Science.gov

Sample records for ionized tetrahydrofuran studied

  1. An (e, 2e + ion) study of low-energy electron-impact ionization and fragmentation of tetrahydrofuran with high mass and energy resolutions

    SciTech Connect

    Ren, Xueguang Pflüger, Thomas; Weyland, Marvin; Baek, Woon Yoon; Rabus, Hans; Ullrich, Joachim; Dorn, Alexander

    2014-10-07

    We study the low-energy (E{sub 0} = 26 eV) electron-impact induced ionization and fragmentation of tetrahydrofuran using a reaction microscope. All three final-state charged particles, i.e., two outgoing electrons and one fragment ion, are detected in triple coincidence such that the momentum vectors and, consequently, the kinetic energies for charged reaction products are determined. The ionic fragments are clearly identified in the experiment with a mass resolution of 1 amu. The fragmentation pathways of tetrahydrofuran are investigated by measuring the ion kinetic energy spectra and the binding energy spectra where an energy resolution of 1.5 eV has been achieved using the recently developed photoemission electron source. Here, we will discuss the fragmentation reactions for the cations C{sub 4}H{sub 8}O{sup +}, C{sub 4}H{sub 7}O{sup +}, C{sub 2}H{sub 3}O{sup +}, C{sub 3}H{sub 6}{sup +}, C{sub 3}H{sub 5}{sup +}, C{sub 3}H{sub 3}{sup +}, CH{sub 3}O{sup +}, CHO{sup +}, and C{sub 2}H{sub 3}{sup +}.

  2. An (e, 2e + ion) study of low-energy electron-impact ionization and fragmentation of tetrahydrofuran with high mass and energy resolutions.

    PubMed

    Ren, Xueguang; Pflüger, Thomas; Weyland, Marvin; Baek, Woon Yoon; Rabus, Hans; Ullrich, Joachim; Dorn, Alexander

    2014-10-01

    We study the low-energy (E0 = 26 eV) electron-impact induced ionization and fragmentation of tetrahydrofuran using a reaction microscope. All three final-state charged particles, i.e., two outgoing electrons and one fragment ion, are detected in triple coincidence such that the momentum vectors and, consequently, the kinetic energies for charged reaction products are determined. The ionic fragments are clearly identified in the experiment with a mass resolution of 1 amu. The fragmentation pathways of tetrahydrofuran are investigated by measuring the ion kinetic energy spectra and the binding energy spectra where an energy resolution of 1.5 eV has been achieved using the recently developed photoemission electron source. Here, we will discuss the fragmentation reactions for the cations C4H8O(+), C4H7O(+), C2H3O(+), C3H6(+), C3H5(+), C3H3(+), CH3O(+), CHO(+), and C2H3(+). PMID:25296813

  3. Tetrahydrofuran

    Integrated Risk Information System (IRIS)

    Tetrahydrofuran ; CASRN 109 - 99 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  4. Experimental and theoretical triple-differential cross sections for tetrahydrofuran ionized by low-energy 26-eV-electron impact

    NASA Astrophysics Data System (ADS)

    Ali, Esam; Ren, XueGuang; Dorn, Alexander; Ning, Chuangang; Colgan, James; Madison, Don

    2016-06-01

    We report an experimental and theoretical study of low-energy electron-impact ionization of tetrahydrofuran, which is a molecule of biological interest. The experiments were performed using an advanced reaction microscope specially built for electron-impact ionization studies. The theoretical calculations were performed within the molecular three-body distorted-wave model. Reasonably good agreement is found between experiment and theory.

  5. Cross sections for ionization of tetrahydrofuran by protons at energies between 300 and 3000 keV

    NASA Astrophysics Data System (ADS)

    Wang, Mingjie; Rudek, Benedikt; Bennett, Daniel; de Vera, Pablo; Bug, Marion; Buhr, Ticia; Baek, Woon Yong; Hilgers, Gerhard; Rabus, Hans

    2016-05-01

    Double-differential cross sections for ionization of tetrahydrofuran by protons with energies from 300 to 3000 keV were measured at the Physikalisch-Technische Bundesanstalt ion accelerator facility. The electrons emitted at angles between 15∘ and 150∘ relative to the ion-beam direction were detected with an electrostatic hemispherical electron spectrometer. Single-differential and total ionization cross sections have been derived by integration. The experimental results are compared to the semiempirical Hansen-Kocbach-Stolterfoht model as well as to the recently reported method based on the dielectric formalism. The comparison to the latter showed good agreement with experimental data in a broad range of emission angles and energies of secondary electrons. The scaling property of ionization cross sections for tetrahydrofuran was also investigated. Compared to molecules of different size, the ionization cross sections of tetrahydrofuran were found to scale with the number of valence electrons at large impact parameters.

  6. Theoretical and experimental quantification of doubly and singly differential cross sections for electron-induced ionization of isolated tetrahydrofuran molecules

    DOE PAGESBeta

    Champion, Christophe; Quinto, Michele A.; Bug, Marion U.; Baek, Woon Y.; Weck, Philippe F.

    2014-07-29

    Electron-induced ionization of the commonly used surrogate of the DNA sugar-phosphate backbone, namely, the tetrahydrofuran molecule, is here theoretically described within the 1st Born approximation by means of quantum-mechanical approach. Comparisons between theory and recent experiments are reported in terms of doubly and singly differential cross sections.

  7. Theoretical and experimental quantification of doubly and singly differential cross sections for electron-induced ionization of isolated tetrahydrofuran molecules

    SciTech Connect

    Champion, Christophe; Quinto, Michele A.; Bug, Marion U.; Baek, Woon Y.; Weck, Philippe F.

    2014-07-29

    Electron-induced ionization of the commonly used surrogate of the DNA sugar-phosphate backbone, namely, the tetrahydrofuran molecule, is here theoretically described within the 1st Born approximation by means of quantum-mechanical approach. Comparisons between theory and recent experiments are reported in terms of doubly and singly differential cross sections.

  8. Inhalation developmental toxicology studies: Teratology study of tetrahydrofuran in mice and rats: Final report

    SciTech Connect

    Mast, T.J.; Evanoff, J.J.; Stoney, K.H.; Westerberg, R.B.; Rommereim, R.L.; Weigel, R.J.

    1988-08-01

    Tetrahydrofuran (THF), a four-carbon cyclic ether, is widely used as an industrial solvent. Although it has been used in large quantities for many years, few long-term toxicology studies, and no reproductive or developmental studies, have been conducted on THF. This study addresses the potential for THF to cause developmental toxicity in rodents by exposing Sprague-Dawley rats and Swiss (CD-1) mice to 0, 600, 1800, or 5000 ppm tetrahydrofuran (THF) vapors, 6 h/day, 7 dy/wk. Each treatment group consisted of 10 virgin females (for comparison), and approx.33 positively mated rats or mice. Positively mated mice were exposed on days 6--17 of gestation (dg), and rats on 6--19 dg. The day of plug or sperm detection was designated as O dg. Body weights were obtained throughout the study period, and uterine and fetal body weights were obtained at sacrifice (rats, 20 dg; mice, 18 dg). Implants were enumerated and their status recorded and live fetuses were examined for gross, visceral, skeletal, and soft-tissue craniofacial defects. 27 refs., 6 figs., 23 tabs.

  9. NMR studies of the conformation and motion of tetrahydrofuran in graphite intercalation compounds

    SciTech Connect

    Caplan, D. F.

    1991-11-01

    The behavior of tetrahydrofuran (THF) molecules intercalated in graphite layers in compounds Cs(THF){sub 1.3}C{sub 24} and K(THF){sub 2.5}C{sub 24} was studied by proton NMR. The graphite layers in these compounds impose a uniform ordering on the THF molecules, giving rise to sharp NMR spectra. Experimental and simulated proton NMR spectra were used to investigate geometry, orientation and conformation of intercalated THF, and to determine whether pseudorotation, a large amplitude low-frequency vibration observed in gaseous THF, can also occur in the constrained environment provided by the graphite intercalation compounds. Deuterium and multiple quantum proton NMR spectra were also simulated in order to determine if these techniques could further refine the proton NMR results.

  10. Observations related to tetrahydrofuran and methane hydrates for laboratory studies of hydrate-bearing sediments

    USGS Publications Warehouse

    Lee, J.Y.; Yun, T.S.; Santamarina, J.C.; Ruppel, C.

    2007-01-01

    The interaction among water molecules, guest gas molecules, salts, and mineral particles determines the nucleation and growth behavior of gas hydrates in natural sediments. Hydrate of tetrahydrofuran (THF) has long been used for laboratory studies of gas hydrate-bearing sediments to provide close control on hydrate concentrations and to overcome the long formation history of methane hydrate from aqueous phase methane in sediments. Yet differences in the polarizability of THF (polar molecule) compared to methane (nonpolar molecule) raise questions about the suitability of THF as a proxy for methane in the study of hydrate-bearing sediments. From existing data and simple macroscale experiments, we show that despite its polar nature, THF's large molecular size results in low permittivity, prevents it from dissolving precipitated salts, and hinders the solvation of ions on dry mineral surfaces. In addition, the interfacial tension between water and THF hydrate is similar to that between water and methane hydrate. The processes that researchers choose for forming hydrate in sediments in laboratory settings (e.g., from gas, liquid, or ice) and the pore-scale distribution of the hydrate that is produced by each of these processes likely have a more pronounced effect on the measured macroscale properties of hydrate-bearing sediments than do differences between THF and methane hydrates themselves.

  11. Experimental study on the effect of ammonia on the phase behavior of tetrahydrofuran clathrates.

    PubMed

    Vu, Tuan Hoang; Gloesener, Elodie; Choukroun, Mathieu; Ibourichene, Anaïs; Hodyss, Robert

    2014-11-26

    Clathrate hydrates, ice-like crystalline compounds in which small guest molecules are enclosed inside cages formed by tetrahedrally hydrogen-bonded water molecules, are naturally abundant on Earth and are generally expected to exist on icy celestial bodies. A prototypical example is Saturn's moon Titan, where dissociation of methane clathrates, a major crustal component, could contribute significantly to the replenishment of atmospheric methane. Ammonia is an important clathrate inhibiting agent that may be present (potentially at high concentrations) in Titan's interior. In this study, low-temperature Raman experiments are conducted to examine the dissociation point of tetrahydrofuran clathrates, an ambient-pressure analogue of methane clathrates, over a wide range of ammonia concentrations from 0 to 25 wt %. A phase diagram for the H2O-THF-NH3 system is generated, showing two main results: (i) ammonia lowers the dissociation point of clathrate hydrates to a similar extent compared to the melting of water ice and (ii) THF clathrate exhibits a "liquidus-like" behavior in the presence of ammonia, with a eutectic temperature of about 203.6 K. As temperatures higher than this estimated eutectic are anticipated within Titan's icy crust, these results imply that partial dissociation of clathrates can occur readily and may contribute to outgassing from the interior. PMID:24940841

  12. Analytical validation applied to simultaneous determination of solvents dichloromethane (DCM), methyl isobutyl ketone (MIBK), tetrahydrofuran (THF) and toluene (TOL) in urine by headspace extraction and injection on chromatographic system with a flame ionization detector

    NASA Astrophysics Data System (ADS)

    Muna, E. D. M.; Pereira, R. P.

    2016-07-01

    The determination of the volatile organic solvents dichloromethane (DCM), methyl isobutyl ketone (MIBK), tetrahydrofuran (THF) and toluene (TOL) is applied on toxicological monitoring of employees in various industrial activities. The gas chromatography technique with flame ionization detector and headspace injection system has been applied. The analytical procedure developed allows the simultaneous determination of the above-mentioned solvents and the accuracy of the method was tested following the INMETRO guidelines through the DOQ-CGRE 008 Rev.04-July/2011.

  13. Photofragmentation of tetrahydrofuran molecules in the vacuum-ultraviolet region via superexcited states studied by fluorescence spectroscopy

    SciTech Connect

    Wasowicz, Tomasz J.; Dampc, Marcin; Zubek, Mariusz; Kivimaeki, Antti; Simone, Monica de; Coreno, Marcello

    2011-03-15

    Photofragmentation of tetrahydrofuran molecules in the vacuum-ultraviolet region, producing excited atomic and molecular fragments, has been studied over the energy range 14-68 eV using photon-induced fluorescence spectroscopy. Excited hydrogen atoms H(n), n = 3-11, have been detected by observation of the H{sub {alpha}} to H{sub i} lines of the Balmer series. The diatomic CH(A{sup 2}{Delta}), CH(B{sup 2}{Sigma}{sup -}) and C{sub 2}(d{sup 3}{Pi}{sub g}) fragments, which are excited to low vibrational and high rotational levels are identified by their A{sup 2}{Delta}{yields}X{sup 2}{Pi}{sub r}, B{sup 2}{Sigma}{sup -}{yields}X{sup 2}{Pi}{sub r} and d{sup 3}{Pi}{sub g}{yields}a{sup 3}{Pi}{sub u} emission bands, respectively. Dissociation efficiency curves for CH(A{sup 2}{Delta}) and H(n), n = 3-7, have been obtained in the photon energy ranges from their appearance thresholds up to 68 eV. The appearance energies for CH(A{sup 2}{Delta}) and H(n), n = 3-7, have been determined and are compared with estimated fragmentation energy limits in order to discuss the possible fragmentation processes. In the present studies, superexcited states of tetrahydrofuran are found, which dissociate into the above excited atomic and molecular fragments.

  14. Molecular dynamics study on the nucleation of methane + tetrahydrofuran mixed guest hydrate.

    PubMed

    Wu, Jyun-Yi; Chen, Li-Jen; Chen, Yan-Ping; Lin, Shiang-Tai

    2016-04-21

    The nucleation of methane (CH4), tetrahydrofuran (THF), and CH4 + THF hydrates are investigated by microsecond MD simulations. These three systems exhibit distinct structural developments in the aqueous phase quantified by the formation of cage structures of hydrogen bonded water molecules. The development of a cluster of cages in the CH4 system is limited by the scarce CH4 molecules in the solution, while in the THF system it is limited by the short lifetime of cages. In the CH4 + THF mixed guest system, a small cluster of caged CH4 molecules can be rapidly stabilized by abundant neighboring cages of THF molecules. Therefore, the induction time of the CH4 + THF mixed guest system is found to be significantly shorter than that of the pure CH4 and pure THF systems. Furthermore, the structure of cages found in the initially formed cage clusters are often different from the typical 5(12)6(n) (n = 0, 2, 3, 4) cages observed in clathrate hydrate systems. The cluster of cages may grow or transform into structure I or II clathrate hydrate in the later stages. PMID:26750660

  15. Acoustical studies of some derivatives of 1,5-benzodiazepines formamide and tetrahydrofuran solutions at 298.15 K

    NASA Astrophysics Data System (ADS)

    Baluja, S.; Movaliya, J.; Godvani, N.

    2009-12-01

    Some derivatives of 1,5-benzodiazepines have been synthesized and characterized by TLC, IR, NMR, and Mass Spectral data. The ultrasonic velocity, density and viscosity of these synthesized compounds have been measured in dimethyl formamide and tetrahydrofuran at 298.15 K. From these experimental data, various acoustical parameters such as isentropic compressibility, intermolecular free path length, molar compressibility, Rao’s molar sound function, relaxation strength, internal pressure, free volume etc., have been calculated which helps in understanding the molecular interactions occurring in these solutions.

  16. Synthetic studies towards 1α-hydroxysolasodine from diosgenin and the unexpected tetrahydrofuran ring opening in the Birch reduction process.

    PubMed

    Liu, Chao; Xie, Fei; Zhao, Guo-Dong; Wang, De-Feng; Lou, Hong-Xiang; Liu, Zhao-Peng

    2015-12-01

    The synthesis of 1α-hydroxysolasodine from diosgenin was attempted. The Pd/C catalyst mediated dehydrogenation of diosgenin generated the 1,4,6-trien-3-one (3), which was reacted with Ac2O in pyridine in the presence of a catalytic amount of POCl3 followed by hydrolysis to give the 22-hydroxyfurostan (4) in 65% yield. Conversion of the primary 26-OH group into the azide and simultaneously 22-OH dehydration were achieved in one step by Mitsunobu reaction. Treatment of the (25R)-26-azidofurosta-1,4,6,20(22)-tetraen-3-one (5) with chlorotrimethylsilane (TMSCl)/NaI/MeCN and cyclisation in situ provided the (22R,25R)-spirosola-1,4,6-trien-3-one (6) in good yield. Stereoselective and regioselective epoxidation of trienone (6) with 30% H2O2 and 5% NaOH in methanol gave the 1α,2α-epoxy-(22R,25R)-spirosola-4,6-dien-3-one (7). Birch reduction of the epoxide (7) with Li/NH3 in THF followed by the treatment with NH4Cl, however, failed to generate the expected 1α-hydroxysolasodine, but provided a tetrahydrofuran ring opening product, (22S,25R)-1α,16β-dihydroxy-22,26-epiminocholest-4-en-3-one (8). Compounds 3 and 5-8 as well as solasodine were evaluated for their cell growth inhibitory activities against human prostate cancer PC3, human cervical carcinoma Hela, and human hepatoma HepG2 cells. At the concentration of 10 μM, only epoxide 7 displayed moderate inhibitory rates towards these cells (40-54%). PMID:26476186

  17. Tetrahydrofuran lignans from Viburnum betulifolium.

    PubMed

    Hu, Jiang; Song, Yan; Mao, Xia; Li, Hui; Shi, Xiao-Dong

    2016-09-01

    A phytochemical investigation of the EtOH extract from the aerial parts of Viburnum betulifolium Batal. afforded four new tetrahydrofuran lignans, betulifolium A-D (1, 2, 4, and 5), together with two known compounds vibsanol-9'-al (3) and sarcomeginal (6). This paper deals with the isolation and structure elucidation of the new compounds on the basis of spectroscopic methods, including 1D NMR, 2D NMR analyses and HR-ESI-MS data. PMID:27140524

  18. Structure and component dynamics in binary mixtures of poly(2-(dimethylamino)ethyl methacrylate) with water and tetrahydrofuran: A diffraction, calorimetric, and dielectric spectroscopy study.

    PubMed

    Goracci, G; Arbe, A; Alegría, A; Su, Y; Gasser, U; Colmenero, J

    2016-04-21

    We have combined X-ray diffraction, neutron diffraction with polarization analysis, small angle neutron scattering,differential scanning calorimetry, and broad band dielectric spectroscopy to investigate the structure and dynamics of binary mixtures of poly(2-(dimethylamino)ethyl methacrylate) with either water or tetrahydrofuran (THF) at different concentrations. Aqueous mixtures are characterized by a highly heterogeneous structure where water clusters coexist with an underlying nano-segregation of main chains and side groups of the polymeric matrix. THF molecules are homogeneously distributed among the polymeric nano-domains for concentrations of one THF molecule/monomer or lower. A more heterogeneous situation is found for higher THF amounts, but without evidences for solvent clusters. In THF-mixtures, we observe a remarkable reduction of the glass-transition temperature which is enhanced with increasing amount of solvent but seems to reach saturation at high THF concentrations. Adding THF markedly reduces the activation energy of the polymer β-relaxation. The presence of THF molecules seemingly hinders a slow component of this process which is active in the dry state. The aqueous mixtures present a strikingly broad glass-transition feature, revealing a highly heterogeneous behavior in agreement with the structural study. Regarding the solvent dynamics, deep in the glassy state all data can be described by an Arrhenius temperature dependence with a rather similar activation energy. However, the values of the characteristic times are about three orders of magnitude smaller for THF than for water. Water dynamics display a crossover toward increasingly higher apparent activation energies in the region of the onset of the glass transition, supporting its interpretation as a consequence of the freezing of the structuralrelaxation of the surrounding matrix. The absence of such a crossover (at least in the wide dynamic window here accessed) in THF is attributed to

  19. Structure and component dynamics in binary mixtures of poly(2-(dimethylamino)ethyl methacrylate) with water and tetrahydrofuran: A diffraction, calorimetric, and dielectric spectroscopy study

    NASA Astrophysics Data System (ADS)

    Goracci, G.; Arbe, A.; Alegría, A.; Su, Y.; Gasser, U.; Colmenero, J.

    2016-04-01

    We have combined X-ray diffraction, neutron diffraction with polarization analysis, small angle neutron scattering, differential scanning calorimetry, and broad band dielectric spectroscopy to investigate the structure and dynamics of binary mixtures of poly(2-(dimethylamino)ethyl methacrylate) with either water or tetrahydrofuran (THF) at different concentrations. Aqueous mixtures are characterized by a highly heterogeneous structure where water clusters coexist with an underlying nano-segregation of main chains and side groups of the polymeric matrix. THF molecules are homogeneously distributed among the polymeric nano-domains for concentrations of one THF molecule/monomer or lower. A more heterogeneous situation is found for higher THF amounts, but without evidences for solvent clusters. In THF-mixtures, we observe a remarkable reduction of the glass-transition temperature which is enhanced with increasing amount of solvent but seems to reach saturation at high THF concentrations. Adding THF markedly reduces the activation energy of the polymer β-relaxation. The presence of THF molecules seemingly hinders a slow component of this process which is active in the dry state. The aqueous mixtures present a strikingly broad glass-transition feature, revealing a highly heterogeneous behavior in agreement with the structural study. Regarding the solvent dynamics, deep in the glassy state all data can be described by an Arrhenius temperature dependence with a rather similar activation energy. However, the values of the characteristic times are about three orders of magnitude smaller for THF than for water. Water dynamics display a crossover toward increasingly higher apparent activation energies in the region of the onset of the glass transition, supporting its interpretation as a consequence of the freezing of the structural relaxation of the surrounding matrix. The absence of such a crossover (at least in the wide dynamic window here accessed) in THF is attributed to

  20. Fundamental studies of molecular multiphoton ionization

    SciTech Connect

    Miller, J.C.; Compton, R.N.

    1984-04-01

    For several years the authors have performed fundamental studies of molecular multiphoton ionization (MPI). We will present a potpourri of techniques and results chosen to illustrate the interesting complexities of molecular MPI. Techniques used include time-of-flight mass spectroscopy, photoelectron spectroscopy, supersonic expansion cooling of molecular beams, harmonic generation, two-color laser MPI, and polarization spectroscopy. Whenever possible the relevance of these results to resonance ionization spectroscopy schemes will be delineated. 23 references, 10 figures.

  1. Low latitude middle atmosphere ionization studies

    NASA Technical Reports Server (NTRS)

    Bassi, J. P.

    1976-01-01

    Low latitude middle atmosphere ionization was studied with data obtained from three blunt conductivity probes and one Gerdien condenser. An investigation was conducted into the effects of various ionization sources in the 40 to 65 Km altitude range. An observed enhancement of positive ion conductivity taking place during the night can be explained by an atmsopheric effect, with cosmic rays being the only source of ionization only if the ion-ion recombination coefficient (alpha sub i) is small(10 to the -7 power cu cm/s) and varies greatly with altitude. More generally accepted values of alpha sub i ( approximately equal to 3x10 to the -7 power cu cm/s) require an additional source of ionization peaking at about 65 Km, and corresponding approximately to the integrated effect of an X-ray flux measured on a rocket flown in conjunction with the ionization measurements. The reasonable assumption of an alpha sub i which does not vary with altitude in the 50-70 Km range implies an even greater value alpha sub i and a more intense and harder X-ray spectrum.

  2. Reaction of chlorine radical with tetrahydrofuran: a theoretical investigation on mechanism and reactivity in gas phase.

    PubMed

    Begum, Samiyara; Subramanian, Ranga

    2014-06-01

    Reaction of chlorine (Cl) radical with heterocyclic saturated ether, tetrahydrofuran has been studied. The detailed reactivity and mechanism of this reaction is analyzed using hybrid density functional theory (DFT), B3LYP and BB1K methods, and aug-cc-pVTZ basis set. To explore the mechanism of the reaction of tetrahydrofuran with Cl radical, four possible sites of hydrogen atom (H) abstraction pathways in tetrahydrofuran were analyzed. The barrier height and rate constants are calculated for the four H-abstraction channels. The BB1K calculated rate constant for α-axial H-abstraction is comparable with the experimentally determined rate constant. It reflects that α-axial H-abstraction is the main degradation pathway of tetrahydrofuran with Cl radical. DFT-based reactivity descriptors are also calculated and these values describe α-axial H-abstraction as the main reaction channel. PMID:24867438

  3. Fundamental study of impact ionization plasma detector

    NASA Astrophysics Data System (ADS)

    Ohashi, H.; Muranaga, K.; Sasaki, S.; Nogami, K.; Shibata, H.

    Impact ionization plasma detectors are commonly used for cosmic dust research on board spacecraft. There seems to be no scientific background on their shape, area, and applied high voltage; they are determined empirically. To design a dust detector having large aperture and lightweight to collect dust effectively for the future mission, we are to study fundamental physics of dust impact ionization phenomena. To determine parameters of impact ionization, a simple detector is designed; metal target, two grids, with/without sidewall. Distance from target to grid, grid to grid, applied voltages are variable. Each electrode is connected to charge sensitive preamplifiers, signals are observed with a digital oscilloscope. Experiments using micro-particle accelerators are made at HIT, Univ. Tokyo in Japan, and at MPI-K in Germany. Time difference of two grid signals (plasma expansion velocity), and target signal rise time are determined from observed signals. Preliminary study shows, plasma expansion velocity is dependent on applied high voltage, not dependent on dust velocity. There is a clear correlation between dust particle velocity and target signal rise time. Sidewall effect is to be studied in the near future experiment.

  4. Theoretical studies of highly ionized species

    NASA Astrophysics Data System (ADS)

    Dalgarno, A.; Victor, G. A.

    1980-10-01

    The calculations of the charge transfer recombination and ionization rate coefficients for a wide range of ionic systems in collision with hydrogen and helium at thermal energies were completed. For the carbon ions in hydrogen, the calculations were extended to energies of 100 ev. The importance of the processes in ionized plasmas was demonstrated by studies of the solar corona and of shock waves. Preliminary results were obtained on cross sections for the excitation of fine structure transitions by proton impacts. The mechanisms leading to the photodissociation of alkali metal dimers were identified and quantitative predictions were made for Li2. Calculations using the model potential method of properties of the Cu and Zn sequences were brought to a conclusion. Applications of the relativistic random phase approximation were made to the calculation of photoionization cross sections of magnesium-like and zinc-like ions and of oscillator strengths of mercury.

  5. 21 CFR 178.3950 - Tetrahydrofuran.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... solvent in the casting of film from a solution of polymeric resins of vinyl chloride, vinyl acetate, or..., or it may be used as a solvent in the casting of film prepared from vinyl chloride copolymers complying with § 177.1980 of this chapter. (b) The residual amount of tetrahydrofuran in the film does...

  6. 21 CFR 178.3950 - Tetrahydrofuran.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... provisions of this section. (a) It is used as a solvent in the casting of film from a solution of polymeric... copolymerized with one another in any combination, or it may be used as a solvent in the casting of film... of tetrahydrofuran in the film does not exceed 1.5 percent by weight of film....

  7. 21 CFR 178.3950 - Tetrahydrofuran.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... provisions of this section. (a) It is used as a solvent in the casting of film from a solution of polymeric... copolymerized with one another in any combination, or it may be used as a solvent in the casting of film... of tetrahydrofuran in the film does not exceed 1.5 percent by weight of film....

  8. Structure and reactivity of lithium amides. /sup 6/Li, /sup 13/C, and /sup 15/N NMR spectroscopic studies and colligative measurements of lithium diphenylamide and lithium diphenylamide-lithium bromide complex solvated by tetrahydrofuran

    SciTech Connect

    DePue, J.S.; Collum, D.B.

    1988-08-03

    /sup 6/Li, /sup 13/C, and /sup 15/N NMR spectroscopic studies of lithium diphenylamide in THF/hydrocarbon solutions (THF = tetrahydrofuran) detected two different species. /sup 6/Li and /sup 15/N NMR spectroscopic studies of (/sup 6/Li, /sup 15/N)lithium diphenylamide showed the species observed at low THF concentrations to be a cyclic oligomer. Structural analogies provided strong support for a dimer while colligative measurements at 0/degrees/C indicated the dimer to be di- or trisolvated. On the basis of the observed mass action effects, the species appearing at intermediate THF concentrations is assigned as a contact or solvent-separated ion-paired monomer. Lithium diphenylamide forms a 1:1 adduct with lithium bromide at low THF concentrations. A combination of /sup 6/Li-/sup 15/N double labeling studies and colligative measurements supports a trisolvated cyclic mixed dimer structure. Although detailed spectroscopic studies at elevated THF concentrations were precluded by high fluctionality, the similarity of the /sup 13/C chemical shifts of lithium diphenylamide in the presence and absence of lithium bromide provide indirect evidence that the mixed dimer undergoes a THF concentration dependent dissociation to the monomeric amide and free lithium bromide. 24 references, 9 figures, 2 tables.

  9. Trehalose promotes Rhodococcus sp. strain YYL colonization in activated sludge under tetrahydrofuran (THF) stress

    PubMed Central

    He, Zhixing; Zhang, Kai; Wang, Haixia; Lv, Zhenmei

    2015-01-01

    Few studies have focused on the role of compatible solutes in changing the microbial community structure in bioaugmentation systems. In this study, we investigated the influence of trehalose as a biostimulant on the microbial community in tetrahydrofuran (THF)-treated wastewater bioaugmentation systems with Rhodococcus sp. YYL. Functional gene profile changes were used to study the variation in the microbial community. Soluble di-iron monooxygenases (SDIMO), particularly group-5 SDIMOs (i.e., tetrahydrofuran and propane monooxygenases), play a significant role in the initiation of the ring cleavage of tetrahydrofuran. Group-5 SDIMOs genes are enriched upon trehalose addition, and exogenous tetrahydrofuran monooxygenase (thmA) genes can successfully colonize bioaugmentation systems. Cytochrome P450 monooxygenases (P450s) have a significant role in catalyzing the region- and stereospecific oxidation of non-activated hydrocarbons, and THF was reported to inhibit P450s in the environment. The CYP153 family was chosen as a representative P450 to study the inhibitory effects of THF. The results demonstrated that CYP153 family genes exhibited significant changes upon THF treatment and that trehalose helped maintain a rich diversity and high abundance of CYP153 family genes. Biostimulation with trehalose could alleviate the negative effects of THF stress on microbial diversity in bioaugmentation systems. Our results indicated that trehalose as a compatible solute plays a significant role for environmental strains under extreme conditions. PMID:26029182

  10. Simulation study of the ionizing front in the critical ionization velocity phenomenon

    NASA Technical Reports Server (NTRS)

    Machida, S.; Goertz, C. K.; Lu, G.

    1988-01-01

    The simulation of the critical ionization velocity for a neutral gas cloud moving across the static magnetic field is presented. A low-beta plasma is studied, using a two and a half-dimensional electrostatic code linked with the Plasma and Neutral Interaction Code (Goertz and Machida, 1987). The physics of the ionizing front and the instabilities which occur there are discussed. Results are presented from four numerical runs designed so that the effects of the charge separation field can be distinguished from the wave heating.

  11. Micromechanical adhesion force measurements between tetrahydrofuran hydrate particles.

    PubMed

    Taylor, Craig J; Dieker, Laura E; Miller, Kelly T; Koh, Carolyn A; Sloan, E Dendy

    2007-02-15

    Adhesion forces between tetrahydrofuran (THF) hydrate particles in n-decane were measured using an improved micromechanical technique. The experiments were performed at atmospheric pressure over the temperature range 261-275 K. The observed forces and trends were explained by a capillary bridge between the particles. The adhesion force of hydrates was directly proportional to the contact force and contact time. A scoping study examined the effects of temperature, anti-agglomerants, and interfacial energy on the particle adhesion forces. The adhesion force of hydrates was found to be directly proportional to interfacial energy of the surrounding liquid, and to increase with temperature. Both sorbitan monolaurate (Span20) and poly-N-vinyl caprolactam (PVCap) decreased the adhesion force between the hydrate particles. PMID:17126359

  12. Fundamental studies and applications of strong field ionization

    NASA Astrophysics Data System (ADS)

    Yan, Lu

    In an intense laser field, atoms and molecules experience tunneling ionization directly to the continuum. We used this method to study several aspects and applications of strong field ionization (SFI) in atoms and molecules. One study used SFI to probe the photofragments produced by photodissociation using DC sliced imaging. The photodissociation mechanism of two polyatomic molecules (sulfur dioxide and nitromethane) were investigated. In a second study, we show the strong field ionization rate depends on the sign of the magnetic number distribution. We detect the signal of sequential double ionization of argon dications by a pump-probe method to investigate the ionization rate sensitivity to circularly polarized light. In a third study, we also found that the modest fragmentation that accompanies strong field ionization may be used to identify isomers and molecules in a complex mixture based on their mass spectral "finger print". The experiments were carried out in a DC sliced imaging apparatus. For the isomer selective detection experiment, the machine was used simply as a time-of-flight mass spectrometer. The mass spectrum of each isomer was used as "basis function" to characterize the complex mixtures quantitatively.

  13. Comparison Study of Atomic and Molecular Single Ionization in the Multiphoton Ionization Regime

    SciTech Connect

    Wu Jian; Zeng Heping; Guo Chunlei

    2006-06-23

    In this Letter, we report, for the first time in the multiphoton ionization regime, a comparison study of single-electron ionization of diatomic molecules versus rare gas atoms with virtually the same ionization potentials. In comparing N{sub 2}{sup +} to Ar{sup +}, a higher ion signal is seen in N{sub 2}{sup +} compared to Ar{sup +} for linear polarization but the difference vanishes in circularly polarized light. In comparing O{sub 2}{sup +} to Xe{sup +}, we observe a suppression in O{sub 2}{sup +} compared to Xe{sup +} for both linear and circular polarization but this suppression exhibits an intensity dependence; i.e., there is little suppression for O{sub 2}{sup +} at the lowest intensity range, but the suppression becomes increasingly stronger as the laser intensity increases. The multielectron screening model is used to discuss possible mechanisms of this intensity dependent suppression in O{sub 2}{sup +} in the multiphoton ionization regime.

  14. A dynamical (e,2e) investigation of the structurally related cyclic ethers tetrahydrofuran, tetrahydropyran, and 1,4-dioxane

    NASA Astrophysics Data System (ADS)

    Builth-Williams, J. D.; Bellm, S. M.; Chiari, L.; Thorn, P. A.; Jones, D. B.; Chaluvadi, H.; Madison, D. H.; Ning, C. G.; Lohmann, B.; da Silva, G. B.; Brunger, M. J.

    2013-07-01

    Triple differential cross section measurements for the electron-impact ionization of the highest occupied molecular orbitals of tetrahydropyran and 1,4-dioxane are presented. For each molecule, experimental measurements were performed using the (e,2e) technique in asymmetric coplanar kinematics with an incident electron energy of 250 eV and an ejected electron energy of 20 eV. With the scattered electrons being detected at -5°, the angular distributions of the ejected electrons in the binary and recoil regions were observed. These measurements are compared with calculations performed within the molecular 3-body distorted wave model. Here, reasonable agreement was observed between the theoretical model and the experimental measurements. These measurements are compared with results from a recent study on tetrahydrofuran [D. B. Jones, J. D. Builth-Williams, S. M. Bellm, L. Chiari, C. G. Ning, H. Chaluvadi, B. Lohmann, O. Ingolfsson, D. Madison, and M. J. Brunger, Chem. Phys. Lett. 572, 32 (2013)] in order to evaluate the influence of structure on the dynamics of the ionization process across this series of cyclic ethers.

  15. IRIS Toxicological Review of Tetrahydrofuran (Thf) (External Review Draft)

    EPA Science Inventory

    EPA is conducting a peer review and public comment of the scientific basis supporting the human health hazard and dose-response assessment of tetrahydrofuran (THF) that when finalized will appear on the Integrated Risk Information System (IRIS) database.

  16. Biodegradation kinetics of tetrahydrofuran, benzene, toluene, and ethylbenzene as multi-substrate by Pseudomonas oleovorans DT4.

    PubMed

    Chen, Dong-Zhi; Ding, Yun-Feng; Zhou, Yu-Yang; Ye, Jie-Xu; Chen, Jian-Meng

    2015-01-01

    The biodegradation kinetics of tetrahydrofuran, benzene (B), toluene (T), and ethylbenzene (E) were systematically investigated individually and as mixtures by a series of aerobic batch degradation experiments initiated by Pseudomonas oleovorans DT4. The Andrews model parameters, e.g., maximum specific growth rates (μmax), half saturation, and substrate inhibition constant, were obtained from single-substrate experiments. The interaction parameters in the sum kinetics model (SKIP) were obtained from the dual substrates. The μmax value of 1.01 for tetrahydrofuran indicated that cell growth using tetrahydrofuran as carbon source was faster than the growth on B (μmax, B = 0.39) or T (μmax, T = 0.39). The interactions in the dual-substrate experiments, including genhancement, inhibition, and co-metabolism, in the mixtures of tetrahydrofuran with B or T or E were identified. The degradation of the four compounds existing simultaneously could be predicted by the combination of SKIP and co-metabolism models. This study is the first to quantify the interactions between tetrahydrofuran and BTE. PMID:25561017

  17. Biodegradation Kinetics of Tetrahydrofuran, Benzene, Toluene, and Ethylbenzene as Multi-substrate by Pseudomonas oleovorans DT4

    PubMed Central

    Chen, Dong-Zhi; Ding, Yun-Feng; Zhou, Yu-Yang; Ye, Jie-Xu; Chen, Jian-Meng

    2014-01-01

    The biodegradation kinetics of tetrahydrofuran, benzene (B), toluene (T), and ethylbenzene (E) were systematically investigated individually and as mixtures by a series of aerobic batch degradation experiments initiated by Pseudomonas oleovorans DT4. The Andrews model parameters, e.g., maximum specific growth rates (μmax), half saturation, and substrate inhibition constant, were obtained from single-substrate experiments. The interaction parameters in the sum kinetics model (SKIP) were obtained from the dual substrates. The μmax value of 1.01 for tetrahydrofuran indicated that cell growth using tetrahydrofuran as carbon source was faster than the growth on B (μmax, B = 0.39) or T (μmax, T = 0.39). The interactions in the dual-substrate experiments, including genhancement, inhibition, and co-metabolism, in the mixtures of tetrahydrofuran with B or T or E were identified. The degradation of the four compounds existing simultaneously could be predicted by the combination of SKIP and co-metabolism models. This study is the first to quantify the interactions between tetrahydrofuran and BTE. PMID:25561017

  18. Experimental Resonance Enhanced Multiphoton Ionization (REMPI) studies of small molecules

    NASA Technical Reports Server (NTRS)

    Dehmer, J. L.; Dehmer, P. M.; Pratt, S. T.; Ohalloran, M. A.; Tomkins, F. S.

    1987-01-01

    Resonance enhanced multiphoton ionization (REMPI) utilizes tunable dye lasers to ionize an atom or molecule by first preparing an excited state by multiphoton absorption and then ionizing that state before it can decay. This process is highly selective with respect to both the initial and resonant intermediate states of the target, and it can be extremely sensitive. In addition, the products of the REMPI process can be detected as needed by analyzing the resulting electrons, ions, fluorescence, or by additional REMPI. This points to a number of exciting opportunities for both basic and applied science. On the applied side, REMPI has great potential as an ultrasensitive, highly selective detector for trace, reactive, or transient species. On the basic side, REMPI affords an unprecedented means of exploring excited state physics and chemistry at the quantum-state-specific level. An overview of current studies of excited molecular states is given to illustrate the principles and prospects of REMPI.

  19. Cleave and capture chemistry illustrated through bimetallic-induced fragmentation of tetrahydrofuran

    NASA Astrophysics Data System (ADS)

    Mulvey, Robert E.; Blair, Victoria L.; Clegg, William; Kennedy, Alan R.; Klett, Jan; Russo, Luca

    2010-07-01

    The cleavage of ethers is commonly encountered in organometallic chemistry, although rarely studied in the context of new, emerging bimetallic reagents. Recently, it was reported that a bimetallic sodium-zinc base can deprotonate cyclic tetrahydrofuran under mild conditions without opening its heterocyclic (OC4) ring. In marked contrast to this synergic sedation, herein we show that switching to the more reactive sodium-magnesium or sodium-manganese bases promotes cleavage of at least six bonds in tetrahydrofuran, but uniquely the ring fragments are captured in separate crystalline complexes. Oxide fragments occupy guest positions in bimetallic, inverse crown ethers and C4 fragments ultimately appear in bimetallated butadiene molecules. These results demonstrate the special synergic reactivity that can be executed by bimetallic reagents, which include the ability to capture and control, and thereby study, reactive fragments from sensitive substrates.

  20. Cleave and capture chemistry illustrated through bimetallic-induced fragmentation of tetrahydrofuran.

    PubMed

    Mulvey, Robert E; Blair, Victoria L; Clegg, William; Kennedy, Alan R; Klett, Jan; Russo, Luca

    2010-07-01

    The cleavage of ethers is commonly encountered in organometallic chemistry, although rarely studied in the context of new, emerging bimetallic reagents. Recently, it was reported that a bimetallic sodium-zinc base can deprotonate cyclic tetrahydrofuran under mild conditions without opening its heterocyclic (OC(4)) ring. In marked contrast to this synergic sedation, herein we show that switching to the more reactive sodium-magnesium or sodium-manganese bases promotes cleavage of at least six bonds in tetrahydrofuran, but uniquely the ring fragments are captured in separate crystalline complexes. Oxide fragments occupy guest positions in bimetallic, inverse crown ethers and C(4) fragments ultimately appear in bimetallated butadiene molecules. These results demonstrate the special synergic reactivity that can be executed by bimetallic reagents, which include the ability to capture and control, and thereby study, reactive fragments from sensitive substrates. PMID:20571579

  1. Ratios of photoelectron to EUV ionization rates for aeronomic studies

    SciTech Connect

    Richards, P.G.; Torr, D.G. )

    1988-05-01

    This study reveals that the ratios of the photoelectron to EUV ionization rates are not constant but depend on the degree of attenuation of the solar EUV flux and on the transport of photoelectrons. At high altitudes in the absence of photoelectron transport, the O{sup +} and N{sub 2}{sup +} ionization rate ratios are about 0.35, but they increase with increasing optical depth to such an extent that in the vicinity of the ionization peak, photoelectron impact ionization is as important as photoionization for O{sup +} and N{sub 2}{sup +}. The O{sub 2}{sup +} ratio is about half that of O{sup +} at high altitudes adn also increases with increasing optical depth but reaches a peak of about 0.4. The authors present simple formulae which mimic the attenuation behavior of the ionization ratios. Transport effects become important above about 250 km where the ratios vary by a factor of 2 depending on the presence or absence of photoelectrons from the conjugate ionosphere. In addition to the photoelectron to EUV ionization ratios, they present photodissociative branching ratios for O{sub 2} and N{sub 2}. These photodissociative ratios are also a function of the degree of attenuation of the EUV flux. In the region where attenuation is not important, the N{sup +} to N{sub 2}{sup +} ratio is 0.14, and the O{sup +} to O{sub 2}{sup +} ratio is 0.22. There is a factor of 2 uncertainty in our calculated ratios on account of uncertainties in the solar EUV flux spectrum and also uncertainties in the electron impact cross sections.

  2. Lithium and cesium acidities of some terminal acethylenes and aggregation of their salts in tetrahydrofuran

    SciTech Connect

    Gareyev, R.; Streitwieser, A.

    1995-12-01

    Ion-pair acidity equilibria have been determined for 4-ethynylbiphenyl (1), 1-ethynyladamantane (2) and 3,3,3-triphenylpropyne (3) with lithium and cesium as counterions in tetrahydrofuran. The pK values increase, 1 < 3 < 2, with lithium as the counterion. With the cesium gegenion the pK of compound 2 is also higher than that of 3. The cesium salt of 1 is insoluble in tetrahydrofuran. Comparison of lithium and cesium acidities shows a difference of 6 pK units for both 2 and 3, the lithium pK being lower. In some cases, the measured equilibrium acidities depend on the concentration of the acetylene salt, which indicates aggregation of ion pairs into higher ionic clusters. The average aggregation numbers were determined from the equilibrium studies.

  3. ECC study in positron impact ionization in molecular hydrogen

    NASA Astrophysics Data System (ADS)

    Campeanu, R. I.; Zohouri Haghian, N.

    2012-12-01

    The electron capture to the continuum phenomenon in positron impact ionization of molecular hydrogen is studied with the distorted wave Born approximation. Our theoretical model produces results which are in better agreement with the experiment than the more elaborate models of [J. Fiol, V.D. Rodriguez, R.O. Barrachina, J. Phys. B: At. Mol. Opt. Phys. 34, 933 (2001)] and [A. Benedek, R.I. Campeanu, J. Phys. B: At. Mol. Opt. Phys. 40, 1589 (2007)] previously employed in this study.

  4. Debenzylative Cycloetherification: An Overlooked Key Strategy for Complex Tetrahydrofuran Synthesis.

    PubMed

    Tikad, Abdellatif; Delbrouck, Julien A; Vincent, Stéphane P

    2016-07-01

    Tetrahydrofuran (THF) is a major structural feature found in many synthetic and natural products displaying a variety of biological properties. This review summarizes the main synthetic approaches that have been developed to construct tetrahydrofuran moieties involving debenzylative cycloetherification reactions (DBCE). Interestingly, this reaction is regio- and stereoselective without the requirement of a selective protection/deprotection strategy. Many applications of this process have been reported, including carbafuranoside synthesis, regioselective deprotection of the benzyl group positioned γ to an alkene, and total synthesis of natural products. The stereochemical outcome and the mechanism of these interesting transformations are also discussed. PMID:27304427

  5. Thermodynamic Functions of Solvation of Hydrocarbons, Noble Gases, and Hard Spheres in Tetrahydrofuran-Water Mixtures.

    PubMed

    Sedov, I A; Magsumov, T I

    2015-07-16

    Thermodynamic solvation properties of mixtures of water with tetrahydrofuran at 298 K are studied. The Gibbs free energies and enthalpies of solvation of n-octane and toluene are determined experimentally. For molecular dynamics simulations of the binary solvent, we have modified a TraPPE-UA model for tetrahydrofuran and combined it with the SPC/E potential for water. The excess thermodynamic functions of neon, xenon, and hard spheres with two different radii are calculated using the particle insertion method. Simulated and real systems share the same characteristic trends for the thermodynamic functions. A maximum is present on dependencies of the enthalpy of solvation from the composition of solvent at 70-90 mol % water, making it higher than in both of the cosolvents. It is caused by a high enthalpy of cavity formation in the mixtures rich with water due to solvent reorganization around the cavity, which is shown by calculation of the enthalpy of solvation of hard spheres. Addition of relatively small amounts of tetrahydrofuran to water effectively suppresses the hydrophobic effect, leading to a quick increase of both the entropy and enthalpy of cavity formation and solvation of low polar molecules. PMID:26115405

  6. Dynamic Metabolic and Transcriptional Profiling of Rhodococcus sp. Strain YYL during the Degradation of Tetrahydrofuran

    PubMed Central

    He, Zhixing; Yao, Yanlai

    2014-01-01

    Although tetrahydrofuran-degrading Rhodococcus sp. strain YYL possesses tetrahydrofuran (THF) degradation genes similar to those of other tetrahydrofuran-degrading bacteria, a much higher degradation efficiency has been observed in strain YYL. In this study, nuclear magnetic resonance (NMR)-based metabolomics analyses were performed to explore the metabolic profiling response of strain YYL to exposure to THF. Exposure to THF slightly influenced the metabolome of strain YYL when yeast extract was present in the medium. The metabolic profile of strain YYL over time was also investigated using THF as the sole carbon source to identify the metabolites associated with high-efficiency THF degradation. Lactate, alanine, glutarate, glutamate, glutamine, succinate, lysine, trehalose, trimethylamine-N-oxide (TMAO), NAD+, and CTP were significantly altered over time in strain YYL grown in 20 mM THF. Real-time quantitative PCR (RT-qPCR) revealed changes in the transcriptional expression levels of 15 genes involved in THF degradation, suggesting that strain YYL could accumulate several disturbances in osmoregulation (trehalose, glutamate, glutamine, etc.), with reduced glycolysis levels, an accelerated tricarboxylic acid cycle, and enhanced protein synthesis. The findings obtained through 1H NMR metabolomics analyses and the transcriptional expression of the corresponding genes are complementary for exploring the dynamic metabolic profile in organisms. PMID:24532074

  7. Theoretical studies of photoexcitation and ionization in H2O

    NASA Technical Reports Server (NTRS)

    Diercksen, G. H. F.; Kraemer, W. P.; Rescigno, T. N.; Bender, C. F.; Mckoy, B. V.; Langhoff, S. R.; Langhoff, P. W.

    1982-01-01

    Theoretical studies using Franck-Condon and static-exchange approximations are reported for the complete dipole excitation and ionization spectrum in H2O, where (1) large Cartesian Gaussian basis sets are used to represent the required discrete and continuum electronic eigenfunctions at the ground state equilibrium geometry, and (2) previously devised moment-theory techniques are employed in constructing the continuum oscillator-strength densities from the calculated spectra. Comparisons are made of the calculated excitation and ionization profiles with recent experimental photoabsorption studies and corresponding spectral assignments, electron impact-excitation cross sections, and dipole and synchrotron-radiation studies of partial-channel photoionization cross sections. The calculated partial-channel cross sections are found to be atomic-like, and dominated by 2p-kd components. It is suggested that the latter transition couples with the underlying 1b(1)-kb(1) channel, accounting for a prominent feature in recent synchrotron-radiation measurements.

  8. IRIS Toxicological Review of Tetrahydrofuran (THF) (Interagency Science Discussion Draft)

    EPA Science Inventory

    EPA is releasing the draft report, Toxicological Review of Tetrahydrofuran, that was distributed to Federal agencies and White House Offices for comment during the Science Discussion step of the IRIS Assessment Development Proc...

  9. Resonant enhanced multiphoton ionization studies of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Dixit, S. N.; Levin, D.; Mckoy, V.

    1987-01-01

    In resonant enhanced multiphoton ionization (REMPI), an atom absorbs several photons making a transition to a resonant intermediate state and subsequently ionizing out of it. With currently available tunable narrow-band lasers, the extreme sensitivity of REMPI to the specific arrangement of levels can be used to selectively probe minute amounts of a single species (atom) in a host of background material. Determination of the number density of atoms from the observed REMPI signal requires a knowledge of the multiphoton ionization cross sections. The REMPI of atomic oxygen was investigated through various excitation schemes that are feasible with available light sources. Using quantum defect theory (QDT) to estimate the various atomic parameters, the REMPI dynamics in atomic oxygen were studied incorporating the effects of saturation and a.c. Stark shifts. Results are presented for REMPI probabilities for excitation through various 2p(3) (4S sup o) np(3)P and 2p(3) (4S sup o) nf(3)F levels.

  10. Design of HIV-1 Protease Inhibitors with Amino-bis-tetrahydrofuran Derivatives as P2-Ligands to Enhance Backbone-Binding Interactions. Synthesis, Biological Evaluation, and Protein-Ligand X-ray Studies

    SciTech Connect

    Ghosh, Arun K.; Martyr, Cuthbert D.; Osswald, Heather L.; Sheri, Venkat Reddy; Kassekert, Luke A.; Chen, Shujing; Agniswamy, Johnson; Wang, Yuan-Fang; Hayashi, Hironori; Aoki, Manabu; Weber, Irene T.; Mitsuya, Hiroaki

    2015-10-30

    Structure-based design, synthesis, and biological evaluation of a series of very potent HIV-1 protease inhibitors are described. In an effort to improve backbone ligand–binding site interactions, we have incorporated basic-amines at the C4 position of the bis-tetrahydrofuran (bis-THF) ring. We speculated that these substituents would make hydrogen bonding interactions in the flap region of HIV-1 protease. Synthesis of these inhibitors was performed diastereoselectively. A number of inhibitors displayed very potent enzyme inhibitory and antiviral activity. Inhibitors 25f, 25i, and 25j were evaluated against a number of highly-PI-resistant HIV-1 strains, and they exhibited improved antiviral activity over darunavir. Two high resolution X-ray structures of 25f- and 25g-bound HIV-1 protease revealed unique hydrogen bonding interactions with the backbone carbonyl group of Gly48 as well as with the backbone NH of Gly48 in the flap region of the enzyme active site. These ligand–binding site interactions are possibly responsible for their potent activity.

  11. Laser ionization/MS study of smog formation

    SciTech Connect

    Hewitt, A.D.; Lee, C.M.; Quimpo, B.C.

    1995-12-01

    Resonance-enhanced multiphoton ionization/time-of-flight mass spectrometry (REMPI/TOFMS) is a highly sensitive and selective technique which we are using to study atmospheric chemistry kinetics and reaction mechanisms. We are presently focusing our attention on toluene, the most abundant of the aromatic hydrocarbons in the troposphere, in order to understand the oxidation pathways which lead to smog formation. Our most recent results monitoring toluene and products of the OH + toluene reaction will be discussed, as well as our future plans to detect short-lived reaction intermediates, such as the methylhydroxycyclohexadienyl radical, formed by the addition of OH to the aromatic ring of toluene.

  12. Molecular Driving Forces behind the Tetrahydrofuran-Water Miscibility Gap.

    PubMed

    Smith, Micholas Dean; Mostofian, Barmak; Petridis, Loukas; Cheng, Xiaolin; Smith, Jeremy C

    2016-02-01

    The tetrahydrofuran-water binary system exhibits an unusual closed-loop miscibility gap (transitions from a miscible regime to an immiscible regime back to another miscible regime as the temperature increases). Here, using all-atom molecular dynamics simulations, we probe the structural and dynamical behavior of the binary system in the temperature regime of this gap at four different mass ratios, and we compare the behavior of bulk water and tetrahydrofuran. The changes in structure and dynamics observed in the simulations indicate that the temperature region associated with the miscibility gap is distinctive. Within the miscibility-gap temperature region, the self-diffusion of water is significantly altered and the second virial coefficients (pair-interaction strengths) show parabolic-like behavior. Overall, the results suggest that the gap is the result of differing trends with temperature of minor structural changes, which produces interaction virials with parabolic temperature dependence near the miscibility gap. PMID:26734991

  13. A Study of Muon Ionization Cooling at MICE

    SciTech Connect

    Sakamoto, Hideyuki; /Osaka U.

    2010-02-01

    A Neutrino Factory based on a high-energy muon storage-ring is proposed to study neutrino oscillation with high precision. An emittance reduction of muon beam by ionization cooling, which has never been demonstrated in practice, is one of the critical issues for Neutrino Factory. The international Muon Ionisation Cooling Experiment (MICE) is the first experiment to verify an effect of the ionization cooling with muons. MICE will measure a change in transverse emittance of approximately 10% with a precision of {+-}0.1%. In order to meet the requirements, muon trackers based on 350 {micro}m diameter scintillating fibers have been proposed. The construction of such trackers is a very challenging task and some innovative techniques are needed to realize, since there have been no trackers made with such a small diameter of scintillating fibers in the world. Upstream and downstream SciFi trackers have been successfully constructed with the international collaboration of UK, US and Japan by 2008. Both of the trackers have been tested with cosmic-rays at the RAL by 2009, at which high tracking efficiencies more than 90% are measured for both trackers. It is also confirmed that by collecting the misalignments found in both of the trackers, the requirements for the emittance measurement is met.

  14. Study of the surface ionization detector for gas chromatography.

    PubMed

    Li, Weiwei; Wu, Dapeng; Chen, Shiheng; Peng, Hong; Guan, Yafeng

    2011-09-23

    The structure of the surface ionization detector (SID) and the operation parameters of GC-SID were investigated to reduce peak tailing and to enhance sensitivity. The performances of the GC-SID, including its repeatability, linearity, sensitivity, selectivity, and tolerance towards water vapor, were evaluated systematically. Compared with nitrogen-phosphorus detector (NPD), the SID was able to detect fg level triethylamine, and selectively respond to alkylamines, some anilines, and some nitrogen heterocyclic compounds. Among alkylamines, the SID sensitivity to diisobutylamine was rather small. Even so, it was also still 10 times higher than that on NPD. The SID selectivity, defined as the sensitivity ratio between triethylamine and various tested non-nitrogen compounds, was higher than 10(6). It was found that the SID is highly tolerant towards water vapor, allowing direct injection of water sample. Finally, the GC-SID was applied to directly measure trace amines in headspace gases of rotted meat and trace simazine in tap water. The SID sensitivity to simazine was proven to be 5 times higher than that on flame ionization detector (FID). This study suggests that the SID is a promising GC detector. PMID:21839459

  15. Microscopic Structure of Contact Ion Pairs in Concentrated LiCl- and LiClO4-Tetrahydrofuran Solutions Studied by Low-Frequency Isotropic Raman Scattering and Neutron Diffraction with (6)Li/(7)Li Isotopic Substitution Methods.

    PubMed

    Kameda, Yasuo; Ebina, Saki; Amo, Yuko; Usuki, Takeshi; Otomo, Toshiya

    2016-05-26

    Low-frequency isotropic Raman scattering and time-of-flight neutron diffraction measurements were carried out for (6)Li/(7)Li and H/D isotopically substituted *LiCl- and *LiClO4-tetrahydrofuran (*THF) solutions in order to obtain microscopic insight into solvated Li(+), Li(+)···Cl(-) and Li(+)···ClO4(-) contact ion pairs formed in concentrated THF solutions. Symmetrical stretching vibrational mode of solvated Li(+) in LiCl and LiClO4 solutions was observed at ν = 181-184 and 140 cm(-1), respectively. The stretching vibrational mode of Li(+)···Cl(-) and Li(+)···ClO4(-) solvated contact ion pairs formed in 4 mol % (6)LiCl-THF-h8 and (7)LiCl-THF-h8 solutions was found at ν = 469 and 435 cm(-1), respectively. Detailed structural properties of solvated Li(+) and the contact ion pairs were derived from the least-squares fitting analyses of the first-order difference function, ΔLi(Q), obtained from neutron diffraction measurements on (6)Li/(7)Li isotopically substituted THF-d8 solutions. It has been revealed that Li(+) takes 4-fold coordination in the average local structure of Li(+)X(-)(THF)3, X = Cl and ClO4. The nearest neighbor Li(+)···O(THF) distance was determined to be 2.21 ± 0.01 Å and 2.07 ± 0.01 Å for 4 mol % *LiCl- and 10 mol % *LiClO4-THF-d8 solutions, respectively. The Li(+)···anion distances for Li(+)···Cl(-) and Li(+)···O(ClO4(-)) contact ion pairs were determined to be 2.4 ± 0.1 Å and 2.19 ± 0.01 Å, respectively. The nearest neighbor Li(+)···THF interaction is significantly modified by the anion in the first solvation shell. PMID:27157529

  16. Elastic Scattering of Low-Energy Electrons byTetrahydrofuran

    SciTech Connect

    Trevisan, Cynthia S.; Orel, Ann E.; Rescigno, Thomas N.

    2006-05-09

    We present the results of ab initio calculations for elasticelectron scattering by tetrahydrofuran (THF) using the complex Kohnvariational method. We carried out fixed-nuclei calculations at theequilibrium geometry of the target molecule for incident electronenergies up to 20 eV. The calculated momentum transfer cross sectionsclearly reveal the presence of broad shape resonance behavior in the 8-10eV energy range, in agreement with recent experiments. The calculateddifferential cross sections at 20 eV, which include the effects of thelong-range electron-dipole interaction, are alsofound to be in agreementwith the most recent experimental findings.

  17. Ionization of vitamin C in gas phase: Theoretical study.

    PubMed

    Abyar, Fatemeh; Farrokhpour, Hossein

    2016-07-01

    In this work, the gas phase ionization energies and photoelectron spectra of four important conformers of vitamin C were calculated. Symmetry adapted cluster/configuration interaction methodology employing the single and double excitation operators (SAC-CI SD-R) along with D95++(d,p) basis set were used for the calculations. Thermochemistry calculations were also performed on all possible conformers of vitamin C to find the relative stability of conformers in the gas phase. The calculated ionization bands of each conformer were assigned by calculating the contribution of natural bonding orbital (NBO) in the calculated canonical molecular orbitals involved in the ionization. SAC-CI calculations showed that the first ionization band of vitamin C is related to the π electrons of CC bond of the ring of molecule although, there is the lone electron pairs of oxygen atoms and π electrons of CO bond in the molecule. PMID:27092998

  18. Single- and multi-photon ionization studies of organosulfur species

    SciTech Connect

    Cheung, Y.S.

    1999-02-12

    Accurate ionization energies (IE`s) for molecular species are used for prediction of chemical reactivity and are of fundamental importance to chemists. The IE of a gaseous molecule can be determined routinely in a photoionization or a photoelectron experiment. IE determinations made in conventional photoionization and photoelectron studies have uncertainties in the range of 3--100 meV (25--250 cm{sup {minus}1}). In the past decade, the most exciting development in the field of photoionization and photoelectron spectroscopy has been the availability of high resolution, tunable ultraviolet (UV) and vacuum ultraviolet (VUV) laser sources. The laser pulsed field ionization photoelectron (PFI-PE) scheme is currently the state-of-the-art photoelectron spectroscopic technique and is capable of providing photoelectron energy resolution close to the optical resolution. The author has focused attention on the photoionization processes of some sulfur-containing species. The studies of the photoionization and photodissociation on sulfur-containing compounds [such as CS{sub 2}, CH{sub 3}SH, CH{sub 3}SSCH{sub 3}, CH{sub 3}CH{sub 2}SCH{sub 2}CH{sub 3}, HSCH{sub 2}CH{sub 2}SH and C{sub 4}H{sub 4}S (thiophene) and sulfur-containing radicals, such as HS, CS, CH{sub 3}S, CH{sub 3}CH{sub 2}S and CH{sub 3}SS], have been the major subjects in the group because sulfur is an important species contributing to air pollution in the atmosphere. The modeling of the combustion and oxidation of sulfur compounds represents important steps for the control of both the production and the elimination of sulfur-containing pollutants. Chapter 1 is a general introduction of the thesis. Chapters 2 and 6 contain five papers published in, or accepted for publication in, academic periodicals. In Chapter 7, the progress of the construction in the laboratory of a new vacuum ultraviolet laser system equipped with a reflectron mass spectrometer is presented. Chapters 2 through 7 have been removed for separate

  19. Cross-linked poly(tetrahydrofuran) as promising sorbent for organic solvent/oil spill.

    PubMed

    Yati, Ilker; Ozan Aydin, Gulsah; Bulbul Sonmez, Hayal

    2016-05-15

    In this study, a series of different molecular weights of poly(tetrahydrofuran) (PTHF), which is one of the most important commercial polymers around the world, was condensed with tris[3-(trimethoxysilyl)propyl]isocyanurate (ICS) to generate a cross-linked 3-dimensional network in order to obtain organic solvent/oil sorbents having high swelling capacity. The prepared sorbents show high and fast swelling capacity in oils such as dichloromethane (DCM), tetrahydrofuran (THF), acetone, t-butyl methyl ether (MTBE), gasoline, euro diesel, and crude oil. The recovery of the absorbed oils from contaminated surfaces, especially from water, and the regeneration of the sorbents after several applications are effective. The characterization and thermal properties of the sorbents are identified by Fourier transform infrared spectroscopy (FTIR), solid-state (13)C and (29)Si cross-polarization magic angle spinning (CPMAS) nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC) and thermal gravimetric analyses (TGA), respectively. The new usage area of PTHF is emerged by the preparation of PTHF-based network structure with high oil absorption capacity and having excellent reusability as an oil absorbent for the removal of organic liquids from the spill site. PMID:26894295

  20. Studying Simple Molecular Ionization using Radiation Emission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Proctor, Christopher; Lemmer, Kristina; Western Michigan University Aerospace LaboratoryPlasma Experiments Team

    2015-11-01

    This study focuses on radiation emission from the formation of simple molecular plasma using a DC glow discharge. The purpose is to measure the emission from argon and molecular nitrogen gas as a function of time with an optical emission spectroscopy system operating in kinetic mode as the gases go from their neutral state to ionized state. The end goal of the research is to develop a diagnostic tool that will be used to study the formation of plasma discharges from complex molecules. The kinetic mode of the CCD camera allows for fast data acquisition so that the species present and their relative concentrations as a function of time can be measured as the plasma is forming. The primary difficulty in the development of this diagnostic tool is designing a device and data analysis technique to allow for kinetic mode operation of the CCD camera. Experimental devices have been designed and built to enable the CCD to operate in kinetic mode, including a fiber optic adapter, camera mount, and twin razor blade system. The twin blades allow for the reduction of exposed pixels on the CCD camera and thereby allow the camera to store data on rows of pixels, rather than imaging the entire camera, allowing for faster data transfer. PhD in Aerospace Engineering.

  1. Background studies in gas ionizing x ray detectors

    NASA Technical Reports Server (NTRS)

    Eldridge, Hudson B.

    1989-01-01

    The background response of a gas ionizing proportional x ray detector is estimated by solving the one dimensional photon transport equation for two regions using Monte Carlo techniques. The solution was effected using the SSL VAX 780 and the CRAY XMP computers at Marshall Space Flight Center. The isotropic photon energy spectrum encompassing the range from 1 to 1000 KeV incident onto the first region, the shield, is taken so as to represent the measured spectrum at an altitude of 3 mb over Palastine, Texas. The differential energy spectrum deposited in the gas region, xenon, over the range of 0 to 100 KeV is written to an output file. In addition, the photon flux emerging from the shield region, tin, over the range of 1 to 1000 KeV is also tabulated and written to a separate file. Published tabular cross sections for photoelectric, elastic and inelastic Compton scattering as well as the total absorption coefficient are used. Histories of each incident photon as well as secondary photons from Compton and photoelectric interactions are followed until the photon either is absorbed or exits from the regions under consideration. The effect of shielding thickness upon the energy spectrum deposited in the xenon region for this background spectrum incident upon the tin shield was studied.

  2. Enantioselective syntheses and sensory properties of 2-methyl-tetrahydrofuran-3-thiol acetates.

    PubMed

    Dai, Yifeng; Shao, Junqiang; Yang, Shaoxiang; Sun, Baoguo; Liu, Yongguo; Ning, Ting; Tian, Hongyu

    2015-01-21

    The enantioselective synthesis of four stereoisomers of 2-methyl-tetrahydrofuran-3-thiol acetate was achieved. The two enantiomers of the important intermediate cis-2-methyl-3-hydroxy-tetrahydrofuran were obtained by Sharpless asymmetric dihydroxylation (AD), whereas the two enantiomers of trans-2-methyl-3-hydroxy-tetrahydrofuran were derived from the corresponding optically active cis-isomers by Mitsunobu reaction. Each stereoisomer of 2-methyl-3-hydroxy-tetrahydrofuran went through mesylation and nucleophilic substitution to afford the corresponding product with specific configuration. (2R,3S)- and (2R,3R)-2-methyl-tetrahydrofuran-3-thiol acetate were obtained in 80% ee, whereas the (2S,3R)- and (2S,3S)-isomers were in 62% ee. The odor properties of the synthesized four stereoisomers were evaluated by gas chromatography-olfactometry (GC-O), which revealed perceptible differences among stereoisomers both in odor features and in intensities. PMID:25560460

  3. Ionization and capture in water: a multi-differential cross sections study

    NASA Astrophysics Data System (ADS)

    Champion, Christophe; Galassi, Mariel E.; Weck, Philippe F.; Fojón, Omar; Hanssen, Jocelyn; Rivarola, Roberto D.

    2012-11-01

    Two quantum mechanical models (CB1 and CDW-EIS) are here presented to provide accurate multiple differential and total cross sections for describing the two most important ionizing processes, namely, ionization and capture induced by heavy charged particles in water. A detailed study of the influence of the target description on the cross section calculations is also provided.

  4. Influence of Multiple Ionization on Studies of Nanoflare Heated Plasmas

    NASA Astrophysics Data System (ADS)

    Hahn, Michael; Savin, Daniel Wolf

    2015-04-01

    The spectrum emitted by a plasma depends on the charge state distribution (CSD) of the gas. This, in turn, is determined by the corresponding rates for electron-impact ionization and recombination. Current CSD calculations for solar physics do not account for electron-impact multiple ionization (EIMI), a process in which multiple electrons are ejected by a single electron-ion collision. We have estimated the EIMI cross sections for all charge states of iron using a combination of the available experimental data and semi-empirical formulae. We then modeled the CSD and observed the influence of EIMI compared to only including single ionization. One case of interest for solar physics is nanoflare heating. Recent work has attempted to predict the spectra of impulsively heated plasmas in order to identify diagnostics arising from non-equilibrium ionization that can constrain the nanoflare properties, but these calculations have ignored EIMI. Our findings suggest that EIMI can have a significant effect on the CSD of a nanoflare-heated plasma, changing the ion abundances by up to about 50%.

  5. Characterization of Reaction Pathways in Low Temperature Oxidation of Tetrahydrofuran with Multiplexed Photoionization Mass Spectrometry Technique

    NASA Astrophysics Data System (ADS)

    Antonov, Ivan; Sheps, Leonid

    2015-06-01

    Tetrahydrofuran (THF) is a prototype biofuel and a common intermediate in combustion of alkanes and alkenes. Photolytic Cl atom-initiated oxidation of THF was studied with multiplexed photoionization mass spectrometry (MPIMS) technique at temperatures 400-650 K and pressures 0.005-2 bar. Photoionization spectra and kinetic time traces were recorded simultaneously for all mass channels. Photoionization spectra, recorded with tunable VUV synchrotron radiation, were used to separate and identify isomers with the same nominal molecular formula, providing mechanistic insight into the the underlying kinetics. Our study suggests that formation of alkylperoxy radicals and their subsequent isomerization to hydroperoxyalkyl radicals plays an important role in low temperature oxidation of THF, while ring opening of THF-H radical (which dominates THF oxidation at T>800 K) is less important at our conditions.

  6. Developing a fast ionization chamber for transfer reaction studies

    NASA Astrophysics Data System (ADS)

    Chae, K. Y.; Bardayan, D. W.; Smith, M. S.; Schmitt, K. T.; Ahn, S. H.; Peters, W. A.; Strauss, S.

    2011-10-01

    Detection of beam and beam like recoils at far forward angles is often critical for radioactive beam measurements in inverse kinematics. Gas-filled ionization chambers are well suited for these applications, since they have moderately good energy resolution and can take prolonged exposure to beam compared to fragile semiconductor detectors. Conventional ion counters using a Frisch grid, however, have slow response times because the ionized electrons must travel long distances to the anodes. To reduce response times, a fast ion counter using a tilted window and tilted electrodes was developed and tested at ORNL's Holifield Radioactive Ion Beam Facility, modified from an original design by Kimura et al.. The maximum counting rate and energy resolution, along with future plans for using the new ion counter, will be presented. This work was sponsored by the Office of Nuclear Physics, U.S. Department of Energy.

  7. Theoretical study of ionization radiation effects on optical fiber parameters

    NASA Astrophysics Data System (ADS)

    Poret, Jay C.; Suter, Joseph J.

    1994-06-01

    The effect of ionizing radiation on various fiber parameters has been examined. It was demonstrated that when the real refractive index increases, the V number increases as does the numerical aperture. The percentage of power propagating in the cladding decreases with increasing real refractive index. Small changes in the refractive index will induce additional modes to form. The effect of radiation on fiber dispersion was reasoned to be negligible for short lengths of fibers (< 2 km).

  8. Numerical studies of ablation and ionization of railgun materials

    SciTech Connect

    Schnurr, N.M.; Kerrisk, J.F.

    1985-01-01

    The intense radiation from the arc in a railgun may cause vaporization and partial ionization of rail and insulator material. The mass of material added to the arc can have a significant adverse effect on projectile velocity. A numerical model has been developed to predict the change in mass of the arc as a function of several parameters. That model has been incorporated in the Los Alamos Railgun Estimator (LARGE) code and simulations have been run to assess the accuracy of the model. Analytical predictions were found to be in good agreement with experimental data for railgun tests run at Los Alamos. Ablation appears to have a significant effect on railgun performance.

  9. INSTRUMENTS AND METHODS OF INVESTIGATION: Surface-ionization field mass-spectrometry studies of nonequilibrium surface ionization

    NASA Astrophysics Data System (ADS)

    Blashenkov, Nikolai M.; Lavrent'ev, Gennadii Ya

    2007-01-01

    The ionization of polyatomic molecules on tungsten and tungsten oxide surfaces is considered for quasiequilibrium or essentially nonequilibrium conditions (in the latter case, the term nonequilibrium surface ionization is used for adsorbate ionization). Heterogeneous reactions are supposed to proceed through monomolecular decay of polyatomic molecules or fragments of multimolecular complexes. The nonequilibrium nature of these reactions is established. The dependences of the current density of disordered ions on the surface temperature, electric field strength, and ionized particle energy distribution are obtained in analytical form. Heterogeneous dissociation energies, the ionization potentials of radicals, and the magnitude of reaction departure from equilibrium are determined from experimental data, as are energy exchange times between reaction products and surfaces, the number of molecules in molecular complexes, and the number of effective degrees of freedom in molecules and complexes. In collecting the data a new technique relying on surface-ionization field mass-spectrometry was applied.

  10. Atmospheric pressure ionization and gas phase ion mobility studies of isomeric dihalogenated benzenes using different ionization techniques

    NASA Astrophysics Data System (ADS)

    Borsdorf, H.; Nazarov, E. G.; Eiceman, G. A.

    2004-03-01

    Ion mobility spectrometry (IMS) featuring different ionization techniques was used to analyze isomeric ortho-, meta- and para-dihalogenated benzenes in order to assess how structural features affect ion formation and drift behavior. The structure of the product ions formed was investigated by atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) and IMS-MS coupling. Photoionization provided [M]+ ions for chlorinated and fluorinated compounds while bromine was cleaved from isomers of dibromobenzene and bromofluorobenzene. This ionization technique does not permit the different isomers to be distinguished. Comparable ions and additional clustered ions were obtained using 63Ni ionization. Depending on the chemical constitution, different clustered ions were observed in ion mobility spectra for the separate isomers of dichlorobenzene and dibromobenzene. Corona discharge ionization permits the most sensitive detection of dihalogenated compounds. Only clustered product ions were obtained. Corona discharge ionization enables the classification of different structural isomers of dichlorobenzene, dibromobenzene and bromofluorobenzene.

