhole arrays architecture for stable and efficient photoelectrochemical cells using ionic liquids electrolytes

    NASA Astrophysics Data System (ADS)

    Shen, Xiaojuan; Chen, Ling; Li, Junnan; Zhao, Jie

    2016-06-01

    Silicon microhole arrays (SiMHs) structure is constructed and fabricated by a low-cost maskless anodic etching process, which is applied as the photoanode for the silicon photoelectrochemical (PEC) cells. The depths of silicon microhole arrays can be independently controlled by the etching time. The light-scattering properties are also investigated. Additionally, surface morphology analysis show that large hole diameters of SiMHs is very favourable for the full-filling of ionic liquids electrolyte. Therefore, better electrochemical contact as well as high ionic conductivity of the ionic liquids electrolyte renders the PEC SiMHs solar cells to exhibit more excellent performance. After optimization, the maximum PCE could be achieved at 4.04% for the SiMHs cell. The performance of the SiMHs cell is highly comparable to that of silicon nanowires cell. More importantly, the liquid-state electrolyte is confined in the unique microhole structure, which can obviously prevent the leakage of the ionic liquids electrolyte, resulting in much better long-term stability than the reference devices. These preliminary results validate the concept of interpenetrating networks with semiconductor structure/ILs junction to develop stable and efficient PEC cells.

  17. Quaternary Polymer Electrolytes Containing an Ionic Liquid and a Ceramic Filler.

    PubMed

    Sharova, Varvara; Kim, Guk-Tae; Giffin, Guinevere A; Lex-Balducci, Alexandra; Passerini, Stefano

    2016-07-01

    In this work, the individual and combined effects of an ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide and ceramic filler silicon dioxide on the thermal and electrochemical properties of poly(ethylene oxide) electrolytes have been investigated. The electrolyte containing both components has the lowest glass transition (-60 °C) and melting temperatures (27 °C), the highest conductivity at any investigated temperature, and the highest limiting current density (at 40 °C). This solid polymer electrolyte also exhibits the best long-term cycling performance in Li/LiFePO4 cells. PMID:27000626

  18. Formulation of ionic liquid electrolyte to expand the voltage window of supercapacitors

    DOE PAGESBeta

    Van Aken, Katherine L.; Beidaghi, Majid; Gogotsi, Yury

    2015-03-18

    We report an effective method to expand the operating potential window (OPW) of electrochemical capacitors based on formulating the ionic liquid (IL) electrolytes. Moreover, using model electrochemical cells based on two identical onion like carbon (OLC) electrodes and two different IL electrolytes and their mixtures, it was shown that the asymmetric behavior of the electrolyte’s cation and anion toward the two electrodes limits the OPW of the cell and therefore its energy density. Additionally, a general solution to this problem is proposed by formulating the IL electrolyte mixtures to balance the capacitance of electrodes in a symmetric supercapacitor.

  19. Use of polymer/ionic liquid plasticizers as gel electrolytes in electrochromic devices

    NASA Astrophysics Data System (ADS)

    Bircan, H.; Seshadri, V.; Padilla, J.; Invernale, M.; Otero, T. F.; Sotzing, G. A.

    2008-08-01

    The dual polymer configuration is commonly used when constructing electrochromic devices (ECDs) due to the expected electrochemical stability and enhanced optical properties. In this configuration, two different polymers are used which are optically complementary. Herein we report the construction and characterization of dual-type ECDs using poly(3, 4-ethylenedioxythiophene) (PEDOT) and poly[3, 6-bis(2-(3, 4-ethylenedioxy)thienyl)-N-methylcarbazole] (PBEDOT-NMCz) as the two complementary electrochromic polymers for the device. A variety of gel electrolyte solutions were prepared and evaluated for these devices. The use of ionic liquids within these gels imparted interesting properties, including long lifetimes, and thermal stability of devices. Switching speeds for the various devices, as well as optical contrasts, were also obtained for the gel electrolytes containing different amounts of ionic liquid as plasticizer.

  20. Perfluoro anion based binary and ternary ionic liquids as electrolytes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lin, Hsi-Hsin; Peng, Jia-De; Suryanarayanan, V.; Velayutham, D.; Ho, Kuo-Chuan

    2016-04-01

    In this work, eight new ionic liquids (ILs) based on triethylammonium (TEA) or n-methylpiperidinium (NMP) cations and perfluoro carboxylate (PFC) anions having different carbon chain lengths are synthesized and their physico-chemical properties such as density, decomposition temperature, viscosity and conductivity are determined. Photovoltaic characteristics of dye-sensitized solar cells (DSSCs) with binary ionic liquids electrolytes, containing the mixture of the synthesized ILs and 1-methyl-3-propyl imidazolium iodide (PMII) (v/v = 35/65), are evaluated. Among the different ILs, solar cells containing NMP based ILs show higher VOC than that of TEA, whereas, higher JSC is noted for the DSSCs incorporated with the latter when compared to the former. Further, the photo-current of the DSSCs decreases with the increase of the carbon chain length of perfluoro carboxylate anionic group of ILs. The cell performance of the DSSC containing ternary ionic liquids-based electrolytes compose of NMP-2C/TEA-2C/PMII (v/v/v = 28/7/65) exhibits a JSC of 12.99 mA cm-2, a VOC of 639.0 mV, a FF of 0.72, and a cell efficiency of 6.01%. The extraordinary durability of the DSSC containing the above combination of electrolytes stored in dark at 50 °C is proved to be unfailing up to 1200 h.

  1. Ionic liquid electrolyte based on S-propyltetrahydrothiophenium iodide for dye-sensitized solar cells

    SciTech Connect

    Guo, Lei; Pan, Xu; Zhang, Changneng; Liu, Weiqing; Wang, Meng; Fang, Xiaqin; Dai, Songyuan

    2010-03-15

    A new ionic liquid S-propyltetrahydrothiophenium iodide (T{sub 3}I) was developed as the solvent and iodide ion source in electrolyte for dye-sensitized solar cells. The electrochemical behavior of the I{sub 3}{sup -}/I{sup -} redox couple and effect of additives in this ionic liquid system was tested and the results showed that this ionic liquid electrolyte revealed good conducting abilities and potential application for solar devices. The effects of LiI and dark-current inhibitors were investigated. The dye-sensitized solar cell with the electrolyte (0.1 mol L{sup -1} LiI, 0.35 mol L{sup -1} I{sub 2}, 0.5 mol L{sup -1} NMBI in pure T{sub 3}I) gave short-circuit photocurrent density (J{sub sc}) of 11.22 mA cm{sup 2}, open-circuit voltage (V{sub oc}) of 0.61 V and fill factor (FF) of 0.51, corresponding to the photoelectric conversion efficiency ({eta}) of 3.51% under one Sun (AM1.5). (author)

  2. Ionic Liquid Electrolytes for Li–Air Batteries: Lithium Metal Cycling

    PubMed Central

    Grande, Lorenzo; Paillard, Elie; Kim, Guk-Tae; Monaco, Simone; Passerini, Stefano

    2014-01-01

    In this work, the electrochemical stability and lithium plating/stripping performance of N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI) are reported, by investigating the behavior of Li metal electrodes in symmetrical Li/electrolyte/Li cells. Electrochemical impedance spectroscopy measurements and galvanostatic cycling at different temperatures are performed to analyze the influence of temperature on the stabilization of the solid electrolyte interphase (SEI), showing that TFSI-based ionic liquids (ILs) rank among the best candidates for long-lasting Li–air cells. PMID:24815072

  3. Application of electrolyte using novel ionic liquid to Si thick film anode of Li-ion battery

    NASA Astrophysics Data System (ADS)

    Usui, Hiroyuki; Yamamoto, Yoshihisa; Yoshiyama, Kazuhide; Itoh, Toshiyuki; Sakaguchi, Hiroki

    An applicability of a novel ionic liquid, consisting of 1-methoxyethoxymethyl(tri- n-butyl)phosphonium cation and bis(trifluoromethanesulfonyl)amide anion, was investigated as an electrolyte of Li-ion battery using a thick film electrode of Si prepared by a gas-deposition method. The electrochemical properties in the novel ionic liquid were compared to those in a commercial ionic liquid and a typical organic solvent of propylene carbonate. The initial discharge capacity of 3450 mAh g -1 and excellent cycling performance were achieved in the novel ionic liquid. The novel ionic liquid was confirmed to effectively suppress a collapse and an electrical isolation of the Si thick film induced by pulverization during charge-discharge cycling. The excellent performance is possibly attributed to more effective desolvation of Li ions from the anions due to its lower dielectric constant compared with the propylene carbonate solvent.

  4. Capacitive Energy Storage from - 50o to 100o Using an Ionic Liquid Electrolyte

    SciTech Connect

    Lin, Rongying; Taberna, Pierre-Louis; Santini, Sebastien; Presser, Volker; Perez, Carlos R.; Malbosc, Francois; Rupesinghe, Nalin L.; Teo, Kenneth B. K.; Gogotsi, Yury G.; Simon, Patrice

    2011-01-01

    Relying on redox reactions, most batteries are limited in their ability to operate at very low or very high temperatures. While performance of electrochemical capacitors is less dependent on the temperature, present-day devices still cannot cover the entire range needed for automotive and electronics applications under a variety of environmental conditions. We show that the right combination of the exohedral nanostructured carbon (nanotubes and onions) electrode and a eutectic mixture of ionic liquids can dramatically extend the temperature range of electrical energy storage, thus defying the conventional wisdom that ionic liquids can only be used as electrolytes above room temperature. We demonstrate electrical double layer capacitors able to operate from 50 to 100 C over a wide voltage window (up to 3.7 V) and at very high charge/discharge rates of up to 20 V/s.

  5. Good’s buffers as a basis for developing self-buffering and biocompatible ionic liquids for biological research†

    PubMed Central

    Taha, Mohamed; e Silva, Francisca A.; Quental, Maria V.; Ventura, Sónia P. M.; Freire, Mara G.; Coutinho, João A. P.

    2014-01-01

    This work reports a promising approach to the development of novel self-buffering and biocompatible ionic liquids for biological research in which the anions are derived from biological buffers (Good’s buffers, GB). Five Good’s buffers (Tricine, TES, CHES, HEPES, and MES) were neutralized with four suitable hydroxide bases (1-ethyl-3-methylimidazolium, tetramethylammonium, tetraethylammonium, and tetrabutylammonium) producing 20 Good’s buffer ionic liquids (GB-ILs). The presence of the buffering action of the synthesized GB-ILs was ascertained by measuring their pH-profiles in water. Moreover, a series of mixed GB-ILs with wide buffering ranges were formulated as universal buffers. The impact of GB-ILs on bovine serum albumin (BSA), here used as a model protein, is discussed and compared with more conventional ILs using spectroscopic techniques, such as infrared and dynamic light scattering. They appear to display, in general, a greater stabilizing effect on the protein secondary structure than conventional ILs. A molecular docking study was also carried out to investigate on the binding sites of GB-IL ions to BSA. We further used the QSAR-human serum albumin binding model, log K(HSA), to calculate the binding affinity of some conventional ILs/GB-ILs to HSA. The toxicity of the GB and GB-ILs was additionally evaluated revealing that they are non-toxic against Vitro fischeri. Finally, the GB-ILs were also shown to be able to form aqueous biphasic systems when combined with aqueous solutions of inorganic or organic salts, and we tested their extraction capability for BSA. These systems were able to extract BSA with an outstanding extraction efficiency of 100% in a single step for the GB-IL-rich phase, and, as a result, the use of GB-IL-based ABS for the separation and extraction of other added-value biomolecules is highly encouraging and worthy of further investigation. PMID:25729325

  6. Ionic liquids in lithium battery electrolytes: Composition versus safety and physical properties

    NASA Astrophysics Data System (ADS)

    Wilken, Susanne; Xiong, Shizhao; Scheers, Johan; Jacobsson, Per; Johansson, Patrik

    2015-02-01

    Ionic liquids have been highlighted as non-flammable, environmentally friendly, and suggested as possible solvents in lithium ion battery electrolytes. Here, the application of two ionic liquids from the EMIm-family in a state-of-the-art carbonate solvent based electrolyte is studied with a focus on safety improvement. The impact of the composition on physical and safety related properties is investigated for IL concentrations of additive (∼5 wt%) up to co-solvent concentrations (∼60 wt%). Furthermore, the role of the lithium salt concentration is separately addressed by studying a set of electrolytes at 0.5 M, 1 M, and 2 M LiPF6 concentrations. A large impact on the electrolyte properties is found for the electrolytes containing EMImTFSI and high salt concentrations. The composition 2 M LiPF6 EC:DEC:IL (1:1:3 wt%) is found non-flammable for both choices of ILs added. The macroscopic observations are complemented by a Raman spectroscopy analysis whereby a change in the Li+ solvation is detected for IL concentrations >4.5 mol%.

  7. Advances in the electrodeposition of aluminum from ionic liquid based electrolytes

    NASA Astrophysics Data System (ADS)

    Leadbetter, Kirt C.

    Aluminum plating is of considerable technical and economic interest because it provides an eco-friendly substitute for cadmium coatings used on many military systems. However, cadmium has been determined to be a significant environmental safety and occupational health (ESOH) hazard because of its toxicity and carcinogenic nature. Furthermore, the cost of treating and disposing of generated wastes, which often contain cyanide, is costly and is becoming prohibitive in the face of increasingly stringent regulatory standards. The non-toxic alternative aluminum is equivalent or superior in performance to cadmium. In addition, it could serve to provide an alternative to hexavalent chromium coatings used on military systems for similar reasons to that of cadmium. Aluminum is a beneficial alternative in that it demonstrates self-healing corrosion resistance in the form of a tightly-bound, impervious oxide layer. A successfully plated layer would be serviceable over a wider temperature range, 925 °F for aluminum compared to 450 oF for cadmium. In addition, an aluminum layer can be anodized to make it non-conducting and colorable. In consideration of the plating process, aluminum cannot be deposited from aqueous solutions because of its reduction potential. Therefore, nonaqueous electrolytes are required for deposition. Currently, aluminum can be electrodeposited in nonaqueous processes that use hazardous chemicals such as toluene and pyrophoric aluminum alkyls. Electrodeposition from ionic liquids provides the potential for a safer method that could be easily scaled up for industrial application. The plating process could be performed at a lower temperature and higher current density than other commercially available aluminum electrodeposition processes; thus a reduced process cost could be possible. The current ionic liquid based electrolytes are more expensive; however production on a larger scale and a long electrolyte lifetime are associated with a reduction in price

  8. Crosslinked polymer gel electrolytes based on polyethylene glycol methacrylate and ionic liquid for lithium battery applications

    SciTech Connect

    Liao, Chen; Sun, Xiao-Guang; Dai, Sheng

    2013-01-01

    Gel polymer electrolytes were synthesized by copolymerization polyethylene glycol methyl ether methacrylate with polyethylene glycol dimethacrylate in the presence of a room temperature ionic liquid, methylpropylpyrrolidinium bis(trifluoromethanesulfonyl)imide (MPPY TFSI). The physical properties of gel polymer electrolytes were characterized by thermal analysis, impedance spectroscopy, and electrochemical tests. The ionic conductivities of the gel polymer electrolytes increased linearly with the amount of MPPY TFSI and were mainly attributed to the increased ion mobility as evidenced by the decreased glass transition temperatures. Li||LiFePO4 cells were assembled using the gel polymer electrolytes containing 80 wt% MPPY TFSI via an in situ polymerization method. A reversible cell capacity of 90 mAh g 1 was maintained under the current density of C/10 at room temperature, which was increased to 130 mAh g 1 by using a thinner membrane and cycling at 50 C.

  9. Flexible thin-film battery based on solid-like ionic liquid-polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Li, Qin; Ardebili, Haleh

    2016-01-01

    The development of high-performance flexible batteries is imperative for several contemporary applications including flexible electronics, wearable sensors and implantable medical devices. However, traditional organic liquid-based electrolytes are not ideal for flexible batteries due to their inherent safety and stability issues. In this study, a non-volatile, non-flammable and safe ionic liquid (IL)-based polymer electrolyte film with solid-like feature is fabricated and incorporated in a flexible lithium ion battery. The ionic liquid is 1-Ethyl-3-methylimidazolium dicyanamide (EMIMDCA) and the polymer is composed of poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP). The electrolyte exhibits good thermal stability (i.e. no weight loss up to 300 °C) and relatively high ionic conductivity (6 × 10-4 S cm-1). The flexible thin-film lithium ion battery based on solid-like electrolyte film is encapsulated using a thermal-lamination process and demonstrates excellent electrochemical performance, in both flat and bent configurations.

  10. Influence of the Ionic Liquid Type on the Gel Polymer Electrolytes Properties.

    PubMed

    Tafur, Juan P; Santos, Florencio; Romero, Antonio J Fernández

    2015-01-01

    Gel Polymer Electrolytes (GPEs) composed by ZnTf₂ salt, poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP), and different ionic liquids are synthesized using n-methyl-2-pyrrolidone (NMP) as solvent. Three different imidazolium-based ionic liquids containing diverse cations and anions have been explored. Structural and electrical properties of the GPEs varying the ZnTf₂ concentration are analyzed by ATR-FTIR, DSC, TG, and cyclic voltammetry. Free salt IL-GPEs present distinct behavior because they are influenced by the different IL cations and anions composition. However, inclusion of ZnTf₂ salt inside the polymers provide GPEs with very similar characteristics, pointing out that ionic transport properties are principally caused by Zn(2+) and triflate movement. Whatever the IL used, the presence of NMP solvent inside the polymer's matrix turns out to be a key factor for improving the Zn(2+) transport inside the GPE due to the interaction between Zn(2+) cations and carbonyl groups of the NMP. High values of ionic conductivity, low activation energy values, and good voltammetric reversibility obtained regardless of the ionic liquid used enable these GPEs to be applied in Zn batteries. Capacities of 110-120 mAh·g(-1) have been obtained for Zn/IL-GPE/MnO₂ batteries discharged at -1 mA·cm(-2). PMID:26610580

  11. Influence of the Ionic Liquid Type on the Gel Polymer Electrolytes Properties

    PubMed Central

    Tafur, Juan P.; Santos, Florencio; Fernández Romero, Antonio J.

    2015-01-01

    Gel Polymer Electrolytes (GPEs) composed by ZnTf2 salt, poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP), and different ionic liquids are synthesized using n-methyl-2-pyrrolidone (NMP) as solvent. Three different imidazolium-based ionic liquids containing diverse cations and anions have been explored. Structural and electrical properties of the GPEs varying the ZnTf2 concentration are analyzed by ATR-FTIR, DSC, TG, and cyclic voltammetry. Free salt IL-GPEs present distinct behavior because they are influenced by the different IL cations and anions composition. However, inclusion of ZnTf2 salt inside the polymers provide GPEs with very similar characteristics, pointing out that ionic transport properties are principally caused by Zn2+ and triflate movement. Whatever the IL used, the presence of NMP solvent inside the polymer’s matrix turns out to be a key factor for improving the Zn2+ transport inside the GPE due to the interaction between Zn2+ cations and carbonyl groups of the NMP. High values of ionic conductivity, low activation energy values, and good voltammetric reversibility obtained regardless of the ionic liquid used enable these GPEs to be applied in Zn batteries. Capacities of 110–120 mAh·g−1 have been obtained for Zn/IL-GPE/MnO2 batteries discharged at −1 mA·cm−2. PMID:26610580

  12. Dissimilar Crystal Dependence of Vanadium Oxide Cathodes in Organic Carbonate and Safe Ionic Liquid Electrolytes.

    PubMed

    Tartaj, Pedro; Amarilla, Jose M; Morales, Enrique; Vazquez-Santos, Maria B

    2016-01-27

    Advances in Li metal anode stabilization, solid-state electrolytes, and capabilities to insert a variety of active ions (Li(+), Na(+), Mg(2+), and Al(3+)) have renewed the interest in layered vanadium oxides. Here we show that crystal characteristics such as size and crystallinity are fundamental variables that control the dissimilar electrochemical capabilities of 1D vanadium oxides immersed in different electrolytes (organic carbonates and safe electrolytes containing 80% of ionic liquid). We show that this opposite behavior can be understood in terms of a subtle interplay between crystal characteristics (size and crystallinity), electrolyte degradability, and the ionic conductivity of the electrolyte. Thus, through this control we are able to obtain pure 1D vanadium oxides that show reversibility in carbonate electrolytes at a cutoff voltage of 1.5 V (voltage region where insertion of more than two lithium ions is possible). Furthermore, these materials are able to uptake ca. 1.0 mol of Li at a rate of 20C (1C = 295 mAh/g) and retain excellent capabilities (Coulombic efficiency of 98% after 200 cycles at a rate of 5C). Finally, what, to our knowledge, is really remarkable is that this optimization allows building vanadium oxide electrodes with an excellent electrochemical response in a safe electrolyte composition (80% of ionic liquid). Specifically, we reach uptakes also at a cutoff voltage of 1.5 V of ca. 1.0 mol of Li after 200 cycles at 5C (charge/discharge) with Coulombic efficiencies higher than 99.5%. PMID:26743032

  13. Towards safer sodium-ion batteries via organic solvent/ionic liquid based hybrid electrolytes

    NASA Astrophysics Data System (ADS)

    Monti, Damien; Ponrouch, Alexandre; Palacín, M. Rosa; Johansson, Patrik

    2016-08-01

    Hybrid electrolytes aimed at application in sodium-ion batteries (SIB) consisting of an organic solvent mixture (EC:PC) and different ionic liquids (ILs); EMImTFSI, BMImTFSI, and Pyr13TFSI, and with the NaTFSI salt providing the Na+ charge carriers have here been extensively studied. The physico-chemical and electrochemical characterisation includes ionic conductivity, viscosity, density, cation coordination and solvation, various safety measures, and electrochemical stability window (ESW). Hybrid electrolytes with 10-50% of IL content were found to have ionic conductivities on par with comparable organic solvent based electrolytes, but with highly enhanced safety properties. A systematic Raman spectroscopy study of the cation coordination and solvation before and after electrolyte safety tests by ignition suggest that IL cations and TFSI remain stable when ignited while organic solvents are consumed. Finally, the solid electrolyte interphase (SEI) formed when using hybrid electrolytes has both better mechanical and electrochemical stability than the SEI derived from pure IL based electrolytes. For a half-cell with a hard carbon (HC) electrode and a hybrid electrolyte with a composition of 0.8 m NaTFSI in EC0.45:PC0.45:Pyr13TFSI0.10 encouraging results were obtained for IL based electrolytes - ca. 182 mAhg-1 at C/10 over 40 cycles.

  14. Safe lithium-ion battery with ionic liquid-based electrolyte for hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Damen, Libero; Lazzari, Mariachiara; Mastragostino, Marina

    2011-10-01

    A lithium-ion battery featuring graphite anode, LiFePO4-C cathode and an innovative, safe, ionic liquid-based electrolyte, was assembled and characterized in terms of specific energy and power after the USABC-DOE protocol for power-assist hybrid electric vehicle (HEV) application. The test results show that the battery surpasses the energy and power goals stated by USABC-DOE and, hence, this safe lithium-ion battery should be suitable for application in the evolving HEV market.

  15. Characteristics of an ionic liquid electrolyte for sodium-ion batteries

    NASA Astrophysics Data System (ADS)

    Hasa, Ivana; Passerini, Stefano; Hassoun, Jusef

    2016-01-01

    We study the liquid mixture of sodium bis(trifluoromethanesulfonyl)imide in N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI-NaTFSI) for application in sodium-ion batteries. The ionic liquid-based electrolyte is characterized in terms of electrochemical and thermal properties. Ionic conductivity and electrochemical stability windows are evaluated through electrochemical impedance spectroscopy (EIS) measurements and voltammetry tests, respectively. The thermal stability is evaluated by differential scanning calorimetry (DSC) and thermo-gravimetric analysis (TGA). Moreover, the suitability of the IL-electrolyte is preliminary verified in half and in full-cells at room temperature, using P2-Na0.6Ni0.22Fe0.11Mn0.66O2 layered oxide cathode and nanostructured Sb-C composite anode. The cell shows promising characteristics with a working voltage of about 2.7 V and a delivered capacity of about 100 mAh g-1. Despite requiring further optimization in terms of cycle life and energy density, the data here reported suggest the suitability of the ionic liquid electrolyte for application in sodium-ion battery.

  16. Novel biocompatible and self-buffering ionic liquids for biopharmaceutical applications.

    PubMed

    Taha, Mohamed; Almeida, Mafalda R; Silva, Francisca A E; Domingues, Pedro; Ventura, Sónia P M; Coutinho, João A P; Freire, Mara G

    2015-03-16

    Antibodies obtained from egg yolk of immunized hens, immunoglobulin Y (IgY), are an alternative to the most focused mammal antibodies, because they can be obtained in higher titers by less invasive approaches. However, the production cost of high-quality IgY for large-scale applications remains higher than that of other drug therapies due to the lack of efficient purification methods. The search for new purification platforms is thus vital. The solution could be liquid-liquid extraction by using aqueous biphasic systems (ABS). Herein, we report the extraction and attempted purification of IgY from chicken egg yolk by using a new ABS composed of polymers and Good's buffer ionic liquids (GB-ILs). New self-buffering and biocompatible ILs based on the cholinium cation and anions derived from Good's buffers were synthesized and the self-buffering characteristics and toxicity were characterized. Moreover, when these GB-ILs are combined with PPG 400 (poly(propylene) glycol with a molecular weight of 400 g mol(-1)) to form ABS, extraction efficiencies, of the water-soluble fraction of proteins, ranging between 79 and 94% were achieved in a single step. Based on computational investigations, we also demonstrate that the preferential partitioning of IgY for the GB-IL-rich phase is dominated by hydrogen-bonding and van der Waals interactions. PMID:25652351

  17. Improved dye-sensitized solar cells by composite ionic liquid electrolyte incorporating layered titanium phosphate

    SciTech Connect

    Cheng, Ping; Lan, Tian; Wang, Wanjun; Wu, Haixia; Yang, Haijun; Guo, Shouwu

    2010-05-15

    We reported a composite electrolyte prepared by incorporating layered {alpha}-titanium phosphate ({alpha}-TiP) into a binary ionic liquid of 1-propyl-3-methylimidazolium iodide (PMII) and 1-ethyl-3-methylimidazolium tetrafluoroborate (EmimBF{sub 4}) (volume ratio, 13:7) electrolyte. The addition of {alpha}-TiP markedly improved the photovoltaic properties of dye-sensitized solar cells (DSSCs) compared to that without {alpha}-TiP. The enhancement was explained by improved diffusion of tri-iodide (I{sub 3}{sup -}) ions, suppressed electron recombination with I{sub 3}{sup -} in the electrolyte and increased lifetime of electrons in mesoscopic TiO{sub 2} film. (author)

  18. Performance of solid state supercapacitors based on polymer electrolytes containing different ionic liquids

    NASA Astrophysics Data System (ADS)

    Tiruye, Girum Ayalneh; Muñoz-Torrero, David; Palma, Jesus; Anderson, Marc; Marcilla, Rebeca

    2016-09-01

    Four Ionic Liquid based Polymer Electrolytes (IL-b-PE) were prepared by blending a Polymeric Ionic Liquid, Poly(diallyldimethylammonium) bis(trifluoromethanesulfonyl)imide (PILTFSI), with four different ionic liquids: 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI) (IL-b-PE1), 1-butyl-1-methylpyrrolidinium bis(fluorosulfonyl)imide (PYR14FSI) (IL-b-PE2), 1-(2-hydroxy ethyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (HEMimTFSI) (IL-b-PE3), and 1-Butyl-1-methylpyrrolidinium dicyanamide, (PYR14DCA) (IL-b-PE4). Physicochemical properties of IL-b-PE such as ionic conductivity, thermal and electrochemical stability were found to be dependent on the IL properties. For instance, ionic conductivity was significantly higher for IL-b-PE2 and IL-b-PE4 containing IL with small size anions (FSI and DCA) than IL-b-PE1 and IL-b-PE3 bearing IL with bigger anion (TFSI). On the other hand, wider electrochemical stability window (ESW) was found for IL-b-PE1 and IL-b-PE2 having ILs with electrochemically stable pyrrolidinium cation and FSI and TFSI anions. Solid state Supercapacitors (SCs) were assembled with activated carbon electrodes and their electrochemical performance was correlated with the polymer electrolyte properties. Best performance was obtained with SC having IL-b-PE2 that exhibited a good compromise between ionic conductivity and electrochemical window. Specific capacitance (Cam), real energy (Ereal) & real power densities (Preal) as high as 150 F g-1, 36 Wh kg-1 & 1170 W kg-1 were found at operating voltage of 3.5 V.

  19. Direct write dispenser printing of a zinc microbattery with an ionic liquid gel electrolyte

    NASA Astrophysics Data System (ADS)

    Ho, C. C.; Evans, J. W.; Wright, P. K.

    2010-10-01

    The need for energy dense microbatteries with miniature dimensions has prompted the development of unconventional materials, cell geometries, and processing methods. This work will highlight our materials investigations, deposition methods and the device performance of a printed zinc-manganese dioxide rechargeable microbattery utilizing an ionic liquid gel electrolyte. We have developed a direct write dispenser printing method with the ability to fabricate multilayer structures and precisely deposit and pattern these components onto any substrates. The use of a unique room-temperature ionic liquid swelled into a polymer to form a gel electrolyte with solid-like mechanical strength and liquid-like ion transport properties has enabled the simple fabrication of stacked microbattery structures with the potential to be easily integrated directly onto a microdevice substrate. Initial microbattery tests and cycle behavior are discussed, and after an initial activation of the cathode material, an experimental cell discharge capacity and energy density of 0.98 mA h cm-2 and 1.2 mW h cm-2 were measured, respectively.

  20. Synergistic effects of mixing sulfone and ionic liquid as safe electrolytes for lithium sulfur batteries.

    PubMed

    Liao, Chen; Guo, Bingkun; Sun, Xiao-Guang; Dai, Sheng

    2015-01-01

    A strategy of mixing both an ionic liquid and sulfone is reported to give synergistic effects of reducing viscosity, increasing ionic conductivity, reducing polysulfide dissolution, and improving safety. The mixtures of ionic liquids and sulfones also show distinctly different physicochemical properties, including thermal properties and crystallization behavior. By using these electrolytes, lithium sulfur batteries assembled with lithium and mesoporous carbon composites show a reversible specific capacity of 1265 mAh g(-1) (second cycle) by using 40 % 1.0 M lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) in N-methyl-N-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide with 60 % 1.0 M LiTFSI in methylisopropylsulfone in the first cycle. This capacity is slightly lower than that obtained in pure 1.0 M LiTFSI as the sulfone electrolyte; however, it exhibits excellent cycling stability and remains as high as 655 mAh g(-1) even after 50 cycles. This strategy provides a method to alleviate polysulfide dissolution and redox shuttle phenomena, at the same time, with improved ionic conductivity. PMID:25427945

  1. Robust High-performance Dye-sensitized Solar Cells Based on Ionic Liquid-sulfolane Composite Electrolytes.

    PubMed

    Lau, Genevieve P S; Décoppet, Jean-David; Moehl, Thomas; Zakeeruddin, Shaik M; Grätzel, Michael; Dyson, Paul J

    2015-01-01

    Novel ionic liquid-sulfolane composite electrolytes based on the 1,2,3-triazolium family of ionic liquids were developed for dye-sensitized solar cells. The best performing device exhibited a short-circuit current density of 13.4 mA cm(-2), an open-circuit voltage of 713 mV and a fill factor of 0.65, corresponding to an overall power conversion efficiency (PCE) of 6.3%. In addition, these devices are highly stable, retaining more than 95% of the initial device PCE after 1000 hours of light- and heat-stress. These composite electrolytes show great promise for industrial application as they allow for a 14.5% improvement in PCE, compared to the solvent-free eutectic ionic liquid electrolyte system, without compromising device stability. PMID:26670595

  2. Robust High-performance Dye-sensitized Solar Cells Based on Ionic Liquid-sulfolane Composite Electrolytes

    PubMed Central

    Lau, Genevieve P. S.; Décoppet, Jean-David; Moehl, Thomas; Zakeeruddin, Shaik M.; Grätzel, Michael; Dyson, Paul J.

