Science.gov

Sample records for ionization methods final

  1. Analytical instruments, ionization sources, and ionization methods

    DOEpatents

    Atkinson, David A.; Mottishaw, Paul

    2006-04-11

    Methods and apparatus for simultaneous vaporization and ionization of a sample in a spectrometer prior to introducing the sample into the drift tube of the analyzer are disclosed. The apparatus includes a vaporization/ionization source having an electrically conductive conduit configured to receive sample particulate which is conveyed to a discharge end of the conduit. Positioned proximate to the discharge end of the conduit is an electrically conductive reference device. The conduit and the reference device act as electrodes and have an electrical potential maintained between them sufficient to cause a corona effect, which will cause at least partial simultaneous ionization and vaporization of the sample particulate. The electrical potential can be maintained to establish a continuous corona, or can be held slightly below the breakdown potential such that arrival of particulate at the point of proximity of the electrodes disrupts the potential, causing arcing and the corona effect. The electrical potential can also be varied to cause periodic arcing between the electrodes such that particulate passing through the arc is simultaneously vaporized and ionized. The invention further includes a spectrometer containing the source. The invention is particularly useful for ion mobility spectrometers and atmospheric pressure ionization mass spectrometers.

  2. Development of laser excited atomic fluorescence and ionization methods. Final technical progress report, May 1, 1988--December 31, 1991

    SciTech Connect

    Winefordner, J.D.

    1991-12-31

    Progress report: May 1, 1988 to December 31, 1991. The research supported by DE-FG05-88ER13881 during the past (nearly) 3 years can be divided into the following four categories: (1) theoretical considerations of the ultimate detection powers of laser fluorescence and laser ionization methods; (2) experimental evaluation of laser excited atomic fluorescence; (3) fundamental studies of atomic and molecular parameters in flames and plasmas; (4) other studies.

  3. Chemical protection against ionizing radiation. Final report

    SciTech Connect

    Livesey, J.C.; Reed, D.J.; Adamson, L.F.

    1984-08-01

    The scientific literature on radiation-protective drugs is reviewed. Emphasis is placed on the mechanisms involved in determining the sensitivity of biological material to ionizing radiation and mechanisms of chemical radioprotection. In Section I, the types of radiation are described and the effects of ionizing radiation on biological systems are reviewed. The effects of ionizing radiation are briefly contrasted with the effects of non-ionizing radiation. Section II reviews the contributions of various natural factors which influence the inherent radiosensitivity of biological systems. Inlcuded in the list of these factors are water, oxygen, thiols, vitamins and antioxidants. Brief attention is given to the model describing competition between oxygen and natural radioprotective substances (principally, thiols) in determining the net cellular radiosensitivity. Several theories of the mechanism(s) of action of radioprotective drugs are described in Section III. These mechanisms include the production of hypoxia, detoxication of radiochemical reactive species, stabilization of the radiobiological target and the enhancement of damage repair processes. Section IV describes the current strategies for the treatment of radiation injury. Likely areas in which fruitful research might be performed are described in Section V. 495 references.

  4. ALTERNATIVE IONIZATION METHODS FOR PARTICLE MASS SPECTROMETRY

    EPA Science Inventory

    The objective of this project is to enhance the capabilities of a real-time airborne particle mass spectrometer by implementing matrix-independent methods for sample ionization. The enhancements should result in improved sensitivity for trace substances and, more importantly, per...

  5. Method and apparatus to monitor a beam of ionizing radiation

    SciTech Connect

    Blackburn, Brandon W.; Chichester, David L.; Watson, Scott M.; Johnson, James T.; Kinlaw, Mathew T.

    2015-06-02

    Methods and apparatus to capture images of fluorescence generated by ionizing radiation and determine a position of a beam of ionizing radiation generating the fluorescence from the captured images. In one embodiment, the fluorescence is the result of ionization and recombination of nitrogen in air.

  6. Soft ionization device with characterization systems and methods of manufacture

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    2004-01-01

    Various configurations of characterization systems such as ion mobility spectrometers and mass spectrometers are disclosed that are coupled to an ionization device. The ionization device is formed of a membrane that houses electrodes therein that are located closer to one another than the mean free path of the gas being ionized. Small voltages across the electrodes generate large electric fields which act to ionize substantially all molecules passing therethrough without fracture. Methods to manufacture the mass spectrometer and ion mobility spectrometer systems are also described.

  7. Microliter-sized ionization device and method

    NASA Technical Reports Server (NTRS)

    Cohen, Martin J. (Inventor); Simac, Robert M. (Inventor); Wernlund, Roger F. (Inventor)

    1999-01-01

    A microliter-sized metastable ionization device with a cavity, a sample gas inlet, a corona gas inlet and a gas outlet. A first electrode has a hollow and disposed in the cavity and is in fluid communication with the sample gas inlet. A second electrode is in fluid communication with the corona gas inlet and is disposed around the first electrode adjacent the hollow end thereof. A gap forming means forms a corona gap between the first and second electrodes. A first power supply is connected to the first electrode and the second power supply is connected to the second electrode for generating a corona discharge across the corona gap. A collector has a hollow end portion disposed in the cavity which is in fluid communications with the gas outlet for the outgassing and detection of ionized gases. The first electrode can be a tubular member aligned concentrically with a cylindrical second electrode. The gap forming means can be in annular disc projecting radially inwardly from the cylindrical second electrode. The collector can have a tubular opening aligned coaxially with the first electrode and has an end face spaced a short distance from an end face of the first electrode forming a small active volume therebetween for the generation and detection of small quantities of trace analytes.

  8. Lattice Boltzmann method for weakly ionized isothermal plasmas

    SciTech Connect

    Li Huayu; Ki, Hyungson

    2007-12-15

    In this paper, a lattice Boltzmann method (LBM) for weakly ionized isothermal plasmas is presented by introducing a rescaling scheme for the Boltzmann transport equation. Without using this rescaling, we found that the nondimensional relaxation time used in the LBM is too large and the LBM does not produce physically realistic results. The developed model was applied to the electrostatic wave problem and the diffusion process of singly ionized helium plasmas with a 1-3% degree of ionization under an electric field. The obtained results agree well with theoretical values.

  9. High resolution resonance ionization imaging detector and method

    DOEpatents

    Winefordner, James D.; Matveev, Oleg I.; Smith, Benjamin W.

    1999-01-01

    A resonance ionization imaging device (RIID) and method for imaging objects using the RIID are provided, the RIID system including a RIID cell containing an ionizable vapor including monoisotopic atoms or molecules, the cell being positioned to intercept scattered radiation of a resonance wavelength .lambda..sub.1 from the object which is to be detected or imaged, a laser source disposed to illuminate the RIID cell with laser radiation having a wavelength .lambda..sub.2 or wavelengths .lambda..sub.2, .lambda..sub.3 selected to ionize atoms in the cell that are in an excited state by virtue of having absorbed the scattered resonance laser radiation, and a luminescent screen at the back surface of the RIID cell which presents an image of the number and position of charged particles present in the RIID cell as a result of the ionization of the excited state atoms. The method of the invention further includes the step of initially illuminating the object to be detected or imaged with a laser having a wavelength selected such that the object will scatter laser radiation having the resonance wavelength .lambda..sub.1.

  10. Proposal on dynamic correction method for resonance ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Noto, Takuma; Tomita, Hideki; Richter, Sven; Schneider, Fabian; Wendt, Klaus; Iguchi, Tetsuo; Kawarabayashi, Jun

    2013-04-01

    For high precision and accuracy in isotopic ratio measurement of transuranic elements using laser ablation assisted resonance ionization mass spectrometry, a dynamic correction method based on correlation of ion signals with energy and timing of each laser pulse was proposed. The feasibility of this dynamic correction method was investigated through the use of a programmable electronics device for fast acquisition of the energy and timing of each laser pulse.

  11. Multiphoton ionization of ions, neutrals, and clusters. Final report

    SciTech Connect

    Wessel, J.

    1995-12-28

    A multiyear research program investigating molecular detection methods based on multiphoton spectroscopy has been completed under DOE sponsorship. A number of new laser-based spectroscopic methods were developed and applied to a variety of aromatic hydrocarbons, including monomer and cluster species. The objectives of sensitivities approaching single molecule detection combined with high selectivity were achieved. This report references the status of the field at the beginning of this work and summarizes the significant progress during the period from 1987 onward. Detailed scientific findings from the studies are presented in the published literature referenced throughout this report.

  12. Composite electron propagator methods for calculating ionization energies.

    PubMed

    Díaz-Tinoco, Manuel; Dolgounitcheva, O; Zakrzewski, V G; Ortiz, J V

    2016-06-14

    Accurate ionization energies of molecules may be determined efficiently with composite electron-propagator (CEP) techniques. These methods estimate the results of a calculation with an advanced correlation method and a large basis set by performing a series of more tractable calculations in which large basis sets are used with simpler approximations and small basis sets are paired with more demanding correlation techniques. The performance of several CEP methods, in which diagonal, second-order electron propagator results with large basis sets are combined with higher-order results obtained with smaller basis sets, has been tested for the ionization energies of closed-shell molecules from the G2 set. Useful compromises of accuracy and computational efficiency employ complete-basis-set extrapolation for second-order results and small basis sets in third-order, partial third-order, renormalized partial-third order, or outer valence Green's function calculations. Analysis of results for vertical as well as adiabatic ionization energies leads to specific recommendations on the best use of regular and composite methods. Results for 22 organic molecules of interest in the design of photovoltaic devices, benzo[a]pyrene, Mg-octaethylporphyrin, and C60 illustrate the capabilities of CEP methods for calculations on large molecules. PMID:27305999

  13. Composite electron propagator methods for calculating ionization energies

    NASA Astrophysics Data System (ADS)

    Díaz-Tinoco, Manuel; Dolgounitcheva, O.; Zakrzewski, V. G.; Ortiz, J. V.

    2016-06-01

    Accurate ionization energies of molecules may be determined efficiently with composite electron-propagator (CEP) techniques. These methods estimate the results of a calculation with an advanced correlation method and a large basis set by performing a series of more tractable calculations in which large basis sets are used with simpler approximations and small basis sets are paired with more demanding correlation techniques. The performance of several CEP methods, in which diagonal, second-order electron propagator results with large basis sets are combined with higher-order results obtained with smaller basis sets, has been tested for the ionization energies of closed-shell molecules from the G2 set. Useful compromises of accuracy and computational efficiency employ complete-basis-set extrapolation for second-order results and small basis sets in third-order, partial third-order, renormalized partial-third order, or outer valence Green's function calculations. Analysis of results for vertical as well as adiabatic ionization energies leads to specific recommendations on the best use of regular and composite methods. Results for 22 organic molecules of interest in the design of photovoltaic devices, benzo[a]pyrene, Mg-octaethylporphyrin, and C60 illustrate the capabilities of CEP methods for calculations on large molecules.

  14. Systems and methods for cylindrical hall thrusters with independently controllable ionization and acceleration stages

    DOEpatents

    Diamant, Kevin David; Raitses, Yevgeny; Fisch, Nathaniel Joseph

    2014-05-13

    Systems and methods may be provided for cylindrical Hall thrusters with independently controllable ionization and acceleration stages. The systems and methods may include a cylindrical channel having a center axial direction, a gas inlet for directing ionizable gas to an ionization section of the cylindrical channel, an ionization device that ionizes at least a portion of the ionizable gas within the ionization section to generate ionized gas, and an acceleration device distinct from the ionization device. The acceleration device may provide an axial electric field for an acceleration section of the cylindrical channel to accelerate the ionized gas through the acceleration section, where the axial electric field has an axial direction in relation to the center axial direction. The ionization section and the acceleration section of the cylindrical channel may be substantially non-overlapping.

  15. Development of laser excited atomic fluorescence and ionization methods

    SciTech Connect

    Winefordner, J.D.

    1991-01-01

    Progress report: May 1, 1988 to December 31, 1991. The research supported by DE-FG05-88ER13881 during the past (nearly) 3 years can be divided into the following four categories: (1) theoretical considerations of the ultimate detection powers of laser fluorescence and laser ionization methods; (2) experimental evaluation of laser excited atomic fluorescence; (3) fundamental studies of atomic and molecular parameters in flames and plasmas; (4) other studies.

  16. Capillary photoionization: a high sensitivity ionization method for mass spectrometry.

    PubMed

    Haapala, Markus; Suominen, Tina; Kostiainen, Risto

    2013-06-18

    We present a capillary photoionization (CPI) method for mass spectrometric (MS) analysis of liquid and gaseous samples. CPI utilizes a heated transfer capillary with a vacuum ultraviolet transparent MgF2 window, through which vacuum UV light (10 eV) from an external source enters the capillary. The liquid or gaseous sample, together with dopant, is introduced directly into the heated transfer capillary between the atmosphere and the vacuum of the MS. Since the sample is vaporized and photoionized inside the capillary, ion transmission is maximized, resulting in good overall sensitivity for nonpolar and polar compounds. As in atmospheric pressure photoionization, ionization in CPI occurs either by proton transfer or by charge exchange reactions. The feasibility of CPI was demonstrated with selected nonpolar and polar compounds. A particular advantage of CPI is that it enables the analysis of nonvolatile and nonpolar compounds in liquid samples with high ionization efficiency. This is not possible with existing capillary ionization methods. The performance of CPI as an interface between GC and MS and its applicability for the analysis of steroids in biological samples are also demonstrated. The GC-CPI-MS method shows good chromatographic resolution, linearity (R(2) > 0.993), limits of detection (LOD) in the range of 2-6 pg/mL and repeatability of injection with relative standard deviations of 4-15%. PMID:23713722

  17. Review of US Army ionizing-radiation dosimetry system. Final report

    SciTech Connect

    Not Available

    1986-01-01

    Army civilian and military personnel are exposed occupationally to various forms of ionizing radiation, and the U.S. Army Ionizing Radiation Dosimetry Center is responsible for monitoring these exposures. There are several accepted methods for monitoring radiation exposure, the oldest being the film badge method. A modern alternative method, which has achieved widespread acceptance, is the thermoluminescent dosimeter (TLD) badge. Inasmuch as the Radiation Dosimetry Center is in the process of converting from film badges to TLD badges for radiation monitoring, the Army requested assistance on how it might optimize the transition to this new monitoring system.

  18. Immersed interface methods. Final report

    SciTech Connect

    LeVeque, R.J.; Adams, L.M.; Bube, K.P.

    1996-11-01

    Cartesian grid methods encompass a wide variety of techniques used to solve partial differential equations in more than one space dimension on uniform Cartesian grids even when the underlying geometry is complex and not aligned with the grid. The authors` groups work on Immersed Interface Methods (IIM) was originally motivated by the desire to understand and improve the ``Immersed Boundary Method``, developed by Charles Peskin to solve incompressible Navier-Stokes equations in complicated geometries with moving elastic boundaries. This report briefly discusses the development of the Immersed Interface Methods and gives examples of application of the method in solving several partial differential equations.

  19. Implementation of the external complex scaling method in spheroidal coordinates: Impact ionization of molecular hydrogen

    SciTech Connect

    Serov, Vladislav V.; Joulakian, Boghos B.

    2009-12-15

    We develop an ab initio procedure based on the driven Schroedinger equation formalism and the external complex scaling method for the determination of the multifold differential cross sections of the single and double ionization of molecular hydrogen by single photon and fast electron impact. We take advantage of the separability of the two-center Schrodinger equation in prolate spheroidal coordinates in the numerical calculation of the two-electron two-center wave function of the initial and final states of the target. After having verified our procedure by reproducing existing confirmed triple differential cross sections of the (e,2e) ionization of H{sub 2}, we have extended our calculation to the double ionization of H{sub 2}. Our results on double photoionization agree with existing experimental results. We observe in the mean time a small difference with respect to the absolute results obtained by similar ab initio calculations using spherical bases. For the case of the double ionization by fast electron impact for which very few experimental results exist, our results confirm the existing disagreement between the theoretical results and the unique experimental one in the case of (e,3-1e). This we think makes it clear that for (e,3e) the introduction of the higher terms of the Born series for mean energy electron-impact regime is necessary.

  20. Computerized accounting methods. Final report

    SciTech Connect

    1994-12-31

    This report summarizes the results of the research performed under the Task Order on computerized accounting methods in a period from 03 August to 31 December 1994. Computerized nuclear material accounting methods are analyzed and evaluated. Selected methods are implemented in a hardware-software complex developed as a prototype of the local network-based CONMIT system. This complex has been put into trial operation for test and evaluation of the selected methods at two selected ``Kurchatov Institute`` Russian Research Center (``KI`` RRC) nuclear facilities. Trial operation is carried out since the beginning of Initial Physical Inventory Taking in these facilities that was performed in November 1994. Operation of CONMIT prototype system was demonstrated in the middle of December 1994. Results of evaluation of CONMIT prototype system features and functioning under real operating conditions are considered. Conclusions are formulated on the ways of further development of computerized nuclear material accounting methods. The most important conclusion is a need to strengthen computer and information security features supported by the operating environment. Security provisions as well as other LANL Client/Server System approaches being developed by Los Alamos National Laboratory are recommended for selection of software and hardware components to be integrated into production version of CONMIT system for KI RRC.

  1. Ionization detector, electrode configuration and single polarity charge detection method

    DOEpatents

    He, Z.

    1998-07-07

    An ionization detector, an electrode configuration and a single polarity charge detection method each utilize a boundary electrode which symmetrically surrounds first and second central interlaced and symmetrical electrodes. All of the electrodes are held at a voltage potential of a first polarity type. The first central electrode is held at a higher potential than the second central or boundary electrodes. By forming the first and second central electrodes in a substantially interlaced and symmetrical pattern and forming the boundary electrode symmetrically about the first and second central electrodes, signals generated by charge carriers are substantially of equal strength with respect to both of the central electrodes. The only significant difference in measured signal strength occurs when the charge carriers move to within close proximity of the first central electrode and are received at the first central electrode. The measured signals are then subtracted and compared to quantitatively measure the magnitude of the charge. 10 figs.

  2. Ionization detector, electrode configuration and single polarity charge detection method

    DOEpatents

    He, Zhong

    1998-01-01

    An ionization detector, an electrode configuration and a single polarity charge detection method each utilize a boundary electrode which symmetrically surrounds first and second central interlaced and symmetrical electrodes. All of the electrodes are held at a voltage potential of a first polarity type. The first central electrode is held at a higher potential than the second central or boundary electrodes. By forming the first and second central electrodes in a substantially interlaced and symmetrical pattern and forming the boundary electrode symmetrically about the first and second central electrodes, signals generated by charge carriers are substantially of equal strength with respect to both of the central electrodes. The only significant difference in measured signal strength occurs when the charge carriers move to within close proximity of the first central electrode and are received at the first central electrode. The measured signals are then subtracted and compared to quantitatively measure the magnitude of the charge.

  3. Method and an apparatus for detecting ionizable substance

    NASA Technical Reports Server (NTRS)

    McElroy, James F. (Inventor); Smith, William (Inventor)

    1992-01-01

    The amount of ionizable substance within a stream can be continuously monitored through the use of an ionizable substance detector. The substance is ionized at an electrode producing ions and free electrons. The ions are transported across an ion exchange membrane, while the free electrons flow through a power source. The current, produced by the electrons, is proportional to the amount of substance in the stream. Continuous monitoring can be useful in early detection of problems, or system fluctuations.

  4. Relativistic calculations of excitation and ionization of highly charged ions by electron impact. Final technical report

    SciTech Connect

    Sampson, D.H.

    1992-04-15

    Our rapid relativistic atomic structure program and relativistic distorted-wave programs for excitation and ionization of highly charged ions were further improved. The generalized Briet interaction and other QED corrections were added to the atomic structure program, and the speed of the distorted-wave excitation program was increased by over an order of magnitude over what it was when our initial large-scale relativistic calculations of excitation of Ne-like ions were made. The improved programs were then used to calculate collision strengths for 330 transitions in F-like ions with 22 {le} Z {le} 92 and 248 transitions in Ni-like ions with 60 {le} Z {le} 92. We expanded the relativistic collision program to include an option to use atomic structure data by the well-known multi-configuration Dirac-Fock (MCDF) program of Grant and A coworkers. This was used in calculating collision strengths for the 45 {Delta}n = 0 transitions with n=2 in Be-like ions with 8 {le} Z {le} 92. This relativistic collision strength program was also extended to include an option to include the generalized Breis interaction in the scattering matrix elements and the importance of this for He-like, He-like and Li-like ions with Z = 26, 54 and 92 was studied. The factorization method was applied to ionization. Regardless of the complexity of the ion the ionization cross sections could be written as a sum of the products of a readily calculated coefficient that depends only on ion properties and a hydrogen-like cross section. Work was also done on excitation and ionization by directive and, in some cases spin-polarized electrons, which is of interest for some EBIT experiments and the study of solar flares. We also used our extensive collision strength results to test the

  5. Evaluation of Gas-filled Ionization Chamber Method for Radon Measurement at Two Reference Facilities

    SciTech Connect

    Ishikawa, Tetsuo; Tokonami, Shinji; Kobayashi, Yosuke; Sorimachi, Atsuyuki; Yatabe, Yoshinori; Miyahara, Nobuyuki

    2008-08-07

    For quality assurance, gas-filled ionization chamber method was tested at two reference facilities for radon calibration: EML (USA) and PTB (Germany). Consequently, the radon concentrations estimated by the ionization chamber method were in good agreement with the reference radon concentrations provided by EML as well as PTB.

  6. Calculation of electron-impact ionization using the J-matrix method

    SciTech Connect

    Konovalov, D. A.; Bray, I.

    2010-08-15

    The J-matrix approach to electron-atom scattering is applied to ionization processes. We consider the Temkin-Poet model of e-H ionization. Convergence issues are studied with greater detail than previously possible using other close-coupling methods. The numerical strengths of the technique are emphasized with the long-term goal of application to ionization-plus-excitation processes.

  7. Geometry and mass model of ionizing radiation experiments on the LDEF satellite. Final Report

    SciTech Connect

    Colborn, B.L.; Armstrong, T.W.

    1992-04-01

    Extensive measurements related to ionizing radiation environments and effects were made on the LDEF satellite during its mission lifetime of almost 6 years. These data, together with the opportunity they provide for evaluating predictive models and analysis methods, should allow more accurate assessments of the space radiation environment and related effects for future missions in low Earth orbit. The LDEF radiation dosimetry data is influenced to varying degrees by material shielding effects due to the dosimeter itself, nearby components and experiments, and the spacecraft structure. A geometry and mass model is generated of LDEF, incorporating sufficient detail that it can be applied in determining the influence of material shielding on ionizing radiation measurements and predictions. This model can be used as an aid in data interpretation by unfolding shielding effects from the LDEF radiation dosimeter responses. Use of the LDEF geometry/mass model, in conjunction with predictions and comparisons with LDEF dosimetry data currently underway, will also allow more definitive evaluations of current radiation models for future mission applications.

  8. Radial arrays of nano-electrospray ionization emitters and methods of forming electrosprays

    DOEpatents

    Kelly, Ryan T [West Richland, WA; Tang, Keqi [Richland, WA; Smith, Richard D [Richland, WA

    2010-10-19

    Electrospray ionization emitter arrays, as well as methods for forming electrosprays, are described. The arrays are characterized by a radial configuration of three or more nano-electrospray ionization emitters without an extractor electrode. The methods are characterized by distributing fluid flow of the liquid sample among three or more nano-electrospray ionization emitters, forming an electrospray at outlets of the emitters without utilizing an extractor electrode, and directing the electrosprays into an entrance to a mass spectrometry device. Each of the nano-electrospray ionization emitters can have a discrete channel for fluid flow. The nano-electrospray ionization emitters are circularly arranged such that each is shielded substantially equally from an electrospray-inducing electric field.

  9. Chemical Aspects of the Extractive Methods of Ambient Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Badu-Tawiah, Abraham K.; Eberlin, Livia S.; Ouyang, Zheng; Cooks, R. Graham

    2013-04-01

    Ambient ionization techniques allow complex chemical samples to be analyzed in their native state with minimal sample preparation. This brings the obvious advantages of simplicity, speed, and versatility to mass spectrometry: Desorption electrospray ionization (DESI), for example, is used in chemical imaging for tumor margin diagnosis. This review on the extractive methods of ambient ionization focuses on chemical aspects, mechanistic considerations, and the accelerated chemical reactions occurring in charged liquid droplets generated in the spray process. DESI uses high-velocity solvent droplets to extract analytes from surfaces. Nano-DESI employs liquid microjunctions for analyte dissolution, whereas paper-spray ionization uses DC potentials applied to wet porous material such as paper or biological tissue to field emit charged analyte-containing solvent droplets. These methods also operate in a reactive mode in which added reagents allow derivatization during ionization. The accelerated reaction rates seen in charged microdroplets are useful in small-scale rapid chemical synthesis.

  10. Evaluation of the computational methods for electron-impact total ionization cross sections: Fluoromethanes as benchmarks

    NASA Astrophysics Data System (ADS)

    Torres, I.; Martínez, R.; Sánchez Rayo, M. N.; Castaño, F.

    2001-09-01

    The experimental electron-impact total ionization cross sections (TICSs, ICSs) of CF4, CHF3, CH2F2, and CH3F fluoromethanes reported so far and a new set of data obtained with a linear double focusing time-of-flight mass spectrometer have been compared with the ab initio and (semi)empirical based ICS available methods. TICSs computational methods include: two approximations of the binary-encounter dipole (BED) referred to hereafter as Kim (Kim-BEB) and Khare (Khare-BEB) methods, the Deutsch and Märk (DM) formalism, also requiring atomic and molecular ab initio information, the modified additivity rule (MAR), and the Harland and Vallance (HV) methods, both based on semiempirical or empirical correlations. The molecular ab initio information required by the Kim, Khare, and DM methods has been computed at a variety of quantum chemistry levels, with and without electron correlation and a comprehensive series of basis sets. The general conclusions are summarized as follows: the Kim method yields TICS in excellent agreement with the experimental method; the Khare method provides TICS very close to that of Kim at low electron-impact energies (<100 eV), but their Mott and Bethe contributions are noticeably different; in the Kim and Khare approximations the electron correlation methods improve the fittings to the experimental profiles in contrast with the large basis sets, that leads to poorer results; the DM formalism yields TICS profiles with shapes similar to the experimental and the BEB methods, but consistently lower and with the profiles maxima shifted towards lower incident electron energies; the MAR method supplies very good ICS profiles, between those of BEB and DM methods; finally, the empirical HV method provides rather poor fittings concomitant with the simplicity and the few empirical parameters used.

  11. Metal ion complexation by ionizable crown ethers. Final report, January 1, 1988--June 30, 1994

    SciTech Connect

    Bartsch, R.A.

    1994-12-31

    During the report period a variety of new lipophilic ionizable crown ethers with pendent proton-ionizable groups has been synthesized. The ligands possess one or more ionizable group (carboxylic acid, phosphonic acid monoethyl ester, para-nitrophenol, phosphonic acid) attached to crown ether, monoazacrown ether or diazacrown ether frameworks. These novel chelating agents have either pendent or inward-facing proton-ionizable groups. Such lipophilic proton-ionizable crown ethers are designed for use in multiphase metal ion separations (solvent extraction, liquid membrane transport). In addition a series of proton-ionizable crown ethers without lipophilic groups was prepared to study how structural variations within the ligand influence metal ion complexation in homogeneous media as assessed by NMR spectroscopy or titration calorimetry. A third class of new metal ion-complexing agents is a series of lipophilic acyclic polyether dicarboxylic acids. Competitive solvent extractions of alkali metal and alkaline earth cations and of the mixed species have been conducted to reveal the influence of ring size, nature and attachment site of the lipophilic group, sidearm length, and proton-ionizable group identity and location upon the selectivity and efficiency of metal ion complexation. In addition to such studies of structural variation within the lipophilic proton-ionizable crown ether, the effect of changing the organic solvent and variation of the stripping conditions have been assessed. The influence of structural variations within lipophilic acyclic polyether dicarboxylic acids upon competitive solvent extraction of alkaline earth cations has been probed. Also a new chromogenic, di-ionizable crown ether with extremely high selectivity for Hg{sup 2+} has been discovered.

  12. Ionizing radiation post-curing of objects produced by stereolithography and other methods

    DOEpatents

    Howell, David H.; Eberle, Claude C.; Janke, Christopher J.

    2000-01-01

    An object comprised of a curable material and formed by stereolithography or another three-dimensional prototyping method, in which the object has undergone initial curing, is subjected to post-curing by ionizing radiation, such as an electron beam having a predetermined beam output energy, which is applied in a predetermined dosage and at a predetermined dose rate. The post-cured object exhibits a property profile which is superior to that which existed prior to the ionizing radiation post-curing.

  13. Virtual detector methods for efficiently computing momentum-resolved dissociation and ionization spectra

    NASA Astrophysics Data System (ADS)

    Kramer, Alex; Thumm, Uwe

    2016-05-01

    We discuss a class of window-transform-based ``virtual detector'' methods for computing momentum-resolved dissociation and ionization spectra by numerically analyzing the motion of nuclear or electronic quantum-mechanical wavepackets at the periphery of their numerical grids. While prior applications of such surface-flux methods considered semi-classical limits to derive ionization and dissociation spectra, we systematically include quantum-mechanical corrections and extensions to higher dimensions, discussing numerical convergence properties and the computational efficiency of our method in comparison with alternative schemes for obtaining momentum distributions. Using the example of atomic ionization by co- and counter-rotating circularly polarized laser pulses, we scrutinize the efficiency of common finite-difference schemes for solving the time-dependent Schrödinger equation in virtual detection and standard Fourier-transformation methods for extracting momentum spectra. Supported by the DoE, NSF, and Alexander von Humboldt foundation.

  14. Final report 'IONPACK: Ionization Package for Intense Lasers and Plasma Physics Codes'

    SciTech Connect

    Dimitre A Dimitorv; David L Bruhwiler

    2004-01-06

    OAK-B135 There is a need for accurate models of ionization processes in simulations on advanced concepts for next-generation high-energy accelerators. In this Phase I project, we studied the feasibility to develop of a generic, extendable, and interoperable software library for simulation of tunneling, impact, multiphoton, and barrier suppression ionization processes that can easily be used with existing Particle-In-Cell (PIC), hydrodynamic, and other plasma simulation codes. We developed a functional prototype of the package in and identified the complete library design to be implemented in the Phase II and tested on currently relevant research problems in laser and beam-plasma wakefield accelerators.

  15. INSTRUMENTS AND METHODS OF INVESTIGATION: Surface-ionization field mass-spectrometry studies of nonequilibrium surface ionization

    NASA Astrophysics Data System (ADS)

    Blashenkov, Nikolai M.; Lavrent'ev, Gennadii Ya

    2007-01-01

    The ionization of polyatomic molecules on tungsten and tungsten oxide surfaces is considered for quasiequilibrium or essentially nonequilibrium conditions (in the latter case, the term nonequilibrium surface ionization is used for adsorbate ionization). Heterogeneous reactions are supposed to proceed through monomolecular decay of polyatomic molecules or fragments of multimolecular complexes. The nonequilibrium nature of these reactions is established. The dependences of the current density of disordered ions on the surface temperature, electric field strength, and ionized particle energy distribution are obtained in analytical form. Heterogeneous dissociation energies, the ionization potentials of radicals, and the magnitude of reaction departure from equilibrium are determined from experimental data, as are energy exchange times between reaction products and surfaces, the number of molecules in molecular complexes, and the number of effective degrees of freedom in molecules and complexes. In collecting the data a new technique relying on surface-ionization field mass-spectrometry was applied.

  16. Method for the depth corrected detection of ionizing events from a co-planar grids sensor

    DOEpatents

    De Geronimo, Gianluigi; Bolotnikov, Aleksey E.; Carini, Gabriella

    2009-05-12

    A method for the detection of ionizing events utilizing a co-planar grids sensor comprising a semiconductor substrate, cathode electrode, collecting grid and non-collecting grid. The semiconductor substrate is sensitive to ionizing radiation. A voltage less than 0 Volts is applied to the cathode electrode. A voltage greater than the voltage applied to the cathode is applied to the non-collecting grid. A voltage greater than the voltage applied to the non-collecting grid is applied to the collecting grid. The collecting grid and the non-collecting grid are summed and subtracted creating a sum and difference respectively. The difference and sum are divided creating a ratio. A gain coefficient factor for each depth (distance between the ionizing event and the collecting grid) is determined, whereby the difference between the collecting electrode and the non-collecting electrode multiplied by the corresponding gain coefficient is the depth corrected energy of an ionizing event. Therefore, the energy of each ionizing event is the difference between the collecting grid and the non-collecting grid multiplied by the corresponding gain coefficient. The depth of the ionizing event can also be determined from the ratio.

  17. Method for loading lipsomes with ionizable phosphorylated hydrophobic compounds, pharmaceutical preparations and a method for administering the preparations

    DOEpatents

    Mehlhorn, Rolf Joachim

    1998-10-27

    A method of entrapping ionizable compounds, preferably phosphorylated hydrophobic compounds, into liposomes having transmembrane gradients is disclosed. The procedures involve forming liposomes in an acidic medium or a basic medium, adding to the acidic medium a cationic compound or to the basic medium an anionic compound and then adding a base to the cationic-containing medium or an acid to the anionic-containing medium, thereby inducing the ionizable compound into the liposomes' internal aqueous phase. The compound-entrapped liposomes prepared in accordance with the disclosed methods may be used as pharmaceutical preparations. Methods of administering such pharmaceutical preparations are also disclosed.

  18. Method for loading lipsomes with ionizable phosphorylated hydrophobic compounds, pharmaceutical preparations and a method for administering the preparations

    DOEpatents

    Mehlhorn, R.J.