  11. Epoxygenase Eicosanoids: Synthesis of Tetrahydrofuran-Diol Metabolites and Their Vasoactivity

    PubMed Central

    Falck, J. R.; Reddy, L. Manmohan; Byun, Kihwan; Campbell, William B.; Yi, Xiu-Yu

    2007-01-01

    Eight members of a recently identified family of tetrahydrofuran-diols (THFDs), originating from epoxyeicosatrienoic acids (EETs), were prepared stereospecifically from D-(+)-glucose. The THFDs potently induced relaxation of pre-contracted bovine arteries. PMID:17293113

  12. [Characteristics of tetrahydrofuran degradation by Pseudomonas oleovorans DT4].

    PubMed

    Zhou, Yu-Yang; Chen, Dong-Zhi; Jin, Xiao-Jun; Chen, Jian-Meng; He, Jie

    2011-01-01

    A tetrahydrofuran (THF)-degrading strain Pseudomonas oleovorans DT4 was isolated from the activated sludge of a pharmaceutical plant. P. oleovorans DT4 was able to utilize THF as the sole carbon and energy source under aerobic condition. 5 mmol/L of THF could be completely degraded by 3.2 mg/L inoculums of P. oleovorans DT4 in 14 h at pH 7.2 and 30 degrees C, with the cells concentration increasing to 188.6 mg/L. After the complete consumption of THF, no TOC could be detected but IC reached the stable value of about 46 mg/L, with pH decreasing to 6.54, which indicated that the substance was totally mineralized by P. oleovorans DT4. The optimum conditions for THF biodegradation in shaking flasks were pH 7.5 and temperature 37 degrees C, respectively. Results from the oxygen control experiments revealed that the oxygen supply by shaking was the satisfactory growth condition. Additionally, as the important elements for DT4, Mg2+ and Ca2+ at concentrations of 0.80 mmol/L and 0.20 mmol/L, respectively, were suitable for THF degradation. All the results contribute to the efficient bioremediation for the THF contaminated. PMID:21404697

  13. VUV photo-processing of PAH cations: quantitative study on the ionization versus fragmentation processes

    PubMed Central

    Zhen, Junfeng; Castillo, Sarah Rodriguez; Joblin, Christine; Mulas, Giacomo; Sabbah, Hassan; Giuliani, Alexandre; Nahon, Laurent; Martin, Serge; Champeaux, Jean-Philippe; Mayer, Paul M.

    2016-01-01

    Interstellar polycyclic aromatic hydrocarbons (PAHs) are strongly affected by the absorption of vacuum ultraviolet (VUV) photons in the interstellar medium (ISM), yet the branching ratio between ionization and fragmentation is poorly studied. This is crucial for the stability and charge state of PAHs in the ISM in different environments, affecting in turn the chemistry, the energy balance, and the contribution of PAHs to the extinction and emission curves. We studied the interaction of PAH cations with VUV photons in the 7 – 20 eV range from the synchrotron SOLEIL beamline, DESIRS. We recorded by action spectroscopy the relative intensities of photo-fragmentation and photo-ionization for a set of eight PAH cations ranging in size from 14 to 24 carbon atoms, with different structures. At photon energies below ~13.6 eV fragmentation dominates for the smaller species, while for larger species ionization is immediately competitive after the second ionization potential (IP). At higher photon energies, all species behave similarly, the ionization yield gradually increases, leveling off between 0.8 and 0.9 at ~18 eV. Among isomers, PAH structure appears to mainly affect the fragmentation cross section, but not the ionization cross section. We also measured the second IP for all species and the third IP for two of them, all are in good agreement with theoretical ones confirming that PAH cations can be further ionized in the diffuse ISM. Determining actual PAH dication abundances in the ISM will require detailed modeling. Our measured photo-ionization yields for several PAH cations provide a necessary ingredient for such models. PMID:27212712

  14. VUV Photo-processing of PAH Cations: Quantitative Study on the Ionization versus Fragmentation Processes

    NASA Astrophysics Data System (ADS)

    Zhen, Junfeng; Rodriguez Castillo, Sarah; Joblin, Christine; Mulas, Giacomo; Sabbah, Hassan; Giuliani, Alexandre; Nahon, Laurent; Martin, Serge; Champeaux, Jean-Philippe; Mayer, Paul M.

    2016-05-01

    Interstellar polycyclic aromatic hydrocarbons (PAHs) are strongly affected by the absorption of vacuum ultraviolet (VUV) photons in the interstellar medium (ISM), yet the branching ratio between ionization and fragmentation is poorly studied. This is crucial for the stability and charge state of PAHs in the ISM in different environments, affecting in turn the chemistry, the energy balance, and the contribution of PAHs to the extinction and emission curves. We studied the interaction of PAH cations with VUV photons in the 7–20 eV range from the synchrotron SOLEIL beamline, DESIRS. We recorded by action spectroscopy the relative intensities of photo-fragmentation and photo-ionization for a set of eight PAH cations ranging in size from 14 to 24 carbon atoms, with different structures. At photon energies below ∼13.6 eV fragmentation dominates for the smaller species, while for larger species ionization is immediately competitive after the second ionization potential (IP). At higher photon energies all species behave similarly; the ionization yield gradually increases, leveling off between 0.8 and 0.9 at ∼18 eV. Among isomers, PAH structure appears to mainly affect the fragmentation cross section but not the ionization cross section. We also measured the second IP for all species and the third IP for two of them; all are in good agreement with theoretical ones, confirming that PAH cations can be further ionized in the diffuse ISM. Determining actual PAH dication abundances in the ISM will require detailed modeling. Our measured photo-ionization yields for several PAH cations provide a necessary ingredient for such models.

  15. Biodegradation of tetrahydrofuran and 1,4-dioxane by soluble diiron monooxygenase in Pseudonocardia sp. strain ENV478.

    PubMed

    Masuda, Hisako; McClay, Kevin; Steffan, Robert J; Zylstra, Gerben J

    2012-01-01

    1,4-Dioxane is an important groundwater contaminant. Pseudonocardia sp. strain ENV478 degrades 1,4-dioxane via cometabolism after the growth on tetrahydrofuran (THF) and other carbon sources. Here, we have identified a THF monooxygenase (thm) in ENV478. The thm genes are transcribed constitutively and are induced to higher levels by THF. Decreased translation of the thmB gene encoding one of the monooxygenase subunits by antisense RNA resulted in the loss of its ability to degrade THF and 1,4-dioxane. This is the first study to link thm genes to THF degradation, as well as the cometabolic oxidation of 1,4-dioxane. PMID:23147387

  16. Fundamental sputtering studies: Nonresonant ionization of sputtered neutrals

    SciTech Connect

    Burnett, J.W.; Pellin, M.J.; Calaway, W.F.; Gruen, D.M. ); Yates, J.T. Jr. . Dept. of Chemistry)

    1989-01-04

    Because of the practical importance of sputtering, numerous theories and computer simulations are used for predicting many aspects of the sputtering process. Unfortunately, many of the calculated sputtering results are untested by experiment. Until recently, most sputtering experiments required either very high ion fluences or the detection of only minor constituents of the sputtered flux, i.e., ions. These techniques may miss the subtleties involved in the sputtering process. High-detection-efficiency mass spectrometry, coupled with the laser ionization of neutral atoms, allows the detection of the major sputtered species with very low incident ion fluences. The depth-of-origin of sputtered atoms is one example of an important but poorly understood aspect of the sputtering process. By following the sputtering yield of a substrate atom with various coverages of an adsorbed overlayer, the depth of origin of sputtered atoms has been determined. Our results indicate that two-thirds of the sputtered flux originates in the topmost atomic layer. The ion-dose dependence of sputtering yields has long been assumed to be quite minor for low- to-moderate primary ion fluences. We have observed a two-fold decrease in the sputtering yield of the Ru(0001) surface for very low primary ion fluences. Data analysis results in a cross section for damage of 2.7 {plus minus} 1.0 {times} 10{sup {minus}15}cm{sup 2}. 40 refs., 3 figs., 2 tabs.

  17. Numerical studies of wall-plasma interactions and ionization phenomena in an ablative pulsed plasma thruster

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Zeng, Guangshang; Tang, Haibin; Huang, Yuping; Liu, Xiangyang

    2016-07-01

    Wall-plasma interactions excited by ablation controlled arcs are very critical physical processes in pulsed plasma thrusters (PPTs). Their effects on the ionization processes of ablated vapor into discharge plasma directly determine PPT performances. To reveal the physics governing the ionization phenomena in PPT discharge, a modified model taking into account the pyrolysis effect of heated polytetrafluoroethylene propellant on the wall-plasma interactions was developed. The feasibility of the modified model was analyzed by creating a one-dimensional simulation of a rectangular ablative PPT. The wall-plasma interaction results based on this modified model were found to be more realistic than for the unmodified model; this reflects the dynamic changes of the inflow parameters during discharge in our model. Furthermore, the temporal and spatial variations of the different plasma species in the discharge chamber were numerically studied. The numerical studies showed that polytetrafluoroethylene plasma was mainly composed of monovalent ions; carbon and fluorine ions were concentrated in the upstream and downstream discharge chamber, respectively. The results based on this modified model were in good agreement with the experimental formation times of the various plasma species. A large number of short-lived and highly ionized carbon and fluorine species (divalent and trivalent ions) were created during initial discharge. These highly ionized species reached their peak density earlier than the singly ionized species.

  18. Hot-cavity studies for the Resonance Ionization Laser Ion Source

    NASA Astrophysics Data System (ADS)

    Henares, J. L.; Lecesne, N.; Hijazi, L.; Bastin, B.; Kron, T.; Lassen, J.; Le Blanc, F.; Leroy, R.; Osmond, B.; Raeder, S.; Schneider, F.; Wendt, K.

    2016-09-01

    The Resonance Ionization Laser Ion Source (RILIS) has emerged as an important technique in many Radioactive Ion Beam (RIB) facilities for its reliability, and ability to ionize target elements efficiently and element selectively. GISELE is an off-line RILIS test bench to study the implementation of an on-line laser ion source at the GANIL separator facility. The aim of this project is to determine the best technical solution which combines high selectivity and ionization efficiency with small ion beam emittance and stable long term operation. The ion source geometry was tested in several configurations in order to find a solution with optimal ionization efficiency and beam emittance. Furthermore, a low work function material was tested to reduce the contaminants and molecular sidebands generated inside the ion source. First results with ZrC ionizer tubes will be presented. Furthermore, a method to measure the energy distribution of the ion beam as a function of the time of flight will be discussed.

  19. Surface ionization mass spectrometry of drugs in the thermal and hyperthermal energy range -- a comparative study

    NASA Astrophysics Data System (ADS)

    Dagan, Shai; Amirav, Aviv; Fujü, Toshihiro

    1995-12-01

    Thermal and hyperthermal surface ionization (SI) mass spectra of nicotine, caffeine and lidocaine were obtained using a rhenium oxide surface. Thermal surface ionization was studied on an oxidized surface positioned inside an electron impact ion source, while hyperthermal surface ionization (HSI) was obtained upon seeding the compounds into a hydrogen or helium supersonic molecular beam that scattered from the rhenium oxide surface. Both HSI and SI provide rich, informative and complementary mass spectral information. The results indicate that SI follows thermal dissociation processes on the surface prior to the desorption of the ion, while in HSI no thermal equilibrium is established and the ionization process is impulsive, followed by mostly unimolecular ion dissociation. HSI mass spectra are similar to electron impact mass spectra in the fragment ion masses, but the observed relative intensities are different. HSI is a softer ionization method compared to SI, and enables the degree of ion fragmentation to be tuned so that it can be minimized to a low level at low molecular kinetic energy. In SI, limited control over the degree of fragmentation is possible through the surface temperature. The analytical mass spectrometric applications of SI and HSI are briefly mentioned.

  20. Effects of ionization on stability of 1-methylcytosine - DFT and PCM studies.

    PubMed

    Raczyńska, Ewa D; Michalec, Piotr; Zalewski, Marcin; Sapuła, Mariusz

    2016-07-01

    Consequences of ionization were studied by quantum-chemical methods (DFT and PCM) for 1-methylcytosine (MC)-a model of the nucleobase cytosine (C) connected with sugar in DNA. For calculations, three prototropic tautomers (one amino and two imino forms) and two imino zwitterions were considered, including conformational or configurational isomerism of exo heterogroups. Ionization and interactions between neighboring groups affect intramolecular proton-transfers, geometric and thermodynamic parameters, and electron delocalization for individual isomers. We discovered that an imino isomer is present in the isomeric mixture in the highest amount for positively ionized MC. Its contribution in neutral and negatively ionized MC is considerably smaller. Acid-base parameters for selected radical ions were estimated in the gas phase and compared to those of neutral MC. Gas-phase acidity of radical cations is close to that of the conjugate acid of MC, and gas-phase basicity of radical anions is close to that of the conjugate base of MC. Various routes of amino-imino conversion between neutral and ionized isomers were considered. Energetic-barrier for intramolecular proton-transfer in MC is close to that in the parent system-formamidine. PMID:27259531

  1. Use of Medical Imaging Procedures With Ionizing Radiation in Children: A Population-Based Study

    PubMed Central

    Dorfman, Adam L.; Fazel, Reza; Einstein, Andrew J.; Applegate, Kimberly E.; Krumholz, Harlan M.; Wang, Yongfei; Christodoulou, Emmanuel; Chen, Jersey; Sanchez, Ramon; Nallamothu, Brahmajee K.

    2013-01-01

    Objective To determine population-based rates of use of diagnostic imaging procedures with ionizing radiation in children, stratified by age and gender. Design Retrospective cohort analysis. Setting All settings utilizing imaging procedures with ionizing radiation. Patients Individuals less than 18 years old, alive and continuously enrolled in Unitedhealthcare between January 1, 2005 and December 31, 2007 in 5 large U.S. healthcare markets. Main Outcome Measure Number and type of diagnostic imaging procedures utilizing ionizing radiation in children. Results 355,088 children were identified. A total of 436,711 imaging procedures using ionizing radiation were performed in 150,930 (42.5%) patients. The highest rates of use were in children greater than 10 years old, with frequent use in infants under 2 years old as well. Plain radiography accounted for nearly 85% of imaging procedures performed. Computed tomography (CT) scans – associated with substantially higher doses of radiation – were commonly used, accounting for 12% of all procedures during the study period. Overall, 7.9% of children received at least one CT and 3.5% received 2 or more, with CT of the head most frequent. Conclusions Exposure to ionizing radiation from medical diagnostic imaging procedures may occur frequently among children. Efforts to optimize and ensure appropriate use of these procedures in the pediatric population should be encouraged. PMID:21199972

  2. Oxidative Cyclization of 1,5-Dienes with Hydrogen Peroxide Catalyzed by an Osmium(III) Complex: Synthesis of cis-Tetrahydrofurans.

    PubMed

    Sugimoto, Hideki; Kanetake, Takayuki; Maeda, Kazuki; Itoh, Shinobu

    2016-03-18

    Stereoselective oxidative cyclization of 1,5-dienes with hydrogen peroxide catalyzed by [Os(III)(OH)(H2O)(L-N4Me2)](PF6)2 (1: L-N4Me2 = N,N'-dimethyl-2,11-diaza-[3,3](2,6)pyridinophane) is explored. 1,5-Dienes involving geraniol derivatives are converted to the corresponding tetrahydrofurans in modest to high yields. The products exclusively have the cis-conformation with respect to the substituents at the 2- and 5-positions of the tetrahydrofuran ring. The products also have a syn-conformation with respect to the furan oxygen atom and the hydroxyl groups. Mechanistic studies including a direct reaction of the oxo-hydroxo-osmium(V) complex, 2, with a dihydroxylated geraniol derivative are performed. PMID:26950609

  3. Numerical quasi-linear study of the critical ionization velocity phenomenon

    NASA Technical Reports Server (NTRS)

    Moghaddam-Taaheri, E.; Goertz, C. K.

    1993-01-01

    The critical ionization velocity (CIV) for a neutral barium (Ba) gas cloud moving across the static magnetic field is studied numerically using quasi-linear equations and a parameter range which is typical for the shaped-charge Ba gas release experiments in space. For consistency the charge exchange between the background oxygen ions and neutral atoms and its reverse process, as well as the excitation of the neutral Ba atoms, are included. The numerical results indicate that when the ionization rate due to CIV becomes comparable to the charge exchange rate the energy lost to the ionization and excitation collisions by the superthermal electrons exceeds the energy gain from the waves that are excited by the ion beam. This results in a CIV yield less than the yield by the charge exchange process.

  4. Numerical quasi-linear study of the critical ionization velocity phenomenon

    SciTech Connect

    Moghaddam-Taaheri, E.; Goertz, C.K. )

    1993-02-01

    The critical ionization velocity, (CIV) for a neutral barium (Ba) gas cloud moving across the static magnetic field is studied numerically using quasi-linear equations and a parameter range which is typical for the shaped-charge Ba gas release experiments in space. For consistency the charge exchange between the background oxygen ions and neutral atoms and its reverse process, as well as the excitation of the neutral Ba atoms, are included. The numerical results indicate that when the ionization rate due to CIV becomes comparable to the charge exchange rate the energy lost to the ionization and excitation collisions by the superthermal electrons exceeds the energy gain from the waves that are excited by the ion beam. This results in a CIV yield less than the yield by the charge exchange process. 75 refs., 18 figs., 3 tabs.

  5. The study of ionization by electron impact of a substance simulating spent nuclear fuel components

    NASA Astrophysics Data System (ADS)

    Antonov, N. N.; Bochkarev, E. I.; Gavrikov, A. V.; Samokhin, A. A.; Smirnov, V. P.

    2015-11-01

    Plasma sources of model substances are necessary to solve problems associated with development of the spent nuclear fuel (SNF) plasma separation method. Lead was chosen to simulate kinetic and dynamic properties of the heavy SNF components. In this paper we present the results of a study of a lead vapor discharge with a lead concentration of 1012-1013 cm-3. Ionization was carried out by an electron beam (with energy of up to 500 eV per electron) inside a centimeter gap between planar electrodes. The discharge was numerically modeled using the hydrodynamic and single-particle approximation. Current-voltage characteristics and single ionization efficiency were obtained as functions of the vapors concentration and thermoelectric current. An ion current of hundreds of microamperes at the ionization efficiency near tenths of a percent was experimentally obtained. These results are in good agreement with our model.

  6. Numerical Study on Blast Wave Propagation Driven by Unsteady Ionization Plasma

    SciTech Connect

    Ogino, Yousuke; Sawada, Keisuke; Ohnishi, Naofumi

    2008-04-28

    Understanding the dynamics of laser-produced plasma is essential for increasing the available thrust and energy conversion efficiency from a pulsed laser to a blast wave in a gas-driven laser-propulsion system. The performance of a gas-driven laser-propulsion system depends heavily on the laser-driven blast wave dynamics as well as on the ionizing and/or recombining plasma state that sustains the blast wave. In this study, we therefore develop a numerical simulation code for a laser-driven blast wave coupled with time-dependent rate equations to explore the formation of unsteady ionizing plasma produced by laser irradiation. We will also examine the various properties of blast waves and unsteady ionizing plasma for different laser input energies.

  7. Comparison of the Reactivity of the Three Distonic Isomers of the Pyridine Radical Cation Toward Tetrahydrofuran in Solution and in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Widjaja, Fanny; Jin, Zhicheng; Nash, John J.; Kenttämaa, Hilkka I.

    2013-04-01

    The reactivity of the three distonic isomers of the pyridine radical cation toward tetrahydrofuran is compared in solution and in the gas phase. In solution, the distonic ions were generated by UV photolysis at 300 nm from iodo-precursors in acidic 50:50 tetrahydrofuran/water solutions. In the gas phase, the ions were generated by collisionally activated dissociation (CAD) of protonated iodo-precursors in an FT-ICR mass spectrometer, as described in the literature. The same major reaction, hydrogen atom abstraction, was observed in solution and in the gas phase. Attempts to cleave the iodine atom from the 2-iodopyridinium cation in the gas phase and in solution yielded the 2-pyridyl cation in addition to the desired 2-dehydropyridinium cation. In the gas phase, this ion was ejected prior to the examination of the desired ion's chemical properties. This was not possible in solution. This study suggests that solvation effects are not significant for radical reactions of charged radicals. On the other hand, the even-electron ion studied, the 2-pyridyl cation, shows substantial solvation effects. For example, in solution, the 2-pyridyl cation forms a stable adduct with tetrahydrofuran, whereas in the gas phase, only addition/elimination reactions were observed.

  8. A comparative study of Dissociative Ionization of N2 and CO

    NASA Astrophysics Data System (ADS)

    Pandey, Amrendra; Bapat, B.; Shamsundar, K. R.

    2014-04-01

    A comparative study on the properties of charge symmetric dissociation (CSD) and charge asymmetric dissociation (CAD) of doubly ionized N2 and CO is performed. Kinetic energy release (KER) distributions resulting from the dissociation of doubly charged molecular ions are explained on the basis of calculated potential energy curves.

  9. Ionization of cytosine monomer and dimer studied by VUV photoionization and electronic structure calculations

    SciTech Connect

    Kostko, Oleg; Bravaya, Ksenia; Krylov, Anna; Ahmed, Musahid

    2009-12-14

    We report a combined theoretical and experimental study of ionization of cytosine monomers and dimers. Gas-phase molecules are generated by thermal vaporization of cytosine followed by expansion of the vapor in a continuous supersonic jet seeded in Ar. The resulting species are investigated by single photon ionization with tunable vacuum-ultraviolet (VUV) synchrotron radiation and mass analyzed using reflectron mass spectrometry. Energy onsets for the measured photoionization efficiency (PIE) spectra are 8.60+-0.05 eV and 7.6+-0.1 eV for the monomer and the dimer, respectively, and provide an estimate for the adiabatic ionization energies (AIE). The first AIE and the ten lowest vertical ionization energies (VIEs) for selected isomers of cytosine dimer computed using equation-of-motion coupled-cluster (EOM-IP-CCSD) method are reported. The comparison of the computed VIEs with the derivative of the PIE spectra, suggests that multiple isomers of the cytosine dimer are present in the molecular beam. The calculations reveal that the large red shift (0.7 eV) of the first IE of the lowest-energy cytosine dimer is due to strong inter-fragment electrostatic interactions, i.e., the hole localized on one of the fragments is stabilized by the dipole moment of the other. A sharp rise in the CH+ signal at 9.20+-0.05 eV is ascribed to the formation of protonated cytosine by dissociation of the ionized dimers. The dominant role of this channel is supported by the computed energy thresholds for the CH+ appearance and the barrierless or nearly barrierless ionization-induced proton transfer observed for five isomers of the dimer.

  10. Molecular-dynamics simulations of binary structure II hydrogen and tetrahydrofurane clathrates.

    PubMed

    Alavi, Saman; Ripmeester, J A; Klug, D D

    2006-01-01

    The binary structure II hydrogen and tetrahydrofurane (THF) clathrates are studied with molecular-dynamics simulations. Simulations are done at pressures of 120 and 1.013 bars for temperatures ranging from 100 to 273 K. For the small cages of the structure II unit cell, H2 guest molecule occupancies of 0, 16 (single occupancy), and 32 (double occupancy) are considered. THF occupancies of 0-8 in the large cages are studied. For cases in which THF does not occupy all large cages in a unit cell, the remaining large cages can be occupied with sets of four H2 guest molecules. The unit-cell volumes and configurational energies are compared in the different occupancy cases. Increasing the small cage occupancy leads to an increase in the unit-cell volume and thermal-expansion coefficient. Among simulations with the same small cage occupancy, those with the large cages containing 4H2 guests have the largest volumes. The THF guest molecules have a stabilizing effect on the clathrate and the configurational energy of the unit cell decreases linearly as the THF content increases. For binary THF + H2 clathrates, the substitution of the THF molecules in the large cages with sets of 4H2 molecules increases the configurational energy. For the binary clathrates, various combinations of THF and H2 occupancies have similar configurational energies. PMID:16409048

  11. Studies of nanosecond pulse surface ionization wave discharges over solid and liquid dielectric surfaces

    NASA Astrophysics Data System (ADS)

    Petrishchev, Vitaly; Leonov, Sergey; Adamovich, Igor V.

    2014-12-01

    Surface ionization wave discharges generated by high-voltage nanosecond pulses, propagating over a planar quartz surface and over liquid surfaces (distilled water and 1-butanol) have been studied in a rectangular cross section test cell. The discharge was initiated using a custom-made, alternating polarity, high-voltage nanosecond pulse plasma generator, operated at a pulse repetition rate of 100-500 Hz, with a pulse peak voltage and current of 10-15 kV and 7-20 A, respectively, a pulse FWHM of ˜100 ns, and a coupled pulse energy of 2-9 mJ/pulse. Wave speed was measured using a capacitive probe. ICCD camera images demonstrated that the ionization wave propagated predominantly over the quartz wall or over the liquid surface adjacent to the grounded waveguide placed along the bottom wall of the test cell. Under all experimental conditions tested, the surface plasma ‘sheet’ was diffuse and fairly uniform, both for positive and negative polarities. The parameters of ionization wave discharge propagating over distilled water and 1-butanol surfaces were close to those of the discharge over a quartz wall. No perturbation of the liquid surface by the discharge was detected. In most cases, the positive polarity surface ionization wave propagated at a higher speed and over a longer distance compared to the negative polarity wave. For all three sets of experiments (surface ionization wave discharge over quartz, water and 1-butanol), wave speed and travel distance decreased with pressure. Diffuse, highly reproducible surface ionization wave discharge was also observed over the liquid butanol-saturated butanol vapor interface, as well as over the distilled water-saturated water vapor interface, without buffer gas flow. No significant difference was detected between surface ionization discharges sustained using single-polarity (positive or negative), or alternating polarity high-voltage pulses. Plasma emission images yielded preliminary evidence of charge removal from the

  12. Choosing populations to study the health effects of low-dose ionizing radiation.

    PubMed Central

    Dreyer, N A; Loughlin, J E; Friedlander, E R; Clapp, R W; Fahey, F H

    1981-01-01

    In January 1978, the United States Congress requested information about the utility of additional epidemiologic studies for quantifying the health effects of low-dose ionizing radiation. In our judgment, no single population can be recommended for study on purely scientific grounds, since the largest group offers only a small chance to obtain a definitive result. On the other hand, if social pressures and regulatory agencies mandate that such studies be attempted, we would recommend prospective cohort studies of occupational populations. We propose that a national worker registry be developed using ionizing radiation as the prototype for studying other occupational exposures. The problems related to studying low-level radiation are not unique, but apply equally to investigations dealing with a great variety of toxic agents. A national plan for collecting information on workers' exposure and health could provide a cost-efficient means to answer public health questions posed by the Congress, scientists and the public. PMID:7294269

  13. Study of gel formation by ionizing radiation in polypropylene

    NASA Astrophysics Data System (ADS)

    Oliani, W. L.; Parra, D. F.; Fermino, D. M.; Riella, H. G.; Lima, L. F. C. P.; Lugao, A. B.

    2013-03-01

    The objective of this work is to study the formation of microgel in pristine PP and modified PP. The modified PP in pellets was synthesized by gamma irradiation of pristine PP under a crosslinking atmosphere of acetylene in different doses of 5, 12.5 and 20 kGy, followed by thermal treatment for radical recombination and annihilation of the remaining radicals. The gel content of the modified polypropylenes was determined by extraction in boiling xylene for period of 12 h at 138 °C. The gel formed of pristine PP and modified (i.e., irradiated) was characterized using optical microscopy (OM), scanning electron microscopy (SEM), Fourier transformed infrared spectroscopy (FTIR) and X-ray diffraction (XDR). The PP morphological study indicated the microgel formation with increase of spherulitic concentration with dose.

  14. Studies of oxidative degradation of polymers induced by ionizing radiation

    SciTech Connect

    Clough, R.L.; Gillen, K.T.

    1989-01-01

    Radiation effects on polymers in the presence of air are characterized by complicated phenomena such as dose-rate effects and post-irradiation degradation. These time-dependent effects can be understood in these terms: (1) features of the free radical chain-reaction chemistry underlying the oxidation, and (2) oxygen diffusion effects. A profiling technique has been developed to study heterogeneous degradation resulting from oxygen diffusion, and kinetic schemes have been developed to allow long-term aging predictions from short-term high dose-rate experiments. Low molecular weight additives which act either as free-radical scavengers or else as energy-scavengers are effective as stabilizers in radiation-oxidation environments. Non-radical oxidation mechanisms, involving species such as ozone, can also be important in the radiation-oxidation of polymers. 18 refs., 15 figs.

  15. Studying the Effect of Ionization Radiation of 60Co on the Spirulina

    NASA Astrophysics Data System (ADS)

    Ai, Weidang; Guo, Shuang-Sheng; Ai, Weidang; Dong, Wen-Ping; Qin, Li-Feng; Tang, Yong-Kang

    It studied the effect of ionization radiation on the Spirulina plastensis(No.6) by using the γ-rays of 60 Co. In the experiment, Spirulina were irradiated, and the dose of the ionization radiation covered 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0kGy. After irradiating, these Spirulina were cultured under the same conditions. During the course of the experiment, the growth rate, photosynthetic efficiency and nutrition quality of the Spirulina, were analyzed. From the results, low dose of γ-rays (less than 1.5kGy) could improve the content of phycobilin and protein of Spirulina. Only small changes in the morphology of algae filament were found at dose less than 1.0kGy. But with the increase of the dose of γ-rays (more than 1.5kGy), the filaments would break up or even disintegrate. Spirulina had stronger ionization radiation proof and self-rehabilitation capacity, but the growth of Spirulina was stagnated. The LD50 (i.e. the dose resulted in 50% death of the Spirulina) of the colony was 2.0kGy. Considering the capacity of being resistant to γ-rays irradiation, Spirulina can be considered as one of the key biological components in the Controlled Ecological Life Support System (CELSS) for future long-term space missions. Keywords: Controlled Ecological Life Support System (CELSS); Spirulina; ionization radiation; biological component

  16. Ionization and excitation in collisions between antiprotons and H(1s) atoms studied with Sturmian bases

    SciTech Connect

    Winter, Thomas G.

    2011-02-15

    Coupled two-center as well as one-center Sturmian cross sections have been determined for ionization and excitation in p-bar-H(1s) collisions at p-bar energies from 1 to 16 000 keV, following the author's recent work for p-H(1s) collisions [Phys. Rev. A 80, 032701 (2009)]. Basis convergence is studied in detail. Results for ionization and excitation are compared to other coupled-state results and to numerical results, as well as limited experimental results for ionization only. Except for the large, two-center coupled-Gaussian-pseudostate calculation of Toshima for ionization only [Phys. Rev. A 64, 024701 (2001)], previous calculations employed one-center bases, including a one-center Sturmian calculation by Igarashi et al. [Phys. Rev. A 61, 062712 (2000)]. A strong contrast with p-H collisions is confirmed at intermediate energies, while at high energies the extent of agreement is revealed between coupled-state results for the two collisional systems, as well as with first Born results.

  17. Studies of the ionization states of solar and galactic cosmic ray heavy nuclei

    NASA Technical Reports Server (NTRS)

    Biswas, S.

    1982-01-01

    Enhancement of abundances of heavy nuclei (e.g., Mg, Si, and Fe) at low energies relative to solar photospheric abundances and anomalously high abundances of iron relative to oxygen nuclei at low energies were recently discovered in solar energetic particles studied at low energy. These phenomena are not understood at present. The proposed experiment is designed to study the recently discovered anomalous component of low energy galactic cosmic ray ions of C, N, O, Ne, and Ca to Fe of energy 5- to 10-million electron volts per atomic mass unit in regard to their ionization states, composition, and intensity, and to study the ionization states of heavy elements from oxygen to iron in energetic solar particles emitted during flare events. The same detector system will serve for both studies, with the second objective being given priority if there are any solar particle events during the mission.

  18. Infrared depletion spectroscopy of the doubly hydrogen-bonded aniline-(tetrahydrofuran) 2 complex produced in supersonic jet

    NASA Astrophysics Data System (ADS)

    Chowdhury, Pradyot K.

    2006-01-01

    The vibrational frequencies of the N-H stretching modes of aniline after forming a strong doubly H-bonded complex with tetrahydrofuran (THF) are measured with infrared depletion spectroscopy that uses cluster-size-selective resonance-enhanced multiphoton ionization (REMPI) time-of-flight mass spectrometry. Two strong infrared absorption features observed at 3355 and 3488 cm -1 are assigned to the symmetric and antisymmetric N-H stretching vibrations of the 1:2 aniline-THF complex, respectively. The red-shifts of the N-H stretching vibrations of aniline agree with the ab initio calculated (MP2/6-31G**) aniline-(THF) 2 structure in which both aniline N-H bonds interact with the oxygen atom of THF through two hydrogen bonds. The calculated binding energy is found to be 29.6 kJ mol -1 after corrections for basis set superposition error (BSSE) and zero-point energy. The calculated structure revealed that the angle between the N-H bonds in the NH 2 group increased to 112.5° in the aniline-(THF) 2 complex from that of 109.8° in the aniline. The electronic 0-0 band origin for the S1 ← S0 transition is observed at 32,900 cm -1 in the aniline-(THF) 2 complex, giving a red-shift of 1129 cm -1 from that of the aniline molecule.

  19. Benchmark theoretical study of the ionization threshold of benzene and oligoacenes

    NASA Astrophysics Data System (ADS)

    Deleuze, M. S.; Claes, L.; Kryachko, E. S.; François, J.-P.

    2003-08-01

    In straightforward continuation of Green's function studies of the ultraviolet photoelectron spectra of polycyclic aromatic compounds [Deleuze et al., J. Chem. Phys. 115, 5859 (2001); M. S. Deleuze, ibid. 116, 7012 (2002)], we present a benchmark theoretical determination of the ionization thresholds of benzene, naphthalene, anthracene, naphthacene (tetracene), pentacene, and hexacene, within chemical accuracy [0.02-0.07 eV]. The vertical ionization potentials of these compounds have been obtained from series of single-point calculations at the Hartree-Fock, second-, third-, and partial fourth-order Møller-Plesset (MP2, MP3, MP4SDQ) levels, and from coupled cluster calculations including single and double excitations (CCSD) as well as a perturbative estimate of connected triple excitations [CCSD(T)], using basis sets of improving quality, introducing up to 510, 790, 1070, 1350, 1630, and 1910 basis functions in the computations, respectively. A focal point analysis of the convergence of the calculated ionization potentials has been performed in order to extrapolate the CCSD(T) results to an asymptotically (cc-pV∞Z) complete basis set. The present results confirm the adequacy of the outer-valence Green's function scheme for strongly correlated systems. Adiabatic ionization energies have been further determined by incorporating Beck-three-parameter Lee-Yang-Parr functional corrections for zero-point vibrational energies and for geometrical relaxations. Extension of the analysis to the CCSD(T)/cc-pV∞Z level shows that the energy minimum form of the benzene radical cation is an obtuse structure related to the 2B2g state. Isotopic shifts of the adiabatic ionization potentials, due to deuterium substitution of hydrogens, have also been discussed.

  20. Alkene Dioxygenation with Malonoyl Peroxides: Synthesis of γ-Lactones, Isobenzofuranones, and Tetrahydrofurans.

    PubMed

    Alamillo-Ferrer, Carla; Karabourniotis-Sotti, Marianna; Kennedy, Alan R; Campbell, Matthew; Tomkinson, Nicholas C O

    2016-07-01

    Treatment of homoallylic alcohols or carboxylic acids with malonoyl peroxide 1 provides a stereoselective method for the preparation of tetrahydrofurans, γ-lactones, and isobenzofuranones in 44-82% yield and up to 27:1 trans selectivity. Application of this simple and effective heterocyclization in the synthesis of the antidepressant citalopram is also described. PMID:27314605

  1. Manipulation of a Schlenk Line: Preparation of Tetrahydrofuran Complexes of Transition-Metal Chlorides

    ERIC Educational Resources Information Center

    Davis, Craig M.; Curran, Kelly A.

    2007-01-01

    Before taking an inorganic laboratory course few students have experience handling air-sensitive materials using Schlenk techniques. This exercise introduces them to techniques they will employ in later syntheses. The procedure involves the formation of anhydrous tetrahydrofuran complexes of transition-metal chlorides from metal-chloride hydrates;…

  2. Synthesis of the gymnodimine tetrahydrofuran core through a Ueno-Stork radical cyclization.

    PubMed

    Toumieux, Sylvestre; Beniazza, Redouane; Desvergnes, Valérie; Aráoz, Rómulo; Molgó, Jordi; Landais, Yannick

    2011-05-21

    A straightforward access to the C10-C20 skeleton of gymnodimine, incorporating a tetrahydrofuran fragment, is described. The elaboration of the THF moiety is based on a stereocontrolled Ueno-Stork cyclization. A Lewis-acid mediated allylation of the resulting acetal at C13 and a Horner-Wadsworth-Emmons olefination on the ketone at C17 complete the synthesis. PMID:21472158

  3. Computer study of convection of weakly ionized plasma in a nonuniform magnetic field.

    NASA Technical Reports Server (NTRS)

    Shiau, J. N.

    1972-01-01

    A weakly ionized plasma in a strong and nonuniform magnetic field exhibits an instability analogous to the flute instability in a fully ionized plasma. The instability sets in at a critical magnetic field. To study the final state of the plasma after the onset of the instability, the plasma equations are integrated numerically assuming a certain initial spectrum of small disturbances. In the regime studied, numerical results indicate a final steadily oscillating state consisting of a single finite amplitude mode together with a time-independent modification of the original equilibrium. These results agree with the analytic results obtained by Simon in the slightly supercritical regime. As the magnetic field is increased further, the wavelength of the final oscillation becomes nonunique. There exists a subinterval in the unstable wave band. Final stable oscillation with a wavelength in this subinterval can be established if the initial disturbance has a sufficiently strong component at the particular wavelength.

  4. The study of ionizing radiation effects on polypropylene and rice husk ash composite

    NASA Astrophysics Data System (ADS)

    Alfaro, E. F.; Dias, D. B.; Silva, L. G. A.

    2013-03-01

    The aim of this work was to study the ionizing radiation effects on polypropylene/20% of rice husk ash composites. The composites were irradiated by electron beam at different doses and the mechanical and thermal properties were evaluated using tensile strength, Izod impact, hardness, softening temperature, differential scanning calorimetry (DSC) and thermogravimetry (TG). The results showed that the properties decreased by increasing irradiation dose due to chain scission.

  5. Spatially resolved study of the physical properties of the ionized gas in NGC 595

    NASA Astrophysics Data System (ADS)

    Relaño, M.; Monreal-Ibero, A.; Vílchez, J. M.; Kennicutt, R. C.

    2010-03-01

    We present Integral Field Spectroscopy (IFS) of NGC 595, one of the most luminous HII regions in M33. This type of observations allows us to study the variation of the principal emission-line ratios across the surface of the nebula. At each position of the field of view, we fit the main emission-line features of the spectrum within the spectral range of 3650-6990Å and create maps of the principal emission-line ratios for the total surface of the region. The extinction map derived from the Balmer decrement and the absorbed Hα luminosity show good spatial correlation with the 24μm emission from Spitzer. We also show here the capability of the IFS to study the existence of Wolf-Rayet (WR) stars, identifying the previously catalogued WR stars and detecting a new candidate towards the north of the region. The ionization structure of the region nicely follows the Hα shell morphology and is clearly related to the location of the central ionizing stars. The electron density distribution does not show strong variations within the HII region nor any trend with the Hα emission distribution. We study the behaviour within the HII region of several classical emission-line ratios proposed as metallicity calibrators: while [NII]/Hα and [NII]/[OIII] show important variations, the R23 index is substantially constant across the surface of the nebula, despite the strong variation of the ionization parameter as a function of the radial distance from the ionizing stars. These results show the reliability in using the R23 index to characterize the metallicity of HII regions even when only a fraction of the total area is covered by the observations.

  6. Absolute vibrational cross sections for 1-19 eV electron scattering from condensed tetrahydrofuran (THF)

    NASA Astrophysics Data System (ADS)

    Lemelin, V.; Bass, A. D.; Cloutier, P.; Sanche, L.

    2016-02-01

    Absolute cross sections (CSs) for vibrational excitation by 1-19 eV electrons impacting on condensed tetrahydrofuran (THF) were measured with a high-resolution electron energy loss spectrometer. Experiments were performed under ultra-high vacuum (3 × 10-11 Torr) at a temperature of about 20 K. The magnitudes of the vibrational CSs lie within the 10-17 cm2 range. Features observed near 4.5, 9.5, and 12.5 eV in the incident energy dependence of the CSs were compared to the results of theoretical calculations and other experiments on gas and solid-phase THF. These three resonances are attributed to the formation of shape or core-excited shape resonances. Another maximum observed around 2.5 eV is not found in the calculations but has been observed in gas-phase studies; it is attributed to the formation of a shape resonance.

  7. a Study of Biophysical Mechanisms of Damage by Ionizing Radiation to Mammalian Cells in Vitro.

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Zhang

    Available from UMI in association with The British Library. An extensive survey made of published survival data of damage by ionizing radiation to mammalian cells in vitro has led to the new conclusion that the damage is determined by the specific ionization or the mean free path between ionizing events along the charged particle tracks. The optimum damage is observed when the mean free path is equivalent to the DNA double strand spacing of 1.8 nm. Therefore, the biological mechanism of ionizing radiation to mammalian cells in vitro is intra track dominant. A 100 keV electron accelerator has been constructed and commissioned to produce a broad beam irradiation field of greater than 1 cm diameter. The fluence rate may be adjusted from 10^8cm^ {-2}sec^{-1} downwards to enable further development as a chronic irradiation facility. Another new feature of the accelerator is that it incorporates a differential vacuum system which permits irradiation of the monolayer cell cultures to be carried out in normal pressure. Experiments of irradiation to Chinese hamster cells, by ^{241}Am alpha particles at low fluence rate, have supplied satisfactory data for testing a new DNA-rupture model which is under development. For V79 cells irradiated at a low fluence rate of 10^5cm^{ -2}min^{-1}, when survival data were fitted into the model, new biophysical parameters were extracted and a proposal was made that the repair phenomenon of cellular survival at very low doses is determined by three time factors: the irradiation time, the damage fixation time and the repair time. The values obtained were 3-4 hours for the mean repair time, and more than 10 hours for the damage to be considered permanent. Details of the monolayer cell culture technique developed and used in the present experiments are described. Consideration has been given to the significance of the results obtained from the study in radiation protection and in radiotherapy. In future studies it is recommended that more

  8. In-gas-cell laser ionization studies of plutonium isotopes at IGISOL

    NASA Astrophysics Data System (ADS)

    Pohjalainen, I.; Moore, I. D.; Kron, T.; Raeder, S.; Sonnenschein, V.; Tomita, H.; Trautmann, N.; Voss, A.; Wendt, K.

    2016-06-01

    In-gas-cell resonance laser ionization has been performed on long-lived isotopes of Pu at the IGISOL facility, Jyväskylä. This initiates a new programme of research towards high-resolution optical spectroscopy of heavy actinide elements which can be produced in sufficient quantities at research reactors and transported to facilities elsewhere. In this work a new gas cell has been constructed for fast extraction of laser-ionized elements. Samples of 238-240,242Pu and 244Pu have been evaporated from Ta filaments, laser ionized, mass separated and delivered to the collinear laser spectroscopy station. Here we report on the performance of the gas cell through studies of the mass spectra obtained in helium and argon, before and after the radiofrequency quadrupole cooler-buncher. This provides valuable insight into the gas phase chemistry exhibited by Pu, which has been additionally supported by measurements of ion time profiles. The resulting monoatomic yields are sufficient for collinear laser spectroscopy. A gamma-ray spectroscopic analysis of the Pu samples shows a good agreement with the assay provided by the Mainz Nuclear Chemistry department.

  9. Differential study on molecular suppressed ionization in intense linearly and circularly polarized laser fields

    NASA Astrophysics Data System (ADS)

    Deng, Yongkai; Liu, Yunquan; Liu, Xianrong; Liu, Hong; Yang, Yudong; Wu, Chengyin; Gong, Qihuang

    2011-12-01

    We present a differential study on above-threshold ionization of the O2 (N2) molecule as well as the companion atom Xe (Ar) (with close ionization potential) produced by linearly and circularly polarized laser fields (25 fs, 795 nm). The photoelectron angular distributions of the companion target are similar at the same laser condition. In both linearly and circularly polarized fields, we observe that the photoelectron yields of O2 are suppressed in the entire energy spectral range as compared with Xe with fully differential measurements, but not for the N2-Ar pair. This is different from the prediction of photoelectron energy spectra by the model including the interference terms [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.85.2280 85, 2280 (2000)], from which the low-energy photoelectrons of O2 were expected to be strongly suppressed in both linearly and circularly polarized laser fields. Resorting to the basic strong-field ionization picture, we believe that the lower orbital-dependent multiphoton excitation or tunneling possibility of O2 as compared with Xe is responsible for this effect. High-resolution fully differential data pose a stringent test on the current strong-field calculations on molecules.

  10. An electron impact and chemical ionization study of some diethyl dicarboxylates

    NASA Astrophysics Data System (ADS)

    Harrison, Alex G.; Malat, Jan

    1997-11-01

    The electron ionization and Bronsted acid chemical ionization mass spectra of the diethyl esters of succinic acid, methylmalonic acid, glutaric acid, ethylmalonic acid and dimethylmalonic acid have been determined. The major primary fragmentation reaction of the molecular ion in the electron ionization mass spectra is by loss of OC2H5 while the MH+ ions fragment by loss of C2H5OH to form the same fragment ion. Using isotopic labelling (diethyl-d5 esters) and metastable ion studies, it is shown that the [M---OC2H5]+ ions formed from diethyl succinate and diethyl glutarate have ethyl-cationated cyclic anhydride structures which fragment further by elimination of C2H4 to form the protonated anhydride. For the remaining esters the [M---OC2H5]+ ions have an acylium ion structure and fragment primarily by elimination of CO to form, initially, substituted [alpha]-carboethoxy carbenium ions although there is significant rearrangement to protonated ethyl esters of olefinic acids prior to further fragmentation.

  11. Study of Electrochemical Reactions Using Nanospray Desorption Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Liu, Pengyuan; Lanekoff, Ingela T.; Laskin, Julia; Dewald, Howard D.; Chen, Hao

    2012-07-03

    The combination of electrochemistry (EC) and mass spectrometry (MS) is a powerful analytical tool for studying mechanisms of redox reactions, identification of products and intermediates, and online derivatization/recognition of analytes. This work reports a new coupling interface for EC/MS by employing nanospray desorption electrospray ionization (nano-DESI), a recently developed ambient ionization method. We demonstrate online coupling of nano-DESI-MS with a traditional electrochemical flow cell, in which the electrolyzed solution emanating from the cell is ionized by nano-DESI for MS analysis. Furthermore, we show first coupling of nano-DESI-MS with an interdigitated array (IDA) electrode enabling chemical analysis of electrolyzed samples directly from electrode surfaces. Because of its inherent sensitivity, nano-DESI enables chemical analysis of small volumes and concentrations of sample solution. Specifically, good-quality signal of dopamine and its oxidized form, dopamine ortho-quinone, was obtained using 10 μL of 1 μM solution of dopamine on the IDA. Oxidation of dopamine, reduction of benzodiazepines, and electrochemical derivatization of thiol groups were used to demonstrate the performance of the technique. Our results show the potential of nano-DESI as a novel interface for electrochemical mass spectrometry research.

  12. Environmental analysis of the life cycle emissions of 2-methyl tetrahydrofuran solvent manufactured from renewable resources.

    PubMed

    Slater, C Stewart; Savelski, Mariano J; Hitchcock, David; Cavanagh, Eduardo J

    2016-01-01

    An environmental analysis has been conducted to determine the cradle to gate life cycle emissions to manufacture the green solvent, 2-methyl tetrahydrofuran. The solvent is considered a greener chemical since it can be manufactured from renewable resources with a lower life cycle footprint. Analyses have been performed using different methods to show greenness in both its production and industrial use. This solvent can potentially be substituted for other ether and chlorinated solvents commonly used in organometallic and biphasic reactions steps in pharmaceutical and fine chemical syntheses. The 2-methyl tetrahydrofuran made from renewable agricultural by-products is marketed by Penn A Kem under the name ecoMeTHF™. The starting material, 2-furfuraldehyde (furfural), is produced from corn cob waste by converting the available pentosans by acid hydrolysis. An evaluation of each step in the process was necessary to determine the overall life cycle and specific CO2 emissions for each raw material/intermediate produced. Allocation of credits for CO2 from the incineration of solvents made from renewable feedstocks significantly reduced the overall carbon footprint. Using this approach, the overall life cycle emissions for production of 1 kg of ecoMeTHF™ were determined to be 0.191 kg, including 0.150 kg of CO2. Life cycle emissions generated from raw material manufacture represents the majority of the overall environmental impact. Our evaluation shows that using 2-methyl tetrahydrofuran in an industrial scenario results in a 97% reduction in emissions, when compared to typically used solvents such as tetrahydrofuran, made through a conventional chemical route. PMID:26889729

  13. Copper-Catalyzed Oxidative C-H Amination of Tetrahydrofuran with Indole/Carbazole Derivatives.

    PubMed

    Yang, Qingjing; Choy, Pui Ying; Fu, Wai Chung; Fan, Baomin; Kwong, Fuk Yee

    2015-11-01

    A simple α-C-H amination of cyclic ether with indole/carbazole derivatives has been accomplished by employing copper(II) chloride/bipy as the catalyst system. In the presence of the di-tert-butyl peroxide oxidant, cyclic ethers such as tetrahydrofuran, 1,4-dioxane, and tetrahydropyran successfully undergo C-H/N-H cross dehydrogenative coupling (CDC) with various carbazole or indole derivatives in good-to-excellent yields. PMID:26485515

  14. Stereodivergent Organocatalytic Intramolecular Michael Addition/Lactonization for the Asymmetric Synthesis of Substituted Dihydrobenzofurans and Tetrahydrofurans

    PubMed Central

    Belmessieri, Dorine; de la Houpliere, Alix; Calder, Ewen D D; Taylor, James E; Smith, Andrew D

    2014-01-01

    A stereodivergent asymmetric Lewis base catalyzed Michael addition/lactonization of enone acids into substituted dihydrobenzofuran and tetrahydrofuran derivatives is reported. Commercially available (S)-(−)-tetramisole hydrochloride gives products with high syn diastereoselectivity in excellent enantioselectivity (up to 99:1 d.r.syn/anti, 99 % eesyn), whereas using a cinchona alkaloid derived catalyst gives the corresponding anti-diastereoisomers as the major product (up to 10:90 d.r.syn/anti, 99 % eeanti). PMID:24989672

  15. Embryos of the zebrafish Danio rerio in studies of non-targeted effects of ionizing radiation.

    PubMed

    Choi, V W Y; Yu, K N

    2015-01-01

    The use of embryos of the zebrafish Danio rerio as an in vivo tumor model for studying non-targeted effects of ionizing radiation was reviewed. The zebrafish embryo is an animal model, which enables convenient studies on non-targeted effects of both high-linear-energy-transfer (LET) and low-LET radiation by making use of both broad-beam and microbeam radiation. Zebrafish is also a convenient embryo model for studying radiobiological effects of ionizing radiation on tumors. The embryonic origin of tumors has been gaining ground in the past decades, and efforts to fight cancer from the perspective of developmental biology are underway. Evidence for the involvement of radiation-induced genomic instability (RIGI) and the radiation-induced bystander effect (RIBE) in zebrafish embryos were subsequently given. The results of RIGI were obtained for the irradiation of all two-cell stage cells, as well as 1.5 hpf zebrafish embryos by microbeam protons and broad-beam alpha particles, respectively. In contrast, the RIBE was observed through the radioadaptive response (RAR), which was developed against a subsequent challenging dose that was applied at 10 hpf when <0.2% and <0.3% of the cells of 5 hpf zebrafish embryos were exposed to a priming dose, which was provided by microbeam protons and broad-beam alpha particles, respectively. Finally, a perspective on the field, the need for future studies and the significance of such studies were discussed. PMID:24176822

  16. Influence of electron impact ionization on the termination shock: model case studies

    SciTech Connect

    Soloviev, V.Y.; Schwadron, N.A.; McComas, D.J.

    2004-09-15

    We include a latitudinally localized increase in ionization and subsequent mass loading in a 2.5-dimensional magneto-hydrodynamic case study to analyze its impact on the magnetic field, the flow field geometry, and the TS location. The localized additional mass loading leads to deflection of the flow and weakens the TS. We suggest the possibility that Voyager 1 may have been inside such a region during the recent {approx} 6 month period in 2002 when Voyager 1 observed energetic particle signatures consistent with a TS crossing, but only moderate changes in the magnetic field intensity and ACR spectrum.

  17. Study on the noncovalent complexes of ginsenoside and cytochrome c by electrospray ionization mass spectrometry.

    PubMed

    Zhang, Huarong; Ding, Lan; Qu, Chenling; Li, Dan; Zhang, Hanqi

    2007-10-01

    The noncovalent complexes of cytochrome c and ginsenoside were studied by electrospray ionization mass spectrometry (ESI-MS). Ginsenoside Rb2 and Re were bound to cytochrome c to form several complexes with different stoichiometric relation. The 1:1 and 1:2 complexes of cytochrome c to ginsenoside were considered and the dissociation constants were obtained according to the intensities of cytochrome c and complexes when the concentrations of cytochrome c and ginsenoside have been known. Competition experiment was performed to validate the result. The K(D) values obtained with different reactive systems were consistent with each other. PMID:17324614

  18. Pulsed-field-ionization spectroscopy for the study of molecular cations

    NASA Astrophysics Data System (ADS)

    Takazawa, Ken; Fujii, Masaaki; Ebata, Takayuki; Ito, Mitsuo

    1992-02-01

    It is shown that pulsed-field-ionization (PFI) spectroscopy using usual MPI apparatus without any magnetic shielding gives the spectra of molecular cations comparable to those obtained by ZEKE spectroscopy which requires a thorough magnetic shielding. The electrons detected by PFI spectroscopy were proved to come from very high Rydberg states of a neutral molecule near the convergence limit. The potential of PFI spectroscopy for the study of the vibrational structures of cations is demonstrated for the cations of DABCO, 1,2,4,5-tetrafluorobenzene and m-fluorotoluene.

  19. Resonantly enhanced multiphoton ionization under XUV FEL radiation: a case study of the role of harmonics

    NASA Astrophysics Data System (ADS)

    Nikolopoulos, G. M.; Lambropoulos, P.

    2015-12-01

    We provide a detailed quantitative study of the possible role of a small admixture of harmonics on resonant two-photon ionization. The motivation comes from the occasional presence of 2nd and 3rd harmonics in FEL radiation. We obtain the dependence of ionic yields on the intensity of the fundamental, the percentage of 2nd harmonic and the detuning of the fundamental from resonance. Having examined the cases of one and two intermediate resonances, we arrive at results of general validity and global behaviour, showing that even a small amount of harmonic may seem deceptively innocuous.

  20. Fully differential study of wave packet scattering in ionization of helium by proton impact

    NASA Astrophysics Data System (ADS)

    Arthanayaka, T.; Lamichhane, B. R.; Hasan, A.; Gurung, S.; Remolina, J.; Borbély, S.; Járai-Szabó, F.; Nagy, L.; Schulz, M.

    2016-07-01

    We present a fully differential study of projectile coherence effects in ionization in p + He collisions. The experimental data are qualitatively reproduced by a non-perturbative ab initio time-dependent model, which treats the projectile coherence properties in terms of a wave packet. A comparison between first- and higher-order treatments shows that the observed interference structures are primarily due to a coherent superposition of different impact parameters leading to the same scattering angle. Higher-order contributions have a significant effect on the interference term.

  1. Ionization in inductively coupled argon plasmas studied by optical emission spectroscopy

    SciTech Connect

    Lee, Young-Kwang; Chung, Chin-Wook

    2011-01-01

    Contribution of stepwise ionization to total ionization was experimentally investigated in low-pressure inductively coupled argon plasmas. In the pressure range 3-50 mTorr, optical emission spectroscopy was employed to determine metastable fractions (metastable density relative to ground state density) by measuring the emission intensity of selected lines. The measured metastable fractions were in good agreement with the calculation, showing a dependence on the discharge pressure. The rate of stepwise ionization was estimated from the excited level densities (measurements and model predictions) and their ionization rate coefficients. It is observed that at relatively low discharge pressures (<10 mTorr) the ionization is mainly provided by the direct ionization, whereas at higher pressure the stepwise ionization is predominant with increasing absorbed power.

  2. A combined electron-ion spectrometer for studying complete kinematics of molecular dissociation upon shell selective ionization

    SciTech Connect

    Saha, K.; Banerjee, S. B.; Bapat, B.

    2013-07-15

    A combined electron-ion spectrometer has been built to study dissociation kinematics of molecular ions upon various electronic decay processes ensuing from ionization of neutral molecules. The apparatus can be used with various ionization agents. Ion time-of-flight (ToF) spectra arising from various electronic decay processes are acquired by triggering the ToF measurement in coincidence with energy analyzed electrons. The design and the performance of the spectrometer in a photoionization experiment is presented in detail. Electron spectra and ion time of flight spectra resulting from valence and 2p{sub 1/2} ionization of Argon and those from valence ionization of CO are presented to demonstrate the capability of the instrument. The fragment ion spectra show remarkable differences (both kinematic and cross sectional) dependent on the energy of the ejected electron, corresponding to various electron loss and decay mechanisms in dissociative photoionization of molecules.

  3. Ionizable Nitroxides for Studying Local Electrostatic Properties of Lipid Bilayers and Protein Systems by EPR.

    PubMed

    Voinov, Maxim A; Smirnov, Alex I

    2015-01-01

    Electrostatic interactions are known to play a major role in the myriad of biochemical and biophysical processes. Here, we describe biophysical methods to probe local electrostatic potentials of proteins and lipid bilayer systems that are based on an observation of reversible protonation of nitroxides by electron paramagnetic resonance (EPR). Two types of probes are described: (1) methanethiosulfonate derivatives of protonatable nitroxides for highly specific covalent modification of the cysteine's sulfhydryl groups and (2) spin-labeled phospholipids with a protonatable nitroxide tethered to the polar head group. The probes of both types report on their ionization state through changes in magnetic parameters and degree of rotational averaging, thus, allowing the electrostatic contribution to the interfacial pKa of the nitroxide, and, therefore, the local electrostatic potential to be determined. Due to their small molecular volume, these probes cause a minimal perturbation to the protein or lipid system. Covalent attachment secures the position of the reporter nitroxides. Experimental procedures to characterize and calibrate these probes by EPR, and also the methods to analyze the EPR spectra by simulations are outlined. The ionizable nitroxide labels and the nitroxide-labeled phospholipids described so far cover an exceptionally wide range of ca. 2.5-7.0 pH units, making them suitable to study a broad range of biophysical phenomena, especially at the negatively charged lipid bilayer surfaces. The rationale for selecting proper electrostatically neutral interface for probe calibration, and examples of lipid bilayer surface potential studies, are also described. PMID:26477252

  4. Potential human study populations for non-ionizing (radio frequency) radiation health effects

    SciTech Connect

    Novotney, L.C.; Gravitis, I.

    1982-12-01

    This research project was initiated to identify potential human populations for future epidemiological studies of the health effects of radio frequency radiation. Through a literature search and contacts with various groups and organizations, numerous occupations and applications of radio frequency radiation (RFR) were identified and evaluated for their suitability for further study. Many populations were eliminated early because their potential exposure to RFR was too limited or data necessary for epidemiological research were unavailable. Eight populations were evaluated in detail and appear to satisfy many of the criteria for epidemiological research and could be useful study groups in an investigation of the health effects of non-ionizing radiation. The eight potential study populations are: RF heat sealer operators, HF (high frequency) tube welder operators, medical diathermy operators in Veterans Administration hospitals, medical diathermy operators in rehabilitation facilities, school children located near broadcasting towers, state policemen, security guards, and radar technicians.

  5. Studies of ground-state dynamics in isolated species by ionization-detected stimulated Raman techniques

    SciTech Connect

    Felker, P.M.

    1993-12-01

    First, the author aims to develop methods of nonlinear Raman spectroscopy for application in studies of sparse samples. Second, the author wishes to apply such methods to structural and dynamical studies of species (molecules, complexes, and clusters) in supersonic molecular beams. In the past year, the author has made progress in several areas. The first pertains to the application of mass-selective ionization-detected stimulated Raman spectroscopies (IDSRS) to the size-specific vibrational spectroscopy of solute-solvent{sub n} clusters. The second involves the application of IDSRS methods to studies of jet-cooled benzene clusters. The third pertains to the use of IDSRS methods in the study of intermolecular vibrational transitions in van der Waals complexes.

  6. Epidemiologic Study of One Million American Workers and Military Veterans Exposed to Ionizing Radiation

    SciTech Connect

    Boice, John D.

    2015-02-27

    A pilot study was completed demonstrating the feasibility of conducting an epidemiologic study assessing cancer and other disease mortality among nearly one million US veterans and workers exposed to ionizing radiation, a population 10 times larger than atomic bomb survivor study with high statistical power to evaluate low dose rate effects. Among the groups enumerated and/or studied were: (1) 194,000 Department of Energy Uranium Workers; (2) 6,700 Rocketdyne Radiation Workers; (3) 7,000 Mound Radiation Workers; (4) 156,000 DOE Plutonium Workers; (5) 212,000 Nuclear Power Plant Workers; (6) 130,000 Industrial Radiography Workers; (7) 1.7 million Medical Workers and (8) 135,000 Atomic Veterans.

  7. Studying the Chemistry of Cationized Triacylglycerols Using Electrospray Ionization Mass Spectrometry and Density Functional Theory Computations

    NASA Astrophysics Data System (ADS)

    Grossert, J. Stuart; Herrera, Lisandra Cubero; Ramaley, Louis; Melanson, Jeremy E.

    2014-08-01

    Analysis of triacylglycerols (TAGs), found as complex mixtures in living organisms, is typically accomplished using liquid chromatography, often coupled to mass spectrometry. TAGs, weak bases not protonated using electrospray ionization, are usually ionized by adduct formation with a cation, including those present in the solvent (e.g., Na+). There are relatively few reports on the binding of TAGs with cations or on the mechanisms by which cationized TAGs fragment. This work examines binding efficiencies, determined by mass spectrometry and computations, for the complexation of TAGs to a range of cations (Na+, Li+, K+, Ag+, NH4 +). While most cations bind to oxygen, Ag+ binding to unsaturation in the acid side chains is significant. The importance of dimer formation, [2TAG + M]+ was demonstrated using several different types of mass spectrometers. From breakdown curves, it became apparent that two or three acid side chains must be attached to glycerol for strong cationization. Possible mechanisms for fragmentation of lithiated TAGs were modeled by computations on tripropionylglycerol. Viable pathways were found for losses of neutral acids and lithium salts of acids from different positions on the glycerol moiety. Novel lactone structures were proposed for the loss of a neutral acid from one position of the glycerol moiety. These were studied further using triple-stage mass spectrometry (MS3). These lactones can account for all the major product ions in the MS3 spectra in both this work and the literature, which should allow for new insights into the challenging analytical methods needed for naturally occurring TAGs.

  8. Distributions of deposited energy and ionization clusters around ion tracks studied with Geant4 toolkit

    NASA Astrophysics Data System (ADS)

    Burigo, Lucas; Pshenichnov, Igor; Mishustin, Igor; Hilgers, Gerhard; Bleicher, Marcus

    2016-05-01

    The Geant4-based Monte Carlo model for Heavy-Ion Therapy (MCHIT) was extended to study the patterns of energy deposition at sub-micrometer distance from individual ion tracks. Dose distributions for low-energy 1H, 4He, 12C and 16O ions measured in several experiments are well described by the model in a broad range of radial distances, from 0.5 to 3000 nm. Despite the fact that such distributions are characterized by long tails, a dominant fraction of deposited energy (∼80%) is confined within a radius of about 10 nm. The probability distributions of clustered ionization events in nanoscale volumes of water traversed by 1H, 2H, 4He, 6Li, 7Li, and 12C ions are also calculated. A good agreement of calculated ionization cluster-size distributions with the corresponding experimental data suggests that the extended MCHIT can be used to characterize stochastic processes of energy deposition to sensitive cellular structures.

  9. Valence ionized states of iron pentacarbonyl and eta5-cyclopentadienyl cobalt dicarbonyl studied by symmetry-adapted cluster-configuration interaction calculation and collision-energy resolved Penning ionization electron spectroscopy.

    PubMed

    Fukuda, Ryoichi; Ehara, Masahiro; Nakatsuji, Hiroshi; Kishimoto, Naoki; Ohno, Koichi

    2010-02-28

    Valence ionized states of iron pentacarbonyl Fe(CO)(5) and eta(5)-cyclopentadienyl cobalt dicarbonyl Co(eta(5)-C(5)H(5))(CO)(2) have been studied by ultraviolet photoelectron spectroscopy, two-dimensional Penning ionization electron spectroscopy (2D-PIES), and symmetry-adapted cluster-configuration interaction calculations. Theory provided reliable assignments for the complex ionization spectra of these molecules, which have metal-carbonyl bonds. Theoretical ionization energies agreed well with experimental observations and the calculated wave functions could explain the relative intensities of PIES spectra. The collision-energy dependence of partial ionization cross sections (CEDPICS) was obtained by 2D-PIES. To interpret these CEDPICS, the interaction potentials between the molecules and a Li atom were examined in several coordinates by calculations. The relation between the slope of the CEDPICS and the electronic structure of the ionized states, such as molecular symmetry and the spatial distribution of ionizing orbitals, was analyzed. In Fe(CO)(5), an attractive interaction was obtained for the equatorial CO, while the interaction for the axial CO direction was repulsive. For Co(eta(5)-C(5)H(5))(CO)(2), the interaction potential in the direction of both Co-C-O and Co-Cp ring was attractive. These anisotropic interactions and ionizing orbital distributions consistently explain the relative slopes of the CEDPICS. PMID:20192297

  10. Resonance ionization mass spectrometric study of the promethium/samarium isobaric pair

    SciTech Connect

    Shaw, R.W.; Young, J.P.; Smith, D.H.

    1988-01-01

    Samarium daughters are problematic in isotope ratio measurements of promethium because they are isobaric. Resonance ionization mass spectrometry was utilized to circumvent this problem. An ionization selectivity factor of at least 1000:1 has been measured for promethium over samarium at 584.6 nm. Resonance ionization spectra have been recorded for both elements over the 528-560 and 580-614 nm wavelength ranges.

  11. Study on the electromagnetic waves propagation characteristics in partially ionized plasma slabs

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Bin; Li, Bo-Wen; Nie, Qiu-Yue; Wang, Xiao-Gang; Kong, Fan-Rong

    2016-05-01

    Propagation characteristics of electromagnetic (EM) waves in partially ionized plasma slabs are studied in this paper. Such features are significant to applications in plasma antennas, blackout of re-entry flying vehicles, wave energy injection to plasmas, and etc. We in this paper developed a theoretical model of EM wave propagation perpendicular to a plasma slab with a one-dimensional density inhomogeneity along propagation direction to investigate essential characteristics of EM wave propagation in nonuniform plasmas. Particularly, the EM wave propagation in sub-wavelength plasma slabs, where the geometric optics approximation fails, is studied and in comparison with thicker slabs where the geometric optics approximation applies. The influences of both plasma and collisional frequencies, as well as the width of the plasma slab, on the EM wave propagation characteristics are discussed. The results can help the further understanding of propagation behaviours of EM waves in nonuniform plasma, and applications of the interactions between EM waves and plasmas.

  12. Theoretical study of γ-aminobutyric acid conformers: Intramolecular interactions and ionization energies

    NASA Astrophysics Data System (ADS)

    Wang, Ke-Dong; Wang, Mei-Ting; Meng, Ju

    2014-10-01

    Allowing for all combinations of internal single-bond rotamers, 1,296 unique trial structures of γ-Aminobutyric acid (GABA) are obtained. All of these structures are optimized at the M06-2X level of theory and a total of 68 local minimal conformers are found. The nine low-lying conformers are used for further studies. According to the calculated relative Gibbs free energies at M06-2X level of theory, we find that the dispersion is important for the relative energy of GABA. The intramolecular hydrogen bonds and hyperconjugative interaction and their effects on the conformational stability are studied. The results show that both of them have great influence on the conformers. The vertical ionization energies (VIE) are calculated and match the experimental data well. The results show that the neutral GABA in the gas phase is a multi-conformer system and at least four conformations exist.

  13. Study of multi-electron ionization and charge exchange in HIBF

    NASA Astrophysics Data System (ADS)

    Wu, Linchun

    Beam ion stripping on background gases or plasma in a Heavy Ion Beam Fusion (HIBF) chamber increases the charge state of the beam and the diameter of the focus, complicating the final focusing on the focusing target. To model beam transport in the chamber, it is necessary to know the beam charge-state evolution, including both ionization and charge exchange dynamics. The main objective of this research is to explore theoretical approaches including scaling law. Improved models are developed to calculate multi-electron loss, especially ion stripping and charge exchange cross sections, for both near-term experiments and future power plant scale HIBF research. First, a new space-charge neutralization approach that uses electron injection is proposed for the ion beam transport in HIBF chamber. An analytical study was performed to illustrate the plasma dynamics and final neutralization effects with this technique. The results examine the effect of different injected electron profiles. Next, to improve the accuracy of such simulations, methods to improve cross sections of ionization and charge exchange are studied. Both classical and quantum mechanical approaches are examined. Attention is focused on the interaction by low-charge-state heavy ions. Multi-electron processes for dressed ions, including screening and anti-screening effects, internuclear forces, are given special attention, This analysis is complex and requires a combining several different theoretical approaches. Finally, a Classic Trajectory Monte Carlo (CTMC) model based on an improvement of Olson's n-body CTMC method is presented. This model solves the n-body ion-atom ionization problem in a regime of intent to HIBF. In the paper, a new and complete computational module for these interactions has been developed. The cross section data for Xe, Cs, and Bi ions colliding with various background gases (Xe, N2, Ar and Flibe) is presented. After the calculation of the cross section data, the predicted energy

  14. Calcium - ionized

    MedlinePlus

    ... at both ionized calcium and calcium attached to proteins. You may need to have a separate ionized calcium test if you have factors that increase or decrease total calcium levels. These may include abnormal blood levels ...

  15. Study of bis(bibenzyls) in bryophytes using electron ionization time-of-flight and electrospray ionization triple-quadrupole mass spectrometry.

    PubMed

    Guo, Huaifang; Xing, Jie; Xie, Chunfeng; Qu, Jianbo; Gao, Yanhui; Lou, Hongxiang

    2007-01-01

    A detailed analysis of mass spectra generated from bis(bibenzyl) compounds in bryophytes under electron ionization time-of-flight (EI-TOF) and electrospray ionization triple-quadrupole (ESI-TQ) mass spectrometry conditions is reported. Proposed structures of the fragment ions were obtained by tracking the functional groups of 15 bis(bibenzyls), the structures of which are similar except for some alkoxyl substituents and linkage sites of biphenyl ether bonds. The elucidation was aided by the use of accurate mass measurements. Attempts have been made to provide rational pathways for the formation of these fragment ions, and a generalized fragmentation mechanism is proposed. The bis(bibenzyls) mentioned in this study include three types according to their structure characteristics, i.e. one biphenyl ether bond (A-type), two biphenyl ether bonds (B-type), one biphenyl ether and one biphenyl bond (C-type). The three types display different EI-MS and ESI-MS/MS product profiles, by which the bis(bibenzyl) type and the number of alkoxyl substituents can be identified. Isomers of bis(bibenzyls) can be differentiated to some extent, while the linkage sites of biphenyl ether bonds are difficult to identify. The structure-fragmentation relationships will facilitate the characterization of other bis(bibenzyls) and this will be of value for the high-throughput screening of novel bis(bibenzyls) in bryophytes. PMID:17348087

  16. Ionizable Nitroxides for Studying Local Electrostatic Properties of Lipid Bilayers and Protein Systems by EPR

    PubMed Central

    Voinov, Maxim A.; Smirnov, Alex I.

    2016-01-01

    Electrostatic interactions are known to play one of the major roles in the myriad of biochemical and biophysical processes. In this Chapter we describe biophysical methods to probe local electrostatic potentials of proteins and lipid bilayer systems that is based on an observation of reversible protonation of nitroxides by EPR. Two types of the electrostatic probes are discussed. The first one includes methanethiosulfonate derivatives of protonatable nitroxides that could be used for highly specific covalent modification of the cysteine’s sulfhydryl groups. Such spin labels are very similar in magnetic parameters and chemical properties to conventional MTSL making them suitable for studying local electrostatic properties of protein-lipid interfaces. The second type of EPR probes is designed as spin-labeled phospholipids having a protonatable nitroxide tethered to the polar head group. The probes of both types report on their ionization state through changes in magnetic parameters and a degree of rotational averaging, thus, allowing one to determine the electrostatic contribution to the interfacial pKa of the nitroxide, and, therefore, determining the local electrostatic potential. Due to their small molecular volume these probes cause a minimal perturbation to the protein or lipid system while covalent attachment secure the position of the reporter nitroxides. Experimental procedures to characterize and calibrate these probes by EPR and also the methods to analyze the EPR spectra by least-squares simulations are also outlined. The ionizable nitroxide labels and the nitroxide-labeled phospholipids described so far cover an exceptionally wide pH range from ca. 2.5 to 7.0 pH units making them suitable to study a broad range of biophysical phenomena especially at the negatively charged lipid bilayer surfaces. The rationale for selecting proper electrostatically neutral interface for calibrating such probes and example of studying surface potential of lipid bilayer is

  17. Study of ionizing radiation on the properties of polyamide 6 with fiberglass reinforcement

    NASA Astrophysics Data System (ADS)

    Pinto, Clovis; Silva, Leonardo G. Andrade e.

    2007-11-01

    The use of polymers reinforced with fiberglass is becoming more and more common in the switches for household industries. These compounds perform a good tension resistance to the impact and the humidity absorption being used at the present time and also are in the automobile industry in parts underneath the hood, especially in the radiator frames. The aim of this work is to study the effect of ionizing radiation on the properties of polyamide 6 with fiberglass reinforcement and undergone to different irradiation doses. Samples were prepared and irradiated on JOB 188 accelerator with an electron beam energy of 1.5 MeV in air with different doses and a dose rate of 27.99 kGy/h. Afterward, the properties of the non-irradiated and irradiated polyamide 6 with fiberglass reinforcement were evaluated.

  18. Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate

    USGS Publications Warehouse

    Yun, T.S.; Santamarina, C.J.; Ruppel, C.