    2015-01-01

    Novel ionic liquid-sulfolane composite electrolytes based on the 1,2,3-triazolium family of ionic liquids were developed for dye-sensitized solar cells. The best performing device exhibited a short-circuit current density of 13.4 mA cm−2, an open-circuit voltage of 713 mV and a fill factor of 0.65, corresponding to an overall power conversion efficiency (PCE) of 6.3%. In addition, these devices are highly stable, retaining more than 95% of the initial device PCE after 1000 hours of light- and heat-stress. These composite electrolytes show great promise for industrial application as they allow for a 14.5% improvement in PCE, compared to the solvent-free eutectic ionic liquid electrolyte system, without compromising device stability. PMID:26670595

  3. An advanced lithium-air battery exploiting an ionic liquid-based electrolyte.

    PubMed

    Elia, G A; Hassoun, J; Kwak, W-J; Sun, Y-K; Scrosati, B; Mueller, F; Bresser, D; Passerini, S; Oberhumer, P; Tsiouvaras, N; Reiter, J

    2014-11-12

    A novel lithium-oxygen battery exploiting PYR14TFSI-LiTFSI as ionic liquid-based electrolyte medium is reported. The Li/PYR14TFSI-LiTFSI/O2 battery was fully characterized by electrochemical impedance spectroscopy, capacity-limited cycling, field emission scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy. The results of this extensive study demonstrate that this new Li/O2 cell is characterized by a stable electrode-electrolyte interface and a highly reversible charge-discharge cycling behavior. Most remarkably, the charge process (oxygen oxidation reaction) is characterized by a very low overvoltage, enhancing the energy efficiency to 82%, thus, addressing one of the most critical issues preventing the practical application of lithium-oxygen batteries. PMID:25329836

  4. A Rechargeable Al/S Battery with an Ionic-Liquid Electrolyte.

    PubMed

    Gao, Tao; Li, Xiaogang; Wang, Xiwen; Hu, Junkai; Han, Fudong; Fan, Xiulin; Suo, Liumin; Pearse, Alex J; Lee, Sang Bok; Rubloff, Gary W; Gaskell, Karen J; Noked, Malachi; Wang, Chunsheng

    2016-08-16

    Aluminum metal is a promising anode material for next generation rechargeable batteries owing to its abundance, potentially dendrite-free deposition, and high capacity. The rechargeable aluminum/sulfur (Al/S) battery is of great interest owing to its high energy density (1340 Wh kg(-1) ) and low cost. However, Al/S chemistry suffers poor reversibility owing to the difficulty of oxidizing AlSx . Herein, we demonstrate the first reversible Al/S battery in ionic-liquid electrolyte with an activated carbon cloth/sulfur composite cathode. Electrochemical, spectroscopic, and microscopic results suggest that sulfur undergoes a solid-state conversion reaction in the electrolyte. Kinetics analysis identifies that the slow solid-state sulfur conversion reaction causes large voltage hysteresis and limits the energy efficiency of the system. PMID:27417442

  5. Sodium-ion electrolytes based on ionic liquids: a role of cation-anion hydrogen bonding.

    PubMed

    Chaban, Vitaly V; Andreeva, Nadezhda A

    2016-08-01

    Recent success of the sodium-ion batteries fosters an academic interest for their investigation. Room-temperature ionic liquids (RTILs) constitute universal solvents providing non-volatility and non-flammability to electrolytes. In the present work, we consider four families of RTILs as prospective solvents for NaBF4 and NaNO3 with an inorganic salt concentration of 25 and 50 mol%. We propose a methodology to rate RTILs according to their solvation capability using parameters of the computed radial distribution functions. Hydrogen bonds between the cations and the anions of RTILs were found to indirectly favor sodium solvation, irrespective of the particular RTIL and its concentration. The best performance was recorded in the case of cholinium nitrate. The reported observations and correlations of ionic structures and properties offer important assistance to an emerging field of sodium-ion batteries. Graphical Abstract Sodium-ion electrolytes. PMID:27381471

  6. DEVELOPMENT AND SELECTION OF IONIC LIQUID ELECTROLYTES FOR HYDROXIDE CONDUCTING POLYBENZIMIDAZOLE MEMBRANES IN ALKALINE FUEL CELLS

    SciTech Connect

    Fox, E.

    2012-05-01

    Alkaline fuel cell (AFC) operation is currently limited to specialty applications such as low temperatures and pure HO due to the corrosive nature of the electrolyte and formation of carbonates. AFCs are the cheapest and potentially most efficient (approaching 70%) fuel cells. The fact that non-Pt catalysts can be used, makes them an ideal low cost alternative for power production. The anode and cathode are separated by and solid electrolyte or alkaline porous media saturated with KOH. However, CO from the atmosphere or fuel feed severely poisons the electrolyte by forming insoluble carbonates. The corrosivity of KOH (electrolyte) limits operating temperatures to no more than 80°C. This chapter examines the development of ionic liquids electrolytes that are less corrosive, have higher operating temperatures, do not chemically bond to CO and enable alternative fuels. Work is detailed on the IL selection and characterization as well as casting methods within the polybenzimidazole based solid membrane. This approach is novel as it targets the root of the problem (the electrolyte) unlike other current work in alkaline fuel cells which focus on making the fuel cell components more durable.

  7. Bicyclic imidazolium ionic liquids as potential electrolytes for rechargeable lithium ion batteries

    SciTech Connect

    Liao, Chen; Shao, Nan; Bell, Jason R; Guo, Bingkun; Luo, Huimin; Jiang, Deen; Dai, Sheng

    2013-01-01

    A bicyclic imidazolium ionic liquids, 1-ethyl-2,3-trimethyleneimidazolium bis(tri fluoromethane sulfonyl)imide ([ETMIm][TFSI]), and reference imidazolium compounds, 1-ethyl-3-methylimidazolium bis(trifluoromethane sulfonyl)imide ([EMIm][TFSI]) and 1, 2-dimethyl-3-butylimidazolium bis(trifluoromethane sulfonyl)imide ([DMBIm][TFSI]), were synthesized and investigated as solvents for lithium ion batteries. Although the alkylation at the C-2 position of the imidazolium ring does not affect the thermal stability of the ionic liquids, with or without the presence of 0.5 molar lithium bis(trifluoromethane sulfonyl)imide (LiTFSI), the stereochemical structure of the molecules has shown profound influences on the electrochemical properties of the corresponding ionic liquids. [ETMIm][TFSI] shows better reduction stability than do [EMIm][TFSI] and [DMBIm][TFSI], as confirmed by both linear sweep voltammery (LSV) and theoretical calculation. The Li||Li cell impedance of 0.5M LiTFSI/[ETMIm][TFSI] is stabilized, whereas that of 0.5M LiTFSI/[DMBIm][TFSI] is still fluctuating after 20 hours, indicating a relatively stable solid electrolyte interphase (SEI) is formed in the former. Furthermore, the Li||graphite half-cell based on 0.5M LiTFSI/[BTMIm][TFSI] exhibits reversible capacity of 250mAh g-1 and 70mAh g-1 at 25 C, which increases to 330 mAh g-1 and 250 mAh g-1 at 50 C, under the current rate of C/20 and C/10, respectively. For comparison, the Li||graphite half-cell based on 0.5M LiTFSI/[DMBIm][TFSI] exhibits poor capacity retention under the same current rate at both temperatures.

  8. Ionic liquid electrolytes as a platform for rechargeable metal-air batteries: a perspective.

    PubMed

    Kar, Mega; Simons, Tristan J; Forsyth, Maria; MacFarlane, Douglas R

    2014-09-21

    Metal-air batteries are a well-established technology that can offer high energy densities, low cost and environmental responsibility. Despite these favourable characteristics and utilisation of oxygen as the cathode reactant, these devices have been limited to primary applications, due to a number of problems that occur when the cell is recharged, including electrolyte loss and poor efficiency. Overcoming these obstacles is essential to creating a rechargeable metal-air battery that can be utilised for efficiently capturing renewable energy. Despite the first metal-air battery being created over 100 years ago, the emergence of reactive metals such as lithium has reinvigorated interest in this field. However the reactivity of some of these metals has generated a number of different philosophies regarding the electrolyte of the metal-air battery. Whilst much is already known about the anode and cathode processes in aqueous and organic electrolytes, the shortcomings of these electrolytes (i.e. volatility, instability, flammability etc.) have led some of the metal-air battery community to study room temperature ionic liquids (RTILs) as non-volatile, highly stable electrolytes that have the potential to support rechargeable metal-air battery processes. In this perspective, we discuss how some of these initial studies have demonstrated the capabilities of RTILs as metal-air battery electrolytes. We will also show that much of the long-held mechanistic knowledge of the oxygen electrode processes might not be applicable in RTIL based electrolytes, allowing for creative new solutions to the traditional irreversibility of the oxygen reduction reaction. Our understanding of key factors such as the effect of catalyst chemistry and surface structure, proton activity and interfacial reactions is still in its infancy in these novel electrolytes. In this perspective we highlight the key areas that need the attention of electrochemists and battery engineers, in order to progress

  9. Li-Doped Ionic Liquid Electrolytes: From Bulk Phase to Interfacial Behavior

    NASA Technical Reports Server (NTRS)

    Haskins, Justin B.; Lawson, John W.

    2016-01-01

    Ionic liquids have been proposed as candidate electrolytes for high-energy density, rechargeable batteries. We present an extensive computational analysis supported by experimental comparisons of the bulk and interfacial properties of a representative set of these electrolytes as a function of Li-salt doping. We begin by investigating the bulk electrolyte using quantum chemistry and ab initio molecular dynamics to elucidate the solvation structure of Li(+). MD simulations using the polarizable force field of Borodin and coworkers were then performed, from which we obtain an array of thermodynamic and transport properties. Excellent agreement is found with experiments for diffusion, ionic conductivity, and viscosity. Combining MD simulations with electronic structure computations, we computed the electrochemical window of the electrolytes across a range of Li(+)-doping levels and comment on the role of the liquid environment. Finally, we performed a suite of simulations of these Li-doped electrolytes at ideal electrified interfaces to evaluate the differential capacitance and the equilibrium Li(+) distribution in the double layer. The magnitude of differential capacitance is in good agreement with our experiments and exhibits the characteristic camel-shaped profile. In addition, the simulations reveal Li(+) to be highly localized to the second molecular layer of the double layer, which is supported by additional computations that find this layer to be a free energy minimum with respect to Li(+) translation.

  10. Analysis of aromatic acids by nonaqueous capillary electrophoresis with ionic-liquid electrolytes.

    PubMed

    Lu, Yuanqi; Wang, Dunqing; Kong, Chunyan; Zhong, Hao; Breadmore, Michael C

    2014-12-01

    The separation of six kinds of aromatic acids by CZE with 1-ethyl-3-methylimidazolium chloride (EMIMCl) and 1-ethyl-3-methylimidazolium hydrogen sulfate (EMIMHSO4 ), two kinds of ionic liquids (ILs) as background electrolytes, and acetonitrile as solvent were investigated. The six kinds of aromatic acids can be separated under positive voltage with low IL concentration with either of the two ILs and separation with EMIMHSO4 is better in consideration of peak shapes and separation efficiency. But the migration order is different when the IL is different. Under negative voltage with high IL concentration, the six analytes can be separated with EMIMCl as background electrolytes and the migration order of the analytes is opposite to those with low concentration of EMIMCl as background electrolyte. The separations are based on the combination effects of heteroconjugation between the anions and cations in the ILs and the analytes, of which the heteroconjugation between the anions in the ILs and the analytes plays a dominant role. The heteroconjugation between the anions of the ILs and analytes is proton sensitive and only a very small amount of proticsolvents added into the electrolyte solution can harm the separation. When EMIMCl concentration is high, the heteroconjugation between the IL anions and the proton in the analytes make the effective mobility of the analytes much higher than the EOF and their migration direction reversed. Finally, the six aromatic acids in water samples were analyzed by nonaqueous CE with low concentration of EMIMHSO4 as background electrolytes with satisfactory results. PMID:25141838

  11. Capacitive performance of ordered mesoporous carbons with tunable porous texture in ionic liquid electrolytes

    NASA Astrophysics Data System (ADS)

    Zhou, Jin; Xing, Wei; Zhuo, Shuping; Zhao, Yi

    2011-11-01

    Ordered mesoporous carbons with tunable pore size and surface chemical properties are prepared by doping boric acid using a hard-templating method. The capacitive performance of these carbons is investigated in two common ionic liquids of EMImBF 4 and EMImTSFI. As demonstrated by the structure analysis, the pore size increases from 3.3 to 5.7 nm and the content of oxygenated groups on the carbon surface increases from 2.0 to 5.2 mol% with the increase of the boron doping from 0 to 50 mol%. In ionic liquid electrolyte, the carbons mainly show typical electric double layer capacitance, and the capacitance retention ratio and ion diffusion in the carbon channels is determined to the surface chemical property. The prepared carbons present visible pseudo-capacitance due to the rapid redox reactions of the oxygenated groups in hydrophilic EMImBF 4, reflecting by the increasing of the specific surface capacitance, while no visible pseudo-capacitive behavior was observed in hydrophobic EMImTSFI.

  12. Direct extraction of genomic DNA from maize with aqueous ionic liquid buffer systems for applications in genetically modified organisms analysis.

    PubMed

    Gonzalez García, Eric; Ressmann, Anna K; Gaertner, Peter; Zirbs, Ronald; Mach, Robert L; Krska, Rudolf; Bica, Katharina; Brunner, Kurt

    2014-12-01

    To date, the extraction of genomic DNA is considered a bottleneck in the process of genetically modified organisms (GMOs) detection. Conventional DNA isolation methods are associated with long extraction times and multiple pipetting and centrifugation steps, which makes the entire procedure not only tedious and complicated but also prone to sample cross-contamination. In recent times, ionic liquids have emerged as innovative solvents for biomass processing, due to their outstanding properties for dissolution of biomass and biopolymers. In this study, a novel, easily applicable, and time-efficient method for the direct extraction of genomic DNA from biomass based on aqueous-ionic liquid solutions was developed. The straightforward protocol relies on extraction of maize in a 10 % solution of ionic liquids in aqueous phosphate buffer for 5 min at room temperature, followed by a denaturation step at 95 °C for 10 min and a simple filtration to remove residual biopolymers. A set of 22 ionic liquids was tested in a buffer system and 1-ethyl-3-methylimidazolium dimethylphosphate, as well as the environmentally benign choline formate, were identified as ideal candidates. With this strategy, the quality of the genomic DNA extracted was significantly improved and the extraction protocol was notably simplified compared with a well-established method. PMID:25381609

  13. Molecular dynamics simulation of polymer electrolytes based on poly(ethylene oxide) and ionic liquids. II. Dynamical properties

    NASA Astrophysics Data System (ADS)

    Costa, Luciano T.; Ribeiro, Mauro C. C.

    2007-10-01

    Dynamical properties of polymer electrolytes based on poly(ethylene oxide) (PEO) and ionic liquids of 1-alkyl-3-methylimidazolium cations were calculated by molecular dynamics simulations with previously proposed models [L. T. Costa and M. C. Ribeiro, J. Chem. Phys. 124, 184902 (2006)]. The effect of changing the ionic liquid concentration, temperature, and the 1-alkyl-chain lengths, [1,3-dimethylimidazolium]PF6 and [1-butyl-3-methylimidazolium]PF6 ([dmim]PF6 and [bmim]PF6), was investigated. Cation diffusion coefficient is higher than those of anion and oxygen atoms of PEO chains. Ionic mobility in PEO /[bmim]PF6 is higher than in PEO /[dmim]PF6, so that the ionic conductivity κ of the former is approximately ten times larger than the latter. The ratio between κ and its estimate from the Nernst-Einstein equation κ /κNE, which is inversely proportional to the strength of ion pairs, is higher in ionic liquid polymer electrolytes than in polymer electrolytes based on inorganic salts with Li+ cations. Calculated time correlation functions corroborate previous evidence from the analysis of equilibrium structure that the ion pairs in ionic liquid polymer electrolytes are relatively weak. Structural relaxation at distinct spatial scales is revealed by the calculation of the intermediate scattering function at different wavevectors. These data are reproduced with stretched exponential functions, so that temperature and wavevector dependences of best fit parameters can be compared with corresponding results for polymer electrolytes containing simpler ions.

  14. Acidic Ionic Liquids.

    PubMed

    Amarasekara, Ananda S

    2016-05-25

    Ionic liquid with acidic properties is an important branch in the wide ionic liquid field and the aim of this article is to cover all aspects of these acidic ionic liquids, especially focusing on the developments in the last four years. The structural diversity and synthesis of acidic ionic liquids are discussed in the introduction sections of this review. In addition, an unambiguous classification system for various types of acidic ionic liquids is presented in the introduction. The physical properties including acidity, thermo-physical properties, ionic conductivity, spectroscopy, and computational studies on acidic ionic liquids are covered in the next sections. The final section provides a comprehensive review on applications of acidic ionic liquids in a wide array of fields including catalysis, CO2 fixation, ionogel, electrolyte, fuel-cell, membrane, biomass processing, biodiesel synthesis, desulfurization of gasoline/diesel, metal processing, and metal electrodeposition. PMID:27175515

  15. Polymeric ionic liquid-plastic crystal composite electrolytes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Xiaowei; Zhang, Zhengxi; Li, Sijian; Yang, Li; Hirano, Shin-ichi

    2016-03-01

    In this work, composite polymer electrolytes (CPEs), that is, 80%[(1-x)PIL-(x)SN]-20%LiTFSI, are successfully prepared by using a pyrrolidinium-based polymeric ionic liquid (P(DADMA)TFSI) as a polymer host, succinonitrile (SN) as a plastic crystal, and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as a lithium salt. XRD and DSC measurements confirm that the as-obtained CPEs have amorphous structures. The 80%[50%PIL-50%SN]-20%LiTFSI (50% SN) electrolyte reveals a high room temperature ionic conductivity of 5.74 × 10-4 S cm-1, a wide electrochemical window of 5.5 V, as well as good mechanical strength with a Young's modulus of 4.9 MPa. Li/LiFePO4 cells assembled with the 50% SN electrolyte at 0.1C rate can deliver a discharge capacity of about 150 mAh g-1 at 25 °C, with excellent capacity retention. Furthermore, such cells are able to achieve stable discharge capacities of 131.8 and 121.2 mAh g-1 at 0.5C and 1.0C rate, respectively. The impressive findings demonstrate that the electrolyte system prepared in this work has great potential for application in lithium ion batteries.

  16. Observation of electrodeposited lithium by optical microscope in room temperature ionic liquid-based electrolyte

    NASA Astrophysics Data System (ADS)

    Sano, H.; Sakaebe, H.; Matsumoto, H.

    Room temperature ionic liquids (RTILs) were applied to a lithium (Li) metal battery system, and the behavior of Li electrodeposition on nickel electrodes in RTILs was investigated using in situ optical microscopy with/without an organic additive, vinylene carbonate (VC), in the RTILs. Two RTILs, PP13[TFSA] (N-methyl- N-propylpiperidinium bis(trifluoromethanesulfonyl)amide) and EMI[FSA] (1-ethyl-3-methylimidazolium bis(fluorosulfonyl)amide), were chosen as the base electrolytes. Dendritic particles were obtained in the case of EMI[FSA] with and without VC, and PP13[TFSA] without VC, while non-dendritic fine particles were obtained in the case of PP13[TFSA] with VC.

  17. Hydrogen production by water electrolysis using tetra-alkyl-ammonium-sulfonic acid ionic liquid electrolytes

    NASA Astrophysics Data System (ADS)

    Fiegenbaum, Fernanda; Martini, Emilse M.; de Souza, Michèle O.; Becker, Márcia R.; de Souza, Roberto F.

    2013-12-01

    Triethylammonium-propanesulfonic acid tetrafluoroborate (TEA-PS·BF4) is used as an electrolyte in the water electrolysis. The electrolysis of water with this ionic conductor produces high current densities with high efficiencies, even at room temperatures. A system using TEA-PS·BF4 in an electrochemical cell with platinum electrodes has current densities (i) up to 1.77 A cm-2 and efficiencies between 93 and 99% in temperatures ranging from 25 °C to 80 °C. The activation energy observed with TEA-PS·BF4 is ca. 9.3 kJ mol-1, a low value that can be explained by the facilitation of proton transport in the organised aqueous ionic liquid media. The unexpectedly high efficiency of this system is discussed by taking into account the high conductivities associated with the Brönsted and Lewis acidity characteristics associated with these ionic conductive materials.

  18. Characterisation of the solid electrolyte interface during lithiation/delithiation of germanium in an ionic liquid.

    PubMed

    Lahiri, Abhishek; Borisenko, Natalia; Borodin, Andriy; Olschewski, Mark; Endres, Frank

    2016-02-21

    In this paper, we present investigations of the interface of electrodeposited Ge during lithiation/delithiation in the ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide containing 0.5 M lithium bis(trifluoromethylsulfonyl)imide (LiTFSI/[Py1,4]TFSI). Cyclic voltammetry (CV) and infrared spectroscopy were used to study the electrochemistry and the changes in the electrolyte during the Li intercalation/deintercalation processes. From infrared spectroscopic analysis, it was found that the TFSI(-) anion decomposes during the lithiation process, resulting in the formation of a solid-liquid interface (SEI) layer. X-ray photoelectron spectroscopy was used to analyse the composition of the SEI layer and the changes in the electrodeposited germanium. Furthermore, atomic force microscopy (AFM) was used to evaluate the changes in the SEI layer which showed that the SEI layer was inhomogenous and changed during the lithiation/delithiation processes. PMID:26863589

  19. Bifacial dye-sensitized solar cells based on an ionic liquid electrolyte

    NASA Astrophysics Data System (ADS)

    Ito, Seigo; Zakeeruddin, Shaik M.; Comte, Pascal; Liska, Paul; Kuang, Daibin; Grätzel, Michael

    2008-11-01

    Solar energy is a promising solution to global energy-related problems because it is clean, inexhaustible and readily available. However, the deployment of conventional photovoltaic cells based on silicon is still limited by cost, so alternative, more cost-effective approaches are sought. Here we report a bifacial dye-sensitized solar cell structure that provides high photo-energy conversion efficiency (~6%) for incident light striking its front or rear surfaces. The design comprises a highly stable ruthenium dye (Z907Na) in combination with an ionic-liquid electrolyte and a porous TiO2 layer. The inclusion of a SiO2 layer between the electrodes to prevent generation of unwanted back current and optimization of the thickness of the TiO2 layer are responsible for the enhanced performance.

  20. Comparison of interionic/intermolecular vibrational dynamics between ionic liquids and concentrated electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Fujisawa, Tomotsumi; Nishikawa, Keiko; Shirota, Hideaki

    2009-12-01

    In this study, we have compared the interionic/intermolecular vibrational dynamics of ionic liquids (ILs) and concentrated electrolyte solutions measured by femtosecond optically heterodyne-detected Raman-induced Kerr effect spectroscopy. A typical anion in ILs, bis(trifluoromethanesulfonyl)amide ([NTf2]-), has been chosen as the anion for the sample ILs and concentrated electrolyte solutions. ILs used in this study are 1-butyl-3-methylimidazolium, 1-butylpyridinium, N-butyl-N,N,N-triethylammonium, and 1-butyl-1-methylpyrrolidinium with [NTf2]-. Li[NTf2] solutions (˜3.3M) of water, methanol, propylene carbonate, and poly(ethylene glycol) have been selected as control samples. Kerr transients of the ILs and electrolyte solutions show intra- and interionic/intermolecular vibrational dynamics followed by slow picosecond overdamped relaxation. Fourier transform Kerr spectra have shown a difference in the relative intensities of intraionic vibrational bands of [NTf2]- (280-350 cm-1) between the ILs and electrolyte solutions. The origin of the difference is attributed to the change in the conformational equilibrium between cisoid and transoid forms of [NTf2]-, which is caused by a favorable stabilization of dipolar cisoid form due to Li+ and dipolar solvent molecules in the electrolyte solutions. Low-frequency Kerr spectra (0-200 cm-1) exhibit unique features with the variation of cation and solvent species. The aromatic ILs have a prominent high-frequency librational motion at about 100 cm-1 in contrast to the case for the nonaromatic ones. The common structure of the spectra observed at about 20 cm-1 likely comes from an interionic motion of [NTf2]-. The nonaromatic ILs allow a fair comparison with the electrolyte solutions of propylene carbonate and poly(ethylene glycol) because of the structural similarities. The comparison based on the first moment of the interionic/intermolecular vibrational spectrum suggests the stronger interionic/intermolecular interaction in

  1. Comparison of interionic/intermolecular vibrational dynamics between ionic liquids and concentrated electrolyte solutions.

    PubMed

    Fujisawa, Tomotsumi; Nishikawa, Keiko; Shirota, Hideaki

    2009-12-28

    In this study, we have compared the interionic/intermolecular vibrational dynamics of ionic liquids (ILs) and concentrated electrolyte solutions measured by femtosecond optically heterodyne-detected Raman-induced Kerr effect spectroscopy. A typical anion in ILs, bis(trifluoromethanesulfonyl)amide ([NTf(2)](-)), has been chosen as the anion for the sample ILs and concentrated electrolyte solutions. ILs used in this study are 1-butyl-3-methylimidazolium, 1-butylpyridinium, N-butyl-N,N,N-triethylammonium, and 1-butyl-1-methylpyrrolidinium with [NTf(2)](-). Li[NTf(2)] solutions (approximately 3.3 M) of water, methanol, propylene carbonate, and poly(ethylene glycol) have been selected as control samples. Kerr transients of the ILs and electrolyte solutions show intra- and interionic/intermolecular vibrational dynamics followed by slow picosecond overdamped relaxation. Fourier transform Kerr spectra have shown a difference in the relative intensities of intraionic vibrational bands of [NTf(2)](-) (280-350 cm(-1)) between the ILs and electrolyte solutions. The origin of the difference is attributed to the change in the conformational equilibrium between cisoid and transoid forms of [NTf(2)](-), which is caused by a favorable stabilization of dipolar cisoid form due to Li(+) and dipolar solvent molecules in the electrolyte solutions. Low-frequency Kerr spectra (0-200 cm(-1)) exhibit unique features with the variation of cation and solvent species. The aromatic ILs have a prominent high-frequency librational motion at about 100 cm(-1) in contrast to the case for the nonaromatic ones. The common structure of the spectra observed at about 20 cm(-1) likely comes from an interionic motion of [NTf(2)](-). The nonaromatic ILs allow a fair comparison with the electrolyte solutions of propylene carbonate and poly(ethylene glycol) because of the structural similarities. The comparison based on the first moment of the interionic/intermolecular vibrational spectrum suggests the

  2. Ether and siloxane functionalized ionic liquids and their mixtures as electrolyte for lithium-ion batteries.

    PubMed

    Chavan, Santosh N; Tiwari, Aarti; Nagaiah, Tharamani C; Mandal, Debaprasad

    2016-06-28

    The present study deals with an investigation of two novel imidazolium ionic liquids bearing ether-ether (1O2O2-Im-2O1) or ether-siloxane (1O2O2-Im-1SiOSi) functionalities with TFSI anion and their mixtures with propylene carbonate as electrolytes in lithium-ion batteries. The electrochemical stability and conductivity of these novel ILs were analyzed by electrochemical studies, such as cyclic voltammetry, linear sweep voltammetry and impedance measurements. The applicability of these ILs as electrolytes in Li-ion batteries was studied in the presence of a high concentration of LiTFSI (1 mol kg(-1) electrolyte) and the ether-ether IL was shown to possess a high electrochemical stability window (ESW) of 5.9 V and good conductivity of 2.2 mS cm(-1). The electrochemical stability and conductivity were further complimented by self-diffusion of different ions using pulsed gradient spin-echo (PGSE) NMR, viscosity and thermal properties like TGA and DSC analysis. More importantly, we explored the effect of temperature on the electrochemical stability and conductivity of these ILs by electrochemical impedance spectroscopy. PMID:27004982

  3. High performance hybrid supercapacitors by using para-Benzoquinone ionic liquid redox electrolyte

    NASA Astrophysics Data System (ADS)

    Navalpotro, Paula; Palma, Jesús; Anderson, Marc; Marcilla, Rebeca

    2016-02-01

    A solution of 0.4M para-Benzoquinone (p-BQ) in the ionic liquid N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide (PYR14TFSI) was used as a redox electrolyte in hybrid supercapacitors. Two carbons with very different textural properties, Pica carbon and Vulcan carbon, were used as electrode material. Electrochemical performance of these energy storage systems was investigated by cyclic voltammetry (CV) and galvanostatic charge-discharge (CD). Unlike SCs with pure IL electrolyte, new battery-like features appeared in the CV curves and CD profiles. This electrochemical performance, associated with the faradaic contribution of the redox electrolyte, results in a significant improvement of the electrochemical performance of the hybrid system. For Vulcan carbon with low specific surface area (SBET = 240 m2 g-1), specific capacitance (Cs) and specific real energy (Ereal) values as high as 70 Fg-1 and 10.3 WhKg-1 were obtained at 5 mAcm-2 with hybrid SC operating at 3 V. This represents an increment of 300% in Cs and Ereal with respect to the SC based on pure PYR14TFSI. For high surface area carbon such as Pica (SBET = 2410 m2g-1), the addition of the redox quinone molecule resulted in a moderate enhancement reaching values of 156 Fg-1 and 30 WhKg-1 under the same experimental conditions (36% and 10% increment, respectively).

  4. Bis(fluoromalonato)borate (BFMB) Anion Based Ionic Liquid As an Additive for Lithium-Ion Battery Electrolytes

    SciTech Connect

    Sun, Xiao-Guang; Liao, Chen; Baggetto, Loic; Guo, Bingkun; Unocic, Raymond R; Veith, Gabriel M; Dai, Sheng

    2014-01-01

    Propylene carbonate (PC) is a good solvent for lithium ion battery applications due to its low melting point and high dielectric constant. However, PC is easily intercalated into graphite causing it to exfoliate, killing its electrochemical performance. Here we report on the synthesis of a new ionic liquid electrolyte based on partially fluorinated borate anion, 1-butyl-1,2-dimethylimidazolium bis(fluoromalonato)borate (BDMIm.BFMB), which can be used as an additive in 1 M LiPF6/PC electrolyte to suppress graphite exfoliation and improve cycling performance. In addition, both PC and BDMIm.BFMB can be used synergistically as additive to 1.0M LiPF6/methyl isopropyl sulfone (MIPS) to dramatically improve its cycling performance. It is also found that the chemistry nature of the ionic liquids has dramatic effect on their role as additive in PC based electrolyte.

  5. Effects of ionic liquids on cation dynamics in amorphous polyethylene oxide electrolytes

    SciTech Connect

    Chattoraj, Joyjit Diddens, Diddo; Heuer, Andreas

    2014-01-14

    We perform extensive molecular dynamics simulations of a poly(ethylene oxide)-based polymer electrolyte material containing lithium bis(trifluoromethanesulfonyl)imide salt for a wide temperature regime above and below the experimental crystallization temperature with and without N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid (IL). The impact of the IL-concentration on the cation dynamics is studied. The increase of the cation mobility upon addition of IL is significant but temperature-independent. This can be related to distinct variations of the underlying transport properties as expressed within the previously introduced transport model of polymer electrolytes. Even for the largest IL concentration the transport model perfectly predicts the non-trivial time-dependence of the cationic mean square displacement for all temperatures. Finally, we compare our numerical and theoretical findings with the results of recent nuclear magnetic resonance experiments. In this way we can exclusively relate the strong experimentally observed dependence of the low-temperature Li-diffusivity on the IL concentration to the impact of IL on crystallization.

  6. A mean-field theory on the differential capacitance of asymmetric ionic liquid electrolytes

    NASA Astrophysics Data System (ADS)

    Han, Yining; Huang, Shanghui; Yan, Tianying

    2014-07-01

    The size of ions significantly influences the electric double layer structure of room temperature ionic liquid (IL) electrolytes and their differential capacitance (Cd). In this study, we extended the mean-field theory (MFT) developed independently by Kornyshev (2007J. Phys. Chem. B 111 5545-57) and Kilic, Bazant, and Ajdari (2007 Phys. Rev. E 75 021502) (the KKBA MFT) to take into account the asymmetric 1:1 IL electrolytes by introducing an additional parameter ξ for the anion/cation volume ratio, besides the ionic compressibility γ in the KKBA MFT. The MFT of asymmetric ions becomes KKBA MFT upon ξ = 1, and further reduces to Gouy-Chapman theory in the γ → 0 limit. The result of the extended MFT demonstrates that the asymmetric ILs give rise to an asymmetric Cd, with the higher peak in Cd occurring at positive polarization for the smaller anionic size. At high potential, Cd decays asymptotically toward KKBA MFT characterized by γ for the negative polarization, and characterized by ξγ for the positive polarization, with inverse-square-root behavior. At low potential, around the potential of zero charge, the asymmetric ions cause a higher Cd, which exceeds that of Gouy-Chapman theory.

  7. Electrochemical energy storage in montmorillonite K10 clay based composite as supercapacitor using ionic liquid electrolyte.

    PubMed

    Maiti, Sandipan; Pramanik, Atin; Chattopadhyay, Shreyasi; De, Goutam; Mahanty, Sourindra

    2016-02-15

    Exploring new electrode materials is the key to realize high performance energy storage devices for effective utilization of renewable energy. Natural clays with layered structure and high surface area are prospective materials for electrical double layer capacitors (EDLC). In this work, a novel hybrid composite based on acid-leached montmorillonite (K10), multi-walled carbon nanotube (MWCNT) and manganese dioxide (MnO2) was prepared and its electrochemical properties were investigated by fabricating two-electrode asymmetric supercapacitor cells against activated carbon (AC) using 1.0M tetraethylammonium tetrafluroborate (Et4NBF4) in acetonitrile (AN) as electrolyte. The asymmetric supercapacitors, capable of operating in a wide potential window of 0.0-2.7V, showed a high energy density of 171Whkg(-1) at a power density of ∼1.98kWkg(-1). Such high EDLC performance could possibly be linked to the acid-base interaction of K10 through its surface hydroxyl groups with the tetraethylammonium cation [(C2H5)4N(+) or TEA(+)] of the ionic liquid electrolyte. Even at a very high power density of 96.4kWkg(-1), the cells could still deliver an energy density of 91.1Whkg(-1) exhibiting an outstanding rate capability. The present study demonstrates for the first time, the excellent potential of clay-based composites for high power energy storage device applications. PMID:26609925

  8. Lithium-Ion-Conducting Electrolytes: From an Ionic Liquid to the Polymer Membrane

    PubMed Central

    Fernicola, A.; Weise, F. C.; Greenbaum, S. G.; Kagimoto, J.; Scrosati, B.; Soleto, A.