    1998-10-27

    A method of entrapping ionizable compounds, preferably phosphorylated hydrophobic compounds, into liposomes having transmembrane gradients is disclosed. The procedures involve forming liposomes in an acidic medium or a basic medium, adding to the acidic medium a cationic compound or to the basic medium an anionic compound and then adding a base to the cationic-containing medium or an acid to the anionic-containing medium, thereby inducing the ionizable compound into the liposomes` internal aqueous phase. The compound-entrapped liposomes prepared in accordance with the disclosed methods may be used as pharmaceutical preparations. Methods of administering such pharmaceutical preparations are also disclosed. 2 figs.

  19. Method of isotope separation by chemi-ionization

    DOEpatents

    Wexler, Sol; Young, Charles E.

    1977-05-17

    A method for separating specific isotopes present in an isotopic mixture by aerodynamically accelerating a gaseous compound to form a jet of molecules, and passing the jet through a stream of electron donor atoms whereby an electron transfer takes place, thus forming negative ions of the molecules. The molecular ions are then passed through a radiofrequency quadrupole mass filter to separate the specific isotopes. This method may be used for any compounds having a sufficiently high electron affinity to permit negative ion formation, and is especially useful for the separation of plutonium and uranium isotopes.

  20. Accurate Ionization Potentials and Electron Affinities of Acceptor Molecules IV: Electron-Propagator Methods.

    PubMed

    Dolgounitcheva, O; Díaz-Tinoco, Manuel; Zakrzewski, V G; Richard, Ryan M; Marom, Noa; Sherrill, C David; Ortiz, J V

    2016-02-01

    Comparison of ab initio electron-propagator predictions of vertical ionization potentials and electron affinities of organic, acceptor molecules with benchmark calculations based on the basis set-extrapolated, coupled cluster single, double, and perturbative triple substitution method has enabled identification of self-energy approximations with mean, unsigned errors between 0.1 and 0.2 eV. Among the self-energy approximations that neglect off-diagonal elements in the canonical, Hartree-Fock orbital basis, the P3 method for electron affinities, and the P3+ method for ionization potentials provide the best combination of accuracy and computational efficiency. For approximations that consider the full self-energy matrix, the NR2 methods offer the best performance. The P3+ and NR2 methods successfully identify the correct symmetry label of the lowest cationic state in two cases, naphthalenedione and benzoquinone, where some other methods fail. PMID:26730459

  1. Effects of ionizing radiation on the developing embryo and fetus: a review. Final report

    SciTech Connect

    Hoffman, D.A.; Felten, R.P.; Cyr, W.H.

    1981-08-01

    A general review of the literature dealing with effects of ionizing radiation on the developing embryo and fetus. Encompasses both experimental and epidemiological data based on the age of the organism at exposure, with major emphasis on exposure during pregnancy. An appendix presents this information in table format. This review consists of three main sections: experimental, genetic, and epidemiological. These sections are organized according to the age of the organism at the time of irradiation. Data are presented by period of development and endpoints observed. In addition to the individual section summaries, an overall summation is presented.

  2. Real-time monitoring of volatile organic compounds using chemical ionization mass spectroscopy: Final report

    SciTech Connect

    Thornberg, S.M.; Mowry, C.D.; Keenan, M.R.; Bender, S.F.A.; Owen, T.

    1997-04-01

    Volatile organic compound (VOC) emission to the atmosphere is of great concern to semiconductor manufacturing industries, research laboratories, the public, and regulatory agencies. Some industries are seeking ways to reduce emissions by reducing VOCs at the point of use (or generation). This paper discusses the requirements, design, calibration, and use of a sampling inlet/quadrupole mass spectrometer system for monitoring VOCs in a semiconductor manufacturing production line. The system uses chemical ionization to monitor compounds typically found in the lithography processes used to manufacture semiconductor devices (e.g., acetone, photoresist). The system was designed to be transportable from tool to tool in the production line and to give the operator real-time feedback so the process(es) can be adjusted to minimize VOC emissions. Detection limits ranging from the high ppb range for acetone to the low ppm range fore other lithography chemicals were achieved using chemical ionization mass spectroscopy at a data acquisition rate of approximately 1 mass spectral scan (30 to 200 daltons) per second. A demonstration of exhaust VOC monitoring was performed at a working semiconductor fabrication facility during actual wafer processing.

  3. Two-photon ionization of helium studied with the multiconfigurational time-dependent Hartree-Fock method

    SciTech Connect

    Hochstuhl, David; Bonitz, Michael

    2011-02-28

    The multiconfigurational time-dependent Hartree-Fock method (MCTDHF) is applied for simulations of the two-photon ionization of helium. We present results for the single and double ionizations from the ground state for photon energies in the nonsequential regime and compare them to direct solutions of the Schroedinger equation using the time-dependent (full) configuration interaction (TDCI) method. We find that the single ionization is accurately reproduced by MCTDHF, whereas the double ionization results correctly capture the main trends of TDCI.

  4. Semiclassical complex-time method for tunneling ionization: Molecular suppression and orientational dependence

    SciTech Connect

    Gallup, Gordon A.; Fabrikant, Ilya I.

    2010-03-15

    We apply a previously developed semiclassical complex time method to the calculation of tunneling ionization of several diatomic molecules and CO{sub 2}. We investigate the presence or absence of the molecular suppression effect by calculating ionization rates of N{sub 2} versus Ar, O{sub 2} versus Xe, F{sub 2} versus Ar, and CO versus Kr. Comparisons with other theories, including the molecular-orbital-Ammosov-Delone-Krainov (MO-ADK) model and the strong-field approximation, are given. We also analyze the dependence of the ionization rate on the angle {theta}{sub F} between the molecular axis and the field direction. The theoretical results agree quite well with experiment for N{sub 2} and O{sub 2} but give too low a value of the peak angle {theta}{sub F} for CO{sub 2}. Our calculations give small values of the ionization rates for O{sub 2} and CO{sub 2} at {theta}{sub F}=0 and 90 deg., in agreement with experiment. Other calculations, including the MO-ADK model and methods involving a numerical integration of the time-dependent Schroedinger equation, exhibit substantially weaker suppression at these angles.

  5. A precise ionization method for determination of the energy deposited in small sites of irradiated objects

    SciTech Connect

    Bigildeev, E.A.; Lappa, A.V.

    1994-09-01

    The ionization method for determination of the energy deposited in sensitive sites of irradiated objects is usually used with the assumption that deposited energy is directly proportional to the number of ionization in a site. This assumption fails in two cases important for nanometer-sized sites: (1) when the fluctuation characteristics of deposited energy such as higher moments, probability distributions, etc. are determined instead of the mean value; (2) when the radiation field in a site is spatially non-uniform. In this paper both cases are investigated. Exact formulae connecting energy and ionization quantities (moments, cumulants, probability distributions) are established as well as practical procedures to obtain energy quantities from those of ionization. The validity of the direct proportionality principle is analyzed and approximate methods to correct it are propose. Some microdosimetric results are presented. The solution of these problems required that we refine some known notions and introduce new terms. In particular, in the paper the necessity of distinguishing two distinct types of events and correspondingly two sets of microdosimetric quantities is noted; new radiation parameters such as the fluctuation W value and non-equivalence factor for the events are defined and investigated numerically. 12 refs., 5 figs.

  6. A novel method involving Matlab coding to determine the distribution of a collimated ionizing radiation beam

    NASA Astrophysics Data System (ADS)

    Ioan, M.-R.

    2016-08-01

    In ionizing radiation related experiments, precisely knowing of the involved parameters it is a very important task. Some of these experiments are involving the use of electromagnetic ionizing radiation such are gamma rays and X rays, others make use of energetic charged or not charged small dimensions particles such are protons, electrons, neutrons and even, in other cases, larger accelerated particles such are helium or deuterium nuclei are used. In all these cases the beam used to hit an exposed target must be previously collimated and precisely characterized. In this paper, a novel method to determine the distribution of the collimated beam involving Matlab coding is proposed. The method was implemented by using of some Pyrex glass test samples placed in the beam where its distribution and dimension must be determined, followed by taking high quality pictures of them and then by digital processing the resulted images. By this method, information regarding the doses absorbed in the exposed samples volume are obtained too.

  7. Direct Delta-MBPT(2) method for ionization potentials, electron affinities, and excitation energies using fractional occupation numbers

    SciTech Connect

    Beste, Ariana; Vazquez-Mayagoitia, Alvaro; Ortiz, J. Vincent

    2013-01-01

    A direct method (D-Delta-MBPT(2)) to calculate second-order ionization potentials (IPs), electron affinities (EAs), and excitation energies is developed. The Delta-MBPT(2) method is defined as the correlated extension of the Delta-HF method. Energy differences are obtained by integrating the energy derivative with respect to occupation numbers over the appropriate parameter range. This is made possible by writing the second-order energy as a function of the occupation numbers. Relaxation effects are fully included at the SCF level. This is in contrast to linear response theory, which makes the D-Delta-MBPT(2) applicable not only to single excited but also higher excited states. We show the relationship of the D-Delta-MBPT(2) method for IPs and EAs to a second-order approximation of the effective Fock-space coupled-cluster Hamiltonian and a second-order electron propagator method. We also discuss the connection between the D-Delta-MBPT(2) method for excitation energies and the CIS-MP2 method. Finally, as a proof of principle, we apply our method to calculate ionization potentials and excitation energies of some small molecules. For IPs, the Delta-MBPT(2) results compare well to the second-order solution of the Dyson equation. For excitation energies, the deviation from EOM-CCSD increases when correlation becomes more important. When using the numerical integration technique, we encounter difficulties that prevented us from reaching the Delta-MBPT(2) values. Most importantly, relaxation beyond the Hartree Fock level is significant and needs to be included in future research.

  8. Headspace gas chromatography-flame ionization detector method for organic solvent residue analysis in dietary supplements.

    PubMed

    Jeong, Mijeong Lee; Zahn, Michael; Trinh, Thao; Jia, Qi; Ma, Wenwen

    2006-01-01

    An analytical method has been developed for the identification and quantification of 20 organic solvent residues in dietary supplements. The method utilizes a headspace sampler interfaced with gas chromatography and flame ionization detection. With split injection (5:1) and a DB-624 column, most of the organic solvents are separated in 9 min. The method has been validated and was found to be relatively simple and fast, and it can be applied to most common organic solvent residues. With the mass detector, the method was able to identify organic solvents beyond the 20 standards tested. PMID:17225592

  9. Equation of motion coupled cluster methods for electron attachment and ionization potential in polyacenes

    SciTech Connect

    Bhaskaran-Nair, Kiran; Kowalski, Karol; Jarrell, Mark; Moreno, Juana; Shelton, William A.

    2015-11-05

    Polyacenes have attracted considerable attention due to their use in organic based optoelectronic materials. Polyacenes are polycyclic aromatic hydrocarbons composed of fused benzene rings. Key to understanding and design of new functional materials is an understanding of their excited state properties starting with their electron affinity (EA) and ionization potential (IP). We have developed a highly accurate and com- putationally e*fficient EA/IP equation of motion coupled cluster singles and doubles (EA/IP-EOMCCSD) method that is capable of treating large systems and large basis set. In this study we employ the EA/IP-EOMCCSD method to calculate the electron affinity and ionization potential of naphthalene, anthracene, tetracene, pentacene, hex- acene and heptacene. We have compared our results with other previous theoretical studies and experimental data. Our EA/IP results are in very good agreement with experiment and when compared with the other theoretical investigations our results represent the most accurate calculations as compared to experiment.

  10. Alternate cleaning methods for LCCAs. Final report

    SciTech Connect

    Adams, B.E.

    1993-04-01

    The purpose of this project was to evaluate DI water followed by isopropyl alcohol (IPA) cleaning and no cleaning of leadless chip carriers (LCCs). Both environmentally safe methods were to be tested against the current chlorofluorocarbon (CFC) material cleaning baseline. Several experiments were run to compare production and electrical yields of LCCs cleaned by all three methods. The critical process steps most affected by cleaning were wire bonding, sealing, particle induced noise detection (PIND), moisture content, and electrical. Yields for the experimental lots cleaned by CFC, DI water plus IPA, and no cleaning were 56%, 72%, and 75%, respectively. The overall results indicated that vapor degreasing/ultrasonic cleaning in CFCs could be replaced by the aqueous method. No cleaning could also be considered if an effective dry method of particle removal could be developed.

  11. Genetic variation in resistance to ionizing radiation. Final report, January 1, 1990--December 31, 1992

    SciTech Connect

    Ayala, F.J.

    1992-12-31

    Results of an investigation of the gene coding for Cu, Zn superoxide dismutase (Sod) in Drosophila melanogaster seeking to understand the enzyme`s role in cell protection against ionizing radiation are reported. Components of the investigation include molecular characterization of the gene; measuring the response of different genotypes to increasing levels of radiation; and investigation of the processes that maintain the Sod polymorphism in populations. While two alleles, S and F, are commonly found at the Sod locus in natural populations of D. melanogaster we have isolated from a natural population a null (CA1) mutant that yields only 3.5% of normal SOD activity. The S, F, and CA1 alleles provide a model system to investigate SOD-dependent radioresistance, because each allele yields different levels of SOD, so that S > F >> CAl. The radioprotective effects of SOD can be established by showing protective effects for the various genotypes that correspond to those inequalities. Because the allele variants studied are derived from natural populations, the proposed investigation avoids problems that arise when mutants obtained my mutagenesis are used. Moreover, each allele is studied in multiple genetic backgrounds, so that we correct for effects attributable to other loci by randomizing these effects.

  12. Accurate Kohn-Sham ionization potentials from scaled-opposite-spin second-order optimized effective potential methods.

    PubMed

    Śmiga, Szymon; Della Sala, Fabio; Buksztel, Adam; Grabowski, Ireneusz; Fabiano, Eduardo

    2016-08-15

    One important property of Kohn-Sham (KS) density functional theory is the exact equality of the energy of the highest occupied KS orbital (HOMO) with the negative ionization potential of the system. This exact feature is out of reach for standard density-dependent semilocal functionals. Conversely, accurate results can be obtained using orbital-dependent functionals in the optimized effective potential (OEP) approach. In this article, we investigate the performance, in this context, of some advanced OEP methods, with special emphasis on the recently proposed scaled-opposite-spin OEP functional. Moreover, we analyze the impact of the so-called HOMO condition on the final quality of the HOMO energy. Results are compared to reference data obtained at the CCSD(T) level of theory. © 2016 Wiley Periodicals, Inc. PMID:27357413

  13. On the accuracy of density functional theory and wave function methods for calculating vertical ionization energies.

    PubMed

    McKechnie, Scott; Booth, George H; Cohen, Aron J; Cole, Jacqueline M

    2015-05-21

    The best practice in computational methods for determining vertical ionization energies (VIEs) is assessed, via reference to experimentally determined VIEs that are corroborated by highly accurate coupled-cluster calculations. These reference values are used to benchmark the performance of density functional theory (DFT) and wave function methods: Hartree-Fock theory, second-order Møller-Plesset perturbation theory, and Electron Propagator Theory (EPT). The core test set consists of 147 small molecules. An extended set of six larger molecules, from benzene to hexacene, is also considered to investigate the dependence of the results on molecule size. The closest agreement with experiment is found for ionization energies obtained from total energy difference calculations. In particular, DFT calculations using exchange-correlation functionals with either a large amount of exact exchange or long-range correction perform best. The results from these functionals are also the least sensitive to an increase in molecule size. In general, ionization energies calculated directly from the orbital energies of the neutral species are less accurate and more sensitive to an increase in molecule size. For the single-calculation approach, the EPT calculations are in closest agreement for both sets of molecules. For the orbital energies from DFT functionals, only those with long-range correction give quantitative agreement with dramatic failing for all other functionals considered. The results offer a practical hierarchy of approximations for the calculation of vertical ionization energies. In addition, the experimental and computational reference values can be used as a standardized set of benchmarks, against which other approximate methods can be compared. PMID:26001454

  14. On the accuracy of density functional theory and wave function methods for calculating vertical ionization energies

    SciTech Connect

    McKechnie, Scott; Booth, George H.; Cohen, Aron J.; Cole, Jacqueline M.

    2015-05-21

    The best practice in computational methods for determining vertical ionization energies (VIEs) is assessed, via reference to experimentally determined VIEs that are corroborated by highly accurate coupled-cluster calculations. These reference values are used to benchmark the performance of density functional theory (DFT) and wave function methods: Hartree-Fock theory, second-order Møller-Plesset perturbation theory, and Electron Propagator Theory (EPT). The core test set consists of 147 small molecules. An extended set of six larger molecules, from benzene to hexacene, is also considered to investigate the dependence of the results on molecule size. The closest agreement with experiment is found for ionization energies obtained from total energy difference calculations. In particular, DFT calculations using exchange-correlation functionals with either a large amount of exact exchange or long-range correction perform best. The results from these functionals are also the least sensitive to an increase in molecule size. In general, ionization energies calculated directly from the orbital energies of the neutral species are less accurate and more sensitive to an increase in molecule size. For the single-calculation approach, the EPT calculations are in closest agreement for both sets of molecules. For the orbital energies from DFT functionals, only those with long-range correction give quantitative agreement with dramatic failing for all other functionals considered. The results offer a practical hierarchy of approximations for the calculation of vertical ionization energies. In addition, the experimental and computational reference values can be used as a standardized set of benchmarks, against which other approximate methods can be compared.

  15. Halocarbon refrigerant detection methods. Final report

    SciTech Connect

    Tapscott, R.E.; Sohn, C.W.

    1996-01-01

    The Montreal Protocol and the U.S. Clean Air Act limit the production of ozone-depleting substances, including many refrigerants. Three options for cost-effectively phasing out these refrigerants from Army installations are: (1) refrigerant containment, (2) retrofit conversion to accommodate alternative refrigerant, and (3) replacement with cooling systems using alternative refrigerant. This report contributes to the first option by identifying and assessing methods to detect chlorofluorocarbon (CFC), hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) refrigerants that leak from air-conditioning and refrigeration systems. As background, the report describes the relevant sections of the Montreal Protocol and the Clean Air Act, and gives an overview of refrigerants. This is followed by a description of the technologies used in refrigerant leak detection, and a survey of detector types available and their price ranges. Appendixes provide an extensive list of detector products and their specifications, plus manufacturer addresses and phone numbers.

  16. Development of quantitative laser ionization mass spectrometry (LIMS). Final report, 1 Aug 87-1 Jan 90

    SciTech Connect

    Odom, R.W.

    1991-06-04

    The objective of the research was to develop quantitative microanalysis methods for dielectric thin films using the laser ionization mass spectrometry (LIMS) technique. The research involved preparation of thin (5,000 A) films of SiO2, Al2O3, MgF2, TiO2, Cr2O3, Ta2O5, Si3N4, and ZrO2, and doping these films with ion implant impurities of 11B, 40Ca, 56Fe, 68Zn, 81Br, and 121Sb. Laser ionization mass spectrometry (LIMS), secondary ion mass spectrometry (SIMS) and Rutherford backscattering spectrometry (RBS) were performed on these films. The research demonstrated quantitative LIMS analysis down to detection levels of 10-100 ppm, and led to the development of (1) a compound thin film standards product line for the performing organization, (2) routine LIMS analytical methods, and (3) the manufacture of high speed preamplifiers for time-of-flight mass spectrometry (TOF-MS) techniques.

  17. Ionization in liquids. Final technical report, November 1, 1993--December 31, 1995

    SciTech Connect

    Bakale, G.

    1996-03-29

    The objective of these studies which began in 1993 was to provide new information on electron and ion transport and reactions in model liquids and biomimetic systems that is pertinent to the roles of charged species in inducing radiobiological damage and to elucidate the interrelationship among the carcinogenicity, mutagenicity and electrophilicity of chemicals. This final report summarizes research efforts in the following areas: electrons in biological systems; and electron and ion transport and reactions in model liquids. In biological systems attention was focused on the following: excess electrons as probes of carcinogen electrophilicity; cost effectiveness of k{sub e} as a carcinogen-screening test; and conversion of k{sub e} to a carcinogen-screening electronic device. In model liquids, research was focused on two areas. The first investigated radiation-induced dimerization of fullerenes. The second area studied radiolytic synthesis of fullerene derivatives.

  18. Apparatus and method for the simultaneous detection of neutrons and ionizing electromagnetic radiation

    DOEpatents

    Bell, Zane W.

    2000-01-01

    A sensor for simultaneously detecting neutrons and ionizing electromagnetic radiation comprising: a sensor for the detection of gamma radiation, the sensor defining a sensing head; the sensor further defining an output end in communication with the sensing head; and an exterior neutron-sensitive material configured to form around the sensing head; wherein the neutron-sensitive material, subsequent to the capture of the neutron, fissions into an alpha-particle and a .sup.7 Li ion that is in a first excited state in a majority of the fissions, the first excited state decaying via the emission of a single gamma ray at 478 keV which can in turn be detected by the sensing head; and wherein the sensing head can also detect the ionizing electromagnetic radiation from an incident radiation field without significant interference from the neutron-sensitive material. A method for simultaneously detecting neutrons and ionizing electromagnetic radiation comprising the steps of: providing a gamma ray sensitive detector comprising a sensing head and an output end; conforming an exterior neutron-sensitive material configured to form around the sensing head of the detector; capturing neutrons by the sensing head causing the neutron-sensitive material to fission into an alpha-particle and a .sup.7 Li ion that is in a first excited state in a majority of the fissions, the state decaying via the emission of a single gamma ray at 478 keV; sensing gamma rays entering the detector through the neutron-sensitive material; and producing an output through a readout device coupled to the output end; wherein the detector provides an output which is proportional to the energy of the absorbed ionizing electromagnetic radiation.

  19. Impact of different ionization methods on the molecular assignments of asphaltenes by FT-ICR mass spectrometry.

    PubMed

    Gaspar, Andras; Zellermann, Elio; Lababidi, Sami; Reece, Jennifer; Schrader, Wolfgang

    2012-06-19

    Over the years, ultrahigh resolution mass spectrometry has successfully illustrated the extreme complexity of crude oil and related solubility or polarity based fractions on a molecular level. However, the applied ionization technique greatly influences the outcome and may provide misleading information. In this work, we investigate the atmospheric pressure laser ionization (APLI) technique coupled with Fourier transform ion cyclotron resonance mass spectrometer to analyze the asphaltene fraction of a crude oil. These results were compared to data obtained by using other existing atmospheric pressure ionization methods. Furthermore elemental analysis and solid state NMR were used to obtain the bulk characteristics of the asphaltene sample. The results of the different ionization techniques were compared with the bulk properties in order to describe the potential discrimination effects of the ionization techniques that were observed. The results showed that APLI expands the range of the assigned molecules, while retaining information already observed with the generally used ion sources. PMID:22607608

  20. Higher-Order Equation-of-Motion Coupled-Cluster Methods for Ionization Processes

    SciTech Connect

    Kamiya, Muneaki; Hirata, So

    2006-08-21

    Compact algebraic equations defining the equation-of-motion coupled-cluster (EOM-CC) methods for ionization potentials (IP-EOM-CC) have been derived and computer implemented by virtue of a symbolic algebra system largely automating these processes. Models with connected cluster excitation operators truncated after double, triple, or quadruple level and with linear ionization operators truncated after two-hole-one-particle (2h1p), three-hole-two-particle (3h2p), or four-hole-three-particle (4h3p) level (abbreviated as IP-EOM-CCSD, CCSDT, and CCSDTQ, respectively) have been realized into parallel algorithms taking advantage of spin, spatial, and permutation symmetries with optimal size dependence of the computational costs. They are based on spin-orbital formalisms and can describe both {alpha} and {beta} and ionizations from open-shell (doublet, triplet, etc.) reference states into ionized states with various spin magnetic quantum numbers. The application of these methods to Koopmans and satellite ionizations of N{sub 2} and CO (with the ambiguity due to finite basis sets eliminated by extrapolation) has shown that IP-EOM-CCSD frequently accounts for orbital relaxation inadequately and displays errors exceeding a couple of eV. However, these errors can be systematically reduced to tenths or even hundredths of an eV by IP-EOM-CCSDT or CCSDTQ. Comparison of spectroscopic parameters of the FH{sup +} and NH{sup +} radicals between IP-EOM-CC and experiments has also underscored the importance of higher-order IP-EOM-CC treatments. For instance, the harmonic frequencies of the {tilde A} {sup 2}{Sigma}{sup -} state of NH{sup +}+ are predicted to be 1285, 1723, and 1705 cm{sup -1} by IP-EOM-CCSD, CCSDT, and CCSDTQ, respectively, as compared to the observed value of 1707 cm{sup -1}. The small adiabatic energy separation (observed 0.04 eV) between the {tilde X} {sup 2}II and {tilde a} {sup 4}{sigma}{sup -} states of NH{sup +} also requires IP-EOM-CCSDTQ for a quantitative

  1. A hierarchy of local coupled cluster singles and doubles response methods for ionization potentials

    NASA Astrophysics Data System (ADS)

    Wälz, Gero; Usvyat, Denis; Korona, Tatiana; Schütz, Martin

    2016-02-01

    We present a hierarchy of local coupled cluster (CC) linear response (LR) methods to calculate ionization potentials (IPs), i.e., excited states with one electron annihilated relative to a ground state reference. The time-dependent perturbation operator V(t), as well as the operators related to the first-order (with respect to V(t)) amplitudes and multipliers, thus are not number conserving and have half-integer particle rank m. Apart from calculating IPs of neutral molecules, the method offers also the possibility to study ground and excited states of neutral radicals as ionized states of closed-shell anions. It turns out that for comparable accuracy IPs require a higher-order treatment than excitation energies; an IP-CC LR method corresponding to CC2 LR or the algebraic diagrammatic construction scheme through second order performs rather poorly. We therefore systematically extended the order with respect to the fluctuation potential of the IP-CC2 LR Jacobian up to IP-CCSD LR, keeping the excitation space of the first-order (with respect to V(t)) cluster operator restricted to the m = /1 2 ⊕ /3 2 subspace and the accuracy of the zero-order (ground-state) amplitudes at the level of CC2 or MP2. For the more expensive diagrams beyond the IP-CC2 LR Jacobian, we employ local approximations. The implemented methods are capable of treating large molecular systems with hundred atoms or more.

  2. Equation of motion coupled cluster methods for electron attachment and ionization potential in polyacenes

    NASA Astrophysics Data System (ADS)

    Bhaskaran-Nair, Kiran; Kowalski, Karol; Jarrell, Mark; Moreno, Juana; Shelton, William A.

    2015-11-01

    Polyacenes have attracted considerable attention due to their various applications in organic optoelectronic materials. This study focuses on linear polyacenes and their electron affinity (EA) and ionization potential (IP) properties. We have employed our recent implementation of EA/IP equation of motion coupled cluster singles and doubles (EA/IP-EOMCCSD) methods which are accurate, computationally efficient and are capable of treating large systems employing reasonable basis sets size. The EA/IP results obtained for naphthalene, anthracene, tetracene, pentacene, hexacene and heptacene are in a good agreement with experiment. Comparison between quality of excitation energies obtained from IP-EOMCCSD and EE-EOMCCSD formalisms were also studied.

  3. Comparison of pencil-type ionization chamber calibration results and methods between dosimetry laboratories.

    PubMed

    Hourdakis, Costas J; Büermann, Ludwig; Ciraj-Bjelac, Olivera; Csete, Istvan; Delis, Harry; Gomola, Igor; Persson, Linda; Novak, Leos; Petkov, Ivailo; Toroi, Paula

    2016-01-01

    A comparison of calibration results and procedures in terms of air kerma length product, PKL, and air kerma, K, was conducted between eight dosimetry laboratories. A pencil-type ionization chamber (IC), generally used for computed tomography dose measurements, was calibrated according to three calibration methods, while its residual signal and other characteristics (sensitivity profile, active length) were assessed. The results showed that the "partial irradiation method" is the preferred method for the pencil-type IC calibration in terms of PKL and it could be applied by the calibration laboratories successfully. Most of the participating laboratories achieved high level of agreement (>99%) for both dosimetry quantities (PKL and K). Estimated relative standard uncertainties of comparison results vary among laboratories from 0.34% to 2.32% depending on the quantity, beam quality and calibration method applied. Detailed analysis of the assigned uncertainties have been presented and discussed. PMID:26508013

  4. Drug detection and quantification directly from tissue using novel ionization methods for mass spectrometry.

    PubMed

    Wang, Beixi; Dearring, Chenelle L; Wager-Miller, James; Mackie, Ken; Trimpin, Sarah

    2015-01-01

    Solvent assisted ionization inlet (SAII) and matrix assisted ionization vacuum (MAIV) were used to quantify rapidly an antipsychotic drug, clozapine, directly from surfaces with minimal sample preparation. This simple surface analysis method based on SAII- and MAIV-mass spectrometry (MS) was developed to allow the detection of endogenous lipids, metabolites, and clozapine directly from sections of mouse brain tissue. A rapid surface assessment was achieved by SAII with the assistance of heat applied to the mass spectrometer inlet. MAIV provided an improved reproducibility without the need of a heated inlet. In addition, isotope dilution and standard addition were used without sample clean-up, and the results correlate well with liquid chromatography tandem MS using sample work-up. Using the simple surface methods, standard solutions containing clozapine and a deuterated internal standard (clozapine-d8) at different concentration ratios were used in the extraction and quantification of clozapine from brain tissue sections of a drug-treated mouse using different tissue thicknesses. The amount of clozapine extracted by these surface methods was independent of tissue thickness. PMID:26307700

  5. Drug Detection and Quantification Directly from Tissue using Novel Ionization Methods for Mass Spectrometry

    PubMed Central

    Wang, Beixi; Dearring, Chenelle L.; Wager-Miller, James; Mackie, Ken; Trimpin, Sarah

    2016-01-01

    Solvent assisted ionization inlet (SAII) and matrix assisted ionization vacuum (MAIV) were used to rapidly quantify an antipsychotic drug, clozapine, directly from surfaces with minimal sample preparation. This simple surface analysis method based on SAII- and MAIV-mass spectrometry (MS) was developed to allow detection of endogenous lipids, metabolites, and clozapine directly from mouse brain tissue sections. Rapid surface assessment was achieved by SAII with the assistance of heat on the mass spectrometer inlet, and MAIV showed capability on heat-limited instruments with better reproducibility. In addition, isotope dilution and standard addition were used without sample clean-up, and the results correlate well to liquid chromatography (LC)-tandem MS with sample work-up. Using the simple surface methods, standard solutions containing clozapine and deuterated sample (clozapine-d8) at different concentration ratios were used to extract and quantify clozapine from brain tissue sections of drug-treated mouse at different thicknesses. The amount of clozapine extracted by these surface methods was independent of tissue thickness. PMID:26307700

  6. Calculations of molecular ionization energies using a self-consistent-charge Hartree-Fock-Slater method

    NASA Technical Reports Server (NTRS)

    Rosen, A.; Ellis, D. E.; Adachi, H.; Averill, F. W.

    1976-01-01

    A numerical-variational method for performing self-consistent molecular calculations in the Hartree-Fock-Slater (HFS) model is presented. Molecular wavefunctions are expanded in terms of basis sets constructed from numerical HFS solutions of selected one-center atomlike problems. Binding energies and wavefunctions for the molecules are generated using a discrete variational method for a given molecular potential. In the self-consistent-charge (SCC) approximation to the complete self-consistent-field (SCF) method, results of a Mulliken population analysis of the molecular eigenfunctions are used in each iteration to produce 'atomic' occupation numbers. The simplest SCC potential is then obtained from overlapping spherical atomlike charge distributions. Molecular ionization energies are calculated using the transition-state procedure; results are given for CO, H2O, H2S, AlCl, InCl, and the Ni5O surface complex. Agreement between experimental and theoretical ionization energies for the free-molecule valence levels is generally within 1 eV. The simple SCC procedure gives a reasonably good approximation to the molecular potential, as shown by comparison with experiment, and with complete SCF calculations for CO, H2O, and H2S.

  7. Unexpected observation of ion suppression in a liquid chromatography/atmospheric pressure chemical ionization mass spectrometric bioanalytical method.

    PubMed

    Sangster, Tim; Spence, Mike; Sinclair, Peta; Payne, Richard; Smith, Christopher

    2004-01-01

    Ion suppression is a well-known phenomenon in electrospray ionization (ESI) mass spectrometry. These suppression effects have been shown to adversely affect the accuracy and precision of quantitative bioanalytical methods using ion spray. Such suppression effects have not been as well defined in atmospheric pressure chemical ionization (APCI) and there is some debate whether these effects actually occur in the ionization process using APCI. Here an example is described where clear ion suppression was observed during studies on a model compound and three metabolites using APCI liquid chromatography/tandem mass spectrometry (LC/MS/MS). PMID:15174192

  8. Method for calculating multiphoton above-threshold processes in atoms: Two-photon above-threshold ionization

    SciTech Connect

    Manakov, N. L. Marmo, S. I.; Sviridov, S. A.

    2009-04-15

    The two-photon above-threshold ionization of atoms is calculated using numerical algorithms of the Pade approximation in the model-potential method with the Coulomb asymptotics. The total and differential cross sections of the above-threshold ionization of helium and alkali metal atoms by elliptically polarized radiation are presented. The dependence of the angular distribution of photoelectrons on the sign of the ellipticity of radiation (the elliptic dichroism phenomenon) is analyzed in the above-threshold frequency range.