    2007-01-01

    The mechanical behavior of hydrate-bearing sediments subjected to large strains has relevance for the stability of the seafloor and submarine slopes, drilling and coring operations, and the analysis of certain small-strain properties of these sediments (for example, seismic velocities). This study reports on the results of comprehensive axial compression triaxial tests conducted at up to 1 MPa confining pressure on sand, crushed silt, precipitated silt, and clay specimens with closely controlled concentrations of synthetic hydrate. The results show that the stress-strain behavior of hydrate-bearing sediments is a complex function of particle size, confining pressure, and hydrate concentration. The mechanical properties of hydrate-bearing sediments at low hydrate concentration (probably 50% of pore space), the behavior becomes more independent of stress because the hydrates control both stiffness and strength and possibly the dilative tendency of sediments by effectively increasing interparticle coordination, cementing particles together, and filling the pore space. The cementation contribution to the shear strength of hydrate-bearing sediments decreases with increasing specific surface of soil minerals. The lower the effective confining stress, the greater the impact of hydrate formation on normalized strength.

  19. Tetrahydrofuran amino acid-containing gramicidin S analogues with improved biological profiles.

    PubMed

    Pal, Sudip; Singh, Gajendra; Singh, Shyam; Tripathi, Jitendra Kumar; Ghosh, Jimut Kanti; Sinha, Sudhir; Ampapathi, Ravi Sankar; Chakraborty, Tushar Kanti

    2015-06-28

    Gramicidin S (GS) is a cyclic cationic antimicrobial peptide (CAP) with a wide spectrum of antibiotic activities whose usage has been limited to topical applications owing to its cytotoxic side effects. We have synthesized tetrahydrofuran amino acid (Taa)-containing GS analogues, and we have carried out conformational analysis and explored their structure activity relationships by evaluating their antitubercular, antibacterial and cytotoxic properties. Two of these analogues showed impressive as well as selective activity against Mycobacterium tuberculosis (MTB) without toxicity towards mammalian Vero cells or human RBCs, and are promising as potential leads. PMID:26008215

  20. Differential cross sections for electron-impact vibrational-excitation of tetrahydrofuran at intermediate impact energies

    SciTech Connect

    Do, T. P. T.; Lopes, M. C. A.; Konovalov, D. A.; White, R. D.; Brunger, M. J. E-mail: darryl.jones@flinders.edu.au; Jones, D. B. E-mail: darryl.jones@flinders.edu.au

    2015-03-28

    We report differential cross sections (DCSs) for electron-impact vibrational-excitation of tetrahydrofuran, at intermediate incident electron energies (15-50 eV) and over the 10°-90° scattered electron angular range. These measurements extend the available DCS data for vibrational excitation for this species, which have previously been obtained at lower incident electron energies (≤20 eV). Where possible, our data are compared to the earlier measurements in the overlapping energy ranges. Here, quite good agreement was generally observed where the measurements overlapped.

  1. Experimental and theoretical study on nonsequential double ionization of carbon disulfide in strong near-IR laser fields

    NASA Astrophysics Data System (ADS)

    Zuo, Wanlong; Ben, Shuai; Lv, Hang; Zhao, Lei; Guo, Jing; Liu, Xue-Shen; Xu, Haifeng; Jin, Mingxing; Ding, Dajun

    2016-05-01

    Nonsequential double ionization (NSDI) of carbon disulfide CS2 in strong 800-nm laser fields is studied experimentally and theoretically. A knee structure is observed in the intensity-dependent double ionization (DI) yield in linearly polarized laser fields, which exhibits a strong dependence on the laser ellipticity. The electron momentum distributions and energy trajectories after DI in both linearly and circularly polarized laser fields are investigated by employing the two-dimensional classical ensemble method. The results clearly show the evidence of NSDI in the strong-field DI of CS2 molecules. It is demonstrated that, similar to that of atoms, NSDI of CS2 molecules is produced via laser-driven electron recollision with the ion core and presents electron-electron correlations in the process. Analysis indicates that both mechanisms in atomic strong-field NSDI, i.e., recollision impact ionization and recollision excitation with subsequent ionization, may also be contributed to NSDI of CS2 in strong laser fields. Further studies are no doubt necessary for a full understanding of the underlying physical mechanism of molecular strong-field NSDI, due to the multicenter character of the molecular structure and the complex molecular excited states that could be involved in the ionization.

  2. New MOF based on lithium tetrahydrofuran-2,3,4,5-tetracarboxylate: Its structure and conductivity behavior

    SciTech Connect

    Zima, Vitezslav; Patil, Deepak S.; Raja, Duraisamy Senthil; Chang, Ting-Guang; Lin, Chia-Her; Shimakawa, Koichi; Wagner, Tomas

    2014-09-15

    A novel metal–organic framework, [Li{sub 6}(HTFTA){sub 2}(H{sub 2}O){sub 3}]·3H{sub 2}O (LiTFTA, H{sub 4}TFTA is tetrahydrofuran-2,3,4,5-tetracarboxylic acid), has been synthesized under solvothermal conditions and its structure was determined by single-crystal X-ray diffraction studies. It has six different LiO{sub 4} tetrahedra which forms two kinds of tetranuclear clusters that are coordinated to the ligands and form an overall three-dimensional structure with channels running along the crystallographic a axis. Some of the carboxylate groups of the ligand moiety jut out into the channels and the channels are occupied by water molecules. The proton conductivity behavior of LiTFTA with respect to temperature and relative humidity was analyzed by our newly developed impedance data analysis method called a random-walk approach. The results were compared with the data obtained by an analysis using an equivalent electric circuit model. Based on the physical parameters obtained by the random-walk method and the known structure we suggested the mechanism of the proton conductivity in this material. The proton conduction proceeds most probably by a vehicle conduction mechanism which employs mainly water molecules of crystallization present in the channels of LiTFTA. The value of the diffusion coefficient increases with temperature whereas the number of charge carriers remains constant. On the other hand, both the number of charge carriers and diffusion coefficient increase with increasing relative humidity. - Graphical abstract: Structure of a new metal organic framework was determined and its ionic conductivity was evaluated using a random-walk approach. - Highlights: • Lithium tetrahydrofuran-2,3,4,5-tetracarboxylate is a MOF with water-filled pores. • The impedance spectra indicate that this material is ion conductive. • Conductivity was evaluated using a random walk approach. • The number of charge carriers and diffusion coefficient was determined.

  3. Ionization states, cellular toxicity and molecular modeling studies of midazolam complexed with trimethyl-β-cyclodextrin.

    PubMed

    Shityakov, Sergey; Sohajda, Tamás; Puskás, István; Roewer, Norbert; Förster, Carola; Broscheit, Jens-Albert

    2014-01-01

    We investigated the ionization profiles for open-ring (OR) and closed-ring (CR) forms of midazolam and drug-binding modes with heptakis-(2,3,6-tri-O-methyl)-β-cyclodextrin (trimethyl-β-cyclodextrin; TRIMEB) using molecular modeling techniques and quantum mechanics methods. The results indicated that the total net charges for different molecular forms of midazolam tend to be cationic for OR and neutral for CR at physiological pH levels. The thermodynamic calculations demonstrated that CR is less water-soluble than OR, mainly due to the maximal solvation energy (ΔG(CR)(solv = -9.98 kcal·mol ⁻¹), which has a minimal ΔG(OR)(solv) of -67.01 kcal·mol⁻¹. A cell viability assay did not detect any signs of TRIMEB and OR/CR-TRIMEB complex toxicity on the cEND cells after 24 h of incubation in either Dulbecco's Modified Eagles Medium or in heat-inactivated human serum. The molecular docking studies identified the more flexible OR form of midazolam as being a better binder to TRIMEB with the fluorophenyl ring introduced inside the amphiphilic cavity of the host molecule. The OR binding affinity was confirmed by a minimal Gibbs free energy of binding (ΔG(bind)) value of -5.57 ± 0.02 kcal·mol⁻¹, an equilibrium binding constant (K(b)) of 79.89 ± 2.706 μM, and a ligand efficiency index (LE(lig)) of -0.21 ± 0.001. Our current data suggest that in order to improve the clinical applications of midazolam via its complexation with trimethyl-β-cyclodextrin to increase drug's overall aqueous solubility, it is important to concern the different forms and ionization states of this anesthetic. All mean values are indicated with their standard deviations. PMID:25338177

  4. Atmospheric pressure chemical ionization studies of non-polar isomeric hydrocarbons using ion mobility spectrometry and mass spectrometry with different ionization techniques

    NASA Technical Reports Server (NTRS)

    Borsdorf, H.; Nazarov, E. G.; Eiceman, G. A.

    2002-01-01

    The ionization pathways were determined for sets of isomeric non-polar hydrocarbons (structural isomers, cis/trans isomers) using ion mobility spectrometry and mass spectrometry with different techniques of atmospheric pressure chemical ionization to assess the influence of structural features on ion formation. Depending on the structural features, different ions were observed using mass spectrometry. Unsaturated hydrocarbons formed mostly [M - 1]+ and [(M - 1)2H]+ ions while mainly [M - 3]+ and [(M - 3)H2O]+ ions were found for saturated cis/trans isomers using photoionization and 63Ni ionization. These ionization methods and corona discharge ionization were used for ion mobility measurements of these compounds. Different ions were detected for compounds with different structural features. 63Ni ionization and photoionization provide comparable ions for every set of isomers. The product ions formed can be clearly attributed to the structures identified. However, differences in relative abundance of product ions were found. Although corona discharge ionization permits the most sensitive detection of non-polar hydrocarbons, the spectra detected are complex and differ from those obtained with 63Ni ionization and photoionization. c. 2002 American Society for Mass Spectrometry.

  5. Is ionized calcium a reliable predictor of hypocalcemia after total thyroidectomy? A before and after study

    PubMed Central

    TARTAGLIA, F.; GIULIANI, A.; SGUEGLIA, M.; PATRIZI, G.; DI ROCCO, G.; BLASI, S.; RUSSO, G.; TORTORELLI, G.; GIANNOTTI, D.; REDLER, A.

    2014-01-01

    Summary Wanting to find a way of identifying patients suitable for early discharge after thyroidectomy, we set out to establish whether ionized calcium concentration is a better predictor of post-surgical hypocalcemia than total serum calcium. Data were analyzed to establish whether serum ionized calcium concentrations are correlated with total serum calcium levels and symptomatic hypocalcemia after thyroidectomy. Sixty-two patients undergoing total thyroidectomy at the Department of Surgical Sciences of the “Sapienza” University of Rome, Italy, in 2010. Ionized calcium was measured before (day 0) and after surgery (days 1, 2 and 60) in all the patients. These measurements were compared with preoperative (day 0) and postoperative total serum calcium levels (days 1, 2 and 60). The preoperative ionized calcium levels differed from the ionized calcium levels recorded on days 1 and 2; this pattern was not observed for the total calcium concentrations. Conversely, total calcium on days I and II correlated significantly with the various ionized calcium measurements. The presence of parathyroid glands in the surgical specimen did not seem to affect suitability for discharge. The statistical analysis showed that ionized calcium measurements are more reliable than total calcium measurements in the immediate and long-term follow-up of total thyroidectomy patients. Applying a 95% confidence interval we established reference values for both total serum calcium and ionized calcium, below which all patients develop postoperative symptomatic hypocalcemia. In conclusion, measurement of ionized calcium, as opposed to total calcium, should be strongly recommended in the immediate and long-term follow-up of total thyroidectomy patients. PMID:24690338

  6. Is ionized calcium a reliable predictor of hypocalcemia after total thyroidectomy? A before and after study.

    PubMed

    Tartaglia, F; Giuliani, A; Sgueglia, M; Patrizi, G; Di Rocco, G; Blasi, S; Russo, G; Tortorelli, G; Giannotti, D; Redler, A

    2014-01-01

    Wanting to find a way of identifying patients suitable for early discharge after thyroidectomy, we set out to establish whether ionized calcium concentration is a better predictor of post-surgical hypocalcemia than total serum calcium. Data were analyzed to establish whether serum ionized calcium concentrations are correlated with total serum calcium levels and symptomatic hypocalcemia after thyroidectomy. Sixty-two patients undergoing total thyroidectomy at the Department of Surgical Sciences of the "Sapienza" University of Rome, Italy, in 2010. Ionized calcium was measured before (day 0) and after surgery (days 1, 2 and 60) in all the patients. These measurements were compared with preoperative (day 0) and postoperative total serum calcium levels (days 1, 2 and 60). The preoperative ionized calcium levels differed from the ionized calcium levels recorded on days 1 and 2; this pattern was not observed for the total calcium concentrations. Conversely, total calcium on days I and II correlated significantly with the various ionized calcium measurements. The presence of parathyroid glands in the surgical specimen did not seem to affect suitability for discharge. The statistical analysis showed that ionized calcium measurements are more reliable than total calcium measurements in the immediate and long-term follow-up of total thyroidectomy patients. Applying a 95% confidence interval we established reference values for both total serum calcium and ionized calcium, below which all patients develop postoperative symptomatic hypocalcemia. In conclusion, measurement of ionized calcium, as opposed to total calcium, should be strongly recommended in the immediate and longterm follow-up of total thyroidectomy patients. PMID:24690338

  7. Protecting-Group-Free Total Synthesis of (-)-Jiadifenolide: Development of a [4 + 1] Annulation toward Multisubstituted Tetrahydrofurans.

    PubMed

    Shen, Yang; Li, Linbin; Pan, Zhisheng; Wang, Yinglu; Li, Jundong; Wang, Kuangyu; Wang, Xiance; Zhang, Youyu; Hu, Tianhui; Zhang, Yandong

    2015-11-01

    A concise, protecting-group-free total synthesis of (-)-jiadifenolide, a synthetically challenging seco-prezizaane sesquiterpene with potent neurotrophic activity, is reported. The convergent route features a SmI2/H2O-mediated stereoselective reductive cyclization, an unprecedented formal [4 + 1] annulative tetrahydrofuran-forming reaction and programmed redox manipulations. The newly developed annulation of β-hydroxy aldehydes or ketones with lithium trimethylsilyldiazomethane provides access to a diverse array of multisubstituted tetrahydrofurans. The synthetic jiadifenolide exhibited weak cytotoxicity against five human cancer cell lines. PMID:26509873

  8. Divergent Synthesis of Multisubstituted Tetrahydrofurans and Pyrrolidines via Intramolecular Aldol-type Trapping of Onium Ylide Intermediates.

    PubMed

    Jing, Changcheng; Xing, Dong; Gao, Lixin; Li, Jia; Hu, Wenhao

    2015-12-21

    This paper reports a divergent strategy for the synthesis of multisubstituted tetrahydrofurans and pyrrolidines, starting from easily accessible β-hydroxyketones or β-aminoketones to react with diazo compounds. Under Rh(II) catalysis, this transformation is proposed to proceed through a metal-carbene-induced oxonium ylide or ammonium ylide formation followed by an intramolecular aldol-type trapping of these active intermediates. A series of highly substituted tetrahydrofurans and pyrrolidines are synthesized in high yields with good to excellent diastereoselectivities. Preliminary biological evaluations revealed that both types of heterocycles show good PTP1B inhibitory activities. PMID:26592374

  9. Understanding the Phase Behavior of Tetrahydrofuran + Carbon Dioxide, + Methane, and + Water Binary Mixtures from the SAFT-VR Approach.

    PubMed

    Míguez, J M; Piñeiro, M M; Algaba, J; Mendiboure, B; Torré, J P; Blas, F J

    2015-11-01

    The high-pressure phase diagrams of the tetrahydrofuran(1) + carbon dioxide(2), + methane(2), and + water(2) mixtures are examined using the SAFT-VR approach. Carbon dioxide molecule is modeled as two spherical segments tangentially bonded, water is modeled as a spherical segment with four associating sites to represent the hydrogen bonding, methane is represented as an isolated sphere, and tetrahydrofuran is represented as a chain of m tangentially bonded spherical segments. Dispersive interactions are modeled using the square-well intermolecular potential. In addition, two different molecular model mixtures are developed to take into account the subtle balance between water-tetrahydrofuran hydrogen-bonding interactions. The polar and quadrupolar interactions present in water, tetrahydrofuran, and carbon dioxide are treated in an effective way via square-well potentials of variable range. The optimized intermolecular parameters are taken from the works of Giner et al. (Fluid Phase Equil. 2007, 255, 200), Galindo and Blas (J. Phys. Chem. B 2002, 106, 4503), Patel et al. (Ind. Eng. Chem. Res. 2003, 42, 3809), and Clark et al. (Mol. Phys. 2006, 104, 3561) for tetrahydrofuran, carbon dioxide, methane, and water, respectively. The phase diagrams of the binary mixtures exhibit different types of phase behavior according to the classification of van Konynenburg and Scott, ranging from types I, III, and VI phase behavior for the tetrahydrofuran(1) + carbon dioxide(2), + methane(2), and + water(2) binary mixtures, respectively. This last type is characterized by the presence of a Bancroft point, positive azeotropy, and the so-called closed-loop curves that represent regions of liquid-liquid immiscibility in the phase diagram. The system exhibits lower critical solution temperatures (LCSTs), which denote the lower limit of immiscibility together with upper critical solution temperatures (UCSTs). This behavior is explained in terms of competition between the incompatibility

  10. Oxidation of the Cyclic Ethers 1,4-Dioxane and Tetrahydrofuran by a Monooxygenase in Two Pseudonocardia Species

    PubMed Central

    Sales, Christopher M.; Grostern, Ariel; Parales, Juanito V.; Parales, Rebecca E.

    2013-01-01

    The bacterium Pseudonocardia dioxanivorans CB1190 grows on the cyclic ethers 1,4-dioxane (dioxane) and tetrahydrofuran (THF) as sole carbon and energy sources. Prior transcriptional studies indicated that an annotated THF monooxygenase (THF MO) gene cluster, thmADBC, located on a plasmid in CB1190 is upregulated during growth on dioxane. In this work, transcriptional analysis demonstrates that upregulation of thmADBC occurs during growth on the dioxane metabolite β-hydroxyethoxyacetic acid (HEAA) and on THF. Comparison of the transcriptomes of CB1190 grown on THF and succinate (an intermediate of THF degradation) permitted the identification of other genes involved in THF metabolism. Dioxane and THF oxidation activity of the THF MO was verified in Rhodococcus jostii RHA1 cells heterologously expressing the CB1190 thmADBC gene cluster. Interestingly, these thmADBC expression clones accumulated HEAA as a dead-end product of dioxane transformation, indicating that despite its genes being transcriptionally upregulated during growth on HEAA, the THF MO enzyme is not responsible for degradation of HEAA in CB1190. Similar activities were also observed in RHA1 cells heterologously expressing the thmADBC gene cluster from Pseudonocardia tetrahydrofuranoxydans K1. PMID:24096414

  11. High-resolution pulsed-field ionization photoelectron study of O{sub 2}

    SciTech Connect

    Hsu, C.W.; Evans, M.; Stimson, S.

    1997-04-01

    There have been numerous photoionization studies of O{sub 2} over the past 10 years. Using the pulsed field ionization (PFI) photoelectron spectroscopy (PES) technique, the electronic ground state of O{sub 2}{sup +} (X{sup 2}{Pi}{sub g}{sup {minus}}) has been well studied on the rotationally resolved level by several groups. However, due to the difficulty of producing photon energies above 18 eV using the tunable lasers, the electronic excited states of O{sub 2}{sup +} have been mostly studied on the vibrationally resolved level using the threshold photoelectron spectroscopy (TPES) and the synchrotron radiation. Recently, the authors developed a new technique for performing the PFI-PE experiments using multi-bunch synchrotron radiation at the Chemical Dynamics Beamline of the Advanced Light Source (ALS). Using the high resolution VUV light from the ALS, they have obtained the PFI-PE spectra of O{sub 2} between 12 and 24 eV. In this abstract, the authors report for the first time the rotationally resolved spectra of O{sub 2}{sup +} (b{sup 4}{Sigma}{sub g}{sup {minus}}, v{sup +}=0).

  12. Background Ionizing Radiation and the Risk of Childhood Cancer: A Census-Based Nationwide Cohort Study

    PubMed Central

    Lupatsch, Judith E.; Zwahlen, Marcel; Röösli, Martin; Niggli, Felix; Grotzer, Michael A.; Rischewski, Johannes; Egger, Matthias; Kuehni, Claudia E.

    2015-01-01

    Background Exposure to medium or high doses of ionizing radiation is a known risk factor for cancer in children. The extent to which low-dose radiation from natural sources contributes to the risk of childhood cancer remains unclear. Objectives In a nationwide census-based cohort study, we investigated whether the incidence of childhood cancer was associated with background radiation from terrestrial gamma and cosmic rays. Methods Children < 16 years of age in the Swiss National Censuses in 1990 and 2000 were included. The follow-up period lasted until 2008, and incident cancer cases were identified from the Swiss Childhood Cancer Registry. A radiation model was used to predict dose rates from terrestrial and cosmic radiation at locations of residence. Cox regression models were used to assess associations between cancer risk and dose rates and cumulative dose since birth. Results Among 2,093,660 children included at census, 1,782 incident cases of cancer were identified including 530 with leukemia, 328 with lymphoma, and 423 with a tumor of the central nervous system (CNS). Hazard ratios for each millisievert increase in cumulative dose of external radiation were 1.03 (95% CI: 1.01, 1.05) for any cancer, 1.04 (95% CI: 1.00, 1.08) for leukemia, 1.01 (95% CI: 0.96, 1.05) for lymphoma, and 1.04 (95% CI: 1.00, 1.08) for CNS tumors. Adjustment for a range of potential confounders had little effect on the results. Conclusions Our study suggests that background radiation may contribute to the risk of cancer in children, including leukemia and CNS tumors. Citation Spycher BD, Lupatsch JE, Zwahlen M, Röösli M, Niggli F, Grotzer MA, Rischewski J, Egger M, Kuehni CE, for the Swiss Pediatric Oncology Group and the Swiss National Cohort. 2015. Background ionizing radiation and the risk of childhood cancer: a census-based nationwide cohort study. Environ Health Perspect 123:622–628; http://dx.doi.org/10.1289/ehp.1408548 PMID:25707026

  13. Study on the Properties of Ionized Metal Plasma Methodology on Titanium

    SciTech Connect

    Leow, M. T.; Hassan, Z.; Lee, K. E.; Omar, G.; Lim, S. P.; Chan, C. F.; Siew, E. T.; Chuah, Z. M.

    2010-07-07

    Ionized Metal Plasma (IMP) deposition was used in depositing metal interconnection of titanium metal film. Inductively coupled plasma (ICP) was attached to chamber wall where it creates an electromagnetic field, thus, ionizing the sputtered metal atoms from target. The film morphology was observed by scanning electron microscope (SEM). Acoustic measurement of titanium film thickness showed that there was a comparable result with film resistance measured by 4-point probe. Results show that higher plasma density would cause tensile properties on the film stress.

  14. Ionizing radiation-induced mutagenesis: radiation studies in Neurospora predictive for results in mammalian cells

    NASA Technical Reports Server (NTRS)

    Evans, H. H.; DeMarini, D. M.

    1999-01-01

    Ionizing radiation was the first mutagen discovered and was used to develop the first mutagenicity assay. In the ensuing 70+ years, ionizing radiation became a fundamental tool in understanding mutagenesis and is still a subject of intensive research. Frederick de Serres et al. developed and used the Neurospora crassa ad-3 system initially to explore the mutagenic effects of ionizing radiation. Using this system, de Serres et al. demonstrated the dependence of the frequency and spectra of mutations induced by ionizing radiation on the dose, dose rate, radiation quality, repair capabilities of the cells, and the target gene employed. This work in Neurospora predicted the subsequent observations of the mutagenic effects of ionizing radiation in mammalian cells. Modeled originally on the mouse specific-locus system developed by William L. Russell, the N. crassa ad-3 system developed by de Serres has itself served as a model for interpreting the results in subsequent systems in mammalian cells. This review describes the primary findings on the nature of ionizing radiation-induced mutagenesis in the N. crassa ad-3 system and the parallel observations made years later in mammalian cells.

  15. Epidemiologic studies of ionizing radiation and cancer: past successes and future challenges.

    PubMed Central

    Samet, J M

    1997-01-01

    The health effects of radiation have been a focus for research since early in the 20th century. As the century ends, extensive experimental and epidemiologic evidence has been accumulated that addresses the adverse consequences of radiation exposure; epidemiologic studies of radiation-exposed groups from the general population and specific occupational groups provide quantitative estimates of the cancer risks associated with exposure. This report provides a perspective on the extensive epidemiologic evidence on the health effects of ionizing radiation and on likely needs for further epidemiologic research on radiation and health. Epidemiologic studies have proved informative on the quantitative risks of radiation-caused cancer but we now face the challenges of more precisely characterizing risks at lower levels of exposure and also of assessing modifiers of the risks, including dose rate, genetic susceptibility, and other environmental exposures. This report considers investigative approaches, such as pooled analysis of multiple data sets, that can be used to address these complex questions and the limitations of these approaches for addressing societal concerns about the risks of radiation exposure. PMID:9255575

  16. Distribution of terfenadine and its metabolites in locusts studied by desorption electrospray ionization mass spectrometry imaging.

    PubMed

    Olsen, Line Rørbæk; Hansen, Steen Honoré; Janfelt, Christian

    2015-03-01

    Desorption electrospray ionization (DESI) mass spectrometry (MS) imaging was used to image locusts dosed with the antihistamine drug terfenadine. The study was conducted in order to elucidate a relatively high elimination rate of terfenadine from the locust hemolymph. In this one of the few MS imaging studies on insects, a method for cryosectioning of whole locusts was developed, and the distributions of a number of endogenous compounds are reported, including betaine and a number of amino acids and phospholipids. Terfenadine was detected in the stomach region and the intestine walls, whereas three different metabolites-terfenadine acid (fexofenadine), terfenadine glucoside, and terfenadine phosphate-were detected in significantly smaller amounts and only in the unexcreted feces in the lower part of the intestine. The use of MS/MS imaging was necessary in order to detect the metabolites. With use of DESI-MS imaging, no colocalization of the drug and the metabolites was observed, suggesting a very rapid excretion of metabolites into the feces. Additional liquid chromatography-MS investigations were performed on hemolymph and feces and showed some abundance of terfenadine and the three metabolites, although at low levels, in both the hemolymph and the feces. PMID:25404166

  17. Deciphering the bipolar planetary nebula Abell 14 with 3D ionization and morphological studies

    NASA Astrophysics Data System (ADS)

    Akras, S.; Clyne, N.; Boumis, P.; Monteiro, H.; Gonçalves, D. R.; Redman, M. P.; Williams, S.

    2016-04-01

    Abell 14 is a poorly studied object despite being considered a born-again planetary nebula. We performed a detailed study of its 3D morphology and ionization structure using the SHAPE and MOCASSIN codes. We found that Abell 14 is a highly evolved, bipolar nebula with a kinematical age of ˜19 400 yr for a distance of 4 kpc. The high He abundance, and N/O ratio indicate a progenitor of 5 M⊙ that has experienced the third dredge-up and hot bottom burning phases. The stellar parameters of the central source reveal a star at a highly evolved stage near to the white dwarf cooling track, being inconsistent with the born-again scenario. The nebula shows unexpectedly strong [N I] λ5200 and [O I] λ6300 emission lines indicating possible shock interactions. Abell 14 appears to be a member of a small group of highly evolved, extreme type-I planetary nebulae (PNe). The members of this group lie at the lower-left corner of the PNe regime on the [N II]/Hα versus [S II]/Hα diagnostic diagram, where shock-excited regions/objects are also placed. The low luminosity of their central stars, in conjunction with the large physical size of the nebulae, result in a very low photoionization rate, which can make any contribution of shock interaction easily perceptible, even for small velocities.

  18. New Modeling Approaches to Study DNA Damage by the Direct and Indirect Effects of Ionizing Radiation

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francis A.

    2012-01-01

    DNA is damaged both by the direct and indirect effects of radiation. In the direct effect, the DNA itself is ionized, whereas the indirect effect involves the radiolysis of the water molecules surrounding the DNA and the subsequent reaction of the DNA with radical products. While this problem has been studied for many years, many unknowns still exist. To study this problem, we have developed the computer code RITRACKS [1], which simulates the radiation track structure for heavy ions and electrons, calculating all energy deposition events and the coordinates of all species produced by the water radiolysis. In this work, we plan to simulate DNA damage by using the crystal structure of a nucleosome and calculations performed by RITRACKS. The energy deposition events are used to calculate the dose deposited in nanovolumes [2] and therefore can be used to simulate the direct effect of the radiation. Using the positions of the radiolytic species with a radiation chemistry code [3] it will be possible to simulate DNA damage by indirect effect. The simulation results can be compared with results from previous calculations such as the frequencies of simple and complex strand breaks [4] and with newer experimental data using surrogate markers of DNA double ]strand breaks such as . ]H2AX foci [5].

  19. Studies on laser-assisted Penning ionization by the optogalvanic effect in Ne/Eu hollow cathode discharge.

    PubMed

    Saini, V K; Kumar, P; Dixit, S K; Nakhe, S V

    2015-02-01

    Laser-assisted Penning ionization (LAPI) is detected in a Ne/Eu hollow cathode (HC) discharge lamp using the pulsed optogalvanic (OG) method. In the Ne/Eu discharge, doubly ionized europium excited energy levels Eu[4f(7)(P(7/2,5/2)6)] lie within the thermal limit (∼kT) from the laser-excited neon's energy level [2p(5)(P3/202)3p or 2p(8) (in Paschen notation)] lying at 149,848  cm(-1). Therefore, Penning ionization (PI) of europium atoms likely to occur into its highly excited ionic states is investigated. To probe the PI of europium, the temporal profiles of its counterpart neon OG signal are studied as a function of discharge current for the transitions (1s(4)→2p(8)) and (1s(2)→2p(2)), corresponding to 650.65 and 659.89 nm wavelengths, respectively. It is observed that PI of europium alters the overall discharge characteristics significantly and, hence, modifies the temporal profile of the OG signals accordingly. The quasi-resonant ionizing energy transfer collisions between laser-excited Ne 2p(8) atoms and electronically excited europium P(9/2)10 atoms are used to explain the LAPI mechanism. Such LAPI studies carried out in HC discharge could be useful for the discharge of a metal-vapor laser with appropriate Penning mixtures. PMID:25967764

  20. Amifostine, a radioprotectant agent, protects rat brain tissue lipids against ionizing radiation induced damage: An FTIR microspectroscopic imaging study

    SciTech Connect

    Cakmak G.; Miller L.; Zorlu, F.; Severcan, F.

    2012-03-03

    Amifostine is the only approved radioprotective agent by FDA for reducing the damaging effects of radiation on healthy tissues. In this study, the protective effect of amifostine against the damaging effects of ionizing radiation on the white matter (WM) and grey matter (GM) regions of the rat brain were investigated at molecular level. Sprague-Dawley rats, which were administered amifostine or not, were whole-body irradiated at a single dose of 800 cGy, decapitated after 24 h and the brain tissues of these rats were analyzed using Fourier transform infrared microspectroscopy (FTIRM). The results revealed that the total lipid content and CH{sub 2} groups of lipids decreased significantly and the carbonyl esters, olefinic=CH and CH{sub 3} groups of lipids increased significantly in the WM and GM after exposure to ionizing radiation, which could be interpreted as a result of lipid peroxidation. These changes were more prominent in the WM of the brain. The administration of amifostine before ionizing radiation inhibited the radiation-induced lipid peroxidation in the brain. In addition, this study indicated that FTIRM provides a novel approach for monitoring ionizing radiation induced-lipid peroxidation and obtaining different molecular ratio images can be used as biomarkers to detect lipid peroxidation in biological systems.

  1. A MULTIWAVELENGTH STUDY ON THE FATE OF IONIZING RADIATION IN LOCAL STARBURSTS

    SciTech Connect

    Hanish, D. J.; Oey, M. S.; Rigby, J. R.; Lee, J. C.; De Mello, D. F.

    2010-12-20

    The fate of ionizing radiation is vital for understanding cosmic ionization, energy budgets in the interstellar and intergalactic medium, and star formation rate indicators. The low observed escape fractions of ionizing radiation have not been adequately explained, and there is evidence that some starbursts have high escape fractions. We examine the spectral energy distributions (SEDs) of a sample of local star-forming galaxies, containing 13 local starburst galaxies and 10 of their ordinary star-forming counterparts, to determine if there exist significant differences in the fate of ionizing radiation in these galaxies. We find that the galaxy-to-galaxy variations in the SEDs are much larger than any systematic differences between starbursts and non-starbursts. For example, we find no significant differences in the total absorption of ionizing radiation by dust, traced by the 24 {mu}m, 70 {mu}m, and 160 {mu}m MIPS bands of the Spitzer Space Telescope, although the dust in starburst galaxies appears to be hotter than that of non-starburst galaxies. We also observe no excess ultraviolet flux in the Galaxy Evolution Explorer bands that could indicate a high escape fraction of ionizing photons in starburst galaxies. The small H{alpha} fractions of the diffuse, warm ionized medium (WIM) in starburst galaxies are apparently due to temporarily boosted H{alpha} luminosity within the star-forming regions themselves, with an independent, constant WIM luminosity. This independence of the WIM and starburst luminosities contrasts with WIM behavior in non-starburst galaxies and underscores our poor understanding of radiation transfer in both ordinary and starburst galaxies.

  2. Study of Hydrophobic and Ionizable Hydrophilic Copolymers at Polymer/Solid and Polymer/Liquid Interfaces

    SciTech Connect

    Perahia, Dvora

    2011-11-01

    Joint experimental-computational efforts were set to characterize the interfacial effects on the structure and dynamics of polymers consisting of highly rigid hydrophilic-ionizable and hydrophobic sub-units within one polymeric chain casted into thin films of several molecular dimensions. Focusing on the ultra thin film region we separate out the interfacial effects from bulk characteristics. Specifically, the study sought to: identify the parameters that control the formation of a stable polymer-solid interface. The study consists of two components, experimental investigations and computational efforts. The experimental component was designed to derive empirical trends that can be used to correlate the set of coupled polymer molecular parameters with the interfacial characteristics of these polymers, and their response to presence of solvents. The computational study was designed to provide molecular insight into the ensemble averages provided by the experimental efforts on multiple length scales from molecular dimensions, to the nanometer lengths to a macroscopic understanding of solvent interactions with structured polymers. With the ultimate goal of correlating molecular parameters to structure, dynamics and properties of ionic polymers, the first stage of the research began with the study of two systems, one which allowed tailoring the flexibility of the backbone without the presence of ionic groups, but with a potential to sulfonate groups at a later stage, and a polymer whose backbone is rigid and the density of the ionic group can be varied. The combined experimental and computational studies significantly extended the understanding of polymers at interfaces from model systems to polydispersed copolymers with blocks of varying nature and complexity. This new insight directly affects the design of polymers for sustainable energy applications from batteries and fuel cells to solar energy.

  3. Theoretical study of energy deposition in ionization chambers for tritium measurements

    NASA Astrophysics Data System (ADS)

    Chen, Zhilin; Peng, Shuming; Meng, Dan; He, Yuehong; Wang, Heyi

    2013-10-01

    Energy deposition in ionization chambers has been theoretically studied for tritium measurements in gaseous form. A one-dimension model is introduced to establish the quantitative relationship between energy deposition rate and many factors, including carrier gas, gas pressure, wall material, chamber size, and gas temperature. Energy deposition rate has been calculated at pressure varying from 5 kPa to 500 kPa based on some approximations. It is found that energy deposition rate varies greatly for different parameters, especially at low gas pressure. For the same chamber, energy deposition rate in argon is much higher than in deuterium, as much as 70.7% higher at 5 kPa. Gold plated chamber gives highest energy deposition rate in the calculations while aluminum chamber results in the lowest. As chamber size gets smaller, β ray emitted by tritium will deposit less energy in the sensitive region of the chamber. For chambers flowing through with the same gas, energy deposition rate in a 10 L chamber is 23.9% higher than in a 0.05 L chamber at 5 kPa. Gas temperature also places slight influence on energy deposition rate, and 373 K will lead to 6.7% lower deposition rate than 233 K at 5 kPa. In addition, experiments have been performed to obtain energy deposition rate in a gold plated chamber, which show good accordance with theoretical calculations.

  4. Numerical studies of the behavior of ionized residual gas in an energy recovering linac

    NASA Astrophysics Data System (ADS)

    Pöplau, Gisela; van Rienen, Ursula; Meseck, Atoosa

    2015-04-01

    Next generation light sources such as energy recovering linacs (ERLs) are highly sensitive to instabilities due to ionized residual gas, which must be mitigated for successful operation. Vacuum pumps are insufficient for removal of the ions, as the ions are trapped by the beam's electrical potential. Two effective measures are (i) introducing clearing gaps in the bunch train, and (ii) installing clearing electrodes which pull out the trapped ions from the electrical potential of the beam. In this paper, we present numerical studies on the behavior of ion clouds that interact with bunch trains in an ERL taking into account the effects of the clearing gaps and clearing electrodes. We present simulations with different compositions of the residual gas. Simulations are done using the MOEVE PIC Tracking software package developed at Rostock University, which has been upgraded to include the behavior of ion clouds in the environment of additional electromagnetic fields, such as generated by clearing electrodes. The simulations use the parameters of the Berlin Energy Recovery Linac Project (bERLinPro) to allow for the deduction of appropriate measures for bERLinPro 's design and operation.

  5. Theoretical study of energy deposition in ionization chambers for tritium measurements

    SciTech Connect

    Chen, Zhilin; Peng, Shuming; Meng, Dan; He, Yuehong; Wang, Heyi

    2013-10-15

    Energy deposition in ionization chambers has been theoretically studied for tritium measurements in gaseous form. A one-dimension model is introduced to establish the quantitative relationship between energy deposition rate and many factors, including carrier gas, gas pressure, wall material, chamber size, and gas temperature. Energy deposition rate has been calculated at pressure varying from 5 kPa to 500 kPa based on some approximations. It is found that energy deposition rate varies greatly for different parameters, especially at low gas pressure. For the same chamber, energy deposition rate in argon is much higher than in deuterium, as much as 70.7% higher at 5 kPa. Gold plated chamber gives highest energy deposition rate in the calculations while aluminum chamber results in the lowest. As chamber size gets smaller, β ray emitted by tritium will deposit less energy in the sensitive region of the chamber. For chambers flowing through with the same gas, energy deposition rate in a 10 L chamber is 23.9% higher than in a 0.05 L chamber at 5 kPa. Gas temperature also places slight influence on energy deposition rate, and 373 K will lead to 6.7% lower deposition rate than 233 K at 5 kPa. In addition, experiments have been performed to obtain energy deposition rate in a gold plated chamber, which show good accordance with theoretical calculations.

  6. Off-line studies of the laser ionization of yttrium at the IGISOL facility

    NASA Astrophysics Data System (ADS)

    Kessler, T.; Moore, I. D.; Kudryavtsev, Y.; Peräjärvi, K.; Popov, A.; Ronkanen, P.; Sonoda, T.; Tordoff, B.; Wendt, K. D. A.; Äystö, J.

    2008-02-01

    A laser ion source is under development at the IGISOL facility, Jyväskylä, in order to address deficiencies in the ion guide technique. The key elements of interest are those of a refractory nature, whose isotopes and isomers are widely studied using both laser spectroscopic and high precision mass measurement techniques. Yttrium has been the first element of choice for the new laser ion source. In this work, we present a new coupled dye-Ti:Sapphire laser scheme and give a detailed discussion of the results obtained from laser ionization of yttrium atoms produced in an ion guide via resistive heating of a filament. The importance of not only gas purity, but indeed the baseline vacuum pressure in the environment outside the ion guide is discussed in light of the fast gas phase chemistry seen in the yttrium system. A single laser shot model is introduced and is compared to the experimental data in order to extract the level of impurities within the gas cell.

  7. Study of the Ionization Dynamics and Equation of State of a Strongly Coupled Plasma

    SciTech Connect

    Shepherd, R; Audebert, P; Geindre, J P; Iglesias, C; Foord, M; Rogers, F; Gauthier, J C; Springer, P

    2003-02-06

    Preliminary experiments to study the ionization dynamics and equation of state of a strongly coupled plasma have been performed at the LLNL COMET laser facility. In these experiment, a 1.0 J, 500 fs, 532 nm laser was used to create a uniform, warm dense plasma.The primary diagnostic, Fourier Domain Interferometry (FDI), was used to provide information about the position of the critical density of the target and thus the expansion hydrodynamics, laying the ground work for the plasma characterization. The plasmas were determined to be strongly coupled. In addition work was performed characterizing the back-lighter. A von Hamos spectrograph coupled to a 500 fs X-ray streak camera (TREX-VHS) developed at LLNL was used for these measurements. This diagnostic combines high collection efficiency ({approx} 10{sup -4} steradians) with fast temporal response ({approx} 500 fs), allowing resolution of extremely transient spectral variations. The TREX-VHS will be used to determine the time history, intensity, and spectral content of the back-lighter resulting in absorption measurements that provide insight into bound states in strongly coupled conditions.

  8. A new dynamical atmospheric ionizing radiation (AIR) model for epidemiological studies

    NASA Technical Reports Server (NTRS)

    De Angelis, G.; Clem, J. M.; Goldhagen, P. E.; Wilson, J. W.

    2003-01-01

    A new Atmospheric Ionizing Radiation (AIR) model is currently being developed for use in radiation dose evaluation in epidemiological studies targeted to atmospheric flight personnel such as civilian airlines crewmembers. The model will allow computing values for biologically relevant parameters, e.g. dose equivalent and effective dose, for individual flights from 1945. Each flight is described by its actual three dimensional flight profile, i.e. geographic coordinates and altitudes varying with time. Solar modulated primary particles are filtered with a new analytical fully angular dependent geomagnetic cut off rigidity model, as a function of latitude, longitude, arrival direction, altitude and time. The particle transport results have been obtained with a technique based on the three-dimensional Monte Carlo transport code FLUKA, with a special procedure to deal with HZE particles. Particle fluxes are transformed into dose-related quantities and then integrated all along the flight path to obtain the overall flight dose. Preliminary validations of the particle transport technique using data from the AIR Project ER-2 flight campaign of measurements are encouraging. Future efforts will deal with modeling of the effects of the aircraft structure as well as inclusion of solar particle events. Published by Elsevier Ltd on behalf of COSPAR.

  9. Review of certain low-level ionizing radiation studies in mice and guinea pigs

    SciTech Connect

    Congdon, C.C.

    1987-05-01

    Starting in the early 1940s, Egon Lorenz and collaborators at the National Cancer Institute began an extended study of chronic low-level ionizing radiation effects in what was then the tolerance range for man. Observations on life span, body weight and radiation carcinogenesis, among others, were made in mice, guinea pigs and rabbits. At the then-permissible exposure level, 0.1 R** per 8-h day until natural death, experimental mice and guinea pigs had a slightly greater mean life span compared to control animals. In addition, there was marked weight gain during the growth phase in both species. Increased tumor incidence was also observed at the 0.1-R level in mice. The primary hypothesis for increased median life span has been rebound regenerative hyperplasia during the early part of the exposure; in the presence of continuing injury, there is physiological enhancement of defense mechanisms against intercurrent infection. The body weight gain has not been explained. 32 references.

  10. Ionizing radiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter gives a comprehensive review on ionizing irradiation of fresh fruits and vegetables. Topics include principles of ionizing radiation, its effects on pathogenic and spoilage microorganisms, shelf-life, sensory quality, nutritional and phytochemical composition, as well as physiologic and...

  11. Physician exposure to ionizing radiation during trauma resuscitation: A prospective clinical study

    SciTech Connect

    Weiss, E.L.; Singer, C.M.; Benedict, S.H.; Baraff, L.J.

    1990-02-01

    A prospective study of emergency physician whole body and extremity exposure to ionizing radiation during trauma resuscitation over a three-month period was conducted. Radiation film badges and thermoluminescent dosimeter finger rings were permanently attached to leaded aprons worn by emergency medicine residents during all trauma resuscitations. One set of apron and finger ring dosimeters was designated for the resident who managed the airway and stabilized the neck, when necessary, during cervical spine radiography (A-CS resident). A separate set of dosimeters was designated for the resident supervising the resuscitation. During the study period, 150 major trauma patients requiring 481 radiographic studies were treated. The mean monthly cumulative whole body exposures were 136.7 +/- 85.0 and 103.3 +/- 60.3 mrem for A-CS and supervising residents, respectively. The mean weekly cumulative extremity exposures were 523.3 +/- 611.0 and 46.7 +/- 18.6 mrem for A-CS and supervising residents, respectively. Calculated whole body exposures per patient were 2.7 mrem for the A-CS resident and 2.1 mrem for the supervising resident. Calculated extremity exposures per patient were 41.9 +/- 48.9 and 3.7 +/- 1.5 mrem, respectively. To exceed the annual whole body exposure limit established by the National Council of Radiologic Protection, the A-CS resident, working 200 shifts per year, would have to treat 9.2 trauma patients per shift. To exceed the annual extremity exposure limit, the A-CS resident would have to treat 5.9 trauma patients per shift. Of note, European exposure limits are 10% of current US limits. We conclude that significant exposures may occur to physicians working in trauma centers and that the use of shielding devices is indicated.

  12. Cosmic ray studies with a gas Cherenkov counter in association with an ionization spectrometer

    NASA Technical Reports Server (NTRS)

    Balasubrahmanyan, V. K.; Ormes, J. F.; Arens, J. F.; Siohan, F.; Yodh, G. B.; Simon, M.; Spiegelhauer, H.

    1980-01-01

    The results from a balloon-borne gas Cherenkov counter (threshold 16.5 GeV/nucleon) and an ionization spectrometer are presented. The gas Cherenkov counter provides an absolute energy distribution for the response of the calorimeter for 5 or = Z 26 nuclei of cosmic rays. The contribution of scintillation to the gas Cherenkov pulse height was obtained by independently selecting particles below the gas Cherenkov threshold using the ionization spectrometer. Energy spectra were derived by minimizing the chi squared between Monte Carlo simulted data and flight data. Best fit power laws, dN/dE = AE-gamma, were determined for C, N, O, Ne, Mg, and Si. The power laws, all consistent with E (-2.7) are not good fits to the data. A better fit is obtained using the spectrum derived from the spectrometer. The data from the ionization calorimeter and the gas Cherenkov are thus completely self-consistent.

  13. Shock tube study of ionization rates of NaCl-contaminated argon

    NASA Technical Reports Server (NTRS)

    Schneider, K.-P.; Park, C.

    1975-01-01

    Electron density, electron temperature, and concentration of excited sodium atoms are measured in the weakly ionized regime behind a shock wave in impure argon in a shock tube using microwave techniques and spectrally resolved radiometry. Evidence is presented to show that an apparent increase in the rate of ionization is due to electron detachment of negative chlorine ions produced from sodium chloride vapor contained as an impurity. To be consistent with this chemical model, rate coefficients are found in the temperature range between 5500 and 8600 K for the dissociation of NaCl into an ion pair, dissociation of NaCl into a neutral pair, and electron detachment of a negative chlorine ion. Electron temperature is lower than heavy-particle temperature by roughly 1000 K. The electron-argon impact-ionization rate coefficient is a weak function of electron temperature in contradiction to expectation.

  14. Muon Tracking Studies in a Skew Parametric Resonance Ionization Cooling Channel

    SciTech Connect

    Sy, Amy; Afanaciev, Andre; Derbenev, Yaroslav S.; Johnson, Rolland; Morozov, Vasiliy

    2015-09-01

    Skew Parametric-resonance Ionization Cooling (SPIC) is an extension of the Parametric-resonance Ionization Cooling (PIC) framework that has previously been explored as the final 6D cooling stage of a high-luminosity muon collider. The addition of skew quadrupoles to the PIC magnetic focusing channel induces coupled dynamic behavior of the beam that is radially periodic. The periodicity of the radial motion allows for the avoidance of unwanted resonances in the horizontal and vertical transverse planes, while still providing periodic locations at which ionization cooling components can be implemented. A first practical implementation of the magnetic field components required in the SPIC channel is modeled in MADX. Dynamic features of the coupled correlated optics with and without induced parametric resonance are presented and discussed.

  15. Theoretical study of Jesse effect in tritium measurements using ionization chambers

    NASA Astrophysics Data System (ADS)

    Chen, Zhilin; Peng, Shuming; Lu, Hanghang; Tan, Zhaoyi; Wang, Heyi; Long, Xingui; Masao, Matsuyama

    2016-01-01

    Jesse effect caused by impurities in helium might enhance the output signal significantly in tritium measurements with ionization chamber, which will lead to overestimation of tritium concentration in experiments. A theoretical method was proposed to evaluate Jesse effect quantitatively. Results indicate that besides Penning ionization, sub-excitation electrons also place very important influence on ionization enhancement by Jesse effect. An experiential expression about the relationship between enhancement factor and impurity concentration was established, in which second order of it fits experimental results very well. Theoretical calculation method in this paper is also applicable to evaluate Jesse effect in other kinds of mixtures besides hydrogen as impurities in helium. In addition, Jesse effects about tritium molecules as impurities have also been investigated.

  16. False Results Caused by Solvent Impurity in Tetrahydrofuran for MALDI TOF MS Analysis of Amines

    NASA Astrophysics Data System (ADS)

    Lou, Xianwen; Leenders, Christianus M. A.; van Onzen, Arthur H. A. M.; Bovee, Ralf A. A.; van Dongen, Joost L. J.; Vekemans, Jef A. J. M.; Meijer, E. W.

    2013-11-01

    Tetrahydrofuran (THF) is one of the most frequently used solvents in the MALDI TOF MS analysis of synthetic compounds. However, it should be used with caution because a trace amount of 4-hydroxybutanal (HBA) might be generated and accumulated in THF during storage. Since only a tiny amount of analytes is required in MALDI MS measurements, a trace amount of HBA might have a significant effect on the MS results. It was found that HBA will quickly react with primary and secondary amino compounds, leading to false results about the sample composition with an extra series of ions with additional mass of 70 Da in between. The formation of HBA can be inhibited by butylated hydroxytoluene (BHT) antioxidant. Therefore, when THF is required as the solvent for sample preparation, it is strongly recommended to use a BHT-stabilized one, at least for the analysis of compounds with amino groups.

  17. Synthesis and characterization of polyurethanes made from copolymers of epoxidized natural oil and tetrahydrofuran.

    PubMed

    Hoong, Seng Soi; Yeong, Shoot Kian; Hassan, Hazimah Abu; Din, Ahmad Kushairi; Choo, Yuen May

    2015-01-01

    Polyols were synthesized from epoxidized natural oils and tetrahydrofuran through ring opening copolymerization catalyzed by Lewis acid. The properties of these polyols depend on the type of natural oils as well as the reaction conditions (monomer concentration, catalyst amount, reaction temperature and reaction time). These polyols were evaluated as a raw material for making polyurethane (PU) in order to understand the structure-property relationship between a natural oil and PU made from it. The tensile test analysis shows that the incorporation of natural oil moiety into the PU polymer network improves the elasticity of these PU samples when compared to a benchmark PU sample. In addition, the PU samples made from palm oil and soybean oil based polyols exhibit better tensile strength than benchmark PU. These polyols samples are suitable for making elastomeric PU, where high flexibility (high elongation at break) of PU is a common requirement. PMID:25492233

  18. [Biodegradation of tetrahydrofuran by combined immobilized of Pseudomonas oleovorans DT4].

    PubMed

    Shao, Qian; Ye, Jie-Xu; Ouyang, Du-Juan; Chen, Jian-Meng; Chen, Dong-Zhi

    2013-08-01

    A new composite matrix, calcium alginate (CA) coupled with activated carbon fiber (ACF) was designed to immobilize the cells of Pseudomonas oleovorans DT4 for tetrahydrofuran (THF) degradation. The average removal rate of the CA-ACF immobilized cells reached 24.0 mg x (L x h)(-1) with an initial THF concentration of 360 mg x L(-1) when the concentration of CA and ACF was 3% and 1.5% respectively. The mechanical strength of the mobilized cells was also significantly improved with the addition of ACF. Compared to the free suspended cells, higher stable removal efficiency (more than 80%) of CA-ACF cells was detected under different conditions of temperature and pH. The feasibility of the newly designed matrix was also reflected by the repeated batch degradation which showed that the removal activity decreased insignificantly after 80 cycles with the modified reaction system (PNS). PMID:24191576

  19. The role of electron-impact vibrational excitation in electron transport through gaseous tetrahydrofuran

    SciTech Connect

    Duque, H. V.; Do, T. P. T.; Konovalov, D. A.; White, R. D.; Brunger, M. J. E-mail: darryl.jones@flinders.edu.au; Jones, D. B. E-mail: darryl.jones@flinders.edu.au

    2015-03-28

    In this paper, we report newly derived integral cross sections (ICSs) for electron impact vibrational excitation of tetrahydrofuran (THF) at intermediate impact energies. These cross sections extend the currently available data from 20 to 50 eV. Further, they indicate that the previously recommended THF ICS set [Garland et al., Phys. Rev. A 88, 062712 (2013)] underestimated the strength of the electron-impact vibrational excitation processes. Thus, that recommended vibrational cross section set is revised to address those deficiencies. Electron swarm transport properties were calculated with the amended vibrational cross section set, to quantify the role of electron-driven vibrational excitation in describing the macroscopic swarm phenomena. Here, significant differences of up to 17% in the transport coefficients were observed between the calculations performed using the original and revised cross section sets for vibrational excitation.

  20. Shock tube study of ionization rates of NaCl-contaminated argon

    NASA Technical Reports Server (NTRS)

    Scheneider, C.-P.; Park, C.

    1975-01-01

    Spectrally resolved radiometry and a microwave technique were used to measure the electron density, electron temperature, and concentration, and the concentration of sodium atoms in the weakly ionized region behind a shock wave in an argon shock tube. It is shown that the observed increase in the ionization rate is due to electron detachment of negative chlorine ions produced from sodium chloride vapor contained as an impurity in the argon gas. The observed behavior of the electron temperature in time and the reactions controlled by the electron temperature are analyzed in the light of the impurity reaction scheme.

  1. Electron impact ionization in plasma technologies; studies on atomic boron and BN molecule

    NASA Astrophysics Data System (ADS)

    Joshi, Foram M.; Joshipura, K. N.; Chaudhari, Asha S.

    2016-05-01

    Electron impact ionization plays important role in plasma technologies. Relevant cross sections on atomic boron are required to understand the erosion processes in fusion experiments. Boronization of plasma exposed surfaces of tokomaks has proved to be an effective way to produce very pure fusion plasmas. This paper reports comprehensive theoretical investigations on electron scattering with atomic Boron and Boron Nitride in solid phases. Presently we determine total ionization cross-section Qion and the summed-electronic excitation cross section ΣQexc in a standard quantum mechanical formalism called SCOP and CSP-ic methods. Our calculated cross sections are examined as functions of incident electron energy along with available comparisons.

  2. X-ray laser studies using plasmas created by optical field ionization

    SciTech Connect

    Krushelnick, K.M.; Tighe, W.; Suckewer, S.

    1995-01-01

    X-ray laser experiments involving the creation of fast recombining plasmas by optical field ionization of preformed targets were conducted. A nonlinear increase in the intensity of the 13.5nm Lyman-{alpha} line in Li III with the length of the target plasma was observed but only for distances less than the laser confocal parameter and for low plasma electron temperatures. Multiphoton pumping of resonant atomic transitions was also examined and the process of multiphoton ionization of FIII was found to be more probable than multiphoton excitation.

  3. Sonic and resistivity measurements on Berea sandstone containing tetrahydrofuran hydrates: a possible analogue to natural-gas-hydrate deposits. [Tetrahydrofuran hydrates

    SciTech Connect

    Pearson, C.; Murphy, J.; Halleck, P.; Hermes, R.; Mathews, M.

    1983-01-01

    Deposits of natural gas hydrates exist in arctic sedimentary basins and in marine sediments on continental slopes and rises. However, the physical properties of such sediments are largely unknown. In this paper, we report laboratory sonic and resistivity measurements on Berea sandstone cores saturated with a stoichiometric mixture of tetrahydrofuran (THF) and water. We used THF as the guest species rather than methane or propane gas because THF can be mixed with water to form a solution containing proportions of the proper stoichiometric THF and water. Because neither methane nor propane is soluble in water, mixing the guest species with water sufficiently to form solid hydrate is difficult. Because THF solutions form hydrates readily at atmospheric pressure it is an excellent experimental analogue to natural gas hydrates. Hydrate formation increased the sonic P-wave velocities from a room temperature value of 2.5 km/s to 4.5 km/s at -5/sup 0/C when the pores were nearly filled with hydrates. Lowering the temperature below -5/sup 0/C did not appreciably change the velocity however. In contrast, the electrical resistivity increases nearly two orders of magnitude upon hydrate formation and continues to increase more slowly as the temperature is further decreased. In all cases the resistivities are nearly frequency independent to 30 kHz and the loss tangents are high, always greater than 5. The dielectric loss shows a linear decrease with frequency suggesting that ionic conduction through a brine phase dominates at all frequencies, even when the pores are nearly filled with hydrates. We find that the resistivities are strongly a function of the dissolved salt content of the pore water. Pore water salinity also influences the sonic velocity, but this effect is much smaller and only important near the hydrate formation temperature.

  4. A Comparative PCET Study of a Donor-Acceptor Pair Linked by Ionized and Non-ionized Asymmetric Hydrogen-Bonded Interfaces

    PubMed Central

    Young, Elizabeth R.; Rosenthal, Joel; Hodgkiss, Justin M.

    2012-01-01

    A Zn(II) porphyrin-amidinium is the excited state electron donor (D) to a naphthalene diimide acceptor (A) appended with either a carboxylate or sulfonate functionality. The two-point hydrogen bond (---[H+]---) formed between the amidinium and carboxylate or sulfonate establishes a proton-coupled electron transfer (PCET) pathway for charge transfer. The two D---[H+]---A assemblies differ only by the proton configuration within the hydrogen bonding interface. Specifically, the amidinium transfers a proton to the carboxylate to form a non-ionized amidine-carboxylic acid two-point hydrogen network whereas the amidinium maintains both protons when bound to the sulfonate functionality forming an ionized amidinium-sulfonate two-point hydrogen network. These two interface configurations within the dyads thus allow for a direct comparison of PCET kinetics for the same donor and acceptor juxtaposed by an ionized and non-ionized hydrogen-bonded interface. Analysis of PCET kinetics ascertained from transient absorption and transient emission spectroscopy reveal that the ionized interface is more strongly impacted by the local solvent environment, thus establishing that the initial static configuration of the proton interface is a critical determinant to the kinetics of PCET. PMID:19489645

  5. Gas phase studies on terpenes by ion mobility spectrometry using different atmospheric pressure chemical ionization techniques

    NASA Astrophysics Data System (ADS)

    Borsdorf, H.; Stone, J. A.; Eiceman, G. A.

    2005-11-01

    The ionization pathways and drift behavior were determined for sets of constitutional isomeric and stereoisomeric non-polar hydrocarbons (unsaturated monocyclic terpenes, unsaturated and saturated bicyclic terpenes) using ion mobility spectrometry (IMS) with different techniques of atmospheric pressure chemical ionization (APCI) to assess how structural and stereochemical differences influence ion formation. Depending on the structural features, different ions were observed for constitutional isomers using ion mobility spectrometry with photoionization (PI) and corona discharge (CD) ionization. Photoionization provides ion mobility spectra containing one major peak for saturated compounds while at two peaks were observed for unsaturated compounds, which can be assigned to product ions related to monomer and dimer ions. However, differences in relative abundance of product ions were found depending on the position of the double bond. Although IMS using corona discharge ionization permits the most sensitive detection of non-polar hydrocarbons, the spectra are complex and differ from those obtained using photoionization. Additional cluster ions and fragment ions were detected. Only small differences in ion mobility spectra were observed for the diastereomers while the enantiomers provide identical spectra. The structure of the product ions formed was checked by investigations using the coupling of ion mobility spectrometry with mass spectrometry (IMS-MS).

  6. Semiclassical Study of the Wave Vector Dependence of the Interband Impact Ionization Rate in Bulk Silicon

    NASA Technical Reports Server (NTRS)

    Wang, Yang; Brennan, Kevin F.

    1994-01-01

    We present calculations of the interband impact ionization rate calculated using a wave vector dependent (k-dependent) semiclassical formulation of the transition rate. The transition rate is determined using Fermi's golden rule from a two-body screened Coulomb interaction assuming energy and momentum conservation. The transition rate is calculated for the first two conduction bands of silicon by numerically integrating over the full Brillouin zone. The overlap integrals in the expression for the transition rate are determined numerically using a 15 band k-p calculation. It is found that the transition rate depends strongly on the initiating electron wave vector (k vector) and that the transition rate is greatest for electrons originating within the second conduction band than the first conduction band. An ensemble Monte Carlo simulation, which includes the numerically determined ionization transition rate as well as the full details of the first two conduction bands, is used to calculate the total impact ionization rate in bulk silicon. Good agreement with the experimentally determined electron ionization rate data is obtained.

  7. Photoionization mass spectrometric study of HOCl: Photoionization efficiency spectrum and ionization energy

    SciTech Connect

    Thorn, R.P. Jr.; Stief, L.J.

    1999-02-18

    The photoionization efficiency (PIE) spectrum of HOCl was measured over the wavelength range {lambda} = 102--115 nm, using a discharge flow-photoionization mass spectrometer (DF-PIMS) apparatus coupled to a synchrotron radiation source. The PIE spectra displayed steplike behavior near threshold. This study represents the first determination of the HOCl photoionization efficiency spectrum and the photoionization threshold. A value of 11.12{sub 3} {+-} 0.01{sub 8} eV was obtained for the adiabatic ionization energy (IE) of HOCl from analysis of photoion thresholds, corresponding to the HOCl{sup +}(X{sup 2}A{double_prime}) {l_arrow} HOCl(X{sup 1}A{double_prime}) transition. The PIMS result is identical to the only previous experimental measurement and in good agreement with a recent ab initio calculation. From the result for IE(HOCl), a value of 999.4 {+-} 3.6 kJ mol{sup {minus}1} was calculated for {Delta}{sub f}H{degree}{sub 0}(HOCl{sup +}), and from the latter, the proton affinity of ClO at T = 0 K, PA{sub 0}(ClO), was determined to be 629.6 {+-} 3.6 kJ mol{sup {minus}1}. At 298 K, the computed values for {Delta}{sub f}H{degree}{sub 298}(HOCl{sup +}) and PA{sub 298}(ClO) are 996.5 {+-} 3.6 and 635.1 {+-} 3.6 kJ mol{sup {minus}1}, respectively.

  8. A study of inter-species ion suppression in electrospray ionization-mass spectrometry of some phospholipid classes.

    PubMed

    Khoury, Spiro; El Banna, Nadine; Tfaili, Sana; Chaminade, Pierre

    2016-02-01

    Phospholipid quantification in biological samples is crucial and is increasingly studied in lipidomics. Quantitative studies are often performed using commercially available standards of phospholipid classes in order to mimic the composition of biological samples. For this, studies are conducted by liquid chromatography coupled to electrospray ionization-mass spectrometry. In liquid chromatography coupled to mass spectrometry (LC-MS) analysis, the matrix components and the co-elution of several phospholipid species lead to the phenomenon of ion suppression. As a result, a decrease in the response of phospholipid species in mass spectrometry MS is observed. In fact, inter-species ion suppression affects the efficiency of phospholipid (PL) ionization and might also influence the quantitative results. The aim of this work is to study the PL inter-species ion suppression phenomenon in electrospray ionization (ESI)-mass spectrometry on a triple quadrupole TQ and an LTQ-Orbitrap in order to improve quantification in natural and biological samples. Thus, the phospholipid MS response was evaluated to study the effect of acyl chain length, the degree, and the position of unsaturation on acyl chain and the effect of the polar head group structure. A number of saturated and unsaturated phospholipid species and mixtures were analyzed in different ionization modes to a better understanding of inter-species ion suppression phenomenon. PL molecular species responded differently according to the length of fatty acid chains, the number of unsaturation, and the nature of the polar head group. Fatty acid chain length showed to have the most marked effect on MS response. PMID:26780707

  9. Annonacin, a mono-tetrahydrofuran acetogenin, arrests cancer cells at the G1 phase and causes cytotoxicity in a Bax- and caspase-3-related pathway.

    PubMed

    Yuan, Shyng-Shiou F; Chang, Hsueh-Ling; Chen, Hsiao-Wen; Yeh, Yao-Tsung; Kao, Ying-Hsien; Lin, Kuei-Hsiang; Wu, Yang-Chang; Su, Jinu-Huang

    2003-05-01

    Annonaceous acetogenins are a group of potential anti-neoplastic agents isolated from Annonaceae plants. In this study, we purified annonacin, a cytotoxic mono-tetrahydrofuran acetogenin, from the seeds of Annona reticulata and analyzed its biological effects. Herein, we have shown that annonacin caused significant cell death in various cancer cell lines. T24 bladder cancer cells at the S phase were more vulnerable to the cytotoxicity of annonacin. Furthermore, annonacin activated p21 in a p53-independent manner and arrested T24 cells at the G1 phase. It also induced Bax expression, enhanced caspase-3 activity, and caused apoptotic cell death in T24 cells. In summary, these results suggest that annonacin is potentially a promising anti-cancer compound. PMID:12697268

  10. Secondary electrospray ionization-mass spectrometry: breath study on a control group.

    PubMed

    Martínez-Lozano, P; Zingaro, L; Finiguerra, A; Cristoni, S

    2011-03-01

    A series of fatty acids among other compounds have recently been detected in breath in real time by secondary electrospray ionization mass spectrometry (SESI-MS) (Martínez-Lozano P and Fernández de la Mora J 2008 Anal. Chem. 80 8210). Our main aim in this work was to (1) quantify their abundance in breath calibrating the system with standard vapors and (2) extend the study to a control group for several days, both under fasting conditions and after sucrose intake. For the quantitative study, we fed our system with controlled amounts (∼140-1440 ppt) of fatty acid vapors (i.e. propanoic, butanoic, pentanoic and hexanoic acids). As a result, we found sensitivities ranging between 1 and 2.2 cps/ppt. Estimated concentrations of these particular acids in the breath of a fasting subject were in the order of 100 ppt. These values were in reasonable agreement with those expected from reported typical plasma concentrations and Henry constants. A second set of experiments on three fasting individuals before and after ingesting 15 g of sucrose showed that the concentration of propionic and butanoic acids increased rapidly in breath for two subjects. This response was attributed to bacterial activity in mouth and pharynx. In contrast, a third subject showed no response to the administration of sucrose. In addition, we performed a survey among six fasting subjects comparing nasal and mouth exhalations during 11 days, 4 months apart. The signal intensity was comparable for mouth and nose breath. This observation, in conjunction with the quantitative study, suggests that these compounds are mostly systemic when measured under fasting conditions. We finally used the NIST MS search algorithm to evaluate the possibility of recognizing a breathing subject based on his/her breath signature. The global recognition score was 63% (41 out of 65), while the probability by chance alone was 6 × 10(-17). This indicates that (i) there are statistically recognizable differences in

  11. A new in-gas-laser ionization and spectroscopy laboratory for off-line studies at KU Leuven

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Yu.; Creemers, P.; Ferrer, R.; Granados, C.; Gaffney, L. P.; Huyse, M.; Mogilevskiy, E.; Raeder, S.; Sels, S.; Van den Bergh, P.; Van Duppen, P.; Zadvornaya, A.

    2016-06-01

    The in-gas laser ionization and spectroscopy (IGLIS) technique is used to produce and to investigate short-lived radioactive isotopes at on-line ion beam facilities. In this technique, the nuclear reaction products recoiling out of a thin target are thermalized and neutralized in a high-pressure noble gas, resonantly ionized by the laser beams in a two-step process, and then extracted from the ion source to be finally accelerated and mass separated. Resonant ionization of radioactive species in the supersonic gas jet ensures very high spectral resolution because of essential reduction of broadening mechanisms. To obtain the maximum efficiency and the best spectral resolution, properties of the supersonic jet and the laser beams must be optimized. To perform these studies a new off-line IGLIS laboratory, including a new high-repetition-rate laser system and a dedicated off-line mass separator, has been commissioned. In this article, the specifications of the different components necessary to achieve optimum conditions in laser-spectroscopy studies of radioactive beams using IGLIS are discussed and the results of simulations are presented.

  12. Cosmic ray studies with a gas Cerenkov counter in association with an ionization spectrometer

    NASA Technical Reports Server (NTRS)

    Balasubrahmanyan, V. K.; Ormes, J. F.; Arens, J. F.; Siohan, F.; Simon, M.; Spiegelhauer, H.; Yodh, G. B.

    1980-01-01

    The results from a balloon-borne gas Cerenkov counter (threshold 16.5 GeV/nuc) and an ionization spectrometer are presented. The gas Cerenkov counter provides an absolute energy calibration for the response of the calorimeter for the Z range of 5-26 nuclei of cosmic rays. The contribution of scintillation to the gas Cerenkov pulse height has been obtained by independently selecting particles below the gas Cerenkov threshold using the ionization spectrometer. Energy spectra were derived by minimizing the chi-squared between a Monte Carlo simulated data and flight data. Best fit power laws were determined for C, N, O, Ne, Mg, and Si. The power laws, all consistent with E exp-2.7, are not good fits to the data. A better fit is obtained using the spectrum derived from the spectrometer.

  13. Differential studies and projectile charge effects in ionization of molecular nitrogen by positron and electron impact

    NASA Astrophysics Data System (ADS)

    de Lucio, O. G.; DuBois, R. D.

    2016-03-01

    Singly, doubly, and triply differential information, obtained from coincidence measurements, are presented for 250-eV positron- and electron-impact ionization of molecular nitrogen. Comparisons of these data as functions of energy loss, scattering, and emission angles illustrate differences associated with the sign of the projectile charge. Via a deconvolution and normalization procedure, the triply differential data are converted to absolute cross sections. By fitting the triply differential cross sections for single ionization with simple functions, the intensities, directions, and peak to background intensities of the binary peaks plus the ratio of recoil to binary interactions are compared for positron and electron impact. Formulas for the binary and recoil intensities plus for the orientation of the binary peak as a function of momentum transfer are extracted from the data. Differences in the relative amount of fragmentation as a function of energy loss are also observed.

  14. The 30 Doradus Nebula: An Imaging Study of Molecular and Ionized Hydrogen

    NASA Astrophysics Data System (ADS)

    Yeh, Sherry; Seaquist, E. R.; Matzner, C. D.

    2013-01-01

    We present the very first, fully calibrated H2 1--0 S(1) image of the entire 30 Doradus nebula. The observations were carried out using the NOAO Extremely Wide Field Infrared Imager on the CTIO 4-meter telescope. Together with a Brγ image of 30 Dor taken by NEWFIRM, our images reveal the morphologies of the warm molecular gas and ionized gas in 30 Doradus. Based on the morphologies of H2 and Brγ, line ratio H2 to Brγ, and Cloudy models, we found that the H2 emission is formed inside the photodissociation regions of 30 Doradus, very close to the surface in association with the ionization front of the HII region. We also suggest that the bright H2-emitting area, which expands from the northeast to the southwest of R136, is a photodissociation region viewed face-on, while many clumps and elephant trunk features located at the outer shells of 30 Doradus are also photodissociation regions viewed edge-on. The characteristic radiation to gas pressure ratio is evaluated at selected regions in 30 Doradus, and we conclude that radiation pressure is not the dominating force at the current phase of 30 Doradus, while the pressurization of stellar winds and the injection of photoevaporative flows are likely the major feedback mechanisms acting to reduce the observed ionization parameter in 30 Doradus.

  15. Studies of the Twin Helix Parametric-resonance Ionization Cooling Channel with COSY INFINITY

    SciTech Connect

    J.A. Maloney, K.B. Beard, R.P. Johnson, A. Afanasev, S.A. Bogacz, Y.S. Derbenev, V.S. Morozov, B. Erdelyi

    2012-07-01

    A primary technical challenge to the design of a high luminosity muon collider is an effective beam cooling system. An epicyclic twin-helix channel utilizing parametric-resonance ionization cooling has been proposed for the final 6D cooling stage. A proposed design of this twin-helix channel is presented that utilizes correlated optics between the horizontal and vertical betatron periods to simultaneously focus transverse motion of the beam in both planes. Parametric resonance is induced in both planes via a system of helical quadrupole harmonics. Ionization cooling is achieved via periodically placed wedges of absorbing material, with intermittent rf cavities restoring longitudinal momentum necessary to maintain stable orbit of the beam. COSY INFINITY is utilized to simulate the theory at first order. The motion of particles around a hyperbolic fixed point is tracked. Comparison is made between the EPIC cooling channel and standard ionization cooling effects. Cooling effects are measured, after including stochastic effects, for both a single particle and a distribution of particles.

  16. Multielectron coincidence study of the double Auger decay of 3d-ionized krypton

    SciTech Connect

    Andersson, E.; Hedin, L.; Rubensson, J.-E.; Karlsson, L.; Feifel, R.; Fritzsche, S.; Linusson, P.; Eland, J. H. D.

    2010-10-15

    Multielectron coincidence data for triple ionization of krypton have been recorded above the 3d ionization threshold at two photon energies (140 and 150 eV). Three principal transition pathways have been observed, two involving double Auger transitions from Kr{sup +}, and one involving single Auger transitions from Kr{sup 2+} created by direct single-photon double ionization. The decay of the 3d{sup 9} {sup 2}D{sub 5/2,3/2} states in Kr{sup +} has been analyzed in some detail and is found to be strongly dominated by cascade processes where two electrons with well-defined energies are emitted. The decay paths leading to the 4s{sup 2}4p{sup 3} {sup 4}S, {sup 2}D, and {sup 2}P states of Kr{sup 3+} are analyzed and energies of seven intermediate states in Kr{sup 2+} are given. A preliminary investigation of the decay paths from Kr{sup +} 3d{sup 9}4p{sup 5}nl shake-up states has also been carried out.