    2009-01-01

    This work concerns the design, the synthesis, and the characterization of the N-butyl-N-ethylpiperidinium N,N-bis(trifluoromethane)sulfonimide (PP24TFSI) ionic liquid (IL). To impart Li-ion transport, a suitable amount of lithium N,N-bis-(trifluoromethane)sulfonimide (LiTFSI) is added to the IL. The Li–IL mixture displays ionic conductivity values on the order of 10−4 S cm−1 and an electrochemical stability window in the range of 1.8–4.5 V vs Li+/Li. The voltammetric analysis demonstrates that the cathodic decomposition gives rise to a passivating layer on the surface of the working electrode, which kinetically extends the stability of the Li/IL interface as confirmed by electrochemical impedance spectroscopy measurements. The LiTFSI–PP24TFSI mixture is incorporated in a poly(vinylidene fluoride-co-hexafluoropropylene) matrix to form various electrolyte membranes with different LiTFSI–PP24TFSI contents. The ionic conductivity of all the membranes resembles that of the LiTFSI–IL mixture, suggesting an ionic transport mechanism similar to that of the liquid component. NMR measurements demonstrate a reduction in the mobility of all ions following the addition of LiTFSI to the PP24TFSI IL and when incorporating the mixture into the membrane. Finally, an unexpected but potentially significant enhancement in Li transference number is observed in passing from the liquid to the membrane electrolyte system. PMID:20354582

  9. A mean-field theory on the differential capacitance of asymmetric ionic liquid electrolytes.

    PubMed

    Han, Yining; Huang, Shanghui; Yan, Tianying

    2014-07-16

    The size of ions significantly influences the electric double layer structure of room temperature ionic liquid (IL) electrolytes and their differential capacitance (Cd). In this study, we extended the mean-field theory (MFT) developed independently by Kornyshev (2007J. Phys. Chem. B 111 5545-57) and Kilic, Bazant, and Ajdari (2007 Phys. Rev. E 75 021502) (the KKBA MFT) to take into account the asymmetric 1:1 IL electrolytes by introducing an additional parameter ξ for the anion/cation volume ratio, besides the ionic compressibility γ in the KKBA MFT. The MFT of asymmetric ions becomes KKBA MFT upon ξ = 1, and further reduces to Gouy-Chapman theory in the γ → 0 limit. The result of the extended MFT demonstrates that the asymmetric ILs give rise to an asymmetric Cd, with the higher peak in Cd occurring at positive polarization for the smaller anionic size. At high potential, Cd decays asymptotically toward KKBA MFT characterized by γ for the negative polarization, and characterized by ξγ for the positive polarization, with inverse-square-root behavior. At low potential, around the potential of zero charge, the asymmetric ions cause a higher Cd, which exceeds that of Gouy-Chapman theory. PMID:24920102

  10. Graphene-based supercapacitors in the parallel-plate electrode configuration: ionic liquids versus organic electrolytes.

    PubMed

    Shim, Youngseon; Kim, Hyung J; Jung, Younjoon

    2012-01-01

    Supercapacitors with two single-sheet graphene electrodes in the parallel plate geometry are studied via molecular dynamics (MD) computer simulations. Pure 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI+BF4-) and a 1.1 M solution of EMI+BF4- in acetonitrile are considered as prototypes of room-temperature ionic liquids (RTILs) and organic electrolytes. Electrolyte structure, charge density and associated electric potential are investigated by varying the charges and separation of the two electrodes. Multiple charge layers formed in the electrolytes in the vicinity of the electrodes are found to screen the electrode surface charge almost completely. As a result, the supercapacitors show nearly an ideal electric double layer behavior, i.e., the electric potential exhibits essentially a plateau behavior in the entire electrolyte region except for sharp changes in screening zones very close to the electrodes. Due to its small size and large charge separation, BF4- is considerably more efficient in shielding electrode charges than EMI+. In the case of the acetonitrile solution, acetonitrile also plays an important role by aligning its dipoles near the electrodes; however, the overall screening mainly arises from ions. Because of the disparity of shielding efficiency between cations and anions, the capacitance of the positively-charged anode is significantly larger than that of the negatively-charged cathode. Therefore, the total cell capacitance in the parallel plate configuration is primarily governed by the cathode. Ion conductivity obtained via the Green-Kubo (GK) method is found to be largely independent of the electrode surface charge. Interestingly, EMI+BF4- shows higher GK ion conductivity than the 1.1 M acetonitrile solution between two parallel plate electrodes. PMID:22455024

  11. Lithium-sulfur batteries based on nitrogen-doped carbon and ionic liquid electrolyte

    SciTech Connect

    Sun, Xiao-Guang; Wang, Xiqing; Mayes, Richard T; Dai, Sheng

    2012-01-01

    Nitrogen-doped mesoporous carbon (NC) and sulfur were used to prepare an NC/S composite cathode, which was evaluated in an ionic liquid electrolyte of 0.5 M lithium bis(trifluoromethane sulfonyl)imide (LiTFSI) in methylpropylpyrrolidinium bis(trifluoromethane sulfonyl)imide (MPPY.TFSI) by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and cycle testing. To facilitate the comparison, a C/S composite based on activated carbon (AC) without nitrogen doping was also fabricated under the same conditions as those for the NC/S composite. Compared with the AC/S composite, the NC/S composite showed enhanced activity toward sulfur reduction, as evidenced by the early onset sulfur reduction potential, higher redox current density in the CV test, and faster charge transfer kinetics as indicated by EIS measurement. At room temperature under a current density of 84 mA g-1 (C/20), the battery based on the NC/S composite exhibited higher discharge potential and an initial capacity of 1420 mAh g-1 whereas that based on the AC/S composite showed lower discharge potential and an initial capacity of 1120 mAh g-1. Both batteries showed similar capacity fading with cycling due to the intrinsic polysulfide solubility and the polysulfide shuttle mechanism; the capacity fading can be improved by further modification of the cathode.

  12. Cross-linking of Ordered Pluronic/Ionic Liquid Blends for Solid Polymer Electrolytes

    NASA Astrophysics Data System (ADS)

    Miranda, Daniel; Versek, Craig; Tuominen, Mark; Watkins, James; Russell, Thomas

    2012-02-01

    Ion gels were fabricated by cross-linking PPO-PEO-PPO triblock copolymers swollen in a room temperature ionic liquid (IL). The copolymers are modified by esterification to replace the terminal hydroxyl endgroups with methacrylate endgroups. This allows the copolymer/IL blends to be cross-linked by a UV cure, forming a gel. The strong interaction of the IL with the PEO block suppresses PEO crystallization which is necessary for good ion conduction. In addition, the interaction between the IL and PEO is strongly selective for PEO, strengthening microphase separation. Despite this, the low molecular weight copolymers remain disordered in the melt even when blended with the IL. However, high molecular weight copolymers are capable of microphase separating into highly ordered block copolymer morphologies. This difference allows the effect of microphase separation on ion transport to be studied. The effect of block copolymer composition is also studied, by varying the PEO fraction of the copolymer. The resultant gels show high ionic conductivity and solid-like behavior, indicating that these materials may be effective as solid polymer electrolytes.

  13. Lithium-sulfur batteries based on nitrogen-doped carbon and an ionic-liquid electrolyte.

    PubMed

    Sun, Xiao-Guang; Wang, Xiqing; Mayes, Richard T; Dai, Sheng

    2012-10-01

    Nitrogen-doped mesoporous carbon (NC) and sulfur were used to prepare an NC/S composite cathode, which was evaluated in an ionic-liquid electrolyte of 0.5 M lithium bis(trifluoromethane sulfonyl)imide (LiTFSI) in methylpropylpyrrolidinium bis(trifluoromethane sulfonyl)imide ([MPPY][TFSI]) by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and cycle testing. To facilitate the comparison, a C/S composite based on activated carbon (AC) without nitrogen doping was also fabricated under the same conditions. Compared with the AC/S composite, the NC/S composite showed enhanced activity toward sulfur reduction, as evidenced by the lower onset sulfur reduction potential, higher redox current density in the CV test, and faster charge-transfer kinetics, as indicated by EIS measurements. At room temperature under a current density of 84 mA g(-1) (C/20), the battery based on the NC/S composite exhibited a higher discharge potential and an initial capacity of 1420 mAh g(-1), whereas the battery based on the AC/S composite showed a lower discharge potential and an initial capacity of 1120 mAh g(-1). Both batteries showed similar capacity fading with cycling due to the intrinsic polysulfide solubility and the polysulfide shuttle mechanism; capacity fading can be improved by further cathode modification. PMID:22847977

  14. Ionic Liquid-Enhanced Solid State Electrolyte Interface (SEI) for Lithium Sulfur Batteries

    SciTech Connect

    Zheng, Jianming; Gu, Meng; Chen, Honghao; Meduri, Praveen; Engelhard, Mark H.; Zhang, Jiguang; Liu, Jun; Xiao, Jie

    2013-05-16

    Li-S battery is a complicated system with many challenges existing before its final market penetration. While most of the reported work for Li-S batteries is focused on the cathode design, we demonstrate in this work that the anode consumption accelerated by corrosive polysulfide solution also critically determines the Li-S cell performance. To validate this hypothesis, ionic liquid (IL) N-methyl-N-butylpyrrolidinium bis(trifluoromethylsulfonyl)imide (Py14TFSI) has been employed to modify the properties of SEI layer formed on Li metal surface in Li-S batteries. It is found that the IL-enhanced passivation film on the lithium anode surface exhibits much different morphology and chemical compositions, effectively protecting lithium metal from continuous attack by soluble polysulfides. Therefore, both cell impedance and the irreversible consumption of polysulfides on lithium metal are reduced. As a result, the Coulombic efficiency and the cycling stability of Li-S batteries have been greatly improved. After 120 cycles, Li-S battery cycled in the electrolyte containing IL demonstrates a high capacity retention of 94.3% at 0.1 C rate. These results unveil another important failure mechanism for Li-S batteries and shin the light on the new approaches to improve Li-S battery performances.

  15. Morphology, Modulus, and Ionic Conductivity of a Triblock Terpolymer/Ionic Liquid Electrolyte Membrane

    NASA Astrophysics Data System (ADS)

    McIntosh, Lucas D.; Lodge, Timothy P.

    2013-03-01

    A key challenge in designing solid polymer electrolytes is increasing bulk mechanical properties such as stiffness, without sacrificing ionic conductivity. Previous work has focused on diblock copolymers, where one block is a stiff, glassy insulator and the other is a flexible ion conductor. Disadvantages of these systems include difficulty in achieving network morphologies, which minimize dead-ends for ion transport, and the necessity to operate below both the Tg of the glassy block and the order-disorder temperature. We have investigated the triblock terpolymer poly[isoprene-b-(styrene-co-norbornenylethyl styrene)-b-ethylene oxide] because it self-assembles into a triply-continuous network structure. SAXS and TEM revealed the bulk morphology of INSO to be disordered but strongly correlated after solvent casting from dichloromethane. This apparent disordered network structure was retained after chemical crosslinking and addition of the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide. Impedance spectroscopy confirmed the expected conductivity for ions confined to continuous PEO channels. The mechanical response before and after crosslinking showed an increase in the material modulus.

  16. Mesoporous silica/ionic liquid quasi-solid-state electrolytes and their application in lithium metal batteries

    NASA Astrophysics Data System (ADS)

    Li, Xiaowei; Zhang, Zhengxi; Yin, Kun; Yang, Li; Tachibana, Kazuhiro; Hirano, Shin-ichi

    2015-03-01

    In this work, the ordered mesoporous silica, SBA-15, is chosen as the matrix for the first time to prepare quasi-solid-state electrolytes (QSSEs) with an ionic liquid, LiTFSI salt and PVdF-HFP. The as-obtained QSSEs are evaluated by electrochemical methods. Lithium metal batteries containing these QSSEs exhibit high discharge capacity and good cycle performance at room temperature, indicating successful battery operation.

  17. An Electrochemical NO2 Sensor Based on Ionic Liquid: Influence of the Morphology of the Polymer Electrolyte on Sensor Sensitivity

    PubMed Central

    Kuberský, Petr; Altšmíd, Jakub; Hamáček, Aleš; Nešpůrek, Stanislav; Zmeškal, Oldřich

    2015-01-01

    A systematic study was carried out to investigate the effect of ionic liquid in solid polymer electrolyte (SPE) and its layer morphology on the characteristics of an electrochemical amperometric nitrogen dioxide sensor. Five different ionic liquids were immobilized into a solid polymer electrolyte and key sensor parameters (sensitivity, response/recovery times, hysteresis and limit of detection) were characterized. The study revealed that the sensor based on 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][N(Tf)2]) showed the best sensitivity, fast response/recovery times, and low sensor response hysteresis. The working electrode, deposited from water-based carbon nanotube ink, was prepared by aerosol-jet printing technology. It was observed that the thermal treatment and crystallinity of poly(vinylidene fluoride) (PVDF) in the solid polymer electrolyte influenced the sensitivity. Picture analysis of the morphology of the SPE layer based on [EMIM][N(Tf)2] ionic liquid treated under different conditions suggests that the sensor sensitivity strongly depends on the fractal dimension of PVDF spherical objects in SPE. Their deformation, e.g., due to crowding, leads to a decrease in sensor sensitivity. PMID:26569248

  18. A Prussian Blue/Zinc Secondary Battery with a Bio-Ionic Liquid-Water Mixture as Electrolyte.

    PubMed

    Liu, Zhen; Pulletikurthi, Giridhar; Endres, Frank

    2016-05-18

    The development of rechargeable zinc ion batteries with high capacity and high cycling stability is a great challenge in aqueous solution due to hydrogen evolution and dendritic growth of zinc. In this study, we present a zinc ion secondary battery, comprising a metallic zinc anode, a bio-ionic liquid-water electrolyte, and a nanostructured prussian blue analogue (PBA) cathode. Both the Zn anode and the PBA cathode exhibit good compatibility with the bio-ionic liquid-water electrolyte, which enables the electrochemical deposition/dissolution of zinc at the zinc anode, and reversible insertion/extraction of Zn(2+) ions at the PBA cathode. The cell exhibits a well-defined discharge voltage plateau of ∼1.1 V with a specific capacity of about 120 mAh g(-1) at a current of 10 mA g(-1) (∼0.1 C). The Zn anode shows great reversibility, and dendrite-free Zn deposits were obtained after 100 deposition/dissolution cycles. The integration of an environmentally friendly PBA cathode, a nontoxic and low-cost Zn anode, and a biodegradable ionic liquid-water electrolyte provides new perspective to develop rechargeable zinc ion batteries for various applications in electric energy storage. PMID:27119430

  19. Anodic behavior of Al current collector in 1-alkyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl] amide ionic liquid electrolytes

    NASA Astrophysics Data System (ADS)

    Peng, Chengxin; Yang, Li; Zhang, Zhengxi; Tachibana, Kazuhiro; Yang, Yong

    The anodic behaviors of aluminum current collector for lithium ion batteries were investigated in a series of 1-alkyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl] amide room temperature ionic liquids (RTILs) and EC + DMC electrolytes. It was found that the aluminum corrosion, which occurred in EC + DMC electrolytes containing LiTFSI, was not observed in the RTIL electrolytes. Further research showed that a passive film with amide compounds as main components formed firmly on aluminum surface during the anodic polarization in the RTIL electrolytes, which inhabited the aluminum corrosion. In addition, the additives generally used in the batteries, such as ethylene carbonate, ethylene sulfite and vinyl carbonate, as well as temperature did not obviously affect the aluminum passive film, the oxidation of the RTILs increased at the elevated temperature, which only resulted in the corrosion potential of aluminum in the RTIL electrolytes shifted to more negative potential, a passive film still firmly formed on the aluminum surface to surpassed the further oxidation of the aluminum current collector. Those results lead to a potential for the practical use of LiTFSI salt in the room temperature ionic liquid electrolytes for lithium ion batteries.

  20. Polymeric ionic liquid and carbon black composite as a reusable supporting electrolyte: modification of the electrode surface.

    PubMed

    Yoo, Seung Joon; Li, Long-Ji; Zeng, Cheng-Chu; Little, R Daniel

    2015-03-16

    One of the major impediments to using electroorganic synthesis is the need for large amounts of a supporting electrolyte to ensure the passage of charge. Frequently this causes separation and waste problems. To address these issues, a polymeric ionic liquid-Super P carbon black composite has been formulated. The system enables electrolyses to be performed without adding an additional supporting electrolyte, and its efficient recovery and reuse. In addition, the ability of the composite to modify the electrode surface in situ leads to improved kinetics. A practical consequence is that one can decrease catalyst loading without sacrificing efficiency. PMID:25619992

  1. Nanocomposite semi-solid redox ionic liquid electrolytes with enhanced charge-transport capabilities for dye-sensitized solar cells.

    PubMed

    Rutkowska, Iwona A; Marszalek, Magdalena; Orlowska, Justyna; Ozimek, Weronika; Zakeeruddin, Shaik M; Kulesza, Pawel J; Grätzel, Michael

    2015-08-10

    The ability of Pt nanostructures to induce the splitting of the II bond in iodine (triiodide) molecules is explored here to enhance electron transfer in the iodine/iodide redox couple. Following the dispersal of Pt nanoparticles at 2 % (weight) level, charge transport was accelerated in triiodide/iodide-containing 1,3-dialkylimidazolium room-temperature ionic liquid. If both Pt nanoparticles and multi-walled carbon nanotubes were introduced into the ionic-liquid-based system, a solid-type (nonfluid) electrolyte was obtained. By using solid-state voltammetric (both sandwich-type and microelectrode-based) methodology, the apparent diffusion coefficients for charge transport increased to approximately 1×10(-6)  cm(2)  s(-1) upon the incorporation of the carbon-nanotube-supported iodine-modified Pt nanostructures. A dye-sensitized solar cell comprising TiO2 covered with a heteroleptic Ru(II) -type sensitizer (dye) and the semisolid triiodide/iodide ionic liquid electrolyte admixed with carbon-nanotube-supported Pt nanostructures yielded somewhat higher power conversion efficiencies (up to 7.9 % under standard reporting conditions) than those of the analogous Pt-free system. PMID:26119519

  2. Ionic liquids as green solvents and electrolytes for robust chemical sensor development.

    PubMed

    Rehman, Abdul; Zeng, Xiangqun

    2012-10-16

    Ionic liquids (ILs) exhibit complex behavior. Their simultaneous dual nature as solvents and electrolytes supports the existence of structurally tunable cations and anions, which could provide the basis of a novel sensing technology. However, the elucidation of the physiochemical properties of ILs and their connections with the interaction and redox mechanisms of the target analytes requires concerted data acquired from techniques including spectroscopic investigations, thermodynamic and solvation models, and molecular simulations. Our laboratory is using these techniques for the rational design and selection of ILs and their composites that could serve as the recognition elements in various sensing platforms. ILs show equal utility in both piezoelectric and electrochemical formats through functionalized ionics that provide orthogonal chemo- and regioselectivity. In this Account, we summarize recent developments in and applications of task-specific ILs and their surface immobilization on solid supports. Such materials can serve as a replacement for conventional recognition elements and electrolytic media in piezoelectric and electrochemical sensing approaches, and we place a special focus on our contributions to these fields. ILs take advantage of both the physical and chemical forces of interaction and can incorporate various gas analytes. Exploiting these features, we have designed piezoelectric sensors and sensor arrays for high-temperature applications. Vibrational spectroscopy of these ILs reveals that hydrogen bonding and dipole-dipole interactions are typically responsible for the observed sensing profiles, but the polarization and cavity formation effect as an analyte approaches the recognition matrix can also cause selective discrimination. IL piezoelectric sensors can have low sensitivity and reproducibility. To address these issues, we designed IL/conducting polymer host systems that tune existing molecular templates with highly selective structure

  3. Synthesis of Mesoporous Carbons from Rice Husk for Supercapacitors with High Energy Density in Ionic Liquid Electrolytes.

    PubMed

    He, Xiaojun; Zhang, Hebao; Xie, Kang; Xia, Youyi; Zhao, Zhigang; Wang, Xiaoting

    2016-03-01

    High-performance mesoporous carbons (MCs) for supercapacitors were made from rice husk by one-step microwave-assisted ZnCl2 activation. The microstructures of MCs as-made were characterized by field emission scanning electron microscopy and transmission electron microscopy. The pore structure parameters of MCs were obtained by N2 adsorption technique. The electrochemical properties of MC electrodes were studied by constant current charge-discharge, cyclic voltammetry and electrochemical impedance spectroscopy in different electrolytes. The results showed that the specific surface area of MC4 made at the ZnCl2/rice husk mass of 4:1 reached 1737 m2 g(-1). The specific capacitance and energy density of the electrodes fabricated from the mixture of MC4 and microporous carbon increased with the mass percentage of MC4, reaching 157 F g(-1) and 84 Wh kg(-1) at 0.05 A g(-1), and showed good cycle stability in 1-butyl-3-methylimidazolium hexafluorophosphate electrolyte. Compared to the often-used aqueous and organic electrolytes, MC4 capacitor exhibited extremely high energy density in ionic liquid electrolyte, remaining at 28 Wh kg(-1) at 1684 W kg(-1). This work paves a new way to produce cost-effective MCs from biomass for supercapacitors with extremely high energy density in ionic liquid electrolytes. PMID:27455718

  4. Dissolving Polymers in Ionic Liquids.

    NASA Astrophysics Data System (ADS)

    Hoagland, David; Harner, John

    2009-03-01

    Dissolution and phase behavior of polymers in ionic liquids have been assessed by solution characterization techniques such as intrinsic viscosity and light scattering (static and dynamic). Elevated viscosity proved the greatest obstacle. As yet, whether principles standard to conventional polymer solutions apply to ionic liquid solutions is uncertain, especially for polymers such as polyelectrolytes and hydrophilic block copolymers that may specifically interact with ionic liquid anions or cations. For flexible polyelectrolytes (polymers releasing counterions into high dielectric solvents), characterization in ionic liquids suggests behaviors more typical of neutral polymer. Coil sizes and conformations are approximately the same as in aqueous buffer. Further, several globular proteins dissolve in a hydrophilic ionic liquid with conformations analogous to those in buffer. General principles of solubility, however, remain unclear, making predictions of which polymer dissolves in which ionic liquid difficult; several otherwise intractable polymers (e.g., cellulose, polyvinyl alcohol) dissolve and can be efficiently functionalized in ionic liquids.

  5. Highly Safe Ionic Liquid Electrolytes for Sodium-Ion Battery: Wide Electrochemical Window and Good Thermal Stability.

    PubMed

    Wu, Feng; Zhu, Na; Bai, Ying; Liu, Libin; Zhou, Hang; Wu, Chuan

    2016-08-24

    Novel ionic liquid (IL) electrolytes are prepared by mixing 1-ethyl-3-methylimidazolium-bis-tetrafluoroborate (EMIBF4) with different concentrations of sodium salt (NaBF4). The as-prepared IL electrolytes display wide electrochemical windows of ∼4 V (1-5 V), which are consistent with the quantum chemical theoretical calculation. The IL electrolyte with 0.1 M NaBF4 shows excellent ionic conductivity, namely, 9.833 × 10(-3) S cm(-1) at 20 °C. In addition, nonflammability and good thermal stability are exhibited by combustion test and thermogravimetric analysis (TGA), which indicate the high safety of the IL electrolyte. PMID:27454818

  6. Ionic Liquid-Based Polymer Electrolytes via Surfactant-Assisted Polymerization at the Plasma-Liquid Interface.

    PubMed

    Tran, Quoc Chinh; Bui, Van-Tien; Dao, Van-Duong; Lee, Joong-Kee; Choi, Ho-Suk

    2016-06-29

    We first report an innovative method, which we refer to as interfacial liquid plasma polymerization, to chemically cross-link ionic liquids (ILs). By this method, a series of all-solid state, free-standing polymer electrolytes is successfully fabricated where ILs are used as building blocks and ethylene oxide-based surfactants are employed as an assisted-cross-linking agent. The thickness of the films is controlled by the plasma exposure time or the ratio of surfactant to ILs. The chemical structure and properties of the polymer electrolyte are characterized by scanning electron microscopy (SEM), Fourier transformation infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) spectroscopy, X-ray photoelectron spectroscopy (XPS), differential scanning calorimetry (DSC), and electrochemical impedance spectroscopy (EIS). Importantly, the underlying polymerization mechanism of the cross-linked IL-based polymer electrolyte is studied to show that fluoroborate or halide anions of ILs together with the aid of a small amount of surfactants having ethylene oxide groups are necessary to form cross-linked network structures of the polymer electrolyte. The ionic conductivity of the obtained polymer electrolyte is 2.28 × 10(-3) S·cm(-1), which is a relatively high value for solid polymer electrolytes synthesized at room temperature. This study can serve as a cornerstone for developing all-solid state polymer electrolytes with promising properties for next-generation electrochemical devices. PMID:27281115

  7. Graphene-Analogues Boron Nitride Nanosheets Confining Ionic Liquids: A High-Performance Quasi-Liquid Solid Electrolyte.

    PubMed

    Li, Mingtao; Zhu, Wenshuai; Zhang, Pengfei; Chao, Yanhong; He, Qian; Yang, Bolun; Li, Huaming; Borisevich, Albinab; Dai, Sheng

    2016-07-01

    Solid electrolytes are one of the most promising electrolyte systems for safe lithium batteries, but the low ionic conductivity of these electrolytes seriously hinders the development of efficient lithium batteries. Here, a novel class of graphene-analogues boron nitride (g-BN) nanosheets confining an ultrahigh concentration of ionic liquids (ILs) in an interlayer and out-of-layer chamber to give rise to a quasi-liquid solid electrolyte (QLSE) is reported. The electron-insulated g-BN nanosheet host with a large specific surface area can confine ILs as much as 10 times of the host's weight to afford high ionic conductivity (3.85 × 10(-3) S cm(-1) at 25 °C, even 2.32 × 10(-4) S cm(-1) at -20 °C), which is close to that of the corresponding bulk IL electrolytes. The high ionic conductivity of QLSE is attributed to the enormous absorption for ILs and the confining effect of g-BN to form the ordered lithium ion transport channels in an interlayer and out-of-layer of g-BN. Furthermore, the electrolyte displays outstanding electrochemical properties and battery performance. In principle, this work enables a wider tunability, further opening up a new field for the fabrication of the next-generation QLSE based on layered nanomaterials in energy conversion devices. PMID:27225944

  8. A Long-Life Lithium Ion Battery with Enhanced Electrode/Electrolyte Interface by Using an Ionic Liquid Solution.

    PubMed

    Elia, Giuseppe Antonio; Ulissi, Ulderico; Mueller, Franziska; Reiter, Jakub; Tsiouvaras, Nikolaos; Sun, Yang-Kook; Scrosati, Bruno; Passerini, Stefano; Hassoun, Jusef

    2016-05-10

    In this paper, we report an advanced long-life lithium ion battery, employing a Pyr14 TFSI-LiTFSI non-flammable ionic liquid (IL) electrolyte, a nanostructured tin carbon (Sn-C) nanocomposite anode, and a layered LiNi1/3 Co1/3 Mn1/3 O2 (NMC) cathode. The IL-based electrolyte is characterized in terms of conductivity and viscosity at various temperatures, revealing a Vogel-Tammann-Fulcher (VTF) trend. Lithium half-cells employing the Sn-C anode and NMC cathode in the Pyr14 TFSI-LiTFSI electrolyte are investigated by galvanostatic cycling at various temperatures, demonstrating the full compatibility of the electrolyte with the selected electrode materials. The NMC and Sn-C electrodes are combined into a cathode-limited full cell, which is subjected to prolonged cycling at 40 °C, revealing a very stable capacity of about 140 mAh g(-1) and retention above 99 % over 400 cycles. The electrode/electrolyte interface is further characterized through a combination of electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) investigations upon cell cycling. The remarkable performances reported here definitively indicate that IL-based lithium ion cells are suitable batteries for application in electric vehicles. PMID:26990320

  9. Improved efficiency and stability of flexible dye sensitized solar cells on ITO/PEN substrates using an ionic liquid electrolyte.

    PubMed

    Han, Yu; Pringle, Jennifer M; Cheng, Yi-Bing

    2015-01-01

    Flexible dye-sensitized solar cells (DSSCs) built on plastic substrates have attracted great interest as they are lightweight and can be roll-to-roll printed to accelerate production and reduce cost. However, plastic substrates such as PEN and PET are permeable to water, oxygen and volatile electrolyte solvents, which is detrimental to the cell stability. Therefore, to address this problem, in this work, an ionic liquid (IL) electrolyte is used to replace the volatile solvent electrolyte. The initial IL-based devices only achieved around 50% of the photovoltaic conversion efficiency of the cells using the solvent electrolyte. Current-voltage and electrochemical impedance spectroscopy (EIS) analysis of the cells in the dark indicated that this lower efficiency mainly originated from (i) a lack of blocking layer to reduce recombination, and (ii) a lower charge collection efficiency. To combat these problems, cells were developed using a 12 nm thick blocking layer, produced by atomic layer deposition, and 1 μm thick P25 TiO2 film sensitized with the hydrophobic MK-2 dye. These flexible DSSCs utilizing an IL electrolyte exhibit significantly improved efficiencies and a <10% drop in performance after 1000 h aging at 60°C under continuous light illumination. PMID:25476521

  10. Novel polymer electrolytes based on thermoplastic polyurethane and ionic liquid/lithium bis(trifluoromethanesulfonyl)imide/propylene carbonate salt system

    NASA Astrophysics Data System (ADS)

    Lavall, R. L.; Ferrari, S.; Tomasi, C.; Marzantowicz, M.; Quartarone, E.; Magistris, A.; Mustarelli, P.; Lazzaroni, S.; Fagnoni, M.

    Polymer electrolytes were prepared from thermoplastic polyurethane with addition of mixture of ionic liquid N-ethyl(methylether)-N-methylpyrrolidinium trifluoromethanesulfonimmide (PYRA 12O1TFSI), lithium bis(trifluoromethanesulfoneimide) salt and propylene carbonate. The electrolytes characterization was performed by thermogravimetric analysis, differential scanning calorimetry and scanning electron microscopy. The electrical properties were investigated in detail by impedance spectroscopy with the aid of equivalent circuit fitting of the impedance spectra. A model describing temperature evolution of ionic conductivity and the properties of electrolyte/blocking electrode interface was developed. The electrochemical stability of the electrolytes was studied by linear voltammetry. Our results indicate that the studied electrolytes have good self-standing characteristics, and also a sufficient level of thermal stability and a fairly good electrochemical window. The ionic conductivity increases with increasing amount of mixture, and the character of temperature dependence of conductivity indicates decoupling of ion transport from polymer matrix. For studied system, the highest value of ionic conductivity measured at room temperature was 10 -4 S cm -1.

  11. Effect of ion structure on conductivity in lithium-doped ionic liquid electrolytes: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Liu, Hongjun; Maginn, Edward

    2013-09-01

    Molecular dynamics simulations were performed to examine the role cation and anion structure have on the performance of ionic liquid (IL) electrolytes for lithium conduction over the temperature range of 320-450 K. Two model ionic liquids were studied: 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([bmim][Tf2N]) and 1-butyl-4-methylpyridinium pyrrolide ([bmpyr][pyl]) doped with Li[Tf2N] and Li[pyl], respectively. The results have demonstrated that the Li+ doped IL containing the planar [bmpyr] cation paired with the planar [pyl] anion significantly outperformed the [bmim][Tf2N] IL. The different coordination of Li+ with the [Tf2N]- or [pyl]- anions produces a remarkable change in IL structure with a concomitant effect on the transport of all ions. For the doped [bmim][Tf2N], each Li+ is coordinated by four oxygen atoms from [Tf2N]- anions. Formation of a rigid structure between Li+ and [Tf2N]- induces a decrease in the mobility of all ions. In contrast, for the doped [bmpyr][pyl], each Li+ is coordinated by two nitrogen atoms from [pyl]- anions. The original alternating structure cation|anion|cation in the neat [bmpyr][pyl] is replaced by another alternating structure cation|anion|Li+|anion|cation in the doped [bmpyr][pyl]. Increases of Li+ mole fraction in doped [bmpyr][pyl] affects the dynamics to a much lesser extent compared with [bmim][Tf2N] and leads to reduced diffusivities of cations and anions, but little change in the dynamics of Li+. More importantly, the calculations predict that the Li+ ion conductivity of doped [bmpyr][pyl] is comparable to that observed in organic liquid electrolytes and is about an order of magnitude higher than that of doped [bmim][Tf2N]. Such Li+ conductivity improvement suggests that this and related ILs may be promising candidates for use as electrolytes in lithium ion batteries and capacitors.