  9. Claims based on exposure to ionizing radiation (prostate cancer and any other cancer)--VA. Final rule.

    PubMed

    1998-09-24

    This document amends the Department of Veterans Affairs (VA) adjudication regulations concerning compensation for diseases claimed to be the result of exposure to ionizing radiation. This amendment implements a decision by the Secretary of Veterans Affairs that, based on all evidence currently available to him, prostate cancer and any other cancers may be induced by ionizing radiation. The intended effect of this action is to relieve veterans, or their survivors, seeking benefits under the provisions of the Veterans' Dioxin and Radiation Exposure Compensation Standards Act of the burden of having to submit evidence that a veteran's prostate cancer or any other cancer may have been induced by ionizing radiation. PMID:10185808

  10. Aliphatic and aromatic amines in atmospheric aerosol particles: comparison of three ionization techniques in liquid chromatography-mass spectrometry and method development.

    PubMed

    Ruiz-Jiménez, José; Hautala, Sanna; Parshintsev, Jevgeni; Laitinen, Totti; Hartonen, Kari; Petäjä, Tuukka; Kulmala, Markku; Riekkola, Marja-Liisa

    2012-08-15

    A complete methodology was developed for the determination of ten aliphatic and nine aromatic amines in atmospheric aerosol particles. Before the liquid chromatography - tandem mass spectrometric separation and determination, the derivatization reaction of the analytes using dansyl chloride was accelerated by ultrasounds. From three different ionization techniques studied electrospray ionization was superior in terms of sensitivity, linearity, repeatability and reproducibility over atmospheric pressure chemical ionization and photoionization for the target analytes. The method developed was validated for the gas phase, 30 nm and total suspended atmospheric aerosol particles. The method quantification limits ranged between 1.8 and 71.7 pg. The accuracy and the potential matrix effects were evaluated using a standard addition methodology. Recoveries from 92.1% to 109.1%, the repeatability from 0.6% to 8.4% and the reproducibility from 2.3% to 9.8% were obtained. The reliability of the methodology was proved by the statistical evaluation. Finally, the developed methodology was applied to the determination of the target analytes in eight size separated ultrafine particulate (Dp=30±4 nm) samples and in eight total suspended particulate samples collected at the SMEAR II station. The mean concentrations for aliphatic amines were between 0.01 and 42.67 ng m(-3) and for aromatic amines between 0.02 and 1.70 ng m(-3). Thirteen amines were quantified for the first time in 30 nm aerosol particles. PMID:22841047

  11. The double ionization of H{sub 2} by fast electron impact: Influence of the final state electron-electron correlation

    SciTech Connect

    Chuluunbaatar, O. Gusev, A. A.; Joulakian, B. B.

    2013-02-15

    We have determined fully differential cross sections of the (e, 3e) double ionization of H{sub 2} by employing correlated initial- and final-state wave functions. We have constructed for the description of the two slow ejected electrons a symmetrized product of a correlation function and two-center continuum wave functions, which fulfill the correct boundary conditions asymptotically up to the order O((kr){sup -2}). We have shown that the introduction of the correlated part of the final-state wave function improves the results on the (e, 3-1e) of H{sub 2}.

  12. The computation of ionization potentials for second-row elements by ab initio and density functional theory methods

    SciTech Connect

    Jursic, B.S.

    1996-12-31

    Up to four ionization potentials of elements from the second-row of the periodic table were computed using the ab initio (HF, MP2, MP3, MP4, QCISD, GI, G2, and G2MP2) and DFT (B3LY, B3P86, B3PW91, XALPHA, HFS, HFB, BLYP, BP86, BPW91, BVWN, XAPLY, XAP86, XAPW91, XAVWN, SLYR SP86, SPW91 and SVWN) methods. In all of the calculations, the large 6-311++G(3df,3pd) gaussian type of basis set was used. The computed values were compared with the experimental results and suitability of the ab initio and DFF methods were discussed, in regard to reproducing the experimental data. From the computed ionization potentials of the second-row elements, it can be concluded that the HF ab initio computation is not capable of reproducing the experimental results. The computed ionization potentials are too low. However, by using the ab initio methods that include electron correlation, the computed IPs are becoming much closer to the experimental values. In all cases, with the exception of the first ionization potential for oxygen, the G2 computation result produces ionization potentials that are indistinguishable from the experimental results.

  13. Double ionization of helium by fast electrons with the Generalized Sturmian Functions method

    NASA Astrophysics Data System (ADS)

    Ambrosio, M. J.; Colavecchia, F. D.; Gasaneo, G.; Mitnik, D. M.; Ancarani, L. U.

    2015-03-01

    The double ionization of helium by high energy electron impact is studied. The corresponding four-body Schrödinger equation is transformed into a set of driven equations containing successive orders in the projectile-target interaction. The first order driven equation is solved with a generalized Sturmian functions approach. The transition amplitude, extracted from the asymptotic limit of the first order solution, is equivalent to the familiar first Born approximation. Fivefold differential cross sections are calculated for (e, 3e) processes within the high incident energy and small momentum transfer regimes. The results are compared with other numerical methods, and with the only absolute experimental data available. Our cross sections agree in shape and magnitude with those of the convergent close coupling method for the (10+10) eV and (4+4) eV emission energies. To date this had not been achieved by any two different numerical schemes when solving the three-body continuum problem for the fast projectile (e, 3e) process. Though agreement with the experimental data, in particular with respect to the magnitude, is not achieved, our findings partly clarify a long standing puzzle.

  14. Accurate Ionization Potentials and Electron Affinities of Acceptor Molecules III: A Benchmark of GW Methods.

    PubMed

    Knight, Joseph W; Wang, Xiaopeng; Gallandi, Lukas; Dolgounitcheva, Olga; Ren, Xinguo; Ortiz, J Vincent; Rinke, Patrick; Körzdörfer, Thomas; Marom, Noa

    2016-02-01

    The performance of different GW methods is assessed for a set of 24 organic acceptors. Errors are evaluated with respect to coupled cluster singles, doubles, and perturbative triples [CCSD(T)] reference data for the vertical ionization potentials (IPs) and electron affinities (EAs), extrapolated to the complete basis set limit. Additional comparisons are made to experimental data, where available. We consider fully self-consistent GW (scGW), partial self-consistency in the Green's function (scGW0), non-self-consistent G0W0 based on several mean-field starting points, and a "beyond GW" second-order screened exchange (SOSEX) correction to G0W0. We also describe the implementation of the self-consistent Coulomb hole with screened exchange method (COHSEX), which serves as one of the mean-field starting points. The best performers overall are G0W0+SOSEX and G0W0 based on an IP-tuned long-range corrected hybrid functional with the former being more accurate for EAs and the latter for IPs. Both provide a balanced treatment of localized vs delocalized states and valence spectra in good agreement with photoemission spectroscopy (PES) experiments. PMID:26731609

  15. Computation of axisymmetric and ionized hypersonic flows using particle and continuum methods

    NASA Technical Reports Server (NTRS)

    Boyd, Iain D.; Gokcen, Tahir

    1994-01-01

    Comparisons between particle and continuum simulations of hypersonic near-continuum flows are presented. The particle approach employs the direct simulation Monte Carlo (DSMC) method, and the continuum approach solves the appropriate equations of fluid flow. Both simulations have thermochemistry models for air implemented including ionization. A new axisymmetric DSMC code that is efficiently vectorized is developed for this study. In this DSMC code, particular attention is paid to matching the relaxation rates employed in the continuum approach. This investigation represents a continuum of a previous study that considered thermochemical relaxation in one-dimensional shock waves of nitrogen. Comparison of the particle and continuum methods is first made for an axisymmetric blunt-body flow of air at 7 km/s. Very good agreement is obtained for the two solutions. The two techniques also compare well for a one-dimensional shock wave in air at 10 km/s. In both applications, the results are found to be sensitive to various aspects of the chemistry model employed.

  16. Computation of axisymmetric and ionized flows using particle and continuum methods

    NASA Technical Reports Server (NTRS)

    Boyd, Iain D.; Gokcen, Tahir

    1993-01-01

    Comparisons between particle and continuum simulations of hypersonic near-continuum flows are presented. The particle approach employs the direct simulation Monte Carlo method (DSMC), and the continuum approach solves the Euler equations. Both simulations have thermochemistry models for air implemented including ionization. A new axisymmetric DSMC code which is efficiently vectorized is developed for this study. In this DSMC code, particular attention is paid to matching the relaxation rates employed in the continuum approach. This investigation represents a continuation of a previous study which considered thermochemical relaxation in one-dimensional shock waves of nitrogen. Comparison of the particle and continuum methods is first made for an axisymmetric blunt-body flow of air at 7 km/s. Very good agreement is obtained for the two solutions. The two techniques also compare well for a one-dimensional shock wave in air at 10 km/s. In both applications, the results are found to be sensitive to various aspects of the chemistry models employed.

  17. Effects of Ionizing Radiation on Biological Molecules—Mechanisms of Damage and Emerging Methods of Detection

    PubMed Central

    Reisz, Julie A.; Bansal, Nidhi; Qian, Jiang; Zhao, Weiling

    2014-01-01

    Abstract Significance: The detrimental effects of ionizing radiation (IR) involve a highly orchestrated series of events that are amplified by endogenous signaling and culminating in oxidative damage to DNA, lipids, proteins, and many metabolites. Despite the global impact of IR, the molecular mechanisms underlying tissue damage reveal that many biomolecules are chemoselectively modified by IR. Recent Advances: The development of high-throughput “omics” technologies for mapping DNA and protein modifications have revolutionized the study of IR effects on biological systems. Studies in cells, tissues, and biological fluids are used to identify molecular features or biomarkers of IR exposure and response and the molecular mechanisms that regulate their expression or synthesis. Critical Issues: In this review, chemical mechanisms are described for IR-induced modifications of biomolecules along with methods for their detection. Included with the detection methods are crucial experimental considerations and caveats for their use. Additional factors critical to the cellular response to radiation, including alterations in protein expression, metabolomics, and epigenetic factors, are also discussed. Future Directions: Throughout the review, the synergy of combined “omics” technologies such as genomics and epigenomics, proteomics, and metabolomics is highlighted. These are anticipated to lead to new hypotheses to understand IR effects on biological systems and improve IR-based therapies. Antioxid. Redox Signal. 21: 260–292. PMID:24382094

  18. The Protonation Site of para-Dimethylaminobenzoic Acid Using Atmospheric Pressure Ionization Methods

    NASA Astrophysics Data System (ADS)

    Chai, Yunfeng; Weng, Guofeng; Shen, Shanshan; Sun, Cuirong; Pan, Yuanjiang

    2015-04-01

    The protonation site of para-dimethylaminobenzoic acid ( p-DMABA) was investigated using atmospheric pressure ionization methods (ESI and APCI) coupled with collision-induced dissociation (CID), nuclear magnetic resonance (NMR), and computational chemistry. Theoretical calculations and NMR experiments indicate that the dimethyl amino group is the preferred site of protonation both in the gas phase and aqueous solution. Protonation of p-DMABA occurs at the nitrogen atom by ESI independent of the solvents and other operation conditions under typical thermodynamic control. However, APCI produces a mixture of the nitrogen- and carbonyl oxygen-protonated p-DMABA when aprotic organic solvents (acetonitrile, acetone, and tetrahydrofuran) are used, exhibiting evident kinetic characteristics of protonation. But using protic organic solvents (methanol, ethanol, and isopropanol) in APCI still leads to the formation of thermodynamically stable N-protonated p-DMABA. These structural assignments were based on the different CID behavior of the N- and O-protonated p-DMABA. The losses of methyl radical and water are the diagnostic fragmentations of the N- and O-protonated p-DMABA, respectively. In addition, the N-protonated p-DMABA is more stable than the O-protonated p-DMABA in CID revealed by energy resolved experiments and theoretical calculations.

  19. Determination of small-field correction factors for cylindrical ionization chambers using a semiempirical method

    NASA Astrophysics Data System (ADS)

    Park, Kwangwoo; Bak, Jino; Park, Sungho; Choi, Wonhoon; Park, Suk Won

    2016-02-01

    A semiempirical method based on the averaging effect of the sensitive volumes of different air-filled ionization chambers (ICs) was employed to approximate the correction factors for beam quality produced from the difference in the sizes of the reference field and small fields. We measured the output factors using several cylindrical ICs and calculated the correction factors using a mathematical method similar to deconvolution; in the method, we modeled the variable and inhomogeneous energy fluence function within the chamber cavity. The parameters of the modeled function and the correction factors were determined by solving a developed system of equations as well as on the basis of the measurement data and the geometry of the chambers. Further, Monte Carlo (MC) computations were performed using the Monaco® treatment planning system to validate the proposed method. The determined correction factors (k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} ) were comparable to the values derived from the MC computations performed using Monaco®. For example, for a 6 MV photon beam and a field size of 1  ×  1 cm2, k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} was calculated to be 1.125 for a PTW 31010 chamber and 1.022 for a PTW 31016 chamber. On the other hand, the k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} values determined from the MC computations were 1.121 and 1.031, respectively; the difference between the proposed method and the MC computation is less than 2%. In addition, we determined the k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} values for PTW 30013, PTW 31010, PTW 31016, IBA FC23-C, and IBA CC13 chambers as well. We devised a method for determining k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} from both the measurement of the output factors and model-based mathematical computation. The proposed method can be useful in case the MC simulation would not be applicable for the clinical settings.

  20. Ionization suppression effects with condensed phase membrane introduction mass spectrometry: methods to increase the linear dynamic range and sensitivity.

    PubMed

    Duncan, Kyle D; Vandergrift, Gregory W; Krogh, Erik T; Gill, Chris G

    2015-03-01

    Condensed phase membrane introduction mass spectrometry (CP-MIMS) is an online analytical method that allows for the direct, trace level measurement of a wide range of analytes in complex samples. The technique employs a semi-permeable membrane that transfers analytes from a sample into a flowing acceptor solvent, which is directly infused to an atmospheric pressure ionization source, such as electrospray or atmospheric pressure chemical ionization. While CP-MIMS and variants of the technique have been in the literature for nearly a decade, much of the work has focused on instrument development. Few studies have thoroughly addressed quantitative methods related to detection limits, ionization suppression, or linear dynamic range. We examine ionization suppression in the direct rapid quantitation of analytes by CP-MIMS and introduce several analytical strategies to mitigate these effects, including the novel implementation of a continuously infused internal standard in the acceptor phase solvent, and modulation of acceptor phase flow rate. Several representative analytes were used to evaluate this approach with spiked, complex sample matrices, including primary wastewater effluent and artificial urine. Also reported are improved measured detection limits in the low part-per-trillion range, using a 'stopped-flow' acceptor mode. PMID:25800178

  1. Methods for Creation and Detection of Ultra-Strong Artificial Ionization in the Upper Atmosphere (Invited)

    NASA Astrophysics Data System (ADS)

    Bernhardt, P. A.; Siefring, C. L.; Briczinski, S. J.; Kendall, E. A.; Watkins, B. J.; Bristow, W. A.; Michell, R.

    2013-12-01

    The High Frequency Active Auroral Research Program (HAARP) transmitter in Alaska has been used to produce localized regions of artificial ionization at altitudes between 150 and 250 km. High power radio waves tuned near harmonics of the electron gyro frequency were discovered by Todd Pederson of the Air Force Research Laboratory to produce ionosonde traces that looked like artificial ionization layers below the natural F-region. The initial regions of artificial ionization (AI) were not stable but had moved down in altitude over a period of 15 minutes. Recently, artificial ionization has been produced by the 2nd, 3rd, 4th and 6th harmonics transmissions by the HAARP. In march 2013, the artificial ionization clouds were sustained for more the 5 hours using HAARP tuned to the 4 fce at the full power of 3.6 Mega-Watts with a twisted-beam antenna pattern. Frequency selection with narrow-band sweeps and antenna pattern shaping has been employed for optimal generation of AI. Recent research at HAARP has produced the longest lived and denser artificial ionization clouds using HF transmissions at the harmonics of the electron cyclotron frequency and ring-shaped radio beams tailored to prevent the descent of the clouds. Detection of artificial ionization employs (1) ionosonde echoes, (2) coherent backscatter from the Kodiak SuperDARN radar, (3) enhanced ion and plasma line echoes from the HAARP MUIR radar at 400 MHz, (4) high resolution optical image from ground sites, and (5) unique stimulated electromagnetic emissions, and (6) strong UHF and L-Band scintillation induced into trans-ionospheric signals from satellite radio beacons. Future HAARP experiments will determine the uses of long-sustained AI for enhanced HF communications.

  2. Final Report: Symposium on Adaptive Methods for Partial Differential Equations

    SciTech Connect

    Pernice, M.; Johnson, C.R.; Smith, P.J.; Fogelson, A.

    1998-12-10

    OAK-B135 Final Report: Symposium on Adaptive Methods for Partial Differential Equations. Complex physical phenomena often include features that span a wide range of spatial and temporal scales. Accurate simulation of such phenomena can be difficult to obtain, and computations that are under-resolved can even exhibit spurious features. While it is possible to resolve small scale features by increasing the number of grid points, global grid refinement can quickly lead to problems that are intractable, even on the largest available computing facilities. These constraints are particularly severe for three dimensional problems that involve complex physics. One way to achieve the needed resolution is to refine the computational mesh locally, in only those regions where enhanced resolution is required. Adaptive solution methods concentrate computational effort in regions where it is most needed. These methods have been successfully applied to a wide variety of problems in computational science and engineering. Adaptive methods can be difficult to implement, prompting the development of tools and environments to facilitate their use. To ensure that the results of their efforts are useful, algorithm and tool developers must maintain close communication with application specialists. Conversely it remains difficult for application specialists who are unfamiliar with the methods to evaluate the trade-offs between the benefits of enhanced local resolution and the effort needed to implement an adaptive solution method.

  3. Nanospray Desorption Electrospray Ionization: an Ambient Method for Liquid-Extraction Surface Sampling in Mass Spectrometry

    SciTech Connect

    Roach, Patrick J.; Laskin, Julia; Laskin, Alexander

    2010-08-17

    A novel nanospray desorption electrospray ionization (nano-DESI) approach is presented and its analytical applications are demonstrated for trace analysis of complex organic analytes deposited on substrates. In this approach the analyte is probed by a micro-droplet of charged solvent formed at the junction between two capillaries. One primary capillary is used to create and maintain a charged micro-droplet of solvent on the substrate while a second capillary is used to create a self-aspirating nanospray that delivers solvent dissolved analyte to the inlet of a mass spectrometer. This approach enables efficient separation of desorption and ionization events, thus providing better control over transport and ionization of the analyte. In this letter we present the basics of the nano-DESI approach and demonstrate its analytical capabilities. Specifically, we demonstrate significant improvement of the limits of detection and the stability of the signal as compared to the traditional DESI and discuss imaging applications.

  4. Pseudostate methods and differential cross sections for antiproton ionization of atomic hydrogen and helium

    SciTech Connect

    McGovern, M.; Walters, H. R. J.; Assafrao, D.; Mohallem, J. R.; Whelan, Colm T.

    2010-03-15

    A relaxed form of a recent impact parameter coupled pseudostate approximation of McGovern et al. [Phys. Rev. A 79, 042707 (2009)] for calculating differential ionization cross sections is proposed. This greatly eases the computational burden in cases where a range of ejected electron energies has to be considered. The relaxed approximation is tested against exact first Born calculations for antiproton impact on H and nonperturbatively for the highly nonperturbative system of Au{sup 53+} incident upon He. The approximation performs well in these tests. It is shown how, with a little further approximation, the relaxed theory leads to a widely used prescription for the total ionization cross section. Results for differential ionization of H and He by antiprotons are presented. These reveal the growing dominance of the interaction between the antiproton and the target nucleus at low impact energies and show the changing importance of the role of the postcollisional interaction between the antiproton and the ejected electron.

  5. Determination of binding constants by affinity capillary electrophoresis, electrospray ionization mass spectrometry and phase-distribution methods

    PubMed Central

    Chen, Zhi; Weber, Stephen G.

    2008-01-01

    Many methods for determining intermolecular interactions have been described in the literature in the past several decades. Chief among them are methods based on spectroscopic changes, particularly those based on absorption or nuclear magnetic resonance (NMR) [especially proton NMR (1H NMR)]. Recently, there have been put forward several new methods that are particularly adaptable, use very small quantities of material, and do not place severe requirements on the spectroscopic properties of the binding partners. This review covers new developments in affinity capillary electrophoresis, electrospray ionization mass spectrometry (ESI-MS) and phasetransfer methods. PMID:19802330

  6. Differential ionization cross-section calculations for hydrogenic targets with Z⩽4 using a propagating exterior complex scaling method

    NASA Astrophysics Data System (ADS)

    Bartlett, Philip L.; Stelbovics, Andris T.

    2004-04-01

    A propagating exterior complex scaling method, with iterative coupling, has been adapted for the electron impact of charged hydrogenic targets. Using this fully ab initio method for solving the Schrödinger equation, which has no uncontrolled approximations, we present highly accurate total, single-differential, double-differential, and triple-differential cross-section calculations for the electron-impact ionization of hydrogenic targets with nuclear charge Z⩽4 (H, He+ , Li2+ , Be3+ ). For a fixed scaled energy, the total and differential cross sections begin to converge with respect to increasing Z when scaled by Z4 and Z6 , respectively, and converge more rapidly with increasing incident-electron energy. The angular distributions of the differential cross sections change systematically with increasing nuclear charge for energies above the peak total ionization cross section, but for some lower-energy kinematics the triple-differential cross section for charged targets is significantly different from that of atomic hydrogen.

  7. Ultratrace detection of chemical warfare agent simulants using supersonic-molecular-beam, resonance-enhanced multiphoton-ionization, time-of-flight mass spectroscopy. Final report

    SciTech Connect

    Syage, J.A.; Pollard, J.E.; Cohen, R.B.

    1988-02-15

    An ultratrace detection method that offers exceptional selectivity has been developed based on the technique of supersonic molecular beam, resonance enhanced multiphoton ionization, time-of-flight mass spectroscopy (MB/REMPI/TOFMS). Single ion detection capability has given detection limits as low as 300 ppt (dimethyl sulfide). Single vibronic level REMPI of the supercooled molecules in conjunction with TOFMS provides selectivity of 10,000 against chemically similar compounds. Studies were carried out using moist air expansions for a variety of organophosphonate and sulfide chemical warfare agent (CWA) simulant molecules. The preparation of molecules in single vibronic levels by laser excitation in supersonic molecular beams has enabled us to record high resolution spectra of higher excited electronic states showing fully resolved vibrational structure for diisopropyl methylphosphonate (DIMP) and dimethyl sulfide (DMS). VUV absorption spectra have also been recorded for several CWA molecules at ambient temperature, revealing several new electronic states extending up to the ionization threshold.

  8. In vivo mutagenicity and clastogenicity of ionizing radiation in nuclear medicine. Final performance report, January 1, 1989--December 31, 1991

    SciTech Connect

    Kelsey, K.T.

    1991-12-31

    The overall goal of our research was to investigate the mutagenic and clastogenic effects of exposure to low levels of ionizing radiation to human lymphocytes. Principally, we studied hospital patients referred to a nuclear medicine department for diagnostic cardiac imaging and nuclear medicine technologists who administer radionuclides. Emphasis in the first year, as described in the first progress report, was on optimization of the hprt mutation assay, measurement of mutant frequencies in patients imaged with thallium-201, and measurement of mutant frequencies in controls. Emphasis in the second and third years was on measurements of: (1) chromosome aberrations in patients imaged with thallium-201; (2) mutant frequencies in patients imaged with technetium-99; (3) mutant frequencies in nuclear medicine technicians and physical therapists; and (4) mutant frequencies in patients treated for Hodgkins disease with radiotherapy. The completed work has been published and is described below in more detail.

  9. Ambient Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Huang, Min-Zong; Yuan, Cheng-Hui; Cheng, Sy-Chyi; Cho, Yi-Tzu; Shiea, Jentaie

    2010-07-01

    Mass spectrometric ionization methods that operate under ambient conditions and require minimal or no sample pretreatment have attracted much attention in such fields as biomedicine, food safety, antiterrorism, pharmaceuticals, and environmental pollution. These technologies usually involve separate ionization and sample-introduction events, allowing independent control over each set of conditions. Ionization is typically performed under ambient conditions through use of existing electrospray ionization (ESI) or atmospheric pressure chemical ionization (APCI) techniques. Rapid analyses of gas, liquid, and solid samples are possible with the adoption of various sample-introduction methods. This review sorts different ambient ionization techniques into two main subcategories, primarily on the basis of the ionization processes, that are further differentiated in terms of the approach used for sampling.

  10. The oncogenic action of ionizing radiation on rat skin. Final progress report, May 1, 1990--April 30, 1992

    SciTech Connect

    Burns, F.J.; Garte, S.J.

    1992-12-31

    The multistage theory of carcinogenesis specifies that cells progress to cancer through a series of discrete, irreversible genetic alterations, but data on radiation-induced cancer incidence in rat skin suggests that an intermediate repairable alteration may occur. Data are presented on cancer induction in rat skin exposed to an electron beam (LET=0.34 keV/{mu}), a neon ion beam (LET=45) or an argon ion beam (LET=125). The rats were observed for tumors at least 78 weeks with squamous and basal cell carcinomas observed. The total cancer yield was fitted by the quadratic equation, and the equation parameters were estimated by linear regression for each type of radiation. Analysis of the DNA from the electron-induced carcinomas indicated that K-ras and/or c-myc oncogenes were activated. In situ hybridization indicated that the cancers contain subpopulations of cells with differing amounts of c-myc and H-ras amplification. The results are consistent with the idea that ionizing radiation produces stable, carcinogenically relevant lesions via 2 repairable events at low LET and via a non-repairable linked event pathway at high LET; either pathway may advance the cell by 1 stage. The proliferative response of rat epidermis following exposure to ionizing radiation was quantified by injection of {sup 14}C-thymidine. The return of these cells to S-phase a second time was detected by a second label ({sup 3}H). When the labeled cells were in G1-phase, the dorsal skin was irradiated with X-rays. All labeling indices were determined. The {sup 14}C labeling index was constant and unaffected by the radiation. The proportion of all cells entering S-phase averaged 3.5% at 18 hr and increased after 44, 52 and 75 hr to average levels of 11.8%, 5. 3%, and 6.6% at 0, 10 and 25 Gy respectively. The proportion of S-phase cells labeled with {sup 14}C increased after 42 hr and remained relatively constant thereafter.

  11. METHOD 332.0: DETERMINATION OF PERCHLORATE IN DRINKING WATER BY ION CHROMATOGRAPHY WITH SUPPRESSED CONDUCTIVITY AND ELECTROSPRAY IONIZATION MASS SPECTROMETRY

    EPA Science Inventory

    This method is applicable to the identification and quantitation of perchlorate in raw and finished drinking waters. The approach used is ion chromatography with suppressed conductivity and electrospray ionization mass spectrometry (IC-ESI/MS)

  12. Expedient methods of respiratory protection. II. Leakage tests. Final report

    SciTech Connect

    Cooper, D.W.; Hinds, W.C.; Price, J.M.; Weker, R.; Yee, H.S.

    1983-07-01

    The following readily-available materials were tested on a manikin connected to a breathing simulator to determine the fraction of an approximately 2-..mu..m-diameter aerosol that would leak around the seal of the materials to the manikin's face: cotton/polyester shirt material, cotton handkerchief material, toweling (a wash cloth), a surgical mask (Johnson and Johnson Co., model HRI 8137), and a NIOSH-approved disposable face mask (3M, model number 8710). The leakage tests were performed to supplement the measurements of penetration through the materials, conducted as the first phase of this investigation. The leakage tests were performed with the materials held on to the face by three methods, leakage fractions being determined from comparisons with the penetration of the same aerosol for the materials fully taped to the face. At a breathing rate of 37 liters per minute, mean leakages ranged from 0.0 percent to 63 percent. Mean penetrations exclusive of leakage ranged from 0.6 percent to 39 percent. Use of nylon hosiery material (panty hose) to hold the handkerchief material or the disposable face mask to the face was found to be very effective in preventing leakage. Such a combination could be expected to reduce leakage around the handkerchief to about ten percent or less in practice, and around the mask to less than one percent, offering substantial protection from accidentally generated aerosols. The reduction in leakage around the mask provided by the hosiery material suggests the adaptation and use of such an approach in regular industrial hygiene practice. The third and final phase of this investigation is underway, in which the penetration of the materials by particles with diameters between 0.05 and 0.5 ..mu..m is being measured and the effectiveness of the methods for dose reduction in the presence of radioactive aerosols is being modeled.

  13. Ionization source utilizing a jet disturber in combination with an ion funnel and method of operation

    DOEpatents

    Smith, Richard D.; Kim, Taeman; Tang, Keqi; Udseth, Harold R.

    2003-06-24

    A jet disturber used in combination with an ion funnel to focus ions and other charged particles generated at or near atmospheric pressure into a relatively low pressure region, which allows increased conductance of the ions and other charged particles. The jet disturber is positioned within an ion funnel and may be interfaced with a multi-capillary inlet juxtaposed between an ion source and the interior of an instrument maintained at near atmospheric pressure. The invention finds particular advantages when deployed to improve the ion transmission between an electrospray ionization source and the first vacuum stage of a mass spectrometer.

  14. Ionization source utilizing a multi-capillary inlet and method of operation

    DOEpatents

    Smith, Richard D.; Kim, Taeman; Udseth, Harold R.

    2004-10-12

    A multi-capillary inlet to focus ions and other charged particles generated at or near atmospheric pressure into a relatively low pressure region, which allows increased conductance of ions and other charged particles. The multi-capillary inlet is juxtaposed between an ion source and the interior of an instrument maintained at near atmospheric pressure, it finds particular advantages when deployed to improve the ion transmission between an electrospray ionization source and the first vacuum stage of a mass spectrometer, and finds its greatest advantages when deployed in conjunction with an electrodynamic (RF) ion funnel deployed within the interior of the mass spectrometer, particularly an ion funnel equipped with a jet disturber.

  15. Method for analyzing the mass of a sample using a cold cathode ionization source mass filter

    DOEpatents

    Felter, Thomas E.

    2003-10-14

    An improved quadrupole mass spectrometer is described. The improvement lies in the substitution of the conventional hot filament electron source with a cold cathode field emitter array which in turn allows operating a small QMS at much high internal pressures then are currently achievable. By eliminating of the hot filament such problems as thermally "cracking" delicate analyte molecules, outgassing a "hot" filament, high power requirements, filament contamination by outgas species, and spurious em fields are avoid all together. In addition, the ability of produce FEAs using well-known and well developed photolithographic techniques, permits building a QMS having multiple redundancies of the ionization source at very low additional cost.

  16. Calculations of the ionization potentials of the halogens by the relativistic Hartree-Rock-Dirac method taking account of superposition of configurations

    SciTech Connect

    Tupitsyn, I.I.

    1988-03-01

    The ionization potentials of the halogen group have been calculated. The calculations were carried out using the relativistic Hartree-Fock method taking into account correlation effects. Comparison of theoretical results with experimental data for the elements F, Cl, Br, and I allows an estimation of the accuracy and reliability of the method. The theoretical values of the ionization potential of astatine obtained here may be of definite interest for the chemistry of astatine.

  17. Development and Validation of a Multiclass Method for Analysis of Veterinary Drug Residues in Milk Using Ultrahigh Performance Liquid Chromatography Electrospray Ionization Quadrupole Orbitrap Mass Spectrometry.

    PubMed

    Wang, Jian; Leung, Daniel; Chow, Willis; Chang, James; Wong, Jon W

    2015-10-21

    This paper presents the development and validation of a multiclass method for the analysis of veterinary drug residues in milk using ultrahigh performance liquid chromatography electrospray ionization quadrupole Orbitrap mass spectrometry (UHPLC/ESI Q-Orbitrap). The 12 classes of veterinary drugs (a total of 125) included in this study were endectocides, fluoroquinolones, ionophores, macrolides, nitroimidazole, NSAIDs, β-lactams, penicillins, phenicols, sulfonamides, tetracyclines, and aminoglycosides. Veterinary drug residues in milk were extracted using a modified salting-out supported liquid extraction (SOSLE) method, which entailed the precipitation of milk proteins using an extraction buffer (oxalic acid and EDTA, pH 3) and acetonitrile, a salting-out acetonitrile/water phase separation using ammonium sulfate, and solid-phase extraction (SPE) using polymeric reversed-phase sorbent cartridges. The final extracts were concentrated and reconstituted into a buffer solution and analyzed using UHPLC/ESI Q-Orbitrap mass spectrometry. The developed method was validated using a nested experimental design to evaluate the method performance characteristics, such as overall recovery, intermediate precision, and measurement uncertainty. The method was able to quantify or screen up to 105 veterinary drugs from 11 different classes, except aminoglycosides. The limits of quantification were as low as 1.0 μg/kg, with an analytical range from 1.0 to 100.0 μg/kg in milk. PMID:26416602

  18. Determination of corilagin in rat plasma using a liquid chromatography-electrospray ionization tandem mass spectrometric method.

    PubMed

    Chen, Qian Qian; Guo, Jianru; Fan, Hongyan; Wang, Caiyun; Xu, Fengguo; Zhang, Wei

    2015-10-01

    A sensitive and simple liquid chromatography-tandem mass spectrometric (HPLC-MS/MS) method for the determination of corilagin in rat plasma has been developed. Samples were prepared with protein precipitation method and analyzed with a triple quadrupole tandem mass spectrometer. We employed negative electrospray ionization as the ionization source and the analytes were detected in multiple reaction monitoring mode. Separation was achieved on a C8 column eluted with mobile phase consisting of methanol-0.1% formic acid in a gradient mode at the flow rate of 0.3 mL/min. The total run time was 7.0 min.This method was proved to have good linearity in the concentration range of 2.5-1000.0 ng/mL. The lower limit of quantification of corilagin was 2.5 ng/mL. The intra- and inter-day relative standard deviationa across three validation runs for four concentration levels were both <9.8%. The relative error was within ±6.0%. This assay offers advantages in terms of expediency and suitability for the analysis of corilagin in rat plasma. The practical utility of this new HPLC-MS/MS method was confirmed in pilot plasma concentration studies in rats following oral administration. PMID:25808247

  19. A practical gas chromatography flame ionization detection method for the determination of octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, and dodecamethylcyclohexasiloxane in silicone emulsions.