  17. Study of the replacement correction factors for ionization chamber dosimetry by Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Wang, Lilie

    In ionization chamber radiation dosimetry, the introduction of the ion chamber into medium will unavoidably distort the radiation field near the chamber because the chamber cavity material (air) is different from the medium. A replacement correction factor, Prepl was introduced in order to correct the chamber readings to give an accurate radiation dose in the medium without the presence of the chamber. Generally it is very hard to measure the values of Prepl since they are intertwined with the chamber wall effect. In addition, the P repl values always come together with the stopping-power ratio of the two media involved. This makes the problem of determining the P repl values even more complicated. Monte Carlo simulation is an ideal method to investigate the replacement correction factors. In this study, four different methods of calculating the values of Prepl by Monte Carlo simulation are discussed. Two of the methods are designated as 'direct' methods in the sense that the evaluation of the stopping-power ratio is not necessary. The systematic uncertainties of the two direct methods are estimated to be about 0.1-0.2% which comes from the ambiguous definition of the energy cutoff Delta used in the Spencer-Attix cavity theory. The two direct methods are used to calculate the values of P repl for both plane-parallel chambers and cylindrical thimble chambers in either electron beams or photon beams. The calculation results are compared to measurements. For electron beams, good agreements are obtained. For thimble chambers in photon beams, significant discrepancies are observed between calculations and measurements. The experiments are thus investigated and the procedures are simulated by the Monte Carlo method. It is found that the interpretation of the measured data as the replacement correction factors in dosimetry protocols are not correct. In applying the calculation to the BIPM graphite chamber in a 60Co beam, the calculated values of P repl differ from those

  18. Backbone Relaxation Coupled to the Ionization of Internal Groups in Proteins: A Self-Guided Langevin Dynamics Study

    PubMed Central

    Damjanović, Ana; Wu, Xiongwu; García-Moreno E., Bertrand; Brooks, Bernard R.

    2008-01-01

    Pathways of structural relaxation triggered by ionization of internal groups in staphylococcal nuclease (SNase) were studied through multiple self-guided Langevin dynamics (SGLD) simulations. Circular dichroism, steady-state Trp fluorescence, and nuclear magnetic resonance spectroscopy have shown previously that variants of SNase with internal Glu, Asp, and Lys at positions 66 or 92, and Arg at position 66, exhibit local reorganization or global unfolding when the internal ionizable group is charged. Except for Arg-66, these internal ionizable groups have unusual pKa values and are neutral at physiological pH. The structural trends observed in the simulations are in general agreement with experimental observations. The I92D variant, which unfolds globally upon ionization of Asp-92, in simulations often exhibits extensive hydration of the protein core, and sometimes also significant perturbations of the β-barrel. In the crystal structure of the V66R variant, the β1 strand from the β-barrel is domain-swapped; in the simulations, the β1 strand is sometimes partially released. The V66K variant, which in solutions shows reorganization of six residues at the C-terminus of helix α1 and perturbations in the β-barrel structure, exhibits fraying of three residues of helix α1 in one simulation, and perturbations and partial unfolding of three β-strands in a few other simulations. In sharp contrast, very small structural changes were observed in simulations of the wild-type protein. The simulations indicate that charging of internal groups frequently triggers penetration of water into the protein interior. The pKa values of Asp-92 and Arg-66 calculated with continuum methods on SGLD-relaxed structures reached the normal values in most simulations. Detailed analysis of accuracy and performance of SGLD demonstrates that SGLD outperforms LD in sampling of alternative protein conformations without loss of the accuracy and level of detail characteristic of regular LD. PMID

  19. Monte Carlo study of electron initiated impact ionization in bulk zincblende and wurtzite phase ZnS

    NASA Astrophysics Data System (ADS)

    Bellotti, E.; Brennan, K. F.; Wang, R.; Ruden, P. P.

    1998-05-01

    This paper presents a theoretical study of the high field electronic transport properties of the cubic and hexagonal phases of zinc sulfide (ZnS) using an ensemble Monte Carlo method. Essential features of the model are the inclusion of realistic energy band structures calculated from a local pseudopotential method and numerically calculated impact ionization transition rates. The polar optical phonon scattering rate has also been computed numerically from the band structure. The relevant transport quantities have been computed for field values between 100 kV/cm and 2 MV/cm. On the basis of these calculations it is predicted that the electron distribution is cooler and the average energy lower in the wurtzite phase than in the zincblende phase over the entire field range examined. The difference in average energy between the two phases becomes pronounced for field magnitudes above 1 MV/cm while it is smaller in the field range between 700 kV/cm and 1 MV/cm. As a result, the ionization coefficients are expected to be higher in the zincblende phase than in the wurtzite phase. This can be attributed to differences in the density of states between the two polytypes. The quantum yield has also been computed. It is found that even though the threshold for impact ionization is relatively hard in both polytypes, the threshold for the wurtzite phase is harder than the threshold for the zincblende phase.

  20. Ionization chamber

    DOEpatents

    Walenta, Albert H.

    1981-01-01

    An ionization chamber has separate drift and detection regions electrically isolated from each other by a fine wire grid. A relatively weak electric field can be maintained in the drift region when the grid and another electrode in the chamber are connected to a high voltage source. A much stronger electric field can be provided in the detection region by connecting wire electrodes therein to another high voltage source. The detection region can thus be operated in a proportional mode when a suitable gas is contained in the chamber. High resolution output pulse waveforms are provided across a resistor connected to the detection region anode, after ionizing radiation enters the drift region and ionize the gas.

  1. Ionization chamber

    DOEpatents

    Walenta, A.H.

    An ionization chamber is described which has separate drift and detection regions electrically isolated from each other by a fine wire grid. A relatively weak electric field can be maintained in the drift region when the grid and another electrode in the chamber are connected to a high voltage source. A much stronger electric field can be provided in the detection region by connecting wire electrodes therein to another high voltage source. The detection region can thus be operated in a proportional mode when a suitable gas is contained in the chamber. High resolution output pulse waveforms are provided across a resistor connected to the detection region anode, after ionizing radiation enters the drift region and ionizes the gas.

  2. IONIZATION CHAMBER

    DOEpatents

    Redman, W.C.; Shonka, F.R.

    1958-02-18

    This patent describes a novel ionization chamber which is well suited to measuring the radioactivity of the various portions of a wire as the wire is moved at a uniform speed, in order to produce the neutron flux traverse pattern of a reactor in which the wire was previously exposed to neutron radiation. The ionization chamber of the present invention is characterized by the construction wherein the wire is passed through a tubular, straight electrode and radiation shielding material is disposed along the wire except at an intermediate, narrow area where the second electrode of the chamber is located.

  3. Unexpected lateral-lithiation-induced alkylative ring opening of tetrahydrofurans in deep eutectic solvents: synthesis of functionalised primary alcohols.

    PubMed

    Sassone, Francesca C; Perna, Filippo M; Salomone, Antonio; Florio, Saverio; Capriati, Vito

    2015-06-11

    o-Tolyl-substituted tetrahydrofurans undergo highly regioselective ring opening with the concomitant formation of new C-C bonds as the result of a lateral lithiation reaction. This reaction provides a new method for the synthesis of functionalised primary alcohols and can be run directly in protic eutectic mixtures as benign reaction media at 0 °C and under air, competitively with protonolysis. PMID:25959580

  4. Study of Simvastatin Self-Association Using Electrospray-Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Vetrova, E. V.; Lekar, A. V.; Filonova, O. V.; Borisenko, S. N.; Maksimenko, E. V.; Borisenko, N. I.

    2015-07-01

    Self-association of simvastatin, which is widely used to treat coronary heart disease, was investigated using electrospray-ionization mass spectrometry. Formation of simvastatin self-associates in various solvents was demonstrated using mass spectrometry. Solvation effects were shown to play a special role in the formation of the self-associates. Self-associates containing from two to fi ve simvastatin molecules were detected in mass spectra of an aqueous MeOH (20%) solution of simvastatin. The formation of simvastatin self-associates could compete with the complexation of supramolecular structures during the synthesis of new generation drugs.

  5. Status of Studies of Achromat-based 6D Ionization Cooling Rings for Muons

    SciTech Connect

    Ding, X.; Kirk, H.; Cline, D.; Garren, A.A.; Berg, J.S.

    2011-09-04

    Six dimensional ionization cooling of muons is needed to achieve the necessary luminosity for a muon collider. If that cooling could occur over multiple turns in a closed ring, there would be significant cost savings over a single-pass cooling channel. We report on the status of a cooling ring with achromatic arcs. The achromatic design permits the design to easily switch between a closed ring and a snaking geometry on injection or extraction from the ring. The ring is designed with sufficient space in each superperiod for injection and extraction magnets. We describe the ring's lattice design, performance, and injection/extraction requirements.

  6. A DEEP CHANDRA ACIS STUDY OF NGC 4151. III. THE LINE EMISSION AND SPECTRAL ANALYSIS OF THE IONIZATION CONE

    SciTech Connect

    Wang, Junfeng; Fabbiano, Giuseppina; Elvis, Martin; Risaliti, Guido; Karovska, Margarita; Zezas, Andreas; Mundell, Carole G.; Dumas, Gaelle; Schinnerer, Eva

    2011-11-20

    This paper is the third in a series in which we present deep Chandra ACIS-S imaging spectroscopy of the Seyfert 1 galaxy NGC 4151, devoted to study its complex circumnuclear X-ray emission. Emission features in the soft X-ray spectrum of the bright extended emission (L{sub 0.3-2{sub keV}} {approx} 10{sup 40} erg s{sup -1}) at r > 130 pc (2'') are consistent with blended brighter O VII, O VIII, and Ne IX lines seen in the Chandra HETGS and XMM-Newton RGS spectra below 2 keV. We construct emission line images of these features and find good morphological correlations with the narrow-line region clouds mapped in [O III] {lambda}5007. Self-consistent photoionization models provide good descriptions of the spectra of the large-scale emission, as well as resolved structures, supporting the dominant role of nuclear photoionization, although displacement of optical and X-ray features implies a more complex medium. Collisionally ionized emission is estimated to be {approx}<12% of the extended emission. Presence of both low- and high-ionization spectral components and extended emission in the X-ray image perpendicular to the bicone indicates leakage of nuclear ionization, likely filtered through warm absorbers, instead of being blocked by a continuous obscuring torus. The ratios of [O III]/soft X-ray flux are approximately constant ({approx}15) for the 1.5 kpc radius spanned by these measurements, indicating similar relative contributions from the low- and high-ionization gas phases at different radial distances from the nucleus. If the [O III] and X-ray emission arise from a single photoionized medium, this further implies an outflow with a wind-like density profile. Using spatially resolved X-ray features, we estimate that the mass outflow rate in NGC 4151 is {approx}2 M{sub Sun} yr{sup -1} at 130 pc and the kinematic power of the ionized outflow is 1.7 Multiplication-Sign 10{sup 41} erg s{sup -1}, approximately 0.3% of the bolometric luminosity of the active nucleus in

  7. Time-dependent density-functional study of the ionization and fragmentation of C2H2 and H2 by strong circularly polarized laser pulses

    NASA Astrophysics Data System (ADS)

    Russakoff, Arthur; Varga, Kálmán

    2015-11-01

    The ionization and fragmentation dynamics of acetylene and the hydrogen molecule driven by strong short circularly polarized laser pulses are investigated within the framework of the time-dependent density-functional theory coupled with the Ehrenfest dynamics. The effects of alignment are considered and the dynamics is compared to that driven by linearly polarized pulses. It is found that the coupled ion-electron dynamics of both molecules driven by circularly polarized pulses follows the enhanced ionization mechanism, as was found in previous theoretical studies with linearly polarized pulses. A moderate localization asymmetry in the ionization dynamics of the hydrogen molecule was also found, in qualitative agreement with previous experimental investigations.

  8. Characteristics of tetrahydrofuran-based electrolytes with magnesium alkoxide additives for rechargeable magnesium batteries

    NASA Astrophysics Data System (ADS)

    Kim, In-Tae; Yamabuki, Kazuhiro; Sumimoto, Michinori; Tsutsumi, Hiromori; Morita, Masayuki; Yoshimoto, Nobuko

    2016-08-01

    The electrochemical behavior of magnesium (Mg) metal was investigated in tetrahydrofuran (THF)-based solutions containing magnesium bromide (MgBr2) and/or magnesium ethoxide (Mg(OEt)2). THF solutions containing a single solute, MgBr2 or Mg(OEt)2, show no visible faradaic current based on Mg deposition and/or dissolution. However, the electrolyte system containing both solutes, MgBr2 + Mg(OEt)2/THF, gives a reversible current response of Mg deposition and dissolution. The ionic structure of the electrolyte system containing the binary solute was examined by infrared (IR) spectroscopy and density functional theory (DFT) calculations. It was confirmed that MgBr2 and Mg(OEt)2 are coordinated (solvated) with THF molecules to form an EtOsbnd Mgsbnd Br·4THF complex. The DFT calculations also suggest the possible formation of μ-complexes for the MgBr2/Mg(OEt)2 binary system in THF. The voltammetric responses at the Pt electrode indicate low overpotential and high coulombic efficiency for Mg deposition and dissolution in THF-based solutions containing suitable molar ratios of MgBr2 and Mg(OEt)2. The constant-current charge-discharge cycling of Mg in MgBr2 + Mg(OEt)2/THF electrolyte also shows low overpotential and good cyclability over 300 cycles.

  9. Diffusive hydrogen inter-cage migration in hydrogen and hydrogen-tetrahydrofuran clathrate hydrates.

    PubMed

    Cao, Huayu; English, Niall J; MacElroy, J M D

    2013-03-01

    Classical equilibrium molecular dynamics simulations have been performed to investigate the diffusive properties of inter-cage hydrogen migration in both pure hydrogen and mixed hydrogen-tetrahydrofuran sII hydrates at 0.05 kbar from 200 K and up to 250-260 K. For mixed H2-THF systems in which there is single H2 occupation of the small cage (labelled "1S1L"), we found that no H2 migration occurs. However, for more densely filled H2-THF and pure-H2 systems, in which there is more than single H2 occupation in the small cage, there is an onset of inter-cage H2 migration events from the small cages to neighbouring cavities at around 200 K. The mean square displacements of the hydrogen molecules were fitted to a mathematical model consisting of an anomalous term and a Fickian component, and nonlinear regression fitting was conducted to estimate long-time (inter-cage) diffusivities. An approximate Arrhenius temperature relationship for the diffusion coefficient was examined and an estimation of the hydrogen hopping energy barrier was calculated for each system. PMID:23485313

  10. An efficient and economical process for lignin depolymerization in biomass-derived solvent tetrahydrofuran.

    PubMed

    Long, Jinxing; Zhang, Qi; Wang, Tiejun; Zhang, Xinghua; Xu, Ying; Ma, Longlong

    2014-02-01

    The depolymerization of renewable lignin for phenolic monomer, a versatile biochemical and precursor for biofuel, has attracted increasing attention. Here, an efficient base-catalyzed depolymerization process for this natural aromatic polymer is presented with cheap industrial solid alkali MgO and biomass-derived solvent tetrahydrofuran (THF). Results showed that more than 13.2% of phenolic monomers were obtained under 250°C for 15 min, because of the excellent lignin dissolution of THF and its promotion effect on the catalytic activity of MgO. Furthermore, comparison characterization on the raw material, products and residual solid using elemental analysis, FT-IR, TG-DSC, Py-GC-MS and chemo-physical absorption and desorption demonstrated that this base-catalyzed process can inhibit char formation significantly. Whereas, the fact that thermal repolymerization of oligomer on the pore and surface of catalyst resulting in the declination of the catalytic performance is responsible for the residue formation. PMID:24370950

  11. Preparations, structures and properties of heterobimetallic complexes based on tetrahydrofuran-2,3,4,5-tetracarboxylate

    NASA Astrophysics Data System (ADS)

    Jia, Tian-Jing; Li, Shu-Mu; Cao, Wei; Li, Li-Cun; Zheng, Xiang-Jun; Yuan, Da-Qiang

    2013-05-01

    Transition heterobimetallic metal-organic frameworks based on tetrahydrofuran-2,3,4,5-tetracarboxylicate (FTA), namely [M(H2O)6][Cu2M(FTA)2(H2O)2]·4H2O [M=Mn (1), Co (2)], and [CuZn(FTA)(H2O)5]·H2O (3) have been synthesized and characterized. Single-crystal X-ray diffraction indicates that complexes 1 and 2 are isomorphic. In 1 and 2, FTA ligand links the metal ions to a 2-D wave-like negative-charged layer with a topology of {4;62}2{4;63;82}2{6}. They possess 1-D channels with [M(H2O)6]2+ and lattice water molecules enclathrated. While in the complex 3, Cu2+ and Zn2+ ions are bridged by FTA to a 2-D neutral layer structure with a {8}2{84;122} topology. Magnetic properties of 1-3 were analyzed in connection with their structures, which show that there exist weak antiferromagnetic interactions between metal ions.

  12. "Magic" Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The "magic" that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers.

  13. "Magic" Ionization Mass Spectrometry.

    PubMed

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The “magic” that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers. PMID:26486514

  14. Study of ozone-initiated limonene reaction products by low temperature plasma ionization mass spectrometry.

    PubMed

    Nørgaard, Asger W; Vibenholt, Anni; Benassi, Mario; Clausen, Per Axel; Wolkoff, Peder

    2013-07-01

    Limonene and its ozone-initiated reaction products were investigated in situ by low temperature plasma (LTP) ionization quadrupole time-of-flight (QTOF) mass spectrometry. Helium was used as discharge gas and the protruding plasma generated ~850 ppb ozone in front of the glass tube by reaction with the ambient oxygen. Limonene applied to filter paper was placed in front of the LTP afterglow and the MS inlet. Instantly, a wide range of reaction products appeared, ranging from m/z 139 to ca. 1000 in the positive mode and m/z 115 to ca. 600 in the negative mode. Key monomeric oxidation products including levulinic acid, 4-acetyl-1-methylcyclohexene, limonene oxide, 3-isopropenyl-6-oxo-heptanal, and the secondary ozonide of limonene could be identified by collision-induced dissociation. Oligomeric products ranged from the nonoxidized dimer of limonene (C20H30) and up to the hexamer with 10 oxygen atoms (C60H90O10). The use of LTP for in situ ozonolysis and ionization represents a new and versatile approach for the assessment of ozone-initiated terpene chemistry. PMID:23666602

  15. Study of Ozone-Initiated Limonene Reaction Products by Low Temperature Plasma Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Nørgaard, Asger W.; Vibenholt, Anni; Benassi, Mario; Clausen, Per Axel; Wolkoff, Peder

    2013-07-01

    Limonene and its ozone-initiated reaction products were investigated in situ by low temperature plasma (LTP) ionization quadrupole time-of-flight (QTOF) mass spectrometry. Helium was used as discharge gas and the protruding plasma generated ~850 ppb ozone in front of the glass tube by reaction with the ambient oxygen. Limonene applied to filter paper was placed in front of the LTP afterglow and the MS inlet. Instantly, a wide range of reaction products appeared, ranging from m/ z 139 to ca. 1000 in the positive mode and m/ z 115 to ca. 600 in the negative mode. Key monomeric oxidation products including levulinic acid, 4-acetyl-1-methylcyclohexene, limonene oxide, 3-isopropenyl-6-oxo-heptanal, and the secondary ozonide of limonene could be identified by collision-induced dissociation. Oligomeric products ranged from the nonoxidized dimer of limonene (C20H30) and up to the hexamer with 10 oxygen atoms (C60H90O10). The use of LTP for in situ ozonolysis and ionization represents a new and versatile approach for the assessment of ozone-initiated terpene chemistry.

  16. A 2D multiwavelength study of the ionized gas and stellar population in the giant H II region NGC 588

    NASA Astrophysics Data System (ADS)

    Monreal-Ibero, A.; Relaño, M.; Kehrig, C.; Pérez-Montero, E.; Vílchez, J. M.; Kelz, A.; Roth, M. M.; Streicher, O.

    2011-05-01

    Giant H II regions (GHIIRs) in nearby galaxies are a local sample in which we can study in detail processes in the interaction of gas, dust and newly formed stars which are analogous to those which occurred in episodes of higher intensity in which much of the current stellar population was born. Here, we present an analysis of NGC 588, a GHIIR in M33, based on optical Integral Field Spectroscopy data obtained with the Potsdam Multi-Aperture Spectrophotometer at the 3.5-m telescope of the Calar Alto Observatory, CAHA, together with Spitzer infrared images at 8 and 24 μm. The extinction distribution measured in the optical shows complex structure, with three maxima which correlate in position with those of the emission at 24 and 8 μm. Furthermore, the Hα luminosity absorbed by the dust within the H II region reproduces the structure observed in the 24-μm image, supporting the use of the 24-μm band as a valid tracer of recent star formation. A velocity difference of ˜50 km s-1 was measured between the areas of high and low surface brightness, which would be expected if NGC 588 were an evolved GHIIR. We have carefully identified the areas which contribute most to the line ratios measured in the integrated spectrum. Those line ratios which are used in diagnostic diagrams proposed by Baldwin, Phillips & Terlevich (i.e. the BPT diagrams) show a larger range of variation in the low surface brightness areas. The ranges are ˜0.5-1.2 dex for [N II]λ6584/Hα, 0.7-1.7 dex for [S II]λλ6717,6731/Hα and 0.3-0.5 dex for [O III]λ5007/Hβ, with higher values of [N II]λ6584/Hα and [S II]λλ6717,6731/Hα, and lower values of [O III]λ5007/Hβ in the areas of lower surface brightness. Ratios corresponding to large ionization parameter (U) are found between the peak of the emission in Hβ and the main ionizing source decreasing radially outwards within the region. Differences between the integrated and local values of the U tracers can be as high as ˜0.8 dex, notably when

  17. Time resolved studies of interfacial reactions of ozone with pulmonary phospholipid surfactants using field induced droplet ionization mass spectrometry.

    PubMed

    Kim, Hugh I; Kim, Hyungjun; Shin, Young Shik; Beegle, Luther W; Goddard, William A; Heath, James R; Kanik, Isik; Beauchamp, J L

    2010-07-29

    Field induced droplet ionization mass spectrometry (FIDI-MS) comprises a soft ionization method to sample ions from the surface of microliter droplets. A pulsed electric field stretches neutral droplets until they develop dual Taylor cones, emitting streams of positively and negatively charged submicrometer droplets in opposite directions, with the desired polarity being directed into a mass spectrometer for analysis. This methodology is employed to study the heterogeneous ozonolysis of 1-palmitoyl-2-oleoyl-sn-phosphatidylglycerol (POPG) at the air-liquid interface in negative ion mode using FIDI mass spectrometry. Our results demonstrate unique characteristics of the heterogeneous reactions at the air-liquid interface. We observe the hydroxyhydroperoxide and the secondary ozonide as major products of POPG ozonolysis in the FIDI-MS spectra. These products are metastable and difficult to observe in the bulk phase, using standard electrospray ionization (ESI) for mass spectrometric analysis. We also present studies of the heterogeneous ozonolysis of a mixture of saturated and unsaturated phospholipids at the air-liquid interface. A mixture of the saturated phospholipid 1,2-dipalmitoyl-sn-phosphatidylglycerol (DPPG) and unsaturated POPG is investigated in negative ion mode using FIDI-MS while a mixture of 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) and 1-stearoyl-2-oleoyl-sn-phosphatidylcholine (SOPC) surfactant is studied in positive ion mode. In both cases FIDI-MS shows the saturated and unsaturated pulmonary surfactants form a mixed interfacial layer. Only the unsaturated phospholipid reacts with ozone, forming products that are more hydrophilic than the saturated phospholipid. With extensive ozonolysis only the saturated phospholipid remains at the droplet surface. Combining these experimental observations with the results of computational analysis provides an improved understanding of the interfacial structure and chemistry of a surfactant layer system when

  18. Electron-correlation effects in enhanced ionization of molecules: A time-dependent generalized-active-space configuration-interaction study

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, S.; Bauch, S.; Madsen, L. B.

    2015-12-01

    We numerically study models of H2 and LiH molecules, aligned collinearly with the linear polarization of the external field, to elucidate the possible role of correlation in the enhanced-ionization (EI) phenomena. Correlation is considered at different levels of approximation with the time-dependent generalized-active-space configuration-interaction method. The results of our studies show that enhanced ionization occurs in multielectron molecules and that correlation is important, and they also demonstrate significant deviations between the results of the single-active-electron approximation and more accurate configuration-interaction methods. We further investigate the role of low-lying excited states in the EI phenomena. With the inclusion of correlation we show strong carrier-envelope-phase effects in the enhanced ionization of the asymmetric heteronuclear LiH -like molecule. The correlated calculation shows an intriguing feature of crossover in enhanced ionization with two carrier-envelope phases at critical internuclear separation.

  19. Time-dependent close-coupling studies of the electron-impact ionization of excited-state helium

    SciTech Connect

    Colgan, J.; Pindzola, M. S.

    2002-12-01

    The time-dependent close-coupling theory is applied to the study of the electron-impact ionization of helium from the excited (1s2s) configuration. Calculations are made in an effort to resolve the discrepancy between theoretical calculations and existing experimental measurements for this cross section. We find good agreement with the existing convergent close-coupling calculations of Bray and Fursa [J. Phys. B 28, L197 (1995)], but are in substantial disagreement with the experimental measurements of this quantity by Dixon et al. [J. Phys. B 9, 2617 (1976)].

  20. Micellar versus hydro-organic mobile phases for retention-hydrophobicity relationship studies with ionizable diuretics and an anionic surfactant.

    PubMed

    Ruiz-Angel, M J; Carda-Broch, S; García-Alvarez-Coque, M C; Berthod, A

    2004-03-19

    Logarithm of retention factors (log k) of a group of 14 ionizable diuretics were correlated with the molecular (log P o/w) and apparent (log P(app)) octanol-water partition coefficients. The compounds were chromatographed using aqueous-organic (reversed-phase liquid chromatography, RPLC) and micellar-organic mobile phases (micellar liquid chromatography, MLC) with the anionic surfactant sodium dodecyl sulfate (SDS), in the pH range 3-7, and a conventional octadecylsilane column. Acetonitrile was used as the organic modifier in both modes. The quality of the correlations obtained for log P(app) at varying ionization degree confirms that this correction is required in the aqueous-organic mixtures. The correlation is less improved with SDS micellar media because the acid-base equilibriums are shifted towards higher pH values for acidic compounds. In micellar chromatography, an electrostatic interaction with charged solutes is added to hydrophobic forces; consequently, different correlations should be established for neutral and acidic compounds, and for basic compounds. Correlations between log k and the isocratic descriptors log k(w), log k(wm) (extrapolated retention to pure water in the aqueous-organic and micellar-organic systems, respectively), and psi0 (extrapolated mobile phase composition giving a k = 1 retention factor or twice the dead time), and between these descriptors and log P(app) were also satisfactory, although poorer than those between log k and log P(app) due to the extrapolation. The study shows that, in the particular case of the ionizable diuretics studied, classical RPLC gives better results than MLC with SDS in the retention hydrophobicity correlations. PMID:15043280

  1. A (e,2e +ion) study of low-energy electron-impact ionization of THF

    NASA Astrophysics Data System (ADS)

    Ali, Esam; Ren, Xueguang; Ning, Chuangang; Dorn, Alexander; Madison, Don

    2015-09-01

    We have investigated the Fully Differential Cross Sections (FDCS) for electron impact induced ionization of THF (C4H8O) by low-energy (Eo = 26 eV) for three different orbital states of the highest, next highest, and next-next highest occupied molecular orbitals (HOMO, NHOMO, and Next NHOMO). Theoretical results are compared with experiment for in plane scattering with projectile scattering angles of 15°, 25°, 35°, and 50°. Different theoretical models are examined - the molecular 3 body distorted wave (M3DW), and the distorted wave Born approximation (DWBA), with the effects of the post collision interaction (PCI) treated either exactly or with the Ward-Macek approximations. This work is supported by the US National Science Foundation under Grant No. PHY-1068237 and XSEDE resources provided by the Texas Advanced Computing Center (Grant No. TG-MCA07S029).

  2. An ionization chamber with Frisch grids for studies of high-energy neutron-induced fission

    NASA Astrophysics Data System (ADS)

    Tutin, G. A.; Ryzhov, I. V.; Eismont, V. P.; Kireev, A. V.; Condé, H.; Elmgren, K.; Olsson, N.; Renberg, P.-U.

    2001-01-01

    A gridded ionization chamber for fission fragment detection is described. The chamber has been specially designed for use at the quasi-monoenergetic 7Li(p, n) neutron source at the The Svedberg Laboratory, Uppsala, Sweden. The detector permits measurements of fission fragment energy and emission angle for two targets with diameter of up to 10 cm. The time response of the chamber (⩽5 ns FWHM) is adequate to apply time-of-flight discrimination against background events induced by non-peak neutrons. Results of angular anisotropy measurements for the 232Th (n, f) and 238U(n, f) reactions in the 20-160 MeV energy range are given.

  3. Functional Proteomics Analysis to Study ATM Dependent Signaling in Response to Ionizing Radiation

    PubMed Central

    Timofeeva, Olga; Zhang, Lihua; Kirilyuk, Alexander; Zandkarimi, Fereshteh; Kaur, Prabhjit; Ressom, Habtom W.; Jung, Mira; Dritschilo, Anatoly

    2013-01-01

    Ataxia telangiectasia (AT) is a human genetic disease characterized by radiation sensitivity, impaired neuronal development and predisposition to cancer. Using a genetically defined model cell system consisting of cells expressing a kinase dead or a kinase proficient ATM gene product, we previously reported systemic alterations in major metabolic pathways that translate at the gene expression, protein and small molecule metabolite levels. Here, we report ionizing radiation induced stress response signaling arising from perturbations in the ATM gene, by employing a functional proteomics approach. Functional pathway analysis shows robust translational and post-translational responses under ATM proficient conditions, which include enrichment of proteins in the Ephrin receptor and axonal guidance signaling pathways. These molecular networks offer a hypothesis generating function for further investigations of cellular stress responses. PMID:23642045

  4. Theoretical study of the ionospheric plasma cave in the equatorial ionization anomaly region

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Tsung; Lin, C. H.; Chen, C. H.; Liu, J. Y.; Huba, J. D.; Chang, L. C.; Liu, H.-L.; Lin, J. T.; Rajesh, P. K.

    2014-12-01

    This paper investigates the physical mechanism of an unusual equatorial electron density structure, plasma cave, located underneath the equatorial ionization anomaly by using theoretical simulations. The simulation results provide important new understanding of the dynamics of the equatorial ionosphere. It has been suggested previously that unusual E>⇀×B>⇀ drifts might be responsible for the observed plasma cave structure, but model simulations in this paper suggest that the more likely cause is latitudinal meridional neutral wind variations. The neutral winds are featured by two divergent wind regions at off-equator latitudes and a convergent wind region around the magnetic equator, resulting in plasma divergences and convergence, respectively, to form the plasma caves structure. The tidal-decomposition analysis further suggests that the cave related meridional neutral winds and the intensity of plasma cave are highly associated with the migrating terdiurnal tidal component of the neutral winds.

  5. Ab initio Study on Ionization Energies of 3-Amino-1-propanol

    NASA Astrophysics Data System (ADS)

    Wang, Ke-dong; Jia, Ying-bin; Lai, Zhen-jiang; Liu, Yu-fang

    2011-06-01

    Fourteen conformers of 3-amino-1-propanol as the minima on the potential energy surface are examined at the MP2/6-311++G** level. Their relative energies calculated at B3LYP, MP3 and MP4 levels of theory indicated that two most stable conformers display the intramolecular OH···N hydrogen bonds. The vertical ionization energies of these conformers calculated with ab initio electron propagator theory in the P3/aug-cc-pVTZ approximation are in agreement with experimental data from photoelectron spectroscopy. Natural bond orbital analyses were used to explain the differences of IEs of the highest occupied molecular ortibal of conformers. Combined with statistical mechanics principles, conformational distributions at various temperatures are obtained and the temperature dependence of photoelectron spectra is interpreted.

  6. The Chandra X-Ray Observatory and its Role for the Study of Ionized Plasmas

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.

    2010-01-01

    NASA's Chandra X-Ray Observatory was launched in July of 1999. Featuring a 1000cm2-class X-ray telescope with sub-arcsecond angular resolution, the Observatory has observed targets from the solar system including the earth s moon, comets, and planets to the most distant galaxy clusters and active galactic nuclei. Capable of performing moderate energy resolution image-resolved spectroscopy using its CCD detectors, and high-resolution grating spectroscopy, the Observatory has produced, and continues to produce, valuable data and insights into the emission mechanisms of the ionized plasmas in which the X-rays originate. We present a brief overview of the Observatory to provide insight as to how to use it for your investigations. We also present an, admittedly brief and biased, overview of some of the results of investigations performed with Chandra that may be of interest to this audience.

  7. Spectroscopy of neutral and ionized PAHs. From laboratory studies to astronomical observations

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2005-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are an important and ubiquitous component of carbon-bearing materials in space. PAHs are the best-known candidates to account for the IR emission bands (UIR bands) and PAH spectral features are now being used as new probes of the ISM. PAHs are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). In the model dealing with the interstellar spectral features, PAHs are present as a mixture of radicals, ions and neutral species. PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge for laboratory astrochemistry is to reproduce (in a realistic way) the physical conditions that are associated with the emission and absorption interstellar zones. An extensive laboratory program has been developed at NASA Ames to assess the physical and chemical properties of PAHs in such environments and to describe how they influence the radiation and energy balance in space and the interstellar chemistry. PAHs, neutrals and ions, are expanded through a pulsed discharge nozzle (PDN) and probed with high-sensitivity cavity ringdown spectroscopy (CRDS). These laboratory experiments provide unique information on the spectra of free, cold large carbon molecules and ions in the gas phase from the ultraviolet and visible range to the near-infrared range. Intrinsic band profiles and band positions of cold gas-phase PAHs can now be measured with high-sensitivity spectroscopy and directly compared to the astronomical data. Preliminary conclusions from the comparison of the laboratory data with astronomical observations of interstellar and circumstellar environments will also be discussed.

  8. Photochemistry of limonene secondary organic aerosol studied with chemical ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pan, Xiang

    Limonene is one of the most abundant monoterpenes in the atmosphere. Limonene easily reacts with gas-phase oxidants in air such as NO3, ozone and OH. Secondary organic aerosol (SOA) is formed when low vapor pressure products condense into particles. Chemicals in SOA particles can undergo further reactions with oxidants and with solar radiation that significantly change SOA composition over the course of several days. The goal of this work was to characterize radiation induced reaction in SOA. To perform experiments, we have designed and constructed an Atmospheric Pressure Chemical Ionization Mass Spectrometer (APCIMS) coupled to a photochemical cell containing SOA samples. In APCIMS, (H2O)nH 3O+ clusters are generated in a 63Ni source and react with gaseous organic analytes. Most organic chemicals are not fragmented by the ionization process. We have focused our attention on limonene SOA prepared in two different ways. The first type of SOA is produced by oxidation of limonene by ozone; and the second type of SOA is formed by the NO3-induced oxidation of limonene. They model the SOA formed under daytime and nighttime conditions, respectively. Ozone initiated oxidation is the most important chemical sink for limonene both indoors, where it is used for cleaning purposes, and outdoors. Terpenes are primarily oxidized by reactions with NO3 at night time. We generated limonene SOA under different ozone and limonene concentrations. The resulting SOA samples were exposed to wavelength-tunable radiation in the UV-Visible range between 270 nm and 630 nm. The results show that the photodegradation rates strongly depend on radiation wavelengths. Gas phase photodegradation products such as acetone, formaldehyde, acetaldehyde, and acetic acid were shown to have different production rates for SOA formed in different concentration conditions. Even for SOA prepared under the lowest concentrations, the SOA photodegradation was efficient. The conclusion is that exposure of SOA to

  9. Photoelectron spectroscopic studies of polyatomic molecules: Degree of orientation and ionization of rotationally state selected, oriented molecules

    NASA Astrophysics Data System (ADS)

    Chandra, N.; Chakraborty, M.

    1991-11-01

    In this paper we report theoretical studies of angle-resolved photoelectron spectroscopy (ARPES) and of circular dichroism in photoelectron angular distribution (CDAD) for ionization in molecules oriented in a single ‖JKJMJ> rotational eigenstate. These processes have been investigated also as two of the possible alternatives to photodissociation to determine orientational distribution function of rotationally state selected, oriented molecules. Expressions are derived which can be used to calculate ARPES and CDAD for such molecular species from ab initio methods or to analyze these experimentally observed spectra for extracting information about the degree of orientation of the molecular framework. These formulas are put in their simplest possible forms using the transformation properties of the molecular point group to their full advantage. The ionization amplitude is thus shown to decompose into a sum of transitions each involving the final state wave function belonging to an irreducible representation of the point group of the target molecule. It is found that, similar to the case of photodissociation, one can determine the rotational quantum number J purely from experimental photoionization data. Expressions developed herein are used to study ARPES and CDAD for ionization in a1 orbital of those rotationally state selected and oriented spherical top molecules which transform according to the Td point symmetry group. In this case, the detection-integrated cross section, singly differential in molecular orientation, is found to be independent of the photoionization dynamics and directly gives the molecular orientational function. The other ARPES and CDAD formulas are shown to depend upon the dynamics through the integrated partial cross section σ¯, the angularly asymmetry parameter β¯, the phase shift of the continuum waves representing the photoelectron, and the phase of the dipole transition amplitudes. The formulation presented in this paper sets a

  10. Effect of fluoro substitution on the fragmentation of the K-shell excited/ionized pyridine studied by electron impact.

    PubMed

    Sakai, Masamichi; Okada, Kazumasa

    2011-07-01

    Fragmentation of the pyridine ring followed by K-shell excitation/ionization has been studied with 2-fluoropyridine (2FPy) by electron impact. Ab initio molecular orbital (MO) calculations were also carried out to investigate the electronic states correlating with specific fragment ions. The fragment ions are produced characteristically at the N 1s edge, while the spectra observed at the F 1s and C 1s edges exhibit a small difference from that at the valence ionization. The production of the C(4)H(2)(+), C(4)H(3)(+) and C(4)H(2)F(+) ions indicates that the cleavage of the N-C6 and C2-C3 bonds or the N-C2 and C5-C6 bonds is likely to occur after the N 1s excitation/ionization. Ab initio MO calculations indicate that the former fission is likely to proceed through the n(N)(1)π(2)(1)π(3)(2) and n(N)(0)π(2)(2)π(3)(2) excited states of the parent molecular dication. On the other hand, the breakage of the N-C2 and C4-C5 bonds, which specifically proceeds at the N 1s edge for 2-methylpyridine, does not occur for 2FPy. The present calculation reveals that the products of this channel are unstable by the electronegativity of fluorine and that the relative energy of the Auger-final states of 2FPy is lowered by the reorganization and electron correlation effects. PMID:21744416

  11. Preparations, structures and properties of heterobimetallic complexes based on tetrahydrofuran-2,3,4,5-tetracarboxylate

    SciTech Connect

    Jia, Tian-Jing; Li, Shu-Mu; Cao, Wei; Li, Li-Cun; Zheng, Xiang-Jun; Yuan, Da-Qiang

    2013-05-01

    Transition heterobimetallic metal-organic frameworks based on tetrahydrofuran-2,3,4,5-tetracarboxylicate (FTA), namely [M(H₂O)₆][Cu₂M(FTA)₂(H₂O)₂]·4H₂O [M=Mn (1), Co (2)], and [CuZn(FTA)(H₂O)₅]·H₂O (3) have been synthesized and characterized. Single-crystal X-ray diffraction indicates that complexes 1 and 2 are isomorphic. In 1 and 2, FTA ligand links the metal ions to a 2-D wave-like negative-charged layer with a topology of (4;6²)₂(4;6³;8²)₂(6). They possess 1-D channels with [M(H₂O)₆]²⁺ and lattice water molecules enclathrated. While in the complex 3, Cu²⁺ and Zn²⁺ ions are bridged by FTA to a 2-D neutral layer structure with a (8)₂(8⁴;12²) topology. Magnetic properties of 1–3 were analyzed in connection with their structures, which show that there exist weak antiferromagnetic interactions between metal ions. - Graphical abstract: Three heterobimetallic MOFs were constructed through the size-selectivity of TFA coordination sites for different transition metal ions based on the concept of “Hard and Soft Acids and Bases”. Highlights: • Complexes 1 and 3 contain 2-D wave-like negative-charged layers. • Complex 2 is a 2-D neutral layer structure with a (8)₂(8⁴;12²) topology. • Complexes 1–3 are the first example of heterobimetallic MOFs based on FTA. • The coordination sites of FTA show size-selectivity to metal ions.

  12. Thermodynamics of lanthanide and uranyl complexes with tetrahydrofuran-2,3,4,5-tetracarboxylic acid (THFTCA).

    SciTech Connect

    Morss, L. R.; Nash, K. L.; Tennessee Technological Univ.

    2000-01-01

    We present the results of an investigation of the thermochemistry of the complexation of La{sup 3+} Nd{sup 3+}, Eu{sup 3+}, Dy{sup 3+}, Tm{sup 3+}, and UO{sub 2}{sup 2+} by tetrahydrofuran-2,3,4,5-tetracarboxylic acid (THFTCA). This predisposed structural analog to oxydiacetic acid (ODA) has been previously shown both to exhibit greater sensitivity to lanthanide cation radius than complexes with the unconstrained ODA and to form anomalously weak complexes with UO{sub 2}{sup 2+}. Our purpose is to interpret these observations in terms of the balance between enthalpy and entropy contributions to the overall complexation thermodynamics. Enthalpies have been calculated from titration calorimetry experiments both for the protonation of the free ligand and for the formation of selected 1:1 and 1:2 complexes in pH 2-3 acidic media (I = 0.1 M). The complexation entropies for the lanthanide complexes have been calculated using the previously reported stability constants for the MH{sub 2}L{sup +}, MHL, and M(H{sub 2}L){sup 2-}. The stability constants for the uranyl complexes have been determined by potentiometric titration and these values used to calculate the thermodynamic parameters. Complexation enthalpies for the 1:1 lanthanide-THFTCA complexes (MH{sub 2}L{sup +} species) are nearly identical to those of the lanthanide ODA complexes. Therefore, the size-selectivity observed in the lanthanide-THFTCA complexes arises from the complexation entropy. The comparative weakness of the uranyl complexes with THFTCA also is accounted for thermodynamically in the entropy term. Calculations based on an electrostatic model for complexation entropy and molecular mechanics modeling are used to help interpret the experimental results.

  13. Activating tert-butyl hydroperoxide by chelated vanadates for stereoselectively preparing sidechain-functionalized tetrahydrofurans.

    PubMed

    Dönges, Maike; Amberg, Matthias; Niebergall, Mark; Hartung, Jens

    2015-06-01

    tert-Butyl hydroperoxide (TBHP) stereoselectively oxidizes substituted 4-pentenols, when activated by (ethyl)[cis-(piperidine-2,6-diyl)dimethyl] vanadates. The reaction affords (tetrahydrofuran-2-yl)methanols in up to 89% yield, and in stereoselectivity ranging between moderate (cis:trans=32:68) to excellent (>99:1). Correlating structures of 4-pentenols, differing by substitution at tetragonal and trigonal stereocenters, to configuration of products obtained from oxidative cyclization provides a reaction model explaining the origin of stereoselectivity by (i) intramolecular oxygen atom transfer to (ii) a chair-like folded alkenol, being (iii) hydrogen-bonded to one of the two aminodiolate oxygens of the chelated vanadate, having (iv) substituents in the chair-like transition structure preferentially aligned equatorially. Substituents at trigonal stereocenters improve 2,5-cis- and 2,4-trans-selectivity for oxidative 4-pentenol cyclization in case of (Z)-configuration. An (E)-substituent does not alter selectivity exerted by a terminal (Z)-substituent of similar steric size. Larger (E)-groups increase the fraction of 2,5-trans-cyclized products. The reaction model additionally implements results from vanadium-51 NMR spectroscopy and density functional theory. According to theory, the (dialkoxy)(oxo)vanadium substituent exerts in the preferred end-on conformation almost no effect on structure and bonding of the peroxide group in tert-butylperoxy vanadates. Changing conformation to a higher in energy side-on arrangement puts the vanadate-bound tert-butylperoxy group into a position to serve in a concerted reaction as combined electron acceptor and oxygen atom donor. PMID:25958253

  14. Laboratory ultrasonic and resistivity measurements on sedimentary rocks containing tetrahydrofuran hydrates

    SciTech Connect

    Pearson, C.F.; Murphy, J.R.; Hermes, R.E.; Halleck, P.M.

    1984-01-01

    In this paper, we report laboratory ultrasonic and resistivity measurements on Berea Sandstone and Austin Chalk samples saturated with a stoichiometric mixture of tetrahydrofuran (THF) and water. We used THF as the guest species rather than methane or propane gas because THF can be mixed with water to form a solution containing the proper stoichiometric proportions of the THF and water. Neither methane nor propane is soluble in water. Because THF solutions form hydrates readily at atmospheric pressure, it is an excellent experimental analogue to natural gas hydrates. Hydrate formation increased the ultrasonic P-wave velocities from a room temperature value of 2.5 km/s to 4.5 km/s at -5/sup 0/C when the pores were nearly filled with hydrates. However, lowering the temperature below -5/sup 0/C did not appreciably change the velocity. In contrast, the electrical resistivity increased nearly two orders of magnitude upon hydrate formation and continued to increase more slowly as the temperature was further decreased. In all cases the resistivities were nearly frequency independent to 30 kHz and the loss tangents were high, always greater than 5. The dielectric loss showed a linear decrease with frequency suggesting that ionic conduction through a brine phase dominates at all frequencies, even when the pores are nearly filled with hydrates. We find that the resistivities are strongly a function of the dissolved salt content of the pore water. Pore water salinity also influenced the sonic velocity, but this effect is much smaller and only important near the hydrate formation temperature. 11 references, 9 figures.

  15. Experimental and theoretical study of three-photon ionization of He(1s2p3Po)

    NASA Astrophysics Data System (ADS)

    Génévriez, Matthieu; Urbain, Xavier; Brouri, Mohand; O'Connor, Aodh P.; Dunseath, Kevin M.; Terao-Dunseath, Mariko

    2014-05-01

    A joint experimental and theoretical study of three-photon ionization of the 1s2p3Po(ML=0,±1) states of helium is presented. The ion yield is recorded in the 690-730 nm wavelength range for different laser pulse energies, using an excited helium beam produced by photodetachment of helium negative ions. Two series of asymmetric peaks due to two-photon resonances with 1snp and 1snf Rydberg states are observed. In one series, the peaks have tails towards higher frequencies, while in the other series the tails change direction for higher Rydberg states. An effective Hamiltonian is built in the dressed state picture, and a numerical model simulating the traversal of the helium atom across the laser pulse is developed. The simulated and observed ion yields are in good qualitative agreement. The observed behavior is shown to result from the contributions of two different resonantly enhanced multiphoton ionization processes, depending on the magnetic quantum number ML of the initial state. The asymmetry reversal is explained by the strong 1s2p-1s3s dynamic Stark mixing for ML=0.

  16. Phloroglucinol protects small intestines of mice from ionizing radiation by regulating apoptosis-related molecules: a comparative immunohistochemical study.

    PubMed

    Ha, Danbee; Bing, So Jin; Cho, Jinhee; Ahn, Ginnae; Kim, Dae Seung; Al-Amin, Mohammad; Park, Suk Jae; Jee, Youngheun

    2013-01-01

    Phloroglucinol (PG) is a phenolic compound isolated from Ecklonia cava, a brown algae abundant on Jeju island, Korea. Previous reports have suggested that PG exerts antioxidative and cytoprotective effects against oxidative stress. In this study, we confirmed that PG protected against small intestinal damage caused by ionizing radiation, and we investigated its protective mechanism in detail. Regeneration of intestinal crypts in the PG-treated irradiated group was significantly promoted compared with that in irradiated controls. The expression level of proapoptotic molecules such as p53, Bax, and Bak in the small intestine was downregulated and that of antiapoptotic molecules such as Bcl-2 and Bcl-X(S/L) was augmented in the PG-treated group. On histological observation of the small intestine, PG inhibited the immunoreactivity of p53, Bax, and Bak and increased that of Bcl-2 and Bcl-X(S/L). These results demonstrate the protective mechanisms of PG in mice against intestinal damage from ionizing radiation, providing the benefit of raising the apoptosis threshold of jejunal crypt cells. PMID:23117934

  17. Density functional theory study on the ionization potentials and electron affinities of thymine-formamide complexes

    NASA Astrophysics Data System (ADS)

    Sun, Haitao; Tang, Ke; Li, Yanmin; Su, Chunfang; Zhou, Zhengyu; Wang, Zhizhong

    The effect of hydrogen bond interactions on ionization potentials (IPs) and electron affinities (EAs) of thymine-formamide complexes (T-F) have been investigated employing the density functional theory B3LYP at 6-311++G(d, p) basis set level. All complexes experience a geometrical change on either electron detachment or attachment, and the change might be facilitated or hindered according to the strength of the hydrogen-bonding interaction involved. The strength of hydrogen bonds presents an opposite changing trend on the two processes. A more important role that H-bonding interaction plays in the process of electron attachment than in the process of electron detachment can be seen by a comparison of the IPs and EAs of complexes with that of isolated thymine. Futhermore, the EAs of isolated thymine are in good agreement with the experimental values (AEA is 0.79 eV, VEA is -0.29 eV [Wetmore et al., Chem Phys Lett 2000, 322, 129]). The calculated total NPA charge distributions reveal that nearly all the negative charges locate on thymine monomer in the anions and even in the cationic states, there are a few negative charges on thymine monomer. An analysis of dissociation energies predicts the processes T-F+→ T++ F and T-F- → T- + F to be the most energetically favorable for T-F+ and T-F-, respectively. Content:text/plain; charset="UTF-8"

  18. Atmospheric Ionization Measurements

    NASA Astrophysics Data System (ADS)

    Slack, Thomas; Mayes, Riley

    2015-04-01

    The measurement of atmospheric ionization is a largely unexplored science that potentially holds the key to better understanding many different geophysical phenomena through this new and valuable source of data. Through the LaACES program, which is funded by NASA through the Louisiana Space Consortium, students at Loyola University New Orleans have pursued the goal of measuring high altitude ionization for nearly three years, and were the first to successfully collect ionization data at altitudes over 30,000 feet using a scientific weather balloon flown from the NASA Columbia Scientific Ballooning Facility in Palestine, TX. In order to measure atmospheric ionization, the science team uses a lightweight and highly customized sensor known as a Gerdien condenser. Among other branches of science the data is already being used for, such as the study of aerosol pollution levels in the atmosphere, the data may also be useful in meteorology and seismology. Ionization data might provide another variable with which to predict weather or seismic activity more accurately and further in advance. Thomas Slack and Riley Mayes have served as project managers for the experiment, and have extensive knowledge of the experiment from the ground up. LaSPACE Louisiana Space Consortium.

  19. Long-Term Effects of Exposure to Ionizing Irradiation on Periodontal Health Status - The Tinea capitis Cohort Study.

    PubMed

    Sadetzki, Siegal; Chetrit, Angela; Sgan-Cohen, Harold D; Mann, Jonathan; Amitai, Tova; Even-Nir, Hadas; Vered, Yuval

    2015-01-01

    Studies among long-term survivors of childhood cancer who had received high-dose irradiation therapy of 4-60 Gy, demonstrated acute and chronic dental effects, including periodontal diseases. However, the possible effects of low to moderate doses of radiation on dental health are sparse. The aim of this study is to investigate the association between childhood exposure to low-moderate doses of ionizing radiation and periodontal health following 50 years since exposure. The study population included 253 irradiated subjects (treated for Tinea capitis in the 1950s) and, 162 non-irradiated subjects. The estimated dose to the teeth was 0.2-0.4 Gy. Dental examination was performed according to the community periodontal index (CPI). Socioeconomic and health behavior variables were obtained through a personal questionnaire. Periodontal disease was operationally defined as "deep periodontal pockets." A multivariate logistic regression model was used for the association of irradiation status and other independent variables with periodontal status. The results showed that among the irradiated subjects, 23%, (95% CI 18-28%) demonstrated complete edentulousness or insufficient teeth for CPI scoring as compared to 13% (95% CI 8-19%) among the non-irradiated subjects (p = 0.01). Periodontal disease was detected among 54% of the irradiated subjects as compared to 40% of the non-irradiated (p = 0.008). Controlling for education and smoking, the ORs for the association between radiation and periodontal disease were 1.61 (95% CI 1.01-2.57) and 1.95 (95% CI 1.1-3.5) for ever never and per 1 Gy absorbed in the salivary gland, respectively. In line with other studies, a protective effect for periodontal diseases among those with high education and an increased risk for ever smokers were observed. In conclusion, childhood exposure to low-moderate doses of ionizing radiation might be associated with later outcomes of dental health. The results add valuable data on the long

  20. Long-Term Effects of Exposure to Ionizing Irradiation on Periodontal Health Status – The Tinea capitis Cohort Study

    PubMed Central

    Sadetzki, Siegal; Chetrit, Angela; Sgan-Cohen, Harold D.; Mann, Jonathan; Amitai, Tova; Even-Nir, Hadas; Vered, Yuval

    2015-01-01

    Studies among long-term survivors of childhood cancer who had received high-dose irradiation therapy of 4–60 Gy, demonstrated acute and chronic dental effects, including periodontal diseases. However, the possible effects of low to moderate doses of radiation on dental health are sparse. The aim of this study is to investigate the association between childhood exposure to low–moderate doses of ionizing radiation and periodontal health following 50 years since exposure. The study population included 253 irradiated subjects (treated for Tinea capitis in the 1950s) and, 162 non-irradiated subjects. The estimated dose to the teeth was 0.2–0.4 Gy. Dental examination was performed according to the community periodontal index (CPI). Socioeconomic and health behavior variables were obtained through a personal questionnaire. Periodontal disease was operationally defined as “deep periodontal pockets.” A multivariate logistic regression model was used for the association of irradiation status and other independent variables with periodontal status. The results showed that among the irradiated subjects, 23%, (95% CI 18–28%) demonstrated complete edentulousness or insufficient teeth for CPI scoring as compared to 13% (95% CI 8–19%) among the non-irradiated subjects (p = 0.01). Periodontal disease was detected among 54% of the irradiated subjects as compared to 40% of the non-irradiated (p = 0.008). Controlling for education and smoking, the ORs for the association between radiation and periodontal disease were 1.61 (95% CI 1.01–2.57) and 1.95 (95% CI 1.1–3.5) for ever never and per 1 Gy absorbed in the salivary gland, respectively. In line with other studies, a protective effect for periodontal diseases among those with high education and an increased risk for ever smokers were observed. In conclusion, childhood exposure to low-moderate doses of ionizing radiation might be associated with later outcomes of dental health. The results add

  1. Two-photon ionization of helium studied with the multiconfigurational time-dependent Hartree-Fock method

    SciTech Connect

    Hochstuhl, David; Bonitz, Michael

    2011-02-28

    The multiconfigurational time-dependent Hartree-Fock method (MCTDHF) is applied for simulations of the two-photon ionization of helium. We present results for the single and double ionizations from the ground state for photon energies in the nonsequential regime and compare them to direct solutions of the Schroedinger equation using the time-dependent (full) configuration interaction (TDCI) method. We find that the single ionization is accurately reproduced by MCTDHF, whereas the double ionization results correctly capture the main trends of TDCI.

  2. Studies of the mechanism of the cluster formation in a thermally sampling atmospheric pressure ionization mass spectrometer

    SciTech Connect

    Albrecht, Sascha Stroh, Fred; Klopotowski, Sebastian Derpmann, Valerie Klee, Sonja Brockmann, Klaus J. Benter, Thorsten

    2014-01-15

    In this study a thermally sampling atmospheric pressure ionization mass spectrometer is described and characterized. The ion transfer stage offers the capability to sample cluster ions at thermal equilibrium and during this transfer fundamental processes possibly affecting the cluster distribution are also readily identified. Additionally, the transfer stage combines optional collision-induced dissociation (CID) analysis of the cluster composition with thermal equilibrium sampling of clusters. The performance of the setup is demonstrated with regard to the proton-bound water cluster system. The benefit of the studied processes is that they can help to improve future transfer stages and to understand cluster ion reactions in ion mobility tubes and high-pressure ion sources. In addition, the instrument allows for the identification of fragmentation and protonation reactions caused by CID.

  3. Studies of the mechanism of the cluster formation in a thermally sampling atmospheric pressure ionization mass spectrometer.

    PubMed

    Albrecht, Sascha; Klopotowski, Sebastian; Derpmann, Valerie; Klee, Sonja; Brockmann, Klaus J; Stroh, Fred; Benter, Thorsten

    2014-01-01

    In this study a thermally sampling atmospheric pressure ionization mass spectrometer is described and characterized. The ion transfer stage offers the capability to sample cluster ions at thermal equilibrium and during this transfer fundamental processes possibly affecting the cluster distribution are also readily identified. Additionally, the transfer stage combines optional collision-induced dissociation (CID) analysis of the cluster composition with thermal equilibrium sampling of clusters. The performance of the setup is demonstrated with regard to the proton-bound water cluster system. The benefit of the studied processes is that they can help to improve future transfer stages and to understand cluster ion reactions in ion mobility tubes and high-pressure ion sources. In addition, the instrument allows for the identification of fragmentation and protonation reactions caused by CID. PMID:24517784

  4. Determination of solubility products of complex compounds of certain lanthanide and actinide diiodies with 18-crown-6 in tetrahydrofuran

    SciTech Connect

    Mikheev, N.B.; Kamenskaya, A.N.; Kulyukhin, S.A.

    1988-09-01

    The existence of divalent americium in a tetrahydrofuran (THF) solution was proved for the first time. The values of the solubility products (SP) of the complex compounds with the composition of MeI{sub 2}{centered dot}18-crown-6 (Me = Sm, Eu, Yb, Am, Cf, Es, Fm) in the THF solutions were determined by the cocrystallization method. The SP values obtained are within (5.9-7.9){centered dot}10{sup {minus}12} and are close to the SP value for SrI{sub 2}{centered dot}10{sup {minus}12}, which indicates a similarity in the properties of these elements.

  5. H II Region Ionization of the Interstellar Medium: A Case Study of NGC 7538

    NASA Astrophysics Data System (ADS)

    Luisi, Matteo; Anderson, L. D.; Balser, Dana S.; Bania, T. M.; Wenger, Trey V.

    2016-06-01

    Using data from the Green Bank Telescope, we analyze the radio continuum (free–free) and radio recombination line (RRL) emission of the compact H ii region NGC 7538 (Sharpless 158). We detect extended radio continuum and hydrogen RRL emission beyond the photodissociation region (PDR) toward the north and east, but a sharp decrease in emission toward the south and west. This indicates that a non-uniform PDR morphology is affecting the amount of radiation “leaking” through the PDR. The strongest carbon RRL emission is found in the western PDR that appears to be dense. We compute a leaking fraction f R = 15 ± 5% of the radio continuum emission measured in the plane of the sky which represents a lower limit when accounting for the three-dimensional geometry of the region. We detect an average {}4{{{He}}}+/{{{H}}}+ abundance ratio by number of 0.088 ± 0.003 inside the H ii region and a decrease in this ratio with increasing distance from the region beyond the PDR. Using Herschel Space Observatory data, we show that small dust temperature enhancements to the north and east of NGC 7538 coincide with extended radio emission, but that the dust temperature enhancements are mostly contained within a second PDR to the east. Unlike the giant H ii region W43, the radiation leaking from NGC 7538 seems to only affect the local ambient medium. This suggests that giant H ii regions may have a large effect in maintaining the ionization of the interstellar medium.

  6. Electrospray Ionization Mechanisms for Large Polyethylene Glycol Chains Studied Through Tandem Ion Mobility Spectrometry

    NASA Astrophysics Data System (ADS)

    Larriba, Carlos; de la Mora, Juan Fernandez; Clemmer, David E.

    2014-08-01

    Ion mobility mass spectrometry (IMS-MS) is used to investigate the abundance pattern, n z (m) of Poly-(ethyleneglycol) (PEG) electrosprayed from water/methanol as a function of mass and charge state. We examine n z (m) patterns from a diversity of solution cations, primarily dimethylammonium and triethylammonium. The ability of PEG chains to initially attach to various cations in the spraying chamber, and to retain them (or not) on entering the MS, provide valuable clues on the ionization mechanism. Single chains form in highly charged and extended shapes in most buffers. But the high initial charge they hold under atmospheric pressure is lost on transit to the vacuum system for large cations. In contrast, aggregates of two or more chains carry in all buffers at most the Rayleigh charge of a water drop of the same volume. This shows either that they form via Dole's charge residue mechanism, or that highly charged and extended aggregates are ripped apart by Coulombic repulsion. IMS-IMS experiments in He confirm these findings, and provide new mechanistic insights on the stability of aggregates. When collisionally activated, initially globular dimers are stable. However, slightly nonglobular dimers projecting out a linear appendix are segregated into two monomeric chains. The breakup of a charged dimer is therefore a multi-step process, similar to the Fenn-Consta polymer extrusion mechanism. The highest activation barrier is associated to the first step, where a short chain segment carrying a single charge escapes (ion-evaporates) from a charged drop, leading then to gradual field extrusion of the whole chain out of the drop.

  7. Dynamical and energetic properties of hydrogen and hydrogen-tetrahydrofuran clathrate hydrates.

    PubMed

    Gorman, Paul D; English, Niall J; MacElroy, J M D

    2011-11-28

    Classical equilibrium molecular dynamics (MD) simulations have been performed to investigate the dynamical and energetic properties in hydrogen and mixed hydrogen-tetrahydrofuran sII hydrates at 30 and 200 K and 0.05 kbar, and also at intermediate temperatures, using SPC/E and TIP4P-2005 water models. The potential model is found to have a large impact on overall density, with the TIP4P-2005 systems being on average 1% more dense than their SPC/E counterparts, due to the greater guest-host interaction energy. For the lightly-filled mixed H(2)-THF system, in which there is single H(2) occupation of the small cage (1s1l), we find that the largest contribution to the interaction energy of both types of guest is the van der Waals component with the surrounding water molecules in the constituent cavities. For the more densely-filled mixed H(2)-THF system, in which there is double H(2) occupation in the small cage (2s1l), we find that there is no dominant component (i.e., van der Waals or Coulombic) in the H(2) interaction energy with the rest of the system, but for the THF molecules, the dominant contribution is again the van der Waals interaction with the surrounding cage-water molecules; again, the Coulombic component increases in importance with increasing temperature. The lightly-filled pure H(2) hydrate (1s4l) system exhibits a similar pattern vis-à-vis the H(2) interaction energy as for the lightly-filled mixed H(2)-THF system, and for the more densely-filled pure H(2) system (2s4l), there is no dominant component of interaction energy, due to the multiple occupancy of the cavities. By consideration of Kubic harmonics, there is some evidence of preferential alignment of the THF molecules, particularly at 200 K; this was found to arise at higher temperatures due to transient hydrogen bonding of the oxygen atom in THF molecules with the surrounding cage-water molecules. PMID:21968598

  8. On interfacial properties of tetrahydrofuran: Atomistic and coarse-grained models from molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Garrido, J. M.; Algaba, J.; Míguez, J. M.; Mendiboure, B.; Moreno-Ventas Bravo, A. I.; Piñeiro, M. M.; Blas, F. J.

    2016-04-01

    We have determined the interfacial properties of tetrahydrofuran (THF) from direct simulation of the vapor-liquid interface. The molecules are modeled using six different molecular models, three of them based on the united-atom approach and the other three based on a coarse-grained (CG) approach. In the first case, THF is modeled using the transferable parameters potential functions approach proposed by Chandrasekhar and Jorgensen [J. Chem. Phys. 77, 5073 (1982)] and a new parametrization of the TraPPE force fields for cyclic alkanes and ethers [S. J. Keasler et al., J. Phys. Chem. B 115, 11234 (2012)]. In both cases, dispersive and coulombic intermolecular interactions are explicitly taken into account. In the second case, THF is modeled as a single sphere, a diatomic molecule, and a ring formed from three Mie monomers according to the SAFT-γ Mie top-down approach [V. Papaioannou et al., J. Chem. Phys. 140, 054107 (2014)]. Simulations were performed in the molecular dynamics canonical ensemble and the vapor-liquid surface tension is evaluated from the normal and tangential components of the pressure tensor along the simulation box. In addition to the surface tension, we have also obtained density profiles, coexistence densities, critical temperature, density, and pressure, and interfacial thickness as functions of temperature, paying special attention to the comparison between the estimations obtained from different models and literature experimental data. The simulation results obtained from the three CG models as described by the SAFT-γ Mie approach are able to predict accurately the vapor-liquid phase envelope of THF, in excellent agreement with estimations obtained from TraPPE model and experimental data in the whole range of coexistence. However, Chandrasekhar and Jorgensen model presents significant deviations from experimental results. We also compare the predictions for surface tension as obtained from simulation results for all the models with

  9. On interfacial properties of tetrahydrofuran: Atomistic and coarse-grained models from molecular dynamics simulation.

    PubMed

    Garrido, J M; Algaba, J; Míguez, J M; Mendiboure, B; Moreno-Ventas Bravo, A I; Piñeiro, M M; Blas, F J

    2016-04-14

    We have determined the interfacial properties of tetrahydrofuran (THF) from direct simulation of the vapor-liquid interface. The molecules are modeled using six different molecular models, three of them based on the united-atom approach and the other three based on a coarse-grained (CG) approach. In the first case, THF is modeled using the transferable parameters potential functions approach proposed by Chandrasekhar and Jorgensen [J. Chem. Phys. 77, 5073 (1982)] and a new parametrization of the TraPPE force fields for cyclic alkanes and ethers [S. J. Keasler et al., J. Phys. Chem. B 115, 11234 (2012)]. In both cases, dispersive and coulombic intermolecular interactions are explicitly taken into account. In the second case, THF is modeled as a single sphere, a diatomic molecule, and a ring formed from three Mie monomers according to the SAFT-γ Mie top-down approach [V. Papaioannou et al., J. Chem. Phys. 140, 054107 (2014)]. Simulations were performed in the molecular dynamics canonical ensemble and the vapor-liquid surface tension is evaluated from the normal and tangential components of the pressure tensor along the simulation box. In addition to the surface tension, we have also obtained density profiles, coexistence densities, critical temperature, density, and pressure, and interfacial thickness as functions of temperature, paying special attention to the comparison between the estimations obtained from different models and literature experimental data. The simulation results obtained from the three CG models as described by the SAFT-γ Mie approach are able to predict accurately the vapor-liquid phase envelope of THF, in excellent agreement with estimations obtained from TraPPE model and experimental data in the whole range of coexistence. However, Chandrasekhar and Jorgensen model presents significant deviations from experimental results. We also compare the predictions for surface tension as obtained from simulation results for all the models with

  10. Fragmentation study and analysis of benzoylurea insecticides and their analogs by liquid chromatography-electrospray ionization-mass spectrometry.

    PubMed

    Yang, Xia; Xia, Yan; Liao, Xun; Zuo, Yumin; Liao, Yiping; Liu, Huwei

    2006-08-15

    Two insecticides, diflubenzuron and hexaflumuron, and their analogs have been separated by liquid chromatography (LC) and their fragmentation mechanisms were studied by electrospray ionization-ion trap mass spectrometry (ESI-MS(n)) in both positive- and negative-ion modes. Sequential product ion fragmentation experiments were performed in order to explain the degradation pathways and identify their predominant fragment ions. It was indicated that the characteristic fragmentations are the loss of neutral molecules such as HF, HNO(2), and HCl to form stable ring structure or the cleavage of the acyl amine to form conjugated structure. Furthermore, the separation and determination of two benzoylurea (BU) insecticides and their analogs in the water samples from Weiming Lake have been described by LC-ESI-MS in negative mode. By the use of deprotonated molecule for quantitative analysis at low capillary exit voltage, low detection limits, good linearity and reproducibility for standard solutions were presented. PMID:18970732

  11. Trichloroethylene radicals generated by ionizing radiation. An EPR/spin trapping study.

    PubMed

    Carmichael, A J; Steel-Goodwin, L

    1997-06-01

    Trichloroethylene (TCE) was exposed in the presence of the spin trap N-tert-butyl-alpha-phenyl nitrone (PBN, 0.1 M) to ionizing radiation from two different sources in an attempt to determine the origin of the spin-trapped radicals generating the EPR spectra in precision cut liver slices. TCE samples were irradiated with 18 MeV electrons to a total dose of 1000 Gy in a linear accelerator (LINAC) or exposed to 60Co gamma-rays to total doses of 100 Gy and 1000 Gy. The results show that three PBN adducts were generated during the LINAC radiations. Two of these spin adducts correspond to the addition of carbon-centered radicals to PBN, and the third adduct is consistent with a decomposition product of PBN. The predominant carbon-entered radical yields a PBN adduct that is more stable, persists for over 24 h and has identical hyperfine coupling constants (aN = 1.61 mT, aH beta = 0.325 mT) to the PBN adduct obtained when precision-cut liver slices were exposed to TCE. Gamma radiation (100 Gy) of TCE yields PBN adducts with lower primary nitrogen hyperfine coupling constants (aN = 1.45 mT and aN = 1.54 mT). The results (gamma-radiation) suggest that the carbon-centered radical is formed on a single TCE carbon that is different than the predominant radical formed during LINAC radiations. This difference is confirmed by experiments using 13C-TCE. The results further suggest that, during gamma-radiation of TCE, the radicals are formed by dechlorination at the TCE carbon containing two chlorine atoms. The results obtained during LINAC radiations suggest that the predominant radical is formed by dechlorination at the TCE carbon containing a single chlorine and a single proton. In addition, it is possible that this radical is the initial TCE radical formed during exposure of liver slices to TCE. PMID:9219030

  12. Characteristics of low-temperature plasma ionization for ambient mass spectrometry compared to electrospray ionization and atmospheric pressure chemical ionization.

    PubMed

    Albert, Anastasia; Engelhard, Carsten

    2012-12-18

    Ambient desorption/ionization mass spectrometry (ADI-MS) is an attractive method for direct analysis with applications in homeland security, forensics, and human health. For example, low-temperature plasma probe (LTP) ionization was successfully used to detect, e.g., explosives, drugs, and pesticides directly on the target. Despite the fact that the field is gaining significant attention, few attempts have been made to classify ambient ionization techniques based on their ionization characteristics and performance compared to conventional ionization sources used in mass spectrometry. In the present study, relative ionization efficiencies (RIEs) for a large group of compound families were determined with LTP-Orbitrap-MS and compared to those obtained with electrospray ionization mass spectrometry (ESI-MS) and atmospheric pressure chemical ionization mass spectrometry (APCI-MS). RIEs were normalized against one reference compound used across all methods to ensure comparability of the results. Typically, LTP analyte ionization through protonation/deprotonation (e.g., 4-acetamidophenol) was observed; in some cases (e.g., acenaphthene) radicals were formed. Amines, amides, and aldehydes were ionized successfully with LTP. A benefit of LTP over conventional methods is the possibility to successfully ionize PAHs and imides. Here, the studied model compounds could be detected by neither APCI nor ESI. LTP is a relatively soft ionization method because little fragmentation of model compounds was observed. It is considered to be an attractive method for the ionization of low molecular weight compounds over a relatively wide polarity range. PMID:23134531

  13. Effect of noncovalent interactions on conformers of the n-butylbenzene monomer studied by mass analyzed threshold ionization spectroscopy and basis-set convergent ab initio computations.

    PubMed

    Tong, Xin; Cerný, Jirí; Müller-Dethlefs, Klaus; Dessent, Caroline E H

    2008-07-01

    Two conformational isomers of the aromatic hydrocarbon n-butylbenzene have been studied using two-color MATI (mass analyzed threshold ionization) spectroscopy to explore the effect of conformation on ionization dynamics. Cationic states of g auche-conformer III and anti- conformers IV were selectively produced by two-color excitation via the respective S 1 origins. Adiabatic ionization potentials of the gauche- and anti-conformations were determined to be 70146 and 69872 +/- 5 cm (-1) respectively. Spectral features and vibrational modes are interpreted with the aid of MP2/cc-pVDZ ab initio calculations, and ionization-induced changes in the molecular conformations are discussed. Complete basis set (CBS) ab initio studies at MP2 level reveal reliable energetics for all four n-butylbenzene conformers observed in earlier two-color REMPI (resonance enhanced multiphoton ionization) spectra. For the S 0 state, the energies of conformer III, IV and V are above conformer I by 130, 289, 73 cm (-1), respectively. Furthermore, the combination of the CBS calculations with the measured REMPI, MATI spectra allowed the determination of the energetics of all four conformers in the S 1 and D 0 states. PMID:18533642

  14. Regio- and stereoselective Pd-catalyzed direct arylation of unactivated sp(3) C(3)-H bonds of tetrahydrofuran and 1,4-benzodioxane systems.

    PubMed

    Parella, Ramarao; Babu, Srinivasarao Arulananda

    2015-02-20

    An auxiliary-enabled Pd-catalyzed highly regio- and stereoselective sp(3) C-H activation and the direct arylation of the C3-position of oxygen heterocycles, such as tetrahydrofuran and 1,4-benzodioxane systems, are reported. An efficient stereoselective construction of cis 2,3-disubstituted tetrahydrofuran derivatives (analogues of norlignans) and cis 2,3-disubstituted 1,4-benzodioxane derivatives (analogues of neolignans) is described. The direct C(sp(3))-H arylation of the C3-position of (R)- or (S)- tetrahydrofuran-2-carboxamides furnished the corresponding (2R,3R) and (2S,3S) C3-arylated THF scaffolds as major compounds with very high regio- and diastereoselectivities. The stereochemistry of the products obtained in this work were unambiguously assigned on the basis of the X-ray structure analyses of representative compounds 3b, 3e, 4p, and 7. PMID:25588549

  15. Studies of photoionization in liquids using a laser two-photon ionization conductivity technique. [Potoionization of pyrene, fluoranthene and TMPD in liquid n-pentane

    SciTech Connect

    Siomos, K.; Christophorou, L.G.

    1981-01-01

    One-photon ionization studies of solute molecules in a liquid medium are limited by the absorption of the host medium. A laser two-photon ionization (TPI) technique using a frequency tunable dye laser has been developed, whereby the photoionization threshold of a solute molecule was determined from the induced conductivity in the liquid medium under study due to electron-ion pair formation via two-photon ionization of the solute. The two-photon induced electron-ion current is measured as a function of the laser wavelength, lambda/sub laser/. In this paper, results are reported and discussed on the photoionization of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), pyrene and fluoranthene in liquid n-pentane (n-Pt).

  16. Sulfapyridine (polymorph III), sulfapyridine dioxane solvate, sulfapyridine tetrahydrofuran solvate and sulfapyridine piperidine solvate, all at 173 K.