  12. Electrochemistry and spectroscopy of electrolytes and cathode materials in room-temperature ionic liquids

    NASA Astrophysics Data System (ADS)

    Ryan, David Martin

    The demonstration of a stable, reversible, alkali metal anode is an important step in the development of practical secondary batteries using room temperature chloroaluminate molten salts as electrolytes. Such melts are made by mixing 1-ethyl-3-methylimidazolium chloride (EMIC) with aluminum chloride, and can be Lewis buffered by adding LiCl or NaCl. It has been shown previously that protons added to a sodium chloride buffered melt as 1-ethyl-3-methyfimidazolium hydrogen dichloride (EMIHCl2) provide a more negative voltage window and nearly reversible deposition-stripping behavior for sodium. It is reported here that triethanolamine hydrogen chloride is effective in widening the voltage window, allows the plating and stripping of both lithium and sodium, and is stable in buffered EMIC/AlCl3 melts for months. It is suggested that deprotonation of one ethanolic group of triethanolamine HCl is responsible for the effect. The electrochemistry and UV-visible spectroscopy of several vanadium oxides have been examined in room temperature melts. By varying the mole ratio of the two components, Lewis basic, neutral and acidic melts were made. Most oxides have very low solubility: V2O4 and V2O3 are insoluble and V2O5 has a solubility limit less than 5 mM, but the solubilities of the salts NaVO 3, Na3VO4, and NH4VO3, VOCl 3 and VOF3 are significantly higher. The electrochemistry of V2O5, NaVO3, Na3VO4, NH4VO3, VOCl3 and VOF3 is similar in neutral and acidic melts. In the neutral melt each compound shows an irreversible reduction at about 0.45V vs. an Al wire reference electrode. In an acidic melt (mole fraction AlCl3 = 0.55) each of these compounds exhibit additional reduction peaks at more positive potentials. Coulometric and spectroscopic data for the 0.45V reduction suggest that mixed oxidation state polyvanadates may be formed. Controlled potential coulometry demonstrated that the reduction at 0.45V was the reduction of V(V) to V(IV) and the more positive reduction peaks

  13. Balance between the physical diffusion and the exchange reaction on binary ionic liquid electrolyte for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Hao, Feng; Lin, Hong; Zhang, Jing; Li, Jianbao

    A comprehensive characterizations of viscosities, conductivities, triiodide diffusion coefficients, charge-transfer resistances and photovoltaic performance of a potential dye-sensitized solar cell (DSC) electrolyte systems based on binary ionic liquid (IL) mixtures, namely, 1-ethyl-3-methylimidazolium dicyanamide (EMIDCA)/1-methyl-3-propylimidazolium iodide (PMII) with a fixed iodine concentration at varying EMIDCA volume fraction are investigated in the present study. Viscosity and conductivity values are accurately correlated with regard to temperature and EMIDCA volume fraction. The triiodide diffusion coefficients, the predominant electrolyte parameter for limitation of DSC efficiency, are determined by symmetrical cell methods. The physical diffusion and exchange reactions between the iodide and triiodide dominate the apparent triiodide diffusion coefficients at different range of EMIDCA volume fraction. A balance between the viscosity-dependent physical diffusion and the exchange reactions can get at an optimal volume percents of EMIDCA. Impedance spectroscopy and photovoltaic results both support the existence of an optimized binary IL electrolyte composition. Hence, for optimizing an IL-based electrolyte in regards to triiodide transport, a low viscosity is not the exclusive crucial factor since exchange reactions transport effects also play an important role to resolve the diffusion limitation of DSC efficiency.

  14. Development and manufacture of printable next-generation gel polymer ionic liquid electrolyte for Zn/MnO2 batteries

    NASA Astrophysics Data System (ADS)

    Winslow, R.; Wu, C. H.; Wang, Z.; Kim, B.; Keif, M.; Evans, J.; Wright, P.

    2013-12-01

    While much energy storage research focuses on the performance of individual components, such as the electrolyte or a single electrode, few investigate the electrochemical system as a whole. This research reports on the design, composition, and performance of a Zn/MnO2 battery as affected by the manufacturing method and next-generation gel polymer electrolyte composed of the ionic liquid [BMIM][Otf], ZnOtf salt, and PVDF-HFP polymer binder. Materials and manufacturing tests are discussed with a focus on water concentration, surface features as produced by printing processes, and the effect of including a gel polymer phase. Cells produced for this research generated open circuit voltages from 1.0 to 1.3 V. A dry [BMIM][Otf] electrolyte was found to have 87.3 ppm of H2O, while an electrolyte produced in ambient conditions contained 12400 ppm of H2O. Cells produced in a dry, Ar environment had an average discharge capacity of 0.0137 mAh/cm2, while one produced in an ambient environment exhibited a discharge capacity at 0.05 mAh/cm2. Surface features varied significantly by printing method, where a doctor blade produced the most consistent features. The preliminary results herein suggest that water, surface roughness, and the gel polymer play important roles in affecting the performance of printed energy storage.

  15. Holey graphene nanosheets with surface functional groups as high-performance supercapacitors in ionic-liquid electrolyte.

    PubMed

    Yang, Cheng-Hsien; Huang, Po-Ling; Luo, Xu-Feng; Wang, Chueh-Han; Li, Chi; Wu, Yi-Hsuan; Chang, Jeng-Kuei

    2015-05-22

    Pores and surface functional groups are created on graphene nanosheets (GNSs) to improve supercapacitor properties in a butylmethylpyrrolidinium-dicyanamide (BMP-DCA) ionic liquid (IL) electrolyte. The GNS electrode exhibits an optimal capacitance of 330 F g(-1) and a satisfactory rate capability within a wide potential range of 3.3 V at 25 °C. Pseudocapacitive effects are confirmed using X-ray photoelectron spectroscopy. Under the same conditions, carbon nanotube and activated carbon electrodes show capacitances of 80 and 81 F g(-1) , respectively. Increasing the operation temperature increases the conductivity and decreases the viscosity of the IL electrolyte, further improving cell performance. At 60 °C, a symmetric-electrode GNS supercapacitor with the IL electrolyte is able to deliver maximum energy and power densities of 140 Wh kg(-1) and 52.5 kW kg(-1) (based on the active material on both electrodes), respectively, which are much higher than the 20 Wh kg(-1) and 17.8 kW kg(-1) obtained for a control cell with a conventional organic electrolyte. PMID:25900279

  16. Electrochemistry of room temperature protic ionic liquids: a critical assessment for use as electrolytes in electrochemical applications.

    PubMed

    Lu, Xunyu; Burrell, Geoff; Separovic, Frances; Zhao, Chuan

    2012-08-01

    Ten room temperature protic ionic liquids (RTPILs) have been prepared from low-molecular-weight Brønsted acids and amines with high purity and minimal water content, and their electrochemical characteristics determined using cyclic, microelectrode, and rotating disk electrode voltammetries. Potential windows of the 10 RTPILs were established at glassy carbon, gold, and platinum electrodes, where the largest potential window is generally observed with glassy carbon electrodes. The two IUPAC recommended internal potential reference systems, ferrocene/ferrocenium and cobaltocenium/cobaltocene, were determined for the 10 RTPILs, and their merits as well as limitations are discussed. Other electrochemical properties such as mass transport and double layer capacitances were also investigated. The potential applications of these RTPILs as electrolytes for electrochemical energy devices were discussed, and two novel applications using PILs for metal deposition and water electrolysis were demonstrated. PMID:22784243

  17. Corrosion of stainless steel battery components by bis(fluorosulfonyl)imide based ionic liquid electrolytes

    NASA Astrophysics Data System (ADS)

    Evans, Tyler; Olson, Jarred; Bhat, Vinay; Lee, Se-Hee

    2014-12-01

    While the anodic behavior of aluminum foil current collectors in imide-based room temperature ionic liquids (RTILs) is relatively well understood, interactions between such RTILs and other passive battery components have not been studied extensively. This study presents the solvent and potential dependent oxidation of SS316 coin-cell components in the N-methyl-N-propyl-pyrrolidinium bis(fluorosulfonyl)imide (PYR13FSI) RTIL. While this phenomenon prohibits high-voltage cycling of Li(Ni1/3Mn1/3Co1/3)O2 cathodes in SS316 coin-type cells, Al-clad cell components or alternative cell configurations can be utilized to avoid SS316 oxidation-induced cell failure.

  18. Ionic liquids and oligomer electrolytes based on the B(CN)4(-) anion; ion association, physical and electrochemical properties.

    PubMed

    Scheers, Johan; Pitawala, Jagath; Thebault, Frederic; Kim, Jae-Kwang; Ahn, Jou-Hyeon; Matic, Aleksandar; Johansson, Patrik; Jacobsson, Per

    2011-09-01

    The role of B(CN)(4)(-) (Bison) as a component of battery electrolytes is addressed by investigating the ionic conductivity and phase behaviour of ionic liquids (ILs), ion association mechanisms, and the electrochemical stability and cycling properties of LiBison based electrochemical cells. For C(4)mpyrBison and C(2)mimBison ILs, and mixtures thereof, high ionic conductivities (3.4 ≤σ(ion)≤ 18 mS cm(-1)) are measured, which together with the glass transition temperatures (-80 ≤T(g)≤-76 °C) are found to shift systematically for most compositions. Unfortunately, poor solubility of LiBison in these ILs hinders their use as solvents for lithium salts, although good NaBison solubility offers an alternative application in Na(+) conducting electrolytes. The poor IL solubility of LiBison is predicted to be a result of a preferred monodentate ion association, according to first principles modelling, supported by Raman spectroscopy. The solubility is much improved in strongly Li(+) coordinating oligomers, for example polyethylene glycol dimethyl ether (PEGDME), with the practical performance tested in electrochemical cells. The electrolyte is found to be stable in Li/LiFePO(4) coin cells up to 4 V vs. Li and shows promising cycling performance, with a capacity retention of 99% over 22 cycles. PMID:21776511

  19. A novel electrolysis cell for CO2 reduction to CO in ionic liquid/organic solvent electrolyte

    NASA Astrophysics Data System (ADS)

    Shi, Jin; Shi, Feng; Song, Ning; Liu, Jian-Xiong; Yang, Xi-Kun; Jia, You-Jian; Xiao, Zheng-Wei; Du, Ping

    2014-08-01

    A novel electrolysis cell has been developed for CO2 reduction to CO in an ionic liquid/organic solvent electrolyte. The electrolysis cell is separated into two compartments by an ion-exchange membrane (Nafion117). The cathode compartment is filled with a CO2 saturated 1-butyl-3-methyl-imidazolium trifluoromethanesulfonates ([Bmim][CF3SO3])/propylene carbonate (PC) solution. The anode compartment is filled with a 0.1 M H2SO4 aqueous solution. A Ag foil and a graphite rod are used as the cathode and the anode respectively. In this electrolysis cell, CO2 reduction can be carried out in the nonaqueous electrolyte, and H2O oxidation can be carried out in the aqueous solution. Thus CO can be produced from CO2 and H2O. Owing to the high solubility of CO2 in the nonaqueous electrolyte, the Faradaic efficiency of CO formation is high, reached 90.1% at -1.72 V (vs Pt wire). After 3 h electrolysis, no poisonous species are observed on the cathode. The Ag electrode exhibits a high electrocatalytic activity for CO2 reduction to CO.

  20. Hydroxypropyl Cellulose Based Non-Volatile Gel Polymer Electrolytes for Dye-Sensitized Solar Cell Applications using 1-methyl-3-propylimidazolium iodide ionic liquid

    PubMed Central

    Khanmirzaei, Mohammad Hassan; Ramesh, S.; Ramesh, K.

    2015-01-01

    Gel polymer electrolytes using imidazolium based ionic liquids have attracted much attention in dye-sensitized solar cell applications. Hydroxypropyl cellulose (HPC), sodium iodide (NaI), 1-methyl-3-propylimidazolium iodide (MPII) as ionic liquid (IL), ethylene carbonate (EC) and propylene carbonate (PC) are used for preparation of non-volatile gel polymer electrolyte (GPE) system (HPC:EC:PC:NaI:MPII) for dye-sensitized solar cell (DSSC) applications. The highest ionic conductivity of 7.37 × 10−3 S cm−1 is achieved after introducing 100% of MPII with respect to the weight of HPC. Temperature-dependent ionic conductivity of gel polymer electrolytes is studied in this work. XRD patterns of gel polymer electrolytes are studied to confirm complexation between HPC polymer, NaI and MPII. Thermal behavior of the GPEs is studied using simultaneous thermal analyzer (STA) and differential scanning calorimetry (DSC). DSSCs are fabricated using gel polymer electrolytes and J-V centeracteristics of fabricated dye sensitized solar cells were analyzed. The gel polymer electrolyte with 100 wt.% of MPII ionic liquid shows the best performance and energy conversion efficiency of 5.79%, with short-circuit current density, open-circuit voltage and fill factor of 13.73 mA cm−2, 610 mV and 69.1%, respectively. PMID:26659087

  1. Hydroxypropyl Cellulose Based Non-Volatile Gel Polymer Electrolytes for Dye-Sensitized Solar Cell Applications using 1-methyl-3-propylimidazolium iodide ionic liquid.

    PubMed

    Khanmirzaei, Mohammad Hassan; Ramesh, S; Ramesh, K

    2015-01-01

    Gel polymer electrolytes using imidazolium based ionic liquids have attracted much attention in dye-sensitized solar cell applications. Hydroxypropyl cellulose (HPC), sodium iodide (NaI), 1-methyl-3-propylimidazolium iodide (MPII) as ionic liquid (IL), ethylene carbonate (EC) and propylene carbonate (PC) are used for preparation of non-volatile gel polymer electrolyte (GPE) system (HPC:EC:PC:NaI:MPII) for dye-sensitized solar cell (DSSC) applications. The highest ionic conductivity of 7.37 × 10(-3) S cm(-1) is achieved after introducing 100% of MPII with respect to the weight of HPC. Temperature-dependent ionic conductivity of gel polymer electrolytes is studied in this work. XRD patterns of gel polymer electrolytes are studied to confirm complexation between HPC polymer, NaI and MPII. Thermal behavior of the GPEs is studied using simultaneous thermal analyzer (STA) and differential scanning calorimetry (DSC). DSSCs are fabricated using gel polymer electrolytes and J-V centeracteristics of fabricated dye sensitized solar cells were analyzed. The gel polymer electrolyte with 100 wt.% of MPII ionic liquid shows the best performance and energy conversion efficiency of 5.79%, with short-circuit current density, open-circuit voltage and fill factor of 13.73 mA cm(-2), 610 mV and 69.1%, respectively. PMID:26659087

  2. Hydroxypropyl Cellulose Based Non-Volatile Gel Polymer Electrolytes for Dye-Sensitized Solar Cell Applications using 1-methyl-3-propylimidazolium iodide ionic liquid

    NASA Astrophysics Data System (ADS)

    Khanmirzaei, Mohammad Hassan; Ramesh, S.; Ramesh, K.

    2015-12-01

    Gel polymer electrolytes using imidazolium based ionic liquids have attracted much attention in dye-sensitized solar cell applications. Hydroxypropyl cellulose (HPC), sodium iodide (NaI), 1-methyl-3-propylimidazolium iodide (MPII) as ionic liquid (IL), ethylene carbonate (EC) and propylene carbonate (PC) are used for preparation of non-volatile gel polymer electrolyte (GPE) system (HPC:EC:PC:NaI:MPII) for dye-sensitized solar cell (DSSC) applications. The highest ionic conductivity of 7.37 × 10-3 S cm-1 is achieved after introducing 100% of MPII with respect to the weight of HPC. Temperature-dependent ionic conductivity of gel polymer electrolytes is studied in this work. XRD patterns of gel polymer electrolytes are studied to confirm complexation between HPC polymer, NaI and MPII. Thermal behavior of the GPEs is studied using simultaneous thermal analyzer (STA) and differential scanning calorimetry (DSC). DSSCs are fabricated using gel polymer electrolytes and J-V centeracteristics of fabricated dye sensitized solar cells were analyzed. The gel polymer electrolyte with 100 wt.% of MPII ionic liquid shows the best performance and energy conversion efficiency of 5.79%, with short-circuit current density, open-circuit voltage and fill factor of 13.73 mA cm-2, 610 mV and 69.1%, respectively.

  3. Ionic liquid based lithium battery electrolytes: fundamental benefits of utilising both TFSI and FSI anions?

    PubMed

    Kerner, M; Plylahan, N; Scheers, J; Johansson, P

    2015-07-15

    Several IL based electrolytes with an imidazolium cation (EMI) have been investigated trying to elucidate a possible beneficial effect of mixing FSI and TFSI anions in terms of physico-chemical properties and especially Li(+) solvation. All electrolytes were evaluated in terms of phase transitions, densities and viscosities, thermal stabilities, ionic conductivities and local structure, i.e. charge carriers. The electrolytes with up to 20% of Li-salts showed to be promising for high temperature lithium ion battery application (ca. 100 °C) and a synergetic effect of having mixed anions is discernible with the LiTFSI0.2EMIFSI0.8 electrolyte giving the best overall performance. The determination of the charge carriers revealed the SN to be ca. 2 for all analysed electrolytes, and proved the analysis of the mixed anion electrolytes to be challenging and inherently leads to an ambiguous picture of the Li(+) solvation. PMID:26147418

  4. 3-V Solid-State Flexible Supercapacitors with Ionic-Liquid-Based Polymer Gel Electrolyte for AC Line Filtering.

    PubMed

    Kang, Yu Jin; Yoo, Yongju; Kim, Woong

    2016-06-01

    State-of-the-art solid-state flexible supercapacitors with sufficiently fast response speed for AC line filtering application suffer from limited energy density. One of the main causes of the low energy density is the low cell voltage (1 V), which is limited by aqueous-solution-based gel electrolytes. In this work, we demonstrate for the first time a 3-V flexible supercapacitor for AC line filtering based on an ionic-liquid-based polymer gel electrolyte and carbon nanotube electrode material. The flexible supercapacitor exhibits an areal energy density that is more than 20 times higher than that of the previously demonstrated 1-V flexible supercapacitor (0.66 vs 0.03 μWh/cm(2)) while maintaining excellent capacitive behavior at 120 Hz. The supercapacitor shows a maximum areal power density of 1.5 W/cm(2) and a time constant of 1 ms. The improvement of the cell voltage while maintaining the fast-response capability greatly improves the potential of supercapacitors for high-frequency applications in wearable and/or portable electronics. PMID:27167760

  5. Synthesis and Compatibility of Ionic Liquid Containing Rod-Coil Polyimide Gel Electrolytes with Lithium Metal Electrodes

    NASA Technical Reports Server (NTRS)

    Tigelaar, Dean M.; Palker, Allyson E.; Meador, Mary Ann B.; Bennett, William R.

    2008-01-01

    A highly cross-linked polyimide-polyethylene oxide copolymer has been synthesized that is capable of holding large volumes of liquid component, simultaneously maintaining good dimensional stability. An amine end capped oligomer was made that was imidized in solution, followed by reaction with a triisocyanate in the presence of desired additives at ambient temperature. Polymer films are able to hold over 4 times their weight in room temperature ionic liquid RTIL or carbonate solvent. Electrolytes were studied that contained varying amounts of RTIL, lithium trifluoromethanesulfonimide LiTFSi, and alumina nanoparticles. Electrochemical stability of these electrolytes with lithium metal electrodes was studied by galvanic cycling and impedance spectroscopy. Improved cycling stability and decreased interfacial resistance were observed when increasing amounts of RTIL and LiTFSi were added. The addition of small amounts of alumina further decreased interfacial resistance by nearly an order of magnitude. During the course of the study, cycling stability increased from less than 3 to greater than 1000 h at 60 C and 0.25 mA/cm2 current density.

  6. An ether-functionalised cyclic sulfonium based ionic liquid as an electrolyte for electrochemical double layer capacitors

    NASA Astrophysics Data System (ADS)

    Neale, Alex R.; Murphy, Sinead; Goodrich, Peter; Schütter, Christoph; Hardacre, Christopher; Passerini, Stefano; Balducci, Andrea; Jacquemin, Johan

    2016-09-01

    A novel cyclic sulfonium cation-based ionic liquid (IL) with an ether-group appendage and the bis{(trifluoromethyl)sulfonyl}imide anion was synthesised and developed for electrochemical double layer capacitor (EDLC) testing. The synthesis and chemical-physical characterisation of the ether-group containing IL is reported in parallel with a similarly sized alkyl-functionalised sulfonium IL. Results of the chemical-physical measurements demonstrate how important transport properties, i.e. viscosity and conductivity, can be promoted through the introduction of the ether-functionality without impeding thermal, chemical or electrochemical stability of the IL. Although the apparent transport properties are improved relative to the alkyl-functionalised analogue, the ether-functionalised sulfonium cation-based IL exhibits moderately high viscosity, and poorer conductivity, when compared to traditional EDLC electrolytes based on organic solvents (propylene carbonate and acetonitrile). Electrochemical testing of the ether-functionalised sulfonium IL was conducted using activated carbon composite electrodes to inspect the performance of the IL as a solvent-free electrolyte for EDLC application. Good cycling stability was achieved over the studied range and the performance was comparable to other solvent-free, IL-based EDLC systems. Nevertheless, limitations of the attainable performance are primarily the result of sluggish transport properties and a restricted operative voltage of the IL, thus highlighting key aspects of this field which require further attention.

  7. Engineering the electrochemical capacitive properties of graphene sheets in ionic-liquid electrolytes by correct selection of anions.

    PubMed

    Shi, Minjie; Kou, Shengzhong; Yan, Xingbin

    2014-11-01

    Graphene sheet (GS)-ionic liquid (IL) supercapacitors are receiving intense interest because their specific energy density far exceeds that of GS-aqueous electrolytes supercapacitors. The electrochemical properties of ILs mainly depend on their diverse ions, especially anions. Therefore, identifying suitable IL electrolytes for GSs is currently one of the most important tasks. The electrochemical behavior of GSs in a series of ILs composed of 1-ethyl-3-methylimidazolium cation (EMIM(+)) with different anions is systematically studied. Combined with the formula derivation and building models, it is shown that the viscosity, ion size, and molecular weight of ILs affect the electrical conductivity of ILs, and thus, determine the electrochemical performances of GSs. Because the EMIM-dicyanamide IL has the lowest viscosity, ion size, and molecular weight, GSs in it exhibit the highest specific capacitance, smallest resistance, and best rate capability. In addition, because the tetrafluoroborate anion (BF4(-)) has the best electrochemical stability, the GS-[EMIM][BF4] supercapacitor has the widest potential window, and thus, displays the largest energy density. These results may provide valuable information for selecting appropriate ILs and designing high-performance GS-IL supercapacitors to meet different needs. PMID:25146489

  8. Ionic Liquid Hybrid Electrolytes for Lithium-Ion Batteries: A Key Role of the Separator-Electrolyte Interface in Battery Electrochemistry.

    PubMed

    Huie, Matthew M; DiLeo, Roberta A; Marschilok, Amy C; Takeuchi, Kenneth J; Takeuchi, Esther S

    2015-06-10

    Batteries are multicomponent systems where the theoretical voltage and stoichiometric electron transfer are defined by the electrochemically active anode and cathode materials. While the electrolyte may not be considered in stoichiometric electron-transfer calculations, it can be a critical factor determining the deliverable energy content of a battery, depending also on the use conditions. The development of ionic liquid (IL)-based electrolytes has been a research area of recent reports by other researchers, due, in part, to opportunities for an expanded high-voltage operating window and improved safety through the reduction of flammable solvent content. The study reported here encompasses a systematic investigation of the physical properties of IL-based hybrid electrolytes including quantitative characterization of the electrolyte-separator interface via contact-angle measurements. An inverse trend in the conductivity and wetting properties was observed for a series of IL-based electrolyte candidates. Test-cell measurements were undertaken to evaluate the electrolyte performance in the presence of functioning anode and cathode materials, where several promising IL-based hybrid electrolytes with performance comparable to that of conventional carbonate electrolytes were identified. The study revealed that the contact angle influenced the performance more significantly than the conductivity because the cells containing IL-tetrafluoroborate-based electrolytes with higher conductivity but poorer wetting showed significantly decreased performance relative to the cells containing IL-bis(trifluoromethanesulfonyl)imide electrolytes with lower conductivity but improved wetting properties. This work contributes to the development of new IL battery-based electrolyte systems with the potential to improve the deliverable energy content as well as safety of lithium-ion battery systems. PMID:25710110

  9. Ionic liquid-based electrolyte with binary lithium salts for high performance lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Wu, Feng; Zhu, Qizhen; Chen, Renjie; Chen, Nan; Chen, Yan; Ye, Yusheng; Qian, Ji; Li, Li

    2015-11-01

    Rechargeable Li-S batteries have suffered several technical obstacles, such as rapid capacity fading and low coulombic efficiency. To overcome these problems, we design new electrolytes containing N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide (Pyr1,2O1TFSI) and tri(ethylene glycol)dimethyl ether (TEGDME) in mass ratio of 7:3. Moreover, Lithium difluoro(oxalate)borate (LiODFB) is introduced for the modification. Although the addition of LiODFB as additive lead to extremely high viscosity of electrolyte and inferior performance of the cells, the electrolyte containing lithium bis(trifluoromethanesulfonyl)imide (LiTFSI, 0.84 nm) and LiODFB (0.60 nm) mixture with a total molar concentration of 0.4 mol kg-1 as binary lithium salt shows excellent electrochemical performance. The Pyr1,2O1TFSI/TEGDME electrolyte with LiTFSI/LiODFB binary lithium salts in mole ratio of 6:4 is obtained after optimizing ratio. The Li-S cells containing this electrolyte system show excellent capacity and cycle performance, whose initial discharge capacity is 1264.4 mAh g-1, and retains 911.4 mAh g-1 after 50 cycles with the coulombic efficiency more than 95%. It can be attributed the solid-electrolyte interphase (SEI)-forming ability of LiODFB which protect Li anode from suffering lithium dendrites and prevent the shuttle phenomenon. The novel electrolytes provide good cycling stability and high coulombic efficiency for the Li-S batteries, which is suggested as a promising electrolyte for Li-S batteries.

  10. Studies on structural, thermal and AC conductivity scaling of PEO-LiPF6 polymer electrolyte with added ionic liquid [BMIMPF6

    NASA Astrophysics Data System (ADS)

    Chaurasia, S. K.; Saroj, A. L.; Shalu, Singh, V. K.; Tripathi, A. K.; Gupta, A. K.; Verma, Y. L.; Singh, R. K.

    2015-07-01

    Preparation and characterization of polymer electrolyte films of PEO+10wt.% LiPF6 + xwt.% BMIMPF6 (1-butyl-3-methylimidazolium hexafluorophosphate) containing dopant salt lithium hexafluorophosphate (LiPF6) and ionic liquid (BMIMPF6) having common anion PF6 - are reported. The ionic conductivity of the polymer electrolyte films has been found to increase with increasing concentration of BMIMPF6 in PEO+10 wt.% LiPF6 due to the plasticization effect of ionic liquid. DSC and XRD results show that the crystallinity of polymer electrolyte decreases with BMIMPF6 concentration which, in turn, is responsible for the increase in ionic conductivity. FTIR spectroscopic study shows the complexation of salt and/or ionic liquid cations with the polymer backbone. Ion dynamics behavior of PEO+LiPF6 as well as PEO+LiPF6 + BMIMPF6 polymer electrolytes was studied by frequency dependent conductivity, σ(f) measurements. The values σ(f) at various temperatures have been analyzed in terms of Jonscher power law (JPL) and scaled with respect to frequency which shows universal power law characteristics at all temperatures.

  11. Does addition of an electrolyte influence the rotational diffusion of nondipolar solutes in a protic ionic liquid?

    PubMed

    Prabhu, Sugosh R; Dutt, G B

    2015-05-21

    Rotational diffusion of two structurally similar nondipolar solutes, 2,5-dimethyl-1,4-dioxo-3,6-diphenylpyrrolo[3,4-c]pyrrole (DMDPP) and 1,4-dioxo-3,6-diphenylpyrrolo[3,4-c]pyrrole (DPP), has been examined in ethylammonium nitrate-lithium nitrate (EAN-LiNO3) mixtures to understand the influence of added electrolyte on the local environment experienced by the solute molecules. The measured reorientation times of both DMDPP and DPP in EAN-LiNO3 mixtures fall within the broad limits set by the hydrodynamic slip and stick boundary conditions. The hydrogen bond accepting DMDPP and the hydrogen bond donating DPP experience specific interactions with the cation and anion of the ionic liquid, respectively. Addition of LiNO3 (0.1 and 0.2 mole fraction) to EAN induces only viscosity related effects on the rotational diffusion of the two nondipolar solutes. These observations suggest that the local environment experienced by DMDPP and DPP in EAN is not altered upon the addition of LiNO3. Our results are consistent with the structural details available in the literature for EAN-LiNO3 mixtures. PMID:25914928

  12. Low-cost microarray thin-film electrodes with ionic liquid gel-polymer electrolytes for miniaturised oxygen sensing.

    PubMed

    Lee, Junqiao; Silvester, Debbie S

    2016-06-21

    A robust, miniaturised electrochemical gas sensor for oxygen (O2) has been constructed using a commercially available Pt microarray thin-film electrode (MATFE) with a gellified electrolyte containing the room temperature ionic liquid (RTIL) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][NTf2]) and poly(methyl methacrylate) (PMMA) in a 50 : 50 mass ratio. Diffusion coefficients and solubilities for oxygen in mixtures of PMMA/RTIL at different PMMA doping concentrations (0-50% mass) were derived from potential step chronoamperometry (PSCA) on a Pt microdisk electrode. The MATFE was then used with both the neat RTIL and 50% (by mass) PMMA/RTIL gel, to study the analytical behavior over a wide concentration range (0.1 to 100 vol% O2). Cyclic voltammetry (CV) and long-term chronoamperometry (LTCA) techniques were employed and it was determined that the gentler CV technique is better at higher O2 concentrations (above 60 vol%), but LTCA is more reliable and accurate at lower concentrations (especially below 0.5% O2). In particular, there was much less potential shifting (from the unstable Pt quasi-reference electrode) evident in the 50% PMMA/RTIL gel than in the neat RTIL, making this a much more suitable electrolyte for long-term continuous oxygen monitoring. The mass production and low-cost of the electrode array, along with the minimal amounts of RTIL/PMMA required, make this a viable sensing device for oxygen detection on a bulk scale in a wide range of environmental conditions. PMID:26931642

  13. Separators for Li-ion and Li-metal battery including ionic liquid based electrolytes based on the TFSI- and FSI- anions.

    PubMed

    Kirchhöfer, Marija; von Zamory, Jan; Paillard, Elie; Passerini, Stefano

    2014-01-01

    The characterization of separators for Li-ion or Li-metal batteries incorporating hydrophobic ionic liquid electrolytes is reported herein. Ionic liquids made of N-butyl-N-methylpyrrolidinium (PYR14+) or N-methoxyethyl-N-methylpyrrolidinium (PYR12O1+), paired with bis(trifluoromethanesulfonyl)imide (TFSI-) or bis(fluorosulfonyl)imide (FSI-) anions, were tested in combination with separators having different chemistries and morphologies in terms of wetting behavior, Gurley and McMullin number, as well as Li/(Separator+Electrolyte) interfacial properties. It is shown that non-functionalized microporous polyolefin separators are poorly wetted by FSI--based electrolytes (contrary to TFSI--based electrolytes), while the ceramic coated separator Separion® allows good wetting with all electrolytes. Furthermore, by comparing the lithium solid electrolyte interphase (SEI) resistance evolution at open circuit and during cycling, depending on separator morphologies and chemistries, it is possible to propose a scale for SEI forming properties in the order: PYR12O1FSI>PYR14FSI>PYR14TFSI>PYR12O1TFSI. Finally, the impact the separator morphology is evidenced by the SEI resistance evolution and by comparing Li electrodes cycled using separators with two different morphologies. PMID:25153637

  14. Separators for Li-Ion and Li-Metal Battery Including Ionic Liquid Based Electrolytes Based on the TFSI− and FSI− Anions

    PubMed Central

    Kirchhöfer, Marija; von Zamory, Jan; Paillard, Elie; Passerini, Stefano

    2014-01-01

    The characterization of separators for Li-ion or Li-metal batteries incorporating hydrophobic ionic liquid electrolytes is reported herein. Ionic liquids made of N-butyl-N-methylpyrrolidinium (PYR14+) or N-methoxyethyl-N-methylpyrrolidinium (PYR12O1+), paired with bis(trifluoromethanesulfonyl)imide (TFSI−) or bis(fluorosulfonyl)imide (FSI−) anions, were tested in combination with separators having different chemistries and morphologies in terms of wetting behavior, Gurley and McMullin number, as well as Li/(Separator + Electrolyte) interfacial properties. It is shown that non-functionalized microporous polyolefin separators are poorly wetted by FSI−-based electrolytes (contrary to TFSI−-based electrolytes), while the ceramic coated separator Separion® allows good wetting with all electrolytes. Furthermore, by comparing the lithium solid electrolyte interphase (SEI) resistance evolution at open circuit and during cycling, depending on separator morphologies and chemistries, it is possible to propose a scale for SEI forming properties in the order: PYR12O1FSI > PYR14FSI > PYR14TFSI > PYR12O1TFSI. Finally, the impact the separator morphology is evidenced by the SEI resistance evolution and by comparing Li electrodes cycled using separators with two different morphologies. PMID:25153637

  15. Electrochemical and structural characterization of polymer gel electrolytes based on a PEO copolymer and an imidazolium-based ionic liquid for dye-sensitized solar cells.