    PubMed

    Brothers, Herbert M; Bovens, Eric; Bruni, Antonio; Habitz, Tanya M; Hamachi, Tadashi; Han, Yuanhua; Ji, Zhouhua; Kerbleski, Joel J; Letouche, Claude; Lu, Yi Dong; Nguyen, Regis; Rivard, Michelle L; Qi, Xiaoman; Shoji, Miki; Tanaka, Ken; Tecklenburg, Ronald E

    2016-04-01

    A gas chromatography with flame ionization detection (GC-FID) method for analysis of D4, D5, and D6 cyclic siloxanes in silicone emulsions is described. Sample preparation involves breaking the emulsion with methanol and hexanes, and then analyzing the hexanes phase after derivatization with hexamethyldisilazane (HMDS). Silylation is performed to reduce the potential for formation of cyclic siloxanes during the course of the GC analysis. The accuracy of the method was verified by performing analyses on samples spiked with known levels of D4, D5 and D6 and by comparison to a referee method using atmospheric pressure chemical ionization liquid chromatography with mass spectrometry detection (APCI-LC-MS). Absolute differences of the results obtained between the two techniques were 0.03 weight percent or less, and relative differences were 15% or less. The reproducibility and ruggedness of the method was demonstrated by performing a global round robin test at four different geographic sites on four different types of silicone emulsions. The %RSDs obtained were less than 10% for all analytes and all emulsions examined. PMID:26968230

  20. Equation of motion coupled cluster methods for electron attachment and ionization potential in fullerenes C60 and C70

    SciTech Connect

    Bhaskaran-Nair, Kiran; Kowalski, Karol; Moreno, Juana; Jarrell, Mark; Shelton, William A.

    2014-08-21

    Discovery of fullerenes has opened a entirely new chapter in chemistry due to their wide range of properties which holds exciting applications in numerous disciplines of science. The Nobel Prize in Chemistry 1996 was awarded jointly to Robert F. Curl Jr., Sir Harold W. Kroto and Richard E. Smalley in recoginition for their discovery of this new carbon allotrope. In this letter we are reporting ionization potential and electron attachment studies on fullerenes (C60 and C70) obtained with novel parallel implementation of the EA-EOM-CCSD and IP-EOM-CCSD methods in NWChem program package.

  1. System and method of infrared matrix-assisted laser desorption/ionization mass spectrometry in polyacrylamide gels

    DOEpatents

    Haglund, Jr., Richard F.; Ermer, David R.; Baltz-Knorr, Michelle Lee

    2004-11-30

    A system and method for desorption and ionization of analytes in an ablation medium. In one embodiment, the method includes the steps of preparing a sample having analytes in a medium including at least one component, freezing the sample at a sufficiently low temperature so that at least part of the sample has a phase transition, and irradiating the frozen sample with short-pulse radiation to cause medium ablation and desorption and ionization of the analytes. The method further includes the steps of selecting a resonant vibrational mode of at least one component of the medium and selecting an energy source tuned to emit radiation substantially at the wavelength of the selected resonant vibrational mode. The medium is an electrophoresis medium having polyacrylamide. In one embodiment, the energy source is a laser, where the laser can be a free electron laser tunable to generate short-pulse radiation. Alternatively, the laser can be a solid state laser tunable to generate short-pulse radiation. The laser can emit light at various ranges of wavelength.

  2. Grid-based methods for diatomic quantum scattering problems II: Time-dependent treatment of single- and two-photon ionization of H2+

    SciTech Connect

    Rescigno, Thomas N.; Tao, L.; McCurdy, C.W.

    2009-04-20

    The time-dependent Schr\\"odinger equation for H2+ in a time-varying electromagnetic field is solved in the fixed-nuclei approximation using a previously developed finite-element/ discrete variable representation in prolate spheroidal coordinates. Amplitudes for single- and two-photon ionization are obtained using the method of exterior complex scaling to effectively propagate the field-free solutions from the end of the radiation pulse to infinite times. Cross sections are presented for one-and two-photon ionization for both parallel and perpendicular polarization of the photon field, as well as photoelectron angular distributions for two-photon ionization.

  3. Fuel cell with ionization membrane

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    2007-01-01

    A fuel cell is disclosed comprising an ionization membrane having at least one area through which gas is passed, and which ionizes the gas passing therethrough, and a cathode for receiving the ions generated by the ionization membrane. The ionization membrane may include one or more openings in the membrane with electrodes that are located closer than a mean free path of molecules within the gas to be ionized. Methods of manufacture are also provided.

  4. LETTER TO THE EDITOR: The validity of classical trajectory and perturbative quantal methods for electron-impact ionization from excited states in H-like ions

    NASA Astrophysics Data System (ADS)

    Griffin, D. C.; Ballance, C. P.; Pindzola, M. S.; Robicheaux, F.; Loch, S. D.; Ludlow, J. A.; Witthoeft, M. C.; Colgan, J.; Fontes, C. J.; Schultz, D. R.

    2005-06-01

    To test the validity of classical trajectory and perturbative quantal methods for electron-impact ionization of H-like ions from excited states, we have performed advanced close-coupling calculations of ionization from excited states in H, Li2+ and B4+ using the R-matrix with pseudo states and the time-dependent close-coupling methods. Comparisons with our classical trajectory Monte Carlo (CTMC) and distorted-wave (DW) calculations show that the CTMC method is more accurate than the DW method for H, but does not improve with n and grows substantially worse with Z, while the DW method improves with Z and grows worse with n.

  5. Comparison of Two Methods for the Determination of the Effects of Ionizing Radiation on Blood Cell Counts in Mice

    PubMed Central

    Romero-Weaver, Ana L.; Kennedy, Ann R.

    2012-01-01

    A reliable technique is needed to determine the effect of ionizing radiation on white blood cell (WBC) counts. Facilities that utilize automated methods can provide this service. However, utilizing external facilities can introduce additional variables, such as differences between time of sample collection and time of sample processing, which may affect the results. The purpose of the present study was to determine whether an automated method at an external facility can accurately determine radiation-induced changes in total WBC, lymphocyte and granulocyte counts when samples are analyzed at periods of time up to 24 hours after collection and stored either at room temperature or at 4°C. To accomplish this, we compared automated blood cell counts determined at an external facility with our manual blood cell counts processed immediately after sample collection or 24 h after sample collection and stored either at room temperature or 4°C from mice exposed to 2 Gy proton or 2 Gy gamma radiation. Our results show a close correlation and good agreement between the two methods, indicating that neither a delay of 24 hours in sample processing nor storage temperature affected white blood cell counts. Analysis of the effects of radiation on blood cell counts by either manual or automated cell counts revealed a statistically significant decrease in lymphocyte and granulocyte counts at different days post-irradiation, with no statistically significant difference between the methods employed; therefore both manual and automated blood cell counts are reliable methods to determine the effects of ionizing radiation in blood cells. PMID:23450807

  6. A method for profiling gangliosides in animal tissues using electrospray ionization-tandem mass spectrometry.

    PubMed

    Tsui, Zhao-Chun; Chen, Qi-Rui; Thomas, Michael J; Samuel, Michael; Cui, Zheng

    2005-06-15

    Gangliosides are critical in many functions of mammalian cells but present as a minor lipid component with many molecular species of subtle differences. Conventional strategies for profiling gangliosides suffer from poor reproducibility, low sensitivity, and low-throughput capacity. Prior separation of gangliosides by thin-layer chromatography and/or high-performance liquid chromatography not only was laborious and tedious but also could introduce uneven losses of molecular species. We developed a new strategy of using electrospray ionization-tandem mass spectrometry (ESI-MS/MS) to profile gangliosides with high-throughput potential. This strategy involves three new findings: (i) collision-induced fragmentation of gangliosides gave rise to a common ion of m/z 290, a derivative of N-acetylneuraminic acid; (ii) phospholipids exert a profound suppression of ganglioside detection in ESI-MS/MS to prevent a direct detection in total cellular lipid extracts; and (iii) enrichment of gangliosides in the aqueous phase from total cellular lipid extracts eliminates the damping effect of phospholipids and permits direct precursor scan. PMID:15907870

  7. Liquid Chromatography-Electrospray Ionization Mass Spectrometry Method for the Rapid Identification of Citrus Limonoid Glucosides in Citrus Juices and Extracts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A rapid and selective liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) method to screen citrus samples for limonoid glucosides and estimate their relative concentrations has been developed. This method utilizes a phenyl stationary phase, whereas previous methods have reli...

  8. Method for calculation of ionization profiles caused by cosmic rays in giant planet ionospheres from Jovian group

    NASA Astrophysics Data System (ADS)

    Velinov, P. I. Y.; Ruder, H.; Mateev, L.; Buchvarova, M.; Kostov, V.

    As a continuation of our studies of cosmic ray (CR) ionization in the atmospheres of the planets in the Solar system [Adv. Space Res. 27 (11) 1901, 2001a] we present a new method for the calculation of the electron production rate q(h) profiles due to particles of all energy intervals: galactic CR, anomalous CR component and other types of high energy particles. In the above mentioned paper, ionospheres of terrestrial planets are investigated, where the spherical model is used. For giant planets which have significant oblateness in spite of the isotropic penetration of the galactic CR in their atmospheres, the trivial integration on the azimuth angle is not applicable, because of the presentation of the planets as rotational ellipsoids and the azimuth dependence of the integrand function. The difference between profiles for spherical qS and ellipsoidal qE models of the terrestrial planets (Earth, Venus and Mars) is small. These differences in the qS and qE profiles increase significantly in the upper atmospheric layers of outer major planets. This requires the introduction of a modified Chapman function for oblate planet in the particle depth parameter (PDP), while considering the CR influence and ionization processes in the ionospheres of the giant planets. New calculations for relative profiles qE/qS in the atmosphere of Saturn are presented. For this purpose an improved primary CR spectrum with a new type of smoothing function f with tangens hyperbolicus is used.

  9. Equation-of-motion coupled-cluster method for doubly ionized states with spin-orbit coupling.

    PubMed

    Wang, Zhifan; Hu, Shu; Wang, Fan; Guo, Jingwei

    2015-04-14

    In this work, we report implementation of the equation-of-motion coupled-cluster method for doubly ionized states (EOM-DIP-CC) with spin-orbit coupling (SOC) using a closed-shell reference. Double ionization potentials (DIPs) are calculated in the space spanned by 2h and 3h1p determinants with the EOM-DIP-CC approach at the CC singles and doubles level (CCSD). Time-reversal symmetry together with spatial symmetry is exploited to reduce computational effort. To circumvent the problem of unstable dianion references when diffuse basis functions are included, nuclear charges are scaled. Effect of this stabilization potential on DIPs is estimated based on results from calculations using a small basis set without diffuse basis functions. DIPs and excitation energies of some low-lying states for a series of open-shell atoms and molecules containing heavy elements with two unpaired electrons have been calculated with the EOM-DIP-CCSD approach. Results show that this approach is able to afford a reliable description on SOC splitting. Furthermore, the EOM-DIP-CCSD approach is shown to provide reasonable excitation energies for systems with a dianion reference when diffuse basis functions are not employed. PMID:25877564

  10. Equation-of-motion coupled-cluster method for doubly ionized states with spin-orbit coupling

    SciTech Connect

    Wang, Zhifan; Hu, Shu; Guo, Jingwei; Wang, Fan

    2015-04-14

    In this work, we report implementation of the equation-of-motion coupled-cluster method for doubly ionized states (EOM-DIP-CC) with spin-orbit coupling (SOC) using a closed-shell reference. Double ionization potentials (DIPs) are calculated in the space spanned by 2h and 3h1p determinants with the EOM-DIP-CC approach at the CC singles and doubles level (CCSD). Time-reversal symmetry together with spatial symmetry is exploited to reduce computational effort. To circumvent the problem of unstable dianion references when diffuse basis functions are included, nuclear charges are scaled. Effect of this stabilization potential on DIPs is estimated based on results from calculations using a small basis set without diffuse basis functions. DIPs and excitation energies of some low-lying states for a series of open-shell atoms and molecules containing heavy elements with two unpaired electrons have been calculated with the EOM-DIP-CCSD approach. Results show that this approach is able to afford a reliable description on SOC splitting. Furthermore, the EOM-DIP-CCSD approach is shown to provide reasonable excitation energies for systems with a dianion reference when diffuse basis functions are not employed.

  11. Computational Calculation Of The Ionization Energies Of The Human Prion Protein By The Coarse-grain Method

    NASA Astrophysics Data System (ADS)

    Lyu, Justin; Andrianarijaona, V. M.

    2016-05-01

    The causes of the misfolding of prion protein -i.e. the transformation of PrPC to PrPSc - have not been clearly elucidated. Many studies have focused on identifying possible chemical conditions, such as pH, temperature and chemical denaturation, that may trigger the pathological transformation of prion proteins (Weiwei Tao, Gwonchan Yoon, Penghui Cao, `` β-sheet-like formation during the mechanical unfolding of prion protein'', The Journal of Chemical Physics, 2015, 143, 125101). Here, we attempt to calculate the ionization energies of the prion protein, which will be able to shed light onto the possible causes of the misfolding. We plan on using the coarse-grain method which allows for a more feasible calculation time by means of approximation. We believe that by being able to approximate the ionization potential, particularly that of the regions known to form stable β-strands of the PrPSc form, the possible sources of denaturation, be it chemical or mechanical, may be narrowed down.

  12. Calculation of the multifold differential cross section of the electron-impact ionization of molecular hydrogen by prolate spheroidal external complex scaling method with second Born corrections

    SciTech Connect

    Serov, Vladislav V.; Joulakian, Boghos B.

    2010-08-15

    We introduce the second Born dipole corrections in our recently developed ab initio procedure based on the driven Schroedinger equation formalism and the external scaling method for the determination of the multifold differential cross sections of the single and double ionization of molecular hydrogen by electron impact. To test our procedure, we first apply it to the excitation-ionization process of a He atom and compare the results to those of equivalent theoretical results, which are available. We then show that the introduction of the second Born correction including only dipole terms improves the agreement with the experimental results only in the case of the simple ionization. We think that the introduction of nondipole contributions in the second Born term which are not taken into account in the present work is necessary in the case of the double ionization process.

  13. Calcium - ionized

    MedlinePlus

    ... at both ionized calcium and calcium attached to proteins. You may need to have a separate ionized calcium test if you have factors that increase or decrease total calcium levels. These may include abnormal blood levels ...

  14. Accuracy of Calculated Chemical Shifts in Carbon 1s Ionization Energies from Single-Reference ab Initio Methods and Density Functional Theory.

    PubMed

    Holme, Alf; Børve, Knut J; Sæthre, Leif J; Thomas, T Darrah

    2011-12-13

    A database of 77 adiabatic carbon 1s ionization energies has been prepared, covering linear and cyclic alkanes and alkenes, linear alkynes, and methyl- or fluoro-substituted benzenes. Individual entries are believed to carry uncertainties of less than 30 meV in ionization energies and less than 20 meV for shifts in ionization energies. The database provides an unprecedented opportunity for assessing the accuracy of theoretical schemes for computing inner-shell ionization energies and their corresponding chemical shifts. Chemical shifts in carbon 1s ionization energies have been computed for all molecules in the database using Hartree-Fock, Møller-Plesset (MP) many-body perturbation theory of order 2 and 3 as well as various approximations to full MP4, and the coupled-cluster approximation with single- and double-excitation operators (CCSD) and also including a perturbational estimate of the energy effect of triple-excitation operators (CCSD(T)). Moreover, a wide range of contemporary density functional theory (DFT) methods are also evaluated with respect to computing experimental shifts in C1s ionization energies. Whereas the top ab initio methods reproduce the observed shifts almost to within the experimental uncertainty, even the best-performing DFT approaches meet with twice the root-mean-squared error and thrice the maximum error compared to CCSD(T). However, a number of different density energy functionals still afford sufficient accuracy to become tools in the analysis of complex C1s photoelectron spectra. PMID:26598356

  15. Surface ionization of terpene hydrocarbons

    SciTech Connect

    Zandberg, E.Y.; Nezdyurov, A.L.; Paleev, V.I.; Ponomarev, D.A.

    1986-09-01

    By means of a surface ionization indicator for traces of materials in the atmosphere it has been established that many natural materials containing terpenes and their derivatives are ionized on the surface of heated molybdenum oxide at atmospheric air pressure. A mass-spectrometer method has been used to explain the mechanism of ionization of individual terpene hydrocarbons and to establish its principles. The ionization of ..cap alpha..-pinene, alloocimene, camphene, and also adamantane on oxidized tungsten under vacuum conditions has been investigated. The ..cap alpha..-pinene and alloocimene are ionized by surface ionization but camphene and adamantane are not ionized under vacuum conditions. The surface ionization mass spectra of ..cap alpha..-pinene and alloocimene are of low line brightness in comparison with electron ionization mass spectra and differ between themselves. The temperature relations for currents of the same compositions of ions during ionization of ..cap alpha..-pinene and alloocimene are also different, which leads to the possibility of surface ionization analysis of mixtures of terpenes being ionized. The ionization coefficients of alloocimene and ..cap alpha..-pinene on oxidized tungsten under temperatures optimum for ionization and the ionization potentials of alloocimene molecules and of radicals (M-H) of both compounds have been evaluated.

  16. Measurement methods of ionization current and electric charges in radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Bozydar Knyziak, Adrian; Rzodkiewicz, Witold

    2016-06-01

    This paper deals with the problem of measurement of very low direct currents and electrical charges in dosimetric application. It describes the known and used methods of measurement: the current method, the charge method, and the null method. A new method, which is presented here, is a combination of the two latter methods. The new method is compared with the known methods of measurement and the results of this comparison are summarized and discussed. The new method allows achieving relative standard uncertainty of 0.003% for current measurements around 3 pA and a long term stability of about 0.01%. Apart from this, preliminary measurements by using a built in comparator were also performed. Therefore, the uncertainty budget of the measurements for the system without an external comparator was also taken into account in the paper. The combined measurement uncertainties for current measurements obtained for the above-mentioned two methods (the new method and the method with the comparator built in the 6517A Keithley electrometer used in our experiments) were similar.

  17. A Reliable and Simple Method for Fabricating a Poly(Dimethylsiloxane) Electrospray Ionization Chip with a Corner-Integrated Emitter

    PubMed Central

    Qian, Xiang; Xu, Jie; Yu, Cilong; Chen, Yan; Yu, Quan; Ni, Kai; Wang, Xiaohao

    2015-01-01

    Monolithically integrated emitters have been increasingly applied to microfluidic devices that are coupled to mass spectrometers (MS) as electrospray ionization sources (ESI). A new method was developed to fabricate a duplicable structure which integrated the emitter into a poly(dimethylsiloxane) chip corner. Two photoresist layers containing a raised base which guaranteed the precise integration of the electrospray tip emitter and ensured that the cutting out of the tip exerted no influence even during repeated prototyping were used to ease the operation of the process. Highly stable ESI-MS performance was obtained and the results were compared with those of a commercial fused-silica capillary source. Furthermore, chip-to-chip and run-to-run results indicated both reliability and reproducibility during repeated fabrication. These results reveal that the proposed chip can provide an ideal ion source for MS across many applications, especially with the perspective to be widely used in portable MS during on-site analysis. PMID:25894936

  18. Final report on the Copper Mountain conference on multigrid methods

    SciTech Connect

    1997-10-01

    The Copper Mountain Conference on Multigrid Methods was held on April 6-11, 1997. It took the same format used in the previous Copper Mountain Conferences on Multigrid Method conferences. Over 87 mathematicians from all over the world attended the meeting. 56 half-hour talks on current research topics were presented. Talks with similar content were organized into sessions. Session topics included: fluids; domain decomposition; iterative methods; basics; adaptive methods; non-linear filtering; CFD; applications; transport; algebraic solvers; supercomputing; and student paper winners.

  19. Sixth Copper Mountain Conference on Multigrid Methods. Final report

    SciTech Connect

    Not Available

    1994-07-01

    During the 5-day meeting, 112 half-hour talks on current research topics were presented. Session topics included: fluids, domain decomposition, iterative methods, Basics I and II, adaptive methods, nonlinear filtering, CFD I, II, and III, applications, transport, algebraic solvers, supercomputing, and student paper winners.

  20. Method development for the characterization of biofuel intermediate products using gas chromatography with simultaneous mass spectrometric and flame ionization detections.

    PubMed

    Sťávová, Jana; Stahl, Danese C; Seames, Wayne S; Kubátová, Alena

    2012-02-10

    Accurate analytical methods are required to develop and evaluate the quality of new renewable transportation fuels and intermediate organic liquid products (OLPs). Unfortunately, existing methods developed for the detailed characterization of petroleum products, are not accurate for many of the OLPs generated from non-petroleum feedstocks. In this study, a method was developed and applied to the detailed characterization of complex OLPs formed during triacylglyceride (TG) pyrolysis which is the basis for generating one class of emerging biofuels. This method uses gas chromatography coupled simultaneously with flame ionization and mass spectrometry detectors (GC-FID/MS). The FID provided accurate quantification of carbonaceous species while MS enabled identification of unknown compounds. A programed temperature vaporizer using a 25 °C, 0.1 min, 720 °C min(-1), 350 °C, 5 min temperature program is employed which minimizes compound discrimination better than the more commonly utilized split/splitless injector, as verified with injections at 250 and 350 °C. Two standard mixtures featuring over 150 components are used for accurate identification and a designed calibration standard accounts for compound discrimination at the injector and differing FID responses of various classes of compounds. This new method was used to identify and quantify over 250 species in OLPs generated from canola oil, soybean oil, and canola methyl ester (CME). In addition to hydrocarbons, the method was used to quantify polar (upon derivatization) and unidentified species, plus the unresolved complex mixture that has not typically been determined in previous studies. Repeatability of the analytical method was below 5% RSD for all individual components. Using this method, the mass balance was closed for samples derived from canola and soybean oil but only ca. 77 wt% of the OLP generated from CME could be characterized. The ability to close the mass balance depended on sample origin

  1. A Survey of Methods of Teaching Mathematics. Final Report.

    ERIC Educational Resources Information Center

    Kovach, L. D.

    Several methods of teaching college-level mathematics sequences are examined for their advantages, disadvantages, and costs. Materials considered include textbooks, film sequences, videotaped lectures, and individualized teaching machines. (SD)

  2. THORs Power Method for Hydrokinetic Devices - Final Report

    SciTech Connect

    J. Turner Hunt; Joel Rumker

    2012-08-08

    Ocean current energy represents a vast untapped source of renewable energy that exists on the outer continental shelf areas of the 5 major continents. Ocean currents are unidirectional in nature and are perpetuated by thermal and salinity sea gradients, as well as coriolis forces imparted from the earth's rotation. This report details THORs Power Method, a breakthrough power control method that can provide dramatic increases to the capacity factor over and above existing marine hydrokinetic (MHK) devices employed in the extraction of energy from ocean currents. THORs Power Method represents a constant speed, variable depth operational method that continually locates the ocean current turbine at a depth at which the rated power of the generator is routinely achieved. Variable depth operation is achieved by using various vertical force effectors, including ballast tanks for variable weight, a hydrodynamic wing for variable lift or down force and drag flaps for variable vehicle drag forces.

  3. Forward in time methods for global climate research. Final report

    SciTech Connect

    Margolin, L.G.; Smolarkiewicz, P.K.

    1996-05-01

    Purpose is to demonstrate feasibility and utility of nonoscillatory forward-in-time (NFT) methods formodeling the global dynamics of the atmosphere and oceans. This includes development of new algorithms, construction of numerical models, and testing these models. One aspect of the research is to compare two variants of NFT methods, one based on Eulerian approximations and the other based on semi-Lagrangian approximations.

  4. Spectral methods applied to fluidized bed combustors. Final report

    SciTech Connect

    Brown, R.C.; Christofides, N.J.; Junk, K.W.; Raines, T.S.; Thiede, T.D.

    1996-08-01

    The objective of this project was to develop methods for characterizing fuels and sorbents from time-series data obtained during transient operation of fluidized bed boilers. These methods aimed at determining time constants for devolatilization and char burnout using carbon dioxide (CO{sub 2}) profiles and from time constants for the calcination and sulfation processes using CO{sub 2} and sulfur dioxide (SO{sub 2}) profiles.

  5. CREATININE DETERMINATION IN URINE BY LIQUID CHROMATOGRAPHY-ELECTROSPRAY IONIZATION-TANDEM MASS SPECTROMETRY METHOD.

    PubMed

    Dereziński, Paweł; Klupczyńska, Agnieszka; Sawicki, Wojciech; Kokot, Zenon J

    2016-01-01

    Creatinine determination in urine is used to estimate the completeness of the 24-h urine collection, compensation for variable diuresis and as a preliminary step in protein profiling in urine. Despite the fact that a wide range of methods of measuring creatinine level in biofluids has been developed, many of them are adversely affected by interfering substances. A new liquid chromatography-tandem mass spectrometry method for creatinine determination in urine has been developed. Chromatographic separation was performed by applying C18 column and a gradient elution. Analyses were carried out on a triple quadrupole mass spectrometer equipped with an electrospray ion source. The developed method was fully validated according to the international guidelines. The quantification range of the method was 5-1500 ng/mL, which corresponds to 1-300 mg/dL in urine. Limit of detection and quantitation were 2 and 5 ng/mL, respectively. Additionally, the comparison of creatinine determination by newly developed method to the colorimetric method was performed. The method enables the determination of creatinine in urine samples with a minimal sample preparation, excellent sensitivity and prominent selectivity. Since mass spectrometry allows to measure a number of compounds simultaneously, a future perspective would be to incorporate the determination of other clinically important compounds excreted in urine. PMID:27180423

  6. Determination of triacylglycerol regioisomers using electrospray ionization-quadrupole ion trap mass spectrometry with a kinetic method.

    PubMed

    Leveque, Nathalie L; Acheampong, Akwasi; Heron, Sylvie; Tchapla, Alain

    2012-04-13

    The kinetic method was applied to differentiate and quantify mixtures of regioisomeric triacylglycerols (TAGs) by generating and mass selecting alkali ion bound metal dimeric clusters with a TAG chosen as reference (ref) and examining their competitive dissociations in a quadrupole ion trap mass spectrometer. This methodology readily distinguished pairs of regioisomers (AAB/ABA) such as LLO/LOL, OOP/OPO and SSP/SPS and consequently distinguished sn-1/sn-3, sn-2 substituents on the glycerol backbone. The dimeric complex ions [ref, Li, TAG((AAB and/or ABA))](+) generated by electrospray ionization mass spectrometry were subjected to collision induced dissociation causing competitive loss of either the neutral TAG reference (ref) leading to [Li(AAB and/or ABA)](+) or the neutral TAG molecule (TAG((AAB and/or ABA))) leading to [ref, Li](+). The ratio of the two competitive dissociation rates, defined by the product ion branching ratio (R(iso)), was related via the kinetic method to the regioisomeric composition of the investigated TAG mixture. In this work, a linear correlation was established between composition of the mixture of each TAG regioisomer and the logarithm of the branching ratio for competitive fragmentation. Depending on the availability of at least one TAG regioisomer as standard, the kinetic method and the standard additions method led to the quantitative analysis of natural TAG mixtures. PMID:22444537

  7. Development of Mass Spectrometric Ionization Methods for Fullerenes and Fullerene Derivatives

    EPA Science Inventory

    Currently investigations into the environmental behavior of fullerenes and fullerene derivatives is hampered by the lack of well characterized standards and by the lack of readily available quantitative analytical methods. Reported herein are investigations into the utility of ma...

  8. Final Report: Symposium on Adaptive Methods for Partial Differential Equations

    SciTech Connect

    Pernice, Michael; Johnson, Christopher R.; Smith, Philip J.; Fogelson, Aaron

    1998-12-08

    Complex physical phenomena often include features that span a wide range of spatial and temporal scales. Accurate simulation of such phenomena can be difficult to obtain, and computations that are under-resolved can even exhibit spurious features. While it is possible to resolve small scale features by increasing the number of grid points, global grid refinement can quickly lead to problems that are intractable, even on the largest available computing facilities. These constraints are particularly severe for three dimensional problems that involve complex physics. One way to achieve the needed resolution is to refine the computational mesh locally, in only those regions where enhanced resolution is required. Adaptive solution methods concentrate computational effort in regions where it is most needed. These methods have been successfully applied to a wide variety of problems in computational science and engineering. Adaptive methods can be difficult to implement, prompting the development of tools and environments to facilitate their use. To ensure that the results of their efforts are useful, algorithm and tool developers must maintain close communication with application specialists. Conversely it remains difficult for application specialists who are unfamiliar with the methods to evaluate the trade-offs between the benefits of enhanced local resolution and the effort needed to implement an adaptive solution method.

  9. Sensitive isotope dilution liquid chromatography/electrospray ionization tandem mass spectrometry method for the determination of acrylamide in chocolate.

    PubMed

    Ren, Yiping; Zhang, Yu; Jiao, Jingjing; Cai, Zengxuan; Zhang, Ying

    2006-03-01

    Isotope dilution liquid chromatography coupled with electrospray ionization tandem mass spectrometry (LC-MS/MS) was applied to the quantification of acrylamide in chocolate matrixes (dark chocolate, milk chocolate, chocolate with nuts, chocolate with almonds, and chocolate with wheat best element). The method included defatting with petroleum ether, extracting with aqueous solution of 2 mol l(-1) sodium chloride and clean-up by solid-phase (SPE) with OASIS HLB 6 cm3 cartridges. Acrylamide was detected with an Atlantis dC18 5 microm 210 x 1.5 mm column using 10% methanol/0.1% formic acid in water as the mobile phase. The analytical method was in-house validated and good results were obtained with respect to repeatability (RSD < 3.5%) and recovery (86-93%), which fulfilled the requirements defined by European Union legislation. The acrylamide levels in chocolate were 23-537 microg kg(-1). Therefore, the method was successfully used for the quantitative analysis of acrlyamide in various chocolate products. PMID:16517524

  10. Rapid Microcystin Determination Using a Paper Spray Ionization Method with a Time-of-Flight Mass Spectrometry System.

    PubMed

    Zhu, Xiaoqiang; Huang, Zhengxu; Gao, Wei; Li, Xue; Li, Lei; Zhu, Hui; Mo, Ting; Huang, Bao; Zhou, Zhen

    2016-07-13

    The eutrophication of surface water sources and climate changes have resulted in an annual explosion of cyanobacterial blooms in many irrigating and drinking water resources. To decrease health risks to the public, a rapid real time method for the synchronous determination of two usually harmful microcystins (MC-RR and MC-LR) in environmental water samples was built by employing a paper spray ionization method coupled with a time-of-flight mass spectrometer system. With this approach, direct analysis of microcystin mixtures without sample preparation has been achieved. Rapid detection was performed, simulating the release process of microcystins in reservoir water samples, and the routine detection frequency was every three minutes. The identification time of microcystins was reduced from several hours to a few minutes. The limit of detection is 1 μg/L, and the limit of quantitation is 3 μg/L. This method displays the ability for carrying out rapid, direct, and high-throughput experiments for determination of microcystins, and it would be of significant interest for environmental and food safety applications. PMID:27345366

  11. [Numerical methods for multi-fluid flows]. Final progress report

    SciTech Connect

    Pozrikidis, C.

    1998-07-21

    The central objective of this research has been to develop efficient numerical methods for computing multi-fluid flows with large interfacial deformations, and apply these methods to study the rheology of suspensions of deformable particles with viscous and non-Newtonian interfacial behavior. The mathematical formulation employs boundary-integral, immersed-boundary, and related numerical methods. Particles of interest include liquid drops with constant surface tension and capsules whose interfaces exhibit viscoelastic and incompressible characteristics. In one family of problems, the author has considered the shear-driven and pressure-driven flow of a suspension of two-dimensional liquid drops with ordered and random structure. In a second series of investigations, the author carried out dynamic simulations of two-dimensional, unbounded, doubly-periodic shear flows with random structure. Another family of problems addresses the deformation of three-dimensional capsules whose interfaces exhibit isotropic surface tension, viscous, elastic, or incompressible behavior, in simple shear flow. The numerical results extend previous asymptotic theories for small deformations and illuminate the mechanism of membrane rupture.

  12. An evaluation study of EPA Method 8. Final report

    SciTech Connect

    Knoll, J.E.; Midgett, M.R.

    1980-03-01

    Techniques used in EPA Method 8, the source test method for acid mist and sulfur dioxide emissions from sulfuric acid plants, have been evaluated. Evidence is shown that trace amounts of peroxides in isopropyl alcohol result in the conversion of sulfur dioxide to sulfate and cause positive errors in acid mist values. Methods for measuring and purifying IPA are described. No conversion of sulfur dioxide to sulfate on filters or filter supports were observed. Collection efficiencies of train components are described and two alternate indicators are evaluated. Solid ammonium sulfates's use as audit samples is discussed. Field testing is also described in which paired-probe techniques were employed. They showed that, when sulfur trioxide is absent from the effluent streams, acid mist is efficiently collected by a single filter, even when the isopropyl alcohol-containing impinger is eliminated. Both ammonia and dimethyl analine, which are employed as gas scrubbers, cause sulfur dioxide to be retained in the isopropyl alcohol and result in large positive interferences in acid mist values. Ferric oxide, present in the effluents of steel pickling operations, causes a large negative interference in acid mist values.