    PubMed

    Pratt, Jamal; Hutchinson, Janna; Stevens, Cheryl L Klein

    2011-12-01

    The X-ray crystal structures of solvates of sulfapyridine have been determined to be conformational polymorphs. 4-Amino-N-(1,2-dihydropyridin-2-ylidene)benzenesulfonamide (polymorph III), C(11)H(11)N(3)O(2)S, (1), 4-amino-N-(1,2-dihydropyridin-2-ylidene)benzenesulfonamide 1,3-dioxane monosolvate, C(11)H(11)N(3)O(2)S·C(4)H(8)O(2), (2), and 4-amino-N-(1,2-dihydropyridin-2-ylidene)benzenesulfonamide tetrahydrofuran monosolvate, C(11)H(11)N(3)O(2)S·C(4)H(8)O, (3), crystallized as the imide form, while piperidin-1-ium 4-amino-N-(pyridin-2-yl)benzenesulfonamidate, C(5)H(12)N(+)·C(11)H(10)N(3)O(2)S(-), (4), crystallized as the piperidinium salt. The tetrahydrofuran and dioxane solvent molecules in their respective structures were disordered and were refined using a disorder model. Three-dimensional hydrogen-bonding networks exist in all structures between at least one sulfone O atom and the aniline N atom. PMID:22138921

  17. Continuous hydrogenation of ethyl levulinate to γ-valerolactone and 2-methyl tetrahydrofuran over alumina doped Cu/SiO2 catalyst: the potential of commercialization

    PubMed Central

    Zheng, Junlin; Zhu, Junhua; Xu, Xuan; Wang, Wanmin; Li, Jiwen; Zhao, Yan; Tang, Kangjian; Song, Qi; Qi, Xiaolan; Kong, Dejin; Tang, Yi

    2016-01-01

    Hydrogenation of levulinic acid (LA) and its esters to produce γ-valerolactone (GVL) and 2-methyl tetrahydrofuran (2-MTHF) is a key step for the utilization of cellulose derived LA. Aiming to develop a commercially feasible base metal catalyst for the production of GVL from LA, with satisfactory activity, selectivity, and stability, Al2O3 doped Cu/SiO2 and Cu/SiO2 catalysts were fabricated by co-precipitation routes in parallel. The diverse physio-chemical properties of these two catalysts were characterized by XRD, TEM, dissociative N2O chemisorptions, and Py-IR methods. The catalytic properties of these two catalysts were systematically assessed in the continuous hydrogenation of ethyl levulinate (EL) in a fixed-bed reactor. The effect of acidic property of the SiO2 substrate on the catalytic properties was investigated. To justify the potential of its commercialization, significant attention was paid on the initial activity, proper operation window, by-products control, selectivity, and stability of the catalyst. The effect of reaction conditions, such as temperature and pressure, on the performance of the catalyst was also thoroughly studied. The development of alumina doped Cu/SiO2 catalyst strengthened the value-chain from cellulose to industrially important chemicals via LA and GVL. PMID:27377401

  18. Continuous hydrogenation of ethyl levulinate to γ-valerolactone and 2-methyl tetrahydrofuran over alumina doped Cu/SiO2 catalyst: the potential of commercialization

    NASA Astrophysics Data System (ADS)

    Zheng, Junlin; Zhu, Junhua; Xu, Xuan; Wang, Wanmin; Li, Jiwen; Zhao, Yan; Tang, Kangjian; Song, Qi; Qi, Xiaolan; Kong, Dejin; Tang, Yi

    2016-07-01

    Hydrogenation of levulinic acid (LA) and its esters to produce γ-valerolactone (GVL) and 2-methyl tetrahydrofuran (2-MTHF) is a key step for the utilization of cellulose derived LA. Aiming to develop a commercially feasible base metal catalyst for the production of GVL from LA, with satisfactory activity, selectivity, and stability, Al2O3 doped Cu/SiO2 and Cu/SiO2 catalysts were fabricated by co-precipitation routes in parallel. The diverse physio-chemical properties of these two catalysts were characterized by XRD, TEM, dissociative N2O chemisorptions, and Py-IR methods. The catalytic properties of these two catalysts were systematically assessed in the continuous hydrogenation of ethyl levulinate (EL) in a fixed-bed reactor. The effect of acidic property of the SiO2 substrate on the catalytic properties was investigated. To justify the potential of its commercialization, significant attention was paid on the initial activity, proper operation window, by-products control, selectivity, and stability of the catalyst. The effect of reaction conditions, such as temperature and pressure, on the performance of the catalyst was also thoroughly studied. The development of alumina doped Cu/SiO2 catalyst strengthened the value-chain from cellulose to industrially important chemicals via LA and GVL.

  19. Dynamics of tetrahydrofuran as minority component in a mixture with poly(2-(dimethylamino)ethyl methacrylate): A neutron scattering and dielectric spectroscopy investigation

    SciTech Connect

    Goracci, G. Arbe, A.; Lohstroh, W.; Su, Y.; Colmenero, J.

    2015-09-07

    We have investigated a mixture of poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and tetrahydrofuran (THF) (70 wt. % PDMAEMA/30 wt. % THF) by combining dielectric spectroscopy and quasielastic neutron scattering (QENS) on a labelled sample, focusing on the dynamics of the THF molecules. Two independent processes have been identified. The “fast” one has been qualified as due to an internal motion of the THF ring leading to hydrogen displacements of about 3 Å with rather broadly distributed activation energies. The “slow” process is characterized by an Arrhenius-like temperature dependence of the characteristic time which persists over more than 9 orders of magnitude in time. The QENS results evidence the confined nature of this process, determining a size of about 8 Å for the volume within which THF hydrogens’ motions are restricted. In a complementary way, we have also investigated the structural features of the sample. This study suggests that THF molecules are well dispersed among side-groups nano-domains in the polymer matrix, ruling out a significant presence of clusters of solvent. Such a good dispersion, together with a rich mobility of the local environment, would prevent cooperativity effects to develop for the structural relaxation of solvent molecules, frustrating thereby the emergence of Vogel-Fulcher-like behavior, at least in the whole temperature interval investigated.

  20. Reactivity of niobium and tantalum pentahalides with cyclic ethers and the isolation and characterization of intermediates in the polymerization of tetrahydrofuran.

    PubMed

    Marchetti, Fabio; Pampaloni, Guido; Zacchini, Stefano

    2008-01-01

    The complexes MX5(THF) (M = Nb, X = Cl, 2a; M = Ta, X = F, 2c, X = Cl, 2d) and [MX4(THF){O(CH2)4O(CH2)3CH2)}][MX6] (M = Nb, X = Cl, 3a; M = Ta, X = Cl, 3d, X = Br, 3e, X = I, 3f) result from reactions of MX5 with 0.5 and 1.5 equiv of THF, respectively. Compounds 3 contain the unprecedented 4-(tetrahydrofuran-1-ium)-butan-1-oxo ligand and are likely to play a role in the course of THF polymerization catalyzed by MX5. The addition of L (L = 2,5-dimethyltetrahydrofuran, tetrahydropyran, 1,4-dioxane) to MX5 results in the formation of the hexacoordinated complexes MX5(L). The molecular structures of 2d, 3d, and NbCl5(dioxane), 6a, have been ascertained by X-ray diffraction studies. PMID:18052371

  1. Dynamics of tetrahydrofuran as minority component in a mixture with poly(2-(dimethylamino)ethyl methacrylate): A neutron scattering and dielectric spectroscopy investigation

    NASA Astrophysics Data System (ADS)

    Goracci, G.; Arbe, A.; Alegría, A.; Lohstroh, W.; Su, Y.; Colmenero, J.

    2015-09-01

    We have investigated a mixture of poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and tetrahydrofuran (THF) (70 wt. % PDMAEMA/30 wt. % THF) by combining dielectric spectroscopy and quasielastic neutron scattering (QENS) on a labelled sample, focusing on the dynamics of the THF molecules. Two independent processes have been identified. The "fast" one has been qualified as due to an internal motion of the THF ring leading to hydrogen displacements of about 3 Å with rather broadly distributed activation energies. The "slow" process is characterized by an Arrhenius-like temperature dependence of the characteristic time which persists over more than 9 orders of magnitude in time. The QENS results evidence the confined nature of this process, determining a size of about 8 Å for the volume within which THF hydrogens' motions are restricted. In a complementary way, we have also investigated the structural features of the sample. This study suggests that THF molecules are well dispersed among side-groups nano-domains in the polymer matrix, ruling out a significant presence of clusters of solvent. Such a good dispersion, together with a rich mobility of the local environment, would prevent cooperativity effects to develop for the structural relaxation of solvent molecules, frustrating thereby the emergence of Vogel-Fulcher-like behavior, at least in the whole temperature interval investigated.

  2. Pressure-Dependent Competition among Reaction Pathways from First- and Second-O2 Additions in the Low-Temperature Oxidation of Tetrahydrofuran.

    PubMed

    Antonov, Ivan O; Zádor, Judit; Rotavera, Brandon; Papajak, Ewa; Osborn, David L; Taatjes, Craig A; Sheps, Leonid

    2016-08-25

    We report a combined experimental and quantum chemistry study of the initial reactions in low-temperature oxidation of tetrahydrofuran (THF). Using synchrotron-based time-resolved VUV photoionization mass spectrometry, we probe numerous transient intermediates and products at P = 10-2000 Torr and T = 400-700 K. A key reaction sequence, revealed by our experiments, is the conversion of THF-yl peroxy to hydroperoxy-THF-yl radicals (QOOH), followed by a second O2 addition and subsequent decomposition to dihydrofuranyl hydroperoxide + HO2 or to γ-butyrolactone hydroperoxide + OH. The competition between these two pathways affects the degree of radical chain-branching and is likely of central importance in modeling the autoignition of THF. We interpret our data with the aid of quantum chemical calculations of the THF-yl + O2 and QOOH + O2 potential energy surfaces. On the basis of our results, we propose a simplified THF oxidation mechanism below 700 K, which involves the competition among unimolecular decomposition and oxidation pathways of QOOH. PMID:27441526

  3. Comparative study of ionization chamber detectors vis-a-vis a CCD detector for dispersive XAS measurement in transmission geometry

    SciTech Connect

    Poswal, A. K.; Agrawal, A.; Bhattachryya, D.; Jha, S. N.; Sahoo, N. K.

    2013-02-05

    We have designed and fabricated parallel plate ionization chamber detectors and voltage vs. current characteristics (V-I curve) of the detectors were recorded with synchrotron radiation to qualify for use in X-ray Absorption Spectroscopy (XAS) measurements. After qualifying the ionization chambers, the detectors were used in the dispersive EXAFS beamline (BL-08) at INDUS-2 SRS in Turbo-XAS geometry. Using the same setup and under the same setting, XAS spectra were also recorded with a CCD detector and the observation on relative performance of the ionization chamber vis-a-vis the CCD detector is presented in this paper.

  4. Comparative study of ionization chamber detectors vis-à-vis a CCD detector for dispersive XAS measurement in transmission geometry

    NASA Astrophysics Data System (ADS)

    Poswal, A. K.; Agrawal, A.; Bhattachryya, D.; Jha, S. N.; Sahoo, N. K.

    2013-02-01

    We have designed and fabricated parallel plate ionization chamber detectors and voltage vs. current characteristics (V-I curve) of the detectors were recorded with synchrotron radiation to qualify for use in X-ray Absorption Spectroscopy (XAS) measurements. After qualifying the ionization chambers, the detectors were used in the dispersive EXAFS beamline (BL-08) at INDUS-2 SRS in Turbo-XAS geometry. Using the same setup and under the same setting, XAS spectra were also recorded with a CCD detector and the observation on relative performance of the ionization chamber vis-a-vis the CCD detector is presented in this paper.

  5. A patient-specific quality assurance study on absolute dose verification using ionization chambers of different volumes in RapidArc treatments

    SciTech Connect

    Syam Kumar, S.A.; Sukumar, Prabakar; Sriram, Padmanaban; Rajasekaran, Dhanabalan; Aketi, Srinu; Vivekanandan, Nagarajan

    2012-01-01

    The recalculation of 1 fraction from a patient treatment plan on a phantom and subsequent measurements have become the norms for measurement-based verification, which combines the quality assurance recommendations that deal with the treatment planning system and the beam delivery system. This type of evaluation has prompted attention to measurement equipment and techniques. Ionization chambers are considered the gold standard because of their precision, availability, and relative ease of use. This study evaluates and compares 5 different ionization chambers: phantom combinations for verification in routine patient-specific quality assurance of RapidArc treatments. Fifteen different RapidArc plans conforming to the clinical standards were selected for the study. Verification plans were then created for each treatment plan with different chamber-phantom combinations scanned by computed tomography. This includes Medtec intensity modulated radiation therapy (IMRT) phantom with micro-ionization chamber (0.007 cm{sup 3}) and pinpoint chamber (0.015 cm{sup 3}), PTW-Octavius phantom with semiflex chamber (0.125 cm{sup 3}) and 2D array (0.125 cm{sup 3}), and indigenously made Circular wax phantom with 0.6 cm{sup 3} chamber. The measured isocenter absolute dose was compared with the treatment planning system (TPS) plan. The micro-ionization chamber shows more deviations when compared with semiflex and 0.6 cm{sup 3} with a maximum variation of -4.76%, -1.49%, and 2.23% for micro-ionization, semiflex, and farmer chambers, respectively. The positive variations indicate that the chamber with larger volume overestimates. Farmer chamber shows higher deviation when compared with 0.125 cm{sup 3}. In general the deviation was found to be <1% with the semiflex and farmer chambers. A maximum variation of 2% was observed for the 0.007 cm{sup 3} ionization chamber, except in a few cases. Pinpoint chamber underestimates the calculated isocenter dose by a maximum of 4.8%. Absolute dose

  6. Influence of Electron-Impact Multiple Ionization on Equilibrium and Dynamic Charge State Distributions: A Case Study Using Iron

    NASA Astrophysics Data System (ADS)

    Hahn, M.; Savin, D. W.

    2015-02-01

    We describe the influence of electron-impact multiple ionization (EIMI) on the ionization balance of collisionally ionized plasmas. Previous ionization balance calculations have largely neglected EIMI. Here, EIMI cross-section data are incorporated into calculations of both equilibrium and non-equilibrium charge-state distributions (CSDs). For equilibrium CSDs, we find that EIMI has only a small effect and can usually be ignored. However, for non-equilibrium plasmas the influence of EIMI can be important. In particular, we find that for plasmas in which the temperature oscillates there are significant differences in the CSD when including versus neglecting EIMI. These results have implications for modeling and spectroscopy of impulsively heated plasmas, such as nanoflare heating of the solar corona.

  7. Numerical study of the wave-vector dependence of the electron interband impact ionization rate in bulk GaAs

    NASA Technical Reports Server (NTRS)

    Wang, Yang; Brennan, Kevin F.

    1994-01-01

    Ensemble Monte Carlo calculations of the electron interband impact ionization rate in bulk GaAs are presented using a wave-vector (k)-dependent formulation of the ionization transition rate. The transition rate is evaluated through the use of numerically generated wavefunctions determined via a k-p calculation within the first two conduction bands at numerous points within a finely spaced three-dimensional grid in k space. The transition rate is determined to be greatest for states within the second conduction band. Is is found that the interband impact ionization transition rate in bulk GaAs is best characterized as having an exceedingly soft threshold energy. As a consequence, the dead space, defined as the distance over which the ionization probability for a given carrier is assumed to be zero, is estimated to be much larger than that estimated using a harder threshold. These results have importance in the design of the multiquantum-well avalanche photodiodes.

  8. Numerical Study of the Wave-Vector Dependence of the Electron Interband Impact Ionization Rate in Bulk GaAs

    NASA Technical Reports Server (NTRS)

    Wang, Yang; Brennan, Kevin F.

    1994-01-01

    Ensemble Monte Carlo calculations of the electron interband impact ionization rate in bulk GaAs are presented using a wave-vector (k)-dependent formulation of the ionization transition rate. The transition rate is evaluated through use of numerically generated wavefunctions determined via a k-p calculation within the first two conduction bonds at numerous points within a finely spaced three-dimensional grid in k space. The transition rate is determined to be greatest for states within the second conduction band. It is found that the interband impact ionization transition rate in bulk GaAs is best characterized as having an exceedingly "soft" threshold energy. As a consequence, the dead space, defined as the distance over which the ionization probability for a given carrier is assumed to be zero, is estimated to be-much larger than that estimated using a "harder" threshold. These results have importance in the design of multiquantum-well avalanche photodiodes.

  9. INFLUENCE OF ELECTRON-IMPACT MULTIPLE IONIZATION ON EQUILIBRIUM AND DYNAMIC CHARGE STATE DISTRIBUTIONS: A CASE STUDY USING IRON

    SciTech Connect

    Hahn, M.; Savin, D. W.

    2015-02-10

    We describe the influence of electron-impact multiple ionization (EIMI) on the ionization balance of collisionally ionized plasmas. Previous ionization balance calculations have largely neglected EIMI. Here, EIMI cross-section data are incorporated into calculations of both equilibrium and non-equilibrium charge-state distributions (CSDs). For equilibrium CSDs, we find that EIMI has only a small effect and can usually be ignored. However, for non-equilibrium plasmas the influence of EIMI can be important. In particular, we find that for plasmas in which the temperature oscillates there are significant differences in the CSD when including versus neglecting EIMI. These results have implications for modeling and spectroscopy of impulsively heated plasmas, such as nanoflare heating of the solar corona.

  10. Nuclear Recoil Cross Sections from Time-dependent Studies of Two-Photon Double Ionization of Helium

    SciTech Connect

    Horner, Daniel A.; Rescigno, Thomas N.; McCurdy, C. William

    2009-12-21

    We examine the sensitivity of nuclear recoil cross sections produced by two-photon double ionization of helium to the underlying triple differential cross sections (TDCS) used in their computation. We show that this sensitivity is greatest in the energy region just below the threshold for sequential double ionization. Accurate TDCS, extracted from non-perturbative solutions of the time-dependent Schroedinger equation, are used here in new computations of the nuclear recoil cross section.

  11. A broad-based study on hyphenating new ionization technologies with MS/MS for PTMs and tissue characterization.

    PubMed

    Marshall, Darrell D; Inutan, Ellen D; Wang, Beixi; Liu, Chih-Wei; Thawoos, Shameemah; Wager-Miller, James; Mackie, Ken; Trimpin, Sarah

    2016-06-01

    Matrix-assisted ionization (MAI) is a newly discovered method for converting compounds from the solid phase to gas-phase ions having charge states similar to electrospray ionization (ESI), but without the need for high-energy sources such as lasers or high voltage. Laserspray ionization (LSI) is a subset of MAI that uses a laser to provide high spatial resolution analyses, but the laser is not directly involved in the ionization process. These methods produce multiply-charged analyte ions that are useful for characterizing compounds directly from surfaces using advanced characterization technologies. Because the multiply-charged ions originate from charged matrix clusters, efficient desolvation of the matrix is a prerequisite. Here, we report on the utility of collision-induced dissociation (CID) and electron transfer dissociation (ETD) coupled to mass spectrometry using several MAI and LSI matrices for peptide and protein characterization employing mass spectrometers from two manufacturers. The information obtained is similar to that using ESI for most analyses and superior to matrix-assisted laser desorption/ionization (MALDI) as is shown for intact proteins and protein digests directly from mouse brain tissue sections. The ionization processes are soft so that posttranslational modification (e.g. phosphorylation) sites are readily determined. Instances where ETD or CID in conjunction with MAI failed are attributed to lack of desolvation of charged matrix:analyte particles. PMID:27093917

  12. POTENTIAL HUMAN STUDY POPULATIONS FOR NON-IONIZING (RADIO FREQUENCY) RADIATION HEALTH EFFECTS

    EPA Science Inventory

    This research project was initiated to identify potential human populations for future epidemiological studies of the health effects of radio frequency radiation. Through a literature search and contacts with various groups and organizations, numerous occupations and applications...

  13. Calculation of multiphoton ionization processes

    NASA Technical Reports Server (NTRS)

    Chang, T. N.; Poe, R. T.

    1976-01-01

    We propose an accurate and efficient procedure in the calculation of multiphoton ionization processes. In addition to the calculational advantage, this procedure also enables us to study the relative contributions of the resonant and nonresonant intermediate states.

  14. A nested case-control study of leukemia mortality and ionizing radiation at the Portsmouth Naval Shipyard.

    PubMed

    Kubale, Travis L; Daniels, Robert D; Yiin, James H; Couch, James; Schubauer-Berigan, Mary K; Kinnes, Gregory M; Silver, Sharon R; Nowlin, Susan J; Chen, Pi-Hsueh

    2005-12-01

    A nested case-control study using conditional logistic regression was conducted to evaluate the exposure-response relationship between external ionizing radiation exposure and leukemia mortality among civilian workers at the Portsmouth Naval Shipyard (PNS), Kittery, Maine. The PNS civilian workers received occupational radiation exposure while performing construction, overhaul, repair and refueling activities on nuclear-powered submarines. The study age-matched 115 leukemia deaths with 460 controls selected from a cohort of 37,853 civilian workers employed at PNS between 1952 and 1992. In addition to radiation doses received in the workplace, a secondary analysis incorporating doses from work-related medical X rays and other occupational radiation exposures was conducted. A significant positive association was found between leukemia mortality and external radiation exposure, adjusting for gender, radiation worker status, and solvent exposure duration (OR = 1.08 at 10 mSv of exposure; 95% CI = 1.01, 1.16). Solvent exposure (including benzene and carbon tetrachloride) was also significantly associated with leukemia mortality adjusting for radiation dose, radiation worker status, and gender. Incorporating doses from work-related medical X rays did not change the estimated leukemia risk per unit of dose. PMID:16296888

  15. High-resolution (e, 2e + ion) study of electron-impact ionization and fragmentation of methane

    SciTech Connect

    Ren, Xueguang Pflüger, Thomas; Weyland, Marvin; Baek, Woon Yong; Rabus, Hans; Ullrich, Joachim; Dorn, Alexander

    2015-05-07

    The ionization and fragmentation of methane induced by low-energy (E{sub 0} = 66 eV) electron-impact is investigated using a reaction microscope. The momentum vectors of all three charged final state particles, two outgoing electrons, and one fragment ion, are detected in coincidence. Compared to the earlier study [Xu et al., J. Chem. Phys. 138, 134307 (2013)], considerable improvements to the instrumental mass and energy resolutions have been achieved. The fragment products CH{sub 4}{sup +}, CH{sub 3}{sup +}, CH{sub 2}{sup +}, CH{sup +}, and C{sup +} are clearly resolved. The binding energy resolution of ΔE = 2.0 eV is a factor of three better than in the earlier measurements. The fragmentation channels are investigated by measuring the ion kinetic energy distributions and the binding energy spectra. While being mostly in consistence with existing photoionization studies the results show differences including missing fragmentation channels and previously unseen channels.

  16. Quantification of roxatidine in human plasma by liquid chromatography electrospray ionization tandem mass spectrometry: application to a bioequivalence study.

    PubMed

    Ryu, Ju-Hee; Choi, Sang-Jun; Lee, Heon-Woo; Choi, Seung-Ki; Lee, Kyung-Tae

    2008-12-01

    A sensitive and specific method using a one-step liquid-liquid extraction (LLE) with ethyl acetate followed by high-performance liquid chromatography (HPLC) coupled with positive ion electrospray ionization tandem mass spectrometry (ESI-MS/MS) detection was developed and validated for the determination of roxatidine in human plasma using famotidine as an internal standard (IS). Data acquisition was carried out in multiple reaction monitoring (MRM) mode, by monitoring the transitions m/z 307.3-->107.1 for roxatidine and m/z 338.4-->189.1 for famotidine. Chromatographic separation was performed on a reverse phase Hydrosphere C(18) column at 0.2 mL min(-1) using a mixture of methanol-ammonium formate buffer as mobile phase (20:80, v/v; adjusted to pH 3.9 with formic acid). The achieved lower limit of quantification (LLOQ) was 1.0 ng mL(-1) and the standard calibration curve for roxatidine was linear (r(2)=0.998) over the studied range (1-1000 ng mL(-1)) with acceptable accuracy and precision. Roxatidine was found to be stable in human plasma samples under short-, long-term storage and processing conditions. The developed method was validated and successfully applied to the bioequivalence study of roxatidine administrated as a single oral dose (75 mg as roxatidine acetate hydrochloride) to healthy female Korean volunteers. PMID:18977187

  17. Weakly ionized cosmic gas: Ionization and characterization

    NASA Technical Reports Server (NTRS)

    Rosenberg, M.; Mendis, D. A.; Chow, V. W.

    1994-01-01

    Since collective plasma behavior may determine important transport processes (e.g., plasma diffusion across a magnetic field) in certain cosmic environments, it is important to delineate the parameter space in which weakly ionized cosmic gases may be characterized as plasmas. In this short note, we do so. First, we use values for the ionization fraction given in the literature, wherein the ionization is generally assumed to be due primarily to ionization by cosmic rays. We also discuss an additional mechanism for ionization in such environments, namely, the photoelectric emission of electrons from cosmic dust grains in an interstellar Far Ultra Violet (FUV) radiation field. Simple estimates suggest that under certain conditions this mechanism may dominate cosmic ray ionization, and possibly also the photoionization of metal atoms by the interstellar FUV field, and thereby lead to an enhanced ionization level.

  18. A Study of the Ionized Gas in Giant HII Regions in NGC 6822

    NASA Astrophysics Data System (ADS)

    Castañeda, H. O.; Caicedo-Ortiz, H. E.

    2011-10-01

    We present the preliminary results of a study of physical properties of the gas in the giant HII regions regions Hubble V and Hubble X located in the galaxy NGC 6822. We have created maps in Hα emission constructed from longslit spectroscopic observations, which were performed at the William Herschel Telescope, Canary Islands, using the ISIS spectrograph.

  19. Femtosecond Laser Ionization of Organic Amines with Very Low Ionization Potential.

    NASA Astrophysics Data System (ADS)

    Yatsuhashi, Tomoyuki; Obayashi, Takashi; Tanaka, Michinori; Murakami, Masanao; Nakashima, Nobuaki

    2006-03-01

    The interaction between high intensity femtosecond laser and molecules is one of the most attractive areas in laser chemistry and ionization is the most fundamental subject. Theoretical consideration successfully reproduced the ionization behavior of rare gases. However, the understanding of ionization mechanisms of large molecules is difficult more than those of rare gases due to their complexity. Generally speaking, molecules are harder to ionize than rare gases even if they have the same ionization potential. The suppressed ionization phenomena are one of the important features of molecular ionization. Hankin et al. examined 23 organic molecules with ionization potentials between 8.25 and 11.52 eV. We have examined ionization and/ or fragmentation of many organic molecules, including aromatic compounds, halogenated compounds, methane derivatives etc. at various wavelengths below 10^16 Wcm-2. In order to investigate the nature of molecular ionization, it is interesting to examine a variety of molecule in a wide range of ionization potential. In this study, we examined several organic amines because we can explore the uninvestigated ionization potential range down to 5.95 eV. In addition to the significant suppression of the ionization rates, stepwise ionization behavior, which was not observed in rare gases, was observed.

  20. Superacid-promoted ionization of alkanes without carbonium ion formation: a density functional theory study.

    PubMed

    Dinér, Peter

    2012-10-11

    The carbonium ion has been suggested to be the intermediate in superacid-promoted reactions (SbF(5)-HF) such as hydrogen-deuterium exchange and in the electrophilic C-H cleavage into hydrogen and the carbenium ion. In this study, the superacid-promoted C-H cleavage into hydrogen and the carbenium ion was studied using density functional theory (B3LYP and M062X) and ab initio methods (MP2 and CCSD). The calculations suggest that the superacid-promoted C-H cleavage proceeds via a concerted transition state leading to hydrogen (H(2)) and the carbenium ion without the formation of the elusive carbonium ion. The reactivity for the superacid-promoted C-H cleavage decreases upon going from isobutane (tertiary) > propane (secondary) > isobutane (primary) > propane (primary) > ethane > methane. PMID:22998332

  1. A real-time kinetic study of luciferase inactivation by pulsed ionizing radiation

    SciTech Connect

    Bell, D.H.; Gould, J.M.; Patterson, L.K.

    1982-06-01

    The real-time kinetics of radiation-induced inactivation of the luminescent firefly luciferase-luciferin system were investigated. A single, microsecond pulse from a Van de Graaff accelerator delivered to the system is sufficient to decrease the luminescence by over 60%. This decrease exhibits exponential behavior and has a half-time of 46 +/- 6 msec. In both steady-state and pulsed studies, the dose dependence of the inactivation is independent of the dose rate. Likewise, the decay kinetics are independent of the dose per pulse. These studies suggest that the enzyme is altered in a way that inteferes with the initial steps of catalysis without affecting the subsequent steps which lead to light emission.

  2. Comparative study of H(2s) and H(2p0) ionization dynamics in the over-barrier regime

    NASA Astrophysics Data System (ADS)

    Song, Shu-Na; Geng, Ji-Wei; Jiang, Hong-Bing; Peng, Liang-You

    2014-05-01

    We investigate theoretically the ionization dynamics of H(2s) and H(2p0) by short midinfrared laser pulses in the over-barrier ionization (OBI) regime. Through the numerical solution to the time-dependent Schrödinger equation, we calculate the differential and angular distributions of photoelectrons as well as the total ionization probability. In a wide range of laser intensities and wavelengths, significant differences are found between the H(2s) and H(2p0) states in both the differential and total ionization yields. Analysis of the excitation dynamics reveals that both the low-lying excited states and the Rydberg states are significantly populated for a 1200-nm laser. As the laser wavelength gradually increases to 2100 nm, the population on the low-lying excited state drastically decreases. We observe the population of the Rydberg states oscillates as a function of the laser peak intensity, which gradually disappears when the Keldysh parameter γ decreases. As the laser intensity increases further, the total ionization probability and the population of the Rydberg states stay almost the same, which is related to the partial stabilization phenomena recently confirmed in experiments. In the deep OBI regime, we find that this kind of ionization suppression is more obvious in the 2s state than in the 2p0 state. We also compare the transverse momentum distributions of the electrons ionized from the two states and find the effect of the Coulomb potential is stronger in the 2p0 state than that in the 2s state, which is due to the different initial electron distributions.

  3. Sanitation of chicken eggs by ionizing radiation: HACCP and inactivation studies

    NASA Astrophysics Data System (ADS)

    Verde, S. Cabo; Tenreiro, R.; Botelho, M. L.

    2004-09-01

    The aim of this study is to develop the application of irradiation technology to chicken eggs in order to get a product free of pathogenic microorganisms. Bioburden values of eggs from chickens of different ages ( n=150) were found to not be significantly different ( p<0.05) and an average value of (2.0±0.3). 10 5 cfu/egg was obtained for the shell. Two major microbial groups were characterized in the egg's natural microbiota, no Salmonella or Campylobacter were detected. HACCP studies indicated the feed as a critical point. Dosimetry studies were carried out in a γ facility to find the best geometry and dose rate for irradiation. Whole eggs were artificially contaminated with reference strains of Salmonella typhimurium, Salmonella enteritidis, Campylobacter coli and Campylobacter jejuni and irradiated in the γ facility at sub-lethal doses (0.2-1 kGy) with a dose rate of 1.0 kGy/h. Dvalue varied between 0.31-0.26 kGy and 0.20-0.19 kGy in S. typhimurium and S. enteritidis, and between 0.21-0.18 kGy and 0.07-0.09 in C. coli and C. jejuni, for shell and yolk+white. Using sub-lethal doses up to 5 kGy, the Dvalue of natural microbiota in whole eggs was 1.29 kGy. Results show that low irradiation doses could guarantee egg sanitation.

  4. Kinetic-energy release distributions of fragment anions from collisions of potassium atoms with D-Ribose and tetrahydrofuran*

    NASA Astrophysics Data System (ADS)

    Rebelo, André; Cunha, Tiago; Mendes, Mónica; da Silva, Filipe Ferreira; García, Gustavo; Limão-Vieira, Paulo

    2016-06-01

    Kinetic-energy release distributions have been obtained from the width and shapes of the time-of-flight (TOF) negative ion mass peaks formed in collisions of fast potassium atoms with D-Ribose (DR) and tetrahydrofuran (THF) molecules. Recent dissociative ion-pair formation experiments yielding anion formation have shown that the dominant fragment from D-Ribose is OH- [D. Almeida, F. Ferreira da Silva, G. García, P. Limão-Vieira, J. Chem. Phys. 139, 114304 (2013)] whereas in the case of THF is O- [D. Almeida, F. Ferreira da Silva, S. Eden, G. García, P. Limão-Vieira, J. Phys. Chem. A 118, 690 (2014)]. The results for DR and THF show an energy distribution profile reminiscent of statistical degradation via vibrational excitation and partly due to direct transformation of the excess energy in translational energy.

  5. Photodegradation of secondary organic aerosol generated from limonene oxidation by ozone studied with chemical ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pan, X.; Underwood, J. S.; Xing, J.-H.; Mang, S. A.; Nizkorodov, S. A.

    2009-06-01

    Photodegradation of secondary organic aerosol (SOA) prepared by ozone-initiated oxidation of D-limonene is studied with an action spectroscopy approach, which relies on detection of volatile photoproducts with chemical ionization mass-spectrometry as a function of the UV irradiation wavelength. Efficient photodegradation is observed for a broad range of ozone (0.1-300 ppm) and D-limonene (0.02-3 ppm) concentrations used in the preparation of SOA. The observed photoproducts are dominated by oxygenated C1-C3 compounds such as methanol, formic acid, acetaldehyde, acetic acid, and acetone. The irradiation wavelength dependence of the combined yield of the photoproducts closely tracks the absorption spectrum of the SOA material suggesting that photodegradation is not limited to the UV wavelengths. Kinetic simulations suggest that RO2+HO2/RO2 reactions represent the dominant route to photochemically active carbonyl and peroxide species in the limonene SOA prepared in these experiments. Similar photodegradation processes are likely to occur in realistic SOA produced by OH- or O3-initiated oxidation of biogenic volatile organic compounds in clean air.

  6. Photodegradation of secondary organic aerosol generated from limonene oxidation by ozone studied with chemical ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pan, X.; Underwood, J. S.; Xing, J.-H.; Mang, S. A.; Nizkorodov, S. A.

    2009-02-01

    Photodegradation of secondary organic aerosol (SOA) prepared by ozone-initiated oxidation of D-limonene is studied with an action spectroscopy approach, which relies on detection of volatile photoproducts with chemical ionization mass-spectrometry as a function of the UV irradiation wavelength. Efficient photodegradation is observed for a broad range of ozone and D-limonene concentrations (0.1-300 ppm) used in the preparation of SOA. The observed photoproducts are dominated by oxygenated C1-C3 compounds such as methanol, formic acid, acetaldehyde, acetic acid, and acetone. The irradiation wavelength dependence of the combined yield of the photoproducts closely tracks the absorption spectrum of the SOA material suggesting that photodegradation is not limited to the UV wavelengths. Kinetic simulations suggest that RO2+HO2/RO2 reactions represent the dominant route to photochemically active carbonyl and peroxide species in the limonene SOA material. Similar photodegradation processes are likely to occur in realistic SOA produced by OH- or O3-initiated oxidation of biogenic volatile organic compounds in clean air.

  7. Laboratory simulation of Kuiper belt object volatile ices under ionizing radiation: CO-N2 ices as a case study.

    PubMed

    Kim, Y S; Zhang, F; Kaiser, R I

    2011-09-21

    The exposure of icy Kuiper belt objects (KBOs) by ionizing radiation was simulated in this case of exposing carbon monoxide-nitrogen (CO-N(2)) ices by energetic electrons. The radiation-induced chemical processing was monitored on-line and in situ via FTIR spectroscopy and quadrupole mass spectrometry. Besides the array of carbon oxides being reproduced as in neat irradiated carbon monoxide (CO) ices studied previously, the radiation exposure at 10 K resulted in the formation of nitrogen-bearing species of isocyanato radical (OCN), linear (l-NCN), nitric oxide (NO), nitrogen dioxide (NO(2)), plus diazirinone (N(2)CO). The infrared assignments of these species were further confirmed by isotopic shifts. The temporal evolution of individual species was found to fit in first-order reaction schemes, prepping up the underlying non-equilibrium chemistry on the formation of OCN, l-NCN, and NO radicals in particular. Also unique to the binary KBO model ices and viable for the future remote detection is diazirinone (N(2)CO) at 1860 cm(-1) (2ν(5)) formed at lower radiation exposure. PMID:21687881

  8. Molecular characterization of organic aerosol using nanospray desorption/electrospray ionization mass spectrometry: CalNex 2010 field study

    NASA Astrophysics Data System (ADS)

    O'Brien, Rachel E.; Laskin, Alexander; Laskin, Julia; Liu, Shang; Weber, Robin; Russell, Lynn M.; Goldstein, Allen H.

    2013-04-01

    Aerosol samples from the CalNex 2010 field study were analyzed using high-resolution mass spectrometry (HR-MS) coupled to a nanospray desorption/electrospray ionization (nano-DESI) source. The samples were collected in Bakersfield, CA on June 22-23, 2010. The chemical formulas of over 850 unique molecular species were detected in the mass range of 50-400 m/z using positive mode ESI of aerosol samples in the 0.18-0.32 μm size range. Our analysis focused on identification of two main groups: compounds containing only carbon, hydrogen, and oxygen (CHO), and nitrogen-containing organic compounds (NOC). The NOC accounted for 40% (by number) of the compounds observed in the afternoon, and for 52% in the early morning samples. By comparing plausible reactant-product pairs, we propose that over 50% of the NOC in each sample could have been formed through reactions transforming carbonyls into imines. The CHO only compounds were dominant in the afternoon suggesting a photochemical source. The average O/C ratios of all observed compounds were fairly consistent throughout the day, ranging from 0.33 in the morning to 0.37 at night. We conclude that both photooxidation and ammonia chemistry may play a role in forming the compounds observed in this mixed urban-rural environment.

  9. Molecular Characterization of Organic Aerosol Using Nanospray Desorption/Electrospray Ionization Mass Spectrometry: CalNex 2010 field study

    SciTech Connect

    O'Brien, Rachel E.; Laskin, Alexander; Laskin, Julia; Liu, Shang; Weber, Robin; Russell, Lynn; Goldstein, Allen H.

    2013-04-01

    Aerosol samples from the CalNex 2010 field study were analyzed using high resolution mass spectrometry (HR-MS) coupled to a nanospray-desorption/electrospray ionization (nano-DESI) source. The samples were collected in Bakersfield, CA on June 22-23, 2010. The chemical formulas of over 1300 unique molecular species were detected in the mass range of 50-800 m/z. Our analysis focused on identification of two main groups: compounds containing only carbon, hydrogen, and oxygen (CHO only), and nitrogen-containing organic compounds (NOC). The NOC accounted for 35% (by number) of the compounds observed in the afternoon, and for 59% in the early morning samples. By comparing plausible reactant-product pairs, we propose that over 50% of the NOC in each sample could have been formed through reactions transforming carbonyls into imines. The CHO only compounds were dominant in the afternoon suggesting a photochemical source. The average O:C ratios of all observed compounds were fairly consistent throughout the day, ranging from 0.34 in the early morning to 0.37 at night. We conclude that both photooxidation and ammonia chemistry play important roles in forming the compounds observed in this mixed urban-rural environment.

  10. R-matrix study of ionization in barium via two-photon interfering routes

    NASA Astrophysics Data System (ADS)

    Aymar, M.; Luc-Koenig, E.; Lecomte, J. M.; Millet, M.; Lyras, A.

    2000-02-01

    A quantitative analysis of part of the experimental data reported by Wang, Chen and Elliott [1,3] who studied in barium coherent control through two-color resonant interfering paths is reported. Dynamics of the two-color photoionization process, described as an adiabatic process in the rotating wave approximation, is governed by the coherent excitation of the 6s6p and 6s7p 1P1 intermediate states. Interference effects are found to play a minor role. The required atomic parameters are obtained from a theoretical approach based on a combination of jj-coupled eigenchannel R-matrix and Multichannel Quantum Defect Theory.

  11. Two decades of studying non-covalent biomolecular assemblies by means of electrospray ionization mass spectrometry

    PubMed Central

    Hilton, Gillian R.; Benesch, Justin L. P.

    2012-01-01

    Mass spectrometry (MS) is a recognized approach for characterizing proteins and the complexes they assemble into. This application of a long-established physico-chemical tool to the frontiers of structural biology has stemmed from experiments performed in the early 1990s. While initial studies focused on the elucidation of stoichiometry by means of simple mass determination, developments in MS technology and methodology now allow researchers to address questions of shape, inter-subunit connectivity and protein dynamics. Here, we chart the remarkable rise of MS and its application to biomolecular complexes over the last two decades. PMID:22319100

  12. Ionization efficiency studies with charge breeder and conventional electron cyclotron resonance ion source

    SciTech Connect

    Koivisto, H. Tarvainen, O.; Toivanen, V.; Komppula, J.; Kronholm, R.; Lamy, T.; Angot, J.; Delahaye, P.; Maunoury, L.; Patti, G.; Standylo, L.; Steczkiewicz, O.; Choinski, J.

    2014-02-15

    Radioactive Ion Beams play an increasingly important role in several European research facility programs such as SPES, SPIRAL1 Upgrade, and SPIRAL2, but even more for those such as EURISOL. Although remarkable advances of ECRIS charge breeders (CBs) have been achieved, further studies are needed to gain insight on the physics of the charge breeding process. The fundamental plasma processes of charge breeders are studied in the frame of the European collaboration project, EMILIE, for optimizing the charge breeding. Important information on the charge breeding can be obtained by conducting similar experiments using the gas mixing and 2-frequency heating techniques with a conventional JYFL 14 GHz ECRIS and the LPSC-PHOENIX charge breeder. The first experiments were carried out with noble gases and they revealed, for example, that the effects of the gas mixing and 2-frequency heating on the production of high charge states appear to be additive for the conventional ECRIS. The results also indicate that at least in the case of noble gases the differences between the conventional ECRIS and the charge breeder cause only minor impact on the production efficiency of ion beams.

  13. Photoionization study of Xe 5s: ionization cross sections and photoelectron angular distributions

    NASA Astrophysics Data System (ADS)

    Aarthi, G.; Jose, J.; Deshmukh, S.; Radojevic, V.; Deshmukh, P. C.; Manson, S. T.

    2014-01-01

    We report studies of photoelectron angular distribution and cross-section for photoionization of xenon 5s electrons using the relativistic multiconfiguration Tamm-Dancoff (MCTD) approximation. We find that MCTD provides a significantly improved agreement with experiment, compared to some of the other relativistic many body approximations such as the relativistic random phase approximation and the relativistic random phase approximation with relaxation, over the entire photon energy region bracketing the near-threshold 5s Cooper minimum, from the 5s threshold up to about 70 eV. The MCTD results in the length form are in much better agreement with the experiment than those in the velocity form, suggesting residual correlations that must be of importance.

  14. D-region differential-phase measurements and ionization variability studies

    NASA Technical Reports Server (NTRS)

    Weiland, R. M.; Bowhill, S. A.

    1978-01-01

    Measurements of electron densities in the D region are made by the partial-reflection differential-absorption and differential-phase techniques. The differential-phase data are obtained by a hard-wired phase-measuring system. Electron-sensity profiles obtained by the two techniques on six occasions are plotted and compared. Electron-density profiles obtained at the same time on 30 occasions during the years 1975 through 1977 are averaged to form a single profile for each technique. The effect of varying the assumed collision-frequency profile on these averaged profiles is studied. Time series of D-region electron-sensity data obtained by 3.4 minute intervals on six days during the summer of 1977 are examined for wave-like disturbances and tidal oscillations.

  15. A Raman spectroscopic study of cell response to clinical doses of ionizing radiation.

    PubMed

    Harder, Samantha J; Matthews, Quinn; Isabelle, Martin; Brolo, Alexandre G; Lum, Julian J; Jirasek, Andrew

    2015-01-01

    The drive toward personalized radiation therapy (RT) has created significant interest in determining patient-specific tumor and normal tissue responses to radiation. Raman spectroscopy (RS) is a non-invasive and label-free technique that can detect radiation response through assessment of radiation-induced biochemical changes in tumor cells. In the current study, single-cell RS identified specific radiation-induced responses in four human epithelial tumor cell lines: lung (H460), breast (MCF-7, MDA-MB-231), and prostate (LNCaP), following exposure to clinical doses of radiation (2-10 Gy). At low radiation doses (2 Gy), H460 and MCF-7 cell lines showed an increase in glycogen-related spectral features, and the LNCaP cell line showed a membrane phospholipid-related radiation response. In these cell lines, only spectral information from populations receiving 10 Gy or less was required to identify radiation-related features using principal component analysis (PCA). In contrast, the MDA-MB-231 cell line showed a significant increase in protein relative to nucleic acid and lipid spectral features at doses of 6 Gy or higher, and high-dose information (30, 50 Gy) was required for PCA to identify this biological response. The biochemical nature of the radiation-related changes occurring in cells exposed to clinical doses was found to segregate by status of p53 and radiation sensitivity. Furthermore, the utility of RS to identify a biological response in human tumor cells exposed to therapeutic doses of radiation was found to be governed by the extent of the biochemical changes induced by a radiation response and is therefore cell line specific. The results of this study demonstrate the utility and effectiveness of single-cell RS to identify and measure biological responses in tumor cells exposed to standard radiotherapy doses. PMID:25588147

  16. Study of GPS Position error during low solar activity period near the Crest of the Equatorial Ionization Anomaly

    NASA Astrophysics Data System (ADS)

    Trivedi, Richa; Gwal, Ashok Kumar; Jain, Sudhir

    In order to study GPS position error, the GPS Ionospheric Scintillation and TEC Monitor (GISTM) based GPS receiver was installed at an equatorial station, Bhopal (23.2° N, 77.4° E, Geomagnetic latitude 14.23˚ N), India. We analyzed the horizontal error and the level of confidence in terms of DRMS & CEP and positional error from fixed GPS point for year 2005-2006. In this paper we observed position error in both storm/disturb as well as quiet ionospheric condition. As the range of error is directly proportional to TEC along the ray path since 6.15 TEC units correspond to the range error of 1 m on L1 frequency, we observed that the change of VTEC is 60 TECU which correspond to 9.76 m for ionospheric disturb day May 15, 2005 (severe geomagnetic storm; SSC at 0239 UT). During the study no scintillation and loss of lock has been observed in both disturb and quiet day except on May 27, 2006 (quiet day). On May 27, 2006 the loss of lock in one satellite has been observed. In order to study the effect of storm/quiet ionospheric condition on GPS position errors, the latitudinal error and longitudinal error in meter is studied. The range of position error was about 2.5 meters during the quiet ionospheric conditions except on June 26, 2006(quite day). The situation became adverse during disturbed ionospheric conditions, with the error reaching up to 5-6 meters. During disturb and quiet ionospheric condition it was observed that the in most of the cases the error point’s lies out side the 95% error ellipse and elongation in the N-E direction. The results have been compared with the earlier ones and discussed in terms of possible source mechanism responsible for the position error at anomaly crest region. Keywords: Total Electron Contents (TEC); Equatorial Ionization Anomaly (EIA); Global Positioning System (GPS).

  17. Ultraviolet femtosecond laser ionization mass spectrometry.

    PubMed

    Imasaka, Totaro

    2008-01-01

    For this study, multiphoton ionization/mass spectrometry using an ultraviolet (UV) femtosecond laser was employed for the trace analysis of organic compounds. Some of the molecules, such as dioxins, contain several chlorine atoms and have short excited-state lifetimes due to a "heavy atom" effect. A UV femtosecond laser is, then, useful for efficient resonance excitation and subsequent ionization. A technique of multiphoton ionization using an extremely short laser pulse (e.g., <10 fs), referred to as "impulsive ionization," may have a potential for use in fragmentation-free ionization, thus providing information on molecular weight in mass spectrometry. PMID:18302290

  18. A discharge flow-photoionization mass spectrometric study of the FO(X 2 Pi i) radical. Photoionization efficiency spectrum and ionization energy

    NASA Technical Reports Server (NTRS)

    Zhang, Zhengyu; Kuo, Szu-Cherng; Klemm, R. Bruce; Monks, Paul S.; Stief, Louis J.

    1994-01-01

    Photoionization efficiency spectra of FO were measured over the wavelength range 80.0-100.0 nm and in the ionization threshold region, 94.0-100.0 nm, using a discharge flow-photoionization mass spectrometer apparatus coupled to a synchrotron radiation source. FO was generated by the reaction of F2P atoms with NO3 and via a F2O2 discharge. A value of 12.78 +/- 0.03 eV was obtained for the adiabatic ionization energy of FO from photoion thresholds which corresponds to FO(+)(X 3 Sigma -) from FO(X 2 Pi i). These results, which are the first to be obtained by direct Photo-ionization mass spectrometry (PIMS) measurements, corroborate those of a photoelectron spectroscopy (PES) study; however, the ionization energy determined here is free from interferences due to other species which complicated the PES measurement. A value of 109.5 +/- 8.0 kJ/mol for Delta f H 0 298(FO) is computed from the present value of IE(FO) and a previous appearance energy measurement, and a value for the proton affinity of FO is calculated to be 511.5 +/- 10.0 kJ/mol.

  19. Specific fragmentation of the K-shell excited/ionized pyridine derivatives studied by electron impact: 2-, 3- and 4-methylpyridine.

    PubMed

    Sakai, Masamichi; Okada, Kazumasa; Ohno, Keiichi; Tabayashi, Kiyohiko

    2010-03-01

    Fragmentation of the pyridine ring upon K-shell excitation/ionization has been studied with gaseous 2-, 3- and 4-methylpyridine by the electron-impact method. Ab initio molecular orbital (MO) calculations were also carried out to explore electronic states correlating with specific fragments. Some specific fragmentation channels were identified from the ionic fragments enhanced characteristically at the N 1s edge. Yields of the C(2)HN(+) and C(5)H(5)(+)/C(5)H(6)(+) ions show that the fission of the N-C2 and C4-C5/C5-C6 bonds of the ring is likely to occur after the N 1s excitation and ionization. Ab initio MO calculations for the 2-methylpyridine molecule indicate that the dissociation channels to produce these ions are only accessible through the excited states of the parent molecular dication, which can be formed by Auger decays after the N 1s ionization. Fragment ions via hydrogen rearrangement are produced as well, but the rearrangement is not a phenomenon specific to the K-shell excitation/ionization. PMID:20166104

  20. Study of solid/gas phase photocatalytic reactions by electron ionization mass spectrometry.

    PubMed

    Nuño, Manuel; Ball, Richard J; Bowen, Chris R

    2014-08-01

    This paper describes a novel methodology for the real-time study of solid-gas phase photocatalytic reactions in situ. A novel reaction chamber has been designed and developed to facilitate the investigation of photoactive materials under different gas compositions. UV irradiation in the wavelength of ranges 376-387 and 381-392 nm was provided using specially designed high efficiency light emitting diode arrays. The experiments used air containing 190 ppm NO2 in a moist environment with a relative humidity of 0.1%. Photocatalytic samples consisting of pressed pellets of rutile and anatase crystalline forms of TiO2 were monitored over a period of 150 min. An ultra-high vacuum right angled bleed valve allowed a controlled flow of gas from the main reaction chamber at atmospheric pressure to a residual gas analyser operating at a vacuum of 10(-5)  mbar. The apparatus and methodology have been demonstrated to provide high sensitivity (ppb). The rate of degradation of NO2 attributed to reaction at the TiO2 surface was sensitive to both crystal structures (anatase or rutile) and wavelength of irradiation. PMID:25044899

  1. Effect of ionizing radiation on the primate pancreas: an endocrine and morphologic study

    SciTech Connect

    Du Toit, D.F.; Heydenrych, J.J.; Smit, B.; Zuurmond, T.; Louw, G.; Laker, L.; Els, D.; Weideman, A.; Wolfe-Coote, S.; Du Toit, L.B.

    1987-01-01

    In this study we evaluated the endocrine, biochemical, and haematological derangements as well as pancreatic and histological changes of the bonemarrow in the primate following external fractionated subtotal marrow irradiation without bonemarrow reconstitution. The irradiation was administered in preparation for pancreatic transplantation. Two groups of animals (ten in each group) received 800 rad (8 Gy) and 1000 rad (10 Gy) respectively over 4 to 5 weeks. A maximum of 200 rads (2 Gy) were administered weekly as photons from a 6 MV linear accelerator. During irradiation the animals remained normoglycaemic in the presence of transiently elevated liver enzymes and serum amylase values, which returned to normal on completion of the irradiation. Insulin release was significantly reduced in both groups during irradiation and was associated with minimally decreased K-values in the presence of mild glucose intolerance. Pancreatic light morphologic changes included structural changes of both exocrine and endocrine elements and included necrosis of the islet cells and acinar tissue. Islet histology demonstrated striking cytocavitary network changes of alpha and beta cells, including degranulation, vacuolization, mitochondrial destruction, and an increase in lysosomes. A hypoplastic bonemarrow ranging from moderate to severe was observed in all irradiated recipients. Near total fractionated body irradiation in the primate is therefore associated with elevated liver enzymes, pancytopenia, transient hyperamylasaemia, hypoinsulinaemia, a varying degree of pancreatitis, and bonemarrow hypoplasia.

  2. Spectroscopical studies of the ionizing-radiation-induced damage in optical fibers

    NASA Astrophysics Data System (ADS)

    Ediriweera, Sanath R.; Kvasnik, Frank

    1991-09-01

    The results of extensive studies of the attenuation and Raman spectra of all silica (AS), plastic clad silica (PCS), and hard clad silica (HCS and HCR) fibers are presented. A broadband fluorescence centered around 658 nm was observed in the unirradiated fibers and HCR fibers exposed to a dose of 35 rad. The intensity of this band was found to decrease and broaden with irradiation. Another band around 629 nm was observed to increase in intensity with irradiation. The 1350 cm-1 peak to the Raman spectra, observed by Lan et. al. in both boron- and phosphorous-doped fused silica fibers was originally assigned to boron and phosphorous-doped fused silica fibers was originally assigned to boron and phosphorous dopants even though there is some evidence that it is not present in glasses containing a high concentration of these dopants. Results suggest that this peak might be due to the interaction of chlorine with boron or phosphorous dopants. The presence of chlorine in some fibers is not now thought to be responsible for the 1350 cm-1 peak, which is absent from the Raman spectra of high-purity silica fibers with high-chlorine concentrations (HCR type fiber). The analysis of attenuation spectra of 'pure' silica fibers indicated that the spectral differences are unlikely to be due to differing OH concentrations alone and that the different manufacturing processes also play a part. A broadband absorption around 625 nm was observed in a high OH-content fiber receiving 105 Rad dose and is thought to originate from non-bridging oxygen hole center (NBOHC) defects.

  3. Electrosonic spray ionization. A gentle technique for generating folded proteins and protein complexes in the gas phase and for studying ion-molecule reactions at atmospheric pressure.

    PubMed

    Takáts, Zoltán; Wiseman, Justin M; Gologan, Bogdan; Cooks, R Graham

    2004-07-15

    Electrosonic spray ionization (ESSI), a variant on electrospray ionization (ESI), employs a traditional micro ESI source with supersonic nebulizing gas. The high linear velocity of the nebulizing gas provides efficient pneumatic spraying of the charged liquid sample. The variable electrostatic potential can be tuned to allow efficient and gentle ionization. This ionization method is successfully applied to aqueous solutions of various proteins at neutral pH, and its performance is compared to that of the nanospray and micro ESI techniques. Evidence for efficient desolvation during ESSI is provided by the fact that the peak widths for various multiply charged protein ions are an order of magnitude narrower than those for nanospray. Narrow charge-state distributions compared to other ESI techniques are observed also; for most of the proteins studied, more than 90% of the protein ions can be accumulated in one charge state using ESSI when optimizing conditions. The fact that the abundant charge state is normally as low or lower than that recorded by ESI or nanospray indicates that folded protein ions are generated. The sensitivity of the ionization technique to high salt concentrations is comparable to that of nanospray, but ESSI is considerably less sensitive to high concentrations of organic additives such as glycerol or 2-amino-2-(hydroxymethyl)-1,3-propanediol (Tris base). Noncovalent complexes are observed in the case of myoglobin, protein kinase A/ATP complex, and other proteins. The extent of dissociation of protein ions in ESSI is comparable to or even smaller than that in the case of nanospray, emphasizing the gentle nature of the method. The unique features of ESSI are ascribed to very efficient spraying and the low internal energy supplied to the ions. Evidence is provided that the method is capable of generating fully desolvated protein ions at atmospheric pressure. This allows the technique to be used for the study of ion-molecule reactions at atmospheric

  4. Measuring Ionization at Extreme Densities

    NASA Astrophysics Data System (ADS)

    Kraus, Dominik; Doeppner, Tilo; Kritcher, Andrea; Bachmann, Benjamin; Fletcher, Luke; Falcone, Roger; Gericke, Dirk; Glenzer, Siegfried; Masters, Nathan; Nora, Ryan; Boehm, Kurt; Divol, Laurent; Landen, Otto; Yi, Austin; Kline, John; Redmer, Ronald; Neumayer, Paul

    2015-11-01

    A precise knowledge of ionization at given temperature and density is crucial in order to properly model compressibility and heat capacity of ICF ablator materials for efficient implosions producing energy gain. Here, we present a new experimental platform to perform spectrally resolved x-ray scattering measurements of ionization, density and temperature in imploding CH or beryllium capsules on the National Ignition Facility. Recording scattered x-rays at 9 keV from a zinc He-alpha plasma source at a scattering angle of 120 degrees, first experiments show strong sensitivity to k-shell ionization, while at the same time constraining density and temperature. This platform will allow for x-ray Thomson scattering studies of dense plasmas with free electron densities up to 1025 cm-3, giving the possibility to investigate effects of continuum lowering and Pauli blocking on the ablator ionization state right before stagnation of the implosion.

  5. How do liquid mixtures solubilize insoluble gelators? Self-assembly properties of pyrenyl-linker-glucono gelators in tetrahydrofuran-water mixtures.

    PubMed

    Yan, Ni; Xu, Zhiyan; Diehn, Kevin K; Raghavan, Srinivasa R; Fang, Yu; Weiss, Richard G

    2013-06-19

    The self-assembly behavior of a series of glucono-appended 1-pyrenesulfonyl derivatives containing α,ω-diaminoalkane spacers (Pn, where n, the number of methylene units separating the amino groups, is 2, 3, 4, 6, 7, and 8) in v:v tetrahydrofuran (THF):water mixtures is examined at room temperature. The Pn at 2 w/v % concentrations do not dissolve in either THF or water at room temperature. However, the Pn can be dissolved in some THF:water mixtures, and they form gels spontaneously in other compositions without dissolving completely. The self-assembly of the Pn in the liquid mixtures has been investigated using a variety of techniques. The particle sizes of the Pn in their solutions/sols, critical gelation concentrations, microstructures, thermal and mechanical stabilities of the gels, and molecular packing modes of Pn molecules in their gel networks are found to be very dependent on the composition of the liquid mixtures. Correlations between the self-assembly behavior of the Pn and the polarity of the liquid mixtures, as probed by E(T)(30) and Hansen solubility parameters, yield both qualitative and quantitative insights into why self-assembly of the Pn can or cannot be achieved in different liquid compositions. As revealed by UV-vis and fluorescence spectroscopy studies, π-π stacking of the pyrenyl groups occurs as part of the aggregation process. Correlations between the rheological properties of the gels and the Hansen solubility parameters of the Pn and the solvent mixtures indicate that hydrogen-bonding interactions are a major contributor to the mechanical stability. Overall, the results of this study offer a new strategy to investigate the balance between dissolution and aggregation of molecular gelators. To the best of our knowledge, this is the first example of the spontaneous formation of molecular gels without heating by placing gelators in mixtures of liquids in which they are insoluble in the neat components. PMID:23735009

  6. A kinematic study of the neutral and ionized gas in the irregular dwarf galaxies IC4662 and NGC5408

    NASA Astrophysics Data System (ADS)

    van Eymeren, Janine; Koribalski, Bärbel S.; López-Sánchez, Ángel R.; Dettmar, Ralf-Jürgen; Bomans, Dominik J.

    2010-09-01

    The feedback between massive stars and the interstellar medium is one of the most important processes in the evolution of dwarf galaxies. This interaction results in numerous neutral and ionized gas structures that have been found both in the disc and in the halo of these galaxies. However, their origin and fate are still poorly understood. We here present new HI and optical data of two Magellanic irregular dwarf galaxies in the Local Volume: IC4662 and NGC5408. The HI line data were obtained with the Australia Telescope Compact Array and are part of the `Local Volume HI Survey'. They are complemented by optical images and spectroscopic data obtained with the European Southern Observatory (ESO) New Technology Telescope and the ESO 3.6-m telescope. Our main aim is to study the kinematics of the neutral and ionized gas components in order to search for outflowing gas structures and to make predictions about their fate. Therefore, we perform a Gaussian decomposition of the HI and Hα line profiles. We find the HI gas envelopes of IC4662 and NGC5408 to extend well beyond the optical discs, with HI to optical diameter ratios of above 4. The optical disc is embedded into the central HI maximum in both galaxies. However, higher resolution HI maps show that the HI intensity peaks are typically offset from the prominent HII regions. While NGC5408 shows a fairly regular HI velocity field, which allows us to derive a rotation curve, IC4662 reveals a rather twisted HI velocity field, possibly caused by a recent merger event. We detect outflows with velocities between 20 and 60 kms-1 in our Hα spectra of both galaxies, sometimes with HI counterparts of similar velocity. We suggest the existence of expanding superbubbles, especially in NGC5408. This is also supported by the detection of full width at half-maxima as high as 70 kms-1 in Hα, which cannot be explained by thermal broadening alone. In the case of NGC5408, we compare our results with the escape velocity of the galaxy

  7. Ionization of gases by a pulsed electron beam as studied by self-focusing. II. Polyatomic gases

    SciTech Connect

    Arai, H.; Hotta, H.

    1981-09-15

    In order to analyze data on the self-focusing of a pulsed electron beam in polyatomic gases, the net current I/sub net/ in H/sub 2/, N/sub 2/, and CH/sub 4/ was computed self-consistently as functions of time in the pressure range between 5 and 300 Torr of these gases by using swarm parameters. The computational result indicates that the larger dose D/sub obs/, observed by a piled dosimeter on the beam axis, is attributed to the larger I/sub net/, which is mainly determined by a mean ionization time t/sub 1/ for secondary ionization by the electric field induced by the pulsed beam. When values of D/sub obs/ for different gases are compared at the same pressure, the larger D/sub obs/ is given by the larger t/sub i/. This relationship is demonstrated for several polyatomic gases by estimating t/sub i/ from various parameters in a function of secondary electron energy or E/p such as the electron drift velocity, the first Townsend ionization coefficient, the ionization cross section, and so on. For the short pulse duration of a Febetron 706, electron--ion recombination processes scarcely affect I/sub net/ except at high pressures of some polyatomic gases, while the effect of electron-attachment processes is appreciable in SF/sub 6/, CCl/sub 2/F/sub 2/, and N/sub 2/O.

  8. Studies of Total Electron Content variations at low-latitude stations within the Equatorial Ionization Anomaly zone

    NASA Astrophysics Data System (ADS)

    Lilian, Olatunbosun

    2016-07-01

    The total electron content (TEC) is an important parameter to monitor for possible space weather impacts. The radio waves that pass through the earth's ionosphere travel more slowly than their free space velocity due to group path delay of the ionosphere. This group path delay is directly proportional to the TEC of the ionosphere. Using dual frequency GPS receiver at low latitude stations of Ile-Ife (7.52oN, 4.28oE), Addis Ababa (9.04oN, 38.77oE) and Bangalore (13.03oE, 77.57oE), all located within 0 - 15oN of the equatorial anomaly region, the measurement of ionospheric TEC for 2012 has been carried out. The data from the three stations were used to study the diurnal, monthly and seasonal variations of TEC. The diurnal variations maximize between 10:00 - 16:00UT, 08:00 - 14:00UT and 06:00 - 12:00UT for Ile-Ife, Addis Ababa and Bangalore stations respectively. The diurnal variations showed wave-like pertubation during disturbed and quiet periods at Bangalore and Addis Ababa stations. The monthly average TEC variations showed that the month of March recorded the highest TEC value of ~59TECu at about 16:00UT in Ile-Ife station, while TEC at Addis Ababa and Bangalore maximize in October with ~72TECu and 65TECu at about 11:00UT and 09:00UT respectively. Seasonal variations showed that TEC maximizes during the equinoctial months and least in summer, over the three stations. Keywords: Total Electron Content, Equatorial Ionization Anomaly, Global Positioning System co-author:E.A. Ariyibi(Department of Physics and Engineering Physics, Obafemi Awolowo University, Ile-Ife, Nigeria)

  9. Mechanistic and Kinetic Study of Singlet O2 Oxidation of Methionine by On-Line Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Liu, Fangwei; Lu, Wenchao; Yin, Xunlong; Liu, Jianbo

    2016-01-01

    We report a reaction apparatus developed to monitor singlet oxygen (1O2) reactions in solution using on-line ESI mass spectrometry and spectroscopy measurements. 1O2 was generated in the gas phase by the reaction of H2O2 with Cl2, detected by its emission at 1270 nm, and bubbled into aqueous solution continuously. 1O2 concentrations in solution were linearly related to the emission intensities of airborne 1O2, and their absolute scales were established based on a calibration using 9,10-anthracene dipropionate dianion as an 1O2 trapping agent. Products from 1O2 oxidation were monitored by UV-Vis absorption and positive/negative ESI mass spectra, and product structures were elucidated using collision-induced dissociation-tandem mass spectrometry. To suppress electrical discharge in negative ESI of aqueous solution, methanol was added to electrospray via in-spray solution mixing using theta-glass ESI emitters. Capitalizing on this apparatus, the reaction of 1O2 with methionine was investigated. We have identified methionine oxidation intermediates and products at different pH, and measured reaction rate constants. 1O2 oxidation of methionine is mediated by persulfoxide in both acidic and basic solutions. Persulfoxide continues to react with another methionine, yielding methionine sulfoxide as end-product albeit with a much lower reaction rate in basic solution. Density functional theory was used to explore reaction potential energy surfaces and establish kinetic models, with solvation effects simulated using the polarized continuum model. Combined with our previous study of gas-phase methionine ions with 1O2, evolution of methionine oxidation pathways at different ionization states and in different media is described.

  10. Mechanistic and Kinetic Study of Singlet O2 Oxidation of Methionine by On-Line Electrospray Ionization Mass Spectrometry.

    PubMed

    Liu, Fangwei; Lu, Wenchao; Yin, Xunlong; Liu, Jianbo

    2016-01-01

    We report a reaction apparatus developed to monitor singlet oxygen ((1)O2) reactions in solution using on-line ESI mass spectrometry and spectroscopy measurements. (1)O2 was generated in the gas phase by the reaction of H2O2 with Cl2, detected by its emission at 1270 nm, and bubbled into aqueous solution continuously. (1)O2 concentrations in solution were linearly related to the emission intensities of airborne (1)O2, and their absolute scales were established based on a calibration using 9,10-anthracene dipropionate dianion as an (1)O2 trapping agent. Products from (1)O2 oxidation were monitored by UV-Vis absorption and positive/negative ESI mass spectra, and product structures were elucidated using collision-induced dissociation-tandem mass spectrometry. To suppress electrical discharge in negative ESI of aqueous solution, methanol was added to electrospray via in-spray solution mixing using theta-glass ESI emitters. Capitalizing on this apparatus, the reaction of (1)O2 with methionine was investigated. We have identified methionine oxidation intermediates and products at different pH, and measured reaction rate constants. (1)O2 oxidation of methionine is mediated by persulfoxide in both acidic and basic solutions. Persulfoxide continues to react with another methionine, yielding methionine sulfoxide as end-product albeit with a much lower reaction rate in basic solution. Density functional theory was used to explore reaction potential energy surfaces and establish kinetic models, with solvation effects simulated using the polarized continuum model. Combined with our previous study of gas-phase methionine ions with (1)O2, evolution of methionine oxidation pathways at different ionization states and in different media is described. PMID:26306590

  11. Moving solvated electrons with light: Nonadiabatic mixed quantum/classical molecular dynamics simulations of the relocalization of photoexcited solvated electrons in tetrahydrofuran (THF)

    SciTech Connect

    Bedard-Hearn, Michael J.; Larsen, Ross E.; Schwartz, Benjamin J.

    2006-11-21

    Motivated by recent ultrafast spectroscopic experiments [Martini et al., Science 293, 462 (2001)], which suggest that photoexcited solvated electrons in tetrahydrofuran (THF) can relocalize (that is, return to equilibrium in solvent cavities far from where they started), we performed a series of nonequilibrium, nonadiabatic, mixed quantum/classical molecular dynamics simulations that mimic one-photon excitation of the THF-solvated electron. We find that as photoexcited THF-solvated electrons relax to their ground states either by continuous mixing from the excited state or via nonadiabatic transitions, {approx}30% of them relocalize into cavities that can be over 1 nm away from where they originated, in close agreement with the experiments. A detailed investigation shows that the ability of excited THF-solvated electrons to undergo photoinduced relocalization stems from the existence of preexisting cavity traps that are an intrinsic part of the structure of liquid THF. This explains why solvated electrons can undergo photoinduced relocalization in solvents like THF but not in solvents like water, which lack the preexisting traps necessary to stabilize the excited electron in other places in the fluid. We also find that even when they do not ultimately relocalize, photoexcited solvated electrons in THF temporarily visit other sites in the fluid, explaining why the photoexcitation of THF-solvated electrons is so efficient at promoting recombination with nearby scavengers. Overall, our study shows that the defining characteristic of a liquid that permits the photoassisted relocalization of solvated electrons is the existence of nascent cavities that are attractive to an excess electron; we propose that other such liquids can be found from classical computer simulations or neutron diffraction experiments.

  12. Ionization of cluster atoms in a strong laser field

    SciTech Connect

    Smirnov, M.B.; Krainov, V.P.

    2004-04-01

    Inner and outer multiple ionization of clusters by a superintense ultrashort laser pulse is studied. The barrier-suppression mechanism governs inner field ionization in this case, while impact ionization can be neglected. Outer ionization produces a static Coulomb field inside the ionized cluster. This field increases the charge multiplicity of the atomic ions produced inside the cluster approximately by a factor of 1.5. Various models are suggested for the charge distribution inside the cluster.

  13. Collision-energy-resolved Penning ionization electron spectroscopy of p-benzoquinone: Study of electronic structure and anisotropic interaction with He*(2 3S) metastable atoms

    NASA Astrophysics Data System (ADS)

    Kishimoto, Naoki; Okamura, Kohji; Ohno, Koichi

    2004-06-01

    Collision energy dependence of partial ionization cross sections (CEDPICS) of p-benzoquinone with He*(2 3S) metastable atoms indicates that interaction potentials between p-benzoquinone and He*(2 3S) are highly anisotropic in the studied collision energy range (100-250 meV). Attractive interactions were found around the C=O groups for in-plane and out-of-plane directions, while repulsive interactions were found around CH bonds and the benzenoid ring. Assignment of the first four ionic states of p-benzoquinone and an analogous methyl-substituted compound was examined with CEDPICS and anisotropic distributions of the corresponding two nonbonding oxygen orbitals (nO+,nO-) and two πCC orbitals (πCC+,πCC-). An extra band that shows negative CEDPICS was observed at ca. 7.2 eV in Penning ionization electron spectrum.

  14. EPR study of the effect of ionizing radiation on chromium centers in Mg2SiO4: Cr,Li laser crystals

    NASA Astrophysics Data System (ADS)

    Akhmetzyanov, D. A.; Dudnikova, V. B.; Zharikov, E. V.; Zhiteitsev, E. R.; Konovalov, A. A.; Tarasov, V. F.

    2013-09-01

    Forsterite single crystals doped with chromium and lithium and exposed to ionizing radiation have been studied using multifrequency electron paramagnetic resonance (EPR) spectroscopy. It has been found that ionizing irradiation up to a dose of 108 rad does not lead to a significant change in the concentration of single chromium impurity centers. At the same time, γ-ray irradiation of the crystal leads to a decrease in the concentration of active laser centers, which form an associate of trivalent chromium and monovalent lithium in the crystallographic positions M2 and M1, respectively, and to the formation of new centers of divalent chromium. The structure and magnetic properties of the new centers have been discussed.

  15. Ionization potentials of seaborgium

    SciTech Connect

    Johnson, E.; Pershina, V.; Fricke, B.

    1999-10-21

    Multiconfiguration relativistic Dirac-Fock values were calculated for the first six ionization potentials of seaborgium and of the other group 6 elements. No experimental ionization potentials are available for seaborgium. Accurate experimental values are not available for all of the other ionization potentials. Ionic radii for the 4+ through 6+ ions of seaborgium are also presented. The ionization potentials and ionic radii obtained will be used to predict some physiochemical properties of seaborgium and its compounds.

  16. Ionization Energies of Lanthanides

    ERIC Educational Resources Information Center

    Lang, Peter F.; Smith, Barry C.

    2010-01-01

    This article describes how data are used to analyze the pattern of ionization energies of the lanthanide elements. Different observed pathways of ionization between different ground states are discussed, and the effects of pairing, exchange, and orbital interactions on ionization energies of the lanthanides are evaluated. When all the above…

  17. Photoexcitation and ionization in carbon dioxide - Theoretical studies in the separated-channel static-exchange approximation

    NASA Technical Reports Server (NTRS)

    Padial, N.; Csanak, G.; Mckoy, B. V.; Langhoff, P. W.

    1981-01-01

    Vertical-electronic static-exchange photoexcitation and ionization cross sections are reported which provide a first approximation to the complete dipole spectrum of CO2. Separated-channel static-exchange calculations of vertical-electronic transition energies and oscillator strengths, and Stieltjes-Chebyshev moment methods were used in the development. Detailed comparisons were made of the static-exchange excitation and ionization spectra with photoabsorption, electron-impact excitation, and quantum-defect estimates of discrete transition energies and intensities, and with partial-channel photoionization cross sections obtained from fluorescence measurements and from tunable-source and (e, 2e) photoelectron spectroscopy. Results show that the separate-channel static-exchange approximation is generally satisfactory in CO2.

  18. Ultraviolet Absorption Spectra, AB Initio Calculations, and Carbonyl Wagging Potential Energy Functions of Cyclobutanone, Cyclopentanone, BICYCLO[3.1.0]HEXAN-3-ONE, and TETRAHYDROFURAN-3-ONE

    NASA Astrophysics Data System (ADS)

    Lee, Soono; Dakkouri, Marwan; Choo, Jaebum; Laane, Jaan

    2000-03-01

    The electronic absorption spectra of cyclobutanone, cyclopentanone, bicyclo[3.1.0]hexan-3-one, and tetrahydrofuran-3-one were recorded and analyzed in the 28,000 - 44,000 cm-1 region. Several dozen absorption bands were assigned for each molecule. These arise from combinations of the ring vibrations and the C=O wagging vibrations. Assigned bands were compared with previously recorded jet-cooled fluorescence excitation spectra. Additional C=O out-of-plane wagging bands were found for cyclopentanone and tetrahydrofuran-3-one, and the potential energy functions for this vibration in these molecules were recalculated. These potential energy functions have barriers to inversion reflecting the fact that the carbonyl group is bent out of the ring plane in the S1(n, π*) excited electronic state.