    PubMed

    Freitas, Flavio S; de Freitas, Jilian N; Ito, Bruno I; De Paoli, Marco-A; Nogueira, Ana F

    2009-12-01

    Polymer electrolytes based on mixtures of poly(ethylene oxide-co-propylene oxide) and 1-methyl-3-propyl-imidazolium iodide (MPII) were investigated, aiming at their application in dye-sensitized solar cells (DSSC). The interactions between the copolymer and the ionic liquid were analyzed by infrared spectroscopy and (1)H NMR. The results show interactions between the ether oxygen in the polymer and the hydrogen in the imidazolium cations. The ionic conductivities, electrochemical behaviors, and thermal properties of the electrolytes containing different concentrations of MPII were investigated. The electrolyte containing 70 wt % MPII presented the highest ionic conductivity (2.4 x 10(-3) S cm(-1)) and a diffusion coefficient of 1.9 x 10(-7) cm(2) s(-1). The influence of LiI addition to the electrolytes containing different concentrations of MPII was also investigated. The DSSC assembled with the electrolyte containing 70 wt % MPII showed an efficiency of 3.84% at 100 mW cm(-2). The stability of the devices for a period of 30 days was also evaluated using sealed cells. The devices assembled with the electrolyte containing less ionic liquid showed to be more stable. PMID:20356169

  16. Design of an electrolyte composition for stable and rapid charging-discharging of a graphite negative electrode in a bis(fluorosulfonyl)imide-based ionic liquid

    NASA Astrophysics Data System (ADS)

    Matsui, Yukiko; Yamagata, Masaki; Murakami, Satoshi; Saito, Yasuteru; Higashizaki, Tetsuya; Ishiko, Eriko; Kono, Michiyuki; Ishikawa, Masashi

    2015-04-01

    We evaluate the effects of lithium salt on the charge-discharge performance of a graphite negative electrode in 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide (EMImFSI) ionic liquid-based electrolytes. Although the graphite negative electrode exhibits good cyclability and rate capability in both 0.43 mol dm-3 LiFSI/EMImFSI and LiTFSI/EMImFSI (TFSI- = bis(trifluoromethylsulfonyl)imide) at room temperature, only the LiFSI/EMImFSI system enables the graphite electrode to be operated with sufficient discharge capacity at the low temperature of 0 °C, even though there is no noticeable difference in ionic conductivity, compared with LiTFSI/EMImFSI. Furthermore, a clear difference in the low-temperature behaviors of the two cells composed of EMImFSI with a high-concentration of lithium salts is observed. Additionally, charge-discharge operation of the graphite electrode at C-rate of over 5.0 can be achieved using of the high-concentration LiFSI/EMImFSI electrolyte. Considering the low-temperature characteristics in both high-concentration electrolytes, the stable and rapid charge-discharge operation in the high-concentration LiFSI/EMImFSI is presumably attributed to a suitable electrode/electrolyte interface with low resistivity. These results suggest that optimization of the electrolyte composition can realize safe and high-performance lithium-ion batteries that utilize ionic liquid-based electrolytes.

  17. Allylic ionic liquid electrolyte-assisted electrochemical surface passivation of LiCoO2 for advanced, safe lithium-ion batteries

    PubMed Central

    Mun, Junyoung; Yim, Taeeun; Park, Jang Hoon; Ryu, Ji Heon; Lee, Sang Young; Kim, Young Gyu; Oh, Seung M.

    2014-01-01

    Room-temperature ionic liquid (RTIL) electrolytes have attracted much attention for use in advanced, safe lithium-ion batteries (LIB) owing to their nonvolatility, high conductivity, and great thermal stability. However, LIBs containing RTIL-electrolytes exhibit poor cyclability because electrochemical side reactions cause problematic surface failures of the cathode. Here, we demonstrate that a thin, homogeneous surface film, which is electrochemically generated on LiCoO2 from an RTIL-electrolyte containing an unsaturated substituent on the cation (1-allyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide, AMPip-TFSI), can avert undesired side reactions. The derived surface film comprised of a high amount of organic species from the RTIL cations homogenously covered LiCoO2 with a <25 nm layer and helped suppress unfavorable thermal reactions as well as electrochemical side reactions. The superior performance of the cell containing the AMPip-TFSI electrolyte was further elucidated by surface, electrochemical, and thermal analyses. PMID:25168309

  18. Allylic ionic liquid electrolyte-assisted electrochemical surface passivation of LiCoO2 for advanced, safe lithium-ion batteries.

    PubMed

    Mun, Junyoung; Yim, Taeeun; Park, Jang Hoon; Ryu, Ji Heon; Lee, Sang Young; Kim, Young Gyu; Oh, Seung M

    2014-01-01

    Room-temperature ionic liquid (RTIL) electrolytes have attracted much attention for use in advanced, safe lithium-ion batteries (LIB) owing to their nonvolatility, high conductivity, and great thermal stability. However, LIBs containing RTIL-electrolytes exhibit poor cyclability because electrochemical side reactions cause problematic surface failures of the cathode. Here, we demonstrate that a thin, homogeneous surface film, which is electrochemically generated on LiCoO2 from an RTIL-electrolyte containing an unsaturated substituent on the cation (1-allyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide, AMPip-TFSI), can avert undesired side reactions. The derived surface film comprised of a high amount of organic species from the RTIL cations homogenously covered LiCoO2 with a <25 nm layer and helped suppress unfavorable thermal reactions as well as electrochemical side reactions. The superior performance of the cell containing the AMPip-TFSI electrolyte was further elucidated by surface, electrochemical, and thermal analyses. PMID:25168309

  19. Allylic ionic liquid electrolyte-assisted electrochemical surface passivation of LiCoO2 for advanced, safe lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Mun, Junyoung; Yim, Taeeun; Park, Jang Hoon; Ryu, Ji Heon; Lee, Sang Young; Kim, Young Gyu; Oh, Seung M.

    2014-08-01

    Room-temperature ionic liquid (RTIL) electrolytes have attracted much attention for use in advanced, safe lithium-ion batteries (LIB) owing to their nonvolatility, high conductivity, and great thermal stability. However, LIBs containing RTIL-electrolytes exhibit poor cyclability because electrochemical side reactions cause problematic surface failures of the cathode. Here, we demonstrate that a thin, homogeneous surface film, which is electrochemically generated on LiCoO2 from an RTIL-electrolyte containing an unsaturated substituent on the cation (1-allyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide, AMPip-TFSI), can avert undesired side reactions. The derived surface film comprised of a high amount of organic species from the RTIL cations homogenously covered LiCoO2 with a <25 nm layer and helped suppress unfavorable thermal reactions as well as electrochemical side reactions. The superior performance of the cell containing the AMPip-TFSI electrolyte was further elucidated by surface, electrochemical, and thermal analyses.

  20. Lithium ion conducting PVdF-HFP composite gel electrolytes based on N-methoxyethyl- N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide ionic liquid

    NASA Astrophysics Data System (ADS)

    Ferrari, S.; Quartarone, E.; Mustarelli, P.; Magistris, A.; Fagnoni, M.; Protti, S.; Gerbaldi, C.; Spinella, A.

    Blends of PVdF-HFP and ionic liquids (ILs) are interesting for application as electrolytes in plastic Li batteries. They combine the advantages of the gel polymer electrolytes (GPEs) swollen by conventional organic liquid electrolytes with the nonflammability, and high thermal and electrochemical stability of ILs. In this work we prepared and characterized PVdF-HFP composite membranes swollen with a solution of LiTFSI in ether-functionalized pyrrolidinium-imide ionic liquid (PYRA 12O1TFSI). The membranes were filled in with two different types of silica: (i) mesoporous SiO 2 (SBA-15) and (ii) a commercial nano-size one (HiSil™ T700). The ionic conductivity and the electrochemical properties of the gel electrolytes were studied in terms of the nature of the filler. The thermal and the transport properties of the composite membranes are similar. In particular, room temperature ionic conductivities higher than 0.25 mS cm -1 are easily obtained at defined filler contents. However, the mesoporous filler guarantees higher lithium transference numbers, a more stable electrochemical interface and better cycling performances. Contrary to the HiSil™-based membrane, the Li/LiFePO 4 cells with PVdF-HFP/PYRA 12O1TFSI-LiTFSI films containing 10 wt% of SBA-15 show good charge/discharge capacity, columbic efficiency close to unity, and low capacity losses at medium C-rates during 180 cycles.

  1. Ionic Liquids Database- (ILThermo)

    National Institute of Standards and Technology Data Gateway

    SRD 147 Ionic Liquids Database- (ILThermo) (Web, free access)   IUPAC Ionic Liquids Database, ILThermo, is a free web research tool that allows users worldwide to access an up-to-date data collection from the publications on experimental investigations of thermodynamic, and transport properties of ionic liquids as well as binary and ternary mixtures containing ionic liquids.

  2. A counter-charge layer in generalized solvents framework for electrical double layers in neat and hybrid ionic liquid electrolytes

    SciTech Connect

    Huang, Jingsong; Feng, Guang; Sumpter, Bobby G; Qiao, Rui; Meunier, Vincent

    2011-01-01

    Room-temperature ionic liquids (RTILs) have received significant attention as electrolytes due to a number of attractive properties such as their wide electrochemical windows. Since electrical double layers (EDLs) are the cornerstone for the applications of RTILs in electrochemical systems such as supercapacitors, it is important to develop an understanding of the structure capacitance relationships for these systems. Here we present a theoretical framework termed counter-charge layer in generalized solvents (CGS) for describing the structure and capacitance of the EDLs in neat RTILs and in RTILs mixed with different mass fractions of organic solvents. Within this framework, an EDL is made up of a counter-charge layer exactly balancing the electrode charge, and of polarized generalized solvents (in the form of layers of ion pairs, each of which has a zero net charge but has a dipole moment the ion pairs thus can be considered as a generalized solvent) consisting of all RTILs inside the system except the counter-ions in the counter-charge layer, together with solvent molecules if present. Several key features of the EDLs that originate from the strong ion ion correlation in RTILs, e.g., overscreening of electrode charge and alternating layering of counter-ions and co-ions, are explicitly incorporated into this framework. We show that the dielectric screening in EDLs is governed predominately by the polarization of generalized solvents (or ion pairs) in the EDL, and the capacitance of an EDL can be related to its microstructure with few a priori assumptions or simplifications. We use this framework to understand two interesting phenomena observed in molecular dynamics simulations of EDLs in a neat IL of 1-butyl-3- methylimidazolium tetrafluoroborate ([BMIM][BF4]) and in a mixture of [BMIM][BF4] and acetonitrile (ACN): (1) the capacitance of the EDLs in the [BMIM][BF4]/ACN mixture increases only slightly when the mass fraction of ACN in the mixture increases from zero

  3. A higher performance dye-sensitized solar cell based on the modified PMII/EMIMBF4 binary room temperature ionic liquid electrolyte

    NASA Astrophysics Data System (ADS)

    Wang, Wu-yang; Cao, Da-peng; Wang, Chao; Zhang, Xiang-yu; Mi, Bao-xiu; Gao, Zhi-qiang; Liang, Zhong-cheng

    2016-07-01

    Additives and iodine (I2) are used to modify the binary room temperature ionic liquid (RTIL) electrolyte to enhance the photovoltaic performance of dye-sensitized solar cells (DSSCs). The short-circuit current density ( J SC) of 17.89 mA/cm2, open circuit voltage ( V OC) of 0.71 V and fill factor ( FF) of 0.50 are achieved in the optimal device. An average photoelectric conversion efficiency ( PCE) of 6.35% is achieved by optimization, which is over two times larger than that of the parent device before optimization (2.06%), while the maximum PCE can reach up to 6.63%.

  4. Ionic Liquid-Organic Carbonate Electrolyte Blends To Stabilize Silicon Electrodes for Extending Lithium Ion Battery Operability to 100 °C.

    PubMed

    Ababtain, Khalid; Babu, Ganguli; Lin, Xinrong; Rodrigues, Marco-Tulio F; Gullapalli, Hemtej; Ajayan, Pulickel M; Grinstaff, Mark W; Arava, Leela Mohana Reddy

    2016-06-22

    Fabrication of lithium-ion batteries that operate from room temperature to elevated temperatures entails development and subsequent identification of electrolytes and electrodes. Room temperature ionic liquids (RTILs) can address the thermal stability issues, but their poor ionic conductivity at room temperature and compatibility with traditional graphite anodes limit their practical application. To address these challenges, we evaluated novel high energy density three-dimensional nano-silicon electrodes paired with 1-methyl-1-propylpiperidinium bis(trifluoromethanesulfonyl)imide (Pip) ionic liquid/propylene carbonate (PC)/LiTFSI electrolytes. We observed that addition of PC had no detrimental effects on the thermal stability and flammability of the reported electrolytes, while largely improving the transport properties at lower temperatures. Detailed investigation of the electrochemical properties of silicon half-cells as a function of PC content, temperature, and current rates reveal that capacity increases with PC content and temperature and decreases with increased current rates. For example, addition of 20% PC led to a drastic improvement in capacity as observed for the Si electrodes at 25 °C, with stability over 100 charge/discharge cycles. At 100 °C, the capacity further increases by 3-4 times to 0.52 mA h cm(-2) (2230 mA h g(-1)) with minimal loss during cycling. PMID:27237138

  5. Temperature dependence of the electrode potential of a cobalt-based redox couple in ionic liquid electrolytes for thermal energy harvesting.

    PubMed

    He, Jiangjing; Al-Masri, Danah; MacFarlane, Douglas R; Pringle, Jennifer M

    2016-08-15

    Increasing the application of technologies for harvesting waste heat could make a significant contribution to sustainable energy production. Thermoelectrochemical cells are one such emerging technology, where the thermal response of a redox couple in an electrolyte is used to generate a potential difference across a cell when a temperature gradient exists. The unique physical properties of ionic liquids make them ideal for application as electrolytes in these devices. One of the keys to utilizing these media in efficient thermoelectrochemical cells is achieving high Seebeck coefficients, Se: the thermodynamic quantity that determines the magnitude of the voltage achieved per unit temperature difference. Here, we report the Se and cell performance of a cobalt-based redox couple in a range of different ionic liquids, to investigate the influence of the nature of the IL on the thermodynamics and cell performance of the redox system. The results reported include the highest Se to-date for an IL-based electrolyte. The effect of diluting the different ILs with propylene carbonate is also reported, which results in a significant increase in the output powers and current densities of the device. PMID:27200437

  6. Study of a Li-air battery having an electrolyte solution formed by a mixture of an ether-based aprotic solvent and an ionic liquid

    NASA Astrophysics Data System (ADS)

    Cecchetto, Laura; Salomon, Mark; Scrosati, Bruno; Croce, Fausto

    2012-09-01

    Recent studies have clearly demonstrated that cyclic and linear carbonates are unstable when used in rechargeable Li-air batteries employing aprotic solvents mostly due to the cathodic formation of superoxide during the oxygen reduction reaction. In particular, it has been ascertained that nucleophilic attack by superoxide anion radical, O2-rad , at O-alkyl carbon is a common mechanism of decomposition of organic carbonates. Moreover, theoretical calculations showed that ether chemical functionalities are stable against nucleophilic substitution induced by superoxide. Aim of this study is to report on a new electrolyte solution for Li-air battery formed by a mixture of an ether-based aprotic solvent with an ionic liquid (IL). The IL-based electrolyte was obtained by mixing the pure ionic liquid N-methyl-(n-butyl) pyrrolidinium bis(trifluoromethane sulfonyl) imide (here denoted as PYR14TFSI) to a 0.91 M solution of lithium triflate (LiCF3SO3) in tetra ethylene glycol dimethyl etcher (TEGDME). We observed that the presence of IL beneficially affects the kinetics and the reversibility of the oxygen reactions involved at the cathode. The most significant result being a lower overvoltage for the charge reaction, compared to a Li/air cell containing the same electrolyte solution without IL.

  7. Promising Cell Configuration for Next-Generation Energy Storage: Li2S/Graphite Battery Enabled by a Solvate Ionic Liquid Electrolyte.

    PubMed

    Li, Zhe; Zhang, Shiguo; Terada, Shoshi; Ma, Xiaofeng; Ikeda, Kohei; Kamei, Yutaro; Zhang, Ce; Dokko, Kaoru; Watanabe, Masayoshi

    2016-06-29

    Lithium-ion sulfur batteries with a [graphite|solvate ionic liquid electrolyte|lithium sulfide (Li2S)] structure are developed to realize high performance batteries without the issue of lithium anode. Li2S has recently emerged as a promising cathode material, due to its high theoretical specific capacity of 1166 mAh/g and its great potential in the development of lithium-ion sulfur batteries with a lithium-free anode such as graphite. Unfortunately, the electrochemical Li(+) intercalation/deintercalation in graphite is highly electrolyte-selective: whereas the process works well in the carbonate electrolytes inherited from Li-ion batteries, it cannot take place in the ether electrolytes commonly used for Li-S batteries, because the cointercalation of the solvent destroys the crystalline structure of graphite. Thus, only very few studies have focused on graphite-based Li-S full cells. In this work, simple graphite-based Li-S full cells were fabricated employing electrolytes beyond the conventional carbonates, in combination with highly loaded Li2S/graphene composite cathodes (Li2S loading: 2.2 mg/cm(2)). In particular, solvate ionic liquids can act as a single-phase electrolyte simultaneously compatible with both the Li2S cathode and the graphite anode and can further improve the battery performance by suppressing the shuttle effect. Consequently, these lithium-ion sulfur batteries show a stable and reversible charge-discharge behavior, along with a very high Coulombic efficiency. PMID:27282172

  8. Electrochemical response in aprotic ionic liquid electrolytes of TiO2 anatase anodes based on mesoporous mesocrystals with uniform colloidal size

    NASA Astrophysics Data System (ADS)

    Amarilla, Jose Manuel; Morales, Enrique; Sanz, Jesus; Sobrados, Isabel; Tartaj, Pedro

    2015-01-01

    Mesocrystals (superstructures of crystallographically-oriented inorganic nanocrystals) represent sophisticated configurations generated from biomineralization processes, and an example of nonclassical crystallization mechanisms. Being the closest relatives to single-crystals at the nanoscale, porous mesocrystals are considered as ideal configurations to improve functional properties, and to correlate structural and textural features with materials functionality. Here we show that TiO2 anatase mesoporous colloidal mesocrystals, synthesized by a self-assembly/seeding method, can be easily processed as active materials in anode composites. These anode composites can be efficiently infiltrated during battery operation with safe aprotic ionic liquid electrolytes down to the mesoporosity of mesocrystals (3-4 nm), and operate over a wider temperature window than organic carbonates. For example, after continuous galvanostatic cycling for 1 month at high temperatures (15 days at 60 °C + 15 days at 80 °C, ∼130 cycles), these anode composites sustain a capacity at 67 mA g-1 that is still remarkable for TiO2-based anodes (155 mAh g-1 or 200 mAh cm-3, coulombic efficiency of ∼99%). On contrast, in organic carbonates the capacity decays down to 80 mAh g-1 after only 15 days at 60 °C. Our results suggest that the principles derived from porous anatase mesocrystal/ionic liquid electrolyte combinations could constitute the basis for battery applications in which safety, durability and variability in operating temperature represent the primary concerns.

  9. SiNWs-based electrochemical double layer micro-supercapacitors with wide voltage window (4 V) and long cycling stability using a protic ionic liquid electrolyte

    NASA Astrophysics Data System (ADS)

    Aradilla, David; Gentile, Pascal; Ruiz, Vanesa; Gómez-Romero, Pedro; Wimberg, Jan; Iliev, Boyan; Schubert, Thomas J. S.; Sadki, Saïd; Bidan, Gérard

    2015-03-01

    The present work reports the use and application of a novel protic ionic liquid (triethylammonium bis(trifluoromethylsulfonyl)imide; NEt3H TFSI) as an electrolyte for symmetric planar micro-supercapacitors based on silicon nanowire electrodes. The excellent performance of the device has been successfully demonstrated using cyclic voltammetry, galvanostatic charge-discharge cycles and electrochemical impedance spectroscopy. The electrochemical characterization of this system exhibits a wide operative voltage of 4 V as well as an outstanding long cycling stability after millions of galvanostatic cycles at a high current density of 2 mA cm-2. In addition, the electrochemical double layer micro-supercapacitor was able to deliver a high power density of 4 mW cm-2 in a very short time pulses (a few ms). Our results could be of interest to develop prospective on-chip micro-supercapacitors using protic ionic liquids as electrolytes with high performance in terms of power and energy densities. Invited talk at the 2nd International Workshop on Nano Materials for Energy Conversion NMEC-2, 17-20 November, 2014, Ho Chi Minh City, Vietnam.

  10. Electrodeposition in Ionic Liquids.

    PubMed

    Zhang, Qinqin; Wang, Qian; Zhang, Suojiang; Lu, Xingmei; Zhang, Xiangping

    2016-02-01

    Due to their attractive physico-chemical properties, ionic liquids (ILs) are increasingly used as deposition electrolytes. This review summarizes recent advances in electrodeposition in ILs and focuses on its similarities and differences with that in aqueous solutions. The electrodeposition in ILs is divided into direct and template-assisted deposition. We detail the direct deposition of metals, alloys and semiconductors in five types of ILs, including halometallate ILs, air- and water-stable ILs, deep eutectic solvents (DESs), ILs with metal-containing cations, and protic ILs. Template-assisted deposition of nanostructures and macroporous structures in ILs is also presented. The effects of modulating factors such as deposition conditions (current density, current density mode, deposition time, temperature) and electrolyte components (cation, anion, metal salts, additives, water content) on the morphology, compositions, microstructures and properties of the prepared materials are highlighted. PMID:26530378

  11. 3-Methylpiperidinium ionic liquids.

    PubMed

    Belhocine, Tayeb; Forsyth, Stewart A; Gunaratne, H Q Nimal; Nieuwenhuyzen, Mark; Nockemann, Peter; Puga, Alberto V; Seddon, Kenneth R; Srinivasan, Geetha; Whiston, Keith

    2015-04-28

    A wide range of room temperature ionic liquids based on the 3-methylpiperdinium cation core were produced from 3-methylpiperidine, which is a derivative of DYTEK® A amine. First, reaction with 1-bromoalkanes or 1-bromoalkoxyalkanes generated the corresponding tertiary amines (Rmβpip, R = alkyl or alkoxyalkyl); further quaternisation reactions with the appropriate methylating agents yielded the quaternary [Rmmβpip]X salts (X(-) = I(-), [CF3CO2](-) or [OTf](-); Tf = -SO2CF3), and [Rmmβpip][NTf2] were prepared by anion metathesis from the corresponding iodides. All [NTf2](-) salts are liquids at room temperature. [Rmmβpip]X (X(-) = I(-), [CF3CO2](-) or [OTf](-)) are low-melting solids when R = alkyl, but room temperature liquids upon introduction of ether functionalities on R. Neither of the 3-methylpiperdinium ionic liquids showed any signs of crystallisation, even well below 0 °C. Some related non-C-substituted piperidinium and pyrrolidinium analogues were prepared and studied for comparison. Crystal structures of 1-hexyl-1,3-dimethylpiperidinium tetraphenylborate, 1-butyl-3-methylpiperidinium bromide, 1-(2-methoxyethyl)-1-methylpiperidinium chloride and 1-(2-methoxyethyl)-1-methylpyrrolidinium bromide are reported. Extensive structural and physical data are collected and compared to literature data, with special emphasis on the systematic study of the cation ring size and/or asymmetry effects on density, viscosity and ionic conductivity, allowing general trends to be outlined. Cyclic voltammetry shows that 3-methylpiperidinium ionic liquids, similarly to azepanium, piperidinium or pyrrolidinium counterparts, are extremely electrochemically stable; the portfolio of useful alternatives for safe and high-performing electrolytes is thus greatly extended. PMID:25669485

  12. Application of Ionic Liquids in Amperometric Gas Sensors.

    PubMed

    Gębicki, Jacek; Kloskowski, Adam; Chrzanowski, Wojciech; Stepnowski, Piotr; Namiesnik, Jacek

    2016-01-01

    This article presents an analysis of available literature data on metrological parameters of the amperometric gas sensors containing ionic liquids as an electrolyte. Four mechanism types of signal generation in amperometric sensors with ionic liquid are described. Moreover, this article describes the influence of selected physico-chemical properties of the ionic liquids on the metrological parameters of these sensors. Some metrological parameters are also compared for amperometric sensors with GDE and SPE electrodes and with ionic liquids for selected analytes. PMID:25830724

  13. The buffer effect in neutral electrolyte supercapacitors

    NASA Astrophysics Data System (ADS)

    Vindt, Steffen T.; Skou, Eivind M.

    2016-02-01

    The observation that double-layer capacitors based on neutral aqueous electrolytes can have significantly wider usable potential windows than those based on acidic or alkaline electrolytes is studied. This effect is explained by a local pH change taking place at the electrode surfaces, leading to a change in the redox potential of water in opposite directions on the two electrodes, resulting in the wider stability window. The magnitude of this effect is suggested to be dependent on the buffer capacity, rather than the intrinsic pH value of the electrolyte. This is confirmed by studying the impact of addition of a buffer to such systems. It is shown that a 56 % higher dynamic storage capacity may be achieved, simply by controlling the buffer capacity of the electrolyte. The model system used, is based on a well-known commercial activated carbon (NORIT™ A SUPRA) as the electrode material, aqueous potassium nitrate as the electrolyte and potassium phosphates as the buffer system.

  14. The potential of incorporation of binary salts and ionic liquid in P(VP-co-VAc) gel polymer electrolyte in electrochemical and photovoltaic performances

    NASA Astrophysics Data System (ADS)

    Ming, Ng Hon; Ramesh, S.; Ramesh, K.

    2016-06-01

    In this study, dye-sensitized solar cells (DSSCs) has been assembled with poly(1-vinylpyrrolidone-co-vinyl acetate) (P(VP-co-VAc)) gel polymer electrolytes (GPEs) which have been incorporated with binary salt and an ionic liquid. The potential of this combination was studied and reported. The binary salt system GPEs was having ionic conductivity and power conversion efficiency (PCE) that could reach up to 1.90 × 10‑3 S cm‑1 and 5.53%, respectively. Interestingly, upon the addition of the ionic liquid, MPII into the binary salt system the ionic conductivity and PCE had risen steadily up to 4.09 × 10‑3 S cm‑1 and 5.94%, respectively. In order to know more about this phenomenon, the electrochemical impedance studies (EIS) of the GPE samples have been done and reported. Fourier transform infrared studies (FTIR) and thermogravimetric analysis (TGA) have also been studied to understand more on the structural and thermal properties of the GPEs. The Nyquist plot and Bodes plot studies have been done in order to understand the electrochemical properties of the GPE based DSSCs and Tafel polarization studies were done to determine the electrocatalytic activity of the GPE samples.

  15. The potential of incorporation of binary salts and ionic liquid in P(VP-co-VAc) gel polymer electrolyte in electrochemical and photovoltaic performances.

    PubMed

    Ming, Ng Hon; Ramesh, S; Ramesh, K

    2016-01-01

    In this study, dye-sensitized solar cells (DSSCs) has been assembled with poly(1-vinylpyrrolidone-co-vinyl acetate) (P(VP-co-VAc)) gel polymer electrolytes (GPEs) which have been incorporated with binary salt and an ionic liquid. The potential of this combination was studied and reported. The binary salt system GPEs was having ionic conductivity and power conversion efficiency (PCE) that could reach up to 1.90 × 10(-3) S cm(-1) and 5.53%, respectively. Interestingly, upon the addition of the ionic liquid, MPII into the binary salt system the ionic conductivity and PCE had risen steadily up to 4.09 × 10(-3) S cm(-1) and 5.94%, respectively. In order to know more about this phenomenon, the electrochemical impedance studies (EIS) of the GPE samples have been done and reported. Fourier transform infrared studies (FTIR) and thermogravimetric analysis (TGA) have also been studied to understand more on the structural and thermal properties of the GPEs. The Nyquist plot and Bodes plot studies have been done in order to understand the electrochemical properties of the GPE based DSSCs and Tafel polarization studies were done to determine the electrocatalytic activity of the GPE samples. PMID:27273020

  16. The potential of incorporation of binary salts and ionic liquid in P(VP-co-VAc) gel polymer electrolyte in electrochemical and photovoltaic performances

    PubMed Central

    Ming, Ng Hon; Ramesh, S.; Ramesh, K.

    2016-01-01

    In this study, dye-sensitized solar cells (DSSCs) has been assembled with poly(1-vinylpyrrolidone-co-vinyl acetate) (P(VP-co-VAc)) gel polymer electrolytes (GPEs) which have been incorporated with binary salt and an ionic liquid. The potential of this combination was studied and reported. The binary salt system GPEs was having ionic conductivity and power conversion efficiency (PCE) that could reach up to 1.90 × 10−3 S cm−1 and 5.53%, respectively. Interestingly, upon the addition of the ionic liquid, MPII into the binary salt system the ionic conductivity and PCE had risen steadily up to 4.09 × 10−3 S cm−1 and 5.94%, respectively. In order to know more about this phenomenon, the electrochemical impedance studies (EIS) of the GPE samples have been done and reported. Fourier transform infrared studies (FTIR) and thermogravimetric analysis (TGA) have also been studied to understand more on the structural and thermal properties of the GPEs. The Nyquist plot and Bodes plot studies have been done in order to understand the electrochemical properties of the GPE based DSSCs and Tafel polarization studies were done to determine the electrocatalytic activity of the GPE samples. PMID:27273020

  17. Structure, ion transport, and relaxation dynamics of polyethylene oxide/poly (vinylidene fluoride co-hexafluoropropylene)—lithium bis(trifluoromethane sulfonyl) imide blend polymer electrolyte embedded with ionic liquid

    NASA Astrophysics Data System (ADS)

    Das, S.; Ghosh, A.

    2016-03-01

    We have studied structure, ion transport, and relaxation dynamics in polyethylene oxide/poly (vinylidene fluoride-hexafluoropropylene)-lithium bis(trifluoromethane)sulfonimide blend polymer electrolytes embedded with 1-propyl-3-methyleimidazoliuum bis(trifluromethyle-sulfonyl)imide ionic liquid. Structural property and ion-polymer interaction of polymer electrolytes have been studied using X-ray diffraction and Raman spectroscopy. The addition of ionic liquid decreases glass transition temperature and reduces crystalline phase in the polymer matrix. It is also observed that surface becomes smooth with increase of ionic liquid content. The temperature dependence of the Li ion conductivity follows Vogel-Tammann-Fulcher type behaviour when a sufficient amount of ionic liquid is added to polymer matrix. The electric modulus has been studied using Havriliak-Negami function for the understanding of ion dynamics. The modulus data have been analyzed using non-exponential Kohlrausch-Williams-Watts function. It is observed that the non-exponential parameter β is quite lower than unity, suggesting existence of a non-exponential relaxation. The temperature dependence of the relaxation time also follows Vogel-Tammann-Fulcher relation for compositions with higher ionic liquid content.

  18. Effects of compatibility of polymer binders with solvate ionic liquid electrolytes on discharge and charge reactions of lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Nakazawa, Toshitada; Ikoma, Ai; Kido, Ryosuke; Ueno, Kazuhide; Dokko, Kaoru; Watanabe, Masayoshi

    2016-03-01

    Electrochemical reactions in Li-S cells with a solvate ionic liquid (SIL) electrolyte composed of tetraglyme (G4) and Li[TFSA] (TFSA: bis(trifluoromethanesulfonyl)amide) are studied. The sulfur cathode (S cathode) comprises sulfur, carbon powder, and a polymer binder. Poly(ethylene oxide) (PEO) and poly(vinyl alcohol) (PVA-x) with different degrees of saponification (x%) are used as binders to prepare the composite cathodes. For the Li-S cell containing PEO binder, lithium polysulfides (Li2Sm, 2 ≤ m ≤ 8), reaction intermediates of the S cathode, dissolve into the electrolyte, and Li2Sm acts as a redox shuttle in the Li-S cell. In contrast, in the Li-S cell with PVA-x binder, the dissolution of Li2Sm is suppressed, leading to high columbic efficiencies during charge-discharge cycles. The compatibility of the PVA-x binder with the SIL electrolyte changes depending on the degree of saponification. Decreasing the degree of saponification leads to increased electrolyte uptake by the PVA-x binder, increasing the charge and discharge capacities of Li-S cell. The rate capability of Li-S cell is also enhanced by the partial swelling of the PVA-x binder. The enhanced performance of Li-S cell containing PVA-x is attributed to the lowering of resistance of Li+ ion transport in the composite cathode.

  19. Thermal, vibrational, and dielectric studies on PVP/LiBF4+ionic liquid [EMIM][BF4]-based polymer electrolyte films

    NASA Astrophysics Data System (ADS)

    Saroj, A. L.; Singh, R. K.; Chandra, S.

    2014-07-01

    Free-standing polymer electrolyte membranes based on poly(vinyl) pyrrolidone (PVP)/salt(LiBF4) having different amounts of ionic liquid (IL) [EMIM][BF4] were prepared and characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy, and alternating current (AC) impedance spectroscopic techniques. The DSC results show a shift in Tm of PVP with salt/or IL content. TGA and DTGA (first derivative of TGA) results give evidence of the presence of uncomplexed PVP, PVP/salt, and PVP/IL complexes. Signatures of these entities are also present in the dielectric spectra. Complexation of PVP with salt and IL has been confirmed by FT-IR analysis. Electrical conductivity as a function of temperature has been studied for PVP/LiBF4/IL [EMIM][BF4]. Role of IL in changing phase transition, conductivity, and dielectric relaxation frequency has been discussed.