  13. Creating a strategy for science-based national policy: Addressing conflicting views on the health risk of low-level ionizing radiation. Final report, Wingspread Conference

    SciTech Connect

    McClellan, Roger O.; Apple, Martin A.

    1998-03-03

    Significant cancer risk for adults exposed to more than 100 millisieverts (10 REM) of ionizing radiation. More research on low-level ionizing radiation is needed in molecular and cellular mechanisms of injury and ongoing exposed populations. Implementation costs should be considered in regulating low-level ionizing radiation. Comparative risk assessment is a powerful tool for risk-based policy formation, and conflicting legal statutes should become harmonized for radiation regulation. More public dialog on low-level radiation is needed. A high level commission should evaluate radiation hazard control practices.

  14. Modelling the transport of ionizing radiation using the finite element method.

    PubMed

    Boman, E; Tervo, J; Vauhkonen, M

    2005-01-21

    Radiation therapy treatment planning is based on the calculation of the absorbed dose in the patient domain. For exact dose calculations, the solution of three coupled Boltzmann transport equations (BTEs) is needed to cover the transport of photons, electrons and positrons. In many situations, however, two coupled systems for photons and electrons are enough. The use of numerical methods in finding the exact solution of the unknown particle fluxes is necessary. In the stationary case, the BTE has six variables, three spatial, two directional and one energy variable. In this paper, we describe an approach in which the finite element method (FEM) is used to solve the six-dimensional problem. For the coupled photon-electron system, the variational formulation and the existence and uniqueness of the solution are derived. We simulate the solution of two coupled BTEs describing the travelling of photons and electrons in two spatial dimensions. The results are compared to Monte Carlo calculations with good agreement. PMID:15742943

  15. Hydrogeological-Geophysical Methods for Subsurface Site Characterization - Final Report

    SciTech Connect

    Rubin, Yoram

    2001-01-01

    The goal of this research project is to increase water savings and show better ecological control of natural vegetation by developing hydrogeological-geophysical methods for characterizing the permeability and content of water in soil. The ground penetrating radar (GPR) tool was developed and used as the surface geophysical method for monitoring water content. Initial results using the tool suggest that surface GPR is a viable technique for obtaining precision volumetric water content profile estimates, and that laboratory-derived petrophysical relationships could be applied to field-scale GPR data. A field-scale bacterial transport study was conducted within an uncontaminated sandy Pleistocene aquifer to evaluate the importance of heterogeneity in controlling the transport of bacteria. Geochemical, hydrological, geological, and geophysical data were collected to characterize the site prior to and after chemical and bacterial injection experiments. Study results shows that, even within the fairly uniform shallow marine deposits of the narrow channel focus area, heterogeneity existed that influenced the chemical tracer transport over lateral distances of a few meters and vertical distances of less than a half meter. The interpretation of data suggest that the incorporation of geophysical data with limited hydrological data may provide valuable information about the stratigraphy, log conductivity values, and the spatial correlation structure of log conductivity, which have traditionally been obtainable only by performing extensive and intrusive hydrological sampling.

  16. Relativistic equation-of-motion coupled-cluster method using open-shell reference wavefunction: Application to ionization potential.

    PubMed

    Pathak, Himadri; Sasmal, Sudip; Nayak, Malaya K; Vaval, Nayana; Pal, Sourav

    2016-08-21

    The open-shell reference relativistic equation-of-motion coupled-cluster method within its four-component description is successfully implemented with the consideration of single- and double- excitation approximations using the Dirac-Coulomb Hamiltonian. At the first attempt, the implemented method is employed to calculate ionization potential value of heavy atomic (Ag, Cs, Au, Fr, and Lr) and molecular (HgH and PbF) systems, where the effect of relativity does really matter to obtain highly accurate results. Not only the relativistic effect but also the effect of electron correlation is crucial in these heavy atomic and molecular systems. To justify the fact, we have taken two further approximations in the four-component relativistic equation-of-motion framework to quantify how the effect of electron correlation plays a role in the calculated values at different levels of theory. All these calculated results are compared with the available experimental data as well as with other theoretically calculated values to judge the extent of accuracy obtained in our calculations. PMID:27544090

  17. Workshop on molecular methods for genetic diagnosis. Final technical report

    SciTech Connect

    Rinchik, E.M.

    1997-07-01

    The Sarah Lawrence College Human Genetics Program received Department of Energy funding to offer a continuing medical education workshop for genetic counselors in the New York metropolitan area. According to statistics from the National Society of Genetic Counselors, there are approximately 160 genetic counselors working in the tri-state area (New York, New Jersey, and Connecticut), and many of them had been working in the field for more than 10 years. Thus, there was a real need to offer these counselors an in-depth opportunity to learn the specifics of the major advances in molecular genetics, and, in particular, the new approaches to diagnostic testing for genetic disease. As a result of the DOE Award DE-FG02-95ER62048 ($20,583), in July 1995 we offered the {open_quotes}Workshop on Molecular Methods for Genetic Diagnosis{close_quotes} for 24 genetic counselors in the New York metropolitan area. The workshop included an initial review session on the basics of molecular biology, lectures and discussions on past and current topics in molecular genetics and diagnostic procedures, and, importantly, daily laboratory exercises. Each counselor gained not only background, but also firsthand experience, in the major techniques of biochemical and molecular methods for diagnosing genetic diseases as well as in mathematical and computational techniques involved in human genetics analyses. Our goal in offering this workshop was not to make genetic counselors experts in these laboratory diagnostic techniques, but to acquaint them, by hands-on experience, about some of the techniques currently in use. We also wanted to provide them a technical foundation upon which they can understand and appreciate new technical developments arising in the near future.

  18. Assessment of voltage security methods and tools. Final report

    SciTech Connect

    Vaahedi, E.

    1995-10-01

    The main objective of this project was to provide a comprehensive assessment and evaluation of tools that allow the optimal placement and operation of VAr control devices to ensure voltage secure operation of the power system. These tools included the ones currently used by utilities as well as the most promising OPF/optimal VAr allocation programs. To achieve the project objectives, the following tasks were undertaken: An industry survey was conducted to determine the current practices by utilities in regard to voltage security. This was reinforced with comprehensive reviews of (a) technical and economic considerations in establishing voltage profile and (b) optimal power flow/VAr planning methods. Load response tests were performed to identify load models for voltage security. Parameter estimation methods were developed to extract parameters from measured data for static and dynamic models. A generic dynamic load model was developed and incorporated within EPRI`s LOADSYN program. Voltage stability and VAr design studies were carried out on four utility systems using existing static and dynamic simulation tools. Voltage security and VAr planning issues were formulated as optimization problems. Three OPF/optimal VAr planning tools were used to address these problems. Studies were conducted on four utility systems. Based on the findings of the project, recommendations were made in the following primary areas: Bridging the gap of knowledge related to voltage stability among utilities; Load modeling for voltage stability applications; Procedure for voltage stability analysis using existing tools; Procedures for voltage security analysis using OPF/optimal VAr planning tools; Recommendations for further development of OPF/optimal VAr planning tools as well as specifications for a new generation of optimal VAr planning tools.

  19. Genome Wide Evaluation of Normal Human Tissue in Response to Controlled, In vivo Low-Dose Low LET Ionizing Radiation Exposure: Pathways and Mechanisms Final Report, September 2013

    SciTech Connect

    Rocke, David M.

    2013-09-09

    During course of this project, we have worked in several areas relevant to low-dose ionizing radiation. Using gene expression to measure biological response, we have examined the response of human skin exposed in-vivo to radation, human skin exposed ex-vivo to radiation, and a human-skin model exposed to radiation. We have learned a great deal about the biological response of human skin to low-dose ionizing radiation.

  20. A SIMPLE AND RAPID MATRIX-ASSISTED LASER DESORPTION/IONIZATION TIME OF FLIGHT MASS SPECTROMETRY METHOD TO SCREEN FISH PLASMA SAMPLES FOR ESTROGEN-RESPONSIVE BIOMARKERS

    EPA Science Inventory

    In this study, we describe and evaluate the performance of a simple and rapid mass spectral method for screening fish plasma for estrogen-responsive biomarkers using matrix assisted laster desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) couopled with a short...

  1. Benthic flux sampling device. Operations, methods, and procedures. Final report

    SciTech Connect

    Chadwick, D.B.; Stanley, S.D.

    1993-02-01

    As part of the Navy's clean up program, the Installation Restoration (IR) Program, methods are evaluated to better assess suitable remediation and restoration strategies for sites that contain sediments contaminated with toxic compounds. Toward this goal, we have developed a Benthic Flux Sampling Device (BFSD) to quantify mobility of toxicants from contaminated sediments. The BFSD is a remote instrument for in-situ measurement of toxicant flux rates from sediments. A flux out of or into the sediment is measured by isolating a volume of water above the sediment, drawing off samples from this volume over time, and analyzing these samples for increase or decrease in toxicant concentration. Increasing concentrations indicate that the toxicant is fluxing out of the sediment. Decreasing concentrations indicate that the toxicant is fluxing into the sediment. Initial tests carried out in conjunction with Scripps Institution of Oceanography and the Environmental Protection Agency's Environmental Research Laboratory (Newport, OR) show that the system is capable of measuring a variety of contaminant and nutrient fluxes.... Marine chemistry, Benthic flux.

  2. Research on stochastic power-flow study methods. Final report

    SciTech Connect

    Heydt, G. T.

    1981-01-01

    A general algorithm to determine the effects of uncertainty in bus load and generation on the output of conventional power flow analysis is presented. The use of statistical moments is presented and developed as a means for representing the stochastic process. Statistical moments are used to describe the uncertainties, and facilitate the calculations of single and multivarlate probability density functions of input and output variables. The transformation of the uncertainty through the power flow equations is made by the expansion of the node equations in a multivariate Taylor series about an expected operating point. The series is truncated after the second order terms. Since the power flow equations are nonlinear, the expected values of output quantities is in general not the solution to the conventional load flow problem using expected values of input quantities. The second order transformation offers a correction vector and allows the consideration of larger uncertainties which have caused significant error in the current linear transformation algorithms. Voltage controlled busses are included with consideration of upper and lower limits. The finite reactive power available at generation sites, and fixed ranges of transformer tap movement may have a significant effect on voltage and line power flow statistics. A method is given which considers limitation constraints in the evaluation of all output quantities. The bus voltages, line power flows, transformer taps, and generator reactive power requirements are described by their statistical moments. Their values are expressed in terms of the probability that they are above or below specified limits, and their expected values given that they do fall outside the limits. Thus the algorithm supplies information about severity of overload as well as probability of occurrence. An example is given for an eleven bus system, evaluating each quantity separately. The results are compared with Monte Carlo simulation.

  3. The Tremaine-Weinberg Method for Pattern Speeds Using Hα Emission from Ionized Gas

    NASA Astrophysics Data System (ADS)

    Beckman, J. E.; Fathi, K.; Piñol, N.; Toonen, S.; Hernandez, O.; Carignan, C.

    2008-10-01

    The Fabry-Perot interferometer FaNTOmM was used at the 3.6-m CFHT and the 1.6-m Mont Mégantic Telescope to obtain data cubes in Hα of 9 nearby spiral galaxies from which maps in integrated intensity, velocity, and velocity dispersion were derived. We then applied the Tremaine-Weinberg method, in which the pattern speed can be deduced from its velocity field, by finding the integrated value of the mean velocity along a slit parallel to the major axis weighted by the intensity and divided by the weighted mean distance of the velocity points from the tangent point measured along the slit. The measured variables can be used either to make separate calculations of the pattern speed and derive a mean, or in a plot of one against the other for all the points on all slits, from which a best fit value can be derived. Linear fits were found for all the galaxies in the sample. For two galaxies a clearly separate inner pattern speed with a higher value, was also identified and measured.

  4. Ionizing radiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter gives a comprehensive review on ionizing irradiation of fresh fruits and vegetables. Topics include principles of ionizing radiation, its effects on pathogenic and spoilage microorganisms, shelf-life, sensory quality, nutritional and phytochemical composition, as well as physiologic and...

  5. LDRD Final Report: Adaptive Methods for Laser Plasma Simulation

    SciTech Connect

    Dorr, M R; Garaizar, F X; Hittinger, J A

    2003-01-29

    The goal of this project was to investigate the utility of parallel adaptive mesh refinement (AMR) in the simulation of laser plasma interaction (LPI). The scope of work included the development of new numerical methods and parallel implementation strategies. The primary deliverables were (1) parallel adaptive algorithms to solve a system of equations combining plasma fluid and light propagation models, (2) a research code implementing these algorithms, and (3) an analysis of the performance of parallel AMR on LPI problems. The project accomplished these objectives. New algorithms were developed for the solution of a system of equations describing LPI. These algorithms were implemented in a new research code named ALPS (Adaptive Laser Plasma Simulator) that was used to test the effectiveness of the AMR algorithms on the Laboratory's large-scale computer platforms. The details of the algorithm and the results of the numerical tests were documented in an article published in the Journal of Computational Physics [2]. A principal conclusion of this investigation is that AMR is most effective for LPI systems that are ''hydrodynamically large'', i.e., problems requiring the simulation of a large plasma volume relative to the volume occupied by the laser light. Since the plasma-only regions require less resolution than the laser light, AMR enables the use of efficient meshes for such problems. In contrast, AMR is less effective for, say, a single highly filamented beam propagating through a phase plate, since the resulting speckle pattern may be too dense to adequately separate scales with a locally refined mesh. Ultimately, the gain to be expected from the use of AMR is highly problem-dependent. One class of problems investigated in this project involved a pair of laser beams crossing in a plasma flow. Under certain conditions, energy can be transferred from one beam to the other via a resonant interaction with an ion acoustic wave in the crossing region. AMR provides an

  6. Direct Identification of Urinary Tract Pathogens from Urine Samples, Combining Urine Screening Methods and Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry.

    PubMed

    Íñigo, Melania; Coello, Andreu; Fernández-Rivas, Gema; Rivaya, Belén; Hidalgo, Jessica; Quesada, María Dolores; Ausina, Vicente

    2016-04-01

    Early diagnosis of urinary tract infections (UTIs) is essential to avoid inadequate or unnecessary empirical antibiotic therapy. Microbiological confirmation takes 24 to 48 h. The use of screening methods, such as cytometry and automated microscopic analysis of urine sediment, allows the rapid prediction of negative samples. In addition, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is a widely established technique in clinical microbiology laboratories used to identify microorganisms. We evaluated the ability of MALDI-TOF MS to identify microorganisms from direct urine samples and the predictive value of automated analyzers for the identification of microorganisms in urine by MALDI-TOF MS. A total of 451 urine samples from patients with suspected UTIs were first analyzed using the Sysmex UF-1000iflow cytometer, an automatic sediment analyzer with microscopy (SediMax), culture, and then processed by MALDI-TOF MS with a simple triple-centrifuged procedure to obtain a pellet that was washed and centrifuged and finally applied directly to the MALDI-TOF MS plate. The organisms in 336 samples were correctly identified, mainly those with Gram-negative bacteria (86.10%). No microorganisms were misidentified, and noCandidaspp. were correctly identified. Regarding the data from autoanalyzers, the best bacteriuria cutoffs were 1,000 and 200 U/μl for UF-1000iand SediMax, respectively. It was concluded that the combination of a urine screening method and MALDI-TOF MS provided a reliable identification from urine samples, especially in those containing Gram-negative bacteria. PMID:26818668

  7. A comprehensive quantification method for eicosanoids and related compounds by using liquid chromatography/mass spectrometry with high speed continuous ionization polarity switching.

    PubMed

    Yamada, Masaki; Kita, Yoshihiro; Kohira, Takahiro; Yoshida, Kenji; Hamano, Fumie; Tokuoka, Suzumi M; Shimizu, Takao

    2015-07-15

    Fatty acids and related metabolites, comprising several hundreds of molecular species, are an important target in disease metabolomics, as they are involved in various mammalian pathologies and physiologies. Selected reaction monitoring (SRM) analysis, which is capable of monitoring hundreds of compounds in a single run, has been widely used for comprehensive quantification. However, it is difficult to monitor a large number of compounds with different ionization polarity, as polarity switching requires a sub-second period per cycle in classical mass spectrometers. In the present study, we developed and evaluated a comprehensive quantification method for eicosanoids and related compounds by using LC/MS with high-speed continuous ionization polarity switching. The new method employs a fast (30ms/cycle) continuous ionization polarity switching, and differentiates 137 targets either by chromatography or by SRM transition. Polarity switching did not affect the lower limits of quantification, which ranged similarly from 0.5 to 200pg on column. Lipid extracts from mouse tissues were analyzed by this method, and 65 targets were quantitatively detected in the brain, including 6 compounds analyzed in the positive ion mode. We demonstrated that a fast continuous ionization polarity switching enables the quantification of a wide variety of lipid mediator species without compromising the sensitivity and reliability. PMID:26046978

  8. Method for ultra-trace cesium isotope ratio measurements from environmental samples using thermal ionization mass spectrometry

    SciTech Connect

    Snow, Mathew S.; Snyder, Darin C.; Mann, Nick R.; White, Byron M.

    2015-05-01

    135Cs/137Cs isotope ratios can provide the age, origin and history of environmental Cs contamination. Relatively high precision 135Cs/137Cs isotope ratio measurements from samples containing femtogram quantities of 137Cs are needed to accurately track contamination resuspension and redistribution following environmental 137Cs releases; however, mass spectrometric analyses of environmental samples are limited by the large quantities of ionization inhibitors and isobaric interferences which are present at relatively high concentrations in the environment. We report a new approach for Cs purification from environmental samples. An initial ammonium molybdophosphate-polyacrylonitrile (AMP-PAN) column provides a robust method for extracting Cs under a wide variety of sample matrices and mass loads. Cation exchange separations using a second AMP-PAN column result in more than two orders of magnitude greater Cs/Rb separation factors than commercially available strong cation exchangers. Coupling an AMP-PAN cation exchanging step to a microcation column (AG50W resin) enables consistent 2-4% (2σ) measurement errors for samples containing 3-6,000 fg 137Cs, representing the highest precision 135Cs/137Cs ratio measurements currently reported for soil samples at the femtogram level.

  9. Inflation-Fixation Method for Lipidomic Mapping of Lung Biopsies by Matrix Assisted Laser Desorption/Ionization-Mass Spectrometry Imaging.

    PubMed

    Carter, Claire L; Jones, Jace W; Farese, Ann M; MacVittie, Thomas J; Kane, Maureen A

    2016-05-01

    Chronic respiratory diseases are among the leading causes of deaths worldwide and major contributors of morbidity and global disease burden. To appropriately investigate lung disease, the respiratory airways must be fixed in their physiological orientation and should be inflated prior to investigations. We present an inflation-fixation method that enables lipidomic investigations of whole lung samples and resected biopsy specimens by matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI). Formalin-inflation enables sample preparation to parallel standard clinical and surgical procedures, in addition to greatly reducing the complexity of analysis, by decreasing the number of analytes in the MALDI plume and reducing adduct formation in the resulting mass spectra. The reduced complexity increased sensitivity and enabled high-resolution imaging acquisitions without any loss in analyte detection at 10 and 20 μm scans. We present a detailed study of over 100 lipid ions detected in positive and negative ion modes covering the conducting and respiratory airways and parts of the peripheral nervous tissue running through the lungs. By defining the resolution required for clear definition of the alveolar space and thus the respiratory airways we have provided a guideline for MSI investigations of respiratory diseases involving the airways, including the interstitium. This study has provided a detailed map of lipid species and their localization within larger mammalian lung samples, for the first time, thus categorizing the lipidome for future MALDI-MSI studies of pulmonary diseases. PMID:27028398

  10. A rapid liquid chromatography electrospray ionization mass spectrometry(n) method for evaluation of synephrine in Citrus aurantium L. samples.

    PubMed

    Mattoli, Luisa; Cangi, Francesca; Maidecchi, Anna; Ghiara, Caterina; Tubaro, Michela; Traldi, Pietro

    2005-12-28

    Immature bitter orange fruit and its extracts have been introduced into the market as an alternative to Ephedra in weight loss products. However, the safety of the immature bitter orange fruit and its extracts is a debated argument due to the presence of synephrine, a constituent known as a sympathomimetic agent. In this paper, we describe the development of a new, rapid, and simple liquid chromatography-electrospray ionization-tandem mass spectrometry method devoted to the quantitative determination of synephrine in bitter orange samples, containing a high quantity of synephrine, and sweet orange samples, known to contain a low level of synephrine but at the same time being one of the main synephrine sources in a normal human diet. Two bitter orange dry extracts containing 5 and 6% sSynephrine and 10 sweet orange samples have been analyzed. Between the sweet orange samples, six were fresh oranges and four were fresh-squeezed juices; in these samples, the synephrine levels ranged from 0.00128 to 0.00349%. PMID:16366666

  11. Nonsequential double ionization of molecules

    SciTech Connect

    Prauzner-Bechcicki, Jakub S.; Sacha, Krzysztof; Zakrzewski, Jakub; Eckhardt, Bruno

    2005-03-01

    Double ionization of diatomic molecules by short linearly polarized laser pulses is analyzed. We consider the final stage of the ionization process, that is the decay of a highly excited two electron molecule, which is formed after rescattering. The saddles of the effective adiabatic potential energy close to which simultaneous escape of electrons takes place are identified. Numerical simulations of the ionization of molecules show that the process can be dominated by either sequential or nonsequential events. In order to increase the ratio of nonsequential to sequential ionizations very short laser pulses should be applied.

  12. Methodical guidelines in federal ordinances to assign wastes to treatment and final storage

    NASA Astrophysics Data System (ADS)

    Fahrni, H. P.

    The federal Office for Environmental Protection is actually preparing an ordinance containing stringent criteria for the choice of disposal methods and requirements for materials suitable for final storage. This requirement shall guarantee that even untreated leachate of a final storage respects the existing limits for waste water effluents and may be discharged directly in surface waters. In a final storage site only substances are allowed which do not react with itself, with ambient air or water. To avoid slow biological fermentation organic chemicals are not suitable for final storage. Inorganic compounds shall not be soluble in water. For that reason the results of a leaching test are crucial.

  13. Stability and dissociation dynamics of N2 (++) ions following core ionization studied by an Auger-electron-photoion coincidence method.

    PubMed

    Iwayama, H; Kaneyasu, T; Hikosaka, Y; Shigemasa, E

    2016-07-21

    An Auger-electron-photoion coincidence (AEPICO) method has been applied to study the stability and dissociation dynamics of dicationic states after the N K-shell photoionization of nitrogen molecules. From time-of-flight and kinetic energy analyses of the product ions, we have obtained coincident Auger spectra associated with metastable states of N2 (++) ions and dissociative states leading to N2 (++) → N(+) + N(+) and N(++) + N. To investigate the production of dissociative states, we present two-dimensional AEPICO maps which reveal the correlations between the binding energies of the Auger final states and the ion kinetic energy release. These correlations have been used to determine the dissociation limits of individual Auger final states. PMID:27448885

  14. A new method for total OH reactivity measurements using a fast Gas Chromatographic Photo-Ionization Detector (GC-PID)

    NASA Astrophysics Data System (ADS)

    Nölscher, A. C.; Sinha, V.; Bockisch, S.; Klüpfel, T.; Williams, J.

    2012-05-01

    The primary and most important oxidant in the atmosphere is the hydroxyl radical (OH). Currently OH sinks, particularly gas phase reactions, are poorly constrained. One way to characterize the overall sink of OH is to measure directly the ambient loss rate of OH, the total OH reactivity. To date direct measurements of total OH reactivity have been either performed using a Laser Induced Fluorescence (LIF) system ("pump-and-probe" or "flow reactor") or the Comparative Reactivity Method (CRM) with a Proton Transfer Reaction Mass Spectrometer (PTR-MS). Both techniques require large, complex and expensive detection systems. This study presents a feasibility assessment for CRM total OH reactivity measurements using a new detector, a Gas Chromatographic Photo-Ionization Detector (GC-PID). Such a system is smaller, more portable, less power consuming and less expensive than other total OH reactivity measurement techniques. Total OH reactivity is measured by the CRM using a competitive reaction between a reagent (here pyrrole) with OH alone and in the presence of atmospheric reactive molecules. The new CRM method for total OH reactivity has been tested with parallel measurements of the GC-PID and the previously validated PTR-MS as detector for the reagent pyrrole during laboratory experiments, plant chamber and boreal field studies. Excellent agreement of both detectors was found when the GC-PID was operated under optimum conditions. Time resolution (60-70 s), sensitivity (LOD 3-6 s-1) and overall uncertainty (25% in optimum conditions) for total OH reactivity were equivalent to PTR-MS based total OH reactivity measurements. One drawback of the GC-PID system was the steady loss of sensitivity and accuracy during intensive measurements lasting several weeks, and a possible toluene interference. Generally, the GC-PID system has been shown to produce closely comparable results to the PTR-MS and thus in suitable environments (e.g. forests) it presents a viably economical

  15. SU-E-T-561: Development of Depth Dose Measurement Technique Using the Multilayer Ionization Chamber for Spot Scanning Method

    SciTech Connect

    Takayanagi, T; Fujitaka, S; Umezawa, M; Ito, Y; Nakashima, C; Matsuda, K

    2014-06-01

    Purpose: To develop a measurement technique which suppresses the difference between profiles obtained with a multilayer ionization chamber (MLIC) and with a water phantom. Methods: The developed technique multiplies the raw MLIC data by a correction factor that depends on the initial beam range and water equivalent depth. The correction factor is derived based on a Bragg curve calculation formula considering range straggling and fluence loss caused by nuclear reactions. Furthermore, the correction factor is adjusted based on several integrated depth doses measured with a water phantom and the MLIC. The measured depth dose profiles along the central axis of the proton field with a nominal field size of 10 by 10 cm were compared between the MLIC using the new technique and the water phantom. The spread out Bragg peak was 20 cm for fields with a range of 30.6 cm and 6.9 cm. Raw MLIC data were obtained with each energy layer, and integrated after multiplying by the correction factor. The measurements were performed by a spot scanning nozzle at Nagoya Proton Therapy Center, Japan. Results: The profile measured with the MLIC using the new technique is consistent with that of the water phantom. Moreover, 97% of the points passed the 1% dose /1mm distance agreement criterion of the gamma index. Conclusion: We have demonstrated that the new technique suppresses the difference between profiles obtained with the MLIC and with the water phantom. It was concluded that this technique is useful for depth dose measurement in proton spot scanning method.

  16. New method for caffeine quantification by planar chromatography coupled with electropray ionization mass spectrometry using stable isotope dilution analysis.

    PubMed

    Aranda, Mario; Morlock, Gertrud

    2007-01-01

    A new high-performance thin-layer chromatography/electrospray ionization mass spectrometry (HPTLC/ESI-MS) method for the quantification of caffeine in pharmaceutical and energy drink samples was developed using stable isotope dilution analysis (SIDA). After sample preparation, samples and caffeine standard were applied on silica gel 60 F254 HPTLC plates and over-spotted with caffeine-d3 used for correction of the plunger positioning. After chromatography, densitometric detection was performed by UV absorption at 274 nm. The bands were then eluted by means of a plunger-based extractor into the ESI interface of a single-quadrupole mass spectrometer. For quantification by MS the [M+H]+ ions of caffeine and caffeine-d3 were recorded in the positive ion single ion monitoring (SIM) mode at m/z 195 and 198, respectively. The calibration showed a linear regression with a determination coefficient (R2) of 0.9998. The repeatability (RSD, n=6) in matrix wasmethod accuracy was evaluated by comparing the results obtained by HPTLC/SIDA-ESI-MS with those from the validated HPTLC/UV method. The results for pharmaceutical and energy drink samples were (ng/band) 99.82+/-3.75 and 338.09+/-4.87 by HPTLC/SIDA-ESI-MS and 104.74+/-1.51 and 334.86+/-5.63 by HPTLC/UV. According to the F-test (homogeneity of variances) and the t-test (comparison of means) the two methods show no significant difference. The detection and quantification limits were 75 and 250 microg L-1 (0.75 and 2.5 ng/band), respectively, which were a factor of 13 lower than those established for HPTLC/UV. The positioning error (RSD+/-6%) was calculated by comparing HPTLC/SIDA-ESI-MS with HPTLC/ESI-MS. However, using SIDA the positioning error was nullified. HPTLC/SIDA-ESI-MS was demonstrated to be a

  17. Diclofenac in municipal wastewater treatment plant: quantification using laser diode thermal desorption--atmospheric pressure chemical ionization--tandem mass spectrometry approach in comparison with an established liquid chromatography-electrospray ionization-tandem mass spectrometry method.

    PubMed

    Lonappan, Linson; Pulicharla, Rama; Rouissi, Tarek; Brar, Satinder K; Verma, Mausam; Surampalli, Rao Y; Valero, José R

    2016-02-12

    Diclofenac (DCF), a prevalent non-steroidal anti-inflammatory drug (NSAID) is often detected in wastewater and surface water. Analysis of the pharmaceuticals in complex matrices is often laden with challenges. In this study a reliable, rapid and sensitive method based on laser diode thermal desorption/atmospheric pressure chemical ionization (LDTD/APCI) coupled with tandem mass spectrometry (MS/MS) has been developed for the quantification of DCF in wastewater and wastewater sludge. An established conventional LC-ESI-MS/MS (liquid chromatography-electrospray ionization-tandem mass spectrometry) method was compared with LDTD-APCI-MS/MS approach. The newly developed LDTD-APCI-MS/MS method reduced the analysis time to 12s in lieu of 12 min for LC-ESI-MS/MS method. The method detection limits for LDTD-APCI-MS/MS method were found to be 270 ng L(-1) (LOD) and 1000 ng L(-1) (LOQ). Furthermore, two extraction procedures, ultrasonic assisted extraction (USE) and accelerated solvent extraction (ASE) for the extraction of DCF from wastewater sludge were compared and ASE with 95.6 ± 7% recovery was effective over USE with 86 ± 4% recovery. The fate and partitioning of DCF in wastewater (WW) and wastewater sludge (WWS) in wastewater treatment plant was also monitored at various stages of treatment in Quebec Urban community wastewater treatment plant. DCF exhibited affinity towards WW than WWS with a presence about 60% of DCF in WW in contrary with theoretical prediction (LogKow=4.51). PMID:26805597

  18. Examinations in the Final Year of Transition to Mathematical Methods Computer Algebra System (CAS)

    ERIC Educational Resources Information Center

    Leigh-Lancaster, David; Les, Magdalena; Evans, Michael

    2010-01-01

    2009 was the final year of parallel implementation for Mathematical Methods Units 3 and 4 and Mathematical Methods (CAS) Units 3 and 4. From 2006-2009 there was a common technology-free short answer examination that covered the same function, algebra, calculus and probability content for both studies with corresponding expectations for key…

  19. Approximate method for estimating plasma ionization characteristics based on numerical simulation of the dynamics of a plasma bunch with a high specific energy in the upper ionosphere

    NASA Astrophysics Data System (ADS)

    Motorin, A. A.; Stupitsky, E. L.; Kholodov, A. S.

    2016-07-01

    The spatiotemporal pattern for the development of a plasma cloud formed in the ionosphere and the main cloud gas-dynamic characteristics have been obtained from 3D calculations of the explosion-type plasmodynamic flows previously performed by us. An approximate method for estimating the plasma temperature and ionization degree with the introduction of the effective adiabatic index has been proposed based on these results.

  20. Newborn screening of inborn errors of metabolism by capillary electrophoresis-electrospray ionization-mass spectrometry: a second-tier method with improved specificity and sensitivity.

    PubMed

    Chalcraft, Kenneth R; Britz-McKibbin, Philip

    2009-01-01

    The advent of electrospray-ionization mass spectrometry (ESI-MS) has given rise to expanded newborn screening programs for the early detection of inborn errors of metabolism (IEM). Despite the benefit of high-throughput screening for disease prognosis, conventional ESI-MS methods are limited by inadequate specificity, complicated sample handling, and low positive predictive outcome that can contribute to a high rate of false-positives. Herein, we report a robust strategy for neonatal screening based on capillary electrophoresis-electrospray ionization-mass spectrometry (CE-ESI-MS) that offers a convenient platform for the direct analysis of amino acids, acylcarnitines, and their stereoisomers from dried blood spot (DBS) extracts without chemical derivatization. On-line sample preconcentration with desalting by CE-ESI-MS allowed for improved concentration sensitivity when detecting poorly responsive metabolites in complex biological samples without ionization suppression or isomeric/isobaric interferences. Method validation demonstrated that accurate yet precise quantification can be achieved for 20 different amino acid and acylcarnitine biomarkers associated with IEMs when using a single non-deuterated internal standard. CE-ESI-MS represents a promising second-tier method in newborn screening programs that is compatible with ESI-MS/MS technology in cases when improved specificity and sensitivity is warranted for diagnosis confirmation and subsequent monitoring. PMID:19117458

  1. Ionization chamber

    DOEpatents

    Walenta, Albert H.

    1981-01-01

    An ionization chamber has separate drift and detection regions electrically isolated from each other by a fine wire grid. A relatively weak electric field can be maintained in the drift region when the grid and another electrode in the chamber are connected to a high voltage source. A much stronger electric field can be provided in the detection region by connecting wire electrodes therein to another high voltage source. The detection region can thus be operated in a proportional mode when a suitable gas is contained in the chamber. High resolution output pulse waveforms are provided across a resistor connected to the detection region anode, after ionizing radiation enters the drift region and ionize the gas.