  19. A study of electrospray ionization emitters with differing geometries with respect to flow rate and electrospray voltage.

    PubMed

    Reschke, Brent R; Timperman, Aaron T

    2011-12-01

    The performance of several electrospray ionization emitters with different orifice inside diameters (i.d.s), geometries, and materials are compared. The sample solution is delivered by pressure driven flow, and the electrospray ionization voltage and flow rate are varied systematically for each emitter investigated, while the signal intensity of a standard is measured. The emitters investigated include a series of emitters with a tapered outside diameters (o.d.) and unaltered i.d.s, a series of emitters with tapered o.d.s and i.d.s, an emitter with a monolithic frit and a tapered o.d., and an emitter fabricated from polypropylene. The results show that for the externally etched emitters, signal was nearly independent of i.d. and better ion utilization was achieved at lower flow rates. Furthermore, emitters with a 50 μm i.d. and an etched o.d. produced about 1.5 times more signal than etched emitters with smaller i.d.s and about 3.5 times more signal than emitters with tapered inner and outer dimensions. Additionally, the work presented here has important implications for applications in which maximizing signal intensity and reducing frictional resistance to flow are necessary. Overall, the work provides an initial assessment of the critical parameters that contribute to maximizing the signal for electrospray ionization sources interfaced with pressure driven flows. PMID:21989703

  20. A Study of Electrospray Ionization Emitters with Differing Geometries with Respect to Flow Rate and Electrospray Voltage

    NASA Astrophysics Data System (ADS)

    Reschke, Brent R.; Timperman, Aaron T.

    2011-12-01

    The performance of several electrospray ionization emitters with different orifice inside diameters (i.d.s), geometries, and materials are compared. The sample solution is delivered by pressure driven flow, and the electrospray ionization voltage and flow rate are varied systematically for each emitter investigated, while the signal intensity of a standard is measured. The emitters investigated include a series of emitters with a tapered outside diameters (o.d.) and unaltered i.d.s, a series of emitters with tapered o.d.s and i.d.s, an emitter with a monolithic frit and a tapered o.d., and an emitter fabricated from polypropylene. The results show that for the externally etched emitters, signal was nearly independent of i.d. and better ion utilization was achieved at lower flow rates. Furthermore, emitters with a 50 μm i.d. and an etched o.d. produced about 1.5 times more signal than etched emitters with smaller i.d.s and about 3.5 times more signal than emitters with tapered inner and outer dimensions. Additionally, the work presented here has important implications for applications in which maximizing signal intensity and reducing frictional resistance to flow are necessary. Overall, the work provides an initial assessment of the critical parameters that contribute to maximizing the signal for electrospray ionization sources interfaced with pressure driven flows.

  1. Fluid hydrogen at high density - Pressure ionization

    NASA Technical Reports Server (NTRS)

    Saumon, Didier; Chabrier, Gilles

    1992-01-01

    The Helmholtz-free-energy model for nonideal mixtures of hydrogen atoms and molecules by Saumon and Chabrier (1991) is extended to describe dissociation and ionization in similar mixtures in chemical equilibrium. A free-energy model is given that describes partial ionization in the pressure and temperature ionization region. The plasma-phase transition predicted by the model is described for hydrogen mixtures including such components as H2, H, H(+), and e(-). The plasma-phase transition has a critical point at Tc = 15,300 K and Pc = 0.614 Mbar, and thermodynamic instability is noted in the pressure-ionization regime. The pressure dissociation and ionization of fluid hydrogen are described well with the model yielding information on the nature of the plasma-phase transition. The model is shown to be valuable for studying dissociation and ionization in astrophysical objects and in high-pressure studies where pressure and temperature effects are significant.

  2. Trivalent lanthanide interactions with a terdentate bis(dialkyltriazinyl)pyridine ligand studied by electrospray ionization mass spectrometry.

    PubMed

    Colette, Sonia; Amekraz, Badia; Madic, Charles; Berthon, Laurence; Cote, Gérard; Moulin, Christophe

    2003-04-01

    The 2,6-bis(5,6-dialkyl-1,2,4-triazin-3-yl)pyridines (DATPs) belong to a new family of extracting agents recently developed in the framework of nuclear fuel reprocessing. These molecules exhibit exceptional properties to separate actinides(III) from lanthanides(III) in nitric acid solutions. A previous work showed that electrospray ionization mass spectrometry (ESI-MS) is a reliable technique to provide solution data such as stoichiometries and conditional stability constants of various DATP complexes with europium and evidenced the unusual capability of DiPTP [bis(di-iso-propyltriazinyl)pyridine] ligand to form 1:3 complexes in nitric acid solution. This latter result is further investigated by considering DiPTP complexation features with the complete lanthanide family. As a starting point of the experimental procedure used for stability constant evaluation, the intensity distribution of ions detected by ESI-MS is studied for solutions containing Ln(NO(3))(3) in water/methanol (1:1 v/v) with the pH value set at 2.8 and 4.6 by HNO(3) additions. At pH 2.8, the nitrate anions are found to prevent lanthanides from processes occurring within the ion source: redox phenomena or gas-phase reactions with methanol which give species such as [Ln(MeO)(2)](+). Thus, the total intensity of MS signals from [Ln(NO(3))(2)(H(2)O)(p)(MeOH)(n)](+) ions is found proportional to the metal ion concentration. At pH 4.6, with lower nitrate concentration, the nature of the species identified on mass spectra depends on the electronic properties of the lanthanide elements. It is shown that Ln(III) complexation with DiPTP leads to the exclusive formation of 1:3 complexes with the whole lanthanide series which may be due not only to the hydrophobic exterior of the ligand but also to the unusual electronic density distribution in DATP ligands as compared with other aza-aromatic ligands. The conditional stability constants of the 1:3 lanthanide(III) complexes with DiPTP have been determined at p

  3. Ionization probes of molecular structure and chemistry

    SciTech Connect

    Johnson, P.M.

    1993-12-01

    Various photoionization processes provide very sensitive probes for the detection and understanding of the spectra of molecules relevant to combustion processes. The detection of ionization can be selective by using resonant multiphoton ionization or by exploiting the fact that different molecules have different sets of ionization potentials. Therefore, the structure and dynamics of individual molecules can be studied even in a mixed sample. The authors are continuing to develop methods for the selective spectroscopic detection of molecules by ionization, and to use these methods for the study of some molecules of combustion interest.

  4. A Study of H2O2 with Threshold Photoelectron Spectroscopy (TPES) and Electronic Structure Calculations: Redetermination of the First Adiabatic Ionization Energy (AIE).

    PubMed

    Schio, Luca; Alagia, Michele; Dias, Antonio A; Falcinelli, Stefano; Zhaunerchyk, Vitali; Lee, Edmond P F; Mok, Daniel K W; Dyke, John M; Stranges, Stefano

    2016-07-14

    In this work, hydrogen peroxide has been studied with threshold photoelectron (TPE) spectroscopy and photoelectron (PE) spectroscopy. The TPE spectrum has been recorded in the 10.0-21.0 eV ionization energy region, and the PE spectrum has been recorded at 21.22 eV photon energy. Five bands have been observed which have been assigned on the basis of UCCSD(T)-F12/VQZ-F12 and IP-EOM CCSD calculations. Vibrational structure has only been resolved in the TPE spectrum of the first band, associated with the X̃(2)Bg H2O2(+) ← X̃(1)A H2O2 ionization, on its low energy side. This structure is assigned with the help of harmonic Franck-Condon factor calculations that use the UCCSD(T)-F12a/VQZ-F12 computed adiabatic ionization energy (AIE), and UCCSD(T)-F12a/VQZ-F12 computed equilibrium geometric parameters and harmonic vibrational frequencies for the H2O2 X̃(1)A state and the H2O2(+) X̃(2)Bg state. These calculations show that the main vibrational structure on the leading edge of the first TPE band is in the O-O stretching mode (ω3) and the HOOH deformation mode (ω4), and comparison of the simulated spectrum to the experimental spectrum gives the first AIE of H2O2 as (10.685 ± 0.005) eV and ω4 = (850 ± 30) and ω3 = (1340 ± 30) cm(-1) in the X̃(2)Bg state of H2O2(+). Contributions from ionization of vibrationally excited levels in the torsion mode have been identified in the TPE spectrum of the first band and the need for a vibrationally resolved TPE spectrum from vibrationally cooled molecules, as well as higher level Franck-Condon factors than performed in this work, is emphasized. PMID:27045948

  5. Effect of noncovalent interactions on the n-butylbenzene...Ar cluster studied by mass analyzed threshold ionization spectroscopy and ab initio computations.

    PubMed

    Tong, Xin; Cerný, Jirí; Müller-Dethlefs, Klaus

    2008-07-01

    Clusters of Ar bound to isomers of the aromatic hydrocarbon n-butylbenzene (BB) have been studied using two-color REMPI (resonance enhanced multiphoton ionization) and MATI (mass analyzed threshold ionization) spectroscopy to explore noncovalent vdW interactions between these two moieties. Blue shifts of excitation energy were observed for gauche-BB...Ar clusters, and red shifts for anti-BB...Ar clusters were observed. Adiabatic ionization energies (IEs) of the conformer BB-I...Ar and BB-V...Ar were determined as 70052 and 69845 +/- 5 cm (-1), respectively. Spectral features and vibrational modes were interpreted with the aid of UMP2/cc-pVDZ ab initio calculations. Data of complexation shifts of the alkyl-benzenes and their argon clusters were collected and discussed. Using the CCSD(T) method at complete basis set (CBS) level, interaction energies for the neutral ground states of BB-I...Ar and BB-V...Ar were obtained as 650 and 558 cm (-1), respectively. Combining the CBS calculation results and the REMPI and MATI spectra allowed further the determination of the interaction energies and the energetics of BB...Ar in the excited neutral S 1 and the D 0 cationic ground states. PMID:18533640

  6. Effect of Chromatin Structure on the Extent and Distribution of DNA Double Strand Breaks Produced by Ionizing Radiation; Comparative Study of hESC and Differentiated Cells Lines

    PubMed Central

    Venkatesh, Priyanka; Panyutin, Irina V.; Remeeva, Evgenia; Neumann, Ronald D.; Panyutin, Igor G.

    2016-01-01

    Chromatin structure affects the extent of DNA damage and repair. Thus, it has been shown that heterochromatin is more protective against DNA double strand breaks (DSB) formation by ionizing radiation (IR); and that DNA DSB repair may proceed differently in hetero- and euchromatin regions. Human embryonic stem cells (hESC) have a more open chromatin structure than differentiated cells. Here, we study the effect of chromatin structure in hESC on initial DSB formation and subsequent DSB repair. DSB were scored by comet assay; and DSB repair was assessed by repair foci formation via 53BP1 antibody staining. We found that in hESC, heterochromatin is confined to distinct regions, while in differentiated cells it is distributed more evenly within the nuclei. The same dose of ionizing radiation produced considerably more DSB in hESC than in differentiated derivatives, normal human fibroblasts; and one cancer cell line. At the same time, the number of DNA repair foci were not statistically different among these cells. We showed that in hESC, DNA repair foci localized almost exclusively outside the heterochromatin regions. We also noticed that exposure to ionizing radiation resulted in an increase in heterochromatin marker H3K9me3 in cancer HT1080 cells, and to a lesser extent in IMR90 normal fibroblasts, but not in hESCs. These results demonstrate the importance of chromatin conformation for DNA protection and DNA damage repair; and indicate the difference of these processes in hESC. PMID:26729112

  7. A newly isolated strain capable of effectively degrading tetrahydrofuran and its performance in a continuous flow system.

    PubMed

    Chen, Jian-Meng; Zhou, Yu-Yang; Chen, Dong-Zhi; Jin, Xiao-Jun

    2010-08-01

    A Gram-negative strain DT4, capable of growing aerobically on tetrahydrofuran (THF) as the sole carbon and energy source was isolated from a pharmaceutical wastewater treatment plant. It was identified as Pseudomonas oleovorans by morphological and physiological characteristics as well as Biolog profiling and 16S rDNA sequence. Cells of P. oleovorans DT4 pre-cultured in THF could degrade 5 mM THF completely without lag phase. The generation time of 2.7 h and the maximum degradation rate of 203.9 mg THF/(h g dry weight) were observed, demonstrating that DT4 bears the highest THF-degrading activity in ever described strains. Furthermore, THF concentration as high as 100 mM was tolerated by the culture. Several important compounds including gamma-butyrrolactone and benzene could be directly metabolized, whereas other pollutants (e.g., tetrahydropyrane) could be cometabolized by DT4. THF removal was achieved in a continuous flow system with the maximum specific growth rate 0.113 h(-1) and half-saturation constant 1.224 mg/L, indicating the great potential of THF bioremediation in future full-scale application. PMID:20381342

  8. Quantitative determination of 1,4-dioxane and tetrahydrofuran in groundwater by solid phase extraction GC/MS/MS.

    PubMed

    Isaacson, Carl; Mohr, Thomas K G; Field, Jennifer A

    2006-12-01

    Groundwater contamination by cyclic ethers, 1,4-dioxane (dioxane), a probable human carcinogen, and tetrahydrofuran (THF), a co-contaminant at many chlorinated solvent release sites, are a growing concern. Cyclic ethers are readily transported in groundwater, yet little is known about their fate in environmental systems. High water solubility coupled with low Henry's law constants and octanol-water partition coefficients make their removal from groundwater problematic for both remedial and analytical purposes. A solid-phase extraction (SPE) method based on activated carbon disks was developed for the quantitative determination of dioxane and THF. The method requires 80 mL samples and a total of 1.2 mL of solvent (acetone). The number of steps is minimized due to the "in-vial" elution of the disks. Average recoveries for dioxane and THF were 98% and 95%, respectively, with precision, as indicated by the relative standard deviation of <2% to 6%. The method quantitation limits are 0.31 microg/L for dioxane and 3.1 microg/L for THF. The method was demonstrated by analyzing groundwater samples for dioxane and THF collected during a single sampling campaign at a TCA-impacted site. Dioxane concentrations and areal extent of dioxane in groundwater were greater than those of either TCA or THF. PMID:17180982

  9. Acoustic and resistivity measurements on rock samples containing tetrahydrofuran hydrates: Laboratory analogues to natural gas hydrate deposits

    NASA Astrophysics Data System (ADS)

    Pearson, C.; Murphy, J.; Hermes, R.

    1986-12-01

    In this paper we report laboratory acoustic velocity and electrical resistivity measurements on Berea Sandstone and Austin Chalk samples saturated with a stoichiometric mixture of tetrahydrofuran (THF) and water. THF and water is an excellent experimental analogue to natural gas hydrates because THF solutions form hydrates similar to natural gas hydrates readily at atmospheric pressures. Hydrate formation in both the chalk and sandstone samples increased the acoustic P wave velocities by more than 80% when hydrates formed in the pore spaces; however, the velocities soon plateaued and further lowering the temperature did not appreciably increase the velocity. In contrast, the electrical resistivity increased nearly 2 orders of magnitude upon hydrate formation and continued to increase slowly as the temperature was decreased. In all cases resistivities were nearly frequency independent to 30 kHz, and the loss tangents were high, always greater than 5. The dielectric loss showed a linear decrease with frequency suggesting that ionic conduction through a brine phase dominates at all frequencies, even when the pores are nearly filled with hydrates. We find that resistivities were strongly a function of the dissolved salt content of the pore water. Pore water salinity also influenced the sonic velocity, but this effect is much smaller and only important near the hydrate formation temperature.

  10. Ambient Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Huang, Min-Zong; Yuan, Cheng-Hui; Cheng, Sy-Chyi; Cho, Yi-Tzu; Shiea, Jentaie

    2010-07-01

    Mass spectrometric ionization methods that operate under ambient conditions and require minimal or no sample pretreatment have attracted much attention in such fields as biomedicine, food safety, antiterrorism, pharmaceuticals, and environmental pollution. These technologies usually involve separate ionization and sample-introduction events, allowing independent control over each set of conditions. Ionization is typically performed under ambient conditions through use of existing electrospray ionization (ESI) or atmospheric pressure chemical ionization (APCI) techniques. Rapid analyses of gas, liquid, and solid samples are possible with the adoption of various sample-introduction methods. This review sorts different ambient ionization techniques into two main subcategories, primarily on the basis of the ionization processes, that are further differentiated in terms of the approach used for sampling.

  11. Physics of Partially Ionized Plasmas

    NASA Astrophysics Data System (ADS)

    Krishan, Vinod

    2016-05-01

    Figures; Preface; 1. Partially ionized plasmas here and everywhere; 2. Multifluid description of partially ionized plasmas; 3. Equilibrium of partially ionized plasmas; 4. Waves in partially ionized plasmas; 5. Advanced topics in partially ionized plasmas; 6. Research problems in partially ionized plasmas; Supplementary matter; Index.

  12. Development of dielectric-barrier-discharge ionization.

    PubMed

    Guo, Cheng'an; Tang, Fei; Chen, Jin; Wang, Xiaohao; Zhang, Sichun; Zhang, Xinrong

    2015-03-01

    Dielectric-barrier-discharge ionization is an ambient-ionization technique. Since its first description in 2007, it has attracted much attention in such fields as biological analysis, food safety, mass-spectrometry imaging, forensic identification, and reaction monitoring for its advantages, e.g., low energy consumption, solvent-free method, and easy miniaturization. In this review a brief introduction to dielectric barrier discharge is provided, and then a detailed introduction to the dielectric-barrier-discharge-ionization technique is given, including instrumentation, applications, and mechanistic studies. Based on the summary of reported work, possible future uses of this type of ionization source are discussed at the end. PMID:25510973

  13. Multiple ionization of xenon by proton impact

    SciTech Connect

    Manson, S.T.; DuBois, R.D.

    1987-12-01

    An experimental and theoretical study of multiple ionization of xenon for 0.2- to 2.0-MeV proton impact was made. Absolute cross sections for producing xenon ions with charges from +1 to +3 were measured, and calculations of subshell cross sections were performed. Experiment and theory are consistent and indicate that multiple ionization of xenon by fast protons occurs via inner-shell ionization. This is in contrast to the lighter noble gases where direct multiple outer shell ionization can be predominant.

  14. Aging effects on macadamia nut oil studied by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Proschogo, Nicholas W; Albertson, Peter L; Bursle, Johanna; McConchie, Cameron A; Turner, Athol G; Willett, Gary D

    2012-02-29

    High-resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry is successfully used in the detailed molecular analysis of aged macadamia nut oils. The results are consistent with peroxide values, the current industry measure for rancidity, and provide detailed molecular information on the oxidative and hydrolytic degeneration of such oils. Mass analysis of macadamia oil samples stored for extended periods at 6 °C revealed that oils obtained by the cold press method are more susceptible to aging than those obtained using modified Soxhlet or accelerated solvent extraction methods. PMID:22268609

  15. DIVALENT LANTHANIDE CHEMISTRY; BIS (PENTAMETHYLCYCLOPENTADIENYL) EUROPIUM(II) AND YTTERBIUM(II) DERIVATIVES: CRYSTAL STRUCTURE OF BIS(PENTAMETHYLCYCLOPENTADIENYL) YTTERBIUM (II)TETRAHYDROFURAN HEMI (TOLUENE) AT 176K

    SciTech Connect

    Tilley, T.Don; Andersen, Richard A.; Spencer, Brock; Ruben, Helena; Zalkin, Allan; Templeton, David H.

    1980-04-01

    Red, paramagnetic ({mu}{sub B} = 7.99 B.M., 5-50K) bis(pentamethylcyclopentadienyl) europium (II)(tetrahydrofuran)(diethylether), (Me{sub 5}C{sub 5}){sub 2}Eu(THF)(Et{sub 2}O) is isolated from reaction of three molar equivalents of sodium pentamethylcyclopentadienide and europium trichloride in refluxing tetrahydrofuran, after crystallization from diethyl ether. The monotetrahydrofuran complex, (Me{sub 5}C{sub 5}){sub 2}Eu(THF), may be isolated by use of toluene rather than diethyl ether as the crystallization solvent. Red, diamagnetic bis(pentamethylcyclopentadienyl)ytterbium(II)(tetrahydrofuran) is isolated from the reaction of ytterbium dichloride and sodium pentamethylcyclopentadienide in refluxing tetrahydrofuran. The diethyl ether complex, (Me{sub 5}C{sub 5}){sub 2}Yb(OEt{sub 2}), may be isolated by crystallization of the tetrahydrofuran complex from diethylether, The hemi-toluene complex, (Me{sub 5}C{sub 5}){sub 2} Yb(THF) {center_dot} 1/2 toluene, can be isolated by recrystallization of the tetrahydrofuran complex from toluene. As these divalent metallocenes are the first hydrocarbon-soluble lanthanide derivatives to be isolated we have examined the latter complex by X-ray crystallography. Crystals of (Me{sub 5}C{sub 5}){sub 2}Yb(OC{sub 4}H{sub 8}) {center_dot} 1/2(C{sub 6}H{sub 5}cH{sub 3}) crystalline in the monoclinic system, P2{sub 1}/n, with a = 11.358(8) {angstrom}, b = 21.756(19) {angstrom}, c = 10.691(7) {angstrom}, and {beta} = 101.84(5){sup o} at 176K. For Z = 4 the calculated density is 1.37 g cm{sup -3}. The ytterbium atom is coordinated to the oxygen atom of a tetrahydrofuran molecule and to two pentamethyl cyclopentadienyl rings. The molecule has approximate c{sub 2} symmetry about the Yb-0 bond. The Yb-0 distance is 2.41 {angstrom}, the Yb-C distances average 2.66 {angstrom}, and the Yb-Cp (centroid) distances average 2.37 {angstrom}. The Me{sub 5}C{sub 5} rings are in a staggered configuration with respect to each other. The methyl groups of

  16. Effects of Tailored Surface Chemistry on Desorption Electrospray Ionization Mass Spectrometry: a Surface-Analytical Study by XPS and AFM

    NASA Astrophysics Data System (ADS)

    Penna, Andrea; Careri, Maria; Spencer, Nicholas D.; Rossi, Antonella

    2015-08-01

    Since it was proposed for the first time, desorption electrospray ionization-mass spectrometry (DESI-MS) has been evaluated for applicability in numerous areas. Elucidations of the ionization mechanisms and the subsequent formation of isolated gas-phase ions have been proposed so far. In this context, the role of both surface and pneumatic effects on ion-formation yield has recently been investigated. Nevertheless, the effect of the surface chemistry has not yet been completely understood. Functionalized glass surfaces have been prepared, in order to tailor surface performance for ion formation. Three substrates were functionalized by depositing three different silanes [3-mercaptopropyltriethoxysilane (MTES), octyltriethoxysilane (OTES), and 1H,1H,2H,2H-perfluorooctyltriethoxy-silane (FOTES)] from toluene solution onto standard glass slides. Surface characterization was carried out by contact-angle measurements, tapping-mode atomic force microscopy, and X-ray photoelectron spectroscopy. Morphologically homogeneous and thickness-controlled films in the nm range were obtained, with surface free energies lying between 15 and 70 mJ/m2. These results are discussed, together with those of DESI-MS on low-molecular-weight compounds such as melamine, tetracycline, and lincomycin, also taking into account the effects of the sprayer potential and its correlation with surface wettability. The results demonstrate that ion-formation efficiency is affected by surface wettability, and this was demonstrated operating above and below the onset of the electrospray.

  17. Analytical instruments, ionization sources, and ionization methods

    DOEpatents

    Atkinson, David A.; Mottishaw, Paul

    2006-04-11

    Methods and apparatus for simultaneous vaporization and ionization of a sample in a spectrometer prior to introducing the sample into the drift tube of the analyzer are disclosed. The apparatus includes a vaporization/ionization source having an electrically conductive conduit configured to receive sample particulate which is conveyed to a discharge end of the conduit. Positioned proximate to the discharge end of the conduit is an electrically conductive reference device. The conduit and the reference device act as electrodes and have an electrical potential maintained between them sufficient to cause a corona effect, which will cause at least partial simultaneous ionization and vaporization of the sample particulate. The electrical potential can be maintained to establish a continuous corona, or can be held slightly below the breakdown potential such that arrival of particulate at the point of proximity of the electrodes disrupts the potential, causing arcing and the corona effect. The electrical potential can also be varied to cause periodic arcing between the electrodes such that particulate passing through the arc is simultaneously vaporized and ionized. The invention further includes a spectrometer containing the source. The invention is particularly useful for ion mobility spectrometers and atmospheric pressure ionization mass spectrometers.

  18. Online atmospheric pressure chemical ionization ion trap mass spectrometry (APCI-IT-MSn) for measuring organic acids in concentrated bulk aerosol - a laboratory and field study

    NASA Astrophysics Data System (ADS)

    Vogel, A. L.; Äijälä, M.; Brüggemann, M.; Ehn, M.; Junninen, H.; Petäjä, T.; Worsnop, D. R.; Kulmala, M.; Williams, J.; Hoffmann, T.

    2013-02-01

    The field application of an aerosol concentrator in conjunction with an atmospheric pressure chemical ionization ion trap mass spectrometer (APCI-IT-MS) at the boreal forest station SMEAR II at Hyytiälä, Finland, is demonstrated in this study. APCI is a soft-ionization technique allowing online measurements of organic acids in the gas and particle phase. The detection limit for the acid species in the particle phase was improved by a factor of 7.5 to 11 (e.g. ∼40 ng m3 for pinonic acid) by using the miniature versatile aerosol concentration enrichment system (mVACES) upstream of the mass spectrometer. The APCI-IT-MS was calibrated in the negative ion mode with two biogenic organic acid standards - pinic acid and pinonic acid. Pinic acid was used as a surrogate for the quantification of the total amount of organic acids in the ambient aerosol based on the total signal intensities in the negative ion mode. The results were compared with the total organic signal of a C-ToF-AMS during the HUMPPA-COPEC 2010 field campaign. The campaign average contribution of organic acids measured by APCI-IT-MS to the total submicron organic aerosol mass was estimated to be about 60%, based on the response of pinic acid. Very good correlation between APCI-IT-MS and C-ToF-AMS (Pearson's R = 0.94) demonstrates soft-ionization mass spectrometry as a complimentary technique to AMS with electron impact ionization. MS2 studies of specific m/z ratios recorded during the HUMPPA-COPEC 2010 field campaign were compared to MS2 studies of selected monoterpene oxidation products formed in simulation chamber experiments. The comparison of the resulting fragments shows that oxidation products of the main VOCs emitted at Hyytiälä (α-pinene and Δ3-carene) cannot account for all of the measured fragments. Possible explanations for those unaccounted fragments are the presence of unidentified or underestimated biogenic SOA precursors, or that different products are formed by a different oxidant

  19. Online atmospheric pressure chemical ionization ion trap mass spectrometry (APCI-IT-MSn) for measuring organic acids in concentrated bulk aerosol - a laboratory and field study

    NASA Astrophysics Data System (ADS)

    Vogel, A. L.; Äijälä, M.; Brüggemann, M.; Ehn, M.; Junninen, H.; Petäjä, T.; Worsnop, D. R.; Kulmala, M.; Williams, J.; Hoffmann, T.

    2012-08-01

    The field application of an aerosol concentrator in conjunction with an atmospheric pressure chemical ionization ion trap mass spectrometer (APCI-IT-MS) at the boreal forest station SMEAR II at Hyytiälä, Finland, is demonstrated in this study. APCI is a soft ionization technique allowing online measurements of organic acids in the gas and particle phase. The detection limit for the acid species in the particle phase was increased by a factor of 7.5 to 11 (e.g. ~40 ng m-3 for pinonic acid) by using the miniature Versatile Aerosol Concentration Enrichment System (mVACES) upstream of the mass spectrometer. The APCI-IT-MS was calibrated in the negative ion mode with two biogenic organic acid standards - pinic acid and pinonic acid. Pinic acid was used as a surrogate for the quantification of the total amount of organic acids in the ambient aerosol based on the total signal intensities in the negative ion mode. The results were compared with the total organic signal of a C-ToF-AMS during the HUMPPA-COPEC 2010 field campaign. The campaign average contribution of organic acids measured by APCI-IT-MS to the total sub-micron organic aerosol mass was estimated to be about 60%. Very good correlation between APCI-IT-MS and C-ToF-AMS (Pearson's R = 0.94) demonstrates soft ionization mass spectrometry as a complimentary technique to AMS with electron impact ionization. MS2 studies of specific m/z ratios recorded during the HUMPPA-COPEC 2010 field campaign were compared to MS2 studies of selected monoterpene oxidation products formed in simulation chamber experiments. The comparison of the resulting fragments shows that oxidation products of the main VOCs emitted at Hyytiälä (α-pinene and Δ3-carene) cannot account for all of the measured fragments, which illustrates the complexity of ambient aerosol and possibly indicates unidentified or underestimated biogenic SOA precursor in the boreal forest.

  20. Refreshing the Aged Latent Fingerprints with Ionizing Radiation Prior to the Cyanoacrylate Fuming Procedure: A Preliminary Study.

    PubMed

    Ristova, Mimoza M; Radiceska, Pavlina; Bozinov, Igorco; Barandovski, Lambe

    2016-05-01

    One of the crucial factors determining the cyanoacrylate deposit quality over latent fingerprints appeared to be the extent of the humidity. This work focuses on the enhancement/refreshment of age-degraded latent fingerprints by irradiating the samples with UV, X-ray, or thermal neutrons prior to the cyanoacrylate (CA) fuming. Age degradation of latent fingerprints deposited on glass surfaces was examined through the decrease in the number of characteristic minutiae counts over time. A term "critical day" was introduced for the time at which the average number of identifiable minutiae definitions drops to one-half. Fingerprints older than their "critical day" were exposed to either UV, X-ray, or thermal neutrons. Identical reference samples were kept unexposed. All samples, both reference and irradiated, were developed during a single CA fuming procedure. Comparative latent fingerprint analysis showed that exposure to ionizing radiation enhances the CA fuming, yielding a 20-30% increase in average minutiae count. PMID:27122421

  1. Study of matrix effects for liquid chromatography-electrospray ionization tandem mass spectrometric analysis of 4 aminoglycosides residues in milk.

    PubMed

    Wang, Yuan; Li, Shaohui; Zhang, Feifang; Lu, Yifeng; Yang, Bingcheng; Zhang, Feng; Liang, Xinmiao

    2016-03-11

    Matrix effect (ME) is always a major issue for the development of LC-MS/MS method. ME resulting from co-eluting residual matrix components can affect the ionization efficiency of target analytes, leading to quantification errors of the analytes of interest. The present work evaluates MEs of milk samples on simultaneous analysis of four aminoglycosides residues via LC-ESI/MS/MS including streptomycin, dihydrostreptomycin, spectinomycin and kanamycin. Approaches to reduce MEs were examined: optimization of the sample preparation, sample dilution and lower flow rate used. Three commercial sorbents were tested including Oasis MCX, Oasis HLB and Oasis WCX. WCX behaved better for all analytes, but high MEs (80.8-134.9%) were obtained. Therefore, a consecutive SPE of tC18-WCX was found to effectively reduce ME. Milk samples from different manufacturers were analyzed and low MEs (85.6-112.9%) were obtained. PMID:26875117

  2. A novel APPI-MS setup for in situ degradation product studies of atmospherically relevant compounds: capillary atmospheric pressure photo ionization (cAPPI).

    PubMed

    Kersten, Hendrik; Derpmann, Valerie; Barnes, Ian; Brockmann, Klaus J; O'Brien, Rob; Benter, Thorsten

    2011-11-01

    We report on the development of a novel atmospheric pressure photoionization setup and its applicability for in situ degradation product studies of atmospherically relevant compounds. A custom miniature spark discharge lamp was embedded into an ion transfer capillary, which separates the atmospheric pressure from the low pressure region in the first differential pumping stage of a conventional atmospheric pressure ionization mass spectrometer. The lamp operates with a continuous argon flow and produces intense light emissions in the VUV. The custom lamp is operated windowless and efficiently illuminates the sample flow through the transfer capillary on an area smaller than 1 mm(2). Limits of detection in the lower ppbV range, a temporal resolution of milliseconds in the positive as well as the quasi simultaneously operating negative ion mode, and a significant reduction of ion transformation processes render this system applicable to real time studies of rapidly changing chemical systems. The method termed capillary atmospheric pressure photo ionization (cAPPI) is characterized with respect to the lamp emission properties as a function of the operating conditions, temporal response, and its applicability for in situ degradation product studies of atmospherically relevant compounds, respectively. PMID:21952756

  3. A novel technique for studying F-region ionization patches with the Resolute Bay Incoherent Scatter Radar - North

    NASA Astrophysics Data System (ADS)

    Perry, G. W.; Hosokawa, K.; St-Maurice, J.; Shiokawa, K.

    2013-12-01

    The northward facing Resolute Bay Incoherent Scatter Radar - North (RISR-N) and the soon to be operational southward facing RISR-Canada (RISR-C) systems are both exceptional platforms for investigating F-region ionization patches and the polar ionosphere. To advance patch research using these systems, an algorithm has been developed for detecting F-region ionization patches with the RISR-N system. The algorithm is based on the definition of a patch put forward by Crowley [1996]: a volume of F-region plasma with a density that is twice that of the background ionosphere. In this work, the algorithm is applied to the sizeable RISR-N dataset, providing valuable insight into the prevalence of patches over Resolute Bay over a time frame of several years. Additional questions concerning patches are also addressed using the algorithm, including: when compared to each other, do the occurrence rates of patches identified by the Optical Mesosphere and Thermosphere Imagers (OMTI), Polar Dual Auroral Radar Network (PolarDARN) and RISR-N instruments (whose fields-of-view overlap over Resolute Bay) agree? Namely, for every patch that is detected with RISR-N and/or PolarDARN, is there a corresponding patch seen optically? Lastly, using the algorithm, is it possible to advance our ability to distinguish patches from other coherent backscatter echoes detected by PolarDARN? Crowley, G. (1996), Critical review of ionospheric patches and blobs, in Review of Radio Science: 1993-1996, edited by W. R. Stone, pp. 619 648, Oxford Univ. Press, Oxford, U. K.

  4. An ab initio study of the ionization potentials and f-f spectroscopy of europium atoms and ions.

    SciTech Connect

    Naleway, C.; Seth, M.; Shepard, R.; Wagner, A. F.; Tilson, J. L.; Ermler, W. C.; Brozell, S. R.; Stevens Inst. of Tech.; Ohio State Univ.

    2002-04-01

    The first three ionization potentials of europium and the f-f spectroscopy of the two lowest multiplets of Eu+3 have been calculated using ab initio spin-orbit configuration interaction techniques. To accomplish this, a new averaged relativistic effective core potential has been developed which leaves only the 5s, 5p, and 4f in the valence space. A series of configuration interaction calculations were carried out up through single and partial double excitations with a double-zeta quality basis set. The computed ionization values have an absolute error of about 0.1 eV from the experimental values. The computed f-f spectroscopy for the lowest {sup 7}F multiplet of Eu{sup +3} has a RMS error with experiment of about 100 cm-1. The computed f-f spectroscopy for the first excited {sup 5}D multiplet has a higher RMS error of about 350 cm{sup -1}. The computed center of gravity separation between the {sup 5}D-{sup 7}F multiplet is underestimated by 750 cm{sup -1}. Comparisons between non-spin-orbit and spin-orbit configuration interaction calculations for the separations of the centers of gravity of multiplets are very favorable up through single and double excitations with differences of a tenth of an eV or less. The spin-orbit configuration interaction calculations are among the largest ever performed for lanthanides, with expansion lengths in excess of 1.9 million double-group-adapted functions. The calculations were achieved by application of a new parallel spin-orbit configuration interaction component in the COLUMBUS Program System.

  5. In-situ Probing of Radiation-induced Processing of Organics in Astrophysical Ice Analogs—Novel Laser Desorption Laser Ionization Time-of-flight Mass Spectroscopic Studies

    NASA Astrophysics Data System (ADS)

    Gudipati, Murthy S.; Yang, Rui

    2012-09-01

    Understanding the evolution of organic molecules in ice grains in the interstellar medium (ISM) under cosmic rays, stellar radiation, and local electrons and ions is critical to our understanding of the connection between ISM and solar systems. Our study is aimed at reaching this goal of looking directly into radiation-induced processing in these ice grains. We developed a two-color laser-desorption laser-ionization time-of-flight mass spectroscopic method (2C-MALDI-TOF), similar to matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectroscopy. Results presented here with polycyclic aromatic hydrocarbon (PAH) probe molecules embedded in water-ice at 5 K show for the first time that hydrogenation and oxygenation are the primary chemical reactions that occur in astrophysical ice analogs when subjected to Lyα radiation. We found that hydrogenation can occur over several unsaturated bonds and the product distribution corresponds to their stabilities. Multiple hydrogenation efficiency is found to be higher at higher temperatures (100 K) compared to 5 K—close to the interstellar ice temperatures. Hydroxylation is shown to have similar efficiencies at 5 K or 100 K, indicating that addition of O atoms or OH radicals to pre-ionized PAHs is a barrierless process. These studies—the first glimpses into interstellar ice chemistry through analog studies—show that once accreted onto ice grains PAHs lose their PAH spectroscopic signatures through radiation chemistry, which could be one of the reason for the lack of PAH detection in interstellar ice grains, particularly the outer regions of cold, dense clouds or the upper molecular layers of protoplanetary disks.

  6. Inner-orbital ionization of iodine

    NASA Astrophysics Data System (ADS)

    Gibson, George; Smith, Dale; Tagliamonti, Vincent; Dragan, James

    2016-05-01

    Many coincidence techniques exist to study multiple ionization of molecules by strong laser fields. However, the first ionization step is critical in many experiments, although it is more difficult to obtain information about this initial step. We studied the single electron ionization of I2, as it presents interesting opportunities in that it is heavy and does not expand significantly during the laser pulse. Moreover, there are several distinct low-lying valence orbitals from which the electron may be removed. Most importantly, the kinetic energy release of the I+ + I dissociation channel can be measured and should correspond to well-known valence levels and separated atom limits. As it turns out, we must invoke deep valence orbits, built from the 5s electrons, to explain our data. Ionization from deep orbitals may be possible, as they have a smaller critical internuclear separation for enhanced ionization. We would like to acknowledge support from the NSF under Grant No. PHY-1306845.

  7. Multiphoton ionization of Uracil

    NASA Astrophysics Data System (ADS)

    Prieto, Eladio; Martinez, Denhi; Guerrero, Alfonso; Alvarez, Ignacio; Cisneros, Carmen

    2016-05-01

    Multiphoton ionization and dissociation of Uracil using a Reflectron time of flight spectrometer was performed along with radiation from the second harmonic of a Nd:YAG laser. Uracil is one of the four nitrogen bases that belong to RNA. The last years special interest has been concentrated on the study of the effects under UV radiation in nucleic acids1 and also in the role that this molecule could have played in the origin and development of life on our planet.2 The MPI mass spectra show that the presence and intensity of the resulting ions strongly depend on the density power. The identification of the ions in the mass spectra is presented. The results are compared with those obtained in other laboratories under different experimental conditions and some of them show partial agreement.3 The present work was supported by CONACYT-Mexico Grant 165410 and DGAPA UNAM Grant IN101215 and IN102613.

  8. Fundamental studies of matrix-assisted laser desorption/ionization, using time-of-flight mass spectrometry to identify biological molecules

    SciTech Connect

    Eades, D.; Wruck, D.; Gregg, H.

    1996-11-11

    MALDI MS was developed as a way of getting molecular weight information on small quantities (picomole to femtomole levels) of high-mass, thermally labile macromolecules. While most other analytical MS ionization techniques cause fragmentation, decomposition, or multiple charging, MALDI efficiently places intact macromolecules into the gas phase with little fragmentation or rearrangement. This project had 3 objectives: establish the MALDI capability at LLNL, perform fundamental studies of analyte-matrix interactions, and apply the technique for biochemical research. A retired time-of-flight instrument was adapted for MALDI analyses, relevant parameters influencing the MALDI process were identified for further study (matrix molar absorptivity, sample crystal preparation), and collaborations were established with research groups in the Biology and Biotechnology Research Program at LLNL. In MALDI, the macromolecule of interest is mixed with a high-molar excess (1:100 to 1:10,000) of an organic matrix which readily absorbs energy at the wavelength corresponding to a UV laser. Upon laser irradiation, the matrix absorbs the majority of the energy, causing it to desorb from the surface and gently release the macromolecule into the gas phase with little or no fragmentation. Once in the gas phase, ion-molecule reactions between excited matrix and neutral macromolecules generated ionized analyte species which then can be focused into a MS for detection.

  9. FT-Raman spectroscopic analysis of the most probable structures in aluminum chloride and tetrahydrofuran solutions

    NASA Astrophysics Data System (ADS)

    Alves, Carolina C.; Campos, Thiago B. C.; Alves, Wagner A.

    2012-11-01

    A study by concentration-dependent Raman spectroscopy is presented for solutions of AlCl3 in THF. The formation of small amounts of AlCl4- has been evidenced by the appearance of only one band at 348 cm-1 in the most diluted salt solution. Another band at 330 cm-1 starts rising with increasing salt concentration and it seems to belong to the [AlCl3(THF)3] complex. Indeed, this octahedral entity was confirmed by the quantitative analysis performed at the band envelope at 915 cm-1. At this region, additional bands at 927 and 858 cm-1 were observed and assigned to the C-C and C-O stretching modes, respectively, of THF molecules coordinated to the aluminum salt. Besides them, another band at 1042 cm-1 clearly reveals the existence of this population of molecules. Although neutral octahedral complexes seem to be the major species in more concentrated salt solutions, the Raman spectra show the presence of complex ions in whole studied concentration range.

  10. FT-Raman spectroscopic analysis of the most probable structures in aluminum chloride and tetrahydrofuran solutions.

    PubMed

    Alves, Carolina C; Campos, Thiago B C; Alves, Wagner A

    2012-11-01

    A study by concentration-dependent Raman spectroscopy is presented for solutions of AlCl(3) in THF. The formation of small amounts of AlCl(4)(-) has been evidenced by the appearance of only one band at 348 cm(-1) in the most diluted salt solution. Another band at 330 cm(-1) starts rising with increasing salt concentration and it seems to belong to the [AlCl(3)(THF)(3)] complex. Indeed, this octahedral entity was confirmed by the quantitative analysis performed at the band envelope at 915 cm(-1). At this region, additional bands at 927 and 858 cm(-1) were observed and assigned to the C-C and C-O stretching modes, respectively, of THF molecules coordinated to the aluminum salt. Besides them, another band at 1042 cm(-1) clearly reveals the existence of this population of molecules. Although neutral octahedral complexes seem to be the major species in more concentrated salt solutions, the Raman spectra show the presence of complex ions in whole studied concentration range. PMID:22925986

  11. Effects of Water on the Copper-Catalyzed Conversion of Hydroxymethylfurfural in Tetrahydrofuran.

    PubMed

    Liu, Yifei; Mellmer, Max A; Alonso, David Martin; Dumesic, James A

    2015-12-01

    Reaction kinetics were studied to quantify the effects of water on the conversion of hydroxymethylfurfural (HMF) in THF over Cu/γ-Al2 O3 at 448 K using molecular H2 as the hydrogen source. We show that low concentrations of water (5 wt %) in the THF solvent significantly alter reaction rates and selectivities for the formation of reaction products by hydrogenation and hydrogenolysis processes. In the absence of water, HMF was converted primarily to hydrogenolysis products 2-methyl-5-hydroxymethylfuran (MHMF) and 2,5-dimethylfuran (DMF), whereas reactions carried out in THF-H2 O mixtures (THF/H2 O=95:5 w/w) led to the selective production of the hydrogenation product 2,5-bis(hydroxymethyl)furan (BHMF) and inhibition of HMF hydrogenolysis. PMID:26515275

  12. Ionization Scheme Development at the ISOLDE RILIS

    NASA Astrophysics Data System (ADS)

    Fedosseev, V. N.; Marsh, B. A.; Fedorov, D. V.; Köster, U.; Tengborn, E.

    2005-04-01

    The resonance ionization laser ion source (RILIS) of the ISOLDE on-line isotope separation facility is based on the method of laser step-wise resonance ionization of atoms in a hot metal cavity. The atomic selectivity of the RILIS complements the mass selection process of the ISOLDE separator magnets to provide beams of a chosen isotope with greatly reduced isobaric contamination. Using a system of dye lasers pumped by copper vapour lasers, ion beams of 24 elements have been generated at ISOLDE with ionization efficiencies in the range of 0.5-15%. As part of the ongoing RILIS development off-line resonance ionization spectroscopy studies carried out in 2003 and 2004 have determined the optimal three-step ionization schemes for scandium, antimony, dysprosium and yttrium.

  13. Quantification of voriconazole in human plasma by high-performance liquid chromatography-electrospray ionization mass spectrometry: application to a bioequivalence study.

    PubMed

    Cheng, Ying; Zhang, Zun-Jian; Tian, Yuan; Li, Wen-Jing; Wei, Wei

    2011-01-01

    A sensitive and specific liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) method was developed and validated for the identification and quantification of voriconazole (VRC, CAS 137234-62-9) in human plasma. Following liquid-liquid extraction, VRC and loratadine (internal standard, CAS 79794-75-5) were separated using a mobile phase comprised of methanol: water (0.1% formic acid) = 75:25 v/v on a Shimadzu Shim-pack VP-ODS C18 (150 x 2.0 mm ID, 5 microm) column and analyzed by electrospray ionization mass spectrometry. The chromatographic separation was achieved in less than 6 min. The standard curves were linear (r = 0.9994) over the concentration range of 2-2000 ng/mL for VRC and had good accuracy and precision. Both intra- and inter-batch standard deviations were less than 15%. The method was successfully applied to study the comparative bioavailability of VRC tablets test vs. reference in healthy Chinese volunteers through the statistical comparison of pharmacokinetic parameters obtained with the two formulations. PMID:21428249

  14. Application of liquid chromatography-direct-electron ionization-MS in an in vitro dermal absorption study: quantitative determination of trans-cinnamaldehyde.

    PubMed

    Cappiello, Achille; Famiglini, Giorgio; Termopoli, Veronica; Trufelli, Helga; Zazzeroni, Raniero; Jacquoilleot, Sandrine; Radici, Lucia; Saib, Ouarda

    2011-11-15

    We propose a new analytical approach, based on liquid chromatography (LC) coupled to electron ionization mass spectrometry (EI-MS), using a Direct-EI interface, for dermal absorption evaluation studies. Penetration through the skin of a given compound is evaluated by means of in vitro assays using diffusion cells. Currently, the most popular approach for the analysis of skin and fluid samples is LC coupled to electrospray ionization tandem mass spectrometry (ESI-MS/MS). However, this technique is largely affected by sample matrix interferences that heavily affect quantitative evaluation. LC-Direct-EI-MS is not affected by matrix interference and produces accurate quantitative data in a wide range of concentrations. Trans-cinnamaldehyde was chosen as test substance and applied in a suitable dosing vehicle on dermatomed human skin sections. This compound was then quantified in aliquots of receptor solution, skin extract, cell wash, skin wash, carbon filter extract, cotton swab extract, and tape strip digest. On column limits of detection (LOD) and limits of quantitation (LOQ) of 0.1 and 0.5 ng/μL, respectively, were achieved. Calibration showed satisfactory linearity and precision for the concentration range of interest. Matrix effects (ME) were evaluated for all sample types, demonstrating the absence of both signal enhancement and signal suppression. The Direct-EI absorption profile was compared with that obtained with liquid scintillation counting (LSC), a recognized ME free approach. A good correlation was found with all samples and for the overall recovery of the dosed substance. PMID:21975020

  15. GAS-PHASE SYNTHESIS OF PRECURSORS OF INTERSTELLAR GLYCINE: A COMPUTATIONAL STUDY OF THE REACTIONS OF ACETIC ACID WITH HYDROXYLAMINE AND ITS IONIZED AND PROTONATED DERIVATIVES

    SciTech Connect

    Barrientos, Carmen; Redondo, Pilar; Largo, Laura; Rayon, Victor M.; Largo, Antonio

    2012-04-01

    A computational study of the reactions of hydroxylamine and its ionized and protonated derivatives with acetic acid is provided. The reaction of neutral hydroxylamine with acetic acid, despite being clearly exothermic, involves a very large energy barrier. The reaction of ionized hydroxylamine with acetic acid is also clearly exothermic, but again a significant energy barrier is found (around 24 kcal mol{sup -1} at the CCSD(T) level). The reaction of the most stable protonated isomer of hydroxylamine, NH{sub 3}OH{sup +}, with acetic acid also involves a high barrier (more than 27 kcal mol{sup -1} at the CCSD(T) level). Only the higher energy isomer, NH{sub 2}OH{sup +}{sub 2}, leads to a sensibly lower energy barrier (about 2.3 kcal mol{sup -1} at the CCSD(T) level). Nevertheless, an estimate of the reaction coefficient at low temperatures such as those reigning in the interstellar medium gives very low values. Therefore, it seems that precursors of interstellar glycine could not be efficiently produced from the reactions of hydroxylamine-derived ions with acetic acid.

  16. Aureonitol, a Fungi-Derived Tetrahydrofuran, Inhibits Influenza Replication by Targeting Its Surface Glycoprotein Hemagglutinin

    PubMed Central

    Sacramento, Carolina Q.; Marttorelli, Andressa; Fintelman-Rodrigues, Natalia; de Freitas, Caroline S.; de Melo, Gabrielle R.; Rocha, Marco E. N.; Kaiser, Carlos R.; Rodrigues, Katia F.; da Costa, Gisela L.; Alves, Cristiane M.; Santos-Filho, Osvaldo; Barbosa, Jussara P.; Souza, Thiago Moreno L.

    2015-01-01

    The influenza virus causes acute respiratory infections, leading to high morbidity and mortality in groups of patients at higher risk. Antiviral drugs represent the first line of defense against influenza, both for seasonal infections and pandemic outbreaks. Two main classes of drugs against influenza are in clinical use: M2-channel blockers and neuraminidase inhibitors. Nevertheless, because influenza strains that are resistant to these antivirals have been described, the search for novel compounds with different mechanisms of action is necessary. Here, we investigated the anti-influenza activity of a fungi-derived natural product, aureonitol. This compound inhibited influenza A and B virus replication. This compound was more effective against influenza A(H3N2), with an EC50 of 100 nM. Aureonitol cytoxicity was also very low, with a CC50 value of 1426 μM. Aureonitol inhibited influenza hemagglutination and, consequently, significantly impaired virus adsorption. Molecular modeling studies revealed that aureonitol docked in the sialic acid binding site of hemagglutinin, forming hydrogen bonds with highly conserved residues. Altogether, our results indicate that the chemical structure of aureonitol is promising for future anti-influenza drug design. PMID:26462111

  17. Oxidative degradation of bis (2,4,4-trimethylpentyl) dithiophosphinic acid in nitric acid studied by electrospray ionization mass spectrometry

    SciTech Connect

    G. S. Groenewold; D. R. Peterman

    2012-10-01

    Samples of bis(2,4,4-trimethylpentyl)dithiophosphinic acid (Cyanex-301) were analyzed using direct infusion electrospray ionization mass spectrometry. Positive ion spectra of standard and stereo-pure acids displayed ions typical of the unmodified compound, cationized monomeric and dimeric cluster ion species. In addition, a significant ions 2 u less than the dimeric clusters were seen, that correspond to an oxidatively coupled species designated Cyx2 that is observed as H- or Na-cationized species in the electrospray analyses. Based on uncorrected ion intensities, Cyx2 is estimated to account for about 20% of the total in the standard materials. When samples that were contacted with 3 M HNO3 were analyzed, the positive ion spectrum consisted nearly entirely of ions derived from the oxidatively coupled product, indicating that the acid promotes coupling. The negative ion spectra of the standard acids consisted nearly entirely of the conjugate base that is formed by deprotonation of the acids, and cluster ions containing multiple acid molecules. The negative spectra of the HNO3-contacted samples also contained the conjugate base of the unmodified acid, but also two other species that correspond to the dioxo- and perthio- derivatives. It is concluded that HNO3 contact causes significant oxidation, forming at least three major products, Cyx2, the perthio-acid, and the dioxo-acid.

  18. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometric study of bis(imidazole-1-carboxylate) endfunctionalized polymers,.

    PubMed

    Kéki, Sándor; Nagy, Miklós; Deák, György; Zsuga, Miklós; Herczegh, Pál

    2003-02-01

    A detailed Matrix-Assisted Laser Desorption/Ionization Mass Spectrometric (MALDI-TOF MS) investigation of polyethylene glycol (PEG), polypropylene glycol (PPG) and polyisobutylene (PIB) bis(imidazole-1-carboxylate) esters is reported. The MS spectra of PPG and PIBb is (imidazole-1-carboxylate) esters recorded in the reflectron mode showed the presence of two additional series of peaks compared to those recorded in the linear mode, while in the case of PEG bis(imidazole-1-carboxylate) only one additional peak series appeared in the reflectron MS spectra. These additional series were attributed to the formation of fragment ions by the loss of one and two end groups in the first field-free region of the instrument. The neutral losses for the three polymers were also supported by using the post-source decay method (PSD). The observation of decreasing mass difference between the adjacent peaks from two series of polymeric ions with the increase of oligomer mass indicates the presence of PSD ions in a reflectron MALDI spectrum. The relationship between the mass of the precursor ions and those of the PSD ions and neutral loss are also discussed. PMID:12596703

  19. A study of the non-covalent interaction between flavonoids and DNA triplexes by electrospray ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Wan, Cuihong; Cui, Meng; Song, Fengrui; Liu, Zhiqiang; Liu, Shuying

    2009-06-01

    The binding interactions of 22 flavonoids (9 aglycones and 13 glycosides) with DNA triplexes were investigated using electrospray ionization mass spectrometry (ESI-MS). The results revealed that the hydroxyl positions of aglycones, the locations and numbers of saccharide, as well as the aglycone skeletons play roles in the triplex-binding properties of flavonoids. The presence of 3-OH, or 3'-OH, or replacement of 4'-OH with methoxy group in aglycones decreased the fraction of bound DNA sharply. Flavonoid glycosides exhibit higher binding affinities towards the DNA triplexes than their aglycone counterparts. Glycosylations of flavones at the 8-C position and isoflavones at the 7-O position show higher binding affinities than those on the other positions of ring A of aglycones. Glycosylation with a disaccharide on C3 position of flavonol results in higher binding affinity than that with monosaccharide. Flexibility of the ring B is favorable for its interaction with DNA triplex. According to sustained off-resonance irradiation collision-induced dissociation (SORI-CID) experiments, glycosylation and non-planarity of flavonoid aglycones lead to different dissociation pathways of the flavonoid/triplex complexes. The differences between dissociation patterns suggest different DNA-binding modes or DNA-binding affinities. Although the exact binding geometry of the flavonoid-triplex complexes cannot be specified, the results may be helpful for understanding the triplex-binding properties of flavonoids and give a clue to design of triplex-binding ligands.

  20. Biological Effects of Ionizing Radiation

    DOE R&D Accomplishments Database

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.

    1952-04-07

    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  1. Joint neutron crystallographic and NMR solution studies of Tyr residue ionization and hydrogen bonding: Implications for enzyme-mediated proton transfer

    DOE PAGESBeta

    Michalczyk, Ryszard; Unkefer, Clifford J.; Bacik, John -Paul; Schrader, Tobias E.; Ostermann, Andreas; Kovalevsky, Andrey Y.; McKenna, Robert; Fisher, Suzanne Zoe

    2015-05-05

    Proton transfer is a fundamental mechanism at the core of many enzyme-catalyzed reactions. It is also exquisitely sensitive to a number of factors, including pH, electrostatics, proper active-site geometry, and chemistry. Carbonic anhydrase has evolved a fast and efficient way to conduct protons through a combination of hydrophilic amino acid side chains that coordinate a highly ordered H-bonded water network. This study uses a powerful approach, combining NMR solution studies with neutron protein crystallography, to determine the effect of pH and divalent cations on key residues involved in proton transfer in human carbonic anhydrase. Lastly, the results have broad implicationsmore » for our understanding of proton transfer and how subtle changes in ionization and H-bonding interactions can modulate enzyme catalysis.« less

  2. Joint neutron crystallographic and NMR solution studies of Tyr residue ionization and hydrogen bonding: Implications for enzyme-mediated proton transfer

    SciTech Connect

    Michalczyk, Ryszard; Unkefer, Clifford J.; Bacik, John -Paul; Schrader, Tobias E.; Ostermann, Andreas; Kovalevsky, Andrey Y.; McKenna, Robert; Fisher, Suzanne Zoe

    2015-05-05

    Proton transfer is a fundamental mechanism at the core of many enzyme-catalyzed reactions. It is also exquisitely sensitive to a number of factors, including pH, electrostatics, proper active-site geometry, and chemistry. Carbonic anhydrase has evolved a fast and efficient way to conduct protons through a combination of hydrophilic amino acid side chains that coordinate a highly ordered H-bonded water network. This study uses a powerful approach, combining NMR solution studies with neutron protein crystallography, to determine the effect of pH and divalent cations on key residues involved in proton transfer in human carbonic anhydrase. Lastly, the results have broad implications for our understanding of proton transfer and how subtle changes in ionization and H-bonding interactions can modulate enzyme catalysis.

  3. Formation of the reduced form of furaneol® (2,5-dimethyl-4-hydroxy-tetrahydrofuran-3-one) during the Maillard reaction through catalysis of amino acid metal salts.

    PubMed

    Nashalian, Ossanna; Wang, Xi; Yaylayan, Varoujan A

    2016-11-01

    Under pyrolytic conditions the acidity/basicity of Maillard reaction mixtures can be controlled through the use of hydrochloride or sodium salts of amino acids to generate a diversity of products. When the degradation of glucose was studied under pyrolytic conditions using excess sodium glycinate the reaction was found to generate a major unknown peak having a molecular ion at m/z 130. Subsequent in-depth isotope labelling studies indicated that acetol was an important precursor of this compound under pyrolytic and aqueous heating conditions. The dimerisation and cyclisation of acetol into 2,5-dimethyl-4-hydroxy-tetrahydrofuran-3-one was found to be catalysed by amino acid metal salts. Also, ESI/qTOF/MS studies indicated that the unknown peak has expected molecular formula of C6H10O3. Finally, a peak having the same retention time and mass spectrum was also generated pyrolytically when furaneol® was reduced with NaBH4 confirming the initial hypothesis regarding the unknown peak to be the reduced form of furaneol®. PMID:27211618

  4. Probing Angular Correlations in Sequential Double Ionization

    SciTech Connect

    Fleischer, A.; Woerner, H. J.; Arissian, L.; Liu, L. R.; Meckel, M.; Rippert, A.; Doerner, R.; Villeneuve, D. M.; Corkum, P. B.; Staudte, A.

    2011-09-09

    We study electron correlation in sequential double ionization of noble gas atoms and HCl in intense, femtosecond laser pulses. We measure the photoelectron angular distributions of Ne{sup +} relative to the first electron in a pump-probe experiment with 8 fs, 800 nm, circularly polarized laser pulses at a peak intensity of a few 10{sup 15} W/cm{sup 2}. Using a linear-linear pump-probe setup, we further study He, Ar, and HCl. We find a clear angular correlation between the two ionization steps in the sequential double ionization intensity regime.

  5. Crystallographic Study of Hydration of an Internal Cavity in Engineered Proteins with Buried Polar or Ionizable Groups

    PubMed Central

    Schlessman, Jamie L.; Abe, Colby; Gittis, Apostolos; Karp, Daniel A.; Dolan, Michael A.; García-Moreno E., Bertrand

    2008-01-01

    Although internal water molecules are essential for the structure and function of many proteins, the structural and physical factors that govern internal hydration are poorly understood. We have examined the molecular determinants of internal hydration systematically, by solving the crystal structures of variants of staphylococcal nuclease with Gln-66, Asn-66, and Tyr-66 at cryo (100 K) and room (298 K) temperatures, and comparing them with existing cryo and room temperature structures of variants with Glu-66, Asp-66, Lys-66, Glu-92 or Lys-92 obtained under conditions of pH where the internal ionizable groups are in the neutral state. At cryogenic temperatures the polar moieties of all these internal side chains are hydrated except in the cases of Lys-66 and Lys-92. At room temperature the internal water molecules were observed only in variants with Glu-66 and Tyr-66; water molecules in the other variants are probably present but they are disordered and therefore undetectable crystallographically. Each internal water molecule establishes between 3 and 5 hydrogen bonds with the protein or with other internal water molecules. The strength of interactions between internal polar side chains and water molecules seems to decrease from carboxylic acids to amides to amines. Low temperature, low cavity volume, and the presence of oxygen atoms in the cavity increase the positional stability of internal water molecules. This set of structures and the physical insight they contribute into internal hydration will be useful for the development and benchmarking of computational methods for artificial hydration of pockets, cavities, and active sites in proteins. PMID:18178652

  6. Study of atmospheric pressure weakly ionized plasma as surface compatibilization technique for improved plastic composites loaded with cellulose based fillers

    NASA Astrophysics Data System (ADS)

    Lekobou, William Pimakouon

    Atmospheric pressure plasmas have gained considerable interest from researchers recently for their unique prospective of engineering surfaces with plasma without the need of vacuum systems. They offer the advantage of low energy consumption, minimal capital cost and their simplicity as compared to conventional low pressure plasmas make them easy to upscale from laboratory to industry size. The present dissertation summarizes results of our attempt at applying atmospheric pressure weakly ionized plasma (APWIP) to the engineering of plastic composites filled with cellulose based substrates. An APWIP reactor was designed and built based on a multipoint-to-grounded ring and screen configurations. The carrier gas was argon and acetylene serves as the precursor molecule. The APWIP reactors showed capability of depositing plasma polymerized coating rich in carbon on substrates positioned within the electrode gap as well as downstream of the plasma discharge into the afterglow region. Our findings show that films grow by forming islands which for prolonged deposition time grow into thin films showing nodules, aggregates of nodules and microspheres. They also show chemical structure similar to films deposited from hydrocarbons with other conventional plasma techniques. The plasma polymerized deposits were used on substrates to modify their surface properties. Results show the surface of wood veneer and wood flour can be finely tuned from hydrophilic to hydrophobic. It was achieved by altering the topography of the surfaces along with their chemical composition. The wettability of wood veneer was investigated with contact angle measurements on capacitive drops and the capillary effect was utilized to assess surface properties of wood flour exposed to the discharges.

  7. A two-color infrared-vacuum ultraviolet laser pulsed field ionization photoelectron study of NH3.

    PubMed

    Bahng, Mi-Kyung; Xing, Xi; Baek, Sun Jong; Ng, C Y

    2005-08-22

    We have observed fully rotationally resolved transitions of the photoelectron vibrational bands 2(4), 2(5), 1(1)2(1), and 1(1)2(3) for ammonia cation (NH3+) by two-color infrared (IR)-vacuum ultraviolet (VUV)- pulsed field-ionization photoelectron (PFI-PE) measurements. By preparing an intermediate rovibrational state of neutral NH(3) with a known parity by IR excitation followed by VUV-PFI-PE measurements, we show that the photoelectron parity can be determined unambiguously. The IR-VUV-PFI-PE measurement of the 2(4) band clearly reveals the formation of both even and odd l states for the photoelectrons, where l is the orbital angular momentum quantum number. This observation is consistent with the conclusion that the lack of inversion symmetry for NH3 and NH3+ allows odd/even l mixings, rendering the production of both odd and even l states for the photoelectrons. Evidence is also found, indicating that the photoionization transitions with DeltaK=0 are strongly favored compared to that with DeltaK=3. For the 2(5), 1(1)2(1), and 1(1)2(3) bands, only DeltaK=0 transitions for the production of even l photoelectron states from the J'K'=2(0) rotational level of NH3(nu1=1) are observed. The preferential formation of even l photoelectron states for these vibrational bands is attributed to the fact that the DeltaK=0 transitions for the formation of odd l photoelectron states from the 2(0) rotational level of NH3(nu1=1) are suppressed by the constraint of nuclear-spin statistics. In addition to information obtained on the photoionization dynamics of NH3, this experiment also provides a more precise value of 3232+/-10 cm-1 for the nu1+ (N-H stretch) vibrational frequency of NH3+. PMID:16164295

  8. A liquid chromatography-electrospray ionization-tandem mass spectrometry study of ethanolamines in high salinity industrial wastewaters.

    PubMed

    Campo, Pablo; Suidan, Makram T; Chai, Yunzhou; Davis, John

    2010-01-15

    The detection and quantitation of four ethanolamines, tris(2-hydroxyethyl)amine (triethanolamine, TEA), N,N-bis(2-hydroxyethyl)methylamine (methyldiethanolamine, MDEA), N-(2-aminoethyl)ethanolamine (AEA), and N,N-diethylethanolamine (DEA), were achieved in wastewaters from two aerobic activated sludge bioreactors located in an industrial wastewater treatment plant. The streams had salt concentrations of approximately 3% and 7% by weight in Reactor 1 and Reactor 2, respectively. The use of liquid chromatography-electrospray ionization-tandem mass spectrometry avoided the need for some sample preparation steps such as extraction, concentration, and derivatization. Ion suppression in the electrospray, attributable to the presence of sodium clusters, was attenuated by a 10-fold dilution of the wastewaters with acetonitrile. A matrix-matched calibration model averted other potential interferences. For the compounds analyzed in selected reaction monitoring mode (TEA, MDEA, and DEA), the calibration curves presented linearity in a range of 10-1000microg/L with corresponding detection limits ranging from 2 to 11microg/L, depending upon the specific analyte and aqueous matrix. AEA was calibrated in selected ion monitoring mode (100-1000microg/L), with corresponding detection limits in the two wastewaters of 74.6 and 85.3microg/L, respectively. Overall good precision (<10%) and accuracy (97-110%) were achieved for both matrices, which fell within-laboratory reproducibility. Finally, the amines were introduced into six mixed liquor samples from both reactors and quantified following the reported protocol. Again, recoveries were close to 100% with a relative standard deviation of less than 10% in all cases. PMID:20006060

  9. Electron-Impact Ionization and Dissociative Ionization of Biomolecules

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Chaban, Galina M.; Dateo, Christopher E.

    2006-01-01

    It is well recognized that secondary electrons play an important role in radiation damage to humans. Particularly important is the damage of DNA by electrons, potentially leading to mutagenesis. Molecular-level study of electron interaction with DNA provides information on the damage pathways and dominant mechanisms. Our study of electron-impact ionization of DNA fragments uses the improved binary-encounter dipole model and covers DNA bases, sugar phosphate backbone, and nucleotides. An additivity principle is observed. For example, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3(sup prime)- and C5 (sup prime)-deoxyribose-phospate cross sections, differing by less than 5%. Investigation of tandem double lesion initiated by electron-impact dissociative ionization of guanine, followed by proton reaction with the cytosine in the Watson-Crick pair, is currently being studied to see if tandem double lesion can be initiated by electron impact. Up to now only OH-induced tandem double lesion has been studied.

  10. Multiphoton ionization of ions, neutrals, and clusters. Progress report

    SciTech Connect

    Wessel, J.

    1991-06-28

    Scientific results are summarized from a three year research program on multiphoton ionization in aromatic molecules, clusters, and their ions. As originally proposed, the studies elucidated a new cluster ionization mechanism, characterized properties of long range intermolecular interactions, and investigated electronic transitions of aromatic cations cooled in a supersonic beam. The studies indicate that the new cluster ionization mechanism is highly efficient and dominates conventional 1 + 1 resonant ionization. In the case of the dimer of the large aromatic molecule fluorene, the results suggest that excimer formation competes with a direct ionization process. Highly selective excitonic spectra have been identified for several cluster species.

  11. Use of 'small but smart' libraries to enhance the enantioselectivity of an esterase from Bacillus stearothermophilus towards tetrahydrofuran-3-yl acetate.

    PubMed

    Nobili, Alberto; Gall, Markus G; Pavlidis, Ioannis V; Thompson, Mark L; Schmidt, Marlen; Bornscheuer, Uwe T

    2013-07-01

    Two libraries of simultaneous double mutations in the active site region of an esterase from Bacillus stearothermophilus were constructed to improve the enantioselectivity in the hydrolysis of tetrahydrofuran-3-yl acetate. As screening of large mutant libraries is hampered by the necessity for GC/MS analysis, mutant libraries were designed according to a 'small but smart' concept. The design of focused libraries was based on data derived from a structural alignment of 3317 amino acid sequences of α/β-hydrolase fold enzymes with the bioinformatic tool 3DM. In this way, the number of mutants to be screened was substantially reduced as compared with a standard site-saturation mutagenesis approach. Whereas the wild-type esterase showed only poor enantioselectivity (E = 4.3) in the hydrolysis of (S)-tetrahydrofuran-3-yl acetate, the best variants obtained with this approach showed increased E-values of up to 10.4. Furthermore, some variants with inverted enantiopreference were found. PMID:23331978

  12. Crystal structure of (2',3,6'-tri-chloro-biphenyl-2-yl)boronic acid tetra-hydro-furan monosolvate.

    PubMed

    Durka, Krzysztof; Kliś, Tomasz; Serwatowski, Janusz

    2015-12-01

    The title compound, C12H8BCl3O2·C4H8O, crystallizes as a tetra-hydro-furan monosolvate. The boronic acid group adopts a syn-anti conformation and is significantly twisted along the carbon-boron bond by 69.2 (1)°, due to considerable steric hindrance from the 2',6'-di-chloro-phenyl group that is located ortho to the boronic acid substituent. The phenyl rings of the biphenyl are almost perpendicular to one another, with a dihedral angle of 87.9 (1)° between them. In the crystal, adjacent mol-ecules are linked via O-H⋯O inter-actions to form centrosymmetric dimers with R 2 (2)(8) motifs, which have recently been shown to be energetically very favourable. The hy-droxy groups are in an anti conformation and are also engaged in hydrogen-bonding inter-actions with the O atom of the tetra-hydro-furan solvent mol-ecule. Cl⋯Cl halogen-bonding inter-actions [Cl⋯Cl = 3.464 (1) Å] link neigbouring dimers into chains running along [010]. Further aggregation occurs due to an additional Cl⋯Cl halogen bond [Cl⋯Cl = 3.387 (1) Å]. PMID:26870407

  13. Neutral nanocluster chemistry studied by soft x-ray laser single-photon ionization: Application to soft x-ray optical surface contamination studies: Si mO n and Ti mO n

    NASA Astrophysics Data System (ADS)

    Heinbuch, S.; Dong, F.; Rocca, J. J.; Bernstein, E. R.

    2007-09-01

    Metal oxide clusters are employed in studies to help understand an important, specific, type of surface chemical problem: the contamination of soft x-ray mirrors by carbon deposits. Herein we report nanocluster chemistry studies that are relevant to the use of silicon oxide and titanium oxide capping layers. Systems involving Si mO n, and Ti mO n metal oxide nanoclusters are generated in a pulsed supersonic expansion/ablation source and passed through a reactor containing any reactant desired. The reaction products of these gas phase clusters are ionized using single photon ionization from a desk-top sized 46.9 nm Ne-like Ar laser providing the advantage of little or no fragmentation of desired nanoclusters. The ionized products are analyzed by a time of flight mass spectrometer and experimental results supply useful information related to condensed phase soft x-ray optical surfaces. The results illustrate the great potential of the use of very compact soft x-ray lasers in photochemistry and photophysics studies.

  14. On the ionization state of the substrate in the active site of glutamate racemase. A QM/MM study about the importance of being zwitterionic.

    PubMed

    Puig, Eduard; Garcia-Viloca, Mireia; González-Lafont, Angels; Lluch, José M

    2006-01-19

    Computer simulations on a QM/MM potential energy surface have been carried out to gain insights into the catalytic mechanism of glutamate racemase (MurI). Understanding such a mechanism is a challenging task from the chemical point of view because it involves the deprotonation of a low acidic proton by a relatively weak base to give a carbanionic intermediate. First, we have examined the dependency of the kinetics and thermodynamics of the racemization process catalyzed by MurI on the ionization state of the substrate (glutamate) main chain. Second, we have employed an energy decomposition procedure to study the medium effect on the enzyme-substrate electrostatic and polarization interactions along the reaction. Importantly, the present theoretical results quantitatively support the mechanistic proposal by Rios et al. [J. Am. Chem. Soc. 2000, 122, 9373-9385] for the PLP-independent amino acid racemases. PMID:16405345

  15. Role of oxygen in the angular distribution of sputtered constituents from Fe/Cr alloy studied by laser post-ionization SNMS

    NASA Astrophysics Data System (ADS)

    Im, Hoong-Sun; Ichimura, S.

    1997-02-01

    Laser post-ionization sputtered neutral mass spectrometry (SNMS) has been applied to study the angular distribution of the sputtered constituents of Fe-40at%Cr alloys. Preferred Cr ejection was observed in the direction of the target normal under sputtering in atmosphere with a sufficient amount of oxygen gas, while there is no distinct difference in the angular dependence of the ratio of ejected components without oxygen. Comparing the results obtained by this method with those by the thin film deposition method, it is certified that the same results can be attained by both methods, although in-situ measurement of the angular distribution of the sputtered constituents is possible only by the laser SNMS method. This tendency is considered to be due to the formation of Fe segregated layeres on the surface of the alloy by the presence of oxygen.

  16. An instrument combining an electrospray ionization source and a velocity-map imaging spectrometer for studying delayed electron emission of polyanions

    NASA Astrophysics Data System (ADS)

    Concina, Bruno; Papalazarou, Evangelos; Barbaire, Marc; Clavier, Christian; Maurelli, Jacques; Lépine, Franck; Bordas, Christian

    2016-03-01

    An instrument combining an electrospray ionization source and a velocity-map imaging (VMI) spectrometer has been developed in order to study the delayed electron emission of molecular anions and especially of polyanions. It operates at a high repetition rate (kHz) in order to increase the acquisition speed. The VMI spectrometer has been upgraded for nanosecond time resolution by gating the voltages applied on the position-sensitive detector. Kinetic energy release distribution of thermionic emission (without any contribution from direct detachment) can be recorded for well-defined delays after the nanosecond laser excitation. The capability of the instrument is demonstrated by recording photodetachment spectra of the benchmark C60- anion and C842- dianion.