  20. IMIDAZOLE-BASED IONIC LIQUIDS FOR USE IN POLYMER ELECTROLYTE MEMBRANE FUEL CELLS: EFFECT OF ELECTRON-WITHDRAWING AND ELECTRON-DONATING SUBSTITUENTS

    SciTech Connect

    Chang, E.; Fu, Y.; Kerr, J.

    2009-01-01

    Current polymer electrolyte membrane fuel cells (PEMFCs) require humidifi cation for acceptable proton conductivity. Development of a novel polymer that is conductive without a water-based proton carrier is desirable for use in automobiles. Imidazole (Im) is a possible replacement for water as a proton solvent; Im can be tethered to the polymer structure by means of covalent bonds, thereby providing a solid state proton conducting membrane where the solvating groups do not leach out of the fuel cell. These covalent bonds can alter the electron availability of the Im molecule. This study investigates the effects of electron-withdrawing and electron-donating substituents on the conductivity of Im complexed with methanesulfonic acid (MSA) in the form of ionic liquids. Due to the changes in the electronegativity of nitrogen, it is expected that 2-phenylimidazole (2-PhIm, electron-withdrawing) will exhibit increased conductivity compared to Im, while 2-methylimidazole (2-MeIm, electron-donating) will exhibit decreased conductivity. Three sets of ionic liquids were prepared at defi ned molar ratios: Im-MSA, 2-PhIm-MSA, and 2-MeIm- MSA. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and 1H-NMR were used to characterize each complex. Impedance analysis was used to determine the conductivity of each complex. Both the 2-PhIm-MSA and 2-MeIm-MSA ionic liquids were found to be less conductive than the Im-MSA complex at base-rich compositions, but more conductive at acid-rich compositions. 1H-NMR data shows a downfi eld shift of the proton on nitrogen in 2-PhIm compared to Im, suggesting that other factors may diminish the electronic effects of the electron withdrawing group at base-rich compositions. Further studies examining these effects may well result in increased conductivity for Im-based complexes. Understanding the conductive properties of Im-derivatives due to electronic effects will help facilitate the development of a new electrolyte

  1. Liquid crystal self-assembly of halloysite nanotubes in ionic liquids: a novel soft nanocomposite ionogel electrolyte with high anisotropic ionic conductivity and thermal stability

    NASA Astrophysics Data System (ADS)

    Zhao, Ningning; Liu, Yulin; Zhao, Xiaomeng; Song, Hongzan

    2016-01-01

    We report a novel class of liquid crystalline (LC) nanohybrid ionogels fabricated via self-assembly of natural halloysite nanotubes (HNTs) in ionic liquids (ILs). The obtained ionogels are very stable and nonvolatile and show LC phases over a wide temperature range. Remarkably, the nanocomposite ionogels exhibit high anisotropic ionic conductivity after shear, and their room temperature ionic conductivity can reach 3.8 × 10-3 S cm-1 for aligned nanotubes perpendicular to the electrode even when the HNTs content increases to 40 wt%, which is 380 times higher than that obtained for aligned nanotubes parallel to the electrode, which is 1.0 × 10-5 S cm-1. Crucially, the obtained LC nanocomposite ionogels have very high thermal stability, which can sustain 400 °C thermal treatment. The findings will promote the development of novel nanocomposite ionogel electrolytes with faster ion transport and larger anisotropic conductivity.We report a novel class of liquid crystalline (LC) nanohybrid ionogels fabricated via self-assembly of natural halloysite nanotubes (HNTs) in ionic liquids (ILs). The obtained ionogels are very stable and nonvolatile and show LC phases over a wide temperature range. Remarkably, the nanocomposite ionogels exhibit high anisotropic ionic conductivity after shear, and their room temperature ionic conductivity can reach 3.8 × 10-3 S cm-1 for aligned nanotubes perpendicular to the electrode even when the HNTs content increases to 40 wt%, which is 380 times higher than that obtained for aligned nanotubes parallel to the electrode, which is 1.0 × 10-5 S cm-1. Crucially, the obtained LC nanocomposite ionogels have very high thermal stability, which can sustain 400 °C thermal treatment. The findings will promote the development of novel nanocomposite ionogel electrolytes with faster ion transport and larger anisotropic conductivity. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06888f

  2. Electrocatalytic activities of cathode electrodes for water electrolysis using tetra-alkyl-ammonium-sulfonic acid ionic liquid as electrolyte

    NASA Astrophysics Data System (ADS)

    Fiegenbaum, Fernanda; de Souza, Michèle O.; Becker, Márcia R.; Martini, Emilse M. A.; de Souza, Roberto F.

    2015-04-01

    The hydrogen evolution reaction (HER) performed with platinum (Pt), nickel (Ni), stainless steel 304 (SS) or glassy carbon (GC) cathodes in 0.1 M 3-triethylammonium-propanesulfonic acid tetrafluoroborate (TEA-PS.BF4) solution is studied using quasi-potentiostatic and impedance spectroscopy techniques. The objective is to compare the catalytic effect on the cathode using different materials to obtain hydrogen by water electrolysis. Furthermore, the catalytic effect of the ionic liquid (IL) on the cathode compared with that of a hydrochloric acid (HCl) solution with same pH value (0.8) is reported. A low activation energy (Ea) of 8.7 kJ mol-1 is found for the glassy carbon cathode. Tafel plots obtained with TEA-PS.BF4 IL suggest the formation of an electroactive layer of IL on the cathode, which may be responsible for the catalytically enhanced performance observed.

  3. Optimization of covalent immobilization of Trichoderma reesei cellulase onto modified ReliZyme HA403 and Sepabeads EC-EP supports for cellulose hydrolysis, in buffer and ionic liquids/buffer media.

    PubMed

    Bilgin, Ramazan; Yalcin, M Serkan; Yildirim, Deniz

    2016-08-01

    The covalent immobilization of Trichoderma reesei cellulase onto modified ReliZyme HA403 and Sepabeads EC-EP supports were carried out. The optimal immobilization conditions were determined using response surface methodology. The hydrolysis of cellulose using the free and immobilized cellulase preparations in ionic liquids (IL) using cosolvents was investigated. The hydrolytic activities in buffer medium containing 25% (v/v) of 1-butyl-3-methylimidazolium hexafluorophosphate were around 2.6-, 1.6-, and 5.5-fold higher than the activities in buffer medium. The retained initial activities were 32% and 57%, respectively for cellulase preparations immobilized onto Sepabeads EC-EP support and onto modified ReliZyme HA403 support after 5 reuses. PMID:25811997

  4. Final Technical Report: SISGR: The Influence of Electrolyte Structure and Electrode Morphology on the Performance of Ionic-Liquid Based Supercapacitors: A Combined Experimental and Simulation Study

    SciTech Connect

    Bedrov, Dmitry

    2013-08-15

    Obtaining fundamental understanding and developing predictive modeling capabilities of electrochemical interfaces can significantly shorten the development cycles of electrical double layer capacitors (EDLCs). A notable improvement in EDLC performance has been achieved due to recent advances in understanding charge storage mechanisms, development of advanced nanostructured electrodes and electrochemically stable electrolytes. The development of new generation of EDLCs is intimately linked to that of nanostructured carbon materials which have large surface area, good adsorption/desorption properties, good electrical conductivity and are relatively inexpensive. To address these scientific challenges the efforts of an interdisciplinary team of modelers and experimentalists were combined to enhance our understanding of molecular level mechanisms controlling the performance of EDLCs comprised of room temperature ionic liquid (RTIL) electrolytes and nanostructured carbon-based electrodes and to utilize these knowledge in the design of a new generation of materials and devices for this energy storage application. Specifically our team efforts included: atomistic molecular dynamics simulations, materials science and electrode/device assembly, and synthesis and characterization of RTIL electrolytes.

  5. Determination of sulfonylureas in cereal samples with electrophoretic method using ionic liquid with dispersed carbon nanotubes as electrophoretic buffer.

    PubMed

    Springer, Valeria H; Aprile, Francisco; Lista, Adriana G

    2014-01-15

    A capillary electrophoresis method to determine four sulfonylureas in grain samples was developed using 10mM of 1-butyl-3-methyl imidazolium tetrafluoroborate (bminBF4) as electrophoretic buffer solution. 2mgL(-1) of Surfactant Coated-Single Wall-Carbon Nanotubes (SC-SWCNTs) was added to the buffer solution to improve the resolution. In this way, the separation of nicosulfuron, ethoxysulfuron, sulfometuron methyl and chlorsulfuron was carried out in 16min without using organic solvents. A clean up-preconcentration procedure was done prior to inject the sample into the CE instrument, in order to achieve the established maximum residue limits (MRLs). So, the detection limits (LODs) for each analytes were between 16.8 and 26.6μgkg(-1). The relative standard deviations (RSDs) were in the range 1.9-6.7%. A recovery study using the so-called matrix matched calibration demonstrates that no matrix interferences were found throughout the determination. The recovery percentages were ranged between 80% and 113%. PMID:24054250

  6. Anomalous Wien Effects in Supercooled Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Patro, L. N.; Burghaus, O.; Roling, B.

    2016-05-01

    We have measured conductivity spectra of several supercooled monocationic and dicationic ionic liquids in the nonlinear regime by applying ac electric fields with large amplitudes up to about 180 kV /cm . Thereby, higher harmonic ac currents up to the 7th order were detected. Our results point to the existence of anomalous Wien effects in supercooled ionic liquids. Most ionic liquids studied here exhibit a conductivity-viscosity relation, which is close to the predictions of the Nernst-Einstein and Stokes-Einstein equations, as observed for classical strong electrolytes like KCl. These "strong" ionic liquids show a much stronger nonlinearity of the conductivity than classical strong electrolytes. On the other hand, the conductivity-viscosity relation of the ionic liquid [P6 ,6 ,6 ,14][Cl ] points to ion association effects. This "weak" ionic liquid shows a strength of the nonlinear effect, which is comparable to classical weak electrolytes. However, the nonlinearity increases quadratically with the field. We suggest that a theory for explaining these anomalies will have to go beyond the level of Coulomb lattice gas models.

  7. Anomalous Wien Effects in Supercooled Ionic Liquids.

    PubMed

    Patro, L N; Burghaus, O; Roling, B

    2016-05-01

    We have measured conductivity spectra of several supercooled monocationic and dicationic ionic liquids in the nonlinear regime by applying ac electric fields with large amplitudes up to about 180  kV/cm. Thereby, higher harmonic ac currents up to the 7th order were detected. Our results point to the existence of anomalous Wien effects in supercooled ionic liquids. Most ionic liquids studied here exhibit a conductivity-viscosity relation, which is close to the predictions of the Nernst-Einstein and Stokes-Einstein equations, as observed for classical strong electrolytes like KCl. These "strong" ionic liquids show a much stronger nonlinearity of the conductivity than classical strong electrolytes. On the other hand, the conductivity-viscosity relation of the ionic liquid [P_{6,6,6,14}][Cl] points to ion association effects. This "weak" ionic liquid shows a strength of the nonlinear effect, which is comparable to classical weak electrolytes. However, the nonlinearity increases quadratically with the field. We suggest that a theory for explaining these anomalies will have to go beyond the level of Coulomb lattice gas models. PMID:27203333

  8. The Synthesis and Characterization of Ionic Liquids for Alkali-Metal Batteries and a Novel Electrolyte for Non-Humidified Fuel Cells

    NASA Astrophysics Data System (ADS)

    Tucker, Telpriore G.

    This thesis focused on physicochemical and electrochemical projects directed towards two electrolyte types: 1) class of ionic liquids serving as electrolytes in the catholyte for alkali-metal ion conduction in batteries and 2) gel membrane for proton conduction in fuel cells; where overall aims were encouraged by the U.S. Department of Energy. Large-scale, sodium-ion batteries are seen as global solutions to providing undisrupted electricity from sustainable, but power-fluctuating, energy production in the near future. Foreseen ideal advantages are lower cost without sacrifice of desired high-energy densities relative to present lithium-ion and lead-acid battery systems. Na/NiCl2 (ZEBRA) and Na/S battery chemistries, suffer from high operation temperature (>300ºC) and safety concerns following major fires consequent of fuel mixing after cell-separator rupturing. Initial interest was utilizing low-melting organic ionic liquid, [EMI+][AlCl 4-], with well-known molten salt, NaAlCl4, to create a low-to-moderate operating temperature version of ZEBRA batteries; which have been subject of prior sodium battery research spanning decades. Isothermal conductivities of these electrolytes revealed a fundamental kinetic problem arisen from "alkali cation-trapping effect" yet relived by heat-ramping >140ºC. Battery testing based on [EMI+][FeCl4 -] with NaAlCl4 functioned exceptional (range 150-180ºC) at an impressive energy efficiency >96%. Newly prepared inorganic ionic liquid, [PBr4+][Al2Br7-]:NaAl2Br 7, melted at 94ºC. NaAl2Br7 exhibited super-ionic conductivity 10-1.75 Scm-1 at 62ºC ensued by solid-state rotator phase transition. Also improved thermal stability when tested to 265ºC and less expensive chemical synthesis. [PBr4 +][Al2Br7-] demonstrated remarkable, ionic decoupling in the liquid-state due to incomplete bromide-ion transfer depicted in NMR measurements. Fuel cells are electrochemical devices generating electrical energy reacting hydrogen/oxygen gases

  9. Ionic liquids for rechargeable lithium batteries

    SciTech Connect

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz,John; Newman, John

    2005-09-29

    We have investigated possible anticipated advantages of ionic-liquid electrolytes for use in lithium-ion batteries. Thermal stabilities and phase behavior were studied by thermal gravimetric analysis and differential scanning calorimetry. The ionic liquids studied include various imidazoliumTFSI systems, pyrrolidiniumTFSI, BMIMPF{sub 6}, BMIMBF{sub 4}, and BMIMTf. Thermal stabilities were measured for neat ionic liquids and for BMIMBF{sub 4}-LiBF{sub 4}, BMIMTf-LiTf, BMIMTFSI-LiTFSI mixtures. Conductivities have been measured for various ionic-liquid lithium-salt systems. We show the development of interfacial impedance in a Li|BMIMBF{sub 4} + LiBF{sub 4}|Li cell and we report results from cycling experiments for a Li|BMIMBF{sub 4} + 1 mol/kg LIBF{sub 4}|C cell. The interfacial resistance increases with time and the ionic liquid reacts with the lithium electrode. As expected, imidazolium-based ionic liquids react with lithium electrodes. We seek new ionic liquids that have better chemical stabilities.

  10. Ionic liquids as electrolytes for non-aqueous solutions electrochemical supercapacitors in a temperature range of 20 °C-80 °C

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Tsay, Ken; Bock, Christina; Zhang, Jiujun

    2016-08-01

    To increase the operating temperature of the supercapacitors (SCs) without compromising their high cycle-life, several typical fluoro- and non-fluoro containing ionic liquids (EMI-mesylate, EMI-hydrogen sulfate, PP13-triflate, PP13-TFSI, and EMI-TFSI, as shown in Fig. 1) are studied as the electrolytes to prepare organic solutions for SC performance measurements using a two-electrode cell. Both cyclic voltammograms and charge/discharge curves at various temperatures such as 20, 40, 60 and 80 °C are collected. At 60 °C, the increased performance order in both rating and cyclability measurements are found to be as follows: 1) EMI-hydrogen sulfate < PP13-TFSI < EMI-mesylate < PP13-triflate < EMI-TFSI for rating; and 2) EMI-hydrogen sulfate < EMI-mesylate < PP13-Triflate < PP13-TFSI < EMI-TFSI for life-time. The fluoro-containing group of ILs, i.e., PP13-Triflate, PP13-TFSI and EMI-TFSI can give a specific capacitance between 100 and 170 F/g for various scan rates for a conventional carbon electrode, and an extended lifetime test of 10, 000 cycles with a capacitance degradation of less than 10%, indicating that these two ion liquids can be used for SC electrolytes operated at high temperature.

  11. Compatibility of poly(bisAEA4)-LiTFSI-MPPipTFSI ionic liquid gel polymer electrolyte with Li4Ti5O12 lithium ion battery anode

    NASA Astrophysics Data System (ADS)

    Stepniak, Izabela

    2014-02-01

    This paper presents the use of Li4Ti5O12 (LTO) as anode with ionic liquid gel polymer electrolyte (IL-GPE) for application in lithium ion batteries. IL-GPE was obtained by in situ photopolymerization method of a mixture of ethoxylated bisphenol A diacrylate (bis(AEA4) and 0.4 M solution of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (MPPipTFSI). The surface morphology of the IL-GPE was studied using scanning electron microscopy (SEM). Stable, porous and flexible gel polymer electrolyte characterized high ionic conductivity (0.64 mS cm-1 at 25 °C) and a wide electrochemical stability window (ESW) (4.8 V). The performances of LTO/IL-GPE/Li cell were tested by using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge/discharge. Good charge/discharge capacities and low capacity loss at medium C rates preliminary cycling was obtained.

  12. Dendrite-Free Aluminum Electrodeposition from AlCl3-1-Ethyl-3-Methyl-Imidazolium Chloride Ionic Liquid Electrolytes

    NASA Astrophysics Data System (ADS)

    Pradhan, Debabrata; Reddy, Ramana G.

    2012-06-01

    A novel, dendrite-free electrorefining of aluminum scrap alloys (A360) was investigated by using a low-temperature AlCl3-1-ethyl-3-methyl-imidazolium chloride (EMIC) ionic liquid electrolyte on copper/aluminum cathodes. The bulk electrodeposition of aluminum was carried out at a fixed voltage of 1.5 V, temperatures 323 K to 383 K (50 °C to 110 °C), stirring rate (0 to 120 rpm), concentration (molar ratio AlCl3:EMIC = 1.25 to 2.0), and electrode surface modification (modified/unmodified). The study investigated the effect of electrode surface modification, cathode materials, temperature, stirring rate, electrolyte concentration, and deposition time on the deposit morphology of aluminum, cathode current density, and their role in production of dendrite-free aluminum deposit, which is essential for decreasing the production cost. The deposits were characterized using scanning electron microscope (SEM), energy-dispersive spectroscopy (EDS), and X-ray diffraction (XRD). It was shown that electrode surface modification, cathode overpotential, and stirring rate play an important role in dendrite-free deposit. Modified electrodes and stirring (60 rpm) eliminate dendritic deposition by reducing cathode overpotential below critical overpotential ( η_{{crt}} ≈ - 0.53V ) for dendrite formation. Pure aluminum (>99 pct) was deposited for all experiments with a current efficiency of 84 to 99 pct and energy consumption of 4.51 to 5.32 kWh/kg Al.

  13. Two-ply yarn supercapacitor based on carbon nanotube/stainless steel core-sheath yarn electrodes and ionic liquid electrolyte

    NASA Astrophysics Data System (ADS)

    Lyu, Xiaoming; Su, Fenghua; Miao, Menghe

    2016-03-01

    Linear supercapacitors have great potential as power source in electronic textiles. However, the energy density of most yarn supercapacitors reported so far is still quite low and decreases significantly as the supercapacitor length increases. Here, we report a two-ply yarn supercapacitor based on carbon nanotube/stainless steel core-sheath yarn electrode and ionic liquid electrolyte. The use of IL gel electrolyte widens the potential window of supercapacitor from 1.0 V to 2.7 V. The carbon nanotube/stainless steel core-sheath yarn structure greatly improves the charge transport efficiency and allows the length of the linear supercapacitor to be significantly scaled up. The resulting supercapacitor has shown outstanding electrochemical performances with a high volumetric capacitance of 263.31 F cm-3 and energy density of 6.67×10-2 Wh cm-3. The two-ply yarn supercapacitors are also very flexible and strong for use as sewing thread and for making knots without significant loss of their energy storage capacity.

  14. Charge carrier dynamics and relaxation in (polyethylene oxide-lithium-salt)-based polymer electrolyte containing 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide as ionic liquid.

    PubMed

    Karmakar, A; Ghosh, A

    2011-11-01

    In this paper we report the dynamics of charge carriers and relaxation in polymer electrolytes based on polyethylene oxide (PEO), lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (BMPTFSI) ionic liquid prepared by solution cast technique. It has been observed that the incorporation of BMPTFSI into PEO-LiTFSI electrolyte is an effective way for increasing the amorphous phase to a large extent. It has also been observed that both the glass transition and melting temperatures decrease with the increase of BMPTFSI concentration. The ionic conductivity of these polymer electrolytes increases with the increase of BMPTFSI concentration. The highest ionic conductivity obtained at 25 °C is ~3×10(-4) S cm(-1) for the electrolyte containing 60 wt % BMPTFSI and ethylene oxide (EO)/Li ratio of 20. The temperature dependence of the dc conductivity and the hopping frequency show Vogel-Tamman-Fulcher type behavior indicating a strong coupling between the ionic and the polymer chain segmental motions. The frequency dependence of the ac conductivity exhibits a power law with an exponent n which decreases with the increase of temperature. The scaling of the ac conductivity indicates that relaxation dynamics of charge carriers follows a common mechanism for all temperatures and BMPTFSI concentrations. We have also presented the electric modulus data which have been analyzed in the framework of a Havriliak-Negami equation and the shape parameters obtained by the analysis show slight temperature dependence, but change sharply with BMPTFSI concentration. The stretched exponent β obtained from Kohlrausch-Williams-Watts fit to the modulus data is much lower than unity signifying that the relaxation is highly nonexponential. The decay function obtained from analysis of experimental modulus data is highly asymmetric with time. PMID:22181434

  15. Investigation of Structure and Transport in Li-Doped Ionic Liquid Electrolytes: [pyr14][TFSI], [pyr13][FSI] and [EMIM][BF4

    NASA Technical Reports Server (NTRS)

    Haskins, Justin B.; Bennett, William R.; Hernandez-Lugo, Dione M.; Wu, James; Borodin, Oleg; Monk, Joshua D.; Bauschlicher, Charles W.; Lawson, John W.

    2014-01-01

    Ionic liquid electrolytes have been proposed as a means of improving the safety and cycling behavior of advanced lithium batteries; however, the properties of these electrolytes under high lithium doping are poorly understood. Here, we employ both polarizable molecular dynamics simulation and experiment to investigate the structure, thermodynamics and transport of three potential electrolytes, N-methyl-Nbutylpyrrolidinium bis(trifluoromethylsufonyl)imide ([pyr14][TFSI]), N- methyl-Npropylpyrrolidinium bis(fluorosufonyl)imide ([pyr13][FSI]), and 1-ethyl-3-- methylimidazolium boron tetrafluoride ([EMIM][BF4]), as a function of Li-salt concentration and temperature. Structurally, Li(+) is shown to be solvated by three anion neighbors in [pyr14][TFSI] and four anion neighbors in both [pyr13][FSI] and [EMIM][BF4], and at all levels of x(sub Li) we find the presence of lithium aggregates. Furthermore, the computed density, diffusion, viscosity, and ionic conductivity show excellent agreement with experimental data. While the diffusion and viscosity exhibit a systematic decrease and increase, respectively, with increasing x(sub Li), the contribution of Li(+) to ionic conductivity increases until reaching a saturation doping level of x(sub Li) is approximately 0.10. Comparatively, the Li(+) conductivity of [pyr14][TFSI] is an order of magnitude lower than that of the other liquids, which range between 0.1 - 0.3 mS/cm. The differences in Li(+) transport are reflected in the residence times of Li(+) with the anions, which are revealed to be much larger for [pyr14][TFSI] (up to 100 ns at the highest doping levels) than in either [EMIM][BF4] or [pyr13][FSI]. Finally, we comment on the relative kinetics of Li(+) transport in each liquid and we present strong evidence for transport through anion exchange (hopping) as opposed to the net motion of Li(+) with its solvation shell (vehicular).

  16. Investigation of Structure and Transport in Li-Doped Ionic Liquid Electrolytes: [pyr14][TFSI], [pyr13][FSI], [EMIM][BF4

    NASA Technical Reports Server (NTRS)

    Haskins, Justin Bradley; Bennett, William Raymond; Wu, James J.; Hernandez, Dionne M.; Borodin, Oleg; Monk, Joshua D.; Bauschlicher, Charles W., Jr.; Watson, John W.

    2014-01-01

    Ionic liquid electrolytes have been proposed as a means of improving the safety and cycling behavior of advanced lithium batteries; however, the properties of these electrolytes under high lithium doping are poorly understood. Here, we employ both polarizable molecular dynamics simulation and experiment to investigate the structure, thermodynamics and transport of three potential electrolytes, N-methyl-N-butylpyrrolidinium bis(trifluoromethylsufonyl)imide ([pyr14][TFSI]), N- methyl-N-propylpyrrolidinium bis(fluorosufonyl)imide ([pyr13][FSI]), and 1-ethyl-3-- methylimidazolium boron tetrafluoride ([EMIM][BF4]), as a function of Li (-) salt concentration and temperature. Structurally, Li(+) is shown to be solvated by three anion neighbors in [pyr14][TFSI] and four anion neighbors in both [pyr13][FSI] and [EMIM][BF4], and at all levels of xLi we find the presence of lithium aggregates. Furthermore, the computed density, diffusion, viscosity, and ionic conductivity show excellent agreement with experimental data. While the diffusion and viscosity exhibit a systematic decrease and increase, respectively, with increasing xLi, the contribution of Li(+) to ionic conductivity increases until reaching a saturation doping level of xLi 0.10. Comparatively, the Li(+) conductivity of [pyr14][TFSI] is an order of magnitude lower than that of the other liquids, which range between 0.1-0.3 mScm. The differences in Li(+) transport are reflected in the residence times of Li(+) with the anions, which are revealed to be much larger for [pyr14][TFSI] (up to 100 ns at the highest doping levels) than in either [EMIM][BF4] or [pyr13][FSI]. Finally, we comment on the relative kinetics of Li(+) transport in each liquid and we present strong evidence for transport through anion exchange (hopping) as opposed to the net motion of Li(+) with its solvation shell (vehicular).

  17. Applications of ionic liquids.

    PubMed

    Patel, Divia Dinesh; Lee, Jong-Min

    2012-06-01

    Ionic liquids have recently gained popularity in the scientific community owing to their special properties and characteristics. One of the reasons why ionic liquids have been termed "green solvents" is due to their negligible vapour pressure. Their use in electrochemical, biological and metal extraction applications is discussed. Wide research has been carried out for their use in batteries, solar panels, fuel cells, drug deliveries and biomass pretreatments. This work aims to consolidate the various findings from previous works in these areas. PMID:22711528

  18. Single-Ion Block Copoly(ionic liquid)s as Electrolytes for All-Solid State Lithium Batteries.

    PubMed

    Porcarelli, Luca; Shaplov, Alexander S; Salsamendi, Maitane; Nair, Jijeesh R; Vygodskii, Yakov S; Mecerreyes, David; Gerbaldi, Claudio

    2016-04-27

    Polymer electrolytes have been proposed as replacement for conventional liquid electrolytes in lithium-ion batteries (LIBs) due to their intrinsic enhanced safety. Nevertheless, the power delivery of these materials is limited by the concentration gradient of the lithium salt. Single-ion conducting polyelectrolytes represent the ideal solution since their nature prevents polarization phenomena. Herein, the preparation of a new family of single-ion conducting block copolymer polyelectrolytes via reversible addition-fragmentation chain transfer polymerization technique is reported. These copolymers comprise poly(lithium 1-[3-(methacryloyloxy)propylsulfonyl]-1-(trifluoromethylsulfonyl)imide) and poly(ethylene glycol) methyl ether methacrylate blocks. The obtained polyelectrolytes show low Tg values in the range of -61 to 0.6 °C, comparatively high ionic conductivity (up to 2.3 × 10(-6) and 1.2 × 10(-5) S cm(-1) at 25 and 55 °C, respectively), wide electrochemical stability (up to 4.5 V versus Li(+)/Li), and a lithium-ion transference number close to unity (0.83). Owing to the combination of all mentioned properties, the prepared polymer materials were used as solid polyelectrolytes and as binders in the elaboration of lithium-metal battery prototypes with high charge/discharge efficiency and excellent specific capacity (up to 130 mAh g(-1)) at C/15 rate. PMID:27043201

  19. High Conductivity, High Strength Solid Electrolytes Formed by in Situ Encapsulation of Ionic Liquids in Nanofibrillar Methyl Cellulose Networks.

    PubMed

    Mantravadi, Ramya; Chinnam, Parameswara Rao; Dikin, Dmitriy A; Wunder, Stephanie L

    2016-06-01

    Strong, solid polymer electrolyte ion gels, with moduli in the MPa range, a capacitance of 2 μF/cm(2), and high ambient ionic conductivities (>1 × 10(-3) S/cm), all at room temperature, have been prepared from butyl-N-methyl pyrrolidinium bis(trifluoromethylsulfonyl) imide (PYR14TFSI) and methyl cellulose (MC). These properties are particularly attractive for supercapacitor applications. The ion gels are prepared by codissolution of PYR14TFSI and MC in N,N-dimethylformamide (DMF), which after heating and subsequent cooling form a gel. Evaporation of DMF leave thin, flexible, self-standing ion gels with up to 97 wt % PYR14TFSI, which have the highest combined moduli and ionic conductivity of ion gels to date, with an excellent electrochemical stability window (5.6 V). These favorable properties are attributed to the immiscibility of PYR14TFSI in MC, which permits the ionic conductivity to be independent of the MC at low MC content, and the in situ formation of a volume spanning network of semicrystalline MC nanofibers, which have a high glass transition temperature (Tg = 190 °C) and remain crystalline until they degrade at 300 °C. PMID:27153318

  20. Quantum and Classical Molecular Dynamics of Ionic Liquid Electrolytes for Na/Li-based Batteries: Molecular Origins of the Conductivity Behavior.

    PubMed

    Vicent-Luna, Jose Manuel; Ortiz-Roldan, Jose Manuel; Hamad, Said; Tena-Zaera, Ramon; Calero, Sofia; Anta, Juan Antonio

    2016-08-18

    Compositional effects on the charge-transport properties of electrolytes for batteries based on room-temperature ionic liquids (RTILs) are well-known. However, further understanding is required about the molecular origins of these effects, in particular regarding the replacement of Li by Na. In this work, we investigate the use of RTILs in batteries, by means of both classical molecular dynamics (MD), which provides information about structure and molecular transport, and ab initio molecular dynamics (AIMD), which provides information about structure. The focus has been placed on the effect of adding either Na(+) or Li(+) to 1-methyl-1-butyl-pyrrolidinium [C4 PYR](+) bis(trifluoromethanesulfonyl)imide [Tf2 N](-) . Radial distribution functions show excellent agreement between MD and AIMD, which ensures the validity of the force fields used in the MD. This is corroborated by the MD results for the density, the diffusion coefficients, and the total conductivity of the electrolytes, which reproduce remarkably well the experimental observations for all studied Na/Li concentrations. By extracting partial conductivities, it is demonstrated that the main contribution to the conductivity is that of [C4 PYR](+) and [Tf2 N](-) . However, addition of Na(+) /Li(+) , although not significant on its own, produces a dramatic decrease in the partial conductivities of the RTIL ions. The origin of this indirect effect can be traced to the modification of the microscopic structure of the liquid as observed from the radial distribution functions, owing to the formation of [Na(Tf2 N)n ]((n-1)-) and [Li(Tf2 N)n ]((n-1)-) clusters at high concentrations. This formation hinders the motion of the large ions, hence reducing the total conductivity. We demonstrate that this clustering effect is common to both Li and Na, showing that both ions behave in a similar manner at a microscopic level in spite of their distinct ionic radii. This is an interesting finding for extending Li-ion and Li

  1. Lithium-Air and ionic Liquids

    SciTech Connect

    Kellar, Michael

    2015-09-01

    The final portion of this project was accomplished at Sandia National Labs, Livermore, with the overall goal being to optimize lithium-air cells with an ionic liquid electrolyte. Both of these are potential future routes for lithium-ion technology. Lithiumair presents the advantage of higher gravimetric energy density, and ionic liquids present the advantage of greater hydrophobicity and much lower volatility, along with a larger window of electrochemical stability. Ionic liquids however have several drawbacks for the battery industry. Currently they are not as cost effective as many organic solvents. Additionally, because of the added viscosity of ionic interactions compared to the typical dipole interactions of a solvent, the ionic conductivity is lower than for common organic solvents.

  2. Electroplating Using Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Abbott, Andrew P.; Frisch, Gero; Ryder, Karl S.

    2013-07-01

    Electroplating is a key technology in many large-scale industrial applications such as corrosion-resistant and decorative coatings. Issues with current aqueous processes, such as toxicity of reagents and low current efficiencies, can often be overcome by using ionic liquids, and this approach has turned ionometallurgy into a fast-growing area of research. This review outlines the interactions in ionic liquids that are responsible for the advantageous properties of these solvents in electroplating. It summarizes recent research in which these properties have been analyzed or exploited and highlights fundamental issues in research and technology that need to be addressed.