  2. Ionization chamber

    DOEpatents

    Walenta, A.H.

    An ionization chamber is described which has separate drift and detection regions electrically isolated from each other by a fine wire grid. A relatively weak electric field can be maintained in the drift region when the grid and another electrode in the chamber are connected to a high voltage source. A much stronger electric field can be provided in the detection region by connecting wire electrodes therein to another high voltage source. The detection region can thus be operated in a proportional mode when a suitable gas is contained in the chamber. High resolution output pulse waveforms are provided across a resistor connected to the detection region anode, after ionizing radiation enters the drift region and ionizes the gas.

  3. Ionization of polarized hydrogen atoms

    SciTech Connect

    Alessi, J.G.

    1983-01-01

    Methods are discussed for the production of polarized H/sup -/ ions from polarized atoms produced in ground state atomic beam sources. Present day sources use ionizers of two basic types - electron ionizers for H/sup +/ Vector production followed by double charge exchange in a vapor, or direct H/sup -/ Vector production by charge exchange of H/sup 0/ with Cs/sup 0/. Both methods have ionization efficiencies of less than 0.5%. Ionization efficiencies in excess of 10% may be obtained in the future by the use of a plasma ionizer plus charge exchange in Cs or Sr vapor, or ionization by resonant charge exchange with a self-extracted D/sup -/ beam from a ring magnetron or HCD source. 36 references, 4 figures.

  4. IONIZATION CHAMBER

    DOEpatents

    Redman, W.C.; Shonka, F.R.

    1958-02-18

    This patent describes a novel ionization chamber which is well suited to measuring the radioactivity of the various portions of a wire as the wire is moved at a uniform speed, in order to produce the neutron flux traverse pattern of a reactor in which the wire was previously exposed to neutron radiation. The ionization chamber of the present invention is characterized by the construction wherein the wire is passed through a tubular, straight electrode and radiation shielding material is disposed along the wire except at an intermediate, narrow area where the second electrode of the chamber is located.

  5. A new electronic structure method for doublet states: configuration interaction in the space of ionized 1h and 2h1p determinants.

    PubMed

    Golubeva, Anna A; Pieniazek, Piotr A; Krylov, Anna I

    2009-03-28

    An implementation of gradient and energy calculations for configuration interaction variant of equation-of-motion coupled cluster with single and double substitutions for ionization potentials (EOM-IP-CCSD) is reported. The method (termed IP-CISD) treats the ground and excited doublet electronic states of an N-electron system as ionizing excitations from a closed-shell N+1-electron reference state. The method is naturally spin adapted, variational, and size intensive. The computational scaling is N(5), in contrast with the N(6) scaling of EOM-IP-CCSD. The performance and capabilities of the new approach are demonstrated by application to the uracil cation and water and benzene dimer cations by benchmarking IP-CISD against more accurate IP-CCSD. The equilibrium geometries, especially relative differences between different ionized states, are well reproduced. The average absolute errors and the standard deviations averaged for all bond lengths in all electronic states (58 values in total) are 0.014 and 0.007 A, respectively. IP-CISD systematically underestimates intramolecular distances and overestimates intermolecular ones, because of the underlying uncorrelated Hartree-Fock reference wave function. The IP-CISD excitation energies of the cations are of a semiquantitative value only, showing maximum errors of 0.35 eV relative to EOM-IP-CCSD. Trends in properties such as dipole moments, transition dipoles, and charge distributions are well reproduced by IP-CISD. PMID:19334814

  6. Ambient ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lebedev, A. T.

    2015-07-01

    Ambient ionization mass spectrometry emerged as a new scientific discipline only about ten years ago. A considerable body of information has been reported since that time. Keeping the sensitivity, performance and informativity of classical mass spectrometry methods, the new approach made it possible to eliminate laborious sample preparation procedures and triggered the development of miniaturized instruments to work directly in the field. The review concerns the theoretical foundations and design of ambient ionization methods. Their advantages and drawbacks, as well as prospects for application in chemistry, biology, medicine, environmetal analysis, etc., are discussed. The bibliography includes 194 references.

  7. Characteristics of low-temperature plasma ionization for ambient mass spectrometry compared to electrospray ionization and atmospheric pressure chemical ionization.

    PubMed

    Albert, Anastasia; Engelhard, Carsten

    2012-12-18

    Ambient desorption/ionization mass spectrometry (ADI-MS) is an attractive method for direct analysis with applications in homeland security, forensics, and human health. For example, low-temperature plasma probe (LTP) ionization was successfully used to detect, e.g., explosives, drugs, and pesticides directly on the target. Despite the fact that the field is gaining significant attention, few attempts have been made to classify ambient ionization techniques based on their ionization characteristics and performance compared to conventional ionization sources used in mass spectrometry. In the present study, relative ionization efficiencies (RIEs) for a large group of compound families were determined with LTP-Orbitrap-MS and compared to those obtained with electrospray ionization mass spectrometry (ESI-MS) and atmospheric pressure chemical ionization mass spectrometry (APCI-MS). RIEs were normalized against one reference compound used across all methods to ensure comparability of the results. Typically, LTP analyte ionization through protonation/deprotonation (e.g., 4-acetamidophenol) was observed; in some cases (e.g., acenaphthene) radicals were formed. Amines, amides, and aldehydes were ionized successfully with LTP. A benefit of LTP over conventional methods is the possibility to successfully ionize PAHs and imides. Here, the studied model compounds could be detected by neither APCI nor ESI. LTP is a relatively soft ionization method because little fragmentation of model compounds was observed. It is considered to be an attractive method for the ionization of low molecular weight compounds over a relatively wide polarity range. PMID:23134531

  8. Analysis of the Methods Used for Identifying Potential School Dropouts. Final Report.

    ERIC Educational Resources Information Center

    Neyman, C. A., Jr.

    This final report analyzes the research methods used in the identification of potential dropouts. This program was administered under Title I (ESEA, 1965) in the District of Columbia (see also ED 049 319). Three forms were used in the evaluation of Title I students identified as potential dropouts during the school year 1967-68: (1) Student…

  9. Writing Cover Letters That Address Instructor Feedback Improves Final Papers in a Research Methods Course

    ERIC Educational Resources Information Center

    Daniel, Frances; Gaze, Catherine M.; Braasch, Jason L. G.

    2015-01-01

    We examined how writing cover letters to the instructor influenced final papers in research methods courses. After receiving instructor feedback on drafts of each section of an American Psychological Association style research paper throughout the semester, students in two classes wrote cover letters to the instructor explaining how the instructor…

  10. Clusters: Elucidating the dynamics of ionization events and ensuing reactions in the condensed phase. Final technical report, March 1, 1991--February 28, 1994

    SciTech Connect

    Castleman, A.W. Jr.

    1994-10-01

    Chemical reactions that proceed following either a photophysical or ionizing event, are directly influenced by the mechanisms of energy transfer and dissipation away from the site of absorption. Neighboring solvent or solute molecules can affect this by collisional deactivation (removal of energy), through effects in which dissociating molecules are kept in relatively close proximity for comparatively long periods of time due to the presence of the solvent, and in other ways where the solvent influences the energetics of the reaction coordinate. Research on clusters offers promise of elucidating the molecular details of these processes. The studies have focused on providing critical information on problems in radiation biology through investigations of reactions of molecules which simulate functional groups in biological systems, as they proceed following the absorption of ionizing radiation. The overall objective of the program has been to undertake basic underpinning research that contributes to a quantification of the behavior of radionuclides and pollutants associated with advanced energy activities after these materials emanate from their source and are transferred through the environment to the biota and human receptor. Some of the studies have dealt with the interaction of electromagnetic radiation with matter yielding new data that finds value in assessing photoinduced transformation of pollutants including reactions which take place on aerosol particles, as well as those of species which become transformed into aerosols as a result of their chemical and physical interactions.

  11. Determination of a three-step excitation and ionization scheme for resonance ionization and ultratrace analysis of Np-237

    NASA Astrophysics Data System (ADS)

    Raeder, S.; Stöbener, N.; Gottwald, T.; Passler, G.; Reich, T.; Trautmann, N.; Wendt, K.

    2011-03-01

    The long-lived radio isotope 237Np is generated within the nuclear fuel cycle and represents a major hazard in the final disposal of nuclear waste. Related geochemical research requires sensitive methods for the detection of ultratrace amounts of neptunium in environmental samples. Resonance ionization mass spectrometry (RIMS) has proven to be one of the most sensitive methods for the detection of plutonium. A precondition for the application of RIMS to ultratrace analysis of neptunium is the knowledge of an efficient and selective scheme for optical excitation and ionization. Therefore, a multitude of medium to high-lying atomic levels in neptunium was located by applying in-source resonance ionization spectroscopy. By using excitation via six previously known first excited, intermediate levels of odd parity, a set of twelve so far unknown high-lying levels of even parity were identified and studied further for their suitability in resonant excitation/ionization schemes. Autoionizing resonances for efficient ionization of neptunium atoms were subsequently accessed spectroscopically. Altogether five resonance ionization schemes were investigated and characterized concerning their saturation behavior and relative efficiency. Applying a calibrated sample, an overall efficiency of 0.3 % was determined.

  12. The NASA digital VGH program. Exploration of methods and final results. Volume 1: Development of methods

    NASA Technical Reports Server (NTRS)

    Crabill, Norman L.

    1989-01-01

    Two hundred hours of Lockheed L 1011 digital flight data recorder data taken in 1973 were used to develop methods and procedures for obtaining statistical data useful for updating airliner airworthiness design criteria. Five thousand hours of additional data taken in 1978 to 1982 are reported in volumes 2, 3, 4 and 5.

  13. A novel method to estimate the impact parameter on a drift cell by using the information of single ionization clusters

    NASA Astrophysics Data System (ADS)

    Signorelli, G.; D`Onofrio, A.; Venturini, M.

    2016-07-01

    Measuring the time of each ionization cluster in drift chambers has been proposed to improve the single hit resolution, especially for very low mass tracking systems. Ad hoc formulae have been developed to combine the information from the single clusters. We show that the problem falls in a wide category of problems that can be solved with an algorithm called Maximum Possible Spacing (MPS) which has been demonstrated to find the optimal estimator. We show that the MPS approach is applicable and gives the expected results. Its application in a real tracking device, namely the MEG II cylindrical drift chamber, is discussed.

  14. Final state interactions and the transverse structure of the pion using non-perturbative eikonal methods

    DOE PAGESBeta

    Gamberg, Leonard; Schlegel, Marc

    2010-01-18

    In the factorized picture of semi-inclusive hadronic processes the naive time reversal-odd parton distributions exist by virtue of the gauge link which renders it color gauge invariant. The link characterizes the dynamical effect of initial/final-state interactions of the active parton due soft gluon exchanges with the target remnant. Though these interactions are non-perturbative, studies of final-state interaction have been approximated by perturbative one-gluon approximation in Abelian models. We include higher-order contributions by applying non-perturbative eikonal methods incorporating color degrees of freedom in a calculation of the Boer-Mulders function of the pion. Lastly, using this framework we explore under what conditionsmore » the Boer Mulders function can be described in terms of factorization of final state interactions and a spatial distribution in impact parameter space.« less

  15. Final state interactions and the transverse structure of the pion using non-perturbative eikonal methods

    SciTech Connect

    Marc Schlegel, Leonard Gamberg

    2010-02-01

    In the factorized picture of semi-inclusive hadronic processes the naive time reversal-odd parton distributions exist by virtue of the gauge link which renders it color gauge invariant. The link characterizes the dynamical effect of initial/final-state interactions of the active parton due soft gluon exchanges with the target remnant. Though these interactions are non-perturbative, studies of final-state interaction have been approximated by perturbative one-gluon approximation in Abelian models. We include higher-order contributions by applying non-perturbative eikonal methods incorporating color degrees of freedom in a calculation of the Boer-Mulders function of the pion. Using this framework we explore under what conditions the Boer Mulders function can be described in terms of factorization of final state interactions and a spatial distribution in impact parameter space.

  16. Final state interactions and the transverse structure of the pion using non-perturbative eikonal methods

    SciTech Connect

    Gamberg, Leonard; Schlegel, Marc

    2010-01-18

    In the factorized picture of semi-inclusive hadronic processes the naive time reversal-odd parton distributions exist by virtue of the gauge link which renders it color gauge invariant. The link characterizes the dynamical effect of initial/final-state interactions of the active parton due soft gluon exchanges with the target remnant. Though these interactions are non-perturbative, studies of final-state interaction have been approximated by perturbative one-gluon approximation in Abelian models. We include higher-order contributions by applying non-perturbative eikonal methods incorporating color degrees of freedom in a calculation of the Boer-Mulders function of the pion. Lastly, using this framework we explore under what conditions the Boer Mulders function can be described in terms of factorization of final state interactions and a spatial distribution in impact parameter space.

  17. Comparison of electrospray ionization and atmospheric pressure photoionization liquid chromatography mass spectrometry methods for analysis of ergot alkaloids from endophyte-infected sleepygrass (Achnatherum robustum).

    PubMed

    Jarmusch, Alan K; Musso, Ashleigh M; Shymanovich, Tatsiana; Jarmusch, Scott A; Weavil, Miranda J; Lovin, Mary E; Ehrmann, Brandie M; Saari, Susanna; Nichols, David E; Faeth, Stanley H; Cech, Nadja B

    2016-01-01

    Ergot alkaloids are mycotoxins with an array of biological effects. With this study, we investigated for the first time the application of atmospheric pressure photoionization (APPI) as an ionization method for LC-MS analysis of ergot alkaloids, and compared its performance to that of the more established technique of electrospray ionization (ESI). Samples of the grass Achnatherum robustum infected with the ergot producing Epichloë fungus were extracted using cold methanol and subjected to reserved-phase HPLC-ESI-MS and HPLC-APPI-MS analysis. The ergot alkaloids ergonovine and lysergic acid amide were detected in these samples, and quantified via external calibration. Validation parameters were recorded in accordance with ICH guidelines. A triple quadrupole MS operated in multiple reaction monitoring yielded the lowest detection limits. The performance of APPI and ESI methods was comparable. Both methods were subject to very little matrix interference, with percent recoveries ranging from 82% to 100%. As determined with HPLC-APPI-MS quantification, lysergic acid amide and ergonovine were extracted from an A. robustum sample infected with the Epichloë fungus at concentrations of 1.143±0.051 ppm and 0.2822±0.0071 ppm, respectively. There was no statistically significant difference between these concentrations and those determined using ESI for the same samples. PMID:26340558

  18. Iron ionization and recombination rates and ionization equilibrium

    NASA Technical Reports Server (NTRS)

    Arnaud, M.; Raymond, J.

    1992-01-01

    In the past few years important progress has been made on the knowledge of ionization and recombination rates of iron, an astrophysically abundant heavy element and a major impurity in laboratory fusion devices. We make a critical review of the existing data on ionization and dielectronic recombination and present new computations of radiative recombination rate coefficients of Fe(+14) through Fe(+25) using the photoionization cross sections of Clark et al. (1986). We provide analytical fits to the recommended data (direct ionization and excitation-autoionization cross sections; radiative and dielectronic recombination rate coefficients). Finally we determine the iron ionic fractions at ionization equilibrium and compare them with previous computations as well as with observational data.

  19. Investigation of electric field distribution on FAC-IR-300 ionization chamber

    NASA Astrophysics Data System (ADS)

    Mohammadi, S. M.; Tavakoli-Anbaran, H.; Zeinali, H. Z.

    2016-07-01

    One of the important parameters for establishing charge particle equilibrium (CPE) conditions of free-air ionization chamber is an electric field distribution. In this paper, electric field distribution inside the ionization chamber was investigated by finite element method. For this purpose, the effects of adding guard plate and guard strips on the electric field distribution in the ionization chamber were studied. it is necessary to apply a lead box around the ionization chamber body to avoid of scattered radiation effects on the ionization chamber operation, but the lead box changes the electric field distribution. In the following, the effect of lead box on the electric field distribution was studied. Finally, electric field distribution factor (kfield) was calculated by the simulation. The results of the simulation showed that presence of the guard plate and guard strips, and applying a suitable potential to lead box, a convergence of kfield to 1 was achieved.

  20. Application of the partial-Fourier-transform approach for tunnel ionization of molecules

    NASA Astrophysics Data System (ADS)

    Liu, Mingming; Liu, Yunquan

    2016-04-01

    Combining the partial-Fourier-transform approach with Wenzel-Kramers-Brillouin approximation, we theoretically study the strong-field tunneling ionization of diatomic and polyatomic molecules. First we obtain the analytical expression of momentum distribution at the tunnel exit of diatomic molecules, and then we calculate the alignment-dependent ionization rate at different laser intensities and internuclear distances. We show that the internuclear distance has a significant effect on the alignment dependence of the ionization rate. Using this approach, we can also separate the contributions of each atomic center and show the interference effect between them. Finally, we extend this method to a polyatomic molecule, benzene, as an example.

  1. Reinforced polyquinoxaline gasket and method of preparing the same. [resistant to ionizing radiation and liquid hydrogen temperatures

    NASA Technical Reports Server (NTRS)

    Vanauken, R. (Inventor)

    1974-01-01

    A gasket or seal resistant to ionizing radiation and liquid hydrogen temperatures is made up of a laminated polyquinoxaline resin-fiberglass cloth body portion and a molded polyquinoxaline encapsulating film. The laminated body is prepared by stacking thin sheets of the resin alternately with fiberglass cloth and heating the assembly under pressure with the temperature, pressure and resin film thickness being controlled so that only partial impregnation of the fiberglass cloth is produced. The encapsulating resin film is preheated at about 300 f and applied to the laminate body by molding at a temperature of about 625 F. The molded gasket is then deflashed and post-cured by heating at 675 to 700 F.

  2. Extraction Chromatographic Methods in the Sample Preparation Sequence for Thermal Ionization Mass Spectrometric Analysis of Plutonium Isotopes

    SciTech Connect

    Grate, Jay W.; O'Hara, Matthew J.; Farawila, Anne F.; Douglas, Matthew; Haney, Morgan M.; Peterson, Steve L.; Maiti, Tapas C.; Aardahl, Christopher L.

    2011-10-17

    A sample preparation sequence for actinide isotopic analysis by TIMS is described that includes column-based extraction chromatography as the first separation step, followed by anion exchange column separations. The sequence is designed to include a wet ashing step after the extraction chromatography to prevent any leached extractant or oxalic acid eluent reagents from interfering with subsequent separations, source preparation, or TIMS ionization. TEVA-resin and DGA-resin materials, containing extractants that consist only of C, N, O, and H atoms, were investigated for isolation of plutonium. Radiotracer level studies confirmed expected high yields from column-based separation procedures. Femtogram-level studies were carried out with TIMS detection, using multiple isotopic spikes through the separation sequence. Pu recoveries were 87% and 86% for TEVA- and DGA-resins separations respectively. The Pu recoveries from 400 {mu}L anion-exchange column separations were 89% and 93% for trial sequences incorporating TEVA and DGA-resin. Thus, a prior extraction chromatography step in the sequence did not interfere with the subsequent anion exchange separation when a simple wet ash step was carried out in between these column separations. The average measurement efficiency, for Pu, encompassing the chemical separation recoveries and the TIMS ionization efficiency, was 2.73 {+-} 0.77% (2-sigma) for the DGA-resin trials and 2.67 {+-} 0.54% for the TEVA-resin trials, compared to 3.41% and 2.37% (average 2.89%) for two spikes in the experimental set. These compare with an average measurement efficiency of 2.78 {+-} 1.70%, n = 33 from process benchmark analyses using Pu spikes processed through a sequence of oxalate precipitation, wet ash, iron hydroxide precipitation, and anion exchange column separations. We conclude that extraction chromatography can be a viable separation procedure as part of a multistep sequence for TIMS sample preparation.

  3. Polarization phenomena in multiphoton ionization of atoms

    NASA Technical Reports Server (NTRS)

    Jacobs, V. L.

    1973-01-01

    The theory of multiphoton ionization for an atomic system of arbitrary complexity is developed using a density matrix formalism. An expression is obtained which determines the differential N-photon ionization cross section as a function of the polarization states of the target atom and the incident radiation. The parameters which characterize the photoelectron angular distribution are related to the general reduced matrix elements for the N-photon transition. Two-photon ionization of unpolarized atoms is treated as an illustration of the use of the theory. The dependence of the multiphoton ionization cross section on the polarization state of the incident radiation, which has been observed in two- and three-photon ionization of Cs, is accounted for by the theory. Finally, the photoelectron spin polarization produced by the multiphoton ionization of unpolarized atoms, like the analogous polarization resulting from single-photon ionization, is found to depend on the circular polarization of the incident radiation.

  4. Double ionization of atomic cadmium

    SciTech Connect

    Linusson, P.; Fritzsche, S.; Eland, J. H. D.; Hedin, L.; Karlsson, L.; Feifel, R.

    2011-02-15

    We have recorded the double photoionization spectrum of atomic Cd at four different photon energies in the range 40-200 eV. The main channel is single ionization and subsequent decay of excited Cd{sup +} states, some involving Coster-Kronig processes, whereas direct double ionization is found to be weak. The decay of the excited Cd{sup +} states shows a strong selectivity, related to the configuration of the final state. Double ionization leading to the Cd{sup 2+} ground state is investigated in some detail and is found to proceed mainly through ionization and decay of 4d correlation satellites. The most prominent autoionization peaks have been identified with the aid of quantum-mechanical calculations.

  5. Vibrational analysis and ionization potentials of XCH 3 (X=Be,Mg,Ca) calculated by hybrid density functional theory and high order ab initio methods

    NASA Astrophysics Data System (ADS)

    Jalbout, Abraham F.

    2001-06-01

    The amount of attention dedicated to the theoretical and experimental investigation of small cationic organometallic systems in the literature is very limited. In this Letter we use the B3LYP method with a variety of basis sets as well as the very advanced CBS-Q, CBS-QB3, G1, G2MP2, G2, G3, and G3B3 ab initio methods in order to analyze the vibrational spectra as well as ionization potentials of BeCH 3,MgCH 3 and CaCH 3. The need for further addition of experimental data to the archives for these systems is discussed, as well as recommendations for which theoretical methods are optimum for a particular result.

  6. Ion chromatography electrospray ionization mass spectrometry method development and investigation of lithium hexafluorophosphate-based organic electrolytes and their thermal decomposition products.

    PubMed

    Kraft, Vadim; Grützke, Martin; Weber, Waldemar; Winter, Martin; Nowak, Sascha

    2014-08-01

    A method based on the coupling of ion chromatography (IC) and electrospray ionization mass spectrometry (ESI-MS) for the separation and determination of thermal decomposition products of LiPF6-based organic electrolytes is presented. The utilized electrolytes, LP30 and LP50, are commercially available and consist of 1mol/l LiPF6 dissolved in ethylene carbonate/dimethyl carbonate and ethylene carbonate/ethyl methyl carbonate, respectively. For the separation method development three ion chromatographic columns with different capacity and stationary phase were used and compared. Besides the known hydrolysis products of lithium hexafluorophosphate, several new organophosphates were separated and identified with the developed IC-ESI-MS method during aging investigations of the electrolytes. The chemical structures were elucidated with IC-ESI-MS/MS. PMID:24939088

  7. Small-scale, high-throughput method for plant N-glycan preparation for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis.

    PubMed

    Matsuo, Kouki

    2011-06-15

    A simple, small-scale, and high-throughput method for preparation of plant N-glycans for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is described. This method entailed the extraction of soluble proteins, pepsin digestion, release of N-glycans by glycopeptidase A, and a three-step chromatographic purification process using cation exchange, anion exchange, and graphitized carbon. Homemade minicolumns using commercially available filter unit devices were used for N-glycan purification steps. All purification steps were designed to be easy. Using this method, N-glycans from 10-mg leaf samples of different plant species and only 2 μg of pure horseradish peroxidase were successfully purified. PMID:21320463

  8. Positron impact ionization of atomic hydrogen

    SciTech Connect

    Acacia, P.; Campeanu, R.I.; Horbatsch, M.

    1993-05-01

    We will present integrated cross sections for ionization of atomic hydrogen by positrons. These have been calculated in a distorted-wave approximation using energy-dependent effective charges in the final channel as well as static and polarization potentials in the initial channel. We present two models for calculating the energy-dependent effective charges both of which produce results in good agreement with the recent experimental measurements of Spicher et al. This is in contrast to previous distorted-wave calculations which used fixed effective charges as well as classical trajectory calculations. Both of these latter methods produced results which were substantially below ours and the experimental data.

  9. Five-photon double ionization of helium

    NASA Astrophysics Data System (ADS)

    Li, Y.; Pindzola, M. S.; Colgan, J.

    2016-03-01

    A time-dependent close-coupling method is used to calculate the five-photon double ionization of He. It is found that the generalized cross section used in the past for two-photon double ionization of He cannot be extended to five-photon double ionization of He. Therefore only five-photon double ionization probabilities that depend on specific radiation field pulses can be calculated.

  10. Resonance ionization for analytical spectroscopy

    DOEpatents

    Hurst, George S.; Payne, Marvin G.; Wagner, Edward B.

    1976-01-01

    This invention relates to a method for the sensitive and selective analysis of an atomic or molecular component of a gas. According to this method, the desired neutral component is ionized by one or more resonance photon absorptions, and the resultant ions are measured in a sensitive counter. Numerous energy pathways are described for accomplishing the ionization including the use of one or two tunable pulsed dye lasers.

  11. Can Nonpolar Polyisobutylenes be Measured by Electrospray Ionization Mass Spectrometry? Anion-Attachment Proved to be an Appropriate Method.

    PubMed

    Nagy, Lajos; Nagy, Tibor; Deák, György; Kuki, Ákos; Purgel, Mihály; Narmandakh, Mijid; Iván, Béla; Zsuga, Miklós; Kéki, Sándor

    2016-03-01

    Polyisobutylenes (PIBs) with different end-groups including chlorine, exo-olefin, hydroxyl, and methyl prepared from aliphatic and aromatic initiators were studied by electrospray ionization mass spectrometry (ESI-MS). Independently of the end-groups, presence or absence of aromatic initiator moiety, these PIB derivatives were capable of forming adduct ions with NO3 (-) and Cl(-) ions, thus allowing the direct characterization of these compounds in the negative ion mode of ESI-MS. To obtain [PIB + NO3](-) and [PIB + Cl](-) adduct ions with appreciable intensities, addition of polar solvents such as acetone, 2-propanol, or ethanol to the dichloromethane solution of PIBs was necessary. Furthermore, increasing both the polarity (by increasing the acetone content) and the ion-source temperature give rise to enhanced intensities for both [PIB + NO3](-) and [PIB + Cl](-) ions. Energy-dependent collision induced dissociation studies (CID) revealed that increasing the collision voltages resulted in the shift of the apparent molecular masses to higher ones. CID studies also showed that dissociation of the [PIB + Cl](-) ions requires higher collision energy than that of [PIB + NO3](-). In addition, Density Functional Theory calculations were performed to gain insights into the nature of the interactions between the highly non-polar PIB chains and anions NO3 (-) and Cl(-) as well as to determine the zero-point corrected electronic energies for the formation of [PIB + NO3](-) and [PIB + Cl](-) adduct ions. Graphical Abstract ᅟ. PMID:26620530

  12. Can Nonpolar Polyisobutylenes be Measured by Electrospray Ionization Mass Spectrometry? Anion-Attachment Proved to be an Appropriate Method

    NASA Astrophysics Data System (ADS)

    Nagy, Lajos; Nagy, Tibor; Deák, György; Kuki, Ákos; Purgel, Mihály; Narmandakh, Mijid; Iván, Béla; Zsuga, Miklós; Kéki, Sándor

    2016-03-01

    Polyisobutylenes (PIBs) with different end-groups including chlorine, exo-olefin, hydroxyl, and methyl prepared from aliphatic and aromatic initiators were studied by electrospray ionization mass spectrometry (ESI-MS). Independently of the end-groups, presence or absence of aromatic initiator moiety, these PIB derivatives were capable of forming adduct ions with NO3 - and Cl- ions, thus allowing the direct characterization of these compounds in the negative ion mode of ESI-MS. To obtain [PIB + NO3]- and [PIB + Cl]- adduct ions with appreciable intensities, addition of polar solvents such as acetone, 2-propanol, or ethanol to the dichloromethane solution of PIBs was necessary. Furthermore, increasing both the polarity (by increasing the acetone content) and the ion-source temperature give rise to enhanced intensities for both [PIB + NO3]- and [PIB + Cl]- ions. Energy-dependent collision induced dissociation studies (CID) revealed that increasing the collision voltages resulted in the shift of the apparent molecular masses to higher ones. CID studies also showed that dissociation of the [PIB + Cl]- ions requires higher collision energy than that of [PIB + NO3]-. In addition, Density Functional Theory calculations were performed to gain insights into the nature of the interactions between the highly non-polar PIB chains and anions NO3 - and Cl- as well as to determine the zero-point corrected electronic energies for the formation of [PIB + NO3]- and [PIB + Cl]- adduct ions.

  13. A sensitive and selective method for the determination of selected pesticides in fruit by gas chromatography/mass spectrometry with negative chemical ionization.

    PubMed

    Belmonte Valles, N; Retamal, M; Mezcua, M; Fernández-Alba, A R

    2012-11-16

    Multiresidue methods (MRMs) for pesticides residues determination in fruit and vegetables, based on GC-MS, are mainly performed in electron impact ionization mode. However an important group of them provide much better response working in negative chemical ionization mode due to the elimination of a high percentage of background signal. Considering that a selective and sensitive method has been developed for the determination of multiclass pesticide residues in different commodities by GC-MS with a triple stage quadrupole analyzer (GC-TSQ-MS); the pesticide signal has been optimized in MS-MS whilst working in negative chemical ionization mode using methane as the reagent gas. The proposed method was fully validated for 53 compounds in tomato, apple and orange matrices. The obtained limits of determination were lower than 0.1 μg/kg for more than 50% of the pesticides studied, and lower than 1 μg/kg for all pesticides studied, except for cypermethrin, boscalid, bifenthrin and deltamethrin. Linearity was studied in the 0.5-50 μg/kg range and a linear response was obtained for all pesticides in all matrices. Recoveries were evaluated at two different levels (1 and 50 μg/kg) and recoveries were ranged between 70 and 120% in tomato, apple and orange, except in the cases of chlorfenapyr, ofurace, chlozolinate, chlorothalonil, tolylfluanid and dichlofluanid with recovery values close to 60% at 1 μg/kg fortification levels. Repetitivity was evaluated and the relative standard deviation (RSD%) was lower than 10% in all cases. The developed method was employed in the analysis of real samples intended for baby food and the obtained results showed that 50% of the samples were positive for different pesticide residues. The concentration range detected was between 5 and 100 μg/kg. The positive detection of OCs was particularly noticeable; these included chlorothalonil, fenhexamide, clorpyrifos and lambda cyhalothrin, which are very persistent and toxic with low acute

  14. Comparison and validation of 2 analytical methods for the determination of free fatty acids in dairy products by gas chromatography with flame ionization detection.

    PubMed

    Mannion, David T; Furey, Ambrose; Kilcawley, Kieran N

    2016-07-01

    Accurate quantification of free fatty acids (FFA) in dairy products is important for quality control, nutritional, antimicrobial, authenticity, legislative, and flavor purposes. In this study, the performance of 2 widely used gas chromatographic flame ionization detection methods for determination of FFA in dairy products differing in lipid content and degree of lipolysis were evaluated. We used a direct on-column approach where the isolated FFA extract was injected directly and a derivatization approach where the FFA were esterified in the injector to methyl esters using tetramethylammonium hydroxide as a catalyst. A comprehensive validation was undertaken to establish method linearity, limits of detection, limits of quantification, accuracy, and precision. Linear calibrations of 3 to 700mg/L (R(2)>0.999) and 20 to 700mg/L (R(2)>0.997), and limits of detection and limits of quantification of 0.7 and 3mg/L and 5 and 20mg/L were obtained for the direct injection on-column and the derivatization method, respectively. Intraday precision of 1.5 to 7.2% was obtained for both methods. The direct injection on-column method had the lower levels of limits of detection and quantification, because FFA are directly injected onto the GC as opposed to the split injection used in the derivatization method. However, the direct injection on-column method experienced accumulative column phase deterioration and irreversible FFA absorption because of the acidic nature of the injection extract, which adversely affected method robustness and the quantification of some longer chain FFA. The derivatization method experienced issues with quantification of butyric acid at low concentrations because of coelution with the injection solvent peak, loss of polyunsaturated FFA due to degradation by tetramethylammonium hydroxide, and the periodic emergence of by-product peaks of the tetramethylammonium hydroxide reaction that interfered with the quantification of some short-chain FFA. The

  15. Study of gas-phase O-H bond dissociation enthalpies and ionization potentials of substituted phenols - Applicability of ab initio and DFT/B3LYP methods

    NASA Astrophysics Data System (ADS)

    Klein, Erik; Lukeš, Vladimír

    2006-11-01

    In this paper, the study of phenol and 37 compounds representing various ortho-, para-, and meta-substituted phenols is presented. Molecules and their radical structures were studied using ab initio methods with inclusion of correlation energy and DFT in order to calculate the O-H bond dissociation enthalpies (BDEs) and vertical ionization potentials (IPs). Calculated BDEs and IPs were compared with available experimental values to ascertain the suitability of used methods, especially for the description of the substituent induced changes in BDE and IP. MP2, MP3, and MP4 methods do not give reliable results, since they significantly underestimate substituent induced changes in BDE and do not reflect distinct effect of substituents related to para and meta position correctly. DFT/B3LYP method reflects the effect of substituents on BDE satisfactorily, though ΔBDEs are in narrower range than experimental values. BDE of phenol was calculated also using CCSD(T) method in various basis sets. Both, DFT and HF methods describe the effect of substituents on IP identically. However, DFT considerably underestimates individual values. HF method gives IPs in very good agreement with experimental data. Obtained results show that dependences of BDEs and IPs on Hammett constants of the substituents are linear. Linearity of DFT BDE vs. IP dependence is even better than the dependences on Hammett constants and obtained equations allow estimating of O-H BDEs of meta- and para-substituted phenols from calculated IPs.