  17. Alkali metal ionization detector

    DOEpatents

    Bauerle, James E.; Reed, William H.; Berkey, Edgar

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  18. Initial velocity distributions of ions generated by in-flight laser desorption/ionization of individual polystyrene latex microparticles as studied by the delayed ion extraction method.

    PubMed

    Vera, César Costa; Trimborn, Achim; Hinz, Klaus-Peter; Spengler, Bernhard

    2005-01-01

    The delayed ion extraction method has been used to study characteristics of the initial velocity distributions of positive and negative ions produced simultaneously by laser desorption/ionization (LDI) from non-impacted single aerosol polymeric particles, using a bipolar time-of-flight (TOF) instrument (LAMPAS 2). Due to the geometry of the setup and the characteristics of the ablation process, only the projections of the velocities on the axis of the mass spectrometer can be directly studied. Additionally, since the mean initial velocity under these conditions should be close to zero, it was necessary to extend the method by taking into account higher order contributions of the velocity distribution. Theoretical expressions for these higher order terms are presented and discussed. The bipolar characteristics of the instrument permit evaluation and treatment of a possible instrumental artifact caused by small inclinations of the ionizing laser with respect to the ideal incidence direction. Results of a number of experiments are presented and discussed in relation to the theoretical expressions presented, and to possible ablation scenarios. Evidence pointing out that, under our experimental conditions, only partial ablation of the latex particles occurs was obtained. The variance of the distribution of the projection of the initial velocities can be directly estimated from these results. By assuming that the total initial velocities of the ions are developed completely according to a single-temperature adiabatic expansion mechanism, temperatures of approximately 50 K/Da can be assigned to the ion clouds from the variance estimations. If a two-temperature model is used, a radial temperature of about 100 K/Da results. These values are in reasonable agreement with results for polymer ablation from the literature. PMID:15593241

  19. A novel study of screening and confirmation of modafinil, adrafinil and their metabolite modafinilic acid under EI-GC-MS and ESI-LC-MS-MS ionization

    PubMed Central

    Dubey, S.; Ahi, S.; Reddy, I. M.; Kaur, T.; Beotra, A.; Jain, S.

    2009-01-01

    Objective: Adrafinil and modafinil have received wide publicity and have become controversial in the sporting world when several athletes were discovered allegedly using these drugs as doping agents. By acknowledging the facts, the World Anti-Doping Agency (WADA) banned these drugs in sports since 2004. The present study explores the possibility of differentiating adrafinil and modafinil and their major metabolites under electron impact ionization in gas chromatograph–mass spectrometer (GC-MSD) and electrospray ionization in liquid chromatograph–mass spectrometer (LC-MS/MS) by studying the fragmentation pattern of these drugs. Materials and Methods: Adrafinil, modafinil and their major metabolite, modafinilic acid were analyzed on EI-GC-MSD and ESI-LC-MS/MS using various individual parameters on both the instruments. The analytical technique and equipment used in the analysis were an Agilent 6890N GC with 5973 mass selective detector for the GC-MSD analysis and an Agilent 1100 HPLC with API-3200 Triple quadrupole mass spectrometer for the LC-MS/MS analysis. Validation of both methods was performed using six replicates at different concentrations. Result and Discussion: The results show that adrafinil, modafinil and their major metabolite modafinilic acid could be detected as a single artifact without differentiation under EI-GC-MSD analysis. However, all drugs could be detected and differentiated under ESI-LCMS/MS analysis without any artifaction. The GC-MSD analysis gives a single artifact for both the drugs without differentiation and thus can be used as a marker for screening purposes. Further, the Multiple Reaction Monitoring (MRM) method developed under LC-MS/MS is fit for the purpose for confirmation of suspicious samples in routine sports testing and in forensic and clinical analysis. PMID:20407560

  20. Multiphoton ionization studies of metal atom-solvent interactions from thevan der Waals dimer to the mesoscopic scale

    NASA Astrophysics Data System (ADS)

    Spotts, James Michael

    A unified molecular-level description of solute-solvent interactions within condensed-phase systems has remained elusive despite recent advances towards the detailed understanding of the fundamental electrostatic interactions between the atomic and/or molecular moieties that compose a bulk system. Through the use of simplified cluster model systems such as those employing metal atoms solvated by a rare gas solvent, however, microscopic details pertaining to the intrinsic composite nature of the atomic orbital interactions can be effectively dissected away from the complexity inherent to condensed- phase systems. This thesis work presents a systematic spectroscopic investigation of Al/cdot Arn/ (n /leq 60) clusters generated by standard laser ablation techniques using 1/sp'UV + 1vis two-color and 2vis+1vis single-color resonance-enhanced multiphoton ionization (REMPI) in the vicinity of the Al(3d) gets Al(3p) atomic transitions. UV absorption spectra were collected for Al/cdot Arn cluster sizes corresponding to solvation within the first icosahedral solvation shell ( 1/leq n/leq12) as well as the second icosahedral solvation shell (13/leq n/leq 54). These spectra exhibited significant red-shifted absorption features whose absolute peak positions were noted to be highly sensitive to the degree of solvation. Such behavior was strongly suggestive of an aluminum atom surface binding site. Nevertheless, classical Monte Carlo simulations failed to reproduce the observed magnitude of the spectral shifts. Consequently, the underlying origin of this anomalous spectral behavior was believed to derive from electronic state mixing interactions between those states originating from the Al(3d) and Al(4p) electronic manifolds. Evidence for such a coupling was sought at the level of the diatomic AlċAr molecule using both 1/sp'UV+1vis and 2vis+1vis REMPI to characterize all electronic states arising from the Al(3d)ċAr and Al(4p)ċAr asymptotes. Strong evidence for state mixing was

  1. Gas-phase chemistry of ionized and protonated GeF4: a joint experimental and theoretical study.

    PubMed

    Antoniotti, Paola; Bottizzo, Elena; Operti, Lorenza; Rabezzana, Roberto; Borocci, Stefano; Grandinetti, Felice

    2011-05-01

    The gas-phase ion chemistry of GeF(4) and of its mixtures with water, ammonia and hydrocarbons was investigated by ion trap mass spectrometry (ITMS) and ab initio calculations. Under ITMS conditions, the only fragment detected from ionized GeF(4) is GeF(3)(+). This cation is a strong Lewis acid, able to react with H(2)O, NH(3) and the unsaturated C(2)H(2), C(2)H(4) and C(6)H(6) by addition-HF elimination reactions to form F(2)Ge(XH)(+), FGe(XH)(2)(+), Ge(XH)(3)(+) (X = OH or NH(2)), F(2)GeC(2)H(+), F(2)GeC(2)H(3)(+) and F(2)GeC(6)H(5)(+). The structure, stability and thermochemistry of these products and the mechanistic aspects of the exemplary reactions of GeF(3)(+) with H(2)O, NH(3) and C(6)H(6) were investigated by MP2 and coupled cluster calculations. The experimental proton affinity (PA) and gas basicity (GB) of GeF(4) were estimated as 121.5 ± 6.0 and 117.1 ± 6.0 kcal mol(-1), respectively, and GeF(4)H(+) was theoretically characterized as an ion-dipole complex between GeF(3)(+) and HF. Consistently, it reacts with simple inorganic and organic molecules to form GeF(3)(+)-L complexes (L = H(2)O, NH(3), C(2)H(2), C(2)H(4), C(6)H(6), CO(2), SO(2) and GeF(4)). The theoretical investigation of the stability of these ions with respect to GeF(3)(+) and L disclosed nearly linear correlations between their dissociation enthalpies and free energies and the PA and GB of L. Comparing the behavior of GeF(3)(+) with the previously investigated CF(3)(+) and SiF(3)(+) revealed a periodically reversed order of reactivity CF(3)(+) < GeF(3)(+) < SiF(3)(+). This parallels the order of the Lewis acidities of the three cations. PMID:21500305

  2. Epicyclic Twin-Helix Ionization Cooling Simulations

    SciTech Connect

    Vasiliy Morozov, Yaroslav Derbenev, A. Afanaciev, R.P. Johnson

    2011-04-01

    Parametric-resonance Ionization Cooling (PIC) is proposed as the final 6D cooling stage of a highluminosity muon collider. For the implementation of PIC, we earlier developed an epicyclic twin-helix channel with correlated behavior of the horizontal and vertical betatron motions and dispersion. We now insert absorber plates with short energy-recovering units located next to them at the appropriate locations in the twin-helix channel. We first demonstrate conventional ionization cooling in such a system with the optics uncorrelated. We then adjust the correlated optics state and induce a parametric resonance to study ionization cooling under the resonant condition.

  3. A systematic study on the influence of carbon on the behavior of hard-to-ionize elements in inductively coupled plasma-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Grindlay, Guillermo; Mora, Juan; de Loos-Vollebregt, Margaretha; Vanhaecke, Frank

    2013-08-01

    A systematic study on the influence of carbon on the signal of a large number of hard-to-ionize elements (i.e. B, Be, P, S, Zn, As, Se, Pd, Cd, Sb, I, Te, Os, Ir, Pt, Au, and Hg) in inductively coupled plasma-mass spectrometry has been carried out. To this end, carbon matrix effects have been evaluated considering different plasma parameters (i.e. nebulizer gas flow rate, r.f. power and sample uptake rate), sample introduction systems, concentration and type of carbon matrix (i.e. glycerol, citric acid, potassium citrate and ammonium carbonate) and type of mass spectrometer (i.e. quadrupole filter vs. double-focusing sector field mass spectrometer). Experimental results show that P, As, Se, Sb, Te, I, Au and Hg sensitivities are always higher for carbon-containing solutions than those obtained without carbon. The other hard-to-ionize elements (Be, B, S, Zn, Pd, Cd, Os, Ir and Pt) show no matrix effect, signal enhancement or signal suppression depending on the experimental conditions selected. The matrix effects caused by the presence of carbon are explained by changes in the plasma characteristics and the corresponding changes in ion distribution in the plasma (as reflected in the signal behavior plot, i.e. the signal intensity as a function of the nebulizer gas flow rate). However, the matrix effects for P, As, Se, Sb, Te, I, Au and Hg are also related to an increase in analyte ion population caused as a result of charge transfer reactions involving carbon-containing charged species in the plasma. The predominant specie is C+, but other species such as CO+, CO2+, C2+ and ArC+ could also play a role. Theoretical data suggest that B, Be, S, Pd, Cd, Os, Ir and Pt could also be involved in carbon based charge transfer reactions, but no experimental evidence substantiating this view has been found.

  4. Carbonic acid ionization and the stability of sodium bicarbonate and carbonate ion pairs to 200 °C - A potentiometric and spectrophotometric study

    NASA Astrophysics Data System (ADS)

    Stefánsson, Andri; Bénézeth, Pascale; Schott, Jacques

    2013-11-01

    Carbonic acid ionization and sodium bicarbonate and carbonate ion pair formation constants have been experimentally determined in dilute hydrothermal solutions to 200 °C. Two experimental approaches were applied, potentiometric acid-base titrations at 10-60 °C and spectrophotometric pH measurements using the pH indicators, 2-napthol and 4-nitrophenol, at 25-200 °C. At a given temperature, the first and second ionization constants of carbonic acid (K1, K2) and the ion pair formation constants for NaHCO(aq)(K) and NaCO3-(aq)(K) were simultaneously fitted to the data. Results of this study compare well with previously determined values of K1 and K2. The NaHCO(aq) and NaCO3-(aq) ion pair formation constants vary between 25 and 200 °C having values of logK=-0.18 to 0.58 and logK=1.01 to 2.21, respectively. These ion pairs are weak at low-temperatures but become increasingly important with increasing temperature under neutral to alkaline conditions in moderately dilute to concentrated NaCl solutions, with NaCO3-(aq) predominating over CO32-(aq) in ⩾0.1 M NaCl solution at temperatures above 100 °C. The results demonstrate that NaCl cannot be considered as an inert (non-complexing) electrolyte in aqueous carbon dioxide containing solutions at elevated temperatures.

  5. Fuel cell with ionization membrane

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    2007-01-01

    A fuel cell is disclosed comprising an ionization membrane having at least one area through which gas is passed, and which ionizes the gas passing therethrough, and a cathode for receiving the ions generated by the ionization membrane. The ionization membrane may include one or more openings in the membrane with electrodes that are located closer than a mean free path of molecules within the gas to be ionized. Methods of manufacture are also provided.

  6. Martian Meteor Ionization Layers

    NASA Technical Reports Server (NTRS)

    Grebowsky, J. M.; Pesnell, W. D.

    1999-01-01

    Small interplanetary grains bombard Mars, like all the solar system planets, and, like all the planets with atmospheres, meteoric ion and atom layers form in the upper atmosphere. We have developed a comprehensive one-dimensional model of the Martian meteoric ionization layer including a full chemical scheme. A persistent layer of magnesium ions should exist around an altitude of 70 km. Unlike the terrestrial case, where the metallic ions are formed via charge-exchange with the ambient ions, Mg(+) in the Martian atmosphere is produced by photoionization. Nevertheless, the predicted metal layer peak densities for Earth and Mars are similar. Diffusion solutions, such as those presented here, should be a good approximation of the metallic ions in regions where the magnetic field is negligible and may provide a significant contribution to the nightside ionosphere. The low ultraviolet absorption of the Martian atmosphere may make Mars an excellent laboratory in which to study meteoric ablation. Resonance lines not seen in the spectra of terrestrial meteors may be visible to a surface observatory in the Martian highlands.

  7. Surface ionization of terpene hydrocarbons

    SciTech Connect

    Zandberg, E.Y.; Nezdyurov, A.L.; Paleev, V.I.; Ponomarev, D.A.

    1986-09-01

    By means of a surface ionization indicator for traces of materials in the atmosphere it has been established that many natural materials containing terpenes and their derivatives are ionized on the surface of heated molybdenum oxide at atmospheric air pressure. A mass-spectrometer method has been used to explain the mechanism of ionization of individual terpene hydrocarbons and to establish its principles. The ionization of ..cap alpha..-pinene, alloocimene, camphene, and also adamantane on oxidized tungsten under vacuum conditions has been investigated. The ..cap alpha..-pinene and alloocimene are ionized by surface ionization but camphene and adamantane are not ionized under vacuum conditions. The surface ionization mass spectra of ..cap alpha..-pinene and alloocimene are of low line brightness in comparison with electron ionization mass spectra and differ between themselves. The temperature relations for currents of the same compositions of ions during ionization of ..cap alpha..-pinene and alloocimene are also different, which leads to the possibility of surface ionization analysis of mixtures of terpenes being ionized. The ionization coefficients of alloocimene and ..cap alpha..-pinene on oxidized tungsten under temperatures optimum for ionization and the ionization potentials of alloocimene molecules and of radicals (M-H) of both compounds have been evaluated.

  8. Low-density ionization behavior

    SciTech Connect

    Baker, G.A. Jr.

    1995-04-01

    As part of a continuing study of the physics of matter under extreme conditions, I give some results on matter at extremely low density. In particular I compare a quantum mechanical calculation of the pressure for atomic hydrogen with the corresponding pressure given by Thomas-Fermi theory. (This calculation differs from the ``confined atom`` approximation in a physically significant way.) Since Thomas-Fermi theory in some sense, represents the case of infinite nuclear charge, these cases should represent extremes. Comparison is also made with Saha theory, which considers ionization from a chemical point of view, but is weak on excited-state effects. In this theory, the pressure undergoes rapid variation as electron ionization levels are passed. This effect is in contrast to the smooth behavior of the Thomas-Fermi fixed temperature, complete ionization occurs in the low density limit, I study the case where the temperature goes appropriately to zero with the density. Although considerable modification is required, Saha theory is closer to the actual results for this case than is Thomas-Fermi theory.

  9. Pharmacokinetic Study of a Diclofenac Sodium Capsule Filled with Enteric-coated Pellets in Healthy Chinese Volunteers by Liquid Chromatography-electrospray Ionization-tandem Mass Spectrometry.

    PubMed

    Ma, J-Y; Liu, M; Yang, M; Zhao, H; Tong, Y; Zhang, Y; Deng, M; Liu, H

    2016-05-01

    The pharmacokinetic study of a diclofenac sodium capsule filled with enteric-coated pellets (abbreviated as CAPSULE) in healthy Chinese subjects was evaluated using liquid chromatography-electrospray ionization-tandem mass spectrometry with simple sample preparation. In a cross-over study, 12 healthy male volunteers were given 50 mg CAPSULE and diclofenac sodium enteric-coated tablet (abbreviated as TABLET, used as a control dosage form) at fasting. The Cmax, AUC0-t, and Tmax of CAPSULE were 1.01±0.52 μg/mL, 1.54±0.18 μg·h/mL, and 1.50±1.31 h, respectively. When compared with TABLET, the pharmacokinetic study showed that although this CAPSULE exhibited similar AUC (only 10% lower), it presented lower maximum plasma concentration, faster absorption and shorter time to reach maximum concentration. When compared with the previous study in Germany, obvious variations on Tmax were found in Chinese subjects taking CAPSULE, but not TABLET. The results indicated that individual difference should be paid attention when prescribing CAPSULE to Chinese patients. PMID:26418414

  10. Theory of dissociative tunneling ionization

    NASA Astrophysics Data System (ADS)

    Svensmark, Jens; Tolstikhin, Oleg I.; Madsen, Lars Bojer

    2016-05-01

    We present a theoretical study of the dissociative tunneling ionization process. Analytic expressions for the nuclear kinetic energy distribution of the ionization rates are derived. A particularly simple expression for the spectrum is found by using the Born-Oppenheimer (BO) approximation in conjunction with the reflection principle. These spectra are compared to exact non-BO ab initio spectra obtained through model calculations with a quantum mechanical treatment of both the electronic and nuclear degrees of freedom. In the regime where the BO approximation is applicable, imaging of the BO nuclear wave function is demonstrated to be possible through reverse use of the reflection principle, when accounting appropriately for the electronic ionization rate. A qualitative difference between the exact and BO wave functions in the asymptotic region of large electronic distances is shown. Additionally, the behavior of the wave function across the turning line is seen to be reminiscent of light refraction. For weak fields, where the BO approximation does not apply, the weak-field asymptotic theory describes the spectrum accurately.

  11. SYNTHESIS AND IDENTIFICATION OF 2,5-BIS-(4-HYDROXY-3-METHOXYPHENYL)-TETRAHYDROFURAN-3,4-DICARBOXYLIC ACID, AN UNANTICIPATED FERULATE 8-8-COUPLING PRODUCT ACYLATING CEREAL PLANT CELL WALLS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new product implicated in cereal grain polysaccharide cross-linking has been authenticated by independent synthesis. Saponification of cereal grain fiber releases the RRRS/SSSR-isomer of 2,5-di-(4´-hydroxy-3´-methoxyphenyl)-2,3,4,5-tetrahydrofuran-3,4-dicarboxylic acid. The parent ester logically ...

  12. Nonlinear time-dependent density-functional-theory study of ionization and harmonic generation in CO{sub 2} by ultrashort intense laser pulses: Orientational effects

    SciTech Connect

    Fowe, Emmanuel Penka; Bandrauk, Andre D.

    2010-02-15

    Time-dependent density-functional-theory (TDDFT) methods are used to calculate the orientational dependence of ionization and molecular high-order harmonic generation (MHOHG) in the CO{sub 2} molecule as a function of laser intensity I{sub 0{>=}}10{sup 14} W/cm{sup 2} for few-cycle 800 nm laser pulses. A time-series analysis is used to confirm the recollision model in MHOHG for different density potentials. It is found that at intensities I{sub 0}>3.5x10{sup 14} W/cm{sup 2}, lower highest occupied molecular orbitals (HOMO's) contribute significantly to ionization and to the MHOHG process. This is due to the symmetry of these orbitals. Even though such lower orbitals have higher ionization potentials (IP), ionization and MHOHG processes occur when orbital densities are maximum with laser polarization direction.

  13. Ambient ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lebedev, A. T.

    2015-07-01

    Ambient ionization mass spectrometry emerged as a new scientific discipline only about ten years ago. A considerable body of information has been reported since that time. Keeping the sensitivity, performance and informativity of classical mass spectrometry methods, the new approach made it possible to eliminate laborious sample preparation procedures and triggered the development of miniaturized instruments to work directly in the field. The review concerns the theoretical foundations and design of ambient ionization methods. Their advantages and drawbacks, as well as prospects for application in chemistry, biology, medicine, environmetal analysis, etc., are discussed. The bibliography includes 194 references.

  14. The flatness and sudden evolution of the intergalactic ionizing background

    NASA Astrophysics Data System (ADS)

    Muñoz, Joseph A.; Oh, S. Peng; Davies, Frederick B.; Furlanetto, Steven R.

    2016-01-01

    The ionizing background of cosmic hydrogen is an important probe of the sources and absorbers of ionizing radiation in the post-reionization universe. Previous studies show that the ionization rate should be very sensitive to changes in the source population: as the emissivity rises, absorbers shrink in size, increasing the ionizing mean free path and, hence, the ionizing background. By contrast, observations of the ionizing background find a very flat evolution from z ˜ 2-5, before falling precipitously at z ˜ 6. We resolve this puzzling discrepancy by pointing out that, at z ˜ 2-5, optically thick absorbers are associated with the same collapsed haloes that host ionizing sources. Thus, an increasing abundance of galaxies is compensated for by a corresponding increase in the absorber population, which moderates the instability in the ionizing background. However, by z ˜ 5-6, gas outside of haloes dominates the absorption, the coupling between sources and absorbers is lost, and the ionizing background evolves rapidly. Our halo-based model reproduces observations of the ionizing background, its flatness and sudden decline, as well as the redshift evolution of the ionizing mean free path. Our work suggests that, through much of their history, both star formation and photoelectric opacity in the universe track halo growth.

  15. The effect of Non- ionizing electromagnetic field with a frequency of 50 Hz in Rat ovary: A transmission electron microscopy study

    PubMed Central

    Khaki, Amir Afshin; Khaki, Arash; Ahmadi, Seyed Shahin

    2016-01-01

    Background: Recently, there are increasing concerns and interests about the potential effects of Electromagnetic Field (EMF) on both human and animal health. Objective: The goal of this study was to evaluate the harmful effects of 50 Hz non-ionizing EMF on rat oocytes. Materials and Methods: In this experimental study 30 rats were randomly taken from laboratory animals and their ags and weights were determined. These 3 month's old rats were randomly divided into 3 groups. The control group consisted of 10 rats without receiving any treatment and kept under normal conditions. Experimental group 1 (10 rats) received EMF for 8 weeks (3 weeks intrauterine +5 weeks after births) and experimental group 2 (10 rats) received EMF for 13 weeks (3 weeks intrauterine +10 weeks after birth). After removing the ovaries and isolating follicles, granulosa cells were fixed in glutaraldehyde and osmium tetroxide. Electron microscopy was used to investigate the traumatic effects of EMF on follicles. Results: In control group nucleus membrane and mitochondria in follicle’s cytoplasm seemed normal in appearance. Theca layer of primary follicles in experimental group was separated clearly, zona layer demonstrated trot with irregular thickness and ovarian stroma seemed isolated with dilated vessels showing infiltration. Conclusion: According to the results of this study, it can be concluded that EMF has harmful effects on the ovarian follicles. PMID:27200427

  16. Diastereoselective synthesis of tetrahydrofurans via mead reductive cyclization of keto-beta-lactones derived from the tandem Mukaiyama aldol lactonization (TMAL) process.

    PubMed

    Mitchell, T Andrew; Romo, Daniel

    2007-11-23

    The development of a diastereoselective, three-step strategy for the construction of substituted tetrahydrofurans from alkenyl aldehydes based on the tandem Mukaiyama aldol-lactonization process and Mead reductive cyclization of keto beta-lactones is reported. Stereochemical outcomes of the TMAL process are consistent with models established for Lewis acid-mediated additions to alpha-benzyloxy and beta-silyloxy aldehydes while reductions of the five-membered oxocarbenium ions are consistent with Woerpel's models. Further rationalization for observed high diastereoselectivity in reductions of alpha-silyloxy 5-membered oxocarbenium ions based on stereoelectronic effects are posited. A diagnostic trend for coupling constants of gamma-benzyloxy beta-lactones was observed that should enable assignment of the relative configuration of these systems. PMID:17973527

  17. Diastereoselective Synthesis of Tetrahydrofurans via Mead Reductive Cyclization of Keto-β-Lactones Derived from the Tandem Mukaiyama Aldol Lactonization (TMAL) Process

    PubMed Central

    Mitchell, T. Andrew; Romo, Daniel

    2008-01-01

    The development of a diastereoselective, three-step strategy for the construction of substituted tetrahydrofurans from alkenyl aldehydes based on the tandem Mukaiyama aldol-lactonization process and Mead reductive cyclization of keto β-lactones is reported. Stereochemical outcomes of the TMAL process are consistent with models established for Lewis acid-mediated additions to α-benzyloxy and β-silyloxy aldehydes while reductions of the five-membered oxocarbenium ions are consistent with Woerpel’s models. Further rationalization for observed high diastereoselectivity in reductions of α-silyloxy 5-membered oxocarbenium ions based on stereoelectronic effects are posited. A diagnostic trend for coupling constants of γ-benzyloxy β-lactones was observed that should enable assignment of the relative configuration of these systems. PMID:17973527

  18. Differential and integral electron scattering cross sections from tetrahydrofuran (THF) over a wide energy range: 1-10 000 eV*

    NASA Astrophysics Data System (ADS)

    Fuss, Martina C.; Sanz, Ana G.; Blanco, Francisco; Limão-Vieira, Paulo; Brunger, Michael J.; García, Gustavo

    2014-06-01

    Total, integral inelastic and integral and differential elastic cross sections have been calculated with the screening-corrected additivity rule (SCAR) method based on the independent atom model (IAM) for electron scattering from tetrahydrofuran (THF). Since the permanent dipole moment of THF enhances rotational excitation particularly at low energies and for small angles, an estimate of the rotational excitation cross section was also computed by assuming the interaction with a free electric dipole as an independent, additional process. Our theoretical results compare very favourably to the existing experimental data. Finally, a self-consistent set of integral and differential interaction CSs for the incident energy range 1 eV-10 keV is established for use in our low energy particle track simulation (LEPTS). All cross section data are supplied numerically in tabulated form.

  19. Low-energy positron scattering from gas-phase tetrahydrofuran: A quantum treatment of the dynamics and a comparison with experiments

    SciTech Connect

    Franz, J.; Gianturco, F. A.

    2013-11-28

    In this paper we report new quantum calculations of the dynamics for low-energy positrons interacting with gaseous molecules of tetrahydrofuran. The new quantum scattering cross sections are differential and integral cross sections at collision energies between 1.0 and 25.0 eV and include a careful treatment of the additional effects on the scattering process brought about by the permanent dipole moment of the target molecule. The present results are compared with an extensive range of measured data, both for the angular distributions and for the elastic integral cross sections and agree remarkably well with all findings. The new calculated quantities reported here also show the importance of correcting the experimental integral cross sections for the angular discrimination in the forward direction.

  20. Stereoselective synthesis of cis- and trans-2,3-disubstituted tetrahydrofurans via oxonium-prins cyclization: access to the cordigol ring system.

    PubMed

    Spivey, Alan C; Laraia, Luca; Bayly, Andrew R; Rzepa, Henry S; White, Andrew J P

    2010-03-01

    SnBr(4)-promoted oxonium-Prins cyclizations to form 2,3-disubstituted tetrahydrofurans (THFs) are reported. In the absence of an internal nucleophile, the carbocation intermediates are trapped by bromide to give 2,3-cis- and 2,3-trans-configured products; two variations with intramolecular trapping are also reported. One of these allows a single-step stereocontrolled synthesis of the core 2,3-cis-THF ring system of cordigol, a fungicidal polyphenol from the stem bark of Cordia goetzei. For this latter transformation, a stepwise oxonium-Prins/cation trapping pathway rather than orthoquinonemethide formation/hetero-Diels-Alder cycloaddition is supported computationally. PMID:20143863

  1. Effect of Ionization on Infrared and Electronic Absorption Spectra of Methyl and Ethyl Formate in the Gas Phase and in Astrophysical H2O Ice: A Computational Study

    NASA Astrophysics Data System (ADS)

    Naganathappa, Mahadevappa; Chaudhari, Ajay

    2011-04-01

    This work reports infrared and electronic absorption spectra of trans and gauche conformers of neutral ethyl formate, trans and cis conformers of neutral methyl formate, their ions in the gas phase, and neutral ethyl and methyl formate in astrophysical H2O ice. The second-order Møller-Plesset perturbation (MP2) method with TZVP basis set has been used to obtain ground-state geometries. An influence of ice on vibrational frequencies of neutral ethyl and methyl formate was obtained using integral equation formalism polarizable continnum model (IEFPCM). Significant shift in vibrational frequencies for neutral methyl and ethyl formate when studied in H2O ice and upon ionization is observed. Rotational and distortion constants for neutral ethyl and methyl formate from this work are in excellent agreement with the available experimental values. Electronic absorption spectra of conformers of ethyl and methyl formate and their ions are obtained using time-dependent density functional method (TDDFT). The nature of electronic transitions is also identified. We suggested lines especially good to detect these molecules in interstellar medium. Using these lines, we can identify the conformers of ethyl and methyl formate in gas phase and H2O ice in interstellar medium. This comparative study should provide useful guidelines to detect conformers of ethyl and methyl formate and their ions in gas phase and neutral molecules in H2O ice in different astronomical environment.

  2. Study of gas-phase O-H bond dissociation enthalpies and ionization potentials of substituted phenols - Applicability of ab initio and DFT/B3LYP methods

    NASA Astrophysics Data System (ADS)

    Klein, Erik; Lukeš, Vladimír

    2006-11-01

    In this paper, the study of phenol and 37 compounds representing various ortho-, para-, and meta-substituted phenols is presented. Molecules and their radical structures were studied using ab initio methods with inclusion of correlation energy and DFT in order to calculate the O-H bond dissociation enthalpies (BDEs) and vertical ionization potentials (IPs). Calculated BDEs and IPs were compared with available experimental values to ascertain the suitability of used methods, especially for the description of the substituent induced changes in BDE and IP. MP2, MP3, and MP4 methods do not give reliable results, since they significantly underestimate substituent induced changes in BDE and do not reflect distinct effect of substituents related to para and meta position correctly. DFT/B3LYP method reflects the effect of substituents on BDE satisfactorily, though ΔBDEs are in narrower range than experimental values. BDE of phenol was calculated also using CCSD(T) method in various basis sets. Both, DFT and HF methods describe the effect of substituents on IP identically. However, DFT considerably underestimates individual values. HF method gives IPs in very good agreement with experimental data. Obtained results show that dependences of BDEs and IPs on Hammett constants of the substituents are linear. Linearity of DFT BDE vs. IP dependence is even better than the dependences on Hammett constants and obtained equations allow estimating of O-H BDEs of meta- and para-substituted phenols from calculated IPs.

  3. Structure of Fucoidan from Brown Seaweed Turbinaria ornata as Studied by Electrospray Ionization Mass Spectrometry (ESIMS) and Small Angle X-ray Scattering (SAXS) Techniques

    PubMed Central

    Thanh, Thuy Thi Thu; Tran, Van Thi Thanh; Yuguchi, Yoshiaki; Bui, Ly Minh; Nguyen, Tai Tien

    2013-01-01

    The purpose of this study is to elucidate both the chemical and conformational structure of an unfractionated fucoidan extracted from brown seaweed Turbinaria ornata collected at Nha-trang bay, Vietnam. Electrospray ionization mass spectrometry (ESI-MS) was used for determining the chemical structure and small angle X-ray scattering (SAXS) provided conformational of the structure at the molecular level. The results showed that the fucoidan has a sulfate content of 25.6% and is mainly composed of fucose and galactose residues (Fuc:Gal ≈ 3:1). ESIMS analysis suggested that the fucoidan has a backbone of 3-linked α-l-Fucp residues with branches, →4)-Galp(1→ at C-4 of the fucan chain. Sulfate groups are attached mostly at C-2 and sometimes at C-4 of both fucose and galactose residues. A molecular model of the fucoidan was built based on obtained chemical structure and scattering curves estimated from molecular model and observed SAXS measurement were fitted. The results indicated that fucoidan under study has a rod-like bulky chain conformation. PMID:23857110

  4. Bio-oil Analysis Using Negative Electrospray Ionization: Comparative Study of High-Resolution Mass Spectrometers and Phenolic versus Sugaric Components

    SciTech Connect

    Smith, Erica A.; Park, Soojin; Klein, Adam T.; Lee, Young Jin

    2012-05-16

    We have previously demonstrated that a petroleomic analysis could be performed for bio-oils and revealed the complex nature of bio-oils for the nonvolatile phenolic compounds (Smith, E.; Lee, Y. J. Energy Fuels 2010, 24, 5190−5198). As a subsequent study, we have adapted electrospray ionization in negative-ion mode to characterize a wide variety of bio-oil compounds. A comparative study of three common high-resolution mass spectrometers was performed to validate the methodology and to investigate the differences in mass discrimination and resolution. The mass spectrum is dominated by low mass compounds with m/z of 100–250, with some compounds being analyzable by gas chromatography–mass spectrometry (GC–MS). We could characterize over 800 chemical compositions, with only about 40 of them being previously known in GC–MS. This unveiled a much more complex nature of bio-oils than typically shown by GC–MS. The pyrolysis products of cellulose and hemicellulose, particularly polyhydroxy cyclic hydrocarbons (or what we call “sugaric” compounds), such as levoglucosan, could be effectively characterized with this approach. Phenolic compounds from lignin pyrolysis could be clearly distinguished in a contour map of double bond equivalent (DBE) versus the number of carbons from these sugaric compounds.

  5. A Genomic Study of DNA Alteration Events Caused by Ionizing Radiation in Human Embryonic Stem Cells via Next-Generation Sequencing.

    PubMed

    Nguyen, Van; Panyutin, Irina V; Panyutin, Igor G; Neumann, Ronald D

    2016-01-01

    Ionizing radiation (IR) is a known mutagen that is widely employed for medical diagnostic and therapeutic purposes. To study the extent of genetic variations in DNA caused by IR, we used IR-sensitive human embryonic stem cells (hESCs). Four hESC cell lines, H1, H7, H9, and H14, were subjected to IR at 0.2 or 1 Gy dose and then maintained in culture for four days before being harvested for DNA isolation. Irradiation with 1 Gy dose resulted in significant cell death, ranging from 60% to 90% reduction in cell population. Since IR is often implicated as a risk for inducing cancer, a primer pool targeting genomic "hotspot" regions that are frequently mutated in human cancer genes was used to generate libraries from irradiated and control samples. Using a semiconductor-based next-generation sequencing approach, we were able to consistently sequence these samples with deep coverage for reliable data analysis. A possible rare nucleotide variant was identified in the KIT gene (chr4:55593481) exclusively in H1 hESCs irradiated with 1 Gy dose. More extensive further studies are warranted to assess the extent and distribution of genetic changes in hESCs after IR exposure. PMID:26709353

  6. Alkali ionization detector

    DOEpatents

    Hrizo, John; Bauerle, James E.; Witkowski, Robert E.

    1982-01-01

    A calibration filament containing a sodium-bearing compound is included in combination with the sensing filament and ion collector plate of a sodium ionization detector to permit periodic generation of sodium atoms for the in-situ calibration of the detector.

  7. Advanced Thin Ionization Calorimeter (ATIC)

    NASA Technical Reports Server (NTRS)

    Wefel, John P.

    1998-01-01

    This is the final report for NASA grant NAGW-4577, "Advanced Thin Ionization Calorimeter (ATIC)". This grant covered a joint project between LSU and the University of Maryland for a Concept Study of a new type of fully active calorimeter to be used to measure the energy spectra of very high energy cosmic rays, particularly Hydrogen and Helium, to beyond 1014 eV. This very high energy region has been studied with emulsion chamber techniques, but never investigated with electronic calorimeters. Technology had advanced to the point that a fully active calorimeter based upon Bismuth Germanate (BGO) scintillating crystals appeared feasible for balloon flight (and eventually space) experiments.

  8. Excitation in the ionized diffuse interstellar medium

    NASA Astrophysics Data System (ADS)

    Sivan, J.-P.; Stasińska, G.; Lequeux, J.

    1986-04-01

    Large-scale spectra have been obtained in the diffuse, ionized background of the Sagittarius-Carina arm and in the large complex of loops and filaments located in Orion and Eridanus. The intensity ratios of the emission lines of O III forbidden line, H-beta, H-alpha, N II forbidden line and S II forbidden line have been derived from these spectra, and are analyzed using models of H II regions in ionization equilibrium at very low densities, down to 0.01/cu cm. The confrontation of the observed ratios with the predictions of the models, which have been calibrated against observations of classical H II regions, shows that the S II forbidden line (6717 + 6731)/H-alpha ratio is too large to arise in a gas submitted only to a stellar flux with which it comes into ionization equilibrium, whatever the dilution of the matter. Contribution of shock excitation seems a natural explanation, as shocks are likely to occur considering the chaotic morphology of the studied regions. Some alternative explanations are also suggested. However, this medium is principally ionized by radiation, and it is shown that the forbidden line O III/H-beta ratios are well accounted for by the known population of O stars within the expected uncertainties, while ionization by white dwarfs or by B stars suggested by previous authors are excluded. The mean effective temperature for ionizing stars (less than 35,000 K) is lower than that of stars exciting classical H II regions.

  9. A case-cohort study of lung cancer, ionizing radiation, and tobacco smoking among males at the Hanford Site

    SciTech Connect

    Petersen, G.R.; Gilbert, E.S.; Buchanan, J.A.; Stevens, R.G. )

    1990-01-01

    Results of several epidemiological studies of workers exposed occupationally to low levels of radiation have been reported but have not included data on smoking. The authors conducted a case-cohort study of male workers at the Hanford Site with an objective of investigating the association between lung-cancer risk and occupational radiation exposure with appropriate adjustment for tobacco use. Eighty-six lung-cancer deaths for the period 1965-1980 and a stratified random sample of 445 subcohort members were included in the study. Tobacco-use data were obtained from medical records collected over each subject's period of employment. Data from this study were analyzed using methods that took into account both the case-cohort design and changes over time in the quality of the tobacco-use data collected. Tobacco use was not strongly related to the level of radiation exposure, and adjustment for tobacco use did not greatly modify results of analyses assessing the association between lung-cancer risk and cumulative dose equivalent. With or without adjustment for tobacco use, the estimated risks per unit of cumulative dose equivalent were negative, but the 95% confidence intervals were wide and included values several times those estimated from populations with high levels of irradiation.

  10. The ionization rate inversion of H? induced by the single and double UV photon(s)

    NASA Astrophysics Data System (ADS)

    He, Pei-Lun; He, Feng

    2013-11-01

    The ionization of H? in the strong UV laser pulse is studied by numerically solving the time-dependent Schrödinger equation. In analogy to Young's double-slit interference, the ionized electron originating from two nuclei will constructively, or destructively interfere, depending on the UV frequencies. The fluctuation of the ionization rate as a function of the laser frequency is observed. The destructive interference suppresses the single-photon ionization rate, so that the double-photon ionization rate can be larger than the single-photon ionization rate. When such an ionization-rate inversion happens, the electron momentum spectra splits into several peaks.

  11. Studies of adaptive response and mutation induction in MCF-10A cells following exposure to chronic or acute ionizing radiation.

    PubMed

    Manesh, Sara Shakeri; Sangsuwan, Traimate; Wojcik, Andrzej; Haghdoost, Siamak

    2015-10-01

    A phenomenon in which exposure to a low adapting dose of radiation makes cells more resistant to the effects of a subsequent high dose exposure is termed radio-adaptive response. Adaptive response could hypothetically reduce the risk of late adverse effects of chronic or acute radiation exposures in humans. Understanding the underlying mechanisms of such responses is of relevance for radiation protection as well as for the clinical applications of radiation in medicine. However, due to the variability of responses depending on the model system and radiation condition, there is a need to further study under what conditions adaptive response can be induced. In this study, we analyzed if there is a dose rate dependence for the adapting dose, assuming that the adapting dose induces DNA response/repair pathways that are dose rate dependent. MCF-10A cells were exposed to a 50mGy adapting dose administered acutely (0.40Gy/min) or chronically (1.4mGy/h or 4.1mGy/h) and then irradiated by high acute challenging doses. The endpoints of study include clonogenic cell survival and mutation frequency at X-linked hprt locus. In another series of experiment, cells were exposed to 100mGy and 1Gy at different dose rates (acutely and chronically) and then the mutation frequencies were studied. Adaptive response was absent at the level of clonogenic survival. The mutation frequencies were significantly decreased in the cells pre-exposed to 50mGy at 1.4mGy/h followed by 1Gy acute exposure as challenging dose. Importantly, at single dose exposures (1 Gy or 100mGy), no differences at the level of mutation were found comparing different dose rates. PMID:26295444

  12. Modulated voltage metastable ionization detector

    NASA Technical Reports Server (NTRS)

    Carle, G. C.; Kojiro, D. R.; Humphrey, D. E. (Inventor)

    1985-01-01

    The output current from a metastable ionization detector (MID) is applied to a modulation voltage circuit. An adjustment is made to balance out the background current, and an output current, above background, is applied to an input of a strip chart recorder. For low level concentrations, i.e., low detected output current, the ionization potential will be at a maximum and the metastable ionization detector will operate at its most sensitive level. When the detected current from the metastable ionization detector increases above a predetermined threshold level, a voltage control circuit is activated which turns on a high voltage transistor which acts to reduce the ionization potential. The ionization potential applied to the metastable ionization detector is then varied so as to maintain the detected signal level constant. The variation in ionization potential is now related to the concentration of the constituent and a representative amplitude is applied to another input of said strip chart recorder.

  13. Whole blood versus serum ionized calcium concentrations in dialysis patients

    PubMed Central

    Kang, Seok Hui; Cho, Kyu Hyang; Park, Jong Won; Yoon, Kyung Woo

    2014-01-01

    Background/Aims The aim of this study is to measure the difference of ionized calcium between heparinized whole blood and serum. Methods We recruited 107 maintenance hemodialysis (HD) patients from our hospital HD unit. The clinical and laboratory data included ionized calcium in serum and in whole blood (reference, 4.07 to 5.17 mg/dL). Results The level of ionized calcium in serum was higher than that in whole blood (p < 0.001). Bland-Altman analysis showed that difference for ionized calcium was 0.5027. For the difference, the nonstandardized β was -0.4389 (p < 0.001) and the intercept was 2.2418 (p < 0.001). There was a significant difference in the distribution of categories of ionized calcium level between two methods (κ, 0.279; p < 0.001). Conclusions This study demonstrates that whole blood ionized calcium is underestimated compared with serum ionized calcium. Positive difference increases as whole blood ionized calcium decreases. Therefore, significant hypocalcemia in whole blood ionized calcium should be verified by serum ionized calcium. PMID:24648806

  14. Preliminary study for rapid determination of phycotoxins in microalgae whole cells using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Paz, Beatriz; Riobó, Pilar; Franco, José Mariano

    2011-12-15

    Rapid and sensitive methods for identification of several phycotoxins produced by microalgae species such as yessotoxins (YTXs) for Protoceratium reticulatum, okadaic acid (OA) and pectenotoxins (PTXs) for Prorocentrum spp. and Dinophysis spp., Palytoxins (PLTXs) for Ostreopsis spp., ciguatoxins (CTXs) for Gambierdiscus spp. or domoic acid (DA) for Pseudo-nitzschia spp. are of great importance to the shellfish and fish industry. In this study, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) was used to detect several phycotoxins in whole cells of some microalgae which are known as toxin producers. To achieve an appropriate MALDI matrix and a sample preparation method, several matrices and solvent mixtures were tested. The most appropriate matrix system for toxin detection was obtained with 10 µg μL(-1) of DHB in 0.1% TFA/ACN (3:7, v/v) by mixing the intact cells with the matrix solution directly on the MALDI target (dried-droplet technique). Toxin detection by this procedure is much faster than current procedures based on solvent extraction and chromatographic separation. This method allowed the rapid detection of main phycotoxins in some dinoflagellate cells of genus Ostreopsis, Prorocentrum, Protoceratium, Gambierdiscus, Dinophysis and diatoms from Pseudo-nitzschia genus. PMID:22095512

  15. Use of a partial filling technique and reverse migrating micelles in the study of N-methylcarbamate pesticides by micellar electrokinetic chromatography-electrospray ionization mass spectrometry.

    PubMed

    Molina, M; Wiedmer, S K; Jussila, M; Silva, M; Riekkola, M L

    2001-08-24

    This study describes three ways to couple micellar electrokinetic chromatography (MEKC) on-line with electrospray ionization mass spectrometry (ESI-MS) for the analysis of N-methylcarbamate pesticides. The methods involved the use of a partial filling (PF) technique under basic conditions and the use of reverse migrating micelles (RMMs) under acidic and basic conditions. The use of RMMs in basic electrolyte solutions required coated capillaries with low electroosmotic flows, and capillaries coated with anionic poly(sodium 2-acrylamide-2-methylpropanesulfonate) were selected for the purpose. Before the on-line MEKC-ESI-MS coupling, the MEKC and MS conditions were separately optimized under off-line conditions. The methods were compared in terms of detection limits and the stability of the electrospray process. The PF method offered good separation but poorer stability of the electrospray relative to the other methods. A more stable electrospray performance was obtained with use of RMMs in acidic electrolyte solutions, but some of the analytes were protonated and could not be detected due to the increase in their retention factors. However, with the use of anionic polymer-coated capillaries and RMMs at pH 8.5, all analytes were successfully separated. The high-salt stacking method was applied to improve the sensitivity of MEKC-ESI-MS and the detection limits were in the range of 0.04-2.0 microg/ml. PMID:11572389

  16. A tandem mass spectrometric study of the N-oxides, quinoline N-oxide, carbadox, and olaquindox, carried out at high mass accuracy using electrospray ionization

    NASA Astrophysics Data System (ADS)

    Miao, Xiu-Sheng; March, Raymond E.; Metcalfe, Chris D.

    2003-12-01

    A mass spectrometric study of three N-oxides, quinoline N-oxide, and the synthetic antibiotics carbadox and olaquindox, was carried out with a hybrid quadrupole/time-of-flight (TOF) mass spectrometer coupled with electrospray (ES) and atmospheric pressure chemical ionization (APCI) sources. The full scan mass spectra of the N-oxides obtained with ES are similar to those obtained with APCI, and the characteristic fragment ions corresponding to [M+H-O]+[radical sign] were observed in the full scan mass spectrum of each N-oxide examined. The protonated molecule of each N-oxide was subjected to collision-induced dissociation (CID) and accurate mass measurements were made of each fragment ion so as to determine its elemental composition. Fragment ions generated at enhanced cone voltages upstream of the first mass-resolving element were subjected to CID so as to identify the direct product ion-precursor ion relationship. Plausible structures have been proposed for most of the fragment ions observed. Elimination of OH[radical sign] radicals generated from the N-->O functional group is a characteristic fragmentation pathway of the N-oxides. The expulsion of radicals and small stable molecules is accompanied by formation and subsequent contraction of heterocyclic rings.

  17. Bizarre (pseudomalignant) granulation-tissue reactions following ionizing-radiation exposure. A microscopic, immunohistochemical, and flow-cytometric study

    SciTech Connect

    Weidner, N.; Askin, F.B.; Berthrong, M.; Hopkins, M.B.; Kute, T.E.; McGuirt, F.W.

    1987-04-15

    Two patients developed extremely bizarre (pseudomalignant) granulation-tissue reactions in the larynx and facial sinuses, following radiation therapy for carcinoma. Containing pleomorphic spindle cells and numerous (sometimes atypical) mitotic figures, both tumefactive lesions simulated high grade malignancies. While the pleomorphic cells contained vimentin immunoreactivity, they were nonreactive for low or high molecular weight keratin. Flowcytometric study of paraffin-embedded tissues revealed DNA indexes of 0.75 and 1.0. Neither recurred locally nor spread distantly after therapy. Their granulation-tissue growth pattern, and the presence of stromal and endothelial cells showing similar degrees of cytologic atypia were central to their recognition as benign. These findings show that severely atypical, sometimes aneuploid, granulation-tissue reactions can occur following radiation exposure. Care should be taken not to misinterpret these lesions as malignant.

  18. Stability and dissociation dynamics of N2 (++) ions following core ionization studied by an Auger-electron-photoion coincidence method.

    PubMed

    Iwayama, H; Kaneyasu, T; Hikosaka, Y; Shigemasa, E

    2016-07-21

    An Auger-electron-photoion coincidence (AEPICO) method has been applied to study the stability and dissociation dynamics of dicationic states after the N K-shell photoionization of nitrogen molecules. From time-of-flight and kinetic energy analyses of the product ions, we have obtained coincident Auger spectra associated with metastable states of N2 (++) ions and dissociative states leading to N2 (++) → N(+) + N(+) and N(++) + N. To investigate the production of dissociative states, we present two-dimensional AEPICO maps which reveal the correlations between the binding energies of the Auger final states and the ion kinetic energy release. These correlations have been used to determine the dissociation limits of individual Auger final states. PMID:27448885

  19. Ultrahigh vacuum measuring ionization gauge

    NASA Technical Reports Server (NTRS)

    Brock, F. J. (Inventor)

    1968-01-01

    The ionization gage described consists of separate ionization and collector regions connected at an exit area with a modulator electrode. In addition to the standard modulation function, the modulator in this location yields a suprising increase in collector current, apparently due to improved focussing and extraction of ions from the ionization region.

  20. Comparative effects of ionizing radiation on cycle time and mitotic duration. A time-lapse cinematography study

    SciTech Connect

    D'Hooghe, M.C.; Hemon, D.; Valleron, A.J.; Malaise, E.P.

    1980-03-01

    The effects of /sup 60/Co ..gamma.. rays on the length of the intermitotic period, the duration of mitosis, and the division probability of EMT6 cells have been studied in vitro using time-lapse cinematography. Irradiation increases the duration of the mitosis and of the cycle in comparable proportions: both parameters are practically doubled by a dose of 10 Gy. When daughters of irradiated cells die, the mitotic delay and lengthening of mitosis of their mother cells are longer than average. Mitotic delay and lengthening of mitosis depend on the age of cells at the moment of irradiation. The mitotic delay increases progressively when cells are irradiated during the first 8 h of their cycle (i.e., before the transition point), whereas mitosis is slightly prolonged. On the other hand, when the cells are irradiated after this transition point the mitotic delay decreases markedly, whereas the lengthening of mitosis increases sharply. These results tend to indicate that two different mechanisms are responsible for mitotic delay and prolongation of mitosis observed after irradiation.

  1. Setup with Laser Ionization in Gas Cell for Production and Study of Neutron-Rich Heavy Nuclei

    NASA Astrophysics Data System (ADS)

    Zagrebaev, V. I.; Zemlyanoy, S. G.; Kozulin, E. M.; Kudryavtsev, Yu.; Fedosseev, V.; Bark, R.; Janas, Z.; Othman, H. A.

    2015-11-01

    The present limits of the upper part of the nuclear map are very close to stability while the unexplored area of heavy neutron-rich nuclides along the neutron closed shell N=126 is extremely important for nuclear astrophysics investigations and, in particular, for the understanding of the r-process of astrophysical nucleosynthesis. This area of the nuclear map can be reached neither in fusion-fission reactions nor in fragmentation processes widely used nowadays for the production of exotic nuclei. A new way was recently proposed for the production of these nuclei via low-energy multi-nucleon transfer reactions. The estimated yields of neutron-rich nuclei are found to be significantly high in such reactions and several tens of new nuclides can be produced, for example, in the near-barrier collision of 136Xe with 208Pb. A new setup is proposed to produce and study heavy neutron-rich nuclei located along the neutron closed shell N=126.

  2. The ionization sources of the diffuse ionized gas in nearby disk galaxies

    NASA Astrophysics Data System (ADS)

    Voges, Erica Susan

    Diffuse ionized gas (DIG) has been shown to be an important component of the interstellar medium (ISM), with its large filling factor (>= 20%) and a mass that makes it the most massive component of the Galactic ionized ISM. Given that it has been found to be ubiquitous in both the Galaxy and external disk galaxies, the energy source to create and maintain the DIG must necessarily be large. Massive OB stars are the only known sources with enough energy to power the DIG, and DIG is also linked morphologically to OB stars as it is brightest near bright star forming regions. However, the details of the location and spectral types of the ionizing stars, as well as the relevance of other ionizing mechanisms, are still not clear. I present the results of three different studies aimed at exploring the ionization sources of the DIG. Optical spectroscopy of DIG in M33 and NGC 891 using the Gemini-North telescope has been obtained to compare diagnostic emission line ratios with photoionization models. The first detection of (O I] l6300 was made in the DIG of M33. In M33, models in which ionizing photons leaking from H II regions are responsible for the ionization of the DIG best fit our observed line ratios. In NGC 891, we found evidence that shock ionization may need to be included along with photoionization in order to explain our observed emission line ratios. The diffuse Ha fraction in eight nearby galaxies was studied as a function of radius and star formation rate per unit area. We found no correlation with radius, but we did find that regions with higher star formation rates have lower diffuse fractions. Neither of these results had any dependence on galaxy type. These results have implications regarding the circumstances under which H II regions may be leaking ionizing photons and thus ionizing DIG. We also compared observed and predicted ionizing photon emission rates for 39 H II regions in the Large Magellanic Cloud. Our results indicate that five of the H II

  3. Aqueous-phase photooxidation of levoglucosan - a mechanistic study using aerosol time-of-flight chemical ionization mass spectrometry (Aerosol ToF-CIMS)

    NASA Astrophysics Data System (ADS)

    Zhao, R.; Mungall, E. L.; Lee, A. K. Y.; Aljawhary, D.; Abbatt, J. P. D.

    2014-09-01

    Levoglucosan (LG) is a widely employed tracer for biomass burning (BB). Recent studies have shown that LG can react rapidly with hydroxyl (OH) radicals in the aqueous phase despite many mass balance receptor models assuming it to be inert during atmospheric transport. In the current study, aqueous-phase photooxidation of LG by OH radicals was performed in the laboratory. The reaction kinetics and products were monitored by aerosol time-of-flight chemical ionization mass spectrometry (Aerosol ToF-CIMS). Approximately 50 reaction products were detected by the Aerosol ToF-CIMS during the photooxidation experiments, representing one of the most detailed product studies yet performed. By following the evolution of mass defects of product peaks, unique trends of adding oxygen (+O) and removing hydrogen (-2H) were observed among the products detected, providing useful information for determining potential reaction mechanisms and sequences. Additionally, bond-scission reactions take place, leading to reaction intermediates with lower carbon numbers. We introduce a data analysis framework where the average oxidation state (OSc) is plotted against a novel molecular property: double-bond-equivalence-to-carbon ratio (DBE/#C). The trajectory of LG photooxidation on this plot suggests formation of polycarbonyl intermediates and their subsequent conversion to carboxylic acids as a general reaction trend. We also determined the rate constant of LG with OH radicals at room temperature to be 1.08 ± 0.16 × 109 M-1 s-1. By coupling an aerosol mass spectrometer (AMS) to the system, we observed a rapid decay of the mass fraction of organic signals at mass-to-charge ratio 60 (f60), corresponding closely to the LG decay monitored by the Aerosol ToF-CIMS. The trajectory of LG photooxidation on a f44-f60 correlation plot matched closely to literature field measurement data. This implies that aqueous-phase photooxidation might be partially contributing to aging of BB particles in the

  4. Aqueous-phase photooxidation of levoglucosan - a mechanistic study using Aerosol Time of Flight Chemical Ionization Mass Spectrometry (Aerosol-ToF-CIMS)

    NASA Astrophysics Data System (ADS)

    Zhao, R.; Mungall, E. L.; Lee, A. K. Y.; Aljawhary, D.; Abbatt, J. P. D.

    2014-04-01

    Levoglucosan (LG) is a widely employed tracer for biomass burning (BB). Recent studies have shown that LG can react rapidly with hydroxyl (OH) radicals in the aqueous phase, despite many mass balance receptor models assuming it to be inert during atmospheric transport. In the current study, aqueous-phase photooxidation of LG by OH radicals was performed in the laboratory. The reaction kinetics and products were monitored by Aerosol Time of Flight Chemical Ionization Mass Spectrometry (Aerosol-ToF-CIMS). Approximately 50 reaction products were detected by the Aerosol-ToF-CIMS during the photooxidation experiments, representing one of the most detailed product studies yet performed. By following the evolution of mass defects of product peaks, unique trends of adding oxygen (+O) and removing hydrogen (-2H) were observed among the products detected, providing useful information to determine potential reaction mechanisms and sequences. As well, bond scission reactions take place, leading to reaction intermediates with lower carbon numbers. We introduce a data analysis framework where the average oxidation state (OSc) is plotted against a novel molecular property: double bond equivalence to carbon ratio (DBE / #C). The trajectory of LG photooxidation on this plot suggests formation of poly-carbonyl intermediates and their subsequent conversion to carboxylic acids as a general reaction trend. We also determined the rate constant of LG with OH radicals at room temperature to be 1.08 ± 0.16 × 109 M-1 s-1. By coupling an Aerosol Mass Spectrometer (AMS) to the system, we observed a rapid decay of the mass fraction of organic signals at mass-to-charge ratio 60 (f60), corresponding closely to the LG decay monitored by the Aerosol-ToF-CIMS. The trajectory of LG photooxidation on a f44-f60 correlation plot matched closely to literature field measurement data. This implies that aqueous-phase photooxidation might be partially contributing to aging of BB particles in the ambient

  5. Gridded electron reversal ionizer

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor)

    1993-01-01

    A gridded electron reversal ionizer forms a three dimensional cloud of zero or near-zero energy electrons in a cavity within a filament structure surrounding a central electrode having holes through which the sample gas, at reduced pressure, enters an elongated reversal volume. The resultant negative ion stream is applied to a mass analyzer. The reduced electron and ion space-charge limitations of this configuration enhances detection sensitivity for material to be detected by electron attachment, such as narcotic and explosive vapors. Positive ions may be generated by generating electrons having a higher energy, sufficient to ionize the target gas and pulsing the grid negative to stop the electron flow and pulsing the extraction aperture positive to draw out the positive ions.

  6. Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Kelly, Ryan T.; Marginean, Ioan; Tang, Keqi

    2014-06-13

    Electrospray Ionization (ESI) is a process whereby gas phase ions are created from molecules in solution. As a solution exits a narrow tube in the presence of a strong electric field, an aerosol of charged droplets are is formed that produces gas phase ions as they it desolvates. ESI-MS comprises the creation of ions by ESI and the determination of their mass to charge ratio (m/z) by MS.

  7. Influence of the geometrical detail in the description of DNA and the scoring method of ionization clustering on nanodosimetric parameters of track structure: a Monte Carlo study using Geant4-DNA

    NASA Astrophysics Data System (ADS)

    Bueno, M.; Schulte, R.; Meylan, S.; Villagrasa, C.

    2015-11-01

    The aim of this study was to evaluate the influence of the geometrical detail of the DNA on nanodosimetric parameters of track structure induced by protons and alpha particles of different energies (LET values ranging from 1 to 162.5~\\text{keV}~μ {{\\text{m}}-1} ) as calculated by Geant4-DNA Monte Carlo simulations. The first geometry considered consisted of a well-structured placement of a realistic description of the DNA double helix wrapped around cylindrical histones (GeomHist) forming a 18 kbp-long chromatin fiber. In the second geometry considered, the DNA was modeled as a total of 1800 ten bp-long homogeneous cylinders (2.3 nm diameter and 3.4 nm height) placed in random positions and orientations (GeomCyl). As for GeomHist, GeomCyl contained a DNA material equivalent to 18 kbp. Geant4-DNA track structure simulations were performed and ionizations were counted in the scoring volumes. For GeomCyl, clusters were defined as the number of ionizations (ν) scored in each 10 bp-long cylinder. For GeomHist, clusters of ionizations scored in the sugar-phosphate groups of the double-helix were revealed by the DBSCAN clustering algorithm according to a proximity criteria among ionizations separated by less than 10 bp. The topology of the ionization clusters formed using GeomHist and GeomCyl geometries were compared in terms of biologically relevant nanodosimetric quantities. The discontinuous modeling of the DNA for GeomCyl led to smaller cluster sizes than for GeomHist. The continuous modeling of the DNA molecule for GeomHist allowed the merging of ionization points by the DBSCAN algorithm giving rise to larger clusters, which were not detectable within the GeomCyl geometry. Mean cluster size (m1) was found to be of the order of 10% higher for GeomHist compared to GeomCyl for LET <15~\\text{keV}~μ {{\\text{m}}-1} . For higher LETs, the difference increased with LET similarly for protons and alpha particles. Both geometries showed the same relationship

  8. Influence of the geometrical detail in the description of DNA and the scoring method of ionization clustering on nanodosimetric parameters of track structure: a Monte Carlo study using Geant4-DNA.

    PubMed

    Bueno, M; Schulte, R; Meylan, S; Villagrasa, C

    2015-11-01

    The aim of this study was to evaluate the influence of the geometrical detail of the DNA on nanodosimetric parameters of track structure induced by protons and alpha particles of different energies (LET values ranging from 1 to 162.5 keV µm-1) as calculated by Geant4-DNA Monte Carlo simulations.The first geometry considered consisted of a well-structured placement of a realistic description of the DNA double helix wrapped around cylindrical histones (GeomHist) forming a 18 kbp-long chromatin fiber. In the second geometry considered, the DNA was modeled as a total of 1800 ten bp-long homogeneous cylinders (2.3 nm diameter and 3.4 nm height) placed in random positions and orientations (GeomCyl). As for GeomHist, GeomCyl contained a DNA material equivalent to 18 kbp. Geant4-DNA track structure simulations were performed and ionizations were counted in the scoring volumes. For GeomCyl, clusters were defined as the number of ionizations (ν) scored in each 10 bp-long cylinder. For GeomHist, clusters of ionizations scored in the sugar-phosphate groups of the double-helix were revealed by the DBSCAN clustering algorithm according to a proximity criteria among ionizations separated by less than 10 bp. The topology of the ionization clusters formed using GeomHist and GeomCyl geometries were compared in terms of biologically relevant nanodosimetric quantities.The discontinuous modeling of the DNA for GeomCyl led to smaller cluster sizes than for GeomHist. The continuous modeling of the DNA molecule for GeomHist allowed the merging of ionization points by the DBSCAN algorithm giving rise to larger clusters, which were not detectable within the GeomCyl geometry. Mean cluster size (m1) was found to be of the order of 10% higher for GeomHist compared to GeomCyl for LET < 15 keV µm-1. For higher LETs, the difference increased with LET similarly for protons and alpha particles. Both geometries showed the same relationship between m1 and the cumulative relative frequency of

  9. Peroxynitric acid (HO2NO2) measurements during the UBWOS 2013 and 2014 studies using iodide ion chemical ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Veres, P. R.; Roberts, J. M.; Wild, R. J.; Edwards, P. M.; Brown, S. S.; Bates, T. S.; Quinn, P. K.; Johnson, J. E.; Zamora, R. J.; de Gouw, J.

    2015-07-01

    In this paper laboratory work is documented establishing iodide ion chemical ionization mass spectrometry (I- CIMS) as a sensitive method for the unambiguous detection of peroxynitric acid (HO2NO2; PNA). A dynamic calibration source for HO2NO2, HO2, and HONO was developed and calibrated using a novel total NOy cavity ring-down spectroscopy (CaRDS) detector. Photochemical sources of these species were used for the calibration and validation of the I- CIMS instrument for detection of HO2NO2. Ambient observations of HO2NO2 using I- CIMS during the 2013 and 2014 Uintah Basin Wintertime Ozone Study (UBWOS) are presented. Strong inversions leading to a build-up of many primary and secondary pollutants as well as low temperatures drove daytime HO2NO2 as high as 1.5 ppbv during the 2013 study. A comparison of HO2NO2 observations to mixing ratios predicted using a chemical box model describing an ozone formation event observed during the 2013 wintertime shows agreement in the daily maxima HO2NO2 mixing ratio, but a differences of several hours in the timing of the observed maxima. Observations of vertical gradients suggest that the ground snow surface potentially serves as both a net sink and source of HO2NO2 depending on the time of day. Sensitivity tests using a chemical box model indicate that the lifetime of HO2NO2 with respect to deposition has a non-negligible impact on ozone production rates on the order of 10 %.

  10. Determination of 21-hydroxydeflazacort in human plasma by high-performance liquid chromatography/atmospheric pressure chemical ionization tandem mass spectrometry. Application to bioequivalence study.

    PubMed

    Ifa, D R; Moraes, M E; Moraes, M O; Santagada, V; Caliendo, G; de Nucci, G

    2000-03-01

    A liquid chromatographic atmospheric pressure chemical ionization tandem mass spectrometric method is described for the determination of 21-hydroxydeflazacort in human plasma using dexamethasone 21-acetate as an internal standard. The procedure requires a single diethyl ether extraction. After evaporation of the solvent under a nitrogen flow, the analytes are reconstituted in the mobile phase, chromatographed on a C18 reversed-phase column and analyzed by mass spectrometry via a heated nebulizer interface where they are detected by multiple reaction monitoring. The method has a chromatographic run time of less than 5 min and a linear calibration curve with a range of 1-400 ng ml(-1) (r>0.999). The between-run precision, based on the relative standard deviation for replicate quality controls, was < or =5.5% (10 ng ml(-1)), 1.0% (50 ng ml(-1)) and 2.7% (200 ng ml(-1)). The between-run accuracy was +/-7.1, 3.8 and 4.8% for the above concentrations, respectively. This method was employed in a bioequivalence study of two DFZ tablet formulations (Denacen from Marjan Industria e Comercio, Brazil, as a test formulation, and Calcort from Merrell Lepetit, Brazil, as a reference formulation) in 24 healthy volunteers of both sexes who received a single 30 mg dose of each formulation. The study was conducted using an open, randomized, two-period crossover design with a 7-day washout interval. The 90% confidence interval (CI) of the individual geometric mean ratio for Denacen/Calcort was 89.8-109.5% for area under the curve AUC(0-24 h) and 80.7-98.5% for Cmax. Since both the 90% CI for AUC(0-24 h) and Cmax were included in the 80-125% interval proposed by the US Food and Drug Administration, Denacen was considered bioequivalent to Calcort according to both the rate and extent of absorption. PMID:10767775

  11. Secondary electrospray ionization-mass spectrometry and a novel statistical bioinformatic approach identifies a cancer-related profile in exhaled breath of breast cancer patients: a pilot study.

    PubMed

    Martinez-Lozano Sinues, Pablo; Landoni, Elena; Miceli, Rosalba; Dibari, Vincenza F; Dugo, Matteo; Agresti, Roberto; Tagliabue, Elda; Cristoni, Simone; Orlandi, Rosaria

    2015-09-01

    Breath analysis represents a new frontier in medical diagnosis and a powerful tool for cancer biomarker discovery due to the recent development of analytical platforms for the detection and identification of human exhaled volatile compounds. Statistical and bioinformatic tools may represent an effective complement to the technical and instrumental enhancements needed to fully exploit clinical applications of breath analysis. Our exploratory study in a cohort of 14 breast cancer patients and 11 healthy volunteers used secondary electrospray ionization-mass spectrometry (SESI-MS) to detect a cancer-related volatile profile. SESI-MS full-scan spectra were acquired in a range of 40-350 mass-to-charge ratio (m/z), converted to matrix data and analyzed using a procedure integrating data pre-processing for quality control, and a two-step class prediction based on machine-learning techniques, including a robust feature selection, and a classifier development with internal validation. MS spectra from exhaled breath showed an individual-specific breath profile and high reciprocal homogeneity among samples, with strong agreement among technical replicates, suggesting a robust responsiveness of SESI-MS. Supervised analysis of breath data identified a support vector machine (SVM) model including 8 features corresponding to m/z 106, 126, 147, 78, 148, 52, 128, 315 and able to discriminate exhaled breath from breast cancer patients from that of healthy individuals, with sensitivity and specificity above 0.9.Our data highlight the significance of SESI-MS as an analytical technique for clinical studies of breath analysis and provide evidence that our noninvasive strategy detects volatile signatures that may support existing technologies to diagnose breast cancer. PMID:26390050

  12. Ionizing Radiation and Its Risks

    PubMed Central

    Goldman, Marvin

    1982-01-01

    Penetrating ionizing radiation fairly uniformly puts all exposed molecules and cells at approximately equal risk for deleterious consequences. Thus, the original deposition of radiation energy (that is, the dose) is unaltered by metabolic characteristics of cells and tissue, unlike the situation for chemical agents. Intensely ionizing radiations, such as neutrons and alpha particles, are up to ten times more damaging than sparsely ionizing sources such as x-rays or gamma rays for equivalent doses. Furthermore, repair in cells and tissues can ameliorate the consequences of radiation doses delivered at lower rates by up to a factor of ten compared with comparable doses acutely delivered, especially for somatic (carcinogenic) and genetic effects from x- and gamma-irradiation exposure. Studies on irradiated laboratory animals or on people following occupational, medical or accidental exposures point to an average lifetime fatal cancer risk of about 1 × 10-4 per rem of dose (100 per 106 person-rem). Leukemia and lung, breast and thyroid cancer seem more likely than other types of cancer to be produced by radiation. Radiation exposures from natural sources (cosmic rays and terrestrial radioactivity) of about 0.1 rem per year yield a lifetime cancer risk about 0.1 percent of the normally occurring 20 percent risk of cancer death. An increase of about 1 percent per rem in fatal cancer risk, or 200 rem to double the “background” risk rate, is compared with an estimate of about 100 rem to double the genetic risk. Newer data suggest that the risks for low-level radiation are lower than risks estimated from data from high exposures and that the present 5 rem per year limit for workers is adequate. PMID:6761969

  13. Dissociative Ionization of Pyridine by Electron Impact

    NASA Technical Reports Server (NTRS)

    Dateo, Christopher; Huo, Winifred; Kwak, Dochan (Technical Monitor)

    2002-01-01

    In order to understand the damage of biomolecules by electrons, a process important in radiation damage, we undertake a study of the dissociative ionization (DI) of pyridine (C5H5N) from the low-lying ionization channels. The methodology used is the same as in the benzene study. While no experimental DI data are available, we compare the dissociation products from our calculations with the dissociative photoionization measurements of Tixier et al. using dipole (e, e(+) ion) coincidence spectroscopy. Comparisons with the DI of benzene is also made so as to understand the difference in DI between a heterocyclic and an aromatic molecule.

  14. Massive cluster impact ionization of saccharides

    SciTech Connect

    Dookeran, N.N.; Todd, P.J.

    1995-12-31

    The authors studied the utility of ionizing saccharides by massive cluster impact (MCI), a form of secondary ionization wherein the primary ions are high molecular weight clusters. For a number of compounds and classes, MCI yields copious secondary ions without prior derivitization or the need to find a suitable matrix. In fact, MCI can be used for in situ ionization of some analytes directly from biologic tissue. For the simple sugars and disaccharides that were studied, the authors found that persistent ( e.g. > 2 h) positive and negative secondary ion emission could almost always be detected from pure samples. The authors characterized the secondary anions from a variety of saccharides by tandem mass spectrometry (MS/MS), and found the behavior of the MS/MS spectra to be consistent, sensible, diagnostic and invariant with the dose suffered by the sample.

  15. A study of VLF signals variations associated with the changes of ionization level in the D-region in consequence of solar conditions

    NASA Astrophysics Data System (ADS)

    Šulić, D. M.; Srećković, V. A.; Mihajlov, A. A.

    2016-02-01

    In this paper we confine our attention to the analysis of amplitude and phase data acquired by monitoring VLF/LF radio signals emitted by four European transmitters during a seven-year period (2008-2014). All the data were recorded at a Belgrade site (44.85° N, 20.38° E) by the Stanford University ELF/VLF receiver AWESOME. Propagation of VLF/LF radio signal takes place in the Earth-ionosphere waveguide and strongly depends on ionization level of the D-region, which means that it is mainly controlled by solar conditions. Some results of amplitude and phase variations on GQD/22.10 kHz, DHO/23.40 kHz, ICV/20.27 kHz and NSC/45.90 kHz radio signals measurements at short distances (D < 2 Mm) over Central Europe and their interpretation are summarized in this paper. Attention is restricted to regular diurnal, seasonal and solar variations including sunrise and sunset effects on propagation characteristics of four VLF/LF radio signals. We study VLF/LF propagation over short path as a superposition of different number of discrete modes which depends on the variations of the path parameters. Although the solar X-ray flare effects on propagation of VLF/LF radio signals are well recognized on all paths, similarities and differences between them are defined under existing conditions over the paths. Statistical results show that the size of amplitude and phase perturbations on VLF/LF radio signal is in correlation with the intensity of X-ray flux. We present the calculations of electron density enhancements in the D-region caused by different classes of solar X-ray flares during the period of ascending phase and maximum of the solar cycle 24.

  16. Studies on the collision-induced dissociation of adipoR agonists after electrospray ionization and their implementation in sports drug testing.

    PubMed

    Dib, Josef; Schlörer, Nils; Schänzer, Wilhelm; Thevis, Mario

    2015-02-01

    AdipoR agonists are small, orally active molecules capable of mimicking the protein adiponectin, which represents an adipokine with antidiabetic and antiatherogenic effects. Two adiponectin receptors were reported in the literature referred to as adipoR1 and adipoR2. Activation of these receptors stimulates mitochondrial biogenesis and results in an improved oxidative metabolism (via adipoR1) and increased insulin sensitivity (via adipoR2). Hence, adipoR agonists are potentially performance enhancing substances and targets of proactive and preventive anti-doping measures. In this study, two adipoR agonists termed AdipoRon and 112254 as well as two isotopically labeled internal standards (ISTDs) were synthesized in three-step reactions. The products were fully characterized by nuclear magnetic resonance spectroscopy (NMR), mass spectrometry (MS) and density functional theory (DFT) computation. Collision-induced dissociation pathways following electrospray ionization were suggested based on the determined elemental compositions of product ions, comparison to product ions derived from labeled analogs (ISTDs), H/D-exchange experiments and the results of DFT calculations. The most abundant product ions were found at m/z 174, tentatively assigned to protonated 1-benzyl-1,2,3,4-tetrahydropyridine for AdipoRon, and m/z 207, suggested as protonated 1-(4-methoxybenzyl)piperazine, for 112254. Notably, the loss of the heterocyclic ring (i.e. piperazine and piperidine, respectively) in a supposedly intramolecular elimination reaction was observed in both cases. A qualitative determination of both AdipoR agonists in human plasma was established and fully validated for doping control purposes. Validation items such as recovery (86-89%), specificity, linearity, lower limit of detection (1 ng/ml), intraday (3-18%) and interday (5-16%) precision as well as ion suppression or enhancement were determined. Based on these findings adipoR agonists can be implemented in sports drug

  17. Measurement of the first ionization potential of astatine by laser ionization spectroscopy

    NASA Astrophysics Data System (ADS)

    Rothe, S.; Andreyev, A. N.; Antalic, S.; Borschevsky, A.; Capponi, L.; Cocolios, T. E.; de Witte, H.; Eliav, E.; Fedorov, D. V.; Fedosseev, V. N.; Fink, D. A.; Fritzsche, S.; Ghys, L.; Huyse, M.; Imai, N.; Kaldor, U.; Kudryavtsev, Yuri; Köster, U.; Lane, J. F. W.; Lassen, J.; Liberati, V.; Lynch, K. M.; Marsh, B. A.; Nishio, K.; Pauwels, D.; Pershina, V.; Popescu, L.; Procter, T. J.; Radulov, D.; Raeder, S.; Rajabali, M. M.; Rapisarda, E.; Rossel, R. E.; Sandhu, K.; Seliverstov, M. D.; Sjödin, A. M.; van den Bergh, P.; van Duppen, P.; Venhart, M.; Wakabayashi, Y.; Wendt, K. D. A.