  3. Carbenes from ionic liquids.

    PubMed

    Hollóczki, Oldamur; Nyulászi, László

    2014-01-01

    In the last decade an explosive development has been observed in the fields of both ionic liquids (ILs) as potential chemically inert solvents with many possible technical applications, and N-heterocyclic carbenes (NHCs) as catalysts with superb performance. Since the cations of many ILs can be deprotonated by strong bases yielding NHCs, this two fields are inherently connected. It has only recently been recognized that some of the commonly used basic anions of the ILs (such as acetate) are able to deprotonate azolium cations. While the resulting NHC could clearly be observed in the vapor phase, in the liquid - where the mutual electrostatic interactions within the ion network stabilize the ion pairs - the neutral NHC cannot be detected by commonly used analytical techniques; however, from these ionic liquids NHCs can be trapped, e.g., by complex formation, or more importantly these ILs can be directly used as catalysts, since the NHC content is sufficiently large for these applications. Apart from imidazole-2-ylidenes, the formation of other highly reactive neutral species ("abnormal carbenes," 2-alkylideneimidazoles, pyridine-ylidenes or pyridinium-ylides) is feasible in highly basic ionic liquids. The cross-fertilizing overlap between the two fields may provide access to a great advance in both areas, and we give an overview here on the results published so far, and also on the remaining possibilities and challenges in the concept of "carbenes from ionic liquids." PMID:23539381

  4. Ionic liquid tunes microemulsion curvature.

    PubMed

    Liu, Liping; Bauduin, Pierre; Zemb, Thomas; Eastoe, Julian; Hao, Jingcheng

    2009-02-17

    Middle-phase microemulsions formed from cationic dioctadecyldimethylammonium chloride (DODMAC), anionic sodium dodecylsulfate (SDS), n-butanol, and n-heptane were studied. An ionic liquid (IL), 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]), was employed as the electrolyte in the aqueous media instead of inorganic salts usually used in microemulsion formulation. Studies have been carried out as a function of the concentrations of [bmim][BF4], n-butanol, total surfactant (cDODMAC+SDS), and temperature on the phase behavior and the ultralow interfacial tensions in which the anionic component is present in excess in the catanionic film. Ultralow interfacial tension measurements confirmed the formation of middle-phase microemulsions and the necessary conditions for stabilizing middle-phase microemulsions. Electrical conductivity, small-angle X-ray scattering (SAXS), and small-angle neutron scattering (SANS) experiments were also performed, indicating that the typical heptane domain size has an average radius of 360 A and the ionic liquid induces softening of the charged catanionic film. Most interestingly, the IL concentration (cIL) is shown to act as an effective interfacial curvature-control parameter, representing a new approach to tuning the formulation of microemulsions and emulsions. The results expand the potential uses of ILs but also point to the design of new ILs that may achieve superefficient control over interfacial and self-assembly systems. PMID:19161325

  5. Long-range electrostatic screening in ionic liquids.

    PubMed

    Gebbie, Matthew A; Dobbs, Howard A; Valtiner, Markus; Israelachvili, Jacob N

    2015-06-16

    Electrolyte solutions with high concentrations of ions are prevalent in biological systems and energy storage technologies. Nevertheless, the high interaction free energy and long-range nature of electrostatic interactions makes the development of a general conceptual picture of concentrated electrolytes a significant challenge. In this work, we study ionic liquids, single-component liquids composed solely of ions, in an attempt to provide a novel perspective on electrostatic screening in very high concentration (nonideal) electrolytes. We use temperature-dependent surface force measurements to demonstrate that the long-range, exponentially decaying diffuse double-layer forces observed across ionic liquids exhibit a pronounced temperature dependence: Increasing the temperature decreases the measured exponential (Debye) decay length, implying an increase in the thermally driven effective free-ion concentration in the bulk ionic liquids. We use our quantitative results to propose a general model of long-range electrostatic screening in ionic liquids, where thermally activated charge fluctuations, either free ions or correlated domains (quasiparticles), take on the role of ions in traditional dilute electrolyte solutions. This picture represents a crucial step toward resolving several inconsistencies surrounding electrostatic screening and charge transport in ionic liquids that have impeded progress within the interdisciplinary ionic liquids community. More broadly, our work provides a previously unidentified way of envisioning highly concentrated electrolytes, with implications for diverse areas of inquiry, ranging from designing electrochemical devices to rationalizing electrostatic interactions in biological systems. PMID:26040001

  6. Long-range electrostatic screening in ionic liquids

    PubMed Central

    Gebbie, Matthew A.; Dobbs, Howard A.; Valtiner, Markus; Israelachvili, Jacob N.

    2015-01-01

    Electrolyte solutions with high concentrations of ions are prevalent in biological systems and energy storage technologies. Nevertheless, the high interaction free energy and long-range nature of electrostatic interactions makes the development of a general conceptual picture of concentrated electrolytes a significant challenge. In this work, we study ionic liquids, single-component liquids composed solely of ions, in an attempt to provide a novel perspective on electrostatic screening in very high concentration (nonideal) electrolytes. We use temperature-dependent surface force measurements to demonstrate that the long-range, exponentially decaying diffuse double-layer forces observed across ionic liquids exhibit a pronounced temperature dependence: Increasing the temperature decreases the measured exponential (Debye) decay length, implying an increase in the thermally driven effective free-ion concentration in the bulk ionic liquids. We use our quantitative results to propose a general model of long-range electrostatic screening in ionic liquids, where thermally activated charge fluctuations, either free ions or correlated domains (quasiparticles), take on the role of ions in traditional dilute electrolyte solutions. This picture represents a crucial step toward resolving several inconsistencies surrounding electrostatic screening and charge transport in ionic liquids that have impeded progress within the interdisciplinary ionic liquids community. More broadly, our work provides a previously unidentified way of envisioning highly concentrated electrolytes, with implications for diverse areas of inquiry, ranging from designing electrochemical devices to rationalizing electrostatic interactions in biological systems. PMID:26040001

  7. Biocatalytic transformations in ionic liquids.

    PubMed

    van Rantwijk, Fred; Madeira Lau, Rute; Sheldon, Roger A

    2003-03-01

    Room temperature ionic liquids are non-volatile, thermally stable and highly polar; they are also moderately hydrophilic solvents. Here, we discuss their use as reaction media for biocatalysis. Enzymes of widely diverging types are catalytically active in ionic liquids or aqueous biphasic ionic liquid systems. Lipases, in particular, maintain their activity in anhydrous ionic liquid media; the (enantio)selectivity and operational stability are often better than in traditional media. The unconventional solvent properties of ionic liquids have been exploited in biocatalyst recycling and product recovery schemes that are not feasible with traditional solvent systems. PMID:12628370

  8. Cyclic phosphonium ionic liquids

    PubMed Central

    Mukhlall, Joshua A; Romeo, Alicia R; Gohdo, Masao; Ramati, Sharon; Berman, Marc; Suarez, Sophia N

    2014-01-01

    Summary Ionic liquids (ILs) incorporating cyclic phosphonium cations are a novel category of materials. We report here on the synthesis and characterization of four new cyclic phosphonium bis(trifluoromethylsulfonyl)amide ILs with aliphatic and aromatic pendant groups. In addition to the syntheses of these novel materials, we report on a comparison of their properties with their ammonium congeners. These exemplars are slightly less conductive and have slightly smaller self-diffusion coefficients than their cyclic ammonium congeners. PMID:24605146

  9. Dynamics of Ion Transport in Ionic Liquids.

    PubMed

    Lee, Alpha A; Kondrat, Svyatoslav; Vella, Dominic; Goriely, Alain

    2015-09-01

    A gap in understanding the link between continuum theories of ion transport in ionic liquids and the underlying microscopic dynamics has hindered the development of frameworks for transport phenomena in these concentrated electrolytes. Here, we construct a continuum theory for ion transport in ionic liquids by coarse graining a simple exclusion process of interacting particles on a lattice. The resulting dynamical equations can be written as a gradient flow with a mobility matrix that vanishes at high densities. This form of the mobility matrix gives rise to a charging behavior that is different to the one known for electrolytic solutions, but which agrees qualitatively with the phenomenology observed in experiments and simulations. PMID:26382685

  10. D.C. voltammetry of ionic liquid-based capacitors: effects of Faradaic reactions, electrolyte resistance and voltage scan speed investigated using an electrode of carbon nanotubes in EMIM-EtSO4.

    PubMed

    Zheng, J P; Pettit, C M; Goonetilleke, P C; Zenger, G M; Roy, D

    2009-05-15

    Carbon nanotube (CNT) electrodes in combination with ionic liquid (IL) electrolytes are potentially important for energy storage systems. We report electrochemical investigation of such a system involving a paper-electrode of multi-wall CNT (MWCNT) in the IL of 1-ethyl-3-methyl imidazolium ethylsulfate (EMIM-EtSO(4)). Our study concentrates on the analytical aspects of cyclic voltammetry (CV) to probe the double layer capacitance of these relatively unconventional systems (that involve rather large charge-discharge time constants). Both theoretical and experimental aspects of CV for such systems are discussed, focusing in particular, on the effects of Faradaic side-reactions, electrolyte resistance and voltage scan speeds. The results are analyzed using an electrode equivalent circuit (EEC) model, demonstrating a method to account for the typical artifacts expected in CV of CNT-IL interfaces. PMID:19269472

  11. Durable electrooptic devices comprising ionic liquids

    DOEpatents

    Agrawal, Anoop; Cronin, John P.; Tonazzi, Juan C. L.; Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.

    2005-11-01

    Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF3SO3-), bis(trifluoromethylsulfonyl)imide ((CF3SO2)2N-), bis(perfluoroethylsulfonyl)imide ((CF3CF2SO2)2N-) and tris(trifluoromethylsulfonyl)methide ((CF3SO2)3C-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes.

  12. Adsorption Kinetics at Silica Gel/Ionic Liquid Solution Interface.

    PubMed

    Flieger, Jolanta; Tatarczak-Michalewska, Małgorzata; Groszek, Anna; Blicharska, Eliza; Kocjan, Ryszard

    2015-01-01

    A series of imidazolium and pyridinium ionic liquids with different anions (Cl(-), Br(-), BF₄(-), PF₆(-)) has been evaluated for their adsorption activity on silica gel. Quantification of the ionic liquids has been performed by the use of RP-HPLC with organic-aqueous eluents containing an acidic buffer and a chaotropic salt. Pseudo-second order kinetic models were applied to the experimental data in order to investigate the kinetics of the adsorption process. The experimental data showed good fitting with this model, confirmed by considerably high correlation coefficients. The adsorption kinetic parameters were determined and analyzed. The relative error between the calculated and experimental amount of ionic liquid adsorbed at equilibrium was within 7%. The effect of various factors such as initial ionic liquid concentration, temperature, kind of solvent, kind of ionic liquid anion and cation on adsorption efficiency were all examined in a lab-scale study. Consequently, silica gel showed better adsorptive characteristics for imidazolium-based ionic liquids with chaotropic anions from aqueous solutions in comparison to pyridinium ionic liquids. The adsorption was found to decrease with the addition of organic solvents (methanol, acetonitrile) but it was not sensitive to the change of temperature in the range of 5-40 °C. PMID:26690392

  13. High performance ultracapacitors with carbon nanomaterials and ionic liquids

    DOEpatents

    Lu, Wen; Henry, Kent Douglas

    2012-10-09

    The present invention is directed to the use of carbon nanotubes and/or electrolyte structures in various electrochemical devices, such as ultracapacitors having an ionic liquid electrolyte. The carbon nanotubes are preferably aligned carbon nanotubes. Compared to randomly entangled carbon nanotubes, aligned carbon nanotubes can have better defined pore structures and higher specific surface areas.

  14. Room-Temperature Ionic Liquids for Electrochemical Capacitors

    NASA Technical Reports Server (NTRS)

    Fireman, Heather; Yowell, Leonard; Moloney, Padraig G.; Arepalli, Sivaram; Nikolaev, P.; Huffman, C.; Ready, Jud; Higgins, C.D.; Turano, S. P.; Kohl, P.A.; Kim, K.

    2009-01-01

    A document discusses room-temperature ionic liquids (RTILs) used as electrolytes in carbon-nanotube-based, electrochemical, double-layer capacitors. Unlike the previous electrolyte (EtNB4 in acetonitrile), the RTIL used here does not produce cyanide upon thermal decomposition and does not have a moisture sensitivity.

  15. Evaluation of amino acid ester-based ionic liquids as buffer additives in CE for the separation of 2-arylpropionic acids nonsteroidal anti-inflammatory drugs.

    PubMed

    Mavroudi, Maria C; Kapnissi-Christodoulou, Constantina P

    2014-09-01

    The aim of the present study is the CE performance evaluation for the separation of 2-arylpropionic acid nonsteroidal anti-inflammatory drugs. In particular, the separation of indoprofen, carprofen, ketoprofen, ibuprofen, and flurbiprofen was obtained by supporting the BGE either with SDS or an amino acid ester-based ionic liquid (AAIL). The performance of these additives was evaluated by comparing migration times, efficiencies and %RSD values. The addition of the AAIL into the BGE provided baseline separation within 10 min, while in the case of SDS, the analytes eluted within 23 min. The optimum conditions involve a BGE of 100 mM Tris/10 mM sodium tetraboratedecahydrate (pH 8) and 40 mM l-alanine tert butyl ester lactate or 10 mM SDS and a temperature of 35°C for AAIL and 20°C for SDS. The run-to-run reproducibility was evaluated by computing the %RSD values of the EOF and the analyte peaks. When the AAIL was used, an excellent reproducibility was obtained, since all %RSD values were below 1.3%. On the contrary, the addition of SDS resulted in much higher RSD values (2.1-11.7%). The efficiency values of all analyte peaks were above 102 000 for l-AlaC4 Lac, in comparison to SDS, which provided efficiency values between 47000 and 76000. Finally, in an attempt to study the synergistic effect of SDS and AAIL, both additives were added into the BGE at concentrations of 10 and 40 mM, respectively. The results were similar to the ones obtained when SDS was used as the sole additive. PMID:24853394

  16. Enzyme catalysis in ionic liquids.

    PubMed

    Kragl, Udo; Eckstein, Marrit; Kaftzik, Nicole

    2002-12-01

    Ionic liquids offer new possibilities for the application of solvent engineering to biocatalytic reactions. Although in many cases ionic liquids have simply been used to replace organic solvents, they have often led to improved process performance. Unlike conventional organic solvents, ionic liquids possess no vapor pressure, are able to dissolve many compounds, and can be used to form two-phase systems with many solvents. To date, reactions involving lipases have benefited most from the use of ionic liquids, but the use of ionic liquids with other enzymes and in whole-cell processes has also been described. In some cases, remarkable results with respect to yield, (enantio)selectivity or enzyme stability were observed. PMID:12482515

  17. Wettability by Ionic Liquids.

    PubMed

    Liu, Hongliang; Jiang, Lei

    2016-01-01

    Ionic liquids (ILs) have become particularly attractive recently because they have demonstrated themselves to be important construction units in the broad fields of chemistry and materials science, from catalysis and synthesis to analysis and electrochemistry, from functional fluids to clean energy, from nanotechnology to functional materials. One of the greatest issues that determines the performance of ILs is the wettability of correlated surfaces. In this concept article, the key developments and issues in IL wettability are surveyed, including the electrowetting of ILs in gas-liquid-solid systems and liquid-liquid-solid systems, ILs as useful probe fluids, the superwettability of Ils, and future directions in IL wettability. This should generate extensive interest in the field and encourage more scientists to engage in this area to tackle its scientific challenges. PMID:26619157

  18. Computational and Experimental Investigation of Li-doped Ionic Liquid Electrolytes: [pyr14][tfsi], [pyr13][fsi], and [EMIM][BF4

    NASA Technical Reports Server (NTRS)

    Haskins, Justin B.; Bennett, William R.; Wu, James J.; Hernandez, Dionne M.; Borodin, Oleg; Monk, Joshua D.; Bauschlicher, Charles W.; Lawson, John W.

    2014-01-01

    We employ molecular dynamics (MD) simulation and experiment to investigate the structure, thermodynamics, and transport of N-methyl-N-butylpyrrolidinium bis(trifluoromethylsufonyl)imide ([pyr14][TFSI]), N -methyl-N-propylpyrrolidinium bis(fluorosufonyl)imide ([pyr13][FSI]), and 1-ethyl-3-methylimidazolium boron tetrafluoride ([EMIM][BF4]), as a function of Li-salt mole fraction (0.05 xLi+ 0.33) and temperature (298 K T 393 K). Structurally, Li+ is shown to be solvated by three anion neigh- bors in [pyr14][TFSI] and four anion neighbors in both [pyr13][FSI] and [EMIM][BF4], and at all levels of xLi+ we find the presence of lithium aggregates. Pulsed field gradient spin-echo NMR measurements of diffusion and electrochemical impedance spectroscopy measurements of ionic conductivity are made for the neat ionic liquids as well as 0.5 molal solutions of Li-salt in the ionic liquids. Bulk ionic liquid properties (density, diffusion, viscosity, and ionic conductivity) are obtained with MD and show excellent agreement with experiment. While the diffusion exhibits a systematic decrease with increasing xLi+, the contribution of Li+ to ionic conductivity increases until reach- ing a saturation doping level of xLi+ 0.10. Comparatively, the Li+ conductivity of [pyr14][TFSI] is an order of magnitude lower than that of the other liquids, which range between 0.1-0.3 mScm. Our transport results also demonstrate the necessity of long MD simulation runs ( 200 ns) required to converge transport properties at room T. The differences in Li+ transport are reflected in the residence times of Li+ with the anions (Li), which are revealed to be much larger for [pyr14][TFSI] (up to 100 ns at the highest doping levels) than in either [EMIM][BF4] or [pyr13][FSI]. Finally, to comment on the relative kinetics of Li+ transport in each liquid, we find that while the net motion of Li+ with its solvation shell (vehicular) significantly contributes to net diffusion in all liquids, the importance of

  19. A New Class of Ionic Liquids: Anion Amphiprotic Ionic Liquids.

    PubMed

    Treskow, Marcel; Pitawala, Jagath; Arenz, Sven; Matic, Aleksandar; Johansson, Patrik

    2012-08-16

    We here present a new class of protic ionic liquids, anion amphiprotic ionic liquids (AAILs). These materials are protonation equilibrium free protic ionic liquids and interesting in their own right by not following the classical Brønsted acid-base neutralization concept. Due to the very simple synthesis route applied and their stable basic chemistry, we believe in a potential use for manifold applications. This is supported by the combination of practical material properties, foremost, a general intrinsic stability versus reversal of the formation reaction toward neutral species, broad liquidus ranges, long-term thermal stabilities, high conductivities, protic characteristics, and a general stability versus water. PMID:26295756

  20. Understanding SO2 Capture by Ionic Liquids.

    PubMed

    Mondal, Anirban; Balasubramanian, Sundaram

    2016-05-19

    Ionic liquids have generated interest for efficient SO2 absorption due to their low vapor pressure and versatility. In this work, a systematic investigation of the structure, thermodynamics, and dynamics of SO2 absorption by ionic liquids has been carried out through quantum chemical calculations and molecular dynamics (MD) simulations. MP2 level calculations of several ion pairs complexed with SO2 reveal its preferential interaction with the anion. Results of condensed phase MD simulations of SO2-IL mixtures manifested the essential role of both cations and anions in the solvation of SO2, where the solute is surrounded by the "cage" formed by the cations (primarily its alkyl tail) through dispersion interactions. These structural effects of gas absorption are substantiated by calculated Gibbs free energy of solvation; the dissolution is demonstrated to be enthalpy driven. The entropic loss of SO2 absorption in ionic liquids with a larger anion such as [NTf2](-) has been quantified and has been attributed to the conformational restriction of the anion imposed by its interaction with SO2. SO2 loading IL decreases its shear viscosity and enhances the electrical conductivity. This systematic study provides a molecular level understanding which can aid the design of task-specific ILs as electrolytes for efficient SO2 absorption. PMID:27119562

  1. Hydrophobic ionic liquids

    DOEpatents

    Koch, V.R.; Nanjundiah, C.; Carlin, R.T.

    1998-10-27

    Ionic liquids having improved properties for application in non-aqueous batteries, electrochemical capacitors, electroplating, catalysis and chemical separations are disclosed. Exemplary compounds have one of the following formulas shown in a diagram wherein R{sub 1}, R{sub 2}, R{sub 3}, R{sub 4}, R{sub 5}, and R{sub 6} are either H; F; separate alkyl groups of from 1 to 4 carbon atoms, respectively, or joined together to constitute a unitary alkylene radical of from 2 to 4 carbon atoms forming a ring structure converging on N; or separate phenyl groups; and wherein the alkyl groups, alkylene radicals or phenyl groups may be substituted with electron withdrawing groups, preferably F-, Cl-, CF{sub 3}-, SF{sub 5}-, CF{sub 3}S-, (CF{sub 3}){sub 2}CHS- or (CF{sub 3}){sub 3}CS-; and X{sup {minus}} is a non-Lewis acid-containing polyatomic anion having a van der Waals volume exceeding 100 {angstrom}{sup 3}. 4 figs.

  2. Hydrophobic ionic liquids

    DOEpatents

    Koch, Victor R.; Nanjundiah, Chenniah; Carlin, Richard T.

    1998-01-01

    Ionic liquids having improved properties for application in non-aqueous batteries, electrochemical capacitors, electroplating, catalysis and chemical separations are disclosed. Exemplary compounds have one of the following formulas: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, and R.sub.6 are either H; F; separate alkyl groups of from 1 to 4 carbon atoms, respectively, or joined together to constitute a unitary alkylene radical of from 2 to 4 carbon atoms forming a ring structure converging on N; or separate phenyl groups; and wherein the alkyl groups, alkylene radicals or phenyl groups may be substituted with electron withdrawing groups, preferably F--, Cl--, CF.sub.3 --, SF.sub.5 --, CF.sub.3 S--, (CF.sub.3).sub.2 CHS-- or (CF.sub.3).sub.3 CS--; and X.sup.- is a non-Lewis acid-containing polyatomic anion having a van der Waals volume exceeding 100 .ANG..sup.3.

  3. Fast Measurement of Methanol Concentration in Ionic Liquids by Potential Step Method

    PubMed Central

    Hainstock, Michael L.; Tang, Yijun

    2015-01-01

    The development of direct methanol fuel cells required the attention to the electrolyte. A good electrolyte should not only be ionic conductive but also be crossover resistant. Ionic liquids could be a promising electrolyte for fuel cells. Monitoring methanol was critical in several locations in a direct methanol fuel cell. Conductivity could be used to monitor the methanol content in ionic liquids. The conductivity of 1-butyl-3-methylimidazolium tetrafluoroborate had a linear relationship with the methanol concentration. However, the conductivity was significantly affected by the moisture or water content in the ionic liquid. On the contrary, potential step could be used in sensing methanol in ionic liquids. This method was not affected by the water content. The sampling current at a properly selected sampling time was proportional to the concentration of methanol in 1-butyl-3-methylimidazolium tetrafluoroborate. The linearity still stood even when there was 2.4 M water present in the ionic liquid. PMID:25802522

  4. Ionic Liquid Epoxy Resin Monomers

    NASA Technical Reports Server (NTRS)

    Paley, Mark S. (Inventor)

    2013-01-01

    Ionic liquid epoxide monomers capable of reacting with cross-linking agents to form polymers with high tensile and adhesive strengths. Ionic liquid epoxide monomers comprising at least one bis(glycidyl) N-substituted nitrogen heterocyclic cation are made from nitrogen heterocycles corresponding to the bis(glycidyl) N-substituted nitrogen heterocyclic cations by a method involving a non-nucleophilic anion, an alkali metal cation, epichlorohydrin, and a strong base.

  5. Durable Electrooptic Devices Comprising Ionic Liquids

    DOEpatents

    Burrell, Anthony K.; Agrawal, Anoop; Cronin, John P.; Tonazzi, Juan C. L.; Warner, Benjamin P.; McCleskey, T. Mark

    2008-11-11

    Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes. Some of the electrolyte solutions color to red when devices employing the solutions are powered, leading to red or neutral electrooptic devices.

  6. Durable electrooptic devices comprising ionic liquids

    DOEpatents

    Burrell, Anthony K.; Agrawal, Anoop; Cronin, John P.; Tonazzi, Juan C. L.; Warner, Benjamin P.; McCleskey, T. Mark

    2009-12-15

    Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes. Some of the electrolyte solutions color to red when devices employing the solutions are powered, leading to red or neutral electrooptic devices.

  7. Electroactive polymer-based electrochemical capacitors using poly(benzimidazo-benzophenanthroline) and its pyridine derivative poly(4-aza-benzimidazo-benzophenanthroline) as cathode materials with ionic liquid electrolyte

    NASA Astrophysics Data System (ADS)

    Stenger-Smith, John D.; Lai, William W.; Irvin, David J.; Yandek, Gregory R.; Irvin, Jennifer A.

    2012-12-01

    A novel processing technique was used to solution cast films of poly(benzimidazo benzophenanthroline), (BBL), and the novel ladder polymer poly(4-aza-benzimidazo benzophenanthroline) (Py-BBL), which were used as cathode materials in Type IV electroactive polymer-based electrochemical capacitors (EPECs). This new processing technique involves co-casting the polymer from solution with a room temperature ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIBTI). The new processing technique gave polymer films with superior transport properties and electrochemical stabilities, did not require a break-in period, and yielded higher charge capacity than the standard films. Co-cast films of BBL and Py-BBL were each incorporated into separate Type IV EPECs using poly(3,4-propylene dioxythiophene) (PProDOT) as the anode material. It was found that the PProDOT/BBL capacitors store, on average, about 50% more energy than a comparable PProDOT/Py-BBL EPEC. While PProDOT/BBL films have an energy density advantage at rates (power densities) less than 0.01 kW kg-1, PProDOT/Py-BBL EPECs are capable of delivering higher energy than the BBL EPECs at rates greater than 0.01 kW kg-1 (550 s per cycle). In fact, PProDOT/Py-BBL devices delivered more than ten times the energy density of PProDOT/BBL devices at 0.5 kW kg-1 (50 s per cycle). The PProDOT/Py-BBL EPECs were cycled for 10,000 cycles at 65% depth of discharge and maintained 96% of the initial energy and power density, whereas the PProDOT/BBL EPECs were cycled under the same conditions and lost more than 35% of the initial energy and power density after only 2300 cycles.

  8. High performance batteries with carbon nanomaterials and ionic liquids

    DOEpatents

    Lu, Wen

    2012-08-07

    The present invention is directed to lithium-ion batteries in general and more particularly to lithium-ion batteries based on aligned graphene ribbon anodes, V.sub.2O.sub.5 graphene ribbon composite cathodes, and ionic liquid electrolytes. The lithium-ion batteries have excellent performance metrics of cell voltages, energy densities, and power densities.

  9. Method for synthesis of titanium dioxide nanotubes using ionic liquids

    SciTech Connect

    Qu, Jun; Luo, Huimin; Dai, Sheng

    2013-11-19

    The invention is directed to a method for producing titanium dioxide nanotubes, the method comprising anodizing titanium metal in contact with an electrolytic medium containing an ionic liquid. The invention is also directed to the resulting titanium dioxide nanotubes, as well as devices incorporating the nanotubes, such as photovoltaic devices, hydrogen generation devices, and hydrogen detection devices.

  10. Lunar Oxygen Production and Metals Extraction Using Ionic Liquids

    NASA Technical Reports Server (NTRS)

    Marone, Matthew; Paley, Mark Steven; Donovan, David N.; Karr, Laurel J.

    2009-01-01

    Initial results indicate that ionic liquids are promising media for the extraction of oxygen from lunar regolith. IL acid systems can solubilize regolith and produce water with high efficiency. IL electrolytes are effective for water electrolysis, and the spent IL acid media are capable of regeneration.

  11. LiTFSI in 1-butyl-1-methylpyrrolidinium bis(fluorosulfonyl)amide: a possible electrolyte for ionic liquid based lithium ion batteries.

    PubMed

    Lahiri, Abhishek; Schubert, Thomas J S; Iliev, Boyan; Endres, Frank

    2015-05-01

    In this communication, we show that the combination of 1 M lithium bis(trifluoromethylsulfonyl)amide and 1-butyl-1-methylpyrrolidinium bis(fluorosulfonyl)amide (LiTFSI/[Py1,4]FSI) can be regarded as a possible stable electrolyte for IL based lithium ion batteries. We compare the charge-discharge results with the electrolyte 1 M LiTFSI in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide ([Py1,4]TFSI) on an electrodeposited Ge electrode and show using a charge-discharge analysis and Raman spectroscopy that 1 M LiTFSI/[Py1,4]FSI is advantageous in maintaining the charge capacity as well as electrolyte stability at high current densities. PMID:25868690

  12. Durable electrooptic devices comprising ionic liquids

    DOEpatents

    Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.

    2006-10-10

    Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes.

  13. Ionic Liquid Crystals: Versatile Materials.

    PubMed

    Goossens, Karel; Lava, Kathleen; Bielawski, Christopher W; Binnemans, Koen

    2016-04-27

    This Review covers the recent developments (2005-2015) in the design, synthesis, characterization, and application of thermotropic ionic liquid crystals. It was designed to give a comprehensive overview of the "state-of-the-art" in the field. The discussion is focused on low molar mass and dendrimeric thermotropic ionic mesogens, as well as selected metal-containing compounds (metallomesogens), but some references to polymeric and/or lyotropic ionic liquid crystals and particularly to ionic liquids will also be provided. Although zwitterionic and mesoionic mesogens are also treated to some extent, emphasis will be directed toward liquid-crystalline materials consisting of organic cations and organic/inorganic anions that are not covalently bound but interact via electrostatic and other noncovalent interactions. PMID:27088310

  14. Stability of polypyrrole soft actuators in ionic liquids

    NASA Astrophysics Data System (ADS)

    Kaneto, Keiicgi; Takashima, Wataru

    2012-04-01

    Characteristics of electrochemomechanical deformation (ECMD) of polypyrrole films using ionic liquids are reported. The PPy film prepared by electrodeposition in an ionic liquid (1-Butyl-1-methylpyrrolidinium bis(trifluorometylsulfonyl)imide, BMPTFSI) was compact and high density. The other film prepared from LiTSFI/methyl benzoate and dimethyl phthalate mixed solvents was porous and low density. Both films demonstrated a stable ECMD in the ionic liquid. The strain of ECMD was 3-5% and superimposed on a creeping, showing a typical behaviour of cation movement. The Strains of ECMD in both films operated in a mixed electrolyte of BMPTFSI and propylene carbonate were enhanced up to 17- 25 %, showing anion movement. However, the large strain decreased upon several electrochemical cycles. The results were discussed in terms of swelling of the PPy film by solvents and loss of electrochemical activity.

  15. Polymer-ionic liquid ternary systems for Li-battery electrolytes: Molecular dynamics studies of LiTFSI in a EMIm-TFSI and PEO blend.

    PubMed

    Costa, Luciano T; Sun, Bing; Jeschull, Fabian; Brandell, Daniel

    2015-07-14

    This paper presents atomistic molecular dynamics simulation studies of lithium bis(trifluoromethane)sulfonylimide (LiTFSI) in a blend of 1-ethyl-3-methylimidazolium (EMIm)-TFSI and poly(ethylene oxide) (PEO), which is a promising electrolyte material for Li- and Li-ion batteries. Simulations of 100 ns were performed for temperatures between 303 K and 423 K, for a Li:ether oxygen ratio of 1:16, and for PEO chains with 26 EO repeating units. Li(+) coordination and transportation were studied in the ternary electrolyte system, i.e., PEO16LiTFSI⋅1.0 EMImTFSI, by applying three different force field models and are here compared to relevant simulation and experimental data. The force fields generated significantly different results, where a scaled charge model displayed the most reasonable comparisons with previous work and overall consistency. It is generally seen that the Li cations are primarily coordinated to polymer chains and less coupled to TFSI anion. The addition of EMImTFSI in the electrolyte system enhances Li diffusion, associated to the enhanced TFSI dynamics observed when increasing the overall TFSI anion concentration in the polymer matrix. PMID:26178124

  16. Performance evaluation of titanium dioxide based dye-sensitized solar cells under the influence of anodization steps, nanotube length and ionic liquid-free redox electrolyte solvents

    NASA Astrophysics Data System (ADS)

    Cheong, Y. L.; Beh, K. P.; Yam, F. K.; Hassan, Z.

    2016-06-01

    In this work, highly ordered titanium dioxide (TiO2) nanotube (NT) arrays were synthesized on titanium foil using electrochemical anodization method. The morphological aspects of the nanotubes based on different anodization duration and number of anodization steps (maximum two) have been investigated. The nanotube arrays subsequently used as photoanode in a dye-sensitized solar cell (DSSC) assembly. The studies on the effects of different solvents for triiodide/iodide redox electrolyte and NT length towards the performance of DSSC were conducted. It is known that electrolyte solvent can significantly affect the photovoltaic conversion efficiency. It is noteworthy that longer NT length tends to yield higher efficiency due to better dye adsorption. However, when the NTs exceeded certain length the efficiency decreases instead. Meanwhile, a comparison of DSSC performance based on number of anodization steps on titanium was performed. Highly ordered NT arrays could be obtained using two-steps anodization, which proved to have positive effects on the DSSC performance. The highest photovoltaic conversion efficiency in this work is 2.04%, achieved by two-step anodization. The corresponding average nanotubes length was ∼18 μm, with acetonitrile (ACN) as the redox electrolyte solvent.

  17. Polymer-ionic liquid ternary systems for Li-battery electrolytes: Molecular dynamics studies of LiTFSI in a EMIm-TFSI and PEO blend

    SciTech Connect

    Costa, Luciano T.