  16. Initial velocity distributions of ions generated by in-flight laser desorption/ionization of individual polystyrene latex microparticles as studied by the delayed ion extraction method.

    PubMed

    Vera, César Costa; Trimborn, Achim; Hinz, Klaus-Peter; Spengler, Bernhard

    2005-01-01

    The delayed ion extraction method has been used to study characteristics of the initial velocity distributions of positive and negative ions produced simultaneously by laser desorption/ionization (LDI) from non-impacted single aerosol polymeric particles, using a bipolar time-of-flight (TOF) instrument (LAMPAS 2). Due to the geometry of the setup and the characteristics of the ablation process, only the projections of the velocities on the axis of the mass spectrometer can be directly studied. Additionally, since the mean initial velocity under these conditions should be close to zero, it was necessary to extend the method by taking into account higher order contributions of the velocity distribution. Theoretical expressions for these higher order terms are presented and discussed. The bipolar characteristics of the instrument permit evaluation and treatment of a possible instrumental artifact caused by small inclinations of the ionizing laser with respect to the ideal incidence direction. Results of a number of experiments are presented and discussed in relation to the theoretical expressions presented, and to possible ablation scenarios. Evidence pointing out that, under our experimental conditions, only partial ablation of the latex particles occurs was obtained. The variance of the distribution of the projection of the initial velocities can be directly estimated from these results. By assuming that the total initial velocities of the ions are developed completely according to a single-temperature adiabatic expansion mechanism, temperatures of approximately 50 K/Da can be assigned to the ion clouds from the variance estimations. If a two-temperature model is used, a radial temperature of about 100 K/Da results. These values are in reasonable agreement with results for polymer ablation from the literature. PMID:15593241

  17. Development of a liquid chromatography-electrospray ionization-tandem mass spectrometry method for the simultaneous analysis of intact glucosinolates and isothiocyanates in Brassicaceae seeds and functional foods.

    PubMed

    Franco, P; Spinozzi, S; Pagnotta, E; Lazzeri, L; Ugolini, L; Camborata, C; Roda, A

    2016-01-01

    A new high pressure liquid chromatography-electrospray ionization-tandem mass spectrometry method for the simultaneous determination of glucosinolates, as glucoraphanin and glucoerucin, and the corresponding isothiocyanates, as sulforaphane and erucin, was developed and applied to quantify these compounds in Eruca sativa defatted seed meals and enriched functional foods. The method involved solvent extraction, separation was achieved in gradient mode using water with 0.5% formic acid and acetonitrile with 0.5% formic acid and using a reverse phase C18 column. The electrospray ion source operated in negative and positive mode for the detection of glucosinolates and isothiocyanates, respectively, and the multiple reaction monitoring (MRM) was selected as acquisition mode. The method was validated following the ICH guidelines. Replicate experiments demonstrated a good accuracy (bias%<10%) and precision (CV%<10%). Detection limits and quantification limits are in the range of 1-400ng/mL for each analytes. Calibration curves were validated on concentration ranges from 0.05 to 50μg/mL. The method proved to be suitable for glucosinolates and isothiocyanates determination both in biomasses and in complex matrices such as food products enriched with glucosinolates, or nutraceutical bakery products. In addition, the developed method was applied to the simultaneous determination of glucosinolates and isothiocyanates in bakery product enriched with glucosinolates, to evaluate their thermal stability after different industrial processes from cultivation phases to consumer processing. PMID:26363943

  18. Development and comparison of two multiresidue methods for the analysis of 17 mycotoxins in cereals by liquid chromatography electrospray ionization tandem mass spectrometry.

    PubMed

    Desmarchelier, Aurelien; Oberson, Jean-Marie; Tella, Patricia; Gremaud, Eric; Seefelder, Walburga; Mottier, Pascal

    2010-07-14

    Two multiresidue methods based on different extraction procedures have been developed and compared for the liquid chromatography electrospray ionization tandem mass spectrometry analysis of 17 mycotoxins including ochratoxin A, aflatoxins (B(1), B(2), G(1), and G(2)), zearalenone, fumonisins (B(1) and B(2)), T-2 toxin, HT-2 toxin, nivalenol, deoxynivalenol, 3- and 15-acetyldeoxynivalenol, fusarenon-X, diacetoxyscirpenol, and neosolaniol in cereal-based commodities. The extraction procedures considered were a QuEChERS-like method and one using accelerated solvent extraction (ASE). Both extraction procedures gave similar performances in terms of linearity (r(2) > 0.98) and precision (both RSD(r) and RSD(iR) < 20%). Trueness was evaluated through participation in four proficiency tests and by the analysis of two certified reference materials and one quality control material. Satisfactory Z scores (|Z| < 2) and trueness values (73-130%) were obtained by the proposed procedures. Limits of quantification were similar by both methods and were within the 1.0-2.0 microg/kg range for aflatoxins, 0.5 microg/kg for ochratoxin A, and the 5-100 microg/kg range for all other mycotoxins tested. The QuEChERS-like method was found to be easier to handle and allowed a higher sample throughput as compared to the ASE method. PMID:20527950

  19. High pressure xenon ionization detector

    DOEpatents

    Markey, John K.

    1989-01-01

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0.degree. to 30.degree. C.

  20. High pressure xenon ionization detector

    DOEpatents

    Markey, J.K.

    1989-11-14

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0 to 30 C. 2 figs.

  1. A simple and rapid method to identify and quantitatively analyze triterpenoid saponins in Ardisia crenata using ultrafast liquid chromatography coupled with electrospray ionization quadrupole mass spectrometry.

    PubMed

    Ma, Ling; Li, Wei; Wang, Hanqing; Kuang, Xinzhu; Li, Qin; Wang, Yinghua; Xie, Peng; Koike, Kazuo

    2015-01-01

    Ardisia plant species have been used in traditional medicines, and their bioactive constituents of 13,28-epoxy triterpenoid saponins have excellent biological activities for new drug development. In this study, a fast and simple method based on ultrafast liquid chromatography coupled to electrospray ionization mass spectrometry (UFLC-MS) was developed to simultaneously identify and quantitatively analyze triterpenoid saponins in Ardisia crenata extracts. In total, 22 triterpenoid saponins, including two new compounds, were identified from A. crenata. The method exhibited good linearity, precision and recovery for the quantitative analysis of eight marker saponins. A relative quantitative method was also developed using one major saponin (ardisiacrispin B) as the standard to break through the choke-point of the lack of standards in phytochemical analysis. The method was successfully applied to quantitatively analyze saponins in commercially available plant samples. This study describes the first systematic analysis of 13,28-epoxy-oleanane-type triterpenoid saponins in the genus Ardisia using LC-ESI-MS. The results can provide the chemical support for further biological studies, phytochemotaxonomical studies and quality control of triterpenoid saponins in medicinal plants of the genus Ardisia. PMID:25459939

  2. Weakly ionized cosmic gas: Ionization and characterization

    NASA Technical Reports Server (NTRS)

    Rosenberg, M.; Mendis, D. A.; Chow, V. W.

    1994-01-01

    Since collective plasma behavior may determine important transport processes (e.g., plasma diffusion across a magnetic field) in certain cosmic environments, it is important to delineate the parameter space in which weakly ionized cosmic gases may be characterized as plasmas. In this short note, we do so. First, we use values for the ionization fraction given in the literature, wherein the ionization is generally assumed to be due primarily to ionization by cosmic rays. We also discuss an additional mechanism for ionization in such environments, namely, the photoelectric emission of electrons from cosmic dust grains in an interstellar Far Ultra Violet (FUV) radiation field. Simple estimates suggest that under certain conditions this mechanism may dominate cosmic ray ionization, and possibly also the photoionization of metal atoms by the interstellar FUV field, and thereby lead to an enhanced ionization level.

  3. A METHOD FOR REGENERATION OF SPENT ELECTROCHEMICAL DECONTAMINATION SOLUTION AND ITS TREATMENT FOR FINAL DISPOSAL

    SciTech Connect

    Davydov, D.Yu.; Davydov, Yu.P.; Toropov, I.G.; John, J.; Rosikova, K.; Motl, A.; Hudson, M.J.; Prazska, M.

    2003-02-27

    This paper describes the method of regeneration of spent electrochemical decontamination solution. The proposed method allows separation of radionuclides and stable metals from spent decontamination solution in a form suitable for final disposal and repeated use of the remaining solution for electrochemical decontamination. Development of this method was based on the results of the speciation studies which showed that Fe(III) can be precipitated in the presence of organic complexing agents, in a form of iron hydroxide, and Ag-110m, Co-60, Mn-54 radionuclides can be coprecipitated on it. In order to verify the conclusions made as a result of the speciation studies, the experiments with electrochemically prepared simulant solution and real solution were carried out. The test results proved that the proposed method can be applied in practice. Treatment of the ultimately spent decontamination solutions can be also made applying iron precipitation, which allows for removal of the bulk amount of contaminants, as the first step. Then, if necessary the remaining radionuclides can be removed by sorption. A series of novel absorbers has been tested for their potential for the sorption removal of the remaining radionuclides from the supernate. The test results showed that most of them were more effective in neutral or alkaline range of pH, however, the high efficiency of the sorption removal can be achieved only after the removal of the oxalic and citric acids from solution.

  4. NR2 and P3+: Accurate, Efficient Electron-Propagator Methods for Calculating Valence, Vertical Ionization Energies of Closed-Shell Molecules.

    PubMed

    Corzo, H H; Galano, Annia; Dolgounitcheva, O; Zakrzewski, V G; Ortiz, J V

    2015-08-20

    Two accurate and computationally efficient electron-propagator (EP) methods for calculating the valence, vertical ionization energies (VIEs) of closed-shell molecules have been identified through comparisons with related approximations. VIEs of a representative set of closed-shell molecules were calculated with EP methods using 10 basis sets. The most easily executed method, the diagonal, second-order (D2) EP approximation, produces results that steadily rise as basis sets are improved toward values based on extrapolated coupled-cluster singles and doubles plus perturbative triples calculations, but its mean errors remain unacceptably large. The outer valence Green function, partial third-order and renormalized partial third-order methods (P3+), which employ the diagonal self-energy approximation, produce markedly better results but have a greater tendency to overestimate VIEs with larger basis sets. The best combination of accuracy and efficiency with a diagonal self-energy matrix is the P3+ approximation, which exhibits the best trends with respect to basis-set saturation. Several renormalized methods with more flexible nondiagonal self-energies also have been examined: the two-particle, one-hole Tamm-Dancoff approximation (2ph-TDA), the third-order algebraic diagrammatic construction or ADC(3), the renormalized third-order (3+) method, and the nondiagonal second-order renormalized (NR2) approximation. Like D2, 2ph-TDA produces steady improvements with basis set augmentation, but its average errors are too large. Errors obtained with 3+ and ADC(3) are smaller on average than those of 2ph-TDA. These methods also have a greater tendency to overestimate VIEs with larger basis sets. The smallest average errors occur for the NR2 approximation; these errors decrease steadily with basis augmentations. As basis sets approach saturation, NR2 becomes the most accurate and efficient method with a nondiagonal self-energy. PMID:26226061

  5. Surface-enhanced laser desorption-ionization retentate chromatography mass spectrometry (SELDI-RC-MS): a new method for rapid development of process chromatography conditions.

    PubMed

    Weinberger, S R; Boschetti, E; Santambien, P; Brenac, V

    2002-12-25

    Protein biochip arrays carrying functional groups typical of those employed for chromatographic sorbents have been developed. When components of a protein mixture are deposited upon an array's functionalized surface, an interaction occurs between the array's surface and solubilized proteins, resulting in adsorption of certain species. The application of gradient wash conditions to the surface of these arrays produces a step-wise elution of retained compounds akin to that accomplished while utilizing columns for liquid chromatography (LC) separations. In retentate chromatography-mass spectrometry (RC-MS), the "retentate" components that remain following a wash are desorbed and ionized when a nitrogen laser is fired at discrete spots on the array after treatment with a laser energy-absorbing matrix solution. Ionized components are analyzed using a time-of-flight mass spectrometer (TOF MS). The present study demonstrates that protein biochips can be used to identify conditions of pH and ionic strength that support selective retention-elution of target proteins and impurity components from ion-exchange surfaces. Such conditions give corresponding behavior when using process-compatible chromatographic sorbents under elution chromatography conditions. The RC-MS principle was applied to the separation of an Fab antibody fragment expressed in Escherichia coli as well as to the separation of recombinant endostatin as expressed in supernatant of Pichia pastoris cultures. Determined optimal array binding and elution conditions in terms of ionic strength and pH were directly applied to regular chromatographic columns in step-wise elution mode. Analysis of collected LC fractions showed favorable correlation to results predicted by the RC-MS method. PMID:12458014

  6. Dating the Martian meteorite Zagami by the 87Rb-87Sr isochron method with a prototype in situ resonance ionization mass spectrometer

    PubMed Central

    Scott Anderson, F; Levine, Jonathan; Whitaker, Tom J

    2015-01-01

    RATIONALE The geologic history of the Solar System builds on an extensive record of impact flux models, crater counts, and ∼270 kg of lunar samples analyzed in terrestrial laboratories. However, estimates of impactor flux may be biased by the fact that most of the dated Apollo samples were only tenuously connected to an assumed geologic context. Moreover, uncertainties in the modeled cratering rates are significant enough to lead to estimated errors for dates on Mars and the Moon of ∼1 Ga. Given the great cost of sample return missions, combined with the need to sample multiple terrains on multiple planets, we have developed a prototype instrument that can be used for in situ dating to better constrain the age of planetary samples. METHODS We demonstrate the first use of laser ablation resonance ionization mass spectrometry for 87Rb-87Sr isochron dating of geological specimens. The demands of accuracy and precision have required us to meet challenges including regulation of the ambient temperature, measurement of appropriate backgrounds, sufficient ablation laser intensity, avoidance of the defocusing effect of the plasma created by ablation pulses, and shielding of our detector from atoms and ions of other elements. RESULTS To test whether we could meaningfully date planetary materials, we have analyzed a piece of the Martian meteorite Zagami. In each of four separate measurements we obtained 87Rb-87Sr isochron ages for Zagami consistent with its published age, and, in both of two measurements that reached completion, we obtained better than 200 Ma precision. Combining all our data into a single isochron with 581 spot analyses gives an 87Rb-87Sr age for this specimen of 360 ±90 Ma. CONCLUSIONS Our analyses of the Zagami meteorite represent the first successful application of resonance ionization mass spectrometry to isochron geochronology. Furthermore, the technique is miniaturizable for spaceflight and in situ dating on other planetary bodies. © 2014 The

  7. Comparison of Vitek Matrix-assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Versus Conventional Methods in Candida Identification.

    PubMed

    Keçeli, Sema Aşkın; Dündar, Devrim; Tamer, Gülden Sönmez

    2016-02-01

    Candida species are generally identified by conventional methods such as germ tube or morphological appearance on corn meal agar, biochemical methods using API kits and molecular biological methods. Alternative to these methods, rapid and accurate identification methods of microorganisms called matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDİ-TOF MS) has recently been described. In this study, Candida identification results by API Candida kit, API 20C AUX kit and identifications on corn meal agar (CMA) are compared with the results obtained on Vitek-MS. All results were confirmed by sequencing internal transcribed spacer (ITS) regions of rDNA. Totally, 97 Candida strains were identified by germ tube test, CMA, API and Vitek-MS. Vitek-MS results were compatible with 74.2 % of API 20C AUX and 81.4 % of CMA results. The difference between the results of API Candida and API 20C AUX was detected. The ratio of discrepancy between Vitek-MS and API 20C AUX was 25.8 %. Candida species mostly identified as C. famata or C. tropicalis by and not compatible with API kits were identified as C. albicans by Vitek-MS. Sixteen Candida species having discrepant results with Vitek-MS, API or CMA were randomly chosen, and ITS sequence analysis was performed. The results of sequencing were compatible 56.2 % with API 20C AUX, 50 % with CMA and 93.7 % with Vitek-MS. When compared with conventional identification methods, MS results are more reliable and rapid for Candida identification. MS system may be used as routine identification method in clinical microbiology laboratories. PMID:26400863

  8. Ultra high performance liquid chromatography-electrospray ionization-tandem mass spectrometry screening method for direct analysis of designer drugs, "spice" and stimulants in oral fluid.

    PubMed

    Strano-Rossi, Sabina; Anzillotti, Luca; Castrignanò, Erika; Romolo, Francesco Saverio; Chiarotti, Marcello

    2012-10-01

    An ultra high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UHPLC-ESI-MS/MS) screening method for the direct analysis in oral fluid (OF) of 24 drugs, including new synthetic cannabinoids and so-called "smart" designer drugs, in a single chromatographic run was set up. Benzylpiperazine, methylone, 5,6-methylenedioxy-2-aminoindane (MDAI), fenproporex, 4-fluoroamphetamine (4-FA), 4-methyl-N-ethylcathinone (4-MEC), 4-methylamphetamine (4-MA), methylbenzodioxolylbutanamine (MBDB), mephedrone, methylthioamphetamine (MTA), methylenedioxypyrovalerone (MDPV), mefenorex, nabilone, furfenorex, clobenzorex, JWH-200, AM 694, JWH-250, JWH-073, JWH-018, JWH-019, JWH-122, HU 210 and CP 47497 were determined in a chromatographic run of 9 min only with no sample pre-treatment, after addition of ISs and dilution in mobile phase A. This method is designed to be applied to 250 μL of OF sample, anyway is suitable to be used on smaller volumes (till 100 μL). LODs vary from 1ng/mL to 20 ng/mL. No interfering peaks were observed due to similar analytes, common therapeutic drugs or endogenous compounds. Matrix effect, although present especially for mephedrone, is acceptable, allowing the detection of the compounds at the LODs described. The developed method was applied on 400 real OF samples from on-site tests performed by police officers. PMID:22939380

  9. Brain tissue distribution of spinosin in rats determined by a new high-performance liquid chromatography-electrospray ionization-mass/mass spectrometry method.

    PubMed

    Zhang, Yanqing; Zhang, Ting; Wang, Fengling; Xie, Junbo

    2015-01-01

    Spinosin, a flavone-C-glycoside, is a bioactive ingredient isolated from a traditional Chinese herb Zizyphi Spinosi Semen. In this study, a new high-performance liquid chromatography-electrospray ionization-mass/mass spectrometry method was developed and validated to determine spinosin in brain tissues including olfactory region, hippocampus, corpus striatum, cerebrum (cerebral cortex) and cerebellum, after intravenous administration with the dose of 5 mg/kg. The tissue homogenate samples were pretreated and extracted with acetonitrile by a simple protein precipitation method. The separation was performed on a YMC ODS-AQ(TM) column (250 × 2.0 mm, 3.5 μm) with the mobile phase of acetonitrile-aqueous phase (0.1% formic acid) (25 : 75, v/v) at a flow rate of 0.3 mL/min. The retention times of spinosin and naringin (internal standard) were 3.3 and 5.1 min, respectively. Multiple reaction monitoring mode was used to monitor precursor/product ion transitions of m/z 607.2 → 427.0 for spinosin and m/z 579.2 → 271.0 for naringin. The proposed method was successfully applied to the preclinical brain tissue distribution of spinosin in rats. The results showed that there was a wide brain regional tissue distribution of spinosin. The concentrations of spinosin in corpus striatum and hippocampus were higher than that in other areas. PMID:24771055

  10. Liquid chromatography-electrospray ionization tandem mass spectrometry and dynamic multiple reaction monitoring method for determining multiple pesticide residues in tomato.

    PubMed

    Andrade, G C R M; Monteiro, S H; Francisco, J G; Figueiredo, L A; Botelho, R G; Tornisielo, V L

    2015-05-15

    A quick and sensitive liquid chromatography-electrospray ionization tandem mass spectrometry method, using dynamic multiple reaction monitoring and a 1.8-μm particle size analytical column, was developed to determine 57 pesticides in tomato in a 13-min run. QuEChERS (quick, easy, cheap, effective, rugged, and safe) method for samples preparations and validations was carried out in compliance with EU SANCO guidelines. The method was applied to 58 tomato samples. More than 84% of the compounds investigated showed limits of detection equal to or lower than 5 mg kg(-1). A mild (<20%), medium (20-50%), and strong (>50%) matrix effect was observed for 72%, 25%, and 3% of the pesticides studied, respectively. Eighty-one percent of the pesticides showed recoveries ranging between 70% and 120%. Twelve pesticides were detected in 35 samples, all below the maximum residue levels permitted in the Brazilian legislation; 15 samples exceeded the maximum residue levels established by the EU legislation for methamidophos; and 10 exceeded limits for acephate and four for bromuconazole. PMID:25577051

  11. Method for Detection and Quantitation of Fathead Minnow Vitellogenin (Vtg) by Liquid Chromatography and Matrix Assisted Laser Desorption/ Ionization Mass Spectrometry

    SciTech Connect

    Wunschel, David S.; Schultz, Irv R.; Skillman, Ann D.; Wahl, Karen L.

    2005-03-11

    Vitellogenin (Vtg) is a well recognized biomarker of estrogen exposure in many species, particularly fish. This large protein shares a high degree of sequence homology across a large number of species. Quantitative measurement is currently done using antibody-based assays. These assays frequently require purification of Vtg and antibody production from each species because there is poor cross reactivity between antibodies for different fish. Therefore, complementary methods of measuring Vtg are desirable. Mass spectrometric (MS) analysis coupled to database searching offers the promise of a general method for protein identification. In this study we used the well characterized Vtg from rainbow trout (O. mykiss) to evaluate the analytical parameters for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis of the intact and tryptic digested protein. An analytical scale HPLC separation combined with MALDI-MS was used to measure and confirm the identity of Vtg from the plasma of an important species for regulatory agencies, fathead minnow (Pimephales promelas). The small volume requirement of this method (< 10 uL) was found to be compatible with the plasma volume obtained from a few minnows. A semi quantitative measurement of Vtg from minnows exposed to estradiol was achieved, which was similar to previously obtained ELISA data.

  12. Influence of renormalization shielding on the electron-impact ionization process in dense partially ionized plasmas

    SciTech Connect

    Song, Mi-Young; Yoon, Jung-Sik; Jung, Young-Dae

    2015-04-15

    The renormalization shielding effects on the electron-impact ionization of hydrogen atom are investigated in dense partially ionized plasmas. The effective projectile-target interaction Hamiltonian and the semiclassical trajectory method are employed to obtain the transition amplitude as well as the ionization probability as functions of the impact parameter, the collision energy, and the renormalization parameter. It is found that the renormalization shielding effect suppresses the transition amplitude for the electron-impact ionization process in dense partially ionized plasmas. It is also found that the renormalization effect suppresses the differential ionization cross section in the peak impact parameter region. In addition, it is found that the influence of renormalization shielding on the ionization cross section decreases with an increase of the relative collision energy. The variations of the renormalization shielding effects on the electron-impact ionization cross section are also discussed.

  13. Mathematical description and method of calculation of fluctuations in energy absorption in small volumes of material irradiated by ionizing particles

    SciTech Connect

    Lappa, A.V.

    1985-03-01

    This paper presents closed representations obtained for the density of the distribution and the moments of the absorbed energy in an isolated region of an irradiated absorber. For a broad class of problems, these quantities are expressed in terms of the differential flux densities of charged particles integrated over the angles and defined energy functions. This is dependent on the dimensions of the region and the material present there. The method of calculation deriving from the given representations is discussed.

  14. Basis set limit electronic excitation energies, ionization potentials, and electron affinities for the 3d transition metal atoms: Coupled cluster and multireference methods

    NASA Astrophysics Data System (ADS)

    Balabanov, Nikolai B.; Peterson, Kirk A.

    2006-08-01

    Recently developed correlation consistent basis sets for the first row transition metal elements Sc-Zn have been utilized to determine complete basis set (CBS) scalar relativistic electron affinities, ionization potentials, and 4s23dn -2-4s1dn -1 electronic excitation energies with single reference coupled cluster methods [CCSD(T), CCSDT, and CCSDTQ] and multireference configuration interaction with three reference spaces: 3d4s, 3d4s4p, and 3d4s4p3d'. The theoretical values calculated with the highest order coupled cluster techniques at the CBS limit, including extrapolations to full configuration interaction, are well within 1kcal/mol of the corresponding experimental data. For the early transition metal elements (Sc-Mn) the internally contracted multireference averaged coupled pair functional method yielded excellent agreement with experiment; however, the atomic properties for the late transition metals (Mn-Zn) proved to be much more difficult to describe with this level of theory, even with the largest reference function of the present work.

  15. Method development aspects for the quantitation of pharmaceutical compounds in human plasma with a matrix-assisted laser desorption/ionization source in the multiple reaction monitoring mode.

    PubMed

    Kovarik, Peter; Grivet, Chantal; Bourgogne, Emmanuel; Hopfgartner, Gérard

    2007-01-01

    The present work investigates various method development aspects for the quantitative analysis of pharmaceutical compounds in human plasma using matrix-assisted laser desorption/ionization and multiple reaction monitoring (MALDI-MRM). Talinolol was selected as a model analyte. Liquid-liquid extraction (LLE) and protein precipitation were evaluated regarding sensitivity and throughput for the MALDI-MRM technique and its applicability without and with chromatographic separation. Compared to classical electrospray liquid chromatography/mass spectrometry (LC/ESI-MS) method development, with MALDI-MRM the tuning of the analyte in single MS mode is more challenging due to interfering matrix background ions. An approach is proposed using background subtraction. With LLE and using a 200 microL human plasma aliquot acceptable precision and accuracy could be obtained in the range of 1 to 1000 ng/mL without any LC separation. Approximately 3 s were required for one analysis. A full calibration curve and its quality control samples (20 samples) can be analyzed within 1 min. Combining LC with the MALDI analysis allowed improving the linearity down to 50 pg/mL, while reducing the throughput potential only by two-fold. Matrix effects are still a significant issue with MALDI but can be monitored in a similar way to that used for LC/ESI-MS analysis. PMID:17295425

  16. Statistical Methods and Tools for Uxo Characterization (SERDP Final Technical Report)

    SciTech Connect

    Pulsipher, Brent A.; Gilbert, Richard O.; Wilson, John E.; Hassig, Nancy L.; Carlson, Deborah K.; O'Brien, Robert F.; Bates, Derrick J.; Sandness, Gerald A.; Anderson, Kevin K.

    2004-11-15

    The Strategic Environmental Research and Development Program (SERDP) issued a statement of need for FY01 titled Statistical Sampling for Unexploded Ordnance (UXO) Site Characterization that solicited proposals to develop statistically valid sampling protocols for cost-effective, practical, and reliable investigation of sites contaminated with UXO; protocols that could be validated through subsequent field demonstrations. The SERDP goal was the development of a sampling strategy for which a fraction of the site is initially surveyed by geophysical detectors to confidently identify clean areas and subsections (target areas, TAs) that had elevated densities of anomalous geophysical detector readings that could indicate the presence of UXO. More detailed surveys could then be conducted to search the identified TAs for UXO. SERDP funded three projects: those proposed by the Pacific Northwest National Laboratory (PNNL) (SERDP Project No. UXO 1199), Sandia National Laboratory (SNL), and Oak Ridge National Laboratory (ORNL). The projects were closely coordinated to minimize duplication of effort and facilitate use of shared algorithms where feasible. This final report for PNNL Project 1199 describes the methods developed by PNNL to address SERDP's statement-of-need for the development of statistically-based geophysical survey methods for sites where 100% surveys are unattainable or cost prohibitive.

  17. The effect of muscle, cooking method and final internal temperature on quality parameters of beef roast.

    PubMed

    Modzelewska-Kapituła, Monika; Dąbrowska, Ewa; Jankowska, Barbara; Kwiatkowska, Aleksandra; Cierach, Marek

    2012-06-01

    The aim of the study was to evaluate the influence of cooking conditions (dry air and steam) and final internal temperature (75, 85, 95°C) on the physico-chemical properties of beef infraspinatus (INF) and semimembranosus (SEM) muscles as well as their tenderness and juiciness. Cooking method and temperature influenced moisture, total collagen content in cooked meat and cooking loss, whereas muscle type affected fat, total collagen content and cooking loss. Warner-Bratzler shear force values were affected by cooking method, which also influenced juiciness of roasts. Temperature affected tenderness and juiciness, whereas muscle type influenced juiciness. The most desirable tenderness had INF heated in steam and dry air to 95°C. Processing SEM in dry air to 85 and 95°C lowered the juiciness of the roasts. There were significant correlations between physico-chemical, sensorial and image attributes, however high accuracy of prediction (r(2)>0.8) was achieved only for SEM muscle. PMID:22336137

  18. Ionization probes of molecular structure and chemistry

    SciTech Connect

    Johnson, P.M.

    1993-12-01

    Various photoionization processes provide very sensitive probes for the detection and understanding of the spectra of molecules relevant to combustion processes. The detection of ionization can be selective by using resonant multiphoton ionization or by exploiting the fact that different molecules have different sets of ionization potentials. Therefore, the structure and dynamics of individual molecules can be studied even in a mixed sample. The authors are continuing to develop methods for the selective spectroscopic detection of molecules by ionization, and to use these methods for the study of some molecules of combustion interest.

  19. Antibacterial activity of chlorhexidine after final irrigation with ethanol: CLSM and culture-based method analysis.

    PubMed

    Suman, Juliana Martins; Kuga, Milton Carlos; Da Rosa, Ricardo Abreu; Santini, Manuela Favarin; Grazziotin-Soares, Renata; Montagner, Francisco; Só, Marcus ViníCius Reis

    2015-08-01

    This study investigated the effect of 95% ethanol on the antibacterial properties of 2% chlorexidine (CHX) over monospecies biofilm (Enterococcus faecalis) through a culture-based method, and over multispecies biofilm using confocal laser scanning microscopy (CLSM). For monospecies model, E. faecalis biofilm was induced in 40 root canals. The irrigation procedures were: S-saline solution; S/CHX-saline solution + CHX; E-ethanol; and E/CHX-ethanol + CHX. Microbial sampling was performed at three periods: before (S1), immediately after (S2), and 72 h after the final flush (S3). For multispecies biofilm model, 28 sterilized bovine dentin blocks were fixed on a removable orthodontic device to allow intraoral biofilm development. Seven samples were used in each group. Statistical analysis was carried out by using the Kruskal-Wallis test and Dunn's test for multiple comparisons. There was a significant reduction in CFUs count immediately after the final flush (S2) in all experimental groups (P < 0.05). However, only S/CHX, E and E/CHX groups had CFU counts close to zero, without differences among them (P > 0.05). After 72h (S3), the S/CHX and E/CHX groups had CFU counts near zero (P > 0.05). The CFU count increased in S3 for S and E groups (P < 0.05). CLSM showed that the percentages of remaining live cells were similar in S/CHX, E, and E/CHX groups (P > 0.05). The S group had the highest percentage of live cells (P < 0.05). The 95% ethanol did not interfere in the antibacterial properties of 2% CHX over mono- and multispecies biofilms. PMID:26138134

  20. Measurement of the top quark mass in the dilepton final state using the matrix element method

    SciTech Connect

    Grohsjean, Alexander; /Munich U.

    2008-12-01

    The top quark, discovered in 1995 by the CDF and D0 experiments at the Fermilab Tevatron Collider, is the heaviest known fundamental particle. The precise knowledge of its mass yields important constraints on the mass of the yet-unobserved Higgs boson and allows to probe for physics beyond the Standard Model. The first measurement of the top quark mass in the dilepton channel with the Matrix Element method at the D0 experiment is presented. After a short description of the experimental environment and the reconstruction chain from hits in the detector to physical objects, a detailed review of the Matrix Element method is given. The Matrix Element method is based on the likelihood to observe a given event under the assumption of the quantity to be measured, e.g. the mass of the top quark. The method has undergone significant modifications and improvements compared to previous measurements in the lepton+jets channel: the two undetected neutrinos require a new reconstruction scheme for the four-momenta of the final state particles, the small event sample demands the modeling of additional jets in the signal likelihood, and a new likelihood is designed to account for the main source of background containing tauonic Z decay. The Matrix Element method is validated on Monte Carlo simulated events at the generator level. For the measurement, calibration curves are derived from events that are run through the full D0 detector simulation. The analysis makes use of the Run II data set recorded between April 2002 and May 2008 corresponding to an integrated luminosity of 2.8 fb{sup -1}. A total of 107 t{bar t} candidate events with one electron and one muon in the final state are selected. Applying the Matrix Element method to this data set, the top quark mass is measured to be m{sub top}{sup Run IIa} = 170.6 {+-} 6.1(stat.){sub -1.5}{sup +2.1}(syst.)GeV; m{sub top}{sup Run IIb} = 174.1 {+-} 4.4(stat.){sub -1.8}{sup +2.5}(syst.)GeV; m{sub top}{sup comb} = 172.9 {+-} 3.6(stat

  1. Development, validation and application of a method to analyze phenols in water samples by solid phase micro extraction-gas chromatography-flame ionization detector.