    2013-05-01

    The radioactive element astatine exists only in trace amounts in nature. Its properties can therefore only be explored by study of the minute quantities of artificially produced isotopes or by performing theoretical calculations. One of the most important properties influencing the chemical behaviour is the energy required to remove one electron from the valence shell, referred to as the ionization potential. Here we use laser spectroscopy to probe the optical spectrum of astatine near the ionization threshold. The observed series of Rydberg states enabled the first determination of the ionization potential of the astatine atom, 9.31751(8) eV. New ab initio calculations are performed to support the experimental result. The measured value serves as a benchmark for quantum chemistry calculations of the properties of astatine as well as for the theoretical prediction of the ionization potential of superheavy element 117, the heaviest homologue of astatine.

  18. Measurement of the first ionization potential of astatine by laser ionization spectroscopy

    PubMed Central

    Rothe, S.; Andreyev, A. N.; Antalic, S.; Borschevsky, A.; Capponi, L.; Cocolios, T. E.; De Witte, H.; Eliav, E.; Fedorov, D. V.; Fedosseev, V. N.; Fink, D. A.; Fritzsche, S.; Ghys, L.; Huyse, M.; Imai, N.; Kaldor, U.; Kudryavtsev, Yuri; Köster, U.; Lane, J. F. W.; Lassen, J.; Liberati, V.; Lynch, K. M.; Marsh, B. A.; Nishio, K.; Pauwels, D.; Pershina, V.; Popescu, L.; Procter, T. J.; Radulov, D.; Raeder, S.; Rajabali, M. M.; Rapisarda, E.; Rossel, R. E.; Sandhu, K.; Seliverstov, M. D.; Sjödin, A. M.; Van den Bergh, P.; Van Duppen, P.; Venhart, M.; Wakabayashi, Y.; Wendt, K. D. A.

    2013-01-01

    The radioactive element astatine exists only in trace amounts in nature. Its properties can therefore only be explored by study of the minute quantities of artificially produced isotopes or by performing theoretical calculations. One of the most important properties influencing the chemical behaviour is the energy required to remove one electron from the valence shell, referred to as the ionization potential. Here we use laser spectroscopy to probe the optical spectrum of astatine near the ionization threshold. The observed series of Rydberg states enabled the first determination of the ionization potential of the astatine atom, 9.31751(8) eV. New ab initio calculations are performed to support the experimental result. The measured value serves as a benchmark for quantum chemistry calculations of the properties of astatine as well as for the theoretical prediction of the ionization potential of superheavy element 117, the heaviest homologue of astatine. PMID:23673620

  19. Measurement of the first ionization potential of astatine by laser ionization spectroscopy.

    PubMed

    Rothe, S; Andreyev, A N; Antalic, S; Borschevsky, A; Capponi, L; Cocolios, T E; De Witte, H; Eliav, E; Fedorov, D V; Fedosseev, V N; Fink, D A; Fritzsche, S; Ghys, L; Huyse, M; Imai, N; Kaldor, U; Kudryavtsev, Yuri; Köster, U; Lane, J F W; Lassen, J; Liberati, V; Lynch, K M; Marsh, B A; Nishio, K; Pauwels, D; Pershina, V; Popescu, L; Procter, T J; Radulov, D; Raeder, S; Rajabali, M M; Rapisarda, E; Rossel, R E; Sandhu, K; Seliverstov, M D; Sjödin, A M; Van den Bergh, P; Van Duppen, P; Venhart, M; Wakabayashi, Y; Wendt, K D A

    2013-01-01

    The radioactive element astatine exists only in trace amounts in nature. Its properties can therefore only be explored by study of the minute quantities of artificially produced isotopes or by performing theoretical calculations. One of the most important properties influencing the chemical behaviour is the energy required to remove one electron from the valence shell, referred to as the ionization potential. Here we use laser spectroscopy to probe the optical spectrum of astatine near the ionization threshold. The observed series of Rydberg states enabled the first determination of the ionization potential of the astatine atom, 9.31751(8) eV. New ab initio calculations are performed to support the experimental result. The measured value serves as a benchmark for quantum chemistry calculations of the properties of astatine as well as for the theoretical prediction of the ionization potential of superheavy element 117, the heaviest homologue of astatine. PMID:23673620

  20. Ionization Energy: Implications of Preservice Teachers' Conceptions

    ERIC Educational Resources Information Center

    Tan, Kim Chwee Daniel; Taber, Keith S.

    2009-01-01

    The results from a study to explore pre-service teachers' understanding of ionization energy, a topic that features in A-level (grade 11 and 12) chemistry courses. in Singapore , is described. A previous study using a two-tier multiple choice diagnostic test has shown that Singapore A-level students have considerable difficulty understanding the…

  1. Generating Electrospray Ionization on Ballpoint Tips.

    PubMed

    Ji, Baocheng; Xia, Bing; Gao, Yuanji; Ma, Fengwei; Ding, Lisheng; Zhou, Yan

    2016-05-17

    In this study, we report a simple and economical ballpoint electrospray ionization mass spectrometry (BP-ESI-MS) technique. This combines a small ballpoint tip with a syringe pump for the direct loading and ionization of various samples in different phases (including solution, semisolid, and solid) and allows for additional applications in surface analysis. The tiny metal ball on the ballpoint tip exhibits a larger surface for ionization than that of a conventional sharp tip end, resulting in higher ionization efficiency and less sample consumption. The adamant properties of the ballpoint tip allow sampling by simply penetrating or scraping various surfaces, such as a fruit peel, paper, or fabric. Complex samples, such as fine herbal powders and small solid samples, could be stored in the hollow space in the ballpoint socket and subsequently extracted online, which greatly facilitated MS analysis with little to no sample preparation. Positive ion mode was attempted, and various compounds, including amino acids, carbohydrates, flavonoids, and alkaloids, were detected from different types of samples. The results demonstrated that the special and excellent physical characteristics of ballpoint tips allowed for fast and convenient sampling and ionization for mass spectrometry analysis by the BP-ESI-MS method. PMID:27111601

  2. Multiphoton ionization of large water clusters

    SciTech Connect

    Apicella, B.; Li, X.; Passaro, M.; Spinelli, N.; Wang, X.

    2014-05-28

    Water clusters are multimers of water molecules held together by hydrogen bonds. In the present work, multiphoton ionization in the UV range coupled with time of flight mass spectrometry has been applied to water clusters with up to 160 molecules in order to obtain information on the electronic states of clusters of different sizes up to dimensions that can approximate the bulk phase. The dependence of ion intensities of water clusters and their metastable fragments produced by laser ionization at 355 nm on laser power density indicates a (3+1)-photon resonance-enhanced multiphoton ionization process. It also explains the large increase of ionization efficiency at 355 nm compared to that at 266 nm. Indeed, it was found, by applying both nanosecond and picosecond laser ionization with the two different UV wavelengths, that no water cluster sequences after n = 9 could be observed at 266 nm, whereas water clusters up to m/z 2000 Th in reflectron mode and m/z 3000 Th in linear mode were detected at 355 nm. The agreement between our findings on clusters of water, especially true in the range with n > 10, and reported data for liquid water supports the hypothesis that clusters above a critical dimension can approximate the liquid phase. It should thus be possible to study clusters just above 10 water molecules, for getting information on the bulk phase structure.

  3. Electron impact ionization of glycolaldehyde

    NASA Astrophysics Data System (ADS)

    Ptasinska, Sylwia; Denifl, Stephan; Scheier, Paul; Märk, Tilmann D.

    2005-05-01

    Positive ion formation upon electron impact ionization of the monomeric and dimeric form of glycolaldehyde is studied with high electron energy resolution. In the effusive neutral beam of evaporated monomeric glycolaldehyde some ions with a mass larger than the monomer indicate the presence of weakly bound neutral dimers. The yield of all ions that originate from the electron impact ionization of these neutral dimers exhibit a strong temperature dependence that can be interpreted as being due to the formation of dimers via three body collisions and thermal decomposition of the dimeric form back into monomers at higher temperatures. Ion efficiency curves are measured and analyzed for the 10 most abundant product cations of monomeric glycolaldehyde. The appearance energies of the parent ion signals of the monomer and dimer of glycolaldehyde (10.2 and 9.51 eV, respectively) are lower than the appearance energy of the parent cation of the more complex sugar deoxyribose that was recently determined to be 10.51 eV.

  4. Multicenter Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Study for Identification of Clinically Relevant Nocardia spp.

    PubMed

    Blosser, Sara J; Drake, Steven K; Andrasko, Jennifer L; Henderson, Christina M; Kamboj, Kamal; Antonara, Stella; Mijares, Lilia; Conville, Patricia; Frank, Karen M; Harrington, Susan M; Balada-Llasat, Joan-Miquel; Zelazny, Adrian M

    2016-05-01

    This multicenter study analyzed Nocardia spp., including extraction, spectral acquisition, Bruker matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) identification, and score interpretation, using three Nocardia libraries, the Bruker, National Institutes of Health (NIH), and The Ohio State University (OSU) libraries, and compared the results obtained by each center. A standardized study protocol, 150 Nocardia isolates, and NIH and OSU Nocardia MALDI-TOF MS libraries were distributed to three centers. Following standardized culture, extraction, and MALDI-TOF MS analysis, isolates were identified using score cutoffs of ≥2.0 for species/species complex-level identification and ≥1.8 for genus-level identification. Isolates yielding a score of <2.0 underwent a single repeat extraction and analysis. The overall score range for all centers was 1.3 to 2.7 (average, 2.2 ± 0.3), with common species generally producing higher average scores than less common ones. Score categorization and isolate identification demonstrated 86% agreement between centers; 118 of 150 isolates were correctly identified to the species/species complex level by all centers. Nine strains (6.0%) were not identified by any center, and six (4.0%) of these were uncommon species with limited library representation. A categorical score discrepancy among centers occurred for 21 isolates (14.0%). There was an overall benefit of 21.2% from repeat extraction of low-scoring isolates and a center-dependent benefit for duplicate spotting (range, 2 to 8.7%). Finally, supplementation of the Bruker Nocardia MALDI-TOF MS library with both the OSU and NIH libraries increased the genus-level and species-level identification by 18.2% and 36.9%, respectively. Overall, this study demonstrates the ability of diverse clinical microbiology laboratories to utilize MALDI-TOF MS for the rapid identification of clinically relevant Nocardia spp. and to implement MALDI-TOF MS libraries

  5. Theoretical IR spectra of ionized naphthalene

    NASA Technical Reports Server (NTRS)

    Pauzat, F.; Talbi, D.; Miller, M. D.; DeFrees, D. J.; Ellinger, Y.

    1992-01-01

    We report the results of a theoretical study of the effect of ionization on the IR spectrum of naphthalene, using ab initio molecular orbital theory. For that purpose we determined the structures, band frequencies, and intensities of neutral and positively ionized naphthalene. The calculated frequencies and intensities allowed an assignment of the most important bands appearing in the newly reported experimental spectrum of the positive ion. Agreement with the experimental spectrum is satisfactory enough to take into consideration the unexpected and important result that ionization significantly affects the intensities of most vibrations. A possible consequence on the interpretation of the IR interstellar emission, generally supposed to originate from polycyclic aromatic hydrocarbons (PAHs), is briefly presented.

  6. Above-threshold ionization of negative hydrogen

    NASA Astrophysics Data System (ADS)

    Nikolopoulos, L. A. A.; Lambropoulos, P.

    1997-10-01

    We present detailed calculations for two-and three-photon above-threshold ionization of the negative hydrogen ion. In addition to calculated values for partial wave amplitudes and phase shifts pertaining to recent experimental results [Xin Miao Zhao et al., Phys. Rev. Lett. 78, 1656 (1997)], we also address the question of the asymmetry of photoelectron angular distributions in ionization under elliptically polarized radiation, which has been studied experimentally in other negative ions [C. Blondel and C. Delsart, Laser Phys. 3, 3 (1993); Nucl. Instrum. Methods Phys. Res. B 79, 156 (1993); F. Dulieu, C. Blondel, and C. Delsart, J. Phys. B 28, 3861 (1995)].

  7. Ionization of polarized hydrogen atoms

    SciTech Connect

    Alessi, J.G.

    1983-01-01

    Methods are discussed for the production of polarized H/sup -/ ions from polarized atoms produced in ground state atomic beam sources. Present day sources use ionizers of two basic types - electron ionizers for H/sup +/ Vector production followed by double charge exchange in a vapor, or direct H/sup -/ Vector production by charge exchange of H/sup 0/ with Cs/sup 0/. Both methods have ionization efficiencies of less than 0.5%. Ionization efficiencies in excess of 10% may be obtained in the future by the use of a plasma ionizer plus charge exchange in Cs or Sr vapor, or ionization by resonant charge exchange with a self-extracted D/sup -/ beam from a ring magnetron or HCD source. 36 references, 4 figures.

  8. Plasma Production via Field Ionization

    SciTech Connect

    O'Connell, C.L.; Barnes, C.D.; Decker, F.; Hogan, M.J.; Iverson, R.; Krejcik, P.; Siemann, R.; Walz, D.R.; Clayton, C.E.; Huang, C.; Johnson, D.K.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.; Zhou, M.; Deng, S.; Katsouleas, T.; Muggli, P.; Oz, E.; /Southern California U.

    2007-01-02

    Plasma production via field ionization occurs when an incoming particle beam is sufficiently dense that the electric field associated with the beam ionizes a neutral vapor or gas. Experiments conducted at the Stanford Linear Accelerator Center explore the threshold conditions necessary to induce field ionization by an electron beam in a neutral lithium vapor. By independently varying the transverse beam size, number of electrons per bunch or bunch length, the radial component of the electric field is controlled to be above or below the threshold for field ionization. Additional experiments ionized neutral xenon and neutral nitric oxide by varying the incoming beam's bunch length. A self-ionized plasma is an essential step for the viability of plasma-based accelerators for future high-energy experiments.

  9. Studies on the Application of High Voltage Discharge Ionization and Ablation in Supersonic-Jets for the Generation of Intense Cluster Ion Beams.

    NASA Astrophysics Data System (ADS)

    Brock, Ansgar

    Glow discharge and pulsed capacitor discharge ionization in supersonic expansions were investigated for the production of intense beams of molecular cluster ions from seeded and ablated compounds. A low cost high voltage high current pulser based on a triggered spark gap switch is described as a mean for ionization and ablation. Besides, details of the molecular beam apparatus and modified pulsed valve are given. Cluster cations rm (Ar)_ {n}^+, rm (CO_2) _{n}^{+}, rm (C_6H_6)_{n}^+ and rm (H_2O)_{n }^+ were produced by pulsed capacitor discharge ionization in the expansion region of a seeded free-jet. The observed cluster mass spectra (CMS) for Ar, rm C_6H_6 and H _2O show the characteristic features (magic numbers) of electron beam and photo ionized clusters under molecular flow conditions. Indications for the presence of magic numbers in the CMS of {(CO _2)_{n}^+} cluster ions at n = 20, 26, 30 and 34 similar to those found for rare gas clusters have been found. Cationic metal ligand complexes Cu(Toluene) _{rm n}^+, Cu(Acetone) _{rm n}^+, Cu(Methanol)_{rm n}^+ , Cu(Ethylether)_{rm n }^+, Cu(Water)_{ rm n}^+, Al(Water)_ {rm n}^+ were synthesized by ablation of the metal from metallic discharge electrodes in a discharge gas mixture of helium seeded with the ligand of choice. The CMS of the expanded plasmas show little background ion signal besides the metal-ligand species. Charge exchange processes in the expansion guarantee high ionization yields of the desired species and account for low backgrounds. Changes in the successive binding energy of Cu(Water)_ {rm n}^+ clusters n = 1-4 are clearly observed in the CMS as step formation. A similar pattern found in the Cu(Acetone)_{ rm n}^+ CMS suggests the same trend in the successive binding energy as known for water. Ablation from a Cr(acac)_3 in a copper matrix was employed for the synthesis of Cr(Acetone) _{rm n}^+ and Cr(Benzene)^+ complexes demonstrating the ability to use nonconducting compounds as a metal source

  10. Viral Respiratory Tract Infections in Adult Patients Attending Outpatient and Emergency Departments, Taiwan, 2012-2013: A PCR/Electrospray Ionization Mass Spectrometry Study.

    PubMed

    Shih, Hsin-I; Wang, Hsuan-Chen; Su, Ih-Jen; Hsu, Hsiang-Chin; Wang, Jen-Ren; Sun, Hsiao Fang Sunny; Chou, Chien-Hsuan; Ko, Wen-Chien; Hsieh, Ming-I; Wu, Chi-Jung

    2015-09-01

    Viral etiologies of respiratory tract infections (RTIs) have been less studied in adult than in pediatric populations. Furthermore, the ability of PCR/electrospray ionization mass spectrometry (PCR/ESI-MS) to detect enteroviruses and rhinoviruses in respiratory samples has not been well evaluated. We sought to use PCR/ESI-MS to comprehensively investigate the viral epidemiology of adult RTIs, including testing for rhinoviruses and enteroviruses. Nasopharyngeal or throat swabs from 267 adults with acute RTIs (212 upper RTIs and 55 lower RTIs) who visited a local clinic or the outpatient or emergency departments of a medical center in Taiwan between October 2012 and June 2013 were tested for respiratory viruses by both virus isolation and PCR/ESI-MS. Throat swabs from 15 patients with bacterial infections and 27 individuals without active infections were included as control samples. Respiratory viruses were found in 23.6%, 47.2%, and 47.9% of the 267 cases by virus isolation, PCR/ESI-MS, and both methods, respectively. When both methods were used, the influenza A virus (24.3%) and rhinoviruses (9.4%) were the most frequently identified viruses, whereas human coronaviruses, human metapneumovirus (hMPV), enteroviruses, adenoviruses, respiratory syncytial virus, and parainfluenza viruses were identified in small proportions of cases (<5% of cases for each type of virus). Coinfection was observed in 4.1% of cases. In the control group, only 1 (2.4%) sample tested positive for a respiratory virus by PCR/ESI-MS. Patients who were undergoing steroid treatment, had an active malignancy, or suffered from chronic obstructive pulmonary disease (COPD) were at risk for rhinovirus, hMPV, or parainfluenza infections, respectively. Overall, immunocompromised patients, patients with COPD, and patients receiving dialysis were at risk for noninfluenza respiratory virus infection. Rhinoviruses (12.7%), influenza A virus (10.9%), and parainfluenza viruses (7.3%) were the most common

  11. Spectroscopy of triply and quadruply ionized states of mercury

    SciTech Connect

    Huttula, M.; Huttula, S.-M.; Lablanquie, P.; Palaudoux, J.; Penent, F.; Andric, L.; Eland, J. H. D.

    2011-03-15

    Multielectron coincidence spectroscopy has been used to study multiple ionization of atomic mercury. The binding energies of triply and quadruply ionized states of Hg have been determined from three- and fourfold electron coincidences. Relativistic ab initio theory has been used to calculate the state energies and predict the experimental findings.

  12. Characterization of a homemade ionization chamber for radiotherapy beams.

    PubMed

    Neves, Lucio P; Perini, Ana P; dos Santos, Gelson P; Xavier, Marcos; Khoury, Helen J; Caldas, Linda V E

    2012-07-01

    A homemade cylindrical ionization chamber was studied for routine use in therapy beams of (60)Co and X-rays. Several characterization tests were performed: leakage current, saturation, ion collection efficiency, polarity effect, stability, stabilization time, chamber orientation and energy dependence. All results obtained were within international recommendations. Therefore the homemade ionization chamber presents usefulness for routine dosimetric procedures in radiotherapy beams. PMID:22153889

  13. Nonsequential double ionization of molecules

    SciTech Connect

    Prauzner-Bechcicki, Jakub S.; Sacha, Krzysztof; Zakrzewski, Jakub; Eckhardt, Bruno

    2005-03-01

    Double ionization of diatomic molecules by short linearly polarized laser pulses is analyzed. We consider the final stage of the ionization process, that is the decay of a highly excited two electron molecule, which is formed after rescattering. The saddles of the effective adiabatic potential energy close to which simultaneous escape of electrons takes place are identified. Numerical simulations of the ionization of molecules show that the process can be dominated by either sequential or nonsequential events. In order to increase the ratio of nonsequential to sequential ionizations very short laser pulses should be applied.

  14. Selective separation of uranyl ion from TRU`s in a combined solvent extraction process using tetrahydrofuran-2,3,4,5-tetracarboxylic acid

    SciTech Connect

    Nash, K.L.; Horwitz, E.P.; Diamond, H.; Rickert, P.G.; Muntean, J.V.; Mendoza, M.D.; Giuseppe, G. di

    1996-01-01

    Selective partitioning of uranyl from transuranic elements in a solvent extraction system which employs a neutral organophosphorus extractant and an aqueous complexant has been demonstrated in a previous report. The extractant solution combines octyl(phenyl)-N, N-diisobutylcarbamoylmethylphosphine oxide (CMPO), diamyl(amyl)phosphonate (or tributylphosphate), and di(t-butylcyclohexano)-18-crown-6 in Isopar L, and is designed for simultaneous removal of strontium, technetium, lanthanides and actinides from radioactive wastes. The aqueous complexant is tetrahydrofuran-2,3,4,5-tetracarboxylic acid (THFTCA). In this report, the separation of UO{sub 2}{sup 2+} from Np(IV), Eu(III), Am(III), and Pu(IV) using the Combined Process Solvent has been optimized. Potentiometric titration and NMR spectroscopic results describe the distribution of THFTCA into the organic phase as a function of acidity and [THFTCA]. Further potentiometric titration experiments have determined the stoichiometry and stability of uranyl complexes in the aqueous phase. The thermodynamic data indicate that the uranyl complexes are anomalously weak which partially accounts for the selectivity. Ternary complexes involving UO{sub 2}{sup 2+}, CMPO, and THFTCA in the extractant phase also appear to play a role. 13 refs., 6 figs., 1 tab.

  15. Biodegradation of tetrahydrofuran by Pseudomonas oleovorans DT4 immobilized in calcium alginate beads impregnated with activated carbon fiber: mass transfer effect and continuous treatment.

    PubMed

    Chen, Dong-Zhi; Fang, Jun-Yi; Shao, Qian; Ye, Jie-Xu; Ouyang, Du-Juan; Chen, Jian-Meng

    2013-07-01

    A novel entrapment matrix, calcium alginate (CA) coupled with activated carbon fiber (ACF), was prepared to immobilize Pseudomonas oleovorans DT4 for degrading tetrahydrofuran (THF). The addition of 1.5% ACF increased the adsorption capacity of the immobilized bead, thus resulting in an enhanced average removal rate of 30.3mg/(Lh). The synergism between adsorption and biodegradation was observed in the hybrid CA-ACF beads instead of in the system comprising CA beads and freely suspended ACF. The effective diffusion coefficient of the CA-ACF bead was not significantly affected by bead size, but the bead's value of 1.14×10(-6)cm(2)/s (for the bead diameter of 0.4 cm) was larger than that of the CA bead by almost one order of magnitude based on the intraparticle diffusion-reaction kinetics analysis. Continuous treatment of the THF-containing wastewater was succeeded by CA-ACF immobilized cells in a packed-bed reactor for 54 d with a >90% removal efficiency. PMID:23644074

  16. Tetrahydrofuran-induced K and Li doping onto poly(furfuryl alcohol)-derived activated carbon (PFAC): Influence on microstructure and H2 sorption properties

    SciTech Connect

    Saha, Dipendu; Contescu, Cristian I; Gallego, Nidia C

    2012-01-01

    We have doped polyfurfuryl alcohol derived activated carbon (PFAC) with two alkali metals, potassium (K) and lithium (Li) by prior reacting the metals with naphthalene in presence of tetrahydrofuran (THF) followed by introducing them to pristine PFAC. THF molecule causes minor alteration in the microstructure of PFAC as confirmed by the Raman spectra, X-ray diffraction and pore textural analysis. Raman spectra and X-ray diffraction indicated a slight localized ordering towards the stacking defects of disordered carbon, like PFAC which can be attributed to the movement of THF molecules within the internal planes of graphene sheets. Pore textural analysis confirmed the lowering specific surface area and pore volume of both K and Li doped PFACs.(BET SSA: 1378 m2/g (PFAC); 1252 m2/g (K-PFAC); 1081 m2/g (Li-PFAC)) Volumetric hydrogen adsorption measurement at the temperatures of 298, 288, 273 and 77 K and pressure up to 1 bar indicated the enhanced adsorption potential imposed by the presence of alkali metals, which can be reconfirmed by the additional heats of adsorption of metal doped PFACs (Li-PFAC: -(10 - 11) kJ/mol; K-PFAC: -(16 -19) kJ/mol) compared to pristine PFAC (-9.6 kJ/mol).

  17. Comparative study of deep levels in HVPE and MOCVD GaN by combining O-DLTS and pulsed photo-ionization spectroscopy

    NASA Astrophysics Data System (ADS)

    Pavlov, J.; Čeponis, T.; Gaubas, E.; Meskauskaite, D.; Reklaitis, I.; Vaitkus, J.; Grigonis, R.; Sirutkaitis, V.

    2015-12-01

    Operational characteristics of sensors made of GaN significantly depend on technologically introduced defects acting as rapid traps of excess carriers which reduce charge collection efficiency of detectors. In order to reveal the prevailing defects in HVPE and MOCVD grown GaN, the carrier lifetime and photo-ionization spectra have been simultaneously measured by using microwave probed photo-conductivity transient technique. Several traps ascribed to impurities as well as vacancy and anti-site type defects have been identified in HVPE GaN material samples by combining photo-ionization and electron spin resonance spectroscopy. The optical deep level transient spectroscopy technique has been applied for spectroscopy of the parameters of thermal emission from the traps ascribed to technological defects in the Schottky barrier terrace structures fabricated on MOCVD GaN.

  18. [Immunological aspects of the study of contingents of population exposed to ionizing radiation effects as the consequence of the Chernobyl AES accident].

    PubMed

    Chumak, A A; Bazyka, D A; Tal'ko, V V; Minchenko, Zh N; Bezpalenko, A G; Beliaeva, N V; Gerasimenko, N K; Dmitrenko, E A; Konopleva, Iu L; Nefedova, R A

    1991-01-01

    The immune system was examined in those who participated in the liquidation of accident sequelae at the Chernobyl Atomic Power Station and the population exposed to ionizing radiation. Alteration in surface antigenic markers of basic regulatory subpopulations of immunocompetent cells and metabolic changes are caused by radiation and co-existent somatic diseases. Typing for HLA antigens and proteins with a genetically determined phenotype revealed characteristic features of their distribution for the general population. PMID:1950153

  19. Ion energies in high power impulse magnetron sputtering with and without localized ionization zones

    SciTech Connect

    Yang, Yuchen; Tanaka, Koichi; Liu, Jason; Anders, André

    2015-03-23

    High speed imaging of high power impulse magnetron sputtering discharges has revealed that ionization is localized in moving ionization zones but localization disappears at high currents for high yield targets. This offers an opportunity to study the effect ionization zones have on ion energies. We measure that ions have generally higher energies when ionization zones are present, supporting the concept that these zones are associated with moving potential humps. We propose that the disappearance of ionization zones is caused by an increased supply of atoms from the target which cools electrons and reduces depletion of atoms to be ionized.

  20. Kinematically complete study of low-energy electron-impact ionization of argon: Internormalized cross sections in three-dimensional kinematics

    NASA Astrophysics Data System (ADS)

    Ren, Xueguang; Amami, Sadek; Zatsarinny, Oleg; Pflüger, Thomas; Weyland, Marvin; Dorn, Alexander; Madison, Don; Bartschat, Klaus

    2016-06-01

    As a further test of advanced theoretical methods to describe electron-impact single-ionization processes in complex atomic targets, we extended our recent work on Ne (2 p ) ionization [X. Ren, S. Amami, O. Zatsarinny, T. Pflüger, M. Weyland, W. Y. Baek, H. Rabus, K. Bartschat, D. Madison, and A. Dorn, Phys. Rev. A 91, 032707 (2015), 10.1103/PhysRevA.91.032707] to Ar (3 p ) ionization at the relatively low incident energy of E0=66 eV. The experimental data were obtained with a reaction microscope, which can cover nearly the entire 4 π solid angle for the secondary electron emission. We present experimental data for detection angles of 10, 15, and 20∘ for the faster of the two outgoing electrons as a function of the detection angle of the secondary electron with energies of 3, 5, and 10 eV, respectively. Comparison with theoretical predictions from a B -spline R -matrix (BSR) with pseudostates approach and a three-body distorted-wave (3DW) approach, for detection of the secondary electron in three orthogonal planes as well as the entire solid angle, shows overall satisfactory agreement between experiment and the BSR results, whereas the 3DW approach faces difficulties in predicting some of the details of the angular distributions. These findings are different from our earlier work on Ne (2 p ), where both the BSR and 3DW approaches yielded comparable levels of agreement with the experimental data.

  1. Study of dust particle charging in weakly ionized inert gases taking into account the nonlocality of the electron energy distribution function

    SciTech Connect

    Filippov, A. V. Dyatko, N. A.; Kostenko, A. S.

    2014-11-15

    The charging of dust particles in weakly ionized inert gases at atmospheric pressure has been investigated. The conditions under which the gas is ionized by an external source, a beam of fast electrons, are considered. The electron energy distribution function in argon, krypton, and xenon has been calculated for three rates of gas ionization by fast electrons: 10{sup 13}, 10{sup 14}, and 10{sup 15} cm{sup −1}. A model of dust particle charging with allowance for the nonlocal formation of the electron energy distribution function in the region of strong plasma quasi-neutrality violation around the dust particle is described. The nonlocality is taken into account in an approximation where the distribution function is a function of only the total electron energy. Comparative calculations of the dust particle charge with and without allowance for the nonlocality of the electron energy distribution function have been performed. Allowance for the nonlocality is shown to lead to a noticeable increase in the dust particle charge due to the influence of the group of hot electrons from the tail of the distribution function. It has been established that the screening constant virtually coincides with the smallest screening constant determined according to the asymptotic theory of screening with the electron transport and recombination coefficients in an unperturbed plasma.

  2. An Experimental and Theoretical Study on the Ionization Energies of Polyynes (H-(C = C)n-H; n = 1 - 9)

    SciTech Connect

    Kaiser, Ralf I.; Sun, Bian Jian; Lin, Hong Mao; Chang, Agnes H. H.; Mebel, Alexander M.; Kostko, Oleg; Ahmed, Musahid

    2010-05-17

    We present a combined experimental and theoretical work on the ionization energies of polyacetylene -- organic molecules considered as important building blocks to form polycyclic aromatic hydrocarbons (PAHs) in the proto planetary nebulae such as of CRL 618. This set of astrophysical data can be utilized with significant confidence in future astrochemical models of photon-dominated regions and also of the proto planetary nebulae CRL 618. We recommend ionization energies of polyacetylenes from diacetylene up to heptaacetylene with an experimental accuracy of +- 0.05 eV: 10.03 eV (diacetylene), 9.45 eV (triacetylene), 9.08 eV (tetraacetylene), 8.75 eV (pentaacetylene), 8.65 eV (hexaacetylene), and 8.50 eV (heptaacetylene); further, ionization energies and with an accuracy of +- 0.1 eV: 8.32 eV (octaacetylene) and 8.24 eV (nonaacetylene) were computed. Implications of these energies to the redox chemistry involved in the multiply charged metal-ion mediated chemistry of hydrocarbon-rich atmospheres of planets and their moons such as Titan are also discussed.

  3. AN EXPERIMENTAL AND THEORETICAL STUDY ON THE IONIZATION ENERGIES OF POLYYNES (H-(C{identical_to}C) {sub n} -H; n = 1-9)

    SciTech Connect

    Kaiser, Ralf I.; Sun Bianjian; Lin Hongmao; Chang, Agnes H. H.; Mebel, Alexander M.; Kostko, Oleg; Ahmed, Musahid

    2010-08-20

    We present a combined experimental and theoretical work on the ionization energies of polyacetylene-organic molecules considered as important building blocks to form polycyclic aromatic hydrocarbons in protoplanetary nebulae such as CRL 618. This set of astrophysical data can be utilized with significant confidence in future astrochemical models of photon-dominated regions and also of the protoplanetary nebulae CRL 618. We recommend ionization energies of polyacetylenes from diacetylene up to heptaacetylene with an experimental accuracy of {+-}0.05 eV: 10.03 eV (diacetylene), 9.45 eV (triacetylene), 9.08 eV (tetraacetylene), 8.75 eV (pentaacetylene), 8.65 eV (hexaacetylene), and 8.50 eV (heptaacetylene). Further, ionization energies with an accuracy of {+-}0.1 eV: 8.32 eV (octaacetylene) and 8.24 eV (nonaacetylene), were computed. Implications of these energies to the redox chemistry involved in the multiply charged metal-ion mediated chemistry of hydrocarbon-rich atmospheres of planets and their moons such as Titan are also discussed.

  4. Laser resonance ionization scheme development for tellurium and germanium at the dual Ti:Sa-Dye ISOLDE RILIS

    NASA Astrophysics Data System (ADS)

    Day Goodacre, T.; Fedorov, D.; Fedosseev, V. N.; Forster, L.; Marsh, B. A.; Rossel, R. E.; Rothe, S.; Veinhard, M.

    2016-09-01

    The resonance ionization laser ion source (RILIS) is the principal ion source of the ISOLDE radioactive beam facility based at CERN. Using the method of in-source laser resonance ionization spectroscopy, a transition to a new autoionizing state of tellurium was discovered and applied as part of a three-step, three-resonance, photo-ionization scheme. In a second study, a three-step, two-resonance, photo-ionization scheme for germanium was developed and the ionization efficiency was measured at ISOLDE. This work increases the range of ISOLDE RILIS ionized beams to 31 elements. Details of the spectroscopy studies are described and the new ionization schemes are summarized.

  5. Infrared-Vacuum Ultraviolet Pulsed Field Ionization-Photoelectron Study of C₂H₄ + Using a High-Resolution Infrared Laser

    SciTech Connect

    Xing, Xi; Reed, Beth; Bahng, Mi-Kyung; Ng, Cheuk-Yiu

    2008-02-20

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The infrared (IR)-vacuum ultraviolet (VUV)-pulsed field ionization-photoelectron (IR-VUV-PFI-PE) spectrum for C₂H₄(X 1Ag, V11 = 1, N'Ka'Kc'=3₀₃) in the VUV range of 83 000-84 800 cm-1 obtained using a single mode infrared laser revealed 24 rotationally resolved vibrational bands for the ion C₂H₄ +(X 2B3u) ground state. The frequencies and symmetry of the vibrational bands thus determined, together with the anharmonic frequency predictions calculated at the CCSD(T)/aug-cc-pVQZ level, have allowed the unambiguous assignment of these vibrational bands. These bands are mostly combination bands. The measured frequencies of these bands yield the fundamental frequencies for V8 + ) 1103± ( 10 cm-1 and V10 + ) 813 ( 10 cm-1 of C₂H₄ +(X 2B3u), which have not been determined previously. The present IR-VUV-PFI-PE study also provides truly rovibrationally selected and resolved state-to-state cross sections for the photoionization transitions C₂H₄(X~1Ag; V11, N'Ka'Kc') → C₂H₄ +(X~ 2B3u; Vi +, N+ Ka +Kc +), where N'Ka'Kc' denotes the rotational level of C₂H₄(X~ 1Ag; V11), and Vi + and N+ Ka +Kc + represent the vibrational and rotational states of the cation.

  6. Large Picture of the Galactic Center Studied by H_3^+: High Ionization Rate, Prevailing Warm and Diffuse Gas, and Non-Rotating Expanding Molecular Ring

    NASA Astrophysics Data System (ADS)

    Oka, Takeshi; Geballe, Thomas R.; Indriolo, Nick

    2013-06-01

    Following our initial studies of the diffuse interstellar medium in the Central Molecular Zone (CMZ) of the Galactic center (GC) toward two remarkable sightlines--one 140 pc to the West of Sgr A* near Sgr E, and the other 85 pc to the East of Sgr A* near Sgr B --we are in the process of using newly identified bright stars with smooth continua suitable for H_3^+ spectroscopy to both fill the gap between these sightlines and expand coverage to wider regions of the CMZ. So far we have identified 43 qualified stars, of which 24 have been at least partially observed (i.e., in at least one spectral setting). The high ionization rate (on the order of ζ˜3×10^{-15} s^{-1}) and the existence of warm (T˜250 K) and diffuse (n≤100 cm^{-3}) gas previously reported in the GC have also been observed in some of the new sightlines, indicating these conditions fill a large portion of the CMZ. The velocity profiles observed in the diffuse clouds, some of which show absorption extending ˜ 140 km s^{-1}, allow us to draw a velocity-longitude diagram. The high-velocity fronts of such a diagram reveal the existence of an expanding molecular ring (EMR) with radius of ˜ 140 pc and velocity of ˜ 140 km s^{-1}. This ring is similar to those previously reported but is qualitatively different in that it is not rotating, suggesting an expulsion rather than the gravitational potential as causing the EMR. Possible relations between our observations and other high energy events will be discussed. T. R. Geballe and T. Oka, ApJ, 709, L70 (2010). T. Oka, T. R. Geballe, M. Goto, T. Usuda, and B. J. McCall ApJ, 632, 882 (2005). N. Kaifu, T. Kato, and T. Iguchi, Nature, 238, 105 (1972). N. Z. Scoville, ApJ, 175, L127 (1972). Y. Sofue, PASJ, 47, 551 (1995).

  7. Hyphenation of Thermal Analysis to Ultrahigh-Resolution Mass Spectrometry (Fourier Transform Ion Cyclotron Resonance Mass Spectrometry) Using Atmospheric Pressure Chemical Ionization For Studying Composition and Thermal Degradation of Complex Materials.

    PubMed

    Rüger, Christopher P; Miersch, Toni; Schwemer, Theo; Sklorz, Martin; Zimmermann, Ralf

    2015-07-01

    In this study, the hyphenation of a thermobalance to an ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometer (UHR FTICR MS) is presented. Atmospheric pressure chemical ionization (APCI) is used for efficient ionization. The evolved gas analysis (EGA), using high-resolution mass spectrometry allows the time-resolved molecular characterization of thermally induced processes in complex materials or mixtures, such as biomass or crude oil. The most crucial part of the setup is the hyphenation between the thermobalance and the APCI source. Evolved gases are forced to enter the atmospheric pressure ionization interface of the MS by applying a slight overpressure at the thermobalance side of the hyphenation. Using the FTICR exact mass data, detailed chemical information is gained by calculation of elemental compositions from the organic species, enabling a time and temperature resolved, highly selective detection of the evolved species. An additional selectivity is gained by the APCI ionization, which is particularly sensitive toward polar compounds. This selectivity on the one hand misses bulk components of petroleum samples such as alkanes and does not deliver a comprehensive view but on the other hand focuses particularly on typical evolved components from biomass samples. As proof of principle, the thermal behavior of different fossil fuels: heavy fuel oil, light fuel oil, and a crude oil, and different lignocellulosic biomass, namely, beech, birch, spruce, ash, oak, and pine as well as commercial available softwood and birch-bark pellets were investigated. The results clearly show the capability to distinguish between certain wood types through their molecular patterns and compound classes. Additionally, typical literature known pyrolysis biomass marker were confirmed by their elemental composition, such as coniferyl aldehyde (C10H10O3), sinapyl aldehyde (C11H12O4), retene (C18H18), and abietic acid (C20H30O2). PMID:26024433

  8. Multiphoton ionization of uranium hexafluoride

    NASA Astrophysics Data System (ADS)

    Armstrong, D. P.; Harkins, D. A.; Compton, R. N.; Ding, D.

    1994-01-01

    Multiphoton ionization (MPI) time-of-flight mass spectroscopy (TOFMS) and photoelectron spectroscopy (PES) studies of UF6 are reported using focused light from the Nd:YAG laser fundamental (λ=1064 nm) and its harmonics (λ=532, 355, or 266 nm), as well as other wavelengths provided by a tunable dye laser. The MPI mass spectra are dominated by the singly and multiply charged uranium ions rather than by the UF+x fragment ions, even at the lowest laser power densities at which signal could be detected. In general, the doubly charged uranium ion (U2+) intensity is much greater than that of the singly charged uranium ion (U+). For the case of the tunable dye laser experiments, the Un+ (n=1-4) wavelength dependence is relatively unstructured and does not show observable resonance enhancement at known atomic uranium excitation wavelengths. The MPI-PES studies reveal only very slow electrons (≤0.5 eV) for all wavelengths investigated. The dominance of the U2+ ion, the absence or very small intensities of UF+x (x=1-3) fragments, the unstructured wavelength dependence, and the preponderance of slow electrons all indicate that mechanisms may exist other than ionization of bare U atoms following the stepwise photodissociation of F atoms from the parent molecule. The data also argue against stepwise photodissociation of UF+x (x=5,6) ions. Neither of the traditional MPI mechanisms (``neutral ladder'' or the ``ionic ladder'') are believed to adequately describe the ionization phenomena observed. We propose that the multiphoton excitation of UF6 under these experimental conditions results in a highly excited molecule, superexcited UF6**. The excitation of highly excited UF6** is proposed to be facilitated by the well known ``giant resonance,'' whose energy level lies in the range of 12-14 eV above that of ground state UF6. The highly excited molecule then primarily dissociates, via multiple channels, into Un+, UF+x, fluorine atoms, and ``slow'' electrons, although dissociation

  9. Laser plasma formation assisted by ultraviolet pre-ionization

    SciTech Connect

    Yalin, Azer P. Dumitrache, Ciprian; Wilvert, Nick; Joshi, Sachin; Shneider, Mikhail N.

    2014-10-15

    We present experimental and modeling studies of air pre-ionization using ultraviolet (UV) laser pulses and its effect on laser breakdown of an overlapped near-infrared (NIR) pulse. Experimental studies are conducted with a 266 nm beam (fourth harmonic of Nd:YAG) for UV pre-ionization and an overlapped 1064 nm NIR beam (fundamental of Nd:YAG), both having pulse duration of ∼10 ns. Results show that the UV beam produces a pre-ionized volume which assists in breakdown of the NIR beam, leading to reduction in NIR breakdown threshold by factor of >2. Numerical modeling is performed to examine the ionization and breakdown of both beams. The modeled breakdown threshold of the NIR, including assist by pre-ionization, is in reasonable agreement with the experimental results.

  10. Electrospray Ionization on Solid Substrates

    PubMed Central

    So, Pui-Kin; Hu, Bin; Yao, Zhong-Ping

    2014-01-01

    Development of electrospray ionization on solid substrates (solid-substrate ESI) avoids the clogging problem encountered in conventional capillary-based ESI, allows more convenient sampling and permits new applications. So far, solid-substrate ESI with various materials, e.g., metals, paper, wood, fibers and biological tissue, has been developed, and applications ranging from analysis of pure compounds to complex mixtures as well as in vivo study were demonstrated. Particularly, the capability of solid-substrate ESI in direct analysis of complex samples, e.g., biological fluids and foods, has significantly facilitated mass spectrometric analysis in real-life applications and led to increasingly important roles of these techniques nowadays. In this review, various solid-substrate ESI techniques and their applications are summarized and the prospects in this field are discussed. PMID:26819900

  11. Ionizing radiation detector

    DOEpatents

    Thacker, Louis H.

    1990-01-01

    An ionizing radiation detector is provided which is based on the principle of analog electronic integration of radiation sensor currents in the sub-pico to nano ampere range between fixed voltage switching thresholds with automatic voltage reversal each time the appropriate threshold is reached. The thresholds are provided by a first NAND gate Schmitt trigger which is coupled with a second NAND gate Schmitt trigger operating in an alternate switching state from the first gate to turn either a visible or audible indicating device on and off in response to the gate switching rate which is indicative of the level of radiation being sensed. The detector can be configured as a small, personal radiation dosimeter which is simple to operate and responsive over a dynamic range of at least 0.01 to 1000 R/hr.

  12. Ionized cluster beam deposition

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, A. R.

    1983-01-01

    Ionized Cluster Beam (ICB) deposition, a new technique originated by Takagi of Kyoto University in Japan, offers a number of unique capabilities for thin film metallization as well as for deposition of active semiconductor materials. ICB allows average energy per deposited atom to be controlled and involves impact kinetics which result in high diffusion energies of atoms on the growth surface. To a greater degree than in other techniques, ICB involves quantitative process parameters which can be utilized to strongly control the characteristics of films being deposited. In the ICB deposition process, material to be deposited is vaporized into a vacuum chamber from a confinement crucible at high temperature. Crucible nozzle configuration and operating temperature are such that emerging vapor undergoes supercondensation following adiabatic expansion through the nozzle.

  13. Amorphous silicon ionizing particle detectors

    DOEpatents

    Street, R.A.; Mendez, V.P.; Kaplan, S.N.

    1988-11-15

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation. 15 figs.

  14. Amorphous silicon ionizing particle detectors

    DOEpatents

    Street, Robert A.; Mendez, Victor P.; Kaplan, Selig N.

    1988-01-01

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation.

  15. IONIZED NITROGEN AT HIGH REDSHIFT

    SciTech Connect

    Decarli, R.; Walter, F.; Neri, R.; Cox, P.; Bertoldi, F.; Carilli, C.; Kneib, J. P.; Lestrade, J. F.; Maiolino, R.; Omont, A.; Richard, J.; Riechers, D.; Thanjavur, K.; Weiss, A.

    2012-06-10

    We present secure [N II]{sub 205{mu}m} detections in two millimeter-bright, strongly lensed objects at high redshift, APM 08279+5255 (z = 3.911) and MM 18423+5938 (z = 3.930), using the IRAM Plateau de Bure Interferometer. Due to its ionization energy [N II]{sub 205{mu}m} is a good tracer of the ionized gas phase in the interstellar medium. The measured fluxes are S([N II]{sub 205{mu}m}) = (4.8 {+-} 0.8) Jy km s{sup -1} and (7.4 {+-} 0.5) Jy km s{sup -1}, respectively, yielding line luminosities of L([N II]{sub 205{mu}m}) = (1.8 {+-} 0.3) Multiplication-Sign 10{sup 9} {mu}{sup -1} L{sub Sun} for APM 08279+5255 and L([N II]{sub 205{mu}m}) = (2.8 {+-} 0.2) Multiplication-Sign 10{sup 9} {mu}{sup -1} L{sub Sun} for MM 18423+5938. Our high-resolution map of the [N II]{sub 205{mu}m} and 1 mm continuum emission in MM 18423+5938 clearly resolves an Einstein ring in this source and reveals a velocity gradient in the dynamics of the ionized gas. A comparison of these maps with high-resolution EVLA CO observations enables us to perform the first spatially resolved study of the dust continuum-to-molecular gas surface brightness ({Sigma}{sub FIR}{proportional_to}{Sigma}{sup N}{sub CO}, which can be interpreted as the star formation law) in a high-redshift object. We find a steep relation (N = 1.4 {+-} 0.2), consistent with a starbursting environment. We measure a [N II]{sub 205{mu}m}/FIR luminosity ratio in APM 08279+5255 and MM 18423+5938 of 9.0 Multiplication-Sign 10{sup -6} and 5.8 Multiplication-Sign 10{sup -6}, respectively. This is in agreement with the decrease of the [N II]{sub 205{mu}m}/FIR ratio at high FIR luminosities observed in local galaxies.

  16. The GODDESS ionization chamber: developing robust windows

    NASA Astrophysics Data System (ADS)

    Blanchard, Rose; Baugher, Travis; Cizewski, Jolie; Pain, Steven; Ratkiewicz, Andrew; Goddess Collaboration

    2015-10-01

    Reaction studies of nuclei far from stability require high-efficiency arrays of detectors and the ability to identify beam-like particles, especially when the beam is a cocktail beam. The Gammasphere ORRUBA Dual Detectors for Experimental Structure Studies (GODDESS) is made up of the Oak Ridge-Rutgers University Barrel Array (ORRUBA) of silicon detectors for charged particles inside of the gamma-ray detector array Gammasphere. A high-rate ionization chamber is being developed to identify beam-like particles. Consisting of twenty-one alternating anode and cathode grids, the ionization chamber sits downstream of the target chamber and is used to measure the energy loss of recoiling ions. A critical component of the system is a thin and robust mylar window which serves to separate the gas-filled ionization chamber from the vacuum of the target chamber with minimal energy loss. After construction, windows were tested to assure that they would not break below the required pressure, causing harm to the wire grids. This presentation will summarize the status of the ionization chamber and the results of the first tests with beams. This work is supported in part by the U.S. Department of Energy and National Science Foundation.

  17. Salt Tolerance of Desorption Electrospray Ionization (DESI)

    SciTech Connect

    Jackson, Ayanna U.; Talaty, Nari; Cooks, R G; Van Berkel, Gary J

    2007-01-01

    Suppression of ion intensity in the presence of high salt matrices is common in most mass spectrometry ionization techniques. Desorption electrospray ionization (DESI) is an ionization method that exhibits salt tolerance, and this is investigated. DESI analysis was performed on three different drug mixtures in the presence of 0, 0.2, 2, 5, 10, and 20% NaCl:KCl weight by volume from seven different surfaces. At physiological concentrations individual drugs in each mixture were observed with each surface. Collision-induced dissociation (CID) was used to provide additional confirmation for select compounds. Multiple stage experiments, to MS5, were performed for select compounds. Even in the absence of added salt, the benzodiazepine containing mixture yielded sodium and potassium adducts of carbamazepine which masked the ions of interest. These adducts were eliminated by adding 0.1% 7M ammonium acetate to the standard methanol:water (1:1) spray solvent. Comparison of the salt tolerance of DESI with that of electrospray ionization (ESI) demonstrated much better signal/noise characteristics for DESI in this study. The salt tolerance of DESI was also studied by performing limit of detection and dynamic range experiments. Even at a salt concentration significantly above physiological concentrations, select surfaces were effective in providing spectra that allowed the ready identification of the compounds of interest. The already high salt tolerance of DESI can be optimized further by appropriate choices of surface and spray solution.

  18. Dissociative Ionization of Benzene by Electron Impact

    NASA Technical Reports Server (NTRS)

    Huo, Winifred; Dateo, Christopher; Kwak, Dochan (Technical Monitor)

    2002-01-01

    We report a theoretical study of the dissociative ionization (DI) of benzene from the low-lying ionization channels. Our approach makes use of the fact that electron motion is much faster than nuclear motion and DI is treated as a two-step process. The first step is electron-impact ionization resulting in an ion with the same nuclear geometry as the neutral molecule. In the second step the nuclei relax from the initial geometry and undergo unimolecular dissociation. For the ionization process we use the improved binary-encounter dipole (iBED) model. For the unimolecular dissociation step, we study the steepest descent reaction path to the minimum of the ion potential energy surface. The path is used to analyze the probability of unimolecular dissociation and to determine the product distributions. Our analysis of the dissociation products and the thresholds of the productions are compared with the result dissociative photoionization measurements of Feng et al. The partial oscillator strengths from Feng et al. are then used in the iBED cross section calculations.

  19. Ionization detection system for aerosols

    DOEpatents

    Jacobs, Martin E.

    1977-01-01

    This invention relates to an improved smoke-detection system of the ionization-chamber type. In the preferred embodiment, the system utilizes a conventional detector head comprising a measuring ionization chamber, a reference ionization chamber, and a normally non-conductive gas triode for discharging when a threshold concentration of airborne particulates is present in the measuring chamber. The improved system utilizes a measuring ionization chamber which is modified to minimize false alarms and reductions in sensitivity resulting from changes in ambient temperature. In the preferred form of the modification, an annular radiation shield is mounted about the usual radiation source provided to effect ionization in the measuring chamber. The shield is supported by a bimetallic strip which flexes in response to changes in ambient temperature, moving the shield relative to the source so as to vary the radiative area of the source in a manner offsetting temperature-induced variations in the sensitivity of the chamber.

  20. Two-Photon Ionization of Metastable Helium

    NASA Astrophysics Data System (ADS)

    Czechanski, James Poremba

    There have been relatively few investigations of multiphoton ionization from metastable helium. Of particular interest has been the work of Haberland et al. 1987 and Haberland and Oschwald 1988. In both the 1987 and 1988 papers they have described the two photon ionization of metastable helium. In each of these studies they have reported the occurrence of unexplained structure along the wings of their resonance profiles. Upon the performance of similar measurements by this study, the unexplained structure is not seen and the agreement of the experiment's measurements with the theoretical shape of the resonance curves has been good. To experimentally verify these resonance effects, we have used a tunable dye laser in conjunction with a time of flight mass spectrometer to create and detect ions from metastable helium by two-photon absorption. The use of a metastable state instead of the ground state is advantageous because of its proximity to the ionization continuum and its extended lifetime. Using a metastable state as a starting point for multiphoton absorption requires fewer photons to reach the ionization threshold. The extended lifetime of the state also makes it easy to access experimentally. For helium the singlet metastable state 2^1 S lies at 20.61 eV above the ground level with a natural lifetime of close to a millisecond. Two photons of 501.7 nm and 504.35 nm are required for the ionization processes in resonance with the 3^1P and the 3^1D states. This thesis is the accounting of the experimental process involved in the measurement of the dipole and quadrupole resonances of two photon ionization from singlet metastable helium. The study includes the description of the laser, electron gun assembly for metastable helium creation, and the time of flight mass spectrometer. A discussion of the theory of multiphoton processes is included along with the discussion of the data, its reduction and analysis, and a comparison with theoretical prediction. This study

  1. Calculation of H2-He Flow with Nonequilibrium Ionization and Radiation: an Interim Report

    NASA Technical Reports Server (NTRS)

    Furudate, Michiko; Chang, Keun-Shik

    2005-01-01

    The nonequilibrium ionization process in hydrogen-helium mixture behind a strong shock wave is studied numerically using the detailed ionization rate model developed recently by Park which accounts for emission and absorption of Lyman lines. The study finds that, once the avalanche ionization is started, the Lyman line is self-absorbed. The intensity variation of the radiation at 5145 Angstroms found by Leibowitz in a shock tube experiment can be numerically reproduced by assuming that ionization behind the shock wave prior to the onset of avalanche ionization is 1.3%. Because 1.3% initial ionization is highly unlikely, Leibowitz s experimental data is deemed questionable. By varying the initial electron density value in the calculation, the calculated ionization equilibration time is shown to increase approximately as inverse square-root of the initial electron density value. The true ionization equilibration time is most likely much longer than the value found by Leibowitz.

  2. Isotope Effect in Tunneling Ionization of Neutral Hydrogen Molecules.

    PubMed

    Wang, X; Xu, H; Atia-Tul-Noor, A; Hu, B T; Kielpinski, D; Sang, R T; Litvinyuk, I V

    2016-08-19

    It has been recently predicted theoretically that due to nuclear motion light and heavy hydrogen molecules exposed to strong electric field should exhibit substantially different tunneling ionization rates [O. I. Tolstikhin, H. J. Worner, and T. Morishita, Phys. Rev. A 87, 041401(R) (2013)]. We studied that isotope effect experimentally by measuring relative ionization yields for each species in a mixed H_{2}/D_{2} gas jet interacting with intense femtosecond laser pulses. In a reaction microscope apparatus, we detected ionic fragments from all contributing channels (single ionization, dissociation, and sequential double ionization) and determined the ratio of total single ionization yields for H_{2} and D_{2}. The measured ratio agrees quantitatively with the prediction of the generalized weak-field asymptotic theory in an apparent failure of the frozen-nuclei approximation. PMID:27588855

  3. Antioxidant Approaches to Management of Ionizing Irradiation Injury

    PubMed Central

    Greenberger, Joel; Kagan, Valerian; Bayir, Hulya; Wipf, Peter; Epperly, Michael

    2015-01-01

    Ionizing irradiation induces acute and chronic injury to tissues and organs. Applications of antioxidant therapies for the management of ionizing irradiation injury fall into three categories: (1) radiation counter measures against total or partial body irradiation; (2) normal tissue protection against acute organ specific ionizing irradiation injury; and (3) prevention of chronic/late radiation tissue and organ injury. The development of antioxidant therapies to ameliorate ionizing irradiation injury began with initial studies on gene therapy using Manganese Superoxide Dismutase (MnSOD) transgene approaches and evolved into applications of small molecule radiation protectors and mitigators. The understanding of the multiple steps in ionizing radiation-induced cellular, tissue, and organ injury, as well as total body effects is required to optimize the use of antioxidant therapies, and to sequence such approaches with targeted therapies for the multiple steps in the irradiation damage response. PMID:26785339

  4. Antioxidant Approaches to Management of Ionizing Irradiation Injury.

    PubMed

    Greenberger, Joel; Kagan, Valerian; Bayir, Hulya; Wipf, Peter; Epperly, Michael

    2015-01-01

    Ionizing irradiation induces acute and chronic injury to tissues and organs. Applications of antioxidant therapies for the management of ionizing irradiation injury fall into three categories: (1) radiation counter measures against total or partial body irradiation; (2) normal tissue protection against acute organ specific ionizing irradiation injury; and (3) prevention of chronic/late radiation tissue and organ injury. The development of antioxidant therapies to ameliorate ionizing irradiation injury began with initial studies on gene therapy using Manganese Superoxide Dismutase (MnSOD) transgene approaches and evolved into applications of small molecule radiation protectors and mitigators. The understanding of the multiple steps in ionizing radiation-induced cellular, tissue, and organ injury, as well as total body effects is required to optimize the use of antioxidant therapies, and to sequence such approaches with targeted therapies for the multiple steps in the irradiation damage response. PMID:26785339

  5. Resonant Ionization Laser Ion Source for Radioactive Ion Beams

    SciTech Connect

    Liu, Yuan; Beene, James R; Havener, Charles C; Vane, C Randy; Gottwald, T.; Wendt, K.; Mattolat, C.; Lassen, J.

    2009-01-01

    A resonant ionization laser ion source based on all-solid-state, tunable Ti:Sapphire lasers is being developed for the production of pure radioactive ion beams. It consists of a hot-cavity ion source and three pulsed Ti:Sapphire lasers operating at a 10 kHz pulse repetition rate. Spectroscopic studies are being conducted to develop ionization schemes that lead to ionizing an excited atom through an auto-ionization or a Rydberg state for numerous elements of interest. Three-photon resonant ionization of 12 elements has been recently demonstrated. The overall efficiency of the laser ion source measured for some of these elements ranges from 1 to 40%. The results indicate that Ti:Sapphire lasers could be well suited for laser ion source applications. The time structures of the ions produced by the pulsed lasers are investigated. The information may help to improve the laser ion source performance.

  6. Isotope Effect in Tunneling Ionization of Neutral Hydrogen Molecules

    NASA Astrophysics Data System (ADS)

    Wang, X.; Xu, H.; Atia-Tul-Noor, A.; Hu, B. T.; Kielpinski, D.; Sang, R. T.; Litvinyuk, I. V.

    2016-08-01

    It has been recently predicted theoretically that due to nuclear motion light and heavy hydrogen molecules exposed to strong electric field should exhibit substantially different tunneling ionization rates [O. I. Tolstikhin, H. J. Worner, and T. Morishita, Phys. Rev. A 87, 041401(R) (2013)]. We studied that isotope effect experimentally by measuring relative ionization yields for each species in a mixed H2/D2 gas jet interacting with intense femtosecond laser pulses. In a reaction microscope apparatus, we detected ionic fragments from all contributing channels (single ionization, dissociation, and sequential double ionization) and determined the ratio of total single ionization yields for H2 and D2 . The measured ratio agrees quantitatively with the prediction of the generalized weak-field asymptotic theory in an apparent failure of the frozen-nuclei approximation.

  7. Strong-field ionization of a heteronuclear diatomic molecule

    SciTech Connect

    Ren, Xianghe; Nakajima, Takashi

    2010-12-15

    We theoretically study strong-field ionization of a heteronuclear diatomic molecule, CO, by calculating the photoelectron angular distributions (PADs) and the total ionization rates using linearly and circularly polarized laser fields. We find that, although the PADs of CO generally do not have inversion symmetry, they become more inversion symmetric as the photoelectron energy increases. Heteronuclear features of CO upon ionization are better understood by comparing the results with those of a representative of homonuclear molecules, N{sub 2}, in that, although there are some similarities between CO and N{sub 2} due to the same orbital symmetry, {sigma}{sub g}, there are some differences between them in terms of the ionization suppression and orientation dependence of the total ionization yield. Namely, CO behaves more like an atom in the low-intensity range in a sense that ionization takes place mainly from the neighborhood of the C core, while it behaves more like a double-core molecule in the high-intensity range since ionization takes place from the neighborhood of both C and O cores. This explains why ionization suppression of CO is not seen at the low intensity but it becomes more visible at the high intensity range.

  8. IEHI: Ionization Equilibrium for Heavy Ions

    NASA Astrophysics Data System (ADS)

    Cranmer, Steven R.

    2015-07-01

    IEHI, written in Fortran, outputs a simple "coronal" ionization equilibrium (i.e., collisional ionization and auto-ionization balanced by radiative and dielectronic recombination) for a plasma at a given electron temperature.

  9. New constraints on the escape of ionizing photons from starburst galaxies using ionization-parameter mapping

    SciTech Connect

    Zastrow, Jordan; Oey, M. S.; Veilleux, Sylvain; McDonald, Michael

    2013-12-10

    The fate of ionizing radiation in starburst galaxies is key to understanding cosmic reionization. However, the galactic parameters on which the escape fraction of ionizing radiation depend are not well understood. Ionization-parameter mapping provides a simple, yet effective, way to study the radiative transfer in starburst galaxies. We obtain emission-line ratio maps of [S III]/[S II] for six, nearby, dwarf starbursts: NGC 178, NGC 1482, NGC 1705, NGC 3125, NGC 7126, and He 2-10. The narrowband images are obtained with the Maryland-Magellan Tunable Filter at Las Campanas Observatory. Using these data, we previously reported the discovery of an optically thin ionization cone in NGC 5253, and here we also discover a similar ionization cone in NGC 3125. This latter cone has an opening angle of 40° ± 5° (0.4 sr), indicating that the passageways through which ionizing radiation may travel correspond to a small solid angle. Additionally, there are three sample galaxies that have winds and/or superbubble activity, which should be conducive to escaping radiation, yet they are optically thick. These results support the scenario that an orientation bias limits our ability to directly detect escaping Lyman continuum in many starburst galaxies. A comparison of the star formation properties and histories of the optically thin and thick galaxies is consistent with the model that high escape fractions are limited to galaxies that are old enough (≳3 Myr) for mechanical feedback to have cleared optically thin passageways in the interstellar medium, but young enough (≲5 Myr) that the ionizing stars are still present.

  10. New Constraints on the Escape of Ionizing Photons from Starburst Galaxies Using Ionization-parameter Mapping

    NASA Astrophysics Data System (ADS)

    Zastrow, Jordan; Oey, M. S.; Veilleux, Sylvain; McDonald, Michael

    2013-12-01

    The fate of ionizing radiation in starburst galaxies is key to understanding cosmic reionization. However, the galactic parameters on which the escape fraction of ionizing radiation depend are not well understood. Ionization-parameter mapping provides a simple, yet effective, way to study the radiative transfer in starburst galaxies. We obtain emission-line ratio maps of [S III]/[S II] for six, nearby, dwarf starbursts: NGC 178, NGC 1482, NGC 1705, NGC 3125, NGC 7126, and He 2-10. The narrowband images are obtained with the Maryland-Magellan Tunable Filter at Las Campanas Observatory. Using these data, we previously reported the discovery of an optically thin ionization cone in NGC 5253, and here we also discover a similar ionization cone in NGC 3125. This latter cone has an opening angle of 40° ± 5° (0.4 sr), indicating that the passageways through which ionizing radiation may travel correspond to a small solid angle. Additionally, there are three sample galaxies that have winds and/or superbubble activity, which should be conducive to escaping radiation, yet they are optically thick. These results support the scenario that an orientation bias limits our ability to directly detect escaping Lyman continuum in many starburst galaxies. A comparison of the star formation properties and histories of the optically thin and thick galaxies is consistent with the model that high escape fractions are limited to galaxies that are old enough (gsim3 Myr) for mechanical feedback to have cleared optically thin passageways in the interstellar medium, but young enough (lsim5 Myr) that the ionizing stars are still present.

  11. Resonance Enhanced Multi-Photon Ionization and Uv-Uv Hole-Burning Spectroscopic Studies of Jet-Cooled Acetanilide Derivatives

    NASA Astrophysics Data System (ADS)

    Moon, Ceol Joo; Min, Ahreum; Ahn, Ahreum; Lee, Seung Jun; Choi, Myong Yong; Kim, Seong Keun

    2013-06-01

    Conformational investigations and photochemistry of jet-cooled methacetine (MA) and phenacetine (PA) using one color resonant two-photon ionization (REMPI), UV-UV hole-burning and IR-dip spectroscopy are presented. MA and PA are derivatives of acetanilide, substituted by methoxyl, ethoxyl group in the para position of acetanilide, respectively. Moreover, we have investigated conformational information of the acetanilide derivatives (AAP, MA and PA)-water. In this work, we will present and discuss the solvent effects of the hydroxyl group of acetanilide derivatives in the excited state.

  12. Laboratory study of the spectrum of highly ionized calcium in the 100-250 A range applied to solar flare diagnostics

    NASA Technical Reports Server (NTRS)

    Lippmann, S.; Finkenthal, M.; Huang, L. K.; Moos, H. W.; Stratton, B. C.; Yu, T. L.; Bhatia, A. K.

    1987-01-01

    Calcium was introduced into the TEXT tokamak, and its spectral emission was recorded in the 50-360 A range by an absolutely calibrated grazing incidence spectrometer. These observations of highly ionized species of calcium at known conditions of plasma electron temperature and density allow testing of line brightness ratio predictions based on theoretical values of temperature-dependent electron excitation rates. The confirmation of the expected ratios in Be I-like to O I-like calcium allows more confident use of these ratios as a density diagnostic of remote astrophysical sources such as solar flares.

  13. Dynamics of C-Br bond dissociation in methyl 2-bromopropionate at 235 nm: A resonance-enhanced multiphoton ionization study

    NASA Astrophysics Data System (ADS)

    Saha, Ankur; Kumar, Awadhesh; Naik, Prakash D.

    2016-01-01

    The dynamics of the C-Br bond dissociation on UV excitation of methyl 2-bromopropionate mainly to the 1(nσ*) state, repulsive in the C-Br bond, has been investigated, employing resonance-enhanced multiphoton ionization. Both the ground state and spin-orbits excited bromine atoms were detected, with the former being the major channel. Bromine fragments show bimodal translational energy distributions, with slow and fast (major) bromine atoms arising mainly from the ground and excited electronic states, respectively. The measured recoil anisotropy suggests isotropic angular distributions of bromine atoms. Molecular orbital calculations reveal an important role of avoided curve crossing on C-Br bond dissociation dynamics.

  14. Simultaneous determination of rosuvastatin and fenofibric acid in human plasma by LC-MS/MS with electrospray ionization: assay development, validation and application to a clinical study.

    PubMed

    Trivedi, Ravi Kumar; Kallem, Raja Reddy; Mullangi, Ramesh; Srinivas, Nuggehally R

    2005-09-15

    A simple, sensitive and specific LC-MS/MS method for simultaneous determination of rosuvastatin (RST) and fenofibric acid (FFA) was developed and validated with 500 microL human plasma using carbamazepine as an internal standard (IS). The assay procedure involved a simple one-step liquid/liquid extraction of RST and FFA and IS from plasma into ethyl acetate. The organic layer was separated and evaporated under a gentle stream of nitrogen at 40 degrees C. The residue was reconstituted in the mobile phase and injected onto X-Terra MS C-18 column (4.6 mm x 50 mm, 5.0 microm). Separation of RST, FFA and IS was achieved with a mobile phase consisting of 0.05 M formic acid:acetonitrile (45:55, v/v) at a flow rate of 0.40 ml/min. The API-3000LC-MS/MS was operated under the multiple reaction-monitoring mode (MRM) using the electrospray ionization technique. Positive ion acquisition chromatographic run was used in the present method. Nominal retention times of RST, FFA and IS were 2.35, 4.70 and 2.32 min, respectively. Absolute recovery of RST, FFA and IS was 74, 61 and 69%, respectively. The lower limit of quantification (LLOQ) of RST and FFA was 1.00 ng/ml and 0.50 microg/ml, respectively. Response function was established for the range of concentrations 1.00-50.0 ng/ml and 0.50-20.0 microg/ml for RST and FFA, respectively, with a coefficient of determination (r2) of 0.999 for both the compounds. The inter- and intra-day precision in the measurement of RST quality control (QC) samples 5, 15, 400 and 800 ng/ml, were in the range 8.93-9.37% relative standard deviation (R.S.D.) and 1.74-16.1% R.S.D., respectively. Similarly, the inter- and intra-day precision in the measurement of FFA quality control (QC) samples 0.5, 1.5, 8.0 and 15.0 microg/ml, were in the range 9.78-11.6% relative standard deviation (R.S.D.) and 0.22-17.4% R.S.D., respectively. Accuracy in the measurement of QC samples for RST and FFA were in the range 88.1-108 and 87-115%, respectively, of the nominal

  15. Laser-Induced Ionization Efficiency Enhancement On A Filament For Thermal Ionization Mass Spectrometry

    SciTech Connect

    Siegfried, M.

    2015-10-14

    The evaluation of trace Uranium and Plutonium isotope ratios for nanogram to femtogram material quantities is a vital tool for nuclear counter-proliferation and safeguard activities. Thermal Ionization Mass Spectrometry (TIMS) is generally accepted as the state of the art technology for highly accurate and ultra-trace measurements of these actinide ratios. However, the very low TIMS ionization yield (typically less than 1%) leaves much room for improvement. Enhanced ionization of Nd and Sm from a TIMS filament was demonstrated using wavelength resonance with a nanosecond (pulse width) laser operating at 10 Hz when light was directed toward the filament.1 For this study, femtosecond and picosecond laser capabilities were to be employed to study the dissociation and ionization mechanisms of actinides/lanthanides and measure the enhanced ionization of the metal of interest. Since the underlying chemistry of the actinide/lanthanide carbides produced and dissociated on a TIMS filament is not well understood, the experimental parameters affecting the photodissociation and photoionization with one and two laser beams were to be investigated.

  16. Multielectron ionization of CdSe quantum dots in intense femtosecond ultraviolet light

    SciTech Connect

    Son, D.H.; Wittenberg, Joshua S.; Alivisatos, A. Paul

    2004-03-26

    Multielectron ionization of colloidal CdSe quantum dots under intense femtosecond UV excitation has been studied. By directly probing the absorption from the ionized electron, quantitative measurements of the yield and dynamics of the ionization have been made as a function of excitation fluence and variations of size and potential structure of quantum dots. The results have been explained by an ionization mechanism involving resonant two-photon absorption.

  17. Dissociative-ionization cross sections for 12-keV-electron impact on CO{sub 2}

    SciTech Connect

    Bhatt, Pragya; Singh, Raj; Yadav, Namita; Shanker, R.

    2011-10-15

    The dissociative ionization of a CO{sub 2} molecule is studied at an electron energy of 12 keV using the multiple ion coincidence imaging technique. The absolute partial ionization cross sections and the precursor-specific absolute partial ionization cross sections of resulting fragment ions are obtained and reported. It is found that {approx}75% of single ionization, 22% of double ionization, and {approx}2% of triple ionization of the parent molecule contribute to the total fragment ion yield; quadruple ionization of CO{sub 2} is found to make a negligibly small contribution. Furthermore, the absolute partial ionization cross sections for ion-pair and ion-triple formation are measured for nine dissociative ionization channels of up to a quadruply ionized CO{sub 2} molecule. In addition, the branching ratios for single-ion, ion-pair, and ion-triple formation are also determined.

  18. High pressure xenon ionization detector

    DOEpatents

    Markey, John K.

    1989-01-01

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0.degree. to 30.degree. C.

  19. High pressure xenon ionization detector

    DOEpatents

    Markey, J.K.

    1989-11-14

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0 to 30 C. 2 figs.

  20. A study on the response of the Equatorial Ionization Anomaly over the East Africa sector during the geomagnetic storm of November 13, 2012

    NASA Astrophysics Data System (ADS)

    Joseph, Olwendo Ouko; Yamazak, Yosuke; Cilliers, Pierre; Baki, Paul; Ngwira, Chigomezyo M.; Mito, Collins

    2015-06-01

    Using a set of up to 12 International GNSS Services (IGS) receivers around the East African region, we present the formation of the peak of ionospheric Equatorial Ionization Anomaly during the geomagnetic storm of 13th November 2012. The diurnal pattern of total electron content (TEC) shows a strong negative storm during the main phase of the storm. Latitudinal variation of TEC shows development of strong Equatorial Ionization Anomaly (EIA) on the recovery phase. Evidence in terms of magnetic variations during the storm period, indicates that the penetration of interplanetary electric fields is the main cause of the negative ionospheric effect during the main phase of the storm. Observation shows the occurrence of very strong westward electric fields arising from the IMF Bz turning southward a few hours after sunset local time. TEC enhancement during the recovery phase on the 16th are attributed to the increased ionospheric disturbance dynamo electric fields. In addition the EIA crest was found to intensify in amplitude as well as expand in latitudinal extent.