    2015-07-14

    This paper presents atomistic molecular dynamics simulation studies of lithium bis(trifluoromethane)sulfonylimide (LiTFSI) in a blend of 1-ethyl-3-methylimidazolium (EMIm)-TFSI and poly(ethylene oxide) (PEO), which is a promising electrolyte material for Li- and Li-ion batteries. Simulations of 100 ns were performed for temperatures between 303 K and 423 K, for a Li:ether oxygen ratio of 1:16, and for PEO chains with 26 EO repeating units. Li{sup +} coordination and transportation were studied in the ternary electrolyte system, i.e., PEO{sub 16}LiTFSI⋅1.0 EMImTFSI, by applying three different force field models and are here compared to relevant simulation and experimental data. The force fields generated significantly different results, where a scaled charge model displayed the most reasonable comparisons with previous work and overall consistency. It is generally seen that the Li cations are primarily coordinated to polymer chains and less coupled to TFSI anion. The addition of EMImTFSI in the electrolyte system enhances Li diffusion, associated to the enhanced TFSI dynamics observed when increasing the overall TFSI anion concentration in the polymer matrix.

  18. Electrotunable Lubricity with Ionic Liquid Nanoscale Films

    PubMed Central

    Fajardo, O. Y.; Bresme, F.; Kornyshev, A. A.; Urbakh, M.

    2015-01-01

    One of the main challenges in tribology is finding the way for an in situ control of friction without changing the lubricant. One of the ways for such control is via the application of electric fields. In this respect a promising new class of lubricants is ionic liquids, which are solvent-free electrolytes, and their properties should be most strongly affected by applied voltage. Based on a minimal physical model, our study elucidates the connection between the voltage effect on the structure of the ionic liquid layers and their lubricating properties. It reveals two mechanisms of variation of the friction force with the surface charge density, consistent with recent AFM measurements, namely via the (i) charge effect on normal and in-plane ordering in the film and (ii) swapping between anion and cation layers at the surfaces. We formulate conditions that would warrant low friction coefficients and prevent wear by resisting “squeezing-out” of the liquid under compression. These results give a background for controllable variation of friction. PMID:25572127

  19. Nanoparticle enhanced ionic liquid heat transfer fluids

    DOEpatents

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.

    2014-08-12

    A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.

  20. Low Temperature Reduction of Alumina Using Fluorine Containing Ionic Liquids

    SciTech Connect

    Reddy, Ramana

    2009-01-31

    EXECUTIVE SUMMARY The major objective of the project is to establish the feasibility of using specific ionic liquids capable of sustaining aluminum electrolysis near room temperature at laboratory and batch recirculation scales. It will explore new technologies for aluminum and other valuable metal extraction and process methods. The new technology will overcome many of the limitations associated with high temperatures processes such as high energy consumption and corrosion attack. Furthermore, ionic liquids are non-toxic and could be recycled after purification, thus minimizing extraction reagent losses and environmental pollutant emissions. Ionic liquids are mixture of inorganic and organic salts which are liquid at room temperature and have wide operational temperature range. During the last several years, they were emerging as novel electrolytes for extracting and refining of aluminum metals and/or alloys, which are otherwise impossible using aqueous media. The superior high temperature characteristics and high solvating capabilities of ionic liquids provide a unique solution to high temperature organic solvent problems associated with device internal pressure build-up, corrosion, and thermal stability. However their applications have not yet been fully implemented due to the insufficient understanding of the electrochemical mechanisms involved in processing of aluminum with ionic liquids. Laboratory aluminum electrodeposition in ionic liquids has been investigated in chloride and bis (trifluoromethylsulfonyl) imide based ionic liquids. The electrowinning process yielded current density in the range of 200-500 A/m2, and current efficiency of about 90%. The results indicated that high purity aluminum (>99.99%) can be obtained as cathodic deposits. Cyclic voltammetry and chronoamperometry studies have shown that initial stages of aluminum electrodeposition in ionic liquid electrolyte at 30°C was found to be quasi-reversible, with the charge transfer coefficient

  1. Low Temperature Reduction of Alumina Using Fluorine Containing Ionic Liquids

    SciTech Connect

    Dr. R. G. Reddy

    2007-09-01

    The major objective of the project is to establish the feasibility of using specific ionic liquids capable of sustaining aluminum electrolysis near room temperature at laboratory and batch recirculation scales. It will explore new technologies for aluminum and other valuable metal extraction and process methods. The new technology will overcome many of the limitations associated with high temperatures processes such as high energy consumption and corrosion attack. Furthermore, ionic liquids are non-toxic and could be recycled after purification, thus minimizing extraction reagent losses and environmental pollutant emissions. Ionic liquids are mixture of inorganic and organic salts which are liquid at room temperature and have wide operational temperature range. During the last several years, they were emerging as novel electrolytes for extracting and refining of aluminum metals and/or alloys, which are otherwise impossible using aqueous media. The superior high temperature characteristics and high solvating capabilities of ionic liquids provide a unique solution to high temperature organic solvent problems associated with device internal pressure build-up, corrosion, and thermal stability. However their applications have not yet been fully implemented due to the insufficient understanding of the electrochemical mechanisms involved in processing of aluminum with ionic liquids. Laboratory aluminum electrodeposition in ionic liquids has been investigated in chloride and bis (trifluoromethylsulfonyl) imide based ionic liquids. The electrowinning process yielded current density in the range of 200-500 A/m2, and current efficiency of about 90%. The results indicated that high purity aluminum (>99.99%) can be obtained as cathodic deposits. Cyclic voltammetry and chronoamperometry studies have shown that initial stages of aluminum electrodeposition in ionic liquid electrolyte at 30°C was found to be quasi-reversible, with the charge transfer coefficient (0.40). Nucleation

  2. Low Temperature Reduction of Alumina Using Fluorine Containing Ionic Liquids

    SciTech Connect

    Reddy, Ramana G

    2009-01-31

    EXECUTIVE SUMMARY The major objective of the project is to establish the feasibility of using specific ionic liquids capable of sustaining aluminum electrolysis near room temperature at laboratory and batch recirculation scales. It will explore new technologies for aluminum and other valuable metal extraction and process methods. The new technology will overcome many of the limitations associated with high temperatures processes such as high energy consumption and corrosion attack. Furthermore, ionic liquids are non-toxic and could be recycled after purification, thus minimizing extraction reagent losses and environmental pollutant emissions. Ionic liquids are mixture of inorganic and organic salts which are liquid at room temperature and have wide operational temperature range. During the last several years, they were emerging as novel electrolytes for extracting and refining of aluminum metals and/or alloys, which are otherwise impossible using aqueous media. The superior high temperature characteristics and high solvating capabilities of ionic liquids provide a unique solution to high temperature organic solvent problems associated with device internal pressure build-up, corrosion, and thermal stability. However their applications have not yet been fully implemented due to the insufficient understanding of the electrochemical mechanisms involved in processing of aluminum with ionic liquids. Laboratory aluminum electrodeposition in ionic liquids has been investigated in chloride and bis (trifluoromethylsulfonyl) imide based ionic liquids. The electrowinning process yielded current density in the range of 200-500 A/m2, and current efficiency of about 90%. The results indicated that high purity aluminum (>99.99%) can be obtained as cathodic deposits. Cyclic voltammetry and chronoamperometry studies have shown that initial stages of aluminum electrodeposition in ionic liquid electrolyte at 30°C was found to be quasi-reversible, with the charge transfer

  3. The hype with ionic liquids as solvents

    NASA Astrophysics Data System (ADS)

    Kunz, Werner; Häckl, Katharina

    2016-09-01

    In this mini review, we give our personal opinion about the present state of the art concerning Ionic Liquids, proposed as alternative solvents. In particular, we consider their different drawbacks and disadvantages and discuss the critical aspects of the research of Ionic Liquids as solvents. Finally, we point out some aspects on potentially promising Ionic Liquid solvents.

  4. Carbons, ionic liquids and quinones for electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Diaz, Raul; Doherty, Andrew

    2016-04-01

    Carbons are the main electrode materials used in electrochemical capacitors, which are electrochemical energy storage devices with high power densities and long cycling lifetimes. However, increasing their energy density will improve their potential for commercial implementation. In this regard, the use of high surface area carbons and high voltage electrolytes are well known strategies to increase the attainable energy density, and lately ionic liquids have been explored as promising alternatives to current state of the art acetonitrile-based electrolytes. Also, in terms of safety and sustainability ionic liquids are attractive electrolyte materials for electrochemical capacitors. In addition, it has been shown that the matching of the carbon pore size with the electrolyte ion size further increases the attainable electric double layer (EDL) capacitance and energy density. The use of pseudocapacitive reactions can significantly increase the attainable energy density, and quinonic-based materials offer a potentially sustainable and cost effective research avenue for both the electrode and the electrolyte. This perspective will provide an overview of the current state of the art research on electrochemical capacitors based on combinations of carbons, ionic liquids and quinonic compounds, highlighting performances and challenges and discussing possible future research avenues. In this regard, current interest is mainly focused on strategies which may ultimately lead to commercially competitive sustainable high performance electrochemical capacitors for different applications including those requiring mechanical flexibility and biocompatibility.

  5. New ionic liquids based on complexation of dipropylsulfide and AlCl3 for electrochodeposition of aluminum

    DOE PAGESBeta

    Fang, Youxing; Jiang, Xueguang; Dai, Sheng; Sun, Xiao-Guang

    2015-01-01

    A new kind of ionic liquid based on complexation of dipropyl sulfide (DPS) and AlCl3 has been prepared. The equivalent concentration of AlCl3 in the ionic liquid is as high as 2.3 M. More importantly, it is highly fluidic and exhibits an ambient ionic conductivity of 1.25 x 10-4 S cm-1. This new ionic liquid can be successfully used as an electrolyte for electrodeposition of aluminum.

  6. Influence of Lithium Solutes on Double-Layer Structure of Ionic Liquids.

    PubMed

    Smith, Alexander M; Perkin, Susan

    2015-12-01

    The ionic liquid-electrode interface has attracted much recent interest owing to its importance for development of energy storage devices; however, the important step of adding electro-active ions is not yet well understood at the molecular level. Using direct force measurements across confined electrolyte films, we study the effect of added lithium-ion solute on the double-layer structure of an ionic liquid electrolyte with molecular resolution. We find anionic clusters involving lithium can persist adjacent to the surfaces, and in many cases, this inhibits direct adsorption of lithium ions to the negative surface. Two apparently similar ionic liquid solvents show diverging properties, with one facilitating and the other preventing direct Li-ion adsorption onto the negative surface. The results have implications for the selection of ionic liquids as electrolytes in lithium-ion batteries. PMID:26580815

  7. Ionic-liquid materials for the electrochemical challenges of the future.

    PubMed

    Armand, Michel; Endres, Frank; MacFarlane, Douglas R; Ohno, Hiroyuki; Scrosati, Bruno

    2009-08-01

    Ionic liquids are room-temperature molten salts, composed mostly of organic ions that may undergo almost unlimited structural variations. This review covers the newest aspects of ionic liquids in applications where their ion conductivity is exploited; as electrochemical solvents for metal/semiconductor electrodeposition, and as batteries and fuel cells where conventional media, organic solvents (in batteries) or water (in polymer-electrolyte-membrane fuel cells), fail. Biology and biomimetic processes in ionic liquids are also discussed. In these decidedly different materials, some enzymes show activity that is not exhibited in more traditional systems, creating huge potential for bioinspired catalysis and biofuel cells. Our goal in this review is to survey the recent key developments and issues within ionic-liquid research in these areas. As well as informing materials scientists, we hope to generate interest in the wider community and encourage others to make use of ionic liquids in tackling scientific challenges. PMID:19629083

  8. Externally Wetted Ionic Liquid Thruster

    NASA Astrophysics Data System (ADS)

    Lozano, P.; Martinez-Sanchez, M.; Lopez-Urdiales, J. M.

    2004-10-01

    This paper presents initial developments of an electric propulsion system based on ionic liquid ion sources (ILIS). Propellants are ionic liquids, which are organic salts with two important characteristics; they remain in the liquid state at room temperature and have negligible vapor pressure, thus allowing their use in vacuum. The working principles of ILIS are similar to those of liquid metal ion sources (LMIS), in which a Taylor cone is electrostatically formed at the tip of an externally wetted needle while ions are emitted directly from its apex. ILIS have the advantage of being able to produce negative ions that have similar masses than their positive counterparts with similar current levels. This opens up the possibility of achieving plume electrical neutrality without electron emitters. The possible multiplexing of these emitters is discussed in terms of achievable thrust density for applications other than micro-propulsion.

  9. Electrochemically stable electrolytes

    DOEpatents

    Angell, C.A.; Zhang, S.S.; Xu, K.

    1999-01-05

    This invention relates generally to inorganic ionic liquids which function as electrolytes and do not crystallize at ambient temperature. More specifically, this invention is directed to quasi-salt inorganic ionic liquids which comprise the reaction product of a strong Lewis acid with an inorganic halide-donating molecule. This invention is further directed to quasi-salt inorganic ionic liquid mixtures which comprise combinations of electrolyte additives and quasi-salt inorganic ionic liquids. These quasi-salt inorganic ionic liquid mixtures are useful electrolytes. 16 figs.

  10. Electrochemically stable electrolytes

    DOEpatents

    Angell, Charles Austen; Zhang, Sheng-Shui; Xu, Kang

    1999-01-01

    This invention relates generally to inorganic ionic liquids which function as electrolytes and do not crystallize at ambient temperature. More specifically, this invention is directed to quasi-salt inorganic ionic liquids which comprise the reaction product of a strong Lewis acid with an inorganic halide-donating molecule. This invention is further directed to quasi-salt inorganic ionic liquid mixtures which comprise combinations of electrolyte additives and quasi-salt inorganic ionic liquids. These quasi-salt inorganic ionic liquid mixtures are useful electrolytes.

  11. Radiation Chemistry and Photochemistry of Ionic Liquids

    SciTech Connect

    Wishart, J.F.; Takahaski, K.

    2010-12-01

    As our understanding of ionic liquids and their tunable properties has grown, it is possible to see many opportunities for ionic liquids to contribute to the sustainable use of energy. The potential safety and environmental benefits of ionic liquids, as compared to conventional solvents, have attracted interest in their use as processing media for the nuclear fuel cycle. Therefore, an understanding of the interactions of ionizing radiation and photons with ionic liquids is strongly needed. However, the radiation chemistry of ionic liquids is still a relatively unexplored topic although there has been a significant increase in the number of researchers in the field recently. This article provides a brief introduction to ionic liquids and their interesting properties, and recent advances in the radiation chemistry and photochemistry of ionic liquids. In this article, we will mainly focus on excess electron dynamics and radical reaction dynamics. Because solvation dynamics processes in ionic liquids are much slower than in molecular solvents, one of the distinguishing characteristics is that pre-solvated electrons play an important role in ionic liquid radiolysis. It will be also shown that the reaction dynamics of radical ions is significantly different from that observed in molecular solvents because of the Coulombic screening effects and electrostatic interactions in ionic liquids.

  12. Ionic liquids and their solid-state analogues as materials for energy generation and storage

    NASA Astrophysics Data System (ADS)

    Macfarlane, Douglas R.; Forsyth, Maria; Howlett, Patrick C.; Kar, Mega; Passerini, Stefano; Pringle, Jennifer M.; Ohno, Hiroyuki; Watanabe, Masayoshi; Yan, Feng; Zheng, Wenjun; Zhang, Shiguo; Zhang, Jie

    2016-02-01

    Salts that are liquid at room temperature, now commonly called ionic liquids, have been known for more than 100 years; however, their unique properties have only come to light in the past two decades. In this Review, we examine recent work in which the properties of ionic liquids have enabled important advances to be made in sustainable energy generation and storage. We discuss the use of ionic liquids as media for synthesis of electromaterials, for example, in the preparation of doped carbons, conducting polymers and intercalation electrode materials. Focusing on their intrinsic ionic conductivity, we examine recent reports of ionic liquids used as electrolytes in emerging high-energy-density and low-cost batteries, including Li-ion, Li-O2, Li-S, Na-ion and Al-ion batteries. Similar developments in electrolyte applications in dye-sensitized solar cells, thermo-electrochemical cells, double-layer capacitors and CO2 reduction are also discussed.

  13. Enzyme catalysis with small ionic liquid quantities.

    PubMed

    Fischer, Fabian; Mutschler, Julien; Zufferey, Daniel

    2011-04-01

    Enzyme catalysis with minimal ionic liquid quantities improves reaction rates, stereoselectivity and enables solvent-free processing. In particular the widely used lipases combine well with many ionic liquids. Demonstrated applications are racemate separation, esterification and glycerolysis. Minimal solvent processing is also an alternative to sluggish solvent-free catalysis. The method allows simplified down-stream processing, as only traces of ionic liquids have to be removed. PMID:21107639

  14. Early Events in Ionic Liquid Radiation Chemistry

    SciTech Connect

    Wishart, J.F.; Cook, A.; Rimmer, R.D.; Gohdo, M.

    2010-09-14

    Ionic liquids are interesting and useful materials whose solvation time scales are up to thousands of times longer than in conventional solvents. The extended lifetimes of pre-solvated electrons and other energetic species in ionic liquids has profound consequences for the radiolytic product distributions and reactivity patterns. We use a newly developed, multiplexed variation of pulse-probe spectroscopy to measure the kinetics of the early dynamical and reactive events in ionic liquids.

  15. High energy supercapattery with an ionic liquid solution of LiClO4.

    PubMed

    Yu, Linpo; Chen, George Z

    2016-08-15

    A supercapattery combining an ideally polarized capacitor-like electrode and a battery-like electrode is demonstrated theoretically and practically using an ionic liquid electrolyte containing 1-butyl-1-methylpyrrolidinium tri(pentafluoroethyl)trifluorophosphate (BMPyrrFAP), gamma-butyrolactone (γ-GBL) and LiClO4. The electrochemical deposition and dissolution of lithium metal on a platinum and glass carbon electrode were investigated in this ionic liquid solution. The CVs showed that the fresh electrochemically deposited lithium metal was stable in the electrolyte, which encouraged the investigation of this ionic liquid solution in a supercapattery with a lithium battery negative electrode. The active material counted specific energy of the supercapattery based on a lithium negative electrode and an activated carbon (Act-C) positive electrode could reach 230 W h kg(-1) under a galvanostatic charge-discharge current density of 1 mA cm(-2). The positive electrode material (Act-C) was also investigated by CV, AC impedance, SEM and BET. The non-uniform particle size and micropores dominated porous structure of the Act-C enabled its electric double layer capacitor (EDLC) behavior in the ionic liquid solution. The measured specific capacitance of the Act-C in this ionic liquid solution is higher than the same Act-C in aqueous solution, which indicates the Act-C can also perform well in the ionic liquid electrolyte. PMID:27228429

  16. Application of Ionic Liquids in Hydrometallurgy

    PubMed Central

    Park, Jesik; Jung, Yeojin; Kusumah, Priyandi; Lee, Jinyoung; Kwon, Kyungjung; Lee, Churl Kyoung

    2014-01-01

    Ionic liquids, low temperature molten salts, have various advantages manifesting themselves as durable and environmentally friendly solvents. Their application is expanding into various fields including hydrometallurgy due to their unique properties such as non-volatility, inflammability, low toxicity, good ionic conductivity, and wide electrochemical potential window. This paper reviews previous literatures and our recent results adopting ionic liquids in extraction, synthesis and processing of metals with an emphasis on the electrolysis of active/light, rare earth, and platinum group metals. Because the research and development of ionic liquids in this area are still emerging, various, more fundamental approaches are expected to popularize ionic liquids in the metal manufacturing industry. PMID:25177864

  17. Membrane separation of ionic liquid solutions

    SciTech Connect

    Campos, Daniel; Feiring, Andrew Edward; Majumdar, Sudipto; Nemser, Stuart

    2015-09-01

    A membrane separation process using a highly fluorinated polymer membrane that selectively permeates water of an aqueous ionic liquid solution to provide dry ionic liquid. Preferably the polymer is a polymer that includes polymerized perfluoro-2,2-dimethyl-1,3-dioxole (PDD). The process is also capable of removing small molecular compounds such as organic solvents that can be present in the solution. This membrane separation process is suitable for drying the aqueous ionic liquid byproduct from precipitating solutions of biomass dissolved in ionic liquid, and is thus instrumental to providing usable lignocellulosic products for energy consumption and other industrial uses in an environmentally benign manner.

  18. Application of ionic liquids in hydrometallurgy.

    PubMed

    Park, Jesik; Jung, Yeojin; Kusumah, Priyandi; Lee, Jinyoung; Kwon, Kyungjung; Lee, Churl Kyoung

    2014-01-01

    Ionic liquids, low temperature molten salts, have various advantages manifesting themselves as durable and environmentally friendly solvents. Their application is expanding into various fields including hydrometallurgy due to their unique properties such as non-volatility, inflammability, low toxicity, good ionic conductivity, and wide electrochemical potential window. This paper reviews previous literatures and our recent results adopting ionic liquids in extraction, synthesis and processing of metals with an emphasis on the electrolysis of active/light, rare earth, and platinum group metals. Because the research and development of ionic liquids in this area are still emerging, various, more fundamental approaches are expected to popularize ionic liquids in the metal manufacturing industry. PMID:25177864

  19. Ionic Liquids to Replace Hydrazine

    NASA Technical Reports Server (NTRS)

    Koelfgen, Syri; Sims, Joe; Forton, Melissa; Allan, Barry; Rogers, Robin; Shamshina, Julia

    2011-01-01

    A method for developing safe, easy-to-handle propellants has been developed based upon ionic liquids (ILs) or their eutectic mixtures. An IL is a binary combination of a typically organic cation and anion, which generally produces an ionic salt with a melting point below 100 deg C. Many ILs have melting points near, or even below, room temperature (room temperature ionic liquids, RTILs). More importantly, a number of ILs have a positive enthalpy of formation. This means the thermal energy released during decomposition reactions makes energetic ILs ideal for use as propellants. In this specific work, to date, a baseline set of energetic ILs has been identified, synthesized, and characterized. Many of the ILs in this set have excellent performance potential in their own right. In all, ten ILs were characterized for their enthalpy of formation, density, melting point, glass transition point (if applicable), and decomposition temperature. Enthalpy of formation was measured using a microcalorimeter designed specifically to test milligram amounts of energetic materials. Of the ten ILs characterized, five offer higher Isp performance than hydrazine, ranging between 10 and 113 seconds higher than the state-of-the-art propellant. To achieve this level of performance, the energetic cations 4- amino-l,2,4-triazolium and 3-amino-1,2,4-triazolium were paired with various anions in the nitrate, dicyanamide, chloride, and 3-nitro-l,2,4-triazole families. Protonation, alkylation, and butylation synthesis routes were used for creation of the different salts.

  20. Engineered microorganisms having resistance to ionic liquids

    DOEpatents

    Ruegg, Thomas Lawrence; Thelen, Michael P.

    2016-03-22

    The present invention provides for a method of genetically modifying microorganisms to enhance resistance to ionic liquids, host cells genetically modified in accordance with the methods, and methods of using the host cells in a reaction comprising biomass that has been pretreated with ionic liquids.

  1. Ionic liquid-in-oil microemulsions.

    PubMed

    Eastoe, Julian; Gold, Sarah; Rogers, Sarah E; Paul, Alison; Welton, Tom; Heenan, Richard K; Grillo, Isabelle

    2005-05-25

    Phase stability and small-angle neutron scattering (SANS) data show that surfactant-stabilized nanodomains of a typical ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate [bmim][BF4]) may be dispersed by the nonionic surfactant Triton-X100 in cyclohexane. Analyses of these SANS data are consistent with the formation of ionic liquid-in-oil microemulsion droplets. PMID:15898765

  2. Ionic liquid incorporating thiosalicylate for metal removal

    NASA Astrophysics Data System (ADS)

    Wilfred, Cecilia Devi; Mustafa, Fadwa Babiker; Romeli, Fatimah Julia

    2012-09-01

    Ionic liquids are a class of organic molten salts "designer solvents" that are composed totally of anions (inorganic and organic polyatomic) and organic cations. The replacement of volatile organic solvents from a separation process is of utmost importance since the use of a large excess of these solvents is hazardous and creates ecological problem. The new method for metal ion extraction is by using task-specific ionic liquids such as ionic liquids which incorporate thiosalicylate functionality. This paper looks at producing a new cluster of ionic liquids which incorporates thiosalicylate with pyridinium cation. Its thermophysical properties such as density and viscosity in single and binary mixtures are studied. The ionic liquids' capability in metal removal processes is evaluated.

  3. Charge transport in confined ionic liquids

    NASA Astrophysics Data System (ADS)

    Sangoro, Joshua; Iacob, Ciprian; Kipnusu, Wycliffe; Kremer, Friedrich

    2011-03-01

    Charge transport and glassy dynamics in neat and polymerized ionic liquids confined in nanoporous silica are investigated in a wide frequency and temperature ranges by a combination of Broadband Dielectric Spectroscopy and Pulsed Field Gradient Nuclear Magnetic Resonance (PFG NMR). By applying the Einstein-Smoluchowski relations to the dielectric spectra, diffusion coefficients are obtained in quantitative agreement with independent PFG NMR. The impact of geometrical confinement as well as the pore wall-ionic liquid interactions on the overall ionic mobility is explored for diverse categories of ionic liquids. The results are discussed within the framework of dynamic glass transition assisted charge transport in ionic liquids. Financial support from the Deutsche Forschungsgemeinschaft under the DFG SPP 1191 Priority Program on Ionic Liquids is gratefully acknowledged.

  4. Lipid Biomembrane in Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Yoo, Brian; Jing, Benxin; Shah, Jindal; Maginn, Ed; Zhu, Y. Elaine; Department of Chemical and Biomolecular Engineering Team

    2014-03-01

    Ionic liquids (ILs) have been recently explored as new ``green'' chemicals in several chemical and biomedical processes. In our pursuit of understanding their toxicities towards aquatic and terrestrial organisms, we have examined the IL interaction with lipid bilayers as model cell membranes. Experimentally by fluorescence microscopy, we have directly observed the disruption of lipid bilayer by added ILs. Depending on the concentration, alkyl chain length, and anion hydrophobicity of ILs, the interaction of ILs with lipid bilayers leads to the formation of micelles, fibrils, and multi-lamellar vesicles for IL-lipid complexes. By MD computer simulations, we have confirmed the insertion of ILs into lipid bilayers to modify the spatial organization of lipids in the membrane. The combined experimental and simulation results correlate well with the bioassay results of IL-induced suppression in bacteria growth, thereby suggesting a possible mechanism behind the IL toxicity. National Science Foundation, Center for Research Computing at Notre Dame.

  5. Actinide chemistry in ionic liquids.

    PubMed

    Takao, Koichiro; Bell, Thomas James; Ikeda, Yasuhisa

    2013-04-01

    This Forum Article provides an overview of the reported studies on the actinide chemistry in ionic liquids (ILs) with a particular focus on several fundamental chemical aspects: (i) complex formation, (ii) electrochemistry, and (iii) extraction behavior. The majority of investigations have been dedicated to uranium, especially for the 6+ oxidation state (UO2(2+)), because the chemistry of uranium in ordinary solvents has been well investigated and uranium is the most abundant element in the actual nuclear fuel cycles. Other actinides such as thorium, neptunium, plutonium, americium, and curiumm, although less studied, are also of importance in fully understanding the nuclear fuel engineering process and the safe geological disposal of radioactive wastes. PMID:22873132

  6. Quantized friction across ionic liquid thin films.

    PubMed

    Smith, Alexander M; Lovelock, Kevin R J; Gosvami, Nitya Nand; Welton, Tom; Perkin, Susan

    2013-10-01

    Ionic liquids - salts in the liquid state under ambient conditions - are of great interest as precision lubricants. Ionic liquids form layered structures at surfaces, yet it is not clear how this nano-structure relates to their lubrication properties. We measured the friction force between atomically smooth solid surfaces across ionic liquid films of controlled thickness in terms of the number of ion layers. Multiple friction-load regimes emerge, each corresponding to a different number of ion layers in the film. In contrast to molecular liquids, the friction coefficients differ for each layer due to their varying composition. PMID:23942943

  7. Ionic liquid lubrication at electrified interfaces

    NASA Astrophysics Data System (ADS)

    Kong, Lingling; Huang, Wei; Wang, Xiaolei

    2016-06-01

    The lubrication performances of ionic liquids at electrified interfaces have been investigated by using a reciprocating sliding tribometer. Experimental results indicated that the lubricity of the confined ionic liquids was markedly affected by the application of external electric field and strong interface electric field strength could result in high friction. The influence was more pronounced for the ionic liquid with a shorter alkyl side chain in particular. The main reason of the friction increment might be ascribed to the electrically influenced surface adsorption where the charged ions were structured to form robust and ordered layers.

  8. Chiral separation of phenylalanine and tryptophan by capillary electrophoresis using a mixture of β-CD and chiral ionic liquid ([TBA] [L-ASP]) as selectors.

    PubMed

    Yujiao, Wu; Guoyan, Wang; Wenyan, Zhao; Hongfen, Zhang; Huanwang, Jing; Anjia, Chen

    2014-05-01

    In this paper, a simple, effective and green capillary electrophoresis separation and detection method was developed for the quantification of underivatized amino acids (dl-phenylalanine; dl-tryptophan) using β-Cyclodextrin and chiral ionic liquid ([TBA] [l-ASP]) as selectors. Separation parameters such as buffer concentrations, pH, β-CD and chiral ionic liquid concentrations and separation voltage were investigated for the enantioseparation in order to achieve the maximum possible resolution. A good separation was achieved in a background electrolyte composed of 15 mm sodium tetraborate, 5 mm β-CD and 4 mm chiral ionic liquid at pH 9.5, and an applied voltage of 10 kV. Under optimum conditions, linearity was achieved within concentration ranges from 0.08 to 10 µg/mL for the analytes with correlation coefficients from 0.9956 to 0.9998, and the analytes were separated in less than 6 min with efficiencies up to 970,000 plates/m. The proposed method was successfully applied to the determination of amino acid enantiomers in compound amino acids injections, such as 18AA-I, 18AA-II and 3AA. PMID:24847515

  9. Chelating ionic liquids for reversible zinc electrochemistry.

    PubMed

    Kar, Mega; Winther-Jensen, Bjorn; Forsyth, Maria; MacFarlane, Douglas R

    2013-05-21

    Advanced, high energy-density, metal-air rechargeable batteries, such as zinc-air, are of intense international interest due to their important role in energy storage applications such as electric and hybrid vehicles, and to their ability to deal with the intermittency of renewable energy sources such as solar and wind. Ionic liquids offer a number of ideal thermal and physical properties as potential electrolytes in such large-scale energy storage applications. We describe here the synthesis and characterisation of a family of novel "chelating" ILs designed to chelate and solubilize the zinc ions to create electrolytes for this type of battery. These are based on quaternary alkoxy alkyl ammonium cations of varying oligo-ether side chains and anions such as p-toluene sulfonate, bis(trifluoromethylsulfonyl)amide and dicyanoamides. This work shows that increasing the ether chain length in the cation from two to four oxygens can increase the ionic conductivity and reduce the melting point from 67 °C to 15 °C for the tosylate system. Changing the anion also plays a significant role in the nature of the zinc deposition electrochemistry. We show that zinc can be reversibly deposited from [N(222(20201))][NTf2] and [N(222(202020201))][NTf2] beginning at -1.4 V and -1.7 V vs. SHE, respectively, but not in the case of tosylate based ILs. This indicates that the [NTf2] is a weaker coordinating anion with the zinc cation, compared to the tosylate anion, allowing the coordination of the ether chain to dominate the behavior of the deposition and stripping of zinc ions. PMID:23558696

  10. MINOR ACTINIDE SEPARATIONS USING ION EXCHANGERS OR IONIC LIQUIDS

    SciTech Connect

    Hobbs, D.; Visser, A.; Bridges, N.

    2011-09-20

    This project seeks to determine if (1) inorganic-based ion exchange materials or (2) electrochemical methods in ionic liquids can be exploited to provide effective Am and Cm separations. Specifically, we seek to understand the fundamental structural and chemical factors responsible for the selectivity of inorganic-based ion-exchange materials for actinide and lanthanide ions. Furthermore, we seek to determine whether ionic liquids can serve as the electrolyte that would enable formation of higher oxidation states of Am and other actinides. Experiments indicated that pH, presence of complexants and Am oxidation state exhibit significant influence on the uptake of actinides and lanthanides by layered sodium titanate and hybrid zirconium and tin phosphonate ion exchangers. The affinity of the ion exchangers increased with increasing pH. Greater selectivity among Ln(III) ions with sodium titanate materials occurs at a pH close to the isoelectric potential of the ion exchanger. The addition of DTPA decreased uptake of Am and Ln, whereas the addition of TPEN generally increases uptake of Am and Ln ions by sodium titanate. Testing confirmed two different methods for producing Am(IV) by oxidation of Am(III) in ionic liquids (ILs). Experimental results suggest that the unique coordination environment of ionic liquids inhibits the direct electrochemical oxidation of Am(III). The non-coordinating environment increases the oxidation potential to a higher value, while making it difficult to remove the inner coordination of water. Both confirmed cases of Am(IV) were from the in-situ formation of strong chemical oxidizers.