    PubMed

    Lanças, Fernando M; Olivares, Igor R B; Alves, Priscila M

    2007-01-01

    In this work the development, validation and application of method using Solid Phase Microexctration (SPME) for the analyses of five pollutants (phenol, 2-nitrophenol, 2,4-dimethylphenol, 2,4-dichlorophenol and 4-chloro, 3-methyl phenol) in supplying water, using gas chromatography (GC) with flame ionization detector (FID) is described. The optimal conditions obtained for SPME were: fiber type: Poliacrylate (PA); extraction time: 40 minutes; extraction temperature: 70 degrees C; amount of salt added to sample (NaCl): 15%; desorption temperature: 8 minutes. The parameters studied in the method validation were: limit of detection (0.3 and 3.5 microg.L(- 1)); precision, measured by the variation coefficient (between 2.1 and 8.8%); calibration curve and linearity, by using the external standardization method (between 1 and 50 50 microg.L(- 1)). After the methodology development, samples of water collected in Atibaia River (São Paulo - Brazil) were analyzed, using the optimized methodology. Three water samples collected in the rain season showed a peak with retention time close to 4-chloro, 3 methyl phenol further analyzed by Gas Chromatography-Mass Spectrometry for the identity confirmation. In spite of the fact that none target compounds were found in the river water samples analyzed, the presence of two phenols different from those investigated (p-terc butyl phenol; butylated hydroxytoluene) were detected. These results together with the results of the limit of detection (that showed to be lower than the maximum concentration of phenols demanded by different environment control agencies), and the results of the validation, indicate the applicability of this method for the analysis of selected phenols in river water samples. PMID:17562456

  2. OVERVIEW OF A NEW EPA METHOD: DETERMINATION OF PERCHLORATE IN DRINKING WATER, GROUNDWATER AND HIGH SALINITY WATER BY ION CHROMATOGRAPHY, SUPPRESSED CONDUCTIVITY WITH ELECTROSPRAY IONIZATION MASS SPECTROMETRIC DETECTION

    EPA Science Inventory

    In this presentation the analytical instrumentation and procedures necessary to qualitatively and quantitatively determine low levels of perchlorate (ClO4-) in drinking waters using ion chromatography with electrolytic conductivity suppression, electrospray ionization mass spec...

  3. Development, optimization, validation and application of faster gas chromatography - flame ionization detector method for the analysis of total petroleum hydrocarbons in contaminated soils.

    PubMed

    Zubair, Abdulrazaq; Pappoe, Michael; James, Lesley A; Hawboldt, Kelly

    2015-12-18

    This paper presents an important new approach to improving the timeliness of Total Petroleum Hydrocarbon (TPH) analysis in the soil by Gas Chromatography - Flame Ionization Detector (GC-FID) using the CCME Canada-Wide Standard reference method. The Canada-Wide Standard (CWS) method is used for the analysis of petroleum hydrocarbon compounds across Canada. However, inter-laboratory application of this method for the analysis of TPH in the soil has often shown considerable variability in the results. This could be due, in part, to the different gas chromatography (GC) conditions, other steps involved in the method, as well as the soil properties. In addition, there are differences in the interpretation of the GC results, which impacts the determination of the effectiveness of remediation at hydrocarbon-contaminated sites. In this work, multivariate experimental design approach was used to develop and validate the analytical method for a faster quantitative analysis of TPH in (contaminated) soil. A fractional factorial design (fFD) was used to screen six factors to identify the most significant factors impacting the analysis. These factors included: injection volume (μL), injection temperature (°C), oven program (°C/min), detector temperature (°C), carrier gas flow rate (mL/min) and solvent ratio (v/v hexane/dichloromethane). The most important factors (carrier gas flow rate and oven program) were then optimized using a central composite response surface design. Robustness testing and validation of model compares favourably with the experimental results with percentage difference of 2.78% for the analysis time. This research successfully reduced the method's standard analytical time from 20 to 8min with all the carbon fractions eluting. The method was successfully applied for fast TPH analysis of Bunker C oil contaminated soil. A reduced analytical time would offer many benefits including an improved laboratory reporting times, and overall improved clean up

  4. Ionization Cooling using Parametric Resonances

    SciTech Connect

    Johnson, Rolland P.

    2008-06-07

    Ionization Cooling using Parametric Resonances was an SBIR project begun in July 2004 and ended in January 2008 with Muons, Inc., (Dr. Rolland Johnson, PI), and Thomas Jefferson National Accelerator Facility (JLab) (Dr. Yaroslav Derbenev, Subcontract PI). The project was to develop the theory and simulations of Parametric-resonance Ionization Cooling (PIC) so that it could be used to provide the extra transverse cooling needed for muon colliders in order to relax the requirements on the proton driver, reduce the site boundary radiation, and provide a better environment for experiments. During the course of the project, the theoretical understanding of PIC was developed and a final exposition is ready for publication. Workshops were sponsored by Muons, Inc. in May and September of 2007 that were devoted to the PIC technique. One outcome of the workshops was the interesting and somewhat unexpected realization that the beam emittances using the PIC technique can get small enough that space charge forces can be important. A parallel effort to develop our G4beamline simulation program to include space charge effects was initiated to address this problem. A method of compensating for chromatic aberrations by employing synchrotron motion was developed and simulated. A method of compensating for spherical aberrations using beamline symmetry was also developed and simulated. Different optics designs have been developed using the OptiM program in preparation for applying our G4beamline simulation program, which contains all the power of the Geant4 toolkit. However, no PIC channel design that has been developed has had the desired cooling performance when subjected to the complete G4beamline simulation program. This is believed to be the consequence of the difficulties of correcting the aberrations associated with the naturally large beam angles and beam sizes of the PIC method that are exacerbated by the fringe fields of the rather complicated channel designs that have been

  5. WE-E-BRE-11: New Method to Simulate DNA Damage Using Ionization Cross-Sections and a Geometrical Nucleosome Model

    SciTech Connect

    Pater, P; Seuntjens, J; El Naqa, I

    2014-06-15

    Purpose: To obtain probability distributions of various DNA damage types as a function of the incident electron kinetic energy. Methods: Using Geant4-DNA electron ionization cross-sections, we calculated path length distributions for electrons of energies between 10 eV and 1 MeV, defined as the length between two subsequent interactions. These path lengths were then convolved with probability distributions for the creation of same-strand damage, opposite-strand damage, clustered damage, isolated damage, and same DNA strand target damage. These probability distributions of DNA damage were obtained by a Monte Carlo routine calculating probabilities of interaction in DNA targets inside a nucleosome geometrical model. Results represent the probability of a secondary electron, initially created inside a DNA strand target, of undergoing its next interaction: (1) in the opposite strand (DSB), (2) in the same strand (SSB+), (3) in either the opposite or same-strand (clustered), (4) in the same DNA target (multiple-hit) or (5) more than 10 base pairs away (isolated). Results: Electrons with kinetic energy between 50 and 250 eV have a maximal probability of creating DSB, SSB+, clustered damage and multiple-hits in the same target The probabilities for these damage patterns have values of 2.5%, 4.3%, 6.7% and 5.4%, respectively. Isolated damage is most probable between 700 eV to 900 eV with a probability of 0.2%. Conclusion: We obtained DNA damage probability distributions as a function of electron incident energy. We showed that electrons with kinetic energies between 50 and 250 eV have the highest probability of producing complex forms of DNA damage (DSB, SSB+). We also showed that a double ionization within the same DNA target is the most frequent outcome occurring 5% of the time. It is expected that electron slowing down spectra can be convolved with our formalism to calculate source specific DNA damage patterns. Research grants from governments of Canada and Quebec. PP

  6. Improved methods for water shutoff. Final technical progress report, October 1, 1997--September 30, 1998

    SciTech Connect

    Seright, R.S.; Liang, J.T.; Schrader, R.; Hagstrom, J. II; Liu, J.; Wavrik, K.

    1998-10-01

    In the United States, more than 20 billion barrels of salt water are produced each year during oilfield operations. A tremendous economic incentive exists to reduce water production if that can be accomplished without significantly sacrificing hydrocarbon production. This three-year research project had three objectives. The first objective was to identify chemical blocking agents that will (a) during placement, flow readily through fractures without penetrating significantly into porous rock and with screening out or developing excessive pressure gradients and (b) at a predictable and controllable time, become immobile and resistant breakdown upon exposure to moderate to high pressure gradients. The second objective was to identify schemes that optimize placement of the above blocking agents. The third objective was to explain why gels and other chemical blocking agents reduce permeability to one phase (e.g., water) more than that to another phase (e.g., oil or gas). The authors also wanted to identify conditions that maximize this phenomenon. This project consisted of three tasks, each of which addressed one of the above objectives. This report describes work performed during the third and final period of the project. During this three-year project, they: (1) Developed a procedure and software for sizing gelant treatments in hydraulically fractured production wells; (2) Developed a method (based on interwell tracer results) to determine the potential for applying gel treatments in naturally fractured reservoirs; (3) Characterized gel properties during extrusion through fractures; (4) Developed a method to predict gel placement in naturally fractured reservoirs; (5) Made progress in elucidating the mechanism for why some gels can reduce permeability to water more than that to oil; (6) Demonstrated the limitations of using water/oil ratio diagnostic plots to distinguish between channeling and coning; and (7) Proposed a philosophy for diagnosing and attacking water

  7. Epicyclic Twin-Helix Ionization Cooling Simulations

    SciTech Connect

    Vasiliy Morozov, Yaroslav Derbenev, A. Afanaciev, R.P. Johnson

    2011-04-01

    Parametric-resonance Ionization Cooling (PIC) is proposed as the final 6D cooling stage of a highluminosity muon collider. For the implementation of PIC, we earlier developed an epicyclic twin-helix channel with correlated behavior of the horizontal and vertical betatron motions and dispersion. We now insert absorber plates with short energy-recovering units located next to them at the appropriate locations in the twin-helix channel. We first demonstrate conventional ionization cooling in such a system with the optics uncorrelated. We then adjust the correlated optics state and induce a parametric resonance to study ionization cooling under the resonant condition.

  8. Alignment- and orientation-dependent strong-field ionization of molecules: Field-induced orbital distortion effects

    NASA Astrophysics Data System (ADS)

    Spiewanowski, Maciej Dominik; Madsen, Lars Bojer

    2015-05-01

    Strong-field ionization (SFI) is a starting point for many strong-field phenomena, e.g., high-order harmonic generation, as well as a source of fundamental information about the ionized target. Therefore, investigation of SFI of atoms and molecules has been the aim for research since the first strong laser pulses became available. We present a recently developed method, adiabatic strong-field approximation, to study ionization yields as a function of alignment angle for CO2, CO, and OCS molecules. We show that orbital distortion plays an important role in explaining the position and relative strength of maxima in the yields for both polar and nonpolar molecules, even for targets with low polarizabilities at low laser intensities. In particular, we report that for ionization of CO2 the maximum in ionization yield shifts towards the experimentally-measured maximum with respect to the strong-field approximation. For ionization of the CO molecule, not only does the theory predict the preferred direction of ionization correctly, but also the ratio between yields for the two molecular orientations where the electric field points either towards the C or towards the O end. Finally, we find that ionization of OCS is more probable for the laser pointing from the O end towards the S end. Work supported by the Natural Sciences and Engineering Research Council of Canada, the ERC-StG (Project No. 277767-TDMET), and the VKR center of excellence, QUS- COPE.

  9. Atmospheric sampling glow discharge ionization source

    DOEpatents

    McLuckey, Scott A.; Glish, Gary L.

    1989-01-01

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above.

  10. Atmospheric sampling glow discharge ionization source

    DOEpatents

    McLuckey, S.A.; Glish, G.L.

    1989-07-18

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above. 3 figs.

  11. Development of dielectric-barrier-discharge ionization.

    PubMed

    Guo, Cheng'an; Tang, Fei; Chen, Jin; Wang, Xiaohao; Zhang, Sichun; Zhang, Xinrong

    2015-03-01

    Dielectric-barrier-discharge ionization is an ambient-ionization technique. Since its first description in 2007, it has attracted much attention in such fields as biological analysis, food safety, mass-spectrometry imaging, forensic identification, and reaction monitoring for its advantages, e.g., low energy consumption, solvent-free method, and easy miniaturization. In this review a brief introduction to dielectric barrier discharge is provided, and then a detailed introduction to the dielectric-barrier-discharge-ionization technique is given, including instrumentation, applications, and mechanistic studies. Based on the summary of reported work, possible future uses of this type of ionization source are discussed at the end. PMID:25510973

  12. Ionization potentials of seaborgium

    SciTech Connect

    Johnson, E.; Pershina, V.; Fricke, B.

    1999-10-21

    Multiconfiguration relativistic Dirac-Fock values were calculated for the first six ionization potentials of seaborgium and of the other group 6 elements. No experimental ionization potentials are available for seaborgium. Accurate experimental values are not available for all of the other ionization potentials. Ionic radii for the 4+ through 6+ ions of seaborgium are also presented. The ionization potentials and ionic radii obtained will be used to predict some physiochemical properties of seaborgium and its compounds.

  13. Validation of a qualitative screening method for pesticides in fruits and vegetables by gas chromatography quadrupole-time of flight mass spectrometry with atmospheric pressure chemical ionization.

    PubMed

    Portolés, T; Mol, J G J; Sancho, J V; López, Francisco J; Hernández, F

    2014-08-01

    A wide-scope screening method was developed for the detection of pesticides in fruit and vegetables. The method was based on gas chromatography coupled to a hybrid quadrupole time-of-flight mass spectrometer with an atmospheric pressure chemical ionization source (GC-(APCI)QTOF MS). A non-target acquisition was performed through two alternating scan events: one at low collision energy and another at a higher collision energy ramp (MS(E)). In this way, both protonated molecule and/or molecular ion together with fragment ions were obtained in a single run. Validation was performed according to SANCO/12571/2013 by analysing 20 samples (10 different commodities in duplicate), fortified with a test set of 132 pesticides at 0.01, 0.05 and 0.20mg kg(-1). For screening, the detection was based on one diagnostic ion (in most cases the protonated molecule). Overall, at the 0.01mg kg(-1) level, 89% of the 2620 fortifications made were detected. The screening detection limit for individual pesticides was 0.01mg kg(-1) for 77% of the pesticides investigated. The possibilities for identification according to the SANCO criteria, requiring two ions with a mass accuracy ≤±5ppm and an ion-ratio deviation ≤±30%, were investigated. At the 0.01mg kg(-1) level, identification was possible for 70% of the pesticides detected during screening. This increased to 87% and 93% at the 0.05 and 0.20mg kg(-1) level, respectively. Insufficient sensitivity for the second ion was the main reason for the inability to identify detected pesticides, followed by deviations in mass accuracy and ion ratios. PMID:25064246

  14. Analytical method validation for the determination of 2,3,3,3-tetrafluoropropene in air samples using gas chromatography with flame ionization detection.

    PubMed

    Mawn, Michael P; Kurtz, Kristine; Stahl, Deborah; Chalfant, Richard L; Koban, Mary E; Dawson, Barbara J

    2013-01-01

    A new low global warming refrigerant, 2,3,3,3-tetrafluoro propene, or HFO-1234yf, has been successfully evaluated for automotive air conditioning, and is also being evaluated for stationary refrigeration and air conditioning systems. Due to the advantageous environmental properties of HFO-1234yf versus HFC-134a, coupled with its similar physical properties and system performance, HFO-1234yf is also being evaluated to replace HFC-134a in refrigeration applications where neat HFC-134a is currently used. This study reports on the development and validation of a sampling and analytical method for the determination of HFO-1234yf in air. Different collection media were screened for desorption and simulated sampling efficiency with three-section (350/350/350 mg) Anasorb CSC showing the best results. Therefore, air samples were collected using two 3-section Anasorb CSC sorbent tubes in series at 0.02 L/min for up to 8 hr for sample volumes of up to 9.6 L. The sorbent tubes were extracted in methylene chloride, and analyzed by gas chromatography with flame ionization detection. The method was validated from 0.1× to 20× the target level of 0.5 ppm (2.3 mg/m(3)) for a 9.6 L air volume. Desorption efficiencies for HFO-1234yf were 88 to 109% for all replicates over the validation range with a mean overall recovery of 93%. Simulated sampling efficiencies ranged from 87 to 104% with a mean of 94%. No migration or breakthrough to the back tube was observed under the sampling conditions evaluated. HFO-1234yf samples showed acceptable storage stability on Anasorb CSC sorbent up to a period of 30 days when stored under ambient, refrigerated, or frozen temperature conditions. PMID:24116663

  15. Ionization Energies of Lanthanides

    ERIC Educational Resources Information Center

    Lang, Peter F.; Smith, Barry C.

    2010-01-01

    This article describes how data are used to analyze the pattern of ionization energies of the lanthanide elements. Different observed pathways of ionization between different ground states are discussed, and the effects of pairing, exchange, and orbital interactions on ionization energies of the lanthanides are evaluated. When all the above…

  16. Method to simultaneously determine the sphingosine 1-phosphate breakdown product (2E)-hexadecenal and its fatty acid derivatives using isotope-dilution HPLC-electrospray ionization-quadrupole/time-of-flight mass spectrometry.

    PubMed

    Neuber, Corinna; Schumacher, Fabian; Gulbins, Erich; Kleuser, Burkhard

    2014-09-16

    Sphingosine 1-phosphate (S1P), a bioactive lipid involved in various physiological processes, can be irreversibly degraded by the membrane-bound S1P lyase (S1PL) yielding (2E)-hexadecenal and phosphoethanolamine. It is discussed that (2E)-hexadecenal is further oxidized to (2E)-hexadecenoic acid by the long-chain fatty aldehyde dehydrogenase ALDH3A2 (also known as FALDH) prior to activation via coupling to coenzyme A (CoA). Inhibition or defects in these enzymes, S1PL or FALDH, result in severe immunological disorders or the Sjögren-Larsson syndrome, respectively. Hence, it is of enormous importance to simultaneously determine the S1P breakdown product (2E)-hexadecenal and its fatty acid metabolites in biological samples. However, no method is available so far. Here, we present a sensitive and selective isotope-dilution high performance liquid chromatography-electrospray ionization-quadrupole/time-of-flight mass spectrometry method for simultaneous quantification of (2E)-hexadecenal and its fatty acid metabolites following derivatization with 2-diphenylacetyl-1,3-indandione-1-hydrazone and 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide. Optimized conditions for sample derivatization, chromatographic separation, and MS/MS detection are presented as well as an extensive method validation. Finally, our method was successfully applied to biological samples. We found that (2E)-hexadecenal is almost quantitatively oxidized to (2E)-hexadecenoic acid, that is further activated as verified by cotreatment of HepG2 cell lysates with (2E)-hexadecenal and the acyl-CoA synthetase inhibitor triacsin C. Moreover, incubations of cell lysates with deuterated (2E)-hexadecenal revealed that no hexadecanoic acid is formed from the aldehyde. Thus, our method provides new insights into the sphingolipid metabolism and will be useful to investigate diseases known for abnormalities in long-chain fatty acid metabolism, e.g., the Sjögren-Larsson syndrome, in more detail. PMID:25137547

  17. Forensic applications of ambient ionization mass spectrometry.

    PubMed

    Ifa, Demian R; Jackson, Ayanna U; Paglia, Giuseppe; Cooks, R Graham

    2009-08-01

    This review highlights and critically assesses forensic applications in the developing field of ambient ionization mass spectrometry. Ambient ionization methods permit the ionization of samples outside the mass spectrometer in the ordinary atmosphere, with minimal sample preparation. Several ambient ionization methods have been created since 2004 and they utilize different mechanisms to create ions for mass-spectrometric analysis. Forensic applications of these techniques--to the analysis of toxic industrial compounds, chemical warfare agents, illicit drugs and formulations, explosives, foodstuff, inks, fingerprints, and skin--are reviewed. The minimal sample pretreatment needed is illustrated with examples of analysis from complex matrices (e.g., food) on various substrates (e.g., paper). The low limits of detection achieved by most of the ambient ionization methods for compounds of forensic interest readily offer qualitative confirmation of chemical identity; in some cases quantitative data are also available. The forensic applications of ambient ionization methods are a growing research field and there are still many types of applications which remain to be explored, particularly those involving on-site analysis. Aspects of ambient ionization currently undergoing rapid development include molecular imaging and increased detection specificity through simultaneous chemical reaction and ionization by addition of appropriate chemical reagents. PMID:19241065

  18. Laserspray ionization, a new method for protein analysis directly from tissue at atmospheric pressure with ultrahigh mass resolution and electron transfer dissociation.

    PubMed

    Inutan, Ellen D; Richards, Alicia L; Wager-Miller, James; Mackie, Ken; McEwen, Charles N; Trimpin, Sarah

    2011-02-01

    Laserspray ionization (LSI) mass spectrometry (MS) allows, for the first time, the analysis of proteins directly from tissue using high performance atmospheric pressure ionization mass spectrometers. Several abundant and numerous lower abundant protein ions with molecular masses up to ∼20,000 Da were detected as highly charged ions from delipified mouse brain tissue mounted on a common microscope slide and coated with 2,5-dihydroxyacetophenone as matrix. The ability of LSI to produce multiply charged ions by laser ablation at atmospheric pressure allowed protein analysis at 100,000 mass resolution on an Orbitrap Exactive Fourier transform mass spectrometer. A single acquisition was sufficient to identify the myelin basic protein N-terminal fragment directly from tissue using electron transfer dissociation on a linear trap quadrupole (LTQ) Velos. The high mass resolution and mass accuracy, also obtained with a single acquisition, are useful in determining protein molecular weights and from the electron transfer dissociation data in confirming database-generated sequences. Furthermore, microscopy images of the ablated areas show matrix ablation of ∼15 μm-diameter spots in this study. The results suggest that LSI-MS at atmospheric pressure potentially combines speed of analysis and imaging capability common to matrix-assisted laser desorption/ionization and soft ionization, multiple charging, improved fragmentation, and cross-section analysis common to electrospray ionization. PMID:20855542

  19. NERI PROJECT 99-119. TASK 1. ADVANCED CONTROL TOOLS AND METHODS. FINAL REPORT

    SciTech Connect

    March-Leuba, J.A.

    2002-09-09

    Nuclear plants of the 21st century will employ higher levels of automation and fault tolerance to increase availability, reduce accident risk, and lower operating costs. Key developments in control algorithms, fault diagnostics, fault tolerance, and communication in a distributed system are needed to implement the fully automated plant. Equally challenging will be integrating developments in separate information and control fields into a cohesive system, which collectively achieves the overall goals of improved performance, safety, reliability, maintainability, and cost-effectiveness. Under the Nuclear Energy Research Initiative (NERI), the U. S. Department of Energy is sponsoring a project to address some of the technical issues involved in meeting the long-range goal of 21st century reactor control systems. This project, ''A New Paradigm for Automated Development Of Highly Reliable Control Architectures For Future Nuclear Plants,'' involves researchers from Oak Ridge National Laboratory, University of Tennessee, and North Carolina State University. This paper documents a research effort to develop methods for automated generation of control systems that can be traced directly to the design requirements. Our final goal is to allow the designer to specify only high-level requirements and stress factors that the control system must survive (e.g. a list of transients, or a requirement to withstand a single failure.) To this end, the ''control engine'' automatically selects and validates control algorithms and parameters that are optimized to the current state of the plant, and that have been tested under the prescribed stress factors. The control engine then automatically generates the control software from validated algorithms. Examples of stress factors that the control system must ''survive'' are: transient events (e.g., set-point changes, or expected occurrences such a load rejection,) and postulated component failures. These stress factors are specified by the

  20. Project on Social Architecture in Education. Final Report. Part II: Research Methods. Chapter 4: Project Overview. Chapter 5: Research Methods.

    ERIC Educational Resources Information Center

    Miles, Matthew B.

    This document contains chapters 4 and 5 of the final report of the Project on Social Architecture in Education. Chapter 4 provides a brief overview of the activities of the project in order to sketch the context out of which the case studies, conclusions, and learning materials emerged. Chapter 5 discusses and evaluates six major strands of…

  1. Fully differential single-photon double ionization of neon and argon.

    PubMed

    Yip, F L; Rescigno, T N; McCurdy, C W; Martín, F

    2013-04-26

    Triply differential cross sections are calculated for one-photon double ionization of neon and argon at various photon energies and electron energy sharings by using a frozen-core treatment to represent the remaining electrons of the residual ion. Angular distributions agree well with all existing experimental data, showing that in spite of its simplicity the method can treat the double ionization of complex targets reliably. A comparison of the cross sections for helium, neon, and argon into the same final state symmetry at the same relative excess energies reveals a distinctive signature of the role of electron correlation in each target. PMID:23679717

  2. Lipidomics for clinical diagnosis: Dye-Assisted Laser Desorption/Ionization (DALDI) method for lipids detection in MALDI mass spectrometry imaging.

    PubMed

    Arafah, Karim; Longuespée, Rémi; Desmons, Annie; Kerdraon, Olivier; Fournier, Isabelle; Salzet, Michel

    2014-08-01

    Lipid-based biomarkers for research and diagnosis are rapidly emerging to unpack the basis of person-to-person and population variations in disease susceptibility, drug and nutritional responses, to name but a few. Hence, with the advent of MALDI Mass Spectrometry Imaging, lipids have begun to be investigated intensively. However, lipids are highly mobile during tissue preparation, and are soluble in the solvent used for matrix preparation or in the fixing fluid such as formalin, resulting in substantial delocalization. In the present article, we investigated as another alternative, the possibility of using specific dyes that can absorb UV wavelengths, in order to desorb the lipids specifically from tissue sections, and are known to immobilize them in tissues. Indeed, after lipid insolubilization with chromate solution or chemical fixation with osmium tetroxide, heterocyclic-based dyes can be directly used without matrix. Taking into account the fact that some dyes have this matrix-free capability, we identified particular dyes dedicated to histological staining of lipids that could be used with MALDI mass spectrometry imaging. We stained tissue sections with either Sudan Black B, Nile Blue A, or Oil Red O. An important advantage of this assay relies on its compatibility with usual practices of histopathological investigation of lipids. As a new method, DALDI stands for Dye-Assisted Laser Desorption Ionization and allows for future clinical and histopathological applications using routine histological protocols. Additionally, this novel methodology was validated in human ovarian cancer biopsies to demonstrate its use as a suitable procedure, for histological diagnosis in lipidomics field. PMID:24905741

  3. A high-performance liquid chromatographic-atmospheric pressure chemical ionization-tandem mass spectrometric method for determination of risperidone and 9-hydroxyrisperidone in human plasma.

    PubMed

    Moody, David E; Laycock, John D; Huang, Wei; Foltz, Rodger L

    2004-09-01

    Risperidone, a benzisoxazole derivative, is an antipsychotic agent used for the treatment of schizophrenia. We developed a liquid chromatographic-atmospheric pressure chemical ionization-tandem mass spectrometric (LC-APCI-MS-MS) method with improved sensitivity, selectivity, and dynamic range for determination of risperidone and 9-hydroxyrisperidone in human plasma. A structural analogue of risperidone, RO68808 (5 ng/mL), is added as the internal standard to 1 mL of human plasma. Plasma is made basic, extracted with pentane/methylene chloride (3:1), the organic phase evaporated to dryness, and the residue is reconstituted in water with 0.1% formic acid/acetonitrile (20:1). For LC-MS-MS analysis, a Metachem Inertsel HPLC column (2.1 x 150 mm, 5-microm particle size) is connected to a Finnigan TSQ7000 tandem MS via the Finnigan API interface. Both electrospray (ESI) and APCI produced predominantly MH(+) ions for the two analytes and the internal standard. Ions detected by selected reaction monitoring correspond to the following transitions: m/z 411 to 191 for risperidone, m/z 427 to 207 for 9-hydroxyrisperidone, and m/z 421 to 201 for the internal standard. APCI provided a larger dynamic range (0.1 to 25 ng/mL) and better precision and accuracy than ESI. Intrarun accuracy and precision determined at 0.1, 0.25, 2.5, and 15 ng/mL were within 12% of target with %CVs not exceeding 10.9%. Interrun accuracy and precision determined at the same concentrations were within 9.6% of target with %CVs not exceeding 6.7%. Analytes were stable in plasma after 24 h at room temperature, 2 freeze-thaw cycles, and 490 days at -20 degrees C. PMID:15516302

  4. Physics of Partially Ionized Plasmas

    NASA Astrophysics Data System (ADS)

    Krishan, Vinod

    2016-05-01

    Figures; Preface; 1. Partially ionized plasmas here and everywhere; 2. Multifluid description of partially ionized plasmas; 3. Equilibrium of partially ionized plasmas; 4. Waves in partially ionized plasmas; 5. Advanced topics in partially ionized plasmas; 6. Research problems in partially ionized plasmas; Supplementary matter; Index.

  5. Nonsequential two-photon double ionization of helium

    NASA Astrophysics Data System (ADS)

    Feist, J.; Nagele, S.; Pazourek, R.; Persson, E.; Schneider, B. I.; Collins, L. A.; Burgdörfer, J.

    2008-04-01

    We present accurate time-dependent ab initio calculations on fully differential and total integrated (generalized) cross sections for the nonsequential two-photon double ionization of helium at photon energies from 40 to 54 eV. Our computational method is based on the solution of the time-dependent Schrödinger equation and subsequent projection of the wave function onto Coulomb waves. We compare our results with other recent calculations and discuss the emerging similarities and differences. We investigate the role of electronic correlation in the representation of the two-electron continuum states, which are used to extract the ionization yields from the fully correlated final wave function. In addition, we study the influence of the pulse length and shape on the cross sections in time-dependent calculations and address convergence issues.

  6. Development of matrix-assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) for plant metabolite analysis

    SciTech Connect

    Korte, Andrew R

    2014-12-01

    This thesis presents efforts to improve the methodology of matrix-assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) as a method for analysis of metabolites from plant tissue samples. The first chapter consists of a general introduction to the technique of MALDI-MSI, and the sixth and final chapter provides a brief summary and an outlook on future work.

  7. A multi-residue method for pesticides analysis in green coffee beans using gas chromatography-negative chemical ionization mass spectrometry in selective ion monitoring mode.

    PubMed

    Pizzutti, Ionara R; de Kok, Andre; Dickow Cardoso, Carmem; Reichert, Bárbara; de Kroon, Marijke; Wind, Wouter; Weber Righi, Laís; Caiel da Silva, Rosselei

    2012-08-17

    In this study, a new gas chromatography-mass spectrometry (GC-MS) method, using the very selective negative chemical ionization (NCI) mode, was developed and applied in combination with a modified acetonitrile-based extraction method (QuEChERS) for the analysis of a large number of pesticide residues (51 pesticides, including isomers and degradation products) in green coffee beans. A previously developed integrated sample homogenization and extraction method for both pesticides and mycotoxins analysis was used. An homogeneous slurry of green milled coffee beans and water (ratio 1:4, w/w) was prepared and extracted with acetonitrile/acetic acid (1%), followed by magnesium sulfate addition for phase separation. Aliquots from this extract could be used directly for LC-MS/MS analysis of mycotoxins and LC-amenable pesticides. For GC-MS analysis, a further clean-up was necessary. C18- and PSA-bonded silica were tested as dispersive solid-phase extraction (d-SPE) sorbents, separate and as a mixture, and the best results were obtained using C18-bonded silica. For the optimal sensitivity and selectivity, GC-MS detection in the NCI-selected ion monitoring (SIM) mode had to be used to allow the fast analysis of the difficult coffee bean matrix. The validation was performed by analyzing recovery samples at three different spike concentrations, 10, 20 and 50 μg kg(-1), with 6 replicates (n=6) at each concentration. Linearity (r(2)) of calibration curves, estimated instrument and method limits of detection and limits of quantification (LOD(i), LOD(m), LOQ(i) and LOQ(m), respectively), accuracy (as recovery %), precision (as RSD%) and matrix effects (%) were determined for each individual pesticide. From the 51 analytes (42 parent pesticides, 4 isomers and 5 degradation products) determined by GC-MS (NCI-SIM), approximately 76% showed average recoveries between 70-120% and 75% and RSD ≤ 20% at the lowest spike concentration of 10 μg kg(-1), the target method LOQ. For the

  8. Influence of the geometrical detail in the description of DNA and the scoring method of ionization clustering on nanodosimetric parameters of track structure: a Monte Carlo study using Geant4-DNA.

    PubMed

    Bueno, M; Schulte, R; Meylan, S; Villagrasa, C

    2015-11-01

    clusters with v≥3 (f3) within statistical variations, independently of particle type. In order to obtain ionization cluster size distributions relevant for biological DNA lesions, the complex DNA geometry and a scoring method without fixed boundaries should be preferred to the simple cylindrical geometry with a fixed scoring volume. PMID:26501434

  9. Influence of the geometrical detail in the description of DNA and the scoring method of ionization clustering on nanodosimetric parameters of track structure: a Monte Carlo study using Geant4-DNA

    NASA Astrophysics Data System (ADS)

    Bueno, M.; Schulte, R.; Meylan, S.; Villagrasa, C.

    2015-11-01

    between m1 and the cumulative relative frequency of clusters with ν ≥slant 3 (f3) within statistical variations, independently of particle type. In order to obtain ionization cluster size distributions relevant for biological DNA lesions, the complex DNA geometry and a scoring method without fixed boundaries should be preferred to the simple cylindrical geometry with a fixed scoring volume.

  10. Systematic Process Synthesis and Design Methods for Cost Effective Waste Minimization. Final report

    SciTech Connect

    Biegler, L.T.; Grossmann, I.E.; Westerberg, A.W.

    1998-02-14

    This report focuses on research done over the past four years under the grant with the above title. In addition, the report also includes a brief summary of work done before 1994 under grant DOE-DE-FG02-85ER13396. Finally, a complete list of publications that acknowledge support from this grant is listed at the end.